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I started my career with selling cars in 2003. That was my first job after 2 years 
of MBA and 4 years of engineering. In addition, I took off 2 years to enter a 
military academy as an officer cadet (dropped out in 1 year) and as a physicist 
(dropped out after 1 year). Much later, I dropped out of my PhD Track (MS 
Stats) after 1 year in Knoxville. I did not do very well in statistics theory in my 
engineering, my MBA, or even my grad school. I was only interested in statisti-
cal software and fortunately I was not very bad at using it. So in 2004, I dropped 
out of selling cars and entered into writing statistical software for General 
Electric’s then India‐based offshore company.

I used a language called SAS for a software called Base SAS. The help pro-
vided by the software company called SAS for this software and language was 
quite nice, so it was nice to play with data and code all day and be paid to have 
fun. After a few years of job changes, I came across open‐source software when 
I started building my own start‐up. I really like SAS as a language and a com-
pany, but as a start‐up guy I could not afford it, and the SAS University Edition 
was not there in 2007. Since I needed money to pay for diapers of my baby 
Kush, and analysis was the only gift God had given me, I turned to R.

R, Open Office, and Ubuntu Linux were my first introduction to open‐
source statistical computing, and I persevered in it. In 2007 I started my own 
start‐up in business analytics writing and consulting, Decisionstats.com. In 
2009 I entered the University of Tennessee for a funded assistantship, I 
interned in Silicon Valley for a few weeks in the winter, and I dropped out on 
medical reasons after taking courses across multiple departments from 
graphics design and genetic algorithms from Computer Science Department, 
apart from Statistics Department. Cross‐domain training helped me a lot to 
think in various ways to give simple solutions, and I will always be thankful 
to the kind folks in Statistics and Computer Science Department of the 
University of Tennessee.

Preface
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Once I mastered my brain around the vagaries of troubleshooting in Linux 
and of object‐oriented programming on R, I was good to go to give consulting 
projects for data analysis. Those days we used to call it business analytics, but 
today of course we call it data science.

Since I often forget things including where I kept my code, I started blogging 
on things that I felt were useful and might be useful to others. After a few years 
I discovered that in the real world it was not what I knew, but who I knew that 
really helped my career. So I began interviewing people in Analytics and R and 
my blog viewership took off. My blog philosophy continues to be—a blog post 
should be useful, it should be unique, and it should be interesting. In 2016, 
I had amassed 1,000,000 views on DecisionStats.com—again a surprising turn 
of events for me. I am most grateful to the 100 plus people who agreed to be 
interviewed by me.

2007 and 2008 were early days for analytics blogging for sure. After a few 
years I had enough material to put together a book and enough credibility to 
publish with a publisher. In 2012 I came up with my first book and in 2014 
I came up with my second book. In 2016, the Chinese translation of my first 
book was realized. Surprisingly for me, a review of my second book appeared 
in the Journal of Statistical Software.

After publishing two books on R, mentoring many start‐ups by consulting 
and training, engaging consulting clients in real‐world problems, and making 
an established name in social media, I still felt I needed to learn more.

Data was getting bigger and bigger. It was not enough to know how to 
write small data analytics using a single machine in serialized code; perhaps 
it was time to write parallel code in multiple machines on big data analytics. 
Then there was the divide between statisticians and computer science that 
fascinated me since I see data as data, a problem to be solved. As Eric S. 
Raymond wrote in the Hacker’s attitude, “The world is full of interesting 
problems.”

Then there was temptation and intellectual appeal of an alternative to R, 
called Python, which came with batteries attached (allegedly).

Once my scientific curiosity was piqued, I started learning Python. I found 
Python was both very good and very bad compared with R. Its community has 
different sets of rules and behavior (which are always turbulent in the passion-
ate world of open‐source developer ninjas). But the language itself was very 
different. I don’t care about the language. I love science. But if a person like me 
who at least knows how to code a wee bit in R found it so tough to redo the 
same thing in Python, I thought maybe others were facing this transitioning 
problem too. For big data and for some specific use cases, Python was better in 
terms of speed. Speed matters, no matter how much Moore’s law conspires 
with the either to make it easier for you to write code. R also seemed to turn 
into a language where all I did was import a package and run a function with 
tweaked parameters. As R became the scientific mainstream replacing SAS 
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language, and SAS remained the enterprise statistical language, Python and 
how to write code in it became the thing for anonymous red hat hackers like 
me to venture delve and explore into.

As the Internet of people expands to Internet of things, I feel that budding 
data scientists should know at least two languages in analytics so they can 
be  secure on career. This also gives enterprises an open choice on which 
software to prototype models and which software to deploy in production 
environments.
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The scope of the book is to introduce Python as a platform for data science 
practitioners including aspiring budding data scientists. The book is aimed at 
people who know R coding at various levels of expertise, but even those who 
know no coding in no language may find some value in it. It is not aimed at 
members of research communities and research departments. The focus is 
on simple tutorials and actionable analytics, not theory. I have also tried to 
incorporate R code to give a compare and contrast approach to learners.

Chapter 1

Introduction deals with Python and comparison with R. It also lists the func-
tions and packages used in both languages. It also lists some managerial mod-
els that the author feels data scientists should be aware of. It introduces the 
reader to basics of Python and R language.

Chapter 2

“Data Input” deals with an approach for people to get data of various volume 
variety and velocity in Python. This includes web scraping, databases, noSQL 
data, and spreadsheet like data.

Chapter 3

“Data Inspection and Data Quality”—Data Inspection deals with choices in 
verifying data quality in Python.

Scope



­Scopxviii

Chapter 4

“Exploratory Data Analysis” deals with basic data exploration and data 
summarization with rolling up data with group by criterion.

Chapter 5

“Statistical Modeling” deals with creating models based on statistical 
analysis  including OLS regression that are useful for industry to build 
propensity models.

Chapter 6

“Data Visualization” deals with visual methods to inspect raw and rolled‐up 
data.

Chapter 7

“Machine Learning Made Easier” deals with commonly used data mining 
methods for model building. This is done with an emphasis on both supervised 
and unsupervised methods and further emphasis on regression and clustering 
techniques. Time series forecasting helps the user with time series forecasting. 
Text mining deals with text mining methods and natural language processing. 
Web analytics looks at using Python for analyzing web data. Advanced data 
science looks at methods and techniques for newer age use cases including 
cloud computing‐enabled big data analysis, social network analysis, Internet of 
things, etc.

Chapter 8

Conclusion and Summary—We list down what we learned and tried to achieve 
in this book, and our perspective for future growth of R and Python as well as 
statistical computing to grow, and render data science a credible foothold for 
the future.
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The book has been written from a practical use case perspective for helping 
people navigate multiple open‐source languages in the pursuit of data science 
excellence. The author believes that there is no one software or language that 
can solve all kinds of data problems all the time. An optimized approach to 
learning is better than an ideological approach to learning statistical software. 
Past habits of thinking must be confronted to enhance speed of future 
knowledge enhancement.

Purpose
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I will continue to use screenshots as a tutorial device and I will draw upon my 
experience in data science consulting to highlight practical data parsing prob-
lems. This is because choosing the right tool and technique and even package 
is not so time consuming but the sheer variety of data and business problems 
can suck up the data scientist’s time that can later affect quality of his judgment 
and solution.

Intended Audience

This is a book for budding data scientists and existing data scientists married 
to other languages like SPSS or R or Julia. I am trying to be practical about 
solving problems in data. Thus there will be very little theory.

Afterthoughts

I am focused on practical solutions. I will therefore proceed on the assumption 
that the user wants to do data science or analytics at the lowest cost and great-
est accuracy, robustness, and ease possible. A true scientist always keeps his 
mind open to data and options regardless of who made whom. The author 
finds that information asymmetry and brand clutter have managed to confuse 
audiences of the true benefits of R versus Python versus other languages. The 
instructions and tutorials within this book have no warranty and you are doing 
so at your own risk.

As a special note on formatting of this manuscript, the author mostly writes 
on Google Docs, but here he is writing using the GUI LyX for the typesetting 
software LaTex, and he confesses he is not very good at it. We do hope the book 
is read by business users, technical users, CTOs keen to know more on R and 
Python and when to use open‐source analytics, and students wishing to enter 
a very nice career as data scientists. R is well known for excellent graphics but 

Plan
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not so suitable for bigger datasets in its native straight to use open‐source ver-
sion. Python is well known for being great with big datasets and flexibility but 
has always played catch‐up to the number of good statistical libraries as 
available in R.

The enterprise CTO can reduce costs incredibly by using open‐source 
software and hardware via blended cloud and blended open‐source software.
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Tim Peters

●● Beautiful is better than ugly.
●● Explicit is better than implicit.
●● Simple is better than complex.
●● Complex is better than complicated.
●● Flat is better than nested.
●● Sparse is better than dense.
●● Readability counts.
●● Special cases aren’t special enough to break the rules.
●● Although practicality beats purity.
●● Errors should never pass silently. Unless explicitly silenced.
●● In the face of ambiguity, refuse the temptation to guess.
●● There should be one—and preferably only one—obvious way to do it.
●● Although that way may not be obvious at first unless you’re Dutch.
●● Now is better than never. Although never is often better than right now.
●● If the implementation is hard to explain, it’s a bad idea.
●● If the implementation is easy to explain, it may be a good idea.
●● Namespaces are one honking great idea—let’s do more of those!

Source: https://www.python.org/dev/peps/pep-0020/

The Zen of Python

https://www.python.org/dev/peps/pep-0020/
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1.1  What Is Python?

Python is a programming language that lets you work more quickly and 
integrate your systems more effectively. It was created by Guido van Rossum. 
You can read Guido’s history of Python at the History of Python blog at 
http://python‐history.blogspot.in/2009/01/introduction‐and‐overview.html.

It is worth reading for beginners and even experienced people in Python. 
The following is just an extract:

many of Python’s keywords (if, else, while, for, etc.) are the same as in C, 
Python identifiers have the same naming rules as C, and most of the 
standard operators have the same meaning as C. Of course, Python is 
obviously not C and one major area where it differs is that instead of 
using braces for statement grouping, it uses indentation. For example, 
instead of writing statements in C like this

if (a < b) {
   max = b;
} else {
   max = a;
}

Python just dispenses with the braces altogether (along with the trailing 
semicolons for good measure) and uses the following structure:

if a < b:
   max = b
else:
   max = a

Introduction to Python R and Data Science

http://python-history.blogspot.in/2009/01/introduction-and-overview.html
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The other major area where Python differs from C‐like languages is in 
its use of dynamic typing. In C, variables must always be explicitly 
declared and given a specific type such as int or double. This informa-
tion is then used to perform static compile‐time checks of the program 
as well as for allocating memory locations used for storing the variable’s 
value. In Python, variables are simply names that refer to objects.

The Python Package Index (PyPI) https://pypi.python.org/pypi hosts third‐
party modules for Python. There are currently 91 625 packages there. You 
can  browse Python packages by topic at https://pypi.python.org/pypi?%3A 
action=browse

1.2  What Is R?

The official definition of what is R is given on the main website at http://
www.r‐project.org/about.html

R is an integrated suite of software facilities for data manipulation, cal-
culation and graphical display. It includes an effective data handling and 
storage facility, a suite of operators for calculations on arrays, in particu-
lar matrices, a large, coherent, integrated collection of intermediate 
tools for data analysis, graphical facilities for data analysis and display 
either on‐screen or on hardcopy, and a well‐developed, simple and 
effective programming language which includes conditionals, loops, 
user‐defined recursive functions and input and output facilities.

The term ‘environment’ is intended to characterize it as a fully planned 
and coherent system, rather than an incremental accretion of very spe-
cific and inflexible tools, as is frequently the case with other data analysis 
software.

The Comprehensive R Archive Network (CRAN) hosts thousands of pack-
ages for R at https://cran.r‐project.org/web/packages/, so does GitHub (see 
https://github.com/search?utf8=%E2%9C%93&q=stars%3A%3E1+language%
3AR) as well as Bioconductor as package repositories. You can see all the pack-
ages from these repositories for R at http://www.rdocumentation.org/ (11 885 
packages as of 2016).

As per the author, R is both a language in statistics as well as computer science 
and an analytics software with great usefulness in analyzing business data and 
applying data science to it. In particular the appeal of R remains: it is a free open 
source and has a huge number of packages particularly dealing with analysis of data.

Disadvantages of R remain memory handling in production environments, 
lack of incentives for R developers, and a sometimes turgid documentation 
that is mildly academic oriented rather than enterprise user oriented.

https://pypi.python.org/pypi
https://pypi.python.org/pypi?:action=browse
https://pypi.python.org/pypi?:action=browse
http://www.r-project.org/about.html
http://www.r-project.org/about.html
https://cran.r-project.org/web/packages/
https://github.com/search?utf8=✓&q=stars:>1+language:R
https://github.com/search?utf8=✓&q=stars:>1+language:R
http://www.rdocumentation.org/
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1.3  What Is Data Science?

Data science lies at the intersection of programming, statistics, and business 
analysis. It is the use of programming tools with statistical techniques to ana-
lyze data in a systematic and scientific way. A famous diagram by Drew Conway 
put data science as the intersection of the three. It is given at http://drewcon 
way.com/zia/2013/3/26/the‐data‐science‐venn‐diagram

The author defines a data scientist as follows:

A data scientist is simply a person who can write code (in languages like R, 
Python, Java, SQL, Hadoop (Pig, HQL, MR) etc.) for data (storage, query-
ing, summarization, visualization) efficiently and quickly on hardware 
(local machines, on databases, on cloud, on servers) and understand 
enough statistics to derive insights from data so business can make 
decisions.

1.4  The Future for Data Scientists

The respectable Harvard Business Review defines data scientist to be the 
sexiest job of the twenty‐first century (https://hbr.org/2012/10/data‐scientist‐ 
the‐sexiest‐job‐of‐the‐21st‐century/).

Surveys on salaries point out to both rising demand and salaries for data 
scientists and a big shortage for trained professionals (see http://www.forbes.
com/sites/gilpress/2015/10/09/the‐hunt‐for‐unicorn‐data‐scientists‐lifts‐ 
salaries‐for‐all‐data‐analytics‐professionals/). Indeed this has coined a new 
term unicorn data scientists. A unicorn data scientist is rare to find for he has 
all the skills in programming, statistics, and business aptitude. A modification 
of the Data Science Venn Diagram in Figure  1.1 is available at http://www.
anlytcs.com/2014/01/data‐science‐venn‐diagram‐v20.html, which the author 
found more updated.

In addition, unicorn is a term in the investment industry, and in particular 
the venture capital industry, which denotes a start‐up company whose valua-
tion has exceeded $1 billion. The term has been popularized by Aileen Lee of 
Cowboy Ventures. They can be seen at http://graphics.wsj.com/billion‐dollar‐
club/ and http://fortune.com/unicorns/

Not surprisingly data science offers a critical edge to these start‐ups as well. 
So we can have both rising demand and short supply of data scientists, leading 
to a more secure work environment. A list of start‐ups can be seen at Y 
Combinator at http://yclist.com/ including data science related start‐ups. You 
can see a survey here on data scientist salaries at http://www.burtchworks.
com/2015/07/14/compensation‐of‐data‐scientists‐insights‐from‐the‐past‐
year. The annual Rexer Analytics survey helps gauge skills and usage by data 
miners. You can read an interview at http://decisionstats.com/2013/12/25/

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html
http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html
http://graphics.wsj.com/billion-dollar-club/
http://graphics.wsj.com/billion-dollar-club/
http://fortune.com/unicorns/
http://yclist.com/
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://decisionstats.com/2013/12/25/karl-rexer-interview-on-the-state-of-analytics/
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karl‐rexer‐interview‐on‐the‐state‐of‐analytics/ or read the report at www. 
rexeranalytics.com. We can thus sum up and say that data scientists who have 
the right skills have a great future ahead professionally.

A note of caution is that skills need to be updated by data scientists very 
quickly and they need to be responsive to business needs to frame the data 
science solutions. So the risk of being obsolete remains an encouragement for 
data scientists to get multiple skills. An interesting fellowship program for 
data scientists is run by Insight at http://insightdatascience.com/, and a reposi-
tory  for data science is available for free at https://github.com/okulbilisim/
awesome‐datascience

Closer home, the NY‐based Byte academy offers a Python‐based program 
for data science at http://byteacademy.co/

1.5  What Is Big Data?

Big data is a broad term for datasets so large or complex that traditional data 
processing applications are inadequate. The 3Vs model helps with understand-
ing big data.

Data Science Venn Diagram v2.0

Data science

Computer
science

Machine
learning

Math and
statistics

Unicorn

Traditional
software

Copyright © 2014 by Steven Geringer Raleigh, NC.
Permission is granted to use, distribute, or modify this
image, provided that this copyright notice remains intact

Traditional
research

Subject matter expertise

Figure 1.1  Data Science Venn diagram. Source: Copyright © 2014 Steven Geringer 
Raleigh, NC.

http://decisionstats.com/2013/12/25/karl-rexer-interview-on-the-state-of-analytics/
http://www.rexeranalytics.com
http://www.rexeranalytics.com
http://insightdatascience.com/
https://github.com/okulbilisim/awesome-datascience
https://github.com/okulbilisim/awesome-datascience
http://byteacademy.co/
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These are:

1)	 Volume (size and scale of data)
2)	 Velocity (streaming or data refresh rate)
3)	 Variety (type: structured or unstructured) of data

The fourth V is veracity.
Typical approaches to deal with big data are hardware based, and use distrib-

uted computing, parallel processing, cloud computing, and specialized soft-
ware like Hadoop stack. An interesting viewpoint to big data is given at https://
peadarcoyle.wordpress.com/2015/08/02/interview‐with‐a‐data‐scientist‐ 
hadley‐wickham/ by Dr. Hadley Wickham, a noted R scientist:

There are two particularly important transition points:

*	 From in‐memory to disk. If your data fits in memory, it’s small data. 
And these days you can get 1 TB of ram, so even small data is big! 
Moving from in‐memory to on‐disk is an important transition because 
access speeds are so different. You can do quite naive computations on 
in‐memory data and it’ll be fast enough. You need to plan (and index) 
much more with on‐disk data

*	 From one computer to many computers. The next important threshold 
occurs when you data no longer fits on one disk on one computer. Moving 
to a distributed environment makes computation much more challeng-
ing because you don’t have all the data needed for a computation in one 
place. Designing distributed algorithms is much harder, and you’re fun-
damentally limited by the way the data is split up between computers.

Wes McKinney, the author of pandas, the primary Python package for 
data  science, has this to offer on http://wesmckinney.com/blog/the‐ 
problem‐with‐the‐data‐science‐language‐wars/

“any data processing engine that allows you to extend it with user‐
defined code written in a “foreign language” like Python or R has to solve 
at least these 3 essential problems:

●● Data movement or access: making runtime data accessible in a form 
consumable by Python, say. Unfortunately, this often requires expen-
sive serialization or deserialization and may dominate the system 
runtime. Serialization costs can be avoided by carefully creating 
shared byte‐level memory layouts, but doing this requires a lot of 
experienced and well‐compensated people to agree to make major 
engineering investments for the greater good.

●● Vectorized computation: enabling interpreted languages like Python 
or R to amortize overhead and calling into fast compiled code that is 

https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
http://wesmckinney.com/blog/the-problem-with-the-data-science-language-wars/
http://wesmckinney.com/blog/the-problem-with-the-data-science-language-wars/
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array‐oriented (e.g. NumPy or pandas operations). Most libraries in 
these languages also expect to work with array / vector values rather 
than scalar values. So if you want to use your favorite Python or R 
packages, you need this feature.

●● IPC overhead: the low‐level mechanics of invoking an external func-
tion. This might involve sending a brief message with a few curt 
instructions over a UNIX socket.”

The author defines big data as data that requires more hardware (Cloud et al.) 
or more complicated programming or specialized software (Hadoop) than 
small data.

1.6  Business Analytics Versus Data Science

The author found the historical evolution from statistical computing to business 
analytics (BA) to data science both fascinating and amusing in the various claims 
of hegemonic superiority. This is how he explains it to his students and readers.

1.6.1  Defining Analytics

Analytics is the systematic computational analysis of data or statistics. It is the 
discovery and communication of meaningful patterns in data. Especially valu-
able in areas rich with recorded information, analytics relies on the simultane-
ous application of statistics, computer programming, and operations research 
to quantify performance.

The information ladder was created by education professor Norman 
Longworth to describe the stages in human learning. According to the ladder, 
a learner moves through the following progression to construct “wisdom” from 
“data”:

Data → Information → Knowledge → Understanding → Insight → Wisdom

BA refers to the skills, technologies, and practices for continuous iterative 
exploration and investigation of past business performance to gain insight and 
drive business planning.

Data analytics (DA) is the science of examining raw data with the purpose of 
drawing conclusions about that information.

Citation from http://www.gartner.com/it‐glossary/analytics
Data science is a more recent term and implies much more programming 

complexity:

	 Data Science = programming + statistics + business knowledge	

from http://drewconway.com/zia/2013/3/26/the‐data‐science‐venn‐diagram

http://www.gartner.com/it-glossary/analytics
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
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Business intelligence (BI) is an umbrella term that includes the applications, 
infrastructure and tools, and best practices that enable access to and analysis of 
information to improve and optimize decisions and performance.

Overall the most important thing should be assistance to decision‐making 
rendered not just the science of data analysis.

1.7  Tools Available to Data Scientists

Some (and not all) of the widely used tools available to data scientists are the 
following:

●● Data storage—MySQL, Oracle, SQL Server, HBase, MongoDB, and Redis
●● Data querying—SQL, Python, Java, and R
●● Data analysis—SAS, R, and Python
●● Data visualization—JavaScript, R, and Python
●● Data mining—Clojure, R, and Python
●● Cloud—Amazon AWS, Microsoft Azure, and Google Cloud
●● Hadoop Big Data—Spark, HDFS MapReduce (Java), Pig, Hive, and Sqoop

A cheat sheet is a piece of paper bearing written notes intended to aid one’s 
memory. It can also be defined as a compilation of mostly used commands to 
help you learn that language’s syntax at a faster rate. To help with remembering 
syntax for many tools, cheat sheets can be useful for data scientists.

The author has written an article on KDnuggets on cheat sheets for 
data science at http://www.kdnuggets.com/2014/05/guide‐to‐data‐science‐
cheat‐sheets.html where he elaborates on his philosophy of what is a data 
scientist or not.

1.7.1  Guide to Data Science Cheat Sheets

Selection of the most useful Data Science cheat sheets, covering SQL, Python 
(including NumPy, SciPy, and Pandas), R (including Regression, Time Series, 
Data Mining), MATLAB, and more. By Ajay Ohri, May 2014.

Over the past few years, as the buzz and apparently the demand for data 
scientists has continued to grow, people are eager to learn how to join, learn, 
advance, and thrive in this seemingly lucrative profession. As someone who 
writes on analytics and occasionally teaches it, I am often asked—How do I 
become a data scientist?

Adding to the complexity of my answer is data science seems to be a multi-
disciplinary field, while the university departments of statistics, computer sci-
ence, and management deal with data quite differently.

But to cut the marketing created jargon aside, a data scientist is simply a 
person who can write code in a few languages (primarily R, Python, and SQL) 

http://www.kdnuggets.com/2014/05/guide-to-data-science-cheat-sheets.html
http://www.kdnuggets.com/2014/05/guide-to-data-science-cheat-sheets.html
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for data querying, manipulation, aggregation, and visualization using enough 
statistical knowledge to give back actionable insights to the business for mak-
ing decisions.

Since this rather practical definition of a data scientist is reinforced by the 
accompanying words on a job website for “data scientists,” ergo, here are some 
tools for learning the primary languages in data science—Python, R, and SQL.

A cheat sheet or reference card is a compilation of mostly used commands to 
help you learn that language’s syntax at a faster rate. The inclusion of SQL may 
lead to some to feel surprised (isn’t this the NoSQL era?), but it is there for a 
logical reason. Both PIG and Hive Query Language are closely associated with 
SQL—the original Structured Query Language. In addition one can solely use 
the sqldf package within R (and the less widely used python‐sql or python‐sql-
parse libraries for Pythonic data scientists) or even the Proc SQL commands 
within the old champion language SAS and do most of what a data scientist is 
expected to do (at least in data munging).

Python Cheat Sheets is a rather partial list given the fact that Python, the 
most general‐purpose language within the data scientist quiver, can be used for 
many things. But for the data scientist, the packages of NumPy, SciPy, pandas, 
and scikit‐learn seem the most pertinent.

Do all the thousands of R packages have useful interest to the aspiring data 
scientist? No.

Accordingly we chose the appropriate cheat sheets for you. Note that this 
is a curated list of lists. If there is anything that can be assumed in the field of 
data science, it should be that the null hypothesis is that the data scientist is 
intelligent enough to make his own decisions based on data and its context. 
Three printouts are all it takes to speed up the aspiring data scientist’s 
journey.

You can also view the presentation on SlideShare at http://www.slideshare.
net/ajayohri/cheat‐sheets‐for‐data‐scientists that has more than 8000 views.

1.8  Packages in Python for Data Science

Some useful packages for data scientists in Python are as follows:

●● pandas—A software library written for data structures, data manipulation, 
and analysis in Python.

●● NumPy—Adds Python support for large, multidimensional arrays and 
matrices, along with a large library of high‐level mathematical functions to 
operate on these arrays.

●● IPython Notebook(s)—Demonstrates Python functionality geared toward 
data analysis.

●● SciPy—A fundamental library for scientific computing.

http://www.slideshare.net/ajayohri/cheat-sheets-for-data-scientists
http://www.slideshare.net/ajayohri/cheat-sheets-for-data-scientists
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●● Matplotlib—A comprehensive 2D plotting for graphs and data 
visualization.

●● Seaborn—A Python visualization library based on matplotlib. It provides a 
high‐level interface for drawing attractive statistical graphics.

●● scikit‐learn—A machine learning library.
●● statsmodels—For building statistical models.
●● Beautiful Soup—For web scraping.
●● Tweepy—For Twitter scraping.
●● Bokeh (http://bokeh.pydata.org/en/latest/)—A Python interactive visualiza-

tion library that targets modern web browsers for presentation. Its goal is to 
not only provide elegant, concise construction of novel graphics in the style 
of D3.js but also deliver this capability with high‐performance interactivity 
over very large or streaming datasets. It has interfaces in Python, Scala, Julia, 
and now R.

●● ggplot (http://ggplot.yhathq.com/)—A plotting system for Python based on 
R’s ggplot2 and the Grammar of Graphics. It is built for making professional‐
looking plots quickly with minimal code.

For R the best way to look at packages is see CRAN Task Views (https://cran.r‐
project.org/web/views/) where the packages are aggregated by usage type. For 
example, the CRAN Task View on High Performance Computing is available at 
https://cran.r‐project.org/web/views/HighPerformanceComputing.html.

1.9  Similarities and Differences between 
Python and R

●● Python is used in a wide variety of use cases unlike R that is mostly a lan-
guage for statistics.

●● Python has two versions: Python 2 (or 2.7) and Python 3 (3.4). This is not 
true in R that has one major release.

●● R has very good packages in data visualization and data mining and so does 
Python. R however has a large number of packages that can do the same 
thing, while Python generally focuses on adding functions to same package. 
This is both a benefit in terms of options available and a disadvantage in 
terms of confusing the beginner. Python has comparatively fewer packages 
(like statsmodels and scikit‐learn for data mining).

●● Communities differ in terms of communication and interaction. The R com-
munity uses the #rstats on Twitter (see https://twitter.com/hashtag/rstats) to 
communicate.

●● R has an R Journal at https://journal.r‐project.org/, and Python has a journal 
at Python Papers (http://ojs.pythonpapers.org/). In addition there is a Journal 
of Statistical Software (http://www.jstatsoft.org/index).

http://bokeh.pydata.org/en/latest/
http://ggplot.yhathq.com/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://twitter.com/hashtag/rstats
https://journal.r-project.org/
http://ojs.pythonpapers.org/
http://www.jstatsoft.org/index
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1.9.1  Why Should R Users Learn More about Python?

A professional data scientist should hedge his career by not depending on just 
one statistical computing language. The ease at which a person can learn a new 
language does decrease with age, and it’s best to base your career on more than R. 
SAS language did lead the world for four decades, but in a fast‐changing world, 
it is best not to bet your mortgage that R skills are all you need for  
statistical computing in a multi‐decade career.

1.9.2  Why Should Python Users Learn More about R?

R will continue to have the maximum number of packages in statistics data 
science and visualization. Since R is also open source and free, it is best to 
prototype your solution in R than use Python for scaling up in production 
environment.

An interesting viewpoint is given at http://www.kdnuggets.com/2015/05/ 
r‐vs‐python‐data‐science.html by a founder of DataCamp and at http:// 
multithreaded.stitchfix.com/blog/2015/03/17/grammar‐of‐data‐science/

1.10  Tutorials

A notebook by Radim Rehurek on data science with Python with code and 
output is available at http://radimrehurek.com/data_science_python/.

A good list of notebooks in data science for Python is also available at https://
github.com/donnemartin/data‐science‐ipython‐notebooks.

More general knowledge on data science‐related activities in Python can be 
found at https://github.com/okulbilisim/awesome‐datascience.

For more learning on data science, see http://datasciencespecialization.
github.io/. It has all nine courses in the Coursera Data Science Specialization 
from Johns Hopkins University.

It has the following courses:

●● The Data Scientist’s Toolbox
●● R Programming
●● Getting and Cleaning Data
●● Exploratory Data Analysis
●● Reproducible Research
●● Statistical Inference
●● Regression Models
●● Practical Machine
●● Learning Developing Data Products

http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
http://multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
http://multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
http://radimrehurek.com/data_science_python/.
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/okulbilisim/awesome-datascience
http://datasciencespecialization.github.io/
http://datasciencespecialization.github.io/
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1.11  Using R and Python Together

The author has helped create a SlideShare ppt on a side‐by‐side comparison of 
R and Python syntax for data science at http://www.slideshare.net/ajayohri/
python‐for‐r‐users (35 000 + views). However a guide for using Python and R 
for quantitative finance is also found at http://www.slideshare.net/lsbardel/
python‐and‐r‐for‐quantitative‐finance‐2409526

Additionally the following methods help to use both R and Python and lever-
age their tremendous strengths:

1)	 RPy2 RPy2 helps in using R and Python together. The official documenta-
tion is given at http://rpy.sourceforge.net/rpy2/doc‐dev/html/introduction. 
html. The object r in rpy2.robjects represents the running embedded R 
process. If familiar with R and the R console, r is a little like a communica-
tion channel from Python to R.

A lucid example of using RPy2 is given here at A Slug’s Guide to Python 
(https://sites.google.com/site/aslugsguidetopython/data‐analysis/pandas/
calling‐r‐from‐python):

from pandas import*
from rpy2.robjects.packages import importr
import rpy2.robjects as ro
import pandas.rpy.common as com

We can pass commands to the R session by putting the R syntax within the 
ro.r() method as strings, and we can read the R data.frame into pandas data 
frame with com.load_data method. We can then pass the pandas data frame 
back to the R instance by first converting pydf to an R data frame by using com.
convert_to_r_dataframe method.

A truncated screenshot of the website is given in Figure 1.2 to help the reader 
understand and refer back to https://sites.google.com/site/aslugsguidetopython/
data‐analysis/pandas/calling‐r‐from‐python

1.11.1  Using R Code for Regression and Passing to Python

An example of using rpy2 and caret package in R is given for kaggle at  
https://www.kaggle.com/c/bike‐sharing‐demand/forums/t/12923/rpy2‐caret‐ 
example

a caret use from python environment:
import pandas.rpy.common as com
import rpy2

http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/lsbardel/python-and-r-for-quantitative-finance-2409526
http://www.slideshare.net/lsbardel/python-and-r-for-quantitative-finance-2409526
http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.html
http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.html
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-example
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-example
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import rpy2.robjects as ro
from rpy2.robjects import Formula
from rpy2.robjects.packages import importr
caretr = importr("caret")
data_trainr = com.convert_to_r_dataframe(data_train)
param1 = {'method' : 'repeatedcv', 'number' : 3, 
'repeats' : 5}
ctrl = caretr.trainControl(**param1)
param2 = {'method' : 'rf', 'trControl' : ctrl}
rf_for = Formula("log(casual + 1) ~ dm + t + wd + tp + 
hum + ws")

Figure 1.2  Using R code for regression and passing to Python.
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rfmod = caretr.train(rf_for, data = data_trainr, 
**param2)
print(rfmod)

A better but slightly old demo of using R and Python together in rpy2 is given 
at http://www.bytemining.com/wp‐content/uploads/2010/10/rpy2.pdf

Another good example is given by Laurent Gautier in her talk “Polyglot 
applications with R and Python [BARUG Meeting]” at http://files.meetup.
com/1225993/Laurent%20Gautier_R_toPython_bridge_to_R.pdf#!

A minimal example of rpy2 regression using pandas data frame is given 
at Stack Overflow at http://stackoverflow.com/questions/30922213/minimal‐ 
example‐of‐rpy2‐regression‐using‐pandas‐data‐frame

from rpy2.robjects import pandas2ri
pandas2ri.activate()
robjects.globalenv['dataframe'] = dataframe
M = stats.lm('y~x', data=base.as_symbol('dataframe'))

The result is:

>>> print(base.summary(M).rx2('coefficients'))
	 Estimate Std. Error  t value  Pr(>|t|)
(Intercept)	0.6  1.1489125 0.522233 0.6376181
x	 0.8  0.3464102 2.309401 0.1040880

CONDA—Conda is an open‐source package management system and 
environment management system for installing multiple versions of software 
packages and their dependencies and switching easily between them. It works 
on Linux, OS X, and Windows and was created for Python programs but can 
package and distribute any software. Using conda we can use Python and 
R together. We can then use the familiar interface of Jupyter/IPython Notebook. 
You can refer to https://www.continuum.io/conda‐for‐r.

You can see the demo for R within Jupyter at https://try.jupyter.org/. A good 
blog post on using Jupyter to R is found at https://www.continuum.io/blog/
developer/jupyter‐and‐conda‐r.

The Anaconda team has created an “R Essentials” bundle with the IRkernel 
and over 80 of the most used R packages for data science, including dplyr, 
shiny, ggplot2, tidyr, caret, and nnet.

Once you have conda, you may install “R Essentials” into the current 
environment:

conda install -c r r-essentials
  Bash

http://www.bytemining.com/wp-content/uploads/2010/10/rpy2.pdf
http://files.meetup.com/1225993/Laurent Gautier_R_toPython_bridge_to_R.pdf#!
http://files.meetup.com/1225993/Laurent Gautier_R_toPython_bridge_to_R.pdf#!
http://stackoverflow.com/questions/30922213/minimal-example-of-rpy2-regression-using-pandas-data-frame
http://stackoverflow.com/questions/30922213/minimal-example-of-rpy2-regression-using-pandas-data-frame
https://www.continuum.io/conda-for-r
https://try.jupyter.org/
https://www.continuum.io/blog/developer/jupyter-and-conda-r
https://www.continuum.io/blog/developer/jupyter-and-conda-r
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or create a new environment just for “R essentials”:

conda create -n my-r-env -c r r-essentials

(https://www.continuum.io/content/preliminary‐support‐r‐conda)
conda create ‐c r ‐n r r will download R from our official R channel on 
Anaconda.org:

●● Revolution Analytics—A Microsoft company that is one of the leading ven-
dors of R has a blog post on this at http://blog.revolutionanalytics.
com/2015/09/using‐r‐with‐jupyter‐notebooks.html

●● Official documentation is also at http://conda.pydata.org/docs/r‐with‐
conda.html

DOCKER—Docker is an open platform for developers and sysadmins to build, 
ship, and run distributed applications, whether on laptops, data center VMs, or 
the cloud.

●● You can use Docker to run Jupyter. This is available at https://hub.docker.
com/r/jupyter/datascience‐notebook/ and https://github.com/jupyter/
docker‐stacks

A good discussion for Docker is given at http://stackoverflow.com/
questions/16047306/how‐is‐docker‐different‐from‐a‐normal‐virtual‐
machine. I am reproducing a part of the technical answer in the following text.

Docker was using Linux Containers (LXC) earlier but switched to runC  
(formerly known as libcontainer) that runs in the same operating system as its 
host. This allows it to share a lot of the host operating system resources. 
It also uses layered file systems like AuFS. It also manages the networking for 
you as well.

AuFS is a layered file system, so you can have a read‐only part and a 
write part and merge those together. So you could have the common parts 
of the operating system as read only, which are shared among all of your 
containers, and then give each container its own mount for writing.

So let’s say you have a container image that is 1GB in size. If you wanted to 
use a full VM, you would need to have 1GB times × number of VMs you want. 
With LXC and AuFS you can share the bulk of the 1GB, and if you have 1000 
containers, you still might only have a little over 1GB of space for the container 
OS, assuming they are all running the same OS image.

A full virtualized system gets its own set of resources allocated to it and 
does minimal sharing. You get more isolation, but it is much heavier (requires 
more resources).

With LXC you get less isolation, but they are more lightweight and require 
fewer resources. So you could easily run 1000’s on a host.

You can build your own docker environment for data science.

https://www.continuum.io/content/preliminary-support-r-conda
http://blog.revolutionanalytics.com/2015/09/using-r-with-jupyter-notebooks.html
http://blog.revolutionanalytics.com/2015/09/using-r-with-jupyter-notebooks.html
http://conda.pydata.org/docs/r-with-conda.html
http://conda.pydata.org/docs/r-with-conda.html
https://hub.docker.com/r/jupyter/datascience-notebook/
https://hub.docker.com/r/jupyter/datascience-notebook/
https://github.com/jupyter/docker-stacks
https://github.com/jupyter/docker-stacks
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
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For Jupyter and Docker, see “A data science environment in minutes using 
Docker and Jupyter” at https://www.dataquest.io/blog/data‐science‐quickstart‐ 
with‐docker/, and for Docker and R, you can use the instructions and file 
at https://hub.docker.com/r/library/r‐base/. The official R base is available at 
https://store.docker.com/images/f2e50720‐cada‐432f‐85a5‐1ade438d537b? 
tab=description, and you can just copy and paste to pull the image

docker pull r‐base

●● Python and R together using Beaker—You can use Python and R together 
using Jupyter, Rpy2, or Beaker. While Jupyter and rpy2 have been covered 
before, we can also use Beaker. You can use R Python and JavaScript within 
the same notebook in Beaker (and other languages too).

You can see examples here http://beakernotebook.com/examples and 
read about it at http://blog.dominodatalab.com/interactive‐data‐science/ and 
https://github.com/twosigma/beaker‐notebook

1.12  Other Software and Python

●● SAS and Python—You can use the SAS language to talk to both Python and R. 
This is done using Java (passed to the Java class SASJavaExec using the Base 
SAS Java Object). More specifically you can see the instructions at https://
github.com/sassoftware/enlighten‐integration/ and https://communities.sas.
com/docs/DOC‐10746

1.13  Using SAS with Jupyter

You can also use SAS from within Jupyter (Figure 1.3; see http://blogs.sas.com/
content/sasdummy/2016/04/24/how‐to‐run‐sas‐programs‐in‐jupyter‐notebook/).

1.14  How Can You Use Python 
and R for Big Data Analytics?

Big data is synonymous with Hadoop. For using Python with Hadoop, you can 
use the following packages:

1)	 Hadoop Streaming
2)	 mrjob
3)	 dumbo
4)	 hadoopy
5)	 pydoop

https://www.dataquest.io/blog/data-science-quickstart-with-docker/
https://www.dataquest.io/blog/data-science-quickstart-with-docker/
https://hub.docker.com/r/library/r-base/
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?tab=description
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?tab=description
http://beakernotebook.com/examples
http://blog.dominodatalab.com/interactive-data-science/
https://github.com/twosigma/beaker-notebook
https://github.com/sassoftware/enlighten-integration/
https://github.com/sassoftware/enlighten-integration/
https://communities.sas.com/docs/DOC-10746
https://communities.sas.com/docs/DOC-10746
http://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/
http://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/
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An example is given at https://blog.cloudera.com/blog/2013/01/a‐guide‐ 
to‐python‐frameworks‐for‐hadoop/

A recent innovation is Apache Arrow (see https://blog.cloudera.com/
blog/2016/02/introducing‐apache‐arrow‐a‐fast‐interoperable‐in‐memory‐
columnar‐data‐structure‐standard/). As per the article, “For the Python and R 
communities, Arrow is extremely important, as data interoperability has been 
one of the biggest roadblocks to tighter integration with big data systems 
(which largely run on the JVM).”

The next innovation is Feather (see https://blog.rstudio.org/2016/03/29/
feather/). Feather is a fast, lightweight, and easy‐to‐use binary file format for 
storing data frames, and Feather files are the same whether written by Python 
or R code. The Python interface uses Cython to expose Feather’s C++11 core to 
users, while the R interface uses Rcpp for the same task.

1.15  What Is Cloud Computing?

The official definition of cloud computing is given at http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800‐145.pdf

Figure 1.3  Using SAS from within Jupyter Notebook. Source: Chris Hemedinger on The SAS 
Dummy, SAS Institute. Reproduced with the permission of SAS Institute Inc.

https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.rstudio.org/2016/03/29/feather/
https://blog.rstudio.org/2016/03/29/feather/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
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Cloud computing is a model for enabling:

1)	 Ubiquitous, convenient on‐demand network access
2)	 A shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider interaction

Amazon (EC2), Google, Oracle, IBM, and Microsoft Azure are some exam-
ples of cloud providers. For a data scientist, it is important to know the differ-
ence between Infrastructure as a Service, Platform as a Service, and Software 
as a Service (Figure 1.4).

1.16  How Can You Use Python and R on the Cloud?

If you want to host and run Python in the cloud, these implementations may be 
right for you: PythonAnywhere (freemium hosted Python installation that lets 
you run Python in the browser, e.g., for tutorials, showcases, etc.). It has an 
additional use case for education.

From https://www.pythonanywhere.com/details/education, Python is a 
great language for teaching, but getting it installed and set up on all your 
students’ computers can be less than easy. PythonAnywhere provides an 
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Figure 1.4  The difference between infrastructure as service, platform as a service, and 
software as a service. Source: https://blogs.technet.microsoft.com/kevinremde/2011/04/03/
saas‐paas‐and‐iaas‐oh‐my‐cloudy‐april‐part‐3/. © Microsoft.

https://www.pythonanywhere.com/details/education
https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-and-iaas-oh-my-cloudy-april-part-3/
https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-and-iaas-oh-my-cloudy-april-part-3/
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environment that’s ready to go—including a syntax‐highlighting, error‐
checking editor and Python 2 and 3 consoles.

You can use web scraping from Python on the cloud through http:// 
scrapinghub.com/scrapy‐cloud/. Scrapy is the most popular and advanced web 
crawling framework for Python. It makes writing web crawlers fast, easy, and 
fun. However, you still need to deploy and run your crawler periodically, 
manage servers, monitor performance, review scraped data, and get notified 
when spiders break. This is where Scrapy Cloud comes in.

Additionally, you can run RStudio Server on the cloud if you prefer the RStudio 
interface using the instructions at http://www.louisaslett.com/RStudio_AMI/. 
As of May 2016 there is experimental support for Julia (and Python).

1.17  Commercial Enterprise and Alternative 
Versions of Python and R

Two principal commercial distributions of Python for data scientists are as 
follows:

●● Anaconda from Continuum Analytics (https://www.continuum.io/
downloads)

Anaconda is a completely free Python distribution (including for commer-
cial use and redistribution). It includes more than 300 of the most popular 
Python packages for science, math, engineering, and data analysis.

●● Enthought Canopy (https://www.enthought.com/products/canopy/)
Enthought Canopy is a Python analysis environment that provides easy 

installation of the core scientific analytic and scientific Python packages.

A number of alternative implementations are also available (see https://
www.python.org/download/alternatives/):

●● IronPython (Python running on.NET).
●● Jython (Python running on the Java virtual machine).
●● PyPy (http://pypy.org/). PyPy is a fast, compliant alternative implementation 

of the Python language (2.7.10 and 3.2.5). It has several advantages in terms 
of speed and distinct features but is currently trying to port NumPy package 
(NumPy is the basic package for many numerical operations in Python).

●● Stackless Python (branch of CPython supporting microthreads).

