Python® for R Users

Python® for R Users

A Data Science Approach

Ajay Ohri

WILEY

This edition first published 2018
© 2018 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material
from this title is available at http://www.wiley.com/go/permissions.

The right of Ajay Ohri to be identified as the author of this work has been asserted in accordance
with law.

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand.
Some content that appears in standard print versions of this book may not be available in other
formats.

Limit of Liability/Disclaimer of Warranty

The publisher and the authors make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties;
including without limitation any implied warranties of fitness for a particular purpose. This

work is sold with the understanding that the publisher is not engaged in rendering professional
services. The advice and strategies contained herein may not be suitable for every situation. In
view of on-going research, equipment modifications, changes in governmental regulations, and
the constant flow of information relating to the use of experimental reagents, equipment, and
devices, the reader is urged to review and evaluate the information provided in the package insert
or instructions for each chemical, piece of equipment, reagent, or device for, among other things,
any changes in the instructions or indication of usage and for added warnings and precautions.
The fact that an organization or website is referred to in this work as a citation and/or potential
source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further,
readers should be aware that websites listed in this work may have changed or disappeared
between when this works was written and when it is read. No warranty may be created or
extended by any promotional statements for this work. Neither the publisher nor the author shall
be liable for any damages arising here from.

Library of Congress Cataloguing-in-Publication Data

Name: Ohri, A. (Ajay), author.
Title: Python® for R users : a data science approach / Ajay Ohri.
Description: Hoboken, NJ : John Wiley & Sons, 2018. | Includes
bibliographical references and index. |
Identifiers: LCCN 2017022045 (print) | LCCN 2017036415 (ebook) |
ISBN 9781119126775 (pdf) | ISBN 9781119126782 (epub) |
ISBN 9781119126768 (pbk.)
Subjects: LCSH: Python (Computer program language) | R (Computer program language)
Classification: LCC QA76.73.P98 (ebook) | LCC QA76.73.P98 037 2017 (print) |
DDC 005.13/3—-dc23
LC record available at https://lccn.loc.gov/2017022045

Cover design: Wiley
Cover images: (Background) © Duncan Walker/iStockphoto

Set in 10/12pt Warnock by SPi Global, Pondicherry, India
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Dedicated to my family in Delhi, Mumbai, and the United States

and

Kush Ohri (my son whom I love very much)

and

Jesus Christ (my personal savior)

1.1
1.2
1.3
1.4
1.5
1.6
1.6.1
1.7
1.7.1
1.8
1.9
1.9.1
1.9.2
1.10
1.11
1.11.1
1.12
1.13
1.14
1.15
1.16

Contents

Preface «xi
Acknowledgments xv
Scope «xvii

Purpose xix

Plan xxi

The Zen of Python xxiii

Introduction to Python R and Data Science I

What Is Python? I

WhatIsR? 2

What Is Data Science? 3

The Future for Data Scientists 3

What Is Big Data? 4

Business Analytics Versus Data Science 6

Defining Analytics 6

Tools Available to Data Scientists 7

Guide to Data Science Cheat Sheets 7

Packages in Python for Data Science 8

Similarities and Differences between Pythonand R 9
Why Should R Users Learn More about Python? 10
Why Should Python Users Learn More about R? 10
Tutorials 10

Using R and Python Together 11

Using R Code for Regression and Passing to Python 11
Other Software and Python 15

Using SAS with Jupyter 15

How Can You Use Python and R for Big Data Analytics? 15
What Is Cloud Computing? 16

How Can You Use Python and R on the Cloud? 17

vii

viii

Contents

1.17

1.17.1
1.17.2
1.18

1.18.1

1.18.2

21
2.2
221
2.3
2.3.1
2.3.2
2.3.3

3.1
311
3.1.2
3.2
3.3
331
3.4
34.1
3.4.2
3.5
351
3.5.2
3.5.3

4.1
4.2
4.3

Commercial Enterprise and Alternative Versions

of Pythonand R 18

Commonly Used Linux Commands for Data Scientists 20
Learning Git 20

Data-Driven Decision Making: A Note 38

Strategy Frameworks in Business Management:

A Refresher for Non-MBAs and MBAs

Who Have to Make Data-Driven Decisions 39

Additional Frameworks for Business Analysis 45
Bibliography 49

Data Input 51/

Data Input in Pandas 51
Web Scraping Data Input 54
Request Data from URL 55
Data Input from RDBMS 60
Windows Tutorial 62

137 Mb Installer 63
Configuring ODBC 65

Data Inspection and Data Quality 77

Data Formats 77

Converting Strings to Date Time in Python 78
Converting Data Frame to NumPy Arrays and Back in Python
Data Quality 84

Data Inspection 88

Missing Value Treatment 91

Data Selection 92

Random Selection of Data 94

Conditional Selection 95

Data InspectioninR 98

Diamond Dataset from ggplot2 Package in R 106
Modifying Date Formats and Stringsin R 113
Managing Stringsin R 116

Bibliography 118

Exploratory Data Analysis 119
Group by Analysis 119
Numerical Data 119
Categorical Data 121

81

51

51.1
51.2
51.3
514
51.5
52

521
522
523
52.4
53

5.4

54.1
54.2
54.3

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.2
6.3
6.3.1
6.4
6.5
6.6
6.7
6.8
6.8.1
6.8.2

6.8.3

Contents

Statistical Modeling 139

Concepts in Regression 139

OLS 140

R-Squared 141

p-Value 141

Outliers 141

Multicollinearity and Heteroscedascity 142
Correlation Is Not Causation 142

A Note on Statistics for Data Scientists 143
Measures of Central Tendency 145
Measures of Dispersion 145

Probability Distribution 147

Linear Regression in R and Python 154
Logistic Regression in R and Python 187
Additional Concepts 194

ROC Curve and AUC 194

Bias Versus Variance 194

References 196

Data Visualization 197

Concepts on Data Visualization 197

History of Data Visualization 197

Anscombe Case Study 200

Importing Packages 201

Taking Means and Standard Deviations 202
Conclusion 204

Data Visualization 204

Conclusion 207

Tufte’s Work on Data Visualization 207
Stephen Few on Dashboard Design 208
Maeda on Design 209

Basic Plots 210

Advanced Plots 219

Interactive Plots 223

Spatial Analytics 223

Data Visualization in R 224

A Note of Sharing Your R Code by RStudio IDE 232
A Note on Sharing Your Jupyter Notebook 233
Bibliography 235

Special Note: A Complete Wing to Wing Tutorial on Python 236

ix

X

Contents

7.1.1
7.2
7.3
7.4
74.1
74.2

Machine Learning Made Easier 251

Deleting Columns We Dont Need in the Final
Decision Tree Model 259

Decision TreesinR 276

Time Series 294

Association Analysis 301

Cleaning Corpus and Making Bag of Words 316
Cluster Analysis 319

Cluster Analysis in Python 319

Conclusion and Summary 331

Index 333

Preface

I started my career with selling cars in 2003. That was my first job after 2 years
of MBA and 4 years of engineering. In addition, I took off 2 years to enter a
military academy as an officer cadet (dropped out in 1 year) and as a physicist
(dropped out after 1 year). Much later, I dropped out of my PhD Track (MS
Stats) after 1 year in Knoxville. I did not do very well in statistics theory in my
engineering, my MBA, or even my grad school. I was only interested in statisti-
cal software and fortunately I was not very bad at using it. So in 2004, I dropped
out of selling cars and entered into writing statistical software for General
Electric’s then India-based offshore company.

I used a language called SAS for a software called Base SAS. The help pro-
vided by the software company called SAS for this software and language was
quite nice, so it was nice to play with data and code all day and be paid to have
fun. After a few years of job changes, I came across open-source software when
I started building my own start-up. I really like SAS as a language and a com-
pany, but as a start-up guy I could not afford it, and the SAS University Edition
was not there in 2007. Since I needed money to pay for diapers of my baby
Kush, and analysis was the only gift God had given me, I turned to R.

R, Open Office, and Ubuntu Linux were my first introduction to open-
source statistical computing, and I persevered in it. In 2007 I started my own
start-up in business analytics writing and consulting, Decisionstats.com. In
2009 I entered the University of Tennessee for a funded assistantship, I
interned in Silicon Valley for a few weeks in the winter, and I dropped out on
medical reasons after taking courses across multiple departments from
graphics design and genetic algorithms from Computer Science Department,
apart from Statistics Department. Cross-domain training helped me a lot to
think in various ways to give simple solutions, and I will always be thankful
to the kind folks in Statistics and Computer Science Department of the
University of Tennessee.

Xi

xii

Preface

Once I mastered my brain around the vagaries of troubleshooting in Linux
and of object-oriented programming on R, I was good to go to give consulting
projects for data analysis. Those days we used to call it business analytics, but
today of course we call it data science.

Since I often forget things including where I kept my code, I started blogging
on things that I felt were useful and might be useful to others. After a few years
I discovered that in the real world it was not what I knew, but who I knew that
really helped my career. So I began interviewing people in Analytics and R and
my blog viewership took off. My blog philosophy continues to be—a blog post
should be useful, it should be unique, and it should be interesting. In 2016,
I had amassed 1,000,000 views on DecisionStats.com—again a surprising turn
of events for me. I am most grateful to the 100 plus people who agreed to be
interviewed by me.

2007 and 2008 were early days for analytics blogging for sure. After a few
years I had enough material to put together a book and enough credibility to
publish with a publisher. In 2012 I came up with my first book and in 2014
I came up with my second book. In 2016, the Chinese translation of my first
book was realized. Surprisingly for me, a review of my second book appeared
in the Journal of Statistical Software.

After publishing two books on R, mentoring many start-ups by consulting
and training, engaging consulting clients in real-world problems, and making
an established name in social media, I still felt I needed to learn more.

Data was getting bigger and bigger. It was not enough to know how to
write small data analytics using a single machine in serialized code; perhaps
it was time to write parallel code in multiple machines on big data analytics.
Then there was the divide between statisticians and computer science that
fascinated me since I see data as data, a problem to be solved. As Eric S.
Raymond wrote in the Hacker’s attitude, “The world is full of interesting
problems”

Then there was temptation and intellectual appeal of an alternative to R,
called Python, which came with batteries attached (allegedly).

Once my scientific curiosity was piqued, I started learning Python. I found
Python was both very good and very bad compared with R. Its community has
different sets of rules and behavior (which are always turbulent in the passion-
ate world of open-source developer ninjas). But the language itself was very
different. I don’t care about the language. I love science. But if a person like me
who at least knows how to code a wee bit in R found it so tough to redo the
same thing in Python, I thought maybe others were facing this transitioning
problem too. For big data and for some specific use cases, Python was better in
terms of speed. Speed matters, no matter how much Moore’s law conspires
with the either to make it easier for you to write code. R also seemed to turn
into a language where all I did was import a package and run a function with
tweaked parameters. As R became the scientific mainstream replacing SAS

Preface

language, and SAS remained the enterprise statistical language, Python and
how to write code in it became the thing for anonymous red hat hackers like
me to venture delve and explore into.

As the Internet of people expands to Internet of things, I feel that budding
data scientists should know at least two languages in analytics so they can
be secure on career. This also gives enterprises an open choice on which
software to prototype models and which software to deploy in production
environments.

xiii

Acknowledgments

The author is grateful to many people working in both the Python and R
community for making this book possible. He would especially like to thank
Dr. Eric Siegel of Predictive Analytics Conference and John Sall of JMP. He
would like to thank all his students in 2012-2016.

This book would not be done without the support from Madhur Batra for
mentoring and logistical support. On a technical side, inputs and hard work
from his interns Yashika and Chandan Routray (IIT Kharagpur) and his
DecisionStats team helped him. His coresearcher F. Xavier provided invaluable
help with case studies.

Xv

Scope

The scope of the book is to introduce Python as a platform for data science
practitioners including aspiring budding data scientists. The book is aimed at
people who know R coding at various levels of expertise, but even those who
know no coding in no language may find some value in it. It is not aimed at
members of research communities and research departments. The focus is
on simple tutorials and actionable analytics, not theory. I have also tried to
incorporate R code to give a compare and contrast approach to learners.

Chapter 1

Introduction deals with Python and comparison with R. It also lists the func-
tions and packages used in both languages. It also lists some managerial mod-
els that the author feels data scientists should be aware of. It introduces the
reader to basics of Python and R language.

Chapter 2

“Data Input” deals with an approach for people to get data of various volume
variety and velocity in Python. This includes web scraping, databases, noSQL
data, and spreadsheet like data.

Chapter 3

“Data Inspection and Data Quality”—Data Inspection deals with choices in
verifying data quality in Python.

xvii

xviii

Scope

Chapter 4

“Exploratory Data Analysis” deals with basic data exploration and data
summarization with rolling up data with group by criterion.

Chapter 5

“Statistical Modeling” deals with creating models based on statistical
analysis including OLS regression that are useful for industry to build
propensity models.

Chapter 6

“Data Visualization” deals with visual methods to inspect raw and rolled-up
data.

Chapter 7

“Machine Learning Made Easier” deals with commonly used data mining
methods for model building. This is done with an emphasis on both supervised
and unsupervised methods and further emphasis on regression and clustering
techniques. Time series forecasting helps the user with time series forecasting.
Text mining deals with text mining methods and natural language processing.
Web analytics looks at using Python for analyzing web data. Advanced data
science looks at methods and techniques for newer age use cases including
cloud computing-enabled big data analysis, social network analysis, Internet of
things, etc.

Chapter 8

Conclusion and Summary—We list down what we learned and tried to achieve
in this book, and our perspective for future growth of R and Python as well as
statistical computing to grow, and render data science a credible foothold for
the future.

Purpose

The book has been written from a practical use case perspective for helping
people navigate multiple open-source languages in the pursuit of data science
excellence. The author believes that there is no one software or language that
can solve all kinds of data problems all the time. An optimized approach to
learning is better than an ideological approach to learning statistical software.
Past habits of thinking must be confronted to enhance speed of future
knowledge enhancement.

XiX

Plan

I will continue to use screenshots as a tutorial device and I will draw upon my
experience in data science consulting to highlight practical data parsing prob-
lems. This is because choosing the right tool and technique and even package
is not so time consuming but the sheer variety of data and business problems
can suck up the data scientist’s time that can later affect quality of his judgment
and solution.

Intended Audience

This is a book for budding data scientists and existing data scientists married
to other languages like SPSS or R or Julia. I am trying to be practical about
solving problems in data. Thus there will be very little theory.

Afterthoughts

[am focused on practical solutions. I will therefore proceed on the assumption
that the user wants to do data science or analytics at the lowest cost and great-
est accuracy, robustness, and ease possible. A true scientist always keeps his
mind open to data and options regardless of who made whom. The author
finds that information asymmetry and brand clutter have managed to confuse
audiences of the true benefits of R versus Python versus other languages. The
instructions and tutorials within this book have no warranty and you are doing
so at your own risk.

As a special note on formatting of this manuscript, the author mostly writes
on Google Docs, but here he is writing using the GUI LyX for the typesetting
software LaTex, and he confesses he is not very good at it. We do hope the book
is read by business users, technical users, CTOs keen to know more on R and
Python and when to use open-source analytics, and students wishing to enter
a very nice career as data scientists. R is well known for excellent graphics but

XXi

XXii

Plan

not so suitable for bigger datasets in its native straight to use open-source ver-
sion. Python is well known for being great with big datasets and flexibility but
has always played catch-up to the number of good statistical libraries as
available in R.

The enterprise CTO can reduce costs incredibly by using open-source
software and hardware via blended cloud and blended open-source software.

The Zen of Python

Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently. Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never. Although never is often better than right now.
If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let’s do more of those!

Source: https://www.python.org/dev/peps/pep-0020/

xxiii

https://www.python.org/dev/peps/pep-0020/

Introduction to Python R and Data Science

1.1 WhatIs Python?

Python is a programming language that lets you work more quickly and
integrate your systems more effectively. It was created by Guido van Rossum.
You can read Guido’s history of Python at the History of Python blog at
http://python-history.blogspot.in/2009/01/introduction-and-overview.html.

It is worth reading for beginners and even experienced people in Python.
The following is just an extract:

many of Python’s keywords (if, else, while, for, etc.) are the same as in C,
Python identifiers have the same naming rules as C, and most of the
standard operators have the same meaning as C. Of course, Python is
obviously not C and one major area where it differs is that instead of
using braces for statement grouping, it uses indentation. For example,
instead of writing statements in C like this

if (a < b) {
max = b;

} else {
max = a;

}

Python just dispenses with the braces altogether (along with the trailing
semicolons for good measure) and uses the following structure:

if a < b:
max = b
else:
max = a

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

http://python-history.blogspot.in/2009/01/introduction-and-overview.html

2

1 Introduction to Python R and Data Science

The other major area where Python differs from C-like languages is in
its use of dynamic typing. In C, variables must always be explicitly
declared and given a specific type such as int or double. This informa-
tion is then used to perform static compile-time checks of the program
as well as for allocating memory locations used for storing the variable’s
value. In Python, variables are simply names that refer to objects.

The Python Package Index (PyPI) https://pypi.python.org/pypi hosts third-
party modules for Python. There are currently 91625 packages there. You
can browse Python packages by topic at https://pypi.python.org/pypi?%3A
action=browse

1.2 WhatlIsR?

The official definition of what is R is given on the main website at http://
www.r-project.org/about.html

R is an integrated suite of software facilities for data manipulation, cal-
culation and graphical display. It includes an effective data handling and
storage facility, a suite of operators for calculations on arrays, in particu-
lar matrices, a large, coherent, integrated collection of intermediate
tools for data analysis, graphical facilities for data analysis and display
either on-screen or on hardcopy, and a well-developed, simple and
effective programming language which includes conditionals, loops,
user-defined recursive functions and input and output facilities.

The term ‘environment’ is intended to characterize it as a fully planned
and coherent system, rather than an incremental accretion of very spe-
cific and inflexible tools, as is frequently the case with other data analysis
software.

The Comprehensive R Archive Network (CRAN) hosts thousands of pack-
ages for R at https://cran.r-project.org/web/packages/, so does GitHub (see
https://github.com/search?utf8=%E2%9C%93&q=stars%3A%3E1+language%
3AR) as well as Bioconductor as package repositories. You can see all the pack-
ages from these repositories for R at http://www.rdocumentation.org/ (11 885
packages as of 2016).

As per the author, R is both a language in statistics as well as computer science
and an analytics software with great usefulness in analyzing business data and
applying data science to it. In particular the appeal of R remains: it is a free open
source and has a huge number of packages particularly dealing with analysis of data.

Disadvantages of R remain memory handling in production environments,
lack of incentives for R developers, and a sometimes turgid documentation
that is mildly academic oriented rather than enterprise user oriented.

https://pypi.python.org/pypi
https://pypi.python.org/pypi?:action=browse
https://pypi.python.org/pypi?:action=browse
http://www.r-project.org/about.html
http://www.r-project.org/about.html
https://cran.r-project.org/web/packages/
https://github.com/search?utf8=✓&q=stars:>1+language:R
https://github.com/search?utf8=✓&q=stars:>1+language:R
http://www.rdocumentation.org/

1.4 The Future for Data Scientists

1.3 WhatIs Data Science?

Data science lies at the intersection of programming, statistics, and business
analysis. It is the use of programming tools with statistical techniques to ana-
lyze data in a systematic and scientific way. A famous diagram by Drew Conway
put data science as the intersection of the three. It is given at http://drewcon
way.com/zia/2013/3/26/the-data-science-venn-diagram

The author defines a data scientist as follows:

A data scientist is simply a person who can write code (in languages like R,
Python, Java, SQL, Hadoop (Pig, HQL, MR) etc.) for data (storage, query-
ing, summarization, visualization) efficiently and quickly on hardware
(local machines, on databases, on cloud, on servers) and understand
enough statistics to derive insights from data so business can make
decisions.

1.4 The Future for Data Scientists

The respectable Harvard Business Review defines data scientist to be the
sexiest job of the twenty-first century (https://hbr.org/2012/10/data-scientist-
the-sexiest-job-of-the-21st-century/).

Surveys on salaries point out to both rising demand and salaries for data
scientists and a big shortage for trained professionals (see http://www.forbes.
com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-
salaries-for-all-data-analytics-professionals/). Indeed this has coined a new
term unicorn data scientists. A unicorn data scientist is rare to find for he has
all the skills in programming, statistics, and business aptitude. A modification
of the Data Science Venn Diagram in Figure 1.1 is available at http://www.
anlytcs.com/2014/01/data-science-venn-diagram-v20.html, which the author
found more updated.

In addition, unicorn is a term in the investment industry, and in particular
the venture capital industry, which denotes a start-up company whose valua-
tion has exceeded $1 billion. The term has been popularized by Aileen Lee of
Cowboy Ventures. They can be seen at http://graphics.wsj.com/billion-dollar-
club/ and http://fortune.com/unicorns/

Not surprisingly data science offers a critical edge to these start-ups as well.
So we can have both rising demand and short supply of data scientists, leading
to a more secure work environment. A list of start-ups can be seen at Y
Combinator at http://yclist.com/ including data science related start-ups. You
can see a survey here on data scientist salaries at http://www.burtchworks.
com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-
year. The annual Rexer Analytics survey helps gauge skills and usage by data
miners. You can read an interview at http://decisionstats.com/2013/12/25/

3

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html
http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html
http://graphics.wsj.com/billion-dollar-club/
http://graphics.wsj.com/billion-dollar-club/
http://fortune.com/unicorns/
http://yclist.com/
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://www.burtchworks.com/2015/07/14/compensation-of-data-scientists-insights-from-the-past-year
http://decisionstats.com/2013/12/25/karl-rexer-interview-on-the-state-of-analytics/

4

1 Introduction to Python R and Data Science

Data Science Venn Diagram v2.0

Data science

Computer ~ Machine
science ~ learning

Traditional
~ software

Figure 1.1 Data Science Venn diagram. Source: Copyright © 2014 Steven Geringer
Raleigh, NC.

karl-rexer-interview-on-the-state-of-analytics/ or read the report at www.
rexeranalytics.com. We can thus sum up and say that data scientists who have
the right skills have a great future ahead professionally.

A note of caution is that skills need to be updated by data scientists very
quickly and they need to be responsive to business needs to frame the data
science solutions. So the risk of being obsolete remains an encouragement for
data scientists to get multiple skills. An interesting fellowship program for
data scientists is run by Insight at http://insightdatascience.com/, and a reposi-
tory for data science is available for free at https://github.com/okulbilisim/
awesome-datascience

Closer home, the NY-based Byte academy offers a Python-based program
for data science at http://byteacademy.co/

1.5 What Is Big Data?

Big data is a broad term for datasets so large or complex that traditional data
processing applications are inadequate. The 3Vs model helps with understand-
ing big data.

http://decisionstats.com/2013/12/25/karl-rexer-interview-on-the-state-of-analytics/
http://www.rexeranalytics.com
http://www.rexeranalytics.com
http://insightdatascience.com/
https://github.com/okulbilisim/awesome-datascience
https://github.com/okulbilisim/awesome-datascience
http://byteacademy.co/

1.5 WhatIs Big Data? |5

These are:

1) Volume (size and scale of data)
2) Velocity (streaming or data refresh rate)
3) Variety (type: structured or unstructured) of data

The fourth V is veracity.

Typical approaches to deal with big data are hardware based, and use distrib-
uted computing, parallel processing, cloud computing, and specialized soft-
ware like Hadoop stack. An interesting viewpoint to big data is given at https://
peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-
hadley-wickham/ by Dr. Hadley Wickham, a noted R scientist:

There are two particularly important transition points:

* From in-memory to disk. If your data fits in memory, it’s small data.
And these days you can get 1TB of ram, so even small data is big!
Moving from in-memory to on-disk is an important transition because
access speeds are so different. You can do quite naive computations on
in-memory data and it'll be fast enough. You need to plan (and index)
much more with on-disk data

* From one computer to many computers. The next important threshold
occurs when you data no longer fits on one disk on one computer. Moving
to a distributed environment makes computation much more challeng-
ing because you don't have all the data needed for a computation in one
place. Designing distributed algorithms is much harder, and you're fun-
damentally limited by the way the data is split up between computers.

Wes McKinney, the author of pandas, the primary Python package for
data science, has this to offer on http://wesmckinney.com/blog/the-
problem-with-the-data-science-language-wars/

“any data processing engine that allows you to extend it with user-
defined code written in a “foreign language” like Python or R has to solve
at least these 3 essential problems:

o Data movement or access: making runtime data accessible in a form
consumable by Python, say. Unfortunately, this often requires expen-
sive serialization or deserialization and may dominate the system
runtime. Serialization costs can be avoided by carefully creating
shared byte-level memory layouts, but doing this requires a lot of
experienced and well-compensated people to agree to make major
engineering investments for the greater good.

o Vectorized computation: enabling interpreted languages like Python
or R to amortize overhead and calling into fast compiled code that is

https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
https://peadarcoyle.wordpress.com/2015/08/02/interview-with-a-data-scientist-hadley-wickham/
http://wesmckinney.com/blog/the-problem-with-the-data-science-language-wars/
http://wesmckinney.com/blog/the-problem-with-the-data-science-language-wars/

6

1 Introduction to Python R and Data Science

array-oriented (e.g. NumPy or pandas operations). Most libraries in
these languages also expect to work with array / vector values rather
than scalar values. So if you want to use your favorite Python or R
packages, you need this feature.

o IPC overhead: the low-level mechanics of invoking an external func-
tion. This might involve sending a brief message with a few curt
instructions over a UNIX socket”

The author defines big data as data that requires more hardware (Cloud et al.)
or more complicated programming or specialized software (Hadoop) than
small data.

1.6 Business Analytics Versus Data Science

The author found the historical evolution from statistical computing to business
analytics (BA) to data science both fascinating and amusing in the various claims
of hegemonic superiority. This is how he explains it to his students and readers.

1.6.1 Defining Analytics

Analytics is the systematic computational analysis of data or statistics. It is the
discovery and communication of meaningful patterns in data. Especially valu-
able in areas rich with recorded information, analytics relies on the simultane-
ous application of statistics, computer programming, and operations research
to quantify performance.

The information ladder was created by education professor Norman
Longworth to describe the stages in human learning. According to the ladder,
a learner moves through the following progression to construct “wisdom” from
“data”:

Data — Information — Knowledge — Understanding — Insight — Wisdom

BA refers to the skills, technologies, and practices for continuous iterative
exploration and investigation of past business performance to gain insight and
drive business planning.

Data analytics (DA) is the science of examining raw data with the purpose of
drawing conclusions about that information.

Citation from http://www.gartner.com/it-glossary/analytics

Data science is a more recent term and implies much more programming
complexity:

Data Science = programming + statistics + business knowledge

from http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

http://www.gartner.com/it-glossary/analytics
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

1.7 Tools Available to Data Scientists

Business intelligence (BI) is an umbrella term that includes the applications,
infrastructure and tools, and best practices that enable access to and analysis of
information to improve and optimize decisions and performance.

Overall the most important thing should be assistance to decision-making
rendered not just the science of data analysis.

1.7 Tools Available to Data Scientists

Some (and not all) of the widely used tools available to data scientists are the
following:

e Data storage—MySQL, Oracle, SQL Server, HBase, MongoDB, and Redis
e Data querying—SQL, Python, Java, and R

e Data analysis—SAS, R, and Python

e Data visualization—JavaScript, R, and Python

e Data mining—Clojure, R, and Python

e Cloud—Amazon AWS, Microsoft Azure, and Google Cloud

e Hadoop Big Data—Spark, HDFS MapReduce (Java), Pig, Hive, and Sqoop

A cheat sheet is a piece of paper bearing written notes intended to aid one’s
memory. It can also be defined as a compilation of mostly used commands to
help you learn that language’s syntax at a faster rate. To help with remembering
syntax for many tools, cheat sheets can be useful for data scientists.

The author has written an article on KDnuggets on cheat sheets for
data science at http://www.kdnuggets.com/2014/05/guide-to-data-science-
cheat-sheets.html where he elaborates on his philosophy of what is a data
scientist or not.

1.7.1 Guide to Data Science Cheat Sheets

Selection of the most useful Data Science cheat sheets, covering SQL, Python
(including NumPy, SciPy, and Pandas), R (including Regression, Time Series,
Data Mining), MATLAB, and more. By Ajay Ohri, May 2014

Over the past few years, as the buzz and apparently the demand for data
scientists has continued to grow, people are eager to learn how to join, learn,
advance, and thrive in this seemingly lucrative profession. As someone who
writes on analytics and occasionally teaches it, I am often asked—How do I
become a data scientist?

Adding to the complexity of my answer is data science seems to be a multi-
disciplinary field, while the university departments of statistics, computer sci-
ence, and management deal with data quite differently.

But to cut the marketing created jargon aside, a data scientist is simply a
person who can write code in a few languages (primarily R, Python, and SQL)

7

http://www.kdnuggets.com/2014/05/guide-to-data-science-cheat-sheets.html
http://www.kdnuggets.com/2014/05/guide-to-data-science-cheat-sheets.html

8

1 Introduction to Python R and Data Science

for data querying, manipulation, aggregation, and visualization using enough
statistical knowledge to give back actionable insights to the business for mak-
ing decisions.

Since this rather practical definition of a data scientist is reinforced by the
accompanying words on a job website for “data scientists,” ergo, here are some
tools for learning the primary languages in data science—Python, R, and SQL.

A cheat sheet or reference card is a compilation of mostly used commands to
help you learn that language’s syntax at a faster rate. The inclusion of SQL may
lead to some to feel surprised (isn’t this the NoSQL era?), but it is there for a
logical reason. Both PIG and Hive Query Language are closely associated with
SQL—the original Structured Query Language. In addition one can solely use
the sqldf package within R (and the less widely used python-sql or python-sql-
parse libraries for Pythonic data scientists) or even the Proc SQL commands
within the old champion language SAS and do most of what a data scientist is
expected to do (at least in data munging).

Python Cheat Sheets is a rather partial list given the fact that Python, the
most general-purpose language within the data scientist quiver, can be used for
many things. But for the data scientist, the packages of NumPy, SciPy, pandas,
and scikit-learn seem the most pertinent.

Do all the thousands of R packages have useful interest to the aspiring data
scientist? No.

Accordingly we chose the appropriate cheat sheets for you. Note that this
is a curated list of lists. If there is anything that can be assumed in the field of
data science, it should be that the null hypothesis is that the data scientist is
intelligent enough to make his own decisions based on data and its context.
Three printouts are all it takes to speed up the aspiring data scientist’s
journey.

You can also view the presentation on SlideShare at http://www.slideshare.
net/ajayohri/cheat-sheets-for-data-scientists that has more than 8000 views.

1.8 Packages in Python for Data Science

Some useful packages for data scientists in Python are as follows:

o pandas—A software library written for data structures, data manipulation,
and analysis in Python.

e NumPy—Adds Python support for large, multidimensional arrays and
matrices, along with a large library of high-level mathematical functions to
operate on these arrays.

o IPython Notebook(s)—Demonstrates Python functionality geared toward
data analysis.

e SciPy—A fundamental library for scientific computing.

http://www.slideshare.net/ajayohri/cheat-sheets-for-data-scientists
http://www.slideshare.net/ajayohri/cheat-sheets-for-data-scientists

1.9 Similarities and Differences between Pythonand R | 9

e Matplotlib—A comprehensive 2D plotting for graphs and data
visualization.

e Seaborn—A Python visualization library based on matplotlib. It provides a

high-level interface for drawing attractive statistical graphics.

scikit-learn—A machine learning library.

statsmodels—For building statistical models.

Beautiful Soup—For web scraping.

Tweepy—For Twitter scraping.

Bokeh (http://bokeh.pydata.org/en/latest/)—A Python interactive visualiza-

tion library that targets modern web browsers for presentation. Its goal is to

not only provide elegant, concise construction of novel graphics in the style

of D3.js but also deliver this capability with high-performance interactivity

over very large or streaming datasets. It has interfaces in Python, Scala, Julia,

and now R.

o ggplot (http://ggplot.yvhathq.com/)—A plotting system for Python based on
R’s ggplot2 and the Grammar of Graphics. It is built for making professional-
looking plots quickly with minimal code.

For R the best way to look at packages is see CRAN Task Views (https://cran.r-
project.org/web/views/) where the packages are aggregated by usage type. For
example, the CRAN Task View on High Performance Computing is available at
https://cran.r-project.org/web/views/HighPerformanceComputing.html.

1.9 Similarities and Differences between
Python and R

e Python is used in a wide variety of use cases unlike R that is mostly a lan-
guage for statistics.

e Python has two versions: Python 2 (or 2.7) and Python 3 (3.4). This is not
true in R that has one major release.

e R has very good packages in data visualization and data mining and so does
Python. R however has a large number of packages that can do the same
thing, while Python generally focuses on adding functions to same package.
This is both a benefit in terms of options available and a disadvantage in
terms of confusing the beginner. Python has comparatively fewer packages
(like statsmodels and scikit-learn for data mining).

o Communities differ in terms of communication and interaction. The R com-
munity uses the #rstats on Twitter (see https://twitter.com/hashtag/rstats) to
communicate.

e Rhasan R Journal at https://journal.r-project.org/, and Python has a journal
at Python Papers (http://ojs.pythonpapers.org/). In addition there is a Journal
of Statistical Software (http://www.jstatsoft.org/index).

http://bokeh.pydata.org/en/latest/
http://ggplot.yhathq.com/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://twitter.com/hashtag/rstats
https://journal.r-project.org/
http://ojs.pythonpapers.org/
http://www.jstatsoft.org/index

10

1 Introduction to Python R and Data Science

1.9.1 Why Should R Users Learn More about Python?

A professional data scientist should hedge his career by not depending on just
one statistical computing language. The ease at which a person can learn a new
language does decrease with age, and it’s best to base your career on more than R.
SAS language did lead the world for four decades, but in a fast-changing world,
it is best not to bet your mortgage that R skills are all you need for
statistical computing in a multi-decade career.

1.9.2 Why Should Python Users Learn More about R?

R will continue to have the maximum number of packages in statistics data
science and visualization. Since R is also open source and free, it is best to
prototype your solution in R than use Python for scaling up in production
environment.

An interesting viewpoint is given at http://www.kdnuggets.com/2015/05/
r-vs-python-data-science.html by a founder of DataCamp and at http://
multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/

1.10 Tutorials

A notebook by Radim Rehurek on data science with Python with code and
output is available at http://radimrehurek.com/data_science_python/.

A good list of notebooks in data science for Python is also available at https://
github.com/donnemartin/data-science-ipython-notebooks.

More general knowledge on data science-related activities in Python can be
found at https://github.com/okulbilisim/awesome-datascience.

For more learning on data science, see http://datasciencespecialization.
github.io/. It has all nine courses in the Coursera Data Science Specialization
from Johns Hopkins University.

It has the following courses:

The Data Scientist’s Toolbox

R Programming

Getting and Cleaning Data
Exploratory Data Analysis
Reproducible Research

Statistical Inference

Regression Models

Practical Machine

Learning Developing Data Products

http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
http://multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
http://multithreaded.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
http://radimrehurek.com/data_science_python/.
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/okulbilisim/awesome-datascience
http://datasciencespecialization.github.io/
http://datasciencespecialization.github.io/

1.11 Using R and Python Together | 11
1.11 Using R and Python Together

The author has helped create a SlideShare ppt on a side-by-side comparison of
R and Python syntax for data science at http://www.slideshare.net/ajayohri/
python-for-r-users (35000 + views). However a guide for using Python and R
for quantitative finance is also found at http://www.slideshare.net/Isbardel/
python-and-r-for-quantitative-finance-2409526

Additionally the following methods help to use both R and Python and lever-
age their tremendous strengths:

1) RPy2 RPy2 helps in using R and Python together. The official documenta-
tion is given at http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.
html. The object r in rpy2.robjects represents the running embedded R
process. If familiar with R and the R console, r is a little like a communica-
tion channel from Python to R.

A lucid example of using RPy2 is given here at A Slug’s Guide to Python
(https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/
calling-r-from-python):

from pandas import*

from rpy2.robjects.packages import importr
import rpy2.robjects as ro

import pandas.rpy.common as com

We can pass commands to the R session by putting the R syntax within the
ro.r() method as strings, and we can read the R data.frame into pandas data
frame with com.load_data method. We can then pass the pandas data frame
back to the R instance by first converting pydf to an R data frame by using com.
convert_to_r_dataframe method.

A truncated screenshot of the website is given in Figure 1.2 to help the reader
understand and refer back to https://sites.google.com/site/aslugsguidetopython/
data-analysis/pandas/calling-r-from-python

1.11.1 Using R Code for Regression and Passing to Python

An example of using rpy2 and caret package in R is given for kaggle at
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-
example

a caret use from python environment:
import pandas.rpy.common as com
import rpy?2

http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/lsbardel/python-and-r-for-quantitative-finance-2409526
http://www.slideshare.net/lsbardel/python-and-r-for-quantitative-finance-2409526
http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.html
http://rpy.sourceforge.net/rpy2/doc-dev/html/introduction.html
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://sites.google.com/site/aslugsguidetopython/data-analysis/pandas/calling-r-from-python
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-example
https://www.kaggle.com/c/bike-sharing-demand/forums/t/12923/rpy2-caret-example

12

1 Introduction to Python R and Data Science

from rpy2.robjects.packages import importr
graphics = importr('graphics’)
grdevices - importr('?rﬂevices')

ase = importr('base
stats = importr('stats"')

import array

X = array.array['i;, range(10))

y = stats.rnorm(10

grdevices.X11()

graphics.par(mfrow = array.array('i’,
graphics.plot(x, y, ylab = "foo/bar", col = "red")

kwargs = {'ylab’:"foo/bar", 'type':"b"
ics.plot(x, y, **kwargs)

grap

m = base.matrix(stats.rnorm(108), ncol=5)

pca = stats.princomp(m)
graphics

lot(pca, main="Eigen values")

stats.biﬁ?ut[pca. main="biplot")

[2,21))

‘col':"blue”,

‘log’ :"x"}

8 0o |\ R Graphics: Device 2 (ACTIVE)
o |° =
- (] - o
o o
a " \
o [+] =]
] e :
8 81 g 8
o 0.5
o w
< Q \\
o -]
\\
Q (=] o =] o ©
- T T T T - T T
0 2 4 8 2 5
09 09

Figure 1.2 Using R code for regression and passing to Python.

import rpy2.robjects as ro

from rpy2.robjects import Formula

from rpy2.robjects.packages import importr

caretr = importr ("caret")

data trainr = com.convert to r dataframe(data_train)
paraml = {'method' 'repeatedcv', 'number' : 3,
'repeats' : 5}

ctrl = caretr.trainControl (**paraml)

param2 = {'method' 'rf', 'trControl' ctrl}

rf_for = Formula("log(casual + 1) ~ dm + t + wd + tp +

hum + ws")

1.11 Using R and Python Together | 13

rfmod = caretr.train(rf for, data = data_trainr,
**param?)
print (rfmod)

A better but slightly old demo of using R and Python together in rpy2 is given
at http://www.bytemining.com/wp-content/uploads/2010/10/rpy2.pdf

Another good example is given by Laurent Gautier in her talk “Polyglot
applications with R and Python [BARUG Meeting]” at http://files.meetup.
com/1225993/Laurent%20Gautier_R_toPython_bridge_to_R.pdf#!

A minimal example of rpy2 regression using pandas data frame is given
at Stack Overflow at http://stackoverflow.com/questions/30922213/minimal-
example-of-rpy2-regression-using-pandas-data-frame

from rpy2.robjects import pandas2ri
pandas2ri.activate ()

robjects.globalenv|['dataframe'] = dataframe

M = stats.lm('y~x', data=base.as_symbol ('dataframe'))

The result is:

>>> print (base.summary (M) .rx2 ('coefficients'))

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.6 1.1489125 0.522233 0.6376181
X 0.8 0.3464102 2.309401 0.1040880

CONDA—Conda is an open-source package management system and
environment management system for installing multiple versions of software
packages and their dependencies and switching easily between them. It works
on Linux, OS X, and Windows and was created for Python programs but can
package and distribute any software. Using conda we can use Python and
R together. We can then use the familiar interface of Jupyter/IPython Notebook.
You can refer to https://www.continuum.io/conda-for-r.

You can see the demo for R within Jupyter at https://try.jupyter.org/. A good
blog post on using Jupyter to R is found at https://www.continuum.io/blog/
developer/jupyter-and-conda-r.

The Anaconda team has created an “R Essentials” bundle with the IRkernel
and over 80 of the most used R packages for data science, including dplyr,
shiny, ggplot2, tidyr, caret, and nnet.

Once you have conda, you may install “R Essentials” into the current
environment:

conda install -c¢ r r-essentials
Bash

http://www.bytemining.com/wp-content/uploads/2010/10/rpy2.pdf
http://files.meetup.com/1225993/Laurent Gautier_R_toPython_bridge_to_R.pdf#!
http://files.meetup.com/1225993/Laurent Gautier_R_toPython_bridge_to_R.pdf#!
http://stackoverflow.com/questions/30922213/minimal-example-of-rpy2-regression-using-pandas-data-frame
http://stackoverflow.com/questions/30922213/minimal-example-of-rpy2-regression-using-pandas-data-frame
https://www.continuum.io/conda-for-r
https://try.jupyter.org/
https://www.continuum.io/blog/developer/jupyter-and-conda-r
https://www.continuum.io/blog/developer/jupyter-and-conda-r

14

1 Introduction to Python R and Data Science

or create a new environment just for “R essentials”:
conda create -n my-r-env -c r r-essentials

(https://www.continuum.io/content/preliminary-support-r-conda)
conda create -c r -n r r will download R from our official R channel on
Anaconda.org:

e Revolution Analytics—A Microsoft company that is one of the leading ven-
dors of R has a blog post on this at http://blog.revolutionanalytics.
com/2015/09/using-r-with-jupyter-notebooks.html

e Official documentation is also at http://conda.pydata.org/docs/r-with-
conda.html

DOCKER—Docker is an open platform for developers and sysadmins to build,
ship, and run distributed applications, whether on laptops, data center VMs, or
the cloud.

e You can use Docker to run Jupyter. This is available at https://hub.docker.
com/r/jupyter/datascience-notebook/ and https://github.com/jupyter/
docker-stacks

A good discussion for Docker is given at http://stackoverflow.com/
questions/16047306/how-is-docker-different-from-a-normal-virtual-
machine. I am reproducing a part of the technical answer in the following text.

Docker was using Linux Containers (LXC) earlier but switched to runC
(formerly known as libcontainer) that runs in the same operating system as its
host. This allows it to share a lot of the host operating system resources.
It also uses layered file systems like AuFS. It also manages the networking for
you as well.

AuFS is a layered file system, so you can have a read-only part and a
write part and merge those together. So you could have the common parts
of the operating system as read only, which are shared among all of your
containers, and then give each container its own mount for writing.

So let’s say you have a container image that is 1GB in size. If you wanted to
use a full VM, you would need to have 1GB times x number of VMs you want.
With LXC and AuFS you can share the bulk of the 1GB, and if you have 1000
containers, you still might only have a little over 1GB of space for the container
OS, assuming they are all running the same OS image.

A full virtualized system gets its own set of resources allocated to it and
does minimal sharing. You get more isolation, but it is much heavier (requires
more resources).

With LXC you get less isolation, but they are more lightweight and require
fewer resources. So you could easily run 1000’s on a host.

You can build your own docker environment for data science.

https://www.continuum.io/content/preliminary-support-r-conda
http://blog.revolutionanalytics.com/2015/09/using-r-with-jupyter-notebooks.html
http://blog.revolutionanalytics.com/2015/09/using-r-with-jupyter-notebooks.html
http://conda.pydata.org/docs/r-with-conda.html
http://conda.pydata.org/docs/r-with-conda.html
https://hub.docker.com/r/jupyter/datascience-notebook/
https://hub.docker.com/r/jupyter/datascience-notebook/
https://github.com/jupyter/docker-stacks
https://github.com/jupyter/docker-stacks
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine
http://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine

1.14 How Can You Use Python and R for Big Data Analytics? | 15

For Jupyter and Docker, see “A data science environment in minutes using
Docker and Jupyter” at https://www.dataquest.io/blog/data-science-quickstart-
with-docker/, and for Docker and R, you can use the instructions and file
at https://hub.docker.com/r/library/r-base/. The official R base is available at
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?
tab=description, and you can just copy and paste to pull the image

docker pull r-base

e Python and R together using Beaker—You can use Python and R together
using Jupyter, Rpy2, or Beaker. While Jupyter and rpy2 have been covered
before, we can also use Beaker. You can use R Python and JavaScript within
the same notebook in Beaker (and other languages too).

You can see examples here http://beakernotebook.com/examples and
read about it at http://blog.dominodatalab.com/interactive-data-science/ and
https://github.com/twosigma/beaker-notebook

1.12 Other Software and Python

e SASand Python—You can use the SAS language to talk to both Python and R.
This is done using Java (passed to the Java class SASJavaExec using the Base
SAS Java Object). More specifically you can see the instructions at https://
github.com/sassoftware/enlighten-integration/ and https://communities.sas.
com/docs/DOC-10746

1.13 Using SAS with Jupyter

You can also use SAS from within Jupyter (Figure 1.3; see http://blogs.sas.com/
content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/).

1.14 How Can You Use Python
and R for Big Data Analytics?

Big data is synonymous with Hadoop. For using Python with Hadoop, you can
use the following packages:

1) Hadoop Streaming
2) mrjob
3) dumbo
4) hadoopy
5) pydoop

https://www.dataquest.io/blog/data-science-quickstart-with-docker/
https://www.dataquest.io/blog/data-science-quickstart-with-docker/
https://hub.docker.com/r/library/r-base/
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?tab=description
https://store.docker.com/images/f2e50720-cada-432f-85a5-1ade438d537b?tab=description
http://beakernotebook.com/examples
http://blog.dominodatalab.com/interactive-data-science/
https://github.com/twosigma/beaker-notebook
https://github.com/sassoftware/enlighten-integration/
https://github.com/sassoftware/enlighten-integration/
https://communities.sas.com/docs/DOC-10746
https://communities.sas.com/docs/DOC-10746
http://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/
http://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/

16

1 Introduction to Python R and Data Science

The SAS System

The MEANS Procedure

i

| Variable Label N Minimum Maximum

| msre 428 10280 5.00

| invoice 428 967500]
EngineSize Engine Stze (L) 428 1.3000000 8 00
Cylinders 426 3 0000000 12 0000000
Horsepower 418 730000000 500.0000000
MPG_City 428 :

10.0000000

60.0000000
MPG_Hignway 428 6

12 0000000

Weight Weight (LBS) 428 1850.00
Wheelbass Wheelbase (IN) 428 5 89 0000000 144 0000000
| Lengtn Length (IN 428 1863521495 14.3579913 143.0000000 2340000000

50 $50.000 $100.000 $150.000 $200.000
MSRP

Figure 1.3 Using SAS from within Jupyter Notebook. Source: Chris Hemedinger on The SAS
Dummy, SAS Institute. Reproduced with the permission of SAS Institute Inc.

An example is given at https://blog.cloudera.com/blog/2013/01/a-guide-
to-python-frameworks-for-hadoop/

A recent innovation is Apache Arrow (see https://blog.cloudera.com/
blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-
columnar-data-structure-standard/). As per the article, “For the Python and R
communities, Arrow is extremely important, as data interoperability has been
one of the biggest roadblocks to tighter integration with big data systems
(which largely run on the JVM)”

The next innovation is Feather (see https://blog.rstudio.org/2016/03/29/
feather/). Feather is a fast, lightweight, and easy-to-use binary file format for
storing data frames, and Feather files are the same whether written by Python
or R code. The Python interface uses Cython to expose Feather’s C++11 core to
users, while the R interface uses Rcpp for the same task.

1.15 WhatIs Cloud Computing?

The official definition of cloud computing is given at http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.rstudio.org/2016/03/29/feather/
https://blog.rstudio.org/2016/03/29/feather/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

1.16 How Can You Use Python and R on the Cloud? | 17

Separation of responsibilities

On-premises Infrastructure Platform Software
(as a service) ® (as a service) (as a service)
— (=) —
Applications Applications g Applications Applications
€
g o
f >_ —
I
>
o
>-

- B B
D | & e |

Networking Networking

Middleware Middleware Middleware

You manage
I
Others manage

Others manage

Others manage

Networking Networking

Figure 1.4 The difference between infrastructure as service, platform as a service, and
software as a service. Source: https://blogs.technet.microsoft.com/kevinremde/2011/04/03/
saas-paas-and-iaas-oh-my-cloudy-april-part-3/. © Microsoft.

Cloud computing is a model for enabling:

1) Ubiquitous, convenient on-demand network access

2) A shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction

Amazon (EC2), Google, Oracle, IBM, and Microsoft Azure are some exam-
ples of cloud providers. For a data scientist, it is important to know the differ-
ence between Infrastructure as a Service, Platform as a Service, and Software
as a Service (Figure 1.4).

1.16 How Can You Use Python and R on the Cloud?

If you want to host and run Python in the cloud, these implementations may be
right for you: PythonAnywhere (freemium hosted Python installation that lets
you run Python in the browser, e.g., for tutorials, showcases, etc.). It has an
additional use case for education.

From https://www.pythonanywhere.com/details/education, Python is a
great language for teaching, but getting it installed and set up on all your
students’ computers can be less than easy. PythonAnywhere provides an

https://www.pythonanywhere.com/details/education
https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-and-iaas-oh-my-cloudy-april-part-3/
https://blogs.technet.microsoft.com/kevinremde/2011/04/03/saas-paas-and-iaas-oh-my-cloudy-april-part-3/

18

1 Introduction to Python R and Data Science

environment that’s ready to go—including a syntax-highlighting, error-
checking editor and Python 2 and 3 consoles.

You can use web scraping from Python on the cloud through http://
scrapinghub.com/scrapy-cloud/. Scrapy is the most popular and advanced web
crawling framework for Python. It makes writing web crawlers fast, easy, and
fun. However, you still need to deploy and run your crawler periodically,
manage servers, monitor performance, review scraped data, and get notified
when spiders break. This is where Scrapy Cloud comes in.

Additionally, you can run RStudio Server on the cloud if you prefer the RStudio
interface using the instructions at http://www.louisaslett.com/RStudio_ AMI/.
As of May 2016 there is experimental support for Julia (and Python).

1.17 Commercial Enterprise and Alternative
Versions of Python and R

Two principal commercial distributions of Python for data scientists are as
follows:

e Anaconda from Continuum Analytics (https://www.continuum.io/
downloads)

Anaconda is a completely free Python distribution (including for commer-
cial use and redistribution). It includes more than 300 of the most popular
Python packages for science, math, engineering, and data analysis.

o Enthought Canopy (https://www.enthought.com/products/canopy/)

Enthought Canopy is a Python analysis environment that provides easy
installation of the core scientific analytic and scientific Python packages.

A number of alternative implementations are also available (see https://
www.python.org/download/alternatives/):

e IronPython (Python running on.NET).

¢ Jython (Python running on the Java virtual machine).

o PyPy (http://pypy.org/). PyPy is a fast, compliant alternative implementation
of the Python language (2.7.10 and 3.2.5). It has several advantages in terms
of speed and distinct features but is currently trying to port NumPy package
(NumPy is the basic package for many numerical operations in Python).

e Stackless Python (branch of CPython supporting microthreads).

Some repackagings of Python are the following:

e ActiveState ActivePython (commercial and community versions, including
scientific computing modules)

http://scrapinghub.com/scrapy-cloud/
http://scrapinghub.com/scrapy-cloud/
http://www.louisaslett.com/RStudio_AMI/
http://julialang.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.enthought.com/products/canopy/
https://www.python.org/download/alternatives/
https://www.python.org/download/alternatives/
http://pypy.org/

1.17 Commercial Enterprise and Alternative Versions of Python and R | 19

¢ pythonxy (scientific-oriented Python Distribution based on Qt and Spyder)

e winpython (WinPython is a portable scientific Python distribution for
Windows)

e Conceptive Python SDK (targets business, desktop, and database
applications)

e PyIMSL Studio (a commercial distribution for numerical analysis—free for
noncommercial use)

e eGenix PyRun (a portable Python runtime, complete with stdlib, frozen into
a single 3.5-13 MB executable file)

In addition there is Cython (http://cython.org/), an optimizing static com-
piler for both the Python programming language and the extended Cython
programming language (based on Pyrex). It makes writing C extensions for
Python easier:

e For R the commercial versions are by Revolution Analytics, a Microsoft-
acquired subsidiary (www.revolutionanalytics.com). Revolution Analytics
makes RevoScaleR package that helps scale up to bigger datasets. RStudio
also makes software around R (including Shiny Package and a widely used
IDE at www.rstudio.com).

e Renjin is a JVM-based interpreter for the R language for statistical computing
(http://www.renjin.org/).

e pqR, a pretty quick version of R (http://www.pqr-project.org/), is a new
version of the R interpreter. It is based on R-2.15.0 later versions distributed
by the R Core Team (at r-project.org).

e Oracle R Enterprise (ORE) (see https://blogs.oracle.com/R/) (http://www.
oracle.com/technetwork/database/database-technologies/r/r-enterprise/
overview/index.html). Oracle R Enterprise, a component of the Oracle
Advanced Analytics Option, makes the open-source R statistical program-
ming language and environment ready for the enterprise and big data.
Designed for problems involving large volumes of data, it integrates R with
Oracle Database. R users can run R commands and scripts for statistical and
graphical analyses on data stored in Oracle Database.

e TIBCO Enterprise Runtime for R (TERR) (http://spotfire.tibco.com/
discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-
enterprise-runtime-for-r-terr). TERR, a key component of Spotfire
Predictive Analytics, is an enterprise-grade analytic engine that TIBCO
has built from the ground up to be fully compatible with the R language,
leveraging our long-time expertise in the closely related S+ analytic engine.
This allows customers not only to continue to develop in open source R but
also to then integrate and deploy their R code on a commercially supported
and robust platform.

http://cython.org/
http://www.revolutionanalytics.com
http://www.rstudio.com
http://www.renjin.org/
http://www.pqr-project.org/
http://r-project.org
https://blogs.oracle.com/R/
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr
http://spotfire.tibco.com/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr

20

1 Introduction to Python R and Data Science

1.17.1 Commonly Used Linux Commands for Data Scientists

It is important for the budding data scientist to learn the right operating system
before a language; hence here are some Linux tips:

Is—Directory listing

cd dir—Change directory to dir

mkdir dirname—Makes a directory named dirname
cd—Change to home

sudo—Gives superuser or admin rights

sudo bash—Changes to root

pwd—Shows present working directory

rm filename—Removes file named filename

cat > filename—Puts standard output in a file

cp filenamel filename2—Copies filenamel to filename2
mv filenamel filename2—Moves filenamel to filename2

Refer to http://www.linuxstall.com/linux-command-line-tips-that-every-

linux-user-should-know/ and http://i0.wp.com/www.linuxstall.com/wp-
content/uploads/2012/01/linux-command-line-cheat-sheet.png (Figure 1.5).

1.17.2 Learning Git

Git is a version control system that enables teams to work together on projects
as well as share code. GitHub is a popular website for sharing packages and
libraries under development in R.

Figure 1.5 Linux cheat sheet.

http://www.linuxstall.com/linux-command-line-tips-that-every-linux-user-should-know/
http://www.linuxstall.com/linux-command-line-tips-that-every-linux-user-should-know/
http://i0.wp.com/www.linuxstall.com/wp-content/uploads/2012/01/linux-command-line-cheat-sheet.png
http://i0.wp.com/www.linuxstall.com/wp-content/uploads/2012/01/linux-command-line-cheat-sheet.png

1.17 Commercial Enterprise and Alternative Versions of Python and R | 21

The following cheat sheet will help you get started in Git (http://overapi.
com/static/cs/git-cheat-sheet.pdf) (Figures 1.6 and 1.7). You can test your
knowledge by a tutorial at https://try.github.io/levels/1/challenges/1. Lastly
the author believes the best way to learn Git is to start contributing to
a project.

Git Cheat Sheet

http://git.or.cz/

Remember: git command --help

Global Git configuration is stored in $SHOME!/.gitconfig (git config —help)

Concepts
From existing data Gi t Bc'_l sics
gﬁ %I]t)rqectsfmyprqect master : default development branch

itadd . origin : default upstream repository
g HEAD : cument branch
HEAD* : parent of HEAD

From existing repo
ng HEAD~4 : the great-great grandparent of HEAD

git clone ~/existing/repo ~/new/repo
gitclone g|tffhost.or?23rqect.gnt. .
git clone ssh://you@host.org/proj.git Revert

Show Return to the last committed state
git reset —hard
A

Files changed in working directory

gitstatus Revert the last commit
git revert HEAD
Changes to tracked files
git diff Revert specific commit
git revert Sid
What changed between $ID1 and $1D2)
git diff Sid1 Sid2 A TV KSS1L ORI]
History of changes git commit -a --amen
ng IL:(og { cha %or e with difle Checkout the $id version of a file
siory o nges ior fie . . .
gitlog -p $file Sdirec/tory/ git checkout Sid Sfile
Who changed what and when in a file Branch
git blame $file T, -

Figure 1.6 Git cheat sheet. Source: © Github.

http://overapi.com/static/cs/git-cheat-sheet.pdf
http://overapi.com/static/cs/git-cheat-sheet.pdf
https://try.github.io/levels/1/challenges/1

22| 1 Introduction to Python R and Data Science

Commands Sequence

The curves indicate that the command on the right is usually
execuled afler he command on the left. This gives an idea of
the fow of commands someone usually doss with Git

()

init status fgulL checkout commit pus
clone I checkout i branch format-patch

diff

revert me r%;e
branch a

Figure 1.7 Git command sequence. Source: © Github.

