
Python® for R Users

Python® for R Users

A Data Science Approach

Ajay Ohri

This edition first published 2018
© 2018 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material
from this title is available at http://www.wiley.com/go/permissions.

The right of Ajay Ohri to be identified as the author of this work has been asserted in accordance
with law.

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand.
Some content that appears in standard print versions of this book may not be available in other
formats.

Limit of Liability/Disclaimer of Warranty
The publisher and the authors make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties;
including without limitation any implied warranties of fitness for a particular purpose. This
work is sold with the understanding that the publisher is not engaged in rendering professional
services. The advice and strategies contained herein may not be suitable for every situation. In
view of on‐going research, equipment modifications, changes in governmental regulations, and
the constant flow of information relating to the use of experimental reagents, equipment, and
devices, the reader is urged to review and evaluate the information provided in the package insert
or instructions for each chemical, piece of equipment, reagent, or device for, among other things,
any changes in the instructions or indication of usage and for added warnings and precautions.
The fact that an organization or website is referred to in this work as a citation and/or potential
source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further,
readers should be aware that websites listed in this work may have changed or disappeared
between when this works was written and when it is read. No warranty may be created or
extended by any promotional statements for this work. Neither the publisher nor the author shall
be liable for any damages arising here from.

Library of Congress Cataloguing‐in‐Publication Data

Name: Ohri, A. (Ajay), author.
Title: Python® for R users : a data science approach / Ajay Ohri.
Description: Hoboken, NJ : John Wiley & Sons, 2018. | Includes

bibliographical references and index. |
Identifiers: LCCN 2017022045 (print) | LCCN 2017036415 (ebook) |

ISBN 9781119126775 (pdf) | ISBN 9781119126782 (epub) |
ISBN 9781119126768 (pbk.)

Subjects: LCSH: Python (Computer program language) | R (Computer program language)
Classification: LCC QA76.73.P98 (ebook) | LCC QA76.73.P98 O37 2017 (print) |

DDC 005.13/3–dc23
LC record available at https://lccn.loc.gov/2017022045

Cover design: Wiley
Cover images: (Background) © Duncan Walker/iStockphoto

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

Dedicated to my family in Delhi, Mumbai, and the United States

and

Kush Ohri (my son whom I love very much)

and

Jesus Christ (my personal savior)

vii

Preface  xi
Acknowledgments  xv
Scope  xvii
Purpose  xix
Plan  xxi
The Zen of Python  xxiii

1	 Introduction to Python R and Data Science  1
1.1	 What Is Python?  1
1.2	 What Is R?  2
1.3	 What Is Data Science?  3
1.4	 The Future for Data Scientists  3
1.5	 What Is Big Data?  4
1.6	 Business Analytics Versus Data Science  6
1.6.1	 Defining Analytics  6
1.7	 Tools Available to Data Scientists  7
1.7.1	 Guide to Data Science Cheat Sheets  7
1.8	 Packages in Python for Data Science  8
1.9	 Similarities and Differences between Python and R  9
1.9.1	 Why Should R Users Learn More about Python?  10
1.9.2	 Why Should Python Users Learn More about R?  10
1.10	 Tutorials  10
1.11	 Using R and Python Together  11
1.11.1	 Using R Code for Regression and Passing to Python  11
1.12	 Other Software and Python  15
1.13	 Using SAS with Jupyter  15
1.14	 How Can You Use Python and R for Big Data Analytics?  15
1.15	 What Is Cloud Computing?  16
1.16	 How Can You Use Python and R on the Cloud?  17

Contents

Contentsviii

1.17	 Commercial Enterprise and Alternative Versions
of Python and R  18

1.17.1	 Commonly Used Linux Commands for Data Scientists  20
1.17.2	 Learning Git  20
1.18	 Data‐Driven Decision Making: A Note  38
1.18.1	 Strategy Frameworks in Business Management:

A Refresher for Non‐MBAs and MBAs
Who Have to Make Data‐Driven Decisions  39

1.18.2	 Additional Frameworks for Business Analysis  45
	 Bibliography  49

2	 Data Input  51
2.1	 Data Input in Pandas  51
2.2	 Web Scraping Data Input  54
2.2.1	 Request Data from URL  55
2.3	 Data Input from RDBMS  60
2.3.1	 Windows Tutorial  62
2.3.2	 137 Mb Installer  63
2.3.3	 Configuring ODBC  65

3	 Data Inspection and Data Quality  77
3.1	 Data Formats  77
3.1.1	 Converting Strings to Date Time in Python  78
3.1.2	 Converting Data Frame to NumPy Arrays and Back in Python  81
3.2	 Data Quality  84
3.3	 Data Inspection  88
3.3.1	 Missing Value Treatment  91
3.4	 Data Selection  92
3.4.1	 Random Selection of Data  94
3.4.2	 Conditional Selection  95
3.5	 Data Inspection in R  98
3.5.1	 Diamond Dataset from ggplot2 Package in R  106
3.5.2	 Modifying Date Formats and Strings in R  113
3.5.3	 Managing Strings in R  116
	 Bibliography  118

4	 Exploratory Data Analysis  119
4.1	 Group by Analysis  119
4.2	 Numerical Data  119
4.3	 Categorical Data  121

Contents ix

5	 Statistical Modeling  139
5.1	 Concepts in Regression  139
5.1.1	 OLS  140
5.1.2	 R‐Squared  141
5.1.3	 p‐Value  141
5.1.4	 Outliers  141
5.1.5	 Multicollinearity and Heteroscedascity  142
5.2	 Correlation Is Not Causation  142
5.2.1	 A Note on Statistics for Data Scientists  143
5.2.2	 Measures of Central Tendency  145
5.2.3	 Measures of Dispersion  145
5.2.4	 Probability Distribution  147
5.3	 Linear Regression in R and Python  154
5.4	 Logistic Regression in R and Python  187
5.4.1	 Additional Concepts  194
5.4.2	 ROC Curve and AUC  194
5.4.3	 Bias Versus Variance  194
	 References  196

6	 Data Visualization  197
6.1	 Concepts on Data Visualization  197
6.1.1	 History of Data Visualization  197
6.1.2	 Anscombe Case Study  200
6.1.3	 Importing Packages  201
6.1.4	 Taking Means and Standard Deviations  202
6.1.5	 Conclusion  204
6.1.6	 Data Visualization  204
6.1.7	 Conclusion  207
6.2	 Tufte’s Work on Data Visualization  207
6.3	 Stephen Few on Dashboard Design  208
6.3.1	 Maeda on Design  209
6.4	 Basic Plots  210
6.5	 Advanced Plots  219
6.6	 Interactive Plots  223
6.7	 Spatial Analytics  223
6.8	 Data Visualization in R  224
6.8.1	 A Note of Sharing Your R Code by RStudio IDE  232
6.8.2	 A Note on Sharing Your Jupyter Notebook  233
	 Bibliography  235
6.8.3	 Special Note: A Complete Wing to Wing Tutorial on Python  236

Contentsx

7	 Machine Learning Made Easier  251
7.1	 Deleting Columns We Dont Need in the Final

Decision Tree Model  259
7.1.1	 Decision Trees in R  276
7.2	 Time Series  294
7.3	 Association Analysis  301
7.4	 Cleaning Corpus and Making Bag of Words  316
7.4.1	 Cluster Analysis  319
7.4.2	 Cluster Analysis in Python  319

8	 Conclusion and Summary  331

Index  333

xi

I started my career with selling cars in 2003. That was my first job after 2 years
of MBA and 4 years of engineering. In addition, I took off 2 years to enter a
military academy as an officer cadet (dropped out in 1 year) and as a physicist
(dropped out after 1 year). Much later, I dropped out of my PhD Track (MS
Stats) after 1 year in Knoxville. I did not do very well in statistics theory in my
engineering, my MBA, or even my grad school. I was only interested in statisti-
cal software and fortunately I was not very bad at using it. So in 2004, I dropped
out of selling cars and entered into writing statistical software for General
Electric’s then India‐based offshore company.

I used a language called SAS for a software called Base SAS. The help pro-
vided by the software company called SAS for this software and language was
quite nice, so it was nice to play with data and code all day and be paid to have
fun. After a few years of job changes, I came across open‐source software when
I started building my own start‐up. I really like SAS as a language and a com-
pany, but as a start‐up guy I could not afford it, and the SAS University Edition
was not there in 2007. Since I needed money to pay for diapers of my baby
Kush, and analysis was the only gift God had given me, I turned to R.

R, Open Office, and Ubuntu Linux were my first introduction to open‐
source statistical computing, and I persevered in it. In 2007 I started my own
start‐up in business analytics writing and consulting, Decisionstats.com. In
2009 I entered the University of Tennessee for a funded assistantship, I
interned in Silicon Valley for a few weeks in the winter, and I dropped out on
medical reasons after taking courses across multiple departments from
graphics design and genetic algorithms from Computer Science Department,
apart from Statistics Department. Cross‐domain training helped me a lot to
think in various ways to give simple solutions, and I will always be thankful
to the kind folks in Statistics and Computer Science Department of the
University of Tennessee.

Preface

Prefacexii

Once I mastered my brain around the vagaries of troubleshooting in Linux
and of object‐oriented programming on R, I was good to go to give consulting
projects for data analysis. Those days we used to call it business analytics, but
today of course we call it data science.

Since I often forget things including where I kept my code, I started blogging
on things that I felt were useful and might be useful to others. After a few years
I discovered that in the real world it was not what I knew, but who I knew that
really helped my career. So I began interviewing people in Analytics and R and
my blog viewership took off. My blog philosophy continues to be—a blog post
should be useful, it should be unique, and it should be interesting. In 2016,
I had amassed 1,000,000 views on DecisionStats.com—again a surprising turn
of events for me. I am most grateful to the 100 plus people who agreed to be
interviewed by me.

2007 and 2008 were early days for analytics blogging for sure. After a few
years I had enough material to put together a book and enough credibility to
publish with a publisher. In 2012 I came up with my first book and in 2014
I came up with my second book. In 2016, the Chinese translation of my first
book was realized. Surprisingly for me, a review of my second book appeared
in the Journal of Statistical Software.

After publishing two books on R, mentoring many start‐ups by consulting
and training, engaging consulting clients in real‐world problems, and making
an established name in social media, I still felt I needed to learn more.

Data was getting bigger and bigger. It was not enough to know how to
write small data analytics using a single machine in serialized code; perhaps
it was time to write parallel code in multiple machines on big data analytics.
Then there was the divide between statisticians and computer science that
fascinated me since I see data as data, a problem to be solved. As Eric S.
Raymond wrote in the Hacker’s attitude, “The world is full of interesting
problems.”

Then there was temptation and intellectual appeal of an alternative to R,
called Python, which came with batteries attached (allegedly).

Once my scientific curiosity was piqued, I started learning Python. I found
Python was both very good and very bad compared with R. Its community has
different sets of rules and behavior (which are always turbulent in the passion-
ate world of open‐source developer ninjas). But the language itself was very
different. I don’t care about the language. I love science. But if a person like me
who at least knows how to code a wee bit in R found it so tough to redo the
same thing in Python, I thought maybe others were facing this transitioning
problem too. For big data and for some specific use cases, Python was better in
terms of speed. Speed matters, no matter how much Moore’s law conspires
with the either to make it easier for you to write code. R also seemed to turn
into a language where all I did was import a package and run a function with
tweaked parameters. As R became the scientific mainstream replacing SAS

Preface xiii

language, and SAS remained the enterprise statistical language, Python and
how to write code in it became the thing for anonymous red hat hackers like
me to venture delve and explore into.

As the Internet of people expands to Internet of things, I feel that budding
data scientists should know at least two languages in analytics so they can
be secure on career. This also gives enterprises an open choice on which
software to prototype models and which software to deploy in production
environments.

xv

The author is grateful to many people working in both the Python and R
community for making this book possible. He would especially like to thank
Dr. Eric Siegel of Predictive Analytics Conference and John Sall of JMP. He
would like to thank all his students in 2012–2016.

This book would not be done without the support from Madhur Batra for
mentoring and logistical support. On a technical side, inputs and hard work
from his interns Yashika and Chandan Routray (IIT Kharagpur) and his
DecisionStats team helped him. His coresearcher F. Xavier provided invaluable
help with case studies.

Acknowledgments

xvii

The scope of the book is to introduce Python as a platform for data science
practitioners including aspiring budding data scientists. The book is aimed at
people who know R coding at various levels of expertise, but even those who
know no coding in no language may find some value in it. It is not aimed at
members of research communities and research departments. The focus is
on simple tutorials and actionable analytics, not theory. I have also tried to
incorporate R code to give a compare and contrast approach to learners.

Chapter 1

Introduction deals with Python and comparison with R. It also lists the func-
tions and packages used in both languages. It also lists some managerial mod-
els that the author feels data scientists should be aware of. It introduces the
reader to basics of Python and R language.

Chapter 2

“Data Input” deals with an approach for people to get data of various volume
variety and velocity in Python. This includes web scraping, databases, noSQL
data, and spreadsheet like data.

Chapter 3

“Data Inspection and Data Quality”—Data Inspection deals with choices in
verifying data quality in Python.

Scope

­Scopxviii

Chapter 4

“Exploratory Data Analysis” deals with basic data exploration and data
summarization with rolling up data with group by criterion.

Chapter 5

“Statistical Modeling” deals with creating models based on statistical
analysis including OLS regression that are useful for industry to build
propensity models.

Chapter 6

“Data Visualization” deals with visual methods to inspect raw and rolled‐up
data.

Chapter 7

“Machine Learning Made Easier” deals with commonly used data mining
methods for model building. This is done with an emphasis on both supervised
and unsupervised methods and further emphasis on regression and clustering
techniques. Time series forecasting helps the user with time series forecasting.
Text mining deals with text mining methods and natural language processing.
Web analytics looks at using Python for analyzing web data. Advanced data
science looks at methods and techniques for newer age use cases including
cloud computing‐enabled big data analysis, social network analysis, Internet of
things, etc.

Chapter 8

Conclusion and Summary—We list down what we learned and tried to achieve
in this book, and our perspective for future growth of R and Python as well as
statistical computing to grow, and render data science a credible foothold for
the future.

xix

The book has been written from a practical use case perspective for helping
people navigate multiple open‐source languages in the pursuit of data science
excellence. The author believes that there is no one software or language that
can solve all kinds of data problems all the time. An optimized approach to
learning is better than an ideological approach to learning statistical software.
Past habits of thinking must be confronted to enhance speed of future
knowledge enhancement.

Purpose

xxi

I will continue to use screenshots as a tutorial device and I will draw upon my
experience in data science consulting to highlight practical data parsing prob-
lems. This is because choosing the right tool and technique and even package
is not so time consuming but the sheer variety of data and business problems
can suck up the data scientist’s time that can later affect quality of his judgment
and solution.

Intended Audience

This is a book for budding data scientists and existing data scientists married
to other languages like SPSS or R or Julia. I am trying to be practical about
solving problems in data. Thus there will be very little theory.

Afterthoughts

I am focused on practical solutions. I will therefore proceed on the assumption
that the user wants to do data science or analytics at the lowest cost and great-
est accuracy, robustness, and ease possible. A true scientist always keeps his
mind open to data and options regardless of who made whom. The author
finds that information asymmetry and brand clutter have managed to confuse
audiences of the true benefits of R versus Python versus other languages. The
instructions and tutorials within this book have no warranty and you are doing
so at your own risk.

As a special note on formatting of this manuscript, the author mostly writes
on Google Docs, but here he is writing using the GUI LyX for the typesetting
software LaTex, and he confesses he is not very good at it. We do hope the book
is read by business users, technical users, CTOs keen to know more on R and
Python and when to use open‐source analytics, and students wishing to enter
a very nice career as data scientists. R is well known for excellent graphics but

Plan

­Plaxxii

not so suitable for bigger datasets in its native straight to use open‐source ver-
sion. Python is well known for being great with big datasets and flexibility but
has always played catch‐up to the number of good statistical libraries as
available in R.

The enterprise CTO can reduce costs incredibly by using open‐source
software and hardware via blended cloud and blended open‐source software.

xxiii

Tim Peters

●● Beautiful is better than ugly.
●● Explicit is better than implicit.
●● Simple is better than complex.
●● Complex is better than complicated.
●● Flat is better than nested.
●● Sparse is better than dense.
●● Readability counts.
●● Special cases aren’t special enough to break the rules.
●● Although practicality beats purity.
●● Errors should never pass silently. Unless explicitly silenced.
●● In the face of ambiguity, refuse the temptation to guess.
●● There should be one—and preferably only one—obvious way to do it.
●● Although that way may not be obvious at first unless you’re Dutch.
●● Now is better than never. Although never is often better than right now.
●● If the implementation is hard to explain, it’s a bad idea.
●● If the implementation is easy to explain, it may be a good idea.
●● Namespaces are one honking great idea—let’s do more of those!

Source: https://www.python.org/dev/peps/pep-0020/

The Zen of Python

https://www.python.org/dev/peps/pep-0020/

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

1

1

1.1  What Is Python?

Python is a programming language that lets you work more quickly and
integrate your systems more effectively. It was created by Guido van Rossum.
You can read Guido’s history of Python at the History of Python blog at
http://python‐history.blogspot.in/2009/01/introduction‐and‐overview.html.

It is worth reading for beginners and even experienced people in Python.
The following is just an extract:

many of Python’s keywords (if, else, while, for, etc.) are the same as in C,
Python identifiers have the same naming rules as C, and most of the
standard operators have the same meaning as C. Of course, Python is
obviously not C and one major area where it differs is that instead of
using braces for statement grouping, it uses indentation. For example,
instead of writing statements in C like this

if (a < b) {
 max = b;
} else {
 max = a;
}

Python just dispenses with the braces altogether (along with the trailing
semicolons for good measure) and uses the following structure:

if a < b:
 max = b
else:
 max = a

Introduction to Python R and Data Science

http://python-history.blogspot.in/2009/01/introduction-and-overview.html

1  Introduction to Python R and Data Science2

The other major area where Python differs from C‐like languages is in
its use of dynamic typing. In C, variables must always be explicitly
declared and given a specific type such as int or double. This informa-
tion is then used to perform static compile‐time checks of the program
as well as for allocating memory locations used for storing the variable’s
value. In Python, variables are simply names that refer to objects.

The Python Package Index (PyPI) https://pypi.python.org/pypi hosts third‐
party modules for Python. There are currently 91 625 packages there. You
can browse Python packages by topic at https://pypi.python.org/pypi?%3A
action=browse

1.2  What Is R?

The official definition of what is R is given on the main website at http://
www.r‐project.org/about.html

R is an integrated suite of software facilities for data manipulation, cal-
culation and graphical display. It includes an effective data handling and
storage facility, a suite of operators for calculations on arrays, in particu-
lar matrices, a large, coherent, integrated collection of intermediate
tools for data analysis, graphical facilities for data analysis and display
either on‐screen or on hardcopy, and a well‐developed, simple and
effective programming language which includes conditionals, loops,
user‐defined recursive functions and input and output facilities.

The term ‘environment’ is intended to characterize it as a fully planned
and coherent system, rather than an incremental accretion of very spe-
cific and inflexible tools, as is frequently the case with other data analysis
software.

The Comprehensive R Archive Network (CRAN) hosts thousands of pack-
ages for R at https://cran.r‐project.org/web/packages/, so does GitHub (see
https://github.com/search?utf8=%E2%9C%93&q=stars%3A%3E1+language%
3AR) as well as Bioconductor as package repositories. You can see all the pack-
ages from these repositories for R at http://www.rdocumentation.org/ (11 885
packages as of 2016).

As per the author, R is both a language in statistics as well as computer science
and an analytics software with great usefulness in analyzing business data and
applying data science to it. In particular the appeal of R remains: it is a free open
source and has a huge number of packages particularly dealing with analysis of data.

Disadvantages of R remain memory handling in production environments,
lack of incentives for R developers, and a sometimes turgid documentation
that is mildly academic oriented rather than enterprise user oriented.

https://pypi.python.org/pypi
https://pypi.python.org/pypi?:action=browse
https://pypi.python.org/pypi?:action=browse
http://www.r-project.org/about.html
http://www.r-project.org/about.html
https://cran.r-project.org/web/packages/
https://github.com/search?utf8=✓&q=stars:>1+language:R
https://github.com/search?utf8=✓&q=stars:>1+language:R
http://www.rdocumentation.org/

1.4  The Future for Data Scientists 3

1.3  What Is Data Science?

Data science lies at the intersection of programming, statistics, and business
analysis. It is the use of programming tools with statistical techniques to ana-
lyze data in a systematic and scientific way. A famous diagram by Drew Conway
put data science as the intersection of the three. It is given at http://drewcon
way.com/zia/2013/3/26/the‐data‐science‐venn‐diagram

The author defines a data scientist as follows:

A data scientist is simply a person who can write code (in languages like R,
Python, Java, SQL, Hadoop (Pig, HQL, MR) etc.) for data (storage, query-
ing, summarization, visualization) efficiently and quickly on hardware
(local machines, on databases, on cloud, on servers) and understand
enough statistics to derive insights from data so business can make
decisions.

1.4  The Future for Data Scientists

The respectable Harvard Business Review defines data scientist to be the
sexiest job of the twenty‐first century (https://hbr.org/2012/10/data‐scientist‐
the‐sexiest‐job‐of‐the‐21st‐century/).

Surveys on salaries point out to both rising demand and salaries for data
scientists and a big shortage for trained professionals (see http://www.forbes.
com/sites/gilpress/2015/10/09/the‐hunt‐for‐unicorn‐data‐scientists‐lifts‐
salaries‐for‐all‐data‐analytics‐professionals/). Indeed this has coined a new
term unicorn data scientists. A unicorn data scientist is rare to find for he has
all the skills in programming, statistics, and business aptitude. A modification
of the Data Science Venn Diagram in Figure 1.1 is available at http://www.
anlytcs.com/2014/01/data‐science‐venn‐diagram‐v20.html, which the author
found more updated.

In addition, unicorn is a term in the investment industry, and in particular
the venture capital industry, which denotes a start‐up company whose valua-
tion has exceeded $1 billion. The term has been popularized by Aileen Lee of
Cowboy Ventures. They can be seen at http://graphics.wsj.com/billion‐dollar‐
club/ and http://fortune.com/unicorns/

Not surprisingly data science offers a critical edge to these start‐ups as well.
So we can have both rising demand and short supply of data scientists, leading
to a more secure work environment. A list of start‐ups can be seen at Y
Combinator at http://yclist.com/ including data science related start‐ups. You
can see a survey here on data scientist salaries at http://www.burtchworks.
com/2015/07/14/compensation‐of‐data‐scientists‐insights‐from‐the‐past‐
year. The annual Rexer Analytics survey helps gauge skills and usage by data
miners. You can read an interview at http://decisionstats.com/2013/12/25/

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html
http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html
http://graphics.wsj.com/billion-dollar-club/
http://graphics.wsj.com/billion-dollar-club/
http://fortune.com/unicorns/
http://yclist.com/
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://decisionstats.com/2013/12/25/karl-rexer-interview-on-the-state-of-analytics/

1  Introduction to Python R and Data Science4

karl‐rexer‐interview‐on‐the‐state‐of‐analytics/ or read the report at www.
rexeranalytics.com. We can thus sum up and say that data scientists who have
the right skills have a great future ahead professionally.

A note of caution is that skills need to be updated by data scientists very
quickly and they need to be responsive to business needs to frame the data
science solutions. So the risk of being obsolete remains an encouragement for
data scientists to get multiple skills. An interesting fellowship program for
data scientists is run by Insight at http://insightdatascience.com/, and a reposi-
tory for data science is available for free at https://github.com/okulbilisim/
awesome‐datascience

Closer home, the NY‐based Byte academy offers a Python‐based program
for data science at http://byteacademy.co/

1.5  What Is Big Data?

Big data is a broad term for datasets so large or complex that traditional data
processing applications are inadequate. The 3Vs model helps with understand-
ing big data.

Data Science Venn Diagram v2.0

Data science

Computer
science

Machine
learning

Math and
statistics

Unicorn

Traditional
software

Copyright © 2014 by Steven Geringer Raleigh, NC.
Permission is granted to use, distribute, or modify this
image, provided that this copyright notice remains intact

Traditional
research

Subject matter expertise

Figure 1.1  Data Science Venn diagram. Source: Copyright © 2014 Steven Geringer
Raleigh, NC.

http://decisionstats.com/2013/12/25/karl-rexer-interview-on-the-state-of-analytics/
http://www.rexeranalytics.com
http://www.rexeranalytics.com
http://insightdatascience.com/
https://github.com/okulbilisim/awesome-datascience
https://github.com/okulbilisim/awesome-datascience
http://byteacademy.co/

1.5  What Is Big Data? 5

These are:

1)	 Volume (size and scale of data)
2)	 Velocity (streaming or data refresh rate)
3)	 Variety (type: structured or unstructured) of data

The fourth V is veracity.
Typical approaches to deal with big data are hardware based, and use distrib-

uted computing, parallel processing, cloud computing, and specialized soft-
ware like Hadoop stack. An interesting viewpoint to big data is given at https://
peadarcoyle.wordpress.com/2015/08/02/interview‐with‐a‐data‐scientist‐
hadley‐wickham/ by Dr. Hadley Wickham, a noted R scientist:

There are two particularly important transition points:

*	 From in‐memory to disk. If your data fits in memory, it’s small data.
And these days you can get 1 TB of ram, so even small data is big!
Moving from in‐memory to on‐disk is an important transition because
access speeds are so different. You can do quite naive computations on
in‐memory data and it’ll be fast enough. You need to plan (and index)
much more with on‐disk data

*	 From one computer to many computers. The next important threshold
occurs when you data no longer fits on one disk on one computer. Moving
to a distributed environment makes computation much more challeng-
ing because you don’t have all the data needed for a computation in one
place. Designing distributed algorithms is much harder, and you’re fun-
damentally limited by the way the data is split up between computers.

Wes McKinney, the author of pandas, the primary Python package for
data science, has this to offer on http://wesmckinney.com/blog/the‐
problem‐with‐the‐data‐science‐language‐wars/

“any data processing engine that allows you to extend it with user‐
defined code written in a “foreign language” like Python or R has to solve
at least these 3 essential problems:

●● Data movement or access: making runtime data accessible in a form
consumable by Python, say. Unfortunately, this often requires expen-
sive serialization or deserialization and may dominate the system
runtime. Serialization costs can be avoided by carefully creating
shared byte‐level memory layouts, but doing this requires a lot of
experienced and well‐compensated people to agree to make major
engineering investments for the greater good.

●● Vectorized computation: enabling interpreted languages like Python
or R to amortize overhead and calling into fast compiled code that is

https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
http://wesmckinney.com/blog/the-problem-with-the-data-science-language-wars/
http://wesmckinney.com/blog/the-problem-with-the-data-science-language-wars/

1  Introduction to Python R and Data Science6

array‐oriented (e.g. NumPy or pandas operations). Most libraries in
these languages also expect to work with array / vector values rather
than scalar values. So if you want to use your favorite Python or R
packages, you need this feature.

●● IPC overhead: the low‐level mechanics of invoking an external func-
tion. This might involve sending a brief message with a few curt
instructions over a UNIX socket.”

The author defines big data as data that requires more hardware (Cloud et al.)
or more complicated programming or specialized software (Hadoop) than
small data.

1.6  Business Analytics Versus Data Science

The author found the historical evolution from statistical computing to business
analytics (BA) to data science both fascinating and amusing in the various claims
of hegemonic superiority. This is how he explains it to his students and readers.

1.6.1  Defining Analytics

Analytics is the systematic computational analysis of data or statistics. It is the
discovery and communication of meaningful patterns in data. Especially valu-
able in areas rich with recorded information, analytics relies on the simultane-
ous application of statistics, computer programming, and operations research
to quantify performance.

The information ladder was created by education professor Norman
Longworth to describe the stages in human learning. According to the ladder,
a learner moves through the following progression to construct “wisdom” from
“data”:

Data → Information → Knowledge → Understanding → Insight → Wisdom

BA refers to the skills, technologies, and practices for continuous iterative
exploration and investigation of past business performance to gain insight and
drive business planning.

Data analytics (DA) is the science of examining raw data with the purpose of
drawing conclusions about that information.

Citation from http://www.gartner.com/it‐glossary/analytics
Data science is a more recent term and implies much more programming

complexity:

	 Data Science = programming + statistics + business knowledge	

from http://drewconway.com/zia/2013/3/26/the‐data‐science‐venn‐diagram

http://www.gartner.com/it-glossary/analytics
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

1.7  Tools Available to Data Scientists 7

Business intelligence (BI) is an umbrella term that includes the applications,
infrastructure and tools, and best practices that enable access to and analysis of
information to improve and optimize decisions and performance.

Overall the most important thing should be assistance to decision‐making
rendered not just the science of data analysis.

1.7  Tools Available to Data Scientists

Some (and not all) of the widely used tools available to data scientists are the
following:

●● Data storage—MySQL, Oracle, SQL Server, HBase, MongoDB, and Redis
●● Data querying—SQL, Python, Java, and R
●● Data analysis—SAS, R, and Python
●● Data visualization—JavaScript, R, and Python
●● Data mining—Clojure, R, and Python
●● Cloud—Amazon AWS, Microsoft Azure, and Google Cloud
●● Hadoop Big Data—Spark, HDFS MapReduce (Java), Pig, Hive, and Sqoop

A cheat sheet is a piece of paper bearing written notes intended to aid one’s
memory. It can also be defined as a compilation of mostly used commands to
help you learn that language’s syntax at a faster rate. To help with remembering
syntax for many tools, cheat sheets can be useful for data scientists.

The author has written an article on KDnuggets on cheat sheets for
data science at http://www.kdnuggets.com/2014/05/guide‐to‐data‐science‐
cheat‐sheets.html where he elaborates on his philosophy of what is a data
scientist or not.

1.7.1  Guide to Data Science Cheat Sheets

Selection of the most useful Data Science cheat sheets, covering SQL, Python
(including NumPy, SciPy, and Pandas), R (including Regression, Time Series,
Data Mining), MATLAB, and more. By Ajay Ohri, May 2014.

Over the past few years, as the buzz and apparently the demand for data
scientists has continued to grow, people are eager to learn how to join, learn,
advance, and thrive in this seemingly lucrative profession. As someone who
writes on analytics and occasionally teaches it, I am often asked—How do I
become a data scientist?

Adding to the complexity of my answer is data science seems to be a multi-
disciplinary field, while the university departments of statistics, computer sci-
ence, and management deal with data quite differently.

But to cut the marketing created jargon aside, a data scientist is simply a
person who can write code in a few languages (primarily R, Python, and SQL)

http://www.kdnuggets.com/2014/05/guide-to-data-science-cheat-sheets.html
http://www.kdnuggets.com/2014/05/guide-to-data-science-cheat-sheets.html

1  Introduction to Python R and Data Science8

for data querying, manipulation, aggregation, and visualization using enough
statistical knowledge to give back actionable insights to the business for mak-
ing decisions.

Since this rather practical definition of a data scientist is reinforced by the
accompanying words on a job website for “data scientists,” ergo, here are some
tools for learning the primary languages in data science—Python, R, and SQL.

A cheat sheet or reference card is a compilation of mostly used commands to
help you learn that language’s syntax at a faster rate. The inclusion of SQL may
lead to some to feel surprised (isn’t this the NoSQL era?), but it is there for a
logical reason. Both PIG and Hive Query Language are closely associated with
SQL—the original Structured Query Language. In addition one can solely use
the sqldf package within R (and the less widely used python‐sql or python‐sql-
parse libraries for Pythonic data scientists) or even the Proc SQL commands
within the old champion language SAS and do most of what a data scientist is
expected to do (at least in data munging).

Python Cheat Sheets is a rather partial list given the fact that Python, the
most general‐purpose language within the data scientist quiver, can be used for
many things. But for the data scientist, the packages of NumPy, SciPy, pandas,
and scikit‐learn seem the most pertinent.

Do all the thousands of R packages have useful interest to the aspiring data
scientist? No.

Accordingly we chose the appropriate cheat sheets for you. Note that this
is a curated list of lists. If there is anything that can be assumed in the field of
data science, it should be that the null hypothesis is that the data scientist is
intelligent enough to make his own decisions based on data and its context.
Three printouts are all it takes to speed up the aspiring data scientist’s
journey.

You can also view the presentation on SlideShare at http://www.slideshare.
net/ajayohri/cheat‐sheets‐for‐data‐scientists that has more than 8000 views.

1.8  Packages in Python for Data Science

Some useful packages for data scientists in Python are as follows:

●● pandas—A software library written for data structures, data manipulation,
and analysis in Python.

●● NumPy—Adds Python support for large, multidimensional arrays and
matrices, along with a large library of high‐level mathematical functions to
operate on these arrays.

●● IPython Notebook(s)—Demonstrates Python functionality geared toward
data analysis.

●● SciPy—A fundamental library for scientific computing.

http://www.slideshare.net/ajayohri/cheat-sheets-for-data-scientists
http://www.slideshare.net/ajayohri/cheat-sheets-for-data-scientists

1.9  Similarities and Differences between Python and R 9

●● Matplotlib—A comprehensive 2D plotting for graphs and data
visualization.

●● Seaborn—A Python visualization library based on matplotlib. It provides a
high‐level interface for drawing attractive statistical graphics.

●● scikit‐learn—A machine learning library.
●● statsmodels—For building statistical models.
●● Beautiful Soup—For web scraping.
●● Tweepy—For Twitter scraping.
●● Bokeh (http://bokeh.pydata.org/en/latest/)—A Python interactive visualiza-

tion library that targets modern web browsers for presentation. Its goal is to
not only provide elegant, concise construction of novel graphics in the style
of D3.js but also deliver this capability with high‐performance interactivity
over very large or streaming datasets. It has interfaces in Python, Scala, Julia,
and now R.

●● ggplot (http://ggplot.yhathq.com/)—A plotting system for Python based on
R’s ggplot2 and the Grammar of Graphics. It is built for making professional‐
looking plots quickly with minimal code.

For R the best way to look at packages is see CRAN Task Views (https://cran.r‐
project.org/web/views/) where the packages are aggregated by usage type. For
example, the CRAN Task View on High Performance Computing is available at
https://cran.r‐project.org/web/views/HighPerformanceComputing.html.

1.9  Similarities and Differences between
Python and R

●● Python is used in a wide variety of use cases unlike R that is mostly a lan-
guage for statistics.

●● Python has two versions: Python 2 (or 2.7) and Python 3 (3.4). This is not
true in R that has one major release.

●● R has very good packages in data visualization and data mining and so does
Python. R however has a large number of packages that can do the same
thing, while Python generally focuses on adding functions to same package.
This is both a benefit in terms of options available and a disadvantage in
terms of confusing the beginner. Python has comparatively fewer packages
(like statsmodels and scikit‐learn for data mining).

●● Communities differ in terms of communication and interaction. The R com-
munity uses the #rstats on Twitter (see https://twitter.com/hashtag/rstats) to
communicate.

●● R has an R Journal at https://journal.r‐project.org/, and Python has a journal
at Python Papers (http://ojs.pythonpapers.org/). In addition there is a Journal
of Statistical Software (http://www.jstatsoft.org/index).

http://bokeh.pydata.org/en/latest/
http://ggplot.yhathq.com/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://twitter.com/hashtag/rstats
https://journal.r-project.org/
http://ojs.pythonpapers.org/
http://www.jstatsoft.org/index

1  Introduction to Python R and Data Science10

1.9.1  Why Should R Users Learn More about Python?

A professional data scientist should hedge his career by not depending on just
one statistical computing language. The ease at which a person can learn a new
language does decrease with age, and it’s best to base your career on more than R.
SAS language did lead the world for four decades, but in a fast‐changing world,
it is best not to bet your mortgage that R skills are all you need for
statistical computing in a multi‐decade career.

1.9.2  Why Should Python Users Learn More about R?

R will continue to have the maximum number of packages in statistics data
science and visualization. Since R is also open source and free, it is best to
prototype your solution in R than use Python for scaling up in production
environment.

An interesting viewpoint is given at http://www.kdnuggets.com/2015/05/
r‐vs‐python‐data‐science.html by a founder of DataCamp and at http://
multithreaded.stitchfix.com/blog/2015/03/17/grammar‐of‐data‐science/

1.10  Tutorials

A notebook by Radim Rehurek on data science with Python with code and
output is available at http://radimrehurek.com/data_science_python/.

A good list of notebooks in data science for Python is also available at https://
github.com/donnemartin/data‐science‐ipython‐notebooks.

More general knowledge on data science‐related activities in Python can be
found at https://github.com/okulbilisim/awesome‐datascience.

For more learning on data science, see http://datasciencespecialization.
github.io/. It has all nine courses in the Coursera Data Science Specialization
from Johns Hopkins University.

It has the following courses:

●● The Data Scientist’s Toolbox
●● R Programming
●● Getting and Cleaning Data
●● Exploratory Data Analysis
●● Reproducible Research
●● Statistical Inference
●● Regression Models
●● Practical Machine
●● Learning Developing Data Products

http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
http://multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
http://multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
http://radimrehurek.com/data_science_python/.
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/okulbilisim/awesome-datascience
http://datasciencespecialization.github.io/
http://datasciencespecialization.github.io/

1.11  Using R and Python Together 11

1.11  Using R and Python Together

The author has helped create a SlideShare ppt on a side‐by‐side comparison of
R and Python syntax for data science at http://www.slideshare.net/ajayohri/
python‐for‐r‐users (35 000 + views). However a guide for using Python and R
for quantitative finance is also found at http://www.slideshare.net/lsbardel/
python‐and‐r‐for‐quantitative‐finance‐2409526

Additionally the following methods help to use both R and Python and lever-
age their tremendous strengths:

1)	 RPy2 RPy2 helps in using R and Python together. The official documenta-
tion is given at http://rpy.sourceforge.net/rpy2/doc‐dev/html/introduction.
html. The object r in rpy2.robjects represents the running embedded R
process. If familiar with R and the R console, r is a little like a communica-
tion channel from Python to R.

A lucid example of using RPy2 is given here at A Slug’s Guide to Python
(https://sites.google.com/site/aslugsguidetopython/data‐analysis/pandas/
calling‐r‐from‐python):

from pandas import*
from rpy2.robjects.packages import importr
import rpy2.robjects as ro
import pandas.rpy.common as com

We can pass commands to the R session by putting the R syntax within the
ro.r() method as strings, and we can read the R data.frame into pandas data
frame with com.load_data method. We can then pass the pandas data frame
back to the R instance by first converting pydf to an R data frame by using com.
convert_to_r_dataframe method.

A truncated screenshot of the website is given in Figure 1.2 to help the reader
understand and refer back to https://sites.google.com/site/aslugsguidetopython/
data‐analysis/pandas/calling‐r‐from‐python

1.11.1  Using R Code for Regression and Passing to Python

An example of using rpy2 and caret package in R is given for kaggle at
https://www.kaggle.com/c/bike‐sharing‐demand/forums/t/12923/rpy2‐caret‐
example

a caret use from python environment:
import pandas.rpy.common as com
import rpy2

http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/lsbardel/python-and-r-for-quantitative-finance-2409526
http://www.slideshare.net/lsbardel/python-and-r-for-quantitative-finance-2409526
http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.html
http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.html
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-example
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-example

1  Introduction to Python R and Data Science12

import rpy2.robjects as ro
from rpy2.robjects import Formula
from rpy2.robjects.packages import importr
caretr = importr("caret")
data_trainr = com.convert_to_r_dataframe(data_train)
param1 = {'method' : 'repeatedcv', 'number' : 3,
'repeats' : 5}
ctrl = caretr.trainControl(**param1)
param2 = {'method' : 'rf', 'trControl' : ctrl}
rf_for = Formula("log(casual + 1) ~ dm + t + wd + tp +
hum + ws")

Figure 1.2  Using R code for regression and passing to Python.

1.11  Using R and Python Together 13

rfmod = caretr.train(rf_for, data = data_trainr,
**param2)
print(rfmod)

A better but slightly old demo of using R and Python together in rpy2 is given
at http://www.bytemining.com/wp‐content/uploads/2010/10/rpy2.pdf

Another good example is given by Laurent Gautier in her talk “Polyglot
applications with R and Python [BARUG Meeting]” at http://files.meetup.
com/1225993/Laurent%20Gautier_R_toPython_bridge_to_R.pdf#!

A minimal example of rpy2 regression using pandas data frame is given
at Stack Overflow at http://stackoverflow.com/questions/30922213/minimal‐
example‐of‐rpy2‐regression‐using‐pandas‐data‐frame

from rpy2.robjects import pandas2ri
pandas2ri.activate()
robjects.globalenv['dataframe'] = dataframe
M = stats.lm('y~x', data=base.as_symbol('dataframe'))

The result is:

>>> print(base.summary(M).rx2('coefficients'))
	 Estimate Std. Error t value Pr(>|t|)
(Intercept)	0.6 1.1489125 0.522233 0.6376181
x	 0.8 0.3464102 2.309401 0.1040880

CONDA—Conda is an open‐source package management system and
environment management system for installing multiple versions of software
packages and their dependencies and switching easily between them. It works
on Linux, OS X, and Windows and was created for Python programs but can
package and distribute any software. Using conda we can use Python and
R together. We can then use the familiar interface of Jupyter/IPython Notebook.
You can refer to https://www.continuum.io/conda‐for‐r.

You can see the demo for R within Jupyter at https://try.jupyter.org/. A good
blog post on using Jupyter to R is found at https://www.continuum.io/blog/
developer/jupyter‐and‐conda‐r.

The Anaconda team has created an “R Essentials” bundle with the IRkernel
and over 80 of the most used R packages for data science, including dplyr,
shiny, ggplot2, tidyr, caret, and nnet.

Once you have conda, you may install “R Essentials” into the current
environment:

conda install -c r r-essentials
 Bash

http://www.bytemining.com/wp-content/uploads/2010/10/rpy2.pdf
http://files.meetup.com/1225993/Laurent Gautier_R_toPython_bridge_to_R.pdf#!
http://files.meetup.com/1225993/Laurent Gautier_R_toPython_bridge_to_R.pdf#!
http://stackoverflow.com/questions/30922213/minimal-example-of-rpy2-regression-using-pandas-data-frame
http://stackoverflow.com/questions/30922213/minimal-example-of-rpy2-regression-using-pandas-data-frame
https://www.continuum.io/conda-for-r
https://try.jupyter.org/
https://www.continuum.io/blog/developer/jupyter-and-conda-r
https://www.continuum.io/blog/developer/jupyter-and-conda-r

1  Introduction to Python R and Data Science14

or create a new environment just for “R essentials”:

conda create -n my-r-env -c r r-essentials

(https://www.continuum.io/content/preliminary‐support‐r‐conda)
conda create ‐c r ‐n r r will download R from our official R channel on
Anaconda.org:

●● Revolution Analytics—A Microsoft company that is one of the leading ven-
dors of R has a blog post on this at http://blog.revolutionanalytics.
com/2015/09/using‐r‐with‐jupyter‐notebooks.html

●● Official documentation is also at http://conda.pydata.org/docs/r‐with‐
conda.html

DOCKER—Docker is an open platform for developers and sysadmins to build,
ship, and run distributed applications, whether on laptops, data center VMs, or
the cloud.

●● You can use Docker to run Jupyter. This is available at https://hub.docker.
com/r/jupyter/datascience‐notebook/ and https://github.com/jupyter/
docker‐stacks

A good discussion for Docker is given at http://stackoverflow.com/
questions/16047306/how‐is‐docker‐different‐from‐a‐normal‐virtual‐
machine. I am reproducing a part of the technical answer in the following text.

Docker was using Linux Containers (LXC) earlier but switched to runC
(formerly known as libcontainer) that runs in the same operating system as its
host. This allows it to share a lot of the host operating system resources.
It also uses layered file systems like AuFS. It also manages the networking for
you as well.

AuFS is a layered file system, so you can have a read‐only part and a
write part and merge those together. So you could have the common parts
of the operating system as read only, which are shared among all of your
containers, and then give each container its own mount for writing.

So let’s say you have a container image that is 1GB in size. If you wanted to
use a full VM, you would need to have 1GB times × number of VMs you want.
With LXC and AuFS you can share the bulk of the 1GB, and if you have 1000
containers, you still might only have a little over 1GB of space for the container
OS, assuming they are all running the same OS image.

A full virtualized system gets its own set of resources allocated to it and
does minimal sharing. You get more isolation, but it is much heavier (requires
more resources).

With LXC you get less isolation, but they are more lightweight and require
fewer resources. So you could easily run 1000’s on a host.

You can build your own docker environment for data science.

https://www.continuum.io/content/preliminary-support-r-conda
http://blog.revolutionanalytics.com/2015/09/using-r-with-jupyter-notebooks.html
http://blog.revolutionanalytics.com/2015/09/using-r-with-jupyter-notebooks.html
http://conda.pydata.org/docs/r-with-conda.html
http://conda.pydata.org/docs/r-with-conda.html
https://hub.docker.com/r/jupyter/datascience-notebook/
https://hub.docker.com/r/jupyter/datascience-notebook/
https://github.com/jupyter/docker-stacks
https://github.com/jupyter/docker-stacks
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine

1.14  How Can You Use Python and R for Big Data Analytics? 15

For Jupyter and Docker, see “A data science environment in minutes using
Docker and Jupyter” at https://www.dataquest.io/blog/data‐science‐quickstart‐
with‐docker/, and for Docker and R, you can use the instructions and file
at https://hub.docker.com/r/library/r‐base/. The official R base is available at
https://store.docker.com/images/f2e50720‐cada‐432f‐85a5‐1ade438d537b?
tab=description, and you can just copy and paste to pull the image

docker pull r‐base

●● Python and R together using Beaker—You can use Python and R together
using Jupyter, Rpy2, or Beaker. While Jupyter and rpy2 have been covered
before, we can also use Beaker. You can use R Python and JavaScript within
the same notebook in Beaker (and other languages too).

You can see examples here http://beakernotebook.com/examples and
read about it at http://blog.dominodatalab.com/interactive‐data‐science/ and
https://github.com/twosigma/beaker‐notebook

1.12  Other Software and Python

●● SAS and Python—You can use the SAS language to talk to both Python and R.
This is done using Java (passed to the Java class SASJavaExec using the Base
SAS Java Object). More specifically you can see the instructions at https://
github.com/sassoftware/enlighten‐integration/ and https://communities.sas.
com/docs/DOC‐10746

1.13  Using SAS with Jupyter

You can also use SAS from within Jupyter (Figure 1.3; see http://blogs.sas.com/
content/sasdummy/2016/04/24/how‐to‐run‐sas‐programs‐in‐jupyter‐notebook/).

1.14  How Can You Use Python
and R for Big Data Analytics?

Big data is synonymous with Hadoop. For using Python with Hadoop, you can
use the following packages:

1)	 Hadoop Streaming
2)	 mrjob
3)	 dumbo
4)	 hadoopy
5)	 pydoop

https://www.dataquest.io/blog/data-science-quickstart-with-docker/
https://www.dataquest.io/blog/data-science-quickstart-with-docker/
https://hub.docker.com/r/library/r-base/
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?tab=description
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?tab=description
http://beakernotebook.com/examples
http://blog.dominodatalab.com/interactive-data-science/
https://github.com/twosigma/beaker-notebook
https://github.com/sassoftware/enlighten-integration/
https://github.com/sassoftware/enlighten-integration/
https://communities.sas.com/docs/DOC-10746
https://communities.sas.com/docs/DOC-10746
http://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/
http://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/

1  Introduction to Python R and Data Science16

An example is given at https://blog.cloudera.com/blog/2013/01/a‐guide‐
to‐python‐frameworks‐for‐hadoop/

A recent innovation is Apache Arrow (see https://blog.cloudera.com/
blog/2016/02/introducing‐apache‐arrow‐a‐fast‐interoperable‐in‐memory‐
columnar‐data‐structure‐standard/). As per the article, “For the Python and R
communities, Arrow is extremely important, as data interoperability has been
one of the biggest roadblocks to tighter integration with big data systems
(which largely run on the JVM).”

The next innovation is Feather (see https://blog.rstudio.org/2016/03/29/
feather/). Feather is a fast, lightweight, and easy‐to‐use binary file format for
storing data frames, and Feather files are the same whether written by Python
or R code. The Python interface uses Cython to expose Feather’s C++11 core to
users, while the R interface uses Rcpp for the same task.

1.15  What Is Cloud Computing?

The official definition of cloud computing is given at http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800‐145.pdf

Figure 1.3  Using SAS from within Jupyter Notebook. Source: Chris Hemedinger on The SAS
Dummy, SAS Institute. Reproduced with the permission of SAS Institute Inc.

https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.rstudio.org/2016/03/29/feather/
https://blog.rstudio.org/2016/03/29/feather/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

1.16  How Can You Use Python and R on the Cloud? 17

Cloud computing is a model for enabling:

1)	 Ubiquitous, convenient on‐demand network access
2)	 A shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction

Amazon (EC2), Google, Oracle, IBM, and Microsoft Azure are some exam-
ples of cloud providers. For a data scientist, it is important to know the differ-
ence between Infrastructure as a Service, Platform as a Service, and Software
as a Service (Figure 1.4).

1.16  How Can You Use Python and R on the Cloud?

If you want to host and run Python in the cloud, these implementations may be
right for you: PythonAnywhere (freemium hosted Python installation that lets
you run Python in the browser, e.g., for tutorials, showcases, etc.). It has an
additional use case for education.

From https://www.pythonanywhere.com/details/education, Python is a
great language for teaching, but getting it installed and set up on all your
students’ computers can be less than easy. PythonAnywhere provides an

Y
ou

 m
an

ag
e

Y
ou

 m
an

ag
e

Y
ou

 m
an

ag
e

O
th

er
s

m
an

ag
e

O
th

er
s

m
an

ag
e

O
th

er
s

m
an

ag
e

Separation of responsibilities

On-premises

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Infrastructure
(as a service)

Platform
(as a service)

Software
(as a service)

Figure 1.4  The difference between infrastructure as service, platform as a service, and
software as a service. Source: https://blogs.technet.microsoft.com/kevinremde/2011/04/03/
saas‐paas‐and‐iaas‐oh‐my‐cloudy‐april‐part‐3/. © Microsoft.

https://www.pythonanywhere.com/details/education
https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-and-iaas-oh-my-cloudy-april-part-3/
https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-and-iaas-oh-my-cloudy-april-part-3/

1  Introduction to Python R and Data Science18

environment that’s ready to go—including a syntax‐highlighting, error‐
checking editor and Python 2 and 3 consoles.

You can use web scraping from Python on the cloud through http://
scrapinghub.com/scrapy‐cloud/. Scrapy is the most popular and advanced web
crawling framework for Python. It makes writing web crawlers fast, easy, and
fun. However, you still need to deploy and run your crawler periodically,
manage servers, monitor performance, review scraped data, and get notified
when spiders break. This is where Scrapy Cloud comes in.

Additionally, you can run RStudio Server on the cloud if you prefer the RStudio
interface using the instructions at http://www.louisaslett.com/RStudio_AMI/.
As of May 2016 there is experimental support for Julia (and Python).