Some repackagings of Python are the following:

●● ActiveState ActivePython (commercial and community versions, including 
scientific computing modules)

http://scrapinghub.com/scrapy-cloud/
http://scrapinghub.com/scrapy-cloud/
http://www.louisaslett.com/RStudio_AMI/
http://julialang.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.enthought.com/products/canopy/
https://www.python.org/download/alternatives/
https://www.python.org/download/alternatives/
http://pypy.org/
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●● pythonxy (scientific‐oriented Python Distribution based on Qt and Spyder)
●● winpython (WinPython is a portable scientific Python distribution for 

Windows)
●● Conceptive Python SDK (targets business, desktop, and database 

applications)
●● PyIMSL Studio (a commercial distribution for numerical analysis—free for 

noncommercial use)
●● eGenix PyRun (a portable Python runtime, complete with stdlib, frozen into 

a single 3.5–13 MB executable file)

In addition there is Cython (http://cython.org/), an optimizing static com-
piler for both the Python programming language and the extended Cython 
programming language (based on Pyrex). It makes writing C extensions for 
Python easier:

●● For R the commercial versions are by Revolution Analytics, a Microsoft‐
acquired subsidiary (www.revolutionanalytics.com). Revolution Analytics 
makes RevoScaleR package that helps scale up to bigger datasets. RStudio 
also makes software around R (including Shiny Package and a widely used 
IDE at www.rstudio.com).

●● Renjin is a JVM‐based interpreter for the R language for statistical computing 
(http://www.renjin.org/).

●● pqR, a pretty quick version of R (http://www.pqr‐project.org/), is a new 
version of the R interpreter. It is based on R‐2.15.0 later versions distributed 
by the R Core Team (at r‐project.org).

●● Oracle R Enterprise (ORE) (see https://blogs.oracle.com/R/) (http://www.
oracle.com/technetwork/database/database‐technologies/r/r‐enterprise/
overview/index.html). Oracle R Enterprise, a component of the Oracle 
Advanced Analytics Option, makes the open‐source R statistical program-
ming language and environment ready for the enterprise and big data. 
Designed for problems involving large volumes of data, it integrates R with 
Oracle Database. R users can run R commands and scripts for statistical and 
graphical analyses on data stored in Oracle Database.

●● TIBCO Enterprise Runtime for R (TERR) (http://spotfire.tibco.com/ 
discover‐spotfire/what‐does‐spotfire‐do/predictive‐analytics/tibco‐ 
enterprise‐runtime‐for‐r‐terr). TERR, a key component of Spotfire 
Predictive Analytics, is an enterprise‐grade analytic engine that TIBCO 
has  built from the ground up to be fully compatible with the R language, 
leveraging our long‐time expertise in the closely related S+ analytic engine. 
This allows customers not only to continue to develop in open source R but 
also to then integrate and deploy their R code on a commercially supported 
and robust platform.

http://cython.org/
http://www.revolutionanalytics.com
http://www.rstudio.com
http://www.renjin.org/
http://www.pqr-project.org/
http://r-project.org
https://blogs.oracle.com/R/
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
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1.17.1  Commonly Used Linux Commands for Data Scientists

It is important for the budding data scientist to learn the right operating system 
before a language; hence here are some Linux tips:

●● ls—Directory listing
●● cd dir—Change directory to dir
●● mkdir dirname—Makes a directory named dirname
●● cd—Change to home
●● sudo—Gives superuser or admin rights
●● sudo bash—Changes to root
●● pwd—Shows present working directory
●● rm filename—Removes file named filename
●● cat > filename—Puts standard output in a file
●● cp filename1 filename2—Copies filename1 to filename2
●● mv filename1 filename2—Moves filename1 to filename2

Refer to http://www.linuxstall.com/linux‐command‐line‐tips‐that‐every‐
linux‐user‐should‐know/ and http://i0.wp.com/www.linuxstall.com/wp‐
content/uploads/2012/01/linux‐command‐line‐cheat‐sheet.png (Figure 1.5).

1.17.2  Learning Git

Git is a version control system that enables teams to work together on projects 
as well as share code. GitHub is a popular website for sharing packages and 
libraries under development in R.

Figure 1.5  Linux cheat sheet.

http://www.linuxstall.com/linux-command-line-tips-that-every-linux-user-should-know/
http://www.linuxstall.com/linux-command-line-tips-that-every-linux-user-should-know/
http://i0.wp.com/www.linuxstall.com/wp-content/uploads/2012/01/linux-command-line-cheat-sheet.png
http://i0.wp.com/www.linuxstall.com/wp-content/uploads/2012/01/linux-command-line-cheat-sheet.png
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The following cheat sheet will help you get started in Git (http://overapi.
com/static/cs/git‐cheat‐sheet.pdf ) (Figures  1.6 and 1.7). You can test your 
knowledge by a tutorial at https://try.github.io/levels/1/challenges/1. Lastly 
the author believes the best way to learn Git is to start contributing to 
a project.

Figure 1.6  Git cheat sheet. Source: © Github.

http://overapi.com/static/cs/git-cheat-sheet.pdf
http://overapi.com/static/cs/git-cheat-sheet.pdf
https://try.github.io/levels/1/challenges/1
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Let’s begin learning the basics of Python (https://nbviewer.jupyter.org/gist/
decisionstats/ce2c16ee98abcf328177).

Bold font is code; normal font is output.

Numerical Operations
2+3+5

10
66‐3‐(‐4)

67
32*3

96
2**3 #2 raised to power of 3

8
43/3

14.333333333333334
32//3 #Gives quotient

10
44%3 #Gives remainder

2

Figure 1.7  Git command sequence. Source: © Github.

https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177
https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177
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For R it is almost the same except for the last two. There the syntax is:

32 % / % 3 #Gives quotient
44 % % 3 #Gives remainder

For Loops
See https://docs.python.org/3/tutorial/controlflow.html

#numbers from 0 to 30 increment 6
for x in range(0, 30, 6):
    print (x)

0
6
12
18
24

For Loops can be slightly different in R. Note the + sign denotes a new line in 
R code:

for(i in seq(0,30,6)){
+   print(i)
+ }
[1] 0
[1] 6
[1] 12
[1] 18
[1] 24
[1] 30

Functions
def myfirstfunction(x):
  y=x**3+3*x+20
  print(y)

myfirstfunction(20)

8080

In R creating a function would be different. You would need to use a function 
like function(x) as follows, then write the function within brackets, and print 
out the value. This is because R like most computer languages does not use 

https://docs.python.org/3/tutorial/controlflow.html
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space indentation. In R, you can view a function’s code by typing the function 
name without the (). This is especially useful to see the algorithms in an exist-
ing package and to tweak it if possible:

myfirstfunction =function(x){
  y=x**3+3*x+20
print(y)}

myfirstfunction(20)

for x in range(0,30,6):
     myfirstfunction (x)

20
254
1784
5906
13916

def mynewfunction(x,y):
  z=x**3+3*x*y+20*y
  print(z)

mynewfunction(1,3)

70

mynewfunction(10,3)

1150

See http://rpubs.com/ajaydecis/forfunctions, https://docs.python.org/2/
library/functions.html, and http://stackoverflow.com/questions/7969949/
whats‐the‐difference‐between‐globals‐locals‐and‐vars

●● globals()—Always returns the dictionary of the module namespace
●● locals()—Always returns a dictionary of the current namespace
●● vars()—Returns either a dictionary of the current namespace (if called with 

no argument) or the dictionary of the argument

locals() #gives objects in local space

{'In': ['',
  '2+3+5',
  '66-3-(-4)',

http://rpubs.com/ajaydecis/forfunctions
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html
http://stackoverflow.com/questions/7969949/whats-the-difference-between-globals-locals-and-vars
http://stackoverflow.com/questions/7969949/whats-the-difference-between-globals-locals-and-vars
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  '2^3',
  '3^3',
  '44%%3',
  '44%3',
  '43/3',
  '32*3',
  '2**3',
........ truncated by author
globals()

{'In': ['',
  '2+3+5',
  '66-3-(-4)',
  '2^3',
  '3^3',
  '44%%3',
  '44%3',
  '43/3',
  '32*3',
  '2**3',
  '32//3',
  'for i in 1:30\n    print i',
  'for i in 1:30:\n   print i',
  'for i in 1:30:\n   print i',
  'for i in range(1,30):\n   print i',
  'for i in range(1,30):\n   print i',
  'for i in range(1,30):\n   print %i',
  'for i in range(1,30):\n   print %(i)',
  'for i in range(1,30):\n   print % (i)',
  'for i in range(1,30):\n   print % (i)',
  'for x in range(0,30):\n   print % (x)',
 ------truncated by author

More Numerical Operations

import math

math.exp(2)

7.38905609893065
math.log(2)

0.6931471805599453
math.log(2,10)
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0.30102999566398114
math.sqrt(10)

3.1622776601683795
dir(math) #dir gives all the identifiers a module defines

['__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'acos',
 'acosh',
 'asin',
 'asinh',
 'atan',
 'atan2',
 'atanh',
 'ceil',
 'copysign',
 'cos',
 'cosh',
 'degrees',
 'e',
 'erf',
 'erfc',
 'exp',
 'expm1',
 'fabs',
 'factorial',
 'floor',
 'fmod',
 'frexp',
 'fsum',
 'gamma',
 'hypot',
 'isfinite',
 'isinf',
 'isnan',
 'ldexp',
 'lgamma',
 'log',
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 'log10',
 'log1p',
 'log2',
 'modf',
 'pi',
 'pow',
 'radians',
 'sin',
 'sinh',
 'sqrt',
 'tan',
 'tanh',
 'trunc']
a=[23,45,78,97,89]

type(a)

list
len(a)

5
max(a)

97
min(a)

23
sum(a)

332
import numpy

numpy.mean(a)

66.400000000000006

numpy.std(a)

28.011426240018555
numpy.var(a)

784.63999999999999
#Example of Help (note the ? is almost the same as R)
numpy.random?



1  Introduction to Python R and Data Science28

from random import randint,randrange
print(randint(0,9))

5

randrange(10)

4
for x in range(0,5):
     print(randrange(10))

8
3
7
8
5

Strings, Lists, Tuples, and Dicts
newstring=’Hello World’

newstring

'Hello World'
print(newstring)

Hello World

newstring2=’Hello World’s’
 File "<ipython-input-56-8c5b85561ed9>", line 1
   newstring2='Hello World's'
               ^
SyntaxError: invalid syntax

#Double Quotes and Single Quotes
newstring2=“Hello World’s”

print(newstring2)

Hello World’s

#Escape character \
newstring3=“Hello, World\’s”

print(newstring3)
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Hello, World’s

10*newstring3

"Hello, World'sHello, World'sHello, World'sHello, 
World'sHello, World'sHello, World'sHello, 
World'sHello, World'sHello, World'sHello World's "

Passing Variables in Strings in Python

myname1= ’Ajay’
myname2= ’John’
message =“ Hi I am %s. How do you do”
message %myname1
' Hi I am Ajay. How do you do'

message %myname2
' Hi I am John. How do you do'

new1= “Why did the %s cross the %s”
print(new1%(’chicken’,’road’))

Why did the chicken cross the road

print(new1%(10,40))
Why did the 10 cross the 40

new2= “Why did the %d cross the %d”

print(new2%(’chicken’,’road’))
------------------------------------------------------
TypeError	 Traceback (most recent call last)
<ipython-input-11-b2f398d16f9c> in <module>()
----> 1 print(new2%('chicken','road'))

TypeError: %d format: a number is required, not str

Note the error caused by %d and %s

Lists

newnames=’ajay,vijay,john,donald,hillary,bill,ashok’

type(newnames)

str
newnames[0:9]
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'ajay,vija'
newnames2=[’ajay’,’vijay’,’john’,’donald’,’hillary’, 
’bill’,’ashok’]

type(newnames2)

list

In R, a list would be created like this:
newnames2=c(’ajay’,’vijay’,’john’,’donald’,’hillary’, 
’bill’,’ashok’)

newnames2[0]

'ajay'
So in R the index starts from 1, while in Python the 
index starts with 0.

newnames2[0]=’micky mouse’ #substituting members in a list

newnames2

['micky mouse', 'vijay', 'john', 'donald', 'hillary', 
'bill', 'ashok']
newnames2[2]

'john'
newnames2.append(’daisy’)

newnames2

['micky mouse', 'vijay', 'john', 'donald', 'hillary', 
'bill', 'ashok', 'daisy']

.append to add and del to delete members in a list

del newnames2[2]

newnames2

['micky mouse', 'vijay', 'donald', 'hillary', 'bill', 
'ashok', 'daisy']
newlist=[1,2,4,7]
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newnames2+newlist

['micky mouse',
 'vijay',
 'donald',
 'hillary',
 'bill',
 'ashok',
 'daisy',
 1,
 2,
 4,
 7]

newlist*3

[1, 2, 4, 7, 1, 2, 4, 7, 1, 2, 4, 7]
a tuple is a list that uses parenthese () not square 
brackets [] and it CANNOT  be modified at all once 
created
scores=(23,46,69,7,5)

type(scores)

tuple
scores[3]

7
dir(scores) #dir command gives various operations that 
can be done to that object

['__add__',
 '__class__',
 '__contains__',
 '__delattr__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__getitem__',
 '__getnewargs__',
 '__gt__',
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 '__hash__',
 '__init__',
 '__iter__',
 '__le__',
 '__len__',
 '__lt__',
 '__mul__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__rmul__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 'count',
 'Index']

favourite_movie=[’micky mouse,steamboat willie’, 
’vijay,slumdog millionaire’, ’john,passion of christ’, 
’donald,arthur’]

type(favourite_movie)

list

favourite_movie2={’micky mouse’:’steamboat 
willie’,’vijay’:’slumdog millionaire’,’john’:’passion 
of christ’,’donald’:’arthur’}

type(favourite_movie2)

dict
favourite_movie2[’micky mouse’]

'steamboat willie'
favourite_movie2[’vijay’]

'slumdog millionaire'

Refer to https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13 
225bd94eef358a for the code in this example.

https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a
https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a
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Strings—We use str function to convert data to string data (we use int to 
convert data to integer values). We can use slicing on index to create substrings 
and concatenate strings using + sign. The following example shows some of the 
things that can be done with string data:

names=[’Ajay’,’Vijay’,’Ra Jay’,’Jayesh’]

type(names)

list
names[1]

'Vijay'
type(names[1])

str
names[0][1:3]

'ja'
names[2][2:]

' Jay'
names[2][2:] + names[3][2:]

' Jayyesh'
names[1].lower()

'vijay'
names[2].replace(“ ”,“”)

'RaJay'

Let’s try to do the same thing in R (http://rpubs.com/ajaydecis/strings4). 
There are important differences we want to highlight:

names=c('Ajay','Vijay','Ra Jay','Jayesh')

R uses c to make a list. Python does not—but uses square brackets.
Python uses type while R uses class to find out the object’s type:

class(names)
## [1] "character"

http://rpubs.com/ajaydecis/strings4
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Python starts the index from 0 while begins the index of a list from 1:

names[1]
## [1] "Ajay"
class(names[1])
## [1] "character"

You have to use substr in R to find part of a string. In Python you simply can 
look this from within square brackets:

substr(names[1],2,3)
## [1] "ja"
substr(names[3],3,nchar(names[3]))
## [1] " Jay"

While Python simple combined strings using +, R used paste:

paste(substr(names[3],3,nchar(names[3])),substr(names 
[2],3,nchar(names[2])))
## [1] " Jay jay"

R uses tolower while Python uses.lower():

tolower(names[1])
## [1] "ajay"

Python used replace while R used gsub:

gsub(" ","",names[3])
## [1] "RaJay"

The biggest difference is R mostly uses function(object), while Python uses 
object.function() to get things done. This is an important difference

File and Folder Operations
In Python we use the os package for file operations to refer and read the file 
from a particular directory. We also use !pip freeze to get the list of packages 
(versions). We use print (IPython.sys_info()) and version_information package 
(%load_ext version_information

%version_information) to get System Information (see Python code at 
https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8 
c8f9166).

https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166
https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166
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In R we get System Information using sessionInfo(). (For R Code see http://
rpubs.com/newajay/systeminfo)

import IPython

print (IPython.sys_info())

{'commit_hash': 'c963f6b',
 'commit_source': 'installation',
 'default_encoding': 'UTF-8',
 'ipython_path': '/home/ajayohri/anaconda3/lib/
python3.5/site-packages/IPython',
 'ipython_version': '4.2.0',
 'os_name': 'posix',
 'platform': 'Linux-4.4.0-53-generic-x86_64-with-
debian-stretch-sid',
 'sys_executable': '/home/ajayohri/anaconda3/bin/
python',
 'sys_platform': 'linux',
 'sys_version': '3.5.2 |Anaconda 4.1.1 (64-bit)| 
(default, Jul  2 2016, '

	 '17:53:06) \n'
	 '[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]'}

!pip install version_information

The directory “/home/ajayohri/.cache/pip/http” or its parent directory is not 
owned by the current user, and the cache has been disabled. Please check the 
permissions and owner of that directory. If executing pip with sudo, you may 
want sudo’s ‐H flag.

The directory “/home/ajayohri/.cache/pip” or its parent directory is not 
owned by the current user, and caching wheels has been disabled. Check the 
permissions and owner of that directory. If executing pip with sudo, you may 
want sudo’s ‐H flag.

Collecting version_information
Downloading version_information‐1.0.3.tar.gz
Installing collected packages: version‐information
Running setup.py install for version‐information … ‐ \ | done
Successfully installed version‐information‐1.0.3
You are using pip version 8.1.2; however version 9.0.1 is available.
You should consider upgrading via the “pip install ‐‐upgrade pip” 

command.
%load_ext version_information
%version_information

http://rpubs.com/newajay/systeminfo
http://rpubs.com/newajay/systeminfo
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Software Version

Python 3.5.2 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7‐1)]
IPython 4.2.0
OS Linux 4.4.0 53 generic x86_64 with Debian stretch sid
Sat Dec 24 19 : 47 : 41 2016 IST

!pip freeze

alabaster==0.7.8
anaconda-client==1.4.0
anaconda-navigator==1.2.1
argcomplete==1.0.0
astropy==1.2.1
Babel==2.3.3
backports.shutil-get-terminal-size==1.0.0
beautifulsoup4==4.4.1
‐‐‐‐‐‐‐list truncated by author
SQLAlchemy==1.0.13
statsmodels==0.6.1
sympy==1.0
tables==3.2.2
terminado==0.6
toolz==0.8.0
tornado==4.3
traitlets==4.2.1
unicodecsv==0.14.1
version-information==1.0.3
Werkzeug==0.11.10
xlrd==1.0.0
XlsxWriter==0.9.2
xlwt==1.1.2

The directory “/home/ajayohri/.cache/pip/http” or its parent directory is not owned 
by the current user, and the cache has been disabled. Please check the permissions 
and owner of that directory. If executing pip with sudo, you may want sudo’s ‐H flag.

You are using pip version 8.1.2; however version 9.0.1 is available.
You should consider upgrading via the “pip install ‐‐upgrade pip” command. 

(Authors note‐warning message by system)

import os as os
os.getcwd()
'/home/ajayohri/Desktop'
os.chdir(’/home/ajayohri/Desktop’)



1.17  Commercial Enterprise and Alternative Versions of Python and R 37

os.getcwd()
'/home/ajayohri/Desktop'
os.listdir()

['Data Analytics Course: Master Data Analytics Using 
Python in 2.5 Months_files',
 'dump 4 nov 2016',
 'Hadoop Tutorial | All you need to know about Hadoop 
| Edureka_files',
 'Data Analytics Course: Master Data Analytics Using 
Python in 2.5 Months.html',
 'Hadoop Tutorial | All you need to know about Hadoop 
| Edureka.html',
 ‘Note to R Users — Data Analysis in Python 0.1 
documentation_files’,
 ‘Note to R Users — Data Analysis in Python 0.1 
documentation.html’,
 'Jupyter Notebook Viewer.html',
 'py4r.jpg',
 'test',
 'hackerearth',
 'Jupyter Notebook Viewer_files',
 'logo-ds.png']

In R this would be slightly different:

sessionInfo()
## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.1 LTS
## 
## locale:
##  [1] LC_CTYPE=en_IN.UTF-8    LC_NUMERIC=C
##  [3] LC_TIME=en_IN.UTF-8    LC_COLLATE=en_IN.UTF-8
##  [5] �LC_MONETARY=en_IN.UTF-8 � LC_MESSAGES=en_IN.UTF-8
##  [7] LC_PAPER=en_IN.UTF-8   LC_NAME=C
##  [9] LC_ADDRESS=C         LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_IN.UTF-8 LC_IDENTIFICATION=C
## 
## attached base packages:
## [1] �stats  graphics grDevices utils  datasets 

methods  base
## 
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## loaded via a namespace (and not attached):
## [1] �magrittr_1.5  tools_3.3.1  htmltools_0.3.5 

Rcpp_0.12.8
## [5] �stringi_1.1.1  rmarkdown_1.0 knitr_1.13 

stringr_1.0.0  
## [9] digest_0.6.9    evaluate_0.9

getwd()
## [1] "/home/ajayohri"

setwd(“/home/ajayohri/Desktop/”)

dir()
##  [1] �"Data Analytics Course: Master Data Analytics 

Using Python in 2.5 Months_files"
##  [2] �"Data Analytics Course: Master Data Analytics 

Using Python in 2.5 Months.html" 
##  [3] "dump 4 nov 2016"
##  [4] "hackerearth"
##  [5] �"Hadoop Tutorial | All you need to know about 

Hadoop | Edureka_files"          
##  [6] �"Hadoop Tutorial | All you need to know about 

Hadoop | Edureka.html"           
##  [7] "Jupyter Notebook Viewer_files"
##  [8] "Jupyter Notebook Viewer.html"
##  [9] "logo-ds.png"                                                                  
## [10] �"Note to R Users — Data Analysis in Python 0.1 

documentation_files"            
## [11] �"Note to R Users — Data Analysis in Python 0.1 

documentation.html"             
## [12] "py4r.jpg"                                                                     
## [13] "test"

The following deals with the business part (or domain expertise part) of 
the decision science triad (programming, statistics, and domain 
expertise).

1.18  Data‐Driven Decision Making: A Note

A fundamental principle of data‐driven decision making is a famous quote: If 
you can’t measure it, you can’t manage it—Peter Drucker.

As per http://whatis.techtarget.com/definition/data‐driven‐decision‐ 
management‐DDDM, data‐driven decision management (DDDM) is an 
approach to business governance that values decisions that can be backed 

http://whatis.techtarget.com/definition/data-driven-decision-management-DDDM
http://whatis.techtarget.com/definition/data-driven-decision-management-DDDM
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up  with verifiable data. The success of the data‐driven approach is reliant 
upon the quality of the data gathered and the effectiveness of its analysis and 
interpretation.

As per author, the following constitutes data‐driven decision making:

●● Using past data and trending historical data
●● Validating assumptions if any after listing all assumptions
●● Using champion challenger scenarios to test scenarios
●● Using experiments for various tests
●● Use baselines for continuous improvement in customer experiences, costs, 

and revenues
●● Taking decisions based on the previous process

As per HBR.org, the more frequent the correlation in a company’s data and 
the lower the risk of being wrong, the more it makes sense to act based on 
that correlation (Citation: https://hbr.org/2014/05/an‐introduction‐to‐data‐ 
driven‐decisions‐for‐managers‐who‐dont‐like‐math).

1.18.1  Strategy Frameworks in Business Management: A Refresher 
for Non‐MBAs and MBAs Who Have to Make Data‐Driven Decisions

Some frameworks are used for business strategy—to come up with decisions 
after analyzing the huge reams of qualitative and uncertain data that business 
generates. This is also part of the substantive expertise circle in Conway’s Venn 
diagram definition of data science at http://drewconway.com/zia/2013/3/26/
the‐data‐science‐venn‐diagram (Figure 1.8).
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Figure 1.8  Conway’s Venn diagram. Source: © Drew Conway Data Consulting, LLC.

https://hbr.org/2014/05/an-introduction-to-data-driven-decisions-for-managers-who-dont-like-math
https://hbr.org/2014/05/an-introduction-to-data-driven-decisions-for-managers-who-dont-like-math
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
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●● Porter’s five forces model—To analyze industries. Porter’s famous model is 
used to derive five forces that determine the competitive intensity and there-
fore attractiveness of a market. Attractiveness in this context refers to the 
overall industry profitability. An “unattractive” industry is one in which the 
combination of these five forces acts to drive down overall profitability. A 
very unattractive industry would be one approaching “pure competition” 
(Figure 1.9).

●● Business canvas—The business model canvas is used for developing new or 
documenting existing business models. It describes a firm’s value proposition, 
infrastructure, customers, and finances and thus assists firms by illustrating 
potential trade‐offs in various activities. The business model canvas was ini-
tially proposed by Alexander Osterwalder. A bigger graphic can be obtained at 
https://en.wikipedia.org/wiki/File:Business_Model_Canvas.png (Figure 1.10).

●● BCG matrix—To analyze product portfolios. BCG Matrix is best used to 
analyze your own or target organization’s product portfolio—applicable for 
companies with multiple products. This helps corporations allocate 
resources by analyzing their business units or product lines (Figure 1.11).

●● Porter’s diamond model—To analyze locations. An economical model devel-
oped by Michael Porter in his book The Competitive Advantage of Nations, 
where he published his theory of why particular industries become com-
petitive in particular locations. This helps to analyze countries, states, or 
locations for both customers and vendors (Figure 1.12).

●● McKinsey 7S model—To analyze teams. To check which teams work and 
which teams are done (within an organization), we can use the 7S model. It 
is a strategic vision for groups to include businesses, business units, and 
teams. The 7S are structure, strategy, systems, skills, style, staff, and shared 
values. The model is most often used as a tool to assess and monitor changes 
in the internal situation of an organization (Figure 1.13).
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Figure 1.9  Porter five forces for competitive strategy. Source: © Wikipedia.

https://en.wikipedia.org/wiki/File:Business_Model_Canvas.png


Figure 1.10  Business model canvas. Source: © Strategyzer AG Services.
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●● Grenier’s theory—To analyze growth of organization. It was developed by 
Larry E. Greiner and is helpful when examining the problems associated 
with growth on organizations and the impact of change on employees. It can 
be argued that growing organizations move through five relatively calm peri-
ods of evolution, each of which ends with a period of crisis and revolution. 
Each evolutionary period is characterized by the dominant management 
style used to achieve growth, while each revolutionary period is character-
ized by the dominant management problem that must be solved before 
growth will continue (Figure 1.14).

●● Herzberg’s hygiene theory—To analyze soft aspects of individuals.

The following table presents the top seven factors causing dissatisfaction and 
the top six factors causing satisfaction, listed in the order of higher to lower 
importance.

Leading to satisfaction

●● Achievement
●● Recognition
●● Work itself
●● Responsibility
●● Advancement
●● Growth

Strategy

Skills

Style Systems

Staff

Structure

Super-
ordinate

goals
(shared
values)

Figure 1.13  Mckinsey 7s model. Source: http://en.wikipedia.org/wiki/McKinsey_7S_
Framework. © Wikipedia.

http://en.wikipedia.org/wiki/McKinsey_7S_Framework
http://en.wikipedia.org/wiki/McKinsey_7S_Framework
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Leading to dissatisfaction

●● Company policy
●● Supervision
●● Relationship with boss
●● Work conditions
●● Salary
●● Relationship with peers
●● Security

This framework helps to explain what motivates people to contribute (or fail to 
contribute) to teams, products, organizations, and nations. Alternative moti-
vational models are Maslow’s hierarchy of needs (shown here) and McGregor 
Theory X and Theory Y. McGregor terms the two models as “Theory X,” which 
stresses the importance of strict supervision and external rewards and penal-
ties, and “Theory Y,” which highlights the motivating role of job satisfaction 
and allows scope for workers to approach tasks creatively.
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Figure 1.14  Grenier theory. Source: Adapted from Greiner (1998). Evolution and Revolution 
as Organizations Grow. © Harvard Business Publishing.
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●● Marketing mix modeling—To analyze marketing mix for determining a 
product or a brand’s offer. It has the four P’s: price, product, promotion, and 
place. This can also be shown by four C’s model: consumer, cost, communi-
cation, and convenience.

1.18.2  Additional Frameworks for Business Analysis

Pareto Principle
The Pareto principle (also known as the 80/20 rule, the law of the vital few, and 
the principle of factor sparsity) is a heuristic or a thumb rule that tells analysts 
to prioritize their analysis. It helps states that, for many events, roughly 80% of 
the effects come from 20% of the following causes:

●● 80% of a company’s profits come from 20% of its customers.
●● 80% of a company’s complaints come from 20% of its customers.
●● 80% of a company’s profits come from 20% of the time its staff spend.
●● 80% of a company’s sales come from 20% of its products.
●● 80% of a company’s sales are made by 20% of its sales staff.

Thus a business analyst should look at the top and bottom 20% of the prod-
ucts, orders, customers, and staff when doing an analysis to determine the 
cause and effect relationships that can be then modified for positive value 
creation.

An additional framework is root cause analysis where one can ask five succes-
sive why’s to determine the root cause of an effect. The process is to ask “why” 
and identify the causes associated with each sequential step toward the event. 
“Why” here stands for “What were the factors that directly resulted in the effect?”

LTV Analysis
Lifetime value (LTV) analysis is often a widely used technique within BA to 
help businesses which customers to retain and which to churn. It also helps 
with promotions and customer acquisition strategy. LTV is the cumulative 
revenue a customer will generate for a business over his active lifetime when 
associated with the products and brands of that business—from acquisition to 
churn. LTV helps us answer three fundamental questions:

1)	 Did the business pay enough to acquire customers from each marketing 
channel (cost of acquisition)?

2)	 Did the business acquire the best kind of customers (profitability analysis)?
3)	 How much could the business spend on keeping or retaining them as your 

customers (prevent churn by offers, calls, email, and social media)?

You can calculate LTV analysis using the methods given at https://blog. 
kissmetrics.com/how‐to‐calculate‐lifetime‐value/ and at http://www.kaushik.
net/avinash/analytics‐tip‐calculate‐ltv‐customer‐lifetime‐value/

https://blog.kissmetrics.com/how-to-calculate-lifetime-value/
https://blog.kissmetrics.com/how-to-calculate-lifetime-value/
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/
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For LTV analysis in R, you can see this R package at https://cran.r‐project.
org/web/packages/BTYD/vignettes/BTYD‐walkthrough.pdf. The BTYD pack-
age contains models to capture noncontractual purchasing behavior of cus-
tomers—or, more simply, models that tell the story of people buying until they 
die (become inactive as customers). The main models presented in the package 
are the Pareto/NBD, BG/NBD, and BG/BB models.

For Python, LTV can be calculated at http://srepho.github.io/CLV/CLV or 
by the python package lifetimes (https://pypi.python.org/pypi/Lifetimes) or 
see home page https://github.com/CamDavidsonPilon/lifetimes

RFM Analysis
RFM stands for recency, frequency, and monetization. RFM is thus a method 
used for analyzing customer value of current customers:

Recency—How recently did the customer purchase?
Frequency—How often do they purchase?
Monetary value—How much do they spend?

This can be quantified in the following way:

Recency = 10 - The number of months that have passed since the customer last 
purchased

Frequency = Number of purchases in the last 12 months (maximum of 10)
Monetary = Value of the highest order from a given customer (benchmarked 

against a standard, say, 1000$ or something relevant)

Alternatively, one can create categories for each metric.
For instance, the recency attribute might be broken into three categories: 

customers with purchases within the last 90 days, between 91 and 365 days, 
and longer than 365 days. Such categories may be arrived at by applying busi-
ness rules, or using a data mining technique, to find meaningful breaks (like 
CHAID). A commonly used shortcut is to use deciles. One is advised to look at 
distribution of data before choosing breaks.

Practice
You can see RFM analysis in action at https://decisionstats.com/2010/10/03/

ibm‐spss‐19‐marketing‐analytics‐and‐rfm/ and some R code for it here at 
https://github.com/hoxo‐m/easyRFM. You should also see http://www.dataapple. 
net/?p=133. For doing the RFM Analysis in Python, you can see http://www.
marketingdistillery.com/2014/11/02/rfm‐customer‐segmentation‐in‐r‐pandas‐ 
and‐apache‐spark/

Biases in Decision Making
Though not often taught in a standard BA or data science course, the author 
feels biases in decision making should be useful for a data scientist since the 
data scientist influences decisions. Even though decision making driven by 

https://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
https://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
http://srepho.github.io/CLV/CLV
https://pypi.python.org/pypi/Lifetimes
https://github.com/CamDavidsonPilon/lifetimes
https://decisionstats.com/2010/10/03/ibm-spss-19-marketing-analytics-and-rfm/
https://decisionstats.com/2010/10/03/ibm-spss-19-marketing-analytics-and-rfm/
https://github.com/hoxo-m/easyRFM
http://www.dataapple.net/?p=133
http://www.dataapple.net/?p=133
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/


data should be objective, it is not as it is driven by humans, not machines, and 
humans make errors due to multiple reasons.

The author would like to point out these resources.
Logical Fallacies—These would help the data scientist in recognizing the 

erroneous arguments used by various stakeholders in decision making. A fallacy 
is an incorrect argument in logic and rhetoric that undermines an argument’s 
logical validity. The following refers to https://yourlogicalfallacyis.com/, which is 
created by Jesse Richardson, Andy Smith, Som Meaden, and Flip Creative.

Some of the top logical fallacies are as follows:

●● Ad hominem—You attacked your opponent’s character or personal traits in 
an attempt to undermine their argument.

●● Slippery slope—You said that if we allow A to happen, then Z will eventually 
happen too; therefore A should not happen. The problem with this reason-
ing is that it avoids engaging with the issue at hand and instead shifts atten-
tion to extreme hypotheticals.

●● Straw man—You misrepresented someone’s argument to make it easier to 
attack. By exaggerating, misrepresenting, or just completely fabricating 
someone’s argument, it’s much easier to present your own position as being 
reasonable.

Cognitive Biases—These impact decisions based on the own psychology of 
the decision maker. A cognitive bias refers to a systematic pattern of deviation 
from norm or rationality in judgment, whereby inferences about other people 
and situations may be drawn in an illogical fashion. Individuals create their 
own “subjective social reality” from their perception of the input.

Some prominent cognitive biases are as follows:
Confirmation bias—In this the individual only selects data or analysis that 

supports his preconception and tries to discredit, ignore, or trivialize informa-
tion that is against the preconceived views. This is a very common confirma-
tion bias in practice. One common reason for doing so is agency–owner 
conflict in which decision makers in an organization take decisions to maxi-
mize their own self‐interests (like their annual bonuses) rather than team or 
organizational goals.

Some other common biases are the following:

Self‐serving bias The tendency to claim more responsibility for 
successes than failures

Belief bias Evaluating the strength of an argument by your own 
belief in the truth or falsity of the conclusion

Framing Using a narrow approach and scope of the problem to 
avoid difficult to solve issues

Hindsight bias The inclination to see past events as being predictable

An excellent article on this is also available at Hilbert (2012).
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https://yourlogicalfallacyis.com/
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Statistical Bias Versus Variance
This is a more realistic and statistical description of the kind of error a statisti-
cal modeler or a data scientist faces when confronted with data. The following 
is taken from Fortmann Roe (2012)

Error due to bias: The error due to statistical bias is taken as the difference 
between the expected (or average) prediction of our model and the correct 
value that we are trying to predict. Of course you only have one model, so talk-
ing about expected or average prediction values might seem a little strange. 
However, imagine you could repeat the whole model building process more 
than once: each time you gather new data and run a new analysis, creating a 
new model. Due to randomness in the underlying datasets, the resulting mod-
els will have a range of predictions. Bias measures how far off in general these 
models’ predictions are from the correct value.

Error due to variance: The error due to variance is taken as the variability of 
a model prediction for a given data point. Again, imagine you can repeat the 
entire model building process multiple times. The variance is how much the 
predictions for a given point vary between different realizations of the model 
(Figure 1.15).
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Figure 1.15  Graphical illustration of bias and variance. Source: Scott Fortmann‐Roe.  
© CSS from Substance.io.
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2.1  Data Input in Pandas

The pandas library offers many flexible formats for reading in data.
The most commonly used is read_csv to read in comma‐separated values 

(from the Internet URL). That is,

anscombe=pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/anscombe.csv")

See the top few lines at http://nbviewer.jupyter.org/gist/decisionstats/37376 
42751895f470d5c07194302f53e. © GitHub repository.

 

Data Input

https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
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Or read in csv data from a local file.
See http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

import pandas as pd #importing packages
import os as os

In [2]:

#pd.describe_option() #describe options 
for customizing

In [3]:

#pd.get_option("display.memory_usage") 
#setting some options

In [4]:

os.getcwd() #current working directory

Out [4]:

'/home/ajay'

In [5]:

os.chdir('/home/ajay/Desktop')

In [6]:

os.getcwd()

Out [6]:

'/home/ajay/Desktop'

In [7]:

a=os.getcwd()
os.listdir(a)

Out [7]:

['adult.data']

In [8]:

names2=["age","workclass","fnlwgt","education", 
"education-num","marital-status","occupation", 
"relationship","race","sex","capital-gain","capital-
loss","hours-per-week","native-country","income"]

In [9]:

len(names2)

Out [9]:

http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174
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In [10]:

adult=pd.read_csv("adult.data",header=None)

In [11]:
len(adult)

Out [11]:

32562

In [12]:

adult.columns

Out [12]:

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14], dtype='int64')

In [13]:

adult.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 32562 entries, 0 to 32561
Data columns (total 15 columns):
0     32561 non-null float64
1     32561 non-null object
2     32561 non-null float64
3     32561 non-null object
4     32561 non-null float64
5     32561 non-null object
6     32561 non-null object
7     32561 non-null object
8     32561 non-null object
9     32561 non-null object
10    32561 non-null float64
11    32561 non-null float64
12    32561 non-null float64
13    32561 non-null object
14    32561 non-null object
dtypes: float64(6), object(9)

In [15]:

adult.columns= names2
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We can see the entire list of data input in pandas at http://pandas.pydata.org/

pandas‐docs/stable/io.html. 
Source: © pandas 0.19.2 documentation.

The pandas I/O API is a set of top‐level reader functions accessed like 
pd.read_csv() that generally return a pandas object.

●● read_csv
●● read_excel
●● read_hdf
●● read_sql
●● read_json
●● read_msgpack (experimental)
●● read_html
●● read_gbq (experimental)
●● read_stata
●● read_sas
●● read_clipboard
●● read_pickle

2.2  Web Scraping Data Input

We can use the beautiful Python library Beautiful Soup to scrape the web for 
data. The following code scrapes Yelp for comments (see http://nbviewer.
jupyter.org/gist/decisionstats/3385dc84c39109f49b83).

http://pandas.pydata.org/pandas-docs/stable/io.html
http://pandas.pydata.org/pandas-docs/stable/io.html
http://nbviewer.jupyter.org/gist/decisionstats/3385dc84c39109f49b83
http://nbviewer.jupyter.org/gist/decisionstats/3385dc84c39109f49b83
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# pip install beautifulsoup4.
from bs4 import BeautifulSoup

In [5]:
#pip install urllib3 
#This library helps in downloading data
import urllib.request  

2.2.1  Request Data from URL

In [6]:
r = urllib.request.urlopen('http://www. 
yelp.ca/search?find_loc=Calgary,+AB&cflt= 
homeservices').read()

In [28]:
#Using Beautiful Soup Library to parse  
the data
soup = BeautifulSoup(r, "lxml")
type(soup)

Out[28]:
bs4.BeautifulSoup

In [52]:
#We find the number of characters  
in data downloaded
len(str(soup.prettify()))

Out[52]:
440689

In [53]:
#We convert the data to a string format  
using str. 
#Note in R we use str for structure, but in  
Python we use str to convert to character  
(like as.character or paste command would do in R)
a=str(soup.prettify()) 

In [57]:
# We try and find location of a particular  
tag we are interested in.
#Note we are using triple quotes to escape  
special characters
a.find('''class="snippet"''')

Out [57]:
352138

In [58]:
a[352000:358000]

Out [58]:

http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices
http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices
http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices


’dth="30"/>\n  </a>\n  </div>\n  </div>\n  <div class="media‐ 
story">\n  <p class="snippet">\n  We\’re the best of bank and broker. We have  
locations so that you know where we are. We\’re connected with all banks, not just one. And we  
pass along our volume discount to get your mortgage…\n  </p>\n  </div>\n   
</div>\n  </div>\n  </div>\n  </li>\n  <li class="regular‐search‐result">\n   
<div class="search‐result natural‐search‐result" data‐key="1">\n  <div class="biz‐listing‐
large">\n  <div class="main‐attributes">\n  <div class="media‐block media‐block‐‐ 
12">\n  <div class="media‐avatar">\n  <div class="photo‐box pb‐90s">\n   
<a href="/biz/always‐affordable‐always‐ available‐locksmiths‐calgary?search_key=36031">\n   
<img alt="Always Affordable Always Available Locksmiths" class="photo‐box‐img" height="90"  
src="//s3‐media2.fl.yelpcdn.com/bphoto/8DBH3BpLINfTAK_Up5BtUQ/90s.jpg" width="90"/>\n   
</a>\n  </div>\n  </div>\n  <div class="media‐story">\n  <h3  
class="search‐result‐title">\n  <span class="indexed‐biz‐name">\n  1.\n   
<a class="biz‐name" data‐hovercard‐id="8QwuvWymqegNxbMgegZ1kg" href="/biz/always‐ 
affordable‐always‐available‐locksmiths‐calgary?search_key=36031">\n  <span>\n   
Always Affordable Always Available Locksmiths\n  </span>\n  </a>\n   
</span>\n  </h3>\n  <div class="biz‐rating biz‐rating‐large clearfix">\n   
<div class="rating‐large">\n  <i class="star‐img stars_5" title="5.0 star rating">\n   
<img alt="5.0 star rating" class="offscreen" height="303" src="//s3‐ 
media4.fl.yelpcdn.com/assets/srv0/yelp_styleguide/c2252a4cd43e/assets/img/stars/stars_map.png" 
width="84"/>\n  \n  </div>\n  <span class="review‐count rating‐ 
qualifier">\n  7 reviews\n  </span>\n  </div>\n  <div  
class="price‐category">\n  <span class="category‐str‐list">\n  <a  
href="/search?find_loc=Calgary%2C+AB&amp;cflt=locksmiths">\n  Keys &amp;  
Locksmiths\n  </a>\n  </span>\n  </div>\n  <ul  
class="search‐result_tags">\n  </ul>\n  </div>\n  </div>\n  </div>\n   
<div class="secondary‐attributes">\n  <address>\n  1437 Kensington Road NW\n   
<br/>\n  Calgary, AB T2N 3R1\n  </address>\n  <span class="offscreen">\n   
Phone number\n  </span>\n  <span class="biz‐phone">\n  (403) 272‐ 



8923\n  </span>\n  </div>\n  </div>\n  <div class="snippet‐block  
review‐snippet">\n  <div class="media‐block">\n  <div class="media‐avatar">\n   
<div class="photo‐box pb‐30s" data‐hovercard‐id="6G17PcLIXZHTsRUqLgo44A">\n  <a  
href="/user_details?userid=iPZyJg1jY9iUEuwCiAoQ4w">\n  <img alt="Brian P."  
class="photo‐box‐img" height="30" src="//s3‐media1.fl.yelpcdn.com/photo/bHq_rRLGej4oD‐ck‐ 
5NQ6A/30s.jpg" width="30"/>\n  </a>\n  </div>\n  </div>\n  <div  
class="media‐story">\n  <p class="snippet">\n  We were very pleased with the  
quick, professional, quality service we got from this company. \xa0When booking the appointment, 
the person on the phone was efficient and helpful, and although I…\n  </p>\n   
</div>\n  </div>\n  </div>\n  </div>\n  </li>\n  <li class="regular‐ 
search‐result">\n  <div class="search‐result natural‐search‐result" data‐key="2">\n   
<div class="biz‐listing‐large">\n  <div class="main‐attributes">\n  <div class="media‐ 
block media‐block‐‐12">\n  <div class="media‐avatar">\n  <div class="photo‐box 
pb‐90s">\n  <a href="/biz/golden‐acre‐garden‐sentres‐calgary?search_key=36031">\n   
<img alt="Golden Acre Garden Sentres" class="photo‐box‐img" height="90" src="//s3‐ 
media1.fl.yelpcdn.com/bphoto/6T8npInLwEQx‐cx‐Emm6yA/90s.jpg" width="90"/>\n   
</a>\n  </div>\n  </div>\n  <div class="media‐story">\n   
<h3 class="search‐result‐title">\n  <span class="indexed‐biz‐name">\n  2.\n   
<a class="biz‐name" data‐ hovercard‐id="DG‐ pdTKaegi87Df9xQvp2A" href="/biz/golden‐acre‐ 
garden‐sentres‐calgary?search_key=36031">\n  <span>\n  Golden Acre  
Garden Sentres\n  </span>\n  </a>\n  </span>\n  </h3>\n   
<div class="biz‐rating biz‐rating‐large clearfix">\n  <div class="rating‐large">\n   
<i class="star‐img stars_4" title="4.0 star rating">\n  <img alt="4.0 star rating" 
class="offscreen" height="303" src="//s3‐ 
media4.fl.yelpcdn.com/assets/srv0/yelp_styleguide/c2252a4cd43e/assets/img/stars/stars_map.png" 
width="84"/>\n  \n  </div>\n  <span class="review‐count rating‐ 
qualifier">\n  13 reviews\n  </span>\n  </div>\n   
<div class="price‐category">\n  <span class="bullet‐after">\n  <span  
class="business‐attribute price‐range">\n ’

In [21]:
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#Lets try and find the list of phone numbers.  
We note both the HTNL tag and the class for  it.
# We use the find_all function 
letters = soup.find_all("span", class_="biz-phone")
letters[1:100]

Out [21]:
[<span class="biz-phone">
         (403) 272-8923
     </span>, <span class="biz-phone">
         (403) 274-4286
     </span>, <span class="biz-phone">
         (403) 918-4475
     </span>, <span class="biz-phone">
         (403) 681-4376
     </span>, <span class="biz-phone">
         (403) 454-0243
     </span>, <span class="biz-phone">
         (403) 457-6333
     </span>, <span class="biz-phone">
         (403) 899-0599
     </span>, <span class="biz-phone">
         (403) 452-2881
     </span>, <span class="biz-phone">
         (587) 229-0673
     </span>, <span class="biz-phone">
         (403) 770-4700
     </span>]

In [22]:
#Lets try and see the feedback given by users.

letters2 = soup.find_all("p", class_="snippet")
letters2[1:100]

Out [22]:
[<p class="snippet">
          We were very pleased with the quick, 
professional, quality service we got from this company.  
When booking the appointment, the person on the phone 
was efficient and helpful, and although I…
          </p>, <p class="snippet">
          Yesterday I was at Golden Acres and 
carelessly had let myself become dehydrated, but hadn’t 
realized what was going on.  An employee, Rachel, 
recognized I was in trouble, made suggestions,…
          </p>, <p class="snippet">
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          Holy crap, I believe I have died and gone 
to heaven… I can’t believe that I just discovered 
that there is actually a store that sells mid century 
modern furniture and accessories in town. I…
          </p>, <p class="snippet">
          Really appreciate the help I’ve received 
from Mark at Mortgage Alliance.  On two occasions he 
sent me back to my bank with some advice to get what 
I was looking for and saved me a lot of grief…
          </p>, <p class="snippet">
          Such a wicked venue, place, space, I’m not 
even sure what the term is. I’ve been here on a couple 
occasions, the first time was a random Saturday in 
Inglewood and popped in. We got to meet the…
          </p>, <p class="snippet">
          I called Carol mid‐afternoon on Monday for 
a move‐out clean. She showed up bright and early the 
next morning with her supplies, and (dare I say) 
insanely beautiful and outgoing colleague, Liz.…
          </p>, <p class="snippet">
          …Did not think I’d be writing a review on 
a furnace company but here I am.   Right now in the 
middle of troubleshooting a heating issue. Thanks to 
Flash Furnace I am identifying the issue…
          </p>, <p class="snippet">
          F2 Furnishings is a great place to shop for 
furniture and other home decor.  The company really 
supports local artists and designers.  A lot of their 
pieces are originals from local crafts…
          </p>, <p class="snippet">
          Brandon was prompt in answering any questions 
we had prior to the move.  On the day of the move they 
were on time, efficient, and professional.  Brandon and 
Jesse took especial care of our…
          </p>, <p class="snippet">
          I am a huge fan of what the Niklas Group 
has done to my community. I live just a block away 
from the Casel Marche building on 17th ave and I’m 
really impressed with the sense of community this…
          </p>]

In [23]:
type(letters2)

Out [23]:
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bs4.element.ResultSet
In [24]:

str(letters2)[1:1000]
Out [24]:

’<p class="snippet">We\’re the best of bank and broker. 
We have locations so that you know where we are. We\’re 
connected with all banks, not just one. And we pass 
along our volume discount to get your mortgage…</p>,  
<p class="snippet">\n    We were very pleased with the 
quick, professional, quality service we got from this 
company. \xa0When booking the appointment, the person 
on the phone was efficient and helpful, and although 
I…\n    </p>, <p class="snippet">\n    Yesterday I was at  
Golden Acres and carelessly had let myself become 
dehydrated, but hadn\’t realized what was going on. \xa0An  
employee, Rachel, recognized I was in trouble, made  
suggestions,…\n    </p>, <p class="snippet">\n Holy crap, 
I believe I have died and gone to heaven… I can\’t 
believe that I just discovered that there is actually 
a store that sells mid century modern furniture and 
accessories in town. I…\n</p>, <p class="snippet">\n    ’

In [25]:
str(letters2).count("service")

Out[25]:
1

2.3  Data Input from RDBMS

After csv files and web scraping, the last type of data input we consider is from 
relational database management system (RDBMS) databases. Here is a brief 
note on RDBMS first to understand them. SQL is a domain‐specific language 
used in programming and designed for managing data held in an RDBMS or 
for stream processing in a relational data stream management system (RDSMS). 
SQL has been designed for managing data in RDBMSs like Oracle, MySQL, 
MS SQL Server, and IBM DB2 besides PostgreSQL:

●● SQL is one of the first commercial languages used for Edgar F. Codd’s 
relational model, also described in his influential 1970 paper, “A Relational 
Model of Data for Large Shared Data Banks.”