Let’s begin learning the basics of Python (https://nbviewer.jupyter.org/gist/
decisionstats/ce2c16ee98abcf328177).
Bold font is code; normal font is output.

Numerical Operations
2+3+5

10
66-3-(-4)

67
32*3

96
2**3 #2 raised to power of 3

8
43/3

14.333333333333334
32//3 #Gives quotient

10
44%3 #Gives remainder

2

https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177
https://nbviewer.jupyter.org/gist/decisionstats/ce2c16ee98abcf328177

1.17 Commercial Enterprise and Alternative Versions of Python and R | 23
For R it is almost the same except for the last two. There the syntax is:

2 % / % 3 #Gives quotient
4 % 3 #Gives remainder

For Loops
See https://docs.python.org/3/tutorial/controlflow.html

#numbers from 0 to 30 increment 6
for x in range(0, 30, 6):
print (x)

0
6
12
18
24

For Loops can be slightly different in R. Note the + sign denotes a new line in
R code:

for (i in seq(0,30,6)){
print (i)

}
10
] 6
] 12
] 18
] 24
] 30

Functions

def myfirstfunction(x):
y=x**3+3*x+20
print (y)

myfirstfunction(20)

8080

In R creating a function would be different. You would need to use a function
like function(x) as follows, then write the function within brackets, and print
out the value. This is because R like most computer languages does not use

https://docs.python.org/3/tutorial/controlflow.html

24

1 Introduction to Python R and Data Science

space indentation. In R, you can view a function’s code by typing the function
name without the (). This is especially useful to see the algorithms in an exist-
ing package and to tweak it if possible:

myfirstfunction =function (x){
y=x**3+3*x+20
print(y)}

myfirstfunction(20)

for x in range(0,30,6):
myfirstfunction (x)

20
254
1784
5906
13916

def mynewfunction(x,y):
Z=x**34+3*x*y+20*y
print (z)

mynewfunction (1, 3)
70
mynewfunction (10, 3)

1150

See http://rpubs.com/ajaydecis/forfunctions, https://docs.python.org/2/
library/functions.html, and http://stackoverflow.com/questions/7969949/
whats-the-difference-between-globals-locals-and-vars

e globals()—Always returns the dictionary of the module namespace

o locals()—Always returns a dictionary of the current namespace

o vars()—Returns either a dictionary of the current namespace (if called with
no argument) or the dictionary of the argument

locals() #gives objects in local space
{IInI: [II’

'243+5",
'66-3-(-4)",

http://rpubs.com/ajaydecis/forfunctions
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html
http://stackoverflow.com/questions/7969949/whats-the-difference-between-globals-locals-and-vars
http://stackoverflow.com/questions/7969949/whats-the-difference-between-globals-locals-and-vars

1.17 Commercial Enterprise and Alternative Versions of Python and R | 25

|2A3|’

|3A3|’

'44%%3"',

'44%3",

'43/3"',

132*%3 1,

12%%31,
........ truncated by author
globals ()

{IInI: [III
'2+3+45",
'66-3-(-4)"',
|2A3|’
|3A3|’
'44%%3 ",
144%37,
'43/3",
132*3 1,
12%%3 1,
'32//3",
'for 1 in 1:30\n print i',
'for in 1:30:\n print 1i',
'for in 1:30:\n print 1i',
'for in range(1,30):\n print
'for in range(1,30):\n print
'for (1,30) :\n print
'for in range(1,30):\n print
()
()

(SRS

in range

— b

'for in range(1,30):\n print

'for in range(1,30):\n print

'for in range(0,30):\n print
—————— truncated by author

I e s s

o® o o o oP°

More Numerical Operations
import math

math.exp (2)

7.38905609893065
math.log(2)

0.6931471805599453
math.log(2,10)

26 | 1 Introduction to Python R and Data Science

0.30102999566398114
math.sqgrt (10)

3.1622776601683795
dir (math) #dir gives all the identifiers a module defines

[' doc ',
' file ',
' loader ',
' name ‘',
' package ',
' spec_ ',
'acos',
'acosh',
'asin',
'asinh',
'atan',
'atan2',
'atanh',
'ceil?',
'copysign',
'cos',
'cosh',
'degrees',
|e|’

'erf!',
'erfc!',
'exp',
'expml',
'fabs',
'factorial',
'floor',
'fmod',
'frexp',
'fsum',
'gamma',
'hypot ',
'isfinite',
'iginf',
'isnan',
'ldexp',
'lgamma',
'log',

1.17 Commercial Enterprise and Alternative Versions of Python and R | 27

'loglo’,
'loglp',
'log2"',
'modf ',
'pi',
'pow',
'radians',
'sin',
'sinh',
'sqgrt’',
'tan',
'"tanh',
'"trunc']
a=[23,45,78,97,89]

type (a)

list
len(a)

5
max (a)

97
min (a)

23
sum (a)

332
import numpy

numpy .mean (a)
66.400000000000006
numpy.std(a)

28.011426240018555
numpy.var (a)

784.63999999999999
#Example of Help (note the ? is almost the same as R)
numpy .random?

28| 1 Introduction to Python R and Data Science

from random import randint,randrange
print (randint (0,9))

5
randrange (10)

4
for x in range(0,5):
print (randrange (10))

Ul o 9 W o

Strings, Lists, Tuples, and Dicts
newstring='Hello World’

newstring

'Hello World!'
print (newstring)

Hello World

newstring2='Hello World’s’
File "<ipython-input-56-8c5b85561ed9>", line 1
newstring2='Hello World's'

SyntaxError: invalid syntax

#Double Quotes and Single Quotes
newstring2=“Hello World’s”

print (newstring2)
Hello World’s

#Escape character \
newstring3=“Hello, World\’s”

print (newstring3)

1.17 Commercial Enterprise and Alternative Versions of Python and R | 29

Hello, World’s
10*newstring3

"Hello, World'sHello, World'sHello, World'sHello,
World'sHello, World'sHello, World'sHello,
World'sHello, World'sHello, World'sHello World's "

Passing Variables in Strings in Python

mynamel= ‘Ajay’

myname2= ‘John’

message =™ Hi I am %s. How do you do”
message %mynamel

' Hi I am Ajay. How do you do'

message %myname2
' Hi I am John. How do you do'

newl= “Why did the %s cross the %s”
print (newl% (’chicken’, ’road’))

Why did the chicken cross the road

print (newl%(10,40))
Why did the 10 cross the 40

new2= “Why did the %d cross the %d”

print (new2% (’chicken’, ’road’))

TypeError Traceback (most recent call last)
<ipython-input-11-b2£f398d16£f9c> in <modules> ()
----> 1 print (new2% ('chicken', 'road'))

TypeError: %d format: a number is required, not str
Note the error caused by %d and %s

Lists
newnames=’'ajay,vijay,john,donald,hillary,bill, ashok’
type (newnames)

str
newnames [0:9]

30| 7 Introduction to Python R and Data Science

'ajay,vija'
newnames2=[’ajay’,’vijay’,’john’, "donald’,’hillary’,
'bill’, "ashok’]
type (newnames?2)
list
In R, a list would be created like this:
newnames2=c (’ajay’,’vijay’,’john’, ’donald’, 'hillary’,
'bill’, "ashok’)

newnames2 [0]

la'a 1

Sojiz R the index starts from 1, while in Python the
index starts with 0.

newnames2 [0] ='micky mouse’ #substituting members in a list
newnames?2

['micky mouse', 'vijay', 'john', 'donald', 'hillary',

'bill', 'ashok']
newnames?2 [2]

'john'
newnames2.append (’daisy’)

newnames2

['micky mouse', 'vijay', 'john', 'donald', 'hillary',
'bill', 'ashok', 'daisy']

.append to add and del to delete members in a list

del newnames2[2]

newnames2

['micky mouse', 'vijay', 'donald', 'hillary', 'bill',
'ashok', 'daisy'l]
newlist=[1,2,4,7]

1.17 Commercial Enterprise and Alternative Versions of Python and R | 31

newnames2+newlist

['micky mouse',
'vijay',
'donald',
'hillary',
'bill",
'ashok',
'daisy',
1,

2,

4,

71

newlist*3

(r, 2, 4, 7, 1, 2, 4, 7, 1, 2, 4, 7]

a tuple is a list that uses parenthese () not square
brackets [] and it CANNOT be modified at all once
created

scores=(23,46,69,7,5)

type (scores)

tuple
scores[3]

7
dir (scores) #dir command gives various operations that
can be done to that object
[* add ',
' class__ ',
' contains ',
' delattr_ ',
' dir ',
' doc ',

1 eq_l ,

' format ',
'_ge_ ",

' getattribute ',
' getitem ',

' getnewargs ',

32| 1 Introduction to Python R and Data Science

' hash_ ',
' init ',
' iter ',
1 le ',

' len ',
1 1t ',

' mul_ ',
1 ne ',

' new_ ',

' reduce_ ',

' reduce ex ',
' repr_ ',

' rmul ',

' setattr ',

' sizeof ',

' str_ ',

' subclasshook ',
'count',
'Index']

favourite movie=[’micky mouse,steamboat willie’,
‘vijay,slumdog millionaire’, ’'john,passion of christ’,
donald, arthur’]

type (favourite movie)

list

favourite movie2={'micky mouse’:’steamboat
willie’,’vijay’:’slumdog millionaire’,’john’:’passion
of christ’,’donald’:’arthur’}

type (favourite movie2)

dict
favourite movie2[’micky mouse’]

'steamboat willie'
favourite movie2[’vijay’]

'slumdog millionaire'

Refer to https://nbviewer.jupyter.org/gist/decisionstats/752{f727101cf6fc13
225bd94eef358a for the code in this example.

https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a
https://nbviewer.jupyter.org/gist/decisionstats/752ff727101cf6fc13225bd94eef358a

1.17 Commercial Enterprise and Alternative Versions of Python and R | 33
Strings—We use str function to convert data to string data (we use int to
convert data to integer values). We can use slicing on index to create substrings
and concatenate strings using + sign. The following example shows some of the
things that can be done with string data:
names=[’'Ajay’,’'Vijay’,’'Ra Jay’,'Jayesh’]

type (names)

list
names [1]

'Vijay'
type (names [1])

str
names [0] [1:3]

|ja|
names [2] [2:]

1 Jayl
names [2] [2:] + names[3] [2:]

' Jayyesh'
names [1] . lower ()

'vijay'
names [2] .replace (™ 7, “”)

'RadJay’

Let’s try to do the same thing in R (http://rpubs.com/ajaydecis/strings4).
There are important differences we want to highlight:

names=c ('Ajay', 'Vijay', 'Ra Jay', 'Jayesh')
R uses c to make a list. Python does not—but uses square brackets.

Python uses type while R uses class to find out the object’s type:

class (names)
[1] "character"

http://rpubs.com/ajaydecis/strings4

34

1 Introduction to Python R and Data Science
Python starts the index from 0 while begins the index of a list from 1:

names [1]

[1] "Ajay"
class (names[1])

[1] "character"

You have to use substr in R to find part of a string. In Python you simply can
look this from within square brackets:

substr (names[1],2,3)

[1] "ja"

substr (names [3], 3,nchar (names [3]))
[1]1 " Jay"

While Python simple combined strings using +, R used paste:

paste (substr (names[3], 3,nchar (names [3])), substr (names
[2],3,nchar (names[2])))
[1] n Jay jayll

R uses tolower while Python uses.lower():

tolower (names [1])
H# [1] najayn

Python used replace while R used gsub:

gsub (" ","", names[3])
[1] "Raday"

The biggest difference is R mostly uses function(object), while Python uses
object.function() to get things done. This is an important difference

File and Folder Operations
In Python we use the os package for file operations to refer and read the file
from a particular directory. We also use !pip freeze to get the list of packages
(versions). We use print (IPython.sys_info()) and version_information package
(%load_ext version_information

%version_information) to get System Information (see Python code at
https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8
c8f9166).

https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166
https://nbviewer.jupyter.org/gist/decisionstats/29f3adfb6980db52a61130aa8c8f9166

1.17 Commercial Enterprise and Alternative Versions of Python and R | 35

In R we get System Information using sessionInfo(). (For R Code see http://
rpubs.com/newajay/systeminfo)

import IPython
print (IPython.sys info())

{'commit _hash': 'c963f6b',
'commit source': 'installation',
'default encoding': 'UTF-8',
"ipython path': '/home/ajayohri/anaconda3/lib/
python3.5/site-packages/IPython',
'ipython version': '4.2.0',
'os_name': 'posix',
'platform': 'Linux-4.4.0-53-generic-x86_64-with-
debian-stretch-sid"',
'sys_executable': '/home/ajayohri/anaconda3/bin/
python',
'sys_platform': 'linux',
'sys version': '3.5.2 |Anaconda 4.1.1 (64-bit) |
(default, Jul 2 2016, '
'17:53:06) \n'
'[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] '}

!pip install version information

The directory “/home/ajayohri/.cache/pip/http” or its parent directory is not
owned by the current user, and the cache has been disabled. Please check the
permissions and owner of that directory. If executing pip with sudo, you may
want sudo’s -H flag.

The directory “/home/ajayohri/.cache/pip” or its parent directory is not
owned by the current user, and caching wheels has been disabled. Check the
permissions and owner of that directory. If executing pip with sudo, you may
want sudo’s -H flag.

Collecting version_information

Downloading version_information-1.0.3.tar.gz

Installing collected packages: version-information

Running setup.py install for version-information ... - \ | done

Successfully installed version-information-1.0.3

You are using pip version 8.1.2; however version 9.0.1 is available.

You should consider upgrading via the “pip install --upgrade pip”
command.

%load_ext version_information

%version_information

http://rpubs.com/newajay/systeminfo
http://rpubs.com/newajay/systeminfo

36

1 Introduction to Python R and Data Science

Software Version

Python 3.5.2 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
IPython 4.2.0

oS Linux 4.4.0 53 generic x86_64 with Debian stretch sid

Sat Dec 24:19:47:41 2016 IST

Ipip freeze

alabaster==0.7.8
anaconda-client==1.4.0
anaconda-navigator==1.2.1
argcomplete==1.0.0

astropy==1.2.1

Babel==2.3.3
backports.shutil-get-terminal-size==1.0.0
beautifulsoupé4==4.4.1

------- list truncated by author
SQLAlchemy==1.0.13
statsmodels==0.6.1

sympy==1.0

tables==3.2.2

terminado==0.6
toolz==0.8.0
tornado==4.3
traitlets==4.2.1
unicodecsv==0.14.1
version-information==1.0.3
Werkzeug==0.11.10
x1lrd==1.0.0
XlsxWriter==0.9.2
xlwt==1.1.2

The directory “/home/ajayohri/.cache/pip/http” or its parent directory is not owned
by the current user, and the cache has been disabled. Please check the permissions
and owner of that directory. If executing pip with sudo, you may want sudo’s -H flag.

You are using pip version 8.1.2; however version 9.0.1 is available.

You should consider upgrading via the “pip install --upgrade pip” command.
(Authors note-warning message by system)

import os as os

os.getcwd()

' /home/ajayohri/Desktop’
os.chdir(’ /home/ajayohri/Desktop’)

1.17 Commercial Enterprise and Alternative Versions of Python and R | 37

os.getcwd ()
' /home/ajayohri/Desktop’
os.listdir()

['Data Analytics Course: Master Data Analytics Using
Python in 2.5 Months files',

'dump 4 nov 2016',

'Hadoop Tutorial | All you need to know about Hadoop
| Edureka files',

'Data Analytics Course: Master Data Analytics Using
Python in 2.5 Months.html',

'Hadoop Tutorial | All you need to know about Hadoop
| Edureka.html',

‘Note to R Users — Data Analysis in Python 0.1
documentation files’,

‘Note to R Users — Data Analysis in Python 0.1
documentation.html’,

'"Jupyter Notebook Viewer.html',

'pyd4r.jpg’,

'test',

'hackerearth',

'Jupyter Notebook Viewer files',

'logo-ds.png']

In R this would be slightly different:

sessionInfo()

R version 3.3.1 (2016-06-21)

Platform: x86 64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

##

locale:

H# [1] LC _CTYPE=en_ IN.UTF-8 LC _NUMERIC=C

[3] LC_TIME=en IN.UTF-8 LC COLLATE=en IN.UTF-8
[5] LC MONETARY=en IN.UTF-8 LC MESSAGES=en IN.UTF-8
[7] LC_PAPER=en IN.UTF-8 LC NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en IN.UTF-8 LC IDENTIFICATION=C
##

attached base packages:
[1] stats graphics grDevices utils datasets
methods base

#H

38

1 Introduction to Python R and Data Science

loaded via a namespace (and not attached):

[1] magrittr 1.5 tools _3.3.1 htmltools 0.3.5
Rcpp 0.12.8

[5] stringi 1.1.1 rmarkdown 1.0 knitr 1.13
stringr 1.0.0

[9] digest 0.6.9 evaluate 0.9

getwd ()
[1] "/home/ajayohri"

setwd (“/home/ajayohri/Desktop/”)

dir ()

[1] "Data Analytics Course: Master Data Analytics
Using Python in 2.5 Months files"

[2] "Data Analytics Course: Master Data Analytics
Using Python in 2.5 Months.html"

[3] "dump 4 nov 2016"

[4] "hackerearth"

[5] "Hadoop Tutorial | All you need to know about
Hadoop | Edureka files"

[6] "Hadoop Tutorial | All you need to know about
Hadoop | Edureka.html"

[7] "Jupyter Notebook Viewer files"

[8] "Jupyter Notebook Viewer.html"

[9] "logo-ds.png"

[10] "Note to R Users — Data Analysis in Python 0.1

documentation files"

[11] "Note to R Users — Data Analysis in Python 0.1
documentation.html"

[12] "py4r.jpg"

[13] "test"

The following deals with the business part (or domain expertise part) of
the decision science triad (programming, statistics, and domain
expertise).

1.18 Data-Driven Decision Making: A Note

A fundamental principle of data-driven decision making is a famous quote: If
you can’t measure it, you can’t manage it—Peter Drucker.

As per http://whatis.techtarget.com/definition/data-driven-decision-
management-DDDM, data-driven decision management (DDDM) is an
approach to business governance that values decisions that can be backed

http://whatis.techtarget.com/definition/data-driven-decision-management-DDDM
http://whatis.techtarget.com/definition/data-driven-decision-management-DDDM

1.18 Data-Driven Decision Making: A Note | 39

up with verifiable data. The success of the data-driven approach is reliant
upon the quality of the data gathered and the effectiveness of its analysis and
interpretation.

As per author, the following constitutes data-driven decision making:

e Using past data and trending historical data

e Validating assumptions if any after listing all assumptions

e Using champion challenger scenarios to test scenarios

¢ Using experiments for various tests

e Use baselines for continuous improvement in customer experiences, costs,
and revenues

Taking decisions based on the previous process

As per HBR.org, the more frequent the correlation in a company’s data and
the lower the risk of being wrong, the more it makes sense to act based on
that correlation (Citation: https://hbr.org/2014/05/an-introduction-to-data-
driven-decisions-for-managers-who-dont-like-math).

1.18.1 Strategy Frameworks in Business Management: A Refresher
for Non-MBAs and MBAs Who Have to Make Data-Driven Decisions

Some frameworks are used for business strategy—to come up with decisions
after analyzing the huge reams of qualitative and uncertain data that business
generates. This is also part of the substantive expertise circle in Conway’s Venn
diagram definition of data science at http://drewconway.com/zia/2013/3/26/
the-data-science-venn-diagram (Figure 1.8).

.
%
N %
Q‘;}-\ Machine 'f'oo%a
& learning v, %,
(bg\’&. &o\é o@/.
X ®
7
Wy
l'e ’/o
S N
ea,_o c7
h
Substantive
expertise

Figure 1.8 Conway’s Venn diagram. Source: © Drew Conway Data Consulting, LLC.

https://hbr.org/2014/05/an-introduction-to-data-driven-decisions-for-managers-who-dont-like-math
https://hbr.org/2014/05/an-introduction-to-data-driven-decisions-for-managers-who-dont-like-math
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

-

Introduction to Python R and Data Science

o Porter’s five forces model—To analyze industries. Porter’s famous model is
used to derive five forces that determine the competitive intensity and there-
fore attractiveness of a market. Attractiveness in this context refers to the
overall industry profitability. An “unattractive” industry is one in which the
combination of these five forces acts to drive down overall profitability. A
very unattractive industry would be one approaching “pure competition”
(Figure 1.9).

¢ Business canvas—The business model canvas is used for developing new or
documenting existing business models. It describes a firm’s value proposition,
infrastructure, customers, and finances and thus assists firms by illustrating
potential trade-offs in various activities. The business model canvas was ini-
tially proposed by Alexander Osterwalder. A bigger graphic can be obtained at
https://en.wikipedia.org/wiki/File:Business_Model_Canvas.png (Figure 1.10).

e BCG matrix—To analyze product portfolios. BCG Matrix is best used to
analyze your own or target organization’s product portfolio—applicable for
companies with multiple products. This helps corporations allocate
resources by analyzing their business units or product lines (Figure 1.11).

e Porter’s diamond model—To analyze locations. An economical model devel-
oped by Michael Porter in his book The Competitive Advantage of Nations,
where he published his theory of why particular industries become com-
petitive in particular locations. This helps to analyze countries, states, or
locations for both customers and vendors (Figure 1.12).

e McKinsey 7S model—To analyze teams. To check which teams work and
which teams are done (within an organization), we can use the 7S model. It
is a strategic vision for groups to include businesses, business units, and
teams. The 7S are structure, strategy, systems, skills, style, staff, and shared
values. The model is most often used as a tool to assess and monitor changes
in the internal situation of an organization (Figure 1.13).

Bargaining power of suppliers

|

Threat N ” Threat.
of new entrants of substitutes

Bargaining power of buyers

Figure 1.9 Porter five forces for competitive strategy. Source: © Wikipedia.

https://en.wikipedia.org/wiki/File:Business_Model_Canvas.png

The Business Model Canvas

Designed for:

Key Partners

e e sy ey
e e sy iy

@

Key Activities

oy it 30 bkt Pt

o o 0 s

e o ey
eyt PR

e e

Value Propositions

Wt vahee 0w e b P ?
550 0 Crtriree i B

Customer
Relationships

TR g relateesne des a0 0 u
Custorae Sproarts enjoec]

Customer Segments n

[—

v

e esdatsan

e e e e et
o thy tigrated i et of o
Vm Cany are ey

Channels

Cost Structure

r—
— e pe—
e

©0e®

Sttmsann wv. Musiness Mocel Foundry AG
e s o Bt Al ot o Bt

Figure 1.10 Business model canvas. Source: © Strategyzer AG Services.

@ Strategyzer

strategyzercom

Stars Market growth Question marks

24
Longal
Dorlan 21+ .
Energan
Xantax
O
Pentrix
E—= | + : + i
2.0 1.6 1.2 0.8 0.4 0.0
Relative market share
B i . i 14 - .
Bendac Braviton
. . "1 .
Eviron . Zodial
Lotran
: i - 8 4
Cash cows Dogs

Figure 1.11 BCG matrix. Source: http://en.wikipedia.org/wiki/Growth-share_matrix.
© Wikipedia.

Firm strategy,
structure,
and rivalry

Factor Demand
conditions conditions

Related
and supporting
industries

Figure 1.12 Porter’s diamond model for competitiveness in locations. Source: http://
en.wikipedia.org/wiki/Diamond_model. © Wikipedia.

http://en.wikipedia.org/wiki/Diamond_model
http://en.wikipedia.org/wiki/Diamond_model
http://en.wikipedia.org/wiki/Growth-share_matrix

1.18 Data-Driven Decision Making: A Note | 43

Super-
ordinate
goals

(shared
values)

Figure 1.13 Mckinsey 7s model. Source: http://en.wikipedia.org/wiki/McKinsey_7S_
Framework. © Wikipedia.

e Grenier’s theory—To analyze growth of organization. It was developed by
Larry E. Greiner and is helpful when examining the problems associated
with growth on organizations and the impact of change on employees. It can
be argued that growing organizations move through five relatively calm peri-
ods of evolution, each of which ends with a period of crisis and revolution.
Each evolutionary period is characterized by the dominant management
style used to achieve growth, while each revolutionary period is character-
ized by the dominant management problem that must be solved before
growth will continue (Figure 1.14).

e Herzberg’s hygiene theory—To analyze soft aspects of individuals.

The following table presents the top seven factors causing dissatisfaction and
the top six factors causing satisfaction, listed in the order of higher to lower
importance.

Leading to satisfaction

Achievement
Recognition
Work itself
Responsibility
Advancement
Growth

http://en.wikipedia.org/wiki/McKinsey_7S_Framework
http://en.wikipedia.org/wiki/McKinsey_7S_Framework

44 | 1 Introduction to Python R and Data Science

Stages of organizational growth

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
creativity direction delegation coordination collaboration
c
i)
=
©
N
c
©
o
=
[e]
w—
]
[0]
N
w
leadership autonomy control red tape ?

Age of organization

Figure 1.14 Grenier theory. Source: Adapted from Greiner (1998). Evolution and Revolution
as Organizations Grow. © Harvard Business Publishing.

Leading to dissatisfaction

Company policy
Supervision
Relationship with boss
Work conditions
Salary

Relationship with peers
Security

This framework helps to explain what motivates people to contribute (or fail to
contribute) to teams, products, organizations, and nations. Alternative moti-
vational models are Maslow’s hierarchy of needs (shown here) and McGregor
Theory X and Theory Y. McGregor terms the two models as “Theory X, which
stresses the importance of strict supervision and external rewards and penal-
ties, and “Theory Y, which highlights the motivating role of job satisfaction
and allows scope for workers to approach tasks creatively.

1.18 Data-Driven Decision Making: A Note

e Marketing mix modeling—To analyze marketing mix for determining a
product or a brand’s offer. It has the four P’s: price, product, promotion, and
place. This can also be shown by four C’s model: consumer, cost, communi-
cation, and convenience.

1.18.2 Additional Frameworks for Business Analysis

Pareto Principle

The Pareto principle (also known as the 80/20 rule, the law of the vital few, and
the principle of factor sparsity) is a heuristic or a thumb rule that tells analysts
to prioritize their analysis. It helps states that, for many events, roughly 80% of
the effects come from 20% of the following causes:

e 80% of a company’s profits come from 20% of its customers.
e 80% of a company’s complaints come from 20% of its customers.

e 80% of a company’s profits come from 20% of the time its staff spend.

e 80% of a company’s sales come from 20% of its products.

e 80% of a company’s sales are made by 20% of its sales staff.

Thus a business analyst should look at the top and bottom 20% of the prod-
ucts, orders, customers, and staff when doing an analysis to determine the
cause and effect relationships that can be then modified for positive value
creation.

An additional framework is root cause analysis where one can ask five succes-
sive why’s to determine the root cause of an effect. The process is to ask “why”
and identify the causes associated with each sequential step toward the event.
“Why” here stands for “What were the factors that directly resulted in the effect?”

LTV Analysis

Lifetime value (LTV) analysis is often a widely used technique within BA to
help businesses which customers to retain and which to churn. It also helps
with promotions and customer acquisition strategy. LTV is the cumulative
revenue a customer will generate for a business over his active lifetime when
associated with the products and brands of that business—from acquisition to
churn. LTV helps us answer three fundamental questions:

1) Did the business pay enough to acquire customers from each marketing
channel (cost of acquisition)?

2) Did the business acquire the best kind of customers (profitability analysis)?

3) How much could the business spend on keeping or retaining them as your
customers (prevent churn by offers, calls, email, and social media)?

You can calculate LTV analysis using the methods given at https://blog.
kissmetrics.com/how-to-calculate-lifetime-value/ and at http://www.kaushik.
net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/

45

https://blog.kissmetrics.com/how-to-calculate-lifetime-value/
https://blog.kissmetrics.com/how-to-calculate-lifetime-value/
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/

46

1 Introduction to Python R and Data Science

For LTV analysis in R, you can see this R package at https://cran.r-project.
org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf. The BTYD pack-
age contains models to capture noncontractual purchasing behavior of cus-
tomers—or, more simply, models that tell the story of people buying until they
die (become inactive as customers). The main models presented in the package
are the Pareto/NBD, BG/NBD, and BG/BB models.

For Python, LTV can be calculated at http://srepho.github.io/CLV/CLV or
by the python package lifetimes (https://pypi.python.org/pypi/Lifetimes) or
see home page https://github.com/CamDavidsonPilon/lifetimes

RFM Analysis
RFM stands for recency, frequency, and monetization. RFM is thus a method
used for analyzing customer value of current customers:

Recency—How recently did the customer purchase?
Frequency—How often do they purchase?
Monetary value—How much do they spend?

This can be quantified in the following way:

Recency =10 - The number of months that have passed since the customer last
purchased

Frequency = Number of purchases in the last 12 months (maximum of 10)

Monetary = Value of the highest order from a given customer (benchmarked
against a standard, say, 1000$ or something relevant)

Alternatively, one can create categories for each metric.

For instance, the recency attribute might be broken into three categories:
customers with purchases within the last 90 days, between 91 and 365 days,
and longer than 365 days. Such categories may be arrived at by applying busi-
ness rules, or using a data mining technique, to find meaningful breaks (like
CHAID). A commonly used shortcut is to use deciles. One is advised to look at
distribution of data before choosing breaks.

Practice

You can see RFM analysis in action at https://decisionstats.com/2010/10/03/
ibm-spss-19-marketing-analytics-and-rfm/ and some R code for it here at
https://github.com/hoxo-m/easyRFM. You should also see http://www.dataapple.
net/?p=133. For doing the RFM Analysis in Python, you can see http://www.
marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-
and-apache-spark/

Biases in Decision Making

Though not often taught in a standard BA or data science course, the author
feels biases in decision making should be useful for a data scientist since the
data scientist influences decisions. Even though decision making driven by

https://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
https://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
http://srepho.github.io/CLV/CLV
https://pypi.python.org/pypi/Lifetimes
https://github.com/CamDavidsonPilon/lifetimes
https://decisionstats.com/2010/10/03/ibm-spss-19-marketing-analytics-and-rfm/
https://decisionstats.com/2010/10/03/ibm-spss-19-marketing-analytics-and-rfm/
https://github.com/hoxo-m/easyRFM
http://www.dataapple.net/?p=133
http://www.dataapple.net/?p=133
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/
http://www.marketingdistillery.com/2014/11/02/rfm-customer-segmentation-in-r-pandas-and-apache-spark/

1.18 Data-Driven Decision Making: A Note

data should be objective, it is not as it is driven by humans, not machines, and
humans make errors due to multiple reasons.

The author would like to point out these resources.

Logical Fallacies—These would help the data scientist in recognizing the
erroneous arguments used by various stakeholders in decision making. A fallacy
is an incorrect argument in logic and rhetoric that undermines an argument’s
logical validity. The following refers to https://yourlogicalfallacyis.com/, which is
created by Jesse Richardson, Andy Smith, Som Meaden, and Flip Creative.

Some of the top logical fallacies are as follows:

¢ Ad hominem—You attacked your opponent’s character or personal traits in
an attempt to undermine their argument.

e Slippery slope—You said that if we allow A to happen, then Z will eventually
happen too; therefore A should not happen. The problem with this reason-
ing is that it avoids engaging with the issue at hand and instead shifts atten-
tion to extreme hypotheticals.

e Straw man—You misrepresented someone’s argument to make it easier to
attack. By exaggerating, misrepresenting, or just completely fabricating
someone’s argument, it’s much easier to present your own position as being
reasonable.

Cognitive Biases—These impact decisions based on the own psychology of
the decision maker. A cognitive bias refers to a systematic pattern of deviation
from norm or rationality in judgment, whereby inferences about other people
and situations may be drawn in an illogical fashion. Individuals create their
own “subjective social reality” from their perception of the input.

Some prominent cognitive biases are as follows:

Confirmation bias—In this the individual only selects data or analysis that
supports his preconception and tries to discredit, ignore, or trivialize informa-
tion that is against the preconceived views. This is a very common confirma-
tion bias in practice. One common reason for doing so is agency—owner
conflict in which decision makers in an organization take decisions to maxi-
mize their own self-interests (like their annual bonuses) rather than team or
organizational goals.

Some other common biases are the following:

Self-serving bias The tendency to claim more responsibility for
successes than failures

Belief bias Evaluating the strength of an argument by your own
belief in the truth or falsity of the conclusion

Framing Using a narrow approach and scope of the problem to
avoid difficult to solve issues

Hindsight bias The inclination to see past events as being predictable

An excellent article on this is also available at Hilbert (2012).

47

https://yourlogicalfallacyis.com/

48

1 Introduction to Python R and Data Science

Statistical Bias Versus Variance

This is a more realistic and statistical description of the kind of error a statisti-
cal modeler or a data scientist faces when confronted with data. The following
is taken from Fortmann Roe (2012)

Error due to bias: The error due to statistical bias is taken as the difference
between the expected (or average) prediction of our model and the correct
value that we are trying to predict. Of course you only have one model, so talk-
ing about expected or average prediction values might seem a little strange.
However, imagine you could repeat the whole model building process more
than once: each time you gather new data and run a new analysis, creating a
new model. Due to randomness in the underlying datasets, the resulting mod-
els will have a range of predictions. Bias measures how far off in general these
models’ predictions are from the correct value.

Error due to variance: The error due to variance is taken as the variability of
a model prediction for a given data point. Again, imagine you can repeat the
entire model building process multiple times. The variance is how much the
predictions for a given point vary between different realizations of the model
(Figure 1.15).

Low variance High variance
.
[2]
8
) ‘
2 .
o
-
[]
[
[]
)
L)
(2]
8
o]
ey
2
T

Figure 1.15 Graphical illustration of bias and variance. Source: Scott Fortmann-Roe.
© CSS from Substance.io.

Bibliography | 49
Bibliography

Jason R. Briggs. A Playful Introduction to Programming. No Starch Press, 2012,
344 pp, 978-1-59327-407-8.

Scott Fortmann Roe (June 2012). Understanding the Bias-Variance Tradeoff.
http://scott.fortmann-roe.com/ and http://scott.fortmann-roe.com/docs/
BiasVariance.html (accessed April 29, 2017).

Larry E. Greiner (1998). Evolution and Revolution as Organizations Grow. https://
hbr.org/1998/05/evolution-and-revolution-as-organizations-grow. May—June
1998 issue of Harvard Business Review (accessed May 22, 2017).

Martin Hilbert (2012). Toward a Synthesis of Cognitive Biases: How Noisy
Information Processing Can Bias Human Decision Making. Psychological
Bulletin, 138(2), 211-237. Available at martinhilbert.net/HilbertPsychBull.pdf.
10.1037/20025940, http://dx.doi.org/10.1037/a0025940, http://supp.apa.org/
psycarticles/supplemental/a0025940/160972-2010-0470-RR Appendix.pdf
(accessed April 29, 2017).

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, 2013, http://www.R-project.org/
(accessed May 9, 2017).

http://scott.fortmann-roe.com/
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://hbr.org/1998/05/evolution-and-revolution-as-organizations-grow
https://hbr.org/1998/05/evolution-and-revolution-as-organizations-grow
http://martinhilbert.net/HilbertPsychBull.pdf
http://supp.apa.org/psycarticles/supplemental/a0025940/160972-2010-0470-RRAppendix.pdf
http://supp.apa.org/psycarticles/supplemental/a0025940/160972-2010-0470-RRAppendix.pdf
http://www.R-project.org/

2

Data Input

2.1 Datalnputin Pandas

The pandas library offers many flexible formats for reading in data.
The most commonly used is read_csv to read in comma-separated values
(from the Internet URL). That is,

anscombe=pd.read csv("https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/anscombe.csv")

See the top few lines at http://nbviewer.jupyter.org/gist/decisionstats/37376
42751895f470d5c07194302f53e. © GitHub repository.

anscombe=pd.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv™)

anscombe

Unnamed: 0| x1|x2|x3 | x4|y1 y2 |y3 y4
0 |1 10{10|10|8 [8.04 |9.14]|7.46 |6.58
1|2 8 |8 |8 |8 |695 |8.14|6.77 [5.76
2 (3 13[13|13|8 [7.58 |8.74|12.74|7.T1
3[4 9 |9 |9 |8 |881 |877|7.11 |8.84
4 (5 1M|11|11|8 [8.33 |9.26|7.81 |8.47
5 |6 14|14|14|8 (996 |8.10|8.84 |7.04
6 (7 6 |6 |6 (8 |7.24 |613|6.08 [5.25
7 (8 4 |4 |4 [19|426 |3.10(5.39 [12.50
8 (9 12|12|12|8 [10.84|9.13|8.15 |5.56
9 (10 7|7 |7 |8 |482 |7.26|642 [7.91
10|11 5|5 |5 |8 |568 |4.74|573 |6.89

Dropping the column

: | anscombe=anscombe.drop('Unnamed: @°, 1)

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

51

https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/anscombe.csv
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e

52| 2 Datalnput

Or read in csv data from a local file.
See http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

import pandas as pd #importing packages
import os as os

In [2]:
#pd.describe option() #describe options
for customizing

In [3]:
#pd.get option("display.memory usage')

#setting some options

In [4]:

os.getcwd () #current working directory
out [4]:
' /home/ajay"

In [5]:
os.chdir('/home/ajay/Desktop')

In [6]:
os.getcwd ()

out [6]:
' /home/ajay/Desktop’

In [7]:
a=os.getcwd ()
os.listdir(a)

out [7]:
['adult.data']

In [8]:
names2=["age", "workclass", "fnlwgt", "education",
"education-num", "marital-status", "occupation",
"relationship", "race", "sex","capital-gain", "capital-
loss", "hours-per-week", "native-country", "income"]

In [9]:

len (names2)
Out [9]:

http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

2.1 Data Input in Pandas | 53

15

In [10]:
adult=pd.read csv("adult.data",6 header=None)

In [11]:
len (adult)

Out [11]:

32562

In [12]:
adult.columns

Out [12]:

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14], dtype='inte4!')

In [13]:
adult.info ()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 32562 entries, 0 to 32561
Data columns (total 15 columns) :
0 32561 non-null floaté4
1 32561 non-null object
2 32561 non-null floaté4
3 32561 non-null object
4 32561 non-null floaté4
5 32561 non-null object
6 32561 non-null object
7 32561 non-null object
8 32561 non-null object
9 32561 non-null object
10 32561 non-null floaté4
11 32561 non-null floaté4
12 32561 non-null floaté4
13 32561 non-null object
14 32561 non-null object
dtypes: floaté64 (6), object(9)

In [15]

adult.columns= names2

54 | 2 Datalnput

ansent Tami
Sell.emp-nol. Exec. Uniged-
7|52 208642 |HS-grad |8 |Married-civspouse Husband |white |Mate [0 |0 |45 50K
inc v A manageral ¢ States)
In [15]: adult.colunns= names}?
In [18]): adult.head(32)
out[16]: education-| martal- ap ap! | |mamvie
age miwgt pum stmus |OSCUPDTIoN |relationship race fsex | LD Ipar L
week
Never- nRe
o 7751 1 v Notn.tamiy [wh M 174 4
39 |Stae-gov | 77516 |Bachelors |13 ma Agm-clencal | Notin.famey | Wnite ake (2 0 0 Sled
Married-
Selt.emp. Exec. Unitec
1 " I 1 - H whi M 1
0 nokine L) Bachelors |13 « e Lstand ite ake (0 0 3 States
SpOUSE e
. Handlers. Unied
2 |3 |Private 215646 |HS-grad |9 Divorced ckaners Notin-famiy [White [Make [0 0 40 Siates
Marrhed.
Handlers. United
3 Privat 721 | 11th 7 - Husband koM 4
3 rate 23472 o chaners Blac ake |0 o o States
SpOUSE
Mamed. |
4 (28 |Private 338409 | Bachelors |13 Che ape.\'la!y Wife Blck [Femake |0 0 40 Cuba
Spouse
Married.
s |97 |Private |224582 |Masters |14 . :’:’ o |0 white |Femaie |0 o a [0
Spouse -
Married- |
& (49 |Privase 160187 | %h 5 Spouse- Sarvice Notinfamiy (Black |Female |0 0 16 Jamai
absent
Marmed.
7 |52 |5™™ |aossaz|Hsgraa |9 i S Husband |white |male [0 0 ag |Unme
nakine managerial Statey
spouss
a1 lorvaee lamad lunasrs |12 Hover. | Pros- Mt tamiy | whits |Famais | 1anag |0 s |Uneec

We can see the entire list of data input in pandas at http://pandas.pydata.org/
pandas-docs/stable/io.html.
Source: © pandas 0.19.2 documentation.

The pandas I/O API is a set of top-level reader functions accessed like
pd.read_csv() that generally return a pandas object.

read_csv

read_excel

read_hdf

read_sql

read_json
read_msgpack (experimental)
read_html

read_gbq (experimental)
read_stata

read_sas

read_clipboard
read_pickle

2.2 Web Scraping Data Input

We can use the beautiful Python library Beautiful Soup to scrape the web for
data. The following code scrapes Yelp for comments (see http://nbviewer.
jupyter.org/gist/decisionstats/3385dc84c39109f49b83).

http://pandas.pydata.org/pandas-docs/stable/io.html
http://pandas.pydata.org/pandas-docs/stable/io.html
http://nbviewer.jupyter.org/gist/decisionstats/3385dc84c39109f49b83
http://nbviewer.jupyter.org/gist/decisionstats/3385dc84c39109f49b83

2.2 Web Scraping Data Input | 55

pip install beautifulsoup4.
from bs4 import BeautifulSoup
In [5]:
#pip install urllib3
#This library helps in downloading data
import urllib.request

2.2.1 Request Data from URL

r = urllib.request.urlopen('http://www.
yelp.ca/search?find loc=Calgary, +AB&cflt=
homeservices').read ()

#Using Beautiful Soup Library to parse
the data

soup = BeautifulSoup(r, "lxml")

type (soup)

bs4 .BeautifulSoup

#We find the number of characters
in data downloaded
len(str (soup.prettify()))

440689

#We convert the data to a string format

using str.

#Note in R we use str for structure, but in
Python we use str to convert to character

(1ike as.character or paste command would do in R)
a=str (soup.prettify())

In [57]
We try and find location of a particular
tag we are interested in.
#iNote we are using triple quotes to escape
special characters
a.find('''class="snippet"''")

out [57]:

352138

In [58]

a[352000:358000]
Oout [58]:

http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices
http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices
http://www.yelp.ca/search?find_loc=Calgary,+AB&cflt=homeservices

'dth="30"/>\n \n </div>\n </div>\n <div class="media-

story">\n <p class="snippet">\n We\’re the best of bank and broker. We have

locations so that you know where we are. We\’re connected with all banks, not just one. And
pass along our volume discount to get your mortgage..\n </p>\n </div>\n

</div>\n </div>\n </divs>\n </lis\n <1li class="regular-search-result">\n

<div class="search-result natural-search-result" data-key="1">\n <div class="biz-listing-
large">\n <div class="main-attributes">\n <div class="media-block media-block--

12">\n <div class="media-avatar">\n <div class="photo-box pb-90s">\n

\n
<img alt="Always Affordable Always Available Locksmiths" class="photo-box-img" height="90"
src="//s3-media2.fl.yelpcdn.com/bphoto/8DBH3BpLINETAK Up5BtUQ/90s.jpg" width="90"/>\n

\n </divs>\n </divs>\n <div class="media-story">\n <h3
class="search-result-title">\n \n 1.\n

<a class="biz-name" data-hovercard-id="8QwuvWymgegNxbMgegZlkg" href="/biz/always-
affordable-always-available-locksmiths-calgary?search_key=36031">\n \n

Always Affordable Always Available Locksmiths\n \n \n

\n </h3>\n <div class="biz-rating biz-rating-large clearfix">\n

<div class="rating-large">\n <i class="star-img stars_5" title="5.0 star rating"s\n

<img alt="5.0 star rating" class="offscreen" height="303" src="//s3-

we

media4.fl.yelpcdn.com/assets/srv0/yelp styleguide/c2252a4cd43e/assets/img/stars/stars_map.png"

width="84"/>\n \n </div>\n <span class="review-count rating-
qualifier">\n 7 reviews\n \n </div>\n <div
class="price-category">\n \n \n Keys &
Locksmiths\n \n \n </div>\n <ul

class="search-result tags">\n \n </div>\n </div>\n </div>\n

<div class="secondary-attributes">\n <address>\n 1437 Kensington Road NW\n

\n Calgary, AB T2N 3R1\n </address>\n \n
Phone number\n \n \n (403) 272-

8923\n \n </divs\n </divs\n <div class="snippet-block

review-snippet">\n <div class="media-block">\n <div class="media-avatar">\n

<div class="photo-box pb-30s" data-hovercard-id="6G17PcLIXZHTsSRUgLgo44A">\n \n <img alt="Brian P."
class="photo-box-img" height="30" src="//s3-medial.fl.yelpcdn.com/photo/bHg_rRLGej4oD-ck-
5NQ6A/30s.jpg" width="30"/>\n \n </div>\n </div>\n <div

class="media-story">\n <p class="snippet">\n We were very pleased with the

quick, professional, quality service we got from this company. \xaOWhen booking the appointment,
the person on the phone was efficient and helpful, and although I..\n </p>\n

</div>\n </div>\n </div>\n </div>\n </1li>\n <li class="regular-
search-result">\n <div class="search-result natural-search-result" data-key="2">\n
<div class="biz-listing-large">\n <div class="main-attributes">\n <div class="media-
block media-block--12">\n <div class="media-avatar">\n <div class="photo-box

pb-90s">\n \n
<img alt="Golden Acre Garden Sentres" class="photo-box-img" height="90" src="//s3-
medial.fl.yelpcdn.com/bphoto/6T8npInLwEQx-cx-Emmé6yA/90s.jpg" width="90"/>\n

\n </divs>\n </div>\n <div class="media-story">\n

<h3 class="search-result-title">\n \n 2.\n

<a class="biz-name" data-hovercard-id="DG-pdTKaegi87Df9IxQvp2A" href="/biz/golden-acre-
garden-sentres-calgary?search _key=36031">\n \n Golden Acre

Garden Sentres\n \n \n \n </h3>\n

<div class="biz-rating biz-rating-large clearfix">\n <div class="rating-large">\n

<i class="star-img stars 4" title="4.0 star rating">\n <img alt="4.0 star rating"

class="offscreen" height="303" src="//s3-
media4.fl.yelpcdn.com/assets/srv0/yelp styleguide/c2252a4cd43e/assets/img/stars/stars_map.png"

width="84"/>\n \n </div>\n <span class="review-count rating-
qualifier"s\n 13 reviews\n \n </div>\n
<div class="price-category">\n \n <span

class="business-attribute price-range">\n '

58| 2 Datalnput

#Lets try and find the list of phone numbers.
We note both the HTNL tag and the class for 1it.
We use the find all function
letters = soup.find all("span", class_="biz-phone")
letters[1:100]
Out [21]:
[
(403) 272-8923
,
(403) 274-4286
,
(403) 918-4475
,
(403) 681-4376
,
(403) 454-0243
,
(403) 457-6333
,
(403) 899-0599
,
(403) 452-2881
,
(587) 229-0673
,
(403) 770-4700
]
In [22]:
#Lets try and see the feedback given by users.

letters2 = soup.find all("p", class_ ="snippet")
letters2[1:100]
Oout [22]:

[<p class="snippet">

We were very pleased with the quick,
professional, quality service we got from this company.
When booking the appointment, the person on the phone
was efficient and helpful, and although I..

</p>, <p class="snippet">

Yesterday I was at Golden Acres and
carelessly had let myself become dehydrated, but hadn’t
realized what was going on. An employee, Rachel,
recognized I was in trouble, made suggestions,..

</p>, <p class="snippet">

2.2 Web Scraping Data Input | 59

Holy crap, I believe I have died and gone
to heaven.. I can’t believe that I just discovered
that there is actually a store that sells mid century
modern furniture and accessories in town. I..

</p>, <p class="snippet">

Really appreciate the help I’'ve received
from Mark at Mortgage Alliance. On two occasions he
sent me back to my bank with some advice to get what
I was looking for and saved me a lot of grief..

</p>, <p class="snippet"s>

Such a wicked venue, place, space, I’'m not
even sure what the term is. I’'ve been here on a couple
occasions, the first time was a random Saturday in
Inglewood and popped in. We got to meet the..

</p>, <p class="snippet"s>

I called Carol mid-afternoon on Monday for
a move-out clean. She showed up bright and early the
next morning with her supplies, and (dare I say)
insanely beautiful and outgoing colleague, Liz...

</p>, <p class="snippet"s>

..Did not think I’'d be writing a review on
a furnace company but here I am. Right now in the
middle of troubleshooting a heating issue. Thanks to
Flash Furnace I am identifying the issue..

</p>, <p class="snippet">

F2 Furnishings is a great place to shop for
furniture and other home decor. The company really
supports local artists and designers. A lot of their
pieces are originals from local crafts..

</p>, <p class="snippet">

Brandon was prompt in answering any questions
we had prior to the move. On the day of the move they
were on time, efficient, and professional. Brandon and
Jesse took especial care of our..

</p>, <p class="snippet">

I am a huge fan of what the Niklas Group
has done to my community. I live just a block away
from the Casel Marche building on 17th ave and I’'m
really impressed with the sense of community this..

</p>]

type (letters2)

60| 2 Datalnput

bs4 .element.ResultSet

In [24]:
str(letters2) [1:1000]

Oout [24]:

"<p class="snippet">We\’'re the best of bank and broker.
We have locations so that you know where we are. We\’'re
connected with all banks, not just one. And we pass
along our volume discount to get your mortgage..</p>,
<p class="snippet">\n We were very pleased with the
quick, professional, quality service we got from this
company. \xaOWhen booking the appointment, the person
on the phone was efficient and helpful, and although
I.\n </p>, <p class="snippet">\n Yesterday I was at
Golden Acres and carelessly had let myself become
dehydrated, but hadn\’t realized what was going on. \xaOAn
employee, Rachel, recognized I was in trouble, made
suggestions,..\n </p>, <p class="snippet">\n Holy crap,
I believe I have died and gone to heaven.. I can\’'t
believe that I just discovered that there is actually
a store that sells mid century modern furniture and
accessories in town. I..\n</p>, <p class="snippet">\n !

In [25]:
str(letters2) .count ("service")

Out [25] :

2.3 Data Input from RDBMS

After csv files and web scraping, the last type of data input we consider is from
relational database management system (RDBMS) databases. Here is a brief
note on RDBMS first to understand them. SQL is a domain-specific language
used in programming and designed for managing data held in an RDBMS or
for stream processing in a relational data stream management system (RDSMS).
SQL has been designed for managing data in RDBMSs like Oracle, MySQL,
MS SQL Server, and IBM DB2 besides PostgreSQL:

e SQL is one of the first commercial languages used for Edgar F. Codd’s
relational model, also described in his influential 1970 paper, “A Relational
Model of Data for Large Shared Data Banks.”

Below is a quote from Edgar F. Codd’s 1970 paper, “A Relational Model of
Data for Large Shared Data Banks”

Future users of large data banks must be protected from having to know
how the data is organized in the machine (the internal representation).
A prompting service which supplies such information is not a

2.3 Data Input from RDBMS | 61

satisfactory solution. Activities of users at terminals and most applica-
tion programs should remain unaffected when the internal representa-
tion of data is changed and even when some aspects of the external
representation are changed. Changes in data representation will often
be needed as a result of changes in query, update, and report traffic and
natural growth in the types of stored information. Existing non-inferen-
tial, formatted data systems provide users with tree-structured files or
slightly more general network models of the data. In Section 1, inade-
quacies of these models are discussed. A model based on n-ary relations,
a normal form for data base relations, and the concept of a universal data
sublanguage are introduced. In Section 2, certain operations on rela-
tions (other than logical inference) are discussed and applied to the
problems of redundancy and consistency in the user’s model.

Properties of Databases:
A database transaction, however, must be ACID compliant. ACID stands for
atomic, consistent, isolated, and durable.

e Atomic: A transaction must be either completed with all of its data modifi-
cations or may not.

o Consistent: At the end of the transaction, all data must be left consistent.

¢ Isolated: Data modifications performed by a transaction must be independ-
ent of other transactions.

e Durable: At the end of transaction, effects of modifications performed by
the transaction must be permanent in system.

To counter ACID, the consistent services provide basically available, soft state,
eventual consistency (BASE) features.

Earlier, SQL was a de facto language for the generation of information
technology professionals due to the fact that data warehouses consisted of
one RDBMS or RDSMS. The simplicity and beauty of the language enabled
data warehousing professionals to query data and provide it to business
analysts.

RDBMS are often suitable only for structured information. For unstructured
information, newer databases like MongoDB, CouchDB, and HBase (from
Hadoop) prove to be a better fit. Part of this is a trade-off in databases, which
is due to the CAP theorem (Figure 2.1).

CAP theorem states that at best we can aim for two of the following three
properties:

o Consistency—This means that data in the database remains consistent after
the execution of an operation.

e Availability—This means that the database system is always on to ensure
availability.

o Partition Tolerance—This means that the system continues to function
even if the transfer of information between the servers is unreliable.

62 | 2 Datalnput

Visual guide to NoSQL systems

Availability:
Each client can
always read
and write.

A

Relational (comparison)
Key-value
Column-oriented/tabular
Document-oriented

Data models

CA AP
RDBMSs Aster Data Dynamo Cassandra
(MySQL, Greenplum Voldemort SimpleDB
Postgres, Vertica Tokyo Cabinet CouchDB
etc) KAl RiaK

Pick Two

C

cpP

BigTable MongoDB Berkeley DB
Hypertable Terrastore MemcacheDB
Hbase Scalaris Redis

Consistency:

All clients always
have the same view
of the data.

Partition tolerance:
The system works
well despite physical
network partitions.

Figure 2.1 http://blog.nahurst.com/visual-guide-to-nosql-systems. Source: Courtesy:

Nathan Hurst.

2.3.1 Windows Tutorial

https://www.postgresql.org/. PostgreSQL is a powerful, open-source object-
relational database system (ORDBMS). It has more than 15 years of active

development and a proven architecture.

PostgreSQL, often simply Postgres, is an ORDBMS—that is, an RDBMS with
additional (optional use) “object” features—with an emphasis on extensibility

and standards compliance.

PostgreSQL is developed by the PostgreSQL Global Development Group.
Some general PostgreSQL limits are included in the table as follows.

Limit Value
Maximum database size Unlimited
Maximum table size 32TB
Maximum row size 1.6TB
Maximum field size 1GB
Maximum rows per table Unlimited

Maximum columns per table

Maximum indexes per table

250-1600 depending on column types
Unlimited

https://www.postgresql.org/
https://en.wikipedia.org/wiki/RDBMS
http://blog.nahurst.com/visual-guide-to-nosql-systems

2.3 Data Input from RDBMS | 63
Download the Database https://www.postgresql.org/download/ and https://
www.postgresql.org/download/windows/.

Two choices—we go for enterprise db.
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#
windows.

2.3.2 137 Mb Installer

® Setup B=S &8 =
Password »
Please provide a d for the d Superuser
Password e

Retype password #eee

< Back Mext > Cancel |

| Setup =1 OB 5=
Port »

Please select the port number the server should listen on.
Port 5432

https://www.postgresql.org/download/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows

64| 2 Datalnput

o,
Locale [Defaut ocale] e
InstalBuilder

[<Basc J[Mext>][cacd]

.

Fizase wait whils Setup Installs PoStoreSQL on your Computer.
Instaling
Unpaddng C:\Program Files\PostoreSQLIS.6\binfibecpg. di

InstaliBuilder

< Back | Mext> l_&_,j

2.3 Data Input from RDBMS | 65

 Setup Lo e

Advanced Options *

Select the locale to be used by the new database duster.
Locale |[Defaut iozale] E]

< Back Next> | [Cancel

2.3.3 Configuring ODBC

Download and Install ODBC Driver

Use the stack builder to check option ODBC Driver. Open Database
Connectivity (ODBC) is an open standard application programming interface
(API) for accessing a database. By using ODBC statements in a program, you
can access files in a number of different databases, including Access, dBase,
DB2, Excel, and Text.

'a Stack Builder 4.0.0 [ee)

Please select the appiications you would like to install.

=1 Categories
+- = Add-ons, tools and utilites
|- Database Drivers
¥ Npgsd v3.0.8-1
¥ pgIDBC v9.4.1212-1
[psqlODBC (32 bit) v09.05.0400-1
4
+- Database Server
+)- = Regstrationsequired and trial products
- Replication Solutions
+- = Spatal Extensons
- Web Development

The offidal PestoreSQL ODBC driver (64bit version). Packaged by EnterpriseDB. -
Source code downicad: http: /fwwav.enterprisedb.com/products download.do -

[<gack][mext>] [camcel |

66 | 2 Data Input

o

After installing the ODBC Driver, now you need to make sure your OS
knows. It is time for connections. Connect it to a data source name (DSN)

POSTGRES

Setup psqlODBC

‘Welcome ko the psgiODBC Setup Wizard,

PostgreSQL

(using Control Panel) in Windows.
Go to Control Panel> Administrative Tools> ODBC Connections.