1.17  Commercial Enterprise and Alternative
Versions of Python and R

Two principal commercial distributions of Python for data scientists are as
follows:

●● Anaconda from Continuum Analytics (https://www.continuum.io/
downloads)

Anaconda is a completely free Python distribution (including for commer-
cial use and redistribution). It includes more than 300 of the most popular
Python packages for science, math, engineering, and data analysis.

●● Enthought Canopy (https://www.enthought.com/products/canopy/)
Enthought Canopy is a Python analysis environment that provides easy

installation of the core scientific analytic and scientific Python packages.

A number of alternative implementations are also available (see https://
www.python.org/download/alternatives/):

●● IronPython (Python running on.NET).
●● Jython (Python running on the Java virtual machine).
●● PyPy (http://pypy.org/). PyPy is a fast, compliant alternative implementation

of the Python language (2.7.10 and 3.2.5). It has several advantages in terms
of speed and distinct features but is currently trying to port NumPy package
(NumPy is the basic package for many numerical operations in Python).

●● Stackless Python (branch of CPython supporting microthreads).

Some repackagings of Python are the following:

●● ActiveState ActivePython (commercial and community versions, including
scientific computing modules)

http://scrapinghub.com/scrapy-cloud/
http://scrapinghub.com/scrapy-cloud/
http://www.louisaslett.com/RStudio_AMI/
http://julialang.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.enthought.com/products/canopy/
https://www.python.org/download/alternatives/
https://www.python.org/download/alternatives/
http://pypy.org/

1.17  Commercial Enterprise and Alternative Versions of Python and R 19

●● pythonxy (scientific‐oriented Python Distribution based on Qt and Spyder)
●● winpython (WinPython is a portable scientific Python distribution for

Windows)
●● Conceptive Python SDK (targets business, desktop, and database

applications)
●● PyIMSL Studio (a commercial distribution for numerical analysis—free for

noncommercial use)
●● eGenix PyRun (a portable Python runtime, complete with stdlib, frozen into

a single 3.5–13 MB executable file)

In addition there is Cython (http://cython.org/), an optimizing static com-
piler for both the Python programming language and the extended Cython
programming language (based on Pyrex). It makes writing C extensions for
Python easier:

●● For R the commercial versions are by Revolution Analytics, a Microsoft‐
acquired subsidiary (www.revolutionanalytics.com). Revolution Analytics
makes RevoScaleR package that helps scale up to bigger datasets. RStudio
also makes software around R (including Shiny Package and a widely used
IDE at www.rstudio.com).

●● Renjin is a JVM‐based interpreter for the R language for statistical computing
(http://www.renjin.org/).

●● pqR, a pretty quick version of R (http://www.pqr‐project.org/), is a new
version of the R interpreter. It is based on R‐2.15.0 later versions distributed
by the R Core Team (at r‐project.org).

●● Oracle R Enterprise (ORE) (see https://blogs.oracle.com/R/) (http://www.
oracle.com/technetwork/database/database‐technologies/r/r‐enterprise/
overview/index.html). Oracle R Enterprise, a component of the Oracle
Advanced Analytics Option, makes the open‐source R statistical program-
ming language and environment ready for the enterprise and big data.
Designed for problems involving large volumes of data, it integrates R with
Oracle Database. R users can run R commands and scripts for statistical and
graphical analyses on data stored in Oracle Database.

●● TIBCO Enterprise Runtime for R (TERR) (http://spotfire.tibco.com/
discover‐spotfire/what‐does‐spotfire‐do/predictive‐analytics/tibco‐
enterprise‐runtime‐for‐r‐terr). TERR, a key component of Spotfire
Predictive Analytics, is an enterprise‐grade analytic engine that TIBCO
has built from the ground up to be fully compatible with the R language,
leveraging our long‐time expertise in the closely related S+ analytic engine.
This allows customers not only to continue to develop in open source R but
also to then integrate and deploy their R code on a commercially supported
and robust platform.

http://cython.org/
http://www.revolutionanalytics.com
http://www.rstudio.com
http://www.renjin.org/
http://www.pqr-project.org/
http://r-project.org
https://blogs.oracle.com/R/
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr

1  Introduction to Python R and Data Science20

1.17.1  Commonly Used Linux Commands for Data Scientists

It is important for the budding data scientist to learn the right operating system
before a language; hence here are some Linux tips:

●● ls—Directory listing
●● cd dir—Change directory to dir
●● mkdir dirname—Makes a directory named dirname
●● cd—Change to home
●● sudo—Gives superuser or admin rights
●● sudo bash—Changes to root
●● pwd—Shows present working directory
●● rm filename—Removes file named filename
●● cat > filename—Puts standard output in a file
●● cp filename1 filename2—Copies filename1 to filename2
●● mv filename1 filename2—Moves filename1 to filename2

Refer to http://www.linuxstall.com/linux‐command‐line‐tips‐that‐every‐
linux‐user‐should‐know/ and http://i0.wp.com/www.linuxstall.com/wp‐
content/uploads/2012/01/linux‐command‐line‐cheat‐sheet.png (Figure 1.5).

1.17.2  Learning Git

Git is a version control system that enables teams to work together on projects
as well as share code. GitHub is a popular website for sharing packages and
libraries under development in R.

Figure 1.5  Linux cheat sheet.

http://www.linuxstall.com/linux-command-line-tips-that-every-linux-user-should-know/
http://www.linuxstall.com/linux-command-line-tips-that-every-linux-user-should-know/
http://i0.wp.com/www.linuxstall.com/wp-content/uploads/2012/01/linux-command-line-cheat-sheet.png
http://i0.wp.com/www.linuxstall.com/wp-content/uploads/2012/01/linux-command-line-cheat-sheet.png

1.17  Commercial Enterprise and Alternative Versions of Python and R 21

The following cheat sheet will help you get started in Git (http://overapi.
com/static/cs/git‐cheat‐sheet.pdf) (Figures 1.6 and 1.7). You can test your
knowledge by a tutorial at https://try.github.io/levels/1/challenges/1. Lastly
the author believes the best way to learn Git is to start contributing to
a project.

Figure 1.6  Git cheat sheet. Source: © Github.

http://overapi.com/static/cs/git-cheat-sheet.pdf
http://overapi.com/static/cs/git-cheat-sheet.pdf
https://try.github.io/levels/1/challenges/1

1  Introduction to Python R and Data Science22

Let’s begin learning the basics of Python (https://nbviewer.jupyter.org/gist/
decisionstats/ce2c16ee98abcf328177).

Bold font is code; normal font is output.

Numerical Operations
2+3+5

10
66‐3‐(‐4)

67
32*3

96
2**3 #2 raised to power of 3

8
43/3

14.333333333333334
32//3 #Gives quotient

10
44%3 #Gives remainder

2

Figure 1.7  Git command sequence. Source: © Github.

https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177
https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177

1.17  Commercial Enterprise and Alternative Versions of Python and R 23

For R it is almost the same except for the last two. There the syntax is:

32 % / % 3 #Gives quotient
44 % % 3 #Gives remainder

For Loops
See https://docs.python.org/3/tutorial/controlflow.html

#numbers from 0 to 30 increment 6
for x in range(0, 30, 6):
 print (x)

0
6
12
18
24

For Loops can be slightly different in R. Note the + sign denotes a new line in
R code:

for(i in seq(0,30,6)){
+ print(i)
+ }
[1] 0
[1] 6
[1] 12
[1] 18
[1] 24
[1] 30

Functions
def myfirstfunction(x):
  y=x**3+3*x+20
  print(y)

myfirstfunction(20)

8080

In R creating a function would be different. You would need to use a function
like function(x) as follows, then write the function within brackets, and print
out the value. This is because R like most computer languages does not use

https://docs.python.org/3/tutorial/controlflow.html

1  Introduction to Python R and Data Science24

space indentation. In R, you can view a function’s code by typing the function
name without the (). This is especially useful to see the algorithms in an exist-
ing package and to tweak it if possible:

myfirstfunction =function(x){
 y=x**3+3*x+20
print(y)}

myfirstfunction(20)

for x in range(0,30,6):
 myfirstfunction (x)

20
254
1784
5906
13916

def mynewfunction(x,y):
  z=x**3+3*x*y+20*y
  print(z)

mynewfunction(1,3)

70

mynewfunction(10,3)

1150

See http://rpubs.com/ajaydecis/forfunctions, https://docs.python.org/2/
library/functions.html, and http://stackoverflow.com/questions/7969949/
whats‐the‐difference‐between‐globals‐locals‐and‐vars

●● globals()—Always returns the dictionary of the module namespace
●● locals()—Always returns a dictionary of the current namespace
●● vars()—Returns either a dictionary of the current namespace (if called with

no argument) or the dictionary of the argument

locals() #gives objects in local space

{'In': ['',
 '2+3+5',
 '66-3-(-4)',

http://rpubs.com/ajaydecis/forfunctions
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html
http://stackoverflow.com/questions/7969949/whats-the-difference-between-globals-locals-and-vars
http://stackoverflow.com/questions/7969949/whats-the-difference-between-globals-locals-and-vars

1.17  Commercial Enterprise and Alternative Versions of Python and R 25

 '2^3',
 '3^3',
 '44%%3',
 '44%3',
 '43/3',
 '32*3',
 '2**3',
........ truncated by author
globals()

{'In': ['',
 '2+3+5',
 '66-3-(-4)',
 '2^3',
 '3^3',
 '44%%3',
 '44%3',
 '43/3',
 '32*3',
 '2**3',
 '32//3',
 'for i in 1:30\n   print i',
 'for i in 1:30:\n   print i',
 'for i in 1:30:\n   print i',
 'for i in range(1,30):\n   print i',
 'for i in range(1,30):\n   print i',
 'for i in range(1,30):\n   print %i',
 'for i in range(1,30):\n   print %(i)',
 'for i in range(1,30):\n   print % (i)',
 'for i in range(1,30):\n   print % (i)',
 'for x in range(0,30):\n   print % (x)',
 ------truncated by author

More Numerical Operations

import math

math.exp(2)

7.38905609893065
math.log(2)

0.6931471805599453
math.log(2,10)

1  Introduction to Python R and Data Science26

0.30102999566398114
math.sqrt(10)

3.1622776601683795
dir(math) #dir gives all the identifiers a module defines

['__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'acos',
 'acosh',
 'asin',
 'asinh',
 'atan',
 'atan2',
 'atanh',
 'ceil',
 'copysign',
 'cos',
 'cosh',
 'degrees',
 'e',
 'erf',
 'erfc',
 'exp',
 'expm1',
 'fabs',
 'factorial',
 'floor',
 'fmod',
 'frexp',
 'fsum',
 'gamma',
 'hypot',
 'isfinite',
 'isinf',
 'isnan',
 'ldexp',
 'lgamma',
 'log',

1.17  Commercial Enterprise and Alternative Versions of Python and R 27

 'log10',
 'log1p',
 'log2',
 'modf',
 'pi',
 'pow',
 'radians',
 'sin',
 'sinh',
 'sqrt',
 'tan',
 'tanh',
 'trunc']
a=[23,45,78,97,89]

type(a)

list
len(a)

5
max(a)

97
min(a)

23
sum(a)

332
import numpy

numpy.mean(a)

66.400000000000006

numpy.std(a)

28.011426240018555
numpy.var(a)

784.63999999999999
#Example of Help (note the ? is almost the same as R)
numpy.random?

1  Introduction to Python R and Data Science28

from random import randint,randrange
print(randint(0,9))

5

randrange(10)

4
for x in range(0,5):
    print(randrange(10))

8
3
7
8
5

Strings, Lists, Tuples, and Dicts
newstring=’Hello World’

newstring

'Hello World'
print(newstring)

Hello World

newstring2=’Hello World’s’
 File "<ipython-input-56-8c5b85561ed9>", line 1
   newstring2='Hello World's'
 ^
SyntaxError: invalid syntax

#Double Quotes and Single Quotes
newstring2=“Hello World’s”

print(newstring2)

Hello World’s

#Escape character \
newstring3=“Hello, World\’s”

print(newstring3)

1.17  Commercial Enterprise and Alternative Versions of Python and R 29

Hello, World’s

10*newstring3

"Hello, World'sHello, World'sHello, World'sHello,
World'sHello, World'sHello, World'sHello,
World'sHello, World'sHello, World'sHello World's "

Passing Variables in Strings in Python

myname1= ’Ajay’
myname2= ’John’
message =“ Hi I am %s. How do you do”
message %myname1
' Hi I am Ajay. How do you do'

message %myname2
' Hi I am John. How do you do'

new1= “Why did the %s cross the %s”
print(new1%(’chicken’,’road’))

Why did the chicken cross the road

print(new1%(10,40))
Why did the 10 cross the 40

new2= “Why did the %d cross the %d”

print(new2%(’chicken’,’road’))
--
TypeError	 Traceback (most recent call last)
<ipython-input-11-b2f398d16f9c> in <module>()
----> 1 print(new2%('chicken','road'))

TypeError: %d format: a number is required, not str

Note the error caused by %d and %s

Lists

newnames=’ajay,vijay,john,donald,hillary,bill,ashok’

type(newnames)

str
newnames[0:9]

1  Introduction to Python R and Data Science30

'ajay,vija'
newnames2=[’ajay’,’vijay’,’john’,’donald’,’hillary’,
’bill’,’ashok’]

type(newnames2)

list

In R, a list would be created like this:
newnames2=c(’ajay’,’vijay’,’john’,’donald’,’hillary’,
’bill’,’ashok’)

newnames2[0]

'ajay'
So in R the index starts from 1, while in Python the
index starts with 0.

newnames2[0]=’micky mouse’ #substituting members in a list

newnames2

['micky mouse', 'vijay', 'john', 'donald', 'hillary',
'bill', 'ashok']
newnames2[2]

'john'
newnames2.append(’daisy’)

newnames2

['micky mouse', 'vijay', 'john', 'donald', 'hillary',
'bill', 'ashok', 'daisy']

.append to add and del to delete members in a list

del newnames2[2]

newnames2

['micky mouse', 'vijay', 'donald', 'hillary', 'bill',
'ashok', 'daisy']
newlist=[1,2,4,7]

1.17  Commercial Enterprise and Alternative Versions of Python and R 31

newnames2+newlist

['micky mouse',
 'vijay',
 'donald',
 'hillary',
 'bill',
 'ashok',
 'daisy',
 1,
 2,
 4,
 7]

newlist*3

[1, 2, 4, 7, 1, 2, 4, 7, 1, 2, 4, 7]
a tuple is a list that uses parenthese () not square
brackets [] and it CANNOT be modified at all once
created
scores=(23,46,69,7,5)

type(scores)

tuple
scores[3]

7
dir(scores) #dir command gives various operations that
can be done to that object

['__add__',
 '__class__',
 '__contains__',
 '__delattr__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__getitem__',
 '__getnewargs__',
 '__gt__',

1  Introduction to Python R and Data Science32

 '__hash__',
 '__init__',
 '__iter__',
 '__le__',
 '__len__',
 '__lt__',
 '__mul__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__rmul__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 'count',
 'Index']

favourite_movie=[’micky mouse,steamboat willie’,
’vijay,slumdog millionaire’, ’john,passion of christ’,
’donald,arthur’]

type(favourite_movie)

list

favourite_movie2={’micky mouse’:’steamboat
willie’,’vijay’:’slumdog millionaire’,’john’:’passion
of christ’,’donald’:’arthur’}

type(favourite_movie2)

dict
favourite_movie2[’micky mouse’]

'steamboat willie'
favourite_movie2[’vijay’]

'slumdog millionaire'

Refer to https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13
225bd94eef358a for the code in this example.

https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a
https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a

1.17  Commercial Enterprise and Alternative Versions of Python and R 33

Strings—We use str function to convert data to string data (we use int to
convert data to integer values). We can use slicing on index to create substrings
and concatenate strings using + sign. The following example shows some of the
things that can be done with string data:

names=[’Ajay’,’Vijay’,’Ra Jay’,’Jayesh’]

type(names)

list
names[1]

'Vijay'
type(names[1])

str
names[0][1:3]

'ja'
names[2][2:]

' Jay'
names[2][2:] + names[3][2:]

' Jayyesh'
names[1].lower()

'vijay'
names[2].replace(“ ”,“”)

'RaJay'

Let’s try to do the same thing in R (http://rpubs.com/ajaydecis/strings4).
There are important differences we want to highlight:

names=c('Ajay','Vijay','Ra Jay','Jayesh')

R uses c to make a list. Python does not—but uses square brackets.
Python uses type while R uses class to find out the object’s type:

class(names)
[1] "character"

http://rpubs.com/ajaydecis/strings4

1  Introduction to Python R and Data Science34

Python starts the index from 0 while begins the index of a list from 1:

names[1]
[1] "Ajay"
class(names[1])
[1] "character"

You have to use substr in R to find part of a string. In Python you simply can
look this from within square brackets:

substr(names[1],2,3)
[1] "ja"
substr(names[3],3,nchar(names[3]))
[1] " Jay"

While Python simple combined strings using +, R used paste:

paste(substr(names[3],3,nchar(names[3])),substr(names
[2],3,nchar(names[2])))
[1] " Jay jay"

R uses tolower while Python uses.lower():

tolower(names[1])
[1] "ajay"

Python used replace while R used gsub:

gsub(" ","",names[3])
[1] "RaJay"

The biggest difference is R mostly uses function(object), while Python uses
object.function() to get things done. This is an important difference

File and Folder Operations
In Python we use the os package for file operations to refer and read the file
from a particular directory. We also use !pip freeze to get the list of packages
(versions). We use print (IPython.sys_info()) and version_information package
(%load_ext version_information

%version_information) to get System Information (see Python code at
https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8
c8f9166).

https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166
https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166

1.17  Commercial Enterprise and Alternative Versions of Python and R 35

In R we get System Information using sessionInfo(). (For R Code see http://
rpubs.com/newajay/systeminfo)

import IPython

print (IPython.sys_info())

{'commit_hash': 'c963f6b',
 'commit_source': 'installation',
 'default_encoding': 'UTF-8',
 'ipython_path': '/home/ajayohri/anaconda3/lib/
python3.5/site-packages/IPython',
 'ipython_version': '4.2.0',
 'os_name': 'posix',
 'platform': 'Linux-4.4.0-53-generic-x86_64-with-
debian-stretch-sid',
 'sys_executable': '/home/ajayohri/anaconda3/bin/
python',
 'sys_platform': 'linux',
 'sys_version': '3.5.2 |Anaconda 4.1.1 (64-bit)|
(default, Jul 2 2016, '

	 '17:53:06) \n'
	 '[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]'}

!pip install version_information

The directory “/home/ajayohri/.cache/pip/http” or its parent directory is not
owned by the current user, and the cache has been disabled. Please check the
permissions and owner of that directory. If executing pip with sudo, you may
want sudo’s ‐H flag.

The directory “/home/ajayohri/.cache/pip” or its parent directory is not
owned by the current user, and caching wheels has been disabled. Check the
permissions and owner of that directory. If executing pip with sudo, you may
want sudo’s ‐H flag.

Collecting version_information
Downloading version_information‐1.0.3.tar.gz
Installing collected packages: version‐information
Running setup.py install for version‐information … ‐ \ | done
Successfully installed version‐information‐1.0.3
You are using pip version 8.1.2; however version 9.0.1 is available.
You should consider upgrading via the “pip install ‐‐upgrade pip”

command.
%load_ext version_information
%version_information

http://rpubs.com/newajay/systeminfo
http://rpubs.com/newajay/systeminfo

1  Introduction to Python R and Data Science36

Software Version

Python 3.5.2 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7‐1)]
IPython 4.2.0
OS Linux 4.4.0 53 generic x86_64 with Debian stretch sid
Sat Dec 24 19 : 47 : 41 2016 IST

!pip freeze

alabaster==0.7.8
anaconda-client==1.4.0
anaconda-navigator==1.2.1
argcomplete==1.0.0
astropy==1.2.1
Babel==2.3.3
backports.shutil-get-terminal-size==1.0.0
beautifulsoup4==4.4.1
‐‐‐‐‐‐‐list truncated by author
SQLAlchemy==1.0.13
statsmodels==0.6.1
sympy==1.0
tables==3.2.2
terminado==0.6
toolz==0.8.0
tornado==4.3
traitlets==4.2.1
unicodecsv==0.14.1
version-information==1.0.3
Werkzeug==0.11.10
xlrd==1.0.0
XlsxWriter==0.9.2
xlwt==1.1.2

The directory “/home/ajayohri/.cache/pip/http” or its parent directory is not owned
by the current user, and the cache has been disabled. Please check the permissions
and owner of that directory. If executing pip with sudo, you may want sudo’s ‐H flag.

You are using pip version 8.1.2; however version 9.0.1 is available.
You should consider upgrading via the “pip install ‐‐upgrade pip” command.

(Authors note‐warning message by system)

import os as os
os.getcwd()
'/home/ajayohri/Desktop'
os.chdir(’/home/ajayohri/Desktop’)

1.17  Commercial Enterprise and Alternative Versions of Python and R 37

os.getcwd()
'/home/ajayohri/Desktop'
os.listdir()

['Data Analytics Course: Master Data Analytics Using
Python in 2.5 Months_files',
 'dump 4 nov 2016',
 'Hadoop Tutorial | All you need to know about Hadoop
| Edureka_files',
 'Data Analytics Course: Master Data Analytics Using
Python in 2.5 Months.html',
 'Hadoop Tutorial | All you need to know about Hadoop
| Edureka.html',
 ‘Note to R Users — Data Analysis in Python 0.1
documentation_files’,
 ‘Note to R Users — Data Analysis in Python 0.1
documentation.html’,
 'Jupyter Notebook Viewer.html',
 'py4r.jpg',
 'test',
 'hackerearth',
 'Jupyter Notebook Viewer_files',
 'logo-ds.png']

In R this would be slightly different:

sessionInfo()
R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

locale:
[1] LC_CTYPE=en_IN.UTF-8   LC_NUMERIC=C
[3] LC_TIME=en_IN.UTF-8   LC_COLLATE=en_IN.UTF-8
[5] �LC_MONETARY=en_IN.UTF-8 � LC_MESSAGES=en_IN.UTF-8
[7] LC_PAPER=en_IN.UTF-8   LC_NAME=C
[9] LC_ADDRESS=C      LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_IN.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] �stats  graphics grDevices utils  datasets

methods  base

1  Introduction to Python R and Data Science38

loaded via a namespace (and not attached):
[1] �magrittr_1.5  tools_3.3.1  htmltools_0.3.5

Rcpp_0.12.8
[5] �stringi_1.1.1  rmarkdown_1.0 knitr_1.13

stringr_1.0.0
[9] digest_0.6.9 evaluate_0.9

getwd()
[1] "/home/ajayohri"

setwd(“/home/ajayohri/Desktop/”)

dir()
[1] �"Data Analytics Course: Master Data Analytics

Using Python in 2.5 Months_files"
[2] �"Data Analytics Course: Master Data Analytics

Using Python in 2.5 Months.html"
[3] "dump 4 nov 2016"
[4] "hackerearth"
[5] �"Hadoop Tutorial | All you need to know about

Hadoop | Edureka_files"
[6] �"Hadoop Tutorial | All you need to know about

Hadoop | Edureka.html"
[7] "Jupyter Notebook Viewer_files"
[8] "Jupyter Notebook Viewer.html"
[9] "logo-ds.png"
[10] �"Note to R Users — Data Analysis in Python 0.1

documentation_files"
[11] �"Note to R Users — Data Analysis in Python 0.1

documentation.html"
[12] "py4r.jpg"
[13] "test"

The following deals with the business part (or domain expertise part) of
the decision science triad (programming, statistics, and domain
expertise).

1.18  Data‐Driven Decision Making: A Note

A fundamental principle of data‐driven decision making is a famous quote: If
you can’t measure it, you can’t manage it—Peter Drucker.

As per http://whatis.techtarget.com/definition/data‐driven‐decision‐
management‐DDDM, data‐driven decision management (DDDM) is an
approach to business governance that values decisions that can be backed

http://whatis.techtarget.com/definition/data-driven-decision-management-DDDM
http://whatis.techtarget.com/definition/data-driven-decision-management-DDDM

1.18  Data‐Driven Decision Making: A Note 39

up with verifiable data. The success of the data‐driven approach is reliant
upon the quality of the data gathered and the effectiveness of its analysis and
interpretation.

As per author, the following constitutes data‐driven decision making:

●● Using past data and trending historical data
●● Validating assumptions if any after listing all assumptions
●● Using champion challenger scenarios to test scenarios
●● Using experiments for various tests
●● Use baselines for continuous improvement in customer experiences, costs,

and revenues
●● Taking decisions based on the previous process

As per HBR.org, the more frequent the correlation in a company’s data and
the lower the risk of being wrong, the more it makes sense to act based on
that correlation (Citation: https://hbr.org/2014/05/an‐introduction‐to‐data‐
driven‐decisions‐for‐managers‐who‐dont‐like‐math).

1.18.1  Strategy Frameworks in Business Management: A Refresher
for Non‐MBAs and MBAs Who Have to Make Data‐Driven Decisions

Some frameworks are used for business strategy—to come up with decisions
after analyzing the huge reams of qualitative and uncertain data that business
generates. This is also part of the substantive expertise circle in Conway’s Venn
diagram definition of data science at http://drewconway.com/zia/2013/3/26/
the‐data‐science‐venn‐diagram (Figure 1.8).

Hac
kin

g
sk

ills

Machine
learning

Danger

zone!

Data
science

Substantive
expertise

Traditional
research

M
ath and statistics

knowledge

Figure 1.8  Conway’s Venn diagram. Source: © Drew Conway Data Consulting, LLC.

https://hbr.org/2014/05/an-introduction-to-data-driven-decisions-for-managers-who-dont-like-math
https://hbr.org/2014/05/an-introduction-to-data-driven-decisions-for-managers-who-dont-like-math
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

1  Introduction to Python R and Data Science40

●● Porter’s five forces model—To analyze industries. Porter’s famous model is
used to derive five forces that determine the competitive intensity and there-
fore attractiveness of a market. Attractiveness in this context refers to the
overall industry profitability. An “unattractive” industry is one in which the
combination of these five forces acts to drive down overall profitability. A
very unattractive industry would be one approaching “pure competition”
(Figure 1.9).

●● Business canvas—The business model canvas is used for developing new or
documenting existing business models. It describes a firm’s value proposition,
infrastructure, customers, and finances and thus assists firms by illustrating
potential trade‐offs in various activities. The business model canvas was ini-
tially proposed by Alexander Osterwalder. A bigger graphic can be obtained at
https://en.wikipedia.org/wiki/File:Business_Model_Canvas.png (Figure 1.10).

●● BCG matrix—To analyze product portfolios. BCG Matrix is best used to
analyze your own or target organization’s product portfolio—applicable for
companies with multiple products. This helps corporations allocate
resources by analyzing their business units or product lines (Figure 1.11).

●● Porter’s diamond model—To analyze locations. An economical model devel-
oped by Michael Porter in his book The Competitive Advantage of Nations,
where he published his theory of why particular industries become com-
petitive in particular locations. This helps to analyze countries, states, or
locations for both customers and vendors (Figure 1.12).

●● McKinsey 7S model—To analyze teams. To check which teams work and
which teams are done (within an organization), we can use the 7S model. It
is a strategic vision for groups to include businesses, business units, and
teams. The 7S are structure, strategy, systems, skills, style, staff, and shared
values. The model is most often used as a tool to assess and monitor changes
in the internal situation of an organization (Figure 1.13).

Bargaining power of suppliers

Bargaining power of buyers

Threat
of new entrants

Threat
of substitutes

Industry
rivalry

Figure 1.9  Porter five forces for competitive strategy. Source: © Wikipedia.

https://en.wikipedia.org/wiki/File:Business_Model_Canvas.png

Figure 1.10  Business model canvas. Source: © Strategyzer AG Services.

Chance
Firm strategy,

structure,
and rivalry

Factor
conditions

Demand
conditions

Related
and supporting

industries
Government

Figure 1.12  Porter’s diamond model for competitiveness in locations. Source: http://
en.wikipedia.org/wiki/Diamond_model. © Wikipedia.

Stars Market growth

Relative market share

Cash cows Dogs

Dorlan

Bendac

Eviron
Zodial

Lotran

Braviton

Xantax

Pentrix

Longal

Energan

24

21

18

2.0 1.6 1.2 0.8 0.4 0.0

14

11

8

Question marks

Figure 1.11  BCG matrix. Source: http://en.wikipedia.org/wiki/Growth‐share_matrix.
© Wikipedia.

http://en.wikipedia.org/wiki/Diamond_model
http://en.wikipedia.org/wiki/Diamond_model
http://en.wikipedia.org/wiki/Growth-share_matrix

1.18  Data‐Driven Decision Making: A Note 43

●● Grenier’s theory—To analyze growth of organization. It was developed by
Larry E. Greiner and is helpful when examining the problems associated
with growth on organizations and the impact of change on employees. It can
be argued that growing organizations move through five relatively calm peri-
ods of evolution, each of which ends with a period of crisis and revolution.
Each evolutionary period is characterized by the dominant management
style used to achieve growth, while each revolutionary period is character-
ized by the dominant management problem that must be solved before
growth will continue (Figure 1.14).

●● Herzberg’s hygiene theory—To analyze soft aspects of individuals.

The following table presents the top seven factors causing dissatisfaction and
the top six factors causing satisfaction, listed in the order of higher to lower
importance.

Leading to satisfaction

●● Achievement
●● Recognition
●● Work itself
●● Responsibility
●● Advancement
●● Growth

Strategy

Skills

Style Systems

Staff

Structure

Super-
ordinate

goals
(shared
values)

Figure 1.13  Mckinsey 7s model. Source: http://en.wikipedia.org/wiki/McKinsey_7S_
Framework. © Wikipedia.

http://en.wikipedia.org/wiki/McKinsey_7S_Framework
http://en.wikipedia.org/wiki/McKinsey_7S_Framework

1  Introduction to Python R and Data Science44

Leading to dissatisfaction

●● Company policy
●● Supervision
●● Relationship with boss
●● Work conditions
●● Salary
●● Relationship with peers
●● Security

This framework helps to explain what motivates people to contribute (or fail to
contribute) to teams, products, organizations, and nations. Alternative moti-
vational models are Maslow’s hierarchy of needs (shown here) and McGregor
Theory X and Theory Y. McGregor terms the two models as “Theory X,” which
stresses the importance of strict supervision and external rewards and penal-
ties, and “Theory Y,” which highlights the motivating role of job satisfaction
and allows scope for workers to approach tasks creatively.

Young Mature

1. Crisis of
leadership

1. Growth through
creativity

Stage 1 Stage 2 Stage 3

Stages of organizational growth

Stage 4 Stage 5

2. Growth through
direction

3. Growth through
delegation

4. Growth through
coordination

5. Growth through
collaboration

2. Crisis of
autonomy

3. Crisis of
control

4. Crisis of
red tape

5. Crisis of
?

S
m

al
l

La
rg

e

Age of organization

S
iz

e
of

 o
rg

an
iz

at
io

n

Figure 1.14  Grenier theory. Source: Adapted from Greiner (1998). Evolution and Revolution
as Organizations Grow. © Harvard Business Publishing.

1.18  Data‐Driven Decision Making: A Note 45

●● Marketing mix modeling—To analyze marketing mix for determining a
product or a brand’s offer. It has the four P’s: price, product, promotion, and
place. This can also be shown by four C’s model: consumer, cost, communi-
cation, and convenience.

1.18.2  Additional Frameworks for Business Analysis

Pareto Principle
The Pareto principle (also known as the 80/20 rule, the law of the vital few, and
the principle of factor sparsity) is a heuristic or a thumb rule that tells analysts
to prioritize their analysis. It helps states that, for many events, roughly 80% of
the effects come from 20% of the following causes:

●● 80% of a company’s profits come from 20% of its customers.
●● 80% of a company’s complaints come from 20% of its customers.
●● 80% of a company’s profits come from 20% of the time its staff spend.
●● 80% of a company’s sales come from 20% of its products.
●● 80% of a company’s sales are made by 20% of its sales staff.

Thus a business analyst should look at the top and bottom 20% of the prod-
ucts, orders, customers, and staff when doing an analysis to determine the
cause and effect relationships that can be then modified for positive value
creation.

An additional framework is root cause analysis where one can ask five succes-
sive why’s to determine the root cause of an effect. The process is to ask “why”
and identify the causes associated with each sequential step toward the event.
“Why” here stands for “What were the factors that directly resulted in the effect?”

LTV Analysis
Lifetime value (LTV) analysis is often a widely used technique within BA to
help businesses which customers to retain and which to churn. It also helps
with promotions and customer acquisition strategy. LTV is the cumulative
revenue a customer will generate for a business over his active lifetime when
associated with the products and brands of that business—from acquisition to
churn. LTV helps us answer three fundamental questions:

1)	 Did the business pay enough to acquire customers from each marketing
channel (cost of acquisition)?

2)	 Did the business acquire the best kind of customers (profitability analysis)?
3)	 How much could the business spend on keeping or retaining them as your

customers (prevent churn by offers, calls, email, and social media)?

You can calculate LTV analysis using the methods given at https://blog.
kissmetrics.com/how‐to‐calculate‐lifetime‐value/ and at http://www.kaushik.
net/avinash/analytics‐tip‐calculate‐ltv‐customer‐lifetime‐value/

https://blog.kissmetrics.com/how-to-calculate-lifetime-value/
https://blog.kissmetrics.com/how-to-calculate-lifetime-value/
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/

1  Introduction to Python R and Data Science46

For LTV analysis in R, you can see this R package at https://cran.r‐project.
org/web/packages/BTYD/vignettes/BTYD‐walkthrough.pdf. The BTYD pack-
age contains models to capture noncontractual purchasing behavior of cus-
tomers—or, more simply, models that tell the story of people buying until they
die (become inactive as customers). The main models presented in the package
are the Pareto/NBD, BG/NBD, and BG/BB models.

For Python, LTV can be calculated at http://srepho.github.io/CLV/CLV or
by the python package lifetimes (https://pypi.python.org/pypi/Lifetimes) or
see home page https://github.com/CamDavidsonPilon/lifetimes

RFM Analysis
RFM stands for recency, frequency, and monetization. RFM is thus a method
used for analyzing customer value of current customers:

Recency—How recently did the customer purchase?
Frequency—How often do they purchase?
Monetary value—How much do they spend?

This can be quantified in the following way:

Recency = 10 - The number of months that have passed since the customer last
purchased

Frequency = Number of purchases in the last 12 months (maximum of 10)
Monetary = Value of the highest order from a given customer (benchmarked

against a standard, say, 1000$ or something relevant)

Alternatively, one can create categories for each metric.
For instance, the recency attribute might be broken into three categories:

customers with purchases within the last 90 days, between 91 and 365 days,
and longer than 365 days. Such categories may be arrived at by applying busi-
ness rules, or using a data mining technique, to find meaningful breaks (like
CHAID). A commonly used shortcut is to use deciles. One is advised to look at
distribution of data before choosing breaks.

Practice
You can see RFM analysis in action at https://decisionstats.com/2010/10/03/

ibm‐spss‐19‐marketing‐analytics‐and‐rfm/ and some R code for it here at
https://github.com/hoxo‐m/easyRFM. You should also see http://www.dataapple.
net/?p=133. For doing the RFM Analysis in Python, you can see http://www.
marketingdistillery.com/2014/11/02/rfm‐customer‐segmentation‐in‐r‐pandas‐
and‐apache‐spark/

Biases in Decision Making
Though not often taught in a standard BA or data science course, the author
feels biases in decision making should be useful for a data scientist since the
data scientist influences decisions. Even though decision making driven by

https://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
https://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
http://srepho.github.io/CLV/CLV
https://pypi.python.org/pypi/Lifetimes
https://github.com/CamDavidsonPilon/lifetimes
https://decisionstats.com/2010/10/03/ibm-spss-19-marketing-analytics-and-rfm/
https://decisionstats.com/2010/10/03/ibm-spss-19-marketing-analytics-and-rfm/
https://github.com/hoxo-m/easyRFM
http://www.dataapple.net/?p=133
http://www.dataapple.net/?p=133
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/

data should be objective, it is not as it is driven by humans, not machines, and
humans make errors due to multiple reasons.

The author would like to point out these resources.
Logical Fallacies—These would help the data scientist in recognizing the

erroneous arguments used by various stakeholders in decision making. A fallacy
is an incorrect argument in logic and rhetoric that undermines an argument’s
logical validity. The following refers to https://yourlogicalfallacyis.com/, which is
created by Jesse Richardson, Andy Smith, Som Meaden, and Flip Creative.

Some of the top logical fallacies are as follows:

●● Ad hominem—You attacked your opponent’s character or personal traits in
an attempt to undermine their argument.

●● Slippery slope—You said that if we allow A to happen, then Z will eventually
happen too; therefore A should not happen. The problem with this reason-
ing is that it avoids engaging with the issue at hand and instead shifts atten-
tion to extreme hypotheticals.

●● Straw man—You misrepresented someone’s argument to make it easier to
attack. By exaggerating, misrepresenting, or just completely fabricating
someone’s argument, it’s much easier to present your own position as being
reasonable.

Cognitive Biases—These impact decisions based on the own psychology of
the decision maker. A cognitive bias refers to a systematic pattern of deviation
from norm or rationality in judgment, whereby inferences about other people
and situations may be drawn in an illogical fashion. Individuals create their
own “subjective social reality” from their perception of the input.

Some prominent cognitive biases are as follows:
Confirmation bias—In this the individual only selects data or analysis that

supports his preconception and tries to discredit, ignore, or trivialize informa-
tion that is against the preconceived views. This is a very common confirma-
tion bias in practice. One common reason for doing so is agency–owner
conflict in which decision makers in an organization take decisions to maxi-
mize their own self‐interests (like their annual bonuses) rather than team or
organizational goals.

Some other common biases are the following:

Self‐serving bias The tendency to claim more responsibility for
successes than failures

Belief bias Evaluating the strength of an argument by your own
belief in the truth or falsity of the conclusion

Framing Using a narrow approach and scope of the problem to
avoid difficult to solve issues

Hindsight bias The inclination to see past events as being predictable

An excellent article on this is also available at Hilbert (2012).

1.18  Data‐Driven Decision Making: A Note 47

https://yourlogicalfallacyis.com/

1  Introduction to Python R and Data Science48

Statistical Bias Versus Variance
This is a more realistic and statistical description of the kind of error a statisti-
cal modeler or a data scientist faces when confronted with data. The following
is taken from Fortmann Roe (2012)

Error due to bias: The error due to statistical bias is taken as the difference
between the expected (or average) prediction of our model and the correct
value that we are trying to predict. Of course you only have one model, so talk-
ing about expected or average prediction values might seem a little strange.
However, imagine you could repeat the whole model building process more
than once: each time you gather new data and run a new analysis, creating a
new model. Due to randomness in the underlying datasets, the resulting mod-
els will have a range of predictions. Bias measures how far off in general these
models’ predictions are from the correct value.

Error due to variance: The error due to variance is taken as the variability of
a model prediction for a given data point. Again, imagine you can repeat the
entire model building process multiple times. The variance is how much the
predictions for a given point vary between different realizations of the model
(Figure 1.15).

Low variance

Lo
w

 b
ia

s
H

ig
h

bi
as

High variance

Figure 1.15  Graphical illustration of bias and variance. Source: Scott Fortmann‐Roe.
© CSS from Substance.io.

49Bibliograph

Bibliography

Jason R. Briggs. A Playful Introduction to Programming. No Starch Press, 2012,
344 pp, 978‐1‐59327‐407‐8.

Scott Fortmann Roe (June 2012). Understanding the Bias‐Variance Tradeoff.
http://scott.fortmann‐roe.com/ and http://scott.fortmann‐roe.com/docs/
BiasVariance.html (accessed April 29, 2017).

Larry E. Greiner (1998). Evolution and Revolution as Organizations Grow. https://
hbr.org/1998/05/evolution‐and‐revolution‐as‐organizations‐grow. May–June
1998 issue of Harvard Business Review (accessed May 22, 2017).

Martin Hilbert (2012). Toward a Synthesis of Cognitive Biases: How Noisy
Information Processing Can Bias Human Decision Making. Psychological
Bulletin, 138(2), 211–237. Available at martinhilbert.net/HilbertPsychBull.pdf.
10.1037/a0025940, http://dx.doi.org/10.1037/a0025940, http://supp.apa.org/
psycarticles/supplemental/a0025940/160972‐2010‐0470‐RRAppendix.pdf
(accessed April 29, 2017).

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, 2013, http://www.R‐project.org/
(accessed May 9, 2017).

http://scott.fortmann-roe.com/
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://hbr.org/1998/05/evolution-and-revolution-as-organizations-grow
https://hbr.org/1998/05/evolution-and-revolution-as-organizations-grow
http://martinhilbert.net/HilbertPsychBull.pdf
http://supp.apa.org/psycarticles/supplemental/a0025940/160972-2010-0470-RRAppendix.pdf
http://supp.apa.org/psycarticles/supplemental/a0025940/160972-2010-0470-RRAppendix.pdf
http://www.R-project.org/

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

51

2

2.1  Data Input in Pandas

The pandas library offers many flexible formats for reading in data.
The most commonly used is read_csv to read in comma‐separated values

(from the Internet URL). That is,

anscombe=pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/anscombe.csv")

See the top few lines at http://nbviewer.jupyter.org/gist/decisionstats/37376
42751895f470d5c07194302f53e. © GitHub repository.

Data Input

https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e

2  Data Input52

Or read in csv data from a local file.
See http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

import pandas as pd #importing packages
import os as os

In [2]:

#pd.describe_option() #describe options
for customizing

In [3]:

#pd.get_option("display.memory_usage")
#setting some options

In [4]:

os.getcwd() #current working directory

Out [4]:

'/home/ajay'

In [5]:

os.chdir('/home/ajay/Desktop')

In [6]:

os.getcwd()

Out [6]:

'/home/ajay/Desktop'

In [7]:

a=os.getcwd()
os.listdir(a)

Out [7]:

['adult.data']

In [8]:

names2=["age","workclass","fnlwgt","education",
"education-num","marital-status","occupation",
"relationship","race","sex","capital-gain","capital-
loss","hours-per-week","native-country","income"]

In [9]:

len(names2)

Out [9]:

http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

2.1  Data Input in Pandas 53

15

In [10]:

adult=pd.read_csv("adult.data",header=None)

In [11]:
len(adult)

Out [11]:

32562

In [12]:

adult.columns

Out [12]:

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14], dtype='int64')

In [13]:

adult.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 32562 entries, 0 to 32561
Data columns (total 15 columns):
0 32561 non-null float64
1 32561 non-null object
2 32561 non-null float64
3 32561 non-null object
4 32561 non-null float64
5 32561 non-null object
6 32561 non-null object
7 32561 non-null object
8 32561 non-null object
9 32561 non-null object
10 32561 non-null float64
11 32561 non-null float64
12 32561 non-null float64
13 32561 non-null object
14 32561 non-null object
dtypes: float64(6), object(9)

In [15]:

adult.columns= names2

2  Data Input54

We can see the entire list of data input in pandas at http://pandas.pydata.org/

pandas‐docs/stable/io.html.
Source: © pandas 0.19.2 documentation.

The pandas I/O API is a set of top‐level reader functions accessed like
pd.read_csv() that generally return a pandas object.

●● read_csv
●● read_excel
●● read_hdf
●● read_sql
●● read_json
●● read_msgpack (experimental)
●● read_html
●● read_gbq (experimental)
●● read_stata
●● read_sas
●● read_clipboard
●● read_pickle

2.2  Web Scraping Data Input

We can use the beautiful Python library Beautiful Soup to scrape the web for
data. The following code scrapes Yelp for comments (see http://nbviewer.
jupyter.org/gist/decisionstats/3385dc84c39109f49b83).

http://pandas.pydata.org/pandas-docs/stable/io.html
http://pandas.pydata.org/pandas-docs/stable/io.html
http://nbviewer.jupyter.org/gist/decisionstats/3385dc84c39109f49b83
http://nbviewer.jupyter.org/gist/decisionstats/3385dc84c39109f49b83

2.2  Web Scraping Data Input 55

pip install beautifulsoup4.
from bs4 import BeautifulSoup

In [5]:
#pip install urllib3
#This library helps in downloading data
import urllib.request

2.2.1  Request Data from URL

In [6]:
r = urllib.request.urlopen('http://www.
yelp.ca/search?find_loc=Calgary,+AB&cflt=
homeservices').read()

In [28]:
#Using Beautiful Soup Library to parse
the data
soup = BeautifulSoup(r, "lxml")
type(soup)

Out[28]:
bs4.BeautifulSoup

In [52]:
#We find the number of characters
in data downloaded
len(str(soup.prettify()))

Out[52]:
440689

In [53]:
#We convert the data to a string format
using str.
#Note in R we use str for structure, but in
Python we use str to convert to character
(like as.character or paste command would do in R)
a=str(soup.prettify())

In [57]:
We try and find location of a particular
tag we are interested in.
#Note we are using triple quotes to escape
special characters
a.find('''class="snippet"''')

Out [57]:
352138

In [58]:
a[352000:358000]

Out [58]:

http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices
http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices
http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices

’dth="30"/>\n \n </div>\n </div>\n <div class="media‐
story">\n <p class="snippet">\n We\’re the best of bank and broker. We have
locations so that you know where we are. We\’re connected with all banks, not just one. And we
pass along our volume discount to get your mortgage…\n </p>\n </div>\n
</div>\n </div>\n </div>\n \n <li class="regular‐search‐result">\n
<div class="search‐result natural‐search‐result" data‐key="1">\n <div class="biz‐listing‐
large">\n <div class="main‐attributes">\n <div class="media‐block media‐block‐‐
12">\n <div class="media‐avatar">\n <div class="photo‐box pb‐90s">\n
\n
<img alt="Always Affordable Always Available Locksmiths" class="photo‐box‐img" height="90"
src="//s3‐media2.fl.yelpcdn.com/bphoto/8DBH3BpLINfTAK_Up5BtUQ/90s.jpg" width="90"/>\n
\n </div>\n </div>\n <div class="media‐story">\n <h3
class="search‐result‐title">\n \n 1.\n
<a class="biz‐name" data‐hovercard‐id="8QwuvWymqegNxbMgegZ1kg" href="/biz/always‐
affordable‐always‐available‐locksmiths‐calgary?search_key=36031">\n \n
Always Affordable Always Available Locksmiths\n \n \n
\n </h3>\n <div class="biz‐rating biz‐rating‐large clearfix">\n
<div class="rating‐large">\n <i class="star‐img stars_5" title="5.0 star rating">\n
<img alt="5.0 star rating" class="offscreen" height="303" src="//s3‐
media4.fl.yelpcdn.com/assets/srv0/yelp_styleguide/c2252a4cd43e/assets/img/stars/stars_map.png"
width="84"/>\n \n </div>\n <span class="review‐count rating‐
qualifier">\n 7 reviews\n \n </div>\n <div
class="price‐category">\n \n \n Keys &
Locksmiths\n \n \n </div>\n <ul
class="search‐result_tags">\n \n </div>\n </div>\n </div>\n
<div class="secondary‐attributes">\n <address>\n 1437 Kensington Road NW\n

\n Calgary, AB T2N 3R1\n </address>\n \n
Phone number\n \n \n (403) 272‐

8923\n \n </div>\n </div>\n <div class="snippet‐block
review‐snippet">\n <div class="media‐block">\n <div class="media‐avatar">\n
<div class="photo‐box pb‐30s" data‐hovercard‐id="6G17PcLIXZHTsRUqLgo44A">\n \n <img alt="Brian P."
class="photo‐box‐img" height="30" src="//s3‐media1.fl.yelpcdn.com/photo/bHq_rRLGej4oD‐ck‐
5NQ6A/30s.jpg" width="30"/>\n \n </div>\n </div>\n <div
class="media‐story">\n <p class="snippet">\n We were very pleased with the
quick, professional, quality service we got from this company. \xa0When booking the appointment,
the person on the phone was efficient and helpful, and although I…\n </p>\n
</div>\n </div>\n </div>\n </div>\n \n <li class="regular‐
search‐result">\n <div class="search‐result natural‐search‐result" data‐key="2">\n
<div class="biz‐listing‐large">\n <div class="main‐attributes">\n <div class="media‐
block media‐block‐‐12">\n <div class="media‐avatar">\n <div class="photo‐box
pb‐90s">\n \n
<img alt="Golden Acre Garden Sentres" class="photo‐box‐img" height="90" src="//s3‐
media1.fl.yelpcdn.com/bphoto/6T8npInLwEQx‐cx‐Emm6yA/90s.jpg" width="90"/>\n
\n </div>\n </div>\n <div class="media‐story">\n
<h3 class="search‐result‐title">\n \n 2.\n
<a class="biz‐name" data‐ hovercard‐id="DG‐ pdTKaegi87Df9xQvp2A" href="/biz/golden‐acre‐
garden‐sentres‐calgary?search_key=36031">\n \n Golden Acre
Garden Sentres\n \n \n \n </h3>\n
<div class="biz‐rating biz‐rating‐large clearfix">\n <div class="rating‐large">\n
<i class="star‐img stars_4" title="4.0 star rating">\n <img alt="4.0 star rating"
class="offscreen" height="303" src="//s3‐
media4.fl.yelpcdn.com/assets/srv0/yelp_styleguide/c2252a4cd43e/assets/img/stars/stars_map.png"
width="84"/>\n \n </div>\n <span class="review‐count rating‐
qualifier">\n 13 reviews\n \n </div>\n
<div class="price‐category">\n \n <span
class="business‐attribute price‐range">\n ’

In [21]:

2  Data Input58

#Lets try and find the list of phone numbers.
We note both the HTNL tag and the class for it.
We use the find_all function
letters = soup.find_all("span", class_="biz-phone")
letters[1:100]

Out [21]:
[
 (403) 272-8923
 ,
 (403) 274-4286
 ,
 (403) 918-4475
 ,
 (403) 681-4376
 ,
 (403) 454-0243
 ,
 (403) 457-6333
 ,
 (403) 899-0599
 ,
 (403) 452-2881
 ,
 (587) 229-0673
 ,
 (403) 770-4700
]

In [22]:
#Lets try and see the feedback given by users.

letters2 = soup.find_all("p", class_="snippet")
letters2[1:100]

Out [22]:
[<p class="snippet">
 We were very pleased with the quick,
professional, quality service we got from this company.
When booking the appointment, the person on the phone
was efficient and helpful, and although I…
 </p>, <p class="snippet">
 Yesterday I was at Golden Acres and
carelessly had let myself become dehydrated, but hadn’t
realized what was going on. An employee, Rachel,
recognized I was in trouble, made suggestions,…
 </p>, <p class="snippet">

2.2  Web Scraping Data Input 59

 Holy crap, I believe I have died and gone
to heaven… I can’t believe that I just discovered
that there is actually a store that sells mid century
modern furniture and accessories in town. I…
 </p>, <p class="snippet">
 Really appreciate the help I’ve received
from Mark at Mortgage Alliance. On two occasions he
sent me back to my bank with some advice to get what
I was looking for and saved me a lot of grief…
 </p>, <p class="snippet">
 Such a wicked venue, place, space, I’m not
even sure what the term is. I’ve been here on a couple
occasions, the first time was a random Saturday in
Inglewood and popped in. We got to meet the…
 </p>, <p class="snippet">
 I called Carol mid‐afternoon on Monday for
a move‐out clean. She showed up bright and early the
next morning with her supplies, and (dare I say)
insanely beautiful and outgoing colleague, Liz.…
 </p>, <p class="snippet">
 …Did not think I’d be writing a review on
a furnace company but here I am. Right now in the
middle of troubleshooting a heating issue. Thanks to
Flash Furnace I am identifying the issue…
 </p>, <p class="snippet">
 F2 Furnishings is a great place to shop for
furniture and other home decor. The company really
supports local artists and designers. A lot of their
pieces are originals from local crafts…
 </p>, <p class="snippet">
 Brandon was prompt in answering any questions
we had prior to the move. On the day of the move they
were on time, efficient, and professional. Brandon and
Jesse took especial care of our…
 </p>, <p class="snippet">
 I am a huge fan of what the Niklas Group
has done to my community. I live just a block away
from the Casel Marche building on 17th ave and I’m
really impressed with the sense of community this…
 </p>]

In [23]:
type(letters2)

Out [23]:

2  Data Input60

bs4.element.ResultSet
In [24]:

str(letters2)[1:1000]
Out [24]:

’<p class="snippet">We\’re the best of bank and broker.
We have locations so that you know where we are. We\’re
connected with all banks, not just one. And we pass
along our volume discount to get your mortgage…</p>,
<p class="snippet">\n   We were very pleased with the
quick, professional, quality service we got from this
company. \xa0When booking the appointment, the person
on the phone was efficient and helpful, and although
I…\n   </p>, <p class="snippet">\n   Yesterday I was at
Golden Acres and carelessly had let myself become
dehydrated, but hadn\’t realized what was going on. \xa0An
employee, Rachel, recognized I was in trouble, made
suggestions,…\n   </p>, <p class="snippet">\n Holy crap,
I believe I have died and gone to heaven… I can\’t
believe that I just discovered that there is actually
a store that sells mid century modern furniture and
accessories in town. I…\n</p>, <p class="snippet">\n   ’

In [25]:
str(letters2).count("service")

Out[25]:
1

2.3  Data Input from RDBMS

After csv files and web scraping, the last type of data input we consider is from
relational database management system (RDBMS) databases. Here is a brief
note on RDBMS first to understand them. SQL is a domain‐specific language
used in programming and designed for managing data held in an RDBMS or
for stream processing in a relational data stream management system (RDSMS).
SQL has been designed for managing data in RDBMSs like Oracle, MySQL,
MS SQL Server, and IBM DB2 besides PostgreSQL:

●● SQL is one of the first commercial languages used for Edgar F. Codd’s
relational model, also described in his influential 1970 paper, “A Relational
Model of Data for Large Shared Data Banks.”