Below is a quote from Edgar F. Codd’s 1970 paper, “A Relational Model of 
Data for Large Shared Data Banks.”

Future users of large data banks must be protected from having to know 
how the data is organized in the machine (the internal representation). 
A  prompting service which supplies such information is not a 
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satisfactory solution. Activities of users at terminals and most applica-
tion programs should remain unaffected when the internal representa-
tion of data is changed and even when some aspects of the external 
representation are changed. Changes in data representation will often 
be needed as a result of changes in query, update, and report traffic and 
natural growth in the types of stored information. Existing non‐inferen-
tial, formatted data systems provide users with tree‐structured files or 
slightly more general network models of the data. In Section 1, inade-
quacies of these models are discussed. A model based on n‐ary relations, 
a normal form for data base relations, and the concept of a universal data 
sublanguage are introduced. In Section  2,  certain operations on rela-
tions (other than logical inference) are discussed and  applied to the 
problems of redundancy and consistency in the user’s model.

Properties of Databases:
A database transaction, however, must be ACID compliant. ACID stands for 
atomic, consistent, isolated, and durable.

●● Atomic: A transaction must be either completed with all of its data modifi-
cations or may not.

●● Consistent: At the end of the transaction, all data must be left consistent.
●● Isolated: Data modifications performed by a transaction must be independ-

ent of other transactions.
●● Durable: At the end of transaction, effects of modifications performed by 

the transaction must be permanent in system.

To counter ACID, the consistent services provide basically available, soft state, 
eventual consistency (BASE) features.

Earlier, SQL was a de facto language for the generation of information 
technology professionals due to the fact that data warehouses consisted of 
one RDBMS or RDSMS. The simplicity and beauty of the language enabled 
data warehousing professionals to query data and provide it to business 
analysts.

RDBMS are often suitable only for structured information. For unstructured 
information, newer databases like MongoDB, CouchDB, and HBase (from 
Hadoop) prove to be a better fit. Part of this is a trade‐off in databases, which 
is due to the CAP theorem (Figure 2.1).

CAP theorem states that at best we can aim for two of the following three 
properties:

●● Consistency—This means that data in the database remains consistent after 
the execution of an operation.

●● Availability—This means that the database system is always on to ensure 
availability.

●● Partition Tolerance—This means that the system continues to function 
even if the transfer of information between the servers is unreliable.
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2.3.1  Windows Tutorial

https://www.postgresql.org/. PostgreSQL is a powerful, open‐source object‐
relational database system (ORDBMS). It has more than 15 years of active 
development and a proven architecture.

PostgreSQL, often simply Postgres, is an ORDBMS—that is, an RDBMS with 
additional (optional use) “object” features—with an emphasis on extensibility 
and standards compliance.

PostgreSQL is developed by the PostgreSQL Global Development Group.
Some general PostgreSQL limits are included in the table as follows.

Limit Value

Maximum database size Unlimited
Maximum table size 32 TB
Maximum row size 1.6 TB
Maximum field size 1 GB
Maximum rows per table Unlimited
Maximum columns per table 250–1600 depending on column types
Maximum indexes per table Unlimited

Visual guide to NoSQL systems

Data models

Availability:
Each client can
always read
and write.

Partition tolerance:
The system works
well despite physical
network partitions.

Pick Two

Consistency:
All clients always
have the same view
of the data.

BigTable
Hypertable
Hbase

RDBMSs
(MySQL,
Postgres,
etc)

Aster Data
Greenplum
Vertica

Relational (comparison)
Key-value
Column-oriented/tabular
Document-oriented

Cassandra

Berkeley DB
MemcacheDB
Redis

Dynamo
Voldemort
Tokyo Cabinet
KAI

MongoDB
Terrastore

SimpleDB
CouchDB
RiaK

Scalaris

CP

CA AP

Figure 2.1  http://blog.nahurst.com/visual‐guide‐to‐nosql‐systems. Source: Courtesy: 
Nathan Hurst.

https://www.postgresql.org/
https://en.wikipedia.org/wiki/RDBMS
http://blog.nahurst.com/visual-guide-to-nosql-systems
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Download the Database https://www.postgresql.org/download/ and https://
www.postgresql.org/download/windows/.

Two choices—we go for enterprise db.
https://www.enterprisedb.com/downloads/postgres‐postgresql‐downloads# 

windows.

2.3.2  137 Mb Installer

 

https://www.postgresql.org/download/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows
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2.3.3  Configuring ODBC

Download and Install ODBC Driver
Use the stack builder to check option ODBC Driver. Open Database 
Connectivity (ODBC) is an open standard application programming interface 
(API) for accessing a database. By using ODBC statements in a program, you 
can access files in a number of different databases, including Access, dBase, 
DB2, Excel, and Text.
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After installing the ODBC Driver, now you need to make sure your OS 
knows. It is time for connections. Connect it to a data source name (DSN) 
(using Control Panel) in Windows.

Go to Control Panel> Administrative Tools> ODBC Connections.
A DSN is a data structure that contains the information about a specific 

database that an ODBC driver needs in order to connect to it.
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Click Add User DSN.

 

Put the options as below. Remember to put the same port and the same 
password as we did in the steps mentioned earlier.

 
Click on the Test box (above Cancel and below Password). If the connection 

is successful, you should see this, or else you need to go back and find what you 
got wrong (mostly password or port).
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Now open your Postgres using command line (see in Programs).

 

Log on to Postgres using the password.
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Then create a database using the syntax below (note the smaller case of the 
database name and the;) to complete the command. Then type \l to see all 
available databases.

postgres=# CREATE DATABASE ajay;
postgres-#\l

 
Now we use \c databasename to connect to the database.

\c ajay;

 
Now we create tables inside the database. This is done 
using the CREATE TABLE command. Following are examples 
of CREATE TABLE command.

CREATE TABLE table_name(
   column1 datatype,
   column2 datatype,
   .....
   columnN datatype,
   PRIMARY KEY( one or more columns )
);
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Example

CREATE TABLE weather (
    city            varchar(80),
    temp_lo         int,           -- low temperature
    temp_hi         int,           -- high temperature
    prcp            real,          -- precipitation
    date            date
);

PostgreSQL supports the standard SQL types int, smallint, real, double 
precision, char(N), varchar(N), date, time, timestamp, and 
interval, as well as other types of general utility and a rich set of geometric 
types. PostgreSQL can be customized with an arbitrary number of user‐defined 
data types. Consequently, type names are not syntactical key words, except 
where required to support special cases in the SQL standard.

From https://www.postgresql.org/docs/8.1/static/tutorial‐table.html

CREATE TABLE cities (
    name            varchar(80),
    location        point
);

For our use case let’s make a table suited for sales and business:

CREATE TABLE SALES(
   CUSTOMER_ID INT PRIMARY KEY      NOT NULL, --unique 
id of customers
   SALES          int NOT NULL,     --sales in rupees
date            date,       --date of sale
   PRODUCT_ID         INT      NOT NULL
);

I then check the table created using \d.

 

https://www.postgresql.org/docs/8.1/static/tutorial-table.html
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Now try \d tablename to get details of the table.
Here \d sales.

Quit using \q
I can delete a table using drop table tablename.

Now let’s copy some data (see http://bit.ly/2postgres) into my database table. 
First of all my data is in the same format.

http://bit.ly/2postgres


2  Data Input72

We use the Copy command to load the data.

\copy sales from C:/Users/Dell/Downloads/data1.csv 
DELIMITER ',' CSV;

Note an error value when we try and import data with a duplicate primary 
key. We rectify our data and then do the import again. COPY 500 shows 500 
records imported successfully.

And then we can make a connection in R to do analysis in R on the Postgres 
data (see http://rpubs.com/newajay/RODBC).

install.packages("RODBC") #installing the package RODBC
library(RODBC) #loading the package RODBC 
odbcDataSources() # to check all available ODBC data 
sources

#creating a Database connection
# for username,password,database name and DSN name

chan=odbcConnect("PostgreSQL30","postgres;Password=root;
Database=ajay")

http://rpubs.com/newajay/RODBC
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#to list all table names
sqlTables(chan)

#and fetch some data
sqlFetch(chan,"sales",max=10)

 

In Python the package to do the same is SQLalchemy as the code in the following 
text shows.

import psycopg2
import pandas as pd
import sqlalchemy as sa
import time
import seaborn as sns
import re

In [17]:
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parameters = { 
               'username': 'postgres', 
               'password': 'root',
               'server':   'localhost',
               'database': 'ajay'
             }

In [19]:
connection= 'postgresql://{username}: 
{password}@{server}:5432/{database}'.
format(**parameters)

In [20]:
# The database connection 
print (connection)

postgresql://postgres:root@localhost: 
5432/ajay

In [21]:
engine = sa.create_engine(connection_ 
string, encoding="utf-8")

In [31]:
insp = sa.inspect(engine)
db_list = insp.get_schema_names()
print(db_list)
['information_schema', 'public']

In [37]:
dir(engine)

Out [37]:
['__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__le__',
 '__lt__',
 '__module__',
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 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 '_connection_cls',
 '_echo',
 '_execute_clauseelement',
 '_execute_compiled',
 '_execute_default',
 '_execution_options',
 '_has_events',
 '_optional_conn_ctx_manager',
 '_run_visitor',
 '_should_log_debug',
 '_should_log_info',
 '_trans_ctx',
 '_wrap_pool_connect',
 'begin',
 'connect',
 'contextual_connect',
 'create',
 'dialect',
 'dispatch',
 'dispose',
 'driver',
 'drop',
 'echo',
 'engine',
 'execute',
 'execution_options',
 'has_table',
 'logger',
 'logging_name',
 'name',
 'pool',
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 'raw_connection',
 'run_callable',
 'scalar',
 'table_names',
 'transaction',
 'update_execution_options',
 'url']

In [36]:
engine.table_names()

Out[36]:
['sales']

In [39]:
data3= pd.read_sql_query('select * from  
"sales" limit 10',con=engine)

In [40]:
data3.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
customer_id    10 non-null int64
sales          10 non-null int64
date           10 non-null object
product_id     10 non-null int64
dtypes: int64(3), object(1)
memory usage: 400.0+ bytes

In [41]:
data3.head()

Out [41]:

customer_id sales date product_id

0 10001 5230 2017‐02‐07 524
1 10002 2781 2017‐05‐12 469
2 10003 2083 2016‐12‐18 917
3 10004 214 2015‐01‐19 354
4 10005 9407 2016‐09‐26 292

In [ ]:
----

Finally in PostgreSQL to delete database, use Drop Database.
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To dos: how to delete values and how to convert pandas to numpy array 
and back, data, table and dplyr in r, and hmisc in R.

3.1  Data Formats

In R we can use the as operator to change from one data format to another.
In Python we can use str and int to convert to string and integer formats. 

We can use split to convert string to list.
Numeric—We use int and float functions to convert data to numeric types 

integer and float, respectively.
This is demonstrated in the following code. Note in R the index starts from 1 

and in Python it starts from 0.

import re
import numpy as np
import pandas as pd
numlist=[“$10000”,“$20,000”,“30,000”,40000,“50000   ”]
for i,value in enumerate(numlist):
    numlist[i]=re.sub(r“([$,])”,“”,str(value))
   
numlist
['10000', '20000', '30000', '40000', '50000   ']
int(numlist[1])
20000
for i,value in enumerate(numlist):
    numlist[i]=int(value)
numlist
[10000, 20000, 30000, 40000, 50000]

Data Inspection and Data Quality
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np.mean(numlist)
30000.0
numlist2=str(numlist)
numlist2.split(None,0)
['[10000, 20000, 30000, 40000, 50000]']
numlist2.split(None,0)[0]
'[10000, 20000, 30000, 40000, 50000]'

3.1.1  Converting Strings to Date Time in Python

from datetime import datetime
datetime_object = datetime.strptime(’Jun 7 2016 1:33PM’, 
’%b %d %Y %I:%M%p’)

R has lubridate package (https://cran.r‐project.org/web/packages/lubridate/
lubridate.pdf ) for easy conversion of strings of data to date and time, but 
Python has the date–time package. See examples of lubridate at http://rpubs.
com/newajay/datesquality and http://rpubs.com/ajaydecis/lubridate

adob=“7 June 1977 19:20”
library(lubridate)
adob2=dmy_hm(adob)
adob2

## [1] "1977-06-07 19:20:00 UTC"

mydob=“1 June 1981”
mydob2=dmy(mydob)
mydob2
## [1] "1981-06-01 UTC"

#give me your age in secs 
#my dob = 1 june 1981

pd=Sys.Date() #Date right now
pt=Sys.time() # Date Time Right Now
#give me how old you are from me 
# hint I was born on 7 june 1977 at 1920 hours

difftime(adob2,pt,units=“secs”)
## Time difference of -1203358055 secs
difftime(adob2,mydob2,units=“days”)
## Time difference of -1454.194 days

https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
http://rpubs.com/newajay/datesquality
http://rpubs.com/newajay/datesquality
http://rpubs.com/ajaydecis/lubridate
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Lubridate Example 2
library(lubridate)
## 
## Attaching package: ’lubridate’
## The following object is masked from ’package:base’:
## 
##     date
classdata=c(“1‐April‐1977”,
            “April/2/2014”,
            “1Jun2016”)

lapply(classdata,dmy)
## Warning: All formats failed to parse. No formats found.
## [[1]]
## [1] "1977-04-01"
## 
## [[2]]
## [1] NA
## 
## [[3]]
## [1] "2016-06-01"
is.na(lapply(classdata,dmy))

## Warning: All formats failed to parse. No formats found.
## [1] FALSE  TRUE FALSE
ifelse(!is.na(lapply(classdata,dmy))
       ,lapply(classdata,dmy),lapply(classdata,mdy))
## Warning: All formats failed to parse. No formats found.

## Warning: All formats failed to parse. No formats found.

## Warning: All formats failed to parse. No formats found.

## Warning: All formats failed to parse. No formats found.
## [[1]]
## [1] "1977-04-01"
## 
## [[2]]
## [1] "2014-04-02"
## 
## [[3]]
## [1] "2016-06-01"
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Date Time—We use the datetime module to convert string data to date-
time format and then do numeric operations on it. The following example 
shows using the strptime function to parse the date. We can then use the 
“now” function to find the difference in days form current date. This creates 
a datetime delta object. (http://nbviewer.jupyter.org/gist/decisionstats/ 
246c835576a9537a037768ab30a45f4a)

from datetime import datetime

date_object=datetime.strptime(“7nov‐2007”,“%d%b‐%Y”)

date_object

datetime.datetime(2007, 11, 7, 0, 0)

print(format(date_object.year))
print(format(date_object.month))
print(format(date_object.day))
print(format(date_object.hour))

2007
11
7
0

datetime.now()
datetime.datetime(2016, 10, 30, 16, 38, 6, 260123)
datetime.now()‐date_object

datetime.timedelta(3280, 59947, 411736)
a=datetime.now()‐date_object

a.days

3280
a.seconds

59968

We can use timeit package in Python for finding time of execution of 
code snippets (https://docs.python.org/2/library/timeit.html). This is done by 
system.time() in R.

http://nbviewer.jupyter.org/gist/decisionstats/246c835576a9537a037768ab30a45f4a
http://nbviewer.jupyter.org/gist/decisionstats/246c835576a9537a037768ab30a45f4a
https://docs.python.org/2/library/timeit.html
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For converting dates into strings, use strftime function (the help is at https://
docs.python.org/2/library/time.html#time.strftime).

Directive Meaning Notes

%a Locale’s abbreviated weekday name
%A Locale’s full weekday name
%b Locale’s abbreviated month name
%B Locale’s full month name
%c Locale’s appropriate date and time representation
%d Day of the month as a decimal number [01,31]
%H Hour (24‐hour clock) as a decimal number [00,23]
%I Hour (12‐hour clock) as a decimal number [01,12]
%j Day of the year as a decimal number [001,366]
%m Month as a decimal number [01,12]
%M Minute as a decimal number [00,59]
%p Locale’s equivalent of either AM or PM (1)
%S Second as a decimal number [00,61] (2)
%U Week number of the year (Sunday as the first day of the week) 

as a decimal number [00,53]. All days in a new year preceding 
the first Sunday are considered to be in week 0

(3)

%w Weekday as a decimal number [0(Sunday),6]
%W Week number of the year (Monday as the first day of the week) 

as a decimal number [00,53]. All days in a new year preceding 
the first Monday are considered to be in week 0

(3)

%x Locale’s appropriate date representation
%X Locale’s appropriate time representation
%y Year without century as a decimal number [00,99]
%Y Year with century as a decimal number
%Z Time zone name (no characters if no time zone exists)
%% A literal “%” character

3.1.2  Converting Data Frame to NumPy Arrays and Back in Python

To convert pandas data frame df to NumPy, use the values command:

a=df.iloc[:,1:]
b=df.iloc[:,1:].values

https://docs.python.org/2/library/time.html#time.strftime
https://docs.python.org/2/library/time.html#time.strftime
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print(type(df))
print(type(a))
print(type(b))

To convert to a pandas data frame, use DataFrame with values for index 
and  column. (See code at https://nbviewer.jupyter.org/gist/decisionstats/
b818917b37807fa0ded41522928f26af ).

titanic =pd.read_csv(“https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/Titanic.csv”)

titanic=titanic.drop(’Unnamed: 0’, 1)

titanic.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1313 entries, 0 to 1312
Data columns (total 6 columns):
Name        1313 non-null object
PClass      1313 non-null object
Age         756 non-null float64
Sex         1313 non-null object
Survived    1313 non-null int64
SexCode     1313 non-null int64
dtypes: float64(1), int64(2), object(3)
memory usage: 61.6+ KB

titanic.head()

Name PClass Age Sex Survived SexCode

0 Allen, Miss Elisabeth Walton 1st 29.00 female 1 1
1 Allison, Miss Helen Loraine 1st 2.00 female 0 1
2 Allison, Mr Hudson Joshua Creighton 1st 30.00 male 0 0
3 Allison, Mrs Hudson JC (Bessie 

Waldo Daniels)
1st 25.00 female 0 1

4 Allison, Master Hudson Trevor 1st 0.92 male 1 0

a=titanic.iloc[:,1:]
b=titanic.iloc[:,1:].values

print(type(titanic))
print(type(a))
print(type(b))

https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af
https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af
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<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
<class 'numpy.ndarray'>

a

PClass Age Sex Survived SexCode

0 1st 29.00 female 1 1
1 1st   2.00 female 0 1
2 1st 30.00 male 0 0
3 1st 25.00 female 0 1
4 1st   0.92 male 1 0
5 1st 47.00 male 1 0
6 1st 63.00 female 1 1
7 1st 39.00 male 0 0
8 1st 58.00 female 1 1
9 1st 71.00 male 0 0
… … … … … …
1306 3rd NaN female 0 1
1307 3rd NaN female 0 1
1308 3rd 27.00 male 0 0
1309 3rd 26.00 male 0 0
1310 3rd 22.00 male 0 0
1311 3rd 24.00 male 0 0
1312 3rd 29.00 male 0 0

1313 rows × 5 columns

b
array([['1st',	 29.0,	 'female',	 1, 1],
       ['1st',	 2.0,	 'female',	 0, 1],
       ['1st',	 30.0,	 'male',	 0, 0],
       …, 
       ['3rd',	 22.0,	 'male',	 0, 0],
       ['3rd',	 24.0,	 'male',	 0, 0],
       ['3rd',	 29.0,	 'male',	 0, 0]], dtype=object)

titanic.columns[1:]

Index(['PClass', 'Age', 'Sex', 'Survived', 'SexCode'], 
dtype='object')
titanic.as_matrix(columns=titanic.columns[1:])

array([['1st',	 29.0,	 'female',	 1, 1],
       ['1st',	 2.0,	 'female',	 0, 1],
       ['1st',	 30.0,	 'male',	 0, 0],
       …, 
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       ['3rd',	 22.0,	 'male',	 0, 0],
       ['3rd',	 24.0,	 'male',	 0, 0],
       ['3rd',	 29.0,	 'male',	 0, 0]], dtype=object)

data=titanic.as_matrix(columns=titanic.columns[1:])

len(data)
1313

range(0,len(data))
range(0, 1313)

g=pd.DataFrame(data=data[0:,0:],    # values
     index=range(0,len(data)),    # 1st column as index
     columns=titanic.columns[1:])  # 1st row as the 
column names

g.head()

PClass Age Sex Survived SexCode

0 1st 29 female 1 1
1 1st 2 female 0 1
2 1st 30 male 0 0
3 1st 25 female 0 1
4 1st 0.92 male 1 0

3.2  Data Quality

We can use the re package for regular expressions. The following example 
shows how to replace non‐numeric values in data to clean it up for numeri-
cal  analysis. We use re.sub to replace the values of $, command, and 
whitespace.

import re
import numpy as np

numlist=[“$10000”,“$20,000”,“30,000”,40000,“50000   ”]

help(re.sub)

Help on function sub in module re:
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sub(pattern, repl, string, count=0, flags=0)
    Return the string obtained by replacing the leftmost
    non‐overlapping occurrences of the pattern 
in string by the
    replacement repl.  repl can be either a string 
or a callable;
    if a string, backslash escapes in it are 
processed.  If it is
    a callable, it’s passed the match object and 
must return
    a replacement string to be used.

for i,value in enumerate(numlist):
 
    numlist[i]=re.sub(r“([$,])”,“”,str(value))
    numlist[i]=int(numlist[i])

Here re.sub replaces the $ and patterns with nothing (“”) from each value of 
the list just like gsub does in R. In python str converts an object to string just 
like paste does in R. In the next step, int converts the object to numeric values 
(integer) just as as.numeric does in R:
print(numlist)

[10000, 20000, 30000, 40000, 50000]

np.mean(numlist)

30000.0

help(enumerate)

Help on class enumerate in module builtins:

class enumerate(object)
 |  enumerate(iterable[, start]) -> iterator for index,  
         value of iterable
 |  
 |  Return an enumerate object.  iterable must be another  
         object that supports
 |  iteration.  The enumerate object yields pairs  
         containing a count (from
 |  start, which defaults to zero) and a value yielded  
         by the iterable argument.
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 |  enumerate is useful for obtaining an indexed list:
 |      (0, seq[0]), (1, seq[1]), (2, seq[2]), …
 |  
 |  Methods defined here:
 |  
 |  __getattribute__(self, name, /)
 |    Return getattr(self, name).
 |  
 |  __iter__(self, /)
 |    Implement iter(self).
 |  
 |  __new__(*args, **kwargs) from builtins.type
 |    Create and return a new object.  See help(type)  
          for accurate signature.
 |  
 |  __next__(self, /)
 |    Implement next(self).
 |  
 |  __reduce__(...)
 |    Return state information for pickling.

Here we used enumerate to replace and convert each value of the list one by 
one. This is a powerful method unique to Python as loops are not computation-
ally efficient in R. The code of example earlier is at https://nbviewer.jupyter.org/
gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb

Now let us see how we would do this in R. The following is R code (also 
available at http://rpubs.com/newajay/dataquality2):

numlistr=c(“$10000”,“$20,000”,“30,000”,40000,“50000   ”)
mean(numlistr)

## Warning in mean.default(numlistr): argument is not 
numeric or logical:
## returning NA
## [1] NA

numlistr=gsub(“,”,“”,numlistr)
numlistr

## [1] "$10000"   "$20000"   "30000"    "40000"    
"50000   "

numlistr=gsub(“\\$”,“”,numlistr)
Numlistr 

https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
http://rpubs.com/newajay/dataquality2


3.2  Data Quality 87

## [1] "10000"    "20000"    "30000"    "40000"    
"50000   "

numlistr=as.numeric(numlistr)
numlistr

## [1] 10000 20000 30000 40000 50000

mean(numlistr)
## [1] 30000

For searching on character strings, we can use re.search and use bool to 
return True or False. The bool function returns True when the argument 
for which it is passed on is true; otherwise it returns false. The following 
code is also available at https://nbviewer.jupyter.org/gist/decisionstats/ 
612116b1b8147cfb3808f5ac3c791eba

import re 

names=[“Ajay”,“V ijay”,“Ra jay ”, “ Jayesh”]

for name in names:
  print (re.search(r’(jay)’,name))

<_sre.SRE_Match object; span=(1, 4), match='jay'>
<_sre.SRE_Match object; span=(3, 6), match='jay'>
<_sre.SRE_Match object; span=(3, 6), match='jay'>
None

Using re.search we got the positions of the string (jay).

for name in names:
  print (bool(re.search(r’(jay)’,name)))
True
True
True
False

Using bool we got whether the string (jay) was present or not.
In R, we use grep, grepl functions for searching by string pattern. The following 

code is also available at http://rpubs.com/newajay/grepinr

names=c(“Ajay”,“V ijay”,“Ra jay ”, “ Jayesh”)
grepl(“jay”,names)

https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
http://rpubs.com/newajay/grepinr
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## [1]  TRUE  TRUE  TRUE FALSE
gregexpr(pattern =’jay’,names)
## [[1]]
## [1] 2
## attr(,"match.length")
## [1] 3
## attr(,"useBytes")
## [1] TRUE
## 
## [[2]]
## [1] 4
## attr(,"match.length")
## [1] 3
## attr(,"useBytes")
## [1] TRUE
## 
## [[3]]
## [1] 4
## attr(,"match.length")
## [1] 3
## attr(,"useBytes")
## [1] TRUE
## 
## [[4]]
## [1] -1
## attr(,"match.length")
## [1] -1
## attr(,"useBytes")
## [1] TRUE
grep(“jay”,names)
## [1] 1 2 3
grep(“jay”,names,value = T)
## [1] "Ajay"    "V ijay"  "Ra jay "

3.3  Data Inspection

We need to inspect data after import to see whether we correctly imported the 
right size as well as the format of data columns (from http://nbviewer.jupyter.
org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f and http://nbviewer.
jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4).

’’’Lets get some information on the object.
In R we would get this by str command (for structure). 

http://nbviewer.jupyter.org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f
http://nbviewer.jupyter.org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f
http://nbviewer.jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4
http://nbviewer.jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4
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In Python str turns the object to string so we use info.
This was a multiple-line comment using three single 
quote marks.’’’

diamonds.info() 

<class 'pandas.core.frame.DataFrame'>
Int64Index: 53940 entries, 0 to 53939
Data columns (total 11 columns):
Unnamed: 0   	 53940 non-null int64
carat         	 53940 non-null float64
cut           	 53940 non-null object
color         	 53940 non-null object
clarity       	 53940 non-null object
depth         	 53940 non-null float64
table             53940 non-null float64
price         	 53940 non-null int64
x             	 53940 non-null float64
y             	 53940 non-null float64
z             	 53940 non-null float64
dtypes: float64(6), int64(2), object(3)
memory usage: 4.3+ MB

diamonds.head(10) #we check the first 10 rows in the 
dataset

Unnamed: 0 carat cut color clarity depth table price x y z

0 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
1 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
2 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
3 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
4 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
5 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
6 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
7 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
8 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
9 10 0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39

●● To refer to a particular row in Python, I can use index.
●● In R I refer to the object in ith row and jth column by OBJECTNAME[i,j].
●● In R I refer to the column name by OBJECTNAME$ColumnName.
●● Note in Python Index starts with 0 while in R it starts with 1.

You can use the info command to look at imported objects.
Dropping variables is easily done by the drop command followed by 

column name.
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Using the head function allows you to look at the first few rows.
We get Table  3.1 from http://www.slideshare.net/ajayohri/python‐for‐ 

r‐users that has got 37 000 views till December 2016.

diamonds=diamonds.drop(“Unnamed: 0”,1)

diamonds.columns

Index(['carat', 'cut', 'color', 'clarity', 'depth', 
'table', 'price', 'x', 'y',
      'z'],
      dtype='object')
diamonds.index

RangeIndex(start=0, stop=53940, step=1)

Sorting data is quite easy too

diamonds3=diamonds.sort([“price”])
diamonds3.head()

Table 3.1  R and Python are quite easily comparable.

R Python (using pandas package*)

Getting the names 
of rows and columns 
of data frame “df”

rownames(df ) df.index
returns the name of the rows returns the name of the rows
colnames(df ) df.columns
returns the name of the 
columns

returns the name of the columns

Seeing the top and 
bottom “x” rows of 
the data frame “df”

head(df,x) df.head(x)
returns top x rows of data 
frame

returns top x rows of data frame

tail(df,x) df.tail(x)
returns bottom x rows of 
data frame

returns bottom x rows of data 
frame

Getting dimensions 
of data frame “df”

dim(df) df.shape
returns in this format: rows, 
columns

returns in this format: (rows, 
columns)

Length of data 
frame “df”

length(df ) len(df )
returns no. of columns in 
data frames

returns no. of columns in data 
frames

http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/ajayohri/python-for-r-users
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carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75

3.3.1  Missing Value Treatment

Missing values can be dropped by dropna command. Python uses NaN to 
denote missing values, while R denotes them with NA. For more information 
on missing values, please do read the documentation at http://pandas.pydata.
org/pandas‐docs/stable/missing_data.html

diamonds4 = diamonds.dropna(how = ’any’)

In R missing value treatment is done by the functions na.rm = T (which 
ignores NA or missing values) and na.omit (which deletes the missing values). 
Note in R missing values are denoted by NA. In addition—using gsub, one can 
replace a pattern by another (or delete it), and—using the as operator, one can 
convert data from one format to another. We use the is.na function to find if a 
value is a missing value (is.na = TRUE) or not.

For missing values and other issues, let us take this small caselet from http://
rpubs.com/ajaydecis/dataman3. We have a small list of mixed formats of money 
and we need to find the mean money. We first use gsub to remove the comma, 
then gsub with an escape character \\ to remove the $ sign, and then the 
as.numeric operator to make it numeric. Finally, we use the na.rm operator 
to  find mean of non‐missing values and use na.omit to remove missing 
values altogether.

money=c("$50000","$50,000","50,000",50000,"50000",NA)
money

## [1] 50000 50000 50000 50000 50000    NA

mean(money)

## [1] NA

mean(money,na.rm=T)

## [1] 50000

money=na.omit(money)
money

http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://rpubs.com/ajaydecis/dataman3
http://rpubs.com/ajaydecis/dataman3
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## [1] 50000 50000 50000 50000 50000
## attr(,"na.action")
## [1] 6
## attr(,"class")
## [1] "omit"

mean(money)

## [1] 50000

3.4  Data Selection

To refer to data by row number, we can use the .ix command to refer to it by index 
value (in Python index starts from 0, while in R it starts from 1 for the first row).

Unlike R, there is no $ command to select columns for a data frame 
(i.e., diamonds$color). So we can use the notation dataframename.columnname 
or dataframename[[“columnname’]]. In python chaining the commands is easy 
by just adding a dot with command to previous object.

For choosing both row number and column name, I put these values within 
the double square brackets.

diamonds.ix[20:30]

carat cut color clarity depth table price x y z

20 0.30 Good I SI2 63.3 56.0 351 4.26 4.30 2.71
21 0.23 Very Good E VS2 63.8 55.0 352 3.85 3.92 2.48
22 0.23 Very Good H VS1 61.0 57.0 353 3.94 3.96 2.41
23 0.31 Very Good J SI1 59.4 62.0 353 4.39 4.43 2.62
24 0.31 Very Good J SI1 58.1 62.0 353 4.44 4.47 2.59
25 0.23 Very Good G VVS2 60.4 58.0 354 3.97 4.01 2.41
26 0.24 Premium I VS1 62.5 57.0 355 3.97 3.94 2.47
27 0.30 Very Good J VS2 62.2 57.0 357 4.28 4.30 2.67
28 0.23 Very Good D VS2 60.5 61.0 357 3.96 3.97 2.40
29 0.23 Very Good F VS1 60.9 57.0 357 3.96 3.99 2.42
30 0.23 Very Good F VS1 60.0 57.0 402 4.00 4.03 2.41

diamonds.ix[20:30].cut
20         Good
21    Very Good
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22    Very Good
23    Very Good
24    Very Good
25    Very Good
26      Premium
27    Very Good
28    Very Good
29    Very Good
30    Very Good
Name: cut, dtype: object
diamonds.ix[20:30][“color”]

20    I
21    E
22    H
23    J
24    J
25    G
26    I
27    J
28    D
29    F
30    F
Name: color, dtype: object

diamonds[[“cut”,“color”,“clarity”]][20:30]

cut color clarity

20 Good I SI2
21 Very Good E VS2
22 Very Good H VS1
23 Very Good J SI1
24 Very Good J SI1
25 Very Good G VVS2
26 Premium I VS1
27 Very Good J VS2
28 Very Good D VS2
29 Very Good F VS1
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diamonds[[“cut”,“color”,“clarity”]].head()

cut color clarity

0 Ideal E SI2
1 Premium E SI1
2 Good E VS1
3 Premium I VS2
4 Good J SI2

diamonds.ix[20:30,[“cut”,“color”,“clarity”]]

cut color clarity

20 Good I SI2
21 Very Good E VS2
22 Very Good H VS1
23 Very Good J SI1
24 Very Good J SI1
25 Very Good G VVS2
26 Premium I VS1
27 Very Good J VS2
28 Very Good D VS2
29 Very Good F VS1
30 Very Good F VS1

3.4.1  Random Selection of Data

Using the .ix method we can do random selection of a data frame that can be 
useful for large amounts of data:

import numpy as np

len(diamonds)

53940
0.0001*len(diamonds)

5.394
round(0.0001*len(diamonds))
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5
diamonds.index.values

array([    0,     1,     2, …, 53937, 53938, 53939])

rows=np.random.choice(diamonds.index.values,round 
(0.0001*len(diamonds)))
print(rows)

[26766 43621  3614 35052 51042]

diamonds.ix[rows]

carat cut color clarity depth table price x y z

26766 2.45 Ideal F SI2 62.0 55.0 16589 8.67 8.64 5.36
43621 0.46 Premium F VS1 60.5 58.0 1432 5.02 4.97 3.02
3614 1.05 Ideal I VS2 62.2 56.0 3428 6.52 6.50 4.05
35052 0.31 Ideal F VVS1 61.8 56.0 884 4.33 4.37 2.69
51042 0.70 Good H VS2 64.2 58.0 2330 5.58 5.61 3.59

3.4.2  Conditional Selection

Let us try selecting data by conditions. We can again use the double square 
brackets.

We can use the query function for easier conditional selection and using 
multiple conditions including (&) or (|) operators. Note we use the parenthesis 
in query here, not the square brackets.

diamonds[diamonds[’carat’] > 3.7]

carat cut color clarity depth table price x y z

25998 4.01 Premium I I1 61.0 61.0 15223 10.14 10.10 6.17
25999 4.01 Premium J I1 62.5 62.0 15223 10.02 9.94 6.24
26444 4.00 Very Good I I1 63.3 58.0 15984 10.01 9.94 6.31
27130 4.13 Fair H I1 64.8 61.0 17329 10.00 9.85 6.43
27415 5.01 Fair J I1 65.5 59.0 18018 10.74 10.54 6.98
27630 4.50 Fair J I1 65.8 58.0 18531 10.23 10.16 6.72
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diamonds.query(’carat >3.5 and color == “J”’)

carat cut color clarity depth table price x y z

25999 4.01 Premium J I1 62.5 62.0 15223 10.02 9.94 6.24
27415 5.01 Fair J I1 65.5 59.0 18018 10.74 10.54 6.98
27630 4.50 Fair J I1 65.8 58.0 18531 10.23 10.16 6.72
27679 3.51 Premium J VS2 62.5 59.0 18701 9.66 9.63 6.03

We can also use pandasql package to use SQL to query data conditionally 
(from https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92). 
In R we use sqldf package for the same.

from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

import pandas as pd

mycars=pd.read_csv(“http://vincentarelbundock.github.io/ 
Rdatasets/csv/datasets/mtcars.csv”)

mycars.head()

Unnamed: 0 mpg cyl disp hp drat wt qsec vs am gear carb

0 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
3 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
4 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

mycars.columns
Index(['Unnamed: 0', 'mpg', 'cyl', 'disp', 'hp', 
'drat', 'wt', 'qsec', 'vs',
   'am', 'gear', 'carb'],   dtype='object')
mycars.columns= [’brand’,’mpg’, ’cyl’, ’disp’, 
’hp’, ’drat’, ’wt’, ’qsec’, ’vs’, ’am’, ’gear’, 
’carb’]

https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
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pysqldf(“SELECT * FROM mycars LIMIT 10;”)

brand mpg cyl disp hp drat wt qsec vs am gear carb

0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4

pysqldf(“SELECT * FROM mycars WHERE gear > 3 ;”)

brand mpg cyl disp hp drat wt qsec vs am gear carb

0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
3 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
4 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
5 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
6 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
7 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
8 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
9 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

10 Fiat X1‐9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
11 Porsche 914‐2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
12 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
13 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
14 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
15 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
16 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
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pysqldf(“SELECT * FROM mycars WHERE gear > 3 and carb > 4 ;”)

brand mpg cyl disp hp drat wt qsec vs am gear carb

0 Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
1 Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8

pysqldf(“SELECT AVG(mpg),gear FROM mycars GROUP by gear;”)

AVG(mpg) gear

0 16.106667 3
1 24.533333 4
2 21.380000 5

pysqldf(“SELECT AVG(mpg),gear,cyl FROM mycars GROUP by 
gear,cyl;”)

AVG(mpg) gear cyl

0 21.500 3 4
1 19.750 3 6
2 15.050 3 8
3 26.925 4 4
4 19.750 4 6
5 28.200 5 4
6 19.700 5 6
7 15.400 5 8

3.5  Data Inspection in R

R is quite simple on how we can inspect data. We can use head and tail to look 
at first few and last few records, and we can use str and names to look at struc-
ture and column names of a data frame. We can use the $ notation to look at a 
particular column name and use the [] square bracket (row,column) notation 
to look at a particular value.

You can see the code at http://rpubs.com/ajaydecis/mtcars1 and http://rpubs.
com/ajaydecis/mtcars or at the following code to understand how easy it is. 
Conditional selection is thus quite easy in R. The data in I row and J column for 
DataFrameX is shown by DataFrameX[I,J] and alternatively the data in J column 
can be DataFrameX$J_Column_Name or DataFrameX[,J].