A DSN is a data structure that contains the information about a specific
database that an ODBC driver needs in order to connect to it.

==)

Packaged by:

@@alé » Control Panel » All Control Panel ltems » Administrative Tools

Organize Bum
I Favorites

B Desktop

8 Downloads

% Recent Places

42 Dropbox

4 Libraries
¥ Documents
o Music
i Pictures
B videos

& Homegroup

M Computer
&L Local Disk (C:)

il Network

Name

(B Component Services

& Computer Management

[& Data Sources (ODBC)

Event Viewer

L iSCSlInitiator

(@ Local Security Policy

@ Performance Monitor

[Print Management

(B Services

(&) System Configuration

() Task Scheduler

#P Windows Firewall with Advanced Security
[Windows Memory Diagnestic
Windows PowerShell Modules

Date modified

7/14/2009 10:27 AM
771472009 10:24 AM
7/14/2009 10:23 AM
7/14/2009 10:24 AM
771472009 10:24 AM
1/11/2017 10:48 PM
7/14/2009 10:23 AM
1/11/2017 10:47 PM
7/14/2009 10:24 AM
7/14/2009 10:23 AM
171472009 10:24 AM
771472009 10:24 AM
7/14/2009 10:23 AM
7/14/2009 11:02 AM

Type

Shorteut
Shortcut
Shortcut
Shertcut
Shortcut
Shortcut
Shortcut
Shorteut
Shortcut
Shortcut
Shortcut
Shorteut
Shorteut
Shortcut

Size

2KB
2KB
2KB
2KB
2KB
2KB
2KB
2KB
2KB
2KB
2KB
2KB
2KB
I KB

2.3 Data Input from RDBMS | 67

Click Add User DSN.

¢V 0DBC Data Source Administrator

User DSN | System DSN | File DSN | Diivers | Tracing | Connection Pocling | About |

User Data Sowces:

| Driver] Add...
Micrasolt dBase Drver [*.dbf]
Excel Fles Microsolt Excel Dirver " .xlz) Remaove
MS Access Database Microsolt Access Driver [“mdb)
MySQL MySQL ODBC 5.1 Diiver Configure...
orcl Microsoft ODBC for Oracle —‘
PostgreSQL30 PostgreSAL ODBC Driver[ANSI)

PostgreSALISW PostgreSAL ODBC Driver(UINICODE)

An 0DBC User data source stores information about how to connect to
(% I | s el e e A LS s s ool s} v
and can only be used on the current machine.

[ok | cancal | [Hep |

Put the options as below. Remember to put the same port and the same
password as we did in the steps mentioned earlier.

PostgreSQL ANSI ODBC Driver (psqlODBC) Setup
Data Source PostgreSQL30 Description postgreSOL odbe
Database postgres SSL Mode | disable —
Server |ocahost Port 5432
UserName postgres Fassword weese
Opti
ptions Ted
Dalasoucel [Global
I Save I l Cancel }

Click on the Test box (above Cancel and below Password). If the connection
is successful, you should see this, or else you need to go back and find what you
got wrong (mostly password or port).

68| 2 Datalnput

Connection Test @

l L Connection successful

Now open your Postgres using command line (see in Programs).

naconda3 |
AVAST Software
Citrex

Dropbox

Games

Git

GitHub, Inc
GOM Player
Java

Pictures

Maintenance Music
McAfee Security Scan Plus
Micresoft Office Games
Oracle VM VirtualBox
Pestgres Plus Add-ons Computer
PostgreSQL 96
& Application Stack Builder Control Panel
W pgadming
C» Reload Configuration Devices and Printers
B SQL Shell (psgl)

Documentation

Default Programs

1 Back

Ol e @ O]

Log on to Postgres using the password.

B 5QL Shell (psq

sord

ql 9.6.

page <1
1 refer

2.3 Data Input from RDBMS | 69

Then create a database using the syntax below (note the smaller case of the
database name and the;) to complete the command. Then type \l to see all
available databases.

postgres=# CREATE DATABASE ajay;
postgres-#\1

B SQL Shell (psql) o |-
postgres=# CREATE DATABASE ajay;
CREATE DATABASE

List dataha
Collate H Ctype

1 United S English_United S

1i_United § 5 English_United

postgres “nglish_Unite > English_United §
c/postygy

English_United :.1252 | English_United S

\c ajay;

s from Windows code pa
cory® see psql

You are now conne
ajay=H

Now we create tables inside the database. This is done
using the CREATE TABLE command. Following are examples
of CREATE TABLE command.

CREATE TABLE table name (
columnl datatype,
column2 datatype,
columnN datatype,
PRIMARY KEY(one or more columns)

70| 2 Datalnput

Example

CREATE TABLE weather (

city varchar (80) ,

temp_ 1lo int, -- low temperature
temp hi int, -- high temperature
prcp real, -- precipitation
date date

) i

PostgreSQL supports the standard SQL types int, smallint, real,double
precision, char (N), varchar (N), date, time, timestamp, and
interval, as well as other types of general utility and a rich set of geometric
types. PostgreSQL can be customized with an arbitrary number of user-defined
data types. Consequently, type names are not syntactical key words, except
where required to support special cases in the SQL standard.

From https://www.postgresql.org/docs/8.1/static/tutorial-table.html

CREATE TABLE cities (
name varchar (80) ,
location point

) i

For our use case let’s make a table suited for sales and business:

CREATE TABLE SALES(

CUSTOMER ID INT PRIMARY KEY NOT NULL, --unique
id of customers

SALES int NOT NULL, --sales in rupees
date date, --date of sale

PRODUCT ID INT NOT NULL

)i
I then check the table created using \d.

BLE SALES(
ER_ID INT PRIMARY KEY T NULL, ——unigue id of customers
int NOT NULL - les in rupees
date. - ate of s

INT NOT

lajay=H#

Schema
public !
(1 wowd

ajay=# _

https://www.postgresql.org/docs/8.1/static/tutorial-table.html

2.3 Data Input from RDBMS

Now try \d tablename to get details of the table.
Here \d sales.

ajay=# \d
List of relations

Schemna Name Type 1§ Ouwner

+
public sales table |

1 vrouwd

postgres

ajay=# ~d ajav
Did not find any relation named "ajay'.
lajay=# ~d sales
Table “"public.sales"
Column Type i Modifiers

customer_id integer not null
sales integer not null
date date
product_id integer not null
Indexe
"sales_pkey" PRIMARY KEY. btree {customer_id>

Quit using \q
I can delete a table using drop table tablename.

ajay=H# \d
List of relations
Schema Name

Now let’s copy some data (see http://bit.ly/2postgres) into my database table.
First of all my data is in the same format.

71

http://bit.ly/2postgres

72| 2 Datalnput

ajay=i# \d
List of relations

Schema | H Ouner

+ +
public | i tabhle postgres
1 rowd

ajay=# \d ajav
Did not find any relation named “ajay".
ajay=# \d sales
~ Table "“public.sales"
Co lumn i Modifiers
+
not null
date
product_id

Indexes:
"sales_pkey" PRIMARY KEY. btree <{(customer_id>

date

1]
L]
! integer not null
1
1
i integer not null

DELIMIT
s_phkey"

al.csv DELIMITER *.”

We use the Copy command to load the data.

\copy sales from C:/Users/Dell/Downloads/datal.csv
DELIMITER ',' CSV;

Note an error value when we try and import data with a duplicate primary
key. We rectify our data and then do the import again. COPY 500 shows 500
records imported successfully.

And then we can make a connection in R to do analysis in R on the Postgres
data (see http://rpubs.com/newajay/RODBC).

install.packages ("RODBC") #installing the package RODBC
library (RODBC) #loading the package RODBC
odbcDataSources () # to check all available ODBC data
sources

#creating a Database connection
for username,password,database name and DSN name

chan=odbcConnect ("PostgreSQL30", "postgres; Pagssword=root ;
Database=ajay")

http://rpubs.com/newajay/RODBC

#to list all table names
sglTables (chan)

#and fetch some data
sglFetch(chan, "sales",max=10)

2.3 Data Input from RDBMS | 73

chan=odbcConnect ("PostgreSQL30", "postgres;Password=root;Database=ajay")

sqlTables (chan)

g8 TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 ajay public sales TABLE
sqlFetch (chan, "sales",max=10)

i customer_id sales date product_id
£ 1 10001 5230 2017-02-07 524
¢ 2 10002 2781 2017-05-12 469
& 3 10003 2083 2016-12-18 917
8 4 10004 214 2015-01-19 354
8 S 10005 9407 2016-09-26 292
£t € 10006 4705 2015-10-17 380
7 10007 4729% 2016-01-02 469
£t 8 10008 7715 2015-09%-12 480
L] 10009 9898 2015-04-05 611
10 10010 5797 2015-08-13 959

In Python the package to do the same is SQLalchemy as the code in the following

text shows.

import psycopg?2

import pandas as pd
import sglalchemy as sa
import time

import seaborn as sns
import re

In [17]:

74 | 2 Datalnput

parameters = {
'username': 'postgres',
'password': 'root',
'server': 'localhost',
'database': 'ajay'

}

connection= 'postgresqgl://{username}:
{password}e{server}:5432/{database}"'.
format (**parameters)

The database connection
print (connection)

postgresqgl://postgres:root@localhost:
5432/ajay

engine = sa.create engine (connection_

string, encoding="utf-8")

insp = sa.inspect (engine)

db list = insp.get schema names|()
print (db_list)

['information schema', 'public']

dir (engine)

[' class_ ',
' delattr_ ',
' dict_ ',
' dir ',

' format ',
|_ge_| ,

' getattribute ',
'_gt_' ,

' hash_ ',

' _init_ ',

In

In

In

In

In

Out

2.3 Data Input from RDBMS | 75

1 ne II

' new_ ',

' reduce_ ',

' reduce_ ex ',

' repr_ ',

' setattr ',

' sizeof ',

' str_ ',

' subclasshook ',
' weakref ',

' connection cls',

' echo',

' execute_ clauseelement',
' _execute compiled',
' execute_default',

' execution options',
' has_events',

' optional conn_ ctx manager',
' run visitor',

' should log debug',
' _should log_info',

' trans_ctx',

' wrap_pool connect',
'begin',

'connect',
'contextual connect',
'create',

'dialect',
'dispatch',
'dispose',

'driver',

'drop',

'echo',

'engine',

'execute',

'execution options',
'has_table’',
'logger',

'logging name',
'name',

'pool"',

76 | 2 Datalnput

'raw_connection',
'run_callable’',

'scalar',
'table names',
'transaction',
'update_execution options',
'url']
In [36]
engine.table names|()
Out [36]
['sales']
In [39]
data3= pd.read_sgl query('select * from
"sales" limit 10', con=engine)
In [40]
data3.info ()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns) :
customer id 10 non-null inté64
sales 10 non-null inte4
date 10 non-null object
product_id 10 non-null inté4
dtypes: int64(3), object (1)
memory usage: 400.0+ bytes
In [41]
data3.head ()
out [41]:
customer_id sales date product_id
0 10001 5230 2017-02-07 524
1 10002 2781 2017-05-12 469
2 10003 2083 2016-12-18 917
3 10004 214 2015-01-19 354
4 10005 9407 2016-09-26 292
In []:

Finally in PostgreSQL to delete database, use Drop Database.

3

Data Inspection and Data Quality

To dos: how to delete values and how to convert pandas to numpy array
and back, data, table and dplyr in r, and hmisc in R.

3.1 Data Formats

In R we can use the as operator to change from one data format to another.

In Python we can use str and int to convert to string and integer formats.
We can use split to convert string to list.

Numeric—We use int and float functions to convert data to numeric types
integer and float, respectively.

This is demonstrated in the following code. Note in R the index starts from 1
and in Python it starts from 0.

import re

import numpy as np

import pandas as pd

numlist=[“$10000”,“$20,000”,“30,000”,40000,"“50000 ”]

for i,value in enumerate (numlist):
numlist[i]=re.sub(r“([$,]1)”,“",str(value))

numlist

[*10000', '20000', '30000', '40000', '50000 ']
int (numlist[1])

20000

for i,value in enumerate (numlist):
numlist[i] =int (value)

numlist

[10000, 20000, 30000, 40000, 50000]

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

77

78

3 Data Inspection and Data Quality

np.mean (numlist)

30000.0

numlist2=str (numlist)
numlist2.split (None, 0)

['[10000, 20000, 30000, 40000, 50000]"']
numlist2.split (None,0) [0]

'[10000, 20000, 30000, 40000, 500007

3.1.1 Converting Strings to Date Time in Python

from datetime import datetime
datetime object = datetime.strptime(’Jun 7 2016 1:33PM’,
'%b %d %Y %$I:%M%p’)

R has lubridate package (https://cran.r-project.org/web/packages/lubridate/
lubridate.pdf) for easy conversion of strings of data to date and time, but
Python has the date—time package. See examples of lubridate at http://rpubs.
com/newajay/datesquality and http://rpubs.com/ajaydecis/lubridate

adob="“7 June 1977 19:20”
library (lubridate)
adob2=dmy hm(adob)

adob2

[1] "1977-06-07 19:20:00 UTC"

mydob="1 June 1981”
mydob2=dmy (mydob)
mydob2

[1] "1981-06-01 UTC"

#give me your age in secs
#my dob = 1 june 1981

pd=Sys.Date() #Date right now

pt=Sys.time() # Date Time Right Now

#give me how old you are from me

hint I was born on 7 june 1977 at 1920 hours

difftime (adob2,pt,units="secs”)

Time difference of -1203358055 secs
difftime (adob2,mydob2,units="days”)

Time difference of -1454.194 days

https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
http://rpubs.com/newajay/datesquality
http://rpubs.com/newajay/datesquality
http://rpubs.com/ajaydecis/lubridate

3.1 Data Formats

Lubridate Example 2
library (lubridate)
##
Attaching package: ’lubridate’
The following object is masked from ’‘package:base’:
##
date
classdata=c(“1-April-1977",
“April/2/2014",
“1Jun2016")

lapply(classdata, dmy)

Warning: All formats failed to parse. No formats found.
[[1]]

[1] "1977-04-01"

##

[[2]]
[1] NA
##

[[3]1]

[1] "2016-06-01"
is.na(lapply(classdata,dmy))

Warning: All formats failed to parse. No formats found.
[1] FALSE TRUE FALSE
ifelse(!is.na(lapply(classdata,dmy))
,lapply(classdata,dmy), lapply(classdata,mdy))
Warning: All formats failed to parse. No formats found.

Warning: All formats failed to parse. No formats found.
Warning: All formats failed to parse. No formats found.

Warning: All formats failed to parse. No formats found.

[[11]
[1] "1977-04-01"

##

[[2]]

[1] "2014-04-02"
##

[[3]]

[1] "2016-06-01"

79

80| 3 Data Inspection and Data Quality

Date Time—We use the datetime module to convert string data to date-
time format and then do numeric operations on it. The following example
shows using the strptime function to parse the date. We can then use the
“now” function to find the difference in days form current date. This creates
a datetime delta object. (http://nbviewer.jupyter.org/gist/decisionstats/
246¢835576a9537a037768ab30a45f4a)

from datetime import datetime

date object=datetime.strptime(“7nov-2007", “%d%b-%Y")
date object

datetime.datetime (2007, 11, 7, 0, 0)

print (format (date object.year))
print (format (date object.month))
print (format (date object.day))
print (format (date object.hour))

2007
11

7

0

datetime.now()
datetime.datetime (2016, 10, 30, 16, 38, 6, 260123)
datetime.now() -date object

datetime.timedelta (3280, 59947, 411736)
a=datetime.now() -date object

a.days

3280
a.seconds

59968
We can use timeit package in Python for finding time of execution of

code snippets (https://docs.python.org/2/library/timeit.html). This is done by
system.time() in R.

http://nbviewer.jupyter.org/gist/decisionstats/246c835576a9537a037768ab30a45f4a
http://nbviewer.jupyter.org/gist/decisionstats/246c835576a9537a037768ab30a45f4a
https://docs.python.org/2/library/timeit.html

3.1 Data Formats

For converting dates into strings, use strftime function (the help is at https://
docs.python.org/2/library/time.html#time.strftime).

Directive Meaning Notes

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%c Locale’s appropriate date and time representation

%d Day of the month as a decimal number [01,31]

%H Hour (24-hour clock) as a decimal number [00,23]

%I Hour (12-hour clock) as a decimal number [01,12]

%j Day of the year as a decimal number [001,366]

%m Month as a decimal number [01,12]

%M Minute as a decimal number [00,59]

%p Locale’s equivalent of either AM or PM (1)

%S Second as a decimal number [00,61] (2)

%U Week number of the year (Sunday as the first day of the week) (3)
as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0

%w Weekday as a decimal number [0(Sunday),6]

%W Week number of the year (Monday as the first day of the week) (3)
as a decimal number [00,53]. All days in a new year preceding
the first Monday are considered to be in week 0

%x Locale’s appropriate date representation

%X Locale’s appropriate time representation

%y Year without century as a decimal number [00,99]

%Y Year with century as a decimal number

%Z. Time zone name (no characters if no time zone exists)

%%

A literal “%” character

3.1.2 Converting Data Frame to NumPy Arrays and Back in Python

To convert pandas data frame df to NumPy, use the values command:

a=df.iloc[:,
b=df.iloc]|:,

2]

1
1:].values

81

https://docs.python.org/2/library/time.html#time.strftime
https://docs.python.org/2/library/time.html#time.strftime

82| 3 Data Inspection and Data Quality

print (type (df))
print (type (a))
print (type (b))

To convert to a pandas data frame, use DataFrame with values for index
and column. (See code at https://nbviewerjupyter.org/gist/decisionstats/

b818917b37807fa0ded41522928f26af).

titanic=pd.read csv(“https://vincentarelbundock.
github.io/Rdatasets/csv/datasets/Titanic.csv”)

titanic=titanic.drop(’Unnamed: 0/, 1)
titanic.info()
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1313 entriesg, 0 to 1312
Data columns (total 6 columns) :

Name 1313 non-null object
PClass 1313 non-null object
Age 756 non-null floaté64
Sex 1313 non-null object
Survived 1313 non-null inté4
SexCode 1313 non-null inté4

dtypes: floaté64 (1), int64(2), object(3)
memory usage: 61.6+ KB

titanic.head()

Name PClass Age Sex Survived SexCode
0 Allen, Miss Elisabeth Walton 1st 29.00 female 1 1
1 Allison, Miss Helen Loraine 1st 2.00 female O 1
2 Allison, Mr Hudson Joshua Creighton 1st 30.00 male O 0
3 Allison, Mrs Hudson JC (Bessie 1st 25.00 female 0 1
Waldo Daniels)
4. Allison, Master Hudson Trevor 1st 0.92 male 1 0

a=titanic.iloc[:,1:]
b=titanic.iloc[:,1:].values

print (type(titanic))
print (type(a))
print (type (b))

https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af
https://nbviewer.jupyter.org/gist/decisionstats/b818917b37807fa0ded41522928f26af

3.1 Data Formats

<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
<class 'numpy.ndarray's
a
PClass Age Sex Survived SexCode
0 1st 29.00 female 1 1
1 1st 2.00 female 0 1
2 1st 30.00 male 0 0
3 1st 25.00 female 0 1
4 1st 0.92 male 1 0
5 1st 47.00 male 1 0
6 1st 63.00 female 1 1
7 1st 39.00 male 0 0
8 1st 58.00 female 1 1
9 1st 71.00 male 0 0
1306 3rd NaN female 0 1
1307 3rd NaN female 0 1
1308 3rd 27.00 male 0 0
1309 3rd 26.00 male 0 0
1310 3rd 22.00 male 0 0
1311 3rd 24.00 male 0 0
1312 3rd 29.00 male 0 0
1313 rows x 5 columns
b
array([['lst', 29.0, ‘'female', 1, 1],
['1st', 2.0, 'female', 0, 11,
["1st', 30.0, 'male’', 0, 01,
['3rd', 22.0, 'male’', 0, 01,
["3rd', 24.0, 'male’', 0, 01,
['3rd', 29.0, 'male’', 0, 0]], dtype=object)
titanic.columns[1l:]
Index(['PClass', 'Age', 'Sex', 'Survived',K 'SexCode'],

dtype='object')

titanic.as matrix(columns=titanic.columns[1:])

array([['lst',
['1st!',
['1st!',

ey

29.

Ol

2.0,

30.

Ol

'female',
'female',
'male’',

83

84

3 Data Inspection and Data Quality

['3rd', 22.0, 'male', 0, 01,
['3rd', 24.0, 'male', 0, 01,
['3rd', 29.0, 'male', 0, 0]], dtype=object)

data=titanic.as matrix(columns=titanic.columns[1:])

len (data)
1313

range (0,len(data))
range (0, 1313)

g=pd.DataFrame (data=data[0:,0:], # values
index=range (0, len(data)), # 1st column as index
columns=titanic.columns[1l:]) # 1lst row as the
column names

g.head ()
PClass Age Sex Survived SexCode
0 1st 29 female 1 1
1 1st 2 female 0 1
2 1st 30 male 0 0
3 1st 25 female 0 1
4 1st 0.92 male 1 0

3.2 Data Quality

We can use the re package for regular expressions. The following example
shows how to replace non-numeric values in data to clean it up for numeri-
cal analysis. We use re.sub to replace the values of $, command, and
whitespace.

import re
import numpy as np

numlist=[“$10000”,“%$20,000”,"“30,000”,40000,“50000 ”]
help(re.sub)

Help on function sub in module re:

3.2 Data Quality | 85

sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost
non-overlapping occurrences of the pattern
in string by the
replacement repl. repl can be either a string
or a callable;
if a string, backslash escapes in it are
processed. If it 1is
a callable, it’s passed the match object and
must return
a replacement string to be used.

for i,value in enumerate (numlist):

numlist[i]=re.sub(r™([$,]1)”,™",str(value))
numlist[i] =int (numlist[i])

Here re.sub replaces the $ and patterns with nothing (“”) from each value of
the list just like gsub does in R. In python str converts an object to string just
like paste does in R. In the next step, int converts the object to numeric values
(integer) just as as.numeric does in R:
print (numlist)

[10000, 20000, 30000, 40000, 50000]
np.mean (numlist)

30000.0

help (enumerate)

Help on class enumerate in module builtins:

class enumerate (object)
| enumerate (iterable[, start]) -> iterator for index,
value of iterable

| Return an enumerate object. iterable must be another
object that supports

| iteration. The enumerate object yields pairs
containing a count (from

| start, which defaults to zero) and a value yielded
by the iterable argument.

86 | 3 Data Inspection and Data Quality

enumerate is useful for obtaining an indexed list:

(0, seql0]), (1, seqlll), (2, seql2]),
Methods defined here:

__getattribute (self, name, /)

__iter (self, /)

|
|
|
|
|
|
| Return getattr(self, name).
|
|
|
|
|
|

Implement iter(self).

__new__ (*args, **kwargs) from builtins.type

Create and return a new object. See help(type)
for accurate signature.

__next (self, /)

Implement next (self).

__reduce_ (...)

Return state information for pickling.

Here we used enumerate to replace and convert each value of the list one by
one. This is a powerful method unique to Python as loops are not computation-
ally efficient in R. The code of example earlier is at https://nbviewer.jupyter.org/
gist/decisionstats/42b3fc90ae6fa537a19a08017e0336¢cb

Now let us see how we would do this in R. The following is R code (also
available at http://rpubs.com/newajay/dataquality2):

numlistr=c(“$10000~,“%$20,000”,“30,000”,40000,“50000 ”)
mean (numlistr)

Warning in mean.default (numlistr): argument is not
numeric or logical:
returning NA

#H# NA

numlistr=gsub(“,”,“” ,numlistr)

numlistr

H# "s10000" "$20000" "30000" "40000"

"50000

numlistr=gsub (“"\\$”, " ,numlistr)
Numlistr

https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb
http://rpubs.com/newajay/dataquality2

3.2 Data Quality | 87

[1] m"10000" "20000" "30000" "40000"
"50000 "

numlistr=as.numeric (numlistr)
numlistr

[1] 10000 20000 30000 40000 50000

mean (numlistr)
[1] 30000

For searching on character strings, we can use re.search and use bool to
return True or False. The bool function returns True when the argument
for which it is passed on is true; otherwise it returns false. The following
code is also available at https://nbviewer.jupyter.org/gist/decisionstats/
612116b1b8147cfb3808f5ac3c791eba

import re
names=[“Ajay”,“V ijay”,“Ra jay ”, “ Jayesh”]

for name in names:
print (re.search(r’ (jay)'’,name))

<_sre.SRE Match object; span=(1, 4), match='jay'>
<_sre.SRE Match object; span=(3, 6), match='jay'>
<_sre.SRE Match object; span=(3, 6), match='jay'>
None

Using re.search we got the positions of the string (jay).

for name in names:
print (bool(re.search(r’ (jay)'’,name)))
True
True
True
False

Using bool we got whether the string (jay) was present or not.
In R, we use grep, grepl functions for searching by string pattern. The following
code is also available at http://rpubs.com/newajay/grepinr

names=c (“Ajay”,“V ijay”,“Ra jay ”, “ Jayesh”)
grepl (“jay” ,names)

https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eba
http://rpubs.com/newajay/grepinr

88

3 Data Inspection and Data Quality

[1] TRUE TRUE TRUE FALSE
gregexpr (pattern =’jay’,names)

[[1]]
[1] 2
attr(,"match.length")
[1] 3

attr(, "useByteg")
[1] TRUE

##

[[2]]

[1] 4

attr(,"match.length")
[1] 3

attr(, "useByteg")
[1] TRUE

##

[[3]]

[1] 4

attr(,"match.length")
[1] 3

attr(, "useByteg")
[1] TRUE

##

[[4]]

[1] -1

attr(,"match.length")
[1] -1

attr(, "useByteg")

[1] TRUE

grep (“jay” ,names)

[1] 1 2 3

grep (“jay” ,names,value = T)

#H# [1] "Ajay" nyy ijayn "Ra jay]

3.3 DataInspection

We need to inspect data after import to see whether we correctly imported the
right size as well as the format of data columns (from http://nbviewer.jupyter.
org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f and http://nbviewer.
jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4).

r'rLets get some information on the object.
In R we would get this by str command (for structure).

http://nbviewer.jupyter.org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f
http://nbviewer.jupyter.org/gist/decisionstats/43e332cdff2d5a7599f4e61205e8788f
http://nbviewer.jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4
http://nbviewer.jupyter.org/gist/decisionstats/c1684daaeecf62dd4bf4

3.3 Data Inspection

In Python str turns the object to string so we use info.
This was a multiple-line comment using three single
quote marks.’’’

diamonds.info ()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 53940 entries, 0 to 53939
Data columns (total 11 columns) :

Unnamed: 0 53940 non-null inte4

carat 53940 non-null floaté4
cut 53940 non-null object
color 53940 non-null object
clarity 53940 non-null object
depth 53940 non-null floaté4
table 53940 non-null floaté4
price 53940 non-null inté64

X 53940 non-null floaté4
y 53940 non-null floaté4
Z 53940 non-null floaté4

dtypes: float64(6), inte4(2), object (3)
memory usage: 4.3+ MB

diamonds.head (10) #we check the first 10 rows in the
dataset

Unnamed:0 carat cut color clarity depth table price x y z
0.23 Ideal SI2 61.5 55 326 395 3.98 243
0.21 Premium SI1 59.8 61 326 3.89 3.84 231
0.23 Good VS1 569 65 327 4.05 4.07 231
0.29 Premium VS2 624 58 334 420 4.23 2.63
031 Good SI2 63.3 58 335 4.34 4.35 2.75

0.24 Very Good VVS1 623 57 336 395 398 247
0.26 Very Good SI1 619 55 337 4.07 4.11 2.53
0.22 Fair VS2 651 61 337 3.87 3.78 249
0 0.23 Very Good VS1 594 61 338 4.00 4.05 2.39

O XTI EWN=O
= O 0NN UL W

E
E
E
I
J
0.24 Very Good] VVS2 628 57 336 394 3.96 2.48
I
H
E
H

o To refer to a particular row in Python, I can use index.

o In R I refer to the object in ith row and jth column by OBJECTNAME]i,j].
o In R Irefer to the column name by OBJECTNAME$ColumnName.

¢ Note in Python Index starts with O while in R it starts with 1.

You can use the info command to look at imported objects.
Dropping variables is easily done by the drop command followed by
column name.

89

90 | 3 Data Inspection and Data Quality

Table 3.1 R and Python are quite easily comparable.

R

Python (using pandas package¥)

Getting the names
of rows and columns
of data frame “df”

Seeing the top and

bottom “x” rows of
the data frame “df”

Getting dimensions
of data frame “df”

Length of data
frame “df”

rownames(df)
returns the name of the rows
colnames(df)

returns the name of the
columns

head(df,x)

returns top x rows of data
frame

tail(df,x)

returns bottom x rows of
data frame

dim(df)

returns in this format: rows,
colummns

length(df)

returns no. of columns in
data frames

df.index
returns the name of the rows
df.columns

returns the name of the columns

df.head(x)

returns top x rows of data frame

df.tail(x)

returns bottom x rows of data
frame

df.shape

returns in this format: (rows,
columns)

len(df)

returns no. of columns in data
frames

Using the head function allows you to look at the first few rows.

We get Table 3.1 from http://www.slideshare.net/ajayohri/python-for-
r-users that has got 37000 views till December 2016.

diamonds=diamonds.drop (“Unnamed: 0”,1)
diamonds.columns
Index(['carat', 'cut', 'color', 'clarity', 'depth',
'table', 'price', 'x', 'y',

'z'],

dtype="'object')
diamonds.index
RangeIndex (start=0, stop=53940, step=1)

Sorting data is quite easy too

diamonds3=diamonds.sort ([“price”])
diamonds3.head ()

http://www.slideshare.net/ajayohri/python-for-r-users
http://www.slideshare.net/ajayohri/python-for-r-users

3.3 Data Inspection

carat cut color clarity depth table price x y z

0.23 Ideal E SI12 61.5 55.0 326 395 398 243

0.21 Premium E SI1 59.8 61.0 326 3.89 384 231

0.23 Good E VS1 56.9 65.0 327 4.05 4.07 231

0.29 Premium I VS2 62.4 58.0 334 420 4.23 263
J

SI2 63.3 580 335 434 435 275

=W N = O

0.31 Good

3.3.1 Missing Value Treatment

Missing values can be dropped by dropna command. Python uses NaN to
denote missing values, while R denotes them with NA. For more information
on missing values, please do read the documentation at http://pandas.pydata.
org/pandas-docs/stable/missing_data.html

diamonds4 = diamonds.dropna(how = ’any’)

In R missing value treatment is done by the functions na.rm = T (which
ignores NA or missing values) and na.omit (which deletes the missing values).
Note in R missing values are denoted by NA. In addition—using gsub, one can
replace a pattern by another (or delete it), and—using the as operator, one can
convert data from one format to another. We use the is.na function to find if a
value is a missing value (is.na = TRUE) or not.

For missing values and other issues, let us take this small caselet from http://
rpubs.com/ajaydecis/dataman3. We have a small list of mixed formats of money
and we need to find the mean money. We first use gsub to remove the comma,
then gsub with an escape character \\ to remove the $ sign, and then the
as.numeric operator to make it numeric. Finally, we use the na.rm operator
to find mean of non-missing values and use na.omit to remove missing
values altogether.

money=c ("$50000", "$50,000","50,000",50000,"50000",NA)
money

[1] 50000 50000 50000 50000 50000 NA
mean (money)

[1] NA

mean (money,na.rm=T)

[1] 50000

money=na.omit (money)
money

91

http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://pandas.pydata.org/pandas-docs/stable/missing_data.html
http://rpubs.com/ajaydecis/dataman3
http://rpubs.com/ajaydecis/dataman3

92| 3 Data Inspection and Data Quality

[1] 50000 50000 50000 50000 50000
attr(,"na.action")

[1] 6

attr(,"class")

[1] "omit"

mean (money)

[1] 50000

3.4 Data Selection

To refer to data by row number, we can use the .ix command to refer to it by index
value (in Python index starts from O, while in R it starts from 1 for the first row).

Unlike R, there is no $ command to select columns for a data frame
(i.e., diamonds$color). So we can use the notation dataframename.columnname
or dataframename[[“columnname’]]. In python chaining the commands is easy
by just adding a dot with command to previous object.

For choosing both row number and column name, I put these values within
the double square brackets.

diamonds.ix[20:30]

carat cut color clarity depth table price x y z

20 030 Good
21 023 VeryGood
22 023 Very Good

I SI2 63.3 56.0 351 426 430 271

E VS2 63.8 55.0 352 385 392 248

H VS1 61.0 570 353 394 396 241
23 031 VeryGood] SI1 59.4 620 353 4.39 443 262
24 031 VeryGood] SI1 58.1 620 353 444 447 259
25 023 VeryGood G VVS2 60.4 580 354 397 4.01 241
26 0.24 Premium I VS1 62.5 57.0 355 397 394 247
27 030 VeryGood] VS2 62.2 57.0 357 428 430 2.67
28 023 VeryGood D VS2 60.5 61.0 357 396 397 240
29 023 VeryGood F VS1 60.9 57.0 357 396 399 242
30 023 VeryGood F VS1 60.0 57.0 402 400 4.03 241

diamonds.ix[20:30] .cut
20 Good
21 Very Good

22
23
24
25
26
27
28
29
30
Name:

20
21
22
23
24
25
26
27
28
29
30
Name:

diamonds [[“cut”, “color”,“clarity”]1][20:30]

Very Good
Very Good
Very Good
Very Good

Premium
Very Good
Very Good
Very Good
Very Good

cut, dtype: object
diamonds.ix[20:30] [“coloxr”]

MmO HQ@QgQ @D EHA

color, dtype: object

3.4 Data Selection

cut color clarity
20 Good I SI2
21 Very Good E VS2
22 Very Good H VS1
23 Very Good J Sl
24 Very Good J Sl
25 Very Good G VVS2
26 Premium I VS1
27 Very Good J VS2
28 Very Good D VS2
29 Very Good F VS1

93

94 | 3 Data Inspection and Data Quality

diamonds[[“cut”, “color”,“clarity”]] .head()

cut color clarity
0 Ideal E SI2
1 Premium E SI1
2 Good E VS1
3 Premium I VS2
4 Good] SI2

diamonds.ix[20:30, [“*cut”, “color”, “clarity”]]

cut color clarity
20 Good I SI2
21 Very Good E VS2
22 Very Good H VS1
23 Very Good] SI1
24 Very Good] SI1
25 Very Good G VVS2
26 Premium I VS1
27 Very Good] VS2
28 Very Good D VS2
29 Very Good F VS1
30 Very Good F VS1

3.4.1 Random Selection of Data

Using the .ix method we can do random selection of a data frame that can be
useful for large amounts of data:

import numpy as np
len (diamonds)

53940
0.0001*1len(diamonds)

5.394
round (0.0001*len (diamonds))

3.4 Data Selection | 95

5
diamonds.index.values

array ([0, 1, 2, .., 53937, 53938, 53939])

rows=np.random.choice (diamonds.index.values, round
(0.0001*1len(diamonds)))
print (rows)

[26766 43621 3614 35052 51042]

diamonds.ix[rows]

carat cut color clarity depth table price x y z

26766 245 Ideal
43621 046 Premium
3614 1.05 Ideal
35052 0.31 Ideal
51042 0.70 Good

SI2 62.0 55,0 16589 8.67 8.64 536
VS1 60.5 58.0 1432 5.02 4.97 3.02
VS§2 62.2 56.0 3428 6.52 6.50 4.05
VVSl 618 56.0 884 433 4.37 2.69
VS2 64.2 58.0 2330 558 5.61 3.59

T o™ o~ mo

3.4.2 Conditional Selection

Let us try selecting data by conditions. We can again use the double square
brackets.

We can use the query function for easier conditional selection and using
multiple conditions including (&) or (|) operators. Note we use the parenthesis
in query here, not the square brackets.

diamonds [diamonds[’carat’] > 3.7]

carat cut color clarity depth table price x y z

25998 4.01 Premium I 11 61.0 61.0 15223 10.14 1010 6.17
25999 4.01 Premium] I 62,5 62.0 15223 10.02 9.94 6.24
26444 4.00 Very Good I 11 633 58.0 15984 10.01 994 6.31
27130 4.13 Fair H 11 64.8 61.0 17329 10.00 9.85 6.43
27415 5.01 Fair J I 65.5 59.0 18018 10.74 10.54 6.98

J

27630 4.50 Fair 11 658 58.0 18531 1023 10.16 6.72

96 | 3 Data Inspection and Data Quality

diamonds.query(’carat >3.5 and color == “J”’)
carat cut color clarity depth table price x y z
25999 4.01 Premium] 11 62.5 62.0 15223 10.02 9.94 6.24
27415 5.01 Fair] I1 65.5 59.0 18018 10.74 10.54 6.98
27630 4.50 Fair] I1 65.8 58.0 18531 10.23 10.16 6.72
27679 3.51 Premium] VS2 62.5 59.0 18701 9.66 9.63 6.03

We can also use pandasql package to use SQL to query data conditionally
(from https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489¢92).
In R we use sqldf package for the same.

from pandasql import sqldf
pysqgldf = lambda q: sqldf(q, globals())

import pandas as pd

mycars=pd.read csv(“http://vincentarelbundock.github.io/
Rdatasets/csv/datasets/mtcars.csv”)

mycars.head ()

Unnamed: 0 mpg cyl disp hp drat wt qgsec vs am gear carb

0 Mazda RX4 21.0 6 160 110 390 2620 1646 0 1 4 4

1 Mazda RX4 Wag 21.0 6 160 110 390 2875 17.02 0 1 4 4

2 Datsun 710 228 4 108 93 3.85 2320 1861 1 1 4 1

3 Hornet 4 Drive 214 6 258 110 3.08 3.215 1944 1 O 3 1

4 Hornet Sportabout 187 8 360 175 3.15 3440 1702 0 0 3 2
mycars.columns
Index (['Unnamed: 0', 'mpg', 'cyl', 'disp', 'hp',
'drat', 'wt', 'gsec', 'vs',

'am', 'gear', 'carb'l], dtype="'object')

mycars.columns= [’‘brand’, 'mpg’, ‘cyl’, ’disp’,
'hp’, ’'drat’, ’'wt’, ’'gsec’, ’'vs’, ’'am’, ’'gear’,
‘carb’]

https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92

pysqldf (“SELECT * FROM mycars LIMIT 10;”)

3.4 Data Selection

brand mpg cyl disp hp drat wt qgqsec vs am gear carb
0 Mazda RX4 210 6 160.0 110 3.90 2.620 1646 0 1 4 4
1 Mazda RX4 Wag 21.0 6 1600 110 390 2.875 1702 0 1 4 4
2 Datsun 710 228 4 1080 93 385 2320 1861 1 1 4 1
3 Hornet 4 Drive 214 6 258.0 110 3.08 3.215 1944 1 0 3 1
4 Hornet Sportabout 18.7 8 360.0 175 3.15 3440 1702 0 0 3 2
5 Valiant 181 6 2250 105 2.76 3460 2022 1 0O 3 1
6 Duster 360 143 8 360.0 245 321 3570 1584 0 0 3 4
7 Merc 240D 244 4 1467 62 3.69 3.190 2000 1 0 4 2
8 Merc 230 22.8 4 1408 95 392 3150 2290 1 0 4 2
9 Merc 280 192 6 167.6 123 392 3440 1830 1 0 4 4
pysqldf (“SELECT * FROM mycars WHERE gear > 3 ;")
brand mpg cyl disp hp drat wt gsec vs am gear carb
0 Mazda RX4 21.0 6 160.0 110 390 2620 1646 0 1 4 4
1 MazdaRX4 Wag 21.0 6 160.0 110 390 2.875 17.02 0 1 4 4
2 Datsun 710 228 4 1080 93 385 2320 1861 1 1 4 1
3 Merc 240D 244 4 1467 62 3.69 3190 2000 1 0 4 2
4 Merc 230 228 4 1408 95 392 3150 2290 1 0 4 2
5 Merc 280 192 6 167.6 123 392 3440 1830 1 0 4 4
6 Merc 280C 178 6 167.6 123 392 3440 1890 1 0 4 4
7 Fiat 128 324 4 787 66 4.08 2200 1947 1 1 4 1
8 Honda Civic 304 4 757 52 493 1615 1852 1 1 4 2
9 Toyota Corolla 339 4 711 65 422 1.835 1990 1 1 4 1
10 Fiat X1-9 273 4 790 66 4.08 1935 1890 1 1 4 1
11 Porsche 914-2 260 4 1203 91 443 2140 1670 0 1 5 2
12 Lotus Europa 304 4 951 113 3.77 1513 1690 1 1 5 2
13 Ford Pantera L 158 8 3510 264 4.22 3.170 1450 0 1 5 4
14 Ferrari Dino 197 6 1450 175 362 2770 1550 0 1 5 6
15 Maserati Bora 150 8 301.0 335 354 3570 1460 0 1 5 8
16 Volvo 142E 214 4 121.0 109 4.11 2780 1860 1 1 4 2

97

98

3 Data Inspection and Data Quality

pysqldf ("SELECT * FROM mycars WHERE

gear > 3 and carb > 4 ;”)

brand

mpg

cyl

disp hp drat

wt gsec vs am gear carb

0 Ferrari Dino 19.7
1 Maserati Bora 15.0

6
8

145 175 3.62
301 335 3.54

277 155 0 1 5 6
357 146 0 1 5

pysqldf (“SELECT AVG (mpg) ,gear FROM mycars GROUP by gear;”)

AVG(mpg) gear
0 16.106667
1 24.533333 4
2 21.380000

pysqldf (“SELECT AVG (mpg) ,gear,cyl FROM mycars GROUP by
gear,cyl;"”)

AVG(mpg)

Q
[
Q
=

n
=

N A s W NN = O

21.500
19.750
15.050
26.925
19.750
28.200
19.700
15.400

G Ut Ul R W W W

® O B R O b

3.5 DatalnspectioninR

R is quite simple on how we can inspect data. We can use head and tail to look
at first few and last few records, and we can use str and names to look at struc-
ture and column names of a data frame. We can use the $ notation to look at a
particular column name and use the [] square bracket (row,column) notation

to look at a particular value.

You can see the code at http://rpubs.com/ajaydecis/mtcars1 and http://rpubs.
com/ajaydecis/mtcars or at the following code to understand how easy it is.
Conditional selection is thus quite easy in R. The data in I row and J column for
DataFrameX is shown by DataFrameX[l,]] and alternatively the data in] column
can be DataFrameX$J_Column_Name or DataFrameX][,J].

io/Rdatasets/csv/datasets/mtcars.csv

The actual data mtcars can also be seen at http://vincentarelbundock.github.

http://rpubs.com/ajaydecis/mtcars1
http://rpubs.com/ajaydecis/mtcars
http://rpubs.com/ajaydecis/mtcars
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv

data (“mtcars”)
head (mtcars, 10)

#4# mpg cyl disp hp drat wt gsec Vvs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14 .3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24 .4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
tail (mtcars,5)

#4# mpg cyl disp hp drat wt gsec Vvs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

names (mtcars)
[1] llmpgll "Cyl" udispn Ilhpll lldratll nwt" "qSeC" nygh "am" ||gearu
[11] "carb"

str (mtcars)

'data.frame': 32 obs. of 11 variables:

S mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ..
$ cyl : num 6 6 4 6 86 8 4 46 ..

$ disp: num 160 160 108 258 360 ..

S hp : num 110 110 93 110 175 105 245 62 95 123 ..

S drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ..
S wt : num 2.62 2.88 2.32 3.21 3.44 ..

$ gsec: num 16.5 17 18.6 19.4 17 ..

S vs : num 0011010111 ..

S am : num 1110000000 ..

$ gear: num 4 4 4 3 33 3 4 4 4 ..

S carb: num 4 411214224

mtcars|[1,]

mpg cyl disp hp drat wt gsec Vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 O 1 4 4

mtcars|[, 2]

##[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 44888 84448¢6 84
mtcars[2, 3]

##[1] 160

mtcarss$cyl

##[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 44888 84448¢6 84

Now for conditional selection we use the following

mtcars[2, 3]
[1] 160

mtcars [mtcars$cyl>4,]

H# mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 O 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE l16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

Using attach function we no longer have to write mtcars$ every time but can refer to the column name directly.

attach(mtcars)
mtcars [cyl>4,]

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE l16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

mtcars[cyl>4 &gear >4,] #AND &

H## mpg cyl disp hp drat wt gsec vs am gear carb
Ford Pantera L 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8
mtcars[cyl>4 &gear ==4,] # EQUALITY ==

H## mpg cyl disp hp drat wt gsec Vvs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
mtcars [cyl>4 |gear ==4,] #OR |

H## mpg cyl disp hp drat wt gsec Vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24 .4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3

Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 O 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
mtcars[cyl>4 &gear !=4,] #NOT !=

#it mpg cyl disp hp drat wt gsec Vs am gear carb
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3

Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Zz28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
We can use the sqldf package to use SQL to query data in R.

http://rpubs.com/ajaydecis/dataman
data (“mtcars”)
library (sqldf)
head (mtcars)
H mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

#Give us average mpg for every carb and every cyl

http://rpubs.com/ajaydecis/dataman

sqldf (“select

avg (mpg)
1 20.09062
sqgldf (“select

avg (mpg)
1 26.66364
2 19.74286
3 15.10000
sqldf (“select

H# avg (mpg)

1 21.
2 26
3 28
4 19.
5 19.
6 19.
7 15.
8 15.

500

.925
.200

750
750
700
050
400

avg (mpg) from mtcars ”)

avg (mpg) ,cyl from mtcars group by cyl”)

cyl
4
6
8
avg (mpg) ,cyl,gear from mtcars group by cyl,gear”)

cyl gear
4 3
4 4
4 5
6 3
6 4
6 5
8 3
8 5

3.5.1 Diamond Dataset from ggplot2 Package in R

Let us do some more data munging on the diamonds dataset in R (see http://rpubs.com/ajaydecis/basicR). We see random
selection, multiple conditional selection, and other ways in R to manipulate data.

Is() lists all objects in Memory. rm(“objectname”) removes a particular object, while rm(list=Is()) removes all objects. gc()
does garbage collection to free up memory particularly if a large object has been deleted.

http://rpubs.com/ajaydecis/basicR

1s()
character (0)
rm(list=1s())

gc ()

H# used (Mb) gc trigger (Mb) max used (Mb)
Ncells 291320 7.8 592000 15.9 391619 10.5
Vcells 333507 2.6 786432 6.0 692009 5.3

#memory.size() windows specific-this gives memory occupied
#memory.limit () windows specific-this gives total memory available
install.packages (ggplot2)

library (ggplot2)

data (diamonds)

names (diamonds)

##[1] "carat" "cut" "coloxr" "clarity" "depth" "table" "price"
##[8] IIXII llyll llzll

class(diamonds) #What type of object is this?
##[1] "data.frame"

dim(diamonds) #Dimensions - rows and columns
##[1] 53940 10

nrow (diamonds) #Number of Rows
##[1] 53940

ncol (diamonds) #Number of Columns

##

[1]

10

str (diamonds) #Structure - same as info in Python

'data.frame’:
$ carat

##
##
##
##
##
##
##
##
##
##

$ cut

$ color

r Ur Uy

N MW

num

num
num
int
num
num
num

#data inspection

head (diamonds)

##
##
##
##
##
##
##

ua s W N

6

carat
.23
.21
.23
.29
.31
0.

O O O O o

24

cut

Ideal
Premium
Good
Premium
Good
Very Good

53940 obs.
0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ..
Ord.factor w/ 5 levels "Fair"<"Good'<..:

: Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..:
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1l'"<..:
S depth
S table
$ price

55 61 65 58
326 326 327
3.95 3.89 4.
3.98 3.84 4.
2.43 2.31 2.

color clarity

E

G H HE |

o

of

SI2
ST1
VSl
VS22
SI2
VVvSs2

10 variables:

head (diamonds$carat) #USing the $operator

5

© W P OV

depth table
61.
59.
56.
62.
63.
62.

55
61
65
58
58
57

5424233313..

2226776525 ..
2354267345 ..
61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ..

58 57 57 55 61 61 ..

334 335 336 336 337 337 338 ..

05 4.2 4.34 3.94 3.95 4.07 3.87 4 ..

07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ..

31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ..

price

326
326
327
334
335
336

(IR N N N

X

.95
.89
.05
.20
.34
.94

in take in one column

W R WWw

.98
.84
.07
.23
.35
.96

NDNDDNDNDDNDDN

.43
.31
.31
.63
.75
.48

[1] 0.23 0.21 0.23 0.29 0.31 0.24

Diamonds[3,] #looking at the third row

carat cut color clarity depth table price b'd y z
3 0.23 Good E VSl 56.9 65 327 4.05 4.07 .31
head (diamonds[,3],10) #Taking first 10 values of 3rd column

[l1] EEEI JJIHEH

Levels: D <c E<F<G<H<IG<J

tail (diamonds) #Last six values by default

carat cut color clarity depth table price x y
53935 0.72 Premium D ST1 62.7 59 2757 5.69 5.73
53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76
53937 0.72 Good D SI1 63.1 55 2757 5.69 5.75
53938 0.70 Very Good D ST1 62.8 60 2757 5.66 5.68
53939 0.86 Premium H SI2 61.0 58 2757 6.15 6.12
53940 0.75 Ideal D SI2 62.2 55 2757 5.83 5.87
#missing value treatment

head (na.omit (diamonds))

carat cut color clarity depth table price x y Z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

3 0.23 Good E VSl 56.9 65 327 4.05 4.07 2.31

w w wwww

.58
.50
.61
.56
.74
.64

4 0.29 Premium I VS22 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

head (mean (diamonds$price,na.rm=T))

[1] 3932.8

head(is.na(diamonds$price))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

naa=is.na(diamonds$price)

table (naa) #table gives frequency values and can be used for data inspection
naa

FALSE

53940

#random sample
sample (10,3,T) #This is random sample similar to numpy example earlier

[1] 10 2 3
sample (10,5,F) #Out of ten numbers choose 5 values, with substitution =False

[1] 4 6 10 9 7

rnorm(10,5,9)

#Random numbers by normal distribution.

#and standard deviation 9

##
##

[1]
[8]

-5.323364 10.778377
10.033625 13.576019

sample (53940,54,F) #Choosing Random Row Numbers

##
##
##
##
##

[1]
[12]
[23]
[34]
[45]

16015
19296
34027
43201
25694

3295
30969
19775
41791

4886

30810
18564

3914
47455
20734

6128
47637
42903
22991

8846

13020
19556
38505

900
28651

17596
36676
22783
32144

6460

26258
31809
22571
27631
33818

9.562595 25.202856 14.740653
-2.904901

13724
27470
24783
28891

7642

sample (nrow(diamonds) ,0.001* (nrow(diamonds)) ,F) #0.1 %

##
##
##
##
##

[1]
[12]
[23]
[34]
[45]

40131
52564
42075
11403

8193

24733
31527
36046
37404
25554

a=nrow (diamonds)
sample(a,0.0001*a,F) #To explain the code above

##

[1]

29152
22044
41057

8279
42141

4190
4255
20671
25680
3124

randomrows=sample(a,0.0001*a,F)
Diamonds [randomrows,]

4079
39092
28080
15130
29700

40676 32758 43476 47130 38664

31014
40824

5624
23026
45469

23678
35166
31169
43130
53186

20268

4566
49728
43979
25642

10 numbers with mean 5

18290
40427
53796
40676
21005

Random

36029
20044
48181
10054
33776

6.146948

49344
13827
49667
12270
15168

Sample

37565

8307
17372
43876

4.712989

28803
19285
35219

9432

26792
21015
26373
16751

carat
0.40

0.32
1.58
1.00
1.03

cut color clarity depth table price
Good F SI1 63.1 58 687
Very Good I SI1 62.8 58 432
Very Good G VSl 62.8 57 13963
Fair E VS2 57.3 64 6285
Good J VS22 63.7 56 3795

cut2=diamonds [diamonds$cut=="Ideal”,]

cut
Ideal
Ideal
Ideal
Ideal
Ideal
Ideal

color clarity depth table price X
E SI2 61.5 55 326 3.95
J VSl 62.8 56 340 3.93
J SI2 62.2 54 344 4 .35
I SI2 62.0 54 348 4.31
I SI2 61.8 55 403 4.49
I SI2 61.2 56 403 4.49

cut3=diamonds [diamonds$cut=="Ideal” & diamonds$color==“D",]

#4#

29067

28304

25301

15670

5267
head (cut2)
#H# carat
H# 1 0.23
12 0.23
14 0.31
17 0.30
40 0.33
41 0.33
head (cut3)
carat
63 0.30
64 0.30
121 0.71
133 0.71
145 0.71
156 0.76

cut
Ideal
Ideal
Ideal
Ideal
Ideal
Ideal

color clarity depth table price x

D SI1 62.5 57 552 4.29
D SI1 62.1 56 552 4.30
D SI2 62.3 56 2762 5.73
D SI1 61.9 59 2764 5.69
D SI2 61.6 55 2767 5.74
D SI2 62.4 57 2770 5.78

B DWW

.66
.34
.34
.59
.42

.98
.90
.37
.34
.51
.50

(202 O IO BTSN

.32
.33
.69
.72
.76
.83

N NDDNDDNDDNDDN

.69
.39
.40
.46
.35

(o) We) EENG I S

.43
.46
.71
.68
.78
.75

w W wwN N

.69
.68
.56
.53
.54
.62

Bw b NN

.95
.74
.63
.79
.07

cut4=diamonds [diamonds$cut=="Ideal” | diamonds$color=="D",]

head (cut4)

carat cut color clarity depth table price X y zZ
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
12 0.23 Ideal J Vsl 62.8 56 340 3.93 3.90 2.46
14 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
29 0.23 Very Good D VSs2 60.5 61 357 3.96 3.97 2.40
35 0.23 Very Good D Vsl 61.9 58 402 3.92 3.96 2.44

cut5=ifelse(diamonds$price>9000, “Expensive”, “Not So Expensive”)

table (cut5)

cutb
Expensive Not So Expensive
6298 47642

If else helps with conditional variable creation. Here for condition 1 (price >9000), if true, the value is second
parameter (Expensive), or else third parameter (Not Expensive). Then we do a table (frequency analysis to find
the values).

3.5.2 Modifying Date Formats and Strings in R

The following code will help us see how we modify date formats easily (using strptime function and lubridate packages)
for date formats and use nchar and substr functions on character data.

#CHARACTER TO DATES

dobofclass=c (“1April2007”~,
w28th july 1984~,
“05 May 1988”,
“29nov-2008")

strptime (“29nov-2008", “%d%b-%Y")
[1] "2008-11-29 IST"

strptime (“05 May 1988”,“%d%b-%Y")
[1] NA

strptime (“05 May 1988”,"“%d %B %Y”) #Strptime needs exact format
[1] "1988-05-05 IST"

library(lubridate) #lubridate is better and easier in guessing date format

dmy (dobofclass)
[1] "2007-04-01 UTC" "1984-07-28 UTC" "1988-05-05 UTC" "2008-11-29 UTC"

Sys.Date()
[1] "2015-12-12"

Differences in dates is given by difftime
difftime (Sys.Date (), dmy (dobofclass))

Time differences in days
[1] 3177 11459 10082 2569

?strptime will give you an insight on all the date formats.

Converting to Character
x=c(23,56,78,89)
as.character (x)

[1] |l23|| l156ll |l78|| ll89ll

paste (x)
[1] |l23|| ll56ll |I78|| ll89ll

In R, modifying format is as simple as using the as operator. For character variables we can also just use paste.
paste(“ajay”,dobofclass[1])
[1] "ajay 1April2007"

paste(“studentl”,dobofclass[2])
[1] "studentl 28th july 1984"

Substr is a command that helps extract part of the string. Here the first value (2) is the beginning of the substring, while
the second value (3) is the ending part of it. The command thus tells to begin from 2 character of ajay and end at the third
value (included).
substr (“ajay”,2,3)

HH# [1] " j a"
Let us create a list
namclass=c (“*Ajay”, “Ajith”, “Sudeeptha”, “Yogisha”)

Let us take first initial of every member of nclass, that is, A,A,S,Y.

substr (namclass,1,1)
[1] |IAI| IIA" IISH I|Y|l

The number of characters in a string is given by nchar:

nchar (namclass)
[1] 4 5 9 7

To get the last character of every member of nclass list,
substr (namclass,nchar (namclass) ,nchar (namclass))
[1] |lyl| |lh|| lla|| l|a|l

3.5.3 Managing StringsinR

Let us take a small list. We use the c operator to make a list in R. We use grepl to find out if a certain pattern is present
(here “jay”). We use ifelse for a conditional substitute.