Below is a quote from Edgar F. Codd’s 1970 paper, “A Relational Model of
Data for Large Shared Data Banks.”

Future users of large data banks must be protected from having to know
how the data is organized in the machine (the internal representation).
A prompting service which supplies such information is not a

2.3  Data Input from RDBMS 61

satisfactory solution. Activities of users at terminals and most applica-
tion programs should remain unaffected when the internal representa-
tion of data is changed and even when some aspects of the external
representation are changed. Changes in data representation will often
be needed as a result of changes in query, update, and report traffic and
natural growth in the types of stored information. Existing non‐inferen-
tial, formatted data systems provide users with tree‐structured files or
slightly more general network models of the data. In Section 1, inade-
quacies of these models are discussed. A model based on n‐ary relations,
a normal form for data base relations, and the concept of a universal data
sublanguage are introduced. In Section 2, certain operations on rela-
tions (other than logical inference) are discussed and applied to the
problems of redundancy and consistency in the user’s model.

Properties of Databases:
A database transaction, however, must be ACID compliant. ACID stands for
atomic, consistent, isolated, and durable.

●● Atomic: A transaction must be either completed with all of its data modifi-
cations or may not.

●● Consistent: At the end of the transaction, all data must be left consistent.
●● Isolated: Data modifications performed by a transaction must be independ-

ent of other transactions.
●● Durable: At the end of transaction, effects of modifications performed by

the transaction must be permanent in system.

To counter ACID, the consistent services provide basically available, soft state,
eventual consistency (BASE) features.

Earlier, SQL was a de facto language for the generation of information
technology professionals due to the fact that data warehouses consisted of
one RDBMS or RDSMS. The simplicity and beauty of the language enabled
data warehousing professionals to query data and provide it to business
analysts.

RDBMS are often suitable only for structured information. For unstructured
information, newer databases like MongoDB, CouchDB, and HBase (from
Hadoop) prove to be a better fit. Part of this is a trade‐off in databases, which
is due to the CAP theorem (Figure 2.1).

CAP theorem states that at best we can aim for two of the following three
properties:

●● Consistency—This means that data in the database remains consistent after
the execution of an operation.

●● Availability—This means that the database system is always on to ensure
availability.

●● Partition Tolerance—This means that the system continues to function
even if the transfer of information between the servers is unreliable.

2  Data Input62

2.3.1  Windows Tutorial

https://www.postgresql.org/. PostgreSQL is a powerful, open‐source object‐
relational database system (ORDBMS). It has more than 15 years of active
development and a proven architecture.

PostgreSQL, often simply Postgres, is an ORDBMS—that is, an RDBMS with
additional (optional use) “object” features—with an emphasis on extensibility
and standards compliance.

PostgreSQL is developed by the PostgreSQL Global Development Group.
Some general PostgreSQL limits are included in the table as follows.

Limit Value

Maximum database size Unlimited
Maximum table size 32 TB
Maximum row size 1.6 TB
Maximum field size 1 GB
Maximum rows per table Unlimited
Maximum columns per table 250–1600 depending on column types
Maximum indexes per table Unlimited

Visual guide to NoSQL systems

Data models

Availability:
Each client can
always read
and write.

Partition tolerance:
The system works
well despite physical
network partitions.

Pick Two

Consistency:
All clients always
have the same view
of the data.

BigTable
Hypertable
Hbase

RDBMSs
(MySQL,
Postgres,
etc)

Aster Data
Greenplum
Vertica

Relational (comparison)
Key-value
Column-oriented/tabular
Document-oriented

Cassandra

Berkeley DB
MemcacheDB
Redis

Dynamo
Voldemort
Tokyo Cabinet
KAI

MongoDB
Terrastore

SimpleDB
CouchDB
RiaK

Scalaris

CP

CA AP

Figure 2.1  http://blog.nahurst.com/visual‐guide‐to‐nosql‐systems. Source: Courtesy:
Nathan Hurst.

https://www.postgresql.org/
https://en.wikipedia.org/wiki/RDBMS
http://blog.nahurst.com/visual-guide-to-nosql-systems

2.3  Data Input from RDBMS 63

Download the Database https://www.postgresql.org/download/ and https://
www.postgresql.org/download/windows/.

Two choices—we go for enterprise db.
https://www.enterprisedb.com/downloads/postgres‐postgresql‐downloads#

windows.

2.3.2  137 Mb Installer

https://www.postgresql.org/download/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows

2  Data Input64

2.3  Data Input from RDBMS 65

2.3.3  Configuring ODBC

Download and Install ODBC Driver
Use the stack builder to check option ODBC Driver. Open Database
Connectivity (ODBC) is an open standard application programming interface
(API) for accessing a database. By using ODBC statements in a program, you
can access files in a number of different databases, including Access, dBase,
DB2, Excel, and Text.

2  Data Input66

After installing the ODBC Driver, now you need to make sure your OS
knows. It is time for connections. Connect it to a data source name (DSN)
(using Control Panel) in Windows.

Go to Control Panel> Administrative Tools> ODBC Connections.
A DSN is a data structure that contains the information about a specific

database that an ODBC driver needs in order to connect to it.

2.3  Data Input from RDBMS 67

Click Add User DSN.

Put the options as below. Remember to put the same port and the same
password as we did in the steps mentioned earlier.

Click on the Test box (above Cancel and below Password). If the connection

is successful, you should see this, or else you need to go back and find what you
got wrong (mostly password or port).

2  Data Input68

Now open your Postgres using command line (see in Programs).

Log on to Postgres using the password.

2.3  Data Input from RDBMS 69

Then create a database using the syntax below (note the smaller case of the
database name and the;) to complete the command. Then type \l to see all
available databases.

postgres=# CREATE DATABASE ajay;
postgres-#\l

Now we use \c databasename to connect to the database.

\c ajay;

Now we create tables inside the database. This is done
using the CREATE TABLE command. Following are examples
of CREATE TABLE command.

CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,

 columnN datatype,
 PRIMARY KEY(one or more columns)
);

2  Data Input70

Example

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

PostgreSQL supports the standard SQL types int, smallint, real, double
precision, char(N), varchar(N), date, time, timestamp, and
interval, as well as other types of general utility and a rich set of geometric
types. PostgreSQL can be customized with an arbitrary number of user‐defined
data types. Consequently, type names are not syntactical key words, except
where required to support special cases in the SQL standard.

From https://www.postgresql.org/docs/8.1/static/tutorial‐table.html

CREATE TABLE cities (
 name varchar(80),
 location point
);

For our use case let’s make a table suited for sales and business:

CREATE TABLE SALES(
 CUSTOMER_ID INT PRIMARY KEY NOT NULL, --unique
id of customers
 SALES int NOT NULL, --sales in rupees
date date, --date of sale
 PRODUCT_ID INT NOT NULL
);

I then check the table created using \d.

https://www.postgresql.org/docs/8.1/static/tutorial-table.html

2.3  Data Input from RDBMS 71

Now try \d tablename to get details of the table.
Here \d sales.

Quit using \q
I can delete a table using drop table tablename.

Now let’s copy some data (see http://bit.ly/2postgres) into my database table.
First of all my data is in the same format.

http://bit.ly/2postgres

2  Data Input72

We use the Copy command to load the data.

\copy sales from C:/Users/Dell/Downloads/data1.csv
DELIMITER ',' CSV;

Note an error value when we try and import data with a duplicate primary
key. We rectify our data and then do the import again. COPY 500 shows 500
records imported successfully.

And then we can make a connection in R to do analysis in R on the Postgres
data (see http://rpubs.com/newajay/RODBC).

install.packages("RODBC") #installing the package RODBC
library(RODBC) #loading the package RODBC
odbcDataSources() # to check all available ODBC data
sources

#creating a Database connection
for username,password,database name and DSN name

chan=odbcConnect("PostgreSQL30","postgres;Password=root;
Database=ajay")

http://rpubs.com/newajay/RODBC

2.3  Data Input from RDBMS 73

#to list all table names
sqlTables(chan)

#and fetch some data
sqlFetch(chan,"sales",max=10)

In Python the package to do the same is SQLalchemy as the code in the following
text shows.

import psycopg2
import pandas as pd
import sqlalchemy as sa
import time
import seaborn as sns
import re

In [17]:

2  Data Input74

parameters = {
 'username': 'postgres',
 'password': 'root',
 'server': 'localhost',
 'database': 'ajay'
 }

In [19]:
connection= 'postgresql://{username}:
{password}@{server}:5432/{database}'.
format(**parameters)

In [20]:
The database connection
print (connection)

postgresql://postgres:root@localhost:
5432/ajay

In [21]:
engine = sa.create_engine(connection_
string, encoding="utf-8")

In [31]:
insp = sa.inspect(engine)
db_list = insp.get_schema_names()
print(db_list)
['information_schema', 'public']

In [37]:
dir(engine)

Out [37]:
['__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__le__',
 '__lt__',
 '__module__',

2.3  Data Input from RDBMS 75

 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 '_connection_cls',
 '_echo',
 '_execute_clauseelement',
 '_execute_compiled',
 '_execute_default',
 '_execution_options',
 '_has_events',
 '_optional_conn_ctx_manager',
 '_run_visitor',
 '_should_log_debug',
 '_should_log_info',
 '_trans_ctx',
 '_wrap_pool_connect',
 'begin',
 'connect',
 'contextual_connect',
 'create',
 'dialect',
 'dispatch',
 'dispose',
 'driver',
 'drop',
 'echo',
 'engine',
 'execute',
 'execution_options',
 'has_table',
 'logger',
 'logging_name',
 'name',
 'pool',

2  Data Input76

 'raw_connection',
 'run_callable',
 'scalar',
 'table_names',
 'transaction',
 'update_execution_options',
 'url']

In [36]:
engine.table_names()

Out[36]:
['sales']

In [39]:
data3= pd.read_sql_query('select * from
"sales" limit 10',con=engine)

In [40]:
data3.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
customer_id 10 non-null int64
sales 10 non-null int64
date 10 non-null object
product_id 10 non-null int64
dtypes: int64(3), object(1)
memory usage: 400.0+ bytes

In [41]:
data3.head()

Out [41]:

customer_id sales date product_id

0 10001 5230 2017‐02‐07 524
1 10002 2781 2017‐05‐12 469
2 10003 2083 2016‐12‐18 917
3 10004 214 2015‐01‐19 354
4 10005 9407 2016‐09‐26 292

In []:

Finally in PostgreSQL to delete database, use Drop Database.

77

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

3

To dos: how to delete values and how to convert pandas to numpy array
and back, data, table and dplyr in r, and hmisc in R.

3.1  Data Formats

In R we can use the as operator to change from one data format to another.
In Python we can use str and int to convert to string and integer formats.

We can use split to convert string to list.
Numeric—We use int and float functions to convert data to numeric types

integer and float, respectively.
This is demonstrated in the following code. Note in R the index starts from 1

and in Python it starts from 0.

import re
import numpy as np
import pandas as pd
numlist=[“$10000”,“$20,000”,“30,000”,40000,“50000 ”]
for i,value in enumerate(numlist):
 numlist[i]=re.sub(r“([$,])”,“”,str(value))

numlist
['10000', '20000', '30000', '40000', '50000 ']
int(numlist[1])
20000
for i,value in enumerate(numlist):
 numlist[i]=int(value)
numlist
[10000, 20000, 30000, 40000, 50000]

Data Inspection and Data Quality

3  Data Inspection and Data Quality78

np.mean(numlist)
30000.0
numlist2=str(numlist)
numlist2.split(None,0)
['[10000, 20000, 30000, 40000, 50000]']
numlist2.split(None,0)[0]
'[10000, 20000, 30000, 40000, 50000]'

3.1.1  Converting Strings to Date Time in Python

from datetime import datetime
datetime_object = datetime.strptime(’Jun 7 2016 1:33PM’,
’%b %d %Y %I:%M%p’)

R has lubridate package (https://cran.r‐project.org/web/packages/lubridate/
lubridate.pdf) for easy conversion of strings of data to date and time, but
Python has the date–time package. See examples of lubridate at http://rpubs.
com/newajay/datesquality and http://rpubs.com/ajaydecis/lubridate

adob=“7 June 1977 19:20”
library(lubridate)
adob2=dmy_hm(adob)
adob2

[1] "1977-06-07 19:20:00 UTC"

mydob=“1 June 1981”
mydob2=dmy(mydob)
mydob2
[1] "1981-06-01 UTC"

#give me your age in secs
#my dob = 1 june 1981

pd=Sys.Date() #Date right now
pt=Sys.time() # Date Time Right Now
#give me how old you are from me
hint I was born on 7 june 1977 at 1920 hours

difftime(adob2,pt,units=“secs”)
Time difference of -1203358055 secs
difftime(adob2,mydob2,units=“days”)
Time difference of -1454.194 days

https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
http://rpubs.com/newajay/datesquality
http://rpubs.com/newajay/datesquality
http://rpubs.com/ajaydecis/lubridate

3.1  Data Formats 79

Lubridate Example 2
library(lubridate)

Attaching package: ’lubridate’
The following object is masked from ’package:base’:

date
classdata=c(“1‐April‐1977”,
 “April/2/2014”,
 “1Jun2016”)

lapply(classdata,dmy)
Warning: All formats failed to parse. No formats found.
[[1]]
[1] "1977-04-01"

[[2]]
[1] NA

[[3]]
[1] "2016-06-01"
is.na(lapply(classdata,dmy))

Warning: All formats failed to parse. No formats found.
[1] FALSE TRUE FALSE
ifelse(!is.na(lapply(classdata,dmy))
 ,lapply(classdata,dmy),lapply(classdata,mdy))
Warning: All formats failed to parse. No formats found.

Warning: All formats failed to parse. No formats found.

Warning: All formats failed to parse. No formats found.

Warning: All formats failed to parse. No formats found.
[[1]]
[1] "1977-04-01"

[[2]]
[1] "2014-04-02"

[[3]]
[1] "2016-06-01"

3  Data Inspection and Data Quality80

Date Time—We use the datetime module to convert string data to date-
time format and then do numeric operations on it. The following example
shows using the strptime function to parse the date. We can then use the
“now” function to find the difference in days form current date. This creates
a datetime delta object. (http://nbviewer.jupyter.org/gist/decisionstats/
246c835576a9537a037768ab30a45f4a)

from datetime import datetime

date_object=datetime.strptime(“7nov‐2007”,“%d%b‐%Y”)

date_object

datetime.datetime(2007, 11, 7, 0, 0)

print(format(date_object.year))
print(format(date_object.month))
print(format(date_object.day))
print(format(date_object.hour))

2007
11
7
0

datetime.now()
datetime.datetime(2016, 10, 30, 16, 38, 6, 260123)
datetime.now()‐date_object

datetime.timedelta(3280, 59947, 411736)
a=datetime.now()‐date_object

a.days

3280
a.seconds

59968

We can use timeit package in Python for finding time of execution of
code snippets (https://docs.python.org/2/library/timeit.html). This is done by
system.time() in R.

http://nbviewer.jupyter.org/gist/decisionstats/246c835576a9537a037768ab30a45f4a
http://nbviewer.jupyter.org/gist/decisionstats/246c835576a9537a037768ab30a45f4a
https://docs.python.org/2/library/timeit.html

3.1  Data Formats 81

For converting dates into strings, use strftime function (the help is at https://
docs.python.org/2/library/time.html#time.strftime).

Directive Meaning Notes

%a Locale’s abbreviated weekday name
%A Locale’s full weekday name
%b Locale’s abbreviated month name
%B Locale’s full month name
%c Locale’s appropriate date and time representation
%d Day of the month as a decimal number [01,31]
%H Hour (24‐hour clock) as a decimal number [00,23]
%I Hour (12‐hour clock) as a decimal number [01,12]
%j Day of the year as a decimal number [001,366]
%m Month as a decimal number [01,12]
%M Minute as a decimal number [00,59]
%p Locale’s equivalent of either AM or PM (1)
%S Second as a decimal number [00,61] (2)
%U Week number of the year (Sunday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0

(3)

%w Weekday as a decimal number [0(Sunday),6]
%W Week number of the year (Monday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Monday are considered to be in week 0

(3)

%x Locale’s appropriate date representation
%X Locale’s appropriate time representation
%y Year without century as a decimal number [00,99]
%Y Year with century as a decimal number
%Z Time zone name (no characters if no time zone exists)
%% A literal “%” character

3.1.2  Converting Data Frame to NumPy Arrays and Back in Python

To convert pandas data frame df to NumPy, use the values command:

a=df.iloc[:,1:]
b=df.iloc[:,1:].values

https://docs.python.org/2/library/time.html#time.strftime
https://docs.python.org/2/library/time.html#time.strftime

3  Data Inspection and Data Quality82

print(type(df))
print(type(a))
print(type(b))

To convert to a pandas data frame, use DataFrame with values for index
and column. (See code at https://nbviewer.jupyter.org/gist/decisionstats/
b818917b37807fa0ded41522928f26af).

titanic =pd.read_csv(“https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/Titanic.csv”)

titanic=titanic.drop(’Unnamed: 0’, 1)

titanic.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1313 entries, 0 to 1312
Data columns (total 6 columns):
Name 1313 non-null object
PClass 1313 non-null object
Age 756 non-null float64
Sex 1313 non-null object
Survived 1313 non-null int64
SexCode 1313 non-null int64
dtypes: float64(1), int64(2), object(3)
memory usage: 61.6+ KB

titanic.head()

Name PClass Age Sex Survived SexCode

0 Allen, Miss Elisabeth Walton 1st 29.00 female 1 1
1 Allison, Miss Helen Loraine 1st 2.00 female 0 1
2 Allison, Mr Hudson Joshua Creighton 1st 30.00 male 0 0
3 Allison, Mrs Hudson JC (Bessie

Waldo Daniels)
1st 25.00 female 0 1

4 Allison, Master Hudson Trevor 1st 0.92 male 1 0

a=titanic.iloc[:,1:]
b=titanic.iloc[:,1:].values

print(type(titanic))
print(type(a))
print(type(b))

https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af
https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af

3.1  Data Formats 83

<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
<class 'numpy.ndarray'>

a

PClass Age Sex Survived SexCode

0 1st 29.00 female 1 1
1 1st   2.00 female 0 1
2 1st 30.00 male 0 0
3 1st 25.00 female 0 1
4 1st   0.92 male 1 0
5 1st 47.00 male 1 0
6 1st 63.00 female 1 1
7 1st 39.00 male 0 0
8 1st 58.00 female 1 1
9 1st 71.00 male 0 0
… … … … … …
1306 3rd NaN female 0 1
1307 3rd NaN female 0 1
1308 3rd 27.00 male 0 0
1309 3rd 26.00 male 0 0
1310 3rd 22.00 male 0 0
1311 3rd 24.00 male 0 0
1312 3rd 29.00 male 0 0

1313 rows × 5 columns

b
array([['1st',	 29.0,	 'female',	 1, 1],
 ['1st',	 2.0,	 'female',	 0, 1],
 ['1st',	 30.0,	 'male',	 0, 0],
 …,
 ['3rd',	 22.0,	 'male',	 0, 0],
 ['3rd',	 24.0,	 'male',	 0, 0],
 ['3rd',	 29.0,	 'male',	 0, 0]], dtype=object)

titanic.columns[1:]

Index(['PClass', 'Age', 'Sex', 'Survived', 'SexCode'],
dtype='object')
titanic.as_matrix(columns=titanic.columns[1:])

array([['1st',	 29.0,	 'female',	 1, 1],
 ['1st',	 2.0,	 'female',	 0, 1],
 ['1st',	 30.0,	 'male',	 0, 0],
 …,

3  Data Inspection and Data Quality84

 ['3rd',	 22.0,	 'male',	 0, 0],
 ['3rd',	 24.0,	 'male',	 0, 0],
 ['3rd',	 29.0,	 'male',	 0, 0]], dtype=object)

data=titanic.as_matrix(columns=titanic.columns[1:])

len(data)
1313

range(0,len(data))
range(0, 1313)

g=pd.DataFrame(data=data[0:,0:], # values
 index=range(0,len(data)), # 1st column as index
 columns=titanic.columns[1:]) # 1st row as the
column names

g.head()

PClass Age Sex Survived SexCode

0 1st 29 female 1 1
1 1st 2 female 0 1
2 1st 30 male 0 0
3 1st 25 female 0 1
4 1st 0.92 male 1 0

3.2  Data Quality

We can use the re package for regular expressions. The following example
shows how to replace non‐numeric values in data to clean it up for numeri-
cal analysis. We use re.sub to replace the values of $, command, and
whitespace.

import re
import numpy as np

numlist=[“$10000”,“$20,000”,“30,000”,40000,“50000 ”]

help(re.sub)

Help on function sub in module re:

3.2  Data Quality 85

sub(pattern, repl, string, count=0, flags=0)
 Return the string obtained by replacing the leftmost
 non‐overlapping occurrences of the pattern
in string by the
 replacement repl. repl can be either a string
or a callable;
 if a string, backslash escapes in it are
processed. If it is
 a callable, it’s passed the match object and
must return
 a replacement string to be used.

for i,value in enumerate(numlist):

 numlist[i]=re.sub(r“([$,])”,“”,str(value))
 numlist[i]=int(numlist[i])

Here re.sub replaces the $ and patterns with nothing (“”) from each value of
the list just like gsub does in R. In python str converts an object to string just
like paste does in R. In the next step, int converts the object to numeric values
(integer) just as as.numeric does in R:
print(numlist)

[10000, 20000, 30000, 40000, 50000]

np.mean(numlist)

30000.0

help(enumerate)

Help on class enumerate in module builtins:

class enumerate(object)
 | enumerate(iterable[, start]) -> iterator for index,
      value of iterable
 |
 | Return an enumerate object. iterable must be another
      object that supports
 | iteration. The enumerate object yields pairs
      containing a count (from
 | start, which defaults to zero) and a value yielded
      by the iterable argument.

3  Data Inspection and Data Quality86

 | enumerate is useful for obtaining an indexed list:
 | (0, seq[0]), (1, seq[1]), (2, seq[2]), …
 |
 | Methods defined here:
 |
 | __getattribute__(self, name, /)
 | Return getattr(self, name).
 |
 | __iter__(self, /)
 | Implement iter(self).
 |
 | __new__(*args, **kwargs) from builtins.type
 | Create and return a new object. See help(type)
      for accurate signature.
 |
 | __next__(self, /)
 | Implement next(self).
 |
 | __reduce__(...)
 | Return state information for pickling.

Here we used enumerate to replace and convert each value of the list one by
one. This is a powerful method unique to Python as loops are not computation-
ally efficient in R. The code of example earlier is at https://nbviewer.jupyter.org/
gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb

Now let us see how we would do this in R. The following is R code (also
available at http://rpubs.com/newajay/dataquality2):

numlistr=c(“$10000”,“$20,000”,“30,000”,40000,“50000 ”)
mean(numlistr)

Warning in mean.default(numlistr): argument is not
numeric or logical:
returning NA
[1] NA

numlistr=gsub(“,”,“”,numlistr)
numlistr

[1] "$10000" "$20000" "30000" "40000"
"50000 "

numlistr=gsub(“\\$”,“”,numlistr)
Numlistr

https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
http://rpubs.com/newajay/dataquality2

3.2  Data Quality 87

[1] "10000" "20000" "30000" "40000"
"50000 "

numlistr=as.numeric(numlistr)
numlistr

[1] 10000 20000 30000 40000 50000

mean(numlistr)
[1] 30000

For searching on character strings, we can use re.search and use bool to
return True or False. The bool function returns True when the argument
for which it is passed on is true; otherwise it returns false. The following
code is also available at https://nbviewer.jupyter.org/gist/decisionstats/
612116b1b8147cfb3808f5ac3c791eba

import re

names=[“Ajay”,“V ijay”,“Ra jay ”, “ Jayesh”]

for name in names:
 print (re.search(r’(jay)’,name))

<_sre.SRE_Match object; span=(1, 4), match='jay'>
<_sre.SRE_Match object; span=(3, 6), match='jay'>
<_sre.SRE_Match object; span=(3, 6), match='jay'>
None

Using re.search we got the positions of the string (jay).

for name in names:
 print (bool(re.search(r’(jay)’,name)))
True
True
True
False

Using bool we got whether the string (jay) was present or not.
In R, we use grep, grepl functions for searching by string pattern. The following

code is also available at http://rpubs.com/newajay/grepinr

names=c(“Ajay”,“V ijay”,“Ra jay ”, “ Jayesh”)
grepl(“jay”,names)

https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
http://rpubs.com/newajay/grepinr

3  Data Inspection and Data Quality88

[1] TRUE TRUE TRUE FALSE
gregexpr(pattern =’jay’,names)
[[1]]
[1] 2
attr(,"match.length")
[1] 3
attr(,"useBytes")
[1] TRUE

[[2]]
[1] 4
attr(,"match.length")
[1] 3
attr(,"useBytes")
[1] TRUE

[[3]]
[1] 4
attr(,"match.length")
[1] 3
attr(,"useBytes")
[1] TRUE

[[4]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"useBytes")
[1] TRUE
grep(“jay”,names)
[1] 1 2 3
grep(“jay”,names,value = T)
[1] "Ajay" "V ijay" "Ra jay "

3.3  Data Inspection

We need to inspect data after import to see whether we correctly imported the
right size as well as the format of data columns (from http://nbviewer.jupyter.
org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f and http://nbviewer.
jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4).

’’’Lets get some information on the object.
In R we would get this by str command (for structure).

http://nbviewer.jupyter.org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f
http://nbviewer.jupyter.org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f
http://nbviewer.jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4
http://nbviewer.jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4

3.3  Data Inspection 89

In Python str turns the object to string so we use info.
This was a multiple-line comment using three single
quote marks.’’’

diamonds.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 53940 entries, 0 to 53939
Data columns (total 11 columns):
Unnamed: 0 	 53940 non-null int64
carat 	 53940 non-null float64
cut 	 53940 non-null object
color 	 53940 non-null object
clarity 	 53940 non-null object
depth 	 53940 non-null float64
table 53940 non-null float64
price 	 53940 non-null int64
x 	 53940 non-null float64
y 	 53940 non-null float64
z 	 53940 non-null float64
dtypes: float64(6), int64(2), object(3)
memory usage: 4.3+ MB

diamonds.head(10) #we check the first 10 rows in the
dataset

Unnamed: 0 carat cut color clarity depth table price x y z

0 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
1 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
2 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
3 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
4 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
5 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
6 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
7 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
8 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
9 10 0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39

●● To refer to a particular row in Python, I can use index.
●● In R I refer to the object in ith row and jth column by OBJECTNAME[i,j].
●● In R I refer to the column name by OBJECTNAME$ColumnName.
●● Note in Python Index starts with 0 while in R it starts with 1.

You can use the info command to look at imported objects.
Dropping variables is easily done by the drop command followed by

column name.

3  Data Inspection and Data Quality90

Using the head function allows you to look at the first few rows.
We get Table 3.1 from http://www.slideshare.net/ajayohri/python‐for‐

r‐users that has got 37 000 views till December 2016.

diamonds=diamonds.drop(“Unnamed: 0”,1)

diamonds.columns

Index(['carat', 'cut', 'color', 'clarity', 'depth',
'table', 'price', 'x', 'y',
 'z'],
 dtype='object')
diamonds.index

RangeIndex(start=0, stop=53940, step=1)

Sorting data is quite easy too

diamonds3=diamonds.sort([“price”])
diamonds3.head()

Table 3.1  R and Python are quite easily comparable.

R Python (using pandas package*)

Getting the names
of rows and columns
of data frame “df”

rownames(df) df.index
returns the name of the rows returns the name of the rows
colnames(df) df.columns
returns the name of the
columns

returns the name of the columns

Seeing the top and
bottom “x” rows of
the data frame “df”

head(df,x) df.head(x)
returns top x rows of data
frame

returns top x rows of data frame

tail(df,x) df.tail(x)
returns bottom x rows of
data frame

returns bottom x rows of data
frame

Getting dimensions
of data frame “df”

dim(df) df.shape
returns in this format: rows,
columns

returns in this format: (rows,
columns)

Length of data
frame “df”

length(df) len(df)
returns no. of columns in
data frames

returns no. of columns in data
frames

http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/ajayohri/python-for-r-users

3.3  Data Inspection 91

carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75

3.3.1  Missing Value Treatment

Missing values can be dropped by dropna command. Python uses NaN to
denote missing values, while R denotes them with NA. For more information
on missing values, please do read the documentation at http://pandas.pydata.
org/pandas‐docs/stable/missing_data.html

diamonds4 = diamonds.dropna(how = ’any’)

In R missing value treatment is done by the functions na.rm = T (which
ignores NA or missing values) and na.omit (which deletes the missing values).
Note in R missing values are denoted by NA. In addition—using gsub, one can
replace a pattern by another (or delete it), and—using the as operator, one can
convert data from one format to another. We use the is.na function to find if a
value is a missing value (is.na = TRUE) or not.

For missing values and other issues, let us take this small caselet from http://
rpubs.com/ajaydecis/dataman3. We have a small list of mixed formats of money
and we need to find the mean money. We first use gsub to remove the comma,
then gsub with an escape character \\ to remove the $ sign, and then the
as.numeric operator to make it numeric. Finally, we use the na.rm operator
to find mean of non‐missing values and use na.omit to remove missing
values altogether.

money=c("$50000","$50,000","50,000",50000,"50000",NA)
money

[1] 50000 50000 50000 50000 50000 NA

mean(money)

[1] NA

mean(money,na.rm=T)

[1] 50000

money=na.omit(money)
money

http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://rpubs.com/ajaydecis/dataman3
http://rpubs.com/ajaydecis/dataman3

3  Data Inspection and Data Quality92

[1] 50000 50000 50000 50000 50000
attr(,"na.action")
[1] 6
attr(,"class")
[1] "omit"

mean(money)

[1] 50000

3.4  Data Selection

To refer to data by row number, we can use the .ix command to refer to it by index
value (in Python index starts from 0, while in R it starts from 1 for the first row).

Unlike R, there is no $ command to select columns for a data frame
(i.e., diamonds$color). So we can use the notation dataframename.columnname
or dataframename[[“columnname’]]. In python chaining the commands is easy
by just adding a dot with command to previous object.

For choosing both row number and column name, I put these values within
the double square brackets.

diamonds.ix[20:30]

carat cut color clarity depth table price x y z

20 0.30 Good I SI2 63.3 56.0 351 4.26 4.30 2.71
21 0.23 Very Good E VS2 63.8 55.0 352 3.85 3.92 2.48
22 0.23 Very Good H VS1 61.0 57.0 353 3.94 3.96 2.41
23 0.31 Very Good J SI1 59.4 62.0 353 4.39 4.43 2.62
24 0.31 Very Good J SI1 58.1 62.0 353 4.44 4.47 2.59
25 0.23 Very Good G VVS2 60.4 58.0 354 3.97 4.01 2.41
26 0.24 Premium I VS1 62.5 57.0 355 3.97 3.94 2.47
27 0.30 Very Good J VS2 62.2 57.0 357 4.28 4.30 2.67
28 0.23 Very Good D VS2 60.5 61.0 357 3.96 3.97 2.40
29 0.23 Very Good F VS1 60.9 57.0 357 3.96 3.99 2.42
30 0.23 Very Good F VS1 60.0 57.0 402 4.00 4.03 2.41

diamonds.ix[20:30].cut
20 Good
21 Very Good

3.4  Data Selection 93

22 Very Good
23 Very Good
24 Very Good
25 Very Good
26 Premium
27 Very Good
28 Very Good
29 Very Good
30 Very Good
Name: cut, dtype: object
diamonds.ix[20:30][“color”]

20 I
21 E
22 H
23 J
24 J
25 G
26 I
27 J
28 D
29 F
30 F
Name: color, dtype: object

diamonds[[“cut”,“color”,“clarity”]][20:30]

cut color clarity

20 Good I SI2
21 Very Good E VS2
22 Very Good H VS1
23 Very Good J SI1
24 Very Good J SI1
25 Very Good G VVS2
26 Premium I VS1
27 Very Good J VS2
28 Very Good D VS2
29 Very Good F VS1

3  Data Inspection and Data Quality94

diamonds[[“cut”,“color”,“clarity”]].head()

cut color clarity

0 Ideal E SI2
1 Premium E SI1
2 Good E VS1
3 Premium I VS2
4 Good J SI2

diamonds.ix[20:30,[“cut”,“color”,“clarity”]]

cut color clarity

20 Good I SI2
21 Very Good E VS2
22 Very Good H VS1
23 Very Good J SI1
24 Very Good J SI1
25 Very Good G VVS2
26 Premium I VS1
27 Very Good J VS2
28 Very Good D VS2
29 Very Good F VS1
30 Very Good F VS1

3.4.1  Random Selection of Data

Using the .ix method we can do random selection of a data frame that can be
useful for large amounts of data:

import numpy as np

len(diamonds)

53940
0.0001*len(diamonds)

5.394
round(0.0001*len(diamonds))

3.4  Data Selection 95

5
diamonds.index.values

array([0, 1, 2, …, 53937, 53938, 53939])

rows=np.random.choice(diamonds.index.values,round
(0.0001*len(diamonds)))
print(rows)

[26766 43621 3614 35052 51042]

diamonds.ix[rows]

carat cut color clarity depth table price x y z

26766 2.45 Ideal F SI2 62.0 55.0 16589 8.67 8.64 5.36
43621 0.46 Premium F VS1 60.5 58.0 1432 5.02 4.97 3.02
3614 1.05 Ideal I VS2 62.2 56.0 3428 6.52 6.50 4.05
35052 0.31 Ideal F VVS1 61.8 56.0 884 4.33 4.37 2.69
51042 0.70 Good H VS2 64.2 58.0 2330 5.58 5.61 3.59

3.4.2  Conditional Selection

Let us try selecting data by conditions. We can again use the double square
brackets.

We can use the query function for easier conditional selection and using
multiple conditions including (&) or (|) operators. Note we use the parenthesis
in query here, not the square brackets.

diamonds[diamonds[’carat’] > 3.7]

carat cut color clarity depth table price x y z

25998 4.01 Premium I I1 61.0 61.0 15223 10.14 10.10 6.17
25999 4.01 Premium J I1 62.5 62.0 15223 10.02 9.94 6.24
26444 4.00 Very Good I I1 63.3 58.0 15984 10.01 9.94 6.31
27130 4.13 Fair H I1 64.8 61.0 17329 10.00 9.85 6.43
27415 5.01 Fair J I1 65.5 59.0 18018 10.74 10.54 6.98
27630 4.50 Fair J I1 65.8 58.0 18531 10.23 10.16 6.72

3  Data Inspection and Data Quality96

diamonds.query(’carat >3.5 and color == “J”’)

carat cut color clarity depth table price x y z

25999 4.01 Premium J I1 62.5 62.0 15223 10.02 9.94 6.24
27415 5.01 Fair J I1 65.5 59.0 18018 10.74 10.54 6.98
27630 4.50 Fair J I1 65.8 58.0 18531 10.23 10.16 6.72
27679 3.51 Premium J VS2 62.5 59.0 18701 9.66 9.63 6.03

We can also use pandasql package to use SQL to query data conditionally
(from https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92).
In R we use sqldf package for the same.

from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())

import pandas as pd

mycars=pd.read_csv(“http://vincentarelbundock.github.io/
Rdatasets/csv/datasets/mtcars.csv”)

mycars.head()

Unnamed: 0 mpg cyl disp hp drat wt qsec vs am gear carb

0 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
3 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
4 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

mycars.columns
Index(['Unnamed: 0', 'mpg', 'cyl', 'disp', 'hp',
'drat', 'wt', 'qsec', 'vs',
 'am', 'gear', 'carb'], dtype='object')
mycars.columns= [’brand’,’mpg’, ’cyl’, ’disp’,
’hp’, ’drat’, ’wt’, ’qsec’, ’vs’, ’am’, ’gear’,
’carb’]

https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92

3.4  Data Selection 97

pysqldf(“SELECT * FROM mycars LIMIT 10;”)

brand mpg cyl disp hp drat wt qsec vs am gear carb

0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4

pysqldf(“SELECT * FROM mycars WHERE gear > 3 ;”)

brand mpg cyl disp hp drat wt qsec vs am gear carb

0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
3 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
4 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
5 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
6 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
7 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
8 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
9 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

10 Fiat X1‐9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
11 Porsche 914‐2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
12 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
13 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
14 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
15 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
16 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

3  Data Inspection and Data Quality98

pysqldf(“SELECT * FROM mycars WHERE gear > 3 and carb > 4 ;”)

brand mpg cyl disp hp drat wt qsec vs am gear carb

0 Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
1 Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8

pysqldf(“SELECT AVG(mpg),gear FROM mycars GROUP by gear;”)

AVG(mpg) gear

0 16.106667 3
1 24.533333 4
2 21.380000 5

pysqldf(“SELECT AVG(mpg),gear,cyl FROM mycars GROUP by
gear,cyl;”)

AVG(mpg) gear cyl

0 21.500 3 4
1 19.750 3 6
2 15.050 3 8
3 26.925 4 4
4 19.750 4 6
5 28.200 5 4
6 19.700 5 6
7 15.400 5 8

3.5  Data Inspection in R

R is quite simple on how we can inspect data. We can use head and tail to look
at first few and last few records, and we can use str and names to look at struc-
ture and column names of a data frame. We can use the $ notation to look at a
particular column name and use the [] square bracket (row,column) notation
to look at a particular value.

You can see the code at http://rpubs.com/ajaydecis/mtcars1 and http://rpubs.
com/ajaydecis/mtcars or at the following code to understand how easy it is.
Conditional selection is thus quite easy in R. The data in I row and J column for
DataFrameX is shown by DataFrameX[I,J] and alternatively the data in J column
can be DataFrameX$J_Column_Name or DataFrameX[,J].

The actual data mtcars can also be seen at http://vincentarelbundock.github.
io/Rdatasets/csv/datasets/mtcars.csv

http://rpubs.com/ajaydecis/mtcars1
http://rpubs.com/ajaydecis/mtcars
http://rpubs.com/ajaydecis/mtcars
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv

data(“mtcars”)
head(mtcars,10)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
tail(mtcars,5)
mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

names(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"

str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 …
$ cyl : num 6 6 4 6 8 6 8 4 4 6 …
$ disp: num 160 160 108 258 360 …
$ hp : num 110 110 93 110 175 105 245 62 95 123 …
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 …
$ wt : num 2.62 2.88 2.32 3.21 3.44 …
$ qsec: num 16.5 17 18.6 19.4 17 …
$ vs : num 0 0 1 1 0 1 0 1 1 1 …
$ am : num 1 1 1 0 0 0 0 0 0 0 …
$ gear: num 4 4 4 3 3 3 3 4 4 4 …
$ carb: num 4 4 1 1 2 1 4 2 2 4 …
mtcars[1,]
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4
mtcars[,2]
##[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
mtcars[2,3]
##[1] 160
mtcars$cyl
##[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

Now for conditional selection we use the following

mtcars[2,3]
[1] 160

mtcars[mtcars$cyl>4,]
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

Using attach function we no longer have to write mtcars$ every time but can refer to the column name directly.

attach(mtcars)
mtcars[cyl>4,]
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

mtcars[cyl>4 &gear >4,] #AND &
mpg cyl disp hp drat wt qsec vs am gear carb
Ford Pantera L 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8

mtcars[cyl>4 &gear ==4,] # EQUALITY ==
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4

mtcars[cyl>4 |gear ==4,] #OR |
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3

Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

mtcars[cyl>4 &gear !=4,] #NOT !=
mpg cyl disp hp drat wt qsec vs am gear carb
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3

Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

We can use the sqldf package to use SQL to query data in R.
http://rpubs.com/ajaydecis/dataman

data(“mtcars”)
library(sqldf)
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

#Give us average mpg for every carb and every cyl

http://rpubs.com/ajaydecis/dataman

sqldf(“select avg(mpg) from mtcars ”)

avg(mpg)
1 20.09062
sqldf(“select avg(mpg),cyl from mtcars group by cyl”)

avg(mpg) cyl
1 26.66364 4
2 19.74286 6
3 15.10000 8
sqldf(“select avg(mpg),cyl,gear from mtcars group by cyl,gear”)

avg(mpg) cyl gear
1 21.500 4 3
2 26.925 4 4
3 28.200 4 5
4 19.750 6 3
5 19.750 6 4
6 19.700 6 5
7 15.050 8 3
8 15.400 8 5

3.5.1 Diamond Dataset from ggplot2 Package in R

Let us do some more data munging on the diamonds dataset in R (see http://rpubs.com/ajaydecis/basicR). We see random
selection, multiple conditional selection, and other ways in R to manipulate data.

ls() lists all objects in Memory. rm(“objectname”) removes a particular object, while rm(list=ls()) removes all objects. gc()
does garbage collection to free up memory particularly if a large object has been deleted.

http://rpubs.com/ajaydecis/basicR

ls()
character(0)
rm(list=ls())
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 291320 7.8 592000 15.9 391619 10.5
Vcells 333507 2.6 786432 6.0 692009 5.3

#memory.size() windows specific‐this gives memory occupied
#memory.limit() windows specific‐this gives total memory available
install.packages(ggplot2)
library(ggplot2)
data(diamonds)
names(diamonds)

##[1] "carat" "cut" "color" "clarity" "depth" "table" "price"
##[8] "x" "y" "z"

class(diamonds) #What type of object is this?
##[1] "data.frame"

dim(diamonds) #Dimensions ‐ rows and columns
##[1] 53940 10

nrow(diamonds) #Number of Rows
##[1] 53940

ncol(diamonds) #Number of Columns
[1] 10

str(diamonds) #Structure ‐ same as info in Python

'data.frame': 53940 obs. of 10 variables:
$ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 …
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 …
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 …
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 …
$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 …
$ table : num 55 61 65 58 58 57 57 55 61 61 …
$ price : int 326 326 327 334 335 336 336 337 337 338 …
$ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 …
$ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 …
$ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 …

#data inspection
head(diamonds)

carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
head(diamonds$carat) #USing the $operator in take in one column

[1] 0.23 0.21 0.23 0.29 0.31 0.24

Diamonds[3,] #looking at the third row

carat cut color clarity depth table price x y z
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

head(diamonds[,3],10) #Taking first 10 values of 3rd column
[1] E E E I J J I H E H
Levels: D < E < F < G < H < I < J

tail(diamonds) #Last six values by default
carat cut color clarity depth table price x y z
53935 0.72 Premium D SI1 62.7 59 2757 5.69 5.73 3.58
53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76 3.50
53937 0.72 Good D SI1 63.1 55 2757 5.69 5.75 3.61
53938 0.70 Very Good D SI1 62.8 60 2757 5.66 5.68 3.56
53939 0.86 Premium H SI2 61.0 58 2757 6.15 6.12 3.74
53940 0.75 Ideal D SI2 62.2 55 2757 5.83 5.87 3.64

#missing value treatment
head(na.omit(diamonds))

carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

head(mean(diamonds$price,na.rm=T))

[1] 3932.8

head(is.na(diamonds$price))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

naa=is.na(diamonds$price)
table(naa) #table gives frequency values and can be used for data inspection
naa
FALSE
53940

#random sample
sample(10,3,T) #This is random sample similar to numpy example earlier

[1] 10 2 3
sample(10,5,F) #Out of ten numbers choose 5 values, with substitution =False

[1] 4 6 10 9 7

rnorm(10,5,9)
#Random numbers by normal distribution. 10 numbers with mean 5
#and standard deviation 9
[1] -5.323364 10.778377 9.562595 25.202856 14.740653 6.146948 4.712989
[8] 10.033625 13.576019 -2.904901

sample(53940,54,F) #Choosing Random Row Numbers

[1] 16015 3295 30810 6128 13020 17596 26258 13724 18290 49344 28803
[12] 19296 30969 18564 47637 19556 36676 31809 27470 40427 13827 19285
[23] 34027 19775 3914 42903 38505 22783 22571 24783 53796 49667 35219
[34] 43201 41791 47455 22991 900 32144 27631 28891 40676 12270 9432
[45] 25694 4886 20734 8846 28651 6460 33818 7642 21005 15168

sample(nrow(diamonds),0.001*(nrow(diamonds)),F) #0.1 % Random Sample

[1] 40131 24733 29152 4190 4079 31014 23678 20268 36029 37565 26792
[12] 52564 31527 22044 4255 39092 40824 35166 4566 20044 8307 21015
[23] 42075 36046 41057 20671 28080 5624 31169 49728 48181 17372 26373
[34] 11403 37404 8279 25680 15130 23026 43130 43979 10054 43876 16751
[45] 8193 25554 42141 3124 29700 45469 53186 25642 33776

a=nrow(diamonds)
sample(a,0.0001*a,F) #To explain the code above

[1] 40676 32758 43476 47130 38664
randomrows=sample(a,0.0001*a,F)
Diamonds[randomrows,]

carat cut color clarity depth table price x y z
29067 0.40 Good F SI1 63.1 58 687 4.66 4.69 2.95
28304 0.32 Very Good I SI1 62.8 58 432 4.34 4.39 2.74
25301 1.58 Very Good G VS1 62.8 57 13963 7.34 7.40 4.63
15670 1.00 Fair E VS2 57.3 64 6285 6.59 6.46 3.79
5267 1.03 Good J VS2 63.7 56 3795 6.42 6.35 4.07

cut2=diamonds[diamonds$cut==“Ideal”,]
head(cut2)

carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
40 0.33 Ideal I SI2 61.8 55 403 4.49 4.51 2.78
41 0.33 Ideal I SI2 61.2 56 403 4.49 4.50 2.75

cut3=diamonds[diamonds$cut==“Ideal” & diamonds$color==“D”,]
head(cut3)

carat cut color clarity depth table price x y z
63 0.30 Ideal D SI1 62.5 57 552 4.29 4.32 2.69
64 0.30 Ideal D SI1 62.1 56 552 4.30 4.33 2.68
121 0.71 Ideal D SI2 62.3 56 2762 5.73 5.69 3.56
133 0.71 Ideal D SI1 61.9 59 2764 5.69 5.72 3.53
145 0.71 Ideal D SI2 61.6 55 2767 5.74 5.76 3.54
156 0.76 Ideal D SI2 62.4 57 2770 5.78 5.83 3.62

cut4=diamonds[diamonds$cut==“Ideal” | diamonds$color==“D”,]
head(cut4)

carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
29 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.40
35 0.23 Very Good D VS1 61.9 58 402 3.92 3.96 2.44

cut5=ifelse(diamonds$price>9000,“Expensive”,“Not So Expensive”)

table(cut5)
cut5
Expensive Not So Expensive
6298 47642

If else helps with conditional variable creation. Here for condition 1 (price > 9000), if true, the value is second
parameter (Expensive), or else third parameter (Not Expensive). Then we do a table (frequency analysis to find
the values).

3.5.2 Modifying Date Formats and Strings in R

The following code will help us see how we modify date formats easily (using strptime function and lubridate packages)
for date formats and use nchar and substr functions on character data.

#CHARACTER TO DATES
dobofclass=c(“1April2007”,
 “28th july 1984”,
 “05 May 1988”,
 “29nov‐2008”)

strptime(“29nov‐2008”,“%d%b‐%Y”)
[1] "2008-11-29 IST"

strptime(“05 May 1988”,“%d%b‐%Y”)
[1] NA

strptime(“05 May 1988”,“%d %B %Y”) #Strptime needs exact format
[1] "1988-05-05 IST"

library(lubridate) #lubridate is better and easier in guessing date format

dmy(dobofclass)
[1] "2007-04-01 UTC" "1984-07-28 UTC" "1988-05-05 UTC" "2008-11-29 UTC"

Sys.Date()
[1] "2015-12-12"

Differences in dates is given by difftime

difftime(Sys.Date(),dmy(dobofclass))
Time differences in days
[1] 3177 11459 10082 2569

?strptime will give you an insight on all the date formats.