The actual data mtcars can also be seen at http://vincentarelbundock.github.
io/Rdatasets/csv/datasets/mtcars.csv

http://rpubs.com/ajaydecis/mtcars1
http://rpubs.com/ajaydecis/mtcars
http://rpubs.com/ajaydecis/mtcars
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv


data(“mtcars”)
head(mtcars,10)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0   93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7   62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8  95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
tail(mtcars,5)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Lotus Europa 30.4 4   95.1 113 3.77 1.513 16.9 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

names(mtcars)
##  [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear"
## [11] "carb"



str(mtcars)
## 'data.frame': 32 obs. of  11 variables:
##  $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 …
##  $ cyl : num 6 6 4 6 8 6 8 4 4 6 …
##  $ disp: num 160 160 108 258 360 …
##  $ hp  : num 110 110 93 110 175 105 245 62 95 123 …
##  $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 …
##  $ wt  : num 2.62 2.88 2.32 3.21 3.44 …
##  $ qsec: num 16.5 17 18.6 19.4 17 …
##  $ vs  : num 0 0 1 1 0 1 0 1 1 1 …
##  $ am  : num 1 1 1 0 0 0 0 0 0 0 …
##  $ gear: num 4 4 4 3 3 3 3 4 4 4 …
##  $ carb: num 4 4 1 1 2 1 4 2 2 4 …
mtcars[1,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4
mtcars[,2]
##[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
mtcars[2,3]
##[1] 160
mtcars$cyl
##[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

Now for conditional selection we use the following

mtcars[2,3]
## [1] 160 



mtcars[mtcars$cyl>4,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0  5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

Using attach function we no longer have to write mtcars$ every time but can refer to the column name directly.



attach(mtcars)
mtcars[cyl>4,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
 



mtcars[cyl>4 &gear >4,] #AND &
## mpg cyl disp hp drat wt qsec vs am gear carb
## Ford Pantera L 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
## Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
## Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8

mtcars[cyl>4 &gear ==4,] # EQUALITY ==
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4

mtcars[cyl>4 |gear ==4,] #OR |
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0   93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7   62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8   95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3



## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

mtcars[cyl>4 &gear !=4,] #NOT !=
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3



## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

We can use the sqldf package to use SQL to query data in R.
http://rpubs.com/ajaydecis/dataman

data(“mtcars”)
library(sqldf)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108   93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

#Give us average mpg for every carb and every cyl

http://rpubs.com/ajaydecis/dataman


sqldf(“select avg(mpg)  from mtcars ”)

##   avg(mpg)
## 1 20.09062
sqldf(“select avg(mpg),cyl from mtcars group by cyl”)

##   avg(mpg) cyl
## 1 26.66364   4
## 2 19.74286   6
## 3 15.10000   8
sqldf(“select avg(mpg),cyl,gear from mtcars group by cyl,gear”)

##   avg(mpg) cyl gear
## 1   21.500   4    3
## 2   26.925   4    4
## 3   28.200   4    5
## 4   19.750   6    3
## 5   19.750   6    4
## 6   19.700   6    5
## 7   15.050   8    3
## 8   15.400   8    5

3.5.1 Diamond Dataset from ggplot2 Package in R

Let us do some more data munging on the diamonds dataset in R (see http://rpubs.com/ajaydecis/basicR). We see random 
selection, multiple conditional selection, and other ways in R to manipulate data.

ls() lists all objects in Memory. rm(“objectname”) removes a particular object, while rm(list=ls()) removes all objects. gc() 
does garbage collection to free up memory particularly if a large object has been deleted.

http://rpubs.com/ajaydecis/basicR


ls()
## character(0)
rm(list=ls())
gc()

##        used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 291320  7.8     592000 15.9   391619 10.5
## Vcells 333507  2.6     786432  6.0   692009  5.3

#memory.size() windows specific‐this gives memory occupied
#memory.limit() windows specific‐this gives total memory available
# install.packages(ggplot2)
library(ggplot2)
data(diamonds)
names(diamonds)

##[1] "carat"   "cut"     "color"   "clarity" "depth"   "table"   "price"  
##[8] "x"       "y"       "z"

class(diamonds)  #What type of object is this?
##[1] "data.frame"

dim(diamonds) #Dimensions ‐ rows and columns
##[1] 53940    10

nrow(diamonds) #Number of Rows
##[1] 53940



ncol(diamonds) #Number of Columns
## [1] 10

str(diamonds) #Structure ‐ same as info in Python

## 'data.frame':    53940 obs. of  10 variables:
##  $ carat  : num  0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 …
##  $ cut    : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 …
##  $ color  : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 …
##  $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 …
##  $ depth  : num  61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 …
##  $ table  : num  55 61 65 58 58 57 57 55 61 61 …
##  $ price  : int  326 326 327 334 335 336 336 337 337 338 …
##  $ x      : num  3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 …
##  $ y      : num  3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 …
##  $ z      : num  2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 …

#data inspection
head(diamonds)

## carat cut color clarity depth table price x y z
## 1  0.23    Ideal      E     SI2 61.5    55 326 3.95 3.98 2.43
## 2  0.21    Premium    E     SI1 59.8    61 326 3.89 3.84 2.31
## 3  0.23    Good       E     VS1 56.9    65 327 4.05 4.07 2.31
## 4  0.29    Premium    I     VS2 62.4    58 334 4.20 4.23 2.63
## 5  0.31    Good       J     SI2 63.3    58 335 4.34 4.35 2.75
## 6  0.24    Very Good  J    VVS2 62.8    57 336 3.94 3.96 2.48
head(diamonds$carat) #USing the $operator in take in one column



## [1] 0.23 0.21 0.23 0.29 0.31 0.24

Diamonds[3,] #looking at the third row

## carat cut color clarity depth table price x y z
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

head(diamonds[,3],10) #Taking first 10 values of 3rd column
##  [1] E E E I J J I H E H
## Levels: D < E < F < G < H < I < J

tail(diamonds) #Last six values by default
## carat cut color clarity depth table price x y z
## 53935 0.72 Premium D SI1 62.7 59 2757 5.69 5.73 3.58
## 53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76 3.50
## 53937 0.72 Good D SI1 63.1 55 2757 5.69 5.75 3.61
## 53938 0.70 Very Good D SI1 62.8 60 2757 5.66 5.68 3.56
## 53939 0.86 Premium H SI2 61.0 58 2757 6.15 6.12 3.74
## 53940 0.75 Ideal D SI2 62.2 55 2757 5.83 5.87 3.64

#missing value treatment
head(na.omit(diamonds))

## carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31



## 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
## 5  0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

head(mean(diamonds$price,na.rm=T))

## [1] 3932.8

head(is.na(diamonds$price))

## [1] FALSE FALSE FALSE FALSE FALSE FALSE

naa=is.na(diamonds$price)
table(naa) #table gives frequency values and can be used for data inspection
## naa
## FALSE 
## 53940

#random sample
sample(10,3,T) #This is random sample similar to numpy example earlier

## [1] 10  2  3
sample(10,5,F) #Out of ten numbers choose 5 values, with substitution =False

## [1]  4  6 10  9  7



rnorm(10,5,9)
#Random numbers by normal distribution. 10 numbers with mean 5 
#and standard deviation 9
##  [1] -5.323364 10.778377  9.562595 25.202856 14.740653  6.146948  4.712989
##  [8] 10.033625 13.576019 -2.904901

sample(53940,54,F) #Choosing Random Row Numbers

##  [1] 16015  3295 30810  6128 13020 17596 26258 13724 18290 49344 28803
## [12] 19296 30969 18564 47637 19556 36676 31809 27470 40427 13827 19285
## [23] 34027 19775  3914 42903 38505 22783 22571 24783 53796 49667 35219
## [34] 43201 41791 47455 22991   900 32144 27631 28891 40676 12270  9432
## [45] 25694  4886 20734  8846 28651  6460 33818  7642 21005 15168

sample(nrow(diamonds),0.001*(nrow(diamonds)),F) #0.1 % Random Sample

##  [1] 40131 24733 29152  4190  4079 31014 23678 20268 36029 37565 26792
## [12] 52564 31527 22044  4255 39092 40824 35166  4566 20044  8307 21015
## [23] 42075 36046 41057 20671 28080  5624 31169 49728 48181 17372 26373
## [34] 11403 37404  8279 25680 15130 23026 43130 43979 10054 43876 16751
## [45]  8193 25554 42141  3124 29700 45469 53186 25642 33776

a=nrow(diamonds)
sample(a,0.0001*a,F) #To explain the code above

## [1] 40676 32758 43476 47130 38664
randomrows=sample(a,0.0001*a,F)
Diamonds[randomrows,]



## carat cut color clarity depth table price x y z
## 29067 0.40 Good F SI1 63.1 58    687 4.66 4.69 2.95
## 28304 0.32 Very Good I SI1 62.8 58    432 4.34 4.39 2.74
## 25301 1.58 Very Good G VS1 62.8 57 13963 7.34 7.40 4.63
## 15670 1.00 Fair E VS2 57.3 64 6285 6.59 6.46 3.79
## 5267 1.03 Good J VS2 63.7 56 3795 6.42 6.35 4.07

cut2=diamonds[diamonds$cut==“Ideal”,]
head(cut2)

## carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
## 14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
## 17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
## 40 0.33 Ideal I SI2 61.8 55 403 4.49 4.51 2.78
## 41 0.33 Ideal I SI2 61.2 56 403 4.49 4.50 2.75

cut3=diamonds[diamonds$cut==“Ideal” & diamonds$color==“D”,]
head(cut3)

## carat cut color clarity depth table price x y z
## 63 0.30 Ideal D SI1 62.5 57 552 4.29 4.32 2.69
## 64 0.30 Ideal D SI1 62.1 56 552 4.30 4.33 2.68
## 121 0.71 Ideal D SI2 62.3 56 2762 5.73 5.69 3.56
## 133 0.71 Ideal D SI1 61.9 59 2764 5.69 5.72 3.53
## 145 0.71 Ideal D SI2 61.6 55 2767 5.74 5.76 3.54
## 156 0.76 Ideal D SI2 62.4 57 2770 5.78 5.83 3.62



cut4=diamonds[diamonds$cut==“Ideal” | diamonds$color==“D”,]
head(cut4)

## carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
## 14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
## 17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
## 29 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.40
## 35 0.23 Very Good D VS1 61.9 58 402 3.92 3.96 2.44

cut5=ifelse(diamonds$price>9000,“Expensive”,“Not So Expensive”)

table(cut5)
## cut5
##        Expensive Not So Expensive 
##        6298          47642

If else helps with conditional variable creation. Here for condition 1 (price > 9000), if true, the value is second 
parameter (Expensive), or else third parameter (Not Expensive). Then we do a table (frequency analysis to find 
the values).

3.5.2 Modifying Date Formats and Strings in R

The following code will help us see how we modify date formats easily (using strptime function and lubridate packages) 
for date formats and use nchar and substr functions on character data.



#CHARACTER TO DATES
dobofclass=c(“1April2007”,
             “28th july 1984”,
             “05 May 1988”,
             “29nov‐2008”)

strptime(“29nov‐2008”,“%d%b‐%Y”)
## [1] "2008-11-29 IST"

strptime(“05 May 1988”,“%d%b‐%Y”)
## [1] NA

strptime(“05 May 1988”,“%d %B %Y”) #Strptime needs exact format
## [1] "1988-05-05 IST"

library(lubridate) #lubridate is better and easier in guessing date format

dmy(dobofclass)
## [1] "2007-04-01 UTC" "1984-07-28 UTC" "1988-05-05 UTC" "2008-11-29 UTC"

Sys.Date()
## [1] "2015-12-12"

Differences in dates is given by difftime

difftime(Sys.Date(),dmy(dobofclass))
## Time differences in days
## [1]  3177 11459 10082  2569



?strptime will give you an insight on all the date formats.

Converting to Character
x=c(23,56,78,89)
as.character(x)
## [1] "23" "56" "78" "89"

paste(x)
## [1] "23" "56" "78" "89"

In R, modifying format is as simple as using the as operator. For character variables we can also just use paste.

paste(“ajay”,dobofclass[1])

## [1] "ajay 1April2007"

paste(“student1”,dobofclass[2])
## [1] "student1 28th july 1984"

Substr is a command that helps extract part of the string. Here the first value (2) is the beginning of the substring, while 
the second value (3) is the ending part of it. The command thus tells to begin from 2 character of ajay and end at the third 
value (included).
substr(“ajay”,2,3)
## [1] "ja"
Let us create a list
namclass=c(“Ajay”,“Ajith”,“Sudeeptha”,“Yogisha”)



Let us take first initial of every member of nclass, that is, A,A,S,Y.

substr(namclass,1,1)
## [1] "A" "A" "S" "Y"

The number of characters in a string is given by nchar:

nchar(namclass)
## [1] 4 5 9 7

To get the last character of every member of nclass list,
substr(namclass,nchar(namclass),nchar(namclass))
## [1] "y" "h" "a" "a"

3.5.3 Managing Strings in R

Let us take a small list. We use the c operator to make a list in R. We use grepl to find out if a certain pattern is present 
(here “jay”). We use ifelse for a  conditional substitute.

Ifelse works like this in R, if the condition (first input grepl(“jay”,names)) is satisfied, it will replace it by (second input 
“Yay its Jay”), or else it would replace by (third input “Oh no where is Jay”).

names=c("Ajay","Vijay","Rajay","Jayesh")
grepl("jay",names)
## [1]  TRUE  TRUE  TRUE FALSE
ifelse(grepl("jay",names),"Yay its Jay", " Oh no where is Jay")
## [1] "Yay its Jay"      "Yay its Jay"     "Yay its Jay"        
## [4] " Oh no where is Jay"



We can also use stringr package to manage strings:

library(stringr)

str_dup(names,3)
## [1] "AjayAjayAjay"       "VijayVijayVijay"    "RajayRajayRajay"   
## [4] "JayeshJayeshJayesh"

namq=c(“Ajay   “,”Vijay  “,”   Rajay“,”  Jay  esh  ”)

str_trim(namq)
## [1] "Ajay"     "Vijay"    "Rajay"    "Jay  esh"

str_pad(namq,width=20,side=“left”)
## [1] "             Ajay   " "             Vijay  " "               Rajay"
## [4] "          Jay  esh  "
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4

●● Definition of EDA
●● Box Plot and Five Numbers

4.1  Group by Analysis

When a numeric quantity is summarized across various levels of a factor or 
categorical variable, that is known as a group by Analysis Numerical.

Summaries of numerical variables can be done by describe, group by 
commands.

Categorical
Summaries are best done by cross tab, group by operations.
Datetime
Datetime data is best handled by datetime library.

4.2  Numerical Data

Let’s take some data in http://nbviewer.jupyter.org/gist/decisionstats/4142e98 
375445c5e4174 (Figure 4.1).

For numerical data Describe command in pandas acts the same was as 
summary command in R for numerical data. Describe in Python Pandas 
gives you count, mean std min 25% 50% 75% max. Summary in R gives you 
mean, median, 25th and 75th quartiles, min, max.

There is another function in R called fivenum, and it gives you 
Tukey’s five numbers for exploratory data analysis (min, lower‐hinge, median, 
upper‐hinge, max).

R has a better function in the Hmisc package called describe (yes it can be 
confusing to go back and forth between pandas and R). Hmisc::Describe 

Exploratory Data Analysis

http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174
http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174


4  Exploratory Data Analysis120

gives you a more elaborate numerical exploration (n,missing unique, Mean, 
.05,.10,.25,.50,.75,.90,.95 and 5 lowest and 5 highest scores). In Python we can 
do it using quantiles for percentiles (Figure 4.2).

Figure 4.1  Describe function.

Figure 4.2  Quantile function for percentiles and quartiles.
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We can look at correlations between numerical data using corr function 
(Figure 4.3).

4.3  Categorical Data

In Python value_counts() acts the same way as table() does in R for frequency 
tabulations (Figure 4.4).

A cross tabulation between two variables in pandas is given by crosstab, 
while in R you can just do table(var1,var2) (Figure 4.5).

Figure 4.3  Corr function for correlation.

Figure 4.4  Frequency tabulation using value_counts function.
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Group by operations is best done by groupby() and then a numerical func-
tion applied to it (Figures 4.6 and 4.7).

Figure 4.6  Grouping by a variable using groupby.

Figure 4.5  Cross tabulation using Cross Tab function.
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Note: To transpose the data from columns to rows and vice versa, we can use 
the transpose function (Figure 4.8).

You can use the pivot command to present data in a pivot table format 
(Figure 4.9).

The above shows median age for different sex and races.

Figure 4.7  Calculating mean (or a summary function) of Group by.

Figure 4.8  Transpose function.
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We can use the pandasql package and use SQL syntax to do selection as well 
as groupby operations on data. You can see this from https://nbviewer.jupyter. 
org/gist/decisionstats/284a86d0541d06489e92 (or all the code from https:// 
github.com/decisionstats/pythonfordatascience).

The SQL syntax makes it easy for existing SQL users to quickly manipulate 
and select data in a pandas DataFrame. Note this functionality is available in R 
in the sqldf package (Figure 4.10).

From http://rpubs.com/ajaydecis/basicR let’s look at the way to explore data 
in R in multiple ways using summary, table functions, and Hmisc, and other 
packages. ls()

Figure 4.9  Pivot function.

Figure 4.10  Using SQL in Python using PandaSQL package.

https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
https://github.com/decisionstats/pythonfordatascience
https://github.com/decisionstats/pythonfordatascience
http://rpubs.com/ajaydecis/basicR


## character(0)
rm(list=ls())
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 291320 7.8 592000 15.9 391619 10.5
## Vcells 333507 2.6 786432 6.0 692009 5.3
#memory.size() windows specific
#memory.limit() windows specific
# install.packages(ggplot2)
library(ggplot2)
data(diamonds)
names(diamonds)
## [1] "carat" "cut" "color" "clarity" "depth" "table" "price"
## [8] "x" "y" "z"
class(diamonds)
## [1] "data.frame"
dim(diamonds)
## [1] 53940 10
nrow(diamonds)
## [1] 53940
ncol(diamonds)
## [1] 10
str(diamonds)
##  'data.frame': 53940 obs. of 10 variables:
## $ carat : num  0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 …
## $ cut :  Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 …
## $ color :  Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 …
## $ clarity :  Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 …



## $ depth : num  61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 …
## $ table : num 55 61 65 58 58 57 57 55 61 61 …
## $ price : int  326 326 327 334 335 336 336 337 337 338 …
## $ x : num  3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 …
## $ y : num  3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 …
## $ z : num  2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 …
#data inspection
head(diamonds)
##  carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
head(diamonds$carat)
## [1] 0.23 0.21 0.23 0.29 0.31 0.24
diamonds[3,]
## carat cut color clarity depth table price x y z
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
head(diamonds[,3],10)
##  [1] E E E I J J I H E H
## Levels: D < E < F < G < H < I < J
tail(diamonds)
## carat cut color clarity depth table price x y z
## 53935 0.72 Premium D SI1 62.7 59 2757 5.69 5.73 3.58
## 53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76 3.50



## 53937 0.72 Good D SI1 63.1 55 2757 5.69 5.75 3.61
## 53938 0.70 Very Good D SI1 62.8 60 2757 5.66 5.68 3.56
## 53939 0.86 Premium H SI2 61.0 58 2757 6.15 6.12 3.74
## 53940 0.75 Ideal D SI2 62.2 55 2757 5.83 5.87 3.64
#missing value treatment
head(na.omit(diamonds))
## carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
head(mean(diamonds$price,na.rm=T))
## [1] 3932.8
head(is.na(diamonds$price))
## [1] FALSE FALSE FALSE FALSE FALSE FALSE
naa=is.na(diamonds$price)
table(naa)
## naa
## FALSE 
## 53940
#random sample
sample(10,3,T)
## [1] 10 2 3
sample(10,5,F)
## [1] 4 6 10 9 7



rnorm(10,5,9)
## [1] -5.323364 10.778377 9.562595 25.202856 14.740653 6.146948 4.712989
## [8] 10.033625 13.576019 -2.904901
sample(53940,54,F)
## [1] 16015 3295 30810 6128 13020 17596 26258 13724 18290 49344 28803
## [12] 19296 30969 18564 47637 19556 36676 31809 27470 40427 13827 19285
## [23] 34027 19775 3914 42903 38505 22783 22571 24783 53796 49667 35219
## [34] 43201 41791 47455 22991 900 32144 27631 28891 40676 12270 9432
## [45] 25694 4886 20734 8846 28651 6460 33818 7642 21005 15168
sample(nrow(diamonds),0.001*(nrow(diamonds)),F)
## [1] 40131 24733 29152 4190 4079 31014 23678 20268 36029 37565 26792
## [12] 52564 31527 22044 4255 39092 40824 35166 4566 20044 8307 21015
##  [23] 42075 36046 41057 20671 28080 5624 31169 49728 48181 17372 26373
##  [34] 11403 37404 8279 25680 15130 23026 43130 43979 10054 43876 16751
## [45] 8193 25554 42141 3124 29700 45469 53186 25642 33776
a=nrow(diamonds)
sample(a,0.0001*a,F)
## [1] 40676  32758  43476  47130  38664
randomrows=sample(a,0.0001*a,F)
diamonds[randomrows,]
## carat cut color clarity depth table price x y z
## 29067 0.40 Good F SI1 63.1 58 687 4.66 4.69 2.95
## 28304 0.32 Very Good I SI1 62.8 58 432 4.34 4.39 2.74
## 25301 1.58 Very Good G VS1 62.8 57 13963 7.34 7.40 4.63
## 15670 1.00 Fair E VS2 57.3 64 6285 6.59 6.46 3.79
## 5267 1.03 Good J VS2 63.7 56 3795 6.42 6.35 4.07
#Descriptive Stats
summary(diamonds)



## carat cut color clarity
## Min. :0.2000 Fair : 1610 D: 6775 SI1 :13065
## 1st Qu. :0.4000 Good : 4906 E: 9797 VS2 :12258
## Median :0.7000 Very Good :12082 F: 9542 SI2 : 9194
## Mean :0.7979 Premium :13791 G: 11292 VS1 : 8171
## 3rd Qu. :1.0400 Ideal :21551 H: 8304 VVS2 : 5066
## Max. :5.0100   I: 5422 VVS1 : 3655
##     J: 2808 (Other) :2531
## depth table price x
## Min. :43.00 Min. :43.00 Min. :326 Min. :0.000
## 1st Qu. :61.00 1st Qu. :56.00 1st Qu. :950 1st Qu. :4.710
## Median :61.80 Median :57.00 Median  :2401 Median :5.700
## Mean :61.75 Mean :57.46 Mean :3933 Mean :5.731
## 3rd Qu. :62.50 3rd Qu. :59.00 3rd Qu. :5324 3rd Qu. :6.540
## Max. :79.00 Max. :95.00 Max. :18823 Max. :10.740
##                                                                  
## y z
## Min. : 0.000 Min. : 0.000
## 1st Qu. : 4.720 1st Qu. : 2.910
## Median : 5.710 Median : 3.530
## Mean : 5.735 Mean : 3.539
## 3rd Qu. : 6.540 3rd Qu. : 4.040
## Max. :58.900 Max. :31.800
##
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table(diamonds$cut)
## 
##	 Fair	 Good	 Very Good	 Premium	 Ideal 
##	 1610	 4906	 12082	 13791	 21551
table(diamonds$cut,diamonds$color)
##            
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 163	 224	 312	 314	 303	 175	 119
##	 Good	 662	 933	 909	 871	 702	 522	 307
##	 Very Good	 1513	 2400	 2164	 2299	 1824	 1204	 678
##	 Premium	 1603	 2337	 2331	 2924	 2360	 1428	 808
##	 Ideal	 2834	 3903	 3826	 4884	 3115	 2093	 896
table(diamonds$cut,diamonds$color,diamonds$clarity)
## , , = I1
##
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 4	 9	 35	 53	 52	 34	 23
##	 Good	 8	 23	 19	 19	 14	 9	 4
##	 Very Good	 5	 22	 13	 16	 12	 8	 8
##	 Premium	 12	 30	 34	 46	 46	 24	 13
##	 Ideal	 13	 18	 42	 16	 38	 17	 2
## 
## , , = SI2
## 
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 56	 78	 89	 80	 91	 45	 27
##	 Good	 223	 202	 201	 163	 158	 81	 53
##	 Very Good	 314	 445	 343	 327	 343	 200	 128
##	 Premium	 421	 519	 523	 492	 521	 312	 161
##	 Ideal	 356	 469	 453	 486	 450	 274	 110
## 
## , , = SI1
##
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 58	 65	 83	 69	 75	 30	 28
##	 Good	 237	 355	 273	 207	 235	 165	 88
##	 Very Good	 494	 626	 559	 474	 547	 358	 182
##	 Premium	 556	 614	 608	 566	 655	 367	 209
##	 Ideal	 738	 766	 608	 660	 763	 504	 243
##
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## , , = VS2
##
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 25	 42	 53	 45	 41	 32	 23
##	 Good	 104	 160	 184	 192	 138	 110	 90
##	 Very Good	 309	 503	 466	 479	 376	 274	 184
##	 Premium	 339	 629	 619	 721	 532	 315	 202
##	 Ideal	 920	 1136	 879	 910	 556	 438	 232
## 
## , , = VS1
##
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 5	 14	 33	 45	 32	 25	 16
##	 Good	 43	 89	 132	 152	 77	 103	 52
##	 Very Good	 175	 293	 293	 432	 257	 205	 120
##	 Premium	 131	 292	 290	 566	 336	 221	 153
##	 Ideal	 351	 593	 616	 953	 467	 408	 201
## 
## , , = VVS2
##
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 9	 13	 10	 17	 11	 8	 1
##	 Good	 25	 52	 50	 75	 45	 26	 13
##	 Very Good	 141	 298	 249	 302	 145	 71	 29
##	 Premium	 94	 121	 146	 275	 118	 82	 34
##	 Ideal	 284	 507	 520	 774	 289	 178	 54
## 
## , , = VVS1
## 
##
##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	 3	 3	 5	 3	 1	 1	 1
##	 Good	 13	 43	 35	 41	 31	 22	 1
##	 Very Good	 52	 170	 174	 190	 115	 69	 19
##	 Premium	 40	 105	 80	 171	 112	 84	 24
##	 Ideal	 144	 335	 440	 594	 326	 179	 29
## 
## , , = IF
##
##
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##		  D	 E	 F	 G	 H	 I	 J
##	 Fair	  3	 0	 4	 2	 0	 0	 0
##	 Good	 9	 9	 15	 22	 4	 6	 6
##	 Very Good	 23	 43	 67	 79	 29	 19	 8
##	 Premium	 10	 27	 31	 87	 40	 23	 12
##	 Ideal	 28	 79	 268	 491	 226	 95	 25
mean(diamonds$price)
## [1] 3932.8
#using Hmisc
library(Hmisc)
## Loading required package: grid
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## 
## The following objects are masked from 'package:base':
## 
##    format.pval, round.POSIXt, trunc.POSIXt, units
describe(diamonds$price)
## diamonds$price 
##	 n	missing	unique	Info	Mean	 .05	.10	 .25	 .50
##	53940	 0	 11602	 1	3933	 544	646	 950	 2401 
##	 .75	 .90	 .95 
##	 5324	 9821	 13107 
## 
## lowest :	 326	 327	 334	 335	 336
## highest:	18803	18804	18806	18818	18823
summarize(diamonds$price,diamonds$color,mean)
##  diamonds$color diamonds$price
## 1	 D	 3169.954
## 2	 E	 3076.752
## 3	 F	 3724.886
## 4	 G	 3999.136
## 5	 H	 4486.669
## 6	 I	 5091.875
## 7	 J	 5323.818
summarize(diamonds$price,diamonds$color,max)
##  diamonds$color diamonds$price
## 1	 D	 18693
## 2	 E	 18731
## 3	 F	 18791
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## 4	 G	 18818
## 5	 H	 18803
## 6	 I	 18823
## 7	 J	 18710
summarize(diamonds$price,llist(diamonds$color,diamonds
$cut),mean)
##  diamonds$color diamonds$cut diamonds$price
## 1	 D	 Fair	 4291.061
## 2	 D	 Good	 3405.382
## 5	 D	 Very Good	 3470.467
## 4	 D	 Premium	 3631.293
## 3	 D	 Ideal	 2629.095
## 6	 E	 Fair	 3682.312
## 7	 E	 Good	 3423.644
## 10	 E	 Very Good	 3214.652
## 9	 E	 Premium	 3538.914
## 8	 E	 Ideal	 2597.550
## 11	 F	 Fair	 3827.003
## 12	 F	 Good	 3495.750
## 15	 F	 Very Good	 3778.820
## 14	 F	 Premium	 4324.890
## 13	 F	 Ideal	 3374.939
## 16	 G	 Fair	 4239.255
## 17	 G	 Good	 4123.482
## 20	 G	 Very Good	 3872.754
## 19	 G	 Premium	 4500.742
## 18	 G	 Ideal	 3720.706
## 21	 H	 Fair	 5135.683
## 22	 H	 Good	 4276.255
## 25	 H	 Very Good	 4535.390
## 24	 H	 Premium	 5216.707
## 23	 H	 Ideal	 3889.335
## 26	 I	 Fair	 4685.446
## 27	 I	 Good	 5078.533
## 30	 I	 Very Good	 5255.880
## 29	 I	 Premium	 5946.181
## 28	 I	 Ideal	 4451.970
## 31	 J	 Fair	 4975.655
## 32	 J	 Good	 4574.173
## 35	 J	 Very Good	 5103.513
## 34	 J	 Premium	 6294.592
## 33	 J	 Ideal	 4918.186
#reshape



library(reshape2)
acast(diamonds, cut~color, value.var='price', mean)
##  D E F G H I J
## Fair 4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
## Good  3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
## Very Good  3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
## Premium  3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
## Ideal  2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
with(diamonds, tapply(price, list(cut,color), FUN= mean))
##  D E F G H I J
## Fair  4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
## Good  3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
## Very Good  3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
## Premium  3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
## Ideal  2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
xtabs(price ~ cut + color, diamonds)/table(diamonds[c('cut', 'color')])
##  color
## cut D E F G H I J
## Fair  4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
## Good  3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
## Very Good 3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
## Premium 3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
## Ideal 2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
library(data.table)



dcast(as.data.table(diamonds), cut~color, value.var='price', mean)
##  cut D E F G H I J
## 1 Fair  4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
## 2 Good  3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
## 3 Very Good  3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
## 4 Premium  3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
## 5 Ideal  2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
##   The following objects are masked from 'package:data.table':
## 
##  between, last
## 
##   The following objects are masked from 'package:Hmisc':
## 
##  combine, src, summarize
## 
##   The following object is masked from 'package:stats':
## 
##  filter
## 
## The following objects are masked from 'package:base':
## 
##  intersect, setdiff, setequal, union
library(tidyr)



b=diamonds %>%
 group_by(cut, color) %>%
 summarise(price = mean(price)) %>%
 spread(color, price)
b
## Source: local data frame [5 x 8]
## 
##  cut D E F G H I J
## 1 Fair  4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
## 2 Good  3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
## 3 Very Good  3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
## 4 Premium  3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
## 5 Ideal  2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
str(b)
##  Classes 'tbl_df', 'tbl' and 'data.frame': 5 obs. of 8 variables:
##  $ cut: Ord.factor w/ 5 levels "Fair"<"Good"<..:  

1 2 3 4 5
## $ D  : num  4291 3405 3470 3631 2629
## $ E  : num  3682 3424 3215 3539 2598
## $ F  : num  3827 3496 3779 4325 3375
## $ G  : num  4239 4123 3873 4501 3721
## $ H  : num  5136 4276 4535 5217 3889
## $ I  : num  4685 5079 5256 5946 4452
## $ J  : num  4976 4574 5104 6295 4918



image(as.matrix(b[2:7]))
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#subset
cut2=diamonds[diamonds$cut=="Ideal",]
head(cut2)
##  carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
## 14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
## 17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
## 40 0.33 Ideal I SI2 61.8 55 403 4.49 4.51 2.78
## 41 0.33 Ideal I SI2 61.2 56 403 4.49 4.50 2.75
cut3=diamonds[diamonds$cut=="Ideal" & diamonds$color=="D",]



head(cut3)
##  carat cut color clarity depth table price x y z
## 63 0.30 Ideal D SI1 62.5 57 552 4.29 4.32 2.69
## 64 0.30 Ideal D SI1 62.1 56 552 4.30 4.33 2.68
## 121 0.71 Ideal D SI2 62.3 56 2762 5.73 5.69 3.56
## 133 0.71 Ideal D SI1 61.9 59 2764 5.69 5.72 3.53
## 145 0.71 Ideal D SI2 61.6 55 2767 5.74 5.76 3.54
## 156 0.76 Ideal D SI2 62.4 57 2770 5.78 5.83 3.62
cut4=diamonds[diamonds$cut=="Ideal" | diamonds$color=="D",]
head(cut4)
##  carat cut color clarity depth table price x y z
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
## 14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
## 17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
## 29 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.40
## 35 0.23 Very Good D VS1 61.9 58 402 3.92 3.96 2.44
cut5=ifelse(diamonds$price>9000,"Expensive","Not So Expensive")
table(cut5)
## cut5
##  Expensive Not So Expensive
##  6298    47642
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5

5.1  Concepts in Regression

What is statistical modeling?

●● It is a formalization of relationships between variables in the form of 
mathematical equations.

●● It describes how one or more random variables are related to one or more 
other variables.

●● The variables are not deterministically but stochastically related.

Reading Statistical Modeling: The Two Cultures http://projecteuclid.org/
download/pdf_1/euclid.ss/1009213726

Example

●● Height and age are probabilistically distributed among humans.
●● They are stochastically related; when you know that a person is of age 

30 years, this influences the chance of this person of being 4‐feet tall. When 
you know that a person is of age 13 years, this influences the chance of this 
person of being 6 feet tall.

●● Model 1
–– heighti = b0 + b1agei + εi, where b0 is the intercept, b1 is a parameter that age 

is multiplied by to get a prediction of height, ε is the error term, and i is the 
subject.

●● Model 2
–– heighti = b0 + b1agei + b2sexi + εi, where the variable sex is dichotomous.

Regression models involve the following variables:

●● The unknown parameters
●● The independent variables, X
●● The dependent variable, Y

Statistical Modeling

http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
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Y = a + BX is the simplest form of regression
Linear regression Y = a + Bx + (E)
Multivariate regression Y = a + bx + cy + (E)
Logistic regression ln(p/1 − p) = a + bX

Example

Okun’s Law
The relationship between an economy’s unemployment rate and its gross 
national product (GNP). Economist Arthur Okun developed this idea, which 
states that when unemployment falls by 1%, GNP rises by 3% (Figure 5.1).

5.1.1  OLS

Ordinary least squares (OLS) or linear least squares is a method for estimat-
ing the unknown parameters in a linear regression model, with the goal of 
minimizing the differences between the observed responses in some arbitrary 
dataset and the responses predicted by the linear approximation of the data 
(visually this is seen as the sum of the vertical distances between each data 
point in the set and the corresponding point on the regression line—the smaller 
the differences, the better the model fits the data) (https://en.wikipedia.org/
wiki/Ordinary_least_squares). The primary assumption of OLS is that there 
are zero or negligible errors in the independent variable, since this method 
only attempts to minimize the mean squared error in the dependent 
variable. The method of least squares is a standard approach in regression 
analysis to the approximate solution of overdetermined systems, that is, sets of 
equations in which there are more equations than unknowns. “Least squares” 
means that the overall solution minimizes the sum of the squares of the errors 
made in the results of every single equation.
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Figure 5.1  Okun’s law.

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
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The most important application is in data fitting. The best fit in the least‐
squares sense minimizes the sum of squared residuals, a residual being the 
difference between an observed value and the fitted value provided by a model.

https://en.wikipedia.org/wiki/Least_squares.

5.1.2  R‐Squared

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced 
“R‐squared,” is a number that indicates the proportion of the variance in the 
dependent variable that is predictable from the independent variable.

It is a statistic used in the context of statistical models whose main purpose 
is either the prediction of future outcomes or the testing of hypotheses, on the 
basis of other related information.

The use of an adjusted R2 (often written as R − 2 {\displaystyle {\bar {R}}^{2}} 
and pronounced “R‐bar squared”) is an attempt to take account of the 
phenomenon of the R2 automatically and spuriously increasing when extra 
explanatory variables are added to the model.

https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2.
To summarize, R‐squared is the percentage of the response variable variation 

that is explained by a linear model. Or

	
= Explained variationR-squared

Total variation

Adjusted R‐squared adjusts the statistic based on the number of independent 
variables in the model.

5.1.3  p‐Value

The p‐value for each term tests the null hypothesis that the coefficient is equal 
to zero (no effect). A low p‐value (<0.05) indicates that you can reject the null 
hypothesis.

In other words, a predictor that has a low p‐value is likely to be a meaningful 
addition to your model because changes in the predictor’s value are related to 
changes in the response variable.

http://blog.minitab.com/blog/adventures‐in‐statistics/how‐to‐interpret‐ 
regression‐analysis‐results‐p‐values‐and‐coefficients

5.1.4  Outliers

Sometimes outliers are bad data and should be excluded, such as typos. 
Sometimes they are Wayne Gretzky or Michael Jordan and should be kept.

Statistical distance measures are specifically catered to detecting outliers and 
then consider whether such outliers should be removed from your linear 
regression.

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2.
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-regression-analysis-results-p-values-and-coefficients
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-regression-analysis-results-p-values-and-coefficients
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The first one is Cook’s distance. You can find a pretty good explanation of it 
at Wikipedia (http://en.wikipedia.org/wiki/Cook%27s_distance).

The higher the Cook’s distance is, the more influential (impact on regression 
coefficient) the observation is. The typical cutoff point to consider removing 
the observation is a Cook’s distance = 4/n (n is sample size).

http://stats.stackexchange.com/questions/175/how‐should‐outliers‐ 
be‐dealt‐with‐in‐linear‐regression‐analysis

The second way is to use outlierTest function from car package in R.

5.1.5  Multicollinearity and Heteroscedascity

Multicollinearity is a statistical phenomenon in which two or more predictor 
variables in a multiple regression model are highly correlated, meaning that one 
can be linearly predicted from the others with a nontrivial degree of accuracy. 
In this situation the coefficient estimates may change erratically in response to 
small changes in the model or the data.

vif from car package
In statistics, a collection of random variables is heteroscedastic (often spelled 

heteroskedastic and commonly pronounced with a hard k sound regardless of 
spelling) if there are subpopulations that have different variabilities from oth-
ers. Here “variability” could be quantified by the variance or any other measure 
of statistical dispersion.

gvlma package

5.2  Correlation Is Not Causation

Correlation does not imply causation is a phrase used in statistics to empha-
size that a correlation between two variables does not imply that one causes the 
other (Figures 5.2 and 5.3).

Both the aforementioned charts show the absurdity that occurs when we 
suppose correlation is the same as a causal relation.

“Causes” is an asymmetric relation (X causes Y is different from Y causes X), 
whereas “is correlated with” is a symmetric relation.

For instance, homeless population and crime rate might be correlated, in that 
both tend to be high or low in the same locations. It is equally valid to say that 
homeless population is correlated with crime rate, or crime rate is correlated 
with homeless population. For example, crime causes homelessness and home-
less populations cause crime are different statements. And correlation does not 
imply that either is true. For instance, the underlying cause could be a third 
variable such as drug abuse or unemployment.

The mathematics of statistics is not good at identifying underlying causes, 
which requires some other form of judgment (Figure 5.4).

http://en.wikipedia.org/wiki/Cook's_distance
http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis
http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis
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5.2.1  A Note on Statistics for Data Scientists

Data scientists tend to be either computer science leaning or statistics leaning. 
In languages, R is preferred by those who are from statistical background 
and Python often by computer science background. Both programming and 
statistics are needed for a balanced skill set in data analysis.
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Figure 5.2  http://pubs.acs.org/doi/abs/10.1021/ci700332k. Source: Johnson (2008). 
Reproduced with the permission of American Chemical Society.
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Figure 5.3  https://www.forbes.com/sites/erikaandersen/2012/03/23/true‐fact‐the‐lack‐ 
of‐pirates‐is‐causing‐global‐warming/. Source: © Forbes.com.

http://pubs.acs.org/doi/abs/10.1021/ci700332k
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/
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A brief summary of statistics needed for data scientists is at https://www.
slideshare.net/ajayohri/statistics‐for‐data‐scientists.

Here is a brief extract:

Data—Facts and statistics collected together for reference or analysis
Variable—Something that varies (Figure 5.5)

Ordinal variables are variables that have two or more categories just like 
nominal variables, only the categories can also be ordered or ranked, for exam-
ple, excellent–horrible. Dichotomous variables are nominal variables that 
have only two categories or levels. Nominal variables are variables that have 
two or more categories, but do not have an intrinsic order.

Interval variables are variables whose central characteristic is that they can 
be measured along a continuum and have a numerical value (e.g., temperature 
measured in degrees Celsius or Fahrenheit).

I used to think
correlation implied
causation 

Then i took a
statistics class.
Now i don’t.

Sounds like the
class helped.

Well, maybe.

Figure 5.4  XKCD.com cartoon correlation is not causation. http://stats.stackexchange.com/
questions/36/examples‐for‐teaching‐correlation‐does‐not‐mean‐causation. Source: © Stack 
Exchange Inc.

Variable

Numeric Categorical

Continuous Discrete Ordinal Nominal

Figure 5.5  Types of variables. With reference to https://statistics.laerd.com/statistical‐
guides/types‐of‐variable.php. Source: © Lund Research Ltd.

https://www.slideshare.net/ajayohri/statistics-for-data-scientists
https://www.slideshare.net/ajayohri/statistics-for-data-scientists
http://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
http://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
https://statistics.laerd.com/statistical-guides/types-of-variable.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php
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Ratio variables are interval variables but with the added condition that 
0  (zero) of the measurement indicates that there is none of that variable. 
A distance of 10 m is twice the distance of 5 m.

5.2.2  Measures of Central Tendency

Mean
Arithmetic mean is the sum of the values divided by the number of values.

The geometric mean is an average that is useful for sets of positive numbers 
that are interpreted according to their product and not their sum (as is the case 
with the arithmetic mean), for example, rates of growth.

Median
The median is the number separating the higher half of a data sample, a 
population, or a probability distribution from the lower half.

Mode
The “mode” is the value that occurs most often.

5.2.3  Measures of Dispersion

Range
The range of a set of data is the difference between the largest and smallest 
values.

Variance
Mean of squares of differences of values from mean

Standard Deviation (sd)
Square root of its variance

Frequency
A frequency distribution is a table that displays the frequency of various 
outcomes in a sample.

What Is a Distribution?
The distribution of a statistical dataset (or a population) is a listing or function 
showing all the possible values (or intervals) of the data and how often they occur. 
When a distribution of categorical data is organized, you see the number or 
percentage of individuals in each group (http://www.dummies.com/education/
math/statistics/what‐the‐distribution‐tells‐you‐about‐a‐statistical‐data‐set/).

The simplest case of a normal distribution is known as the standard normal 
distribution (Figure 5.6). This is a special case where mean μ = 0 and standard 
deviation σ = 1.

http://www.dummies.com/education/math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/
http://www.dummies.com/education/math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/
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Clearly we won’t get a normal distribution all the time for skewed or tilted 
distribution when the following measures, skewness, and kurtosis are used 
(Figure 5.7).

Skewness is a measure of the asymmetry of the probability distribution of 
a  real‐valued random variable about its mean. The skewness value can be 
positive or negative or even undefined (Figure 5.8).
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(a) (b) (c)

Figure 5.7  Skewed curves. (a) Negatively skewed, (b) normal (no skew), and 
(c) positively skewed.
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Figure 5.6  Standard normal distribution—a most useful distribution curve for a data scientist. 
Source: Rumsey (2016). Reproduced with the permission of John Wiley & Sons, Inc.
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Kurtosis is a measure of the “tailedness” of the probability distribution of a 
real‐valued random variable. Kurtosis is a descriptor of the shape of a probability 
distribution (Figure 5.9).

Some useful distributions apart from normal distribution are the following:

Bernoulli—Distribution of a random variable that takes value 1 with success 
probability and value 0 with failure probability. It can be used, for example, 
to represent the toss of a coin.

Chi‐square—The distribution of a sum of the squares of k independent standard 
normal random variables (Figure 5.10).

Poisson—A discrete probability distribution that expresses the probability of a 
given number of events occurring in a fixed interval of time and/or space if 
these events occur with a known average rate and independently of the time 
since the last event.

You can see others at https://en.wikipedia.org/wiki/Probability_distribution# 
Discrete_probability_distribution (Figure 5.11).