Ifelse works like this in R, if the condition (first input grepl(“jay’;names)) is satisfied, it will replace it by (second input
“Yay its Jay”), or else it would replace by (third input “Oh no where is Jay”).

names=c ("Ajay","Vijay", "Rajay", "Jayesh")

grepl ("jay",names)

[1] TRUE TRUE TRUE FALSE

ifelse(grepl ("jay",names), "Yay its Jay", " Oh no where is Jay")
[1] "Yay its Jay" "Yay its Jay" "Yay its Jay"

[4] " Oh no where is Jay"

We can also use stringr package to manage strings:
library(stringr)

str dup (names, 3)

[1] "AjayAjayAjay" "WijayVijayVijay" "RajayRajayRajay"

[4] "JayeshJayeshJayesh"
namg=c (“Ajay “,"Vijay “,” Rajay“,” Jay esh ")

str trim(namq)
[1] llAj ayu "Vijay" "Raj ayu llJay esh"

str pad(namqg,width=20,side="1left”)
[l] n Ajay non Vljay non
[4] " Jay esh "

Rajay"

118 | 3 Data Inspection and Data Quality
Bibliography

Hadley Wickham (2015). stringr: Simple, Consistent Wrappers for Common
String Operations. R package version 1.0.0. https://CRAN.R-project.org/
package=stringr (accessed May 2, 2017).

Hadley Wickham (2016). tidyr: Easily Tidy Data with “spread()” and “gather()”
Functions. R package version 0.6.0. https://CRAN.R-project.org/package=tidyr
(accessed May 2, 2017).

https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr

4

Exploratory Data Analysis

e Definition of EDA
e Box Plot and Five Numbers

4.1 Group by Analysis

When a numeric quantity is summarized across various levels of a factor or
categorical variable, that is known as a group by Analysis Numerical.

Summaries of numerical variables can be done by describe, group by
commands.

Categorical

Summaries are best done by cross tab, group by operations.

Datetime

Datetime data is best handled by datetime library.

4.2 Numerical Data

Let’s take some data in http://nbviewer.jupyter.org/gist/decisionstats/4142e98
375445c5e4174 (Figure 4.1).

For numerical data Describe command in pandas acts the same was as
summary command in R for numerical data. Describe in Python Pandas
gives you count, mean std min 25% 50% 75% max. Summary in R gives you
mean, median, 25th and 75th quartiles, min, max.

There is another function in R called fivenum, and it gives you
Tukey’s five numbers for exploratory data analysis (min, lower-hinge, median,
upper-hinge, max).

R has a better function in the Hmisc package called describe (yes it can be
confusing to go back and forth between pandas and R). Hmisc::Describe

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

119

http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174
http://nbviewer.jupyter.org/gist/decisionstats/4142e98375445c5e4174

120 | 4 Exploratory Data Analysis
In [17): adult.describe() #numerical summaries
Out[17]): age faiwgt education-num| capital-gain |capital-loss | hours-per-week
count|32661.000000 | 32561.000000 |32561.000000 |32561.000000 |22561.000000 | 32561.000000
mean |38.581647 |189778.366512 |10.080679 1077.648844 |87.303830 |40.437456
std |13.640433 |105549.977697 |2.572720 7385.292085 |402.960219 |12.347429
min |17.000000 |12285.000000 |1.000000 0.000000 0.000000 1.000000
25% |28.000000 |117527.000000 |9.000000 0.000000 0.000000 40.000000
50% |37.000000 |178356.000000 |10.000000 0.000000 0.000000 40.000000
756% |48.000000 |237051.000000 |12.000000 0.000000 0.000000 45.000000
max [90.000000 | 1484705.000000 | 16.000000 99999 000000 | 4355.000000 |99.000000
Figure 4.1 Describe function.
adult.quantile([.1,.5])
age |fnlwgt |education-num |capital-gain | capital-loss hours-per-week
0.1/22.0|/65716.0 |7.0 0.0 0.0 240
0.5]37.0|178356.0|10.0 0.0 0.0 40.0
adult.quantile([.1,.5,.10,.25,.50,.75,.90,.95,.99])
age |fnlwgt |education-num | capital-gain | capital-loss | hours-per-week
0.10(22.0(65716.0 |7.0 0.0 0.0 240
0.50(37.0(178356.0| 10.0 0.0 0.0 40.0
0.10(22.0(65716.0 |7.0 0.0 0.0 240
0.25(28.0(117827.0|9.0 0.0 0.0 40.0
0.50(37.0(178356.0| 10.0 0.0 0.0 40.0
0.75|48.0(237051.0({12.0 0.0 0.0 45.0
0.90(58.0(329054.0| 13.0 0.0 0.0 55.0
0.95(63.0(379682.0| 14.0 5013.0 0.0 60.0
0.99(74.0(510072.0|16.0 15024.0 1980.0 80.0

Figure 4.2 Quantile function for percentiles and quartiles.

gives you a more elaborate numerical exploration (n,missing unique, Mean,
.05,.10,.25,.50,.75,.90,.95 and 5 lowest and 5 highest scores). In Python we can
do it using quantiles for percentiles (Figure 4.2).

We can look at correlations between numerical data using corr function

(Figure 4.3).

adult.corr(method="pearson’, min_periods=1)

4.3 Categorical Data

age fnlwgt |education-num | capital-gain | capital-loss | hours-per-week
age 1.000000 |-0.076646 |0.036527 0.077674 0.0577735 0.068756
fnlwgt -0.076646 | 1.000000 |-0.043195 0.000432 -0.010252 -0.018768
education-num |0 036527 |-0.043195|1.000000 0.122630 0.079923 0148123
capital-gain 0.077674 |0.000432 |0.122630 1.000000 -0.031615 |0.078409
capital-loss 0.057775 |-0.010252|0.079923 -0.031615 1.000000 0.054256
hours-per-week | 0.066756 |-0.018768 |0.148123 0.078409 0.054256 1.000000

Figure 4.3 Corr function for correlation.

4.3 Categorical Data

In Python value_counts() acts the same way as table() does in R for frequency

tabulations (Figure 4.4).

: adult.race.value counts()

¢ White
Black

Asian-Pac-Islander
Amer-Indian-Eskimo

Other

27816
3124
1039

311
271

Name: race, dtype: int64

: adult.sex.value_counts()

: Male
Female

21790

10771

Name: sex, dtype: int64

Figure 4.4 Frequency tabulation using value_counts function.

A cross tabulation between two variables in pandas is given by crosstab,

while in R you can just do table(varl,var2) (Figure 4.5).

121

122 | 4 Exploratory Data Analysis

In [23]: pd.crosstab(adult.race,adult.sex)

out[23]: [gex Female | Male

race
Amer-Indian-Eskimo | 119 192
Asian-Pac-Islander |346 693

Black 165656 | 1569
Other 109 162
White 8642 |19174

In [24]: pd.crosstab(adult.race,adult.income)

0ut[24]: |jncome <=50K | >50K

race
Amer-Indian-Eskimo [275 36
Asian-Pac-slander |763 |276

Black 2737 |387
Other 246 |25
White 20699 (7117

Figure 4.5 Cross tabulation using Cross Tab function.

Group by operations is best done by groupby() and then a numerical func-
tion applied to it (Figures 4.6 and 4.7).

:+ workclasssadult. groupby(“workelass™)

: workclass. count()

h
education- | marital- capital- | capital
age |Miwgt|education| = - statys | 0SCUPation relationship | race | sex galn |loss :
workclass
7 1836 |1836 (1836 1835 1836 1836 1836 1836 |1836 (1836 1836 1
;::""' 260 |90 [s60 60 %60 980 960 s60 (950 |9s0 [ss0 |&
Local-gov (2093 |2093 | 2093 2093 20093 2003 20083 2093 |2083 |20683 2093 2
Never-
7 7 7 7
7 7 T T T T T
Private |20696|22695 (22696 (22696 22696 |226%6 |22696 22696 | 22696 | 22695 22695 |2
i’r:""‘“"' e 1116|1116 1116 e [111e 116 116 |11 (1116 |16 v
Self4mp- | »car [2841 2881 2541 2841|2541 2541 2541 |2541 |2841 |2841 |2
notsinc
State.nny | 1268 | 12G8 12aR 12GR 12GR 1248 124R 12aR 1268 1268 12GR 1

Figure 4.6 Grouping by a variable using groupby.

4.3 Categorical Data | 123

workclass.mean()
age fnlwgt education-num | capital-gain |capital-loss | hours-per-week

workclass

? 40.960240 | 188516,338235 | 9.260349 606.795752 (60.760349 |31.919390
Federal-gov 42.590625 | 185221.243750 | 10.973958 833.232292 |112.268750 | 41.379167
Local-gov 41.751075 | 188639.712852 | 11.042045 880.202580 |109.854276 | 40.982800
Never-worked | 20.571429|225989.571429 | 7.428571 0.000000 0.000000 |28.428571
Private 36.797585 | 192764.114734 | 9.879714 889.217792 |80.008724 |40.267096
Self-emp-inc 46.017025 [175981.344086 | 11.137097 4875.693548 | 155.138889 | 48.818100
Self-emp-not-inc | 44.969697 | 175608.641480 | 10.226289 1886.061787 | 116.631641 |44.421881
State-gov 39.436055 | 184136.613251 | 11.375963 701.699538 |83.256549 |39.031587
Without-pay 47.785714 | 174267.500000 | 9.071429 487.857143 |0.000000 32.714286

Figure 4.7 Calculating mean (or a summary function) of Group by.

Note: To transpose the data from columns to rows and vice versa, we can use
the transpose function (Figure 4.8).

Fle Edt View Insed Cel Kemel Widgets Heip | Python feonda roog O

In [28): adult.trenspose

Owe[28) o 1 2 3 4 5 & 7 8 9 .|3zss [sessz [ms
age E 50 £ 5 il w L] 52 M 42 .| 43 2
workelass |State-gov sﬂ:'.” Private |Pivate |Private |Private Private Self emp- Private |Priate L|Private |Private | Prive

e nol-ang
tribwgt TI516 |s3an 215645 |204721 [238409 [2eacs2 160187 209642 [4s7B1 159449 2066 84661 |16
B HSgad [11th [Masters [oth [HSgrad |Musters [Bacheloes | |10t z‘“ Mas
education.
o 13 13] 7 13 14 5] " 13 6 i 14
marital- Divorced :-m* dv-- ; wm) w. :i'v-. i
o fomed arted Momied | Never .
status maried | civ-spouse eiv-spouse chegpouse |momied | civ-spouse man
Adn Exie- et (= COther- | Exee Prof. Ecee: | |Handlers & Teer
clerical geri cloaners |specialty sonice z g |eteaners supf
o [Notin- Nok-in MNot-in- Netin- e | Net-
Pliamty [Moon3 [[Hosband [Wee [vide oty [Psbond | OV [Hushand .. [Husband -
AT Asia
race White White While Black Black While Black |White White | Whale o [iedian- [White |Pac-
[Eskimo |slar
o Male Male Malg Wl Female |Female |Formale |Mole Fermale |Male .. | Male Mabo |Male
copital-gain (2174 o 0 0 0 U] o 4084|5178 |0 o (]
capital-doss |0 0 0 0 0 0 (1] 0 .| 0 0
et Lo I © o o |o © | R P PR I
native. United- | United- United- | United- Cuba United- Jamai United- United- | United- Urited- | United- Toia
country [States | States Sates | Sates Seates States States | States U |Sates | States
income |<=S0K [<=SOK [<=SOK |<=SO0K |<=SO0K |<=SOK [<=SOK [-50K 50K 50K <=5 |<=50K [<=5t

15 rows = 32561 columns
Figure 4.8 Transpose function.
You can use the pivot command to present data in a pivot table format

(Figure 4.9).
The above shows median age for different sex and races.

124

4 Exploratory Data Analysis

11

In [29]: e=adult.groupby(['sex’', "race"]).age.median().reset_index()
e.pivot(index="'sex', columns='race', valles="'age')

out[29]: Irace Amer-Indian-Eskimo | Asian-Pac-Islander | Black | Other | White
sex
Female | 36 33 37 29 35
Male |35 37 36 32 |38

Figure 4.9 Pivot function.

We can use the pandasql package and use SQL syntax to do selection as well
as groupby operations on data. You can see this from https://nbviewer.jupyter.
org/gist/decisionstats/284a86d0541d06489¢92 (or all the code from https://
github.com/decisionstats/pythonfordatascience).

The SQL syntax makes it easy for existing SQL users to quickly manipulate
and select data in a pandas DataFrame. Note this functionality is available in R
in the sqldf package (Figure 4.10).

From http://rpubs.com/ajaydecis/basicR let’s look at the way to explore data
in R in multiple ways using summary, table functions, and Hmisc, and other
packages. Is()

1: mycars.columns

]: Index([‘Unnamed: ®°, ‘mpg’, ‘cyl', ‘disp’, ‘hp*, ‘drat’, ‘wt’, ‘gsec’, ‘vs',
‘am', 'gear’, 'carb'],
dtype='object’)

1: mycars.columns= [‘brand®,’'mpg", ‘cyl’, ‘disp®, ‘hp®, ‘drat’, 'wt', "gsec’, ‘vs’,
‘am®, ‘gear’, 'carb']

1: pysqldf("SELECT * FROM mycars LIMIT 10;")

): brand mpg |cyl|disp |hp |drat|wt |qsec |vs|am|gear|carb
0| Mazda RX4 210|6 |(160.0|110(3.90|2.620|16.46|0 |1 |4 4
1|Mazda RX4 Wag |21.0|6 |[160.0(110|3.90(2.875|17.02|0 (1 |4 4
2|Datsun 710 228|4 |108.0{93 [3.85/2.320|1861|1 |1 |4 |1
3 |Hornet 4 Drive 2146 |258.0/110|3.08|3.215|19.44|1 |0 |3 1
4| Hornet Sportabout | 18.7 [& |360.0|175(3.15|3.440|17.02|0 |0 |3 2
5| Valiant 18.1|6 |225.0|105|2.76|3.460)|20.22|1 |0 (3 1
6| Duster 360 143 |8 |[360.0(245|3.21(3.570(15.84|0 [0 |3 4
7 |Merc 240D 24414 |146.7|62 |3.69|3.190|20.00{1 (O |4 2
8| Merc 230 228|4 (1408|195 [3.92|3.150|22.90|1 |0 |4 2
9| Merc 250 19.2|6 |167.6|123|3.92|3.440|18.30|1 |0 (4 4

Figure 4.10 Using SQL in Python using PandaSQL package.

https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
https://nbviewer.jupyter.org/gist/decisionstats/284a86d0541d06489e92
https://github.com/decisionstats/pythonfordatascience
https://github.com/decisionstats/pythonfordatascience
http://rpubs.com/ajaydecis/basicR

character(0)
rm(list=1s())

gc ()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 291320 7.8 592000 15.9 391619 10.5
Vcells 333507 2.6 786432 6.0 692009 5.3

#memory.size () windows specific
#memory.limit () windows specific
install.packages (ggplot2)
library (ggplot2)

data (diamonds)

names (diamonds)

[1] "carat" "cut" "color" ‘'clarity" T"depth" "table" T"price"
[8] "x" "y "z"

class (diamonds)

[1] "data.frame"
dim(diamonds)

[1] 53940 10

nrow (diamonds)

[1] 53940

ncol (diamonds)

[1] 10

str (diamonds)

'data.frame': 53940 obs. of 10 variables:

S carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.2
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3
S color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 77 6
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SIl"<..: 2 3 5 4 2 6

$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ..
$ table : num 55 61 65 58 58 57 57 55 61 61 ..

$ price : int 326 326 327 334 335 336 336 337 337 338 ..

##H $ x :num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ..

S vy :num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ..
S z :num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ..

#data inspection
head (diamonds)

#Hit carat cut color clarity depth table price x Yy b4

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E vs1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS22 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
head (diamonds$carat)

[1] 0.23 0.21 0.23 0.29 0.31 0.24

diamonds[3,]

#Hi carat cut color clarity depth table price x y b4

3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

head (diamonds|[,3],10)

[1] EEEI JJI HEH

Levels: D <c E< F<G<H<IGcJd

tail (diamonds)

#Hi carat cut color clarity depth table price x vy z
53935 0.72 Premium D SI1 62.7 59 2757 5.69 5.73 3.58

53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76 3.50

53937
53938
53939
53940

0.72 Good
0.70
0.86

0.75

Premium
Ideal

Very Good

omugouo

#missing value treatment
head (na.omit (diamonds))
carat cut

0.23 Ideal

#H
#H
##
##
#H
#H
#H#

##

a s w N

6

[1]

o O O o

0

.21 Premium
.23 Good

.29 Premium
.31 Good

.24 Very Good
head (mean (diamondsSprice,na.rm=T))
3932.8

color

E
E
I
J
J

head (is.na (diamonds$price))

#H

[1]

naa=is.na (diamondsS$price)
table (naa)

naa
FALSE
53940

#random sample
sample (10,3, T)

#H

[1]

10 2 3

sample (10,5, F)

##

[1]

4 6 10 9 7

clarity

SI2
SI1
VSl
VS2
SI2

SI1
SI1
SI2
SI2

VVS2

63.1
62.8
61.0
62.2

depth

61.
59.
56.
62.
63.
62.

FALSE FALSE FALSE FALSE FALSE FALSE

W W 0

table

55
61
65
58
58
57

55
60
58
55

pri
326
326
327
334
335
336

2757
2757
2757
2757

ce

U o U1

.95
.89
.05
.20
.34
.94

.69
.66
.15
.83

W DD W W

oo U1 »

.98
.84
.07
.23
.35
.96

.75
.68
.12
.87

N DNDDNNDDNDDNDN

w w w w

.43
.31
.31
.63
.75
.48

.61
.56
.74
.64

rnorm(10,5,9)

26258
31809
22571
27631
33818

23678
35166
31169
43130
53186

13724
27470
24783
28891

7642

20268

4566
49728
43979
25642

18290
40427
53796
40676
21005

36029
20044
48181
10054
33776

49344
13827
49667
12270
15168

37565

8307
17372
43876

[1] -5.323364 10.778377 9.562595 25.202856 14.740653 6.146948 4.712989
[8] 10.033625 13.576019 -2.904901

sample (53940,54,F)

[1] 16015 3295 30810 6128 13020 17596
[12] 19296 30969 18564 47637 19556 36676
[23] 34027 19775 3914 42903 38505 22783
[34] 43201 41791 47455 22991 900 32144
[45] 25694 4886 20734 8846 28651 6460
sample (nrow (diamonds) ,0.001* (nrow (diamonds)), F)
[1] 40131 24733 29152 4190 4079 31014
[12] 52564 31527 22044 4255 39092 40824
[23] 42075 36046 41057 20671 28080 5624
[34] 11403 37404 8279 25680 15130 23026
[45] 8193 25554 42141 3124 29700 45469

a=nrow (diamonds)
sample(a,0.0001*a,F)
[1]1 40676 32758 43476 47130 38664
randomrows=sample(a, 0.0001*a,F)
diamonds [randomrows,]

#H#
##
##
##
##
##

29067
28304
25301
15670
5267

carat
.40
.32
.58
.00
1.

0
0
1
1

03

cut
Good

Very Good
Very Good

Fair
Good

#Descriptive Stats
summary (diamonds)

color

clarity
SI1
ST1
VSl
VSs2
VS22

depth table
63.
62.8
.8
3
7

62

57.
63.

1

58
58
57
64
56

price
687
432
13963
6285
3795

.66
.34
.34
.59
.42

oo o X

.69
.39
.40
.46
.35

[N NN I

28803
19285
35219

9432

26792
21015
26373
16751

.95
.74
.63
.79
.07

W s N NN

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

carat
Min. :0
1lst Qu. :0
Median :0
Mean :0
3rd Qu. :1
Max. :5
depth
Min. 143
1lst Qu. :61.
Median :61.
Mean :61.
3rd Qu. :62
Max. :79.
Min. : 0
1lst Qu. : 4
Median 5
Mean : 5
3rd Qu. : 6
Max. :58

.2000
.4000
.7000
.7979
.0400
.0100

.00
00
80
75
.50
00

.000
.720
.710
.735
.540
.900

cut
Fair
Good
Very Good
Premium
Ideal
table
Min. 143
1lst Qu. :56.
Median :57.
Mean :57.
3rd Qu. :59.
Max. :95.
z
Min. : 0
1lst Qu. : 2
Median 3
Mean : 3
3rd Qu. : 4
Max. :31

color
: 1610 D: 6775
: 4906 E: 9797
:12082 F: 9542
:13791 G: 11292
:21551 H: 8304
I: 5422
J: 2808
price
.00 Min. :326
00 1lst Qu. :950
00 Median :2401
46 Mean :3933
00 3rd Qu. :5324
00 Max. :18823
.000
.910
.530
.539
.040
.800

clarity
STl :1306
VS2 :1225
SI2 : 9194
VSl : 8171
VVS2 : 5066
VVS1 : 3655
(Other) :2531
X
Min. :0
1lst Qu. :4
Median :5
Mean :5
3rd Qu. :6
Max. :10

5
8

.000
.710
.700
.731
.540

.740

130

4 Exploratory Data Analysis

table (diamondsScut)

H#

Fair Good Very Good Premium Ideal
1610 4906 12082 13791 21551
table (diamondsScut,diamondsS$Scolor)

H#

H## D E F G H I
Fair 163 224 312 314 303 175
Good 662 933 909 871 702 522

Very Good 1513 2400 2164 2299 1824 1204
Premium 1603 2337 2331 2924 2360 1428
TIdeal 2834 3903 3826 4884 3115 2093
table (diamonds$cut, diamonds$color,diamondssclarity)

##,, =11

##

##

#H# E F G H I J

D

Fair 4 9 35 53 52 34 23
8
5

Good 23 19 19 14 9 4

Very Good 22 13 16 12 8 8

Premium 12 30 34 46 46 24 13

TIdeal 13 18 42 16 38 17 2

##

,, =SI2

##

##

H# D E F G H I J
Fair 56 78 89 80 91 45 27
Good 223 202 201 163 158 81 53
Very Good 314 445 343 327 343 200 128
Premium 421 519 523 492 521 312 161
Ideal 356 469 453 486 450 274 110
##

,, =SI1

##

##

H# D E F G H I J
Fair 58 65 83 69 75 30 28
Good 237 355 273 207 235 165 88
Very Good 494 626 559 474 547 358 182
Premium 556 614 608 566 655 367 209
Ideal 738 766 608 660 763 504 243

#H

J
119
307
678
808
896

#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H

7

Very Good

7

Very Good

Very Good

7

Very Good

7

7

=VS2

Fair
Good

Premium
Ideal

7

=VS1

Fair
Good

Premium
Ideal

7

=VVS2

Fair
Good

Premium
Ideal

7

=VVS1l

Fair
Good

Premium
Ideal

7

=1IF

D
25
104
309
339
920

43
175
131
351

25
141
94
284

13
52
40
144

E

42
160
503
629
1136

14
89
293
292
593

13

298
121
507

43
170
105
335

F
53
184
466
619
879

33
132
293
290
616

10
50
249
146
520

35
174
80
440

G
45
192
479
721
910

45
152
432
566
953

17
75
302
275
774

41
190
171
594

H
41
138
376
532
556

H
32
77

257
336
467

H
11
45

145
118
289

H

31
115
112
326

I
32
110
274
315
438

25
103
205
221
408

I

8
26
71
82
178

I

1
22
69
84
179

4.3 Categorical Data

23
90
184
202
232

16
52
120
153
201

13
29
34
54

PR

24
29

131

132 | 4 Exploratory Data Analysis

H# D E F G H I J
Fair 3 0 4 2 0 0 0
Good 9 9 15 22 4 6 6
Very Good 23 43 67 79 29 19 8
Premium 10 27 31 87 40 23 12
TIdeal 28 79 268 491 226 95 25
mean (diamondss$price)

[1] 3932.8

#using Hmisc

library (Hmisc)

Loading required package: grid

Loading required package: lattice

Loading required package: survival

Loading required package: Formula

##

Attaching package: 'Hmisc'

##

The following objects are masked from 'package:base':
##

HH format.pval, round.POSIXt, trunc.POSIXt, units
describe (diamondsS$Sprice)
diamondsS$Sprice

n missing unique Info Mean .05 .10 .25 .50
53940 0 11602 1 3933 544 646 950 2401
.75 .90 .95

5324 9821 13107

#H#

lowest : 326 327 334 335 336

highest: 18803 18804 18806 18818 18823
summarize (diamonds$Sprice,diamonds$color, mean)
diamonds$color diamondsS$price

1 D 3169.954
2 E 3076.752
3 F 3724 .886
4 G 3999.136
5 H 4486.669
6 I 5091.875
7 J 5323.818

summarize (diamonds$price,diamonds$Scolor, max)
diamonds$color diamondsS$Sprice

1 D 18693

2 E 18731

3 F 18791

#H
#H
#H
#H

o Ul

7

H o @

J

18818
18803
18823
18710

4.3 Categorical Data

summarize (diamonds$Sprice,llist (diamondsS$Scolor, diamonds

Scut) , mean)

#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H

#reshape

diamondss$color diamondsS$Scut diamondsS$Sprice

H oo LOVUKRE J0 W o NR

[

PR R
NG N

13
16
17
20
19
18
21
22
25
24
23
26
27
30
29
28
31
32
35
34
33

D

g9y gygHHHHHDDID DD DOQQQQ@Q@ET9=-HmHoHMHMMBUYogouo

Fair

Good

Very Good
Premium
Ideal
Fair

Good

Very Good
Premium
Ideal
Fair

Good

Very Good
Premium
Ideal
Fair

Good

Very Good
Premium
Ideal
Fair

Good

Very Good
Premium
Ideal
Fair

Good

Very Good
Premium
Ideal
Fair

Good

Very Good
Premium
Ideal

4291.
3405.
3470.
3631.
2629.
3682.
3423.
3214.
3538.
2597.
3827.
3495.
3778.
4324.
3374.
4239.
4123.
3872.
4500.
3720.
5135.
4276.
4535.
5216.
3889.
4685.
5078.
5255.
5946.
4451.
4975.
4574 .
5103.
6294.
4918.

061
382
467
293
095
312
644
652
914
550
003
750
820
890
939
255
482
754
742
706
683
255
390
707
335
446
533
880
181
970
655
173
513
592
186

133

library (reshape2)

acast (diamonds,

##
##
##
##
##
##

with (diamonds,

##
##
##
##
##
##

xtabs (price ~

##
##
##
##
##
##
##

Fair

Good
Very Good
Premium
Ideal

Fair

Good
Very Good
Premium
Ideal

color
cut
Fair
Good
Very Good
Premium
Ideal

4291.
3405.
.467
3631.
2629.

3470

cut~color,

D
061
382

293
095

3682.
3423.
3214.
3538.
2597.

tapply (price,

4291.
3405.
.467
3631.
2629.
cut + color,

3470

4291.
3405.
.467
3631.
2629.
library (data.table)

3470

D
061
382

293
095

D
061
382

293
095

3682.
3423.
3214.
3538.
2597.
diamonds) /table (diamonds [c('cut',

3682.
3423.
3214.
3538.
2597.

E F
312 3827.003
644 3495.750
652 3778.820
914 4324.890
550 3374.939
list (cut,color),

E F
312 3827.003
644 3495.750
652 3778.820
914 4324.890
550 3374.939

E
312
644
652
914
550

3827.
34095.
3778.
4324.
3374.

value.var='price',

F
003
750
820
890
939

mean)

G H
4239.255 5135.683
4123.482 4276.255
3872.754 4535.390
4500.742 5216.707
3720.706 3889.335

FUN= mean))

G H
4239.255 5135.683
4123.482 4276.255
3872.754 4535.390
4500.742 5216.707
3720.706 3889.335

G H
4239.255 5135.683
4123.482 4276 .255
3872.754 4535.390
4500.742 5216.707
3720.706 3889.335

4685.
5078.
5255.
5946.
4451.

4685

5078.
5255.
5946.
4451,
'color')])

4685.
5078.
5255.
5946.
4451.

446
533
880
181
970

I

.446

533
880
181
970

446
533
880
181
970

4975.
4574 .
5103.
6294 .
4918.

4975.
4574 .
5103.
6294 .
4918.

4975.
4574 .
5103.
6294 .
4918.

655
173
513
592
186

655
173
513
592
186

655
173
513
592
186

dcast (as.data.table (diamonds), cut~color, value.var='price',K mean)

Hit cut D E F G H
1 Fair 4291.061 3682.312 3827.003 4239.255 5135.683
2 Good 3405.382 3423.644 3495.750 4123.482 4276.255
3 Very Good 3470.467 3214.652 3778.820 3872.754 4535.390
4 Premium 3631.293 3538.914 4324.890 4500.742 5216.707
5 Ideal 2629.095 2597.550 3374.939 3720.706 3889.335
library (dplyr)

##

Attaching package: 'dplyr'

##

The following objects are masked from 'package:data.table':
##

between, last

##

The following objects are masked from 'package:Hmisc':
##

combine, src, summarize

##

The following object is masked from 'package:stats':
##

filter

##

##The following objects are masked from 'package:base':
##

H# intersect, setdiff, setequal, union

library (tidyr)

4685.
5078.
5255.
5946.
4451.

446
533
880
181
970

4975.
4574 .
5103.
6294 .
4918.

655
173
513
592
186

b=diamonds %>%
group by (cut, color) %>%
summarise (price = mean(price)) %>%
spread (color, price)
b
Source: local data frame [5 x 8]

##

cut D E F
1 Fair 4291.061 3682.312 3827.003
2 Good 3405.382 3423.644 3495.750
3 Very Good 3470.467 3214.652 3778.820
4 Premium 3631.293 3538.914 4324.890
5 Ideal 2629.095 2597.550 3374.939
str (b)

Classes 'tbl df', 'tbl' and 'data.frame':

$ cut: Ord.factor w/ 5 levels "Fair"<"Good"<..:

12345
S D num 4291 3405 3470 3631
$ E num 3682 3424 3215 3539
S F num 3827 3496 3779 4325
$ G num 4239 4123 3873 4501
$ H num 5136 4276 4535 5217
S I num 4685 5079 5256 5946

S J

num 4976 4574 5104 6295

2629
2598
3375
3721
3889
4452
4918

4239.
4123
3872.
4500.
3720.

G
255

.482

754
742
706

5 obs.

5135.
4276 .
4535.
5216.
3889.

H
683
255
390
707
335

4685.
5078.
5255.
5946.
4451.

of 8 variables:

446
533
880
181
970

4975.
4574 .
5103.
6294 .
4918.

655
173
513
592
186

image (as.matrix(b[2:7]))

1.0
0.8
0.6
0.4
0.2
0.0

0.0 0.2 0.4 0.6 0.8 1.0
#subset
cut2=diamonds [diamondsS$Scut=="Ideal",]
head (cut2)
carat cut color clarity depth table price x vy
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98
12 0.23 Ideal J VSl 62.8 56 340 3.93 3.90
14 0.31 Ideal J SI2 62.2 54 344 4 .35 4.37
17 0.30 Ideal I SI2 62.0 54 348 4.31 4.34
40 0.33 Ideal I SI2 61.8 55 403 4.49 4.51
41 0.33 Ideal I SI2 61.2 56 403 4.49 4.50

cut3=diamonds [diamondsScut=="Ideal"

& diamondsS$Scolor=="D"

.1

NN DNDDNDDNDDNDN

.43
.46
.71
.68
.78
.75

head (cut3)

#4#

63
64
121
133
145
156

carat cut

0.30 Ideal
0.30 Ideal
0.71 Ideal
0.71 Ideal
0.71 Ideal
0.76 Ideal

color clarity depth table price
.5
62.
62.
61.
61.
62.

[sBviiviiviv]

D

ST1
SI1
SI2
SI1
SI2
SI2

62

cut4=diamonds [diamondsScut=="Ideal"
head (cut4)
carat

##
1
12
14
17
29
35

cuths

0.

0
0
0.
0
0

.23
.23
31
.30
.23
23

cut

Ideal
Ideal
Ideal
Ideal

Lo e) WO R VO I

diamondsS$Scolor=="D"

57
56
56
59
55
57

552
552
2762
2764
2767
2770

color clarity depth table

H G G

Very Good D
Very Good D
cutS=ifelse (diamondsS$price>9000, "Expensive", "Not So Expensive")
table (cuth)

SI2
VS1
SI2
SI2
VS22
Vsl

Expensive Not So Expensive

##

6298

47642

61.
62.
62.
62.
60.
61.

5

O U1 O N ©

55
56
54
54
61
58

X

4.29
4.30
5.73
5.69
5.74
5.78

price
326
340
344
348
357
402

Gooo o

.32
.33
.69
.72
.76
.83
.

3

X
3
3
4.
4
3

.95
.93
35
.31
.96
.92

W w w wNNDN

.69
.68
.56
.53
.54

W Wwbd dwWwwN

.98
.90
.37
.34
.97
.96

NN DNDNDDNDDNDN

.43
.46
.71
.68
.40
.44

5

Statistical Modeling

5.1 Concepts in Regression

What is statistical modeling?

e It is a formalization of relationships between variables in the form of
mathematical equations.

e It describes how one or more random variables are related to one or more
other variables.

o The variables are not deterministically but stochastically related.

Reading Statistical Modeling: The Two Cultures http://projecteuclid.org/
download/pdf_1/euclid.ss/1009213726

Example

e Height and age are probabilistically distributed among humans.

e They are stochastically related; when you know that a person is of age
30 years, this influences the chance of this person of being 4-feet tall. When
you know that a person is of age 13 years, this influences the chance of this
person of being 6 feet tall.

e Model 1
— height;=bo + b;age; + €;, where by is the intercept, b; is a parameter that age

is multiplied by to get a prediction of height, € is the error term, and i is the
subject.

e Model 2
— height; = by + bjage; + bysex; + &, where the variable sex is dichotomous.

Regression models involve the following variables:

e The unknown parameters
e The independent variables, X
e The dependent variable, Y

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

139

http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726

140

5 Statistical Modeling

<

34 e T]
o L

c 2 1
c I

& |

5 I .

o 0' * T
> >4

o) ’3 Q‘

5 I ¢ Te

S _of #]
(@] L

1 1 1 1 1 1
-1.0 -05 0.0 0.5 1.0 1.5 2.0
Quarterly change in the unemployment rate (A%)

Figure 5.1 Okun’s law.

Y =a+ BX is the simplest form of regression
Linear regression Y =a + Bx+ (E)
Multivariate regression Y =a+bx +cy + (E)
Logistic regression In(p/1-p)=a+bX

Example

Okun’s Law

The relationship between an economy’s unemployment rate and its gross
national product (GNP). Economist Arthur Okun developed this idea, which
states that when unemployment falls by 1%, GNP rises by 3% (Figure 5.1).

5.1.1 OLS

Ordinary least squares (OLS) or linear least squares is a method for estimat-
ing the unknown parameters in a linear regression model, with the goal of
minimizing the differences between the observed responses in some arbitrary
dataset and the responses predicted by the linear approximation of the data
(visually this is seen as the sum of the vertical distances between each data
point in the set and the corresponding point on the regression line—the smaller
the differences, the better the model fits the data) (https://en.wikipedia.org/
wiki/Ordinary_least_squares). The primary assumption of OLS is that there
are zero or negligible errors in the independent variable, since this method
only attempts to minimize the mean squared error in the dependent
variable. The method of least squares is a standard approach in regression
analysis to the approximate solution of overdetermined systems, that is, sets of
equations in which there are more equations than unknowns. “Least squares”
means that the overall solution minimizes the sum of the squares of the errors
made in the results of every single equation.

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares

5.1 Concepts in Regression

The most important application is in data fitting. The best fit in the least-
squares sense minimizes the sum of squared residuals, a residual being the
difference between an observed value and the fitted value provided by a model.

https://en.wikipedia.org/wiki/Least_squares.

5.1.2 R-Squared

In statistics, the coefficient of determination, denoted R*or r* and pronounced
“R-squared,” is a number that indicates the proportion of the variance in the
dependent variable that is predictable from the independent variable.

It is a statistic used in the context of statistical models whose main purpose
is either the prediction of future outcomes or the testing of hypotheses, on the
basis of other related information.

The use of an adjusted R* (often written as R ~ 2 {\displaystyle {\bar {R}}"{2}}
and pronounced “R-bar squared”) is an attempt to take account of the
phenomenon of the R* automatically and spuriously increasing when extra
explanatory variables are added to the model.

https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2.

To summarize, R-squared is the percentage of the response variable variation
that is explained by a linear model. Or

Explained variation

R-squared = —
Total variation

Adjusted R-squared adjusts the statistic based on the number of independent
variables in the model.

5.1.3 p-Value

The p-value for each term tests the null hypothesis that the coefficient is equal
to zero (no effect). A low p-value (<0.05) indicates that you can reject the null
hypothesis.

In other words, a predictor that has a low p-value is likely to be a meaningful
addition to your model because changes in the predictor’s value are related to
changes in the response variable.

http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-
regression-analysis-results-p-values-and-coefficients

5.1.4 Outliers

Sometimes outliers are bad data and should be excluded, such as typos.
Sometimes they are Wayne Gretzky or Michael Jordan and should be kept.

Statistical distance measures are specifically catered to detecting outliers and
then consider whether such outliers should be removed from your linear
regression.

141

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2.
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-regression-analysis-results-p-values-and-coefficients
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-regression-analysis-results-p-values-and-coefficients

142

5 Statistical Modeling

The first one is Cook’s distance. You can find a pretty good explanation of it
at Wikipedia (http://en.wikipedia.org/wiki/Cook%27s_distance).

The higher the Cook’s distance is, the more influential (impact on regression
coefficient) the observation is. The typical cutoff point to consider removing
the observation is a Cook’s distance = 4/n (n is sample size).

http://stats.stackexchange.com/questions/175/how-should-outliers-
be-dealt-with-in-linear-regression-analysis

The second way is to use outlierTest function from car package in R.

5.1.5 Multicollinearity and Heteroscedascity

Multicollinearity is a statistical phenomenon in which two or more predictor
variables in a multiple regression model are highly correlated, meaning that one
can be linearly predicted from the others with a nontrivial degree of accuracy.
In this situation the coefficient estimates may change erratically in response to
small changes in the model or the data.

vif from car package

In statistics, a collection of random variables is heteroscedastic (often spelled
heteroskedastic and commonly pronounced with a hard k sound regardless of
spelling) if there are subpopulations that have different variabilities from oth-
ers. Here “variability” could be quantified by the variance or any other measure
of statistical dispersion.

gvlma package

5.2 Correlation Is Not Causation

Correlation does not imply causation is a phrase used in statistics to empha-
size that a correlation between two variables does not imply that one causes the
other (Figures 5.2 and 5.3).

Both the aforementioned charts show the absurdity that occurs when we
suppose correlation is the same as a causal relation.

“Causes” is an asymmetric relation (X causes Y is different from Y causes X),
whereas “is correlated with” is a symmetric relation.

For instance, homeless population and crime rate might be correlated, in that
both tend to be high or low in the same locations. It is equally valid to say that
homeless population is correlated with crime rate, or crime rate is correlated
with homeless population. For example, crime causes homelessness and home-
less populations cause crime are different statements. And correlation does not
imply that either is true. For instance, the underlying cause could be a third
variable such as drug abuse or unemployment.

The mathematics of statistics is not good at identifying underlying causes,
which requires some other form of judgment (Figure 5.4).

http://en.wikipedia.org/wiki/Cook's_distance
http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis
http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis

5.2 Correlation Is Not Causation

16
® 1996 R2=0.97
< 158 e
z ‘*'k13?7
§ 156
g
S 154 °
> 1998 @ 1999
K=
w 152
2 Sources:
8 157 U.S. NHTSA, DOT HS 810 780
2 U.S. Department of Agriculture ZOON
14.8

200 250 300 350 400 450 500 550

Fresh lemons imported to the United States from Mexico
(metric tons)

Figure 5.2 http://pubs.acs.org/doi/abs/10.1021/ci700332k. Source: Johnson (2008).
Reproduced with the permission of American Chemical Society.

16 Global average temperature vs. number of pirates
5

16.0

2000
1980 | —®

°
155 1940 |~

_®
15.0 12§9~=x
1880 | —

145 1860 : L

1820 |

14.0

Global average temperature (°C)

13.5

13.0

35000 45000 20000 15000 5000 400 17
Number of pirates (approximate)

Figure 5.3 https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-
of-pirates-is-causing-global-warming/. Source: © Forbes.com.

5.2.1 A Note on Statistics for Data Scientists

Data scientists tend to be either computer science leaning or statistics leaning.
In languages, R is preferred by those who are from statistical background
and Python often by computer science background. Both programming and
statistics are needed for a balanced skill set in data analysis.

143

http://pubs.acs.org/doi/abs/10.1021/ci700332k
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/

144

5 Statistical Modeling

| used to think Thenitook a Sounds like the
correlation implied statistics class. class helped.
causation Now i don't.

) \ Well, maybe.

\)

Figure 5.4 XKCD.com cartoon correlation is not causation. http://stats.stackexchange.com/
questions/36/examples-for-teaching-correlation-does-not-mean-causation. Source: © Stack
Exchange Inc.

Variable

Numeric Categorical

Continuous

Discrete Ordinal Nominal

Figure 5.5 Types of variables. With reference to https:/statistics.laerd.com/statistical-
guides/types-of-variable.php. Source: © Lund Research Ltd.

A brief summary of statistics needed for data scientists is at https://www.
slideshare.net/ajayohri/statistics-for-data-scientists.
Here is a brief extract:

Data—Facts and statistics collected together for reference or analysis
Variable—Something that varies (Figure 5.5)

Ordinal variables are variables that have two or more categories just like
nominal variables, only the categories can also be ordered or ranked, for exam-
ple, excellent—horrible. Dichotomous variables are nominal variables that
have only two categories or levels. Nominal variables are variables that have
two or more categories, but do not have an intrinsic order.

Interval variables are variables whose central characteristic is that they can
be measured along a continuum and have a numerical value (e.g., temperature
measured in degrees Celsius or Fahrenheit).

https://www.slideshare.net/ajayohri/statistics-for-data-scientists
https://www.slideshare.net/ajayohri/statistics-for-data-scientists
http://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
http://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
https://statistics.laerd.com/statistical-guides/types-of-variable.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php

5.2 Correlation Is Not Causation | 145

Ratio variables are interval variables but with the added condition that
0 (zero) of the measurement indicates that there is none of that variable.
A distance of 10m is twice the distance of 5m.

5.2.2 Measures of Central Tendency

Mean

Arithmetic mean is the sum of the values divided by the number of values.
The geometric mean is an average that is useful for sets of positive numbers

that are interpreted according to their product and not their sum (as is the case

with the arithmetic mean), for example, rates of growth.

Median
The median is the number separating the higher half of a data sample, a
population, or a probability distribution from the lower half.

Mode
The “mode” is the value that occurs most often.

5.2.3 Measures of Dispersion

Range
The range of a set of data is the difference between the largest and smallest
values.

Variance
Mean of squares of differences of values from mean

Standard Deviation (sd)
Square root of its variance

Frequency
A frequency distribution is a table that displays the frequency of various
outcomes in a sample.

What Is a Distribution?
The distribution of a statistical dataset (or a population) is a listing or function
showing all the possible values (or intervals) of the data and how often they occur.
When a distribution of categorical data is organized, you see the number or
percentage of individuals in each group (http://www.dummies.com/education/
math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/).
The simplest case of a normal distribution is known as the standard normal
distribution (Figure 5.6). This is a special case where mean p=0 and standard
deviation o =1.

http://www.dummies.com/education/math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/
http://www.dummies.com/education/math/statistics/what-the-distribution-tells-you-about-a-statistical-data-set/

146

5 Statistical Modeling

“Bell curve”
Standard normal
distribution

1.7% |

Z-score -4 -35 -3 25 -2 -15-1-05 0 05 1 15 2 25 3 35 4
Standard —4¢ 30 —20 1o 0 +1o +20 +30 +4c
deviation

Figure 5.6 Standard normal distribution—a most useful distribution curve for a data scientist.
Source: Rumsey (2016). Reproduced with the permission of John Wiley & Sons, Inc.

Position of mean median mode

(a) (b) (c)
Mean
Median
Mode Mode Mode

Frequency

Negative direction The normal curve Positive direction

represents a perfectly
STl e

Figure 5.7 Skewed curves. (a) Negatively skewed, (b) normal (no skew), and
(c) positively skewed.

Clearly we won't get a normal distribution all the time for skewed or tilted
distribution when the following measures, skewness, and kurtosis are used
(Figure 5.7).

Skewness is a measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean. The skewness value can be
positive or negative or even undefined (Figure 5.8).

5.2 Correlation Is Not Causation

v
v

Negative skew Positive skew

Figure 5.8 Skewness. https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_
diagrams_(English).svg. Source: © Wikipedia.

Kurtosis is a measure of the “tailedness” of the probability distribution of a
real-valued random variable. Kurtosis is a descriptor of the shape of a probability
distribution (Figure 5.9).

Some useful distributions apart from normal distribution are the following:

Bernoulli—Distribution of a random variable that takes value 1 with success
probability and value 0 with failure probability. It can be used, for example,
to represent the toss of a coin.

Chi-square—The distribution of a sum of the squares of k independent standard
normal random variables (Figure 5.10).

Poisson—A discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time and/or space if
these events occur with a known average rate and independently of the time
since the last event.

You can see others at https://en.wikipedia.org/wiki/Probability_distribution#
Discrete_probability_distribution (Figure 5.11).

5.2.4 Probability Distribution

The probability density function (pdf) (http://en.wikipedia.org/wiki/Probability_
density_function) of the normal distribution, also called Gaussian or “bell curve;
is the most important continuous random distribution (Figure 5.12). As notated
on the figure, the probabilities of intervals of values correspond to the area under
the curve.

In probability theory, the central limit theorem (CLT) states that, given
certain conditions, the arithmetic mean of a sufficiently large number of iterates
of independent random variables, each with a well-defined expected value and
well-defined variance, will be approximately normally distributed, regardless of
the underlying distribution.

147

https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg
https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg

148

5 Statistical Modeling

Normal random numbers Double exponential random numbers
2000 2000
1500 1500 -
1000 - 1000 -
500 500
0 T T T T T T 0 T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
Skewness =0.03, Kurtosis =2.962 Skewness=0.062, Kurtosis =5.903
Cauchy random numbers Weibull (gamma=1.5) random numbers
3000 2000
2500
1500 -
2000
1500 - 1000 -
1000 -
500 -
500 -
0 T T 1 0 T T T
-10 10 -10 5 0 5 10

-5 0 5 -
Skewness =69.9, Kurtosis =6693 Skewness =1.082, Kurtosis=4.46

Figure 5.9 Kurtosis. http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm.
Source: © U.S. Department of Commerce.

Probability

Figure 5.10 Chi square curve.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

5.2 Correlation Is Not Causation

0.5
A
—1
0.4 -2
—3
—4
5
0.3 —6
7
— 8
—9
0.2
0.1+
O T T T T 1 T T T T

T T T T T T T T T T
012 3 456 7 8 9 10 111213 14 1516 17 18 19 20

Figure 5.11 Poisson curve. Source: © Wikipedia.
0.4
0.3 -

0.2

34.1% | 34.1%

0.1 -

0.0

-30 -2c -1o 0 1c 20 30

Figure 5.12 Normal distribution curve.

A widely underused technique by computer scientists is hypothesis testing.
What is hypothesis testing? Hypothesis testing is the use of statistics to deter-
mine the probability that a given hypothesis is true (http://mathworld.wolfram.
com/HypothesisTesting.html). The usual process of hypothesis testing consists
of four steps:

1) Formulate the null hypothesis (commonly, that the observations are
the result of pure chance) and the alternative hypothesis (commonly, that
the observations show a real effect combined with a component of chance
variation).

149

http://mathworld.wolfram.com/HypothesisTesting.html
http://mathworld.wolfram.com/HypothesisTesting.html

150 | 5 Statistical Modeling

——
Type | 3} H2

Correct error
decision p- risk Power of test
Producer’s risk \V/
Type |
error Correct
a- risk decision
Consumer’s risk B la

Figure 5.13 Type 1 and Type 2 errors.

2) Identify a test statistic that can be used to assess the truth of the null
hypothesis.

3) Compute the p-value, which is the probability that a test statistic at least as
significant as the one observed would be obtained assuming that the null
hypothesis were true. The smaller the p-value, the stronger the evidence
against the null hypothesis.

4) Compare the p-value with an acceptable significance value (sometimes
called an alpha value). If the observed effect is statistically significant, the
null hypothesis is ruled out, and the alternative hypothesis is valid.

This can be represented by (Figure 5.13)

The null hypothesis is true | The null hypothesis is false

Reject the null hypothesis | Type I error Correct decision
Fail to reject the null Correct decision Type II error
hypothesis

What are various kinds of tests? (Figure 5.14)

A slightly easier way to understand which among various tests to use is the
RATTLE GUI in R. Some R code for Z tests can be found at http://rpubs.
com/newajay/stats4. Here is a Z test to reject or accept if sample mean is
>10000.

#null hypothesis umean >=10000
xbar=9900 (sample mean)
umean=10000 (population mean)
sd=120 (standard deviation)
n=30 number of observations

http://rpubs.com/newajay/stats4
http://rpubs.com/newajay/stats4

5.2 Correlation Is Not Causation

Hypothesis test

Continuous data

Normal

i

[Mean] [Variance] [Median

-

[Variance

—[Z-test] F-test] —[Sign test] L{ Levene’s]
—[t-test] Barlett's] —[Wilcoxon test]
—[ANOVA] Chi-square] —[Mann-Whitney]

Regression

Figure 5.14 Types of hypothesis tests.

z= (xbar-umean) / (sd/sqrt (

b4
[1] -4.564355

alpha=0.05
z.alpha=qgnorm(l-alpha)
-z.alpha

[1] -1.644854

Kruskal-Wallis

Mood’s median

Friedman

n))

#NULL hypothesis is rejected

This may seem difficult for the non-statistician to understand unless they
visualize on the normal distribution where these values are occurring
(in acceptance zone or rejection zone). Here the value -4.5 is much less
than -1.65 so it is clearly in the rejection zone. For upper tail, the following
shows a rejection case since it is greater than 1.645 (please read from http://
www.stat.wmich.edu/s216/htests/htests.html#ztest4mu

interested more in this).

Attribute data

(Figure 5.15)

Chi-square

Proportion

Logistic
regression

if

151

http://www.stat.wmich.edu/s216/htests/htests.html#ztest4mu
http://www.stat.wmich.edu/s216/htests/htests.html#ztest4mu

152 | 5 Statistical Modeling

Figure 5.15 P-value and
rejection zone.

.05

0 1.6452.4

Statistical Tests

These tests apply to two samples. The paired two sample tests assume
that we have two samples or cbservations, and that we are testing for
a change, usually from one time period to another.

Distribution of the Data

* Kolomogorov-Smirnov Non-parametric Are the distributions the same?
* wilcoxon Signed Rank Non-parametric Do paired samples have the same distribution?

Location of the Average

* T-test Parametric Are the means the same?
* Wilcoxon Rank-Sum Non-parametric Are the medians the same?

variation in the Data
* F-test Parametric Are the variances the same?
Correlation

* Correlation Pearsons Are the values from the paired samples correlated?

Figure 5.16 An easy way to explain hypothesis tests using Rattle GUI in R.

In Python we can also look at statsmodels for tests than SciPy (see http://
statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.
ztest.html#statsmodels.stats.weightstats.ztest (Figure 5.16)).

Here is an example in R of chi-square test to see if exercising affects smoking.
http://rpubs.com/newajay/chisquaretest.

library (MASS)

tbl = table(survey$Smoke, surveyS$SExer)
tbl

##

H## Freq None Some

H## Heavy 7 1 3

#i Never 87 18 84

#i Occas 12 3 4

H## Regul 9 1 7

http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://statsmodels.sourceforge.net/stable/generated/statsmodels.stats.weightstats.ztest.html#statsmodels.stats.weightstats.ztest
http://rpubs.com/newajay/chisquaretest

5.2 Correlation Is Not Causation

table (survey$Smoke)

##
Heavy Never Occas Regul
11 189 19 17

dim(survey)
[1] 237 12

#Test the hypothesis whether the students
#smoking habit is independent of

#their exercise level at .05 significance level.
chisqg.test (tbl)

Warning in chisqg.test (tbl): Chi-squared approximation
may be incorrect

##

Pearson's Chi-gsquared test

##

data: tbl

X-squared = 5.4885, df = 6, p-value = 0.4828

#As the p-value 0.4828 is greater than the .05
significance level, we do not reject the null
hypothesis that the smoking habit is

#independent of the exercise level of the students.
ctbl = cbind(tbl[, "Freg"]l, tbl[,"None"] + tbl[,"Some"])
ctbl

H# [,11 [,2]
Heavy 7 4
Never 87 102
Occas 12 7
Regul 9 8

chisqg.test (ctbl)

##

Pearson's Chi-squared test
##

data: ctbl

153

154

5 Statistical Modeling

X-squared = 3.2328, df = 3, p-value = 0.3571
#As the p-value 0.3571 is greater than the .05
significance level, we do not reject the null
hypothesis that the smoking habit is independent
of the exercise level of the students. The warning
message found in the solution above is due to the
small cell values in the contingency table

We redo the same in Python using scipy and numpy very easily.

In [11]:
from scipy.stats import chi2 contingency
import numpy as np

In [13]
obs = np.array([[7, 87, 12,9], [4, 102, 7,8]])

In [15]
chi2, p, dof, expected = chi2 contingency (obs)

In [16]:

print (p)
0.357103080041

https://github.com/decisionstats/pythonfordatascience/blob/master/
chi%2Bsquare%2Btest.ipynb

5.3 Linear Regression in R and Python

In Python, statsmodels can be used for linear regression. Here is an example
for iris dataset from https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4
dd08808af3d9c0869259cf6

import pandas as pd

import statsmodels.formula.api as sm
In [4]:

iris=pd.read csv("http://vincentarelbundock.github.io/
Rdatasets/csv/datasets/iris.csv")

iris =iris.drop('Unnamed: 0', 1)

iris.head()
out [7]:

https://github.com/decisionstats/pythonfordatascience/blob/master/chi+square+test.ipynb
https://github.com/decisionstats/pythonfordatascience/blob/master/chi+square+test.ipynb
https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
https://nbviewer.jupyter.org/gist/decisionstats/8ac83dbe4dd08808af3d9c0869259cf6
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv

5.3 Linear Regression in R and Python

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
0 51 35 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
In [15]:
iris.columns=['Sepal Length', 'Sepal Width', 'Petal
Length', 'Petal Width',
'Speciesg']
In [16]:
iris.columns
Out [16]:

Index(['Sepal Length',
'Petal Width',
'Species'],
dtype='object')

'Sepal Width', 'Petal Length',

In [17]:
result = sm.ols(formula="Sepal Length ~ Petal
Length + Sepal Width + Petal Width + Species",
data=iris)
In [18]
result.fit ()
Out [18]
<statsmodels.regression.linear model.
RegressionResultsWrapper at 0x9bafell>
In [19]
result.fit () .summary ()
Out [19]
Dep. Variable: Sepal_Length R-squared: 0.867
Model: OLS Adj. R-squared: 0.863
Method: Least Squares F-statistic: 188.3
Date: Mon, 13 Mar 2017 Prob (F-statistic): 2.67e-61
Time: 17:56:48 Log-Likelihood: -32.558
No. Observations: 150 AIC: 77.12
Df Residuals: 144 BIC: 95.18
Df Model: 5
Covariance Type: nonrobust

155

156 | 5 Statistical Modeling

coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.1713 0.280 7.760 0.000 1.618 2.724
Species|T.versicolor] -0.7236 0.240 -3.013 0.003 -1.198-0.249
Species|T.virginica] -1.0235 0.334 -3.067 0.003 -1.683-0.364
Petal_Length 0.8292 0.069 12.101 0.000 0.6940.965
Sepal_Width 0.4959 0.086 5.761 0.000 0.326 0.666
Petal_Width -03152 0151 -2.084 0039 -0.614-0.016
Omnibus: 0.418 Durbin-Watson: 1.966
Prob(Omnibus): 0.811 Jarque-Bera (JB): 0.572
Skew: ~0.060 Prob(JB): 0.751
Kurtosis: 2.722 Cond. No. 94.0
In [20]
result.fit () .params
Out [20]
Intercept 2.171266
Species[T.versicolor] -0.723562
Species[T.virginical -1.023498
Petal Length 0.829244
Sepal Width 0.495889
Petal Width -0.315155

dtype: floate4

In R regression is done by the Im function (for linear models) and glm for
logistic regression. Let us try some regression basics http://rpubs.com/newajay/
regbasics.
1s()

character (0)

getwd ()

[1] "C:/Users/dell/Desktop/regression"
dir ()

[1] "regl.R" "regl.spin.R" "regl.spin.Rmd"

http://rpubs.com/newajay/regbasics
http://rpubs.com/newajay/regbasics

5.3 Linear Regression in R and Python

[4] "regression.Rproj"

data("irig")
names (iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
"Petal.Width"
[5] "Species"

lm(Sepal.Length~Sepal .Width,data = iris)

##

Call:

1lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
##

Coefficients:

(Intercept) Sepal.Width

H# 6.5262 -0.2234

a=1lm(Sepal.Length~Sepal.Width,data = iris)
names (a)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "gr" "df.residual"
H# [9] "xlevelg" "call" "terms" "model"
class (a)

[1] ||1m||

asScoefficients

(Intercept) Sepal.Width
H# 6.5262226 -0.2233611

summary (a)

##

Call:

1lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
##

Residuals:

H# Min 1Q Median 3Q Max

-1.5561 -0.6333 -0.1120 0.5579 2.2226

H#

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 6.5262 0.4789 13.63 <2e-16 **x*

157

Sepal.Width -0.2234 0.1551 -1.44 0.152

#H# ---

Signif. codes: 0 '"**x!' (0.001 '**' 0.01 '*' 0.05 '." 0.1 " " 1
##

Residual standard error: 0.8251 on 148 degrees of freedom

Multiple R-squared: 0.01382, Adjusted R-squared: 0.007159

F-statistic: 2.074 on 1 and 148 DF, p-value: 0.1519

b=1m(Sepal.Length~Sepal.Width + Petal.Length + Petal.Width,data = iris)
names (b)

[1] "coefficients" "residuals" "effectg" "rank"

[5] "fitted.values" "assign" "gqr" "df . residual"
[9] "xlevels" "call" "terms" "model"

class (b)

[1] lllmll

bScoefficients

(Intercept) Sepal.Width Petal.Length Petal.Width
1.8559975 0.6508372 0.7091320 -0.5564827

summary (b)

##

Call:

Ilm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
data = iris)

H#
Residuals:

H# Min 10 Median 3Q Max

-0.82816 -0.21989 0.01875 0.19709 0.84570

H#

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.85600 0.25078 7.401 9.85e-12 ***

Sepal.Width 0.65084 0.06665 9.765 < 2e-16 ***

Petal.Length 0.70913 0.05672 12.502 < 2e-16 ***

Petal.Width -0.55648 0.12755 -4.363 2.41e-05 ***

Signif. codes: 0 '"¥*x! (0.001 '*¥*' 0.01 '*' 0.05 '.* 0.1 ' ' 1
#HH#

Residual standard error: 0.3145 on 146 degrees of freedom

Multiple R-squared: 0.8586, Adjusted R-squared: 0.8557

F-statistic: 295.5 on 3 and 146 DF, p-value: < 2.2e-16

c=1m(Sepal.Length~Sepal.Width + Petal.Length + Petal.Width+Species,data = iris)
names (c)

HH [1] "coefficients" T"residuals" "effects" "rank"
HH [5] "fitted.values" "assign" "gr" "df .residual"
HH [9] "contrasts" "xlevels" "call" "terms"

[13] "model"
class (c)

[l] "Tm"

cScoefficients

(Intercept) Sepal.Width Petal.Length Petal.Width
2.1712663 0.4958889 0.8292439 -0.3151552
Speciesversicolor Speciesvirginica
-0.7235620 -1.0234978

summary (c)

##

Call:

lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width +
HH# Species, data = iris)

##

Residuals:

H## Min 10 Median 30 Max

-0.79424 -0.21874 0.00899 0.20255 0.73103

##

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 2.17127 0.27979 7.760 1.43e-12 **x*
Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
Petal.Length 0.82924 0.06853 12.101 < 2e-16 **x*
Petal.Width -0.31516 0.15120 -2.084 0.03889 *
Speciesversicolor -0.72356 0.24017 -3.013 0.00306 **
Speciesvirginica -1.02350 0.33373 -3.067 0.00258 *=*

-

Signif.