Converting to Character
x=c(23,56,78,89)
as.character(x)
[1] "23" "56" "78" "89"

paste(x)
[1] "23" "56" "78" "89"

In R, modifying format is as simple as using the as operator. For character variables we can also just use paste.

paste(“ajay”,dobofclass[1])

[1] "ajay 1April2007"

paste(“student1”,dobofclass[2])
[1] "student1 28th july 1984"

Substr is a command that helps extract part of the string. Here the first value (2) is the beginning of the substring, while
the second value (3) is the ending part of it. The command thus tells to begin from 2 character of ajay and end at the third
value (included).
substr(“ajay”,2,3)
[1] "ja"
Let us create a list
namclass=c(“Ajay”,“Ajith”,“Sudeeptha”,“Yogisha”)

Let us take first initial of every member of nclass, that is, A,A,S,Y.

substr(namclass,1,1)
[1] "A" "A" "S" "Y"

The number of characters in a string is given by nchar:

nchar(namclass)
[1] 4 5 9 7

To get the last character of every member of nclass list,
substr(namclass,nchar(namclass),nchar(namclass))
[1] "y" "h" "a" "a"

3.5.3 Managing Strings in R

Let us take a small list. We use the c operator to make a list in R. We use grepl to find out if a certain pattern is present
(here “jay”). We use ifelse for a conditional substitute.

Ifelse works like this in R, if the condition (first input grepl(“jay”,names)) is satisfied, it will replace it by (second input
“Yay its Jay”), or else it would replace by (third input “Oh no where is Jay”).

names=c("Ajay","Vijay","Rajay","Jayesh")
grepl("jay",names)
[1] TRUE TRUE TRUE FALSE
ifelse(grepl("jay",names),"Yay its Jay", " Oh no where is Jay")
[1] "Yay its Jay" "Yay its Jay" "Yay its Jay"
[4] " Oh no where is Jay"

We can also use stringr package to manage strings:

library(stringr)

str_dup(names,3)
[1] "AjayAjayAjay" "VijayVijayVijay" "RajayRajayRajay"
[4] "JayeshJayeshJayesh"

namq=c(“Ajay “,”Vijay “,” Rajay“,” Jay esh ”)

str_trim(namq)
[1] "Ajay" "Vijay" "Rajay" "Jay esh"

str_pad(namq,width=20,side=“left”)
[1] " Ajay " " Vijay " " Rajay"
[4] " Jay esh "

3  Data Inspection and Data Quality118

Bibliography

Hadley Wickham (2015). stringr: Simple, Consistent Wrappers for Common
String Operations. R package version 1.0.0. https://CRAN.R‐project.org/
package=stringr (accessed May 2, 2017).

Hadley Wickham (2016). tidyr: Easily Tidy Data with “spread()” and “gather()”
Functions. R package version 0.6.0. https://CRAN.R‐project.org/package=tidyr
(accessed May 2, 2017).

https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

119

4

●● Definition of EDA
●● Box Plot and Five Numbers

4.1  Group by Analysis

When a numeric quantity is summarized across various levels of a factor or
categorical variable, that is known as a group by Analysis Numerical.

Summaries of numerical variables can be done by describe, group by
commands.

Categorical
Summaries are best done by cross tab, group by operations.
Datetime
Datetime data is best handled by datetime library.

4.2  Numerical Data

Let’s take some data in http://nbviewer.jupyter.org/gist/decisionstats/4142e98
375445c5e4174 (Figure 4.1).

For numerical data Describe command in pandas acts the same was as
summary command in R for numerical data. Describe in Python Pandas
gives you count, mean std min 25% 50% 75% max. Summary in R gives you
mean, median, 25th and 75th quartiles, min, max.

There is another function in R called fivenum, and it gives you
Tukey’s five numbers for exploratory data analysis (min, lower‐hinge, median,
upper‐hinge, max).

R has a better function in the Hmisc package called describe (yes it can be
confusing to go back and forth between pandas and R). Hmisc::Describe

Exploratory Data Analysis

http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174
http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

4  Exploratory Data Analysis120

gives you a more elaborate numerical exploration (n,missing unique, Mean,
.05,.10,.25,.50,.75,.90,.95 and 5 lowest and 5 highest scores). In Python we can
do it using quantiles for percentiles (Figure 4.2).

Figure 4.1  Describe function.

Figure 4.2  Quantile function for percentiles and quartiles.

4.3  Categorical Data 121

We can look at correlations between numerical data using corr function
(Figure 4.3).

4.3  Categorical Data

In Python value_counts() acts the same way as table() does in R for frequency
tabulations (Figure 4.4).

A cross tabulation between two variables in pandas is given by crosstab,
while in R you can just do table(var1,var2) (Figure 4.5).

Figure 4.3  Corr function for correlation.

Figure 4.4  Frequency tabulation using value_counts function.

4  Exploratory Data Analysis122

Group by operations is best done by groupby() and then a numerical func-
tion applied to it (Figures 4.6 and 4.7).

Figure 4.6  Grouping by a variable using groupby.

Figure 4.5  Cross tabulation using Cross Tab function.

4.3  Categorical Data 123

Note: To transpose the data from columns to rows and vice versa, we can use
the transpose function (Figure 4.8).

You can use the pivot command to present data in a pivot table format
(Figure 4.9).

The above shows median age for different sex and races.

Figure 4.7  Calculating mean (or a summary function) of Group by.

Figure 4.8  Transpose function.

4  Exploratory Data Analysis124

We can use the pandasql package and use SQL syntax to do selection as well
as groupby operations on data. You can see this from https://nbviewer.jupyter.
org/gist/decisionstats/284a86d0541d06489e92 (or all the code from https://
github.com/decisionstats/pythonfordatascience).

The SQL syntax makes it easy for existing SQL users to quickly manipulate
and select data in a pandas DataFrame. Note this functionality is available in R
in the sqldf package (Figure 4.10).

From http://rpubs.com/ajaydecis/basicR let’s look at the way to explore data
in R in multiple ways using summary, table functions, and Hmisc, and other
packages. ls()

Figure 4.9  Pivot function.

Figure 4.10  Using SQL in Python using PandaSQL package.

https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
https://github.com/decisionstats/pythonfordatascience
https://github.com/decisionstats/pythonfordatascience
http://rpubs.com/ajaydecis/basicR

character(0)
rm(list=ls())
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 291320 7.8 592000 15.9 391619 10.5
Vcells 333507 2.6 786432 6.0 692009 5.3
#memory.size() windows specific
#memory.limit() windows specific
install.packages(ggplot2)
library(ggplot2)
data(diamonds)
names(diamonds)
[1] "carat" "cut" "color" "clarity" "depth" "table" "price"
[8] "x" "y" "z"
class(diamonds)
[1] "data.frame"
dim(diamonds)
[1] 53940 10
nrow(diamonds)
[1] 53940
ncol(diamonds)
[1] 10
str(diamonds)
'data.frame': 53940 obs. of 10 variables:
$ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 …
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 …
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 …
$ clarity : Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 …

$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 …
$ table : num 55 61 65 58 58 57 57 55 61 61 …
$ price : int 326 326 327 334 335 336 336 337 337 338 …
$ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 …
$ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 …
$ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 …
#data inspection
head(diamonds)
carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
head(diamonds$carat)
[1] 0.23 0.21 0.23 0.29 0.31 0.24
diamonds[3,]
carat cut color clarity depth table price x y z
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
head(diamonds[,3],10)
[1] E E E I J J I H E H
Levels: D < E < F < G < H < I < J
tail(diamonds)
carat cut color clarity depth table price x y z
53935 0.72 Premium D SI1 62.7 59 2757 5.69 5.73 3.58
53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76 3.50

53937 0.72 Good D SI1 63.1 55 2757 5.69 5.75 3.61
53938 0.70 Very Good D SI1 62.8 60 2757 5.66 5.68 3.56
53939 0.86 Premium H SI2 61.0 58 2757 6.15 6.12 3.74
53940 0.75 Ideal D SI2 62.2 55 2757 5.83 5.87 3.64
#missing value treatment
head(na.omit(diamonds))
carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
head(mean(diamonds$price,na.rm=T))
[1] 3932.8
head(is.na(diamonds$price))
[1] FALSE FALSE FALSE FALSE FALSE FALSE
naa=is.na(diamonds$price)
table(naa)
naa
FALSE
53940
#random sample
sample(10,3,T)
[1] 10 2 3
sample(10,5,F)
[1] 4 6 10 9 7

rnorm(10,5,9)
[1] -5.323364 10.778377 9.562595 25.202856 14.740653 6.146948 4.712989
[8] 10.033625 13.576019 -2.904901
sample(53940,54,F)
[1] 16015 3295 30810 6128 13020 17596 26258 13724 18290 49344 28803
[12] 19296 30969 18564 47637 19556 36676 31809 27470 40427 13827 19285
[23] 34027 19775 3914 42903 38505 22783 22571 24783 53796 49667 35219
[34] 43201 41791 47455 22991 900 32144 27631 28891 40676 12270 9432
[45] 25694 4886 20734 8846 28651 6460 33818 7642 21005 15168
sample(nrow(diamonds),0.001*(nrow(diamonds)),F)
[1] 40131 24733 29152 4190 4079 31014 23678 20268 36029 37565 26792
[12] 52564 31527 22044 4255 39092 40824 35166 4566 20044 8307 21015
[23] 42075 36046 41057 20671 28080 5624 31169 49728 48181 17372 26373
[34] 11403 37404 8279 25680 15130 23026 43130 43979 10054 43876 16751
[45] 8193 25554 42141 3124 29700 45469 53186 25642 33776
a=nrow(diamonds)
sample(a,0.0001*a,F)
[1] 40676 32758 43476 47130 38664
randomrows=sample(a,0.0001*a,F)
diamonds[randomrows,]
carat cut color clarity depth table price x y z
29067 0.40 Good F SI1 63.1 58 687 4.66 4.69 2.95
28304 0.32 Very Good I SI1 62.8 58 432 4.34 4.39 2.74
25301 1.58 Very Good G VS1 62.8 57 13963 7.34 7.40 4.63
15670 1.00 Fair E VS2 57.3 64 6285 6.59 6.46 3.79
5267 1.03 Good J VS2 63.7 56 3795 6.42 6.35 4.07
#Descriptive Stats
summary(diamonds)

carat cut color clarity
Min. :0.2000 Fair : 1610 D: 6775 SI1 :13065
1st Qu. :0.4000 Good : 4906 E: 9797 VS2 :12258
Median :0.7000 Very Good :12082 F: 9542 SI2 : 9194
Mean :0.7979 Premium :13791 G: 11292 VS1 : 8171
3rd Qu. :1.0400 Ideal :21551 H: 8304 VVS2 : 5066
Max. :5.0100 I: 5422 VVS1 : 3655
J: 2808 (Other) :2531
depth table price x
Min. :43.00 Min. :43.00 Min. :326 Min. :0.000
1st Qu. :61.00 1st Qu. :56.00 1st Qu. :950 1st Qu. :4.710
Median :61.80 Median :57.00 Median :2401 Median :5.700
Mean :61.75 Mean :57.46 Mean :3933 Mean :5.731
3rd Qu. :62.50 3rd Qu. :59.00 3rd Qu. :5324 3rd Qu. :6.540
Max. :79.00 Max. :95.00 Max. :18823 Max. :10.740

y z
Min. : 0.000 Min. : 0.000
1st Qu. : 4.720 1st Qu. : 2.910
Median : 5.710 Median : 3.530
Mean : 5.735 Mean : 3.539
3rd Qu. : 6.540 3rd Qu. : 4.040
Max. :58.900 Max. :31.800
##

4  Exploratory Data Analysis130

table(diamonds$cut)

##	 Fair	 Good	 Very Good	 Premium	 Ideal
##	 1610	 4906	 12082	 13791	 21551
table(diamonds$cut,diamonds$color)

##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 163	 224	 312	 314	 303	 175	 119
##	 Good	 662	 933	 909	 871	 702	 522	 307
##	 Very Good	 1513	 2400	 2164	 2299	 1824	 1204	 678
##	 Premium	 1603	 2337	 2331	 2924	 2360	 1428	 808
##	 Ideal	 2834	 3903	 3826	 4884	 3115	 2093	 896
table(diamonds$cut,diamonds$color,diamonds$clarity)
## , , = I1
##
##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 4	 9	 35	 53	 52	 34	 23
##	 Good	 8	 23	 19	 19	 14	 9	 4
##	 Very Good	 5	 22	 13	 16	 12	 8	 8
##	 Premium	 12	 30	 34	 46	 46	 24	 13
##	 Ideal	 13	 18	 42	 16	 38	 17	 2

, , = SI2

##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 56	 78	 89	 80	 91	 45	 27
##	 Good	 223	 202	 201	 163	 158	 81	 53
##	 Very Good	 314	 445	 343	 327	 343	 200	 128
##	 Premium	 421	 519	 523	 492	 521	 312	 161
##	 Ideal	 356	 469	 453	 486	 450	 274	 110

, , = SI1
##
##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 58	 65	 83	 69	 75	 30	 28
##	 Good	 237	 355	 273	 207	 235	 165	 88
##	 Very Good	 494	 626	 559	 474	 547	 358	 182
##	 Premium	 556	 614	 608	 566	 655	 367	 209
##	 Ideal	 738	 766	 608	 660	 763	 504	 243
##

4.3  Categorical Data 131

, , = VS2
##
##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 25	 42	 53	 45	 41	 32	 23
##	 Good	 104	 160	 184	 192	 138	 110	 90
##	 Very Good	 309	 503	 466	 479	 376	 274	 184
##	 Premium	 339	 629	 619	 721	 532	 315	 202
##	 Ideal	 920	 1136	 879	 910	 556	 438	 232

, , = VS1
##
##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 5	 14	 33	 45	 32	 25	 16
##	 Good	 43	 89	 132	 152	 77	 103	 52
##	 Very Good	 175	 293	 293	 432	 257	 205	 120
##	 Premium	 131	 292	 290	 566	 336	 221	 153
##	 Ideal	 351	 593	 616	 953	 467	 408	 201

## , , = VVS2
##
##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 9	 13	 10	 17	 11	 8	 1
##	 Good	 25	 52	 50	 75	 45	 26	 13
##	 Very Good	 141	 298	 249	 302	 145	 71	 29
##	 Premium	 94	 121	 146	 275	 118	 82	 34
##	 Ideal	 284	 507	 520	 774	 289	 178	 54

, , = VVS1

##
##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 3	 3	 5	 3	 1	 1	 1
##	 Good	 13	 43	 35	 41	 31	 22	 1
##	 Very Good	 52	 170	 174	 190	 115	 69	 19
##	 Premium	 40	 105	 80	 171	 112	 84	 24
##	 Ideal	 144	 335	 440	 594	 326	 179	 29

, , = IF
##
##

4  Exploratory Data Analysis132

##		 D	 E	 F	 G	 H	 I	 J
##	 Fair	 3	 0	 4	 2	 0	 0	 0
##	 Good	 9	 9	 15	 22	 4	 6	 6
##	 Very Good	 23	 43	 67	 79	 29	 19	 8
##	 Premium	 10	 27	 31	 87	 40	 23	 12
##	 Ideal	 28	 79	 268	 491	 226	 95	 25
mean(diamonds$price)
[1] 3932.8
#using Hmisc
library(Hmisc)
Loading required package: grid
Loading required package: lattice
Loading required package: survival
Loading required package: Formula

Attaching package: 'Hmisc'

The following objects are masked from 'package:base':

##   format.pval, round.POSIXt, trunc.POSIXt, units
describe(diamonds$price)
diamonds$price
##	 n	missing	unique	Info	Mean	 .05	.10	 .25	 .50
##	53940	 0	 11602	 1	3933	 544	646	 950	 2401
##	 .75	 .90	 .95
##	 5324	 9821	 13107

## lowest :	 326	 327	 334	 335	 336
## highest:	18803	18804	18806	18818	18823
summarize(diamonds$price,diamonds$color,mean)
diamonds$color diamonds$price
## 1	 D	 3169.954
## 2	 E	 3076.752
## 3	 F	 3724.886
## 4	 G	 3999.136
## 5	 H	 4486.669
## 6	 I	 5091.875
## 7	 J	 5323.818
summarize(diamonds$price,diamonds$color,max)
diamonds$color diamonds$price
## 1	 D	 18693
## 2	 E	 18731
## 3	 F	 18791

4.3  Categorical Data 133

## 4	 G	 18818
## 5	 H	 18803
## 6	 I	 18823
## 7	 J	 18710
summarize(diamonds$price,llist(diamonds$color,diamonds
$cut),mean)
diamonds$color diamonds$cut diamonds$price
## 1	 D	 Fair	 4291.061
## 2	 D	 Good	 3405.382
## 5	 D	 Very Good	 3470.467
## 4	 D	 Premium	 3631.293
## 3	 D	 Ideal	 2629.095
## 6	 E	 Fair	 3682.312
## 7	 E	 Good	 3423.644
## 10	 E	 Very Good	 3214.652
## 9	 E	 Premium	 3538.914
## 8	 E	 Ideal	 2597.550
## 11	 F	 Fair	 3827.003
## 12	 F	 Good	 3495.750
## 15	 F	 Very Good	 3778.820
## 14	 F	 Premium	 4324.890
## 13	 F	 Ideal	 3374.939
## 16	 G	 Fair	 4239.255
## 17	 G	 Good	 4123.482
## 20	 G	 Very Good	 3872.754
## 19	 G	 Premium	 4500.742
## 18	 G	 Ideal	 3720.706
## 21	 H	 Fair	 5135.683
## 22	 H	 Good	 4276.255
## 25	 H	 Very Good	 4535.390
## 24	 H	 Premium	 5216.707
## 23	 H	 Ideal	 3889.335
## 26	 I	 Fair	 4685.446
## 27	 I	 Good	 5078.533
## 30	 I	 Very Good	 5255.880
## 29	 I	 Premium	 5946.181
## 28	 I	 Ideal	 4451.970
## 31	 J	 Fair	 4975.655
## 32	 J	 Good	 4574.173
## 35	 J	 Very Good	 5103.513
## 34	 J	 Premium	 6294.592
## 33	 J	 Ideal	 4918.186
#reshape

library(reshape2)
acast(diamonds, cut~color, value.var='price', mean)
D E F G H I J
Fair 4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
Good 3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
Very Good 3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
Premium 3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
Ideal 2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
with(diamonds, tapply(price, list(cut,color), FUN= mean))
D E F G H I J
Fair 4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
Good 3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
Very Good 3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
Premium 3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
Ideal 2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
xtabs(price ~ cut + color, diamonds)/table(diamonds[c('cut', 'color')])
color
cut D E F G H I J
Fair 4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
Good 3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
Very Good 3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
Premium 3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
Ideal 2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
library(data.table)

dcast(as.data.table(diamonds), cut~color, value.var='price', mean)
cut D E F G H I J
1 Fair 4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
2 Good 3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
3 Very Good 3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
4 Premium 3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
5 Ideal 2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:data.table':

between, last

The following objects are masked from 'package:Hmisc':

combine, src, summarize

The following object is masked from 'package:stats':

filter

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
library(tidyr)

b=diamonds %>%
 group_by(cut, color) %>%
 summarise(price = mean(price)) %>%
 spread(color, price)
b
Source: local data frame [5 x 8]

cut D E F G H I J
1 Fair 4291.061 3682.312 3827.003 4239.255 5135.683 4685.446 4975.655
2 Good 3405.382 3423.644 3495.750 4123.482 4276.255 5078.533 4574.173
3 Very Good 3470.467 3214.652 3778.820 3872.754 4535.390 5255.880 5103.513
4 Premium 3631.293 3538.914 4324.890 4500.742 5216.707 5946.181 6294.592
5 Ideal 2629.095 2597.550 3374.939 3720.706 3889.335 4451.970 4918.186
str(b)
Classes 'tbl_df', 'tbl' and 'data.frame': 5 obs. of 8 variables:
$ cut: Ord.factor w/ 5 levels "Fair"<"Good"<..:

1 2 3 4 5
$ D : num 4291 3405 3470 3631 2629
$ E : num 3682 3424 3215 3539 2598
$ F : num 3827 3496 3779 4325 3375
$ G : num 4239 4123 3873 4501 3721
$ H : num 5136 4276 4535 5217 3889
$ I : num 4685 5079 5256 5946 4452
$ J : num 4976 4574 5104 6295 4918

image(as.matrix(b[2:7]))

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

#subset
cut2=diamonds[diamonds$cut=="Ideal",]
head(cut2)
carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
40 0.33 Ideal I SI2 61.8 55 403 4.49 4.51 2.78
41 0.33 Ideal I SI2 61.2 56 403 4.49 4.50 2.75
cut3=diamonds[diamonds$cut=="Ideal" & diamonds$color=="D",]

head(cut3)
carat cut color clarity depth table price x y z
63 0.30 Ideal D SI1 62.5 57 552 4.29 4.32 2.69
64 0.30 Ideal D SI1 62.1 56 552 4.30 4.33 2.68
121 0.71 Ideal D SI2 62.3 56 2762 5.73 5.69 3.56
133 0.71 Ideal D SI1 61.9 59 2764 5.69 5.72 3.53
145 0.71 Ideal D SI2 61.6 55 2767 5.74 5.76 3.54
156 0.76 Ideal D SI2 62.4 57 2770 5.78 5.83 3.62
cut4=diamonds[diamonds$cut=="Ideal" | diamonds$color=="D",]
head(cut4)
carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
12 0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
29 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.40
35 0.23 Very Good D VS1 61.9 58 402 3.92 3.96 2.44
cut5=ifelse(diamonds$price>9000,"Expensive","Not So Expensive")
table(cut5)
cut5
Expensive Not So Expensive
6298 47642

139

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

5

5.1  Concepts in Regression

What is statistical modeling?

●● It is a formalization of relationships between variables in the form of
mathematical equations.

●● It describes how one or more random variables are related to one or more
other variables.

●● The variables are not deterministically but stochastically related.

Reading Statistical Modeling: The Two Cultures http://projecteuclid.org/
download/pdf_1/euclid.ss/1009213726

Example

●● Height and age are probabilistically distributed among humans.
●● They are stochastically related; when you know that a person is of age

30 years, this influences the chance of this person of being 4‐feet tall. When
you know that a person is of age 13 years, this influences the chance of this
person of being 6 feet tall.

●● Model 1
–– heighti = b0 + b1agei + εi, where b0 is the intercept, b1 is a parameter that age

is multiplied by to get a prediction of height, ε is the error term, and i is the
subject.

●● Model 2
–– heighti = b0 + b1agei + b2sexi + εi, where the variable sex is dichotomous.

Regression models involve the following variables:

●● The unknown parameters
●● The independent variables, X
●● The dependent variable, Y

Statistical Modeling

http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726

5  Statistical Modeling140

Y = a + BX is the simplest form of regression
Linear regression Y = a + Bx + (E)
Multivariate regression Y = a + bx + cy + (E)
Logistic regression ln(p/1 − p) = a + bX

Example

Okun’s Law
The relationship between an economy’s unemployment rate and its gross
national product (GNP). Economist Arthur Okun developed this idea, which
states that when unemployment falls by 1%, GNP rises by 3% (Figure 5.1).

5.1.1  OLS

Ordinary least squares (OLS) or linear least squares is a method for estimat-
ing the unknown parameters in a linear regression model, with the goal of
minimizing the differences between the observed responses in some arbitrary
dataset and the responses predicted by the linear approximation of the data
(visually this is seen as the sum of the vertical distances between each data
point in the set and the corresponding point on the regression line—the smaller
the differences, the better the model fits the data) (https://en.wikipedia.org/
wiki/Ordinary_least_squares). The primary assumption of OLS is that there
are zero or negligible errors in the independent variable, since this method
only attempts to minimize the mean squared error in the dependent
variable. The method of least squares is a standard approach in regression
analysis to the approximate solution of overdetermined systems, that is, sets of
equations in which there are more equations than unknowns. “Least squares”
means that the overall solution minimizes the sum of the squares of the errors
made in the results of every single equation.

4

2

0

–2

–1.0 –0.5 0.0

Quarterly change in the unemployment rate (Δ%)

Q
ua

rt
er

ly
 c

ha
ng

e
in

 G
D

P
 (

Δ
%

)

0.5 1.0 1.5 2.0

Figure 5.1  Okun’s law.

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares

5.1  Concepts in Regression 141

The most important application is in data fitting. The best fit in the least‐
squares sense minimizes the sum of squared residuals, a residual being the
difference between an observed value and the fitted value provided by a model.

https://en.wikipedia.org/wiki/Least_squares.

5.1.2  R‐Squared

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced
“R‐squared,” is a number that indicates the proportion of the variance in the
dependent variable that is predictable from the independent variable.

It is a statistic used in the context of statistical models whose main purpose
is either the prediction of future outcomes or the testing of hypotheses, on the
basis of other related information.

The use of an adjusted R2 (often written as R − 2 {\displaystyle {\bar {R}}^{2}}
and pronounced “R‐bar squared”) is an attempt to take account of the
phenomenon of the R2 automatically and spuriously increasing when extra
explanatory variables are added to the model.

https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2.
To summarize, R‐squared is the percentage of the response variable variation

that is explained by a linear model. Or

	
= Explained variationR-squared

Total variation

Adjusted R‐squared adjusts the statistic based on the number of independent
variables in the model.

5.1.3  p‐Value

The p‐value for each term tests the null hypothesis that the coefficient is equal
to zero (no effect). A low p‐value (<0.05) indicates that you can reject the null
hypothesis.

In other words, a predictor that has a low p‐value is likely to be a meaningful
addition to your model because changes in the predictor’s value are related to
changes in the response variable.

http://blog.minitab.com/blog/adventures‐in‐statistics/how‐to‐interpret‐
regression‐analysis‐results‐p‐values‐and‐coefficients

5.1.4  Outliers

Sometimes outliers are bad data and should be excluded, such as typos.
Sometimes they are Wayne Gretzky or Michael Jordan and should be kept.

Statistical distance measures are specifically catered to detecting outliers and
then consider whether such outliers should be removed from your linear
regression.

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2.
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-regression-analysis-results-p-values-and-coefficients
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-regression-analysis-results-p-values-and-coefficients

5  Statistical Modeling142

The first one is Cook’s distance. You can find a pretty good explanation of it
at Wikipedia (http://en.wikipedia.org/wiki/Cook%27s_distance).

The higher the Cook’s distance is, the more influential (impact on regression
coefficient) the observation is. The typical cutoff point to consider removing
the observation is a Cook’s distance = 4/n (n is sample size).

http://stats.stackexchange.com/questions/175/how‐should‐outliers‐
be‐dealt‐with‐in‐linear‐regression‐analysis

The second way is to use outlierTest function from car package in R.

5.1.5  Multicollinearity and Heteroscedascity

Multicollinearity is a statistical phenomenon in which two or more predictor
variables in a multiple regression model are highly correlated, meaning that one
can be linearly predicted from the others with a nontrivial degree of accuracy.
In this situation the coefficient estimates may change erratically in response to
small changes in the model or the data.

vif from car package
In statistics, a collection of random variables is heteroscedastic (often spelled

heteroskedastic and commonly pronounced with a hard k sound regardless of
spelling) if there are subpopulations that have different variabilities from oth-
ers. Here “variability” could be quantified by the variance or any other measure
of statistical dispersion.

gvlma package

5.2  Correlation Is Not Causation

Correlation does not imply causation is a phrase used in statistics to empha-
size that a correlation between two variables does not imply that one causes the
other (Figures 5.2 and 5.3).

Both the aforementioned charts show the absurdity that occurs when we
suppose correlation is the same as a causal relation.

“Causes” is an asymmetric relation (X causes Y is different from Y causes X),
whereas “is correlated with” is a symmetric relation.

For instance, homeless population and crime rate might be correlated, in that
both tend to be high or low in the same locations. It is equally valid to say that
homeless population is correlated with crime rate, or crime rate is correlated
with homeless population. For example, crime causes homelessness and home-
less populations cause crime are different statements. And correlation does not
imply that either is true. For instance, the underlying cause could be a third
variable such as drug abuse or unemployment.

The mathematics of statistics is not good at identifying underlying causes,
which requires some other form of judgment (Figure 5.4).

http://en.wikipedia.org/wiki/Cook's_distance
http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis
http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis

5.2  Correlation Is Not Causation 143

5.2.1  A Note on Statistics for Data Scientists

Data scientists tend to be either computer science leaning or statistics leaning.
In languages, R is preferred by those who are from statistical background
and Python often by computer science background. Both programming and
statistics are needed for a balanced skill set in data analysis.

16
1996

1997

1998 1999

2000

15.8

15.6

15.4

15.2

15

14.8
200 250 300 350

Fresh lemons imported to the United States from Mexico
(metric tons)

T
o

ta
l U

S
 h

ig
h

w
ay

 f
at

al
it

y
ra

te

400 450 500 550

Sources:
U.S. NHTSA, DOT HS 810 780
U.S. Department of Agriculture

R2= 0.97

Figure 5.2  http://pubs.acs.org/doi/abs/10.1021/ci700332k. Source: Johnson (2008).
Reproduced with the permission of American Chemical Society.

Global average temperature vs. number of pirates
16.5

16.0

15.5

15.0

14.5

14.0

13.5

13.0
35 000

1820
1860

1880

1920
1940

1980

2000

45 000 20 000 15 000 5000 400 17

Number of pirates (approximate)

G
lo

ba
l a

ve
ra

ge
 te

m
pe

ra
tu

re
 (

°C
)

Figure 5.3  https://www.forbes.com/sites/erikaandersen/2012/03/23/true‐fact‐the‐lack‐
of‐pirates‐is‐causing‐global‐warming/. Source: © Forbes.com.

http://pubs.acs.org/doi/abs/10.1021/ci700332k
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/

5  Statistical Modeling144

A brief summary of statistics needed for data scientists is at https://www.
slideshare.net/ajayohri/statistics‐for‐data‐scientists.

Here is a brief extract:

Data—Facts and statistics collected together for reference or analysis
Variable—Something that varies (Figure 5.5)

Ordinal variables are variables that have two or more categories just like
nominal variables, only the categories can also be ordered or ranked, for exam-
ple, excellent–horrible. Dichotomous variables are nominal variables that
have only two categories or levels. Nominal variables are variables that have
two or more categories, but do not have an intrinsic order.

Interval variables are variables whose central characteristic is that they can
be measured along a continuum and have a numerical value (e.g., temperature
measured in degrees Celsius or Fahrenheit).

I used to think
correlation implied
causation

Then i took a
statistics class.
Now i don’t.

Sounds like the
class helped.

Well, maybe.

Figure 5.4  XKCD.com cartoon correlation is not causation. http://stats.stackexchange.com/
questions/36/examples‐for‐teaching‐correlation‐does‐not‐mean‐causation. Source: © Stack
Exchange Inc.

Variable

Numeric Categorical

Continuous Discrete Ordinal Nominal

Figure 5.5  Types of variables. With reference to https://statistics.laerd.com/statistical‐
guides/types‐of‐variable.php. Source: © Lund Research Ltd.

https://www.slideshare.net/ajayohri/statistics-for-data-scientists
https://www.slideshare.net/ajayohri/statistics-for-data-scientists
http://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
http://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
https://statistics.laerd.com/statistical-guides/types-of-variable.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php

5.2  Correlation Is Not Causation 145

Ratio variables are interval variables but with the added condition that
0 (zero) of the measurement indicates that there is none of that variable.
A distance of 10 m is twice the distance of 5 m.

5.2.2  Measures of Central Tendency

Mean
Arithmetic mean is the sum of the values divided by the number of values.

The geometric mean is an average that is useful for sets of positive numbers
that are interpreted according to their product and not their sum (as is the case
with the arithmetic mean), for example, rates of growth.

Median
The median is the number separating the higher half of a data sample, a
population, or a probability distribution from the lower half.

Mode
The “mode” is the value that occurs most often.

5.2.3  Measures of Dispersion

Range
The range of a set of data is the difference between the largest and smallest
values.

Variance
Mean of squares of differences of values from mean

Standard Deviation (sd)
Square root of its variance

Frequency
A frequency distribution is a table that displays the frequency of various
outcomes in a sample.

What Is a Distribution?
The distribution of a statistical dataset (or a population) is a listing or function
showing all the possible values (or intervals) of the data and how often they occur.
When a distribution of categorical data is organized, you see the number or
percentage of individuals in each group (http://www.dummies.com/education/
math/statistics/what‐the‐distribution‐tells‐you‐about‐a‐statistical‐data‐set/).

The simplest case of a normal distribution is known as the standard normal
distribution (Figure 5.6). This is a special case where mean μ = 0 and standard
deviation σ = 1.

http://www.dummies.com/education/math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/
http://www.dummies.com/education/math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/

5  Statistical Modeling146

Clearly we won’t get a normal distribution all the time for skewed or tilted
distribution when the following measures, skewness, and kurtosis are used
(Figure 5.7).

Skewness is a measure of the asymmetry of the probability distribution of
a real‐valued random variable about its mean. The skewness value can be
positive or negative or even undefined (Figure 5.8).

Position of mean median mode

F
re

qu
en

cy

Mean

Median

Mode

Mean
Median
Mode Mode

Median

Mean

X X X

Mode>median>mean Mean>median>mode

Negative direction Positive directionThe normal curve
represents a perfectly

symmetrical distribution

(a) (b) (c)

Figure 5.7  Skewed curves. (a) Negatively skewed, (b) normal (no skew), and
(c) positively skewed.

Cumulative
percent

Z-score
Standard
deviation 0.1% 2.3% 15.9% 50% 84.1% 97.7% 99.9%

0.5%0.5%

1.7% 1.7%
4.4% 4.4%

9.2% 9.2%

15.0% 15.0%

19.1% 19.1%

0.1%0.1%

1% 5% 10% 20 30 40 50 60 70 80 90% 95% 99%

–4
–4σ –3σ –2σ –1σ +1σ +2σ +3σ +4σ0

–3.5 –3 –2.5 –2 –1.5 –1 –0.5 0.5 1 1.5 2 2.5 3 3.5 40

“Bell curve”
Standard normal

distribution

Figure 5.6  Standard normal distribution—a most useful distribution curve for a data scientist.
Source: Rumsey (2016). Reproduced with the permission of John Wiley & Sons, Inc.

5.2  Correlation Is Not Causation 147

Kurtosis is a measure of the “tailedness” of the probability distribution of a
real‐valued random variable. Kurtosis is a descriptor of the shape of a probability
distribution (Figure 5.9).

Some useful distributions apart from normal distribution are the following:

Bernoulli—Distribution of a random variable that takes value 1 with success
probability and value 0 with failure probability. It can be used, for example,
to represent the toss of a coin.

Chi‐square—The distribution of a sum of the squares of k independent standard
normal random variables (Figure 5.10).

Poisson—A discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time and/or space if
these events occur with a known average rate and independently of the time
since the last event.

You can see others at https://en.wikipedia.org/wiki/Probability_distribution#
Discrete_probability_distribution (Figure 5.11).

5.2.4  Probability Distribution

The probability density function (pdf) (http://en.wikipedia.org/wiki/Probability_
density_function) of the normal distribution, also called Gaussian or “bell curve,”
is the most important continuous random distribution (Figure 5.12). As notated
on the figure, the probabilities of intervals of values correspond to the area under
the curve.

In probability theory, the central limit theorem (CLT) states that, given
certain conditions, the arithmetic mean of a sufficiently large number of iterates
of independent random variables, each with a well‐defined expected value and
well‐defined variance, will be approximately normally distributed, regardless of
the underlying distribution.

Negative skew Positive skew

Figure 5.8  Skewness. https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_
diagrams_(English).svg. Source: © Wikipedia.

https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg
https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg

5  Statistical Modeling148

df = 2

df = 3

df = 4

P
ro

ba
bi

lit
y

0 2 4 6 8

χ2

10 12 14 16

Figure 5.10  Chi square curve.

Normal random numbers

Skewness = 0.03, Kurtosis = 2.962

2000

1500

1000

500

0
–10 100–5 5

Double exponential random numbers

Skewness = 0.062, Kurtosis = 5.903

2000

1500

1000

500

0
–10 100–5 5

Weibull (gamma = 1.5) random numbers

Skewness = 1.082, Kurtosis = 4.46

2000

1500

1000

500

0
–10 100–5 5

Cauchy random numbers

Skewness = 69.9, Kurtosis = 6693

2000

2500

3000

1500

1000

500

0
–10 100–5 5

Figure 5.9  Kurtosis. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm.
Source: © U.S. Department of Commerce.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

5.2  Correlation Is Not Causation 149

A widely underused technique by computer scientists is hypothesis testing.
What is hypothesis testing? Hypothesis testing is the use of statistics to deter-
mine the probability that a given hypothesis is true (http://mathworld.wolfram.
com/HypothesisTesting.html). The usual process of hypothesis testing consists
of four steps:

1)	 Formulate the null hypothesis (commonly, that the observations are
the result of pure chance) and the alternative hypothesis (commonly, that
the observations show a real effect combined with a component of chance
variation).

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9

λ

Figure 5.11  Poisson curve. Source: © Wikipedia.

0.4

0.3

0.2

0.1

0.0

0.1%

–3σ 3σ–2σ 2σ–1σ 1σ0

0.1%
2.1% 2.1%13.6% 13.6%

34.1% 34.1%

Figure 5.12  Normal distribution curve.

http://mathworld.wolfram.com/HypothesisTesting.html
http://mathworld.wolfram.com/HypothesisTesting.html

5  Statistical Modeling150

2)	 Identify a test statistic that can be used to assess the truth of the null
hypothesis.

3)	 Compute the p‐value, which is the probability that a test statistic at least as
significant as the one observed would be obtained assuming that the null
hypothesis were true. The smaller the p‐value, the stronger the evidence
against the null hypothesis.

4)	 Compare the p‐value with an acceptable significance value (sometimes
called an alpha value). If the observed effect is statistically significant, the
null hypothesis is ruled out, and the alternative hypothesis is valid.

This can be represented by (Figure 5.13)

The truth (unknown to the researcher)

The researcher’s decision The null hypothesis is true The null hypothesis is false

Reject the null hypothesis Type I error Correct decision

Fail to reject the null
hypothesis

Correct decision Type II error

What are various kinds of tests? (Figure 5.14)
A slightly easier way to understand which among various tests to use is the

RATTLE GUI in R. Some R code for Z tests can be found at http://rpubs.
com/newajay/stats4. Here is a Z test to reject or accept if sample mean is
>10 000.

#null hypothesis umean >=10000
xbar=9900 (sample mean)
umean=10000 (population mean)
sd=120 (standard deviation)
n=30 number of observations

Decision

Reality

ConfidenceHo

Ho

Correct
decision

Type I
error

α- risk
Consumer’s risk

Correct
decision

Type I
error

β- risk
Producer’s risk

β

μ1 μ2

α
Ha

Ha

Power of test

Figure 5.13  Type 1 and Type 2 errors.

http://rpubs.com/newajay/stats4
http://rpubs.com/newajay/stats4

5.2  Correlation Is Not Causation 151

z=(xbar-umean)/(sd/sqrt(n))
z
[1] -4.564355

alpha=0.05
z.alpha=qnorm(1-alpha)
-z.alpha

[1] -1.644854

#NULL hypothesis is rejected

This may seem difficult for the non‐statistician to understand unless they
visualize on the normal distribution where these values are occurring
(in acceptance zone or rejection zone). Here the value −4.5 is much less
than −1.65 so it is clearly in the rejection zone. For upper tail, the following
shows a rejection case since it is greater than 1.645 (please read from http://
www.stat.wmich.edu/s216/htests/htests.html#ztest4mu (Figure 5.15) if
interested more in this).

Hypothesis test

Continuous data

Normal

Mean Variance

Z-test

t-test Barlett’s

Chi-square

Sign test

Wilcoxon test

Mann–Whitney

Kruskal–Wallis

Mood’s median

Friedman

Levene’s

Chi-square

Proportion

Logistic
regression

ANOVA

Regression

Median Variance

Nonnormal

Attribute data

F-test

Figure 5.14  Types of hypothesis tests.

http://www.stat.wmich.edu/s216/htests/htests.html#ztest4mu
http://www.stat.wmich.edu/s216/htests/htests.html#ztest4mu

5  Statistical Modeling152

In Python we can also look at statsmodels for tests than SciPy (see http://
statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.
ztest.html#statsmodels.stats.weightstats.ztest (Figure 5.16)).

Here is an example in R of chi‐square test to see if exercising affects smoking.
http://rpubs.com/newajay/chisquaretest.

library(MASS)
tbl = table(survey$Smoke, survey$Exer)
tbl

Freq None Some
Heavy 7 1 3
Never 87 18 84
Occas 12 3 4
Regul 9 1 7

Figure 5.16  An easy way to explain hypothesis tests using Rattle GUI in R.

0 1.645 2.4
Z

.05

Figure 5.15  P‐value and
rejection zone.

http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://rpubs.com/newajay/chisquaretest

5.2  Correlation Is Not Causation 153

table(survey$Smoke)

Heavy Never Occas Regul
11 189 19 17

dim(survey)

[1] 237 12

#Test the hypothesis whether the students
#smoking habit is independent of
#their exercise level at .05 significance level.
chisq.test(tbl)

Warning in chisq.test(tbl): Chi-squared approximation
may be incorrect

Pearson's Chi-squared test

data: tbl
X-squared = 5.4885, df = 6, p-value = 0.4828

#As the p‐value 0.4828 is greater than the .05
significance level, we do not reject the null
hypothesis that the smoking habit is
#independent of the exercise level of the students.
ctbl = cbind(tbl[,"Freq"], tbl[,"None"] + tbl[,"Some"])
ctbl

[,1] [,2]
Heavy 7 4
Never 87 102
Occas 12 7
Regul 9 8

chisq.test(ctbl)

Pearson's Chi-squared test

data: ctbl

5  Statistical Modeling154

X-squared = 3.2328, df = 3, p-value = 0.3571
#As the p‐value 0.3571 is greater than the .05
significance level, we do not reject the null
hypothesis that the smoking habit is independent
of the exercise level of the students. The warning
message found in the solution above is due to the
small cell values in the contingency table

We redo the same in Python using scipy and numpy very easily.

In [11]:
from scipy.stats import chi2_contingency
import numpy as np

In [13]:

obs = np.array([[7, 87, 12,9], [4, 102, 7,8]])

In [15]:

chi2, p, dof, expected = chi2_contingency(obs)

In [16]:

print (p)

0.357103080041

https://github.com/decisionstats/pythonfordatascience/blob/master/
chi%2Bsquare%2Btest.ipynb

5.3  Linear Regression in R and Python

In Python, statsmodels can be used for linear regression. Here is an example
for iris dataset from https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4
dd08808af3d9c0869259cf6

import pandas as pd
In [3]:

import statsmodels.formula.api as sm

In [4]:

iris=pd.read_csv("http://vincentarelbundock.github.io/
Rdatasets/csv/datasets/iris.csv")

In [6]:
iris =iris.drop('Unnamed: 0', 1)

In [7]:
iris.head()

Out [7]:

https://github.com/decisionstats/pythonfordatascience/blob/master/chi+square+test.ipynb
https://github.com/decisionstats/pythonfordatascience/blob/master/chi+square+test.ipynb
https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv

5.3  Linear Regression in R and Python 155

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

In [15]:
iris.columns=['Sepal_Length', 'Sepal_Width', 'Petal_
Length', 'Petal_Width',

 'Species']
In [16]:

iris.columns
Out [16]:

Index(['Sepal_Length', 'Sepal_Width', 'Petal_Length',
'Petal_Width',

 'Species'],
 dtype='object')

In [17]:
result = sm.ols(formula="Sepal_Length ~ Petal_
Length + Sepal_Width + Petal_Width + Species",
data=iris)

In [18]:
result.fit()

Out [18]:
<statsmodels.regression.linear_model.
RegressionResultsWrapper at 0x9bafe10>

In [19]:
result.fit().summary()

Out [19]:

Dep. Variable: Sepal_Length R‐squared: 0.867
Model: OLS Adj. R‐squared: 0.863
Method: Least Squares F‐statistic: 188.3
Date: Mon, 13 Mar 2017 Prob (F‐statistic): 2.67e‐61
Time: 17:56:48 Log‐Likelihood: −32.558
No. Observations: 150 AIC: 77.12
Df Residuals: 144 BIC: 95.18
Df Model: 5
Covariance Type: nonrobust

5  Statistical Modeling156

coef std err t P>|t| [95.0% Conf. Int.]

Intercept 2.1713 0.280 7.760 0.000 1.618 2.724
Species[T.versicolor] −0.7236 0.240 −3.013 0.003 −1.198–0.249
Species[T.virginica] −1.0235 0.334 −3.067 0.003 −1.683–0.364
Petal_Length 0.8292 0.069 12.101 0.000 0.694 0.965
Sepal_Width 0.4959 0.086 5.761 0.000 0.326 0.666
Petal_Width −0.3152 0.151 −2.084 0.039 −0.614–0.016

Omnibus: 0.418 Durbin‐Watson: 1.966
Prob(Omnibus): 0.811 Jarque‐Bera (JB): 0.572
Skew: −0.060 Prob(JB): 0.751
Kurtosis: 2.722 Cond. No. 94.0

In [20]:
result.fit().params

Out [20]:

Intercept 2.171266
Species[T.versicolor] -0.723562
Species[T.virginica] -1.023498
Petal_Length 0.829244
Sepal_Width 0.495889
Petal_Width -0.315155
dtype: float64

In R regression is done by the lm function (for linear models) and glm for
logistic regression. Let us try some regression basics http://rpubs.com/newajay/
regbasics.

ls()

character(0)

getwd()

[1] "C:/Users/dell/Desktop/regression"

dir()

[1] "reg1.R"   "reg1.spin.R"   "reg1.spin.Rmd"

http://rpubs.com/newajay/regbasics
http://rpubs.com/newajay/regbasics

5.3  Linear Regression in R and Python 157

[4] "regression.Rproj"

data("iris")
names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
"Petal.Width"

[5] "Species"

lm(Sepal.Length~Sepal.Width,data = iris)

Call:
lm(formula = Sepal.Length ~ Sepal.Width, data = iris)

Coefficients:
(Intercept) Sepal.Width
6.5262 -0.2234

a=lm(Sepal.Length~Sepal.Width,data = iris)
names(a)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign"   "qr"   "df.residual"
[9] "xlevels"     "call"    "terms"    "model"

class(a)

[1] "lm"

a$coefficients

(Intercept) Sepal.Width
6.5262226 -0.2233611

summary(a)

Call:
lm(formula = Sepal.Length ~ Sepal.Width, data = iris)

Residuals:
Min 1Q Median 3Q Max
-1.5561 -0.6333 -0.1120 0.5579 2.2226

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)   6.5262   0.4789   13.63   <2e-16 ***

Sepal.Width -0.2234 0.1551 -1.44 0.152

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8251 on 148 degrees of freedom
Multiple R-squared: 0.01382, Adjusted R-squared: 0.007159
F-statistic: 2.074 on 1 and 148 DF, p-value: 0.1519

b=lm(Sepal.Length~Sepal.Width + Petal.Length + Petal.Width,data = iris)
names(b)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

class(b)

[1] "lm"

b$coefficients

(Intercept) Sepal.Width Petal.Length Petal.Width
1.8559975 0.6508372 0.7091320 -0.5564827

summary(b)

Call:
lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
data = iris)

Residuals:
Min 1Q Median 3Q Max
-0.82816 -0.21989 0.01875 0.19709 0.84570

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.85600 0.25078 7.401 9.85e-12 ***
Sepal.Width 0.65084 0.06665 9.765 < 2e-16 ***
Petal.Length 0.70913 0.05672 12.502 < 2e-16 ***
Petal.Width -0.55648 0.12755 -4.363 2.41e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3145 on 146 degrees of freedom
Multiple R-squared: 0.8586, Adjusted R-squared: 0.8557
F-statistic: 295.5 on 3 and 146 DF, p-value: < 2.2e-16

c=lm(Sepal.Length~Sepal.Width + Petal.Length + Petal.Width+Species,data = iris)
names(c)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "contrasts" "xlevels" "call" "terms"
[13] "model"

class(c)

[1] "lm"

c$coefficients

(Intercept) Sepal.Width Petal.Length Petal.Width
2.1712663 0.4958889 0.8292439 -0.3151552
Speciesversicolor Speciesvirginica
-0.7235620 -1.0234978

summary(c)

Call:
lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width +
Species, data = iris)

Residuals:
Min 1Q Median 3Q Max
-0.79424 -0.21874 0.00899 0.20255 0.73103

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.17127 0.27979 7.760 1.43e-12 ***
Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
Petal.Length 0.82924 0.06853 12.101 < 2e-16 ***
Petal.Width -0.31516 0.15120 -2.084 0.03889 *
Speciesversicolor -0.72356 0.24017 -3.013 0.00306 **
Speciesvirginica -1.02350 0.33373 -3.067 0.00258 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3068 on 144 degrees of freedom
Multiple R-squared: 0.8673, Adjusted R-squared: 0.8627
F-statistic: 188.3 on 5 and 144 DF, p-value: < 2.2e-16

#mtcars

data("mtcars")

names(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"

str(mtcars)

'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 …
$ cyl : num 6 6 4 6 8 6 8 4 4 6 …
$ disp: num 160 160 108 258 360 …
$ hp : num 110 110 93 110 175 105 245 62 95 123 …
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 …
$ wt : num 2.62 2.88 2.32 3.21 3.44 …
$ qsec: num 16.5 17 18.6 19.4 17 …
$ vs : num 0 0 1 1 0 1 0 1 1 1 …
$ am : num 1 1 1 0 0 0 0 0 0 0 …
$ gear: num 4 4 4 3 3 3 3 4 4 4 …
$ carb: num 4 4 1 1 2 1 4 2 2 4 …

d=lm(mpg~cyl+disp+hp+drat+wt+qsec+vs+am+gear+carb,data = mtcars)
summary(d)

Call:
lm(formula = mpg ~ cyl + disp + hp + drat + wt + qsec + vs +
am + gear + carb, data = mtcars)

Residuals:
Min 1Q Median 3Q Max
-3.4506 -1.6044 -0.1196 1.2193 4.6271

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.30337 18.71788 0.657 0.5181
cyl -0.11144 1.04502 -0.107 0.9161
disp 0.01334 0.01786 0.747 0.4635
hp -0.02148 0.02177 -0.987 0.3350
drat 0.78711 1.63537 0.481 0.6353
wt -3.71530 1.89441 -1.961 0.0633 .
qsec 0.82104 0.73084 1.123 0.2739
vs 0.31776 2.10451 0.151 0.8814
am 2.52023 2.05665 1.225 0.2340
gear 0.65541 1.49326 0.439 0.6652
carb -0.19942 0.82875 -0.241 0.8122

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.65 on 21 degrees of freedom
Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

#diamonds

library(ggplot2)
data(diamonds)
str(diamonds)

Classes 'tbl_df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
$ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 …
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 …
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 …
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 …
$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 …
$ table : num 55 61 65 58 58 57 57 55 61 61 …
$ price : int 326 326 327 334 335 336 336 337 337 338 …
$ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 …
$ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 …
$ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 …

diamonds$unitprice=with(diamonds,price/carat)
head(diamonds)

A tibble: 6 × 11
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
... with 1 more variables: unitprice <dbl>
h=lm(unitprice~table+color+clarity+cut+x+y+z+depth,
data=diamonds)

summary(h)

Call:
lm(formula = unitprice ~ table + color + clarity + cut + x +
y + z + depth, data = diamonds)

Residuals:
Min 1Q Median 3Q Max
-5166.4 -463.9 -92.6 355.8 17851.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -11688.890 260.693 -44.838 < 2e-16 ***
table 1.875 2.037 0.920 0.35732
color.L -1885.098 12.044 -156.515 < 2e-16 ***

color.Q -456.386 11.015 -41.434 < 2e-16 ***
color.C -78.133 10.305 -7.582 3.45e-14 ***
color^4 78.474 9.464 8.292 < 2e-16 ***
color^5 -56.637 8.941 -6.335 2.40e-10 ***
color^6 -10.800 8.128 -1.329 0.18396
clarity.L 3794.856 21.175 179.211 < 2e-16 ***
clarity.Q -1074.105 19.694 -54.540 < 2e-16 ***
clarity.C 507.278 16.878 30.055 < 2e-16 ***
clarity^4 -169.564 13.496 -12.564 < 2e-16 ***
clarity^5 117.177 11.023 10.630 < 2e-16 ***
clarity^6 47.190 9.598 4.917 8.83e-07 ***
clarity^7 124.830 8.466 14.745 < 2e-16 ***
cut.L 487.537 15.727 31.000 < 2e-16 ***
cut.Q -217.290 12.590 -17.259 < 2e-16 ***
cut.C 127.423 10.836 11.759 < 2e-16 ***
cut^4 16.718 8.661 1.930 0.05359 .
x 1761.626 18.702 94.195 < 2e-16 ***
y 67.623 13.523 5.001 5.74e-07 ***
z 67.878 23.435 2.896 0.00378 **
depth 73.620 3.110 23.671 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 790.9 on 53917 degrees of freedom
Multiple R-squared: 0.8456, Adjusted R-squared: 0.8456
F-statistic: 1.343e+04 on 22 and 53917 DF, p-value: < 2.2e-16

5  Statistical Modeling166

Note the three stars *** point to a low p‐value in R’s regression summary.
A slightly more elaborate way to see R’s regression uses the car package from

http://rpubs.com/newajay/modelsinR
getwd()

[1] "C:/Users/dell/Desktop"

setwd("C:/Users/dell/Desktop")
#dir(,pattern = ".csv")
memory.limit()

[1] 1535

memory.size()

[1] 18.04

rm(list = ls())
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 365542 9.8 592000 15.9 460000 12.3
Vcells 372990 2.9 1023718 7.9 752284 5.8

library(car)
library(MASS)
data(Boston, package="MASS")
#?Boston
crim
per capita crime rate by town.

zn
proportion of residential land zoned for lots
over 25,000 sq.ft.

indus
proportion of non‐retail business acres per town.

chas
Charles River dummy variable (= 1 if tract bounds
river; 0 otherwise).

http://rpubs.com/newajay/modelsinR

5.3  Linear Regression in R and Python 167

nox
nitrogen oxides concentration (parts per 10 million).

rm
average number of rooms per dwelling.

age
proportion of owner‐occupied units built prior
to 1940.

dis
weighted mean of distances to five Boston employment
centres.

rad
index of accessibility to radial highways.

tax
full‐value property‐tax rate per \$10,000.

ptratio
pupil‐teacher ratio by town.

black
1000(Bk ‐ 0.63)^2 where Bk is the proportion of
blacks by town.

lstat
lower status of the population (percent).

medv
median value of owner‐occupied homes in \$1000s.