5.2.4  Probability Distribution

The probability density function (pdf) (http://en.wikipedia.org/wiki/Probability_
density_function) of the normal distribution, also called Gaussian or “bell curve,” 
is the most important continuous random distribution (Figure 5.12). As notated 
on the figure, the probabilities of intervals of values correspond to the area under 
the curve.

In probability theory, the central limit theorem (CLT) states that, given 
certain conditions, the arithmetic mean of a sufficiently large number of iterates 
of independent random variables, each with a well‐defined expected value and 
well‐defined variance, will be approximately normally distributed, regardless of 
the underlying distribution.

Negative skew Positive skew

Figure 5.8  Skewness. https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_
diagrams_(English).svg. Source: © Wikipedia.

https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg
https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg
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Figure 5.10  Chi square curve.
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Figure 5.9  Kurtosis. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm. 
Source: © U.S. Department of Commerce.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
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A widely underused technique by computer scientists is hypothesis testing. 
What is hypothesis testing? Hypothesis testing is the use of statistics to deter-
mine the probability that a given hypothesis is true (http://mathworld.wolfram.
com/HypothesisTesting.html). The usual process of hypothesis testing consists 
of four steps:

1)	 Formulate the null hypothesis (commonly, that the observations are 
the result of pure chance) and the alternative hypothesis (commonly, that 
the observations show a real effect combined with a component of chance 
variation).
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Figure 5.11  Poisson curve. Source: © Wikipedia.
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2)	 Identify a test statistic that can be used to assess the truth of the null 
hypothesis.

3)	 Compute the p‐value, which is the probability that a test statistic at least as 
significant as the one observed would be obtained assuming that the null 
hypothesis were true. The smaller the p‐value, the stronger the evidence 
against the null hypothesis.

4)	 Compare the p‐value with an acceptable significance value (sometimes 
called an alpha value). If the observed effect is statistically significant, the 
null hypothesis is ruled out, and the alternative hypothesis is valid.

This can be represented by (Figure 5.13)

The truth (unknown to the researcher)

The researcher’s decision The null hypothesis is true The null hypothesis is false

Reject the null hypothesis Type I error Correct decision

Fail to reject the null 
hypothesis

Correct decision Type II error

What are various kinds of tests? (Figure 5.14)
A slightly easier way to understand which among various tests to use is the 

RATTLE GUI in R. Some R code for Z tests can be found at http://rpubs.
com/newajay/stats4. Here is a Z test to reject or accept if sample mean is 
>10 000.

#null hypothesis umean >=10000
xbar=9900 (sample mean)
umean=10000 (population mean)
sd=120  (standard deviation)
n=30 number of observations

Decision

Reality

ConfidenceHo

Ho

Correct
decision

Type I
error

α- risk
Consumer’s risk

Correct
decision

Type I
error

β- risk
Producer’s risk

β

μ1 μ2

α
Ha

Ha

Power of test

Figure 5.13  Type 1 and Type 2 errors.

http://rpubs.com/newajay/stats4
http://rpubs.com/newajay/stats4
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z=(xbar-umean)/(sd/sqrt(n))
z
## [1] -4.564355

alpha=0.05
z.alpha=qnorm(1-alpha)
-z.alpha

## [1] -1.644854

#NULL hypothesis is rejected

This may seem difficult for the non‐statistician to understand unless they 
visualize on the normal distribution where these values are occurring 
(in  acceptance zone or rejection zone). Here the value −4.5 is much less 
than −1.65 so it is clearly in the rejection zone. For upper tail, the following 
shows a rejection case since it is greater than 1.645 (please read from http://
www.stat.wmich.edu/s216/htests/htests.html#ztest4mu (Figure  5.15) if 
interested more in this).

Hypothesis test

Continuous data

Normal

Mean Variance

Z-test

t-test Barlett’s

Chi-square

Sign test

Wilcoxon test

Mann–Whitney

Kruskal–Wallis

Mood’s median

Friedman

Levene’s

Chi-square

Proportion

Logistic
regression

ANOVA

Regression

Median Variance

Nonnormal

Attribute data

F-test

Figure 5.14  Types of hypothesis tests.

http://www.stat.wmich.edu/s216/htests/htests.html#ztest4mu
http://www.stat.wmich.edu/s216/htests/htests.html#ztest4mu


5  Statistical Modeling152

In Python we can also look at statsmodels for tests than SciPy (see http://
statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.
ztest.html#statsmodels.stats.weightstats.ztest (Figure 5.16)).

Here is an example in R of chi‐square test to see if exercising affects smoking. 
http://rpubs.com/newajay/chisquaretest.

library(MASS)
tbl = table(survey$Smoke, survey$Exer)
tbl
##        
##         Freq None Some
##   Heavy    7    1    3
##   Never   87   18   84
##   Occas   12    3    4
##   Regul    9    1    7

Figure 5.16  An easy way to explain hypothesis tests using Rattle GUI in R.

0 1.645 2.4
Z

.05

Figure 5.15  P‐value and 
rejection zone.

http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://rpubs.com/newajay/chisquaretest
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table(survey$Smoke)

## 
## Heavy Never Occas Regul 
##    11   189    19    17

dim(survey)

## [1] 237  12

#Test the hypothesis whether the students 
#smoking habit is independent of
#their exercise level at .05 significance level.
chisq.test(tbl)

## Warning in chisq.test(tbl): Chi-squared approximation 
may be incorrect

## 
##  Pearson's Chi-squared test
## 
## data:  tbl
## X-squared = 5.4885, df = 6, p-value = 0.4828

#As the p‐value 0.4828 is greater than the .05 
significance level, we do not reject the null 
hypothesis that the smoking habit is 
#independent of the exercise level of the students.
ctbl = cbind(tbl[,"Freq"], tbl[,"None"] + tbl[,"Some"]) 
ctbl

##       [,1] [,2]
## Heavy    7    4
## Never   87  102
## Occas   12    7
## Regul    9    8

chisq.test(ctbl)

## 
##  Pearson's Chi-squared test
## 
## data:  ctbl
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## X-squared = 3.2328, df = 3, p-value = 0.3571
#As the p‐value 0.3571 is greater than the .05 
significance level, we do not reject the null 
hypothesis that the smoking habit is independent 
of the exercise level of the students. The warning 
message found in the solution above is due to the 
small cell values in the contingency table  

We redo the same in Python using scipy and numpy very easily.

In [11]:
from scipy.stats import chi2_contingency
import numpy as np

In [13]:

obs = np.array([[7, 87, 12,9], [4, 102, 7,8]])

In [15]:

chi2, p, dof, expected = chi2_contingency(obs)

In [16]:

print (p)

0.357103080041

https://github.com/decisionstats/pythonfordatascience/blob/master/
chi%2Bsquare%2Btest.ipynb

5.3  Linear Regression in R and Python

In Python, statsmodels can be used for linear regression. Here is an example 
for iris dataset from https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4 
dd08808af3d9c0869259cf6

import pandas as pd
In [3]:

import statsmodels.formula.api as sm

In [4]:

iris=pd.read_csv("http://vincentarelbundock.github.io/
Rdatasets/csv/datasets/iris.csv")

In [6]:
iris =iris.drop('Unnamed: 0', 1)

In [7]:
iris.head()

Out [7]:

https://github.com/decisionstats/pythonfordatascience/blob/master/chi+square+test.ipynb
https://github.com/decisionstats/pythonfordatascience/blob/master/chi+square+test.ipynb
https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species

0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

In [15]:
iris.columns=['Sepal_Length', 'Sepal_Width', 'Petal_
Length', 'Petal_Width',

    'Species']
In [16]:

iris.columns
Out [16]:

Index(['Sepal_Length', 'Sepal_Width', 'Petal_Length', 
'Petal_Width',

    'Species'],
    dtype='object')

In [17]:
result = sm.ols(formula="Sepal_Length  ~  Petal_
Length  + Sepal_Width + Petal_Width + Species", 
data=iris)

In [18]:
result.fit()

Out [18]:
<statsmodels.regression.linear_model.
RegressionResultsWrapper at 0x9bafe10>

In [19]:
result.fit().summary()

Out [19]:

Dep. Variable: Sepal_Length R‐squared: 0.867
Model: OLS Adj. R‐squared: 0.863
Method: Least Squares F‐statistic: 188.3
Date: Mon, 13 Mar 2017 Prob (F‐statistic): 2.67e‐61
Time: 17:56:48 Log‐Likelihood: −32.558
No. Observations: 150 AIC: 77.12
Df Residuals: 144 BIC: 95.18
Df Model: 5
Covariance Type: nonrobust



5  Statistical Modeling156

coef std err t P>|t| [95.0% Conf. Int.]

Intercept 2.1713 0.280 7.760 0.000 1.618 2.724
Species[T.versicolor] −0.7236 0.240 −3.013 0.003 −1.198–0.249
Species[T.virginica] −1.0235 0.334 −3.067 0.003 −1.683–0.364
Petal_Length 0.8292 0.069 12.101 0.000 0.694 0.965
Sepal_Width 0.4959 0.086 5.761 0.000 0.326 0.666
Petal_Width −0.3152 0.151 −2.084 0.039 −0.614–0.016

Omnibus: 0.418 Durbin‐Watson: 1.966
Prob(Omnibus): 0.811 Jarque‐Bera (JB): 0.572
Skew: −0.060 Prob(JB): 0.751
Kurtosis: 2.722 Cond. No. 94.0

In [20]:
result.fit().params

Out [20]:

Intercept                2.171266
Species[T.versicolor]   -0.723562
Species[T.virginica]    -1.023498
Petal_Length             0.829244
Sepal_Width              0.495889
Petal_Width             -0.315155
dtype: float64

In R regression is done by the lm function (for linear models) and glm for 
logistic regression. Let us try some regression basics http://rpubs.com/newajay/
regbasics.

ls()

## character(0)

getwd()

## [1] "C:/Users/dell/Desktop/regression"

dir()

## [1] "reg1.R"    "reg1.spin.R"    "reg1.spin.Rmd"

http://rpubs.com/newajay/regbasics
http://rpubs.com/newajay/regbasics
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## [4] "regression.Rproj"

data("iris")
names(iris)

## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" 
"Petal.Width" 

## [5] "Species"

lm(Sepal.Length~Sepal.Width,data = iris)

## 
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
## 
## Coefficients:
## (Intercept)  Sepal.Width  
##      6.5262      -0.2234

a=lm(Sepal.Length~Sepal.Width,data = iris)
names(a)
##  [1] "coefficients"  "residuals"   "effects"    "rank"         
##  [5] "fitted.values" "assign"    "qr"    "df.residual"
##  [9] "xlevels"        "call"      "terms"      "model"

class(a)

## [1] "lm"

a$coefficients

## (Intercept) Sepal.Width 
##   6.5262226  -0.2233611

summary(a)

## 
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5561 -0.6333 -0.1120  0.5579  2.2226 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.5262    0.4789    13.63    <2e-16 ***



## Sepal.Width  -0.2234     0.1551   -1.44    0.152    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8251 on 148 degrees of freedom
## Multiple R-squared:  0.01382,    Adjusted R-squared:  0.007159 
## F-statistic: 2.074 on 1 and 148 DF,  p-value: 0.1519

b=lm(Sepal.Length~Sepal.Width + Petal.Length + Petal.Width,data = iris)
names(b)
##  [1] "coefficients"  "residuals"     "effects"       "rank"
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "xlevels"       "call"          "terms"         "model"

class(b)

## [1] "lm"

b$coefficients

##  (Intercept)  Sepal.Width Petal.Length  Petal.Width 
##    1.8559975    0.6508372    0.7091320   -0.5564827

summary(b)

## 
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, 
##     data = iris)



## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.82816 -0.21989  0.01875  0.19709  0.84570 
## 
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.85600 0.25078 7.401 9.85e-12 ***
## Sepal.Width 0.65084 0.06665 9.765 < 2e-16 ***
## Petal.Length 0.70913 0.05672 12.502 < 2e-16 ***
## Petal.Width -0.55648 0.12755 -4.363 2.41e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3145 on 146 degrees of freedom
## Multiple R-squared:  0.8586, Adjusted R-squared:  0.8557 
## F-statistic: 295.5 on 3 and 146 DF,  p-value: < 2.2e-16

c=lm(Sepal.Length~Sepal.Width + Petal.Length + Petal.Width+Species,data = iris)
names(c)

##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "contrasts"     "xlevels"       "call"          "terms"        
## [13] "model"

class(c)

## [1] "lm"



c$coefficients

##       (Intercept)       Sepal.Width      Petal.Length       Petal.Width 
##         2.1712663         0.4958889         0.8292439        -0.3151552 
## Speciesversicolor  Speciesvirginica 
##        -0.7235620        -1.0234978

summary(c)

## 
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + 
##     Species, data = iris)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.79424 -0.21874  0.00899  0.20255  0.73103 
## 
## Coefficients:
##          Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.17127 0.27979 7.760 1.43e-12 ***
## Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
## Petal.Length 0.82924 0.06853 12.101 < 2e-16 ***
## Petal.Width -0.31516 0.15120 -2.084 0.03889 *  
## Speciesversicolor -0.72356 0.24017 -3.013 0.00306 ** 
## Speciesvirginica -1.02350 0.33373 -3.067 0.00258 ** 
## ---



## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3068 on 144 degrees of freedom
## Multiple R-squared:  0.8673, Adjusted R-squared:  0.8627 
## F-statistic: 188.3 on 5 and 144 DF,  p-value: < 2.2e-16

#mtcars

data("mtcars")

names(mtcars)
##  [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear"
## [11] "carb"

str(mtcars)

## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 …
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 …
##  $ disp: num  160 160 108 258 360 …
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 …
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 …
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 …
##  $ qsec: num  16.5 17 18.6 19.4 17 …
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 …
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 …
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 …
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 …



d=lm(mpg~cyl+disp+hp+drat+wt+qsec+vs+am+gear+carb,data = mtcars)
summary(d)

## 
## Call:
## lm(formula = mpg ~ cyl + disp + hp + drat + wt + qsec + vs + 
##     am + gear + carb, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4506 -1.6044 -0.1196  1.2193  4.6271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 12.30337   18.71788   0.657   0.5181  
## cyl         -0.11144    1.04502  -0.107   0.9161  
## disp         0.01334    0.01786   0.747   0.4635  
## hp          -0.02148    0.02177  -0.987   0.3350  
## drat         0.78711    1.63537   0.481   0.6353  
## wt          -3.71530    1.89441  -1.961   0.0633 .
## qsec         0.82104    0.73084   1.123   0.2739  
## vs           0.31776    2.10451   0.151   0.8814  
## am           2.52023    2.05665   1.225   0.2340  
## gear         0.65541    1.49326   0.439   0.6652  
## carb        -0.19942    0.82875  -0.241   0.8122  
## ---



## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared:  0.869,  Adjusted R-squared:  0.8066 
## F-statistic: 13.93 on 10 and 21 DF,  p-value: 3.793e-07

#diamonds

library(ggplot2)
data(diamonds)
str(diamonds)

## Classes 'tbl_df', 'tbl' and 'data.frame':    53940 obs. of  10 variables:
##  $ carat : num  0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 …
##  $ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 …
##  $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 …
##  $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 …
##  $ depth : num  61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 …
##  $ table : num  55 61 65 58 58 57 57 55 61 61 …
##  $ price : int  326 326 327 334 335 336 336 337 337 338 …
##  $ x : num  3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 …
##  $ y : num  3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 …
##  $ z : num  2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 …

diamonds$unitprice=with(diamonds,price/carat)
head(diamonds)



## # A tibble: 6 × 11
##   carat       cut color clarity depth table price     x     y     z
##   <dbl>     <ord> <ord>   <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1  0.23     Ideal     E     SI2  61.5    55   326  3.95  3.98  2.43
## 2  0.21   Premium     E     SI1  59.8    61   326  3.89  3.84  2.31
## 3  0.23      Good     E     VS1  56.9    65   327  4.05  4.07  2.31
## 4  0.29   Premium     I     VS2  62.4    58   334  4.20  4.23  2.63
## 5  0.31      Good     J     SI2  63.3    58   335  4.34  4.35  2.75
## 6  0.24 Very Good     J    VVS2  62.8    57   336  3.94  3.96  2.48
## # ... with 1 more variables: unitprice <dbl>
h=lm(unitprice~table+color+clarity+cut+x+y+z+depth, 
data=diamonds)

summary(h)

## 
## Call:
## lm(formula = unitprice ~ table + color + clarity + cut + x + 
##     y + z + depth, data = diamonds)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5166.4  -463.9   -92.6   355.8 17851.4 
## 
## Coefficients:
##         Estimate Std. Error  t value Pr(>|t|)    
## (Intercept) -11688.890 260.693 -44.838 < 2e-16 ***
## table 1.875 2.037 0.920 0.35732    
## color.L -1885.098 12.044 -156.515 < 2e-16 ***



## color.Q -456.386 11.015 -41.434 < 2e-16 ***
## color.C -78.133 10.305 -7.582 3.45e-14 ***
## color^4 78.474 9.464 8.292 < 2e-16 ***
## color^5 -56.637 8.941 -6.335 2.40e-10 ***
## color^6 -10.800 8.128 -1.329 0.18396    
## clarity.L 3794.856 21.175 179.211 < 2e-16 ***
## clarity.Q -1074.105 19.694 -54.540 < 2e-16 ***
## clarity.C 507.278 16.878 30.055 < 2e-16 ***
## clarity^4 -169.564 13.496 -12.564 < 2e-16 ***
## clarity^5 117.177 11.023 10.630 < 2e-16 ***
## clarity^6 47.190 9.598 4.917 8.83e-07 ***
## clarity^7 124.830 8.466 14.745 < 2e-16 ***
## cut.L 487.537 15.727 31.000 < 2e-16 ***
## cut.Q -217.290 12.590 -17.259 < 2e-16 ***
## cut.C 127.423 10.836 11.759 < 2e-16 ***
## cut^4 16.718 8.661 1.930 0.05359 .  
## x 1761.626 18.702 94.195 < 2e-16 ***
## y 67.623 13.523 5.001 5.74e-07 ***
## z 67.878 23.435 2.896 0.00378 ** 
## depth 73.620 3.110 23.671 < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 790.9 on 53917 degrees of freedom
## Multiple R-squared:  0.8456, Adjusted R-squared:  0.8456 
## F-statistic: 1.343e+04 on 22 and 53917 DF,  p-value: < 2.2e-16
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Note the three stars *** point to a low p‐value in R’s regression summary.
A slightly more elaborate way to see R’s regression uses the car package from 

http://rpubs.com/newajay/modelsinR
getwd()

## [1] "C:/Users/dell/Desktop"

setwd("C:/Users/dell/Desktop")
#dir(,pattern = ".csv")
memory.limit()

## [1] 1535

memory.size()

## [1] 18.04

rm(list = ls())
gc()

##          used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 365542  9.8     592000 15.9   460000 12.3
## Vcells 372990  2.9    1023718  7.9   752284  5.8

library(car)
library(MASS)
data(Boston, package="MASS")
#?Boston
# crim
# per capita crime rate by town.
# 
# zn
# proportion of residential land zoned for lots 
over 25,000 sq.ft.

# 
# indus
# proportion of non‐retail business acres per town.
# 
# chas
# Charles River dummy variable (= 1 if tract bounds 
river; 0 otherwise).

# 

http://rpubs.com/newajay/modelsinR
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# nox
# nitrogen oxides concentration (parts per 10 million).
# 
# rm
# average number of rooms per dwelling.
# 
# age
# proportion of owner‐occupied units built prior 
to 1940.

# 
# dis
# weighted mean of distances to five Boston employment 
centres.

# 
# rad
# index of accessibility to radial highways.
# 
# tax
# full‐value property‐tax rate per \$10,000.
# 
# ptratio
# pupil‐teacher ratio by town.
# 
# black
# 1000(Bk ‐ 0.63)^2 where Bk is the proportion of 
blacks by town.

# 
# lstat
# lower status of the population (percent).
# 
# medv
# median value of owner‐occupied homes in \$1000s.
# 
# Source
# 

#Harrison, D. and Rubinfeld, D.L. (1978) Hedonic 
prices and the demand for clean air. J. Environ. 
Economics and Management 5, 81–102.



cor(Boston)

##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
##                  rm         age         dis          rad         tax
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000



## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593
##            ptratio       black      lstat       medv
## crim     0.2899456 -0.38506394  0.4556215 -0.3883046
## zn      -0.3916785  0.17552032 -0.4129946  0.3604453
## indus    0.3832476 -0.35697654  0.6037997 -0.4837252
## chas    -0.1215152  0.04878848 -0.0539293  0.1752602
## nox      0.1889327 -0.38005064  0.5908789 -0.4273208
## rm      -0.3555015  0.12806864 -0.6138083  0.6953599
## age      0.2615150 -0.27353398  0.6023385 -0.3769546
## dis     -0.2324705  0.29151167 -0.4969958  0.2499287
## rad      0.4647412 -0.44441282  0.4886763 -0.3816262
## tax      0.4608530 -0.44180801  0.5439934 -0.4685359
## ptratio  1.0000000 -0.17738330  0.3740443 -0.5077867
## black   -0.1773833  1.00000000 -0.3660869  0.3334608
## lstat    0.3740443 -0.36608690  1.0000000 -0.7376627
## medv    -0.5077867  0.33346082 -0.7376627  1.0000000

summary(Boston)

##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  



##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00

library(corrgram)
corrgram(Boston)
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attach(Boston)
boxplot(medv~black)
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plot(medv~black)
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str(Boston)

## 'data.frame':    506 obs. of  14 variables:
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 …
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 …
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 …
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 …
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 …
##  $ rm     : num  6.58 6.42 7.18 7 7.15 …
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 …
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 …
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 …
##  $ tax    : num  296 242 242 222 222 222 311 311 311 311 …
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 …
##  $ black  : num  397 397 393 395 397 …
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 …
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 …
RegModel.1 <- 
  lm(medv~age+black+chas+crim+dis+indus+lstat+nox+ptratio+rad+rm+tax+zn, 
     data=Boston)
summary(RegModel.1)

## 
## Call:
## lm(formula = medv ~ age + black + chas + crim + dis + indus + 
##     lstat + nox + ptratio + rad + rm + tax + zn, data = Boston)
## 



## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.595  -2.730  -0.518   1.777  26.199 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.646e+01  5.103e+00   7.144 3.28e-12 ***
## age          6.922e-04  1.321e-02   0.052 0.958229    
## black        9.312e-03  2.686e-03   3.467 0.000573 ***
## chas         2.687e+00  8.616e-01   3.118 0.001925 ** 
## crim        -1.080e-01  3.286e-02  -3.287 0.001087 ** 
## dis         -1.476e+00  1.995e-01  -7.398 6.01e-13 ***
## indus        2.056e-02  6.150e-02   0.334 0.738288    
## lstat       -5.248e-01  5.072e-02 -10.347  < 2e-16 ***
## nox         -1.777e+01  3.820e+00  -4.651 4.25e-06 ***
## ptratio     -9.527e-01  1.308e-01  -7.283 1.31e-12 ***
## rad          3.060e-01  6.635e-02   4.613 5.07e-06 ***
## rm           3.810e+00  4.179e-01   9.116  < 2e-16 ***
## tax         -1.233e-02  3.760e-03  -3.280 0.001112 ** 
## zn           4.642e-02  1.373e-02   3.382 0.000778 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.745 on 492 degrees of freedom
## Multiple R-squared:  0.7406, Adjusted R-squared:  0.7338 
## F-statistic: 108.1 on 13 and 492 DF,  p-value: < 2.2e-16



vif(RegModel.1)

##      age    black     chas     crim      dis    indus    lstat      nox 
## 3.100826 1.348521 1.073995 1.792192 3.955945 3.991596 2.941491 4.393720 
##  ptratio      rad       rm      tax       zn 
## 1.799084 7.484496 1.933744 9.008554 2.298758

library(zoo, pos=15)

## 
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric

library(lmtest, pos=15)
bptest(RegModel.1)

## 
##  studentized Breusch-Pagan test
## 
## data:  RegModel.1
## BP = 65.122, df = 13, p-value = 6.265e-09

RegModel.2 <- lm(medv~black+chas+crim+dis+lstat+nox+ptratio+rm+zn, 
                 data=Boston)
summary(RegModel.2)



## 
## Call:
## lm(formula = medv ~ black + chas + crim + dis + lstat + nox + 
##     ptratio + rm + zn, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.803  -2.832  -0.625   1.454  27.766 
## 
## Coefficients:
##          Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 29.507997 4.872538 6.056 2.76e-09 ***
## black 0.008292 0.002688 3.084 0.002153 ** 
## chas 3.029924 0.868349 3.489 0.000527 ***
## crim -0.061174 0.030377 -2.014 0.044567 *  
## dis -1.431665 0.188603 -7.591 1.59e-13 ***
## lstat -0.525004 0.048351 -10.858 < 2e-16 ***
## nox -16.088513 3.232702 -4.977 8.93e-07 ***
## ptratio -0.838640 0.117342 -7.147 3.19e-12 ***
## rm 4.149667 0.407685 10.179 < 2e-16 ***
## zn 0.042032 0.013422 3.131 0.001842 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.833 on 496 degrees of freedom
## Multiple R-squared:  0.7288, Adjusted R-squared:  0.7239 
## F-statistic: 148.1 on 9 and 496 DF,  p-value: < 2.2e-16



vif(RegModel.2)
##    black     chas     crim      dis    lstat      nox  ptratio       rm 
## 1.302455 1.051879 1.476281 3.410535 2.577927 3.034316 1.395503 1.774261 
##       zn 
## 2.119038

bptest(medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn, 
       varformula = ~ fitted.values(RegModel.2), studentize=FALSE, data=Boston)
## 
##  Breusch-Pagan test
## 
## data:  medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn
## BP = 8.817, df = 1, p-value = 0.002984

outlierTest(RegModel.2)

##     rstudent unadjusted p-value Bonferonni p
## 369 6.093117         2.2275e-09   1.1271e-06
## 372 5.574335         4.0893e-08   2.0692e-05
## 373 5.360117         1.2776e-07   6.4644e-05

Boston <- Boston[-c(369,372,373),]
RegModel.3 <- lm(medv~black+chas+crim+lstat+nox+ptratio+rm+zn, data=Boston)
summary(RegModel.3)



## 
## Call:
## lm(formula = medv ~ black + chas + crim + lstat + nox + ptratio + 
##     rm + zn, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.6944  -2.6544  -0.6449   1.6392  21.4155 
## 
## Coefficients:
##          Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11.386058 4.150172 2.744 0.006300 ** 
## black 0.008849 0.002545 3.476 0.000553 ***
## chas 2.670557 0.833048 3.206 0.001434 ** 
## crim -0.046149 0.028565 -1.616 0.106827    
## lstat -0.392872 0.046578 -8.435 3.68e-16 ***
## nox -5.144940 2.539786 -2.026 0.043329 *  
## ptratio -0.958587 0.111396 -8.605 < 2e-16 ***
## rm 5.318514 0.384910 13.818 < 2e-16 ***
## zn -0.010100 0.011040 -0.915 0.360736    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.578 on 494 degrees of freedom
## Multiple R-squared:  0.744,  Adjusted R-squared:  0.7399 
## F-statistic: 179.5 on 8 and 494 DF,  p-value: < 2.2e-16



RegModel.4 <- lm(medv~black+lstat+ptratio+rm+zn, data=Boston)
summary(RegModel.4)

## 
## Call:
## lm(formula = medv ~ black + lstat + ptratio + rm + zn, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.2574  -2.8802  -0.6129   1.8640  22.9620 
## 
## Coefficients:
##         Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 9.253649 3.879508 2.385 0.0174 *  
## black 0.011319 0.002462 4.598 5.43e-06 ***
## lstat -0.453250 0.041643 -10.884 < 2e-16 ***
## ptratio -0.991397 0.108946 -9.100 < 2e-16 ***
## rm 5.274984 0.386849 13.636 < 2e-16 ***
## zn -0.004863 0.010154 -0.479 0.6322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.644 on 497 degrees of freedom
## Multiple R-squared:  0.735,  Adjusted R-squared:  0.7323 
## F-statistic: 275.7 on 5 and 497 DF,  p-value: < 2.2e-16

RegModel.5 <- lm(medv~black+lstat+ptratio+rm, data=Boston)
summary(RegModel.5)



## 
## Call:
## lm(formula = medv ~ black + lstat + ptratio + rm, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.1780  -2.8640  -0.6212   1.8545  23.0366 
## 
## Coefficients:
##          Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 8.92877 3.81678 2.339 0.0197 *  
## black 0.01130 0.00246 4.592 5.55e-06 ***
## lstat -0.44870 0.04051 -11.075 < 2e-16 ***
## ptratio -0.97746 0.10491 -9.317 < 2e-16 ***
## rm 5.26910 0.38635 13.638 < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.64 on 498 degrees of freedom
## Multiple R-squared:  0.7348, Adjusted R-squared:  0.7327 
## F-statistic:   345 on 4 and 498 DF,  p-value: < 2.2e-16

vif(RegModel.5)

##    black    lstat  ptratio       rm 
## 1.182491 1.954482 1.205162 1.715115



bptest(medv ~ black + lstat + ptratio + rm, varformula = ~ 
         fitted.values(RegModel.5), studentize=FALSE, data=Boston)

## 
##  Breusch-Pagan test
## 
## data:  medv ~ black + lstat + ptratio + rm
## BP = 0.21772, df = 1, p-value = 0.6408

#install.packages("gvlma")
#library(gvlma)
#Boston$medvbc=boxcox(Boston$medv)
#http://rstatistics.net/how‐to‐test‐a‐regression‐model‐for‐heteroscedasticity‐and‐if‐
present‐how‐to‐correct‐it/

#Overfitting
a=nrow(Boston)
a

## [1] 503

b=round(0.7*a)
b

## [1] 352

random_row_numbs=sample(a,b,F)
random_row_numbs

http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/
http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/


##   [1] 417  35 286 410 352 408 346 274 195 379 180 165 318 110 231  72 366
##  [18] 425  27  16 401 368 249 469 345 444 442 203 263 419  80  70  89 470
##  [35]  57  88  58 234 177 478 152 473 420 182 247  77 190 313 457 303 186
##  [52] 446 100 422 264 333 142 230 448 254  85 340 102 405 295 233 302   4
##  [69] 135 243 236  81  34 397 139 222  48  20 240 371 188 259 158 199 464
##  [86] 441 258 283 466 497 284  51 407 443 271 316 130 246  98  64  74 291
## [103] 117 296  46  86 336  28  13 227 450 118 106 140 131 374 490  14  23
## [120] 307   1 115 288 492 252  90 196 114 472  11 462 388 456 221 503 427
## [137]  79 418  59 421 260 373 458 451 493 431 133 334 200 282  56 146 424
## [154] 276 395 463 194   7 148 482 312   2 479 175  73 229 394  40 209 187
## [171]  17 261 269 141 400 347 322 432 239  41 381 159 306  10 370 277  49
## [188]  24 323 500 372 292 168 383 124 127 319 498 272 353  53  94 242 321
## [205] 314 392 328 213 255 459 308 486 166 361 294 440  87   8 217 445 423
## [222] 206 220 428  97 112 151 399 226 281  32 103 358 193 251 172 329  84
## [239] 205 477 237  33 309 491 364 484 216 433  65 447  39 275 359 300 439
## [256]  52 268 385 449 183 278 435 232 297 211 348 365 137 173 163  63 192
## [273] 105 357  76 437 378  18 341 202  75 452 489  31 273 162 413 317  26
## [290] 416  67   5 138 121 104 356 426 299 332 136 499  15  30  25  50 119
## [307] 384 455 176 335 289 210 393  93 107 305 429 406 280 496 483 480 108
## [324] 298 344  29 460 343 225 201 191 396 468 125 235 197 198 174 485 143
## [341] 387 409  156 290  71 350 132  149 331 218 212 109
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plot(random_row_numbs)
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Boston_train=Boston[random_row_numbs,]
Boston_test=Boston[-random_row_numbs,]

RegModel.6 <- lm(medv~black+lstat+ptratio+rm, 
data=Boston_train)

summary(RegModel.6)

## 
## Call:
## lm(formula = medv ~ black + lstat + ptratio + rm, 
data = Boston_train)

## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.6989  -2.8976  -0.6286   1.8782  20.9866 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.082977  4.685939  2.579   0.010333 *  
## black        0.010551  0.002876   3.668  0.000283 ***
## lstat       -0.459176  0.049661  -9.246   < 2e-16 ***
## ptratio     -1.081483  0.130743  -8.272  2.86e-15 ***
## rm           5.130985  0.465497  11.023   < 2e-16 ***
## ---



## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.731 on 347 degrees of freedom
## Multiple R-squared:  0.7336, Adjusted R-squared:  0.7305 
## F-statistic: 238.8 on 4 and 347 DF,  p-value: < 2.2e-16

vif(RegModel.6)

##    black    lstat  ptratio       rm 
## 1.181865 1.909594 1.266947 1.670012

outlierTest(RegModel.6)

##     rstudent unadjusted p-value Bonferonni p
## 371 4.597485         6.0040e-06    0.0021134
## 413 4.320507         2.0369e-05    0.0071698
## 366 4.216016         3.1779e-05    0.0111860
## 368 4.012047         7.3806e-05    0.0259800

bptest(RegModel.6)

## 
##  studentized Breusch-Pagan test
## 
## data:  RegModel.6
## BP = 1.9743, df = 4, p-value = 0.7405



#?
dbc=boxcox(RegModel.6)
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dbc
## $x
##   [1] -2.00000000 -1.95959596 -1.91919192 -1.87878788 -1.83838384
##   [6] -1.79797980 -1.75757576 -1.71717172 -1.67676768 -1.63636364
##  [11] -1.59595960 -1.55555556 -1.51515152 -1.47474747 -1.43434343
##  [16] -1.39393939 -1.35353535 -1.31313131 -1.27272727 -1.23232323
##  [21] -1.19191919 -1.15151515 -1.11111111 -1.07070707 -1.03030303
##  [26] -0.98989899 -0.94949495 -0.90909091 -0.86868687 -0.82828283
##  [31] -0.78787879 -0.74747475 -0.70707071 -0.66666667 -0.62626263
##  [36] -0.58585859 -0.54545455 -0.50505051 -0.46464646 -0.42424242
##  [41] -0.38383838 -0.34343434 -0.30303030 -0.26262626 -0.22222222



##  [46] -0.18181818 -0.14141414 -0.10101010 -0.06060606 -0.02020202
##  [51]  0.02020202  0.06060606  0.10101010  0.14141414  0.18181818
##  [56]  0.22222222  0.26262626  0.30303030  0.34343434  0.38383838
##  [61]  0.42424242  0.46464646  0.50505051  0.54545455  0.58585859
##  [66]  0.62626263  0.66666667  0.70707071  0.74747475  0.78787879
##  [71]  0.82828283  0.86868687  0.90909091  0.94949495  0.98989899
##  [76]  1.03030303  1.07070707  1.11111111  1.15151515  1.19191919
##  [81]  1.23232323  1.27272727  1.31313131  1.35353535  1.39393939
##  [86]  1.43434343  1.47474747  1.51515152  1.55555556  1.59595960
##  [91]  1.63636364  1.67676768  1.71717172  1.75757576  1.79797980
##  [96]  1.83838384  1.87878788  1.91919192  1.95959596  2.00000000
## 
## $y
##   [1] -859.1799 -847.1039 -835.1407 -823.2931 -811.5635 -799.9545 -788.4687
##   [8] -777.1090 -765.8782 -754.7796 -743.8162 -732.9914 -722.3087 -711.7718
##  [15] -701.3844 -691.1505 -681.0742 -671.1596 -661.4114 -651.8339 -642.4319
##  [22] -633.2102 -624.1740 -615.3282 -606.6782 -598.2292 -589.9869 -581.9566
##  [29] -574.1441 -566.5549 -559.1948 -552.0694 -545.1843 -538.5451 -532.1573
##  [36] -526.0261 -520.1569 -514.5544 -509.2236 -504.1689 -499.3943 -494.9038
##  [43] -490.7007 -486.7882 -483.1687 -479.8445 -476.8171 -474.0877 -471.6570
##  [50] -469.5250 -467.6913 -466.1549 -464.9143 -463.9677 -463.3123 -462.9453
##  [57] -462.8632 -463.0621 -463.5379 -464.2858 -465.3009 -466.5779 -468.1114
##  [64] -469.8955 -471.9244 -474.1919 -476.6919 -479.4181 -482.3641 -485.5236
##  [71] -488.8903 -492.4578 -496.2198 -500.1703 -504.3031 -508.6121 -513.0917
##  [78] -517.7360 -522.5394 -527.4966 -532.6022 -537.8512 -543.2387 -548.7598
##  [85] -554.4099 -560.1847 -566.0799 -572.0912 -578.2149 -584.4471 -590.7842
##  [92] -597.2227 -603.7593 -610.3907 -617.1139 -623.9259 -630.8240 -637.8056
##  [99] -644.8680 -652.0084
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So to summarize what we should do for regression,

●● First know about data and variables.
●● Do Descriptive Statistics (summary) and a correlation matrix.
●● Then run initial model.
●● Remove outliers.
●● Remove variables due to VIF (multicollinearity).
●● Remove Heteroscedascity (advanced).
●● Reduce variables and rerun, to maximize R^2.
●● Keep an eye on p‐value for removing variables.

5.4  Logistic Regression in R and Python

Let us read some basics on logistic regression first. Logistic regression is used 
for predicting binary variables, and it is used a lot—whether a customer will 
default or not (FINANCIAL SERVICES DEFAULT), whether they will click on 
an internet ad or not (ECOMMERCE WEB ANALYTICS), whether they will 
buy a product or not (PROPENSITY), or whether they will leave a company for 
another one (CHURN) (http://www.statmethods.net/advstats/glm.html).

We use logit function from statsmodel for logistic regression.

import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np
 
 df = pd.read_csv("http://www.ats.ucla.edu/stat/data/
binary.csv")

 df.columns = ["admit", "gre", "gpa", "new1"]
 df.head()

admit gre gpa new1

0 0 380 3.61 3
1 1 660 3.67 3
2 1 800 4.00 1
3 1 640 3.19 4
4 0 520 2.93 4

In [31]:
#create dummy variables

http://www.statmethods.net/advstats/glm.html
http://www.ats.ucla.edu/stat/data/binary.csv
http://www.ats.ucla.edu/stat/data/binary.csv
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Note this step creates dummy numeric variables from a categoric variable

dummy_ranks = pd.get_dummies(df['new1'], prefix='new')

 cols_to_keep = ['admit', 'gre', 'gpa']

 print (dummy_ranks.head())

   new_1  new_2  new_3  new_4
0    0.0    0.0    1.0    0.0
1    0.0    0.0    1.0    0.0
2    1.0    0.0    0.0    0.0
3    0.0    0.0    0.0    1.0
4    0.0    0.0    0.0    1.0
 
cols_to_keep = ['admit', 'gre', 'gpa']

data = df[cols_to_keep].join(dummy_ranks.ix[:, 'new_2':]) 

 data['intercept'] = 1.0 

train_cols = data.columns[1:]

 # Index([gre, gpa, prestige_2, prestige_3,  
prestige_4], dtype=object)

logit = sm.Logit(data['admit'], data[train_cols])
 
 # fit the model

result = logit.fit()

Optimization terminated successfully.
      Current function value: 0.573147
      Iterations 6



In [40]:
print (result.summary())
                          Logit Regression Results                           
==============================================================================
Dep. Variable:                  admit   No. Observations:                  400
Model:                          Logit   Df Residuals:                      394
Method:                           MLE   Df Model:                            5
Date:                Mon, 13 Mar 2017   Pseudo R-squ.:                 0.08292
Time:                        18:31:59   Log-Likelihood:                -229.26
converged:                       True   LL-Null:                       -249.99
                                        LLR p-value:                 7.578e-08
==============================================================================
                 coef    std err          z      P>|z|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
gre            0.0023      0.001      2.070      0.038         0.000     0.004
gpa            0.8040      0.332      2.423      0.015         0.154     1.454
new_2         -0.6754      0.316     -2.134      0.033        -1.296    -0.055
new_3         -1.3402      0.345     -3.881      0.000        -2.017    -0.663
new_4         -1.5515      0.418     -3.713      0.000        -2.370    -0.733
intercept     -3.9900      1.140     -3.500      0.000        -6.224    -1.756
==============================================================================

The aforementioned code was referred from http://blog.yhat.com/posts/logistic‐regression‐python‐rodeo.html
Let’s do the same data in R (http://rpubs.com/newajay/uclaglm).

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html
http://rpubs.com/newajay/uclaglm


library(aod)

## Warning: package 'aod' was built under R version 3.3.3

library(ggplot2)
library(Rcpp)
mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
head(mydata)

##   admit gre  gpa rank
## 1     0 380 3.61    3
## 2     1 660 3.67    3
## 3     1 800 4.00    1
## 4     1 640 3.19    4
## 5     0 520 2.93    4
## 6     1 760 3.00    2

summary(mydata)

##      admit             gre             gpa             rank      
##  Min.   :0.0000   Min.   :220.0   Min.   :2.260   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:520.0   1st Qu.:3.130   1st Qu.:2.000  
##  Median :0.0000   Median :580.0   Median :3.395   Median :2.000  
##  Mean   :0.3175   Mean   :587.7   Mean   :3.390   Mean   :2.485  
##  3rd Qu.:1.0000   3rd Qu.:660.0   3rd Qu.:3.670   3rd Qu.:3.000  
##  Max.   :1.0000   Max.   :800.0   Max.   :4.000   Max.   :4.000
sapply(mydata, sd)

http://www.ats.ucla.edu/stat/data/binary.csv


##       admit         gre         gpa        rank 
##   0.4660867 115.5165364   0.3805668   0.9444602

xtabs(~ admit + rank, data = mydata)

##      rank
## admit  1  2  3  4
##     0 28 97 93 55
##     1 33 54 28 12

mydata$rank <- factor(mydata$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(mylogit)

## 
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial", 
##     data = mydata)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6268  -0.8662  -0.6388   1.1490   2.0790  
## 



## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.989979   1.139951  -3.500 0.000465 ***
## gre          0.002264   0.001094   2.070 0.038465 *  
## gpa          0.804038   0.331819   2.423 0.015388 *  
## rank2       -0.675443   0.316490  -2.134 0.032829 *  
## rank3       -1.340204   0.345306  -3.881 0.000104 ***
## rank4       -1.551464   0.417832  -3.713 0.000205 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.98  on 399  degrees of freedom
## Residual deviance: 458.52  on 394  degrees of freedom
## AIC: 470.52
## 
## Number of Fisher Scoring iterations: 4
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In R we can do it using glm (see http://rpubs.com/newajay/logisticregression, 
Figure 5.17). Some terms that are introduced are area under a curve, confusion 
matrix, and KS distance.
ks_plot(actuals=Training$Class,predictedScores=as.
numeric(fitted(fitD)))
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Figure 5.17  The ROC curve.

http://rpubs.com/newajay/logisticregression
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ks_stat(actuals=Training$Class,predictedScores=as.
numeric(fitted(fitD)))

## [1] 0.4718

5.4.1  Additional Concepts

Odds ratio = p/1 − p where p is probability of success
Logit = log (odds ratio)

Overfitting—It occurs when the model is closer to sample data than real data 
and due to excessive noise. It is avoided by splitting the data into test and training 
and then building the model on one part of data.

5.4.2  ROC Curve and AUC

The ROC is a curve generated by plotting the true positive rate (TPR) against 
the false positive rate (FPR) at various threshold settings, while the AUC is the 
area under the ROC curve. As a rule of thumb, a model with good predictive 
ability should have an AUC closer to 1 (1 is ideal) than to 0.5.

Confusion matrix helps determine classifier. It is a matrix of predicted 
versus actual.

Predicted: NO Predicted: YES

Actual: NO 50 10

Actual: YES 5 100

A confusion matrix, also known as an error matrix, is a specific table layout 
that allows visualization of the performance of an algorithm.

Each column of the matrix represents the instances in a predicted class, 
while each row represents the instances in an actual class (or vice versa) 
(Figure 5.18).

An additional example of R based modeling is at http://rpubs.com/newajay/
titanic_kaggle and http://rpubs.com/ajaydecis/logisticmodels

5.4.3  Bias Versus Variance

Lastly a modeler should be careful of errors due to bias or variance.