##

codes:

0 '"x*xx! (0,001 '**' 0.01 '*' 0.05 '." 0.1 ' !

Residual standard error: 0.3068 on 144 degrees of freedom
Multiple R-squared: 0.8673, Adjusted R-squared: 0.8627
F-statistic:

#mtcars

data ("mtcars")

names (mtcars)

##
#H

[1]
[11]

str (mtcars)

#H
#H#
#H#
##
##
#H#
#H
#H
#H
#H
#H
##

L r vr r Vr V¥ Vr VX U N

mpg
cyl
disp
hp

wt

drat:

gsec:

vs
am

gear:

carb:

n mpg n
"carb"

'data.frame':

num
num
num
num
num
num
num
num
num
num
num

188.3 on 5 and 144 DF, p-value: < 2.2e-16

llcyl n "disp n Ilhpll "drat" "wt" "qSeC" nyg!

32 obs. of 11 variables:

21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ..

6 6 4686 8446 ..
160 160 108 258 360 ..
110 110 93 110 175 105 245 62 95 123 ..

"am"

3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ..

2.62 2.88 2.32 3.21 3.44 ..

16.5 17 18.6 19.4 17 ..
0011010111..
1110000000 ..
4 4 4 3 333444 ..
4 411214224

llgearll

d=1m (mpg~cyl+disp+hp+drat+wt+gsec+vs+am+gear+carb,data = mtcars)
summary (d)

##

Call:

lm(formula = mpg ~ cyl + disp + hp + drat + wt + gsec + vs +
H# am + gear + carb, data = mtcars)

##

Residuals:

Min 10 Median 30 Max

-3.4506 -1.6044 -0.1196 1.2193 4.6271

##

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 12.30337 18.71788 0.657 0.5181
cyl -0.11144 1.04502 -0.107 0.9161
disp 0.01334 0.01786 0.747 0.4635
hp -0.02148 0.02177 -0.987 0.3350
drat 0.78711 1.63537 0.481 0.6353
wt -3.71530 1.89441 -1.961 0.0633
gsec 0.82104 0.73084 1.123 0.2739
vs 0.31776 2.10451 0.151 0.8814
am 2.52023 2.05665 1.225 0.2340
gear 0.65541 1.49326 0.439 0.6652
carb -0.19942 0.82875 -0.241 0.8122

B ---

Signif. codes: 0 '"*x%x!' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 2.65 on 21 degrees of freedom

Multiple R-squared: 0.869, Adjusted R-squared: 0.8066

F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

#diamonds

library (ggplot2)
data (diamonds)
str (diamonds)

w

o i

Classes 'tbl df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
S carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ..
S cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 54 2 4 2 3 3 3 1
S color : Ord.factor w/ 7 levels "D"<"E"<"F'"<"G"<..: 2 22 6 7 7 6525
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1l"<..: 2 3 54 26 7 3 4
S depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ..
$ table : num 55 61 65 58 58 57 57 55 61 61 ..
S price : int 326 326 327 334 335 336 336 337 337 338 ..
S x :num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ..
#H S v : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ..

$

#H# z :num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ..

diamondssSunitprice=with (diamonds, price/carat)
head (diamonds)

#H#
#H
#H
#H#
##
##
#H
#H
#H
#H

A tibble: 6 x 11

carat cut color clarity depth table price X Y z

<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VSl 656.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VsS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVs2 62.8 57 336 3.94 3.96 2.48
... with 1 more variables: unitprice <dbls>

h=1lm(unitprice~table+color+clarity+cut+x+y+z+depth,
data=diamonds)
summary (h)

#H
#H
#H
##
#H
##
#H
#H
#H
#H
##
#H
#H
#H

Call:

Im(formula = unitprice ~ table + color + clarity + cut + x +
= diamonds)

y + z + depth, data
Residuals:

Min 10 Median
-5166.4 -463.9 -92.6
Coefficients:

Estimate Std. E
(Intercept) -11688.890 2
table 1.875
color.L -1885.098

3Q

rror

60.693
2.037

12.044

0.920
-156.515

Max
355.8 17851.4

t value Pr(>|t])
-44.838

< 2e-16 **x*

0.35732

< 2e-16 **x%

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#H
#H
#H
##
##
##
##
##
##
##

color.Q
color.C
color™4
color™s
color™s
clarity.L
clarity.Q
clarity.C
clarity™4
clarity™s
clarity™6
clarity™7
cut.L
cut.Q
cut.C
cut™4

X

Y

z

depth

-456.
-78.
78.
-56.
-10.
3794.
-1074.
507.
-169.
117.
47.
124.
487.
-217.
127.
16.
1761.
67.
67.
73.

Signif. codes: 0

386
133
474
637
800
856
105
278
564
177
190
830
537
290
423
718
626
623
878
620

LI

11.
10.
.464
.941
.128
21.
19.
16.
13.
11.
.598
.466
15.
12.
10.
.661
18.
13.
23.
.110

[0

015
305

175
694
878
496
023

727
590
836

702
523
435

0.001

Residual standard error:
Multiple R-squared:
1.343e+04 on 22 and 53917 DF,

F-statistic:

Th% 1

-41.
-7.
8.
-6.
-1.
179.
-54.
30.
-12.
10.
4.
14.
31.
-17.
11.

1

94.
5.

2

23.

434
582
292
335
329
211
540
055
564
630
917
745
000
259
759
.930
195
001
.896
671

0.01

<
3.

<
2.

AN N ANNA

8.

AN N NN

<

2e-16
45e-14
2e-16
40e-10

* k%

k

* %k *

k

0.18396

2e-16
2e-16
2e-16
2e-16
2e-16
83e-07
2e-16
2e-16
2e-16
2e-16

* %k *

k

k

k

k

k

k

k

* %k *

* %k *

0.05359

2e-16

k

5.74e-07 ***
0.00378 *=*
< 2e-16 ***

[

0.05

790.9 on 53917 degrees of freedom
0.8456, Adjusted R-squared: 0.8456

< 2.2e-16

p-value:

166 | 5 Statistical Modeling

Note the three stars *** point to a low p-value in R’s regression summary.

A slightly more elaborate way to see R’s regression uses the car package from
http://rpubs.com/newajay/modelsinR
getwd ()

[1] "C:/Users/dell/Desktop"

setwd ("C:/Users/dell/Desktop")
#dir(,pattern = ".csv")
memory.limit ()

[1] 1535
memory.size ()
[1] 18.04

rm(list = 1s())

H## used (Mb
Ncells 365542 9.
Vcells 372990 2.

) gc trigger (Mb) max used (Mb)
8 592000 15.9 460000 12.3
9 1023718 7.9 752284 5.8

library (car)
library (MASS)
data (Boston, package="MASS")

#?Boston

crim

per capita crime rate by town.

#

zn

proportion of residential land zoned for lots

over 25,000 sqg.ft.

indus
proportion of non-retail business acres per town.

chas
Charles River dummy variable (= 1 if tract bounds
river; 0 otherwise).

#

HoH H R K R

http://rpubs.com/newajay/modelsinR

H H H* FHoH FH R H H W R

FHoH H R H H H H R KWW

FHoH H R H H H W R

5.3 Linear Regression in R and Python

nox
nitrogen oxides concentration (parts per 10 million).

rm
average number of rooms per dwelling.

age
proportion of owner-occupied units built prior
to 1940.

dis
weighted mean of distances to five Boston employment

centres.

rad
index of accessibility to radial highways.

tax
full-value property-tax rate per \$10,000.

ptratio
pupil-teacher ratio by town.

black
1000 (Bk - 0.63)"2 where Bk is the proportion of

blacks by town.

Istat
lower status of the population (percent).

medv
median value of owner-occupied homes in \$1000s.

Source

#Harrison, D. and Rubinfeld, D.L. (1978) Hedonic
prices and the demand for clean air. J. Environ.
Economics and Management 5, 81-102.

167

cor (Boston)

##
##
##
#H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#H#
##
##
##
##
##

crim 1.
zZn -0
indus 0
chas -0.
nox 0
rm -0
age 0
dis -0
rad 0
tax 0
ptratio O.
black -0.
lstat 0
medv -0.
crim -0.
zZn 0
indus -0.
chas 0.
nox -0.
rm 1.
age -0.
dis 0
rad -0.
tax -0.

crim
00000000

.20046922
.40658341

05589158

.42097171
.21924670
.35273425
.37967009
.62550515
.58276431

28994558
38506394

.45562148

38830461
rm
21924670

.31199059

39167585
09125123
30218819
00000000
24026493

.20524621

20984667
29204783

zn

.20046922
.00000000
.53382819
.04269672
.51660371
.31199059
.56953734
.66440822
.31194783
.31456332
.39167855
.17552032
.41299457
.36044534

age

.35273425
.56953734
.64477851
.08651777
.73147010
.24026493
.00000000
.74788054
.45602245
.50645559

-0.
.66440822
-0.
-0.
-0.
.20524621
-0.
.00000000
.49458793
-0.

indus

.40658341
.53382819
.00000000
.06293803
.76365145
.39167585
.64477851
.70802699
.59512927
.72076018
.38324756
.35697654
.60379972
.48372516

dis
37967009
70802699
09917578
76923011

74788054

53443158

chas

.055891582
.042696719
.062938027
.000000000
.091202807
.091251225
.086517774
.099175780
.007368241
.035586518
.121515174
.048788485
.053929298
.175260177

rad

.625505145
.311947826
.595129275
.007368241
.611440563
.209846668
.456022452
.494587930
.000000000
.910228189

nox

.42097171
.51660371
.76365145
.09120281
.00000000
.30218819
.73147010
.76923011
.61144056
.66802320
.18893268
.38005064
.59087892
.42732077

tax

.58276431
.31456332
.72076018
.03558652
.66802320
.29204783
.50645559
.53443158
.91022819
.00000000

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ptratio -0.35550149
black 0.12806864
lstat -0.61380827
medv 0.69535995
ptratio
crim 0.2899456
zZn -0.3916785
indus 0.3832476
chas -0.1215152
nox 0.1889327
rm -0.3555015
age 0.2615150
dis -0.2324705
rad 0.4647412
tax 0.4608530
ptratio 1.0000000
black -0.1773833
lstat 0.3740443
medv -0.5077867

summary (Boston)

##
##
##
##
##
##
##

crim
Min. :
1lst Qu.:
Median
Mean
3rd Qu.:
Max. : 8

0 W w o o o

.00632
.08204
.25651
.61352
.67708
.97620

0.26151501 -0.23247054 0.464741179 0.46085304
-0.27353398 0.29151167 -0.444412816 -0.44180801
0.60233853 -0.49699583 0.488676335 0.54399341
-0.37695457 0.24992873 -0.381626231 -0.46853593
black lstat medv
-0.38506394 0.4556215 -0.3883046
0.17552032 -0.4129946 0.3604453
-0.35697654 0.6037997 -0.4837252
0.04878848 -0.0539293 0.1752602
-0.38005064 0.5908789 -0.4273208
0.12806864 -0.6138083 0.6953599
-0.27353398 0.6023385 -0.3769546
0.29151167 -0.4969958 0.2499287
-0.44441282 0.4886763 -0.3816262
-0.44180801 0.5439934 -0.4685359
-0.17738330 0.3740443 -0.5077867
1.00000000 -0.3660869 0.3334608
-0.36608690 1.0000000 -0.7376627
0.33346082 -0.7376627 1.0000000
zZn indus chas
Min. : 0.00 Min. : 0.46 Min. :0.00000
1st Qu.: 0.00 lst Qu.: 5.19 1st Qu.:0.00000
Median : 0.00 Median 9.69 Median :0.00000
Mean : 11.36 Mean :11.14 Mean :0.06917
3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
Max. :100.00 Max. :27.74 Max. :1.00000

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

nox
Min.
1lst Qu.:
Median
Mean
3rd Qu.:
Max.
rad
Min. :
1lst Qu.:
Median
Mean
3rd Qu.:
Max.
lsta
Min. :
1st Qu.:
Median
Mean
3rd Qu.
Max.

O O O O o O

IS, N

9
24

: 24

t
1

6.
:11
:12
:16.
:37.

.3850
.4490
.5380
.5547
.6240
.8710

.000
.000
.000
.549
.000
.000

.73
95
.36
.65
95
97

library (corrgram)
corrgram (Boston)

Min.

1lst Qu.:

Median
Mean

3rd Qu.:

Max.
tax
Min.

1st Qu.:

Median
Mean

3rd Qu.

Max.
me
Min.
1st Qu.
Median
Mean
3rd Qu.
Max.

rm

o O Oy O U1 W

:187.
279.
:330.
:408.
:666.
:711.

dv

: 5.
:17.

:21
122

.561
.886
.208
.285
.623
.780

O O N O O o

00
02

.20
.53
:25.
:50.

00
00

age
Min.
1st Qu.:
Median
Mean :
3rd Qu.:
Max.

ptratio
Min.
1st Qu.:
Median
Mean
3rd Qu.
Max.

:12

45.

77
68

94 .
:100

17.

:19.
:18
:20
:22.

dis

.90 Min. 1

02 1lst Qu.: 2
.50 Median 3
.57 Mean : 3

08 3rd Qu.: 5
.00 Max. 12

black
.60 Min. : 0
40 1lst Qu.:375.
05 Median :391.
.46 Mean :356
.20 3rd Qu.:396
00 Max. :396.

.130
.100
.207
.795
.188
.127

.32

38
44

.67
.23

90

5.3 Linear Regression in R and Python

attach (Boston)
boxplot (medv~black)

50

40

30 +

20 —

10 4 '." B
o

(o]
]
1

LU (U080 L OG0 U
0.32 179.36 350.65 375.87 384.3 389.25 392.05 393.97 395.69

171

172 | 5 Statistical Modeling

plot (medv~black)

50
40
3z 30+
[}
1S °
204 o
%30 Oo @g%o
10 + @C?O% o % Od) °
T T
0 100

plot (medv~rm)

50

40

30

medv

20

10

str (Boston)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Ur vr vr r W Vr Vr 0 A r U 1y Dy

crim

zn
indus
chas
nox

rm

age

dis

rad

tax :
ptratio:
black
lstat
medv

RegModel.1l <-

##

Call:
1m(formula

##
##

'data.frame':

num
num
num
int
num
num
num
num
int
num
num
num
num
num

506 obs. of 14 variables:

0.00632 0.02731 0.02729 0.03237 0.06905 ..

18 0 0 0 0 0 12.5 12.5 12.5 12.5 ..

2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ..
000O0OOOOO0OQ 0 ..

0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ..

6.58 6.42 7.18 7 7.15 ..

65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ..
4.09 4.97 4.97 6.06 6.06 ..

122333552565 ..

296 242 242 222 222 222 311 311 311 311 ..

15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ..
397 397 393 395 397 ..

4.98 9.14 4.03 2.94 5.33 ..

24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ..

lm(medv~age+black+chas+crim+dis+indus+lstat+nox+ptratio+rad+rm+tax+zn,
data=Boston)
summary (RegModel.1)

medv ~ age + black + chas + crim + dis + indus +
lstat + nox + ptratio + rad + rm + tax + zn, data = Boston)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

F-statistic:

Residuals:

Min 10 Median 30 Max
-15.595 -2.730 -0.518 1.777 26.199
Coefficients:

Estimate Std. Error t value
(Intercept) 3.646e+01 5.103e+00 7.144
age 6.922e-04 1.321le-02 0.052
black 9.312e-03 2.686e-03 3.467
chas 2.687e+00 8.61l6e-01 3.118
crim -1.080e-01 3.286e-02 -3.287
dis -1.476e+00 1.995e-01 -7.398
indus 2.056e-02 6.150e-02 0.334
lstat -5.248e-01 5.072e-02 -10.347
nox -1.777e+01 3.820e+00 -4.651
ptratio -9.527e-01 1.308e-01 -7.283
rad 3.060e-01 6.635e-02 4.613
rm 3.810e+00 4.179e-01 9.116
tax -1.233e-02 3.760e-03 -3.280
zZn 4.642e-02 1.373e-02 3.382
Signif. codes: 0O '***' (Q.001 '**' Q.01 '¥*

Residual standard error:
Multiple R-squared:

108.1 on 13 and 492 DF,

Pr(>|t])

O OO OO O W

4
1
5

0
0

.28e-12
.958229
.000573
.001925
.001087
.0le-13
.738288
< 2e-16
.25e-06
.31le-12
.07e-06
< 2e-16
.001112
.000778

0.05 '.

0.7338
< 2.

* % %

* % %
* %
* %

* % %

* % %
* % %
* % %
* % %
* % %
* %

* % %

' 0.1

4.745 on 492 degrees of freedom
0.7406, Adjusted R-squared:
p-value:

2e-16

1

vif (RegModel.1)

age black chas crim dis indus lstat nox
3.100826 1.348521 1.073995 1.792192 3.955945 3.991596 2.941491 4.393720
ptratio rad rm tax zn

1.799084 7.484496 1.933744 9.008554 2.298758
library(zoo, pos=15)

##
Attaching package: 'zoo!

The following objects are masked from 'package:base':
##

H# as.Date, as.Date.numeric

library(lmtest, pos=15)
bptest (RegModel.1)

##

studentized Breusch-Pagan test

##

data: RegModel.l

BP = 65.122, df = 13, p-value = 6.265e-09

RegModel.2 <- 1lm(medv~black+chas+crim+dis+lstat+nox+ptratio+rm+zn,
data=Boston)
summary (RegModel. 2)

##
##
##
##
##
##
##
##
##
##
##
#H#
#H
#H
#H
#H#
#H
#H
#H#
#H
#H
##
##
##
##
##
##

Call:
Im(formula = medv ~ black + chas + crim + dis + lstat + nox +

ptratio + rm + zn, data = Boston)
Residuals:

Min 10 Median 30 Max
-15.803 -2.832 -0.625 1.454 27.766
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 29.507997 4.872538 6.056 2.76e-09 **x*
black 0.008292 0.002688 3.084 0.002153 =*x*
chas 3.029924 0.868349 3.489 0.000527 **xx*
crim -0.061174 0.030377 -2.014 0.044567 *
dis -1.431665 0.188603 -7.591 1.59e-13 ***
lstat -0.525004 0.048351 -10.858 < 2e-16 ***
nox -16.088513 3.232702 -4.977 8.93e-07 ***
ptratio -0.838640 0.117342 -7.147 3.19%e-12 ***
rm 4.149667 0.407685 10.179 < 2e-16 ***
zZn 0.042032 0.013422 3.131 0.001842 =*x*
Signif. codes: 0 '***' Q.001 '**' Q.01 '*' 0.05 '.' 0.1
Residual standard error: 4.833 on 496 degrees of freedom
Multiple R-squared: 0.7288, Adjusted R-squared: 0.7239
F-statistic: 148.1 on 9 and 496 DF, p-value: < 2.2e-16

vif (RegModel.2)

black chas crim dis lstat nox ptratio rm
1.302455 1.051879 1.476281 3.410535 2.577927 3.034316 1.395503 1.774261
zn

2.119038

bptest (medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn,

varformula = ~ fitted.values(RegModel.2), studentize=FALSE, data=Boston)
##
Breusch-Pagan test
##

data: medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn
BP = 8.817, df = 1, p-value = 0.002984

outlierTest (RegModel.2)

#H# rstudent unadjusted p-value Bonferonni p
369 6.093117 2.2275e-09 1.1271e-06
372 5.574335 4.0893e-08 2.0692e-05
373 5.360117 1.2776e-07 6.4644e-05

Boston <- Boston[-c(369,372,373),1
RegModel.3 <- 1lm(medv~black+chas+crim+lstat+nox+ptratio+rm+zn, data=Boston)
summary (RegModel. 3)

##
##
##
##
##
##
##
##
##
##
##
#H
#H
#H
##
#H#
##
#H
#H
##
##
##
##
##
##
#H#

Call:
Im(formula = medv

rm + zn, data = Boston)
Residuals:

Min 10 Median 30
-16.6944 -2.6544 -0.6449 1.6392
Coefficients:

Estimate Std.
(Intercept) 11.386058 4.150172 2
black 0.008849 0.002545 3
chas 2.670557 0.833048 3
crim -0.046149 0.028565 -1.
lstat -0.392872 0.046578 -8.
nox -5.144940 2.539786 -2.
ptratio -0.958587 0.111396 -8.
rm 5.318514 0.384910 13
zZn -0.010100 0.011040 -0.
Signif. codes: 0O '***' Q. 001 '**!
Residual standard error:
Multiple R-squared: 0.744,

F-statistic:

~ black + chas + crim + lstat + nox + ptratio

616
435
026
605

.818

915

0.01

Max
21.4155

O w O oo o

%

Error t value Pr(>|t])
. 744
.476
.206

.006300
.000553
.001434
.106827
.68e-16
.043329

<2e-16
<2e-16

.360736

' 0.05

* *
* k%

* *

* k%

* k%

* k%

0.1 ' "1

4.578 on 494 degrees of freedom

Adjusted R-squared:
179.5 on 8 and 494 DF,

0.7399

p-value: < 2.2e-16

RegModel.4 <- 1lm(medv~black+lstat+ptratio+rm+zn, data=Boston)
summary (RegModel .4)

##

Call:

1lm(formula = medv ~ black + lstat + ptratio + rm + zn, data = Boston)
##

Residuals:

H# Min 10 Median 3Q Max

-15.2574 -2.8802 -0.6129 1.8640 22.9620

#H

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 9.253649 3.879508 2.385 0.0174 *
black 0.011319 0.002462 4.598 5.43e-06 ***
lstat -0.453250 0.041643 -10.884 <2e-16 **x*
ptratio -0.991397 0.108946 -9.100 <2e-16 ***
rm 5.274984 0.386849 13.636 <2e-16 ***
zn -0.004863 0.010154 -0.479 0.6322

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 4.644 on 497 degrees of freedom
Multiple R-squared: 0.735, Adjusted R-squared: 0.7323
F-statistic: 275.7 on 5 and 497 DF, p-value: < 2.2e-16

RegModel.5 <- 1lm(medv~black+lstat+ptratio+rm, data=Boston)
summary (RegModel.5)

##
##
##
##
##
##
##
##
##
##
##
#H
#H
#H
#H
##
##
##
##
##
##

Call:
Im(formula = medv ~ black + lstat + ptratio + rm, data = Boston)
Regiduals:

Min 10 Median 30 Max
-15.1780 -2.8640 -0.6212 1.8545 23.0366
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 8.92877 3.81678 2.339 0.0197 *
black 0.01130 0.00246 4.592 5.55e-06 ***
lstat -0.44870 0.04051 -11.075 <2e-16 **%*
ptratio -0.97746 0.10491 -9.317 <2e-16 **%*
rm 5.26910 0.38635 13.638 <2e-16 **%*
Signif. codes: O "***x' Q,001 '"**' Q.01 '*' Q.05 '".'" 0.1 " " 1
Residual standard error: 4.64 on 498 degrees of freedom

Multiple R-squared: 0.7348, Adjusted R-squared: 0.7327
F-statistic: 345 on 4 and 498 DF, p-value: < 2.2e-16

vif (RegModel.5)

##
##

black lstat ptratio rm
1.182491 1.954482 1.205162 1.715115

bptest (medv ~ black + lstat + ptratio + rm, varformula = ~
fitted.values (RegModel.5), studentize=FALSE, data=Boston)

HH#

Breusch-Pagan test

H#

data: medv ~ black + lstat + ptratio + rm
BP = 0.21772, df = 1, p-value = 0.6408

#install.packages ("gvima")

#library (gvlima)

#BostonS$Smedvbc=boxcox (BostonSmedv)

#http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-
present-how-to-correct-it/

#Overfitting
a=nrow (Boston)
a

[1] 503

b=round (0.7*a)
b

[1] 352

random_row numbs=sample (a,b,F)
random_row_numbs

http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/
http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#H#

[1]
[18]
[35]
[52]
[69]
[86]

[103]
[120]
[137]
[154]
[171]
[188]
[205]
[222]
[239]
[256]
[273]
[290]
[307]
[324]
[341]

417
425

57
446
135
441
117
307

79
276

17

24
314
206
205

52
105
416
384
298

35
27
88
100
243
258
296
1
418
395
261
323
392
220
477
268
357
67
455
344

387 409

286
16
58

422

236

283
46

115
59

463

269

500

328

428

237

385
76

5

176

29
156

410
401
234
264

81
466

86
288
421
194
141
372
213

97

33
449
437
138
335
460
290

352
368
177
333

34
497
336
492
260

400
292
255
112
309
183
378
121
289
343

71

408
249
478
142
397
284

28
252
373
148
347
168
459
151
491
278

18
104
210
225
350

346
469
152
230
139
51
13
90
458
482
322
383
308
399
364
435
341
356
393
201
132

274
345
473
448
222
407
227
196
451
312
432
124
486
226
484
232
202
426
93
191
149

195
444
420
254

48
443
450
114
493

239
127
166
281
216
297

75
299
107
396
331

379
442
182

85

20
271
118
472
431
479

41
319
361

32
433
211
452
332
305
468
218

180
203
247
340
240
316
106

11
133
175
381
498
294
103

65
348
489
136
429
125
212

165
263

77
102
371
130
140
462
334

73
159
272
440
358
447
365

31
499
406
235
109

318
419
190
405
188
246
131
388
200
229
306
353

87
193

39
137
273

15
280
197

110
80
313
295
259
98
374
456
282
394
10
53

251
275
173
162

30
496
198

231

70
457
233
158

64
490
221

56

40
370

94
217
172
359
163
413

25
483
174

72

89
303
302
199

74

14
503
146
209
277
242
445
329
300

63
317

50
480
485

366
470
186

464
291

23
427
424
187

49
321
423

84
439
192

26
119
108
143

5.3 Linear Regression in R and Python

plot (random row numbs)

i o
500 00 o 0o Yo o 00 4 @ o © %Do
° o o0 © g © °0 ofr o ©° °
@ 2.0 00 %0 o © ©ovo ©° ©
o 400 o %0 ¢ o ©0o0° o © ODO Og
Qo %0 o o s} bd
€ ® o o o 0% @9 §o o o
2 © %D 0’ ® 5 0,008, % 0°° °
| 300 o & ® % 04 "% o 00 o Lo 4
= © o oy oo° ocb § %o o o °
o 0% o° oo °5 Oo o © OOO o o°
EI 200 2 Oodb $ ° Oog chooo c)ooo ° o C)
o c o _© o o
8 ° % 0 ooo ° o0° o° e g C)oo 0008
C 0%0 [*INe]
® 1004 ° 09 c. 2% o 80 o 3°o" o
o o %o ° o o ©5 Lo, o
o ® L ° % ® 000 ° 000° (% S
0-) o° 880 ©°d o 0%, 8
T T T T T T T T
0 50 100 150 200 250 300 350
Index

Boston train=Boston[random row numbs,]
Boston test=Boston[-random row numbs,]

RegModel.6 <- lm(medv~black+lstat+ptratio+rm,
data=Boston_train)

summary (RegModel . 6)

H##
Call:

Ilm(formula = medv ~ black + lstat + ptratio + rm,

data = Boston_train)
#H#
Residuals:
H# Min 10 Median 30 Max
-14.6989 -2.8976 -0.6286 1.8782 20.9866
#H#
Coefficients:
#H Estimate Std. Error t value Pr(>|t])
(Intercept) 12.082977 4.685939 2.579 0.010333 *
black 0.010551 0.002876 3.668 0.000283 **x*
lstat -0.459176 0.049661 -9.246 < 2e-16 ***
ptratio -1.081483 0.130743 -8.272 2.86e-15 **x*
rm 5.130985 0.465497 11.023 < 2e-16 ***

##

183

Signif. codes: 0 '"***!' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
H##

Residual standard error: 4.731 on 347 degrees of freedom
Multiple R-squared: 0.7336, Adjusted R-squared: 0.7305
F-statistic: 238.8 on 4 and 347 DF, p-value: < 2.2e-16

vif (RegModel.é6)

#H# black lstat ptratio rm
1.181865 1.909594 1.266947 1.670012

outlierTest (RegModel.6)

#H# rstudent unadjusted p-value Bonferonni p
371 4.597485 6.0040e-06 0.0021134
413 4.320507 2.0369e-05 0.0071698
366 4.216016 3.1779e-05 0.0111860
368 4.012047 7.3806e-05 0.0259800

bptest (RegModel.6)

H#

studentized Breusch-Pagan test

H#

data: RegModel.6

BP = 1.9743, df = 4, p-value = 0.7405

1

#?

dbc=boxcox (RegModel . 6)

_500 _ 950/0
e
g -600
g
S -700 |
g

-800 -

T
-2

dbc
Sx
[1] -2
[6] -1.
[11] -1.
[16] -1.
[21] -1.
[26] -0.
[31] -O.
[36] -O0.
[41] -O.

.00000000

79797980
59595960
39393939
19191919
98989899
78787879
58585859
38383838

-1.
.75757576
-1.
-1.
.15151515
-0.
-0.
-0.
-0.

-1

-1

95959596

55555556
35353535

94949495
74747475
54545455
34343434

-1.
-1.
-1.
-1.
-1.
-0.
-0.
-0.
-0.

91919192
71717172
51515152
31313131
11111111
909095091
70707071
50505051
30303030

-1.
.67676768
-1.
-1.
.07070707
.86868687
-0.
-0.
.26262626

-1

-1

87878788
47474747

27272727

66666667
46464646

-1.
-1
-1.
-1.
-1
-0.
-0.
-0.
-0.

83838384

.63636364

43434343
23232323

.03030303

82828283
62626263
42424242
22222222

-0.18181818 -0.14141414 -0.10101010 -0.06060606 -0.02020202
0.02020202 0.06060606 0.10101010 0.14141414 0.18181818
0.22222222 0.26262626 0.30303030 0.34343434 0.38383838
0.42424242 0.46464646 0.50505051 0.54545455 0.58585859
0.62626263 0.66666667 0.70707071 0.74747475 0.78787879
0.82828283 0.86868687 0.90909091 0.94949495 0.98989899
1.03030303 1.07070707 1.11111111 1.15151515 1.19191919
1.23232323 1.27272727 1.31313131 1.35353535 1.39393939
1.43434343 1.47474747 1.51515152 1.55555556 1.59595960
1.63636364 1.67676768 1.71717172 1.75757576 1.79797980
1.83838384 1.87878788 1.91919192 1.95959596 2.00000000

-859.1799 -847.1039 -835.1407 -823.2931 -811.5635 -799.9545 -788.4687
-777.1090 -765.8782 -754.7796 -743.8162 -732.9914 -722.3087 -711.7718
-701.3844 -691.1505 -681.0742 -671.1596 -661.4114 -651.8339 -642.4319
-633.2102 -624.1740 -615.3282 -606.6782 -598.2292 -589.9869 -581.9566
-574.1441 -566.5549 -559.1948 -552.0694 -545.1843 -538.5451 -532.1573
-526.0261 -520.1569 -514.5544 -509.2236 -504.1689 -499.3943 -494.9038
-490.7007 -486.7882 -483.1687 -479.8445 -476.8171 -474.0877 -471.6570
-469.5250 -467.6913 -466.1549 -464.9143 -463.9677 -463.3123 -462.9453
-462.8632 -463.0621 -463.5379 -464.2858 -465.3009 -466.5779 -468.1114
-469.8955 -471.9244 -474.1919 -476.6919 -479.4181 -482.3641 -485.5236
-488.8903 -492.4578 -496.2198 -500.1703 -504.3031 -508.6121 -513.0917
-517.7360 -522.5394 -527.4966 -532.6022 -537.8512 -543.2387 -548.7598
-554.4099 -560.1847 -566.0799 -572.0912 -578.2149 -584.4471 -590.7842
-597.2227 -603.7593 -610.3907 -617.1139 -623.9259 -630.8240 -637.8056
-644.8680 -652.0084

5.4 Logistic Regression in R and Python

So to summarize what we should do for regression,

First know about data and variables.

Do Descriptive Statistics (summary) and a correlation matrix.
Then run initial model.

Remove outliers.

Remove variables due to VIF (multicollinearity).

Remove Heteroscedascity (advanced).

Reduce variables and rerun, to maximize R"2.

Keep an eye on p-value for removing variables.

5.4 Logistic Regression in R and Python

Let us read some basics on logistic regression first. Logistic regression is used
for predicting binary variables, and it is used a lot—whether a customer will
default or not (FINANCIAL SERVICES DEFAULT), whether they will click on
an internet ad or not (ECOMMERCE WEB ANALYTICS), whether they will
buy a product or not (PROPENSITY), or whether they will leave a company for
another one (CHURN) (http://www.statmethods.net/advstats/glm.html).

We use logit function from statsmodel for logistic regression.

import pandas as pd

import statsmodels.api as sm
import pylab as pl

import numpy as np

df = pd.read csv("http://www.ats.ucla.edu/stat/data/
binary.csv")

df .columns = ["admit", "gre", "gpa", "newl"]
df .head ()
admit gre gpa new1l
0 0 380 3.61 3
1 1 660 3.67 3
2 1 800 4.00 1
3 1 640 3.19 4
4 0 520 2.93 4

#create dummy variables

187

http://www.statmethods.net/advstats/glm.html
http://www.ats.ucla.edu/stat/data/binary.csv
http://www.ats.ucla.edu/stat/data/binary.csv

188 | 5 Statistical Modeling

Note this step creates dummy numeric variables from a categoric variable
dummy ranks = pd.get dummies (df['newl'], prefix='new')
cols to keep = ['admit', 'gre',6 ‘'gpa'l

print (dummy ranks.head())

new_1 new 2 new 3 new 4
0 0.0 0.0 1.0 0.0
1 0.0 0.0 1.0 0.0
2 1.0 0.0 0.0 0.0
3 0.0 0.0 0.0 1.0
4 0.0 0.0 0.0 1.0
cols to keep = ['admit', 'gre',K ‘'gpa'l
data = df [cols to keep] .join(dummy ranks.ix[:, 'mew 2':])
data['intercept'] = 1.0

train cols = data.columns[1:]

Index([gre, gpa, prestige 2, prestige 3,
prestige 4], dtype=object)

logit = sm.Logit (data['admit'], dataltrain cols])
fit the model

result = logit.fit ()

Optimization terminated successfully.

Current function value: 0.573147
Iterations 6

print (result.summary())

Logit Regression Results

Dep. Variable:

Mar 2017
18:31:59
True

No. Observations:

Df Residuals:
Df Model:
Pseudo R-squ.:
Log-Likelihood:
LL-Null:

LLR p-value:

0.08292
-229.26
-249.99

.578e-08

[95.0% Conf. Int.]

Model:
Method:
Date: Mon, 13
Time:
converged:

coef std
gre 0.0023 0
gpa 0.8040 0
new_2 -0.6754 0.
new_3 -1.3402 0
new_4 -1.5515 0
intercept -3.9900 1

z P>|z|
070 0.038
423 0.015
134 0.033
881 0.000
713 0.000
500 0.000

The aforementioned code was referred from http://blog.yhat.com/posts/logistic-regression-python-rodeo.html
Let’s do the same data in R (http://rpubs.com/newajay/uclaglm).

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html
http://rpubs.com/newajay/uclaglm

library (aod)

Warning: package

library (ggplot2)
library (Rcpp)
mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
head (mydata)

##
##
##
##
##
##
##

o Ul b W N

adm

it gre
380
660
800
640
520
760

HOoORRRO

summary (mydata)

##
##
##
##
##
##
##

Min.
1st
Medi
Mean
3rd
Max.

sapply (m

admit
:0
Qu.:0
an :0
:0
Qu.:1
1

ydata,

'aod'

gpa rank
3.61 3
3.67 3
4.00 1
3.19 4
2.93 4
3.00 2
gre
.0000 Min.
.0000 1st Qu.
.0000 Median
.3175 Mean
.0000 3rd Qu.
.0000 Max.
sd)

:220.
:520.
:580.
:587.
:660.
:800.

O O J O o o

gpa
Min.
1lst Qu.:
Median
Mean
3rd Qu.:
Max.

B wwwwih

.260
.130
.395
.390
.670
.000

was built under R version 3.3.3

rank
Min. :1
1lst Qu.:2
Median :2
Mean 12
3rd Qu.:3
Max. :4

.000
.000
.000
.485
.000
.000

http://www.ats.ucla.edu/stat/data/binary.csv

admit gre gpa rank
H 0.4660867 115.5165364 0.3805668 0.9444602

xtabs (~ admit + rank, data = mydata)

#4# rank

admit 1 2 3 4
H 0 28 97 93 55
1 33 54 28 12

mydataSrank <- factor (mydataS$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary (mylogit)

##

Call:

glm(formula = admit ~ gre + gpa + rank, family = "binomial",
HH data = mydata)

HH

Deviance Residuals:

H# Min 10 Median 3Q Max

-1.6268 -0.8662 -0.6388 1.1490 2.0790
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Coefficients:

Estimate Std.

(Intercept) -3.989979 1
gre 0.002264 0
gpa 0.804038 0
rank?2 -0.675443 0
rank3 -1.340204 0
rank4 -1.551464 0
Signif. codes: 0 '#**x' Q.

(Dispersion parameter for

Null deviance: 499.98
Residual deviance: 458.52
AIC: 470.52

Error z value Pr(>|z]|)

.139951 -3.500 0.000465 ***
.001094 2.070 0.038465 *
.331819 2.423 0.015388 *
.316490 -2.134 0.032829 *
.345306 -3.881 0.000104 ***
.417832 -3.713 0.000205 ***
001 '**' 0.01 '*' 0.05 '.' 0.1

binomial family taken to be 1)

on 399 degrees of freedom
on 394 degrees of freedom

Number of Fisher Scoring iterations: 4

5.4 Logistic Regression in R and Python

ROC curve
1.00 -

0.75 -

0.50 -

AUROC: 0.8113

Sensitivity (TPR)

0.25 -

0.00 -

0.00 0.25 0.50 0.75 1.00
1-Specificity (FPR)

Figure 5.17 The ROC curve.

In R we can do it using glm (see http://rpubs.com/newajay/logisticregression,

Figure 5.17). Some terms that are introduced are area under a curve, confusion

matrix, and KS distance.

ks _plot (actuals=Training$Class,predictedScores=as.
numeric (fitted (£itD)))

KS Plot

100%

100 - 96.99%

75 -

Percentage responders captured
(&)
)

25
ind
J — model
- random
0%
0 4
00 25 5.0 75 10.0

rank

193

http://rpubs.com/newajay/logisticregression

194

5 Statistical Modeling

ks_stat (actuals=Training$Class,predictedScores=as.
numeric (fitted (£itD)))
[1] 0.4718

5.4.1 Additional Concepts

Odds ratio = p/1 —p where p is probability of success
Logit = log (odds ratio)

Overfitting—It occurs when the model is closer to sample data than real data
and due to excessive noise. It is avoided by splitting the data into test and training
and then building the model on one part of data.

5.4.2 ROC Curve and AUC

The ROC is a curve generated by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings, while the AUC is the
area under the ROC curve. As a rule of thumb, a model with good predictive
ability should have an AUC closer to 1 (1 is ideal) than to 0.5.

Confusion matrix helps determine classifier. It is a matrix of predicted
versus actual.

Predicted: NO | Predicted: YES

Actual: NO 50 10

Actual: YES 5 100

A confusion matrix, also known as an error matrix, is a specific table layout
that allows visualization of the performance of an algorithm.

Each column of the matrix represents the instances in a predicted class,
while each row represents the instances in an actual class (or vice versa)
(Figure 5.18).

An additional example of R based modeling is at http://rpubs.com/newajay/
titanic_kaggle and http://rpubs.com/ajaydecis/logisticmodels

5.4.3 Bias Versus Variance

Lastly a modeler should be careful of errors due to bias or variance.

Error Due to Bias

The error due to bias is taken as the difference between the expected (or average)

prediction of our model and the correct value, which we are trying to predict.
Of course you only have one model so talking about expected or average

http://rpubs.com/newajay/titanic_kaggle
http://rpubs.com/newajay/titanic_kaggle
http://rpubs.com/ajaydecis/logisticmodels

Predicted condition

Total population

Predicted condition
positive

Predicted condition
negative

Prevalence
= Condition positive
X Total population

True
condition

Condition
positive

True positive

False negative
(type Il error)

True positive rate
(TPR), sensitivity,
recall

_ __ X True positive
~ = Condition positive

False negative rate
(FNR), miss rate
_ _ X False negative
~ X Condition positive

Condition
negative

False positive
(type | error)

True negative

False positive rate
(FPR), fall-out
_ _ X False positive
~ X Condition negative

True negative rate
(TNR), specificity (SPC)
_ __ZTrue negative
"~ 3 Condition negative

Figure 5.18 Confusion matrix.

Accuracy (ACC) =

X True positive + = True negative

Positive predictive value
(PPV), precision
X True positive
X Test outcome positive

False omission rate (FOR)
_ __ X False negative
"~ X Test outcome negative

Positive likelihood
. TPR
tio (LR+)= ——
ratio (LR+) PR

X Total population

False discovery rate
(FDR)
X False positive

X Test outcome positive

Negative predictive value
(NPV)

_ = True negative

~ X Test outcome negative

Negative likelihood

0 _FENR
ratio (LR: =INR

Diagnostic odds ratio

(DOR)= LR+
LR-

196 | 5 Statistical Modeling

Low variance High variance

°
°
..V.
..

Figure 5.19 Bias and variance. http://scott.fortmann-roe.com/docs/BiasVariance.html.
Source: Scott Fortmann-Roe. © CSS from Substance.io.

Low bias

High bias

prediction values might seem a little strange. However, imagine you could
repeat the whole model building process more than once: each time you gather
new data and run a new analysis creating a new model. Due to randomness in
the underlying datasets, the resulting models will have a range of predictions.
Bias measures how far off in general these models’ predictions are from the
correct value.

Error Due to Variance

The error due to variance is taken as the variability of a model prediction for a
given data point. Again, imagine you can repeat the entire model building pro-
cess multiple times. The variance is how much the predictions for a given point
vary between different realizations of the model (Figure 5.19).

References

Stephen R. Johnson (2008). The Trouble with QSAR (or How I Learned To Stop
Worrying and Embrace Fallacy). Journal of Chemical Information and
Modeling, 48(1), 25-26. 10.1021/ci700332k

Deborah J. Rumsey. Statistics for Dummies. Standard Normal Distribution.
John Wiley & Sons, Inc., Hoboken, 2016.

http://scott.fortmann-roe.com/docs/BiasVariance.html

6

Data Visualization

To dos: plot.ly, bokeh, Shiny, Googlevis

6.1 Concepts on Data Visualization

Data visualization is the presentation of data in a pictorial or graphical format
to understand information more easily and quickly. Effective visualization
helps users in analyzing and reasoning about data and evidence. It makes com-
plex data more accessible, understandable, and usable. It is more than just
impressive-looking graphs because it helps to understand data much better
than a tabular nonvisual form would do. A good course to learn data visualiza-
tion would be at https://www.coursera.org/learn/datavisualization

6.1.1 History of Data Visualization

William Playfair is credited with inventing many of the graphs associated with
modern data visualization such as the line, area, and bar charts of economic
data, pie chart, and circle graph.

The work of Charles Minard is said to have greatly influenced the field of
data visualization. His famous chart, Napoleon’s march shows the death and
decline of the French Grande Armée in the war against Russia. The graphic is
notable for its representation in two dimensions of six types of data: the
number of Napoleon’s troops, distance, temperature, latitude and longitude,
direction of travel, and location relative to specific dates. It is thus an early
example of an information graphic (Figure 6.1).

Florence Nightingale did similar pioneering work in data visualization in
representing deaths due to various diseases during the Crimean War with her
coxcomb graphs (Figure 6.2). The following is cited in http://understanding
uncertainty.org/coxcombs

An early example of how spatial visualization can greatly aid decision-
making is by Jon Snow (not from the Game of Thrones!) whose cholera

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

197

https://www.coursera.org/learn/datavisualization
http://understandinguncertainty.org/coxcombs
http://understandinguncertainty.org/coxcombs

Carle Jﬁqu.rm'ivc. e ptﬂr.*am‘;ﬁ;n‘uu 200 Qemie Frangaise k-a,g‘!: Covapague . 3 Russie 1812 1815
Dasssre pan- o Mimazd, Duspoctina .,m«f_ :‘It.. ¢ sord. mn_ektaite. e o vl 1865,
ot mrelises ¥homsmes pisents e sapeisemtiv Lo Snsgouss S0 giuse eolosic i aniven. S willimmiis. prmtc $in sille Joemumss, s dem da plos icnth on Venoots .
Bt foman. Lo Boricgus Bt D gt it o« Rustic, Lo e B R e — B L cote e 2t paioda
S ot rmenges in. S Chies, deelgur, de Fezondac de Chambray ot jomssal iivac- e b, phus s ¢ ten. apes e 28 Celee. &
Frne v fre e & Ll Lo Siantion 30 Lol i eyl g Lo coeps s Frie Viivms o Teasial Dessonssaqi o8] itachit s Mt r
- Ml bt 9012 CUilon s WA, ittt ot waticbi asme [avmsie

L st s o (s 8 1 Pt |

3

B

L MOECOU
LY

TABLEAU CM.WI'@LH' el .
S E— - "
o i, g, Tn
H
| R Tl o
s

T o g, § o 1 M B4 P

Figure 6.1 Minard’s graph for Napoleon'’s march. Source: © University of Cambridge.

Aot Embed Print Felase Screen

DIAGRAM o mva CAUSES or MORTALITY 1
4 THE ARMY 4 THE EAST APRAL 15 v5 MARCH S5

[T

S >

L

The Arcas of the blue, red, & MNack wedges are each measured from
Ehe CEntre 35 EAE COMMGN vertex:

The bl wedkyes measured fram the contre of the crcle repeesent ares

The black line across the red [rlangie in Nov" 1854 marks the boundary
Of tNe DEAtns frOm 3N OUher CAFSES GUTTNg the Mmontn

The entire areas may be compared by follwing the bive, the red & the
Black enclasing lines.

) wounss

(of] Otrcmnse

Figure 6.2 Florence Nightangle Coxcomb charts.

200 | 6 Data Visualization

Figure 6.3 Jon Snow Cholera Outbreak Map.

outbreak graph helped pinpoint the cause to a single water pump. It is regarded
as the founding event of the science of epidemiology (Figure 6.3).

6.1.2 Anscombe Case Study

“Lies, damned lies, and statistics” is a phrase describing the sometimes
misleading but powerful power of numbers, particularly the use of statistics to
bolster a weak or untenable argument.

The Anscombe case study shows how misleading conclusions from identical
summary statistics (e.g., mean, standard deviation, and correlation) can be
corrected only when we visualize data (revealing dissimilar data graphics (scat-
terplots)). Source: Anscombe (1973) http://www.sjsu.edu/faculty/gerstman/
StatPrimer/anscombel973.pdf

We recreate the case study in Python using the R Dataset. A copy of the code
is at the author’s github (https://github.com/decisionstats/pythonfordata
science) and at http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f
470d5c07194302f53€

We read the data using pandas, find the mean and standard deviations
through numpy, use regression using statsmodel package, and finally visualize
using the ggplot package.

http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
https://github.com/decisionstats/pythonfordatascience
https://github.com/decisionstats/pythonfordatascience
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e

6.1.3

import pandas as pd

Importing Packages

6.1 Concepts on Data Visualization

import statsmodels.formula.api as sm
import numpy as np

import ggplot as gg

Reading the Dataset
anscombe=pd.read csv("https://vincentarelbundock.

github.io/Rdatasets/csv/datasets/anscombe.csv")

anscombe

Unnamed: 0 x1 x2 x3 x4 y1 y2 y3 y4
0 1 10 10 10 8 8.04 9.14 7.46 6.58
1 2 8 8 8 8 6.95 8.14 6.77 5.76
2 3 13 13 13 8 7.58 8.74 12.74 7.71
3 4 9 9 9 8 8.81 8.77 7.11 8.84
4 5 11 11 11 8 8.33 9.26 7.81 8.47
5 6 14 14 14 8 9.96 8.10 8.84 7.04
6 7 6 6 6 8 7.24 6.13 6.08 5.25
7 8 4 4 4 19 4.26 3.10 5.39 12.50
8 9 12 12 12 8 10.84 9.13 8.15 5.56
9 10 7 7 7 8 4.82 7.26 6.42 791
10 11 5 5 5 8 5.68 4.74 5.73 6.89
Dropping the Column
anscombe=anscombe.drop ('Unnamed: 0', 1)
The Anscombe Quartet
anscombe

x1 x2 x3 x4 y1 y2 y3 v4

0 10 10 10 8 8.04 9.14 7.46 6.58
1 8 8 8 8 6.95 8.14 6.77 5.76
2 13 13 13 8 7.58 8.74 12.74 7.71
3 9 9 9 8 8.81 8.77 7.11 8.84
4 11 11 11 8 8.33 9.26 7.81 8.47
5 14 14 14 8 9.96 8.10 8.84 7.04
6 6 6 6 8 7.24 6.13 6.08 5.25
7 4 4 4 19 4.26 3.10 5.39 12.50
8 12 12 12 8 10.84 9.13 8.15 5.56
9 7 7 7 8 4.82 7.26 6.42 7.91
10 5 5 5 8 5.68 4.74 5.73 6.89

201

202

6 Data Visualization

6.1.4 Taking Means and Standard Deviations

np.mean (anscombe)

x1 9.000000
x2 9.000000
X3 9.000000
x4 9.000000
vyl 7.500909
y2 7.500909
y3 7.500000
v4 7.500909

dtype: floate4

np.std (anscombe)
x1 3.162278
X2 3.162278
x3 3.162278
x4 3.162278
vl 1.937024
y2 1.937109
y3 1.935933
v4 1.936081

dtype: floate4

Fitting Regression Line between Respective X and Y
resultl = sm.ols(formula="yl ~ x1 ", data=anscombe) .fit ()
resultl.summary ()

/home/ajay/anaconda3/lib/python3.4/site-packages/
scipy/stats/stats.py:1285: UserWarning: kurtosistest
only valid for n>=20 .. continuing anyway, n=11

[}

"anyway, n=%i" % int(n))

Dep. Variable: yl R-squared: 0.667
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 17.99
Date: Thu, 07 Jul 2016 Prob (F-statistic): 0.00217
Time: 04:32:15 Log-Likelihood: —-16.841
No. Observations: 11 AIC: 37.68
Df Residuals: 9 BIC: 38.48
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.0001 1.125 2.667 0.026 0.456 5.544

x1 0.5001 0.118 4.241 0.002 0.233 0.767

6.1 Concepts on Data Visualization

Omnibus: 0.082 Durbin-Watson: 3.212

Prob(Omnibus): 0.960 Jarque-Bera (JB): 0.289

Skew: -0.122 Prob(JB): 0.865
Kurtosis: 2.244 Cond. No. 29.1

resultl.params
Intercept 3.000091
x1 0.500091
dtype: floate4
resultl.rsquared

0.66654245950877489

result2 = sm.ols(formula="y2 ~ x2 ", data=anscombe) .fit ()
result3 sm.ols (formula="y3 ~ x3 ", data=anscombe) .fit ()
result4d = sm.ols(formula="y4 ~ x4 ", data=anscombe) .fit ()

print
print
print
print

resultl.params
result2.params
result3.params
result4.params

—~ o~ o~ —~

)
)
)
)

Intercept 3.000091
x1 0.500091
dtype: floate4
Intercept 3.000909
x2 0.500000
dtype: floate4
Intercept 3.002455
x3 0.499727
dtype: floate4
Intercept 3.001727
x4 0.499909
dtype: floate4

print
print
print
print

resultl.rsquared
result2.rsquared
result3.rsquared
result4.rsquared

—~ o~ o~ —~

)
)
)
)

.666542459509
.666242033727
.666324041067
.666707256898

o O O O

203

204

6 Data Visualization

print (np.mean (anscombe))

x1 9.000000
x2 9.000000
X3 9.000000
x4 9.000000
vyl 7.500909
y2 7.500909
y3 7.500000
v4 7.500909

dtype: floate4

print (np.std (anscombe))

x1 3.162278
X2 3.162278
x3 3.162278
x4 3.162278
vl 1.937024
y2 1.937109
y3 1.935933
v4 1.936081

dtype: floate4

6.1.5 Conclusion

It seems that X and Y have the same means, same standard deviations, same
regression parameters, and same R-squared value (up to two decimal places).
So as per summary statistics, the data between all four quartets (X1 Y1, X2 Y2,
X3 Y3, and X4 Y4) is the same. A copy of this tutorial is available at http://
nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e
#Data-Visualization

6.1.6 Data Visualization

$matplotlib inline

P = gg.ggplot(gg.aes(x='x1l', y='yl'), data=anscombe)
P + gg.geom point ()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/ init .py:872: UserWarning: axes.color
cycle is deprecated and replaced with axes.prop cycle;
please use the latter.

warnings.warn(self.msg depr % (key, alt key))

http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization
http://nbviewer.jupyter.org/gist/decisionstats/3737642751895f470d5c07194302f53e#Data-Visualization

6.1 Concepts on Data Visualization
12

11

10 .

yi

x1

<ggplot: (-901764730)>
P2 = gg.ggplot (gg.aes(x='x2', y='y2'), data=anscombe)
P2 + gg.geom point ()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/ init .py:872: UserWarning: axes.color
cycle is deprecated and replaced with axes.prop cycle;
please use the latter.

warnings.warn(self.msg depr % (key, alt key))

10

x2

205

206

6 Data Visualization

<ggplot: (-901793152) >
pP3 = gg.ggplot (gg.aes(x='x3"', y='y3'), data=anscombe)
pP3 + gg.geom point ()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/ init .py:872: UserWarning: axes.color
cycle is deprecated and replaced with axes.prop cycle;
please use the latter.

warnings.warn(self.msg depr % (key, alt key))

14
13
12
11

10

y3

x3

<ggplot: (-901915866) >
p4=9gg.ggplot (gg.aes(x="x4"', y='y4'), data=anscombe)
p4 +gg.geom point ()

/home/ajay/anaconda3/lib/python3.4/site-packages/
matplotlib/ init .py:872: UserWarning: axes.color
cycle is deprecated and replaced with axes.prop cycle;
please use the latter.

warnings.warn(self.msg depr % (key, alt key))
<ggplot: (-901651556) >

6.2 Tufte’s Work on Data Visualization

y4

x4

6.1.7 Conclusion

The graphs show that the four quartets are completely different even though
summary statistics (means, deviations, regression) was showing identical
result.