Source

#Harrison, D. and Rubinfeld, D.L. (1978) Hedonic
prices and the demand for clean air. J. Environ.
Economics and Management 5, 81–102.

cor(Boston)

crim zn indus chas nox
crim 1.00000000 -0.20046922 0.40658341 -0.055891582 0.42097171
zn -0.20046922 1.00000000 -0.53382819 -0.042696719 -0.51660371
indus 0.40658341 -0.53382819 1.00000000 0.062938027 0.76365145
chas -0.05589158 -0.04269672 0.06293803 1.000000000 0.09120281
nox 0.42097171 -0.51660371 0.76365145 0.091202807 1.00000000
rm -0.21924670 0.31199059 -0.39167585 0.091251225 -0.30218819
age 0.35273425 -0.56953734 0.64477851 0.086517774 0.73147010
dis -0.37967009 0.66440822 -0.70802699 -0.099175780 -0.76923011
rad 0.62550515 -0.31194783 0.59512927 -0.007368241 0.61144056
tax 0.58276431 -0.31456332 0.72076018 -0.035586518 0.66802320
ptratio 0.28994558 -0.39167855 0.38324756 -0.121515174 0.18893268
black -0.38506394 0.17552032 -0.35697654 0.048788485 -0.38005064
lstat 0.45562148 -0.41299457 0.60379972 -0.053929298 0.59087892
medv -0.38830461 0.36044534 -0.48372516 0.175260177 -0.42732077
rm age dis rad tax
crim -0.21924670 0.35273425 -0.37967009 0.625505145 0.58276431
zn 0.31199059 -0.56953734 0.66440822 -0.311947826 -0.31456332
indus -0.39167585 0.64477851 -0.70802699 0.595129275 0.72076018
chas 0.09125123 0.08651777 -0.09917578 -0.007368241 -0.03558652
nox -0.30218819 0.73147010 -0.76923011 0.611440563 0.66802320
rm 1.00000000 -0.24026493 0.20524621 -0.209846668 -0.29204783
age -0.24026493 1.00000000 -0.74788054 0.456022452 0.50645559
dis 0.20524621 -0.74788054 1.00000000 -0.494587930 -0.53443158
rad -0.20984667 0.45602245 -0.49458793 1.000000000 0.91022819
tax -0.29204783 0.50645559 -0.53443158 0.910228189 1.00000000

ptratio -0.35550149 0.26151501 -0.23247054 0.464741179 0.46085304
black 0.12806864 -0.27353398 0.29151167 -0.444412816 -0.44180801
lstat -0.61380827 0.60233853 -0.49699583 0.488676335 0.54399341
medv 0.69535995 -0.37695457 0.24992873 -0.381626231 -0.46853593
ptratio black lstat medv
crim 0.2899456 -0.38506394 0.4556215 -0.3883046
zn -0.3916785 0.17552032 -0.4129946 0.3604453
indus 0.3832476 -0.35697654 0.6037997 -0.4837252
chas -0.1215152 0.04878848 -0.0539293 0.1752602
nox 0.1889327 -0.38005064 0.5908789 -0.4273208
rm -0.3555015 0.12806864 -0.6138083 0.6953599
age 0.2615150 -0.27353398 0.6023385 -0.3769546
dis -0.2324705 0.29151167 -0.4969958 0.2499287
rad 0.4647412 -0.44441282 0.4886763 -0.3816262
tax 0.4608530 -0.44180801 0.5439934 -0.4685359
ptratio 1.0000000 -0.17738330 0.3740443 -0.5077867
black -0.1773833 1.00000000 -0.3660869 0.3334608
lstat 0.3740443 -0.36608690 1.0000000 -0.7376627
medv -0.5077867 0.33346082 -0.7376627 1.0000000

summary(Boston)

crim zn indus chas
Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
1st Qu.: 0.08204 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000

nox rm age dis
Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
rad tax ptratio black
Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
Median : 5.000 Median :330.0 Median :19.05 Median :391.44
Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
lstat medv
Min. : 1.73 Min. : 5.00
1st Qu.: 6.95 1st Qu.:17.02
Median :11.36 Median :21.20
Mean :12.65 Mean :22.53
3rd Qu.:16.95 3rd Qu.:25.00
Max. :37.97 Max. :50.00

library(corrgram)
corrgram(Boston)

5.3  Linear Regression in R and Python 171

crim

zn

indus

chas

nox

rm

age

dis

rad

tax

ptratio

black

Istat

medv

attach(Boston)
boxplot(medv~black)

50

40

30

20

10

0.32 395.69393.97392.05389.25384.3375.87350.65179.36

5  Statistical Modeling172

plot(medv~black)

0

10

20

30

40

50

m
ed

v

100 200 300 400

black

plot(medv~rm)

4 5 6 7 8
rm

50

40

30

20

10

m
ed

v

str(Boston)

'data.frame': 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 …
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 …
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 …
$ chas : int 0 0 0 0 0 0 0 0 0 0 …
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 …
$ rm : num 6.58 6.42 7.18 7 7.15 …
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 …
$ dis : num 4.09 4.97 4.97 6.06 6.06 …
$ rad : int 1 2 2 3 3 3 5 5 5 5 …
$ tax : num 296 242 242 222 222 222 311 311 311 311 …
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 …
$ black : num 397 397 393 395 397 …
$ lstat : num 4.98 9.14 4.03 2.94 5.33 …
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 …
RegModel.1 <-
 lm(medv~age+black+chas+crim+dis+indus+lstat+nox+ptratio+rad+rm+tax+zn,
 data=Boston)
summary(RegModel.1)

Call:
lm(formula = medv ~ age + black + chas + crim + dis + indus +
lstat + nox + ptratio + rad + rm + tax + zn, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
age 6.922e-04 1.321e-02 0.052 0.958229
black 9.312e-03 2.686e-03 3.467 0.000573 ***
chas 2.687e+00 8.616e-01 3.118 0.001925 **
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

vif(RegModel.1)

age black chas crim dis indus lstat nox
3.100826 1.348521 1.073995 1.792192 3.955945 3.991596 2.941491 4.393720
ptratio rad rm tax zn
1.799084 7.484496 1.933744 9.008554 2.298758

library(zoo, pos=15)

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

library(lmtest, pos=15)
bptest(RegModel.1)

studentized Breusch-Pagan test

data: RegModel.1
BP = 65.122, df = 13, p-value = 6.265e-09

RegModel.2 <- lm(medv~black+chas+crim+dis+lstat+nox+ptratio+rm+zn,
 data=Boston)
summary(RegModel.2)

Call:
lm(formula = medv ~ black + chas + crim + dis + lstat + nox +
ptratio + rm + zn, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-15.803 -2.832 -0.625 1.454 27.766

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.507997 4.872538 6.056 2.76e-09 ***
black 0.008292 0.002688 3.084 0.002153 **
chas 3.029924 0.868349 3.489 0.000527 ***
crim -0.061174 0.030377 -2.014 0.044567 *
dis -1.431665 0.188603 -7.591 1.59e-13 ***
lstat -0.525004 0.048351 -10.858 < 2e-16 ***
nox -16.088513 3.232702 -4.977 8.93e-07 ***
ptratio -0.838640 0.117342 -7.147 3.19e-12 ***
rm 4.149667 0.407685 10.179 < 2e-16 ***
zn 0.042032 0.013422 3.131 0.001842 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.833 on 496 degrees of freedom
Multiple R-squared: 0.7288, Adjusted R-squared: 0.7239
F-statistic: 148.1 on 9 and 496 DF, p-value: < 2.2e-16

vif(RegModel.2)
black chas crim dis lstat nox ptratio rm
1.302455 1.051879 1.476281 3.410535 2.577927 3.034316 1.395503 1.774261
zn
2.119038

bptest(medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn,
 varformula = ~ fitted.values(RegModel.2), studentize=FALSE, data=Boston)

Breusch-Pagan test

data: medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn
BP = 8.817, df = 1, p-value = 0.002984

outlierTest(RegModel.2)

rstudent unadjusted p-value Bonferonni p
369 6.093117 2.2275e-09 1.1271e-06
372 5.574335 4.0893e-08 2.0692e-05
373 5.360117 1.2776e-07 6.4644e-05

Boston <- Boston[-c(369,372,373),]
RegModel.3 <- lm(medv~black+chas+crim+lstat+nox+ptratio+rm+zn, data=Boston)
summary(RegModel.3)

Call:
lm(formula = medv ~ black + chas + crim + lstat + nox + ptratio +
rm + zn, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-16.6944 -2.6544 -0.6449 1.6392 21.4155

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.386058 4.150172 2.744 0.006300 **
black 0.008849 0.002545 3.476 0.000553 ***
chas 2.670557 0.833048 3.206 0.001434 **
crim -0.046149 0.028565 -1.616 0.106827
lstat -0.392872 0.046578 -8.435 3.68e-16 ***
nox -5.144940 2.539786 -2.026 0.043329 *
ptratio -0.958587 0.111396 -8.605 < 2e-16 ***
rm 5.318514 0.384910 13.818 < 2e-16 ***
zn -0.010100 0.011040 -0.915 0.360736

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.578 on 494 degrees of freedom
Multiple R-squared: 0.744, Adjusted R-squared: 0.7399
F-statistic: 179.5 on 8 and 494 DF, p-value: < 2.2e-16

RegModel.4 <- lm(medv~black+lstat+ptratio+rm+zn, data=Boston)
summary(RegModel.4)

Call:
lm(formula = medv ~ black + lstat + ptratio + rm + zn, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-15.2574 -2.8802 -0.6129 1.8640 22.9620

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.253649 3.879508 2.385 0.0174 *
black 0.011319 0.002462 4.598 5.43e-06 ***
lstat -0.453250 0.041643 -10.884 < 2e-16 ***
ptratio -0.991397 0.108946 -9.100 < 2e-16 ***
rm 5.274984 0.386849 13.636 < 2e-16 ***
zn -0.004863 0.010154 -0.479 0.6322

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.644 on 497 degrees of freedom
Multiple R-squared: 0.735, Adjusted R-squared: 0.7323
F-statistic: 275.7 on 5 and 497 DF, p-value: < 2.2e-16

RegModel.5 <- lm(medv~black+lstat+ptratio+rm, data=Boston)
summary(RegModel.5)

Call:
lm(formula = medv ~ black + lstat + ptratio + rm, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-15.1780 -2.8640 -0.6212 1.8545 23.0366

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.92877 3.81678 2.339 0.0197 *
black 0.01130 0.00246 4.592 5.55e-06 ***
lstat -0.44870 0.04051 -11.075 < 2e-16 ***
ptratio -0.97746 0.10491 -9.317 < 2e-16 ***
rm 5.26910 0.38635 13.638 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.64 on 498 degrees of freedom
Multiple R-squared: 0.7348, Adjusted R-squared: 0.7327
F-statistic: 345 on 4 and 498 DF, p-value: < 2.2e-16

vif(RegModel.5)

black lstat ptratio rm
1.182491 1.954482 1.205162 1.715115

bptest(medv ~ black + lstat + ptratio + rm, varformula = ~
 fitted.values(RegModel.5), studentize=FALSE, data=Boston)

Breusch-Pagan test

data: medv ~ black + lstat + ptratio + rm
BP = 0.21772, df = 1, p-value = 0.6408

#install.packages("gvlma")
#library(gvlma)
#Boston$medvbc=boxcox(Boston$medv)
#http://rstatistics.net/how‐to‐test‐a‐regression‐model‐for‐heteroscedasticity‐and‐if‐
present‐how‐to‐correct‐it/

#Overfitting
a=nrow(Boston)
a

[1] 503

b=round(0.7*a)
b

[1] 352

random_row_numbs=sample(a,b,F)
random_row_numbs

http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/
http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/

[1] 417 35 286 410 352 408 346 274 195 379 180 165 318 110 231 72 366
[18] 425 27 16 401 368 249 469 345 444 442 203 263 419 80 70 89 470
[35] 57 88 58 234 177 478 152 473 420 182 247 77 190 313 457 303 186
[52] 446 100 422 264 333 142 230 448 254 85 340 102 405 295 233 302 4
[69] 135 243 236 81 34 397 139 222 48 20 240 371 188 259 158 199 464
[86] 441 258 283 466 497 284 51 407 443 271 316 130 246 98 64 74 291
[103] 117 296 46 86 336 28 13 227 450 118 106 140 131 374 490 14 23
[120] 307 1 115 288 492 252 90 196 114 472 11 462 388 456 221 503 427
[137] 79 418 59 421 260 373 458 451 493 431 133 334 200 282 56 146 424
[154] 276 395 463 194 7 148 482 312 2 479 175 73 229 394 40 209 187
[171] 17 261 269 141 400 347 322 432 239 41 381 159 306 10 370 277 49
[188] 24 323 500 372 292 168 383 124 127 319 498 272 353 53 94 242 321
[205] 314 392 328 213 255 459 308 486 166 361 294 440 87 8 217 445 423
[222] 206 220 428 97 112 151 399 226 281 32 103 358 193 251 172 329 84
[239] 205 477 237 33 309 491 364 484 216 433 65 447 39 275 359 300 439
[256] 52 268 385 449 183 278 435 232 297 211 348 365 137 173 163 63 192
[273] 105 357 76 437 378 18 341 202 75 452 489 31 273 162 413 317 26
[290] 416 67 5 138 121 104 356 426 299 332 136 499 15 30 25 50 119
[307] 384 455 176 335 289 210 393 93 107 305 429 406 280 496 483 480 108
[324] 298 344 29 460 343 225 201 191 396 468 125 235 197 198 174 485 143
[341] 387 409 156 290 71 350 132 149 331 218 212 109

5.3  Linear Regression in R and Python 183

plot(random_row_numbs)

0 50 100 150 200

Index

ra
nd

om
_r

ow
_n

um
bs

250 300 350

500

400

300

200

100

0

Boston_train=Boston[random_row_numbs,]
Boston_test=Boston[-random_row_numbs,]

RegModel.6 <- lm(medv~black+lstat+ptratio+rm,
data=Boston_train)

summary(RegModel.6)

Call:
lm(formula = medv ~ black + lstat + ptratio + rm,
data = Boston_train)

Residuals:
Min 1Q Median 3Q Max
-14.6989 -2.8976 -0.6286 1.8782 20.9866

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.082977 4.685939 2.579 0.010333 *
black 0.010551 0.002876 3.668 0.000283 ***
lstat -0.459176 0.049661 -9.246 < 2e-16 ***
ptratio -1.081483 0.130743 -8.272 2.86e-15 ***
rm 5.130985 0.465497 11.023 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.731 on 347 degrees of freedom
Multiple R-squared: 0.7336, Adjusted R-squared: 0.7305
F-statistic: 238.8 on 4 and 347 DF, p-value: < 2.2e-16

vif(RegModel.6)

black lstat ptratio rm
1.181865 1.909594 1.266947 1.670012

outlierTest(RegModel.6)

rstudent unadjusted p-value Bonferonni p
371 4.597485 6.0040e-06 0.0021134
413 4.320507 2.0369e-05 0.0071698
366 4.216016 3.1779e-05 0.0111860
368 4.012047 7.3806e-05 0.0259800

bptest(RegModel.6)

studentized Breusch-Pagan test

data: RegModel.6
BP = 1.9743, df = 4, p-value = 0.7405

#?
dbc=boxcox(RegModel.6)

–2 –1 0 1 2

λ

–500

–600

–700

–800

lo
g-

Li
ke

lih
oo

d

95%

dbc
$x
[1] -2.00000000 -1.95959596 -1.91919192 -1.87878788 -1.83838384
[6] -1.79797980 -1.75757576 -1.71717172 -1.67676768 -1.63636364
[11] -1.59595960 -1.55555556 -1.51515152 -1.47474747 -1.43434343
[16] -1.39393939 -1.35353535 -1.31313131 -1.27272727 -1.23232323
[21] -1.19191919 -1.15151515 -1.11111111 -1.07070707 -1.03030303
[26] -0.98989899 -0.94949495 -0.90909091 -0.86868687 -0.82828283
[31] -0.78787879 -0.74747475 -0.70707071 -0.66666667 -0.62626263
[36] -0.58585859 -0.54545455 -0.50505051 -0.46464646 -0.42424242
[41] -0.38383838 -0.34343434 -0.30303030 -0.26262626 -0.22222222

[46] -0.18181818 -0.14141414 -0.10101010 -0.06060606 -0.02020202
[51] 0.02020202 0.06060606 0.10101010 0.14141414 0.18181818
[56] 0.22222222 0.26262626 0.30303030 0.34343434 0.38383838
[61] 0.42424242 0.46464646 0.50505051 0.54545455 0.58585859
[66] 0.62626263 0.66666667 0.70707071 0.74747475 0.78787879
[71] 0.82828283 0.86868687 0.90909091 0.94949495 0.98989899
[76] 1.03030303 1.07070707 1.11111111 1.15151515 1.19191919
[81] 1.23232323 1.27272727 1.31313131 1.35353535 1.39393939
[86] 1.43434343 1.47474747 1.51515152 1.55555556 1.59595960
[91] 1.63636364 1.67676768 1.71717172 1.75757576 1.79797980
[96] 1.83838384 1.87878788 1.91919192 1.95959596 2.00000000

$y
[1] -859.1799 -847.1039 -835.1407 -823.2931 -811.5635 -799.9545 -788.4687
[8] -777.1090 -765.8782 -754.7796 -743.8162 -732.9914 -722.3087 -711.7718
[15] -701.3844 -691.1505 -681.0742 -671.1596 -661.4114 -651.8339 -642.4319
[22] -633.2102 -624.1740 -615.3282 -606.6782 -598.2292 -589.9869 -581.9566
[29] -574.1441 -566.5549 -559.1948 -552.0694 -545.1843 -538.5451 -532.1573
[36] -526.0261 -520.1569 -514.5544 -509.2236 -504.1689 -499.3943 -494.9038
[43] -490.7007 -486.7882 -483.1687 -479.8445 -476.8171 -474.0877 -471.6570
[50] -469.5250 -467.6913 -466.1549 -464.9143 -463.9677 -463.3123 -462.9453
[57] -462.8632 -463.0621 -463.5379 -464.2858 -465.3009 -466.5779 -468.1114
[64] -469.8955 -471.9244 -474.1919 -476.6919 -479.4181 -482.3641 -485.5236
[71] -488.8903 -492.4578 -496.2198 -500.1703 -504.3031 -508.6121 -513.0917
[78] -517.7360 -522.5394 -527.4966 -532.6022 -537.8512 -543.2387 -548.7598
[85] -554.4099 -560.1847 -566.0799 -572.0912 -578.2149 -584.4471 -590.7842
[92] -597.2227 -603.7593 -610.3907 -617.1139 -623.9259 -630.8240 -637.8056
[99] -644.8680 -652.0084

5.4  Logistic Regression in R and Python 187

So to summarize what we should do for regression,

●● First know about data and variables.
●● Do Descriptive Statistics (summary) and a correlation matrix.
●● Then run initial model.
●● Remove outliers.
●● Remove variables due to VIF (multicollinearity).
●● Remove Heteroscedascity (advanced).
●● Reduce variables and rerun, to maximize R^2.
●● Keep an eye on p‐value for removing variables.

5.4  Logistic Regression in R and Python

Let us read some basics on logistic regression first. Logistic regression is used
for predicting binary variables, and it is used a lot—whether a customer will
default or not (FINANCIAL SERVICES DEFAULT), whether they will click on
an internet ad or not (ECOMMERCE WEB ANALYTICS), whether they will
buy a product or not (PROPENSITY), or whether they will leave a company for
another one (CHURN) (http://www.statmethods.net/advstats/glm.html).

We use logit function from statsmodel for logistic regression.

import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np

 df = pd.read_csv("http://www.ats.ucla.edu/stat/data/
binary.csv")

 df.columns = ["admit", "gre", "gpa", "new1"]
 df.head()

admit gre gpa new1

0 0 380 3.61 3
1 1 660 3.67 3
2 1 800 4.00 1
3 1 640 3.19 4
4 0 520 2.93 4

In [31]:
#create dummy variables

http://www.statmethods.net/advstats/glm.html
http://www.ats.ucla.edu/stat/data/binary.csv
http://www.ats.ucla.edu/stat/data/binary.csv

5  Statistical Modeling188

Note this step creates dummy numeric variables from a categoric variable

dummy_ranks = pd.get_dummies(df['new1'], prefix='new')

 cols_to_keep = ['admit', 'gre', 'gpa']

 print (dummy_ranks.head())

 new_1 new_2 new_3 new_4
0 0.0 0.0 1.0 0.0
1 0.0 0.0 1.0 0.0
2 1.0 0.0 0.0 0.0
3 0.0 0.0 0.0 1.0
4 0.0 0.0 0.0 1.0

cols_to_keep = ['admit', 'gre', 'gpa']

data = df[cols_to_keep].join(dummy_ranks.ix[:, 'new_2':])

 data['intercept'] = 1.0

train_cols = data.columns[1:]

 # Index([gre, gpa, prestige_2, prestige_3,
prestige_4], dtype=object)

logit = sm.Logit(data['admit'], data[train_cols])

 # fit the model

result = logit.fit()

Optimization terminated successfully.
 Current function value: 0.573147
 Iterations 6

In [40]:
print (result.summary())
 Logit Regression Results
==
Dep. Variable: admit No. Observations: 400
Model: Logit Df Residuals: 394
Method: MLE Df Model: 5
Date: Mon, 13 Mar 2017 Pseudo R-squ.: 0.08292
Time: 18:31:59 Log-Likelihood: -229.26
converged: True LL-Null: -249.99
 LLR p-value: 7.578e-08
==
 coef std err z P>|z| [95.0% Conf. Int.]
--
gre 0.0023 0.001 2.070 0.038 0.000 0.004
gpa 0.8040 0.332 2.423 0.015 0.154 1.454
new_2 -0.6754 0.316 -2.134 0.033 -1.296 -0.055
new_3 -1.3402 0.345 -3.881 0.000 -2.017 -0.663
new_4 -1.5515 0.418 -3.713 0.000 -2.370 -0.733
intercept -3.9900 1.140 -3.500 0.000 -6.224 -1.756
==

The aforementioned code was referred from http://blog.yhat.com/posts/logistic‐regression‐python‐rodeo.html
Let’s do the same data in R (http://rpubs.com/newajay/uclaglm).

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html
http://rpubs.com/newajay/uclaglm

library(aod)

Warning: package 'aod' was built under R version 3.3.3

library(ggplot2)
library(Rcpp)
mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
head(mydata)

admit gre gpa rank
1 0 380 3.61 3
2 1 660 3.67 3
3 1 800 4.00 1
4 1 640 3.19 4
5 0 520 2.93 4
6 1 760 3.00 2

summary(mydata)

admit gre gpa rank
Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000
1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000
Median :0.0000 Median :580.0 Median :3.395 Median :2.000
Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485
3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000
Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000
sapply(mydata, sd)

http://www.ats.ucla.edu/stat/data/binary.csv

admit gre gpa rank
0.4660867 115.5165364 0.3805668 0.9444602

xtabs(~ admit + rank, data = mydata)

rank
admit 1 2 3 4
0 28 97 93 55
1 33 54 28 12

mydata$rank <- factor(mydata$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(mylogit)

Call:
glm(formula = admit ~ gre + gpa + rank, family = "binomial",
data = mydata)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6268 -0.8662 -0.6388 1.1490 2.0790

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *
gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394 degrees of freedom
AIC: 470.52

Number of Fisher Scoring iterations: 4

5.4  Logistic Regression in R and Python 193

In R we can do it using glm (see http://rpubs.com/newajay/logisticregression,
Figure 5.17). Some terms that are introduced are area under a curve, confusion
matrix, and KS distance.
ks_plot(actuals=Training$Class,predictedScores=as.
numeric(fitted(fitD)))

100

75

50

P
er

ce
nt

ag
e

re
sp

on
de

rs
 c

ap
tu

re
d

25

0

0.0 2.5 5.0
rank

7.5 10.0

100%96.99%
90.58%

82.77%

73.55%

62.73%

51.7%

39.28%

26.45%

13.83%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

KS Plot

model
random

ind
a

a

AUROC: 0.8113

0.00

1.00

ROC curve

1-Specificity (FPR)

S
en

si
tiv

ity
 (

T
P

R
)

0.75

0.50

0.25

0.00

0.25 0.50 0.75 1.00

Figure 5.17  The ROC curve.

http://rpubs.com/newajay/logisticregression

5  Statistical Modeling194

ks_stat(actuals=Training$Class,predictedScores=as.
numeric(fitted(fitD)))

[1] 0.4718

5.4.1  Additional Concepts

Odds ratio = p/1 − p where p is probability of success
Logit = log (odds ratio)

Overfitting—It occurs when the model is closer to sample data than real data
and due to excessive noise. It is avoided by splitting the data into test and training
and then building the model on one part of data.

5.4.2  ROC Curve and AUC

The ROC is a curve generated by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings, while the AUC is the
area under the ROC curve. As a rule of thumb, a model with good predictive
ability should have an AUC closer to 1 (1 is ideal) than to 0.5.

Confusion matrix helps determine classifier. It is a matrix of predicted
versus actual.

Predicted: NO Predicted: YES

Actual: NO 50 10

Actual: YES 5 100

A confusion matrix, also known as an error matrix, is a specific table layout
that allows visualization of the performance of an algorithm.

Each column of the matrix represents the instances in a predicted class,
while each row represents the instances in an actual class (or vice versa)
(Figure 5.18).

An additional example of R based modeling is at http://rpubs.com/newajay/
titanic_kaggle and http://rpubs.com/ajaydecis/logisticmodels

5.4.3  Bias Versus Variance

Lastly a modeler should be careful of errors due to bias or variance.

Error Due to Bias
The error due to bias is taken as the difference between the expected (or average)
prediction of our model and the correct value, which we are trying to predict.
Of course you only have one model so talking about expected or average

http://rpubs.com/newajay/titanic_kaggle
http://rpubs.com/newajay/titanic_kaggle
http://rpubs.com/ajaydecis/logisticmodels

True
condition

Predicted condition

Total population

True positive

True negative

False negative
(type II error)

Prevalence

True positive rate
(TPR), sensitivity,

recall

False negative rate
 (FNR), miss rate

True negative rate
(TNR), specificity (SPC)

Diagnostic odds ratio

False positive rate
(FPR), fall-outFalse positive

(type I error)

Positive likelihood

ratio (LR+) = TPR
FPR

Negative likelihood
Negative predictive valueFalse discovery rate

(FDR)
FNR
TNR

LR+
LR–

(DOR) =

(NPV)
Σ True negative

Σ Test outcome negative

ratio (LR–) =
=

Σ True positive
Σ Test outcome positive

=

Σ True negative
Σ Condition negative

=
Σ False positive

Σ Condition negative
=

Σ True positive
Σ Condition positive

=

Σ Condition positive
Σ Total population

=

Σ False negative
Σ Condition positive

=

Σ False positive
Σ Test outcome positive

=

Accuracy (ACC) =
Σ True positive + Σ True negative

Σ Total population

Positive predictive value
(PPV), precision

Σ False negative
Σ Test outcome negative

=

False omission rate (FOR)

Condition
positive

Predicted condition
positive

Predicted condition
negative

Condition
negative

Figure 5.18  Confusion matrix.

5  Statistical Modeling196

prediction values might seem a little strange. However, imagine you could
repeat the whole model building process more than once: each time you gather
new data and run a new analysis creating a new model. Due to randomness in
the underlying datasets, the resulting models will have a range of predictions.
Bias measures how far off in general these models’ predictions are from the
correct value.

Error Due to Variance
The error due to variance is taken as the variability of a model prediction for a
given data point. Again, imagine you can repeat the entire model building pro-
cess multiple times. The variance is how much the predictions for a given point
vary between different realizations of the model (Figure 5.19).

References

Stephen R. Johnson (2008). The Trouble with QSAR (or How I Learned To Stop
Worrying and Embrace Fallacy). Journal of Chemical Information and
Modeling, 48(1), 25–26. 10.1021/ci700332k

Deborah J. Rumsey. Statistics for Dummies. Standard Normal Distribution.
John Wiley & Sons, Inc., Hoboken, 2016.

Low variance

Lo
w

 b
ia

s
H

ig
h

bi
as

High variance

Figure 5.19  Bias and variance. http://scott.fortmann‐roe.com/docs/BiasVariance.html.
Source: Scott Fortmann‐Roe. © CSS from Substance.io.

http://scott.fortmann-roe.com/docs/BiasVariance.html

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

197

6

To dos: plot.ly, bokeh, Shiny, Googlevis

6.1  Concepts on Data Visualization

Data visualization is the presentation of data in a pictorial or graphical format
to understand information more easily and quickly. Effective visualization
helps users in analyzing and reasoning about data and evidence. It makes com-
plex data more accessible, understandable, and usable. It is more than just
impressive‐looking graphs because it helps to understand data much better
than a tabular nonvisual form would do. A good course to learn data visualiza-
tion would be at https://www.coursera.org/learn/datavisualization

6.1.1  History of Data Visualization

William Playfair is credited with inventing many of the graphs associated with
modern data visualization such as the line, area, and bar charts of economic
data, pie chart, and circle graph.

The work of Charles Minard is said to have greatly influenced the field of
data visualization. His famous chart, Napoleon’s march shows the death and
decline of the French Grande Armée in the war against Russia. The graphic is
notable for its representation in two dimensions of six types of data: the
number of Napoleon’s troops, distance, temperature, latitude and longitude,
direction of travel, and location relative to specific dates. It is thus an early
example of an information graphic (Figure 6.1).

Florence Nightingale did similar pioneering work in data visualization in
representing deaths due to various diseases during the Crimean War with her
coxcomb graphs (Figure 6.2). The following is cited in http://understanding
uncertainty.org/coxcombs

An early example of how spatial visualization can greatly aid decision‐
making is by Jon Snow (not from the Game of Thrones!) whose cholera

Data Visualization

https://www.coursera.org/learn/datavisualization
http://understandinguncertainty.org/coxcombs
http://understandinguncertainty.org/coxcombs

Figure 6.1  Minard’s graph for Napoleon’s march. Source: © University of Cambridge.

Figure 6.2  Florence Nightangle Coxcomb charts.

6  Data Visualization200

outbreak graph helped pinpoint the cause to a single water pump. It is regarded
as the founding event of the science of epidemiology (Figure 6.3).

6.1.2  Anscombe Case Study

“Lies, damned lies, and statistics” is a phrase describing the sometimes
misleading but powerful power of numbers, particularly the use of statistics to
bolster a weak or untenable argument.

The Anscombe case study shows how misleading conclusions from identical
summary statistics (e.g., mean, standard deviation, and correlation) can be
corrected only when we visualize data (revealing dissimilar data graphics (scat-
terplots)). Source: Anscombe (1973) http://www.sjsu.edu/faculty/gerstman/
StatPrimer/anscombe1973.pdf

We recreate the case study in Python using the R Dataset. A copy of the code
is at the author’s github (https://github.com/decisionstats/pythonfordata
science) and at http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f
470d5c07194302f53e

We read the data using pandas, find the mean and standard deviations
through numpy, use regression using statsmodel package, and finally visualize
using the ggplot package.

Figure 6.3  Jon Snow Cholera Outbreak Map.

http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
https://github.com/decisionstats/pythonfordatascience
https://github.com/decisionstats/pythonfordatascience
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e

6.1  Concepts on Data Visualization 201

6.1.3  Importing Packages

import pandas as pd
import statsmodels.formula.api as sm
import numpy as np
import ggplot as gg

Reading the Dataset
anscombe=pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/anscombe.csv")
anscombe

Unnamed: 0 x1 x2 x3 x4 y1 y2 y3 y4

0 1 10 10 10 8 8.04 9.14 7.46 6.58
1 2 8 8 8 8 6.95 8.14 6.77 5.76
2 3 13 13 13 8 7.58 8.74 12.74 7.71
3 4 9 9 9 8 8.81 8.77 7.11 8.84
4 5 11 11 11 8 8.33 9.26 7.81 8.47
5 6 14 14 14 8 9.96 8.10 8.84 7.04
6 7 6 6 6 8 7.24 6.13 6.08 5.25
7 8 4 4 4 19 4.26 3.10 5.39 12.50
8 9 12 12 12 8 10.84 9.13 8.15 5.56
9 10 7 7 7 8 4.82 7.26 6.42 7.91
10 11 5 5 5 8 5.68 4.74 5.73 6.89

Dropping the Column
anscombe=anscombe.drop('Unnamed: 0', 1)

The Anscombe Quartet
anscombe

x1 x2 x3 x4 y1 y2 y3 y4

0 10 10 10 8 8.04 9.14 7.46 6.58
1 8 8 8 8 6.95 8.14 6.77 5.76
2 13 13 13 8 7.58 8.74 12.74 7.71
3 9 9 9 8 8.81 8.77 7.11 8.84
4 11 11 11 8 8.33 9.26 7.81 8.47
5 14 14 14 8 9.96 8.10 8.84 7.04
6 6 6 6 8 7.24 6.13 6.08 5.25
7 4 4 4 19 4.26 3.10 5.39 12.50
8 12 12 12 8 10.84 9.13 8.15 5.56
9 7 7 7 8 4.82 7.26 6.42 7.91
10 5 5 5 8 5.68 4.74 5.73 6.89

6  Data Visualization202

6.1.4  Taking Means and Standard Deviations

np.mean(anscombe)
x1	 9.000000
x2	 9.000000
x3	 9.000000
x4	 9.000000
y1	 7.500909
y2	 7.500909
y3	 7.500000
y4	 7.500909
dtype: float64

np.std(anscombe)
x1	 3.162278
x2	 3.162278
x3	 3.162278
x4	 3.162278
y1	 1.937024
y2	 1.937109
y3	 1.935933
y4	 1.936081
dtype: float64

Fitting Regression Line between Respective X and Y
result1 = sm.ols(formula="y1 ~ x1 ", data=anscombe).fit()
result1.summary()

/home/ajay/anaconda3/lib/python3.4/site‐packages/
scipy/stats/stats.py:1285: UserWarning: kurtosistest
only valid for n>=20 … continuing anyway, n=11
 "anyway, n=%i" % int(n))

Dep. Variable: y1 R‐squared: 0.667
Model: OLS Adj. R‐squared: 0.629

Method: Least Squares F‐statistic: 17.99
Date: Thu, 07 Jul 2016 Prob (F‐statistic): 0.00217
Time: 04:32:15 Log‐Likelihood: –16.841

No. Observations: 11 AIC: 37.68
Df Residuals: 9 BIC: 38.48

Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.0001 1.125 2.667 0.026 0.456 5.544

x1 0.5001 0.118 4.241 0.002 0.233 0.767

6.1  Concepts on Data Visualization 203

Omnibus: 0.082 Durbin‐Watson: 3.212
Prob(Omnibus): 0.960 Jarque‐Bera (JB): 0.289

Skew: –0.122 Prob(JB): 0.865
Kurtosis: 2.244 Cond. No. 29.1

result1.params
Intercept  3.000091
x1	 0.500091
dtype: float64
result1.rsquared

0.66654245950877489
result2 = sm.ols(formula="y2 ~ x2 ", data=anscombe).fit()
result3 = sm.ols(formula="y3 ~ x3 ", data=anscombe).fit()
result4 = sm.ols(formula="y4 ~ x4 ", data=anscombe).fit()

print(result1.params)
print(result2.params)
print(result3.params)
print(result4.params)

Intercept  3.000091
x1	 0.500091
dtype: float64
Intercept  3.000909
x2	 0.500000
dtype: float64
Intercept  3.002455
x3	 0.499727
dtype: float64
Intercept  3.001727
x4	 0.499909
dtype: float64

print(result1.rsquared)
print(result2.rsquared)
print(result3.rsquared)
print(result4.rsquared)

0.666542459509
0.666242033727
0.666324041067
0.666707256898

6  Data Visualization204

print(np.mean(anscombe))

x1	 9.000000
x2	 9.000000
x3	 9.000000
x4	 9.000000
y1	 7.500909
y2	 7.500909
y3	 7.500000
y4	 7.500909
dtype: float64

print(np.std(anscombe))

x1	 3.162278
x2	 3.162278
x3	 3.162278
x4	 3.162278
y1	 1.937024
y2	 1.937109
y3	 1.935933
y4	 1.936081
dtype: float64

6.1.5  Conclusion

It seems that X and Y have the same means, same standard deviations, same
regression parameters, and same R‐squared value (up to two decimal places).
So as per summary statistics, the data between all four quartets (X1 Y1, X2 Y2,
X3 Y3, and X4 Y4) is the same. A copy of this tutorial is available at http://
nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
#Data‐Visualization

6.1.6  Data Visualization

%matplotlib inline

p = gg.ggplot(gg.aes(x='x1', y='y1'), data=anscombe)
p + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle;
please use the latter.
 warnings.warn(self.msg_depr % (key, alt_key))

http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization

6.1  Concepts on Data Visualization 205

12

11

10

9

8

7

y1

6

5

4

2 4 6 8
x1

10 12 14 16
3

<ggplot: (-901764730)>
p2 = gg.ggplot(gg.aes(x='x2', y='y2'), data=anscombe)
p2 + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle;
please use the latter.
 warnings.warn(self.msg_depr % (key, alt_key))

10

9

8

7

6

5

4

3

2
2 4 6 8 10

x2

y2

12 14 16

6  Data Visualization206

<ggplot: (-901793152)>
p3 = gg.ggplot(gg.aes(x='x3', y='y3'), data=anscombe)
p3 + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle;
please use the latter.
 warnings.warn(self.msg_depr % (key, alt_key))

14

13

12

11

10

9

8

7

6

5
2 4 6 8 10

x3

y3

12 14 16

<ggplot: (-901915866)>
p4 = gg.ggplot(gg.aes(x='x4', y='y4'), data=anscombe)
p4 + gg.geom_point()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/__init__.py:872: UserWarning: axes.color_
cycle is deprecated and replaced with axes.prop_cycle;
please use the latter.
 warnings.warn(self.msg_depr % (key, alt_key))
<ggplot: (-901651556)>

6.2  Tufte’s Work on Data Visualization 207

13

12

11

10

9

8

7

6

5

4
6 8 10 12 14

x4

y4

16 18 20

6.1.7  Conclusion

The graphs show that the four quartets are completely different even though
summary statistics (means, deviations, regression) was showing identical
result.

The first quartet (x1, y1) shows a scattered relationship.
The second quartet shows a curved polynomial relationship.
The third shows a straight line with one outlier.
The fourth shows a constant value of x and one outlier.
So we are better off relying on data visualization as an additional step to

verify summary statistics or exploratory data analysis (but note we should rely
on both, not just data visualization alone as many dashboards tend to do).

6.2  Tufte’s Work on Data Visualization

Edward Tufte is known in some circles as the father of modern data visualiza-
tion. Some of his seminal principles for data visualization are the following:

1)	 The representation of numbers, as physically measured on the surface of
the graph itself, should be directly proportional to the numerical quantities
represented.

6  Data Visualization208

2)	 Clear, detailed, and thorough labeling should be used to defeat graphical
distortion and ambiguity. Write out explanations of the data on the graph
itself. Label important events in the data.

3)	 Show data variation, not design variation.
4)	 In time‐series displays of money, deflated and standardized units of mone-

tary measurement are nearly always better than nominal units.
5)	 The number of information carrying (variable) dimensions depicted should

not exceed the number of dimensions in the data. Graphics must not quote
data out of context.

To the data scientist, Tufte shows a set of simple and easy to follow
directives:

1)	 Above all else show data.
2)	 Maximize the data‐ink ratio.
3)	 Erase non‐data‐ink.
4)	 Erase redundant data‐ink.
5)	 Revise and edit.

6.3  Stephen Few on Dashboard Design

Stephen Few is the acknowledged master for designing better dashboards
that show how enterprises visualize their business data. There are three key
questions for a dashboard:

1)	 Who is my audience?
2)	 What value will the dashboard add?
3)	 What type of dashboard am I creating?

In his paper, “Common Pitfalls on Dashboard Design,” Few lists the common
mistakes when designers build dashboards. These can and should be used as a
checklist for data scientists or designers of new dashboards. For the full paper
the reader is advised to read it at http://www.perceptualedge.com/articles/
Whitepapers/Common_Pitfalls.pdf

●● Exceeding the boundaries of a single screen
●● Supplying inadequate context for the data
●● Displaying excessive detail or precision
●● Expressing measures indirectly
●● Choosing inappropriate media of display
●● Introducing meaningless variety
●● Using poorly designed display media

http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf

6.3  Stephen Few on Dashboard Design 209

●● Encoding quantitative data inaccurately
●● Arranging the data poorly
●● Ineffectively highlighting what’s important
●● Cluttering the screen with useless decoration
●● Misusing or overusing color
●● Designing an unappealing visual display

Stephen Few also gives advice that is very practical to people building data
science teams.

The advice is as follows:
When you need more computing power, there are three potential choices:

1)	 Replace your computer with one that’s more powerful.
2)	 Add more computers.
3)	 Upgrade the computer that you have to make it more powerful.

When you need more human power, what are your choices?

●● Replace the employee with one who’s more productive.
●● Add more people.
●● Help your employee upgrade skills to make him more productive.

6.3.1  Maeda on Design

John Maeda created the laws of simplicity to help designers create better
interfaces. While a data scientist is typically analyzing data created by differ-
ent interfaces (e.g., an experiment on web sites), a knowledge of design can
help them better and provide them more useful advice to design
counterparts.

The laws of simplicity are taken from a small 100‐page book called The Laws
of Simplicity:

●● Reduce—the simplest way to achieve simplicity is through thoughtful
reduction.

●● Organize—organization makes a system of many appear fewer.
●● Time—savings in time feel like simplicity.
●● Learn—knowledge makes everything simpler.
●● Differences—simplicity and complexity need each other.
●● Context—what lies in the periphery of simplicity is definitely not peripheral.
●● Emotion—more emotions are better than less.
●● Trust—in simplicity we trust.
●● Failure—some things can never be made simple.
●● The one—simplicity is about subtracting the obvious and adding the

meaningful.

6  Data Visualization210

Three keys:

1)	 Away–more appears like less by simply moving it far, far away.
2)	 Open—openness simplifies complexity.
3)	 Power—use less, gain more.

6.4  Basic Plots

These are some of the basic plots in Python.
The basic packages for data visualization in Python Data Science (PyData)

are matplotlib, seaborn, ggplot, and bokeh. We import the packages as

import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt

An online version of this tutorial is available at http://nbviewer.jupyter.org/
gist/decisionstats/e9fd40890553b24acda5e07654bceaa8

To make sure graphs remain in same window of our Jupyter notebook, we
use the following line.

%matplotlib inline

Let’s take the Iris Dataset from R using the code below. The following will plot
a scatterplot. Simply put—a scatterplot plots the data in points

iris =pd.read_csv("https://vincentarelbundock.github.
io/Rdatasets/csv/datasets/iris.csv ")
iris=iris.drop(’Unnamed: 0’, 1)
iris.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
Sepal.Length	 150 non-null float64
Sepal.Width	 150 non-null float64
Petal.Length	 150 non-null float64
Petal.Width	 150 non-null float64
Species	 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB

plt.scatter(x="Sepal.Length",y="Petal.Length",
data=iris);

http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv

6.4  Basic Plots 211

8

7

6

5

4

3

2

1

0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Distribution plot—To plot the distribution, I can use a distplot from seaborn,
while to add a regression line I can use regplot.

sns.distplot(iris[“Sepal.Length”])

/home/ajayohri/anaconda3/lib/python3.5/site-packages/
statsmodels/nonparametric/kdetools.py:20: Visible
DeprecationWarning: using a non-integer number instead of
an integer will result in an error in the future

 y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j

<matplotlib.axes._subplots.AxesSubplot at
0x7f0302e4e278>

0.5

0.4

0.3

0.2

0.1

0.0
3 4 5 6 7 8 9

Sepal.Length

6  Data Visualization212

sns.regplot(x=“Sepal.Length“, y=“Sepal.Width”,
data=iris);

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5
4.0 4.5 5.0 5.5 6.0

Sepal.Length

S
ep

al
.W

id
th

6.5 7.0 7.5 8.0 8.5

You can use swarmplot from seaborn to do a scatterplot for multiple categories.

plt.figure(figsize=(8, 6))
sns.swarmplot(x="Sepal.Length", y="Sepal.Width",
hue="Species",data=iris)

<matplotlib.axes._subplots.AxesSubplot at
0x7f0302d57438>

5.0

4.5

4.0

3.5

S
ep

al
.W

id
th

3.0

2.5

2.0

1.5

Sepal.Length

4.34.44.54.64.74.84.95.05.15.25.35.4 5.65.75.5 5.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.9

Species

setosa

versicolor

virginica

6.4  Basic Plots 213

A swarmplot can help us visualize multiple categories of scatterplots (it draws
a categorical scatterplot with non‐overlapping points), while a pairplot can
help us with plotting entire data frame (by plotting the pairwise relationships
in the entire dataset).

NOTE: We can modify the size of the figure by the parameter plt.
figure(figsize=(A,B)) with the hue parameter as a step to modify color and
make the graphic more coherent or easy to understand.

sns.pairplot(iris, hue="Species")

<seaborn.axisgrid.PairGrid at 0x7f0302824550>

Species

setosa

versicolor

virginica

3.02.52.01.51.00.50.0–0.5

Petal.Width

S
ep

al
.L

en
gt

h

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

S
ep

al
.W

id
th

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

P
et

al
.L

en
gt

h

8

7

6

5

4

3

2

1

0

P
et

al
.W

id
th

3.0

2.5

2.0

1.5

1.0

0.5

0.0

–0.5

Sepal.Length

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 5.04.54.03.53.02.52.01.5

Sepal.Width

876543210

Petal.Length

Barplot—We can use barplot as well quite easily in Python using seaborn. Let
us take the diamonds dataset from the original ggplot2 package in R.

diamonds =pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/ggplot2/diamonds.csv")
sns.barplot(x="color", y="carat",data=diamonds)

<matplotlib.axes._subplots.AxesSubplot at
0x7f0300092c18>

https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv

6  Data Visualization214

1.2

1.0

0.8

0.6

M
ea

n(
ca

ra
t)

Color

0.4

0.2

0.0
E I J H F G D

sns.barplot(x="color", y="price",data=diamonds)
<matplotlib.axes._subplots.AxesSubplot at
0x7f030003ce80>

6000

5000

4000

3000

M
ea

n(
pr

ic
e)

Color

2000

1000

0
E I J H F G D

Factorplot—We use factorplot from seaborn library and find in the diamonds
dataset that colors I,J have maximum price while cut Premium has maximum
price compared with others. Factorplot draws a categorical plot onto a
FacetGrid (see https://stanford.edu/~mwaskom/software/seaborn/generated/
seaborn.factorplot.html)

By changing the x‐axis and the col (color) variable, we get the following graphs,
and by changing the kind parameter of factorplot from box to bar or point, we
get the following graphs. The change in graphs helps with exploratory analysis.

https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.factorplot.html
https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.factorplot.html

sns.factorplot(x="cut", y="price",col="color", data=diamonds, kind="bar", size=4,
aspect=.5);

0

1000

2000

3000pr
ic

e

4000

5000

6000

7000

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = E

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = I

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = J

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = H

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = F

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = G

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

color = D

cut

sns.factorplot(x="color", y="price",col="cut", data=diamonds, kind="box", size=4,
aspect=.5);

E I J H F G D

cut = Premium

color

E I J H F G D

cut = Good

color

E I J H F G D

cut = Very Good

color

E I J H F G D

cut = Fair

color

0
E I J H F G D

5000

10000

pr
ic

e

15000

20000
cut = Ideal

color

sns.factorplot(x="cut", y="price",col="color", data=diamonds, kind="box", size=4,
aspect=.5);

0

5000

10000

pr
ic

e

15000

20000
color = E color = I

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

color = J

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

color = H

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

color = F

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

Id
ea

l

color = G

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

color = D

Id
ea

l

Pre
m

ium
Goo

d

Ver
y G

oo
d

Fair

cut

sns.factorplot(x="cut", y="price",col="color", data=diamonds, kind="point", size=4,
aspect=.5);

7000
color = E color = I color = J color = H color = F color = G color = D

6000

5000

4000

pr
ic

e

3000

2000
Ideal Premium Good Very Good Fair

Cut

Ideal Premium Good Very Good Fair

Cut

Ideal Premium Good Very Good Fair

Cut

Ideal Premium Good Very Good Fair

Cut

Ideal Premium Good Very Good Fair

Cut

Ideal Premium Good Very Good Fair

Cut

Ideal Premium Good Very Good Fair

Cut

6.5  Advanced Plots 219

We can use jointplots for combined plots.
They can be of the form kde (for density) or scatter (for points) or hexbins

(for overplotting).

sns.jointplot(x="carat", y="price",data=diamonds)
<seaborn.axisgrid.JointGrid at 0x7f02f3d37908>

20000

15000

10000

5000

P
ric

e

0

–5000
–1 0 1 2 3

Carat
4 5 6

Pearson’s r = 0.92;
p = 0

You can also view this tutorial online at http://nbviewer.jupyter.org/gist/
decisionstats/e9fd40890553b24acda5e07654bceaa8

6.5  Advanced Plots

Grammar of graphics created by Wilkinson and implemented by Wickham in
R has revolutionized data visualization in recent years. To summarize, when
creating a plot we start with data. We can create many different types of plots
using this same basic specification. (Bars, lines, and points are all examples of
geometric objects.) We can scale the axes and statistically transform the data
(bins, aggregates).

http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8

6  Data Visualization220

The concept of layers:
Plot = data 1 + scales and coordinate system 2 + plot annotations 3

1)	 data plot type
2)	 Axes and legends
3)	 background and plot title

The layered grammar defines the components of a plot as (Figures 6.4 and 6.5):

●● A default dataset and set of mappings from variables to aesthetics
●● One or more layers, with each layer having one geometric object, one statis-

tical transformation, one position adjustment, and optionally, one dataset
and a set of aesthetic mappings

●● One scale for each aesthetic mapping used
●● A coordinate system
●● The facet specification

We can use the ggplot library created by Yhat to recreate ggplot style diagrams
in Python without even changing the code. This is an example from http://
nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600

Title

A

C

Figure 6.4  Graphics objects produced by (from left to right) geometric objects, scales and
coordinate system, plot annotations. Source: http://vita.had.co.nz/papers/layered‐grammar.
pdf. © University of Cambridge.