Error Due to Bias
The error due to bias is taken as the difference between the expected (or average) 
prediction of our model and the correct value, which we are trying to predict. 
Of course you only have one model so talking about expected or average 

http://rpubs.com/newajay/titanic_kaggle
http://rpubs.com/newajay/titanic_kaggle
http://rpubs.com/ajaydecis/logisticmodels
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Figure 5.18  Confusion matrix.
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prediction values might seem a little strange. However, imagine you could 
repeat the whole model building process more than once: each time you gather 
new data and run a new analysis creating a new model. Due to randomness in 
the underlying datasets, the resulting models will have a range of predictions. 
Bias measures how far off in general these models’ predictions are from the 
correct value.

Error Due to Variance
The error due to variance is taken as the variability of a model prediction for a 
given data point. Again, imagine you can repeat the entire model building pro-
cess multiple times. The variance is how much the predictions for a given point 
vary between different realizations of the model (Figure 5.19).
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6

To dos: plot.ly, bokeh, Shiny, Googlevis

6.1  Concepts on Data Visualization

Data visualization is the presentation of data in a pictorial or graphical format 
to understand information more easily and quickly. Effective visualization 
helps users in analyzing and reasoning about data and evidence. It makes com-
plex data more accessible, understandable, and usable. It is more than just 
impressive‐looking graphs because it helps to understand data much better 
than a tabular nonvisual form would do. A good course to learn data visualiza-
tion would be at https://www.coursera.org/learn/datavisualization

6.1.1  History of Data Visualization

William Playfair is credited with inventing many of the graphs associated with 
modern data visualization such as the line, area, and bar charts of economic 
data, pie chart, and circle graph.

The work of Charles Minard is said to have greatly influenced the field of 
data visualization. His famous chart, Napoleon’s march shows the death and 
decline of the French Grande Armée in the war against Russia. The graphic is 
notable for its representation in two dimensions of six types of data: the 
number of Napoleon’s troops, distance, temperature, latitude and longitude, 
direction of travel, and location relative to specific dates. It is thus an early 
example of an information graphic (Figure 6.1).

Florence Nightingale did similar pioneering work in data visualization in 
representing deaths due to various diseases during the Crimean War with her 
coxcomb graphs (Figure  6.2). The following is cited in http://understanding 
uncertainty.org/coxcombs

An early example of how spatial visualization can greatly aid decision‐ 
making is by Jon Snow (not from the Game of Thrones!) whose cholera 

Data Visualization

https://www.coursera.org/learn/datavisualization
http://understandinguncertainty.org/coxcombs
http://understandinguncertainty.org/coxcombs


Figure 6.1  Minard’s graph for Napoleon’s march. Source: © University of Cambridge.



Figure 6.2  Florence Nightangle Coxcomb charts.
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outbreak graph helped pinpoint the cause to a single water pump. It is regarded 
as the founding event of the science of epidemiology (Figure 6.3).

6.1.2  Anscombe Case Study

“Lies, damned lies, and statistics” is a phrase describing the sometimes 
misleading but powerful power of numbers, particularly the use of statistics to 
bolster a weak or untenable argument.

The Anscombe case study shows how misleading conclusions from identical 
summary statistics (e.g., mean, standard deviation, and correlation) can be 
corrected only when we visualize data (revealing dissimilar data graphics (scat-
terplots)). Source: Anscombe (1973) http://www.sjsu.edu/faculty/gerstman/
StatPrimer/anscombe1973.pdf

We recreate the case study in Python using the R Dataset. A copy of the code 
is at the author’s github (https://github.com/decisionstats/pythonfordata 
science) and at http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f 
470d5c07194302f53e

We read the data using pandas, find the mean and standard deviations 
through numpy, use regression using statsmodel package, and finally visualize 
using the ggplot package.

Figure 6.3  Jon Snow Cholera Outbreak Map.

http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
https://github.com/decisionstats/pythonfordatascience
https://github.com/decisionstats/pythonfordatascience
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
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6.1.3  Importing Packages

import pandas as pd
import statsmodels.formula.api as sm
import numpy as np
import ggplot as gg

Reading the Dataset
anscombe=pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/anscombe.csv")
anscombe

Unnamed: 0 x1 x2 x3 x4 y1 y2 y3 y4

0 1 10 10 10 8 8.04 9.14 7.46 6.58
1 2 8 8 8 8 6.95 8.14 6.77 5.76
2 3 13 13 13 8 7.58 8.74 12.74 7.71
3 4 9 9 9 8 8.81 8.77 7.11 8.84
4 5 11 11 11 8 8.33 9.26 7.81 8.47
5 6 14 14 14 8 9.96 8.10 8.84 7.04
6 7 6 6 6 8 7.24 6.13 6.08 5.25
7 8 4 4 4 19 4.26 3.10 5.39 12.50
8 9 12 12 12 8 10.84 9.13 8.15 5.56
9 10 7 7 7 8 4.82 7.26 6.42 7.91
10 11 5 5 5 8 5.68 4.74 5.73 6.89

Dropping the Column
anscombe=anscombe.drop('Unnamed: 0', 1)

The Anscombe Quartet
anscombe

x1 x2 x3 x4 y1 y2 y3 y4

0 10 10 10 8 8.04 9.14 7.46 6.58
1 8 8 8 8 6.95 8.14 6.77 5.76
2 13 13 13 8 7.58 8.74 12.74 7.71
3 9 9 9 8 8.81 8.77 7.11 8.84
4 11 11 11 8 8.33 9.26 7.81 8.47
5 14 14 14 8 9.96 8.10 8.84 7.04
6 6 6 6 8 7.24 6.13 6.08 5.25
7 4 4 4 19 4.26 3.10 5.39 12.50
8 12 12 12 8 10.84 9.13 8.15 5.56
9 7 7 7 8 4.82 7.26 6.42 7.91
10 5 5 5 8 5.68 4.74 5.73 6.89
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6.1.4  Taking Means and Standard Deviations

np.mean(anscombe)
x1	 9.000000
x2	 9.000000
x3	 9.000000
x4	 9.000000
y1	 7.500909
y2	 7.500909
y3	 7.500000
y4	 7.500909
dtype: float64

np.std(anscombe)
x1	 3.162278
x2	 3.162278
x3	 3.162278
x4	 3.162278
y1	 1.937024
y2	 1.937109
y3	 1.935933
y4	 1.936081
dtype: float64

Fitting Regression Line between Respective X and Y
result1 = sm.ols(formula="y1 ~ x1 ", data=anscombe).fit()
result1.summary()

/home/ajay/anaconda3/lib/python3.4/site‐packages/
scipy/stats/stats.py:1285: UserWarning: kurtosistest 
only valid for n>=20 … continuing anyway, n=11
  "anyway, n=%i" % int(n))

Dep. Variable: y1 R‐squared: 0.667
Model: OLS Adj. R‐squared: 0.629

Method: Least Squares F‐statistic: 17.99
Date: Thu, 07 Jul 2016 Prob (F‐statistic): 0.00217
Time: 04:32:15 Log‐Likelihood: –16.841

No. Observations: 11 AIC: 37.68
Df Residuals: 9 BIC: 38.48

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.0001 1.125 2.667 0.026 0.456 5.544

x1 0.5001 0.118 4.241 0.002 0.233 0.767
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Omnibus: 0.082 Durbin‐Watson: 3.212
Prob(Omnibus): 0.960 Jarque‐Bera (JB): 0.289

Skew: –0.122 Prob(JB): 0.865
Kurtosis: 2.244 Cond. No. 29.1

result1.params
Intercept  3.000091
x1	 0.500091
dtype: float64
result1.rsquared

0.66654245950877489
result2 = sm.ols(formula="y2 ~ x2 ", data=anscombe).fit()
result3 = sm.ols(formula="y3 ~ x3 ", data=anscombe).fit()
result4 = sm.ols(formula="y4 ~ x4 ", data=anscombe).fit()

print(result1.params)
print(result2.params)
print(result3.params)
print(result4.params)

Intercept  3.000091
x1	 0.500091
dtype: float64
Intercept  3.000909
x2	 0.500000
dtype: float64
Intercept  3.002455
x3	 0.499727
dtype: float64
Intercept  3.001727
x4	 0.499909
dtype: float64

print(result1.rsquared)
print(result2.rsquared)
print(result3.rsquared)
print(result4.rsquared)

0.666542459509
0.666242033727
0.666324041067
0.666707256898
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print(np.mean(anscombe))

x1	 9.000000
x2	 9.000000
x3	 9.000000
x4	 9.000000
y1	 7.500909
y2	 7.500909
y3	 7.500000
y4	 7.500909
dtype: float64

print(np.std(anscombe))

x1	 3.162278
x2	 3.162278
x3	 3.162278
x4	 3.162278
y1	 1.937024
y2	 1.937109
y3	 1.935933
y4	 1.936081
dtype: float64

6.1.5  Conclusion

It seems that X and Y have the same means, same standard deviations, same 
regression parameters, and same R‐squared value (up to two decimal places). 
So as per summary statistics, the data between all four quartets (X1 Y1, X2 Y2, 
X3 Y3, and X4 Y4) is the same. A copy of this tutorial is available at http://
nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
#Data‐Visualization

6.1.6  Data Visualization

%matplotlib inline

p = gg.ggplot(gg.aes(x='x1', y='y1'), data=anscombe)
p + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/ 
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle; 
please use the latter.
  warnings.warn(self.msg_depr % (key, alt_key))

http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
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<ggplot: (-901764730)>
p2 = gg.ggplot(gg.aes(x='x2', y='y2'), data=anscombe)
p2 + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/ 
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle; 
please use the latter.
  warnings.warn(self.msg_depr % (key, alt_key))
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<ggplot: (-901793152)>
p3 = gg.ggplot(gg.aes(x='x3', y='y3'), data=anscombe)
p3 + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/ 
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle; 
please use the latter.
  warnings.warn(self.msg_depr % (key, alt_key))
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<ggplot: (-901915866)>
p4 = gg.ggplot(gg.aes(x='x4', y='y4'), data=anscombe)
p4 + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/ 
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle; 
please use the latter.
  warnings.warn(self.msg_depr % (key, alt_key))
<ggplot: (-901651556)>
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6.1.7  Conclusion

The graphs show that the four quartets are completely different even though 
summary statistics (means, deviations, regression) was showing identical 
result.

The first quartet (x1, y1) shows a scattered relationship.
The second quartet shows a curved polynomial relationship.
The third shows a straight line with one outlier.
The fourth shows a constant value of x and one outlier.
So we are better off relying on data visualization as an additional step to 

verify summary statistics or exploratory data analysis (but note we should rely 
on both, not just data visualization alone as many dashboards tend to do).

6.2  Tufte’s Work on Data Visualization

Edward Tufte is known in some circles as the father of modern data visualiza-
tion. Some of his seminal principles for data visualization are the following:

1)	 The representation of numbers, as physically measured on the surface of 
the graph itself, should be directly proportional to the numerical quantities 
represented.
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2)	 Clear, detailed, and thorough labeling should be used to defeat graphical 
distortion and ambiguity. Write out explanations of the data on the graph 
itself. Label important events in the data.

3)	 Show data variation, not design variation.
4)	 In time‐series displays of money, deflated and standardized units of mone-

tary measurement are nearly always better than nominal units.
5)	 The number of information carrying (variable) dimensions depicted should 

not exceed the number of dimensions in the data. Graphics must not quote 
data out of context.

To the data scientist, Tufte shows a set of simple and easy to follow 
directives:

1)	 Above all else show data.
2)	 Maximize the data‐ink ratio.
3)	 Erase non‐data‐ink.
4)	 Erase redundant data‐ink.
5)	 Revise and edit.

6.3  Stephen Few on Dashboard Design

Stephen Few is the acknowledged master for designing better dashboards 
that show how enterprises visualize their business data. There are three key 
questions for a dashboard:

1)	 Who is my audience?
2)	 What value will the dashboard add?
3)	 What type of dashboard am I creating?

In his paper, “Common Pitfalls on Dashboard Design,” Few lists the common 
mistakes when designers build dashboards. These can and should be used as a 
checklist for data scientists or designers of new dashboards. For the full paper 
the reader is advised to read it at http://www.perceptualedge.com/articles/
Whitepapers/Common_Pitfalls.pdf

●● Exceeding the boundaries of a single screen
●● Supplying inadequate context for the data
●● Displaying excessive detail or precision
●● Expressing measures indirectly
●● Choosing inappropriate media of display
●● Introducing meaningless variety
●● Using poorly designed display media

http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
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●● Encoding quantitative data inaccurately
●● Arranging the data poorly
●● Ineffectively highlighting what’s important
●● Cluttering the screen with useless decoration
●● Misusing or overusing color
●● Designing an unappealing visual display

Stephen Few also gives advice that is very practical to people building data 
science teams.

The advice is as follows:
When you need more computing power, there are three potential choices:

1)	 Replace your computer with one that’s more powerful.
2)	 Add more computers.
3)	 Upgrade the computer that you have to make it more powerful.

When you need more human power, what are your choices?

●● Replace the employee with one who’s more productive.
●● Add more people.
●● Help your employee upgrade skills to make him more productive.

6.3.1  Maeda on Design

John Maeda created the laws of simplicity to help designers create better 
interfaces. While a data scientist is typically analyzing data created by differ-
ent interfaces (e.g., an experiment on web sites), a knowledge of design can 
help them better and provide them more useful advice to design 
counterparts.

The laws of simplicity are taken from a small 100‐page book called The Laws 
of Simplicity:

●● Reduce—the simplest way to achieve simplicity is through thoughtful 
reduction.

●● Organize—organization makes a system of many appear fewer.
●● Time—savings in time feel like simplicity.
●● Learn—knowledge makes everything simpler.
●● Differences—simplicity and complexity need each other.
●● Context—what lies in the periphery of simplicity is definitely not peripheral.
●● Emotion—more emotions are better than less.
●● Trust—in simplicity we trust.
●● Failure—some things can never be made simple.
●● The one—simplicity is about subtracting the obvious and adding the 

meaningful.
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Three keys:

1)	 Away–more appears like less by simply moving it far, far away.
2)	 Open—openness simplifies complexity.
3)	 Power—use less, gain more.

6.4  Basic Plots

These are some of the basic plots in Python.
The basic packages for data visualization in Python Data Science (PyData) 

are matplotlib, seaborn, ggplot, and bokeh. We import the packages as

import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt

An online version of this tutorial is available at http://nbviewer.jupyter.org/ 
gist/decisionstats/e9fd40890553b24acda5e07654bceaa8

To make sure graphs remain in same window of our Jupyter notebook, we 
use the following line.

%matplotlib inline

Let’s take the Iris Dataset from R using the code below. The following will plot 
a scatterplot. Simply put—a scatterplot plots the data in points

iris =pd.read_csv("https://vincentarelbundock.github.
io/Rdatasets/csv/datasets/iris.csv ")
iris=iris.drop(’Unnamed: 0’, 1)
iris.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
Sepal.Length	 150 non-null float64
Sepal.Width	 150 non-null float64
Petal.Length	 150 non-null float64
Petal.Width	 150 non-null float64
Species	 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB

plt.scatter(x="Sepal.Length",y="Petal.Length", 
data=iris);

http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
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Distribution plot—To plot the distribution, I can use a distplot from seaborn, 
while to add a regression line I can use regplot.

sns.distplot(iris[“Sepal.Length”])

/home/ajayohri/anaconda3/lib/python3.5/site-packages/ 
statsmodels/nonparametric/kdetools.py:20: Visible 
DeprecationWarning: using a non-integer number instead of 
an integer will result in an error in the future

  y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j

<matplotlib.axes._subplots.AxesSubplot at 
0x7f0302e4e278>
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sns.regplot(x=“Sepal.Length“, y=“Sepal.Width”, 
data=iris);
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You can use swarmplot from seaborn to do a scatterplot for multiple categories.

plt.figure(figsize=(8, 6))
sns.swarmplot(x="Sepal.Length", y="Sepal.Width", 
hue="Species",data=iris)

<matplotlib.axes._subplots.AxesSubplot at 
0x7f0302d57438>
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A swarmplot can help us visualize multiple categories of scatterplots (it draws 
a categorical scatterplot with non‐overlapping points), while a pairplot can 
help us with plotting entire data frame (by plotting the pairwise relationships 
in the entire dataset).

NOTE: We can modify the size of the figure by the parameter plt.
figure(figsize=(A,B)) with the hue parameter as a step to modify color and 
make the graphic more coherent or easy to understand.

sns.pairplot(iris, hue="Species")

<seaborn.axisgrid.PairGrid at 0x7f0302824550>
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Barplot—We can use barplot as well quite easily in Python using seaborn. Let 
us take the diamonds dataset from the original ggplot2 package in R.

diamonds =pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/ggplot2/diamonds.csv")
sns.barplot(x="color", y="carat",data=diamonds)

<matplotlib.axes._subplots.AxesSubplot at 
0x7f0300092c18>

https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv
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sns.barplot(x="color", y="price",data=diamonds)
<matplotlib.axes._subplots.AxesSubplot at 
0x7f030003ce80>
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Factorplot—We use factorplot from seaborn library and find in the diamonds 
dataset that colors I,J have maximum price while cut Premium has maximum 
price compared with others. Factorplot draws a categorical plot onto a 
FacetGrid (see https://stanford.edu/~mwaskom/software/seaborn/generated/
seaborn.factorplot.html)

By changing the x‐axis and the col (color) variable, we get the following graphs, 
and by changing the kind parameter of factorplot from box to bar or point, we 
get the following graphs. The change in graphs helps with exploratory analysis.

https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.factorplot.html
https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.factorplot.html


sns.factorplot(x="cut", y="price",col="color", data=diamonds, kind="bar", size=4, 
aspect=.5);
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sns.factorplot(x="color", y="price",col="cut", data=diamonds, kind="box", size=4, 
aspect=.5);
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sns.factorplot(x="cut", y="price",col="color", data=diamonds, kind="box", size=4, 
aspect=.5);
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sns.factorplot(x="cut", y="price",col="color", data=diamonds, kind="point", size=4, 
aspect=.5);
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We can use jointplots for combined plots.
They can be of the form kde (for density) or scatter (for points) or hexbins 

(for overplotting).

sns.jointplot(x="carat", y="price",data=diamonds)
<seaborn.axisgrid.JointGrid at 0x7f02f3d37908>
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Pearson’s r = 0.92;
p = 0

You can also view this tutorial online at http://nbviewer.jupyter.org/gist/ 
decisionstats/e9fd40890553b24acda5e07654bceaa8

6.5  Advanced Plots

Grammar of graphics created by Wilkinson and implemented by Wickham in 
R has revolutionized data visualization in recent years. To summarize, when 
creating a plot we start with data. We can create many different types of plots 
using this same basic specification. (Bars, lines, and points are all examples of 
geometric objects.) We can scale the axes and statistically transform the data 
(bins, aggregates).

http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
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The concept of layers:
Plot = data 1 + scales and coordinate system 2 + plot annotations 3

1)	 data plot type
2)	 Axes and legends
3)	 background and plot title

The layered grammar defines the components of a plot as (Figures 6.4 and 6.5):

●● A default dataset and set of mappings from variables to aesthetics
●● One or more layers, with each layer having one geometric object, one statis-

tical transformation, one position adjustment, and optionally, one dataset 
and a set of aesthetic mappings

●● One scale for each aesthetic mapping used
●● A coordinate system
●● The facet specification

We can use the ggplot library created by Yhat to recreate ggplot style diagrams 
in Python without even changing the code. This is an example from http://
nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600

Title

A

C

Figure 6.4  Graphics objects produced by (from left to right) geometric objects, scales and 
coordinate system, plot annotations. Source: http://vita.had.co.nz/papers/layered‐grammar.
pdf. © University of Cambridge.

Title

C

A

Figure 6.5  The final graphic, produced by combining the 
pieces in Figure 6.4. Source: http://vita.had.co.nz/papers/
layered‐grammar.pdf. © University of Cambridge.

http://nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600
http://nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
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import matplotlib as mt
%matplotlib inline #this line makes sure plots are in 
same notebook

from ggplot import *
p = ggplot(aes(x=’price’, y=’carat’), data=diamonds)
p

0.0 0.2 0.4 0.6 0.8 1.0
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<ggplot: (-1059997756)>
p + geom_point()
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<ggplot: (-1059338452)>
p + geom_point() +facet_grid(’cut’)
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<ggplot: (-1057884332)>
p = ggplot(aes(x=’price’, y=’carat’,color="cut"), 
data=diamonds)
p + geom_point()
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<ggplot: (-1059249386)>
p = ggplot(aes(x=’price’, y=’carat’,color="clarity"), 
data=diamonds)
p + geom_point()
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<ggplot: (-1060618628)>

6.6  Interactive Plots

Interactive plots can be done by bokeh in Python and by shiny package in R. 
You can also use plot.ly for both.

6.7  Spatial Analytics

Spatial analytics can be done by leaflet package and by ggmap package in R. In 
R a special section for spatial packages is at https://cran.r‐project.org/web/
views/Spatial.html. In Python you can refer to http://pysal.readthedocs.io/
en/latest/PySAL and packages at https://pythongisresources.wordpress.com/
packages/

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html
http://pysal.readthedocs.io/en/latest/
http://pysal.readthedocs.io/en/latest/
https://pythongisresources.wordpress.com/packages/
https://pythongisresources.wordpress.com/packages/
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6.8  Data Visualization in R

●● Basic graphs

Some basic graphs in R are barplot and histogram. They are given by barplot 
and hist functions. Boxplot is given by boxplot function and is used for explora-
tory data analysis (EDA). The following is taken from http://rpubs.com/
ajaydecis/basicRdataviz2 and http://rpubs.com/ajaydecis/dataviz2

par(bg="yellow")
boxplot(Sepal.Length~Species,
	 main="My First Graph")

4.5

setosa versicolor

My first graph

virginica

5.0

5.5

6.0
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boxplot(Sepal.Length~Species,
	 main="My First Graph",
	 xlab="Species of Flowers",
	 ylab=" Measurement in mm")
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http://rpubs.com/ajaydecis/basicRdataviz2
http://rpubs.com/ajaydecis/basicRdataviz2
http://rpubs.com/ajaydecis/dataviz2
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boxplot(Sepal.Length~Species,
	 main="My First Graph",
	 xlab="Species of Flowers",
	 ylab=" Measurement in mm",
	 col="green")
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The package RColorbrewer addsin special color palettes or combinations 
of colors to R.

library(RColorBrewer)
par(mfrow=c(3,3))

hist(mpg,col=brewer.pal(8,"Blues"))
hist(mpg,col=brewer.pal(8,"Greens"))
hist(mpg,col=brewer.pal(8,"Greys"))

hist(mpg,col=brewer.pal(8,"Reds"))
hist(mpg,col=brewer.pal(8,"Oranges"))

hist(mpg,col=brewer.pal(8,"Set1"))
hist(mpg,col=brewer.pal(8,"Set2"))
hist(mpg,col=brewer.pal(8,"Set3"))
hist(mpg,col=brewer.pal(8,"Pastel1"))
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#barplot
barplot(table(iris$Species,iris$Sepal.Length))

0
4.3 4.6 4.9 5.2 5.5 5.8 6 6.2 6.5 6.8 7 7.2 7.6
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barplot(table(iris$Species,iris$Sepal.
Length),col=heat.colors(5,0.6))
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 #rug plot
hist(iris$Sepal.Length,breaks=10)
rug(iris$Sepal.Length)
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You can read and manipulate data quite fast using the data.table package in R:

setwd("C:/Users/dell/Desktop")
library(data.table)

bigdiamonds=fread("BigDiamonds.csv")
## 
Read 23.4% of 598024 rows
Read 50.2% of 598024 rows
Read 75.2% of 598024 rows
Read 598024 rows and 13 (of 13) columns from 0.049 GB 
file in 00:00:06
hist(bigdiamonds$carat,breaks=100)
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2 4
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Histogram of bigdiamonds$carat
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#rug(diamonds$carat)

barplot(bigdiamonds[,mean(carat),color]$V1)
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We also have specialized packages/functions like tableplot:

tableplot(diamonds3)
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From http://rpubs.com/ajaydecis/corrmosaic
In a corrgram, negative correlation is shown in red, while the positive in blue 

with the intensity of colors showing the magnitude of correlation (for color 

http://rpubs.com/ajaydecis/corrmosaic
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version refer online). In a mosaic plot, the area of the boxes shows the numbers 
for various subcategories.

#install.packages("corrgram")
library(corrgram)
corrgram(mtcars)

mpg

cyl

disp

hp

drat

wt

qsec

vs
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gear

carb

data(diamonds,package = "ggplot2")
corrgram(diamonds)
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library(vcd)
## Loading required package: grid
mosaic(Titanic)
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We can build spatial visualization using maps and ggmap packages in R. 
Example from http://rpubs.com/ajaydecis/basicspatial 

http://rpubs.com/ajaydecis/basicspatial
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par(mfrow=c(1,1))
plot(citiesIND, axes=T, asp=1, pch=16,main="Spatial 
Plot of Cities in India")
## Highlight big cities
plot(citiesIND[citiesIND@data$pop > 1000000, ], pch=1, 
col="red", cex=3, add=TRUE)
## Highlight  cities with bigger  dengue deaths
plot(citiesIND[citiesIND@data$samp > 960, ], pch=1, 
col="blue", cex=3, add=TRUE)
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100

A gallery of R graphs is available at http://scs.math.yorku.ca/index.php/R_
Graphs_Gallery. © Wikipedia.

6.8.1  A Note of Sharing Your R Code by RStudio IDE

From https://rpubs.com/about/getting‐started

1)	 In RStudio, create a new R Markdown document by choosing File. | New. | 
R Markdown.

2)	 Click the Knit HTML button in the doc toolbar to preview your 
document.

3)	 In the preview window, click the Publish button.

You will need a RPubs.com account to publish.

http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
https://rpubs.com/about/getting-started
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6.8.2  A Note on Sharing Your Jupyter Notebook

1)	 Download as IPython file from the file option.

2)	 Use notepad to open the file downloaded. Copy the text contents.

3)	 Create a new gist at by pasting the text from step 2 here
https://gist.github.com/ (assuming you have a github account).

https://gist.github.com/
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4)	 Paste the URL of the Gist at http://nbviewer.ipython.org/ to get your iNote-
book URL for sharing.

5)	 To update your notebook, simply copy and paste the new IPython code by 
editing the gist again.

6)	 An example here is http://nbviewer.ipython.org/gist/decisionstats/62c5387 
624a9ba9015a4

http://nbviewer.ipython.org/
http://nbviewer.ipython.org/gist/decisionstats/62c5387624a9ba9015a4
http://nbviewer.ipython.org/gist/decisionstats/62c5387624a9ba9015a4
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6.8.3  Special Note: A Complete Wing to Wing Tutorial on Python

Python is a very widely used programming language. Written by Guido Von 
Russum in 1989, it is now one of the most widely used programming languages. 
In data science, Python has increasingly made strides, thanks to the pandas 
package as well as the efforts of PyData community. Companies like Continuum 
Analytics, Enthought, and Civis Analytics are creating both tools as well 
as  actually utilizing Python for data science. Companies like Datakind, 
CodeAcademy, and Dataquest offer online education on Python for free. 
Unlike R language, Python has two major versions, Python 2 and Python 3, 
but just like R it is free and open source.

Core design parameters for Python remain crisp lines of code, using white 
space as an input, emphasis for indentation, and sparse grammar. People 
interested in knowing more on Python can go to the home page at https://
www.python.org/

Data science lies at the intersection of programming, statistics, and business 
analysis. It is the use of programming tools with statistical techniques to ana-
lyze data in a systematic and scientific way. Accordingly this tutorial will try to 
focus at least on the statistical and programming parts of data science. Data 
scientists would also be interested in the PyData community at http://pydata.
org/. Why use Python for data science? Python has surprising capabilities in 
data analysis and data visualization, thanks to the new generation of packages 
being created (pairplot on famous iris dataset using seaborn package is shown 
below) (Figure 6.6).

Here is a brief tutorial in Pythonic data science. Some prerequisites are given 
as follows:
Installations:

1)	 Download and install Anaconda from https://www.continuum.io/ 
downloads (alternatives could be Canopy Express from https://store.
enthought.com/ or just the core implementation from https://www.python.
org/downloads/).

2)	 Download and install the Jupyter Notebook Interface from http://jupyter.
readthedocs.org/en/latest/install.html

3)	 You can use pip or easy_install to install packages. There are more than 
72 000 Python packages available at https://pypi.python.org/pypi and 
you  can browse Python packages by topic at https://pypi.python.org/
pypi?%3Aaction=browse

Packages for data science
Some important packages for data scientists to use in Python are as follows:

1)	 Pandas (http://pandas.pydata.org/)—Pandas allows users the familiar data 
frame format in which rows are observations and columns are variables and 
a wide variety of useful data analysis features.

https://www.python.org/
https://www.python.org/
http://pydata.org/
http://pydata.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://store.enthought.com/
https://store.enthought.com/
https://www.python.org/downloads/
https://www.python.org/downloads/
http://jupyter.readthedocs.org/en/latest/install.html
http://jupyter.readthedocs.org/en/latest/install.html
https://pypi.python.org/pypi
https://pypi.python.org/pypi?:action=browse
https://pypi.python.org/pypi?:action=browse
http://pandas.pydata.org
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2)	 Scikit‐learn (http://scikit‐learn.org/)—Scikit‐learn allows you a widely used 
machine learning package for data mining and modeling.

3)	 Statsmodels (http://statsmodels.sourceforge.net/)—Statsmodels brings  
statistical tests and models available in Python.

4)	 Seaborn (http://stanford.edu/~mwaskom/software/seaborn/)—Seaborn 
brings statistical data visualization to Python.

5)	 Pandasql (https://pypi.python.org/pypi/pandasql)—This package allows 
SQL syntax and is thus similar to sqldf package in R.

6)	 ggplot (http://ggplot.yhathq.com/)—This is the implementation of gram-
mar of graphics in Python. You can practically reuse same ggplot2 code 
from R to this package in Python.

7)	 SQLAlchemy (http://www.sqlalchemy.org/)—This tool allows you to 
connect and query with databases.
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Figure 6.6  Pairplot on Iris Dataset using seaborn package.
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http://scikit-learn.org
http://statsmodels.sourceforge.net
http://stanford.edu/~mwaskom/software/seaborn/
https://pypi.python.org/pypi/pandasql
http://ggplot.yhathq.com
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Tutorial Overview
1)	 You can write markdown within Jupyter notebook by changing the code 

cell type from code to Markdown. You can also install and work with R 
using the IR Kernel. This makes the code more readable as well as very 
easy to switch between kernels.

2)	 Install packages from within the Jupyter notebook using a ! sign in the 
beginning.

3)	 Import (or load) packages using the following syntax Import Package, or 
Import Package as Pkg or Import Function from Package. This is similar to 
library function in R.

4)	 Read in data using the read_csv or similar Input functions from Pandas 
(http://pandas.pydata.org/pandas‐docs/stable/io.html).

5)	 Inspect data using the info and head methods.
6)	 Slice data using the query function or index or the column name.
7)	 Summarize data using the describe, group_by, and value_counts functions.
8)	 Use dir on the object to find out what all can be done on it.
9)	 Visualize using various plots from seaborn and ggplot package.

10)	 Build a regression model using statsmodel using the familiar formula 
method (dependent_var~ independent_var 1 + independent_var2 +).

11)	 Learn about additional tools useful for data scientists.

Detailed Tutorial

1)	 Install packages from within Jupyter notebook. Use the ‐‐upgrade flag to 
upgrade existing packages.

In [1]: ! sudo pip install pandas ‐‐upgrade

2)	 Load the package. You can load a Python package using the following ways: 
import PACKAGE or import PACKAGE as PK or from PACKAGE import 
FUN. You can then invoke the function using PACKAGE.FUN, PK.FUN, 
and FUN, respectively.

In [2]:import pandas as pd

3)	 Import Data. We use read_csv from pandas to import a csv file. Note that 
Jupyter automatically applies color to the code to ensure code, functions, 
comments are easily readable. In case the file is stored locally, we can use 
the os Python library.

In [3]: import os as os
os.getcwd() #current working directory Out[3]: 
'/home/ajay/Dropbox/PYTHON BOOK WILEY/FINAL'

http://pandas.pydata.org/pandas-docs/stable/io.html
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In [4]:os.chdir('/home/ajay/Desktop/test') #change 
current working directory
In [5]:os.listdir(os.getcwd()) #list files in 
directory Out[5]:['adult.data.txt']

In [6]:adult=pd.read_csv("adult.data.
txt",header=None) #read data 

'''Lets get some information on the object. This 
was a multiple line comment using three single quote 
marks'''

4)	 Let’s use a dataset from within R’s dataset for familiarity. We will use dia-
mond dataset bundled with R language from https://vincentarelbundock.
github.io/Rdatasets/datasets.html

In [12]:
diamonds =pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/ggplot2/diamonds.csv")

5)	 We can use len to find out number of observations or length, and type to 
find out class of object type. Using info we can combine all these to get the 
information on object.

In [7]:diamonds.info()
<class 'pandas.core.frame.DataFrame'>

Int64Index: 53940 entries, 0 to 53939

Data columns (total 11 columns):

Unnamed: 0  53940 non-null int64

carat        53940 non-null float64

cut          53940 non-null object

color        53940 non-null object

clarity     53940 non-null object

depth        53940 non-null float64

table        53940 non-null float64

price        53940 non-null int64

x            53940 non-null float64

y            53940 non-null float64

z            53940 non-null float64

dtypes: float64(6), int64(2), object(3)

memory usage: 4.3+ MB

6.8  Data Visualization in R
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6)	 To find out what all functions can do, we can just use the dir command on 
the object, that is, dir(diamonds). We can use head to inspect first few rows, 
.ix to select rows by index number, and double square brackets with 
column names in quotes to select by column name. Note that we can 
chain multiple commands in Python very easily.

In [8]:diamonds2=diamonds.drop('Unnamed: 0', 1) 
#Dropping a particular variable
diamonds2.head()

Out[8]:

carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75

In [9]:diamonds.ix[20:28] #refers to the 21st to 29th 
row since index starts from 0.
Out[9]:

carat cut color clarity depth table price x y z

20 0.30 Good I SI2 63.3 56 351 4.26 4.30 2.71
21 0.23 Very Good E VS2 63.8 55 352 3.85 3.92 2.48
22 0.23 Very Good H VS1 61.0 57 353 3.94 3.96 2.41
23 0.31 Very Good J SI1 59.4 62 353 4.39 4.43 2.62
24 0.31 Very Good J SI1 58.1 62 353 4.44 4.47 2.59
25 0.23 Very Good G VVS2 60.4 58 354 3.97 4.01 2.41
26 0.24 Premium I VS1 62.5 57 355 3.97 3.94 2.47
27 0.30 Very Good J VS2 62.2 57 357 4.28 4.30 2.67
28 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.40

In [10]:diamonds.ix[20:25].cut
Out[10]:
20    Good
21  Very Good
22  Very Good
23  Very Good
24  Very Good
25  Very Good
Name: cut, dtype: object
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In [11]:diamonds[['color','cut','price']].head() 
#Note the double square brackets [[]]
Out[8]:

color cut price

0 E Ideal 326
1 E Premium 326
2 E Good 327
3 I Premium 334
4 J Good 335

7)	 Conditional selection—We can use the query command for conditional 
selection of data.

In [12]:diamonds.query('carat >3 and color =="J"')
Out[12]:

carat cut color clarity depth table price x y z

21758 3.11 Fair J I1 65.9 57 9823 9.15 9.02 5.98
25999 4.01 Premium J I1 62.5 62 15223 10.02 9.94 6.24
26467 3.01 Ideal J SI2 61.7 58 16037 9.25 9.20 5.69
26744 3.01 Ideal J I1 65.4 60 16538 8.99 8.93 5.86
27415 5.01 Fair J I1 65.5 59 18018 10.74 10.54 6.98
27630 4.50 Fair J I1 65.8 58 18531 10.23 10.16 6.72
27679 3.51 Premium J VS2 62.5 59 18701 9.66 9.63 6.03
27684 3.01 Premium J SI2 60.7 59 18710 9.35 9.22 5.64
27685 3.01 Premium J SI2 59.7 58 18710 9.41 9.32 5.59

8)	 Data summary is done in Pandas by describe for numerical variables and by 
value_counts for categorical variables. Numerical correlation can be done 
by corr command. Unique values are given by unique command.

In [13]:diamonds.price.describe()
Out[13]:
count	 53940.000000
mean	 3932.799722
std	 3989.439738
min	 326.000000
25%	 950.000000
50%	 2401.000000
75%	 5324.250000
max	 18823.000000
Name: price, dtype: float64

6.8  Data Visualization in R
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In [14]:diamonds.corr() #Numerical Correlations
Out[14]:

carat depth table price x y z

carat 1.000000 0.028224 0.181618 0.921591 0.975094 0.951722 0.953387
depth 0.028224 1.000000 –0.295779 –0.010647 –0.025289 –0.029341 0.094924
table 0.181618 –0.295779 1.000000 0.127134 0.195344 0.183760 0.150929
price 0.921591 –0.010647 0.127134 1.000000 0.884435 0.865421 0.861249
x 0.975094 –0.025289 0.195344 0.884435 1.000000 0.974701 0.970772
y 0.951722 –0.029341 0.183760 0.865421 0.974701 1.000000 0.952006
z 0.953387 0.094924 0.150929 0.861249 0.970772 0.952006 1.000000

In [15]:diamonds['cut'].unique()
Out[15]:array(['Ideal', 'Premium', 'Good', 'Very 
Good', 'Fair'], dtype=object)

In [16]:pd.value_counts(diamonds.cut)
Out[16]:
Ideal	 21551
Premium	 13791
Very Good	 12082
Good	 4906
Fair	 1610
Name: cut, dtype: int64

Note: To run a command on a particular column instead of entire data 
frame, I can just use the dot notation and its name (i.e., diamonds.price 
instead of diamonds. This is analogous to R’s $ notation).

9)	 Group by summary is done by group_by command and cross tabulation 
can be done by crosstab.

In [17]:cutgroup=pd.groupby(diamonds,diamonds.cut)
In [18]:type(cutgroup)
Out[18]:
pandas.core.groupby.DataFrameGroupBy
In [19]:cutgroup.price.median()
Out[19]:
cut
Fair	 3282.0
Good	 3050.5
Ideal	 1810.0
Premium	 3185.0
Very Good	 2648.0
Name: price, dtype: float64
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In [20]:pd.crosstab(diamonds.cut,diamonds.
color,margins='TRUE')
Out[20]:

color D E F G H I J All

cut
Fair 163 224 312 314 303 175 119 1610
Good 662 933 909 871 702 522 307 4906
Ideal 2834 3903 3826 4884 3115 2093 896 21551
Premium 1603 2337 2331 2924 2360 1428 808 13791
Very Good 1513 2400 2164 2299 1824 1204 678 12082
All 6775 9797 9542 11292 8304 5422 2808 53940

Note: We can use dropna to remove missing values in Python, that is, 
diamonds= diamonds.dropna(how='any') 

10)	 We can also pivot data like a pivot table using pivot command.

In [21]:e=diamonds.groupby(['cut', "color"]).price.
median().reset_index()
e.pivot(index='cut', columns='color', 
values='price')
Out[21]:

color D E F G H I J

cut
Fair 3730.0 2956.0 3035 3057.0 3816.0 3246.0 3302
Good 2728.5 2420.0 2647 3340.0 3468.5 3639.5 3733
Ideal 1576.0 1437.0 1775 1857.5 2278.0 2659.0 4096
Premium 2009.0 1928.0 2841 2745.0 4511.0 4640.0 5063
Very Good 2310.0 1989.5 2471 2437.0 3734.0 3888.0 4113

11)	 Using SQL—Python does have the pandasql package, thanks to the team 
at YHat (who also made the Rodeo IDE). It is similar to the sqldf package 
in R that allows the user to write sql queries to the data frame object. Note 
that you need to ensure table names are consistent with SQLite tablename 
conventions (thus it makes sense to drop or rename any column name with 
any special characters).

In [22]:from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())
In [23]:pysqldf("SELECT * FROM diamonds2 LIMIT 5 ; ")

6.8  Data Visualization in R
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Out[23]:

carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
5 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

In [24]:pysqldf("SELECT * FROM diamonds2 WHERE 
carat >4  ;")
Out[24]:

carat cut color clarity depth table price x y z

0 4.01 Premium I I1 61.0 61 15223 10.14 10.10 6.17
1 4.01 Premium J I1 62.5 62 15223 10.02 9.94 6.24
2 4.13 Fair H I1 64.8 61 17329 10.00 9.85 6.43
3 5.01 Fair J I1 65.5 59 18018 10.74 10.54 6.98
4 4.50 Fair J I1 65.8 58 18531 10.23 10.16 6.72

12)	 For data visualization I am going to first use the excellent seaborn 
package  from http://stanford.edu/~mwaskom/software/seaborn/index.
html. Histograms, boxplots, scatterplots, and jointplots are very easily 
plotted using seaborn.

In [25]:sns.distplot(diamonds.price, bins=20, 
kde=True, rug=False);
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In [25]:ax = sns.boxplot(x="color", y="price", 
data=diamonds)
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In [26]:sns.jointplot('price','carat',data=diamonds2)
Out[26]:<seaborn.axisgrid.JointGrid at 0x9717fd8c>
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In [27]:sns.factorplot(x="color", y="price",
 col="cut", data=diamonds, kind="box", size=4, aspect=.5);
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13)	 For data visualization, I can also use the ggplot package created by Yhat 
(who also created pandasql and rodeo—a RStudio style editor for Python). 
It uses the grammar of graphics as created by Wilkinson and popularized 
by Hadley Wickham.

In [28]:p = ggplot(aes(x='price', 
y='carat',color="clarity"), data=diamonds)
p + geom_point()
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Out[28]:<ggplot: (-917530690)>
14)	 For regression models, a widely used data science technique for business, 

I can also use the statsmodel package.

In [80]:import statsmodels.formula.api as sm
In [81]:boston=pd.read_csv("http://
vincentarelbundock.github.io/Rdatasets/csv/MASS/
Boston.csv")
In [82]:boston =boston.drop('Unnamed: 0', 1)
In [83]:boston.head()

6.8  Data Visualization in R
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Out[83]:

crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

0 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
1 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
2 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
3 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
4 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

In [87]:import statsmodels.formula.api as sm
result = sm.ols(formula="medv ~ crim + zn + nox + 
ptratio + black + rm ", data=boston).fit()
result.summary()
Out[87]:

Dep. Variable: medv R‐squared: 0.631
Model: OLS Adj. R‐squared: 0.626
Method: Least Squares F‐statistic: 142.0
Date: Fri, 22 Jan 2016 Prob (F‐statistic): 1.49e–104
Time: 13:22:42 Log‐Likelihood: –1588.2
No. Observations: 506 AIC: 3190.
Df Residuals: 499 BIC: 3220.
Df Model: 6
Covariance Type: nonrobust

coef std err t P>|t| [95.0% Conf. Int.]
Intercept –0.3594 4.863 –0.074 0.941 –9.915 9.196
crim –0.0991 0.034 –2.890 0.004 –0.167 –0.032
zn –0.0064 0.014 –0.470 0.638 –0.033 0.020
nox –10.8653 2.865 –3.793 0.000 –16.494 –5.237
ptratio –1.0519 0.135 –7.796 0.000 –1.317 –0.787
black 0.0137 0.003 4.453 0.000 0.008 0.020
rm 6.9796 0.396 17.612 0.000 6.201 7.758

Omnibus: 298.859 Durbin‐Watson: 0.808
Prob(Omnibus): 0.000 Jarque‐Bera (JB): 3305.426
Skew: 2.385 Prob(JB): 0.00
Kurtosis: 14.577 Cond. No. 7.66e+03

In [88]:result.params
Out[88]:
Intercept	 -0.359432
crim	 -0.099122
zn	 -0.006364
nox	 -10.865295
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ptratio	 -1.051937
black	 0.013737
rm	 6.979587
dtype: float64

15)	 One more thing. For data mining we have the wonderful scikit‐learn 
package. For example, see decision trees from http://scikit‐learn.org/ 
stable/modules/tree.html

16)	 For using both R and Python together, you can use http://beakernotebook.
com/ as it allows you to select kernel specific to each code block, not just 
the whole notebook like Jupyter does and makes passing of objects very 
easy between languages.