The first quartet (x1, y1) shows a scattered relationship.

The second quartet shows a curved polynomial relationship.

The third shows a straight line with one outlier.

The fourth shows a constant value of x and one outlier.

So we are better off relying on data visualization as an additional step to
verify summary statistics or exploratory data analysis (but note we should rely
on both, not just data visualization alone as many dashboards tend to do).

6.2 Tufte’s Work on Data Visualization

Edward Tufte is known in some circles as the father of modern data visualiza-
tion. Some of his seminal principles for data visualization are the following:

1) The representation of numbers, as physically measured on the surface of
the graph itself, should be directly proportional to the numerical quantities
represented.

207

208

6 Data Visualization

2) Clear, detailed, and thorough labeling should be used to defeat graphical
distortion and ambiguity. Write out explanations of the data on the graph
itself. Label important events in the data.

3) Show data variation, not design variation.

4) In time-series displays of money, deflated and standardized units of mone-
tary measurement are nearly always better than nominal units.

5) The number of information carrying (variable) dimensions depicted should
not exceed the number of dimensions in the data. Graphics must not quote
data out of context.

To the data scientist, Tufte shows a set of simple and easy to follow
directives:

1) Above all else show data.

2) Maximize the data-ink ratio.
3) Erase non-data-ink.

4) Erase redundant data-ink.
5) Revise and edit.

6.3 Stephen Few on Dashboard Design

Stephen Few is the acknowledged master for designing better dashboards
that show how enterprises visualize their business data. There are three key
questions for a dashboard:

1) Who is my audience?
2) What value will the dashboard add?
3) What type of dashboard am I creating?

In his paper, “Common Pitfalls on Dashboard Design,” Few lists the common
mistakes when designers build dashboards. These can and should be used as a
checklist for data scientists or designers of new dashboards. For the full paper
the reader is advised to read it at http://www.perceptualedge.com/articles/
Whitepapers/Common_Pitfalls.pdf

Exceeding the boundaries of a single screen
Supplying inadequate context for the data
Displaying excessive detail or precision
Expressing measures indirectly

Choosing inappropriate media of display
Introducing meaningless variety

Using poorly designed display media

http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf

6.3 Stephen Few on Dashboard Design

Encoding quantitative data inaccurately
Arranging the data poorly

Ineffectively highlighting what’s important
Cluttering the screen with useless decoration
Misusing or overusing color

Designing an unappealing visual display

Stephen Few also gives advice that is very practical to people building data
science teams.

The advice is as follows:

When you need more computing power, there are three potential choices:

1) Replace your computer with one that’s more powerful.
2) Add more computers.
3) Upgrade the computer that you have to make it more powerful.

When you need more human power, what are your choices?

e Replace the employee with one who’s more productive.
e Add more people.
e Help your employee upgrade skills to make him more productive.

6.3.1 Maeda on Design

John Maeda created the laws of simplicity to help designers create better
interfaces. While a data scientist is typically analyzing data created by differ-
ent interfaces (e.g., an experiment on web sites), a knowledge of design can
help them better and provide them more useful advice to design
counterparts.

The laws of simplicity are taken from a small 100-page book called The Laws
of Simplicity:

e Reduce—the simplest way to achieve simplicity is through thoughtful
reduction.

Organize—organization makes a system of many appear fewer.
Time—savings in time feel like simplicity.

Learn—knowledge makes everything simpler.

Differences—simplicity and complexity need each other.

Context—what lies in the periphery of simplicity is definitely not peripheral.
Emotion—more emotions are better than less.

Trust—in simplicity we trust.

Failure—some things can never be made simple.

The one—simplicity is about subtracting the obvious and adding the
meaningful.

209

210

6 Data Visualization

Three keys:

1) Away—more appears like less by simply moving it far, far away.
2) Open—openness simplifies complexity
3) Power—use less, gain more.

6.4 BasicPlots

These are some of the basic plots in Python.
The basic packages for data visualization in Python Data Science (PyData)
are matplotlib, seaborn, ggplot, and bokeh. We import the packages as

import pandas as pd

import seaborn as sns

import matplotlib as mpl

import matplotlib.pyplot as plt

An online version of this tutorial is available at http://nbviewer.jupyter.org/
gist/decisionstats/e9fd40890553b24acda5e07654bceaa8

To make sure graphs remain in same window of our Jupyter notebook, we
use the following line.

$matplotlib inline

Let’s take the Iris Dataset from R using the code below. The following will plot
a scatterplot. Simply put—a scatterplot plots the data in points

iris =pd.read csv("https://vincentarelbundock.github.
io/Rdatasets/csv/datasets/iris.csv ")
iris=iris.drop(’Unnamed: 0/, 1)

iris.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns) :
Sepal.Length 150 non-null floaté64
Sepal.Width 150 non-null floaté4
Petal.Length 150 non-null floaté64
Petal.Width 150 non-null floaté4
Species 150 non-null object
dtypes: float64(4), object(l)

memory usage: 5.9+ KB

plt.scatter (x="Sepal.Length",y="Petal.Length",
data=iris) ;

http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv

6.4 Basic Plots

8
7 -
° e
6 ® [] o
..-.: ':: 70
5 00008, ..l H H
° 0g00 .:.:.:.::. T
4 ° 089g°e0
° ®e
oo
3 °
2 e o
sossiopiocs, ¢
1
0

40 45 50 55 60 65 70 75 80 85

Distribution plot—To plot the distribution, I can use a distplot from seaborn,
while to add a regression line I can use regplot.
sns.distplot(iris([“Sepal.Length”])

/home/ajayohri/anaconda3/lib/python3.5/site-packages/
statsmodels/nonparametric/kdetools.py:20: Visible
DeprecationWarning: using a non-integer number instead of
an integer will result in an error in the future

y = X[:m/2+1] + np.r_ [0,X[m/2+1:],0]*1j

<matplotlib.axes. subplots.AxesSubplot at
0x7£0302e4e278>

0.5

0.4 //\\

0.3

0.2

0.1

0.0

3 4 5 6 7 8 9
Sepal.Length

211

212 | 6 Data Visualization

sns.regplot (x=“Sepal.Length"“, y=“Sepal.Width”,
data=iris);

5.0
4.5
4.0

3.5

3.0

Sepal.Width

25

2.0 .
1.5

40 45 50 55 60 65 70 75 80 85
Sepal.Length

You can use swarmplot from seaborn to do a scatterplot for multiple categories.

plt.figure(figsize=(8, 6))
sns.swarmplot (x="Sepal.Length", y="Sepal.Width",
hue="Species",data=iris)

<matplotlib.axes. subplots.AxesSubplot at

0x7£0302d57438>
5.0
Species
@ setosa
45 ° @ versicolor
@ virginica
°
°
4.0 °
oo
o00 ° ° e
° o0
° o0 °
< 35 o000 o °
B e e0 o0 0 0 oo ° oo
= o0 (] (]
= ° o 00 ° ° o o oo o °
g ° X ° o0 eo00
D 30 o @ e o o e o0 0 00 000 es0 000 o [) ()
° L) e 00 00 ° °
o0 o e o o0 o ° ° °
° o e00 o o0
° o0 ° °
2.5 ° ° e 00 (] °
° ()
° ° ° °
() °
2.0 °

1.5
4.34.44.54.64.74.84.95.05.15.25.35.45.55.65.75.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.9

Sepal.Length

6.4 Basic Plots

A swarmplot can help us visualize multiple categories of scatterplots (it draws
a categorical scatterplot with non-overlapping points), while a pairplot can
help us with plotting entire data frame (by plotting the pairwise relationships
in the entire dataset).

NOTE: We can modify the size of the figure by the parameter plt.
figure(figsize=(A,B)) with the hue parameter as a step to modify color and
make the graphic more coherent or easy to understand.

sns.pairplot(iris, hue="Species")
<seaborn.axisgrid.PairGrid at 0x7£0302824550>

8.5

60 .

55 o

5.0 LR
45 I III .

4.0

25 s . 2 . —t

1 | L @ setosa

Sepal.Length

Sepal.Width

5
8 @ versicolor
7 - @ virginica
6 o ot °
< oo
5 5 P
g o o g™ . H
3 4 By 3
= .
S S0 . g
3 s 2 - i
2 —en ® o TS ..
| Rl PR [I i
0 ,II |
3.0
25 I P .o 5
20 0 15 :
s J .
£ 15 - o -
g 10 o B0 o
&
05 1 A+ acde
0o SR faenslned o o I II I I
-05 -
4.04550556.06.57.07.58.085 1.5 20 25 30 35404550 0 1 2 3 4 5 6 7 8 -0500 05 1.0 1.5 20 25 30

Sepal.Length Sepal. Width Petal.Length Petal. Width

Barplot—We can use barplot as well quite easily in Python using seaborn. Let
us take the diamonds dataset from the original ggplot2 package in R.

diamonds =pd.read csv("https://vincentarelbundock.
github.io/Rdatasets/csv/ggplot2/diamonds.csv")
sns.barplot (x="color", y="carat",data=diamonds)

<matplotlib.axes. subplots.AxesSubplot at
0x7£0300092c18>

213

https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv

214

6 Data Visualization

1.2

1.0

0.8

0.6

Mean(carat)

0.4

0.2

0.0
E | J H F G D

Color

sns.barplot (x="color", y="price",data=diamonds)
<matplotlib.axes. subplots.AxesSubplot at
0x7£030003ce80>

6000

5000

4000

3000

Mean(price)

2000

1000

E J H F G D
Color

Factorplot—We use factorplot from seaborn library and find in the diamonds
dataset that colors L] have maximum price while cut Premium has maximum
price compared with others. Factorplot draws a categorical plot onto a
FacetGrid (see https://stanford.edu/~mwaskom/software/seaborn/generated/
seaborn.factorplot.html)

By changing the x-axis and the col (color) variable, we get the following graphs,
and by changing the kind parameter of factorplot from box to bar or point, we
get the following graphs. The change in graphs helps with exploratory analysis.

https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.factorplot.html
https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.factorplot.html

sns. factorplot (x="cut", y="price",col="color", data=diamonds, kind="bar", size=4,
aspect=.5) ;

2000 color=E color=1 color=J color=H color=F color=G color=D
6000
5000
4000
3
2
2 3000
2000
1000
oS > & & S 8 < S &
i §o@ 0°°c\0 Q'o\ &\v 00(\ & gf" &\\» & & (('o\ g,” &\\ 000600 & \bdl’a\ q& ba"’o« % &’bo‘\&\) &
N < < <
< $© «$© 2$© 2$© N4 \\0 < \\0 < \\m

cut cut cut cut cut cut cut

sns.factorplot (x="color", y="price",col="cut",
aspect=.5) ;

20000

15000

10000

price

5000

0

data=diamonds,

kind="box",

size=4,

cut=Ideal cut=Premium cut=Good cut=Very Good cut=Fair
I RN P
Eoa H '
: EEER
1 N ¥
1 i 1l cop |t
Tt L I '
1 - T E B - !
i T T
E I J HF G D J H F G D E I J H F G D J H F G D E I J H F G
color color color color color

sns.factorplot (x="cut", y="price",col="color", data=diamonds, kind="box", size=4,
aspect=.5) ;

20000 color=E color=1 color=J color=H color=F color=G color=D
— —_— t '
g : ; ! il
+ L]
15000 $ i . i i
' ; T4+ 4 Tt T Pl 1 :
+ -
$ + S + 1
2 10000 . B T T ! 53
o -1 T 4+
- ! 5 L ! !l % L !!
0 ! > ! N > RN IR > SRS > IR > RSN ! RSN
EFTF S FFF S EITFTF @ TP I LI F TS LS FT S S
Q®) € Q @ Y @ Q@ <@ & < o
$© $© R $© «©@ «© R

sns.factorplot (x="cut", y="price",col="color", data=diamonds, kind="point", size=4,
aspect=.5);

color=E color=1 color=J color=H color=F color=G color=D
7000
6000 *
5000

price

4000 /*/+ ¢ /\/—1" 7&?4

3000 ((

2000

Ideal Premium Good Very Good Fair Ideal Premium Good Very Good Fair Ideal Premium Good Very Good Fair Ideal Premium Good Very Good Fair Ideal Premium Good Very Good Fair Ideal Premium Good Very Good Fair Ideal Premium Good Very Good Fair
cut cut Cut cut cut cut cut

6.5 Advanced Plots

We can use jointplots for combined plots.
They can be of the form kde (for density) or scatter (for points) or hexbins
(for overplotting).

sns.jointplot (x="carat", y="price",data=diamonds)
<seaborn.axisgrid.JointGrid at 0x7£02£3d37908>

20000
.Pearsog’s r=0.92;
p=0, ~ *
e ® o
15000 *
L]
10000
[0}
Qo
o
5000
0
-5000
-1 1 2 3 4 5 6

Carat

You can also view this tutorial online at http://nbviewer.jupyter.org/gist/
decisionstats/e9fd40890553b24acda5e07654bceaa8

6.5 Advanced Plots

Grammar of graphics created by Wilkinson and implemented by Wickham in
R has revolutionized data visualization in recent years. To summarize, when
creating a plot we start with data. We can create many different types of plots
using this same basic specification. (Bars, lines, and points are all examples of
geometric objects.) We can scale the axes and statistically transform the data
(bins, aggregates).

219

http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8
http://nbviewer.jupyter.org/gist/decisionstats/e9fd40890553b24acda5e07654bceaa8

220

6 Data Visualization

The concept of layers:
Plot = data 1 + scales and coordinate system 2 + plot annotations 3

1) data plot type
2) Axes and legends
3) background and plot title

The layered grammar defines the components of a plot as (Figures 6.4 and 6.5):

o A default dataset and set of mappings from variables to aesthetics

e One or more layers, with each layer having one geometric object, one statis-
tical transformation, one position adjustment, and optionally, one dataset
and a set of aesthetic mappings

One scale for each aesthetic mapping used

A coordinate system

The facet specification

We can use the ggplot library created by Yhat to recreate ggplot style diagrams
in Python without even changing the code. This is an example from http://
nbviewer.jupyter.org/gist/decisionstats/df98{f9df42e7764d600

Title

Figure 6.4 Graphics objects produced by (from left to right) geometric objects, scales and
coordinate system, plot annotations. Source: http://vita.had.co.nz/papers/layered-grammar.
pdf. © University of Cambridge.

Title Figure 6.5 The final graphic, produced by combining the
] pieces in Figure 6.4. Source: http://vita.had.co.nz/papers/
| | layered-grammar.pdf. © University of Cambridge.
c [|
| @
| @

http://nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600
http://nbviewer.jupyter.org/gist/decisionstats/df98ff9df42e7764d600
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf

6.5 Advanced Plots | 221
import matplotlib as mt
%matplotlib inline #this line makes sure plots are in
same notebook
from ggplot import *
p = ggplot(aes(x='price’, y='carat’), data=diamonds)

p

1.0-

0.8 -

0.6 -

0.4 -

0.2-

0.0

0.0 0.2 0.4 0.6 0.8 1.0

<ggplot: (-1059997756) >
P + geom point ()

Carat

-5000 0 5000 10000 15000 20000
Price

222 | 6 Data Visualization

<ggplot: (-1059338452)>
P + geom point() +facet grid(’cut’)

6 o Fair 1
4- . * . o0 o
21 ettt o i A Ny st
0
6 _[_ Good 1
4
5. .o
0- M*' s
6. — Ideal |
T4
S5 e
©o
6 — Premium |
‘21_ -I il oill'l.l. |‘
0 -
6 (T Very good]
i S
0-
—6000 0 6000 12000 18000
Price

<ggplot: (-1057884332) >

p = ggplot(aes(x='price’, y=’carat’,color="cut"),
data=diamonds)

P + geom point ()

6 -

Carat

-1 ' ' ' ' '
-5000 0 5000 10000 15000 20000
Price

6.7 Spatial Analytics | 223

<ggplot: (-1059249386) >

p = ggplot(aes(x='price’, y='carat’,color="clarity"),
data=diamonds)

P + geom point()

6 -

Clarity

Carat

|
-
4

-5000 0 5000 10000 15000 20000
Price

<ggplot: (-1060618628) >

6.6 Interactive Plots

Interactive plots can be done by bokeh in Python and by shiny package in R.
You can also use plot.ly for both.

6.7 Spatial Analytics

Spatial analytics can be done by leaflet package and by ggmap package in R. In
R a special section for spatial packages is at https://cran.r-project.org/web/
views/Spatial.html. In Python you can refer to http://pysal.readthedocs.io/
en/latest/PySAL and packages at https://pythongisresources.wordpress.com/
packages/

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html
http://pysal.readthedocs.io/en/latest/
http://pysal.readthedocs.io/en/latest/
https://pythongisresources.wordpress.com/packages/
https://pythongisresources.wordpress.com/packages/

224

6 Data Visualization

6.8 Data VisualizationinR

e Basic graphs

Some basic graphs in R are barplot and histogram. They are given by barplot
and hist functions. Boxplot is given by boxplot function and is used for explora-
tory data analysis (EDA). The following is taken from http://rpubs.com/
ajaydecis/basicRdataviz2 and http://rpubs.com/ajaydecis/dataviz2

par (bg="yellow")
boxplot (Sepal.Length~Species,
main="My First Graph")

My first graph

8.0

7.5

7.0 H _—

6.5

6.0

5.5

5.0

I
|

4.5 - i

R E—

T T T
setosa versicolor virginica

boxplot (Sepal.Length~Species,
main="My First Graph",
xlab="Species of Flowers",
ylab=" Measurement in mm")

My first graph

8.0
7.5
7.0 - _—
6.5 -
6.0 - :
5.5

4.5 4 ;

Measurement in mm

T T T
setosa versicolor virginica

Species of flowers

http://rpubs.com/ajaydecis/basicRdataviz2
http://rpubs.com/ajaydecis/basicRdataviz2
http://rpubs.com/ajaydecis/dataviz2

6.8 Data VisualizationinR | 225

boxplot (Sepal.Length~Species,
main="My First Graph",
xlab="Species of Flowers",
ylab=" Measurement in mm",
col="green")

My first graph

8.0
7.5
7.0
6.5 -
6.0
5.5+

Measurement in mm

5.0 5

4.5 H

I I
setosa versicolor virginica

Species of flowers

The package RColorbrewer addsin special color palettes or combinations
of colors to R.

library (RColorBrewer)
par (mfrow=c (3, 3))

hist (mpg, col=brewer.pal (8, "Blues"))
hist (mpg, col=brewer.pal (8, "Greens"))
hist (mpg, col=brewer.pal (8, "Greys"))

hist (mpg, col=brewer.pal (8, "Reds"))
hist (mpg, col=brewer.pal (8, "Oranges"))

hist (mpg, col=brewer.pal (8, "Setl"))
hist (mpg, col=brewer.pal (8, "Set2"))
hist (mpg, col=brewer.pal (8, "Set3"))

((8 11

hist (mpg, col=brewer.pal (8, "Pastell"))

B6dw

ge 0c G 02 6L O}
fdw jo weiboisiH
Bdw
G¢ 0€ G 02 6L O}
L1 1 |

B6dw jo weibolsiH

B6dw

g€ 0€ Ge¢ 0c 6GI
I E—

oL

IJ’

6dw jo weiboisiH

Aouanbai4 Aouanbai4

Aouanbalg

’[

B6dw
ge 0€ G 02 GL O}
fdw jo weiboisiH
Bdw
Ge¢ 0 G O0c 4G ok
Bdw jo weiboisiH
Bdw
Ge 0¢ G 0¢c G Ol

6dw jo weiboisiH

Aouanbai4 Aouanbaig

Aouanbaly

B6dw jo weiboisiH

g€ 0€ G2 0c¢ Gi

=

Bdw
o]
B6dw jo weibolsiH
Bdw
(0]

g€ 0€ G¢ O0c Gl

’[

6dw jo weiboisiH

Aouanbai4 Aouanbaig

Aouanbaly

6.8 Data Visualization in R

#barplot
barplot (table(iris$Species, iris$Sepal .Length))

10

il

43 46 49 52 55 58 6 62 65 68 7 72 76

barplot (table(iris$Species, iris$Sepal.
Length) ,col=heat.colors(5,0.6))

itk

43 46 49 52 58 6 62 65 68 7 72

10

N
|

\V)
|

Ny I
7.6
#rug plot

hist (iris$Sepal.Length,breaks=10)
rug(iris$Sepal.Length)

227

228 | 6 Data Visualization

Histogram of iris$Sepal.Length

30

25

20

15

10

o
|

T T

4 5 6 7 8
iris$Sepal.Length

You can read and manipulate data quite fast using the data.table package in R:

setwd ("C:/Users/dell/Desktop")
library(data.table)

bigdiamonds=fread ("BigDiamonds.csv")

H#

Read 23.4% of 598024 rows

Read 50.2% of 598024 rows

Read 75.2% of 598024 rows

Read 598024 rows and 13 (of 13) columns from 0.049 GB
file in 00:00:06

hist (bigdiamonds$carat,breaks=100)

Histogram of bigdiamonds$carat

60000

40000

20000

bigdiamonds$carat

6.8 Data Visualization in R

#rug (diamonds$carat)

barplot (bigdiamonds [, mean (carat) ,color] $V1)

1.4 4

1.2

1.0 -

0.8

0.6

0.4 -

0.2 =

0.0 -~
We also have specialized packages/functions like tableplot:

tableplot (diamonds3)

wlog(price) carat color clarity
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100% F W— |
012340123 Good E 02468024680246
row bins: 100 |deal E ISFI1
objects: H SI2
593,784 V.Good M| NN
5,938 (per bin) K I VVS1
L VVS2
I missing g missing [l missing

From http://rpubs.com/ajaydecis/corrmosaic
In a corrgram, negative correlation is shown in red, while the positive in blue
with the intensity of colors showing the magnitude of correlation (for color

229

http://rpubs.com/ajaydecis/corrmosaic

230

6 Data Visualization

version refer online). In a mosaic plot, the area of the boxes shows the numbers
for various subcategories.

#install.packages ("corrgram")
library (corrgram)
corrgram (mtcars)

data (diamonds, package = "ggplot2")
corrgram (diamonds)

.
N

carat

depth

price 4

e

6.8 Data VisualizationinR | 231

library (vcd)
Loading required package: grid
mosaic(Titanic)

Sex
Male Female %
k7 3
Kz 2
o
5 5
£l] 2
L JL J | g
]
" o £ 9
c X 3 O
- M
o <<
-
(&)
= =
g 3
(@] <
No Yes NoYes
Survived
mosaic (HairEyeColor)
Eye
Brown Blue Hazel Green
o
gl) I I ¢
_ o2
o | I | e I §
w
Q
gz
c
H S|
E o o X
= = g w
hd
B 1 [] [1 [
o | —— |

J [
=0! |

2]

We can build spatial visualization using maps and ggmap packages in R.
Example from http://rpubs.com/ajaydecis/basicspatial

Female Male Female Male

http://rpubs.com/ajaydecis/basicspatial

232

6 Data Visualization

par (mfrow=c(1,1))

plot (citiesIND, axes=T, asp=1l, pch=16,main="Spatial
Plot of Cities in India")

Highlight big cities

plot (citiesIND[citiesIND@datasSpop > 1000000,], pch=1,
col="red", cex=3, add=TRUE)

Highlight cities with bigger dengue deaths

plot (citiesIND [citiesIND@dataS$Ssamp > 960, 1, pch=1,
col="blue", cex=3, add=TRUE)

Spatial Plot of Cities in India

35

30

25

20 -

15 4

10

A gallery of R graphs is available at http://scs.math.yorku.ca/index.php/R_
Graphs_Gallery. © Wikipedia.

6.8.1 A Note of Sharing Your R Code by RStudio IDE
From https://rpubs.com/about/getting-started

1) In RStudio, create a new R Markdown document by choosing File. | New. |
R Markdown.

2) Click the Knit HTML button in the doc toolbar to preview your
document.

3) In the preview window, click the Publish button.

You will need a RPubs.com account to publish.

http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
https://rpubs.com/about/getting-started

6.8 Data VisualizationinR | 233

6.8.2 A Note on Sharing Your Jupyter Notebook

1) Download as IPython file from the file option.

S 127001 #9980t P5d-bbal 4193269 Ibcreaddb | Oee

1) IJulia Laes Cracupamse Agr 25 20 17 ptonindy

Fle Edt Vew Wem Col Kews Heb
el * 0.0 F B * Col Tosler yigmg »
1 Opem e e
I
Mane o Copy
s ' [' 1 .
Py — Sepaleng

3) Create a new gist at by pasting the text from step 2 here
https://gist.github.com/ (assuming you have a github account).

https://gist.github.com/

234

6 Data Visualization

¢ .
GitHub Gist A G [LN
Your Gasts
I“(Coused
Fuked ? . Schionsten | gt ST eS0T et e Pl Wocommests & 0 sary

Secivionston | el sxmmpls A e Uolns Wocemmess &0

4) Paste the URL of the Gist at http://nbviewer.ipython.org/ to get your iNote-
book URL for sharing.

5) To update your notebook, simply copy and paste the new IPython code by
editing the gist again.

6) An example here is http://nbviewer.ipython.org/gist/decisionstats/62c5387
624a9ba9015a4

082 DetaTrame:
Sepaliength fepai¥idth Prtallength Peiale
5.1 13 1.4

4.8 2.0 LA

http://nbviewer.ipython.org/
http://nbviewer.ipython.org/gist/decisionstats/62c5387624a9ba9015a4
http://nbviewer.ipython.org/gist/decisionstats/62c5387624a9ba9015a4

6.8 Data Visualization in R
Bibliography

E.J. Anscombe (1973). Graphs in Statistical Analysis. The American Statistician,
27(1), 17-21. http://links.jstor.org/sici?sici=0003-1305 (accessed May 6, 2017).

Vincent Arel-Bundock, Université de Montréal, Science politique, https://
vincentarelbundock.github.io/Rdatasets/ (accessed May 6, 2017). Rdatasets is a
collection of 1039 datasets that were originally distributed alongside the
statistical software environment R and some of its add-on packages. The goal is
to make these data more broadly accessible for teaching and statistical software
development.

Coxcomb graphs. http://understandinguncertainty.org/coxcombs (accessed May
6,2017).

Stephen Few (2006). Common Pitfalls in Dashboard Design. http://www.
perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf (accessed May
6,2017).

Michael Friendly (2008). The Golden Age of Statistical Graphics. Statistical
Science, 23(4), 502—-535. http://projecteuclid.org/download/pdfview_1/euclid.
$8/1242049392 (accessed May 6, 2017).

Charles Joseph (Spring 2002). Visions and Re-Visions. Journal of Educational and
Behavioral Statistics, 27(1), 31-52. http://www.datavis.ca/papers/jebs.pdf
(accessed May 6, 2017).

Ajay Ohri (2014). Decisionstats. https://decisionstats.com/2014/05/08/how-to-
share-your-ipython-or-ijulia-code/ (accessed May 6, 2017).

Ian Spence (Winter 2005). No Humble Pie: The Origins and Usage of a Statistical
Chart. Journal of Educational and Behavioral Statistics, 30(4), 353—368. http://
www.psych.utoronto.ca/users/spence/Spence%202005.pdf (accessed May 6, 2017).

Edward Tufte. The Visual Display of Quantitative Information, Second Edition,
1983. http://thedoublethink.com/2009/08/tufte%E2%80%99s-principles-for-
visualizing-quantitative-information/ (accessed May 6, 2017).

Eric W. Weisstein. Hypothesis Testing. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/HypothesisTesting. html (accessed May 6, 2017).

Hadley Wickham (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag, New York.

Graham J. Williams (2011). Data Mining with Rattle and R: The Art of Excavating
Data for Knowledge Discovery. Springer-Verlag, New York.

Chi Yau. R Tutor. http://www.r-tutor.com/elementary-statistics/goodness-fit/
chi-squared-test-independence (accessed May 6, 2017).

Mark Zachry and Charlotte Thralls (2004). An Interview with Edward R. Tufte.
Technical Communication Quarterly, 13(4), 447—-462. https://www.
edwardtufte.com/tufte/s15427625tcq1304_5.pdf (accessed May 6, 2017).

235

http://links.jstor.org/sici?sici=0003-1305
https://vincentarelbundock.github.io/Rdatasets/
https://vincentarelbundock.github.io/Rdatasets/
http://understandinguncertainty.org/coxcombs
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://www.perceptualedge.com/articles/Whitepapers/Common_Pitfalls.pdf
http://projecteuclid.org/download/pdfview_1/euclid.ss/1242049392
http://projecteuclid.org/download/pdfview_1/euclid.ss/1242049392
http://www.datavis.ca/papers/jebs.pdf
https://decisionstats.com/2014/05/08/how-to-share-your-ipython-or-ijulia-code/
https://decisionstats.com/2014/05/08/how-to-share-your-ipython-or-ijulia-code/
http://www.psych.utoronto.ca/users/spence/Spence 2005.pdf
http://www.psych.utoronto.ca/users/spence/Spence 2005.pdf
http://thedoublethink.com/2009/08/tufte’s-principles-for-visualizing-quantitative-information/
http://thedoublethink.com/2009/08/tufte’s-principles-for-visualizing-quantitative-information/
http://mathworld.wolfram.com/HypothesisTesting.html
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
https://www.edwardtufte.com/tufte/s15427625tcq1304_5.pdf
https://www.edwardtufte.com/tufte/s15427625tcq1304_5.pdf

236

6 Data Visualization

6.8.3 Special Note: A Complete Wing to Wing Tutorial on Python

Python is a very widely used programming language. Written by Guido Von
Russum in 1989, it is now one of the most widely used programming languages.
In data science, Python has increasingly made strides, thanks to the pandas
package as well as the efforts of PyData community. Companies like Continuum
Analytics, Enthought, and Civis Analytics are creating both tools as well
as actually utilizing Python for data science. Companies like Datakind,
CodeAcademy, and Dataquest offer online education on Python for free.
Unlike R language, Python has two major versions, Python 2 and Python 3,
but just like R it is free and open source.

Core design parameters for Python remain crisp lines of code, using white
space as an input, emphasis for indentation, and sparse grammar. People
interested in knowing more on Python can go to the home page at https://
www.python.org/

Data science lies at the intersection of programming, statistics, and business
analysis. It is the use of programming tools with statistical techniques to ana-
lyze data in a systematic and scientific way. Accordingly this tutorial will try to
focus at least on the statistical and programming parts of data science. Data
scientists would also be interested in the PyData community at http://pydata.
org/. Why use Python for data science? Python has surprising capabilities in
data analysis and data visualization, thanks to the new generation of packages
being created (pairplot on famous iris dataset using seaborn package is shown
below) (Figure 6.6).

Here is a brief tutorial in Pythonic data science. Some prerequisites are given
as follows:

Installations:

1) Download and install Anaconda from https://www.continuum.io/
downloads (alternatives could be Canopy Express from https://store.
enthought.com/ or just the core implementation from https://www.python.
org/downloads/).

2) Download and install the Jupyter Notebook Interface from http://jupyter.
readthedocs.org/en/latest/install.html

3) You can use pip or easy_install to install packages. There are more than
72000 Python packages available at https://pypi.python.org/pypi and
you can browse Python packages by topic at https://pypi.python.org/
pypi?%3Aaction=browse

Packages for data science
Some important packages for data scientists to use in Python are as follows:

1) Pandas (http://pandas.pydata.org/)—Pandas allows users the familiar data
frame format in which rows are observations and columns are variables and
a wide variety of useful data analysis features.

https://www.python.org/
https://www.python.org/
http://pydata.org/
http://pydata.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://store.enthought.com/
https://store.enthought.com/
https://www.python.org/downloads/
https://www.python.org/downloads/
http://jupyter.readthedocs.org/en/latest/install.html
http://jupyter.readthedocs.org/en/latest/install.html
https://pypi.python.org/pypi
https://pypi.python.org/pypi?:action=browse
https://pypi.python.org/pypi?:action=browse
http://pandas.pydata.org

6.8 Data Visualization in R

75 . .
.’ TR
5 e
5 - .
s -ge
5 s £ :
g st
® 55 T Wl 3
) .

0 v L o

= sl ® -

4.0

30 =t . L
25 se 3 2 .
2.0 . I
. -
o . .
. 30832 .
. o, 1 e o . o
Ve = ¥
o .’0 9 e . e
- o3 S I II i
II |
& . ‘I'l. | ‘
: *e) s e st I I
Ll

e
oYX
Seeee
4045505560657.0758085 15 20 25 3.0 35 40 45 50 0 1 2 3 4 5 6 7 8 -0.5 00 05 1.0 15 20 25 3.0

sepal_width

petal_length

petal_width

sepal_length sepal_width petal_length petal_width

Figure 6.6 Pairplot on Iris Dataset using seaborn package.

2) Scikit-learn (http://scikit-learn.org/)—Scikit-learn allows you a widely used
machine learning package for data mining and modeling.

3) Statsmodels (http://statsmodels.sourceforge.net/)—Statsmodels brings
statistical tests and models available in Python.

4) Seaborn (http://stanford.edu/~mwaskom/software/seaborn/)—Seaborn
brings statistical data visualization to Python.

5) Pandasql (https://pypi.python.org/pypi/pandasql)—This package allows
SQL syntax and is thus similar to sqldf package in R.

6) ggplot (http://ggplot.yhathq.com/)—This is the implementation of gram-
mar of graphics in Python. You can practically reuse same ggplot2 code
from R to this package in Python.

7) SQLAlchemy (http://www.sqlalchemy.org/)—This tool allows you to
connect and query with databases.

237

http://scikit-learn.org
http://statsmodels.sourceforge.net
http://stanford.edu/~mwaskom/software/seaborn/
https://pypi.python.org/pypi/pandasql
http://ggplot.yhathq.com
http://www.sqlalchemy.org

238

6 Data Visualization

Tutorial Overview

1) You can write markdown within Jupyter notebook by changing the code
cell type from code to Markdown. You can also install and work with R
using the IR Kernel. This makes the code more readable as well as very
easy to switch between kernels.

2) Install packages from within the Jupyter notebook using a ! sign in the
beginning.

3) Import (or load) packages using the following syntax Import Package, or
Import Package as Pkg or Import Function from Package. This is similar to
library function in R.

4) Read in data using the read_csv or similar Input functions from Pandas
(http://pandas.pydata.org/pandas-docs/stable/io.html).

5) Inspect data using the info and head methods.

6) Slice data using the query function or index or the column name.

7) Summarize data using the describe, group_by, and value_counts functions.

8) Use dir on the object to find out what all can be done on it.

9) Visualize using various plots from seaborn and ggplot package.

10) Build a regression model using statsmodel using the familiar formula
method (dependent_var~ independent_var 1 + independent_var2 +).
11) Learn about additional tools useful for data scientists.

Detailed Tutorial

1) Install packages from within Jupyter notebook. Use the --upgrade flag to
upgrade existing packages.

In [1]: ! sudo pip install pandas --upgrade

2) Load the package. You can load a Python package using the following ways:
import PACKAGE or import PACKAGE as PK or from PACKAGE import
FUN. You can then invoke the function using PACKAGE.FUN, PK.FUN,
and FUN, respectively.

In [2] :import pandas as pd

3) Import Data. We use read_csv from pandas to import a csv file. Note that
Jupyter automatically applies color to the code to ensure code, functions,
comments are easily readable. In case the file is stored locally, we can use
the os Python library.

In [3]: import os as os
os.getcwd () #current working directory Out [3]:
' /home/ajay/Dropbox/PYTHON BOOK WILEY/FINAL'

http://pandas.pydata.org/pandas-docs/stable/io.html

4)

5)

6.8 Data Visualization in R

In [4]:0s.chdir('/home/ajay/Desktop/test') #change
current working directory

In [5]:0s.listdir(os.getcwd()) #list files in
directory Out [5]:['adult.data.txt']

In [6]:adult=pd.read csv("adult.data.
txt",header=None) #read data

'"'Lets get some information on the object. This
was a multiple line comment using three single quote
marks''!'

Let’s use a dataset from within R’s dataset for familiarity. We will use dia-
mond dataset bundled with R language from https://vincentarelbundock.
github.io/Rdatasets/datasets.html

In [12]:
diamonds =pd.read_csv("https://vincentarelbundock.
github.io/Rdatasets/csv/ggplot2/diamonds.csv")

We can use len to find out number of observations or length, and type to
find out class of object type. Using info we can combine all these to get the
information on object.

In [7] :diamonds.info ()
<class 'pandas.core.frame.DataFrame'>

Int64Index: 53940 entries, 0 to 53939
Data columns (total 11 columns) :
Unnamed: 0 53940 non-null inté4

carat 53940 non-null floaté4
cut 53940 non-null object

color 53940 non-null object

clarity 53940 non-null object

depth 53940 non-null floaté64
table 53940 non-null floaté4
price 53940 non-null inté4

X 53940 non-null floaté64

Y 53940 non-null floaté4

Z 53940 non-null floaté4

dtypes: float64(6), inte4(2), object (3)

memory usage: 4.3+ MB

239

https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv
https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv

240 | 6 Data Visualization

6) To find out what all functions can do, we can just use the dir command on
the object, that is, dir(diamonds). We can use head to inspect first few rows,
.ix to select rows by index number, and double square brackets with
column names in quotes to select by column name. Note that we can
chain multiple commands in Python very easily.

In [8]:diamonds2=diamonds.drop ('Unnamed: 0', 1)
#Dropping a particular variable
diamonds2.head ()
out[8] :

carat cut color clarity depth table price x y z
0 023 Ideal E SI2 61.5 55 326 3.95 398 243
1 021 Premium E SI1 59.8 61 326 3.89 384 231
2 023 Good E VS1 56.9 65 327 4.05 4.07 231
3 029 Premium I VS2 62.4 58 334 420 4.23 263
4 031 Good] SI2 63.3 58 335 434 435 275
In [9] :diamonds.ix[20:28] #refers to the 21st to 29th
row since index starts from 0.
out [9] :

carat cut color clarity depth table price x y z
20 030 Good I SI2 63.3 56 351 426 430 2.71
21 023 VeryGood E VS2 63.8 55 352 3.85 3.92 248
22 023 VeryGood H VS1 61.0 57 353 3.94 396 241
23 031 VeryGood] SI1 59.4 62 353 439 443 2.62
24 031 VeryGood] SI1 58.1 62 353 4.44 447 2.59
25 023 VeryGood G VVS2 604 58 354 3.97 4.01 241
26 0.24 Premium I VS1 62.5 57 355 3.97 394 247
27 030 VeryGood] VS2 62.2 57 357 4.28 430 2.67
28 0.23 VeryGood D VS2 60.5 61 357 3.96 3.97 240
In [10] :diamonds.ix[20:25] .cut
Out [10] :
20 Good
21 Very Good
22 Very Good
23 Very Good
24 Very Good
25 Very Good
Name: cut, dtype: object

~

~

6.8 Data Visualization in R

In [11l]:diamonds[['color', 'cut', 'price']l] .head()
#Note the double square brackets [[]]

out[8] :

color cut price
0 E Ideal 326
1 E Premium 326
2 E Good 327
3 1 Premium 334
4] Good 335

Conditional selection—We can use the query command for conditional
selection of data.
In [12] :diamonds.query('carat >3 and color =="J"')
Out [12] :

carat cut color clarity depth table price x y z
21758 3.11 Fair] 11 65.9 57 9823 9.15 9.02 598
25999 4.01 Premium] 11 62.5 62 15223 10.02 994 6.24
26467 3.01 Ideal] SI2 61.7 58 16037 9.25 9.20 5.69
26744 3.01 Ideal] 11 65.4 60 16538 8.99 8.93 5.86
27415 5.01 Fair] 11 65.5 59 18018 10.74 10.54 6.98
27630 4.50 Fair] 11 65.8 58 18531 10.23 10.16 6.72
27679 3,51 Premium] VS2 62.5 59 18701 966 9.63 6.03
27684 3.01 Premium] SI2 60.7 59 18710 9.35 9.22 5.64
27685 3.01 Premium] SI2 59.7 58 18710 9.41 9.32 5.59

Data summary is done in Pandas by describe for numerical variables and by
value_counts for categorical variables. Numerical correlation can be done
by corr command. Unique values are given by unique command.

In [13]:diamonds.price.describe ()

out [13]:

count 53940.000000

mean 3932.799722
std 3989.439738
min 326.000000
25% 950.000000
50% 2401.000000
75% 5324.250000

max 18823.000000
Name: price, dtype: floaté4

241

242

6 Data Visualization

In [14] :diamonds.corr () #Numerical Correlations
out [14]:

carat depth table price X y z

carat 1.000000 0.028224 0.181618 0.921591 0.975094 0.951722 0.953387
depth 0.028224 1.000000 -0.295779 -0.010647 -0.025289 -0.029341 0.094924
table 0.181618 -0.295779 1.000000 0.127134 0.195344 0.183760 0.150929
price 0.921591 -0.010647 0.127134 1.000000 0.884435 0.865421 0.861249
X 0.975094 -0.025289 0.195344 0.884435 1.000000 0.974701 0.970772
y 0.951722 -0.029341 0.183760 0.865421 0.974701 1.000000 0.952006
z 0.953387 0.094924 0.150929 0.861249 0.970772 0.952006 1.000000

In [15]:diamonds['cut'] .unique ()

Out [15] :array(['Ideal', 'Premium', 'Good', 'Very
Good', 'Fair'], dtype=object)

In [16] :pd.value counts (diamonds.cut)

Out [16] :

Ideal 21551

Premium 13791

Very Good 12082

Good 4906

Fair 1610

Name: cut, dtype: inté4

Note: To run a command on a particular column instead of entire data
frame, I can just use the dot notation and its name (i.e., diamonds.price
instead of diamonds. This is analogous to R’s $ notation).

Group by summary is done by group_by command and cross tabulation
can be done by crosstab.

In [17] :cutgroup=pd.groupby (diamonds,diamonds.cut)
In [18] :type (cutgroup)

Out [18]:

pandas.core.groupby.DataFrameGroupBy

In [19] :cutgroup.price.median ()

Out [19] :

cut

Fair 3282.0
Good 3050.5
Ideal 1810.0
Premium 3185.0
Very Good 2648.0

Name: price, dtype: floaté4

10)

11)

6.8 Data VisualizationinR | 243

In [20] :pd.crosstab(diamonds.cut,diamonds.
color,margins="'TRUE')

Out [20] :

color D E F G H | J All
cut

Fair 163 224 312 314 303 175 119 1610
Good 662 933 909 871 702 522 307 4906
Ideal 2834 3903 3826 4884 3115 2093 896 21551

Premium 1603 2337 2331 2924 2360 1428 808 13791
Very Good 1513 2400 2164 2299 1824 1204 678 12082
All 6775 9797 9542 11292 8304 5422 2808 53940

Note: We can use dropna to remove missing values in Python, that is,
diamonds= diamonds.dropna(how="any’)
We can also pivot data like a pivot table using pivot command.

In [21] :e=diamonds.groupby (['cut', "color"]) .price.
median () .reset index()

e.pivot (index="'cut', columns='color',
values="'price')

Oout [21] :

color D E F G H 1 J
cut

Fair 3730.0 2956.0 3035 3057.0 3816.0 3246.0 3302
Good 2728.5 2420.0 2647 3340.0 3468.5 3639.5 3733
Ideal 1576.0 1437.0 1775 1857.5 2278.0 2659.0 4096

Premium 2009.0 1928.0 2841 2745.0 4511.0 4640.0 5063
Very Good 2310.0 1989.5 2471 2437.0 3734.0 3888.0 4113

Using SQL—Python does have the pandasql package, thanks to the team
at YHat (who also made the Rodeo IDE). It is similar to the sqldf package
in R that allows the user to write sql queries to the data frame object. Note
that you need to ensure table names are consistent with SQLite tablename
conventions (thus it makes sense to drop or rename any column name with
any special characters).

In [22] :from pandasqgl import sqgldf
pysgldf = lambda g: sqgldf (g, globals())
In [23] :pysqgldf ("SELECT * FROM diamonds2 LIMIT 5 ; ")

244 | 6 Data Visualization

Out [23] :
carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55 326 395 398 243
1 021 Premium E SI1 59.8 61 326 389 384 231
2 023 Good E VS1 56.9 65 327 4.05 4.07 231
3 029 Premium I VS2 62.4 58 334 420 4.23 2.63
4 031 Good] SI2 63.3 58 335 434 435 275
5 024 VeryGood] VVS2 628 57 336 394 396 248

In [24] :pysqgldf ("SELECT * FROM diamonds2 WHERE

carat >4 ;")
Out [24] :
carat cut color clarity depth table price x y z

0 4.01 Premium I 11 61.0 61 15223 10.14 10.10 6.17
1 401 Premium] 11 62.5 62 15223 10.02 9.94 6.24
2 4.13 Fair H 11 64.8 61 17329 10.00 9.85 6.43
3 5.01 Fair] 11 65.5 59 18018 10.74 10.54 6.98
4 450 Fair] 11 65.8 58 18531 10.23 10.16 6.72

12) For data visualization I am going to first use the excellent seaborn
package from http://stanford.edu/~mwaskom/software/seaborn/index.
html. Histograms, boxplots, scatterplots, and jointplots are very easily
plotted using seaborn.

In [25] :sns.distplot (diamonds.price, bins=20,
kde=True, rug=False) ;

0.00040
0.00035
0.00030
0.00025
0.00020
0.00015
0.00010
0.00005

0.00000
-5000 0 5000 10000 15000 20000

price

http://stanford.edu/~mwaskom/software/seaborn/index.html
http://stanford.edu/~mwaskom/software/seaborn/index.html

6.8 Data VisualizationinR | 245

In [25]:ax = sns.boxplot (x="color", y="price",
data=diamonds)

20000
15000
38 10000 T
‘5- . N ——
5000
0 £ | J H F G D
color

In [26] :sns.jointplot ('price', 'carat', data=diamonds2)
Out [26] : <seaborn.axisgrid.JointGrid at 0x9717fd8c>

6
pearsonr=0.92; p=0
5 -
L
4 ee *
L L
. ~ L
3
©
(1]
(6]
2
1
0
—1
—-5000 0 5000 10000 15000 20000

price

price

In [27] :sns.factorplot (x="color", y="price",

col="cut", data=diamonds,

cut = Ideal cut = Premium
20000

L
15000 +
10000 T
- lll l l llll
L. =
E Il JHFGD EIl JHFGD
color color

kind="box",

cut = Good

-

E I JHF
color

i

size=4,

G D E

aspect=.5) ;

cut = Very Good

I J HF GD
color

+ -

cut = Fair

- -

6.8 Data Visualization in R

13) For data visualization, I can also use the ggplot package created by Yhat

14)

(who also created pandasql and rodeo—a RStudio style editor for Python).
It uses the grammar of graphics as created by Wilkinson and popularized
by Hadley Wickham.

In [28]:p = ggplot(aes(x='price',
y='carat',color="clarity"), data=diamonds)
P + geom point ()

6 -
Clarity
w1
5 . if
Sit
. e Si2
. Vs1
4 - Ta¥ w—\/s2
s . < e \/VS1
4 - w \/VS2
3.
©
<
o
2 -
1 -
0 -
-1 - : : . . .
-5000 0 5000 10000 15000 20000

price

Out [28] :<ggplot: (-917530690)>
For regression models, a widely used data science technique for business,
I can also use the statsmodel package.

In [80] :import statsmodels.formula.api as sm

In [81] :boston=pd.read csv("http://
vincentarelbundock.github.io/Rdatasets/csv/MASS/
Boston.csv")

In [82] :boston =boston.drop ('Unnamed: 0', 1)

In [83] :boston.head()

247

http://vincentarelbundock.github.io/Rdatasets/csv/MASS/Boston.csv
http://vincentarelbundock.github.io/Rdatasets/csv/MASS/Boston.csv
http://vincentarelbundock.github.io/Rdatasets/csv/MASS/Boston.csv

248

6 Data Visualization

Out [83] :
crim zn indus chas nox rm age dis rad tax ptratio black Istat medv
0 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 153 396.90 4.98 24.0
1 0.02731 0 7.07 O 0469 6.421 789 4.9671 2 242 17.8 396.90 9.14 21.6
2 0.02729 0 7.07 O 0469 7.185 61.1 49671 2 242 17.8 392.83 4.03 34.7
3 0.03237 0 2.18 O 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
4 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 533 36.2

In [87] :import statsmodels.formula.api as sm

result =

ptratio + black + rm ",
result.summary ()

sm.ols (formula="medv ~ crim +
data=boston) .fit ()

zZn + nox +

Out [87] :
Dep. Variable: medv R-squared: 0.631
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 142.0
Date: Fri, 22 Jan 2016 Prob (F-statistic): 1.49e-104
Time: 13:22:42 Log-Likelihood: —1588.2
No. Observations: 506 AIC: 3190.
Df Residuals: 499 BIC: 3220.
Df Model: 6
Covariance Type: nonrobust

coef std err t P>|t| [95.0% Conf. Int.]
Intercept -0.3594 4.863 -0.074 0.941 -9.9159.196
crim —-0.0991 0.034 -2.890 0.004 -0.167 —0.032
zn —-0.0064 0.014 -0.470 0.638 —-0.033 0.020
nox -10.8653 2.865 -3.793 0.000 -16.494 -5.237
ptratio -1.0519 0.135 -7.796 0.000 -1.317 -0.787
black 0.0137 0.003 4.453 0.000 0.008 0.020
rm 6.9796 0.396 17.612 0.000 6.201 7.758
Omnibus: 298.859 Durbin-Watson: 0.808
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3305.426
Skew: 2.385 Prob(JB): 0.00
Kurtosis: 14.577 Cond. No. 7.66e+03

In [88] :result.params

Out [88] :

Intercept -0
crim -0.
zZn -0.
nox -10.

.359432

099122
006364
865295

6.8 Data VisualizationinR | 249

ptratio -1.051937
black 0.013737
rm 6.979587

dtype: floaté4

15) One more thing. For data mining we have the wonderful scikit-learn
package. For example, see decision trees from http://scikit-learn.org/
stable/modules/tree.html

16) For using both R and Python together, you can use http://beakernotebook.
com/ as it allows you to select kernel specific to each code block, not just
the whole notebook like Jupyter does and makes passing of objects very
easy between languages.

A 50-page elaborate version of this tutorial is available at http://www.
slideshare.net/ajayohri/a-data-science-tutorial-in-python. This tutorial was
first published on the Wiley web site Statisticsviews.com www.statisticsviews.
com/details/feature/8868901/A-Tutorial-on-Python.html

For data scientists working with huge amounts of data, Python is an
increasingly credible option to R to try out in production systems.

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://beakernotebook.com/
http://beakernotebook.com/
http://www.slideshare.net/ajayohri/a-data-science-tutorial-in-python
http://www.slideshare.net/ajayohri/a-data-science-tutorial-in-python
http://www.statisticsviews.com/details/feature/8868901/A-Tutorial-on-Python.html
http://www.statisticsviews.com/details/feature/8868901/A-Tutorial-on-Python.html

7

Machine Learning Made Easier

Machine learning is the buzzword of the decade as students and companies vie
to get this skill for business applications. However many parts of machine
learning are quite easy. In supervised learning, we know what we are trying to
predict (a group to class in classification and a number/equation to predict in
regression), whereas in unsupervised learning we do not know what is to be
predicted (no given tag is there), so we do association analysis and cluster
analysis. Text mining on the other hand looks at frequency of words for pattern
analysis. Social network analysis looks at relationships between nodes, edges,
and actors to see how networks behave. Deep learning is an even more recent
case of such advances in techniques.

One of the most widely used techniques is decision trees.