Title

C

A

Figure 6.5  The final graphic, produced by combining the
pieces in Figure 6.4. Source: http://vita.had.co.nz/papers/
layered‐grammar.pdf. © University of Cambridge.

http://nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600
http://nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf

6.5  Advanced Plots 221

import matplotlib as mt
%matplotlib inline #this line makes sure plots are in
same notebook

from ggplot import *
p = ggplot(aes(x=’price’, y=’carat’), data=diamonds)
p

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

<ggplot: (-1059997756)>
p + geom_point()

–5000
–1

0

1

2

3

4

5

6

0 5000 10000
Price

C
ar

at

15000 20000

6  Data Visualization222

<ggplot: (-1059338452)>
p + geom_point() +facet_grid(’cut’)

Fair

Good

Ideal

Premium

Very good

C
ar

at

0
2
4
6

0
2
4
6

0
2
4
6

0
2
4
6

0
2
4
6

Price
–6000 6000 12000 180000

<ggplot: (-1057884332)>
p = ggplot(aes(x=’price’, y=’carat’,color="cut"),
data=diamonds)
p + geom_point()

–5000 0 5000 10000
Price

Cut

15000 20000
–1

0

1

2

3

4

5

6

C
ar

at

6.7  Spatial Analytics 223

<ggplot: (-1059249386)>
p = ggplot(aes(x=’price’, y=’carat’,color="clarity"),
data=diamonds)
p + geom_point()

–5000
–1

0

1

2

3

4

5

6

0 5000

Price

C
ar

at

10000 15000 20000

Clarity

<ggplot: (-1060618628)>

6.6  Interactive Plots

Interactive plots can be done by bokeh in Python and by shiny package in R.
You can also use plot.ly for both.

6.7  Spatial Analytics

Spatial analytics can be done by leaflet package and by ggmap package in R. In
R a special section for spatial packages is at https://cran.r‐project.org/web/
views/Spatial.html. In Python you can refer to http://pysal.readthedocs.io/
en/latest/PySAL and packages at https://pythongisresources.wordpress.com/
packages/

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html
http://pysal.readthedocs.io/en/latest/
http://pysal.readthedocs.io/en/latest/
https://pythongisresources.wordpress.com/packages/
https://pythongisresources.wordpress.com/packages/

6  Data Visualization224

6.8  Data Visualization in R

●● Basic graphs

Some basic graphs in R are barplot and histogram. They are given by barplot
and hist functions. Boxplot is given by boxplot function and is used for explora-
tory data analysis (EDA). The following is taken from http://rpubs.com/
ajaydecis/basicRdataviz2 and http://rpubs.com/ajaydecis/dataviz2

par(bg="yellow")
boxplot(Sepal.Length~Species,
	 main="My First Graph")

4.5

setosa versicolor

My first graph

virginica

5.0

5.5

6.0

6.5

7.0

7.5

8.0

boxplot(Sepal.Length~Species,
	 main="My First Graph",
	 xlab="Species of Flowers",
	 ylab=" Measurement in mm")

setosa versicolor

Species of flowers

My first graph

virginica

4.5

M
ea

su
re

m
en

t i
n

m
m

5.0

5.5

6.0

6.5

7.0

7.5

8.0

http://rpubs.com/ajaydecis/basicRdataviz2
http://rpubs.com/ajaydecis/basicRdataviz2
http://rpubs.com/ajaydecis/dataviz2

6.8  Data Visualization in R 225

boxplot(Sepal.Length~Species,
	 main="My First Graph",
	 xlab="Species of Flowers",
	 ylab=" Measurement in mm",
	 col="green")

setosa versicolor

Species of flowers

virginica

4.5

M
ea

su
re

m
en

t i
n

m
m

5.0

5.5

6.0

6.5

7.0

7.5

8.0
My first graph

The package RColorbrewer addsin special color palettes or combinations
of colors to R.

library(RColorBrewer)
par(mfrow=c(3,3))

hist(mpg,col=brewer.pal(8,"Blues"))
hist(mpg,col=brewer.pal(8,"Greens"))
hist(mpg,col=brewer.pal(8,"Greys"))

hist(mpg,col=brewer.pal(8,"Reds"))
hist(mpg,col=brewer.pal(8,"Oranges"))

hist(mpg,col=brewer.pal(8,"Set1"))
hist(mpg,col=brewer.pal(8,"Set2"))
hist(mpg,col=brewer.pal(8,"Set3"))
hist(mpg,col=brewer.pal(8,"Pastel1"))

0

10
20

25
m

pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15

612

0

10
20

25
m

pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15

612

0

10
20

25
m

pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15

612

0612

0612

0612

0612

0612

0612

10
20

25
m

pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15
10

20
25

m
pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15
10

20
25

m
pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15

10
20

25
m

pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15
10

20
25

m
pg

H
is

to
g

ra
m

 o
f

m
p

g
Frequency

30
35

15
10

20
25

m
pg

H
is

to
g

ra
m

 o
f

m
p

g

Frequency

30
35

15

6.8  Data Visualization in R 227

#barplot
barplot(table(iris$Species,iris$Sepal.Length))

0
4.3 4.6 4.9 5.2 5.5 5.8 6 6.2 6.5 6.8 7 7.2 7.6

2

4

6

8

10

barplot(table(iris$Species,iris$Sepal.
Length),col=heat.colors(5,0.6))

0
4.3 4.6 4.9 5.2 5.5 5.8 6 6.2 6.5 6.8 7 7.2 7.6

2

4

6

8

10

 #rug plot
hist(iris$Sepal.Length,breaks=10)
rug(iris$Sepal.Length)

6  Data Visualization228

10

15

20

25

30

5

0

4 5 6

iris$Sepal.Length

Histogram of iris$Sepal.Length

7 8

You can read and manipulate data quite fast using the data.table package in R:

setwd("C:/Users/dell/Desktop")
library(data.table)

bigdiamonds=fread("BigDiamonds.csv")

Read 23.4% of 598024 rows
Read 50.2% of 598024 rows
Read 75.2% of 598024 rows
Read 598024 rows and 13 (of 13) columns from 0.049 GB
file in 00:00:06
hist(bigdiamonds$carat,breaks=100)

0

0

20000

40000

60000

2 4

bigdiamonds$carat

Histogram of bigdiamonds$carat

6 8

6.8  Data Visualization in R 229

#rug(diamonds$carat)

barplot(bigdiamonds[,mean(carat),color]$V1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

We also have specialized packages/functions like tableplot:

tableplot(diamonds3)

0

row bins: 100

objects:
593,784

5,938 (per bin)

1 2 3 4 0 1 2 3
Good D I1

I2
IF
SI1
SI2
VS1
VS2
VVS1
VVS2

E
F
G
H
I
J
K
L

Ideal

V.Good

missing missing missing

caratlog(price) cut color clarity x y z

0 2 4 6 8 0 2 4 60 2 4 6 8
100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

From http://rpubs.com/ajaydecis/corrmosaic
In a corrgram, negative correlation is shown in red, while the positive in blue

with the intensity of colors showing the magnitude of correlation (for color

http://rpubs.com/ajaydecis/corrmosaic

6  Data Visualization230

version refer online). In a mosaic plot, the area of the boxes shows the numbers
for various subcategories.

#install.packages("corrgram")
library(corrgram)
corrgram(mtcars)

mpg

cyl

disp

hp

drat

wt

qsec

vs

am

gear

carb

data(diamonds,package = "ggplot2")
corrgram(diamonds)

carat

depth

table

price

x

y

z

6.8  Data Visualization in R 231

library(vcd)
Loading required package: grid
mosaic(Titanic)

No

C
re

w
3r

d

C
la

ss

A
g

e

2n
d

1s
t

Survived

Male Female
Sex

Yes Yes

A
du

lt
C

hi
ld

C
hi

ld
C

hi
ld

A
du

lt
A

du
lt

A
du

lt
C

hi
ld

No

mosaic(HairEyeColor)

R
ed

B
ro

w
n

Brown Blue GreenHazel

B
la

ck
B

lo
nd

F
em

al
e

M
al

e
F

em
al

e
F

em
al

e
M

al
e

M
al

e
F

em
al

e
M

al
e

H
ai

r

S
ex

Eye

We can build spatial visualization using maps and ggmap packages in R.
Example from http://rpubs.com/ajaydecis/basicspatial

http://rpubs.com/ajaydecis/basicspatial

6  Data Visualization232

par(mfrow=c(1,1))
plot(citiesIND, axes=T, asp=1, pch=16,main="Spatial
Plot of Cities in India")
Highlight big cities
plot(citiesIND[citiesIND@data$pop > 1000000,], pch=1,
col="red", cex=3, add=TRUE)
Highlight cities with bigger  dengue deaths
plot(citiesIND[citiesIND@data$samp > 960,], pch=1,
col="blue", cex=3, add=TRUE)

60

10

15

20

25

30

35

70 80 90

Spatial Plot of Cities in India

100

A gallery of R graphs is available at http://scs.math.yorku.ca/index.php/R_
Graphs_Gallery. © Wikipedia.

6.8.1  A Note of Sharing Your R Code by RStudio IDE

From https://rpubs.com/about/getting‐started

1)	 In RStudio, create a new R Markdown document by choosing File. | New. |
R Markdown.

2)	 Click the Knit HTML button in the doc toolbar to preview your
document.

3)	 In the preview window, click the Publish button.

You will need a RPubs.com account to publish.

http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
https://rpubs.com/about/getting-started

6.8  Data Visualization in R 233

6.8.2  A Note on Sharing Your Jupyter Notebook

1)	 Download as IPython file from the file option.

2)	 Use notepad to open the file downloaded. Copy the text contents.

3)	 Create a new gist at by pasting the text from step 2 here
https://gist.github.com/ (assuming you have a github account).

https://gist.github.com/

6  Data Visualization234

4)	 Paste the URL of the Gist at http://nbviewer.ipython.org/ to get your iNote-
book URL for sharing.

5)	 To update your notebook, simply copy and paste the new IPython code by
editing the gist again.

6)	 An example here is http://nbviewer.ipython.org/gist/decisionstats/62c5387
624a9ba9015a4

http://nbviewer.ipython.org/
http://nbviewer.ipython.org/gist/decisionstats/62c5387624a9ba9015a4
http://nbviewer.ipython.org/gist/decisionstats/62c5387624a9ba9015a4

235

Bibliography

F. J. Anscombe (1973). Graphs in Statistical Analysis. The American Statistician,
27(1), 17–21. http://links.jstor.org/sici?sici=0003–1305 (accessed May 6, 2017).

Vincent Arel‐Bundock, Université de Montréal, Science politique, https://
vincentarelbundock.github.io/Rdatasets/ (accessed May 6, 2017). Rdatasets is a
collection of 1039 datasets that were originally distributed alongside the
statistical software environment R and some of its add‐on packages. The goal is
to make these data more broadly accessible for teaching and statistical software
development.

Coxcomb graphs. http://understandinguncertainty.org/coxcombs (accessed May
6, 2017).

Stephen Few (2006). Common Pitfalls in Dashboard Design. http://www.
perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf (accessed May
6, 2017).

Michael Friendly (2008). The Golden Age of Statistical Graphics. Statistical
Science, 23(4), 502–535. http://projecteuclid.org/download/pdfview_1/euclid.
ss/1242049392 (accessed May 6, 2017).

Charles Joseph (Spring 2002). Visions and Re‐Visions. Journal of Educational and
Behavioral Statistics, 27(1), 31–52. http://www.datavis.ca/papers/jebs.pdf
(accessed May 6, 2017).

Ajay Ohri (2014). Decisionstats. https://decisionstats.com/2014/05/08/how‐to‐
share‐your‐ipython‐or‐ijulia‐code/ (accessed May 6, 2017).

Ian Spence (Winter 2005). No Humble Pie: The Origins and Usage of a Statistical
Chart. Journal of Educational and Behavioral Statistics, 30(4), 353–368. http://
www.psych.utoronto.ca/users/spence/Spence%202005.pdf (accessed May 6, 2017).

Edward Tufte. The Visual Display of Quantitative Information, Second Edition,
1983. http://thedoublethink.com/2009/08/tufte%E2%80%99s‐principles‐for‐
visualizing‐quantitative‐information/ (accessed May 6, 2017).

Eric W. Weisstein. Hypothesis Testing. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/HypothesisTesting.html (accessed May 6, 2017).

Hadley Wickham (2009). ggplot2: Elegant Graphics for Data Analysis. Springer‐
Verlag, New York.

Graham J. Williams (2011). Data Mining with Rattle and R: The Art of Excavating
Data for Knowledge Discovery. Springer‐Verlag, New York.

Chi Yau. R Tutor. http://www.r‐tutor.com/elementary‐statistics/goodness‐fit/
chi‐squared‐test‐independence (accessed May 6, 2017).

Mark Zachry and Charlotte Thralls (2004). An Interview with Edward R. Tufte.
Technical Communication Quarterly, 13(4), 447–462. https://www.
edwardtufte.com/tufte/s15427625tcq1304_5.pdf (accessed May 6, 2017).

6.8  Data Visualization in R

http://links.jstor.org/sici?sici=0003-1305
https://vincentarelbundock.github.io/Rdatasets/
https://vincentarelbundock.github.io/Rdatasets/
http://understandinguncertainty.org/coxcombs
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://projecteuclid.org/download/pdfview_1/euclid.ss/1242049392
http://projecteuclid.org/download/pdfview_1/euclid.ss/1242049392
http://www.datavis.ca/papers/jebs.pdf
https://decisionstats.com/2014/05/08/how-to-share-your-ipython-or-ijulia-code/
https://decisionstats.com/2014/05/08/how-to-share-your-ipython-or-ijulia-code/
http://www.psych.utoronto.ca/users/spence/Spence 2005.pdf
http://www.psych.utoronto.ca/users/spence/Spence 2005.pdf
http://thedoublethink.com/2009/08/tufte’s-principles-for-visualizing-quantitative-information/
http://thedoublethink.com/2009/08/tufte’s-principles-for-visualizing-quantitative-information/
http://mathworld.wolfram.com/HypothesisTesting.html
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
https://www.edwardtufte.com/tufte/s15427625tcq1304_5.pdf
https://www.edwardtufte.com/tufte/s15427625tcq1304_5.pdf

6  Data Visualization236

6.8.3  Special Note: A Complete Wing to Wing Tutorial on Python

Python is a very widely used programming language. Written by Guido Von
Russum in 1989, it is now one of the most widely used programming languages.
In data science, Python has increasingly made strides, thanks to the pandas
package as well as the efforts of PyData community. Companies like Continuum
Analytics, Enthought, and Civis Analytics are creating both tools as well
as actually utilizing Python for data science. Companies like Datakind,
CodeAcademy, and Dataquest offer online education on Python for free.
Unlike R language, Python has two major versions, Python 2 and Python 3,
but just like R it is free and open source.

Core design parameters for Python remain crisp lines of code, using white
space as an input, emphasis for indentation, and sparse grammar. People
interested in knowing more on Python can go to the home page at https://
www.python.org/

Data science lies at the intersection of programming, statistics, and business
analysis. It is the use of programming tools with statistical techniques to ana-
lyze data in a systematic and scientific way. Accordingly this tutorial will try to
focus at least on the statistical and programming parts of data science. Data
scientists would also be interested in the PyData community at http://pydata.
org/. Why use Python for data science? Python has surprising capabilities in
data analysis and data visualization, thanks to the new generation of packages
being created (pairplot on famous iris dataset using seaborn package is shown
below) (Figure 6.6).

Here is a brief tutorial in Pythonic data science. Some prerequisites are given
as follows:
Installations:

1)	 Download and install Anaconda from https://www.continuum.io/
downloads (alternatives could be Canopy Express from https://store.
enthought.com/ or just the core implementation from https://www.python.
org/downloads/).

2)	 Download and install the Jupyter Notebook Interface from http://jupyter.
readthedocs.org/en/latest/install.html

3)	 You can use pip or easy_install to install packages. There are more than
72 000 Python packages available at https://pypi.python.org/pypi and
you can browse Python packages by topic at https://pypi.python.org/
pypi?%3Aaction=browse

Packages for data science
Some important packages for data scientists to use in Python are as follows:

1)	 Pandas (http://pandas.pydata.org/)—Pandas allows users the familiar data
frame format in which rows are observations and columns are variables and
a wide variety of useful data analysis features.

https://www.python.org/
https://www.python.org/
http://pydata.org/
http://pydata.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://store.enthought.com/
https://store.enthought.com/
https://www.python.org/downloads/
https://www.python.org/downloads/
http://jupyter.readthedocs.org/en/latest/install.html
http://jupyter.readthedocs.org/en/latest/install.html
https://pypi.python.org/pypi
https://pypi.python.org/pypi?:action=browse
https://pypi.python.org/pypi?:action=browse
http://pandas.pydata.org

237

2)	 Scikit‐learn (http://scikit‐learn.org/)—Scikit‐learn allows you a widely used
machine learning package for data mining and modeling.

3)	 Statsmodels (http://statsmodels.sourceforge.net/)—Statsmodels brings
statistical tests and models available in Python.

4)	 Seaborn (http://stanford.edu/~mwaskom/software/seaborn/)—Seaborn
brings statistical data visualization to Python.

5)	 Pandasql (https://pypi.python.org/pypi/pandasql)—This package allows
SQL syntax and is thus similar to sqldf package in R.

6)	 ggplot (http://ggplot.yhathq.com/)—This is the implementation of gram-
mar of graphics in Python. You can practically reuse same ggplot2 code
from R to this package in Python.

7)	 SQLAlchemy (http://www.sqlalchemy.org/)—This tool allows you to
connect and query with databases.

se
pa

l_
w

id
th

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

pe
ta

l_
le

ng
th

8

7

6

5

4

3

2

1

0

pe
ta

l_
w

id
th

3.0

2.5

2.0

1.5

1.0

0.5

0.0

–0.5

sepal_length

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 5.04.54.03.53.02.52.01.5

sepal_width

3.02.52.01.51.00.50.0–0.5

petal_width

se
pa

l_
le

ng
th

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

876543210

petal_length

Figure 6.6  Pairplot on Iris Dataset using seaborn package.

6.8  Data Visualization in R

http://scikit-learn.org
http://statsmodels.sourceforge.net
http://stanford.edu/~mwaskom/software/seaborn/
https://pypi.python.org/pypi/pandasql
http://ggplot.yhathq.com
http://www.sqlalchemy.org

6  Data Visualization238

Tutorial Overview
1)	 You can write markdown within Jupyter notebook by changing the code

cell type from code to Markdown. You can also install and work with R
using the IR Kernel. This makes the code more readable as well as very
easy to switch between kernels.

2)	 Install packages from within the Jupyter notebook using a ! sign in the
beginning.

3)	 Import (or load) packages using the following syntax Import Package, or
Import Package as Pkg or Import Function from Package. This is similar to
library function in R.

4)	 Read in data using the read_csv or similar Input functions from Pandas
(http://pandas.pydata.org/pandas‐docs/stable/io.html).

5)	 Inspect data using the info and head methods.
6)	 Slice data using the query function or index or the column name.
7)	 Summarize data using the describe, group_by, and value_counts functions.
8)	 Use dir on the object to find out what all can be done on it.
9)	 Visualize using various plots from seaborn and ggplot package.

10)	 Build a regression model using statsmodel using the familiar formula
method (dependent_var~ independent_var 1 + independent_var2 +).

11)	 Learn about additional tools useful for data scientists.

Detailed Tutorial

1)	 Install packages from within Jupyter notebook. Use the ‐‐upgrade flag to
upgrade existing packages.

In [1]: ! sudo pip install pandas ‐‐upgrade

2)	 Load the package. You can load a Python package using the following ways:
import PACKAGE or import PACKAGE as PK or from PACKAGE import
FUN. You can then invoke the function using PACKAGE.FUN, PK.FUN,
and FUN, respectively.

In [2]:import pandas as pd

3)	 Import Data. We use read_csv from pandas to import a csv file. Note that
Jupyter automatically applies color to the code to ensure code, functions,
comments are easily readable. In case the file is stored locally, we can use
the os Python library.

In [3]: import os as os
os.getcwd() #current working directory Out[3]:
'/home/ajay/Dropbox/PYTHON BOOK WILEY/FINAL'

http://pandas.pydata.org/pandas-docs/stable/io.html

239

In [4]:os.chdir('/home/ajay/Desktop/test') #change
current working directory
In [5]:os.listdir(os.getcwd()) #list files in
directory Out[5]:['adult.data.txt']

In [6]:adult=pd.read_csv("adult.data.
txt",header=None) #read data

'''Lets get some information on the object. This
was a multiple line comment using three single quote
marks'''

4)	 Let’s use a dataset from within R’s dataset for familiarity. We will use dia-
mond dataset bundled with R language from https://vincentarelbundock.
github.io/Rdatasets/datasets.html

In [12]:
diamonds =pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/ggplot2/diamonds.csv")

5)	 We can use len to find out number of observations or length, and type to
find out class of object type. Using info we can combine all these to get the
information on object.

In [7]:diamonds.info()
<class 'pandas.core.frame.DataFrame'>

Int64Index: 53940 entries, 0 to 53939

Data columns (total 11 columns):

Unnamed: 0  53940 non-null int64

carat     53940 non-null float64

cut      53940 non-null object

color     53940 non-null object

clarity    53940 non-null object

depth     53940 non-null float64

table      53940 non-null float64

price      53940 non-null int64

x        53940 non-null float64

y        53940 non-null float64

z        53940 non-null float64

dtypes: float64(6), int64(2), object(3)

memory usage: 4.3+ MB

6.8  Data Visualization in R

https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv

6  Data Visualization240

6)	 To find out what all functions can do, we can just use the dir command on
the object, that is, dir(diamonds). We can use head to inspect first few rows,
.ix to select rows by index number, and double square brackets with
column names in quotes to select by column name. Note that we can
chain multiple commands in Python very easily.

In [8]:diamonds2=diamonds.drop('Unnamed: 0', 1)
#Dropping a particular variable
diamonds2.head()

Out[8]:

carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75

In [9]:diamonds.ix[20:28] #refers to the 21st to 29th
row since index starts from 0.
Out[9]:

carat cut color clarity depth table price x y z

20 0.30 Good I SI2 63.3 56 351 4.26 4.30 2.71
21 0.23 Very Good E VS2 63.8 55 352 3.85 3.92 2.48
22 0.23 Very Good H VS1 61.0 57 353 3.94 3.96 2.41
23 0.31 Very Good J SI1 59.4 62 353 4.39 4.43 2.62
24 0.31 Very Good J SI1 58.1 62 353 4.44 4.47 2.59
25 0.23 Very Good G VVS2 60.4 58 354 3.97 4.01 2.41
26 0.24 Premium I VS1 62.5 57 355 3.97 3.94 2.47
27 0.30 Very Good J VS2 62.2 57 357 4.28 4.30 2.67
28 0.23 Very Good D VS2 60.5 61 357 3.96 3.97 2.40

In [10]:diamonds.ix[20:25].cut
Out[10]:
20   Good
21  Very Good
22  Very Good
23  Very Good
24  Very Good
25  Very Good
Name: cut, dtype: object

241

In [11]:diamonds[['color','cut','price']].head()
#Note the double square brackets [[]]
Out[8]:

color cut price

0 E Ideal 326
1 E Premium 326
2 E Good 327
3 I Premium 334
4 J Good 335

7)	 Conditional selection—We can use the query command for conditional
selection of data.

In [12]:diamonds.query('carat >3 and color =="J"')
Out[12]:

carat cut color clarity depth table price x y z

21758 3.11 Fair J I1 65.9 57 9823 9.15 9.02 5.98
25999 4.01 Premium J I1 62.5 62 15223 10.02 9.94 6.24
26467 3.01 Ideal J SI2 61.7 58 16037 9.25 9.20 5.69
26744 3.01 Ideal J I1 65.4 60 16538 8.99 8.93 5.86
27415 5.01 Fair J I1 65.5 59 18018 10.74 10.54 6.98
27630 4.50 Fair J I1 65.8 58 18531 10.23 10.16 6.72
27679 3.51 Premium J VS2 62.5 59 18701 9.66 9.63 6.03
27684 3.01 Premium J SI2 60.7 59 18710 9.35 9.22 5.64
27685 3.01 Premium J SI2 59.7 58 18710 9.41 9.32 5.59

8)	 Data summary is done in Pandas by describe for numerical variables and by
value_counts for categorical variables. Numerical correlation can be done
by corr command. Unique values are given by unique command.

In [13]:diamonds.price.describe()
Out[13]:
count	 53940.000000
mean	 3932.799722
std	 3989.439738
min	 326.000000
25%	 950.000000
50%	 2401.000000
75%	 5324.250000
max	 18823.000000
Name: price, dtype: float64

6.8  Data Visualization in R

6  Data Visualization242

In [14]:diamonds.corr() #Numerical Correlations
Out[14]:

carat depth table price x y z

carat 1.000000 0.028224 0.181618 0.921591 0.975094 0.951722 0.953387
depth 0.028224 1.000000 –0.295779 –0.010647 –0.025289 –0.029341 0.094924
table 0.181618 –0.295779 1.000000 0.127134 0.195344 0.183760 0.150929
price 0.921591 –0.010647 0.127134 1.000000 0.884435 0.865421 0.861249
x 0.975094 –0.025289 0.195344 0.884435 1.000000 0.974701 0.970772
y 0.951722 –0.029341 0.183760 0.865421 0.974701 1.000000 0.952006
z 0.953387 0.094924 0.150929 0.861249 0.970772 0.952006 1.000000

In [15]:diamonds['cut'].unique()
Out[15]:array(['Ideal', 'Premium', 'Good', 'Very
Good', 'Fair'], dtype=object)

In [16]:pd.value_counts(diamonds.cut)
Out[16]:
Ideal	 21551
Premium	 13791
Very Good	 12082
Good	 4906
Fair	 1610
Name: cut, dtype: int64

Note: To run a command on a particular column instead of entire data
frame, I can just use the dot notation and its name (i.e., diamonds.price
instead of diamonds. This is analogous to R’s $ notation).

9)	 Group by summary is done by group_by command and cross tabulation
can be done by crosstab.

In [17]:cutgroup=pd.groupby(diamonds,diamonds.cut)
In [18]:type(cutgroup)
Out[18]:
pandas.core.groupby.DataFrameGroupBy
In [19]:cutgroup.price.median()
Out[19]:
cut
Fair	 3282.0
Good	 3050.5
Ideal	 1810.0
Premium	 3185.0
Very Good	 2648.0
Name: price, dtype: float64

243

In [20]:pd.crosstab(diamonds.cut,diamonds.
color,margins='TRUE')
Out[20]:

color D E F G H I J All

cut
Fair 163 224 312 314 303 175 119 1610
Good 662 933 909 871 702 522 307 4906
Ideal 2834 3903 3826 4884 3115 2093 896 21551
Premium 1603 2337 2331 2924 2360 1428 808 13791
Very Good 1513 2400 2164 2299 1824 1204 678 12082
All 6775 9797 9542 11292 8304 5422 2808 53940

Note: We can use dropna to remove missing values in Python, that is,
diamonds= diamonds.dropna(how='any')

10)	 We can also pivot data like a pivot table using pivot command.

In [21]:e=diamonds.groupby(['cut', "color"]).price.
median().reset_index()
e.pivot(index='cut', columns='color',
values='price')
Out[21]:

color D E F G H I J

cut
Fair 3730.0 2956.0 3035 3057.0 3816.0 3246.0 3302
Good 2728.5 2420.0 2647 3340.0 3468.5 3639.5 3733
Ideal 1576.0 1437.0 1775 1857.5 2278.0 2659.0 4096
Premium 2009.0 1928.0 2841 2745.0 4511.0 4640.0 5063
Very Good 2310.0 1989.5 2471 2437.0 3734.0 3888.0 4113

11)	 Using SQL—Python does have the pandasql package, thanks to the team
at YHat (who also made the Rodeo IDE). It is similar to the sqldf package
in R that allows the user to write sql queries to the data frame object. Note
that you need to ensure table names are consistent with SQLite tablename
conventions (thus it makes sense to drop or rename any column name with
any special characters).

In [22]:from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())
In [23]:pysqldf("SELECT * FROM diamonds2 LIMIT 5 ; ")

6.8  Data Visualization in R

6  Data Visualization244

Out[23]:

carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
5 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

In [24]:pysqldf("SELECT * FROM diamonds2 WHERE
carat >4 ;")
Out[24]:

carat cut color clarity depth table price x y z

0 4.01 Premium I I1 61.0 61 15223 10.14 10.10 6.17
1 4.01 Premium J I1 62.5 62 15223 10.02 9.94 6.24
2 4.13 Fair H I1 64.8 61 17329 10.00 9.85 6.43
3 5.01 Fair J I1 65.5 59 18018 10.74 10.54 6.98
4 4.50 Fair J I1 65.8 58 18531 10.23 10.16 6.72

12)	 For data visualization I am going to first use the excellent seaborn
package from http://stanford.edu/~mwaskom/software/seaborn/index.
html. Histograms, boxplots, scatterplots, and jointplots are very easily
plotted using seaborn.

In [25]:sns.distplot(diamonds.price, bins=20,
kde=True, rug=False);

0–5000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

5000 10000
price

15000 20000

http://stanford.edu/~mwaskom/software/seaborn/index.html
http://stanford.edu/~mwaskom/software/seaborn/index.html

245

In [25]:ax = sns.boxplot(x="color", y="price",
data=diamonds)

0

5000

E I J H
color

F G D

pr
ic

e 10000

15000

20000

In [26]:sns.jointplot('price','carat',data=diamonds2)
Out[26]:<seaborn.axisgrid.JointGrid at 0x9717fd8c>

0
–1

0

1

2

3

4

5

6

–5000 5000 10000
price

ca
ra

t

15000 20000

pearsonr = 0.92; p = 0

6.8  Data Visualization in R

In [27]:sns.factorplot(x="color", y="price",
 col="cut", data=diamonds, kind="box", size=4, aspect=.5);

0
E I J H

color

cut = Ideal cut = Premium cut = Good cut = Very Good cut = Fair

F G D E I J H

color

F G D E I J H

color

F G D E I J H

color

F G D E I J H

color

F G D

5000

pr
ic

e

10000

20000

15000

247

13)	 For data visualization, I can also use the ggplot package created by Yhat
(who also created pandasql and rodeo—a RStudio style editor for Python).
It uses the grammar of graphics as created by Wilkinson and popularized
by Hadley Wickham.

In [28]:p = ggplot(aes(x='price',
y='carat',color="clarity"), data=diamonds)
p + geom_point()

6

5

4

3

2

1

0

–1
–5000 0 5000 10000 15000 20000

price

ca
ra

t

Clarity
l1
if
Si1
Si2
Vs1
Vs2
Vvs1
Vvs2

Out[28]:<ggplot: (-917530690)>
14)	 For regression models, a widely used data science technique for business,

I can also use the statsmodel package.

In [80]:import statsmodels.formula.api as sm
In [81]:boston=pd.read_csv("http://
vincentarelbundock.github.io/Rdatasets/csv/MASS/
Boston.csv")
In [82]:boston =boston.drop('Unnamed: 0', 1)
In [83]:boston.head()

6.8  Data Visualization in R

http://vincentarelbundock.github.io/Rdatasets/csv/MASS/Boston.csv
http://vincentarelbundock.github.io/Rdatasets/csv/MASS/Boston.csv
http://vincentarelbundock.github.io/Rdatasets/csv/MASS/Boston.csv

6  Data Visualization248

Out[83]:

crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

0 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
1 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
2 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
3 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
4 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

In [87]:import statsmodels.formula.api as sm
result = sm.ols(formula="medv ~ crim + zn + nox +
ptratio + black + rm ", data=boston).fit()
result.summary()
Out[87]:

Dep. Variable: medv R‐squared: 0.631
Model: OLS Adj. R‐squared: 0.626
Method: Least Squares F‐statistic: 142.0
Date: Fri, 22 Jan 2016 Prob (F‐statistic): 1.49e–104
Time: 13:22:42 Log‐Likelihood: –1588.2
No. Observations: 506 AIC: 3190.
Df Residuals: 499 BIC: 3220.
Df Model: 6
Covariance Type: nonrobust

coef std err t P>|t| [95.0% Conf. Int.]
Intercept –0.3594 4.863 –0.074 0.941 –9.915 9.196
crim –0.0991 0.034 –2.890 0.004 –0.167 –0.032
zn –0.0064 0.014 –0.470 0.638 –0.033 0.020
nox –10.8653 2.865 –3.793 0.000 –16.494 –5.237
ptratio –1.0519 0.135 –7.796 0.000 –1.317 –0.787
black 0.0137 0.003 4.453 0.000 0.008 0.020
rm 6.9796 0.396 17.612 0.000 6.201 7.758

Omnibus: 298.859 Durbin‐Watson: 0.808
Prob(Omnibus): 0.000 Jarque‐Bera (JB): 3305.426
Skew: 2.385 Prob(JB): 0.00
Kurtosis: 14.577 Cond. No. 7.66e+03

In [88]:result.params
Out[88]:
Intercept	 -0.359432
crim	 -0.099122
zn	 -0.006364
nox	 -10.865295

249

ptratio	 -1.051937
black	 0.013737
rm	 6.979587
dtype: float64

15)	 One more thing. For data mining we have the wonderful scikit‐learn
package. For example, see decision trees from http://scikit‐learn.org/
stable/modules/tree.html

16)	 For using both R and Python together, you can use http://beakernotebook.
com/ as it allows you to select kernel specific to each code block, not just
the whole notebook like Jupyter does and makes passing of objects very
easy between languages.

A 50‐page elaborate version of this tutorial is available at http://www.
slideshare.net/ajayohri/a‐data‐science‐tutorial‐in‐python. This tutorial was
first published on the Wiley web site Statisticsviews.com www.statisticsviews.
com/details/feature/8868901/A‐Tutorial‐on‐Python.html

For data scientists working with huge amounts of data, Python is an
increasingly credible option to R to try out in production systems.

6.8  Data Visualization in R

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://beakernotebook.com/
http://beakernotebook.com/
http://www.slideshare.net/ajayohri/a-data-science-tutorial-in-python
http://www.slideshare.net/ajayohri/a-data-science-tutorial-in-python
http://www.statisticsviews.com/details/feature/8868901/A-Tutorial-on-Python.html
http://www.statisticsviews.com/details/feature/8868901/A-Tutorial-on-Python.html

251

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

7

Machine learning is the buzzword of the decade as students and companies vie
to get this skill for business applications. However many parts of machine
learning are quite easy. In supervised learning, we know what we are trying to
predict (a group to class in classification and a number/equation to predict in
regression), whereas in unsupervised learning we do not know what is to be
predicted (no given tag is there), so we do association analysis and cluster
analysis. Text mining on the other hand looks at frequency of words for pattern
analysis. Social network analysis looks at relationships between nodes, edges,
and actors to see how networks behave. Deep learning is an even more recent
case of such advances in techniques.

One of the most widely used techniques is decision trees.
Decision trees in Python (weather dataset)
https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec

1ae5b480

#rattle package in R has weather dataset
#(see help at http://artax.karlin.mff.cuni.cz/r‐help/
library/rattle/html/weather.html)

In [259]:
import os as os

In [260]:
import pandas as pd

In [261]:
os.getcwd()

Out[261]:
'/home/ajayohri'

In [262]:
os.listdir()

Machine Learning Made Easier

https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
http://artax.karlin.mff.cuni.cz/r-help/library/rattle/html/weather.html
http://artax.karlin.mff.cuni.cz/r-help/library/rattle/html/weather.html

252 7  Machine Learning Made Easier

Out[262]:
['.hplip',
 '.xsession-errors.old',
 'VirtualBox VMs',
 'filename.pkl_04.npy',
 '.thunderbird',
 'SVM.R',
 'R',
 'Desktop',
 'filename.pkl_07.npy',
 '.cache',
 '.webex',
 'file.R',
 '.ipython',
 'unique_ids_for_list.html',
 'filename.pkl_11.npy',
 '.Xauthority',
 'Dropbox',
 'examples.desktop',
 'machine learning-plot and bagged pima indians.ipynb',
 'date time.ipynb',
 'Untitled.ipynb',
 '.rstudio-desktop',
 'filename.pkl_01.npy',
 'anaconda3',
 '.dropbox',
 'Music',
 '.pki',
 'rsconnect',
 'GoodReads.ipynb',
 '.config',
 'diamsum.html',
 'filename.pkl_06.npy',
 'data inspection .ipynb',
 '.sudo_as_admin_successful',
 '.continuum',
 '.java',
 'unique ids for list.R',
 '.bashrc-anaconda3.bak',
 '.texmf-var',
 'numpy scipy pandas.ipynb',
 'mozilla.pdf',
 '.dropbox-dist',

2537  Machine Learning Made Easier

 '.bash_logout',
 '.jupyter',
 '.ecryptfs',
 '.dbus',
 '.local',
 '.lyx',
 '.xsession-errors',
 'hebrew',
 'RCommanderMarkdown.Rmd',
 '.bash_history',
 'SAS',
 'nbr2mp4.sh',
 '.adobe',
 '.Skype',
 'filename.pkl_05.npy',
 '.wajig',
 'ajay ohri.odt',
 '.macromedia',
 '.gphoto',
 '.oracle_jre_usage',
 'machine learning-rattle dataset from R.ipynb',
 '.profile',
 'file operations.ipynb',
 'Documents',
 'filename.pkl_09.npy',
 'Videos',
 'RCommander.R',
 'filename.pkl_08.npy',
 '.gstreamer-0.10',
 'SVM.html',
 '.Private',
 'RCommander.txt',
 're for searching strings.ipynb',
 '.Rhistory',
 'filename.pkl_02.npy',
 'RcmdrMarkdown.Rmd',
 'Scikit Tutorial',
 'machine learning.ipynb',
 '.ivy2',
 'assignment2.R',
 'assignment2.html',
 'filename.pkl_03.npy',
 'Public',

7  Machine Learning Made Easier254

 'nbr2mp4.tar',
 'RcmdrMarkdown.md',
 '.bashrc',
 '.mozilla',
 'Pictures',
 'Data Viz Tutorial.ipynb',
 'filename.pkl_10.npy',
 '.RData',
 '.gconf',
 'data transformations.ipynb',
 'RcmdrMarkdown.html',
 'file.html',
 'Scikit Tutorial.ipynb',
 'Strings, Lists and Maps.ipynb',
 'filename.pkl',
 'weather.csv',
 'Downloads',
 '.gnupg',
 '.nano',
 'variables in strings.ipynb',
 'Templates',
 '.ICEauthority',
 '.ipynb_checkpoints']

In [263]:
#Finding only csv files in a directory using os and
glob packages

import glob

path = os.getcwd()
extension = 'csv'
os.chdir(path)
result = [i for i in glob.glob('*.{}'.
format(extension))]

print(result)

['weather.csv']

In [264]:
dataframe=pd.read_csv("weather.csv")

In [265]:
dataframe.head()

Out[265]:

Un-
named:
0 Date Location

Min
Temp

Max
Temp

Rain
fall

Evapo-
ration

Sun-
shine

Wind
Gust
Dir

Wind
Gust
Speed …

Humidity
3 pm

Pressure
9 am

Pressure
3 pm

Cloud
9 am

Cloud
3 pm

Temp
9 am

Temp
3pm

Rain
Today

RISK_
MM

Rain
Tomorrow

0 1 2007‐11‐01 Canberra 8.0 24.3 0.0 3.4 6.3 NW 30.0 … 29 1019.7 1015.0 7 7 14.4 23.6 No 3.6 Yes

1 2 2007‐11‐02 Canberra 14.0 26.9 3.6 4.4 9.7 ENE 39.0 … 36 1012.4 1008.4 5 3 17.5 25.7 Yes 3.6 Yes

2 3 2007‐11‐03 Canberra 13.7 23.4 3.6 5.8 3.3 NW 85.0 … 69 1009.5 1007.2 8 7 15.4 20.2 Yes 39.8 Yes

3 4 2007‐11‐04 Canberra 13.3 15.5 39.8 7.2 9.1 NW 54.0 … 56 1005.5 1007.0 2 7 13.5 14.1 Yes 2.8 Yes

4 5 2007‐11‐05 Canberra 7.6 16.1 2.8 5.6 10.6 SSE 50.0 … 49 1018.3 1018.5 7 7 11.1 15.4 Yes 0.0 No

5 rows × 25 columns

7  Machine Learning Made Easier256

In [266]:
dataframe.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 25 columns):
Unnamed: 0 366 non-null int64
Date 366 non-null object
Location 366 non-null object
MinTemp 366 non-null float64
MaxTemp 366 non-null float64
Rainfall 366 non-null float64
Evaporation 366 non-null float64
Sunshine 363 non-null float64
WindGustDir 363 non-null object
WindGustSpeed 364 non-null float64
WindDir9am 335 non-null object
WindDir3pm 365 non-null object
WindSpeed9am 359 non-null float64
WindSpeed3pm 366 non-null int64
Humidity9am 366 non-null int64
Humidity3pm 366 non-null int64

Min Temp Max Temp Rainfall Evaporation Sunshine
Wind Gust
Speed

Wind Speed
9 am

Wind Speed
3 pm

count 366.000000 366.000000 366.000000 366.000000 363.000000 364.000000 359.000000 366.000000
mean 7.265574 20.550273 1.428415 4.521858 7.909366 39.840659 9.651811 17.986339
std 6.025800 6.690516 4.225800 2.669383 3.481517 13.059807 7.951929 8.856997
min −5.300000 7.600000 0.000000 0.200000 0.000000 13.000000 0.000000 0.000000
25% 2.300000 15.025000 0.000000 2.200000 NaN NaN NaN 11.000000
50% 7.450000 19.650000 0.000000 4.200000 NaN NaN NaN 17.000000
75% 12.500000 25.500000 0.200000 6.400000 NaN NaN NaN 24.000000
max 20.900000 35.800000 39.800000 13.800000 13.600000 98.000000 41.000000 52.000000

257

Pressure9am 366 non-null float64
Pressure3pm 366 non-null float64
Cloud9am 366 non-null int64
Cloud3pm 366 non-null int64
Temp9am 366 non-null float64
Temp3pm 366 non-null float64
RainToday 366 non-null object
RISK_MM 366 non-null float64
RainTomorrow 366 non-null object
dtypes: float64(12), int64(6), object(7)
memory usage: 71.6+ KB

In [267]:
dataframe=dataframe.drop('Unnamed: 0', 1)

In [268]:
dataframe.describe()
/home/ajayohri/anaconda3/lib/python3.5/site-packages/
numpy/lib/function_base.py:3834: RuntimeWarning:
Invalid value encountered in percentile
RuntimeWarning)

Out[268]:

Humidity
9 am

Humidity
3 pm

Pressure
9 am

Pressure
3 pm

Cloud
9 am

Cloud
3 pm

Temp
9 am

Temp
3 pm RISK_MM

366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000
72.035519 44.519126 1019.709016 1016.810383 3.890710 4.024590 12.358470 19.230874 1.428415
13.137058 16.850947 6.686212 6.469422 2.956131 2.666268 5.630832 6.640346 4.225800
36.000000 13.000000 996.500000 996.800000 0.000000 0.000000 0.100000 5.100000 0.000000
64.000000 32.250000 1015.350000 1012.800000 1.000000 1.000000 7.625000 14.150000 0.000000
72.000000 43.000000 1020.150000 1017.400000 3.500000 4.000000 12.550000 18.550000 0.000000
81.000000 55.000000 1024.475000 1021.475000 7.000000 7.000000 17.000000 24.000000 0.200000
99.000000 96.000000 1035.700000 1033.200000 8.000000 8.000000 24.700000 34.500000 39.800000

In [269]:

7  Machine Learning Made Easier

7  Machine Learning Made Easier258

dataframe['RainTomorrow'].unique()

Out[269]:
array(['Yes', 'No'], dtype=object)

In [270]:
dataframe['RainToday'].unique()

Out[270]:
array(['No', 'Yes'], dtype=object)

In [271]:
dataframe['Location'].unique()

Out[271]:
array(['Canberra'], dtype=object)

In [272]:
dataframe['Date'].unique()

Out[272]:
array(['2007-11-01', '2007-11-02', '2007-11-03',
'2007-11-04',

Output truncated by author for publication purposes
 '2008-01-04', '2008-01-05', '2008-01-06',
'2008-01-07',

 '2008-10-30', '2008-10-31'], dtype=object)

In [273]:
Bagged Decision Trees for Classification
from sklearn import cross_validation
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [274]:
dataframe.columns

Out[274]:
Index(['Date', 'Location', 'MinTemp', 'MaxTemp',
'Rainfall', 'Evaporation',

2597.1  Deleting Columns We Dont Need in the Final Decision Tree Model

 'Sunshine', 'WindGustDir', 'WindGustSpeed',
'WindDir9am', 'WindDir3pm',

 'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am',
'Humidity3pm',

 'Pressure9am', 'Pressure3pm', 'Cloud9am',
'Cloud3pm', 'Temp9am',

 'Temp3pm', 'RainToday', 'RISK_MM',
'RainTomorrow'],

 dtype='object')

7.1  Deleting Columns We Dont Need in the Final
Decision Tree Model

In [275]:
del dataframe['Date']

In [276]:
del dataframe['Location']

In [277]:
del dataframe['WindDir9am']

In [278]:
del dataframe['WindSpeed3pm']

In [279]:
del dataframe['WindGustDir']
del dataframe['WindDir3pm']
del dataframe['RISK_MM']

In [280]:
dataframe=dataframe.replace(['Yes', 'No'], [1, 0])
#using replace to change string to numeric values

In [281]:
dataframe=dataframe.dropna()

In [282]:
dataframe.head()

Out[282]:

7  Machine Learning Made Easier260

Min
Temp

Max
Temp

Rain-
fall

Evapo-
ration

Sun-
shine

Wind
Gust
Speed

Wind
Speed
9 am

Humi-
dity
9 am

Humi-
dity
3 pm

Pressure
9 am

Pressure
3 pm

Cloud
9 am

Cloud
3 pm

Temp
9 am

Temp
3 pm

Rain
Today

Rain
Tomor-
row

0 8.0 24.3 0.0 3.4 6.3 30.0 6.0 68 29 1019.7 1015.0 7 7 14.4 23.6 0 1
1 14.0 26.9 3.6 4.4 9.7 39.0 4.0 80 36 1012.4 1008.4 5 3 17.5 25.7 1 1
2 13.7 23.4 3.6 5.8 3.3 85.0 6.0 82 69 1009.5 1007.2 8 7 15.4 20.2 1 1
3 13.3 15.5 39.8 7.2 9.1 54.0 30.0 62 56 1005.5 1007.0 2 7 13.5 14.1 1 1
4 7.6 16.1 2.8 5.6 10.6 50.0 20.0 68 49 1018.3 1018.5 7 7 11.1 15.4 1 0

In [283]:
len(dataframe)

Out[283]:
354

In [284]:
len(dataframe.columns)

Out[284]:
17

In [285]:
names=dataframe.columns
names

Out[285]:
Index(['MinTemp', 'MaxTemp', 'Rainfall',
'Evaporation', 'Sunshine',

 'WindGustSpeed', 'WindSpeed9am', 'Humidity9am',
'Humidity3pm',

 'Pressure9am', 'Pressure3pm', 'Cloud9am',
'Cloud3pm', 'Temp9am',

 'Temp3pm', 'RainToday', 'RainTomorrow'],
 dtype='object')

In [286]:
dataframe.describe()

Out[286]:

Min Temp Max Temp Rain fall Evaporation Sunshine
Wind Gust
Speed

Wind Speed
9 am

Humidity
9 am

count 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000
mean 7.362429 20.601412 1.420904 4.558192 7.925424 40.011299 9.666667 71.875706
std 6.010927 6.708966 4.235358 2.667877 3.510039 13.034488 7.978489 13.161939
min –5.300000 7.600000 0.000000 0.200000 0.000000 13.000000 0.000000 36.000000
25% 2.400000 15.100000 0.000000 2.400000 5.925000 31.000000 6.000000 64.000000
50% 7.500000 19.750000 0.000000 4.200000 8.650000 39.000000 7.000000 72.000000
75% 12.500000 25.500000 0.200000 6.400000 10.600000 46.000000 13.000000 80.000000
max 20.900000 35.800000 39.800000 13.800000 13.600000 98.000000 41.000000 99.000000

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 261

In [287]:
type(dataframe)

Out[287]:
pandas.core.frame.DataFrame

In [288]:
array = dataframe.values

In [289]:
pd.value_counts(dataframe["RainTomorrow"])

Out[289]:
0 290
1 64
Name: RainTomorrow, dtype: int64

In [290]:
array
Out[290]:
array([[8. , 24.3, 0. , ..., 23.6, 0. , 1.],
 [14. , 26.9, 3.6, ..., 25.7, 1. , 1.],
 [13.7, 23.4, 3.6, ..., 20.2, 1. , 1.],
 ...,
 [12.5, 19.9, 0. , ..., 18.3, 0. , 0.],
 [12.5, 26.9, 0. , ..., 25.9, 0. , 0.],
 [12.3, 30.2, 0. , ..., 28.6, 0. , 0.]])