A 50‐page elaborate version of this tutorial is available at http://www. 
slideshare.net/ajayohri/a‐data‐science‐tutorial‐in‐python. This tutorial was 
first published on the Wiley web site Statisticsviews.com www.statisticsviews.
com/details/feature/8868901/A‐Tutorial‐on‐Python.html

For data scientists working with huge amounts of data, Python is an  
increasingly credible option to R to try out in production systems.
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7

Machine learning is the buzzword of the decade as students and companies vie 
to get this skill for business applications. However many parts of machine 
learning are quite easy. In supervised learning, we know what we are trying to 
predict (a group to class in classification and a number/equation to predict in 
regression), whereas in unsupervised learning we do not know what is to be 
predicted (no given tag is there), so we do association analysis and cluster 
analysis. Text mining on the other hand looks at frequency of words for pattern 
analysis. Social network analysis looks at relationships between nodes, edges, 
and actors to see how networks behave. Deep learning is an even more recent 
case of such advances in techniques.

One of the most widely used techniques is decision trees.
Decision trees in Python (weather dataset)
https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec 

1ae5b480

#rattle package in R has weather dataset
#(see help at http://artax.karlin.mff.cuni.cz/r‐help/
library/rattle/html/weather.html)

In [259]:
import os as os

In [260]:
import pandas as pd

In [261]:
os.getcwd()

Out[261]:
'/home/ajayohri'

In [262]:
os.listdir()

Machine Learning Made Easier

https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
http://artax.karlin.mff.cuni.cz/r-help/library/rattle/html/weather.html
http://artax.karlin.mff.cuni.cz/r-help/library/rattle/html/weather.html
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Out[262]:
['.hplip',
 '.xsession-errors.old',
 'VirtualBox VMs',
 'filename.pkl_04.npy',
 '.thunderbird',
 'SVM.R',
 'R',
 'Desktop',
 'filename.pkl_07.npy',
 '.cache',
 '.webex',
 'file.R',
 '.ipython',
 'unique_ids_for_list.html',
 'filename.pkl_11.npy',
 '.Xauthority',
 'Dropbox',
 'examples.desktop',
 'machine learning-plot and bagged pima indians.ipynb',
 'date time.ipynb',
 'Untitled.ipynb',
 '.rstudio-desktop',
 'filename.pkl_01.npy',
 'anaconda3',
 '.dropbox',
 'Music',
 '.pki',
 'rsconnect',
 'GoodReads.ipynb',
 '.config',
 'diamsum.html',
 'filename.pkl_06.npy',
 'data inspection .ipynb',
 '.sudo_as_admin_successful',
 '.continuum',
 '.java',
 'unique ids for list.R',
 '.bashrc-anaconda3.bak',
 '.texmf-var',
 'numpy scipy pandas.ipynb',
 'mozilla.pdf',
 '.dropbox-dist',
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 '.bash_logout',
 '.jupyter',
 '.ecryptfs',
 '.dbus',
 '.local',
 '.lyx',
 '.xsession-errors',
 'hebrew',
 'RCommanderMarkdown.Rmd',
 '.bash_history',
 'SAS',
 'nbr2mp4.sh',
 '.adobe',
 '.Skype',
 'filename.pkl_05.npy',
 '.wajig',
 'ajay ohri.odt',
 '.macromedia',
 '.gphoto',
 '.oracle_jre_usage',
 'machine learning-rattle dataset from R.ipynb',
 '.profile',
 'file operations.ipynb',
 'Documents',
 'filename.pkl_09.npy',
 'Videos',
 'RCommander.R',
 'filename.pkl_08.npy',
 '.gstreamer-0.10',
 'SVM.html',
 '.Private',
 'RCommander.txt',
 're for searching strings.ipynb',
 '.Rhistory',
 'filename.pkl_02.npy',
 'RcmdrMarkdown.Rmd',
 'Scikit Tutorial',
 'machine learning.ipynb',
 '.ivy2',
 'assignment2.R',
 'assignment2.html',
 'filename.pkl_03.npy',
 'Public',
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 'nbr2mp4.tar',
 'RcmdrMarkdown.md',
 '.bashrc',
 '.mozilla',
 'Pictures',
 'Data Viz Tutorial.ipynb',
 'filename.pkl_10.npy',
 '.RData',
 '.gconf',
 'data transformations.ipynb',
 'RcmdrMarkdown.html',
 'file.html',
 'Scikit Tutorial.ipynb',
 'Strings, Lists and Maps.ipynb',
 'filename.pkl',
 'weather.csv',
 'Downloads',
 '.gnupg',
 '.nano',
 'variables in strings.ipynb',
 'Templates',
 '.ICEauthority',
 '.ipynb_checkpoints']

In [263]:
#Finding only csv files in a directory using os and 
glob packages

import glob

path = os.getcwd()
extension = 'csv'
os.chdir(path)
result = [i for i in glob.glob('*.{}'.
format(extension))]

print(result)

['weather.csv']

In [264]:
dataframe=pd.read_csv("weather.csv")

In [265]:
dataframe.head()



Out[265]:

Un- 
named:  
0 Date Location

Min  
Temp

Max  
Temp

Rain  
fall

Evapo-
ration

Sun-
shine

Wind 
Gust 
Dir

Wind 
Gust 
Speed …

Humidity 
3 pm

Pressure 
9 am

Pressure 
3 pm

Cloud  
9 am

Cloud 
3 pm

Temp 
9 am

Temp 
3pm

Rain 
Today

RISK_ 
MM

Rain 
Tomorrow

0 1 2007‐11‐01 Canberra 8.0 24.3 0.0 3.4 6.3 NW 30.0 … 29 1019.7 1015.0 7 7 14.4 23.6 No 3.6 Yes

1 2 2007‐11‐02 Canberra 14.0 26.9 3.6 4.4 9.7 ENE 39.0 … 36 1012.4 1008.4 5 3 17.5 25.7 Yes 3.6 Yes

2 3 2007‐11‐03 Canberra 13.7 23.4 3.6 5.8 3.3 NW 85.0 … 69 1009.5 1007.2 8 7 15.4 20.2 Yes 39.8 Yes

3 4 2007‐11‐04 Canberra 13.3 15.5 39.8 7.2 9.1 NW 54.0 … 56 1005.5 1007.0 2 7 13.5 14.1 Yes 2.8 Yes

4 5 2007‐11‐05 Canberra 7.6 16.1 2.8 5.6 10.6 SSE 50.0 … 49 1018.3 1018.5 7 7 11.1 15.4 Yes 0.0 No

5 rows × 25 columns
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In [266]:
dataframe.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 25 columns):
Unnamed: 0       366 non-null int64
Date             366 non-null object
Location         366 non-null object
MinTemp          366 non-null float64
MaxTemp          366 non-null float64
Rainfall         366 non-null float64
Evaporation      366 non-null float64
Sunshine         363 non-null float64
WindGustDir      363 non-null object
WindGustSpeed    364 non-null float64
WindDir9am       335 non-null object
WindDir3pm       365 non-null object
WindSpeed9am     359 non-null float64
WindSpeed3pm     366 non-null int64
Humidity9am      366 non-null int64
Humidity3pm      366 non-null int64

Min Temp Max Temp Rainfall Evaporation Sunshine
Wind Gust 
Speed

Wind Speed 
9 am

Wind Speed 
3 pm

count 366.000000 366.000000 366.000000 366.000000 363.000000 364.000000 359.000000 366.000000
mean 7.265574 20.550273 1.428415 4.521858 7.909366 39.840659 9.651811 17.986339
std 6.025800 6.690516 4.225800 2.669383 3.481517 13.059807 7.951929 8.856997
min −5.300000 7.600000 0.000000 0.200000 0.000000 13.000000 0.000000 0.000000
25% 2.300000 15.025000 0.000000 2.200000 NaN NaN NaN 11.000000
50% 7.450000 19.650000 0.000000 4.200000 NaN NaN NaN 17.000000
75% 12.500000 25.500000 0.200000 6.400000 NaN NaN NaN 24.000000
max 20.900000 35.800000 39.800000 13.800000 13.600000 98.000000 41.000000 52.000000
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Pressure9am      366 non-null float64
Pressure3pm      366 non-null float64
Cloud9am         366 non-null int64
Cloud3pm         366 non-null int64
Temp9am          366 non-null float64
Temp3pm          366 non-null float64
RainToday        366 non-null object
RISK_MM          366 non-null float64
RainTomorrow     366 non-null object
dtypes: float64(12), int64(6), object(7)
memory usage: 71.6+ KB

In [267]:
dataframe=dataframe.drop('Unnamed: 0', 1)

In [268]:
dataframe.describe()
/home/ajayohri/anaconda3/lib/python3.5/site-packages/
numpy/lib/function_base.py:3834: RuntimeWarning: 
Invalid value encountered in percentile
RuntimeWarning)

Out[268]:

Humidity 
9 am

Humidity 
3 pm

Pressure  
9 am

Pressure  
3 pm

Cloud  
9 am

Cloud  
3 pm

Temp  
9 am

Temp  
3 pm RISK_MM

366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000
72.035519 44.519126 1019.709016 1016.810383 3.890710 4.024590 12.358470 19.230874 1.428415
13.137058 16.850947 6.686212 6.469422 2.956131 2.666268 5.630832 6.640346 4.225800
36.000000 13.000000 996.500000 996.800000 0.000000 0.000000 0.100000 5.100000 0.000000
64.000000 32.250000 1015.350000 1012.800000 1.000000 1.000000 7.625000 14.150000 0.000000
72.000000 43.000000 1020.150000 1017.400000 3.500000 4.000000 12.550000 18.550000 0.000000
81.000000 55.000000 1024.475000 1021.475000 7.000000 7.000000 17.000000 24.000000 0.200000
99.000000 96.000000 1035.700000 1033.200000 8.000000 8.000000 24.700000 34.500000 39.800000

In [269]:

7  Machine Learning Made Easier
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dataframe['RainTomorrow'].unique()

Out[269]:
array(['Yes', 'No'], dtype=object)

In [270]:
dataframe['RainToday'].unique()

Out[270]:
array(['No', 'Yes'], dtype=object)

In [271]:
dataframe['Location'].unique()

Out[271]:
array(['Canberra'], dtype=object)

In [272]:
dataframe['Date'].unique()

Out[272]:
array(['2007-11-01', '2007-11-02', '2007-11-03', 
'2007-11-04',

Output truncated by author for publication purposes
       '2008-01-04', '2008-01-05', '2008-01-06', 
'2008-01-07',

         '2008-10-30', '2008-10-31'], dtype=object)

In [273]:
# Bagged Decision Trees for Classification
from sklearn import cross_validation
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [274]:
dataframe.columns

Out[274]:
Index(['Date', 'Location', 'MinTemp', 'MaxTemp', 
'Rainfall', 'Evaporation',
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       'Sunshine', 'WindGustDir', 'WindGustSpeed', 
'WindDir9am', 'WindDir3pm',

       'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 
'Humidity3pm',

       'Pressure9am', 'Pressure3pm', 'Cloud9am', 
'Cloud3pm', 'Temp9am',

       'Temp3pm', 'RainToday', 'RISK_MM', 
'RainTomorrow'],

      dtype='object')

7.1  Deleting Columns We Dont Need in the Final 
Decision Tree Model

In [275]:
del dataframe['Date']

In [276]:
del dataframe['Location']

In [277]:
del dataframe['WindDir9am']

In [278]:
del dataframe['WindSpeed3pm']

In [279]:
del dataframe['WindGustDir']
del dataframe['WindDir3pm']
del dataframe['RISK_MM']

In [280]:
dataframe=dataframe.replace(['Yes', 'No'], [1, 0]) 
#using replace to change string to numeric values

In [281]:
dataframe=dataframe.dropna()

In [282]:
dataframe.head()

Out[282]:
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Min 
Temp

Max 
Temp

Rain-
fall

Evapo-
ration

Sun-
shine

Wind 
Gust 
Speed

Wind 
Speed 
9 am

Humi-
dity 
9 am

Humi-
dity 
3 pm

Pressure 
9 am

Pressure 
3 pm

Cloud 
9 am

Cloud 
3 pm

Temp 
9 am

Temp 
3 pm

Rain 
Today

Rain 
Tomor-
row

0 8.0 24.3 0.0 3.4 6.3 30.0 6.0 68 29 1019.7 1015.0 7 7 14.4 23.6 0 1
1 14.0 26.9 3.6 4.4 9.7 39.0 4.0 80 36 1012.4 1008.4 5 3 17.5 25.7 1 1
2 13.7 23.4 3.6 5.8 3.3 85.0 6.0 82 69 1009.5 1007.2 8 7 15.4 20.2 1 1
3 13.3 15.5 39.8 7.2 9.1 54.0 30.0 62 56 1005.5 1007.0 2 7 13.5 14.1 1 1
4 7.6 16.1 2.8 5.6 10.6 50.0 20.0 68 49 1018.3 1018.5 7 7 11.1 15.4 1 0

In [283]:
len(dataframe)

Out[283]:
354

In [284]:
len(dataframe.columns)

Out[284]:
17

In [285]:
names=dataframe.columns
names

Out[285]:
Index(['MinTemp', 'MaxTemp', 'Rainfall', 
'Evaporation', 'Sunshine',

       'WindGustSpeed', 'WindSpeed9am', 'Humidity9am', 
'Humidity3pm',

       'Pressure9am', 'Pressure3pm', 'Cloud9am', 
'Cloud3pm', 'Temp9am',

       'Temp3pm', 'RainToday', 'RainTomorrow'],
      dtype='object')

In [286]:
dataframe.describe()

Out[286]:

Min Temp Max Temp Rain fall Evaporation Sunshine
Wind Gust 
Speed

Wind Speed 
9 am

Humidity  
9 am

count 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000
mean 7.362429 20.601412 1.420904 4.558192 7.925424 40.011299 9.666667 71.875706
std 6.010927 6.708966 4.235358 2.667877 3.510039 13.034488 7.978489 13.161939
min –5.300000 7.600000 0.000000 0.200000 0.000000 13.000000 0.000000 36.000000
25% 2.400000 15.100000 0.000000 2.400000 5.925000 31.000000 6.000000 64.000000
50% 7.500000 19.750000 0.000000 4.200000 8.650000 39.000000 7.000000 72.000000
75% 12.500000 25.500000 0.200000 6.400000 10.600000 46.000000 13.000000 80.000000
max 20.900000 35.800000 39.800000 13.800000 13.600000 98.000000 41.000000 99.000000
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In [287]:
type(dataframe)

Out[287]:
pandas.core.frame.DataFrame

In [288]:
array = dataframe.values

In [289]:
pd.value_counts(dataframe["RainTomorrow"])

Out[289]:
0    290
1     64
Name: RainTomorrow, dtype: int64

In [290]:
array
Out[290]:
array([[  8. ,  24.3,   0. , ...,  23.6,   0. ,   1. ],
       [ 14. ,  26.9,   3.6, ...,  25.7,   1. ,   1. ],
       [ 13.7,  23.4,   3.6, ...,  20.2,   1. ,   1. ],
       ..., 
       [ 12.5,  19.9,   0. , ...,  18.3,   0. ,   0. ],
       [ 12.5,  26.9,   0. , ...,  25.9,   0. ,   0. ],
       [ 12.3,  30.2,   0. , ...,  28.6,   0. ,   0. ]])

In [291]:
X = array[:,0:16]
Y = array[:,16]
num_folds = 10
num_instances = len(X)
seed = 7

In [292]:
type(X)

Out[292]:

Humidity  
3 pm

Pressure  
9 am

Pressure  
3 pm Cloud 9 am Cloud 3 pm Temp 9 am Temp 3 pm Rain Today

Rain  
Tomorrow

354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000
44.454802 1019.562147 1016.692090 3.920904 4.019774 12.438701 19.271469 0.180791 0.180791
16.944316 6.602685 6.373679 2.962363 2.672312 5.630160 6.663681 0.385390 0.385390
13.000000 996.500000 996.800000 0.000000 0.000000 0.100000 5.100000 0.000000 0.000000
32.000000 1015.225000 1012.725000 1.000000 1.000000 7.725000 14.300000 0.000000 0.000000
43.000000 1020.000000 1017.200000 4.000000 4.000000 12.600000 18.600000 0.000000 0.000000
54.750000 1024.400000 1021.350000 7.000000 7.000000 17.000000 24.000000 0.000000 0.000000
96.000000 1035.700000 1033.200000 8.000000 8.000000 24.700000 34.500000 1.000000 1.000000



numpy.ndarray

In [293]:
X

Out[293]:
array([[  8. ,  24.3,   0. , …,  14.4,  23.6,   0. ],
       [ 14. ,  26.9,   3.6, …,  17.5,  25.7,   1. ],
       [ 13.7,  23.4,   3.6, …,  15.4,  20.2,   1. ],
       ..., 
       [ 12.5,  19.9,   0. , …,  14.5,  18.3,   0. ],
       [ 12.5,  26.9,   0. , …,  15.8,  25.9,   0. ],
       [ 12.3,  30.2,   0. , …,  23.8,  28.6,   0. ]])

In [294]:
#Y[Y == "Yes"] = 1 An alternative way to make a NumPy array change values
#Y[Y == "No"] = 0
Y

Out[294]:
array([ 1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,
        --output truncated by author
        0.,  0.,  0.])

In [295]:
dtr = tree.DecisionTreeRegressor(max_depth=3)
dtr.fit(X, Y)



Out[295]:
DecisionTreeRegressor(criterion='mse', max_depth=3, max_features=None,
           max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, presort=False, random_state=None,
           splitter='best')

In [296]:
# from sklearn.metrics import roc_curve, auc

In [297]:
#!sudo pip install pydotplus
# http://scikit‐learn.org/stable/auto_examples/model_selection/plot_roc.html
# http://machinelearningmastery.com/ensemble‐machine‐learning‐algorithms‐python‐
scikit‐learn/

# http://machinelearningmastery.com/compare‐machine‐learning‐algorithms‐python‐
scikit‐learn/

In [298]:
#!pip freeze
#checking if we have the right packages

In [299]:
#!pip install --upgrade pip

In [300]:
#!pip install pydotplus

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/


In [301]:
import pydotplus as pydot
from IPython.display import Image
from sklearn.externals.six import StringIO

In [302]:
# Graphviz
#sudo add‐apt‐repository ppa:gviz‐adm/graphviz‐dev
# sudo apt‐get update
# http://www.graphviz.org/Download_linux_ubuntu.php

In [303]:
dot_data = StringIO()

In [304]:
tree.export_graphviz(dtr, out_file=dot_data,feature_names=names[:-1])

In [305]:
graph = pydot.graph_from_dot_data(dot_data.getvalue())

In [306]:
Image(graph.create_png())

http://www.graphviz.org/Download_linux_ubuntu.php


Out[306]:

Pressure3pm <= 1011.9
mse = 0.1481
samples = 354
value = 0.1808

Pressure9am <= 1015.2
mse = 0.142
samples = 35

value = 0.1714

Humidity9am <= 93.5
mse = 0.0613
samples = 259
value = 0.0656

Humidity3pm <= 37.0
mse = 0.2461
samples = 16

value = 0.5625

mse = 0.213
samples = 13

value = 0.6923

mse = 0.0
samples = 3
value = 0.0

mse = 0.2367
samples = 13

value = 0.3846

mse = 0.0464
samples = 246
value = 0.0488

mse = 0.25
samples = 6
value = 0.5

mse = 0.0927
samples = 29

value = 0.1034

mse = 0.0
samples = 17
value = 1.0

mse = 0.2469
samples = 27

value = 0.5556

FalseTrue

Cloud3pm <= 7.5
mse = 0.0856
samples = 275
value = 0.0945

Sunshine <= 8.85
mse = 0.2496
samples = 79
value = 0.481

Evaporation <= 5.6
mse = 0.1983
samples = 44

value = 0.7273

In [307]:
kfold = cross_validation.KFold(n=num_instances,  
n_folds=num_folds, random_state=seed)

cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart,  
n_estimators=num_trees, random_state=seed)

In [308]:
model



Out[308]:
BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, 
criterion='gini', max_depth=None,

            max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random_state=None, splitter='best'),
         bootstrap=True, bootstrap_features=False, max_features=1.0,
         max_samples=1.0, n_estimators=100, n_jobs=1, oob_score=False,
         random_state=7, verbose=0, warm_start=False)

In [309]:
kfold

Out[309]:
sklearn.cross_validation.KFold(n=354, n_folds=10, shuffle=False, random_state=7)

In [310]:
results = cross_validation.cross_val_score(model, X, Y, cv=kfold)
print(results.mean())
0.850873015873

In [311]:
results

Out[311]:
array([ 0.75      ,  0.86111111,  0.69444444,  0.88888889,  0.88571429,
        0.82857143,  0.91428571,  0.85714286,  0.94285714,  0.88571429])



Decision trees in Python (2)
https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d

# Bagged Decision Trees for Classification
import pandas
from sklearn import cross_validation
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [2]:
url = "https://archive.ics.uci.edu/ml/machine‐learning‐databases/pima‐indians‐
diabetes/pima‐indians‐diabetes.data"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pandas.read_csv(url, names=names)
array = dataframe.values

In [3]:
names[:-1]

Out[3]:
['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age']

In [4]:
dataframe.head()

https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data


Out[4]:

preg plas pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1

In [5]:
pandas.value_counts(dataframe["class"])

Out[5]:
0    500
1    268
Name: class, dtype: int64

In [6]:
array

Out[6]:
array([[   6.   ,  148.   ,   72.   , ...,    0.627,   50.   ,    1.   ],
       [   1.   ,   85.   ,   66.   , ...,    0.351,   31.   ,    0.   ],
       [   8.   ,  183.   ,   64.   , ...,    0.672,   32.   ,    1.   ],
       ..., 
       [   5.   ,  121.   ,   72.   , ...,    0.245,   30.   ,    0.   ],
       [   1.   ,  126.   ,   60.   , ...,    0.349,   47.   ,    1.   ],
       [   1.   ,   93.   ,   70.   , ...,    0.315,   23.   ,    0.   ]])



In [7]:
X = array[:,0:8]
Y = array[:,8]
num_folds = 10
num_instances = len(X)
seed = 7

In [8]:
type(X)

Out[8]:
numpy.ndarray

In [9]:
X

Out[9]:
array([[   6.   ,  148.   ,   72.   , ...,   33.6  ,    0.627,   50.   ],
       [   1.   ,   85.   ,   66.   , ...,   26.6  ,    0.351,   31.   ],
       [   8.   ,  183.   ,   64.   , ...,   23.3  ,    0.672,   32.   ],
       ..., 
       [   5.   ,  121.   ,   72.   , ...,   26.2  ,    0.245,   30.   ],
       [   1.   ,  126.   ,   60.   , ...,   30.1  ,    0.349,   47.   ],
       [   1.   ,   93.   ,   70.   , ...,   30.4  ,    0.315,   23.   ]])

In [10]:
Y



Out[10]:
array([ 1.,  0.,  1.,  0.,  1.,  0.,  1.,  0.,  1.,  1.,  0.,  1.,  0.,
        1.,  1.,  1.,  1.,  1.,  0.,  1.,  0.,  0.,  1.,  1.,  1.,  1.,
        1.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,
        1.,  0.,  0.,  0.,  1.,  0.,  1.,  0.,  0.,  1.,  0.,  0.,  0.,
        0.,  1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  1.,
        0.,  1.,  0.,  0.,  0.,  1.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,
        1.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,  0.,  0.,
        0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  1.,  1.,  1.,  0.,  0.,  1.,  1.,  1.,
        0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  1.,  1.,
        1.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  1.,  1.,
        0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,
        0.,  1.,  1.,  0.,  0.,  0.,  1.,  0.,  1.,  0.,  1.,  0.,  0.,
        0.,  0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.,  1.,  1.,  0.,
        1.,  0.,  1.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,
        0.,  1.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  1.,  1.,  1.,
        1.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  1.,  1.,  0.,  0.,
        0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  1.,  1.,  0.,  1.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,  1.,
        0.,  1.,  0.,  0.,  1.,  0.,  1.,  0.,  0.,  1.,  1.,  0.,  0.,
        0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,  0.,  0.,  1.,  1.,  0.,
        0.,  1.,  0.,  0.,  0.,  1.,  1.,  1.,  0.,  0.,  1.,  0.,  1.,
        0.,  1.,  1.,  0.,  1.,  0.,  0.,  1.,  0.,  1.,  1.,  0.,  0.,
        1.,  0.,  1.,  0.,  0.,  1.,  0.,  1.,  0.,  1.,  1.,  1.,  0.,
        0.,  1.,  0.,  1.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,



        1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,
        0.,  0.,  0.,  0.,  1.,  1.,  1.,  0.,  1.,  1.,  0.,  0.,  1.,
        0.,  0.,  1.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  1.,  0.,
        0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,  1.,  0.,
        0.,  1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  1.,  1.,  0.,  1.,
        0.,  1.,  0.,  1.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  1.,  1.,
        0.,  1.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  1.,  0.,
        1.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  0.,
        0.,  1.,  1.,  1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.,  0.,
        1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,
        0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,
        0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,
        0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,
        0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  1.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  1.,
        1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  1.,  0.,  1.,  1.,  0.,  0.,  0.,  1.,
        0.,  1.,  0.,  1.,  0.,  1.,  0.,  1.,  0.,  0.,  1.,  0.,  0.,
        1.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  1.,  0.,  0.,  0.,  0.,
        1.,  1.,  0.,  1.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  0.,
        0.,  1.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,  1.,  1.,  0.,
        0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  1.,  0.,  1.,  1.,
        1.,  1.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,
        1.,  0.,  1.,  0.,  0.,  1.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,



        1.,  0.,  1.,  0.,  1.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  1.,
        1.,  0.,  0.,  0.,  1.,  0.,  1.,  1.,  0.,  0.,  1.,  0.,  0.,
        1.,  1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  1.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,
        0.,  0.,  1.,  0.,  0.,  1.,  0.,  1.,  1.,  1.,  0.,  0.,  1.,
        1.,  1.,  0.,  1.,  0.,  1.,  0.,  1.,  0.,  0.,  0.,  0.,  1.,  0.])

In [11]:
dtr = tree.DecisionTreeRegressor(max_depth=3)
dtr.fit(X, Y)

Out[11]:
DecisionTreeRegressor(criterion='mse', max_depth=3, max_features=None,
           max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, presort=False, random_state=None,
           splitter='best')

In [12]:
# from sklearn.metrics import roc_curve, auc

In [13]:
#!sudo pip install pydotplus
# http://scikit‐learn.org/stable/auto_examples/model_selection/plot_roc.html
# http://machinelearningmastery.com/ensemble‐machine‐learning‐algorithms‐python‐
scikit‐learn/

# http://machinelearningmastery.com/compare‐machine‐learning‐algorithms‐python‐
scikit‐learn/

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
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In [14]:
#!pip freeze
#checking if we have the right packages

In [15]:
#!pip install --upgrade pip

In [16]:
#!pip install pydotplus

In [17]:
import pydotplus as pydot
from IPython.display import Image
from sklearn.externals.six import StringIO

In [18]:
# Graphviz
#sudo add‐apt‐repository ppa:gviz‐adm/graphviz‐dev
# sudo apt‐get update
# http://www.graphviz.org/Download_linux_ubuntu.php

In [19]:
dot_data = StringIO()

In [20]:
tree.export_graphviz(dtr, out_file=dot_data, 
feature_names=names[:-1])

In [21]:
graph = pydot.graph_from_dot_data(dot_data.getvalue())

In [22]:
Image(graph.create_png())

http://www.graphviz.org/Download_linux_ubuntu.php


Out[22]:

plas <= 127.5
mse = 0.2272
samples = 768
value = 0.349

plas <= 145.5
mse = 0.2161
samples = 76

value = 0.3158

plas <= 157.5
mse = 0.1995
samples = 207
value = 0.7246

age <= 28.5
mse = 0.1563
samples = 485
value = 0.1938

mass <= 29.95
mse = 0.2368
samples = 283
value = 0.6148

mass <= 26.35
mse = 0.2217
samples = 214
value = 0.3318

mass <= 45.4
mse = 0.0777
samples = 271
value = 0.0849

mse = 0.1875
samples = 4
value = 0.75

mse = 0.0693
samples = 267
value = 0.0749

mse = 0.0464
samples = 41

value = 0.0488

mse = 0.2398
samples = 173
value = 0.3988

mse = 0.1249
samples = 41

value = 0.1463

mse = 0.2498
samples = 35

value = 0.5143

mse = 0.2382
samples = 115
value = 0.6087

mse = 0.1134
samples = 92

value = 0.8696

FalseTrue

In [23]:
kfold = cross_validation.KFold(n=num_instances, n_folds=num_folds, random_state=seed)
cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, 
random_state=seed)



In [24]:
model

Out[24]:
BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, 
criterion='gini', max_depth=None,

            max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random_state=None, splitter='best'),
         bootstrap=True, bootstrap_features=False, max_features=1.0,
         max_samples=1.0, n_estimators=100, n_jobs=1, oob_score=False,
         random_state=7, verbose=0, warm_start=False)

In [25]:
kfold

Out[25]:
sklearn.cross_validation.KFold(n=768, n_folds=10, shuffle=False, random_state=7)

In [26]:
results = cross_validation.cross_val_score(model, X, Y, cv=kfold)
print(results.mean())
0.770745044429

In [27]:
results

Out[27]:
array([ 0.67532468,  0.81818182,  0.75324675,  0.63636364,  0.81818182,
        0.81818182,  0.85714286,  0.85714286,  0.69736842,  0.77631579])
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7.1.1  Decision Trees in R

Decision trees in R can be done through multiple packages. Primary are condi-
tional, traditional, and CHAID.

See http://rpubs.com/newajay/classification and http://rpubs.com/newajay/
partyR

#install.packages("party")
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 
'package:base':

## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
data("iris")
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" 
"Petal.Width" 

## [5] "Species"
fit2 <- ctree(Species ~ Sepal.Length + Petal.Length + 
Sepal.Width ,

              data=iris)

http://rpubs.com/newajay/classification
http://rpubs.com/newajay/partyR
http://rpubs.com/newajay/partyR
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plot(fit2)
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print(fit2)
## 
##   Conditional inference tree with 4 terminal nodes
## 
## Response:  Species 
## Inputs:  Sepal.Length, Petal.Length, Sepal.Width 
## Number of observations:  150 
## 
## 1) Petal.Length <= 1.9; criterion = 1, statistic = 
140.264

##   2)*  weights = 50 
## 1) Petal.Length > 1.9
##   3) Petal.Length <= 4.7; criterion = 1, statistic 
= 61.228

##     4)*  weights = 45 
##   3) Petal.Length > 4.7
##     5) Petal.Length <= 5; criterion = 0.984, 
statistic = 7.701

##       6)*  weights = 13 
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##     5) Petal.Length > 5
##       7)*  weights = 42

nodes(fit2,1)
## [[1]]
## 1) Petal.Length <= 1.9; criterion = 1, statistic = 
140.264

##   2)*  weights = 50 
## 1) Petal.Length > 1.9
##   3) Petal.Length <= 4.7; criterion = 1, statistic 
= 61.228

##     4)*  weights = 45 
##   3) Petal.Length > 4.7
##     5) Petal.Length <= 5; criterion = 0.984, 
statistic = 7.701

##       6)*  weights = 13 
##     5) Petal.Length > 5
##       7)*  weights = 42

nodes(fit2,3)
## [[1]]
## 3) Petal.Length <= 4.7; criterion = 1, statistic = 
61.228

##   4)*  weights = 45 
## 3) Petal.Length > 4.7
##   5) Petal.Length <= 5; criterion = 0.984, statistic 
= 7.701

##     6)*  weights = 13 
##   5) Petal.Length > 5
##     7)*  weights = 42

table(Predict(fit2), iris$Species)
##             
##              setosa versicolor virginica
##   setosa       50        0         0
##   versicolor    0       44         1
##   virginica     0        6        49

#install.packages("randomForest")
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug 
fixes.
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fit3 <- randomForest(Species ~ Sepal.Length + Petal.
Length + Sepal.Width ,

                     data=iris)
print(fit3)
## 
## Call:
##  randomForest(formula = Species ~ Sepal.Length + 
Petal.Length +      Sepal.Width, data = iris) 

##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 1
## 
##         OOB estimate of  error rate: 7.33%
## Confusion matrix:
##            setosa versicolor virginica class.error
## setosa       50        0          0        0.00
## versicolor    0       44          6        0.12
## virginica     0        5         45        0.10

importance(fit3)
##              MeanDecreaseGini
## Sepal.Length         26.45171
## Petal.Length         54.09109
## Sepal.Width          15.53006
# plot(fit3)
varImpPlot(fit3)

Petal.Length

Sepal.Length

Sepal.Width

0 10 20 30

fit3

MeanDecreaseGini

40 50
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iris$predicted.response <- predict(fit3 ,iris)
library(e1071)
#install.packages("caret")
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package: 
random Forest':

## 
##     margin
confusionMatrix(data=iris$predicted.response,
                reference=iris$Species,
                positive='yes')
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa       50        0         0
##   versicolor    0       50         0
##   virginica     0        0        50
## 
## Overall Statistics
##                                      
##                Accuracy : 1          
##                  95% CI : (0.9757, 1)
##     No Information Rate : 0.3333     
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 1          
##  Mcnemar's Test P-Value : NA         
## 
## Statistics by Class:
## 



##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity              1.0000           1.0000           1.0000
## Specificity              1.0000           1.0000           1.0000
## Pos Pred Value           1.0000           1.0000           1.0000
## Neg Pred Value           1.0000           1.0000           1.0000
## Prevalence               0.3333           0.3333           0.3333
## Detection Rate           0.3333           0.3333           0.3333
## Detection Prevalence     0.3333           0.3333           0.3333
## Balanced Accuracy        1.0000           1.0000           1.0000

And

library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
data(iris)
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fit2 <- ctree(Species ~ Sepal.Length + Petal.Length + 
Sepal.Width ,

              data=iris)
plot(fit2)
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table(Predict(fit2), iris$Species)
##             
##              setosa versicolor virginica
##   setosa       50        0         0
##   versicolor    0       44         1
##   virginica     0        6        49
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
fit3 <- randomForest(Species ~ Sepal.Length + Petal.
Length + Sepal.Width ,

                     data=iris)
print(fit3)
## 
## Call:
##  randomForest(formula = Species ~ Sepal.Length + 
Petal.Length +      Sepal.Width, data = iris) 



7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 283

##                Type of random forest: 
classification

##                      Number of trees: 500
## No. of variables tried at each split: 1
## 
##         OOB estimate of error rate: 6.67%
## Confusion matrix:
##            setosa versicolor virginica class.error
## setosa       50        0         0        0.00
## versicolor    0       44         6        0.12
## virginica     0        4        46        0.08
library(e1071)
#install.packages("caret")
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 
'package:randomForest':

## 
##     margin
iris$predicted.response <- predict(fit3 ,iris)
confusionMatrix(data=iris$predicted.response,
                reference=iris$Species,
                positive='yes')
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa       50        0         0
##   versicolor    0       49         0
##   virginica     0        1        50
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9933          
##                  95% CI : (0.9634, 0.9998)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.99            
##  Mcnemar's Test P-Value : NA              
## 



## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity              1.0000          0.9800           1.0000
## Specificity              1.0000          1.0000           0.9900
## Pos Pred Value           1.0000          1.0000           0.9804
## Neg Pred Value           1.0000          0.9901           1.0000
## Prevalence               0.3333          0.3333           0.3333
## Detection Rate           0.3333          0.3267           0.3333
## Detection Prevalence     0.3333          0.3267           0.3400
## Balanced Accuracy        1.0000          0.9900           0.9950
x = iris[,-5]
y = iris$Species

model = train(x,y,'nb',trControl=trainControl(method='cv',number=10))
## Loading required package: klaR
## Loading required package: MASS
model
## Naive Bayes 
## 
## 150 samples
##   5 predictor
##   3 classes: 'setosa', 'versicolor', 'virginica' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 135, 135, 135, 135, 135, 135, ... 



## Resampling results across tuning parameters:
## 
##   usekernel  Accuracy   Kappa
##   FALSE      0.9866667  0.98 
##    TRUE      0.9800000  0.97 
## 
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
##  parameter 'adjust' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = FALSE
##  and adjust = 1.
predict(model$finalModel,x)
## $class
##   [1] setosa     setosa     setosa     setosa     setosa     setosa    
##   [7] setosa     setosa     setosa     setosa     setosa     setosa    
##  [13] setosa     setosa     setosa     setosa     setosa     setosa    
##  [19] setosa     setosa     setosa     setosa     setosa     setosa    
##  [25] setosa     setosa     setosa     setosa     setosa     setosa    
##  [31] setosa     setosa     setosa     setosa     setosa     setosa    
##  [37] setosa     setosa     setosa     setosa     setosa     setosa    
##  [43] setosa     setosa     setosa     setosa     setosa     setosa    
##  [49] setosa     setosa     versicolor versicolor versicolor versicolor
##  [55] versicolor versicolor versicolor versicolor versicolor versicolor
##  [61] versicolor versicolor versicolor versicolor versicolor versicolor
##  [67] versicolor versicolor versicolor versicolor versicolor versicolor
##  [73] versicolor versicolor versicolor versicolor versicolor versicolor



##  [79] versicolor versicolor versicolor versicolor versicolor virginica 
##  [85] versicolor versicolor versicolor versicolor versicolor versicolor
##  [91] versicolor versicolor versicolor versicolor versicolor versicolor
##  [97] versicolor versicolor versicolor versicolor virginica  virginica 
## [103] virginica  virginica  virginica  virginica  virginica  virginica 
## [109] virginica  virginica  virginica  virginica  virginica  virginica 
## [115] virginica  virginica  virginica  virginica  virginica  virginica 
## [121] virginica  virginica  virginica  virginica  virginica  virginica 
## [127] virginica  virginica  virginica  virginica  virginica  virginica 
## [133] virginica  virginica  virginica  virginica  virginica  virginica 
## [139] virginica  virginica  virginica  virginica  virginica  virginica 
## [145] virginica  virginica  virginica  virginica  virginica  virginica 
## Levels: setosa versicolor virginica
## 
## $posterior
##               setosa   versicolor    virginica
##   [1,]  1.000000e+00 2.981309e-21 2.152373e-28
##   [2,]  1.000000e+00 3.169312e-20 6.938030e-28
##   [3,]  1.000000e+00 2.367113e-21 7.240956e-29
##   [4,]  1.000000e+00 3.069606e-20 8.690636e-28
##   [5,]  1.000000e+00 1.017337e-21 8.885794e-29
##   [6,]  1.000000e+00 2.717732e-17 4.344285e-24
##   [7,]  1.000000e+00 2.321639e-20 7.988271e-28
##   [8,]  1.000000e+00 1.390751e-20 8.166995e-28
##   [9,]  1.000000e+00 1.990156e-20 3.606469e-28
##  [10,]  1.000000e+00 7.378931e-21 3.615492e-28
##  [11,]  1.000000e+00 9.396089e-21 1.474623e-27
##  [12,]  1.000000e+00 3.461964e-20 2.093627e-27
##  [13,]  1.000000e+00 2.804520e-21 1.010192e-28
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##  [14,]  1.000000e+00 1.799033e-22 6.060578e-30
##  [15,]  1.000000e+00 5.533879e-22 2.485033e-28
##  [16,]  1.000000e+00 6.273863e-20 4.509864e-26
##  [17,]  1.000000e+00 1.106658e-19 1.282419e-26
##  [18,]  1.000000e+00 4.841773e-20 2.350011e-27
##  [19,]  1.000000e+00 1.126175e-17 2.567180e-24
##  [20,]  1.000000e+00 1.808513e-20 1.963924e-27
##  [21,]  1.000000e+00 2.178382e-18 2.013989e-25
##  [22,]  1.000000e+00 1.210057e-18 7.788592e-26
##  [23,]  1.000000e+00 4.535220e-23 3.130074e-30
##  [24,]  1.000000e+00 3.147327e-14 8.175305e-22
##  [25,]  1.000000e+00 1.838507e-17 1.553757e-24
##  [26,]  1.000000e+00 6.873990e-19 1.830374e-26
##  [27,]  1.000000e+00 3.192598e-17 1.045146e-24
##  [28,]  1.000000e+00 1.542562e-20 1.274394e-27
##  [29,]  1.000000e+00 8.833285e-21 5.368077e-28
##  [30,]  1.000000e+00 9.557935e-20 3.652571e-27
##  [31,]  1.000000e+00 2.166837e-19 6.730536e-27
##  [32,]  1.000000e+00 3.940500e-17 1.546678e-24
##  [33,]  1.000000e+00 1.609092e-23 1.013278e-29
##  [34,]  1.000000e+00 7.222217e-23 4.261853e-29
##  [35,]  1.000000e+00 6.289348e-20 1.831694e-27
##  [36,]  1.000000e+00 2.850926e-21 8.874002e-29
##  [37,]  1.000000e+00 7.746279e-21 7.235628e-28
##  [38,]  1.000000e+00 8.623934e-23 1.223633e-29
##  [39,]  1.000000e+00 4.612936e-21 9.655450e-29
##  [40,]  1.000000e+00 2.009325e-20 1.237755e-27
##  [41,]  1.000000e+00 1.300634e-20 5.657689e-28
##  [42,]  1.000000e+00 1.577617e-18 5.717219e-27
##  [43,]  1.000000e+00 1.494911e-21 4.800333e-29
##  [44,]  1.000000e+00 1.076475e-13 3.721344e-21
##  [45,]  1.000000e+00 1.357569e-15 1.708326e-22
##  [46,]  1.000000e+00 3.882113e-19 5.587814e-27
##  [47,]  1.000000e+00 5.086735e-21 8.960156e-28
##  [48,]  1.000000e+00 5.012793e-21 1.636566e-28
##  [49,]  1.000000e+00 5.717245e-21 8.231337e-28
##  [50,]  1.000000e+00 7.713456e-21 3.349997e-28
##  [51,] 6.225045e-110 9.997479e-01 2.520714e-04
##  [52,] 8.570847e-103 9.999382e-01 6.175742e-05
##  [53,] 1.215697e-123 9.988066e-01 1.193433e-03
##  [54,]  1.152529e-72 1.000000e+00 3.867457e-08
##  [55,] 1.581871e-108 9.999467e-01 5.331762e-05
##  [56,]  1.972563e-92 9.999990e-01 1.020052e-06
##  [57,] 7.022043e-116 9.994729e-01 5.271422e-04
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##  [58,]  2.601790e-37 1.000000e+00 3.183182e-10
##  [59,] 6.767475e-100 9.999892e-01 1.078777e-05
##  [60,]  5.102801e-72 9.999999e-01 1.093625e-07
##  [61,]  7.504643e-44 1.000000e+00 3.208078e-10
##  [62,]  4.917431e-89 9.999958e-01 4.245756e-06
##  [63,]  4.725838e-63 1.000000e+00 7.695236e-09
##  [64,] 1.089964e-106 9.999846e-01 1.544774e-05
##  [65,]  4.887696e-58 1.000000e+00 3.060696e-08
##  [66,]  1.579126e-95 9.999779e-01 2.214465e-05
##  [67,] 1.379538e-100 9.999896e-01 1.037882e-05
##  [68,]  2.067506e-65 1.000000e+00 2.048320e-08
##  [69,] 6.720035e-104 9.999940e-01 5.953299e-06
##  [70,]  3.077859e-61 1.000000e+00 8.918403e-09
##  [71,] 6.643323e-130 9.947081e-01 5.291896e-03
##  [72,]  1.273962e-73 9.999998e-01 2.303272e-07
##  [73,] 3.635930e-122 9.999168e-01 8.322850e-05
##  [74,]  1.343761e-98 9.999979e-01 2.106614e-06
##  [75,]  3.069700e-86 9.999982e-01 1.764714e-06
##  [76,]  2.623805e-95 9.999861e-01 1.392484e-05
##  [77,] 1.747438e-114 9.998994e-01 1.006309e-04
##  [78,] 8.854376e-138 9.883852e-01 1.161480e-02
##  [79,] 5.212805e-102 9.999850e-01 1.501794e-05
##  [80,]  1.468423e-44 1.000000e+00 1.634262e-09
##  [81,]  1.277115e-57 1.000000e+00 4.592000e-09
##  [82,]  8.948524e-51 1.000000e+00 1.778126e-09
##  [83,]  3.517650e-65 1.000000e+00 3.430714e-08
##  [84,] 2.726206e-135 3.076150e-02 9.692385e-01
##  [85,] 4.238525e-100 9.999916e-01 8.405606e-06
##  [86,] 1.332644e-105 9.998521e-01 1.478728e-04
##  [87,] 2.875899e-113 9.997405e-01 2.595475e-04
##  [88,]  4.973519e-91 9.999993e-01 7.170422e-07
##  [89,]  2.070566e-75 9.999998e-01 2.429045e-07
##  [90,]  2.273490e-72 9.999999e-01 5.500821e-08
##  [91,]  5.215785e-84 9.999998e-01 1.520450e-07
##  [92,] 5.960938e-102 9.999882e-01 1.182936e-05
##  [93,]  5.251986e-69 1.000000e+00 4.173171e-08
##  [94,]  1.360017e-37 1.000000e+00 2.771698e-10
##  [95,]  6.219736e-80 9.999998e-01 2.006854e-07
##  [96,]  1.453599e-75 9.999998e-01 1.800789e-07
##  [97,]  8.474883e-80 9.999997e-01 3.376164e-07
##  [98,]  1.875115e-85 9.999988e-01 1.164505e-06
##  [99,]  5.826890e-33 1.000000e+00 3.157898e-10
## [100,]  4.078752e-76 9.999998e-01 1.832703e-07
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## [101,] 3.993755e-252 2.062063e-12 1.000000e+00
## [102,] 1.262363e-152 5.598282e-04 9.994402e-01
## [103,] 2.460661e-219 4.654977e-09 1.000000e+00
## [104,] 2.871277e-176 4.592219e-05 9.999541e-01
## [105,] 8.299887e-217 6.350771e-09 1.000000e+00
## [106,] 1.371182e-270 7.614910e-12 1.000000e+00
## [107,] 7.258155e-109 4.096782e-01 5.903218e-01
## [108,] 3.741935e-227 3.564099e-08 1.000000e+00
## [109,] 5.567821e-191 1.165303e-05 9.999883e-01
## [110,] 2.052443e-263 4.923323e-14 1.000000e+00
## [111,] 8.673566e-162 9.795170e-06 9.999902e-01
## [112,] 4.233346e-166 6.357027e-05 9.999364e-01
## [113,] 4.360086e-193 1.246172e-07 9.999999e-01
## [114,] 6.229150e-154 2.887102e-04 9.997113e-01
## [115,] 2.201429e-189 2.786497e-08 1.000000e+00
## [116,] 2.949946e-194 1.225678e-08 1.000000e+00
## [117,] 2.915226e-171 4.314790e-05 9.999569e-01
## [118,] 1.347608e-284 5.745992e-14 1.000000e+00
## [119,] 2.786402e-309 2.302938e-14 1.000000e+00
## [120,] 3.307637e-125 3.037334e-01 6.962666e-01
## [121,] 2.194169e-220 3.424331e-10 1.000000e+00
## [122,] 3.376038e-148 3.083326e-04 9.996917e-01
## [123,] 6.251357e-272 2.341745e-11 1.000000e+00
## [124,] 5.094321e-138 3.139418e-03 9.968606e-01
## [125,] 6.315724e-204 2.601027e-08 1.000000e+00
## [126,] 5.257396e-206 1.901615e-07 9.999998e-01
## [127,] 1.851587e-132 5.186340e-03 9.948137e-01
## [128,] 9.865968e-137 2.542930e-03 9.974571e-01
## [129,] 5.230872e-197 2.791477e-07 9.999997e-01
## [130,] 7.020556e-182 1.647833e-05 9.999835e-01
## [131,] 6.306827e-221 2.428996e-08 1.000000e+00
## [132,] 2.539020e-250 9.337782e-12 1.000000e+00
## [133,] 2.210816e-204 4.000640e-08 1.000000e+00
## [134,] 3.732889e-131 4.709186e-02 9.529081e-01
## [135,] 1.561444e-153 1.886075e-02 9.811392e-01
## [136,] 7.419068e-252 2.896100e-12 1.000000e+00
## [137,] 1.004503e-218 1.948671e-10 1.000000e+00
## [138,] 1.349608e-170 4.383372e-05 9.999562e-01
## [139,] 2.480958e-131 4.974797e-03 9.950252e-01
## [140,] 8.440522e-188 1.353834e-07 9.999999e-01
## [141,] 2.334365e-221 1.491244e-10 1.000000e+00
## [142,] 2.179140e-186 1.270533e-08 1.000000e+00
## [143,] 1.262363e-152 5.598282e-04 9.994402e-01