Decision trees in Python (weather dataset)

https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec
lae5b480

#rattle package in R has weather dataset
(see help at http://artax.karlin.mff.cuni.cz/r-help/
library/rattle/html/weather.html)

In [259]:
import os as os

In [260]:
import pandas as pd

In [261]:
os.getcwd ()

Out [261] :
' /home/ajayohri’

In [262]:

os.listdir ()

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

251

https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
https://nbviewer.jupyter.org/gist/decisionstats/47a2324b14ebfd22657b40ec1ae5b480
http://artax.karlin.mff.cuni.cz/r-help/library/rattle/html/weather.html
http://artax.karlin.mff.cuni.cz/r-help/library/rattle/html/weather.html

252 | 7 Machine Learning Made Easier

out [262] :
['.hplip"',
' .xsession-errors.old',
'VirtualBox VMs',
'filename.pkl 04.npy',
' .thunderbird',
'SVM.R',
'R',
'Desktop',
'filename.pkl 07.npy',
' .cache',
' .webex',
'file.R',
'.ipython',
'unique ids_ for list.html',
'filename.pkl 11.npy',
' .Xauthority',
'Dropbox ',
'examples.desktop',
'machine learning-plot and bagged pima indians.ipynb',
'date time.ipynb',
'Untitled.ipynb',
'.rstudio-desktop',
'filename.pkl 0l.npy',
'anaconda3',
' .dropbox',
'Music!',
'.pki',
'rsconnect',
'GoodReads. ipynb',
'.config’',
'diamsum.html"',
'filename.pkl 06.npy',
'data inspection .ipynb',
'.sudo_as_admin_ successful',
'.continuum',
'.java',
'unique ids for list.R',
' .bashrc-anaconda3.bak',
'.texmf-var',
'numpy scipy pandas.ipynb',
'mozilla.pdf"',
' .dropbox-dist',

' .bash_logout',
'.jupyter',
'.ecryptfs',

'.dbus',

'.local',

'Llyx!',

' .xsessgion-errors',
'hebrew',
'RCommanderMarkdown.Rmd',
'.bash history',
'SAS',

'nbr2mp4 .sh',

' .adobe',

'.Skype',
'filename.pkl 05.npy',
'.wajig',

'ajay ohri.odt',

' .macromedia’',

' .gphoto',
'.oracle_ jre usage',

7 Machine Learning Made Easier

'machine learning-rattle dataset from R.ipynb',

' .profile’,

'file operations.ipynb',
'Documents’',
'filename.pkl 09.npy',
'Videos',
'RCommander.R',
'filename.pkl 08.npy',
'.gstreamer-0.10",
'SVM.html',

' .Private',
'RCommander.txt',

're for searching strings.ipynb',

' .Rhistory',
'filename.pkl 02.npy',
'RemdrMarkdown.Rmd',
'Scikit Tutorial',
'machine learning.ipynb',
'oivy2',

'assignment2.R',
'assignment2.html',
'filename.pkl 03.npy',
'Public',

253

254

7 Machine Learning Made Easier

'nbr2mp4 .tar',
'RemdrMarkdown.md!',

' .bashrc',

'.mozilla',

'Pictures’',

'Data Viz Tutorial.ipynb',
'filename.pkl 10.npy',

' .RData',

'.gconf',

'data transformations.ipynb',
'RemdrMarkdown.html ',
'file.html',

'Scikit Tutorial.ipynb',
'Strings, Lists and Maps.ipynb',
'filename.pkl',
'weather.csv',

'Downloads',

'.gnupg',

' .nano',

'variables in strings.ipynb',
'Templates',

' .ICEauthority',

'.ipynb checkpoints']

In

[263] :

#Finding only csv files in a directory using os and

glob packages
import glob

path = os.getcwd ()
extension = 'csv'
os.chdir (path)

result = [i for i in glob.glob('*.{}"'.

format (extension))]
print (result)

['weather.csv']

dataframe=pd.read csv("weather.csv")

dataframe.head ()

In

In

[264] :

[265] :

Out [265] :

Un- Wind Wind

named: Min Max Rain Evapo- Sun- Gust Gust Humidity Pressure Pressure Cloud Cloud Temp Temp Rain RISK_ Rain

0 Date Location Temp Temp fall ration shine Dir Speed 3pm 9am 3pm 9am 3pm 9am 3pm Today MM Tomorrow
1 2007-11-01 Canberra 80 243 00 34 63 NW 300 29 10197 10150 7 7 144 236 No 36 Yes

2 2007-11-02 Canberra 140 269 36 44 9.7 ENE 390 36 10124 10084 5 3 175 257 Yes 36 Yes

3 2007-11-03 Canberra 137 234 36 58 33 NW 850 69 10095 10072 8 7 154 202 Yes 398 Yes

4 2007-11-04 Canberra 133 155 39.8 72 91 NW 540 56 10055 1007.0 2 7 135 141 Yes 2.8 Yes

5 2007-11-05 Canberra 7.6 161 28 56 106 SSE 500 49 10183 10185 7 7 111 154 Yes 00 No

rows x 25 columns

256 | 7 Machine Learning Made Easier

In [266]:
dataframe.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 25 columns) :

Unnamed: O 366 non-null inte4

Date 366 non-null object
Location 366 non-null object
MinTemp 366 non-null floaté64
MaxTemp 366 non-null floaté64
Rainfall 366 non-null floaté64
Evaporation 366 non-null floaté64
Sunshine 363 non-null floaté64
WindGustDir 363 non-null object
WindGustSpeed 364 non-null floaté64
WindDir9am 335 non-null object
WindDir3pm 365 non-null object
WindSpeed9am 359 non-null floaté64
WindSpeed3pm 366 non-null inte4

Humidity9am 366 non-null inte4

Humidity3pm 366 non-null inte4

Wind Gust Wind Speed Wind Speed
MinTemp MaxTemp Rainfall Evaporation Sunshine Speed 9am 3pm

count 366.000000 366.000000 366.000000 366.000000 363.000000 364.000000 359.000000 366.000000
mean 7265574 20.550273 1428415 4.521858 7.909366 39.840659 9.651811 17.986339
std 6.025800 6.690516 4.225800 2.669383 3481517 13.059807 7.951929 8.856997
min -5.300000 7.600000 0.000000 0.200000 0.000000 13.000000 0.000000 0.000000

25% 2.300000 15.025000 0.000000 2.200000 NaN NaN NaN 11.000000
50% 7.450000 19.650000 0.000000 4.200000 NaN NaN NaN 17.000000
75% 12.500000 25.500000 0.200000 6.400000 NaN NaN NaN 24.000000

max 20.900000 35.800000 39.800000 13.800000 13.600000 98.000000 41.000000 52.000000

7 Machine Learning Made Easier

Pressure9am 366 non-null floaté64
Pressure3pm 366 non-null floaté64
Cloud9am 366 non-null inte4

Cloud3pm 366 non-null inté64

Temp9am 366 non-null floaté64
Temp3pm 366 non-null floaté64
RainToday 366 non-null object
RISK MM 366 non-null floaté64
RainTomorrow 366 non-null object

dtypes: floaté64 (12), int64(6), object(7)
memory usage: 71.6+ KB

In [267]:
dataframe=dataframe.drop ('Unnamed: 0', 1)

In [268]:
dataframe.describe ()
/home/ajayohri/anaconda3/lib/python3.5/site-packages/
numpy/lib/function base.py:3834: RuntimeWarning:
Invalid value encountered in percentile

257

RuntimeWarning)

Out [268] :
Humidity Humidity Pressure Pressure Cloud Cloud Temp Temp
9am 3pm 9am 3pm 9am 3pm 9am 3pm RISK_MM

366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000 366.000000

72.035519 44.519126 1019.709016 1016.810383 3.890710 4.024590 12.358470 19.230874 1.428415
13.137058 16.850947 6.686212 6.469422 2956131 2666268 5630832 6.640346 4.225800
36.000000 13.000000 996.500000 996.800000 0.000000 0.000000 0.100000 5.100000 0.000000
64.000000 32250000 1015.350000 1012.800000 1.000000 1.000000 7.625000 14.150000 0.000000
72.000000 43.000000 1020.150000 1017.400000 3.500000 4.000000 12.550000 18.550000 0.000000
81.000000 55.000000 1024.475000 1021.475000 7.000000 7.000000 17.000000 24.000000 0.200000

99.000000 96.000000 1035.700000 1033.200000 8.000000 8.000000 24.700000 34.500000 39.800000

In [269]:

258

7 Machine Learning Made Easier

dataframe['RainTomorrow'] .unique ()

Oout [269] :
array(['Yes', 'No'l], dtype=object)

In [270]:
dataframe['RainToday'] .unique ()

Out [270] :
array(['No', 'Yes'], dtype=object)

In [271]:
dataframe['Location'] .unique ()

out [271] :
array (['Canberra'], dtype=object)

In [272]:
dataframe['Date'] .unique ()

out [272] :
array(['2007-11-01', '2007-11-02', '2007-11-03',

'2007-11-04",
Output truncated by author for publication purposes

'2008-01-04', '2008-01-05', '2008-01-06"',
'2008-01-07",
'2008-10-30', '2008-10-31'], dtype=object)
In [273]:

Bagged Decision Trees for Classification

from sklearn import cross validation

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [274]:
dataframe.columns

out[274]:
Index (['Date', 'Location', 'MinTemp', 'MaxTemp',

'Rainfall', 'Evaporation',

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

'Sunshine', 'WindGustDir', 'WindGustSpeed',
'WindDir9am', 'WindDir3pm',

'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am',
'"Humidity3pm',

'Pressure9am', 'Pressure3pm', 'Cloud9am',
'Cloud3pm', 'Temp9am',

'Temp3pm', 'RainToday', 'RISK MM',
'RainTomorrow'],

dtype="'object')

7.1 Deleting Columns We Dont Need in the Final
Decision Tree Model

In [275]:
del dataframe['Date']

In [276]:
del dataframe['Location']

In [277]:
del dataframe['WindDir9am']

In [278]:
del dataframe['WindSpeed3pm']

In [279]:
del dataframe['WindGustDir']
del dataframe['WindDir3pm']
del dataframe['RISK MM']

In [280]:
dataframe=dataframe.replace(['Yes', 'No'], [1, 0])

#using replace to change string to numeric values

In [281]:

dataframe=dataframe.dropna ()

In [282]:

dataframe.head()

Out [282] :

259

260

7 Machine Learning Made Easier

Wind Wind Humi- Humi- Rain
Min Max Rain- Evapo- Sun- Gust Speed dity dity Pressure Pressure Cloud Cloud Temp Temp Rain Tomor-
Temp Temp fall ration shine Speed 9am 9am 3pm 9am 3pm 9am 3pm 9am 3pm Today row
0 80 243 00 34 63 300 60 68 29 10197 10150 7 7 144 236 0 1
1 140 269 36 44 97 390 40 80 36 10124 10084 5 3 175 257 1 1
2 137 234 36 58 33 80 60 8 69 10095 10072 8 7 154 202 1 1
3 133 155 398 7.2 91 540 300 62 56 10055 1007.0 2 7 135 141 1 1
4 76 161 28 56 106 500 200 68 49 10183 10185 7 7 111 154 1 0
In [283]:
len(dataframe)
out [283]:
354
In [284]:
len(dataframe.columns)
out [284] :
17
In [285]:
names=dataframe.columns
names
out [285] :
Index (['MinTemp', 'MaxTemp', 'Rainfall',
'Evaporation', 'Sunshine',
'WindGustSpeed', 'WindSpeed9am', 'Humidity9am',
'"Humidity3pm',
'Pressure9am', 'Pressure3pm', 'Cloud9am',

'Cloud3pm', 'Temp9am',
'"Temp3pm', 'RainToday', 'RainTomorrow'],
dtype='object')

In [286]:
dataframe.describe ()

out [286] :

Wind Gust Wind Speed Humidity
Min Temp Max Temp Rain fall Evaporation Sunshine Speed 9am 9am

count 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000
mean 7.362429 20.601412 1.420904 4.558192 7.925424 40.011299 9.666667 71.875706
std 6.010927 6.708966 4.235358 2.667877 3.510039 13.034488 7.978489 13.161939
min —5.300000 7.600000 0.000000 0.200000 0.000000 13.000000 0.000000 36.000000
25% 2.400000 15.100000 0.000000 2.400000 5.925000 31.000000 6.000000 64.000000
50% 7.500000 19.750000 0.000000 4.200000 8.650000 39.000000 7.000000 72.000000
75% 12.500000 25.500000 0.200000 6.400000 10.600000 46.000000 13.000000 80.000000
max 20.900000 35.800000 39.800000 13.800000 13.600000 98.000000 41.000000 99.000000

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

In [287]:
type (dataframe)
Oout [287] :
pandas.core.frame.DataFrame
In [288]:
array = dataframe.values
In [289]:
pd.value counts (dataframe["RainTomorrow"])
Out [289] :
0 290
1 64
Name: RainTomorrow, dtype: inté4
In [290]:
array
Out [290] :
array([[8. , 24.3, 0. , ..., 23.6, 0. , 1.1,
[14. , 26.9, 3.6, ..., 25.7, 1., 1.1,
[13.7, 23.4, 3.6, ..., 20.2, 1., 1,
ce ey
[12.5, 19.9, 0. , ..., 18.3, 0. , 0.1,
[12.5, 26.9, 0. , ..., 25.9, 0. , 0.1,
[12.3, 30.2, 0. , ..., 28.6, 0. , 0. 11)
In [291]:
X = arrayl[:,0:16]
Y = arrayl[:,16]
num_folds = 10
num_instances = len(X)
seed = 7
In [292]:
type (X)
out [292] :
Humidity Pressure Pressure Rain
3pm 9am 3pm Cloud9am Cloud3pm Temp9am Temp3pm RainToday Tomorrow
354.000000 354000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000 354.000000
44454802 1019562147 1016692090 3920904 4019774 12438701 19271469 0180791 0.180791
16944316 6.602685 6.373679 2962363 2672312 5630160 6663681 0385390 0385390
13.000000 996500000 996.800000 0.000000 0.000000 0.100000 5100000 0.000000 0.000000
32000000 1015225000 1012725000 1.000000 1.000000 7725000 14300000 0.000000 0.000000
43000000 1020.000000 1017.200000 4000000 ~ 4000000 12600000 18.600000 0.000000 0.000000
54750000 1024.400000 1021.350000 7.000000 7.000000 17.000000 24000000 0.000000 0.000000
96000000 1035700000 1033.200000 8.000000 8000000 24.700000 34500000 1.000000 1.000000

261

numpy .ndarray

X

array([[8. , 24.3, 0. , .., 14 .4, 23.6,
[14. , 26.9, 3.6, .., 17.5, 25.7,
[13.7, 23.4, 3.6, .., 15.4, 20.2,
[12.5, 19.9, 0. , ., 14.5, 18.3,
[12.5, 26.9, 0. , .., 15.8, 25.9,
[12.3, 30.2, 0. , ., 23.8, 28.6,

#Y[Y == "Yes"] = 1 An alternative way to make

#Y[Y == "No"] = 0

Y

array ([1., 1., 1., 1., 0., 0., 0., 0.
0., 0., 0., 1., 0., 0., 0., 0.
--output truncated by author
0., 0., 0.1)

dtr = tree.DecisionTreeRegressor (max_depth=3)
dtr.fit (X, Y)

o
— e e

a NumPy array change values

In [293]:

out [293] :

In [294]:

Out [294] :

In [295]:

out [295] :
DecisionTreeRegressor (criterion='mse', max_depth=3, max features=None,
max_leaf nodes=None, min samples leaf=1, min samples_split=2,
min weight fraction leaf=0.0, presort=False, random state=None,
splitter='best"')

In [296]:
from sklearn.metrics import roc curve, auc

In [297]:
#!sudo pip install pydotplus
http://scikit-learn.org/stable/auto_examples/model selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-
scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-
scikit-learn/

In [298]:
#!pip freeze
#checking if we have the right packages

In [299]:
#!pip install --upgrade pip

In [300]:

#!pip install pydotplus

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/

import pydotplus as pydot
from IPython.display import Image
from sklearn.externals.six import StringIO

Graphviz

#sudo add-apt-repository ppa:gviz-adm/graphviz-dev
sudo apt-get update

http://www.graphviz.org/Download linux_ubuntu.php

dot_data = StringIO()

tree.export graphviz(dtr, out file=dot data, feature names=names[:-1])

graph = pydot.graph from dot_ data(dot_data.getvalue())

Image (graph.create_png())

In

In

In

In

In

In

[301]:

[302]:

[303]:

[304]:

[305]:

[306]:

http://www.graphviz.org/Download_linux_ubuntu.php

Pressure3pm<=1011.9
mse=0.1481
samples =354
value=0.1808
True False
Sunshine <=8.85 Cloud3pm<=7.5
mse =0.2496 mse =0.0856
samples=79 samples =275
value=0.481 value =0.0945
Evaporation<=5.6 Pressure9am <=1015.2| Humidity9am <=93.5 Humidity3pm <=37.0
mse=0.1983 mse=0.142 mse=0.0613 mse=0.2461
samples=44 samples =35 samples =259 samples=16
value=0.7273 value=0.1714 value =0.0656 value =0.5625
mse=0.2469 mse=0.0 mse=0.0927 mse=0.25 mse=0.0464 mse=0.2367 mse=0.0 mse=0.213
samples=27 samples=17 samples=29 samples=6 samples =246 samples=13 samples=3 samples=13
value =0.5556 value=1.0 value=0.1034 value=0.5 value=0.0488 | |value=0.3846 value=0.0 value=0.6923
kfold = cross_validation.KFold(n=num instances,

n folds=num folds, random state=seed)

DecisionTreeClassifier ()

cart =
num_trees = 100
model = BaggingClassifier (base_estimator=cart,

n_estimators=num_ trees, random state=seed)

model

out [306] :

In

In

[307] :

[308]:

out [308] :
BaggingClassifier (base estimator=DecisionTreeClassifier (class_weight=None,
criterion='gini', max_depth=None,

max_features=None, max_ leaf nodes=None, min_samples leaf=1,

min_samples_split=2, min _weight_ fraction leaf=0.0,

presort=False, random state=None, splitter='best'),
bootstrap=True, bootstrap features=False, max features=1.0,
max_samples=1.0, n_estimators=100, n_jobs=1, oob_score=False,
random_state=7, verbose=0, warm start=False)

In [309]:
kfold

out [309] :
sklearn.cross_validation.KFold(n=354, n_folds=10, shuffle=False, random state=7)

In [310]:
results = cross_validation.cross val score(model, X, Y, cv=kfold)
print (results.mean())
0.850873015873

In [311]:
results

Out [311]:
array ([0.75 , 0.86111111, 0.69444444, 0.88888889, 0.88571429,

0.82857143, 0.91428571, 0.85714286, 0.94285714, 0.88571429])

Decision trees in Python (2)
https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d

Bagged Decision Trees for Classification
import pandas

from sklearn import cross_validation

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [2]:

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-
diabetes/pima-indians-diabetes.data"

names = ['preg',6 'plas', 'pres',6 'skin', 'test', 'mass', 'pedi', ‘'age', 'class']
dataframe = pandas.read csv(url, names=names)
array = dataframe.values

In [3]
names [:-1]

Out [3]
['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age'l

In [4]

dataframe.head ()

https://nbviewer.jupyter.org/gist/decisionstats/8b762caa7b7deebb68e3f275daf02a9d
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data

class

preg plas pres skin test mass pedi age
0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32
3 1 89 66 23 94 28.1 0.167 21
4 0 137 40 35 168 43.1 2.288 33

— oo

pandas.value counts (dataframe["class"])

0 500
1 268
Name: class, dtype: inté4

array
array ([[6. , 148. , 72. ey, 0.
[1. , 85. , 66. e ey 0
[8. , 183. , 64 . ;e ey 0.
[5. , 121. B 72. ;e ey 0
[1. , 126. , 60. , , 0

627,

.351,

672,

.245,
.349,
.315,

50.
31.
32.

30.
47.
23.

o

[uny

Out [4] :

In [5]:

Oout [5] :

In [6]:

Out [6] :

X = arrayl[:,0:8]
Y = arrayl[:, 8]
num_folds = 10
num_instances =
seed = 7

type (X)

numpy .ndarray

[8.
[5.
[1.
[1.

len (X)

148.
85.
183.

121.
126.
93.

72.
66.
64.

72.
60.
70.

33.
26.
23.

26.
30.
30.

[

[y

.627,
.351,
.672,

.245,
.349,
.315,

50.
31.
32.

30.
47.
23.

In [7]:

In [8]:

out [8] :

In [9]:

Out [9] :

Out [10] :

A4 41 0010001411000 +HdHO0O+dOO0OOOOOoOTdA o

array ([

O OO 000 O ddOO0OO0O0O0OHOOOddooodd

1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1.,
1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 0.,
1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 0., 1., 1., 1., o0., ©O., 0., 0., O., O., 1., 1.,
0., 0., 1., 0., 0., 1., 0., 1., 1., 1., 0., 0., 1.,
1., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0.]1)
In [11]
dtr = tree.DecisionTreeRegressor (max depth=3)
dtr.fit (X, Y)
Out [11]:
DecisionTreeRegressor (criterion="'mse', max_depth=3, max features=None,
max_leaf nodes=None, min_ samples leaf=1, min samples_split=2,
min weight_ fraction leaf=0.0, presort=False, random state=None,
splitter='best"')
In [12]
from sklearn.metrics import roc curve, auc
In [13]

#!sudo pip install pydotplus

http://scikit-learn.org/stable/auto _examples/model_ selection/plot_roc.html

http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-
scikit-learn/

http://machinelearningmastery.com/compare-machine-learning-algorithms-python-
scikit-learn/

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/
http://machinelearningmastery.com/compare-machine-learning-algorithms-python-scikit-learn/

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

In [14]:
#!pip freeze
#checking if we have the right packages

In [15]:
#!pip install --upgrade pip

In [16]:
#!pip install pydotplus

In [17]:
import pydotplus as pydot
from IPython.display import Image
from sklearn.externals.six import StringIO

In [18]:

Graphviz

#sudo add-apt-repository ppa:gviz-adm/graphviz-dev
sudo apt-get update

http://www.graphviz.org/Download linux ubuntu.php

In [19]:
dot_data = StringIO()
In [20]:
tree.export graphviz(dtr, out file=dot data,
feature names=names[:-1])
In [21]:

graph = pydot.graph from dot data(dot data.getvalue())

In [22]:

Image (graph.create png())

273

http://www.graphviz.org/Download_linux_ubuntu.php

out [22] :

plas<=127.5
mse=0.2272
samples =768
value =0.349
'ﬁfy/ \{?Se
age<=28.5 mass <=29.95
mse =0.1563 mse =0.2368
samples =485 samples =283
/value=0.1938 value =0.6148
mass <=45.4 mass <=26.35 plas<=145.5 plas<=157.5
mse =0.0777 mse =0.2217 mse =0.2161 mse =0.1995
samples =271 samples =214 samples =76 samples = 207
value = 0.0849 value =0.3318 value =0.3158 value =0.7246
mse =0.0693 mse =0.1875 mse = 0.0464 mse =0.2398 mse =0.1249 mse =0.2498 mse =0.2382 mse=0.1134
samples =267 samples =4 samples = 41 samples =173 samples =41 samples =35 samples =115 samples =92
value =0.0749 value =0.75 value=0.0488| |value=0.3988| |value=0.1463| |value=0.5143| |value=0.6087| |value=0.8696
In [23]:

kfold = cross_validation.KFold(n=num instances, n_folds=num folds,

cart = DecisionTreeClassifier()

num_ trees = 100
model =
random_state=seed)

BaggingClassifier (base estimator=cart, n estimators=num trees,

random_state=seed)

model
Out [24]
BaggingClassifier (base estimator=DecisionTreeClassifier (class_weight=None,
criterion='gini', max_depth=None,
max_features=None, max_leaf nodes=None, min_samples leaf=1,
min_samples_split=2, min weight_ fraction leaf=0.0,
presort=False, random state=None, splitter='best'),
bootstrap=True, bootstrap features=False, max_ features=1.0,
max_samples=1.0, n_estimators=100, n_jobs=1, oob_score=False,
random_state=7, verbose=0, warm start=False)
In [25]:
kfold
Out [25] :

sklearn.cross_validation.KFold(n=768, n_folds=10, shuffle=False, random state=7)

In [26]:
results = cross_validation.cross_val score(model, X, Y, cv=kfold)
print (results.mean())
0.770745044429

In [27]
results

Out [27]

array([0.67532468, 0.81818182, 0.75324675, 0.63636364, 0.81818182,
0.81818182, 0.85714286, 0.85714286, 0.69736842, 0.77631579])

276 | 7 Machine Learning Made Easier

7.1.1 Decision TreesinR

Decision trees in R can be done through multiple packages. Primary are condi-
tional, traditional, and CHAID.

See http://rpubs.com/newajay/classification and http://rpubs.com/newajay/
partyR

#install.packages ("party")

library (party)

Loading required package: grid

Loading required package: mvtnorm

Loading required package: modeltools

Loading required package: stats4

Loading required package: strucchange

Loading required package: zoo

##

Attaching package: 'zoo'

The following objects are masked from
'package:base’:

##

as.Date, as.Date.numeric

Loading required package: sandwich

data("iris")

names (iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
"Petal.Width"

[5] "Specieg"

fit2 <- ctree(Species ~ Sepal.Length + Petal.Length +
Sepal.Width ,

data=iris)

http://rpubs.com/newajay/classification
http://rpubs.com/newajay/partyR
http://rpubs.com/newajay/partyR

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

plot (£it2)

Petal.Length
p<0.001

<1.9 >1.9
Petal.Length
p<0.001
<47 >4.7
Petal.Length
p=0.016
<5 >5
/ AN
Node 2 (n=50) Node 4 (n=45) Node 6 (n=13) Node 7 (n=42)
1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 0 0 =N
setosa setosa setosa setosa

print (£it2)

##

H## Conditional inference tree with 4 terminal nodes
##

Response: Species

Inputs: Sepal.Length, Petal.Length, Sepal.Width
Number of observations: 150

##

1) Petal.Length <= 1.9; criterion = 1, statistic =
140.264

H# 2)* weights = 50

1) Petal.Length > 1.9

H## 3) Petal.Length <= 4.7; criterion

1, statistic

= 61.228
4)* weights = 45
3) Petal.Length > 4.7
H# 5) Petal.Length <= 5; criterion = 0.984,

statistic = 7.701
6)* weights = 13

277

278

7 Machine Learning Made Easier

HH# 5) Petal.Length > 5
H# 7)* weights = 42

nodes (fit2,1)
[[11]

1) Petal.Length <= 1.9; criterion = 1, statistic

140.264
2)* weights = 50
1) Petal.Length > 1.9
HH# 3) Petal.Length <= 4.7; criterion

= 61.228

4)* weights = 45

3) Petal.Length > 4.7

H# 5) Petal.Length <= 5; criterion = 0.984,
statistic = 7.701

H# 6)* weights = 13

HH# 5) Petal.Length > 5

7)* weights = 42

nodes (fit2, 3)
[[11]

3) Petal.Length <= 4.7; criterion = 1, statistic

61.228
H# 4)* weights = 45
3) Petal.Length > 4.7

1, statistic

H# 5) Petal.Length <= 5; criterion = 0.984, statistic

= 7.701
H# 6)* weights = 13
HH# 5) Petal.Length > 5
7)* weights = 42
table (Predict (£it2), iris$Species)
##
HH# setoga versicolor virginica
setosa 50 0 0
HH# versicolor 0 44 1
virginica 0 6 49

#install.packages ("randomForest")

library (randomForest)

randomForest 4.6-12

Type rfNews () to see new features/changes/bug
fixes.

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

fit3 <- randomForest (Species ~ Sepal.Length + Petal.
Length + Sepal.Width ,
data=iris)

print (£it3)

##

Call:

randomForest (formula = Species ~ Sepal.Length +
Petal.Length + Sepal.Width, data = iris)

H#4 Type of random forest: classification

HH Number of trees: 500

No. of variables tried at each split: 1
##

H# OOB estimate of error rate: 7.33%

Confusion matrix:

H# setosa versicolor virginica class.error
setosa 50 0 0 0.00
versicolor 0 44 6 0.12
virginica 0 5 45 0.10
importance (£it3)

H## MeanDecreaseGini

Sepal.Length 26.45171

Petal.Length 54.09109

Sepal.Width 15.53006

plot(fit3)
varImpPlot (£it3)

fit3
Petal.Length o
Sepal.Length o
Sepal.Width o
I I I I I I
0 10 20 30 40 50

MeanDecreaseGini

279

280 | 7 Machine Learning Made Easier

irisS$predicted.response <- predict (fit3 ,iris)

library(el071)

#install.packages ("caret")

library (caret)

Loading required package: lattice

Loading required package: ggplot2

##

Attaching package: 'ggplot2'

The following object is masked from 'package:

random Forest':

##

margin

confusionMatrix (data=irisSpredicted.response,
reference=iris$Species,
positive='yes')

Confusion Matrix and Statistics

H#

HH Reference

Prediction setoga versicolor virginica
setosa 50 0 0
HH# versicolor 0 50 0
virginica 0 0 50
H#

Overall Statistics

H#

H# Accuracy : 1

H## 95% CI : (0.9757, 1)
HH# No Information Rate : 0.3333

H# P-Value [Acc > NIR] : < 2.2e-16
H#

H# Kappa : 1

Mcnemar's Test P-Value : NA

H#

Statistics by Class:
##

##
##
##
##
##
##
##
##
##

Sensitivity
Specificity
Pos Pred Value
Neg Pred Value
Prevalence
Detection Rate
Detection Prevalence

Balanced Accuracy

And

library (party)

##
##
##
##
##
##
##
##
##
##
#H#
##

Loading
Loading
Loading
Loading
Loading
Loading

required
required
required
required
required
required

Class: setosa Class:

package:
package:
package:
package:
package:
package:

Attaching package: 'zoo'
The following objects are

as.Date,

HOOORR KR

Loading required package:
data (iris)

.0000
.0000
.0000
.0000
.3333
.3333
.3333
.0000

grid
mvtnorm
modeltools
stats4
strucchange
ZOO

masked from 'package:base':

as.Date.numeric

sandwich

versicolor Class:

RPoOoOOoORRRR

.0000
.0000
.0000
.0000
.3333
.3333
.3333
.0000

HoOOoOOoORRR R

virginica

.0000
.0000
.0000
.0000
.3333
.3333
.3333
.0000

282 | 7 Machine Learning Made Easier

fit2 <- ctree(Species ~ Sepal.Length + Petal.Length +
Sepal.Width ,
data=iris)
plot (£it2)

Petal.Length
p<0.001

<1.9 >1.9
Petal.Length
p<0.001
<47 >4.7
Petal.Length
p=0.016
<5 >5
/ AN
Node 2 (n=50) Node 4 (n=45) Node 6 (n=13) Node 7 (n=42)
1 1 1 14
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4 —
0.2 0.2 0.2 0.2
0 0 0 0 14
setosa setosa setosa setosa

table (Predict (£it2), iris$Species)

H##

#H# setosa versicolor virginica
H## setosa 50 0 0

#H# versicolor 0 44 1

H## virginica 0 6 49

library (randomForest)

randomForest 4.6-12

Type rfNews () to see new features/changes/bug fixes.

fit3 <- randomForest (Species ~ Sepal.Length + Petal.
Length + Sepal.Width ,

data=iris)

print (£it3)

H##

Call:

randomForest (formula = Species ~ Sepal.Length +
Petal.Length + Sepal.Width, data = iris)

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

HH# Type of random forest:
classification
HH Number of trees: 500

No. of variables tried at each split: 1
##

OOB estimate of error rate: 6.67%

Confusion matrix:

H# setosa versicolor virginica class.error
setosa 50 0 0 0.00

versicolor 0 44 6 0.12

virginica 0 4 46 0.08

library(el071)

#install.packages ("caret")

library (caret)

Loading required package: lattice

Loading required package: ggplot2

##

Attaching package: 'ggplot2'

The following object is masked from

'package:randomForest':

##

margin

irisS$predicted.response <- predict (fit3 ,iris)

confusionMatrix (data=irisSpredicted.response,
reference=iris$Species,
positive='yes')

Confusion Matrix and Statistics

H#

HH Reference

Prediction setoga versicolor virginica
setosa 50 0 0

HH# versicolor 0 49 0

HH# virginica 0 1 50

H#

Overall Statistics

H#

Accuracy : 0.9933

H## 95% CI : (0.9634, 0.9998)
HH# No Information Rate : 0.3333

H# P-Value [Acc > NIR] : < 2.2e-16

H#

H## Kappa : 0.99

Mcnemar's Test P-Value : NA
H##

283

Statistics by Class:

H##

Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 0.9800 1.0000

Specificity 1.0000 1.0000 0.9900

Pos Pred Value 1.0000 1.0000 0.9804

Neg Pred Value 1.0000 0.9901 1.0000

Prevalence 0.3333 0.3333 0.3333

Detection Rate 0.3333 0.3267 0.3333

Detection Prevalence 0.3333 0.3267 0.3400

Balanced Accuracy 1.0000 0.9900 0.9950

x = 1iris|[, -5]
y = iris$Species

model = train(x,y, 'nb', trControl=trainControl (method='cv', number=10))
Loading required package: klaR

Loading required package: MASS

model

Naive Bayes

##

150 samples

H## 5 predictor

3 classes: 'setosa', 'versicolor', 'virginica'

##

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 135, 135, 135, 135, 135, 135,

FALSE

setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
versicolor
versicolor
versicolor
versicolor
versicolor

Resampling results across tuning parameters:

##

usekernel Accuracy Kappa

FALSE 0.9866667 0.98

TRUE 0.9800000 0.97

#4

Tuning parameter 'fL' was held constant at a value of 0

Tuning

parameter 'adjust' was held constant at a value of 1

Accuracy was used to select the optimal model using the largest value.
The final values used for the model were fL = 0, usekernel =
and adjust = 1.

predict (model$finalModel, x)

Sclass

H# [1] setosa setosa setosa setosa setosa

H# [7] setosa setosa setosa setosa setosa

[13] setosa setosa setosa setosa setosa

[19] setosa setosa setosa setosa setosa

[25] setosa setosa setosa setosa setosa

[31] setosa setosa setosa setosa setosa

[37] setosa setosa setosa setosa setosa

[43] setosa setosa setosa setosa setosa

[49] setosa setosa versicolor versicolor versicolor
[55] versicolor versicolor versicolor versicolor versicolor
[61] versicolor versicolor versicolor versicolor versicolor
[67] versicolor versicolor versicolor versicolor versicolor
[73] versicolor versicolor versicolor versicolor versicolor

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

S:

versicolor
versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica

versicolor
versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica

versicolor
versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica

setosa versicolor virginica

versicolor
versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica

Sposterior

e e B e B B B B |

W 00 J 0 Ul b WN K
S T

—

[10,]
[11,]
[12,]
[13,]

PR R RPRRERRERRPRRRP R R

setosa

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00

N W OUJIFRFPNMDMNDMEWDNDWN

versicolor

.981309%e-21
.169312e-20
.367113e-21
.069606e-20
.017337e-21
.717732e-17
.321639e-20
.390751e-20
.990156e-20
.378931e-21
.396089%e-21
.461964e-20
.804520e-21

P NMERE WWOoWwJd 0o J0aN

virginica

.152373e-28
.938030e-28
.240956e-29
.690636e-28
.885794e-29
.344285e-24
.988271e-28
.166995e-28
.606469e-28
.615492e-28
.474623e-27
.093627e-27
.010192e-28

versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica

virginica
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica
virginica

#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H

o

W NP O W oo Jo u

o~

W NP O W oo Jo u

S

BB DR W W W W WW W W W WNDNNDMNNMNMNMMNMMNMNMNMMNNRERRPRRERERR

W NP O W oo Jo u

N
S

PR RPRPRRRPRPRPRPRRRPRRRRRRPRRRRPRRRPRRRRPRRBRRP R R RPR R

H O W 0 J o Ul

N

w

S

L B e B e T e B e B e B e B R e e T e T R v T e e T e s T e R o s B e B e B e B e T s T s e R e B e R T s R s D s B s B e s B e B
S T O T T S T S S S S S B T S S T O T O S S S T O S S S B S S T S (O SR ST Sy SN S S S SN (TR B WY G T

(2002 B B2 RO B0 B 62 BN O B S ST TS

N o Ul

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
6.225045e-110
8.570847e-103
1.215697e-123

1.152529e-72
1.581871e-108

1.972563e-92
7.022043e-116

O LOVWwuOURELOVOVULOUJIJUUUUWRERRPRERPNDMEOIDNMNAAAIRL,WNMNOUORERWOR WScPRNDMRERDdDREROOVER

.799033e-22
.533879%e-22
.273863e-20
.106658e-19
.841773e-20
.126175e-17
.808513e-20
.178382e-18
.210057e-18
.535220e-23
.147327e-14
.838507e-17
.873990e-19
.192598e-17
.542562e-20
.833285e-21
.557935e-20
.166837e-19
.940500e-17
.609092e-23
.222217e-23
.289348e-20
.850926e-21
.746279%e-21
.623934e-23
.612936e-21
.009325e-20
.300634e-20
.577617e-18
.494911e-21
.076475e-13
.357569%e-15
.882113e-19
.086735e-21
.012793e-21
.717245e-21
.713456e-21
.997479%e-01
.999382e-01
.988066e-01
.000000e+00
.999467e-01
.999990e-01
.994729%e-01

VR U WROANWOROURWRAOUREORIORARRLRANWURRPRREREOWINDRPENDNDREADNDO®

.060578e-30
.485033e-28
.509864e-26
.282419%e-26
.350011e-27
.567180e-24
.963924e-27
.013989%e-25
.788592e-26
.130074e-30
.175305e-22
.553757e-24
.830374e-26
.045146e-24
.274394e-27
.368077e-28
.652571e-27
.730536e-27
.546678e-24
.013278e-29
.261853e-29
.831694e-27
.874002e-29
.235628e-28
.223633e-29
.655450e-29
.237755e-27
.657689%e-28
.717219%e-27
.800333e-29
.721344e-21
.708326e-22
.587814e-27
.960156e-28
.636566e-28
.231337e-28
.349997e-28
.520714e-04
.175742e-05
.193433e-03
.867457e-08
.331762e-05
.020052e-06
.271422e-04

288 | 7 Machine Learning Made Easier

[58,] 2.601790e-37 1.000000e+00 3.183182e-10
[59,] 6.767475e-100 9.999892e-01 1.078777e-05
[60,] ©5.102801e-72 9.999999e-01 1.093625e-07
[61,] 7.504643e-44 1.000000e+00 3.208078e-10
[62,] 4.917431e-89 9.999958e-01 4.245756e-06
[63,] 4.725838e-63 1.000000e+00 7.695236e-09
[64,] 1.089964e-106 9.999846e-01 1.544774e-05
[65,] 4.887696e-58 1.000000e+00 3.060696e-08
[66,] 1.579126e-95 9.999779e-01 2.214465e-05
[67,] 1.379538e-100 9.999896e-01 1.037882e-05
[68,] 2.067506e-65 1.000000e+00 2.048320e-08
[69,] 6.720035e-104 9.999940e-01 5.953299e-06
[70,] 3.077859e-61 1.000000e+00 8.918403e-09
[71,] 6.643323e-130 9.94708le-01 5.291896e-03
[72,] 1.273962e-73 9.999998e-01 2.303272e-07
[73,] 3.635930e-122 9.999168e-01 8.322850e-05
[74,] 1.343761e-98 9.999979e-01 2.106614e-06
[75,] 3.069700e-86 9.999982e-01 1.764714e-06
[76,] 2.623805e-95 9.999861le-01 1.392484e-05
[77,] 1.747438e-114 9.998994e-01 1.006309e-04
[78,] 8.854376e-138 9.883852e-01 1.161480e-02
[79,] 5.212805e-102 9.999850e-01 1.501794e-05
[80,] 1.468423e-44 1.000000e+00 1.634262e-09
[81,] 1.277115e-57 1.000000e+00 4.592000e-09
[82,] 8.948524e-51 1.000000e+00 1.778126e-09
[83,] 3.517650e-65 1.000000e+00 3.430714e-08
[84,] 2.726206e-135 3.076150e-02 9.692385e-01
[85,] 4.238525e-100 9.999916e-01 8.405606e-06
[86,] 1.332644e-105 9.998521e-01 1.478728e-04
[87,] 2.875899e-113 9.997405e-01 2.595475e-04
[88,] 4.973519e-91 9.999993e-01 7.170422e-07
[89,] 2.070566e-75 9.999998e-01 2.429045e-07
[90,] 2.273490e-72 9.999999e-01 5.500821e-08
[91,] ©5.215785e-84 9.999998e-01 1.520450e-07
[92,] 5.960938e-102 9.999882e-01 1.182936e-05
[93,] ©5.251986e-69 1.000000e+00 4.173171e-08
[94,] 1.360017e-37 1.000000e+00 2.771698e-10
[95,] 6.219736e-80 9.999998e-01 2.006854e-07
[96,] 1.453599e-75 9.999998e-01 1.800789e-07
[97,] 8.474883e-80 9.999997e-01 3.376164e-07
[98,] 1.875115e-85 9.999988e-01 1.164505e-06
[99,] ©5.826890e-33 1.000000e+00 3.157898e-10
[100,] 4.078752e-76 9.999998e-01 1.832703e-07

#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H
#H

EFNMNDNONMREPROIEWDNDDNDMOJU O U U WDNWNREDNDNDNDO D P ONOUWIEFEooNDDNDREW

7.1 Deleting Columns We Dont Need in the Final Decision Tree Model

.993755e-252
.262363e-152
.460661e-219
.871277e-176
.299887e-217
.371182e-270
.258155e-109
.741935e-227
.567821e-191
.052443e-263
.673566e-162
.233346e-166
.360086e-193
.229150e-154
.201429%e-189
.949946e-194
.915226e-171
.347608e-284
.786402e-309
.307637e-125
.19416%e-220
.376038e-148
.251357e-272
.094321e-138
.315724e-204
.257396e-206
.851587e-132
.865968e-137
.230872e-197
.020556e-182
.306827e-221
.539020e-250
.210816e-204
.73288%e-131
.561444e-153
.419068e-252
.004503e-218
.349608e-170
.480958e-131
.440522e-188
.334365e-221
.179140e-186
.262363e-152

O RrRPRPRS PPN D ODNMENMNDNUUOERERNDNMWOWDNDWOWWNDOOSENDMNNMNEOODODSDEREWD IO OGN

.062063e-12
.598282e-04
.654977e-09
.592219%e-05
.350771e-09
.614910e-12
.096782e-01
.564099e-08
.165303e-05
.923323e-14
.795170e-06
.357027e-05
.246172e-07
.887102e-04
.786497e-08
.225678e-08
.314790e-05
.745992e-14
.302938e-14
.037334e-01
.424331e-10
.083326e-04
.341745e-11
.139418e-03
.601027e-08
.901615e-07
.186340e-03
.542930e-03
.791477e-07
.647833e-05
.428996e-08
.337782e-12
.000640e-08
.709186e-02
.886075e-02
.896100e-12
.948671e-10
.383372e-05
.974797e-03
.353834e-07
.491244e-10
.270533e-08
.598282e-04

oHHRPRLOLOVOHRFHrOVOHFRPRKFROVUOVUOVOOVOHFOHOFRRON>RPROUFPRPROVOVOUOR O URE OR OR

.000000e+00
.994402e-01
.000000e+00
.999541e-01
.000000e+00
.000000e+00
.903218e-01
.000000e+00
.999883e-01
.000000e+00
.999902e-01
.999364e-01
.999999%e-01
.997113e-01
.000000e+00
.000000e+00
.999569%e-01
.000000e+00
.000000e+00
.962666e-01
.000000e+00
.996917e-01
.000000e+00
.968606e-01
.000000e+00
.999998e-01
.948137e-01
.974571e-01
.999997e-01
.999835e-01
.000000e+00
.000000e+00
.000000e+00
.529081e-01
.811392e-01
.000000e+00
.000000e+00
.999562e-01
.950252e-01
.999999%e-01
.000000e+00
.000000e+00
.994402e-01

H## [144,] 3.426814e-232 1.319403e-10 1.000000e+00
[145,] 2.011574e-235 5.241271e-12 1.000000e+00
[146,] 1.078519e-190 1.583110e-08 1.000000e+00
[147,] 1.091014e-149 5.695800e-04 9.994304e-01
[148,] 1.847697e-167 8.800598e-06 9.999912e-01
[149,] 1.439996e-198 6.768314e-09 1.000000e+00
[150,] 2.944253e-146 1.272237e-03 9.987278e-01
table (predict (modelsfinalModel, x) Sclass,y)

Y

setosa versicolor virginica

setosa 50 0 0

H#t versicolor 0 49 0

virginica 0 1 50

naive iris <- NaiveBayes(iris$Species ~ ., data = iris)
#plot (naive iris)
library (rpart)

fit4 <- rpart (Species ~ Sepal.Length + Petal.Length + Sepal.Width ,

data=iris,method = "class")
print (fit4)
n= 150
##
node), split, n, loss, yval, (yprob)
HH# * denotes terminal node
##
1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) =*
H# 3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)

6) Petal.Length< 4.75 45 1 versicolor (0.00000000 0.97777778 0.02222222) *
7) Petal.Length>=4.75 55 6 virginica (0.00000000 0.10909091 0.89090909) *
library (rattle)

Rattle: A free graphical interface for data mining with R.

Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.

Type 'rattle()' to shake, rattle, and roll your data.

fancyRpartPlot (fit4)

setosa
.33 .33 .33
100%

versicolor
.00 .50 .50
67%

Rattle 2017-Feb-12 16:40:14 Dell

#rest models are in http://rpubs.com/newajay/chaid

#SOURCE https://sites.google.com/site/kittipat/rtechniques/usingchaiddecisiontreeinr

#install.packages ("CHAID", repos="http://R-Forge.
R-project.org")

library ("CHAID")

Loading required package: partykit

#4#

Attaching package: 'partykit'

The following objects are masked from 'package:party':

##

cforest, ctree, ctree control, edge simple, mob, mob control,
node_barplot, node_bivplot, node_boxplot, node_inner,

H## node_surv, node_terminal

data (iris)

str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ..

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
S Species : Factor w/ 3 levels "setosa",'"versicolor",..: 1 111111111

ctrl <- chaid:control (minsplit = 20, minbucket = 5, minprob = 0)

http://rpubs.com/newajay/chaid
https://sites.google.com/site/kittipat/rtechniques/usingchaiddecisiontreeinr
http://R-Forge.R-project.org
http://R-Forge.R-project.org

iris=lapply(iris,as.factor)
chaidiris <- chaid(Species ~ Sepal.Length + Petal.Length + Sepal.Width + Petal.Width ,
data=iris, control = ctrl)

print (chaidiris)

H#

Model formula:

Species ~ Sepal.Length + Petal.Length + Sepal.Width + Petal.Width
Hi

Fitted party:

[1] root

HH# | [2] Petal.Width in 0.1, 0.2, 0.3, 0.4, 0.5, 0.6: setosa (n = 50, err = 0.0%)

H# | [3] Petal.Width in 1, 1.1, 1.2, 1.3: versicolor (n = 28, err = 0.0%)

HH# | [4] Petal.Width in 1.4, 1.5, 1.6, 1.7: versicolor (n = 26, err = 19.2%)

HH# | [5] Petal.wWwidth in 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5: virginica (n = 46,
err = 2.2%)

##

Number of inner nodes: 1

Number of terminal nodes: 4

294

7 Machine Learning Made Easier

7.2 Time Series

Time series forecasting is very easily done in R thanks to auto.arima in
forecast package. In Python it is not automated so easily though statsmod-
els has libraries for it. The reader is thus advised to forecast in R and then
apply model in Python.

R Code from http://rpubs.com/newajay/ts

data ("AirPassengers")

library (forecast)

Loading required package: zoo

HH#

Attaching package: 'zoo'

The following objects are masked from
'package:base’:

HH#

H# as.Date, as.Date.numeric

Loading required package: timeDate

This is forecast 7.3

ts.plot (AirPassengers)

600 —

AirPassengers

N w N o

o o o =]

=} s} =] S
| | | |

100 —

T T T T T T
1950 1952 1954 1956 1958 1960

Time

http://rpubs.com/newajay/ts

decompose (AirPassengers)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Sx

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

Jan
112
115
145
171
196
204
242
284
315
340
360
417

Feb Mar Apr May

118 132
126 141
150 178
180 193
196 236
188 235
233 267
277 317
301 356
318 362
342 406
391 419

Sseasonal

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958

-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.

Jan
748737
748737
748737
748737
748737
748737
748737
748737
748737
748737

129
135
163
181
235
227
269
313
348
348
396
461

-36
-36
-36
-36
-36
-36
-36
-36
-36
-36

121
125
172
183
229
234
270
318
355
363
420
472

Feb

Jun
135
149
178
218
243
264
315
374
422
435
472
535

.188131
.188131
.188131
.188131
.188131
.188131
.188131
.188131
.188131
.188131

Jul
148
170
199
230
264
302
364
413
465
491
548
622

-2.
-2.
-2
-2.
-2.
-2.
-2.
-2.
-2.
-2

Aug
148
170
199
242
272
293
347
405
467
505
559
606

Mar

Sep
136
158
184
209
237
259
312
355
404
404
463
508

241162
241162

.241162

241162
241162
241162
241162
241162
241162

.241162

Oct
119
133
162
191
211
229
274
306
347
359
407
461

Nov
104
114
146
172
180
203
237
271
305
310
362
390

Apr
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.
-8.036616 -4.

Dec
118
140
166
194
201
229
278
306
336
337
405
432

May
506313
506313
506313
506313
506313
506313
506313
506313
506313
506313

35.
35.
35.
35.
35.
35.
35.
35.
35.
35.

Jun
402778
402778
402778
402778
402778
402778
402778
402778
402778
402778

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

1959 -24
1960 -24.
1949 63
1950 63
1951 63
1952 63
1953 63
1954 63
1955 63
1956 63
1957 63
1958 63
1959 63
1960 63
Strend
1949

1950 131.
1951 157.
1952 183
1953 215.
1954 228.
1955 261.
1956 3009.
1957 348.
1958 375.
1959 402.

.748737 -36.188131
748737 -36.188131
Jul Aug
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232
.830808 62.823232

Jan Feb

NA NA
2500 133.0833 134.
1250 159.5417 161.
.1250 186.2083 189.
8333 218.5000 220.
0000 230.4583 232
8333 266.6667 271.
9583 314.4167 318.
2500 353.0000 357.
2500 377.9167 379.
5417 407.1667 411.

-2
-2.

1l6.
16.
16.
16.
16.
16.
16.
1l6.
16.
1l6.
16.
16.

Mar
NA
9167
8333
0417
9167

.2500

1250
6250
6250
5000
8750

.241162 -8.
241162 -8.

Sep

520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.
520202 -20.

Apr

NA
136.4167
164.1250
191.2917
222.9167
233.9167
275.2083
321.7500
361.3750
380.0000
416.3333

036616 -4.
036616 -4.
Oct
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
642677 -53
May
NA
137.4167 138.

166.6667 169.
193.5833 195.
224.0833 224.
235.6250 237.
278.5000 281.
324.5000 327.
364.5000 367.
380.7083 380.
420.5000 425.

506313
506313
Nov

.593434
.593434
.593434
.593434
.593434
.593434
.593434
.593434
.593434
.593434
.593434
.593434

Jun

NA
7500
0833
8333
7083
7500
9583
0833
1667
9583
5000

35.
35.

-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.

126.
140.
171
198.
225.
240.
285.
329.
369.
381.
430.

402778
402778
Dec
619949
619949
619949
619949
619949
619949
619949
619949
619949
619949
619949
619949

Jul
7917
9167

.2500

0417
3333
5000
7500
5417
4583
8333
7083

#H
##
#H
##
#H
#H
#H#
#H
##
#H
#H#
#H
#H
#H#
#H
##
#H
#H
#H
#H
##
#H
##
#H
#H
##
#H
##
#H

1960

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

456

127.
143.
173.
199.
225.
243.
289.
331.
371.
383.
435.

Srandom

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

12
12

-1.
-8
-10
-17.
-14

.3333

Aug
2500
1667
5833
7500
3333
9583
3333
8333
2083
6667
1250

NA

Jan

NA
.4987374
.6237374
.6237374
.9154040
.7487374
.9154040

461.

127.
145.
175.

202

224 .
247.

293
334

372.

386

437.

2095960

.5012626
.5012626

7929293

.5845960

3750
Sep

9583
7083
4583
.2083
9583
1667
.2500
.4583
1667
.5000
7083

NA

465.

128
148

206
224

372

Feb

2083
Oct

.5833
.4167
176.
.2500
.5833
250.
297.
337.
.4167
390.
440.

8333

2500
1667
5417

3333
9583
NA

NA

29.1047980 8
26.6464646 18

29.9797980 6.
13.6881313 17.
-6.2702020 4.
2.5214646 -1.

-1.2285354 0
-15.8118687 0
-23.7285354 -15
-28.9785354 -3

-34.1868687 -43.

469.

129.
151.
.0417
210.
.4583
.5000
301.
340.
.7500
.7083

178
224

253

372
394

445 .

3333

Nov
0000
5417

4167

0000
5417

8333
NA

Mar

NA

.3244949
.4078283

1994949
32440949
9911616
8838384

.6161616
.6161616
.2588384
.6338384

9671717

472

129.
.7083
180.
.3750
225.
257.
305.
.0833
.6250
398.
450.

154

213

344
373

-2

-5
-23
-12

Dec
7500

1667

5417
1250
4583

6250
6250
NA

Apr
NA

.6199495
.9116162
.2550505
20.
.1199495
.8282828
-0.
.3383838
.9633838
.2967172
-0.

1199495

7133838

2967172

-7.
.8396465
-6.
.4229798
.8813131
-3.
-1.
.9936869
.2020202
.0063131
.7563131

-4
-13

.7500 475.0417

May
NA
9103535

0770202

9936869
9936869

NA

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

-25
-26
-13
-17
-9
-2
11
19
18

24

28

21

15

-10

-14

-31
-30

Jun
NA

.1527778
.4861111
.2361111
.1111111
.1527778
.3611111
.5138889
.4305556
.6388889
11.
.5555556

0972222

Nov

.5934343
16.
.5517677
.1767677
.1351010
.0934343
.4065657
-15.
.1565657
.1148990
.2398990

0517677

9482323

NA

-42.
-34.
-36.
-31.
-25.
-2
14
19
31
45
53

Jul
6224747
7474747
0808081
87247477
1641414

.3308081
.4191919
.6275253
.7108586
.3358586
.4608586

NA
Dec

.8699495
.9116162
.4532828
.2449495
.0782828
.4949495
.1616162
.4633838
.0050505
.0050505
.0050505

NA

-42.
-35.
.4065657
.5732323
.1565657
.7815657
.1565657
.3434343
32.
.5101010
61.

-37
-20
-16
-13
-5
10

58

Aug
0732323
9898990

9684343

0517677
NA

Sep

.4785354
.2285354
.9785354
.7285354
.4785354
.6868687
.2297980
.0214646
.3131313
.9797980
.7714646

NA

Oct

.0593434
.2260101
.8093434
.3926768
.0593434
.6073232
.5239899
.8989899
.7739899
.6906566
.3156566

NA

Sfigure

[1] -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
[7] 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949
##

Stype

[1] "additive"

Hit

attr(,"class")

[1] "decomposed.ts"

plot (decompose (AirPassengers))

Decomposition of additive time series

o O
o O
i1 14

2

observed

trend
W At WO O
o [$)(=)
S &8

|

-y

a

o
1

seasonal
N

o o
41 1 1

—40 4

random
o
i

T T T T T T
1950 1952 1954 1956 1958 1960
Time

b=auto.arima (AirPassengers)
forecast (b, 24)

H## Point Forecast Lo 80
Jan 1961 446.7582 431.6858
Feb 1961 420.7582 402.5180
Mar 1961 448.7582 427.8241
Apr 1961 490.7582 467.4394
May 1961 501.7582 476.2770
Jun 1961 564.7582 537.2842
Jul 1961 651.7582 622.4264
Aug 1961 635.7582 604.6796
Sep 1961 537.7582 505.0258
Oct 1961 490.7582 456.4516
Nov 1961 419.7582 383.9466
Dec 1961 461.7582 424.5023
Jan 1962 476.5164 431.4567
Feb 1962 450.5164 400.9938
Mar 1962 478.5164 424.9010
Apr 1962 520.5164 463.0993
May 1962 531.5164 470.5341
Jun 1962 594 .5164 530.1661
Jul 1962 681.5164 613.9659
Aug 1962 665.5164 594.9105
Sep 1962 567.5164 493.9820
Oct 1962 520.5164 444 .1657
Nov 1962 449.5164 370.4497
Dec 1962 491.5164 409.8239

plot (forecast (b, 24))

461.
438.
469.
514.
527.

592

681.
666.

570

525.

455

499.
521.
500.
532.
577.

592

658.
749.
736.
641.
596.

528
573

Hi 80
8306
9984
6923
0770
2395
.2323
0900
8368
.4906
0648
.5698
0141
5761
0390
1318
9335
.4987
8667
0670
1223
0508
8671
.5831
.2089

423.
392.
416.
455.
462.
522.
606.

588

487.

438

364.
404.
407.
374.

396

432.

438

496.

578

557.
455.
403.

328
366

Lo 95
7070
8622
7423
0952
7880
7403
8991
.2275
6983
.2908
9891
7803
6036
7781
.5188
7045
.2520
1011
.2068
5340
0552
7481
.5943
.5785

469.
448.
480.

526

540.
606.
696.

683

587.

543
474

518.

545
526
560
608

624 .
692.
784 .

773

679.
637.

570
616

Hi 95
8094
6542
7741
L4212
7284
7761
6173
.2889
8181
.2256
.5273
7361
.4292
.2547
.5141
.3283
7808
9317
8261
.4988
9776
2847
.4385
.4543

7.3 Association Analysis | 301

Forecasts from ARIMA(0,1,1)(0,1,0)[12]

800

700 -

600
500 —
400
300
200
100

1 950 1 952 1 954 1 956 1 958 1960 1 962

7.3 Association Analysis

Association analysis is widely used in e-commerce websites (which products
sell well together), as well as areas like retail (keeping products that sell well
together placed together), healthcare, telecom (which are value-added services
to bundle), and many others.

Example database with four items and five transactions

Transaction ID Milk Bread Butter Beer
1 1 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 0 0

e The item set (milk,bread->butter) has a support of 20% since it occurs in 20%
of all transactions (1 out of 5 transactions). Support is an indication of how
frequently the item set appears.

e The item set (milk,bread->butter) has a confidence of 50% since it occurs in
50% of all such transactions (1 out of 2 transactions). Confidence is an indi-
cation of how often the rule has been found to be true.

o Lift would be = 0.2/0.4*0.4 = 1.25. Lift considers both the confidence of the
rule and the overall data.

302

7 Machine Learning Made Easier
The basic theoretical framework came from this paper: Fast Algorithms for

Mining Association Rules at http://rakesh.agrawal-family.com/papers/
vldb94apriori.pdf

You can see some datasets for association analysis at Frequent Itemset Mining
Dataset Repository: http://fimi.ua.ac.be/data/.

Again association analysis is very easy in R due to a rules package and
difficult to find in Python package landscape. (See https://github.com/
scikit-learn/scikit-learn/issues/2872 and https://github.com/scikit-learn/
scikit-learn/issues/2662 for the reasons scikit-learn won't be able to accept
it.) One possible solution is PyFIM (Frequent Item Sets) available at http://
www.borgelt.net/pyfim.html.

In R here is some code to show how easy it is: http://rpubs.com/newajay/
associationanalysis.

library (rattle)

Rattle: A free graphical interface for data mining
with R.

Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty
Ltd.

Type 'rattle()' to shake, rattle, and roll your data.

#rattle()

#install.packages ("arulesvViz")

library (arulesVviz)

Loading required package: arules

Loading required package: Matrix

##

Attaching package: 'arules'

The following objects are masked from
'package:base’':

##

H# abbreviate, write

Loading required package: grid

Warning: failed to assign NativeSymbolInfo for 1lhs
since lhs is already

defined in the 'lazyeval' namespace

Warning: failed to assign NativeSymbolInfo for rhs
since rhs is already

defined in the 'lazyeval' namespace

data (Groceries)

str (Groceries)

http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://fimi.ua.ac.be/data/
https://github.com/scikit-learn/scikit-learn/issues/2872
https://github.com/scikit-learn/scikit-learn/issues/2872
https://github.com/scikit-learn/scikit-learn/issues/2662
https://github.com/scikit-learn/scikit-learn/issues/2662
http://www.borgelt.net/pyfim.html
http://www.borgelt.net/pyfim.html
http://rpubs.com/newajay/associationanalysis
http://rpubs.com/newajay/associationanalysis

Formal class 'transactions' [package "arules"] with 3 slots

..@ data :Formal class 'ngCMatrix' [package "Matrix"] with 5 slots

e .. L.@ 1 : int [1:43367] 13 60 69 78 14 29 98 24 15 29

H# e@Dp : int [1:9836] 0 4 7 8 12 16 21 22 27 28

Hit ..@ Dim : int [1:2] 169 9835

..@ Dimnames:List of 2

..$: NULL

#4#$: NULL

H##@ factors : list{()

..@ itemInfo :'data.frame': 169 obs. of 3 variables:

.. ..$ labels: chr [1:169] "frankfurter" "sausage" "liver loaf" "ham"

HH#$ level2: Factor w/ 55 levels "baby food", "bags",..: 44 44 44 44 44 44 44
42 42 41

.. ..$ levell: Factor w/ 10 levels "canned food",..: 6 6 6 6 6 6 6 6 6 6

..@ itemsetInfo:'data.frame': 0 obs. of 0 variables

summary (Groceries)

transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146
##

most frequent items:

whole milk other vegetables rolls/buns
2513 1903 1809
yogurt (Other)

1372 34055

##

element (itemset/transaction) length distribution:
sizes

soda
1715

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55
16 17 18 19 20 21 22 23 24 26 27 28 29 32

#H# 46 29 14 14 9 11 4 6 1 1 1 1 3 1
##

H# Min. 1st Qu. Median Mean 3rd Qu. Max.