In [291]:
X = array[:,0:16]
Y = array[:,16]
num_folds = 10
num_instances = len(X)
seed = 7

In [292]:
type(X)

Out[292]:

Humidity
3 pm

Pressure
9 am

Pressure
3 pm Cloud 9 am Cloud 3 pm Temp 9 am Temp 3 pm Rain Today

Rain
Tomorrow

354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000
44.454802 1019.562147 1016.692090 3.920904 4.019774 12.438701 19.271469 0.180791 0.180791
16.944316 6.602685 6.373679 2.962363 2.672312 5.630160 6.663681 0.385390 0.385390
13.000000 996.500000 996.800000 0.000000 0.000000 0.100000 5.100000 0.000000 0.000000
32.000000 1015.225000 1012.725000 1.000000 1.000000 7.725000 14.300000 0.000000 0.000000
43.000000 1020.000000 1017.200000 4.000000 4.000000 12.600000 18.600000 0.000000 0.000000
54.750000 1024.400000 1021.350000 7.000000 7.000000 17.000000 24.000000 0.000000 0.000000
96.000000 1035.700000 1033.200000 8.000000 8.000000 24.700000 34.500000 1.000000 1.000000

numpy.ndarray

In [293]:
X

Out[293]:
array([[8. , 24.3, 0. , …, 14.4, 23.6, 0.],
 [14. , 26.9, 3.6, …, 17.5, 25.7, 1.],
 [13.7, 23.4, 3.6, …, 15.4, 20.2, 1.],
 ...,
 [12.5, 19.9, 0. , …, 14.5, 18.3, 0.],
 [12.5, 26.9, 0. , …, 15.8, 25.9, 0.],
 [12.3, 30.2, 0. , …, 23.8, 28.6, 0.]])

In [294]:
#Y[Y == "Yes"] = 1 An alternative way to make a NumPy array change values
#Y[Y == "No"] = 0
Y

Out[294]:
array([1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
 --output truncated by author
 0., 0., 0.])

In [295]:
dtr = tree.DecisionTreeRegressor(max_depth=3)
dtr.fit(X, Y)

Out[295]:
DecisionTreeRegressor(criterion='mse', max_depth=3, max_features=None,
 max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False, random_state=None,
 splitter='best')

In [296]:
from sklearn.metrics import roc_curve, auc

In [297]:
#!sudo pip install pydotplus
http://scikit‐learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble‐machine‐learning‐algorithms‐python‐
scikit‐learn/

http://machinelearningmastery.com/compare‐machine‐learning‐algorithms‐python‐
scikit‐learn/

In [298]:
#!pip freeze
#checking if we have the right packages

In [299]:
#!pip install --upgrade pip

In [300]:
#!pip install pydotplus

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/

In [301]:
import pydotplus as pydot
from IPython.display import Image
from sklearn.externals.six import StringIO

In [302]:
Graphviz
#sudo add‐apt‐repository ppa:gviz‐adm/graphviz‐dev
sudo apt‐get update
http://www.graphviz.org/Download_linux_ubuntu.php

In [303]:
dot_data = StringIO()

In [304]:
tree.export_graphviz(dtr, out_file=dot_data,feature_names=names[:-1])

In [305]:
graph = pydot.graph_from_dot_data(dot_data.getvalue())

In [306]:
Image(graph.create_png())

http://www.graphviz.org/Download_linux_ubuntu.php

Out[306]:

Pressure3pm <= 1011.9
mse = 0.1481
samples = 354
value = 0.1808

Pressure9am <= 1015.2
mse = 0.142
samples = 35

value = 0.1714

Humidity9am <= 93.5
mse = 0.0613
samples = 259
value = 0.0656

Humidity3pm <= 37.0
mse = 0.2461
samples = 16

value = 0.5625

mse = 0.213
samples = 13

value = 0.6923

mse = 0.0
samples = 3
value = 0.0

mse = 0.2367
samples = 13

value = 0.3846

mse = 0.0464
samples = 246
value = 0.0488

mse = 0.25
samples = 6
value = 0.5

mse = 0.0927
samples = 29

value = 0.1034

mse = 0.0
samples = 17
value = 1.0

mse = 0.2469
samples = 27

value = 0.5556

FalseTrue

Cloud3pm <= 7.5
mse = 0.0856
samples = 275
value = 0.0945

Sunshine <= 8.85
mse = 0.2496
samples = 79
value = 0.481

Evaporation <= 5.6
mse = 0.1983
samples = 44

value = 0.7273

In [307]:
kfold = cross_validation.KFold(n=num_instances,
n_folds=num_folds, random_state=seed)

cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart,
n_estimators=num_trees, random_state=seed)

In [308]:
model

Out[308]:
BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None,
criterion='gini', max_depth=None,

 max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
 min_samples_split=2, min_weight_fraction_leaf=0.0,
 presort=False, random_state=None, splitter='best'),
 bootstrap=True, bootstrap_features=False, max_features=1.0,
 max_samples=1.0, n_estimators=100, n_jobs=1, oob_score=False,
 random_state=7, verbose=0, warm_start=False)

In [309]:
kfold

Out[309]:
sklearn.cross_validation.KFold(n=354, n_folds=10, shuffle=False, random_state=7)

In [310]:
results = cross_validation.cross_val_score(model, X, Y, cv=kfold)
print(results.mean())
0.850873015873

In [311]:
results

Out[311]:
array([0.75 , 0.86111111, 0.69444444, 0.88888889, 0.88571429,
 0.82857143, 0.91428571, 0.85714286, 0.94285714, 0.88571429])

Decision trees in Python (2)
https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d

Bagged Decision Trees for Classification
import pandas
from sklearn import cross_validation
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [2]:
url = "https://archive.ics.uci.edu/ml/machine‐learning‐databases/pima‐indians‐
diabetes/pima‐indians‐diabetes.data"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pandas.read_csv(url, names=names)
array = dataframe.values

In [3]:
names[:-1]

Out[3]:
['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age']

In [4]:
dataframe.head()

https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data

Out[4]:

preg plas pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1

In [5]:
pandas.value_counts(dataframe["class"])

Out[5]:
0 500
1 268
Name: class, dtype: int64

In [6]:
array

Out[6]:
array([[6. , 148. , 72. , ..., 0.627, 50. , 1.],
 [1. , 85. , 66. , ..., 0.351, 31. , 0.],
 [8. , 183. , 64. , ..., 0.672, 32. , 1.],
 ...,
 [5. , 121. , 72. , ..., 0.245, 30. , 0.],
 [1. , 126. , 60. , ..., 0.349, 47. , 1.],
 [1. , 93. , 70. , ..., 0.315, 23. , 0.]])

In [7]:
X = array[:,0:8]
Y = array[:,8]
num_folds = 10
num_instances = len(X)
seed = 7

In [8]:
type(X)

Out[8]:
numpy.ndarray

In [9]:
X

Out[9]:
array([[6. , 148. , 72. , ..., 33.6 , 0.627, 50.],
 [1. , 85. , 66. , ..., 26.6 , 0.351, 31.],
 [8. , 183. , 64. , ..., 23.3 , 0.672, 32.],
 ...,
 [5. , 121. , 72. , ..., 26.2 , 0.245, 30.],
 [1. , 126. , 60. , ..., 30.1 , 0.349, 47.],
 [1. , 93. , 70. , ..., 30.4 , 0.315, 23.]])

In [10]:
Y

Out[10]:
array([1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 1., 0.,
 1., 1., 1., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1.,
 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1.,
 1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0.,
 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1.,
 0., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0.,
 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 1.,
 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 1.,
 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1.,
 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0.,
 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0.,
 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1., 0.,
 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.,
 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1.,
 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0.,
 0., 1., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 0.,
 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1.,
 0., 1., 0., 0., 1., 0., 1., 0., 0., 1., 1., 0., 0.,
 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0.,
 0., 1., 0., 0., 0., 1., 1., 1., 0., 0., 1., 0., 1.,
 0., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0.,
 1., 0., 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 0.,
 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 1.,

 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
 0., 0., 0., 0., 1., 1., 1., 0., 1., 1., 0., 0., 1.,
 0., 0., 1., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0.,
 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0.,
 0., 1., 0., 0., 1., 0., 0., 1., 0., 1., 1., 0., 1.,
 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 1.,
 0., 1., 0., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0.,
 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.,
 0., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0.,
 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1.,
 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1.,
 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1.,
 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0.,
 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
 0., 0., 0., 0., 0., 1., 0., 1., 1., 0., 0., 0., 1.,
 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 1., 0., 0.,
 1., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0.,
 1., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.,
 0., 1., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 0.,
 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1., 1.,
 1., 1., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1.,
 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0.,

 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1.,
 1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 0.,
 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0.,
 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.,
 0., 0., 1., 0., 0., 1., 0., 1., 1., 1., 0., 0., 1.,
 1., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0.])

In [11]:
dtr = tree.DecisionTreeRegressor(max_depth=3)
dtr.fit(X, Y)

Out[11]:
DecisionTreeRegressor(criterion='mse', max_depth=3, max_features=None,
 max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False, random_state=None,
 splitter='best')

In [12]:
from sklearn.metrics import roc_curve, auc

In [13]:
#!sudo pip install pydotplus
http://scikit‐learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble‐machine‐learning‐algorithms‐python‐
scikit‐learn/

http://machinelearningmastery.com/compare‐machine‐learning‐algorithms‐python‐
scikit‐learn/

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 273

In [14]:
#!pip freeze
#checking if we have the right packages

In [15]:
#!pip install --upgrade pip

In [16]:
#!pip install pydotplus

In [17]:
import pydotplus as pydot
from IPython.display import Image
from sklearn.externals.six import StringIO

In [18]:
Graphviz
#sudo add‐apt‐repository ppa:gviz‐adm/graphviz‐dev
sudo apt‐get update
http://www.graphviz.org/Download_linux_ubuntu.php

In [19]:
dot_data = StringIO()

In [20]:
tree.export_graphviz(dtr, out_file=dot_data,
feature_names=names[:-1])

In [21]:
graph = pydot.graph_from_dot_data(dot_data.getvalue())

In [22]:
Image(graph.create_png())

http://www.graphviz.org/Download_linux_ubuntu.php

Out[22]:

plas <= 127.5
mse = 0.2272
samples = 768
value = 0.349

plas <= 145.5
mse = 0.2161
samples = 76

value = 0.3158

plas <= 157.5
mse = 0.1995
samples = 207
value = 0.7246

age <= 28.5
mse = 0.1563
samples = 485
value = 0.1938

mass <= 29.95
mse = 0.2368
samples = 283
value = 0.6148

mass <= 26.35
mse = 0.2217
samples = 214
value = 0.3318

mass <= 45.4
mse = 0.0777
samples = 271
value = 0.0849

mse = 0.1875
samples = 4
value = 0.75

mse = 0.0693
samples = 267
value = 0.0749

mse = 0.0464
samples = 41

value = 0.0488

mse = 0.2398
samples = 173
value = 0.3988

mse = 0.1249
samples = 41

value = 0.1463

mse = 0.2498
samples = 35

value = 0.5143

mse = 0.2382
samples = 115
value = 0.6087

mse = 0.1134
samples = 92

value = 0.8696

FalseTrue

In [23]:
kfold = cross_validation.KFold(n=num_instances, n_folds=num_folds, random_state=seed)
cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees,
random_state=seed)

In [24]:
model

Out[24]:
BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None,
criterion='gini', max_depth=None,

 max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
 min_samples_split=2, min_weight_fraction_leaf=0.0,
 presort=False, random_state=None, splitter='best'),
 bootstrap=True, bootstrap_features=False, max_features=1.0,
 max_samples=1.0, n_estimators=100, n_jobs=1, oob_score=False,
 random_state=7, verbose=0, warm_start=False)

In [25]:
kfold

Out[25]:
sklearn.cross_validation.KFold(n=768, n_folds=10, shuffle=False, random_state=7)

In [26]:
results = cross_validation.cross_val_score(model, X, Y, cv=kfold)
print(results.mean())
0.770745044429

In [27]:
results

Out[27]:
array([0.67532468, 0.81818182, 0.75324675, 0.63636364, 0.81818182,
 0.81818182, 0.85714286, 0.85714286, 0.69736842, 0.77631579])

7  Machine Learning Made Easier276

7.1.1  Decision Trees in R

Decision trees in R can be done through multiple packages. Primary are condi-
tional, traditional, and CHAID.

See http://rpubs.com/newajay/classification and http://rpubs.com/newajay/
partyR

#install.packages("party")
library(party)
Loading required package: grid
Loading required package: mvtnorm
Loading required package: modeltools
Loading required package: stats4
Loading required package: strucchange
Loading required package: zoo

Attaching package: 'zoo'
The following objects are masked from
'package:base':

as.Date, as.Date.numeric
Loading required package: sandwich
data("iris")
names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
"Petal.Width"

[5] "Species"
fit2 <- ctree(Species ~ Sepal.Length + Petal.Length +
Sepal.Width ,

 data=iris)

http://rpubs.com/newajay/classification
http://rpubs.com/newajay/partyR
http://rpubs.com/newajay/partyR

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 277

plot(fit2)

≤1.9 >1.9

>4.7

Petal.Length
p < 0.001

Petal.Length
p < 0.001

Petal.Length
p = 0.016

5

3

setosa
0

0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

setosa setosa setosa

Node 2 (n = 50) Node 4 (n = 45) Node 6 (n = 13) Node 7 (n = 42)

1

≤4.7

≤5 >5

print(fit2)

Conditional inference tree with 4 terminal nodes

Response: Species
Inputs: Sepal.Length, Petal.Length, Sepal.Width
Number of observations: 150

1) Petal.Length <= 1.9; criterion = 1, statistic =
140.264

2)* weights = 50
1) Petal.Length > 1.9
3) Petal.Length <= 4.7; criterion = 1, statistic
= 61.228

4)* weights = 45
3) Petal.Length > 4.7
5) Petal.Length <= 5; criterion = 0.984,
statistic = 7.701

6)* weights = 13

7  Machine Learning Made Easier278

5) Petal.Length > 5
7)* weights = 42

nodes(fit2,1)
[[1]]
1) Petal.Length <= 1.9; criterion = 1, statistic =
140.264

2)* weights = 50
1) Petal.Length > 1.9
3) Petal.Length <= 4.7; criterion = 1, statistic
= 61.228

4)* weights = 45
3) Petal.Length > 4.7
5) Petal.Length <= 5; criterion = 0.984,
statistic = 7.701

6)* weights = 13
5) Petal.Length > 5
7)* weights = 42

nodes(fit2,3)
[[1]]
3) Petal.Length <= 4.7; criterion = 1, statistic =
61.228

4)* weights = 45
3) Petal.Length > 4.7
5) Petal.Length <= 5; criterion = 0.984, statistic
= 7.701

6)* weights = 13
5) Petal.Length > 5
7)* weights = 42

table(Predict(fit2), iris$Species)

setosa versicolor virginica
setosa 50 0 0
versicolor 0 44 1
virginica 0 6 49

#install.packages("randomForest")
library(randomForest)
randomForest 4.6-12
Type rfNews() to see new features/changes/bug
fixes.

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 279

fit3 <- randomForest(Species ~ Sepal.Length + Petal.
Length + Sepal.Width ,

 data=iris)
print(fit3)

Call:
randomForest(formula = Species ~ Sepal.Length +
Petal.Length + Sepal.Width, data = iris)

Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 1

OOB estimate of error rate: 7.33%
Confusion matrix:
setosa versicolor virginica class.error
setosa 50 0 0 0.00
versicolor 0 44 6 0.12
virginica 0 5 45 0.10

importance(fit3)
MeanDecreaseGini
Sepal.Length 26.45171
Petal.Length 54.09109
Sepal.Width 15.53006
plot(fit3)
varImpPlot(fit3)

Petal.Length

Sepal.Length

Sepal.Width

0 10 20 30

fit3

MeanDecreaseGini

40 50

7  Machine Learning Made Easier280

iris$predicted.response <- predict(fit3 ,iris)
library(e1071)
#install.packages("caret")
library(caret)
Loading required package: lattice
Loading required package: ggplot2

Attaching package: 'ggplot2'
The following object is masked from 'package:
random Forest':

margin
confusionMatrix(data=iris$predicted.response,
 reference=iris$Species,
 positive='yes')
Confusion Matrix and Statistics

Reference
Prediction setosa versicolor virginica
setosa 50 0 0
versicolor 0 50 0
virginica 0 0 50

Overall Statistics

Accuracy : 1
95% CI : (0.9757, 1)
No Information Rate : 0.3333
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 1
Mcnemar's Test P-Value : NA

Statistics by Class:

Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 1.0000 1.0000
Specificity 1.0000 1.0000 1.0000
Pos Pred Value 1.0000 1.0000 1.0000
Neg Pred Value 1.0000 1.0000 1.0000
Prevalence 0.3333 0.3333 0.3333
Detection Rate 0.3333 0.3333 0.3333
Detection Prevalence 0.3333 0.3333 0.3333
Balanced Accuracy 1.0000 1.0000 1.0000

And

library(party)
Loading required package: grid
Loading required package: mvtnorm
Loading required package: modeltools
Loading required package: stats4
Loading required package: strucchange
Loading required package: zoo

Attaching package: 'zoo'
The following objects are masked from 'package:base':

as.Date, as.Date.numeric
Loading required package: sandwich
data(iris)

7  Machine Learning Made Easier282

fit2 <- ctree(Species ~ Sepal.Length + Petal.Length +
Sepal.Width ,

 data=iris)
plot(fit2)

≤1.9 >1.9

>4.7

Petal.Length
p < 0.001

Petal.Length
p < 0.001

Petal.Length
p = 0.016

5

3

setosa
0

0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

setosa setosa setosa

Node 2 (n = 50) Node 4 (n = 45) Node 6 (n = 13) Node 7 (n = 42)

1

≤4.7

≤5 >5

table(Predict(fit2), iris$Species)

setosa versicolor virginica
setosa 50 0 0
versicolor 0 44 1
virginica 0 6 49
library(randomForest)
randomForest 4.6-12
Type rfNews() to see new features/changes/bug fixes.
fit3 <- randomForest(Species ~ Sepal.Length + Petal.
Length + Sepal.Width ,

 data=iris)
print(fit3)

Call:
randomForest(formula = Species ~ Sepal.Length +
Petal.Length + Sepal.Width, data = iris)

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 283

Type of random forest:
classification

Number of trees: 500
No. of variables tried at each split: 1

OOB estimate of error rate: 6.67%
Confusion matrix:
setosa versicolor virginica class.error
setosa 50 0 0 0.00
versicolor 0 44 6 0.12
virginica 0 4 46 0.08
library(e1071)
#install.packages("caret")
library(caret)
Loading required package: lattice
Loading required package: ggplot2

Attaching package: 'ggplot2'
The following object is masked from
'package:randomForest':

margin
iris$predicted.response <- predict(fit3 ,iris)
confusionMatrix(data=iris$predicted.response,
 reference=iris$Species,
 positive='yes')
Confusion Matrix and Statistics

Reference
Prediction setosa versicolor virginica
setosa 50 0 0
versicolor 0 49 0
virginica 0 1 50

Overall Statistics

Accuracy : 0.9933
95% CI : (0.9634, 0.9998)
No Information Rate : 0.3333
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.99
Mcnemar's Test P-Value : NA

Statistics by Class:

Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 0.9800 1.0000
Specificity 1.0000 1.0000 0.9900
Pos Pred Value 1.0000 1.0000 0.9804
Neg Pred Value 1.0000 0.9901 1.0000
Prevalence 0.3333 0.3333 0.3333
Detection Rate 0.3333 0.3267 0.3333
Detection Prevalence 0.3333 0.3267 0.3400
Balanced Accuracy 1.0000 0.9900 0.9950
x = iris[,-5]
y = iris$Species

model = train(x,y,'nb',trControl=trainControl(method='cv',number=10))
Loading required package: klaR
Loading required package: MASS
model
Naive Bayes

150 samples
5 predictor
3 classes: 'setosa', 'versicolor', 'virginica'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 135, 135, 135, 135, 135, 135, ...

Resampling results across tuning parameters:

usekernel Accuracy Kappa
FALSE 0.9866667 0.98
TRUE 0.9800000 0.97

Tuning parameter 'fL' was held constant at a value of 0
Tuning
parameter 'adjust' was held constant at a value of 1
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were fL = 0, usekernel = FALSE
and adjust = 1.
predict(model$finalModel,x)
$class
[1] setosa setosa setosa setosa setosa setosa
[7] setosa setosa setosa setosa setosa setosa
[13] setosa setosa setosa setosa setosa setosa
[19] setosa setosa setosa setosa setosa setosa
[25] setosa setosa setosa setosa setosa setosa
[31] setosa setosa setosa setosa setosa setosa
[37] setosa setosa setosa setosa setosa setosa
[43] setosa setosa setosa setosa setosa setosa
[49] setosa setosa versicolor versicolor versicolor versicolor
[55] versicolor versicolor versicolor versicolor versicolor versicolor
[61] versicolor versicolor versicolor versicolor versicolor versicolor
[67] versicolor versicolor versicolor versicolor versicolor versicolor
[73] versicolor versicolor versicolor versicolor versicolor versicolor

[79] versicolor versicolor versicolor versicolor versicolor virginica
[85] versicolor versicolor versicolor versicolor versicolor versicolor
[91] versicolor versicolor versicolor versicolor versicolor versicolor
[97] versicolor versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica virginica
[139] virginica virginica virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica

$posterior
setosa versicolor virginica
[1,] 1.000000e+00 2.981309e-21 2.152373e-28
[2,] 1.000000e+00 3.169312e-20 6.938030e-28
[3,] 1.000000e+00 2.367113e-21 7.240956e-29
[4,] 1.000000e+00 3.069606e-20 8.690636e-28
[5,] 1.000000e+00 1.017337e-21 8.885794e-29
[6,] 1.000000e+00 2.717732e-17 4.344285e-24
[7,] 1.000000e+00 2.321639e-20 7.988271e-28
[8,] 1.000000e+00 1.390751e-20 8.166995e-28
[9,] 1.000000e+00 1.990156e-20 3.606469e-28
[10,] 1.000000e+00 7.378931e-21 3.615492e-28
[11,] 1.000000e+00 9.396089e-21 1.474623e-27
[12,] 1.000000e+00 3.461964e-20 2.093627e-27
[13,] 1.000000e+00 2.804520e-21 1.010192e-28

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 287

[14,] 1.000000e+00 1.799033e-22 6.060578e-30
[15,] 1.000000e+00 5.533879e-22 2.485033e-28
[16,] 1.000000e+00 6.273863e-20 4.509864e-26
[17,] 1.000000e+00 1.106658e-19 1.282419e-26
[18,] 1.000000e+00 4.841773e-20 2.350011e-27
[19,] 1.000000e+00 1.126175e-17 2.567180e-24
[20,] 1.000000e+00 1.808513e-20 1.963924e-27
[21,] 1.000000e+00 2.178382e-18 2.013989e-25
[22,] 1.000000e+00 1.210057e-18 7.788592e-26
[23,] 1.000000e+00 4.535220e-23 3.130074e-30
[24,] 1.000000e+00 3.147327e-14 8.175305e-22
[25,] 1.000000e+00 1.838507e-17 1.553757e-24
[26,] 1.000000e+00 6.873990e-19 1.830374e-26
[27,] 1.000000e+00 3.192598e-17 1.045146e-24
[28,] 1.000000e+00 1.542562e-20 1.274394e-27
[29,] 1.000000e+00 8.833285e-21 5.368077e-28
[30,] 1.000000e+00 9.557935e-20 3.652571e-27
[31,] 1.000000e+00 2.166837e-19 6.730536e-27
[32,] 1.000000e+00 3.940500e-17 1.546678e-24
[33,] 1.000000e+00 1.609092e-23 1.013278e-29
[34,] 1.000000e+00 7.222217e-23 4.261853e-29
[35,] 1.000000e+00 6.289348e-20 1.831694e-27
[36,] 1.000000e+00 2.850926e-21 8.874002e-29
[37,] 1.000000e+00 7.746279e-21 7.235628e-28
[38,] 1.000000e+00 8.623934e-23 1.223633e-29
[39,] 1.000000e+00 4.612936e-21 9.655450e-29
[40,] 1.000000e+00 2.009325e-20 1.237755e-27
[41,] 1.000000e+00 1.300634e-20 5.657689e-28
[42,] 1.000000e+00 1.577617e-18 5.717219e-27
[43,] 1.000000e+00 1.494911e-21 4.800333e-29
[44,] 1.000000e+00 1.076475e-13 3.721344e-21
[45,] 1.000000e+00 1.357569e-15 1.708326e-22
[46,] 1.000000e+00 3.882113e-19 5.587814e-27
[47,] 1.000000e+00 5.086735e-21 8.960156e-28
[48,] 1.000000e+00 5.012793e-21 1.636566e-28
[49,] 1.000000e+00 5.717245e-21 8.231337e-28
[50,] 1.000000e+00 7.713456e-21 3.349997e-28
[51,] 6.225045e-110 9.997479e-01 2.520714e-04
[52,] 8.570847e-103 9.999382e-01 6.175742e-05
[53,] 1.215697e-123 9.988066e-01 1.193433e-03
[54,] 1.152529e-72 1.000000e+00 3.867457e-08
[55,] 1.581871e-108 9.999467e-01 5.331762e-05
[56,] 1.972563e-92 9.999990e-01 1.020052e-06
[57,] 7.022043e-116 9.994729e-01 5.271422e-04

7  Machine Learning Made Easier288

[58,] 2.601790e-37 1.000000e+00 3.183182e-10
[59,] 6.767475e-100 9.999892e-01 1.078777e-05
[60,] 5.102801e-72 9.999999e-01 1.093625e-07
[61,] 7.504643e-44 1.000000e+00 3.208078e-10
[62,] 4.917431e-89 9.999958e-01 4.245756e-06
[63,] 4.725838e-63 1.000000e+00 7.695236e-09
[64,] 1.089964e-106 9.999846e-01 1.544774e-05
[65,] 4.887696e-58 1.000000e+00 3.060696e-08
[66,] 1.579126e-95 9.999779e-01 2.214465e-05
[67,] 1.379538e-100 9.999896e-01 1.037882e-05
[68,] 2.067506e-65 1.000000e+00 2.048320e-08
[69,] 6.720035e-104 9.999940e-01 5.953299e-06
[70,] 3.077859e-61 1.000000e+00 8.918403e-09
[71,] 6.643323e-130 9.947081e-01 5.291896e-03
[72,] 1.273962e-73 9.999998e-01 2.303272e-07
[73,] 3.635930e-122 9.999168e-01 8.322850e-05
[74,] 1.343761e-98 9.999979e-01 2.106614e-06
[75,] 3.069700e-86 9.999982e-01 1.764714e-06
[76,] 2.623805e-95 9.999861e-01 1.392484e-05
[77,] 1.747438e-114 9.998994e-01 1.006309e-04
[78,] 8.854376e-138 9.883852e-01 1.161480e-02
[79,] 5.212805e-102 9.999850e-01 1.501794e-05
[80,] 1.468423e-44 1.000000e+00 1.634262e-09
[81,] 1.277115e-57 1.000000e+00 4.592000e-09
[82,] 8.948524e-51 1.000000e+00 1.778126e-09
[83,] 3.517650e-65 1.000000e+00 3.430714e-08
[84,] 2.726206e-135 3.076150e-02 9.692385e-01
[85,] 4.238525e-100 9.999916e-01 8.405606e-06
[86,] 1.332644e-105 9.998521e-01 1.478728e-04
[87,] 2.875899e-113 9.997405e-01 2.595475e-04
[88,] 4.973519e-91 9.999993e-01 7.170422e-07
[89,] 2.070566e-75 9.999998e-01 2.429045e-07
[90,] 2.273490e-72 9.999999e-01 5.500821e-08
[91,] 5.215785e-84 9.999998e-01 1.520450e-07
[92,] 5.960938e-102 9.999882e-01 1.182936e-05
[93,] 5.251986e-69 1.000000e+00 4.173171e-08
[94,] 1.360017e-37 1.000000e+00 2.771698e-10
[95,] 6.219736e-80 9.999998e-01 2.006854e-07
[96,] 1.453599e-75 9.999998e-01 1.800789e-07
[97,] 8.474883e-80 9.999997e-01 3.376164e-07
[98,] 1.875115e-85 9.999988e-01 1.164505e-06
[99,] 5.826890e-33 1.000000e+00 3.157898e-10
[100,] 4.078752e-76 9.999998e-01 1.832703e-07

7.1  Deleting Columns We Dont Need in the Final Decision Tree Model 289

[101,] 3.993755e-252 2.062063e-12 1.000000e+00
[102,] 1.262363e-152 5.598282e-04 9.994402e-01
[103,] 2.460661e-219 4.654977e-09 1.000000e+00
[104,] 2.871277e-176 4.592219e-05 9.999541e-01
[105,] 8.299887e-217 6.350771e-09 1.000000e+00
[106,] 1.371182e-270 7.614910e-12 1.000000e+00
[107,] 7.258155e-109 4.096782e-01 5.903218e-01
[108,] 3.741935e-227 3.564099e-08 1.000000e+00
[109,] 5.567821e-191 1.165303e-05 9.999883e-01
[110,] 2.052443e-263 4.923323e-14 1.000000e+00
[111,] 8.673566e-162 9.795170e-06 9.999902e-01
[112,] 4.233346e-166 6.357027e-05 9.999364e-01
[113,] 4.360086e-193 1.246172e-07 9.999999e-01
[114,] 6.229150e-154 2.887102e-04 9.997113e-01
[115,] 2.201429e-189 2.786497e-08 1.000000e+00
[116,] 2.949946e-194 1.225678e-08 1.000000e+00
[117,] 2.915226e-171 4.314790e-05 9.999569e-01
[118,] 1.347608e-284 5.745992e-14 1.000000e+00
[119,] 2.786402e-309 2.302938e-14 1.000000e+00
[120,] 3.307637e-125 3.037334e-01 6.962666e-01
[121,] 2.194169e-220 3.424331e-10 1.000000e+00
[122,] 3.376038e-148 3.083326e-04 9.996917e-01
[123,] 6.251357e-272 2.341745e-11 1.000000e+00
[124,] 5.094321e-138 3.139418e-03 9.968606e-01
[125,] 6.315724e-204 2.601027e-08 1.000000e+00
[126,] 5.257396e-206 1.901615e-07 9.999998e-01
[127,] 1.851587e-132 5.186340e-03 9.948137e-01
[128,] 9.865968e-137 2.542930e-03 9.974571e-01
[129,] 5.230872e-197 2.791477e-07 9.999997e-01
[130,] 7.020556e-182 1.647833e-05 9.999835e-01
[131,] 6.306827e-221 2.428996e-08 1.000000e+00
[132,] 2.539020e-250 9.337782e-12 1.000000e+00
[133,] 2.210816e-204 4.000640e-08 1.000000e+00
[134,] 3.732889e-131 4.709186e-02 9.529081e-01
[135,] 1.561444e-153 1.886075e-02 9.811392e-01
[136,] 7.419068e-252 2.896100e-12 1.000000e+00
[137,] 1.004503e-218 1.948671e-10 1.000000e+00
[138,] 1.349608e-170 4.383372e-05 9.999562e-01
[139,] 2.480958e-131 4.974797e-03 9.950252e-01
[140,] 8.440522e-188 1.353834e-07 9.999999e-01
[141,] 2.334365e-221 1.491244e-10 1.000000e+00
[142,] 2.179140e-186 1.270533e-08 1.000000e+00
[143,] 1.262363e-152 5.598282e-04 9.994402e-01

[144,] 3.426814e-232 1.319403e-10 1.000000e+00
[145,] 2.011574e-235 5.241271e-12 1.000000e+00
[146,] 1.078519e-190 1.583110e-08 1.000000e+00
[147,] 1.091014e-149 5.695800e-04 9.994304e-01
[148,] 1.847697e-167 8.800598e-06 9.999912e-01
[149,] 1.439996e-198 6.768314e-09 1.000000e+00
[150,] 2.944253e-146 1.272237e-03 9.987278e-01
table(predict(model$finalModel,x)$class,y)
y
setosa versicolor virginica
setosa 50 0 0
versicolor 0 49 0
virginica 0 1 50
naive_iris <- NaiveBayes(iris$Species ~ ., data = iris)
#plot(naive_iris)
library(rpart)
fit4 <- rpart(Species ~ Sepal.Length + Petal.Length + Sepal.Width ,
 data=iris,method = "class")
print(fit4)
n= 150

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *
3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)

6) Petal.Length< 4.75 45 1 versicolor (0.00000000 0.97777778 0.02222222) *
7) Petal.Length>=4.75 55 6 virginica (0.00000000 0.10909091 0.89090909) *
library(rattle)
Rattle: A free graphical interface for data mining with R.
Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
Type 'rattle()' to shake, rattle, and roll your data.

fancyRpartPlot(fit4)

Rattle 2017-Feb-12 16:40:14 Dell

setosa
1.00 .00 .00

33%

setosa
.33 .33 .33

100%

yes noPetal.Length<2.4

Petal.Length<4.8

versicolor
.00 .98 .02

30%

virginica
.00 .11 .89

37%

1

versicolor
.00 .50 .50

67%

3

6 72

#rest models are in http://rpubs.com/newajay/chaid

#SOURCE https://sites.google.com/site/kittipat/rtechniques/usingchaiddecisiontreeinr

#install.packages("CHAID", repos="http://R‐Forge.
R‑project.org")

library("CHAID")
Loading required package: partykit

Attaching package: 'partykit'
The following objects are masked from 'package:party':

cforest, ctree, ctree_control, edge_simple, mob, mob_control,
node_barplot, node_bivplot, node_boxplot, node_inner,
node_surv, node_terminal
data(iris)
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1
...

ctrl <- chaid:control(minsplit = 20, minbucket = 5, minprob = 0)

http://rpubs.com/newajay/chaid
https://sites.google.com/site/kittipat/rtechniques/usingchaiddecisiontreeinr
http://R-Forge.R-project.org
http://R-Forge.R-project.org

iris=lapply(iris,as.factor)
chaidiris <- chaid(Species ~ Sepal.Length + Petal.Length + Sepal.Width + Petal.Width ,
 data=iris, control = ctrl)

print(chaidiris)

Model formula:
Species ~ Sepal.Length + Petal.Length + Sepal.Width + Petal.Width

Fitted party:
[1] root
| [2] Petal.Width in 0.1, 0.2, 0.3, 0.4, 0.5, 0.6: setosa (n = 50, err = 0.0%)
| [3] Petal.Width in 1, 1.1, 1.2, 1.3: versicolor (n = 28, err = 0.0%)
| [4] Petal.Width in 1.4, 1.5, 1.6, 1.7: versicolor (n = 26, err = 19.2%)
| [5] Petal.Width in 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5: virginica (n = 46,
err = 2.2%)

Number of inner nodes: 1
Number of terminal nodes: 4

7  Machine Learning Made Easier294

7.2  Time Series

Time series forecasting is very easily done in R thanks to auto.arima in
forecast package. In Python it is not automated so easily though statsmod-
els has libraries for it. The reader is thus advised to forecast in R and then
apply model in Python.

R Code from http://rpubs.com/newajay/ts

data("AirPassengers")
library(forecast)
Loading required package: zoo

Attaching package: 'zoo'
The following objects are masked from
'package:base':

as.Date, as.Date.numeric
Loading required package: timeDate
This is forecast 7.3
ts.plot(AirPassengers)

600

500

400

300

200

A
irP

as
se

ng
er

s

100

1950 1952 1954 1956

Time

1958 1960

http://rpubs.com/newajay/ts

decompose(AirPassengers)
$x
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

$seasonal
Jan Feb Mar Apr May Jun
1949 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1950 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1951 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1952 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1953 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1954 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1955 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1956 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1957 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1958 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778

1959 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
1960 -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
Jul Aug Sep Oct Nov Dec
1949 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1950 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1951 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1952 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1953 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1954 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1955 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1956 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1957 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1958 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1959 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
1960 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949

$trend
Jan Feb Mar Apr May Jun Jul
1949 NA NA NA NA NA NA 126.7917
1950 131.2500 133.0833 134.9167 136.4167 137.4167 138.7500 140.9167
1951 157.1250 159.5417 161.8333 164.1250 166.6667 169.0833 171.2500
1952 183.1250 186.2083 189.0417 191.2917 193.5833 195.8333 198.0417
1953 215.8333 218.5000 220.9167 222.9167 224.0833 224.7083 225.3333
1954 228.0000 230.4583 232.2500 233.9167 235.6250 237.7500 240.5000
1955 261.8333 266.6667 271.1250 275.2083 278.5000 281.9583 285.7500
1956 309.9583 314.4167 318.6250 321.7500 324.5000 327.0833 329.5417
1957 348.2500 353.0000 357.6250 361.3750 364.5000 367.1667 369.4583
1958 375.2500 377.9167 379.5000 380.0000 380.7083 380.9583 381.8333
1959 402.5417 407.1667 411.8750 416.3333 420.5000 425.5000 430.7083

1960 456.3333 461.3750 465.2083 469.3333 472.7500 475.0417 NA
Aug Sep Oct Nov Dec
1949 127.2500 127.9583 128.5833 129.0000 129.7500
1950 143.1667 145.7083 148.4167 151.5417 154.7083
1951 173.5833 175.4583 176.8333 178.0417 180.1667
1952 199.7500 202.2083 206.2500 210.4167 213.3750
1953 225.3333 224.9583 224.5833 224.4583 225.5417
1954 243.9583 247.1667 250.2500 253.5000 257.1250
1955 289.3333 293.2500 297.1667 301.0000 305.4583
1956 331.8333 334.4583 337.5417 340.5417 344.0833
1957 371.2083 372.1667 372.4167 372.7500 373.6250
1958 383.6667 386.5000 390.3333 394.7083 398.6250
1959 435.1250 437.7083 440.9583 445.8333 450.6250
1960 NA NA NA NA NA

$random
Jan Feb Mar Apr May
1949 NA NA NA NA NA
1950 8.4987374 29.1047980 8.3244949 6.6199495 -7.9103535
1951 12.6237374 26.6464646 18.4078283 6.9116162 9.8396465
1952 12.6237374 29.9797980 6.1994949 -2.2550505 -6.0770202
1953 4.9154040 13.6881313 17.3244949 20.1199495 9.4229798
1954 0.7487374 -6.2702020 4.9911616 1.1199495 2.8813131
1955 4.9154040 2.5214646 -1.8838384 1.8282828 -3.9936869
1956 -1.2095960 -1.2285354 0.6161616 -0.7133838 -1.9936869
1957 -8.5012626 -15.8118687 0.6161616 -5.3383838 -4.9936869
1958 -10.5012626 -23.7285354 -15.2588384 -23.9633838 -13.2020202
1959 -17.7929293 -28.9785354 -3.6338384 -12.2967172 4.0063131
1960 -14.5845960 -34.1868687 -43.9671717 -0.2967172 3.7563131

Jun Jul Aug Sep Oct
1949 NA -42.6224747 -42.0732323 -8.4785354 11.0593434
1950 -25.1527778 -34.7474747 -35.9898990 -4.2285354 5.2260101
1951 -26.4861111 -36.0808081 -37.4065657 -7.9785354 5.8093434
1952 -13.2361111 -31.8724747 -20.5732323 -9.7285354 5.3926768
1953 -17.1111111 -25.1641414 -16.1565657 -4.4785354 7.0593434
1954 -9.1527778 -2.3308081 -13.7815657 -4.6868687 -0.6073232
1955 -2.3611111 14.4191919 -5.1565657 2.2297980 -2.5239899
1956 11.5138889 19.6275253 10.3434343 4.0214646 -10.8989899
1957 19.4305556 31.7108586 32.9684343 15.3131313 -4.7739899
1958 18.6388889 45.3358586 58.5101010 0.9797980 -10.6906566
1959 11.0972222 53.4608586 61.0517677 8.7714646 -13.3156566
1960 24.5555556 NA NA NA NA
Nov Dec
1949 28.5934343 16.8699495
1950 16.0517677 13.9116162
1951 21.5517677 14.4532828
1952 15.1767677 9.2449495
1953 9.1351010 4.0782828
1954 3.0934343 0.4949495
1955 -10.4065657 1.1616162
1956 -15.9482323 -9.4633838
1957 -14.1565657 -9.0050505
1958 -31.1148990 -33.0050505
1959 -30.2398990 -17.0050505
1960 NA NA

$figure
[1] -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
[7] 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949

$type
[1] "additive"

attr(,"class")
[1] "decomposed.ts"
plot(decompose(AirPassengers))

1950

–40

0

40

–40

0

40

150

300

450
100

300

500

Decomposition of additive time series

ob
se

rv
ed

tr
en

d
se

as
on

al
ra

nd
om

1952 1954 1956

Time

1958 1960

b=auto.arima(AirPassengers)
forecast(b,24)
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1961 446.7582 431.6858 461.8306 423.7070 469.8094
Feb 1961 420.7582 402.5180 438.9984 392.8622 448.6542
Mar 1961 448.7582 427.8241 469.6923 416.7423 480.7741
Apr 1961 490.7582 467.4394 514.0770 455.0952 526.4212
May 1961 501.7582 476.2770 527.2395 462.7880 540.7284
Jun 1961 564.7582 537.2842 592.2323 522.7403 606.7761
Jul 1961 651.7582 622.4264 681.0900 606.8991 696.6173
Aug 1961 635.7582 604.6796 666.8368 588.2275 683.2889
Sep 1961 537.7582 505.0258 570.4906 487.6983 587.8181
Oct 1961 490.7582 456.4516 525.0648 438.2908 543.2256
Nov 1961 419.7582 383.9466 455.5698 364.9891 474.5273
Dec 1961 461.7582 424.5023 499.0141 404.7803 518.7361
Jan 1962 476.5164 431.4567 521.5761 407.6036 545.4292
Feb 1962 450.5164 400.9938 500.0390 374.7781 526.2547
Mar 1962 478.5164 424.9010 532.1318 396.5188 560.5141
Apr 1962 520.5164 463.0993 577.9335 432.7045 608.3283
May 1962 531.5164 470.5341 592.4987 438.2520 624.7808
Jun 1962 594.5164 530.1661 658.8667 496.1011 692.9317
Jul 1962 681.5164 613.9659 749.0670 578.2068 784.8261
Aug 1962 665.5164 594.9105 736.1223 557.5340 773.4988
Sep 1962 567.5164 493.9820 641.0508 455.0552 679.9776
Oct 1962 520.5164 444.1657 596.8671 403.7481 637.2847
Nov 1962 449.5164 370.4497 528.5831 328.5943 570.4385
Dec 1962 491.5164 409.8239 573.2089 366.5785 616.4543
plot(forecast(b,24))

7.3  Association Analysis 301

100

1950 1952 1954 1956

Forecasts from ARIMA(0,1,1)(0,1,0)[12]

1958 1960 1962

200

300

400

500

600

700

800

7.3  Association Analysis

Association analysis is widely used in e‐commerce websites (which products
sell well together), as well as areas like retail (keeping products that sell well
together placed together), healthcare, telecom (which are value‐added services
to bundle), and many others.

Example database with four items and five transactions

Transaction ID Milk Bread Butter Beer

1 1 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 0 0

●● The item set (milk,bread‐>butter) has a support of 20% since it occurs in 20%
of all transactions (1 out of 5 transactions). Support is an indication of how
frequently the item set appears.

●● The item set (milk,bread‐>butter) has a confidence of 50% since it occurs in
50% of all such transactions (1 out of 2 transactions). Confidence is an indi-
cation of how often the rule has been found to be true.

●● Lift would be = 0.2/0.4*0.4 = 1.25. Lift considers both the confidence of the
rule and the overall data.

7  Machine Learning Made Easier302

The basic theoretical framework came from this paper: Fast Algorithms for

Mining Association Rules at http://rakesh.agrawal‐family.com/papers/
vldb94apriori.pdf

You can see some datasets for association analysis at Frequent Itemset Mining
Dataset Repository: http://fimi.ua.ac.be/data/.

Again association analysis is very easy in R due to a rules package and
difficult to find in Python package landscape. (See https://github.com/
scikit‐learn/scikit‐learn/issues/2872 and https://github.com/scikit‐learn/
scikit‐learn/issues/2662 for the reasons scikit‐learn won’t be able to accept
it.) One possible solution is PyFIM (Frequent Item Sets) available at http://
www.borgelt.net/pyfim.html.

In R here is some code to show how easy it is: http://rpubs.com/newajay/
associationanalysis.

library(rattle)
Rattle: A free graphical interface for data mining
with R.

Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty
Ltd.

Type 'rattle()' to shake, rattle, and roll your data.
#rattle()
#install.packages("arulesViz")
library(arulesViz)
Loading required package: arules
Loading required package: Matrix

Attaching package: 'arules'
The following objects are masked from
'package:base':

abbreviate, write
Loading required package: grid
Warning: failed to assign NativeSymbolInfo for lhs
since lhs is already

defined in the 'lazyeval' namespace
Warning: failed to assign NativeSymbolInfo for rhs
since rhs is already

defined in the 'lazyeval' namespace
data(Groceries)
str(Groceries)

http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://fimi.ua.ac.be/data/
https://github.com/scikit-learn/scikit-learn/issues/2872
https://github.com/scikit-learn/scikit-learn/issues/2872
https://github.com/scikit-learn/scikit-learn/issues/2662
https://github.com/scikit-learn/scikit-learn/issues/2662
http://www.borgelt.net/pyfim.html
http://www.borgelt.net/pyfim.html
http://rpubs.com/newajay/associationanalysis
http://rpubs.com/newajay/associationanalysis

Formal class 'transactions' [package "arules"] with 3 slots
..@ data :Formal class 'ngCMatrix' [package "Matrix"] with 5 slots
..@ i : int [1:43367] 13 60 69 78 14 29 98 24 15 29 ...
..@ p : int [1:9836] 0 4 7 8 12 16 21 22 27 28 ...
..@ Dim : int [1:2] 169 9835
..@ Dimnames:List of 2
..$: NULL
..$: NULL
..@ factors : list()
..@ itemInfo :'data.frame': 169 obs. of 3 variables:
.. ..$ labels: chr [1:169] "frankfurter" "sausage" "liver loaf" "ham" ...
.. ..$ level2: Factor w/ 55 levels "baby food","bags",..: 44 44 44 44 44 44 44
42 42 41 ...