## [144,] 3.426814e-232 1.319403e-10 1.000000e+00
## [145,] 2.011574e-235 5.241271e-12 1.000000e+00
## [146,] 1.078519e-190 1.583110e-08 1.000000e+00
## [147,] 1.091014e-149 5.695800e-04 9.994304e-01
## [148,] 1.847697e-167 8.800598e-06 9.999912e-01
## [149,] 1.439996e-198 6.768314e-09 1.000000e+00
## [150,] 2.944253e-146 1.272237e-03 9.987278e-01
table(predict(model$finalModel,x)$class,y)
##             y
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         49         0
##   virginica       0          1        50
naive_iris <- NaiveBayes(iris$Species ~ ., data = iris)
#plot(naive_iris)
library(rpart)
fit4 <- rpart(Species ~ Sepal.Length + Petal.Length + Sepal.Width ,
                     data=iris,method = "class")
print(fit4)
## n= 150 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
## 1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)  
##   2) Petal.Length< 2.45 50   0 setosa (1.00000000 0.00000000 0.00000000) *
##   3) Petal.Length>=2.45 100  50 versicolor (0.00000000 0.50000000 0.50000000)  



##     6) Petal.Length< 4.75 45   1 versicolor (0.00000000 0.97777778 0.02222222) *
##     7) Petal.Length>=4.75 55   6 virginica (0.00000000 0.10909091 0.89090909) *
library(rattle)
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.

fancyRpartPlot(fit4)
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#rest models are in http://rpubs.com/newajay/chaid

#SOURCE https://sites.google.com/site/kittipat/rtechniques/usingchaiddecisiontreeinr

#install.packages("CHAID", repos="http://R‐Forge. 
R‑project.org") 

library("CHAID")
## Loading required package: partykit
## 
## Attaching package: 'partykit'
## The following objects are masked from 'package:party':
## 
##     cforest, ctree, ctree_control, edge_simple, mob, mob_control,
##     node_barplot, node_bivplot, node_boxplot, node_inner,
##     node_surv, node_terminal
data(iris)
str(iris)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 
...

ctrl <- chaid:control(minsplit = 20, minbucket = 5, minprob = 0)

http://rpubs.com/newajay/chaid
https://sites.google.com/site/kittipat/rtechniques/usingchaiddecisiontreeinr
http://R-Forge.R-project.org
http://R-Forge.R-project.org


iris=lapply(iris,as.factor)
chaidiris <- chaid(Species ~ Sepal.Length + Petal.Length + Sepal.Width + Petal.Width ,
                   data=iris, control = ctrl)

print(chaidiris)
## 
## Model formula:
## Species ~ Sepal.Length + Petal.Length + Sepal.Width + Petal.Width
## 
## Fitted party:
## [1] root
## |   [2] Petal.Width in 0.1, 0.2, 0.3, 0.4, 0.5, 0.6: setosa (n = 50, err = 0.0%)
## |   [3] Petal.Width in 1, 1.1, 1.2, 1.3: versicolor (n = 28, err = 0.0%)
## |   [4] Petal.Width in 1.4, 1.5, 1.6, 1.7: versicolor (n = 26, err = 19.2%)
## |   [5] Petal.Width in 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5: virginica (n = 46, 
err = 2.2%)

## 
## Number of inner nodes:    1
## Number of terminal nodes: 4
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7.2  Time Series

Time series forecasting is very easily done in R thanks to auto.arima in 
forecast package. In Python it is not automated so easily though statsmod-
els has libraries for it. The reader is thus advised to forecast in R and then 
apply model in Python.

R Code from http://rpubs.com/newajay/ts

data("AirPassengers")
library(forecast)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 
'package:base':

## 
##     as.Date, as.Date.numeric
## Loading required package: timeDate
## This is forecast 7.3
ts.plot(AirPassengers)
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decompose(AirPassengers)
## $x
##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1949 112 118 132 129 121 135 148 148 136 119 104 118
## 1950 115 126 141 135 125 149 170 170 158 133 114 140
## 1951 145 150 178 163 172 178 199 199 184 162 146 166
## 1952 171 180 193 181 183 218 230 242 209 191 172 194
## 1953 196 196 236 235 229 243 264 272 237 211 180 201
## 1954 204 188 235 227 234 264 302 293 259 229 203 229
## 1955 242 233 267 269 270 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306
## 1957 315 301 356 348 355 422 465 467 404 347 305 336
## 1958 340 318 362 348 363 435 491 505 404 359 310 337
## 1959 360 342 406 396 420 472 548 559 463 407 362 405
## 1960 417 391 419 461 472 535 622 606 508 461 390 432
## 
## $seasonal
##           Jan        Feb        Mar        Apr        May        Jun
## 1949 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1950 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1951 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1952 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1953 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1954 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1955 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1956 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1957 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1958 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778



## 1959 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
## 1960 -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
##            Jul        Aug        Sep        Oct        Nov        Dec
## 1949  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1950  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1951  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1952  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1953  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1954  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1955  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1956  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1957  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1958  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1959  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 1960  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 
## $trend
##             Jan      Feb      Mar      Apr      May      Jun      Jul
## 1949       NA       NA       NA       NA       NA       NA 126.7917
## 1950 131.2500 133.0833 134.9167 136.4167 137.4167 138.7500 140.9167
## 1951 157.1250 159.5417 161.8333 164.1250 166.6667 169.0833 171.2500
## 1952 183.1250 186.2083 189.0417 191.2917 193.5833 195.8333 198.0417
## 1953 215.8333 218.5000 220.9167 222.9167 224.0833 224.7083 225.3333
## 1954 228.0000 230.4583 232.2500 233.9167 235.6250 237.7500 240.5000
## 1955 261.8333 266.6667 271.1250 275.2083 278.5000 281.9583 285.7500
## 1956 309.9583 314.4167 318.6250 321.7500 324.5000 327.0833 329.5417
## 1957 348.2500 353.0000 357.6250 361.3750 364.5000 367.1667 369.4583
## 1958 375.2500 377.9167 379.5000 380.0000 380.7083 380.9583 381.8333
## 1959 402.5417 407.1667 411.8750 416.3333 420.5000 425.5000 430.7083



## 1960 456.3333 461.3750 465.2083 469.3333 472.7500 475.0417       NA
##             Aug      Sep      Oct      Nov      Dec
## 1949 127.2500 127.9583 128.5833 129.0000 129.7500
## 1950 143.1667 145.7083 148.4167 151.5417 154.7083
## 1951 173.5833 175.4583 176.8333 178.0417 180.1667
## 1952 199.7500 202.2083 206.2500 210.4167 213.3750
## 1953 225.3333 224.9583 224.5833 224.4583 225.5417
## 1954 243.9583 247.1667 250.2500 253.5000 257.1250
## 1955 289.3333 293.2500 297.1667 301.0000 305.4583
## 1956 331.8333 334.4583 337.5417 340.5417 344.0833
## 1957 371.2083 372.1667 372.4167 372.7500 373.6250
## 1958 383.6667 386.5000 390.3333 394.7083 398.6250
## 1959 435.1250 437.7083 440.9583 445.8333 450.6250
## 1960       NA       NA       NA       NA       NA
## 
## $random
##            Jan         Feb         Mar         Apr         May
## 1949          NA          NA          NA          NA          NA
## 1950   8.4987374  29.1047980   8.3244949   6.6199495  -7.9103535
## 1951  12.6237374  26.6464646  18.4078283   6.9116162   9.8396465
## 1952  12.6237374  29.9797980   6.1994949  -2.2550505  -6.0770202
## 1953   4.9154040  13.6881313  17.3244949  20.1199495   9.4229798
## 1954   0.7487374  -6.2702020   4.9911616   1.1199495   2.8813131
## 1955   4.9154040   2.5214646  -1.8838384   1.8282828  -3.9936869
## 1956  -1.2095960  -1.2285354   0.6161616  -0.7133838  -1.9936869
## 1957  -8.5012626 -15.8118687   0.6161616  -5.3383838  -4.9936869
## 1958 -10.5012626 -23.7285354 -15.2588384 -23.9633838 -13.2020202
## 1959 -17.7929293 -28.9785354  -3.6338384 -12.2967172   4.0063131
## 1960 -14.5845960 -34.1868687 -43.9671717  -0.2967172   3.7563131



##            Jun         Jul         Aug         Sep         Oct
## 1949          NA -42.6224747 -42.0732323  -8.4785354  11.0593434
## 1950 -25.1527778 -34.7474747 -35.9898990  -4.2285354   5.2260101
## 1951 -26.4861111 -36.0808081 -37.4065657  -7.9785354   5.8093434
## 1952 -13.2361111 -31.8724747 -20.5732323  -9.7285354   5.3926768
## 1953 -17.1111111 -25.1641414 -16.1565657  -4.4785354   7.0593434
## 1954  -9.1527778  -2.3308081 -13.7815657  -4.6868687  -0.6073232
## 1955  -2.3611111  14.4191919  -5.1565657   2.2297980  -2.5239899
## 1956  11.5138889  19.6275253  10.3434343   4.0214646 -10.8989899
## 1957  19.4305556  31.7108586  32.9684343  15.3131313  -4.7739899
## 1958  18.6388889  45.3358586  58.5101010   0.9797980 -10.6906566
## 1959  11.0972222  53.4608586  61.0517677   8.7714646 -13.3156566
## 1960  24.5555556          NA          NA          NA          NA
##            Nov        Dec
## 1949  28.5934343  16.8699495
## 1950  16.0517677  13.9116162
## 1951  21.5517677  14.4532828
## 1952  15.1767677   9.2449495
## 1953   9.1351010   4.0782828
## 1954   3.0934343   0.4949495
## 1955 -10.4065657   1.1616162
## 1956 -15.9482323  -9.4633838
## 1957 -14.1565657  -9.0050505
## 1958 -31.1148990 -33.0050505
## 1959 -30.2398990 -17.0050505
## 1960          NA          NA
## 



## $figure
##  [1] -24.748737 -36.188131  -2.241162  -8.036616  -4.506313  35.402778
##  [7]  63.830808  62.823232  16.520202 -20.642677 -53.593434 -28.619949
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(decompose(AirPassengers))
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b=auto.arima(AirPassengers)
forecast(b,24)
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Jan 1961       446.7582 431.6858 461.8306 423.7070 469.8094
## Feb 1961       420.7582 402.5180 438.9984 392.8622 448.6542
## Mar 1961       448.7582 427.8241 469.6923 416.7423 480.7741
## Apr 1961       490.7582 467.4394 514.0770 455.0952 526.4212
## May 1961       501.7582 476.2770 527.2395 462.7880 540.7284
## Jun 1961       564.7582 537.2842 592.2323 522.7403 606.7761
## Jul 1961       651.7582 622.4264 681.0900 606.8991 696.6173
## Aug 1961       635.7582 604.6796 666.8368 588.2275 683.2889
## Sep 1961       537.7582 505.0258 570.4906 487.6983 587.8181
## Oct 1961       490.7582 456.4516 525.0648 438.2908 543.2256
## Nov 1961       419.7582 383.9466 455.5698 364.9891 474.5273
## Dec 1961       461.7582 424.5023 499.0141 404.7803 518.7361
## Jan 1962       476.5164 431.4567 521.5761 407.6036 545.4292
## Feb 1962       450.5164 400.9938 500.0390 374.7781 526.2547
## Mar 1962       478.5164 424.9010 532.1318 396.5188 560.5141
## Apr 1962       520.5164 463.0993 577.9335 432.7045 608.3283
## May 1962       531.5164 470.5341 592.4987 438.2520 624.7808
## Jun 1962       594.5164 530.1661 658.8667 496.1011 692.9317
## Jul 1962       681.5164 613.9659 749.0670 578.2068 784.8261
## Aug 1962       665.5164 594.9105 736.1223 557.5340 773.4988
## Sep 1962       567.5164 493.9820 641.0508 455.0552 679.9776
## Oct 1962       520.5164 444.1657 596.8671 403.7481 637.2847
## Nov 1962       449.5164 370.4497 528.5831 328.5943 570.4385
## Dec 1962       491.5164 409.8239 573.2089 366.5785 616.4543
plot(forecast(b,24))
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7.3  Association Analysis

Association analysis is widely used in e‐commerce websites (which products 
sell well together), as well as areas like retail (keeping products that sell well 
together placed together), healthcare, telecom (which are value‐added services 
to bundle), and many others.

Example database with four items and five transactions

Transaction ID Milk Bread Butter Beer

1 1 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 0 0

●● The item set (milk,bread‐>butter) has a support of 20% since it occurs in 20% 
of all transactions (1 out of 5 transactions). Support is an indication of how 
frequently the item set appears.

●● The item set (milk,bread‐>butter) has a confidence of 50% since it occurs in 
50% of all such transactions (1 out of 2 transactions). Confidence is an indi-
cation of how often the rule has been found to be true.

●● Lift would be = 0.2/0.4*0.4 = 1.25. Lift considers both the confidence of the 
rule and the overall data.
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The basic theoretical framework came from this paper: Fast Algorithms for

Mining Association Rules at http://rakesh.agrawal‐family.com/papers/
vldb94apriori.pdf

You can see some datasets for association analysis at Frequent Itemset Mining 
Dataset Repository: http://fimi.ua.ac.be/data/.

Again association analysis is very easy in R due to a rules package and 
difficult to find in Python package landscape. (See https://github.com/ 
scikit‐learn/scikit‐learn/issues/2872 and https://github.com/scikit‐learn/
scikit‐learn/issues/2662 for the reasons scikit‐learn won’t be able to accept 
it.) One possible solution is PyFIM (Frequent Item Sets) available at http://
www.borgelt.net/pyfim.html.

In R here is some code to show how easy it is: http://rpubs.com/newajay/
associationanalysis.

library(rattle)
## Rattle: A free graphical interface for data mining 
with R.

## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty 
Ltd.

## Type 'rattle()' to shake, rattle, and roll your data.
#rattle()
#install.packages("arulesViz")
library(arulesViz)
## Loading required package: arules
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following objects are masked from 
'package:base':

## 
##     abbreviate, write
## Loading required package: grid
## Warning: failed to assign NativeSymbolInfo for lhs 
since lhs is already

## defined in the 'lazyeval' namespace
## Warning: failed to assign NativeSymbolInfo for rhs 
since rhs is already

## defined in the 'lazyeval' namespace
data(Groceries)
str(Groceries)

http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://fimi.ua.ac.be/data/
https://github.com/scikit-learn/scikit-learn/issues/2872
https://github.com/scikit-learn/scikit-learn/issues/2872
https://github.com/scikit-learn/scikit-learn/issues/2662
https://github.com/scikit-learn/scikit-learn/issues/2662
http://www.borgelt.net/pyfim.html
http://www.borgelt.net/pyfim.html
http://rpubs.com/newajay/associationanalysis
http://rpubs.com/newajay/associationanalysis


## Formal class 'transactions' [package "arules"] with 3 slots
##   ..@ data       :Formal class 'ngCMatrix' [package "Matrix"] with 5 slots
##   .. .. ..@ i       : int [1:43367] 13 60 69 78 14 29 98 24 15 29 ...
##   .. .. ..@ p       : int [1:9836] 0 4 7 8 12 16 21 22 27 28 ...
##   .. .. ..@ Dim     : int [1:2] 169 9835
##   .. .. ..@ Dimnames:List of 2
##   .. .. .. ..$ : NULL
##   .. .. .. ..$ : NULL
##   .. .. ..@ factors : list()
##   ..@ itemInfo   :'data.frame':  169 obs. of  3 variables:
##   .. ..$ labels: chr [1:169] "frankfurter" "sausage" "liver loaf" "ham" ...
##   .. ..$ level2: Factor w/ 55 levels "baby food","bags",..: 44 44 44 44 44 44 44 
42 42 41 ...

##   .. ..$ level1: Factor w/ 10 levels "canned food",..: 6 6 6 6 6 6 6 6 6 6 ...
##   ..@ itemsetInfo:'data.frame':  0 obs. of  0 variables
summary(Groceries)
## transactions as itemMatrix in sparse format with
##  9835 rows (elements/itemsets/transactions) and
##  169 columns (items) and a density of 0.02609146 
## 
## most frequent items:
##       whole milk other vegetables       rolls/buns         soda 
##             2513             1903             1809         1715 
##           yogurt          (Other) 
##             1372            34055 
## 
## element (itemset/transaction) length distribution:
## sizes



##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
## 2159 1643 1299 1005  855  645  545  438  350  246  182  117   78   77   55 
##   16   17   18   19   20   21   22   23   24   26   27   28   29   32 
##   46   29   14   14    9   11    4    6    1    1    1    1    3    1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   3.000   4.409   6.000  32.000 
## 
## includes extended item information - examples:
##        labels  level2           level1
## 1 frankfurter sausage meat and sausage
## 2     sausage sausage meat and sausage
## 3  liver loaf sausage meat and sausage
itemFrequencyPlot(Groceries,topN=20,type="absolute")
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rules <- apriori(Groceries, parameter=list(support=0.01, confidence=0.5))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.5    0.1    1 none FALSE            TRUE       5    0.01      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 98 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [88 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [15 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(rules)
## set of 15 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3 



## 15 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support          confidence          lift      
##  Min.   :0.01007   Min.   :0.5000   Min.   :1.984  
##  1st Qu.:0.01174   1st Qu.:0.5151   1st Qu.:2.036  
##  Median :0.01230   Median :0.5245   Median :2.203  
##  Mean   :0.01316   Mean   :0.5411   Mean   :2.299  
##  3rd Qu.:0.01403   3rd Qu.:0.5718   3rd Qu.:2.432  
##  Max.   :0.02227   Max.   :0.5862   Max.   :3.030  
## 
## mining info:
##       data ntransactions support confidence
##  Groceries          9835    0.01        0.5
inspect(head(sort(rules, by ="lift"),10))
##      lhs                     rhs                   support confidence     lift
## [1]  {citrus fruit,                                                           
##       root vegetables}    => {other vegetables} 0.01037112  0.5862069 3.029608
## [2]  {tropical fruit,                                                         
##       root vegetables}    => {other vegetables} 0.01230300  0.5845411 3.020999
## [3]  {root vegetables,                                                        
##       rolls/buns}         => {other vegetables} 0.01220132  0.5020921 2.594890
## [4]  {root vegetables,                                                        
##       yogurt}             => {other vegetables} 0.01291307  0.5000000 2.584078



## [5]  {curd,                                                                   
##       yogurt}             => {whole milk}       0.01006609  0.5823529 2.279125
## [6]  {other vegetables,                                                       
##       butter}             => {whole milk}       0.01148958  0.5736041 2.244885
## [7]  {tropical fruit,                                                         
##       root vegetables}    => {whole milk}       0.01199797  0.5700483 2.230969
## [8]  {root vegetables,                                                        
##       yogurt}             => {whole milk}       0.01453991  0.5629921 2.203354
## [9]  {other vegetables,                                                       
##       domestic eggs}      => {whole milk}       0.01230300  0.5525114 2.162336
## [10] {yogurt,                                                                 
##       whipped/sour cream} => {whole milk}       0.01087951  0.5245098 2.052747
plot(rules, method="graph")

Graph for 15 rules

curd
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size: support (0.01 - 0.022)
color: lift (1.984 - 3.03)
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library(arulesViz)
data(Groceries)
summary(Groceries)
## transactions as itemMatrix in sparse format with
##  9835 rows (elements/itemsets/transactions) and
##  169 columns (items) and a density of 0.02609146 
## 
## most frequent items:
##       whole milk other vegetables       rolls/buns      soda 
##             2513             1903             1809      1715 
##           yogurt          (Other) 
##             1372            34055 
## 
## element (itemset/transaction) length distribution:
## sizes
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
## 2159 1643 1299 1005  855  645  545  438  350  246  182  117   78   77   55 
##   16   17   18   19   20   21   22   23   24   26   27   28   29   32 
##   46   29   14   14    9   11    4    6    1    1    1    1    3    1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   3.000   4.409   6.000  32.000 
## 
## includes extended item information - examples:
##        labels  level2           level1
## 1 frankfurter sausage meat and sausage
## 2     sausage sausage meat and sausage
## 3  liver loaf sausage meat and sausage



rules <- apriori(Groceries, parameter=list(support=0.01, confidence=0.5))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.5    0.1    1 none FALSE            TRUE       5    0.01      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 98 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [88 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [15 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(rules)
## set of 15 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3 
## 15 



## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support          confidence          lift      
##  Min.   :0.01007   Min.   :0.5000   Min.   :1.984  
##  1st Qu.:0.01174   1st Qu.:0.5151   1st Qu.:2.036  
##  Median :0.01230   Median :0.5245   Median :2.203  
##  Mean   :0.01316   Mean   :0.5411   Mean   :2.299  
##  3rd Qu.:0.01403   3rd Qu.:0.5718   3rd Qu.:2.432  
##  Max.   :0.02227   Max.   :0.5862   Max.   :3.030  
## 
## mining info:
##       data ntransactions support confidence
##  Groceries          9835    0.01        0.5
inspect(head(sort(rules, by ="lift"),10))
##      lhs                     rhs                   support confidence     lift
## [1]  {citrus fruit,                                                           
##       root vegetables}    => {other vegetables} 0.01037112  0.5862069 3.029608
## [2]  {tropical fruit,                                                         
##       root vegetables}    => {other vegetables} 0.01230300  0.5845411 3.020999
## [3]  {root vegetables,                                                        
##       rolls/buns}         => {other vegetables} 0.01220132  0.5020921 2.594890
## [4]  {root vegetables,                                                        
##       yogurt}             => {other vegetables} 0.01291307  0.5000000 2.584078
## [5]  {curd,                                                                   
##       yogurt}             => {whole milk}       0.01006609  0.5823529 2.279125



## [6]  {other vegetables,                                                       
##       butter}             => {whole milk}       0.01148958  0.5736041 2.244885
## [7]  {tropical fruit,                                                         
##       root vegetables}    => {whole milk}       0.01199797  0.5700483 2.230969
## [8]  {root vegetables,                                                        
##       yogurt}             => {whole milk}       0.01453991  0.5629921 2.203354
## [9]  {other vegetables,                                                       
##       domestic eggs}      => {whole milk}       0.01230300  0.5525114 2.162336
## [10] {yogurt,                                                                 
##       whipped/sour cream} => {whole milk}       0.01087951  0.5245098 2.052747
plot(rules[1:5],method="graph",interactive = F)

Graph for 5 rules
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plot(rules[1:15],method="graph",interactive = T)
itemFrequencyPlot(Groceries,topN=20,type="absolute")
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#http://fimi.ua.ac.be/data/retail.pdf
library(arules)
a=read.transactions("http://fimi.ua.ac.be/data/retail.
dat")

itemFrequencyPlot(a,topN=20,type="absolute")
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Text mining is much more elaborate and powerful, and the nltk package in Python 
does match up to the tm package (and its sub‐packages) in R. From https://github.
com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb we see

import nltk

In [*]:
nltk.download()

showing info https://raw.githubusercontent.com/nltk/nltk_data/gh‐pages/
index.xml

In [4]:
import nltk

In [5]:
nltk.download()

showing info https://raw.githubusercontent.com/nltk/nltk_data/gh‐pages/
index.xml

Out[5]:
True

https://github.com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb
https://github.com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
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In [6]:
from nltk.book import *

*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton 
1908

In [7]:
text1.similar("great")

good whale long vast sea whole living small other 
large dead mighty

same such last more much sperm noble old

In [8]:
from urllib import request
url = "http://www.gutenberg.org/files/2554/2554.txt"
response = request.urlopen(url)
raw = response.read().decode('utf8')
type(raw)

Out[8]:
str

In [9]:
len(raw)

Out[9]:
1176896

In [10]:
raw[:75]

Out[10]:
'The Project Gutenberg EBook of Crime and Punishment, 
by Fyodor Dostoevsky\r\n'

http://www.gutenberg.org/files/2554/2554.txt
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In [12]:
tokens = nltk.word_tokenize(raw)
type(tokens)

Out[12]:
list

In [13]:
len(tokens)

Out[13]:
254352

In [14]:
tokens[:10]

Out[14]:
['The',
 'Project',
 'Gutenberg',
 'EBook',
 'of',
 'Crime',
 'and',
 'Punishment',
 ',',
 'By']

Citation-
http://www.cs.duke.edu/courses/spring14/compsci290/
assignments/lab02.html

From http://rpubs.com/newajay/textmining we see basic 
text mining in R

memory.size()
## [1] 17.11
memory.limit()
## [1] 1535
#install.packages(“tm”)
library(tm)
## Loading required package: NLP
getReaders()
##  [1] "readDOC"                 "readPDF"                
##  [3] "readPlain"               "readRCV1"               
##  [5] "readRCV1asPlain"         "readReut21578XML"       
##  [7] "readReut21578XMLasPlain" "readTabular"            

http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
http://rpubs.com/newajay/textmining
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##  [9] "readTagged"              "readXML"
getSources()
## [1] "DataframeSource" "DirSource"       "URISource"       
"VectorSource"   

## [5] "XMLSource"       "ZipSource"
warp ="http://www.gutenberg.org/files/2600/2600‐0.txt"

Corpus1=Corpus(URISource(warp), readerControl = 
list(language = "eng"))

inspect(Corpus1)
## <<VCorpus>>
## Metadata:  corpus specific: 0, document level 
(indexed): 0

## Content:  documents: 1
## 
## [[1]]
## <<PlainTextDocument>>
## Metadata:  7
## Content:  chars: 3170017
summary(Corpus1)
##            Length Class             Mode
## 2600-0.txt 2      PlainTextDocument list

7.4  Cleaning Corpus and Making Bag of Words

Corpus1 <- tm_map(Corpus1, removePunctuation)  
Corpus1 <- tm_map(Corpus1, removeNumbers)  
Corpus1 <- tm_map(Corpus1, tolower)
Corpus1 <- tm_map(Corpus1, removeWords, 
stopwords("english"))

#install.packages(“SnowballC”)
library(SnowballC)
Corpus1 <- tm_map(Corpus1, stemDocument)  
Corpus1 <- tm_map(Corpus1, stripWhitespace)   
Corpus1 <- tm_map(Corpus1, PlainTextDocument)

dtm <- DocumentTermMatrix(Corpus1)

tdm <- TermDocumentMatrix(Corpus1)
tdm
## <<TermDocumentMatrix (terms: 21354, documents: 1)>>
## Non-/sparse entries: 21354/0
## Sparsity           : 0%
## Maximal term length: 29

http://www.gutenberg.org/files/2600/2600-0.txt
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## Weighting          : term frequency (tf)
inspect(tdm[1:30,1])
## <<TermDocumentMatrix (terms: 30, documents: 1)>>
## Non-/sparse entries: 30/0
## Sparsity           : 0%
## Maximal term length: 13
## Weighting          : term frequency (tf)
## 
##                Docs
## Terms           character(0)
##   â€”                      9
##   â€” â€”                  1
##   â€” annett               1
##   â€” precede              1
##   â€” salut                1
##   â€” st                   1
##   â€” though               1
##   aâ€”                     1
##   aah                      1
##   aback                    3
##   abacus                   1
##   abandon                 31
##   abandoned               51
##   abandoning              24
##   abandonment             13
##   abandons                 1
##   abas                     1
##   abash                    1
##   abashed                 11
##   abate                    1
##   abbã                    18
##   abbãs                    1
##   abbreviations            1
##   abc                      1
##   abdicate                 1
##   abdomen                  2
##   abdomens                 2
##   abduction                3
##   abductor                 1
##   abhorrence               1
matx1=as.matrix(tdm)
matx1[1:10]
##  [1] 9 1 1 1 1 1 1 1 1 3
sort1=sort(rowSums(matx1),decreasing=T)
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sort1[1:10]
##     said      one   prince   pierre      now  
natãsha      man   andrew 

##     2834     1882     1725     1561     1304     
1103     1077     1045 

##     will princess 
##      997      916
di=data.frame(Word=names(sort1),Frequency=sort1)
di[1:10,]
##              Word Frequency
## said         said      2834
## one           one      1882
## prince     prince      1725
## pierre     pierre      1561
## now           now      1304
## natãsha   natãsha      1103
## man           man      1077
## andrew     andrew      1045
## will         will       997
## princess princess       916
#install.packages(“wordcloud”)
library(wordcloud)
## Loading required package: RColorBrewer
wordcloud(di$Word, di$Frequency, max.
words=100,colors=brewer.pal(6, "Reds")) 
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wordcloud(di$Word, di$Frequency, max.words=100, 
colors=brewer.pal(6, "Dark2")) 

7.4.1  Cluster Analysis

Grouping data so that similar data is in similar clusters and dissimilar data is in 
different clusters is cluster analysis. It is unsupervised learning. Data reduction 
technique includes the following:

●● Organizing data into groups:
–– Each cluster or group is similar to itself.
–– Each cluster or group is distinct from others.

●● As a stand‐alone tool to get insight into data distribution and as a preproc-
essing step for other algorithms

●● Widely used in:
–– Marketing—Similar customers
–– Biology—Groups of plants/animals
–– Financial services—Similar risk/collection/fraud
–– City planning
–– Others

7.4.2  Cluster Analysis in Python

https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f538259 
05e72289

K means clustering in Python, including performance metric, confusion matrix, 
and visualization.

https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289
https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289
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import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
 
import pandas as pd
import numpy as np

In [2]:
wine=pd.read_csv("http://archive.ics.uci.edu/
ml/machine‐learning‐databases/wine/wine.
data",header=None)

In [3]:
wine.head()

Out[3]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

From http://archive.ics.uci.edu/ml/machine‐learning‐databases/wine/wine.
names we get the column names

In [4]:
wine.columns=['winetype','Alcohol','Malic 
acid','Ash','Alcalinity of ash','Magnesium','Total 
phenols','Flavanoids','Nonflavanoid phenols','Proan
thocyanins','Color intensity','Hue','OD280/OD315 of 
diluted wines','Proline']

In [5]:
wine.head()

winetype Alcohol Malic acid Ash
Alcalinity 
of ash Magnesium

Total  
phenols

count 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000
mean 1.938202 13.000618 2.336348 2.366517 19.494944 99.741573 2.295112
std 0.775035 0.811827 1.117146 0.274344 3.339564 14.282484 0.625851
min 1.000000 11.030000 0.740000 1.360000 10.600000 70.000000 0.980000
25% 1.000000 12.362500 1.602500 2.210000 17.200000 88.000000 1.742500
50% 2.000000 13.050000 1.865000 2.360000 19.500000 98.000000 2.355000
75% 3.000000 13.677500 3.082500 2.557500 21.500000 107.000000 2.800000
max 3.000000 14.830000 5.800000 3.230000 30.000000 162.000000 3.880000

http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names
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Out[5]:

wine 
type Alcohol

Malic 
acid Ash

Alcalinity  
of ash

Magne-
sium

Total 
phenols

Flava-
noids

Nonfla-
vanoid 
phenols

Proantho-
cyanins

Color 
intensity Hue

OD280/
OD315 
of diluted 
wines Proline

0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

In [6]:
wine.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
winetype                        178 non-null int64
Alcohol                         178 non-null float64
Malic acid                      178 non-null float64
Ash                             178 non-null float64
Alcalinity of ash               178 non-null float64
Magnesium                       178 non-null int64
Total phenols                   178 non-null float64
Flavanoids                      178 non-null float64
Nonflavanoid phenols            178 non-null float64
Proanthocyanins                 178 non-null float64
Color intensity                 178 non-null float64
Hue                             178 non-null float64
OD280/OD315 of diluted wines    178 non-null float64
Proline                         178 non-null int64
dtypes: float64(11), int64(3)
memory usage: 19.5 KB

In [7]:
wine.describe()

Out[7]:

Flavanoids
Nonflavanoid 
phenols

Proantho-
cyanins

Color  
intensity Hue

OD280/OD315  
of diluted  
wines Proline

178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000
2.029270 0.361854 1.590899 5.058090 0.957449 2.611685 746.893258
0.998859 0.124453 0.572359 2.318286 0.228572 0.709990 314.907474
0.340000 0.130000 0.410000 1.280000 0.480000 1.270000 278.000000
1.205000 0.270000 1.250000 3.220000 0.782500 1.937500 500.500000
2.135000 0.340000 1.555000 4.690000 0.965000 2.780000 673.500000
2.875000 0.437500 1.950000 6.200000 1.120000 3.170000 985.000000
5.080000 0.660000 3.580000 13.000000 1.710000 4.000000 1680.000000
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In [8]:
pd.value_counts(wine['winetype'])

Out[8]:
2    71
1    59
3    48
Name: winetype, dtype: int64

The R solution is https://rstudio‐pubs‐static.s3.amazonaws.com/33876_
1d7794d9a86647ca90c4f182df93f0e8.html

The clustering optimization problem is solved with the function kmeans in R.

wine.stand <- scale(wine[-1])  # To standarize the 
variables

# K‐Means
k.means.fit <- kmeans(wine.stand, 3) # k = 3
In k.means.fit are contained all the elements of the 
cluster output:

attributes(k.means.fit)
## $names
## [1] "cluster"      "centers"      "totss"        
"withinss"    

## [5] "tot.withinss" "betweenss"    "size"         
"iter"        

## [9] "ifault"      
## 
## $class
## [1] "kmeans"
# Centroids:
k.means.fit$centers
##   Alcohol   Malic     Ash Alcalinity Magnesium  
Phenols Flavanoids

https://rstudio-pubs-static.s3.amazonaws.com/33876_1d7794d9a86647ca90c4f182df93f0e8.html
https://rstudio-pubs-static.s3.amazonaws.com/33876_1d7794d9a86647ca90c4f182df93f0e8.html


## 1  0.1644  0.8691  0.1864     0.5229  -0.07526 -0.97658   -1.21183
## 2  0.8329 -0.3030  0.3637    -0.6085   0.57596  0.88275    0.97507
## 3 -0.9235 -0.3929 -0.4931     0.1701  -0.49033 -0.07577    0.02075
##   Nonflavanoids Proanthocyanins   Color     Hue Dilution Proline
## 1       0.72402         -0.7775  0.9389 -1.1615  -1.2888 -0.4059
## 2      -0.56051          0.5787  0.1706  0.4727   0.7771  1.1220
## 3      -0.03344          0.0581 -0.8994  0.4605   0.2700 -0.7517
For Python it is a bit similar to do kmeans clusterinng

In [9]:
x=wine.ix[:,1:14]
y=wine.ix[:,:1]

In [10]:
x.columns

Out[10]:
Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',
       'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
       'Proanthocyanins', 'Color intensity', 'Hue',
       'OD280/OD315 of diluted wines', 'Proline'],
      dtype='object')

In [33]:
x.ix[:,:1].head()
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Out[33]:

Alcohol

0 14.23
1 13.20
2 13.16
3 14.37
4 13.24

In [12]:
y.columns

Out[12]:
Index(['winetype'], dtype='object')

In [13]:
x.head()

Out[13]:

Alcohol
Malic 
acid Ash

Alcali-
nity of 
ash

Magne-
sium

Total 
phenols

Flava-
noids

Non- 
flava- 
noid 
phenols

Proan- 
thocy- 
anins

Color  
inten-
sity Hue

OD280/
OD315 
of 
diluted 
wines Proline

0 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

In [14]:
y.head()

Out[14]:

winetype

0 1
1 1
2 1
3 1
4 1

In [15]:
y.info
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Out[15]:
<bound method DataFrame.info of      winetype

0           1
1           1
2           1
3           1
4           1
5           1
6           1
7           1
8           1
9           1
10          1
11          1
12          1
13          1
14          1
15          1
16          1
17          1
18          1
19          1
20          1
21          1
22          1
23          1
24          1
25          1
26          1
27          1
28          1
29          1
..        ...

148         3
149         3
150         3
151         3
152         3
153         3
154         3
155         3
156         3
157         3
158         3
159         3
160         3
161         3
162         3
163         3
164         3
165         3
166         3
167         3
168         3
169         3
170         3
171         3
172         3
173         3
174         3
175         3
176         3
177         3

[178 rows x 1 columns]>

In [16]:
# K Means Cluster
model = KMeans(n_clusters=3)
model.fit(x)



Out[16]:
KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=3, n_init=10,
    n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001,
    verbose=0)

In [17]:
model.labels_

Out[17]:
array([0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0,
       0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2,
       2, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1,
       1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1,
       1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1,
       1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1,
       2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1], dtype=int32)

In [18]:
pd.value_counts(model.labels_)

Out[18]:
1    69
2    62
0    47
dtype: int64

In [19]:
pd.value_counts(y['winetype'])

Out[19]:
2    71
1    59
3    48
Name: winetype, dtype: int64
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In [20]:
# We convert all the 1s to 0s and 0s to 1s.
predY = np.choose(model.labels_, [1, 2, 3]).astype(np.
int64)

In [21]:
print (y['winetype'])
print (model.labels_)
print (predY)

0      1
1      1
2      1
3      1
4      1
5      1
6      1
7      1
8      1
9      1
10     1
11     1
12     1
13     1
14     1
15     1
16     1
17     1
18     1
19     1
20     1
21     1
22     1
23     1
24     1
25     1
26     1
27     1
28     1
29     1
      ..

148    3
149    3
150    3
151    3
152    3
153    3
154    3
155    3
156    3
157    3
158    3
159    3
160    3
161    3
162    3
163    3
164    3
165    3
166    3
167    3
168    3
169    3
170    3
171    3
172    3
173    3
174    3
175    3
176    3
177    3



Name: winetype, dtype: int64
[0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 2 2
 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 1 1 2 1 1 2 2 2 1 1 0
 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 2 1 2 1 1 1 2 1 1 1 1 2 1
 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 1 1 1 2 2 1 1 2 2 1 2
 2 1 1 1 1 2 2 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1]
[1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 3 3 1 1 3 1 1 1 1 1 1 3 3
 1 1 3 3 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 3 2 2 3 2 2 3 3 3 2 2 1
 3 2 2 2 3 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 2 3 3 2 3 2 3 2 2 2 3 2 2 2 2 3 2
 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 3 3 3 3 2 2 2 3 3 2 2 3 3 2 3
 3 2 2 2 2 3 3 3 2 3 3 3 2 3 2 3 3 2 3 3 3 3 2 2 3 3 3 3 3 2]

In [22]:
# Performance Metrics
sm.accuracy_score(y, predY)

Out[22]:
0.702247191011236

In [23]:
# Confusion Matrix
sm.confusion_matrix(y, predY)

Out[23]:
array([[46,  0, 13],
       [ 1, 50, 20],
       [ 0, 19, 29]])
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In [24]:
pd.unique(y.winetype)

Out[24]:
array([1, 2, 3])

In [25]:
#!sudo pip install ggplot

In [30]:
from ggplot import *
%matplotlib inline  

In [31]:
p = ggplot(aes(x='Alcohol', y='Ash',color="winetype"), 
data=wine)

p + geom_point()
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14 15 16
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Out[31]:
<ggplot: (-9223363292162990364)>

In [32]:
p2 = ggplot(aes(x='Alcohol', y='Ash',color="predY"), 
data=wine)

p2 + geom_point()
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10
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Out[32]:
<ggplot: (8744691751337)>
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331

8

Some conclusions to draw from comparing R and Python functionality as well 
as the author’s own experience with the SAS language are as follows:

1)	 There is no one software or language that is good for each and every use 
case or situation.

2)	 For the student, researcher, job seeker, and professional, having skills in two 
languages is better than having skills in one language.

3)	 R ecosystem has learnt from Python (like Beautiful Soup or bokeh or 
R Essentials for Jupyter), while Python ecosystem has learnt from R (like 
ggplot and pandas). This cross‐language learning should be encouraged 
especially in academia and industry.

4)	 As feature requests, Python statsmodels can be more user‐friendly (like 
car), time series can have more tools like auto.arima (in forecast), and scikit‐
learn can have spin‐off smaller packages (like arules for association analysis) 
and easier to read syntax (like party, rpart, and RandomForest) instead of 
having a very big scikit‐learn package. Some of these machine learning 
packages should be made panda ready rather than numpy specific to help 
make them more popular.

5)	 Python can make or port GUIs like R Commander and rattle as that will 
help in teaching.

Conclusion and Summary
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