Hi 1.000 2.000 3.000 4.409 6.000 32.000

##

includes extended item information - examples:

H## labels level2 levell

1 frankfurter sausage meat and sausage

2 sausage sausage meat and sausage

3 liver loaf sausage meat and sausage
itemFrequencyPlot (Groceries, topN=20, type="absolute")

2500 4
)
=2 2 —
= 2000
(%]
8
— 1500
>
9
o
S 1000
o
@
-
£ 500
o
0- X 0 OBEFNE DOPESODSEOETO
Zo0ocos3Lo0350053%59830 T O
Es 0o aEQ22E358 00
a @ o T ona® o 9 0 =2 90 = @
o 8 = 8383 S a8 852 G 2
5 0 2 5062w 283 ¢8a2 c S
293 > O £ 0 =20 2 2 53%
o 2 =0 g3 cE 2 c < 5 9]
= 2 E>L2 a2 QD g T 5 2
= 8= * 0o 2 c 6 525 E
@ s} < 3 S
< o] >g ©
° 2 g
2 €
=2

rules <- apriori (Groceries, parameter=list (support=0.01, confidence=0.5))

Apriori

##

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.5 0.1 1 none FALSE TRUE 5 0.01 1
maxlen target ext

10 rules FALSE

##

Algorithmic control:
filter tree heap memopt load sort verbose

#4# 0.1 TRUE TRUE FALSE TRUE 2 TRUE

##

Absolute minimum support count: 98

#H#

set item appearances ...[0 item(s)] done [0.00s].

set transactions ... [169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [15 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

summary (rules)

set of 15 rules

#4#

rule length distribution (lhs + rhs) :sizes

3

15

##

Min. 1st Qu. Median Mean 3rd Qu. Max.

#4# 3 3 3 3 3 3

##

summary of quality measures:

support confidence lift

Min. :0.01007 Min. :0.5000 Min. :1.984
1st Qu.:0.01174 1st Qu.:0.5151 1st Qu.:2.036
Median :0.01230 Median :0.5245 Median :2.203
Mean :0.01316 Mean :0.5411 Mean :2.299
3rd Qu.:0.01403 3rd Qu.:0.5718 3rd Qu.:2.432
Max. :0.02227 Max. :0.5862 Max. :3.030
##

mining info:

data ntransactions support confidence

Groceries 9835 0.01 0.5
inspect (head (sort (rules, by ="1ift"),10))

lhs rhs

[1] {citrus fruit,

root vegetables} => {other vegetables} 0.
[2] {tropical fruit,

root vegetables} => {other vegetables} 0.
[3] {root vegetables,

rolls/buns} => {other vegetables} 0.
[4] {root vegetables,

#H# yogurt } => {other vegetables} 0.

support confidence

01037112

01230300

01220132

01291307

.5862069

.5845411

.5020921

.5000000

lift

.029608

.020999

.594890

.584078

##
##
##
##
##
##
##
##
##
##
##
##

[5] {curd,

yogurt }

[6] {other vegetables,
butter}

[71 {tropical fruit,

root vegetables}
[8] {root vegetables,
yogurt}
[9] {other vegetables,
domestic eggs}
[10] {yogurt,

whipped/sour cream} =>

plot (rules, method="graph")

curd

Graph for 15 rules

size: support (0.01-0.022)

{whole
{whole
{whole
{whole
{whole

{whole

color: lift (1.984 -3.03)

citrus fruit

tropical fruit
e}

Qaptiegetables

/>0 golls/buns
Q Olo 0]

yogurt “@fhgrvegetables
o 1 @e Rtk \
O.

o @) 3 O butter

whipped/sour cream
pip fruit

domestic eggs

milk}
milk}
milk}
milk}
milk}

milk}

.01006609

.01148958

.01199797

.01453991

.01230300

.01087951

.5823529

.5736041

.5700483

.5629921

.5525114

.5245098

.279125

.244885

.230969

.203354

.162336

.052747

library (arulesvViz)
data (Groceries)
summary (Groceries)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146

most frequent items:

whole milk other vegetables rolls/buns

2513 1903 1809
yogurt (Other)
1372 34055

element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10
2159 1643 1299 1005 855 645 545 438 350 246
16 17 18 19 20 21 22 23 24 26
46 29 14 14 9 11 4 6 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:

labels 1level2 levell
1 frankfurter sausage meat and sausage
2 sausage sausage meat and sausage
3 liver loaf sausage meat and sausage

11
182
27
1

soda
1715

12
117
28
1

13
78
29

3

14
77
32

1

15
55

rules <- apriori (Groceries, parameter=list (support=0.01, confidence=0.5))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Apriori

Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.5 0.1 1 none FALSE TRUE 5 0.01 1
maxlen target ext
10 rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 98

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [15 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

summary (rules)

##
##
##
##
##

set of 15 rules

rule length distribution (lhs + rhs):sizes
3
15

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Min. 1st Qu. Median

Mean 3rd Qu.

3 3 3 3
summary of quality measures:
support confidence
Min. :0.01007 Min. :0.5000
1st Qu.:0.01174 1st Qu.:0.5151
Median :0.01230 Median :0.5245
Mean :0.01316 Mean :0.5411
3rd Qu.:0.01403 3rd Qu.:0.5718
Max. :0.02227 Max. :0.5862

mining info:
data ntransactions support confidence

Groc

eries 9835

inspect (head (sort (rules, by

##
##
##
##
##
##
##
##
##
##
##

[1]

[21]

[3]

[4]

[5]

1lhs

{citrus fruit,
root vegetables}
{tropical fruit,
root vegetables}
{root vegetables,
rolls/buns}
{root vegetables,
yogurt }

{curd,

yogurt }

=>

=>

=>

=>

0.01
rhs
{other
{other
{other
{other

{whole

3

11i
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

0.5

="1ift"),10))

vegetables} 0.
vegetables} 0.
vegetables} 0.

vegetables} 0.

milk}

Max.

ft

W N DNDDNDDND R

.984
.036
.203
.299
.432
.030

support confidence

01037112

01230300

01220132

01291307

.01006609

.5862069

.5845411

.5020921

.5000000

.5823529

lift

.029608

.020999

.594890

.584078

.279125

##
##
##
##
##
##
##
##
##
##

plot (rules[1:5] ,method="graph", interactive

whipped/sour ¢

[6]

[7]

[8l

=

[10]

{other vegetables,

butter} =>
{tropical fruit,

root vegetables} =>
{root vegetables,
yogurt} =>
{other vegetables,
domestic eggs} =>
{yogurt,

{whole
{whole
{whole

{whole

milk}
milk}
milk}

milk}

whipped/sour cream} => {whole milk}

Graph for 5 rules

size: support (0.01-0.015)

color: lift (1.984-2.279)

curd

v

ream WQ'i'ﬁ”‘\Q{

' 1 4
O

domestic eggs

butter

.01148958

.01199797

.01453991

.01230300

.01087951

.5736041

.5700483

.5629921

.5525114

.5245098

.244885

.230969

.203354

.162336

.052747

312 | 7 Machine Learning Made Easier

plot (rules[1:15] ,method="graph", interactive = T)
itemFrequencyPlot (Groceries, topN=20, type="absolute")

2500
0)
> 2000
o]
@
3
— 1500
>
2)
&
S 1000
o
)
=
£ 500
9]
=
0- X 00T L HREQOD>ESNEFEEQETA
—G)CU:EG):O)U),_.DQB“):O o D
Ezgommztgmgtgag,tEggg
0o 8T P Qo sa@TPy 8oy s a6 o
5 o 2 T 0023 29 2332 c 2
c O35 G.)U)'E_.E(n == 2 ¢ QS;"JS
s 0 2 £ 0 o528 c E 2 E T 5 i)
> 5 > 5 Q9 S g *q',',,,eE
I a5 2 <o 23 2 5
<}
s Q @ >3 ©
S 29
S <
=2

#http://fimi.ua.ac.be/data/retail.pdf

library (arules)

a=read.transactions ("http://fimi.ua.ac.be/data/retail.
dat™")

itemFrequencyPlot (a, topN=20, type="absolute")

50000

40000
30000
20000
10000 - III
0 0 [[e T et et

P WP D @D POD P 008 @«@@@@

item frequency (absolute)

basket

http://fimi.ua.ac.be/data/retail.dat
http://fimi.ua.ac.be/data/retail.dat

7.3 Association Analysis

Text mining is much more elaborate and powerful, and the nltk package in Python
does match up to the tm package (and its sub-packages) in R. From https://github.
com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb we see

import nltk

In [*]:
nltk.download/()

showing info https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/
index.xml

7 NLTK Downloader

File View Sot Help

All p g
all-corpora All the corpora
book Everything used in the NLTK Book

Download

Serverindec https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
Downlead Directery: C: \Users\Dell\AppData\Roaming\nltk_data

In [4]:
import nltk

In [5]:
nltk.download()

showing info https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/
index.xml

Out [5] :
True

313

https://github.com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb
https://github.com/decisionstats/pythonfordatascience/blob/master/nltk.ipynb
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml

314

7 Machine Learning Made Easier

In [6]:
from nltk.book import *

*** Introductory Examples for the NLTK Book ***

Loading textl, ..., text9 and sentl, ..., sent?9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.

textl: Moby Dick by Herman Melville 1851

text2: Sense and Sensibility by Jane Austen 1811

text3: The Book of Genesis

text4: Inaugural Address Corpus

text5: Chat Corpus

text6: Monty Python and the Holy Grail

text7: Wall Street Journal

text8: Personals Corpus

text9: The Man Who Was Thursday by G. K. Chesterton
1908

In [7]:
textl.similar ("great")

good whale long vast sea whole living small other
large dead mighty
same such last more much sperm noble old

In [8]:
from urllib import request
url = "http://www.gutenberg.org/files/2554/2554.txt"
response = request.urlopen (url)
raw = response.read() .decode('utfs8')
type (raw)
out[8] :
str
In [9]:
len (raw)
out[9] :
1176896
In [10]:
raw/[:75]
Out [10] :

'The Project Gutenberg EBook of Crime and Punishment,
by Fyodor Dostoevsky\r\n'

http://www.gutenberg.org/files/2554/2554.txt

7.3 Association Analysis | 315

In [12]:
tokens = nltk.word tokenize (raw)
type (tokensg)

list

len (tokens)

254352

tokens[:10]

['"The',
'Project',
'Gutenberg!
'"EBook ',
'Of',
'Crime’',
'and',
'Punishment’',

1 1
I I

'By']

Citation-
http://www.cs.duke.edu/courses/springl4/compsci290/
assignments/lab02.html

From http://rpubs.com/newajay/textmining we see basic
text mining in R

memory.size ()

[1] 17.11

memory.limit ()

[1] 1535
#install.packages (“tm”)

library (tm)

Loading required package: NLP

getReaders ()

H# [1] "readDoOC" "readPDF"

[3] "readPlain" "readRCV1"

[5] "readRCVlasgPlain" "readReut21578XML"
[7] "readReut21578XMLasPlain" "readTabular"

http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
http://rpubs.com/newajay/textmining

316

7 Machine Learning Made Easier

[9] "readTagged" "readXML"

getSources ()

[1] "DataframeSource" "DirSource" "URISource"
"VectorSource"

[5] "XMLSource" "ZipSource"

warp ="http://www.gutenberg.org/files/2600/2600-0.txt"

Corpusl=Corpus (URISource (warp), readerControl =
list (language = "eng"))

inspect (Corpusl)

<<VCorpus>>

Metadata: corpus specific: 0, document level
(indexed) : 0

Content: documents: 1
H##
[[1]]

<<PlainTextDocuments>>

Metadata: 7

Content: chars: 3170017

summary (Corpusl)

H## Length Class Mode
2600-0.txt 2 PlainTextDocument list

7.4 Cleaning Corpus and Making Bag of Words

Corpusl, removePunctuation)
Corpusl, removeNumbers)

Corpusl <- tm _map

Corpusl <- tm_map

Corpusl <- tm_map (Corpusl, tolower)

Corpusl <- tm_map (Corpusl, removeWords,
stopwords ("english"))

#install.packages (“"SnowballC”)

library (SnowballC)

Corpusl <- tm_map (Corpusl, stemDocument)

Corpusl <- tm _map (Corpusl, stripWhitespace)

Corpusl <- tm _map (Corpusl, PlainTextDocument)

~ o~ o~ —~

dtm <- DocumentTermMatrix (Corpusl)

tdm <- TermDocumentMatrix (Corpusl)
tdm

<<TermDocumentMatrix (terms: 21354, documents:

Non-/sparse entries: 21354/0
Sparsity : 0%
Maximal term length: 29

1) >>

http://www.gutenberg.org/files/2600/2600-0.txt

7.4 Cleaning Corpus and Making Bag of Words | 317

Weighting : term frequency (tf)

ingpect (tdm[1:30,1])

<<TermDocumentMatrix (terms: 30, documents: 1)>>
Non-/sparse entries: 30/0

Sparsity : 0%

Maximal term length: 13

Weighting : term frequency (tf)
H#

H# Docs

Terms character (0)
H# ae” 9
H# ag” aer 1
H# a€” annett 1
H## a€"” precede 1
HH# a€” salut 1
H# a€” st 1
H# a€” though 1
H# aa€e” 1
aah 1
aback 3
H# abacus 1
H# abandon 31
H# abandoned 51
H# abandoning 24
abandonment 13
H# abandons 1
abas 1
abash 1
H# abashed 11
abate 1
H# abbi 18
H## abbis 1
H# abbreviations 1
abc 1
H# abdicate 1
abdomen 2
H# abdomens 2
HH# abduction 3
H# abductor 1
abhorrence 1

matxl=as.matrix (tdm)

matxl[1:10]

H# [1] 9111111113
sortl=sort (rowSums (matxl) ,decreasing=T)

318 | 7 Machine Learning Made Easier

sortl1[1:10]

H## said one prince pierre now
natasha man andrew

H# 2834 1882 1725 1561 1304
1103 1077 1045

HH# will princess

997 916

di=data.frame (Word=names (sortl) ,Frequency=sortl)

dif[1:10,]

Word Frequency

said said 2834

one one 1882

prince prince 1725

pierre pierre 1561

now now 1304

natadsha natdsha 1103

man man 1077

andrew andrew 1045

will will 997

princess princess 916

#install.packages (“wordcloud”)

library (wordcloud)

Loading required package: RColorBrewer

wordcloud (disWord, disFrequency, max.
words=100, colors=brewer.pal (6, "Redg"))

said
one

man

S prince

W

pierre

natasha

andrew

7.4 Cleaning Corpus and Making Bag of Words

wordcloud (dis$Word, di$Frequency, max.words=100,
colors=brewer.pal (6, "Dark2"))

V)
@®countess :
yes o a |Way5 denisov

upderstand
MOSCOW princess

napoldund rightiook without thought

wssannatasha 7 though
e love last MEN took &= Eyoung
sawFOOMandrew must Site
can officer s yddent telipeopletoldlong kutazov
even nothing ., . f€lt_twosay dontknew
: Swhole general know back dear
frenchiusthands rostav o = “maywill ¢3
another Well day @ ‘1000 Snever

camemoment £ “Ta o e Sooked eye§ (-
army old chapter emperor much SaNYa . o
50m9th'"9“festil:|) head looking aWway Went o
made everyt_ging egan mchmasg(}?d like
manae : ace
‘saidnows
o asked

»countQN

7.4.1 Cluster Analysis

pierre

Grouping data so that similar data is in similar clusters and dissimilar data is in
different clusters is cluster analysis. It is unsupervised learning. Data reduction
technique includes the following:

¢ Organizing data into groups:
— Each cluster or group is similar to itself.
— Each cluster or group is distinct from others.
e As a stand-alone tool to get insight into data distribution and as a preproc-
essing step for other algorithms
o Widely used in:
Marketing—Similar customers
Biology—Groups of plants/animals
Financial services—Similar risk/collection/fraud
City planning
Others

7.4.2 Cluster Analysis in Python

https://nbviewer.jupyter.org/gist/decisionstats/al1554207a7583bad6£538259
05e72289

K means clustering in Python, including performance metric, confusion matrix,
and visualization.

319

https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289
https://nbviewer.jupyter.org/gist/decisionstats/a1554207a7583bad6f53825905e72289

320

7 Machine Learning Made Easier

import matplotlib.pyplot as plt
from sklearn import datasets

from sklearn.cluster import KMeans
import sklearn.metrics as sm

import pandas as pd
import numpy as np

In [2]:
wine=pd.read csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/wine/wine.
data",header=None)
In [3]:
wine.head ()
Out [3] :
0o 1 2 3 4 5 6 7 8 9 10 1 12 13
0 1 14.23 171 243 156 127 280 3.06 028 229 564 1.04 392 1065
1 1 1320 1.78 214 11.2 100 265 276 0.26 1.28 4.38 1.05 3.40 1050
2 1 1316 236 267 186 101 280 324 030 281 568 1.03 317 1185
3 1 1437 195 250 168 113 3.85 349 0.24 2.18 7.80 086 3.45 1480
4 1 1324 259 287 21.0 118 2.80 269 039 1.82 432 1.04 293 735

From http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.
names we get the column names

wine.columns=['winetype', 'Alcohol', 'Malic
acid', 'Ash','Alcalinity of ash', 'Magnesium', 'Total
phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proan
thocyanins', 'Color intensity', 'Hue', 'OD280/0D315 of
diluted wines', 'Proline’']

In [4]:

In [5]:

wine.head()
Alcalinity Total
winetype Alcohol Malic acid Ash of ash Magnesium phenols

count 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000
mean 1.938202 13.000618 2.336348 2.366517 19.494944 99.741573 2295112
std 0.775035 0.811827 1.117146 0.274344 3.339564 14.282484 0.625851
min 1.000000 11.030000 0.740000 1.360000 10.600000 70.000000 0.980000
25% 1.000000 12.362500 1.602500 2.210000 17.200000 88.000000 1.742500
50% 2.000000 13.050000 1.865000 2.360000 19.500000 98.000000 2.355000
75% 3.000000 13.677500 3.082500 2.557500 21.500000 107.000000 2.800000
max 3.000000 14.830000 5.800000 3.230000 30.000000 162.000000 3.880000

http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names

7.4 Cleaning Corpus and Making Bag of Words | 321

out [5] :
0D280/
Nonfla- 0oD315
wine Malic Alcalinity Magne- Total Flava- vanoid Proantho- Color of diluted
type Alcohol acid Ash ofash sium phenols noids phenols cyanins intensity Hue wines Proline

1423 171 243 15.6 127 280 306 028 229 5.64 1.04 3.92 1065
1320 178 214 112 100 265 276 026 1.28 4.38 1.05 340 1050
13.16 236 2.67 18.6 101 280 324 030 281 5.68 103 3.17 1185
14.37 195 250 16.8 113 385 349 024 218 7.80 0.86 3.45 1480
1324 259 2.87 21.0 118 280 269 039 182 4.32 1.04 293 735

_WN-=Oo
e

In [6]:
wine.info ()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
winetype 178 non-null inté64
Alcohol 178 non-null floaté4
Malic acid 178 non-null floaté4
Ash 178 non-null floaté4
Alcalinity of ash 178 non-null floaté4
Magnesium 178 non-null inté64
Total phenols 178 non-null floaté64
Flavanoids 178 non-null floaté4
Nonflavanoid phenols 178 non-null floaté64
Proanthocyanins 178 non-null floaté64
Color intensity 178 non-null floaté4
Hue 178 non-null floaté4
0OD280/0D315 of diluted wines 178 non-null floaté4
Proline 178 non-null inté4
dtypes: float64(11), int64(3)
memory usage: 19.5 KB
In [7]:
wine.describe ()
Out [7] :
0D280/0D315
Nonflavanoid Proantho- Color of diluted
Flavanoids phenols cyanins intensity Hue wines Proline
178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 178.000000
2.029270 0.361854 1590899 5.058090 0.957449 2.611685 746.893258
0.998859 0.124453 0.572359 2.318286 0.228572 0.709990 314.907474
0.340000 0.130000 0.410000 1.280000 0.480000 1.270000 278.000000
1.205000 0.270000 1.250000 3.220000 0.782500 1.937500 500.500000
2.135000 0.340000 1.555000 4.690000 0.965000 2.780000 673.500000
2.875000 0.437500 1.950000 6.200000 1.120000 3.170000 985.000000

5.080000 0.660000 3.580000 13.000000 1.710000 4.000000 1680.000000

322

7 Machine Learning Made Easier

In [8]:
pd.value counts(wine['winetype'l])

Out [8] :
2 71
1 59
3 48

Name: winetype, dtype: inté4

The R solution is https://rstudio-pubs-static.s3.amazonaws.com/33876_
1d7794d9a86647ca90c4f182df93f0e8.html
The clustering optimization problem is solved with the function kmeans in R.

wine.stand <- scale(wine[-1]) # To standarize the
variables

K-Means

k.means.fit <- kmeans(wine.stand, 3) # k = 3

In k.means.fit are contained all the elements of the
cluster output:

attributes (k.means.fit)

Snames

[1] "clustexr" "centers" "totss"
"withingsg"

[5] "tot.withinss" "betweenss" "size"
n iterll

[9] "ifault"

HH#

Sclass

[1] "kmeans"

Centroids:

k.means.fitScenters

Alcohol Malic Ash Alcalinity Magnesium
Phenols Flavanoids

https://rstudio-pubs-static.s3.amazonaws.com/33876_1d7794d9a86647ca90c4f182df93f0e8.html
https://rstudio-pubs-static.s3.amazonaws.com/33876_1d7794d9a86647ca90c4f182df93f0e8.html

1 0.1644 0.8691 0.1864 0.5229 -0.07526 -0.97658 -1.21183

2 0.8329 -0.3030 0.3637 -0.6085 0.57596 0.88275 0.97507
3 -0.9235 -0.3929 -0.4931 0.1701 -0.49033 -0.07577 0.02075
#4# Nonflavanoids Proanthocyanins Color Hue Dilution Proline
1 0.72402 -0.7775 0.9389 -1.1615 -1.2888 -0.4059
2 -0.56051 0.5787 0.1706 0.4727 0.7771 1.1220
3 -0.03344 0.0581 -0.8994 0.4605 0.2700 -0.7517
For Python it is a bit similar to do kmeans clusterinng
In [9]:
x=wine.ix[:,1:14]
y=wine.ix[:, :1]
In [10]
x.columns
Out [10]
Index(['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
'Proanthocyanins', 'Color intensity', 'Hue',
'0D280/0D315 of diluted wines', 'Proline'],
dtype='object')
In [33]

x.ix[:,:1] .head()

324 | 7 Machine Learning Made Easier

Out [33]:
Alcohol
0 14.23
1 13.20
2 13.16
3 14.37
4 13.24
In [12]
y.columns
Out [12]:
Index (['winetype'], dtype='object')
In [13]:
x.head ()
Out [13]:
0D280/
Non- 0oD315
Alcali- flava- Proan- Color of
Malic nityof Magne- Total Flava- noid thocy- inten- diluted
Alcohol acid Ash ash sium phenols noids phenols anins ity Hue wines Proline
0 1423 171 243 156 127 2.80 3.06 028 2.29 564 104 392 1065
1 1320 178 214 112 100 2.65 276 0.26 1.28 4.38 1.05 340 1050
2 1316 236 267 186 101 2.80 324 030 2.81 568 1.03 3.17 1185
3 1437 195 250 168 113 3.85 349 024 2.18 780 086 345 1480
4 1324 259 287 210 118 2.80 269 039 1.82 432 1.04 293 735
In [14]
y.head ()
Out [14]
winetype
0 1
1 1
2 1
3 1
4 1
In [15]

y.info

7.4 Cleaning Corpus and Making Bag of Words

<bound method DataFrame.info of

0 1 148
1 1 149
2 1 150
3 1 151
4 1 152
5 1 153
6 1 154
7 1 155
8 1 156
9 1 157
10 1 158
11 1 159
12 1 160
13 1 161
14 1 162
15 1 163
16 1 164
17 1 165
18 1 166
19 1 167
20 1 168
21 1 169
22 1 170
23 1 171
24 1 172
25 1 173
26 1 174
27 1 175
28 1 176
29 1 177

[178 rows X 1 columns]>

K Means Cluster
model = KMeans (n_clusters=3)
model. fit (x)

winetype

W W WwWwwwwwwwwwwwwwwwwwwwwwwwwwwww

Out [15] :

325

Oout [16] :

=3, n_init=10,
tol

n_clusters

300,
random state

max_iter

init='k-means++',
precompute distances='auto',

_x=True,

KMeans (copy_ x

=0.0001,

=None,

=1,

verbose

n_jobs

=0)

[17]:

In

model.labels

Oout [17] :

=int32)

dtype

[18]:

In

pd.value counts(model.labels)

Out [18] :

69
62
47

1
2
0

inté64

dtype:

[19]:

In

pd.value_ counts (y['winetype'])

Out [19] :

71
59

2
1
3

48

dtype: inté4

winetype,

Name :

7.4 Cleaning Corpus and Making Bag of Words | 327

In [20]:
We convert all the 1s to 0s and 0s to Is.
predY = np.choose(model.labels , [1, 2, 3]).astype(np.
inté64)

In [21]:
print (y['winetype'l)
print (model.labels)
print (predy)

0 1 148 3
1 1 149 3
2 1 150 3
3 1 151 3
4 1 152 3
5 1 153 3
6 1 154 3
7 1 155 3
8 1 156 3
9 1 157 3
10 1 158 3
11 1 159 3
12 1 160 3
13 1 161 3
14 1 162 3
15 1 163 3
16 1 164 3
17 1 165 3
18 1 166 3
19 1 167 3
20 1 168 3
21 1 169 3
22 1 170 3
23 1 171 3
24 1 172 3
25 1 173 3
26 1 174 3
27 1 175 3
28 1 176 3
29 1 177 3

dtype: inté4
[O0O0O0200000000000000222002200200000022

winetype,

Name:

0022002200000000O0O0O0O0O0D0121211211222110
2111211221111122111112212121112111121
1211111112111111111211222211122112213:2

211112221222121221222211222221]
ft111311111111111111333113311311111133

1133113311111 1111111112323222322333221
3222322332222233222223323232223222232:2
23222222232222222223223333222332223323

32222333233323233233332223233332]

[22]:

In

Performance Metrics

sm.accuracy_ score(y, predY)

Out [22] :

0.702247191011236

[23]:

In

Confusion Matrix

sm.confusion matrix(y, predY)

Out [23] :

13],

array ([[46,

201,

50,
19,

2911)

0,

7.4 Cleaning Corpus and Making Bag of Words

In [24]:
pd.unique (y.winetype)
Out [24] :
array([1, 2, 3])
In [25]
#!sudo pip install ggplot
In [30]
from ggplot import *
$matplotlib inline
In [31]:
p = ggplot (aes(x='Alcohol', y='Ash',6 color="winetype"),
data=wine)
P + geom point ()
3.5
3.0
S fsdlis b el |
25 .. - .o- : ."‘: o :.. .":'.
L L] . -m L] .
3 o QUL 2 DR O
2.0 B &
b 5 | winetype
= 1.0
15 —_—20
= 3.0
1.0
10 11 12 13 14 15 16
Alcohol
Out [31]:
<ggplot: (-9223363292162990364) >
In [32]:
p2 = ggplot (aes(x='Alcohol', y='Ash',6 color="predyY"),

data=wine)
p2 + geom point ()

329

330 | 7 Machine Learning Made Easier

3.5
3.0
. = S i s R
O - o T S
&9 2 e N e s ey B
- u" : :\ ‘-'! " - .
g e
2.0 R
v predY
15 — 10
. — 2.0
— 3 0
1.0 - \
10 11 12 13 14 15 16
Alcohol

Out [32] :
<ggplot: (8744691751337) >

331

8

Conclusion and Summary

Some conclusions to draw from comparing R and Python functionality as well
as the author’s own experience with the SAS language are as follows:

1) There is no one software or language that is good for each and every use
case or situation.

2) For the student, researcher, job seeker, and professional, having skills in two
languages is better than having skills in one language.

3) R ecosystem has learnt from Python (like Beautiful Soup or bokeh or
R Essentials for Jupyter), while Python ecosystem has learnt from R (like
ggplot and pandas). This cross-language learning should be encouraged
especially in academia and industry.

4) As feature requests, Python statsmodels can be more user-friendly (like
car), time series can have more tools like auto.arima (in forecast), and scikit-
learn can have spin-off smaller packages (like arules for association analysis)
and easier to read syntax (like party, rpart, and RandomForest) instead of
having a very big scikit-learn package. Some of these machine learning
packages should be made panda ready rather than numpy specific to help
make them more popular.

5) Python can make or port GUIs like R Commander and rattle as that will
help in teaching.

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Index

a

abs 167

absolute 328, 329, 333, 336

academia 355

academic 26

academy 11,28

acast 158

account 165, 256, 257

accuracy 4, 21, 166, 219, 304, 305,
307-309, 352

acid 85, 344, 345, 347, 348

acknowledgments 7, 15

acos 50

acosh 50

acquisition 70

across 11,143, 309

ActivePython 42

adjusted 165, 182, 183, 185, 187, 189,
198, 200, 202-204, 208

advstats 211

AIC 179,216, 226,272

AirPassengers 318, 319, 323, 324

ajaydecis 48, 57,102, 115, 122, 129,
130, 148, 218, 248, 253, 255

ajayohri 32, 35, 59-62, 114, 168, 235,
273,275, 281

alcohol 344-348, 353, 354

algorithms 11, 29, 48, 287, 296,
326, 343

Anaconda 37, 38, 42, 59, 260

anaconda3 59, 226, 228-230, 235,
276, 281

analysis 8, 10-12, 18, 26, 27, 30-32,
34, 35, 42, 43, 61-63, 69-72, 96, 108,
137, 143, 164-168, 220, 231, 238,
248, 259, 260, 275, 325, 326, 343, 355

analytics 7,9,11-13, 15,17, 18, 21,
26-28, 30, 31, 38, 39, 42, 43, 61, 62,
70,71, 211, 247, 260

ANOVA 175

anscombe 9, 75, 224-230, 259

api 78,89,178, 211, 225,271, 272

apriori 329, 333

arima 318, 324, 325, 355

array 30, 101, 107, 119, 178, 266, 282,
285, 286, 290-294, 299, 350, 352, 353

arules 326, 327, 336, 355

326, 332

aslugsguidetopython 35

association 10, 275, 325, 326, 355

auc 9,218, 287,296

AUROC 217

average 72,129,167,169,171,191, 218

avg 122,130

Azure 31,41

arulesViz

b

BaggingClassifier
298, 299

barplot 237,238, 248, 251, 253, 316

282, 289-291,

Python® for R Users: A Data Science Approach, First Edition. Ajay Ohri.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

333

334

Index

basicR 130, 148

Bayes 308

BeautifulSoup 79

beautifulsoup4 60, 79

bias 9,68, 72,73, 218, 220

BIC 179,226,272

bokeh 33,221, 234, 247, 355

Bonferonni 201, 208

boston 190-195, 197, 199-205, 207,
271,272

boxcox 205, 209

boxplot 195, 248, 249, 269, 316

bptest 199, 201, 205, 208

Breusch-Pagan 199, 201, 205, 208

byteacademy 28

C

calgary 79-81

CAP 85

35-37, 304, 307

caretr 36, 37

Cassandra 86

categorical 8, 143, 145, 168, 169, 237,
238, 265

Cauchy 172

chaid 71, 300, 316, 317

chisq 177

chi-square 175

chi-squared 177

chisquaretest 176

classification 275, 282, 291, 300,
303, 307

Clojure 31

cloudera 40

coefficients 37, 165, 181-184, 186,
188, 198, 200, 202-204, 207, 216

cognitive 72,73

colnames 114

238, 249, 251, 253, 343

column-oriented 86

confusionMatrix 304, 307

contingency 178

continuum 37, 38, 42, 168, 260, 276

caret

colors

Conway, Drew 27, 63

core 40, 42,43,73,77,100, 106,
107, 113, 234, 260, 263, 266, 280,
285, 345

corr 144, 145, 265, 266

correlation 9, 63, 145, 166, 168, 211,
224, 253, 265

corrgram 194, 253, 254

CouchDB 85, 86

counter 85

counterparts

countries 64

counts 23, 145, 262, 265, 266, 285,
292, 346, 350

couple 83

coursera 34, 221

courses 11, 34, 339

Courtesy 86

Covariance 179, 226, 272

coxcomb 221, 223, 259

cp 44,86

CPython 42

cran 26, 33,70, 102, 142, 247

crawling 42

Creighton, H.J. 106

crim 190, 192, 193, 195, 197-202, 272

Crimean 221

criterion 18, 287, 290, 296, 299, 301,
302

critical 27

crosstab 145, 266, 267

Cross-Validated 308

CSS 68

csv 75-78, 84, 96, 106, 120, 122, 178,
190, 211, 214, 225, 234, 237, 252,
262,263, 271, 278, 291, 344

CTOs 21

ctree 300, 306, 316

customers 43, 64, 69-71, 94, 343

cutgroup 266

cutoff 166

cv 290, 299, 308

cx 81

233

cy 164
cycle 228-230
cython 40,43

d

dashboard 9, 232, 259

data 3,4,7-9,11-13,17-19, 21,
25-44, 57, 61-63, 71-73, 75-81,
84-86, 90, 94-97, 100-102, 104—
106, 108, 112—-116, 118-120,
122-124,129-132, 134, 137,
142-145, 147-150, 158-160,
164-170, 175,177, 179, 181-188,
190, 197, 199-205, 207, 208,
211-215, 218, 220, 221, 224,
226-234, 236-248, 252, 254, 256,
259-263, 265-273, 276, 278, 280,
288, 291, 297, 300, 303-307,
314-318, 325-327, 330, 332, 334,
336, 337, 342-345, 353

database(s) 17,27, 43, 84-87, 89,
90, 93, 95, 96, 98, 100, 261, 291,
325, 344

DataCamp 34

dataframe 35-37, 77, 100, 106—108,
113, 148, 234, 263, 278, 280285,
291, 292, 345, 349

datascience 28, 34, 38

datavisualization 221

date 8, 94, 100, 102-105, 137-139,
179, 199, 213, 226, 272, 276, 279,
280, 282, 283, 300, 305, 318

datetime 102, 104, 143

DB2 84,89

dBase 89

dcast 159

Debian 60

decision 8, 10, 31, 62, 63, 71-73, 174,
221, 273, 275, 282, 283, 291, 300

decisionstats 11, 12, 15, 27, 45, 56, 58,
71,75,76,78,104, 106, 110-112,
120, 143, 147, 178, 224, 228, 234,
243, 244, 258, 259, 275, 291, 337, 343

Index

DecisionTreeClassifier 282, 289-291,
298, 299

DecisionTreeRegressor 286, 287, 296

definition 26, 32, 40, 62, 63, 143

degrees 50, 168, 182, 183, 185, 187,
189, 198, 200, 202204, 208, 216

delete 54, 95,100, 101, 115

DELIMITER 96

density 171, 243, 327, 332

deploy 13,42,43

depth 113-116, 119, 120, 131-133,
136, 137, 149-153, 161, 162,
187-189, 254, 263266, 268, 286,
287, 290, 296, 299

Descriptive 152,211

desktop 43, 60-62, 76, 180, 190, 252,
263, 276

developers 26, 38

deviation 72, 135, 169, 170, 174, 224

diamonds 113-120, 130-137,
149-152, 154, 156162, 187, 188,
237-243, 245-247, 253, 254,
263-271

diapers 11

dimensions

Dimnames 327

DirSource 340

dispersion 9, 166, 169, 216

distance 165, 166, 169, 217, 221

distplot 235, 268

distribute 28, 37

distributed 29, 38, 43, 163, 171, 259

distribution 9, 42, 43, 71, 135,
169-171, 173, 175, 220, 235, 327,
329, 332, 333, 343

D3.,js 33

dmy 102,103, 138

DocumentTermMatrix 340

Dostoevsky 338

download 38, 42, 87, 89, 163, 257,
259, 260, 288, 297, 337

dplyr 37,101, 145, 159

drewconway 30, 63

114, 131, 221, 232

335

336

Index

dropbox 262,276

dropbox-dist 276

dropna 115, 267, 283

Drucker, Peter 62

dtypes 77,100, 106-108, 113, 114,
117, 120, 179, 180, 212, 226-228,
234, 263-266, 273, 281-285, 292,
345-348, 350, 352

e

el071 304, 307

easyREFM 71

EBook 338,339

EC2 41

Edureka 61,62

ensemble 282, 287, 291, 296

enterprisedb 87

enthought 42, 260

erikaandersen 167

error 37,42,53,72,73,96,163, 164,
174, 181-189, 198, 200, 202—-204,
207, 208, 216, 218-220, 235, 303, 307

estimate 37, 181, 183, 184, 186, 188,
198, 200, 202-204, 207, 216, 303, 307

euclid 163, 259

excel 78,89

exploratory 8,18, 34, 143, 231,
238, 248

exponential 172

f

FacetGrid 238

factor 67,69, 132, 143, 149, 160, 187,
215, 316, 317, 327

factorial 50

factorplot 238-242, 270

false 103,111, 112, 134, 140, 151, 174,
201, 205, 218, 219, 268, 287, 289,
290, 296, 298, 299, 309, 329, 333

fancyRpartPlot 315

feather 40

fivenum 143

forecast 318, 324, 355

format 40, 53, 55, 79, 95, 98, 101, 104,
112, 114, 115, 138, 139, 145, 156,
221, 260, 278, 327, 332

formula 36, 156,178,179, 181, 182,
184, 186, 188, 197, 200, 202-204,
207, 215, 225-227, 262, 271, 272,
303, 306, 317

frame 8, 28, 35, 37,77, 100, 105-107,
113, 114, 116, 118, 122, 124, 131,
132, 149, 160, 185, 187, 197, 234,
237, 260, 263, 266, 267, 280, 285,
316, 327, 342, 345

frequency 70, 71, 134, 137, 145, 169,
170, 275, 336, 341-343

F-statistic 182, 183, 185, 187, 189,
198, 200, 202-204, 208

F-test 175

function 12, 30, 47, 48, 57, 58, 82, 85,
104, 105, 108, 111, 114, 115, 119,
125, 137, 143-148, 166, 169, 171,
180, 211, 212, 248, 262, 281, 346

9
gain 30, 234

garbage 130

gartner 30

GDP 164

Genesis 338

genetic 11

geom 228-230, 245-247, 271, 353

geometric 94, 169, 243, 244

Geringer, Steven 28

gerstman 224

getcwd 60, 61, 76, 262, 263, 275, 278

getSources 340

getwd 62, 180, 190

ggplot 33, 224, 225, 228-230, 234,
244-247, 261, 262, 271, 353-355

ggplot2 8, 33, 37,130, 131, 149, 187,
214, 237, 254, 259, 261, 263, 304, 307

gini 290, 299

gist 45, 56, 58, 75, 76, 78, 104, 106,
110-112, 120, 143, 147, 178, 224,

228, 234, 243, 244, 257, 258, 275,
291, 343

git 8,44-46

github 26, 28, 34, 38, 39, 44-46, 70,
71,75, 106, 120, 122, 147, 178, 224,
225, 234, 237, 257, 259, 263, 271,
326, 337

githubusercontent 337

glm 180,211, 215,217

globals 48, 49, 120, 267

glossary 30

GNP see gross national product (GNP)

God 11

Googlevis

grammar
261, 271

graph 221, 222, 224, 231, 232, 248,
249, 288, 297, 331, 335, 336

graphviz 288, 297

Greenplum 86

Greiner, LE. 66, 68,73

grep 111,112

grepinr 111

grepl 111, 140

Gretzky, Wayne 165

grid 156, 246, 255, 300, 305, 326

Groceries 326-330, 332-334, 336

gross national product (GNP) 164

groupby 145, 147, 266, 267

gsub 58,109, 110, 115

GUIs 21,174,176, 355

gutenberg 338-340

gviz 288,297

gvlma 166, 205

221
33, 34, 243, 244, 260,

h

hackerearth 61, 62

Hacking 63

hadley 29, 142, 259, 271

hadoop 27,29-31, 39, 40, 61, 62, 85
HairEyeColor 255

Harrison, D. 191

Harvard 27, 68,73

Index

hashtag 33

Hbase 31, 85, 86

HDFS 31

hebrew 277

Hemedinger 40

Heteroscedascity 9, 166, 211

hexbins 243

HighPerformanceComputing 33

Hilbert, M. 72,73

histogram 248, 250, 252

Hive 31,32

hmisc 101, 143, 148, 156, 159

hominem 71

HQL 27

href 80, 81

html 25, 26, 31, 33-35, 38, 43, 47, 48,
61, 62,73, 78, 94, 104, 105, 115, 173,
175,176, 211, 213, 220, 238, 247,
256, 259, 260, 262, 263, 268, 273,
275-278, 287, 296, 326

htmltools 62

https 23, 26-29, 33-35, 37-43, 45,
47,48, 56, 58, 63, 64, 70, 71, 73, 75,
86, 87, 94, 102, 104-106, 110, 111,
120, 142, 147, 164, 165, 167, 168,
171, 178, 221, 224, 225, 234, 237,
238, 247, 256, 257, 259-261, 263,
275, 291, 316, 326, 337, 343, 346

HypothesisTesting 173, 259

I

IDE 9,43, 256, 267

ifelse 103, 137, 140, 162

jjulia 259

import 12, 35-37, 49, 51, 52, 59, 60,
76,79, 96,97, 101, 102, 104, 108,
111,112,118, 120, 178, 211, 225,
234, 245, 262, 267, 271, 272, 275,
278, 282, 287, 288, 291, 296, 297,
337, 338, 344, 353

important 29, 31, 40, 41, 44, 57, 58,
165, 171, 232, 233, 260

indentation 25, 48, 260

337

338

Index

index 10, 26, 29, 33, 43, 54, 5658,
101, 106-109, 113, 114, 116, 119,
120, 179, 191, 207, 212, 256, 262, 264,
267, 268, 282, 284, 285, 337, 347, 348

India 4,11, 256

info 58,59,77,99, 106, 113, 132, 156,
234, 262, 263, 280, 330, 334, 337,
345, 348, 349

information 4, 21, 26, 30, 31, 58, 59,
72,73, 84, 85,90, 98, 110, 112, 115,
165, 220, 221, 232, 259, 263, 304,
307, 328, 332

Inglewood 83

install 37,59, 60, 79, 89, 96, 131, 149,
205, 254, 260, 262, 287, 296, 297,
300, 302, 304, 307, 316, 326, 339,
340, 342, 353

int 26,57,94, 101, 109, 132, 150, 180,
187, 188,197, 213, 226, 272, 327

intercept 37, 163, 180-184, 186, 188,
198, 200, 202-204, 207, 212, 213,
216, 226, 227, 272

io 34,37-39, 42,45, 68,70,75,78,
106, 120, 122, 178, 225, 234, 237,
247, 259, 260, 262, 263, 271

ipynb 276-278, 337

ipython 32, 34, 37, 58-60, 257-259,
276, 288, 297

iris 178,179, 181-184, 234-237, 251,
252, 260, 261, 300, 302—-308, 314,
316, 317

IRkernel 37

IronPython 42

item 325, 326, 328, 329, 332, 333, 336

itemFrequencyPlot 328, 336

itemMatrix 327, 332

iter 56, 110, 346, 350

iterable 109

iterator 109

J
Jason, R. 73
java 27,31, 39,42,276

JavaScript 31, 39

Javelin 125, 126, 128, 129
Jesus 5

JMP 15

jobs 290, 299, 350

John 4,15, 53, 54, 56, 170, 220, 233
Johns 34

Johnson, S.R. 167, 220
JointGrid 243, 269
jointplot 243, 269

jre 277

json 78

jstatsoft 33

jstor 259

Julia 21,33, 42

jupyter 7,9, 37-40, 45, 56, 58, 61, 62,
75,76,78,104, 106, 110-112, 120, 143,
147,178, 224, 228, 234, 243, 244, 257,
260, 262, 273, 275, 277, 291, 343, 355

JVM 40, 43

Jython 42

k

kaggle 35,218

kdnuggets 31, 34

kfold 289, 290, 298, 299
Kharagpur 15

kmeans 344, 346, 347, 349, 350
Kruskal-Wallis 175

kurtosis 170-172, 180, 227, 272
Kush 5,11

/

lambda 120, 267

lapply 103, 317

LaTex 21

lattice 156, 304, 307

lazyeval 326

leaflet 247

len 51,56,76,77,79,108, 114, 118,
119, 263, 284, 285, 293, 338, 339

levels 17, 45,132,133, 143, 149, 150,
160, 168, 187, 310, 316, 327

library 4, 32, 33, 39, 48, 75, 78, 79, 96,
102-105, 129, 131, 138, 141, 143,
149, 156, 158, 159, 176, 187, 190,
194, 199, 205, 214, 238, 244, 249,
252, 254, 255, 262, 275, 300, 302,
304-307, 314-316, 318, 326, 332,
336, 339, 340, 342

linux 8,11, 12,37, 38, 44, 59, 60,
288,297

logistic 9, 164, 175, 180, 211, 213

logisticmodels 218

logisticregression 217

logit 211-213,218

Log-Likelihood 213

loops 26,47,110

lubridate 102, 103, 137, 138

m

machinelearningmastery 287, 296

magrittr 62

Mann—-Whitney 175

MapReduce 31

maps 255,278

markdown 256, 262

Maslow’s 69

math 28, 42, 49, 50, 63, 169, 256

MATLAB 31

matplotlib 33, 228-230, 234-238,
245, 344, 353

matrix 64, 66, 107, 108, 161, 211,
217-219, 303, 304, 307, 326, 327,
341, 343, 352

max 25,51,97, 131, 143, 149, 153,
156, 181, 183, 184, 186, 188, 190,
193, 194, 198, 200, 202-204, 207,
214, 215, 265, 279-281, 284287,
290, 296, 299, 328, 330, 332, 334,
342-345, 350

McKinney 29

Mckinsey 64, 67

MeanDecreaseGini 303

means 4,9, 85, 164, 226, 228, 231,
343, 346, 349

Index

median 143, 147, 153, 169, 170, 175,
181, 183, 184, 186, 188, 191, 193,
194, 198, 200, 202—-204, 207, 214,
215, 266, 267, 328, 330, 332, 334

medv 191-197, 199-205, 207, 272

MemcacheDB 86

memory 26, 29, 31, 40, 76, 100, 106,
113, 130, 131, 149, 190, 234, 263,
281, 339, 345

methods 18, 35, 61, 70, 110, 262

microsoft 31, 38, 41, 43

min 51, 143, 153, 181, 183, 184, 186,
188, 193, 194, 198, 200, 202-204,
207, 214, 215, 265, 279-281, 284,
285, 287, 290, 296, 299, 328, 330,
332, 334, 344, 345

Minard, Charles 221

mining 18, 31, 33, 71, 259, 261, 273,
275, 315, 326, 330, 334, 337, 339

mkdir 44

model 10, 18, 28, 41, 64, 65, 67, 69,
72,73, 84, 85,163-166, 179,
181-183, 205, 211-213, 217, 218,
220, 226, 262, 272, 283, 287, 289,
290, 296, 298, 299, 308, 309, 314,
317, 318, 349-351

modeling 9, 18, 69, 163, 218, 220, 261

MongoDB 31, 85, 86

mtcars 120, 122-130, 185, 186, 254

multicollinearity 9, 166, 211

munging 32, 130

MySQL 31, 84, 86

n

na 103,110, 115,116, 133, 134, 138,
151, 304, 307, 320-322

NaiveBayes 314

names 26, 57, 58, 94, 97, 98, 100, 108,
111,112, 114, 122, 123, 131, 140,
141, 149, 181-183, 185, 264, 267,
284, 285, 288, 291, 297, 300, 342,
344, 346

namespace 48, 62, 326

339

340

Index

NaN 107, 115, 280, 281

Napoleon’s 221, 222

nbviewer 45, 56, 58, 75, 76, 78, 104,
106, 110-112, 120, 143, 147, 178,
224, 228, 234, 243, 244, 258, 275,
291, 343

ncol 132,149

ndarray 107, 286, 293

nltk 337-339

nnet 37

norm 72

nosql 17, 32, 86

notebook 9, 32, 34, 37-40, 61, 62,
234, 245, 257, 258, 260, 262, 273

nrow 131, 135, 149, 152, 205

ntransactions 330, 334
null 32,94, 165,173-175, 177, 178,
216, 327

numeric 61, 101, 104, 108-111, 115,
143, 168, 199, 212, 217, 218, 283,
300, 305, 318

numpy 8, 30-32, 42, 51, 101, 105,
107,108, 118, 134, 178, 211, 224,
225, 276, 281, 286, 293, 344, 355

o

ODBC see Open Database
Connectivity (ODBC)

Ohri, Ajay 3-5, 31, 259, 277

Okun’s 164

Open Database Connectivity (ODBC)
8, 89, 90, 96

operator 101, 115, 132, 139, 140

oracle 31,41, 43, 84,277

Oracle R Enterprise (ORE) 43

outlier 231

outlierTest 166, 201, 208

Overfitting 205,218

p
package 4, 8,12,21, 26,29, 32, 33, 35,

37,42, 43, 48, 50, 58, 70, 96, 97,
102-104, 108, 114, 120, 129, 130,

141-143, 145, 147, 148, 156, 159,
166, 190, 199, 214, 224, 237, 247,
249, 252, 254, 255, 260-262, 267,
268, 271, 273, 275, 300, 304, 305,
307, 308, 316, 318, 326, 327, 337,
339, 342, 355

pairplot 237, 260, 261

pandas 8,29-32, 35, 37,71, 75-78,
97, 100, 101, 105-107, 113-115, 120,
143, 145, 148, 178, 211, 224, 225,
234, 260, 262, 263, 265, 266, 275,
276, 280, 285, 291, 292, 344, 345, 355

Pareto 69, 70

partyR 300

perceptualedge

pie 221,259

Pig 27,31,32

pima 276, 291

pip 58-60, 79, 260, 262, 287, 296,
297, 331, 336, 353

pivot 145, 148, 267

Playfair, William 221

plot 143,196, 207, 217, 221, 234, 235,
238, 243, 244, 247, 251, 254, 256,
287, 296, 301, 303, 306, 314, 318,
323, 324, 331, 335, 336

Poisson 171,173

Polyglot 37

POSIXt 156

posterior 310

postgresql 84, 86, 87, 94, 98, 100

prediction 72,73, 163, 165, 218, 220,
304, 307

price 69, 80, 81, 113-116, 119, 120,
131-134, 136, 137, 149-153,
156-162, 187, 188, 238-243,
245-247, 253, 254, 263-271

probability 9, 169-174, 218

programming 12, 25-27, 30, 34, 43,
62,73, 84, 89, 167, 260

projecteuclid 163, 259

propensity 18,211

psycopg2 97

232, 259

p-value 177,178, 182,183, 185, 187,
189, 198-205, 208, 213, 304, 307

pydoop 39

pypi 26,70, 260, 261

pyplot 234, 344

pypy 42

Pyrex 43

PyRun 43

pysal 247

pysqldf 120-122, 267, 268

pythonanywhere 41

q
qnorm 175

quantiles 144

quartiles 143, 144

query 32, 85,100, 119, 120, 129, 261,
262, 265

r

radimrehurek 34

Raleigh 28

random 8,51, 52, 83,118,119, 130,
134, 135, 151, 163, 166, 170-172,
205, 207, 217, 287, 289, 290, 296,
298, 299, 303, 304, 307, 321, 350

randomforest 302, 303, 306,
307, 355

rattle 174, 176, 259, 275, 315,
326, 355

Rcolorbrewer 249, 342

RCommander 277

Repp 40, 62, 214

Rdatasets 75, 106, 120, 122, 178, 225,
234, 237, 259, 263, 271

RDBMS see relational database
management system (RDBMS)

re 80, 84,97,101, 108, 109, 111,
259, 277

readPDF 339

Redis 31, 86

RegModel 197,199, 201, 203-205,
207-209

Index

regression 7,9, 18, 31, 34-37, 163—
166, 175, 178-181, 190, 205, 211, 213,
224,226, 228, 231, 235, 262, 271, 275

relational 84, 86

relational database management
system (RDBMS) 8, 84-86

required 53, 94, 156, 255, 300, 304,
305, 307, 308, 316, 318, 326, 339, 342

Resampling 308, 309

reshape2 158

residual 165, 181-183, 185, 187, 189,
198, 200, 202—204, 208, 216

revolutionanalytics 38, 43

RevoScaleR 43

rexeranalytics 28

rfm 70,71

rm 44,115,130, 131, 134, 149, 151,
190-205, 207, 208, 272, 273

RODBC 96

rodeo 213,267,271

rows 86,107,113, 114, 119, 131, 145,
252, 260, 264, 279, 327, 332, 349

rowSums 341

rpubs 48,57,59, 96,102, 110, 111,
115, 122, 129, 130, 148, 174, 176,
180, 190, 213, 217, 218, 248, 253,
255, 256, 300, 316, 318, 326, 339

rpy2 35,37,39

R-squared 165, 182, 183, 185, 187,
189, 198, 200, 202-204, 208

rstudio 9, 40, 42, 43, 256, 271, 346

S

sample 134, 135, 151, 152, 166, 169,
174, 205, 218, 308

Scala 33

scatterplot 234, 236, 237

scientists 7-9, 13,17, 21,27, 28, 31, 32,
42,44, 167, 168, 173, 232, 260, 262, 273

scikit 32, 33, 261, 273, 277, 278, 287,
296, 326, 355

scipy 31, 32,176, 178, 226, 276

Scoring 216

341

342

Index

scrape 78

scraping 8,17, 33,42,78, 84

scrapinghub 42

scrapy 42

SDK 43

seaborn 33,97, 234—238, 243,
260-262, 268, 269

selection 8, 31,116, 118,119, 122,
124, 130, 147, 265, 287, 296

sensitivity 217, 219, 305, 308

sessionlnfo 59, 61

shiny 37,43, 221, 247

Siegel, Eric 15

SimpleDB 86

skewness 170-172

sm 178,179,211, 212, 225-227, 271,
272, 344, 352

SnowballC 340

sns 97, 234-243,268-270

source 4,11,12,19,21-23, 26, 28, 34,
37,40, 41, 43, 45, 46, 59, 63-68, 78,
86, 90, 160, 167, 168, 170-173, 191,
222, 224, 244, 260, 316

spark 31,71

sparse 23, 260, 327, 332, 340, 341

spatial 9, 221, 247, 255, 256

specificity 219, 305, 308

spotfire 43

Springer 259

spss 21,71

Spyder 43

sql 27,31, 32,78, 84, 85, 94, 100, 120,
129, 147, 148, 261, 267

sqlalchemy 60, 97, 261

sqldf 32,120, 129, 130, 148, 261, 267

SQLite 267

Sqoop 31

stackexchange 166, 168

stackoverflow 37, 38, 48

standard 4,9, 25, 40, 44, 71, 89, 94,
135, 164, 169-171, 174, 182, 183,
185, 187, 189, 198, 200, 202—204,
208, 220, 224, 226, 228

stata 78

statistical 9, 11-13, 18, 19, 22, 27, 30,
32-34, 43, 72,73, 163, 165-169, 244,
259-261

statistics 9, 11, 26-28, 30, 31, 33, 34,
62,63, 165-169, 173, 211, 220, 224,
228, 231, 259, 260, 304, 307, 308

statisticsviews 273

statsmodels 33, 60, 176, 178, 179,
211, 225, 235, 261, 271, 272, 318, 355

status 191

std 37,51, 143, 180, 181, 183, 184,
186, 188, 198, 200, 202—-204, 207,
213, 216, 226, 228, 265, 272, 280,
281, 284, 285, 344, 345

stochastically 163

str 53, 56,57,79, 80, 84,99, 101, 102,
109,112,113, 122, 124, 132, 141,
149, 160, 185, 187, 197, 316, 326, 338

stringi 62

StringlO 288, 297

stringr 62, 141, 142

substr 58,137, 139, 140

sudo 44, 59, 60, 262, 276, 287, 288,
296, 297, 353

summarise 160

summary 10, 18, 37, 143, 147, 148,
152,168,179, 181, 182, 184, 186,
188, 190, 193, 197, 199, 201, 203,
207, 211, 213-215, 224, 228, 231,
265, 266, 272, 308, 327, 329, 330,
332-334, 340, 355

SVM 276,277

swarmplot 236, 237

t

tableplot 253

tables 60, 93
TermDocumentMatrix 340, 341
textmining 339

tibble 188

tibco 43

Tidy 142

tidyr 37,142, 159
Tufte’s 9,231
Tukey’s 143
tuple 55

u

ubuntu 11, 61, 288, 297
ucla 211,214

unicorn 27,28

UNIX 30

|4

van Rossum, Guido 25, 260

VCorpus 340

vincentarelbundock 75, 106, 120,
122, 178, 225, 234, 237, 259,
263,271

visualization 9, 18, 27, 31-34, 218,
221, 228, 231, 234, 243, 248, 255,
259-261, 263, 265, 267-269, 271,
273, 343

Voldemort 86

w
wajig 277
Weibull 172

Index

wesmckinney 29

wickham 29, 142, 243, 259, 271

wikipedia 64, 66, 67, 164—166, 171,
173, 256

Wilcoxon 175

Wilkinson 243,271

Williams, G.J. 259

wolfram 173, 259

X

xbar 174
XlsxWriter 60
XMLSource 340
X-squared 177,178
xtabs 158,215

y
yhat 213, 244, 267, 271

yhathq 33,261
yourlogicalfallacyis 71

z

Zen 7,23
zia 27,30, 63
Z-score 170
ztest 176

343