.. ..$ level1: Factor w/ 10 levels "canned food",..: 6 6 6 6 6 6 6 6 6 6 ...
..@ itemsetInfo:'data.frame': 0 obs. of 0 variables
summary(Groceries)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146

most frequent items:
whole milk other vegetables rolls/buns soda
2513 1903 1809 1715
yogurt (Other)
1372 34055

element (itemset/transaction) length distribution:
sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55
16 17 18 19 20 21 22 23 24 26 27 28 29 32
46 29 14 14 9 11 4 6 1 1 1 1 3 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:
labels level2 level1
1 frankfurter sausage meat and sausage
2 sausage sausage meat and sausage
3 liver loaf sausage meat and sausage
itemFrequencyPlot(Groceries,topN=20,type="absolute")

0

w
ho

le
 m

ilk
ot

he
r

ve
ge

ta
bl

es
ro

lls
/b

un
s

so
da

yo
gu

rt
bo

ttl
ed

 w
at

er
ro

ot
 v

eg
et

ab
le

s
tr

op
ic

al
 fr

ui
t

sh
op

pi
ng

 b
ag

s
sa

us
ag

e
pa

st
ry

ci
tr

us
 fr

ui
t

bo
ttl

ed
 b

ee
r

ne
w

sp
ap

er
s

ca
nn

ed
 b

ee
r

pi
p

fr
ui

t
fr

ui
t/v

eg
et

ab
le

 ju
ic

e
w

hi
pp

ed
/s

ou
r

cr
ea

m
br

ow
n

br
ea

d
do

m
es

tic
 e

gg
s

500

1000

ite
m

 fr
eq

ue
nc

y
(a

bs
ol

ut
e)

1500

2000

2500

rules <- apriori(Groceries, parameter=list(support=0.01, confidence=0.5))
Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.5 0.1 1 none FALSE TRUE 5 0.01 1
maxlen target ext
10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 98

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [15 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
summary(rules)
set of 15 rules

rule length distribution (lhs + rhs):sizes
3

15

Min. 1st Qu. Median Mean 3rd Qu. Max.
3 3 3 3 3 3

summary of quality measures:
support confidence lift
Min. :0.01007 Min. :0.5000 Min. :1.984
1st Qu.:0.01174 1st Qu.:0.5151 1st Qu.:2.036
Median :0.01230 Median :0.5245 Median :2.203
Mean :0.01316 Mean :0.5411 Mean :2.299
3rd Qu.:0.01403 3rd Qu.:0.5718 3rd Qu.:2.432
Max. :0.02227 Max. :0.5862 Max. :3.030

mining info:
data ntransactions support confidence
Groceries 9835 0.01 0.5
inspect(head(sort(rules, by ="lift"),10))
lhs rhs support confidence lift
[1] {citrus fruit,
root vegetables} => {other vegetables} 0.01037112 0.5862069 3.029608
[2] {tropical fruit,
root vegetables} => {other vegetables} 0.01230300 0.5845411 3.020999
[3] {root vegetables,
rolls/buns} => {other vegetables} 0.01220132 0.5020921 2.594890
[4] {root vegetables,
yogurt} => {other vegetables} 0.01291307 0.5000000 2.584078

[5] {curd,
yogurt} => {whole milk} 0.01006609 0.5823529 2.279125
[6] {other vegetables,
butter} => {whole milk} 0.01148958 0.5736041 2.244885
[7] {tropical fruit,
root vegetables} => {whole milk} 0.01199797 0.5700483 2.230969
[8] {root vegetables,
yogurt} => {whole milk} 0.01453991 0.5629921 2.203354
[9] {other vegetables,
domestic eggs} => {whole milk} 0.01230300 0.5525114 2.162336
[10] {yogurt,
whipped/sour cream} => {whole milk} 0.01087951 0.5245098 2.052747
plot(rules, method="graph")

Graph for 15 rules

curd

whipped/sour cream

domestic eggs

pip fruit

butter

yogurt
whole milk

other vegetables

root vegetables
rolls/buns

citrus fruit

size: support (0.01 - 0.022)
color: lift (1.984 - 3.03)

tropical fruit

library(arulesViz)
data(Groceries)
summary(Groceries)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146

most frequent items:
whole milk other vegetables rolls/buns soda
2513 1903 1809 1715
yogurt (Other)
1372 34055

element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55
16 17 18 19 20 21 22 23 24 26 27 28 29 32
46 29 14 14 9 11 4 6 1 1 1 1 3 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:
labels level2 level1
1 frankfurter sausage meat and sausage
2 sausage sausage meat and sausage
3 liver loaf sausage meat and sausage

rules <- apriori(Groceries, parameter=list(support=0.01, confidence=0.5))
Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.5 0.1 1 none FALSE TRUE 5 0.01 1
maxlen target ext
10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 98

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [15 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
summary(rules)
set of 15 rules

rule length distribution (lhs + rhs):sizes
3
15

Min. 1st Qu. Median Mean 3rd Qu. Max.
3 3 3 3 3 3

summary of quality measures:
support confidence lift
Min. :0.01007 Min. :0.5000 Min. :1.984
1st Qu.:0.01174 1st Qu.:0.5151 1st Qu.:2.036
Median :0.01230 Median :0.5245 Median :2.203
Mean :0.01316 Mean :0.5411 Mean :2.299
3rd Qu.:0.01403 3rd Qu.:0.5718 3rd Qu.:2.432
Max. :0.02227 Max. :0.5862 Max. :3.030

mining info:
data ntransactions support confidence
Groceries 9835 0.01 0.5
inspect(head(sort(rules, by ="lift"),10))
lhs rhs support confidence lift
[1] {citrus fruit,
root vegetables} => {other vegetables} 0.01037112 0.5862069 3.029608
[2] {tropical fruit,
root vegetables} => {other vegetables} 0.01230300 0.5845411 3.020999
[3] {root vegetables,
rolls/buns} => {other vegetables} 0.01220132 0.5020921 2.594890
[4] {root vegetables,
yogurt} => {other vegetables} 0.01291307 0.5000000 2.584078
[5] {curd,
yogurt} => {whole milk} 0.01006609 0.5823529 2.279125

[6] {other vegetables,
butter} => {whole milk} 0.01148958 0.5736041 2.244885
[7] {tropical fruit,
root vegetables} => {whole milk} 0.01199797 0.5700483 2.230969
[8] {root vegetables,
yogurt} => {whole milk} 0.01453991 0.5629921 2.203354
[9] {other vegetables,
domestic eggs} => {whole milk} 0.01230300 0.5525114 2.162336
[10] {yogurt,
whipped/sour cream} => {whole milk} 0.01087951 0.5245098 2.052747
plot(rules[1:5],method="graph",interactive = F)

Graph for 5 rules

curd

size: support (0.01-0.015)
color: lift (1.984-2.279)

yogurt

whole milk
butter

domestic eggs

other vegetables

whipped/sour cream

r vr

milmmho

7  Machine Learning Made Easier312

plot(rules[1:15],method="graph",interactive = T)
itemFrequencyPlot(Groceries,topN=20,type="absolute")

ite
m

 fr
eq

ue
nc

y
(a

bs
ol

ut
e)

0

w
ho

le
 m

ilk
ot

he
r

ve
ge

ta
bl

es
ro

lls
/b

un
s

so
da

yo
gu

rt
bo

ttl
ed

 w
at

er
ro

ot
 v

eg
et

ab
le

s
tr

op
ic

al
 fr

ui
t

sh
op

pi
ng

 b
ag

s
sa

us
ag

e
pa

st
ry

bo
ttl

ed
 b

ee
r

ne
w

sp
ap

er
s

ca
nn

ed
 b

ee
r

pi
p

fr
ui

t
fr

ui
t/v

eg
et

ab
le

 ju
ic

e
w

hi
pp

ed
/s

ou
r

cr
ea

m
br

ow
n

br
ea

d
do

m
es

tic
 e

gg
s

ci
tr

us
 fr

ui
t

500

1000

1500

2000

2500

#http://fimi.ua.ac.be/data/retail.pdf
library(arules)
a=read.transactions("http://fimi.ua.ac.be/data/retail.
dat")

itemFrequencyPlot(a,topN=20,type="absolute")

ite
m

 fr
eq

ue
nc

y
(a

bs
ol

ut
e)

50000

40000

30000

20000

10000

39 48 38 32 41 65 89 22
5

17
0

23
7 36 11

0
31

0
10

1
47

5
27

1
41

3
43

8
13

2714
7

0

basket

http://fimi.ua.ac.be/data/retail.dat
http://fimi.ua.ac.be/data/retail.dat

7.3  Association Analysis 313

Text mining is much more elaborate and powerful, and the nltk package in Python
does match up to the tm package (and its sub‐packages) in R. From https://github.
com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb we see

import nltk

In [*]:
nltk.download()

showing info https://raw.githubusercontent.com/nltk/nltk_data/gh‐pages/
index.xml

In [4]:
import nltk

In [5]:
nltk.download()

showing info https://raw.githubusercontent.com/nltk/nltk_data/gh‐pages/
index.xml

Out[5]:
True

https://github.com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb
https://github.com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml

7  Machine Learning Made Easier314

In [6]:
from nltk.book import *

*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton
1908

In [7]:
text1.similar("great")

good whale long vast sea whole living small other
large dead mighty

same such last more much sperm noble old

In [8]:
from urllib import request
url = "http://www.gutenberg.org/files/2554/2554.txt"
response = request.urlopen(url)
raw = response.read().decode('utf8')
type(raw)

Out[8]:
str

In [9]:
len(raw)

Out[9]:
1176896

In [10]:
raw[:75]

Out[10]:
'The Project Gutenberg EBook of Crime and Punishment,
by Fyodor Dostoevsky\r\n'

http://www.gutenberg.org/files/2554/2554.txt

7.3  Association Analysis 315

In [12]:
tokens = nltk.word_tokenize(raw)
type(tokens)

Out[12]:
list

In [13]:
len(tokens)

Out[13]:
254352

In [14]:
tokens[:10]

Out[14]:
['The',
 'Project',
 'Gutenberg',
 'EBook',
 'of',
 'Crime',
 'and',
 'Punishment',
 ',',
 'By']

Citation-
http://www.cs.duke.edu/courses/spring14/compsci290/
assignments/lab02.html

From http://rpubs.com/newajay/textmining we see basic
text mining in R

memory.size()
[1] 17.11
memory.limit()
[1] 1535
#install.packages(“tm”)
library(tm)
Loading required package: NLP
getReaders()
[1] "readDOC" "readPDF"
[3] "readPlain" "readRCV1"
[5] "readRCV1asPlain" "readReut21578XML"
[7] "readReut21578XMLasPlain" "readTabular"

http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
http://rpubs.com/newajay/textmining

7  Machine Learning Made Easier316

[9] "readTagged" "readXML"
getSources()
[1] "DataframeSource" "DirSource" "URISource"
"VectorSource"

[5] "XMLSource" "ZipSource"
warp ="http://www.gutenberg.org/files/2600/2600‐0.txt"

Corpus1=Corpus(URISource(warp), readerControl =
list(language = "eng"))

inspect(Corpus1)
<<VCorpus>>
Metadata: corpus specific: 0, document level
(indexed): 0

Content: documents: 1

[[1]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 3170017
summary(Corpus1)
Length Class Mode
2600-0.txt 2 PlainTextDocument list

7.4  Cleaning Corpus and Making Bag of Words

Corpus1 <- tm_map(Corpus1, removePunctuation)
Corpus1 <- tm_map(Corpus1, removeNumbers)
Corpus1 <- tm_map(Corpus1, tolower)
Corpus1 <- tm_map(Corpus1, removeWords,
stopwords("english"))

#install.packages(“SnowballC”)
library(SnowballC)
Corpus1 <- tm_map(Corpus1, stemDocument)
Corpus1 <- tm_map(Corpus1, stripWhitespace)
Corpus1 <- tm_map(Corpus1, PlainTextDocument)

dtm <- DocumentTermMatrix(Corpus1)

tdm <- TermDocumentMatrix(Corpus1)
tdm
<<TermDocumentMatrix (terms: 21354, documents: 1)>>
Non-/sparse entries: 21354/0
Sparsity : 0%
Maximal term length: 29

http://www.gutenberg.org/files/2600/2600-0.txt

7.4  Cleaning Corpus and Making Bag of Words 317

Weighting : term frequency (tf)
inspect(tdm[1:30,1])
<<TermDocumentMatrix (terms: 30, documents: 1)>>
Non-/sparse entries: 30/0
Sparsity : 0%
Maximal term length: 13
Weighting : term frequency (tf)

Docs
Terms character(0)
â€” 9
â€” â€” 1
â€” annett 1
â€” precede 1
â€” salut 1
â€” st 1
â€” though 1
aâ€” 1
aah 1
aback 3
abacus 1
abandon 31
abandoned 51
abandoning 24
abandonment 13
abandons 1
abas 1
abash 1
abashed 11
abate 1
abbã 18
abbãs 1
abbreviations 1
abc 1
abdicate 1
abdomen 2
abdomens 2
abduction 3
abductor 1
abhorrence 1
matx1=as.matrix(tdm)
matx1[1:10]
[1] 9 1 1 1 1 1 1 1 1 3
sort1=sort(rowSums(matx1),decreasing=T)

7  Machine Learning Made Easier318

sort1[1:10]
said one prince pierre now
natãsha man andrew

2834 1882 1725 1561 1304
1103 1077 1045

will princess
997 916
di=data.frame(Word=names(sort1),Frequency=sort1)
di[1:10,]
Word Frequency
said said 2834
one one 1882
prince prince 1725
pierre pierre 1561
now now 1304
natãsha natãsha 1103
man man 1077
andrew andrew 1045
will will 997
princess princess 916
#install.packages(“wordcloud”)
library(wordcloud)
Loading required package: RColorBrewer
wordcloud(di$Word, di$Frequency, max.
words=100,colors=brewer.pal(6, "Reds"))

7.4  Cleaning Corpus and Making Bag of Words 319

wordcloud(di$Word, di$Frequency, max.words=100,
colors=brewer.pal(6, "Dark2"))

7.4.1  Cluster Analysis

Grouping data so that similar data is in similar clusters and dissimilar data is in
different clusters is cluster analysis. It is unsupervised learning. Data reduction
technique includes the following:

●● Organizing data into groups:
–– Each cluster or group is similar to itself.
–– Each cluster or group is distinct from others.

●● As a stand‐alone tool to get insight into data distribution and as a preproc-
essing step for other algorithms

●● Widely used in:
–– Marketing—Similar customers
–– Biology—Groups of plants/animals
–– Financial services—Similar risk/collection/fraud
–– City planning
–– Others

7.4.2  Cluster Analysis in Python

https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f538259
05e72289

K means clustering in Python, including performance metric, confusion matrix,
and visualization.

https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289
https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289

7  Machine Learning Made Easier320

import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm

import pandas as pd
import numpy as np

In [2]:
wine=pd.read_csv("http://archive.ics.uci.edu/
ml/machine‐learning‐databases/wine/wine.
data",header=None)

In [3]:
wine.head()

Out[3]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

From http://archive.ics.uci.edu/ml/machine‐learning‐databases/wine/wine.
names we get the column names

In [4]:
wine.columns=['winetype','Alcohol','Malic
acid','Ash','Alcalinity of ash','Magnesium','Total
phenols','Flavanoids','Nonflavanoid phenols','Proan
thocyanins','Color intensity','Hue','OD280/OD315 of
diluted wines','Proline']

In [5]:
wine.head()

winetype Alcohol Malic acid Ash
Alcalinity
of ash Magnesium

Total
phenols

count 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000
mean 1.938202 13.000618 2.336348 2.366517 19.494944 99.741573 2.295112
std 0.775035 0.811827 1.117146 0.274344 3.339564 14.282484 0.625851
min 1.000000 11.030000 0.740000 1.360000 10.600000 70.000000 0.980000
25% 1.000000 12.362500 1.602500 2.210000 17.200000 88.000000 1.742500
50% 2.000000 13.050000 1.865000 2.360000 19.500000 98.000000 2.355000
75% 3.000000 13.677500 3.082500 2.557500 21.500000 107.000000 2.800000
max 3.000000 14.830000 5.800000 3.230000 30.000000 162.000000 3.880000

http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names

7.4  Cleaning Corpus and Making Bag of Words 321

Out[5]:

wine
type Alcohol

Malic
acid Ash

Alcalinity
of ash

Magne-
sium

Total
phenols

Flava-
noids

Nonfla-
vanoid
phenols

Proantho-
cyanins

Color
intensity Hue

OD280/
OD315
of diluted
wines Proline

0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

In [6]:
wine.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
winetype 178 non-null int64
Alcohol 178 non-null float64
Malic acid 178 non-null float64
Ash 178 non-null float64
Alcalinity of ash 178 non-null float64
Magnesium 178 non-null int64
Total phenols 178 non-null float64
Flavanoids 178 non-null float64
Nonflavanoid phenols 178 non-null float64
Proanthocyanins 178 non-null float64
Color intensity 178 non-null float64
Hue 178 non-null float64
OD280/OD315 of diluted wines 178 non-null float64
Proline 178 non-null int64
dtypes: float64(11), int64(3)
memory usage: 19.5 KB

In [7]:
wine.describe()

Out[7]:

Flavanoids
Nonflavanoid
phenols

Proantho-
cyanins

Color
intensity Hue

OD280/OD315
of diluted
wines Proline

178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000
2.029270 0.361854 1.590899 5.058090 0.957449 2.611685 746.893258
0.998859 0.124453 0.572359 2.318286 0.228572 0.709990 314.907474
0.340000 0.130000 0.410000 1.280000 0.480000 1.270000 278.000000
1.205000 0.270000 1.250000 3.220000 0.782500 1.937500 500.500000
2.135000 0.340000 1.555000 4.690000 0.965000 2.780000 673.500000
2.875000 0.437500 1.950000 6.200000 1.120000 3.170000 985.000000
5.080000 0.660000 3.580000 13.000000 1.710000 4.000000 1680.000000

7  Machine Learning Made Easier322

In [8]:
pd.value_counts(wine['winetype'])

Out[8]:
2 71
1 59
3 48
Name: winetype, dtype: int64

The R solution is https://rstudio‐pubs‐static.s3.amazonaws.com/33876_
1d7794d9a86647ca90c4f182df93f0e8.html

The clustering optimization problem is solved with the function kmeans in R.

wine.stand <- scale(wine[-1]) # To standarize the
variables

K‐Means
k.means.fit <- kmeans(wine.stand, 3) # k = 3
In k.means.fit are contained all the elements of the
cluster output:

attributes(k.means.fit)
$names
[1] "cluster" "centers" "totss"
"withinss"

[5] "tot.withinss" "betweenss" "size"
"iter"

[9] "ifault"

$class
[1] "kmeans"
Centroids:
k.means.fit$centers
Alcohol Malic Ash Alcalinity Magnesium
Phenols Flavanoids

https://rstudio-pubs-static.s3.amazonaws.com/33876_1d7794d9a86647ca90c4f182df93f0e8.html
https://rstudio-pubs-static.s3.amazonaws.com/33876_1d7794d9a86647ca90c4f182df93f0e8.html

1 0.1644 0.8691 0.1864 0.5229 -0.07526 -0.97658 -1.21183
2 0.8329 -0.3030 0.3637 -0.6085 0.57596 0.88275 0.97507
3 -0.9235 -0.3929 -0.4931 0.1701 -0.49033 -0.07577 0.02075
Nonflavanoids Proanthocyanins Color Hue Dilution Proline
1 0.72402 -0.7775 0.9389 -1.1615 -1.2888 -0.4059
2 -0.56051 0.5787 0.1706 0.4727 0.7771 1.1220
3 -0.03344 0.0581 -0.8994 0.4605 0.2700 -0.7517
For Python it is a bit similar to do kmeans clusterinng

In [9]:
x=wine.ix[:,1:14]
y=wine.ix[:,:1]

In [10]:
x.columns

Out[10]:
Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',
 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
 'Proanthocyanins', 'Color intensity', 'Hue',
 'OD280/OD315 of diluted wines', 'Proline'],
 dtype='object')

In [33]:
x.ix[:,:1].head()

7  Machine Learning Made Easier324

Out[33]:

Alcohol

0 14.23
1 13.20
2 13.16
3 14.37
4 13.24

In [12]:
y.columns

Out[12]:
Index(['winetype'], dtype='object')

In [13]:
x.head()

Out[13]:

Alcohol
Malic
acid Ash

Alcali-
nity of
ash

Magne-
sium

Total
phenols

Flava-
noids

Non-
flava-
noid
phenols

Proan-
thocy-
anins

Color
inten-
sity Hue

OD280/
OD315
of
diluted
wines Proline

0 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

In [14]:
y.head()

Out[14]:

winetype

0 1
1 1
2 1
3 1
4 1

In [15]:
y.info

7.4  Cleaning Corpus and Making Bag of Words 325

Out[15]:
<bound method DataFrame.info of winetype

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
.. ...

148 3
149 3
150 3
151 3
152 3
153 3
154 3
155 3
156 3
157 3
158 3
159 3
160 3
161 3
162 3
163 3
164 3
165 3
166 3
167 3
168 3
169 3
170 3
171 3
172 3
173 3
174 3
175 3
176 3
177 3

[178 rows x 1 columns]>

In [16]:
K Means Cluster
model = KMeans(n_clusters=3)
model.fit(x)

Out[16]:
KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=3, n_init=10,
 n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001,
 verbose=0)

In [17]:
model.labels_

Out[17]:
array([0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0,
 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2,
 2, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1,
 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1,
 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1,
 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1,
 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1], dtype=int32)

In [18]:
pd.value_counts(model.labels_)

Out[18]:
1 69
2 62
0 47
dtype: int64

In [19]:
pd.value_counts(y['winetype'])

Out[19]:
2 71
1 59
3 48
Name: winetype, dtype: int64

7.4  Cleaning Corpus and Making Bag of Words 327

In [20]:
We convert all the 1s to 0s and 0s to 1s.
predY = np.choose(model.labels_, [1, 2, 3]).astype(np.
int64)

In [21]:
print (y['winetype'])
print (model.labels_)
print (predY)

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
 ..

148 3
149 3
150 3
151 3
152 3
153 3
154 3
155 3
156 3
157 3
158 3
159 3
160 3
161 3
162 3
163 3
164 3
165 3
166 3
167 3
168 3
169 3
170 3
171 3
172 3
173 3
174 3
175 3
176 3
177 3

Name: winetype, dtype: int64
[0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 2 2
 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 1 1 2 1 1 2 2 2 1 1 0
 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 2 1 2 1 1 1 2 1 1 1 1 2 1
 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 1 1 1 2 2 1 1 2 2 1 2
 2 1 1 1 1 2 2 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1]
[1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 3 3 1 1 3 1 1 1 1 1 1 3 3
 1 1 3 3 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 3 2 2 3 2 2 3 3 3 2 2 1
 3 2 2 2 3 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 2 3 3 2 3 2 3 2 2 2 3 2 2 2 2 3 2
 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 3 3 3 3 2 2 2 3 3 2 2 3 3 2 3
 3 2 2 2 2 3 3 3 2 3 3 3 2 3 2 3 3 2 3 3 3 3 2 2 3 3 3 3 3 2]

In [22]:
Performance Metrics
sm.accuracy_score(y, predY)

Out[22]:
0.702247191011236

In [23]:
Confusion Matrix
sm.confusion_matrix(y, predY)

Out[23]:
array([[46, 0, 13],
 [1, 50, 20],
 [0, 19, 29]])

7.4  Cleaning Corpus and Making Bag of Words 329

In [24]:
pd.unique(y.winetype)

Out[24]:
array([1, 2, 3])

In [25]:
#!sudo pip install ggplot

In [30]:
from ggplot import *
%matplotlib inline

In [31]:
p = ggplot(aes(x='Alcohol', y='Ash',color="winetype"),
data=wine)

p + geom_point()

10
1.0

1.5

2.0

2.5

A
sh

3.0

3.5

11 12 13

Alcohol

14 15 16

winetype

1.0

2.0

3.0

Out[31]:
<ggplot: (-9223363292162990364)>

In [32]:
p2 = ggplot(aes(x='Alcohol', y='Ash',color="predY"),
data=wine)

p2 + geom_point()

7  Machine Learning Made Easier330

10
1.0

1.5

2.0

2.5

A
sh

3.0

3.5

11 12 13

Alcohol

14 15 16

predY

1.0

2.0

3.0

Out[32]:
<ggplot: (8744691751337)>

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

331

8

Some conclusions to draw from comparing R and Python functionality as well
as the author’s own experience with the SAS language are as follows:

1)	 There is no one software or language that is good for each and every use
case or situation.

2)	 For the student, researcher, job seeker, and professional, having skills in two
languages is better than having skills in one language.

3)	 R ecosystem has learnt from Python (like Beautiful Soup or bokeh or
R Essentials for Jupyter), while Python ecosystem has learnt from R (like
ggplot and pandas). This cross‐language learning should be encouraged
especially in academia and industry.

4)	 As feature requests, Python statsmodels can be more user‐friendly (like
car), time series can have more tools like auto.arima (in forecast), and scikit‐
learn can have spin‐off smaller packages (like arules for association analysis)
and easier to read syntax (like party, rpart, and RandomForest) instead of
having a very big scikit‐learn package. Some of these machine learning
packages should be made panda ready rather than numpy specific to help
make them more popular.

5)	 Python can make or port GUIs like R Commander and rattle as that will
help in teaching.

Conclusion and Summary

333

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

a
abs  167
absolute  328, 329, 333, 336
academia  355
academic  26
academy  11, 28
acast  158
account  165, 256, 257
accuracy  4, 21, 166, 219, 304, 305,

307–309, 352
acid  85, 344, 345, 347, 348
acknowledgments  7, 15
acos  50
acosh  50
acquisition  70
across  11, 143, 309
ActivePython  42
adjusted  165, 182, 183, 185, 187, 189,

198, 200, 202–204, 208
advstats  211
AIC  179, 216, 226, 272
AirPassengers  318, 319, 323, 324
ajaydecis  48, 57, 102, 115, 122, 129,

130, 148, 218, 248, 253, 255
ajayohri  32, 35, 59–62, 114, 168, 235,

273, 275, 281
alcohol  344–348, 353, 354
algorithms  11, 29, 48, 287, 296,

326, 343
Anaconda  37, 38, 42, 59, 260

anaconda3  59, 226, 228–230, 235,
276, 281

analysis  8, 10–12, 18, 26, 27, 30–32,
34, 35, 42, 43, 61–63, 69–72, 96, 108,
137, 143, 164–168, 220, 231, 238,
248, 259, 260, 275, 325, 326, 343, 355

analytics  7, 9, 11–13, 15, 17, 18, 21,
26–28, 30, 31, 38, 39, 42, 43, 61, 62,
70, 71, 211, 247, 260

ANOVA  175
anscombe  9, 75, 224–230, 259
api  78, 89, 178, 211, 225, 271, 272
apriori  329, 333
arima  318, 324, 325, 355
array  30, 101, 107, 119, 178, 266, 282,

285, 286, 290–294, 299, 350, 352, 353
arules  326, 327, 336, 355
arulesViz  326, 332
aslugsguidetopython  35
association  10, 275, 325, 326, 355
auc  9, 218, 287, 296
AUROC  217
average  72, 129, 167, 169, 171, 191, 218
avg  122, 130
Azure  31, 41

b
BaggingClassifier  282, 289–291,

298, 299
barplot  237, 238, 248, 251, 253, 316

Index

Index334

basicR  130, 148
Bayes  308
BeautifulSoup  79
beautifulsoup4  60, 79
bias  9, 68, 72, 73, 218, 220
BIC  179, 226, 272
bokeh  33, 221, 234, 247, 355
Bonferonni  201, 208
boston  190–195, 197, 199–205, 207,

271, 272
boxcox  205, 209
boxplot  195, 248, 249, 269, 316
bptest  199, 201, 205, 208
Breusch‐Pagan  199, 201, 205, 208
byteacademy  28

c
calgary  79–81
CAP  85
caret  35–37, 304, 307
caretr  36, 37
Cassandra  86
categorical  8, 143, 145, 168, 169, 237,

238, 265
Cauchy  172
chaid  71, 300, 316, 317
chisq  177
chi‐square  175
chi‐squared  177
chisquaretest  176
classification  275, 282, 291, 300,

303, 307
Clojure  31
cloudera  40
coefficients  37, 165, 181–184, 186,

188, 198, 200, 202–204, 207, 216
cognitive  72, 73
colnames  114
colors  238, 249, 251, 253, 343
column‐oriented  86
confusionMatrix  304, 307
contingency  178
continuum  37, 38, 42, 168, 260, 276

Conway, Drew  27, 63
core  40, 42, 43, 73, 77, 100, 106,

107, 113, 234, 260, 263, 266, 280,
285, 345

corr  144, 145, 265, 266
correlation  9, 63, 145, 166, 168, 211,

224, 253, 265
corrgram  194, 253, 254
CouchDB  85, 86
counter  85
counterparts  233
countries  64
counts  23, 145, 262, 265, 266, 285,

292, 346, 350
couple  83
coursera  34, 221
courses  11, 34, 339
Courtesy  86
Covariance  179, 226, 272
coxcomb  221, 223, 259
cp  44, 86
CPython  42
cran  26, 33, 70, 102, 142, 247
crawling  42
Creighton, H.J.  106
crim  190, 192, 193, 195, 197–202, 272
Crimean  221
criterion  18, 287, 290, 296, 299, 301,

302
critical  27
crosstab  145, 266, 267
Cross‐Validated  308
CSS  68
csv  75–78, 84, 96, 106, 120, 122, 178,

190, 211, 214, 225, 234, 237, 252,
262, 263, 271, 278, 291, 344

CTOs  21
ctree  300, 306, 316
customers  43, 64, 69–71, 94, 343
cutgroup  266
cutoff  166
cv  290, 299, 308
cx  81

Index 335

cy  164
cycle  228–230
cython  40, 43

d
dashboard  9, 232, 259
data  3, 4, 7–9, 11–13, 17–19, 21,

25–44, 57, 61–63, 71–73, 75–81,
84–86, 90, 94–97, 100–102, 104–
106, 108, 112–116, 118–120,
122–124, 129–132, 134, 137,
142–145, 147–150, 158–160,
164–170, 175, 177, 179, 181–188,
190, 197, 199–205, 207, 208,
211–215, 218, 220, 221, 224,
226–234, 236–248, 252, 254, 256,
259–263, 265–273, 276, 278, 280,
288, 291, 297, 300, 303–307,
314–318, 325–327, 330, 332, 334,
336, 337, 342–345, 353

database(s)  17, 27, 43, 84–87, 89,
90, 93, 95, 96, 98, 100, 261, 291,
325, 344

DataCamp  34
dataframe  35–37, 77, 100, 106–108,

113, 148, 234, 263, 278, 280–285,
291, 292, 345, 349

datascience  28, 34, 38
datavisualization  221
date  8, 94, 100, 102–105, 137–139,

179, 199, 213, 226, 272, 276, 279,
280, 282, 283, 300, 305, 318

datetime  102, 104, 143
DB2  84, 89
dBase  89
dcast  159
Debian  60
decision  8, 10, 31, 62, 63, 71–73, 174,

221, 273, 275, 282, 283, 291, 300
decisionstats  11, 12, 15, 27, 45, 56, 58,

71, 75, 76, 78, 104, 106, 110–112,
120, 143, 147, 178, 224, 228, 234,
243, 244, 258, 259, 275, 291, 337, 343

DecisionTreeClassifier  282, 289–291,
298, 299

DecisionTreeRegressor  286, 287, 296
definition  26, 32, 40, 62, 63, 143
degrees  50, 168, 182, 183, 185, 187,

189, 198, 200, 202–204, 208, 216
delete  54, 95, 100, 101, 115
DELIMITER  96
density  171, 243, 327, 332
deploy  13, 42, 43
depth  113–116, 119, 120, 131–133,

136, 137, 149–153, 161, 162,
187–189, 254, 263–266, 268, 286,
287, 290, 296, 299

Descriptive  152, 211
desktop  43, 60–62, 76, 180, 190, 252,

263, 276
developers  26, 38
deviation  72, 135, 169, 170, 174, 224
diamonds  113–120, 130–137,

149–152, 154, 156–162, 187, 188,
237–243, 245–247, 253, 254,
263–271

diapers  11
dimensions  114, 131, 221, 232
Dimnames  327
DirSource  340
dispersion  9, 166, 169, 216
distance  165, 166, 169, 217, 221
distplot  235, 268
distribute  28, 37
distributed  29, 38, 43, 163, 171, 259
distribution  9, 42, 43, 71, 135,

169–171, 173, 175, 220, 235, 327,
329, 332, 333, 343

D3.js  33
dmy  102, 103, 138
DocumentTermMatrix  340
Dostoevsky  338
download  38, 42, 87, 89, 163, 257,

259, 260, 288, 297, 337
dplyr  37, 101, 145, 159
drewconway  30, 63

Index336

dropbox  262, 276
dropbox‐dist  276
dropna  115, 267, 283
Drucker, Peter  62
dtypes  77, 100, 106–108, 113, 114,

117, 120, 179, 180, 212, 226–228,
234, 263–266, 273, 281–285, 292,
345–348, 350, 352

e
e1071  304, 307
easyRFM  71
EBook  338, 339
EC2  41
Edureka  61, 62
ensemble  282, 287, 291, 296
enterprisedb  87
enthought  42, 260
erikaandersen  167
error  37, 42, 53, 72, 73, 96, 163, 164,

174, 181–189, 198, 200, 202–204,
207, 208, 216, 218–220, 235, 303, 307

estimate  37, 181, 183, 184, 186, 188,
198, 200, 202–204, 207, 216, 303, 307

euclid  163, 259
excel  78, 89
exploratory  8, 18, 34, 143, 231,

238, 248
exponential  172

f
FacetGrid  238
factor  67, 69, 132, 143, 149, 160, 187,

215, 316, 317, 327
factorial  50
factorplot  238–242, 270
false  103, 111, 112, 134, 140, 151, 174,

201, 205, 218, 219, 268, 287, 289,
290, 296, 298, 299, 309, 329, 333

fancyRpartPlot  315
feather  40
fivenum  143
forecast  318, 324, 355

format  40, 53, 55, 79, 95, 98, 101, 104,
112, 114, 115, 138, 139, 145, 156,
221, 260, 278, 327, 332

formula  36, 156, 178, 179, 181, 182,
184, 186, 188, 197, 200, 202–204,
207, 215, 225–227, 262, 271, 272,
303, 306, 317

frame  8, 28, 35, 37, 77, 100, 105–107,
113, 114, 116, 118, 122, 124, 131,
132, 149, 160, 185, 187, 197, 234,
237, 260, 263, 266, 267, 280, 285,
316, 327, 342, 345

frequency  70, 71, 134, 137, 145, 169,
170, 275, 336, 341–343

F‐statistic  182, 183, 185, 187, 189,
198, 200, 202–204, 208

F‐test  175
function  12, 30, 47, 48, 57, 58, 82, 85,

104, 105, 108, 111, 114, 115, 119,
125, 137, 143–148, 166, 169, 171,
180, 211, 212, 248, 262, 281, 346

g
gain  30, 234
garbage  130
gartner  30
GDP  164
Genesis  338
genetic  11
geom  228–230, 245–247, 271, 353
geometric  94, 169, 243, 244
Geringer, Steven  28
gerstman  224
getcwd  60, 61, 76, 262, 263, 275, 278
getSources  340
getwd  62, 180, 190
ggplot  33, 224, 225, 228–230, 234,

244–247, 261, 262, 271, 353–355
ggplot2  8, 33, 37, 130, 131, 149, 187,

214, 237, 254, 259, 261, 263, 304, 307
gini  290, 299
gist  45, 56, 58, 75, 76, 78, 104, 106,

110–112, 120, 143, 147, 178, 224,

Index 337

228, 234, 243, 244, 257, 258, 275,
291, 343

git  8, 44–46
github  26, 28, 34, 38, 39, 44–46, 70,

71, 75, 106, 120, 122, 147, 178, 224,
225, 234, 237, 257, 259, 263, 271,
326, 337

githubusercontent  337
glm  180, 211, 215, 217
globals  48, 49, 120, 267
glossary  30
GNP see gross national product (GNP)
God  11
Googlevis  221
grammar  33, 34, 243, 244, 260,

261, 271
graph  221, 222, 224, 231, 232, 248,

249, 288, 297, 331, 335, 336
graphviz  288, 297
Greenplum  86
Greiner, L.E.  66, 68, 73
grep  111, 112
grepinr  111
grepl  111, 140
Gretzky, Wayne  165
grid  156, 246, 255, 300, 305, 326
Groceries  326–330, 332–334, 336
gross national product (GNP)  164
groupby  145, 147, 266, 267
gsub  58, 109, 110, 115
GUIs  21, 174, 176, 355
gutenberg  338–340
gviz  288, 297
gvlma  166, 205

h
hackerearth  61, 62
Hacking  63
hadley  29, 142, 259, 271
hadoop  27, 29–31, 39, 40, 61, 62, 85
HairEyeColor  255
Harrison, D.  191
Harvard  27, 68, 73

hashtag  33
Hbase  31, 85, 86
HDFS  31
hebrew  277
Hemedinger  40
Heteroscedascity  9, 166, 211
hexbins  243
HighPerformanceComputing  33
Hilbert, M.  72, 73
histogram  248, 250, 252
Hive  31, 32
hmisc  101, 143, 148, 156, 159
hominem  71
HQL  27
href  80, 81
html  25, 26, 31, 33–35, 38, 43, 47, 48,

61, 62, 73, 78, 94, 104, 105, 115, 173,
175, 176, 211, 213, 220, 238, 247,
256, 259, 260, 262, 263, 268, 273,
275–278, 287, 296, 326

htmltools  62
https  23, 26–29, 33–35, 37–43, 45,

47, 48, 56, 58, 63, 64, 70, 71, 73, 75,
86, 87, 94, 102, 104–106, 110, 111,
120, 142, 147, 164, 165, 167, 168,
171, 178, 221, 224, 225, 234, 237,
238, 247, 256, 257, 259–261, 263,
275, 291, 316, 326, 337, 343, 346

HypothesisTesting  173, 259

i
IDE  9, 43, 256, 267
ifelse  103, 137, 140, 162
ijulia  259
import  12, 35–37, 49, 51, 52, 59, 60,

76, 79, 96, 97, 101, 102, 104, 108,
111, 112, 118, 120, 178, 211, 225,
234, 245, 262, 267, 271, 272, 275,
278, 282, 287, 288, 291, 296, 297,
337, 338, 344, 353

important  29, 31, 40, 41, 44, 57, 58,
165, 171, 232, 233, 260

indentation  25, 48, 260

Index338

index  10, 26, 29, 33, 43, 54, 56–58,
101, 106–109, 113, 114, 116, 119,
120, 179, 191, 207, 212, 256, 262, 264,
267, 268, 282, 284, 285, 337, 347, 348

India  4, 11, 256
info  58, 59, 77, 99, 106, 113, 132, 156,

234, 262, 263, 280, 330, 334, 337,
345, 348, 349

information  4, 21, 26, 30, 31, 58, 59,
72, 73, 84, 85, 90, 98, 110, 112, 115,
165, 220, 221, 232, 259, 263, 304,
307, 328, 332

Inglewood  83
install  37, 59, 60, 79, 89, 96, 131, 149,

205, 254, 260, 262, 287, 296, 297,
300, 302, 304, 307, 316, 326, 339,
340, 342, 353

int  26, 57, 94, 101, 109, 132, 150, 180,
187, 188, 197, 213, 226, 272, 327

intercept  37, 163, 180–184, 186, 188,
198, 200, 202–204, 207, 212, 213,
216, 226, 227, 272

io  34, 37–39, 42, 45, 68, 70, 75, 78,
106, 120, 122, 178, 225, 234, 237,
247, 259, 260, 262, 263, 271

ipynb  276–278, 337
ipython  32, 34, 37, 58–60, 257–259,

276, 288, 297
iris  178, 179, 181–184, 234–237, 251,

252, 260, 261, 300, 302–308, 314,
316, 317

IRkernel  37
IronPython  42
item  325, 326, 328, 329, 332, 333, 336
itemFrequencyPlot  328, 336
itemMatrix  327, 332
iter  56, 110, 346, 350
iterable  109
iterator  109

j
Jason, R.  73
java  27, 31, 39, 42, 276

JavaScript  31, 39
Javelin  125, 126, 128, 129
Jesus  5
JMP  15
jobs  290, 299, 350
John  4, 15, 53, 54, 56, 170, 220, 233
Johns  34
Johnson, S.R.  167, 220
JointGrid  243, 269
jointplot  243, 269
jre  277
json  78
jstatsoft  33
jstor  259
Julia  21, 33, 42
jupyter  7, 9, 37–40, 45, 56, 58, 61, 62,

75, 76, 78, 104, 106, 110–112, 120, 143,
147, 178, 224, 228, 234, 243, 244, 257,
260, 262, 273, 275, 277, 291, 343, 355

JVM  40, 43
Jython  42

k
kaggle  35, 218
kdnuggets  31, 34
kfold  289, 290, 298, 299
Kharagpur  15
kmeans  344, 346, 347, 349, 350
Kruskal–Wallis  175
kurtosis  170–172, 180, 227, 272
Kush  5, 11

l
lambda  120, 267
lapply  103, 317
LaTex  21
lattice  156, 304, 307
lazyeval  326
leaflet  247
len  51, 56, 76, 77, 79, 108, 114, 118,

119, 263, 284, 285, 293, 338, 339
levels  17, 45, 132, 133, 143, 149, 150,

160, 168, 187, 310, 316, 327

Index 339

library  4, 32, 33, 39, 48, 75, 78, 79, 96,
102–105, 129, 131, 138, 141, 143,
149, 156, 158, 159, 176, 187, 190,
194, 199, 205, 214, 238, 244, 249,
252, 254, 255, 262, 275, 300, 302,
304–307, 314–316, 318, 326, 332,
336, 339, 340, 342

linux  8, 11, 12, 37, 38, 44, 59, 60,
288, 297

logistic  9, 164, 175, 180, 211, 213
logisticmodels  218
logisticregression  217
logit  211–213, 218
Log‐Likelihood  213
loops  26, 47, 110
lubridate  102, 103, 137, 138

m
machinelearningmastery  287, 296
magrittr  62
Mann–Whitney  175
MapReduce  31
maps  255, 278
markdown  256, 262
Maslow’s  69
math  28, 42, 49, 50, 63, 169, 256
MATLAB  31
matplotlib  33, 228–230, 234–238,

245, 344, 353
matrix  64, 66, 107, 108, 161, 211,

217–219, 303, 304, 307, 326, 327,
341, 343, 352

max  25, 51, 97, 131, 143, 149, 153,
156, 181, 183, 184, 186, 188, 190,
193, 194, 198, 200, 202–204, 207,
214, 215, 265, 279–281, 284–287,
290, 296, 299, 328, 330, 332, 334,
342–345, 350

McKinney  29
Mckinsey  64, 67
MeanDecreaseGini  303
means  4, 9, 85, 164, 226, 228, 231,

343, 346, 349

median  143, 147, 153, 169, 170, 175,
181, 183, 184, 186, 188, 191, 193,
194, 198, 200, 202–204, 207, 214,
215, 266, 267, 328, 330, 332, 334

medv  191–197, 199–205, 207, 272
MemcacheDB  86
memory  26, 29, 31, 40, 76, 100, 106,

113, 130, 131, 149, 190, 234, 263,
281, 339, 345

methods  18, 35, 61, 70, 110, 262
microsoft  31, 38, 41, 43
min  51, 143, 153, 181, 183, 184, 186,

188, 193, 194, 198, 200, 202–204,
207, 214, 215, 265, 279–281, 284,
285, 287, 290, 296, 299, 328, 330,
332, 334, 344, 345

Minard, Charles  221
mining  18, 31, 33, 71, 259, 261, 273,

275, 315, 326, 330, 334, 337, 339
mkdir  44
model  10, 18, 28, 41, 64, 65, 67, 69,

72, 73, 84, 85, 163–166, 179,
181–183, 205, 211–213, 217, 218,
220, 226, 262, 272, 283, 287, 289,
290, 296, 298, 299, 308, 309, 314,
317, 318, 349–351

modeling  9, 18, 69, 163, 218, 220, 261
MongoDB  31, 85, 86
mtcars  120, 122–130, 185, 186, 254
multicollinearity  9, 166, 211
munging  32, 130
MySQL  31, 84, 86

n
na  103, 110, 115, 116, 133, 134, 138,

151, 304, 307, 320–322
NaiveBayes  314
names  26, 57, 58, 94, 97, 98, 100, 108,

111, 112, 114, 122, 123, 131, 140,
141, 149, 181–183, 185, 264, 267,
284, 285, 288, 291, 297, 300, 342,
344, 346

namespace  48, 62, 326

Index340

NaN  107, 115, 280, 281
Napoleon’s  221, 222
nbviewer  45, 56, 58, 75, 76, 78, 104,

106, 110–112, 120, 143, 147, 178,
224, 228, 234, 243, 244, 258, 275,
291, 343

ncol  132, 149
ndarray  107, 286, 293
nltk  337–339
nnet  37
norm  72
nosql  17, 32, 86
notebook  9, 32, 34, 37–40, 61, 62,

234, 245, 257, 258, 260, 262, 273
nrow  131, 135, 149, 152, 205
ntransactions  330, 334
null  32, 94, 165, 173–175, 177, 178,

216, 327
numeric  61, 101, 104, 108–111, 115,

143, 168, 199, 212, 217, 218, 283,
300, 305, 318

numpy  8, 30–32, 42, 51, 101, 105,
107, 108, 118, 134, 178, 211, 224,
225, 276, 281, 286, 293, 344, 355

o
ODBC see Open Database

Connectivity (ODBC)
Ohri, Ajay  3–5, 31, 259, 277
Okun’s  164
Open Database Connectivity (ODBC) 

8, 89, 90, 96
operator  101, 115, 132, 139, 140
oracle  31, 41, 43, 84, 277
Oracle R Enterprise (ORE)  43
outlier  231
outlierTest  166, 201, 208
Overfitting  205, 218

p
package  4, 8, 12, 21, 26, 29, 32, 33, 35,

37, 42, 43, 48, 50, 58, 70, 96, 97,
102–104, 108, 114, 120, 129, 130,

141–143, 145, 147, 148, 156, 159,
166, 190, 199, 214, 224, 237, 247,
249, 252, 254, 255, 260–262, 267,
268, 271, 273, 275, 300, 304, 305,
307, 308, 316, 318, 326, 327, 337,
339, 342, 355

pairplot  237, 260, 261
pandas  8, 29–32, 35, 37, 71, 75–78,

97, 100, 101, 105–107, 113–115, 120,
143, 145, 148, 178, 211, 224, 225,
234, 260, 262, 263, 265, 266, 275,
276, 280, 285, 291, 292, 344, 345, 355

Pareto  69, 70
partyR  300
perceptualedge  232, 259
pie  221, 259
Pig  27, 31, 32
pima  276, 291
pip  58–60, 79, 260, 262, 287, 296,

297, 331, 336, 353
pivot  145, 148, 267
Playfair, William  221
plot  143, 196, 207, 217, 221, 234, 235,

238, 243, 244, 247, 251, 254, 256,
287, 296, 301, 303, 306, 314, 318,
323, 324, 331, 335, 336

Poisson  171, 173
Polyglot  37
POSIXt  156
posterior  310
postgresql  84, 86, 87, 94, 98, 100
prediction  72, 73, 163, 165, 218, 220,

304, 307
price  69, 80, 81, 113–116, 119, 120,

131–134, 136, 137, 149–153,
156–162, 187, 188, 238–243,
245–247, 253, 254, 263–271

probability  9, 169–174, 218
programming  12, 25–27, 30, 34, 43,

62, 73, 84, 89, 167, 260
projecteuclid  163, 259
propensity  18, 211
psycopg2  97

Index 341

p‐value  177, 178, 182, 183, 185, 187,
189, 198–205, 208, 213, 304, 307

pydoop  39
pypi  26, 70, 260, 261
pyplot  234, 344
pypy  42
Pyrex  43
PyRun  43
pysal  247
pysqldf  120–122, 267, 268
pythonanywhere  41

q
qnorm  175
quantiles  144
quartiles  143, 144
query  32, 85, 100, 119, 120, 129, 261,

262, 265

r
radimrehurek  34
Raleigh  28
random  8, 51, 52, 83, 118, 119, 130,

134, 135, 151, 163, 166, 170–172,
205, 207, 217, 287, 289, 290, 296,
298, 299, 303, 304, 307, 321, 350

randomforest  302, 303, 306,
307, 355

rattle  174, 176, 259, 275, 315,
326, 355

Rcolorbrewer  249, 342
RCommander  277
Rcpp  40, 62, 214
Rdatasets  75, 106, 120, 122, 178, 225,

234, 237, 259, 263, 271
RDBMS see relational database

management system (RDBMS)
re  80, 84, 97, 101, 108, 109, 111,

259, 277
readPDF  339
Redis  31, 86
RegModel  197, 199, 201, 203–205,

207–209

regression  7, 9, 18, 31, 34–37, 163–
166, 175, 178–181, 190, 205, 211, 213,
224, 226, 228, 231, 235, 262, 271, 275

relational  84, 86
relational database management

system (RDBMS)  8, 84–86
required  53, 94, 156, 255, 300, 304,

305, 307, 308, 316, 318, 326, 339, 342
Resampling  308, 309
reshape2  158
residual  165, 181–183, 185, 187, 189,

198, 200, 202–204, 208, 216
revolutionanalytics  38, 43
RevoScaleR  43
rexeranalytics  28
rfm  70, 71
rm  44, 115, 130, 131, 134, 149, 151,

190–205, 207, 208, 272, 273
RODBC  96
rodeo  213, 267, 271
rows  86, 107, 113, 114, 119, 131, 145,

252, 260, 264, 279, 327, 332, 349
rowSums  341
rpubs  48, 57, 59, 96, 102, 110, 111,

115, 122, 129, 130, 148, 174, 176,
180, 190, 213, 217, 218, 248, 253,
255, 256, 300, 316, 318, 326, 339

rpy2  35, 37, 39
R‐squared  165, 182, 183, 185, 187,

189, 198, 200, 202–204, 208
rstudio  9, 40, 42, 43, 256, 271, 346

s
sample  134, 135, 151, 152, 166, 169,

174, 205, 218, 308
Scala  33
scatterplot  234, 236, 237
scientists  7–9, 13, 17, 21, 27, 28, 31, 32,

42, 44, 167, 168, 173, 232, 260, 262, 273
scikit  32, 33, 261, 273, 277, 278, 287,

296, 326, 355
scipy  31, 32, 176, 178, 226, 276
Scoring  216

Index342

scrape  78
scraping  8, 17, 33, 42, 78, 84
scrapinghub  42
scrapy  42
SDK  43
seaborn  33, 97, 234–238, 243,

260–262, 268, 269
selection  8, 31, 116, 118, 119, 122,

124, 130, 147, 265, 287, 296
sensitivity  217, 219, 305, 308
sessionInfo  59, 61
shiny  37, 43, 221, 247
Siegel, Eric  15
SimpleDB  86
skewness  170–172
sm  178, 179, 211, 212, 225–227, 271,

272, 344, 352
SnowballC  340
sns  97, 234–243, 268–270
source  4, 11, 12, 19, 21–23, 26, 28, 34,

37, 40, 41, 43, 45, 46, 59, 63–68, 78,
86, 90, 160, 167, 168, 170–173, 191,
222, 224, 244, 260, 316

spark  31, 71
sparse  23, 260, 327, 332, 340, 341
spatial  9, 221, 247, 255, 256
specificity  219, 305, 308
spotfire  43
Springer  259
spss  21, 71
Spyder  43
sql  27, 31, 32, 78, 84, 85, 94, 100, 120,

129, 147, 148, 261, 267
sqlalchemy  60, 97, 261
sqldf  32, 120, 129, 130, 148, 261, 267
SQLite  267
Sqoop  31
stackexchange  166, 168
stackoverflow  37, 38, 48
standard  4, 9, 25, 40, 44, 71, 89, 94,

135, 164, 169–171, 174, 182, 183,
185, 187, 189, 198, 200, 202–204,
208, 220, 224, 226, 228

stata  78
statistical  9, 11–13, 18, 19, 22, 27, 30,

32–34, 43, 72, 73, 163, 165–169, 244,
259–261

statistics  9, 11, 26–28, 30, 31, 33, 34,
62, 63, 165–169, 173, 211, 220, 224,
228, 231, 259, 260, 304, 307, 308

statisticsviews  273
statsmodels  33, 60, 176, 178, 179,

211, 225, 235, 261, 271, 272, 318, 355
status  191
std  37, 51, 143, 180, 181, 183, 184,

186, 188, 198, 200, 202–204, 207,
213, 216, 226, 228, 265, 272, 280,
281, 284, 285, 344, 345

stochastically  163
str  53, 56, 57, 79, 80, 84, 99, 101, 102,

109, 112, 113, 122, 124, 132, 141,
149, 160, 185, 187, 197, 316, 326, 338

stringi  62
StringIO  288, 297
stringr  62, 141, 142
substr  58, 137, 139, 140
sudo  44, 59, 60, 262, 276, 287, 288,

296, 297, 353
summarise  160
summary  10, 18, 37, 143, 147, 148,

152, 168, 179, 181, 182, 184, 186,
188, 190, 193, 197, 199, 201, 203,
207, 211, 213–215, 224, 228, 231,
265, 266, 272, 308, 327, 329, 330,
332–334, 340, 355

SVM  276, 277
swarmplot  236, 237

t
tableplot  253
tables  60, 93
TermDocumentMatrix  340, 341
textmining  339
tibble  188
tibco  43
Tidy  142

Index 343

tidyr  37, 142, 159
Tufte’s  9, 231
Tukey’s  143
tuple  55

u
ubuntu  11, 61, 288, 297
ucla  211, 214
unicorn  27, 28
UNIX  30

v
van Rossum, Guido  25, 260
VCorpus  340
vincentarelbundock  75, 106, 120,

122, 178, 225, 234, 237, 259,
263, 271

visualization  9, 18, 27, 31–34, 218,
221, 228, 231, 234, 243, 248, 255,
259–261, 263, 265, 267–269, 271,
273, 343

Voldemort  86

w
wajig  277
Weibull  172

wesmckinney  29
wickham  29, 142, 243, 259, 271
wikipedia  64, 66, 67, 164–166, 171,

173, 256
Wilcoxon  175
Wilkinson  243, 271
Williams, G.J.  259
wolfram  173, 259

x
xbar  174
XlsxWriter  60
XMLSource  340
X‐squared  177, 178
xtabs  158, 215

y
yhat  213, 244, 267, 271
yhathq  33, 261
yourlogicalfallacyis  71

z
Zen  7, 23
zia  27, 30, 63
Z‐score  170
ztest  176

