
Python for
Probability,
Statistics, and
Machine Learning

José Unpingco

Third Edition

Python for Probability, Statistics, and Machine
Learning

José Unpingco

Python for Probability,
Statistics, and Machine
Learning

Third Edition

José Unpingco
San Diego, CA, USA

ISBN 978-3-031-04647-6 ISBN 978-3-031-04648-3 (eBook)
https://doi.org/10.1007/978-3-031-04648-3

1st edition: © Springer International Publishing Switzerland 2016
2nd edition: © Springer Nature Switzerland AG 2019, corrected publication 2019
3rd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-04648-3

To Irene, Nicholas, and Daniella, for all their
patient support.

Preface to the Third Edition

This third edition is updated for Python version 3.8+ but does not use any new syntax
and should be compatible with Python 3.6+ also. More importantly, many existing
sections have been revised based on feedback from the first and second versions. The
book has been adopted into university-level curricula in data science and machine
learning worldwide, including the University of California, San Diego. It has also
been translated into multiple languages. With this in mind, I reedited significant
portions for clarity to hopefully ease the translation burden of this edition and make
it easier to understand overall. Almost all the figures have been updated for clarity.

The statistics chapter has doubled in size and now covers important but hard-to-
find material, such as categorical data analysis and missing data imputation. The
machine learning chapter has been updated, and new sections covering gradient tree
boosting have been added, along with a section on interpreting machine learning
models. The introduction now includes a discussion of the Xarray module for
multidimensional dataframes. Overall, the book is now about one-third larger than
the second edition.

As before, there are more Programming Tips that the illustrate effective Python
modules and methods for scientific programming and machine learning. There are
over 650 run-able code blocks that have been tested for accuracy, so you can try
these out for yourself in your own codes. This edition features over 200 graphical
visualizations generated using Python that illustrate the concepts that are developed
both in code and in mathematics. We also discuss and use key Python modules,
such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib,
Pandas, Tensorflow, Statsmodels, Xarray, Seaborn, and Keras.

As with the first and second editions, all of the key concepts are developed
mathematically and are reproducible in the given Python, to provide the reader
multiple perspectives on the material. This book is not designed to be exhaustive and
reflects the author’s eclectic industrial background. The focus remains on concepts
and fundamentals for day-to-day work using Python in the most expressive way
possible. You can reach the author with comments at github.com/unpingco
by opening an issue on the project.

vii

viii Preface to the Third Edition

Acknowledgements I would like to acknowledge the Python community as a
whole, for all their contributions that made this book possible. Hans Petter Lang-
tangen was the author of the Doconce [22] document preparation system that was
used to write this text. Thanks to Geoffrey Poore [36] for his work with PythonTeX
and , both key technologies were used to produce this book.

San Diego, CA, USA José Unpingco
March, 2022

Preface to the Second Edition

This second edition is updated for Python version 3.6+. Furthermore, many existing
sections have been revised for clarity based on feedback from the first version.
The book is now over 30 percent larger than the original with new material about
important probability distributions, including key derivations and illustrative code
samples. Additional important statistical tests are included in the statistics chapter
including the Fisher exact test and the Mann-Whitney-Wilcoxon Test. A new section
on survival analysis has been included. The most significant addition is the section
on deep learning for image processing with a detailed discussion of gradient descent
methods that underpin all deep learning work. There is also substantial discussion
regarding generalized linear models. As before, there are more Programming Tips
that the illustrate effective Python modules and methods for scientific programming
and machine learning. There are 445 run-able code blocks that have been tested for
accuracy, so you can try these out for yourself in your own codes. Over 158 graphical
visualizations (almost all generated using Python) illustrate the concepts that are
developed both in code and in mathematics. We also discuss and use key Python
modules, such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano,
Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras.

As with the first edition, all of the key concepts are developed mathematically
and are reproducible in Python, to provide the reader multiple perspectives on the
material. There are multiple As before, this book is not designed to be exhaustive
and reflects the author’s eclectic industrial background. The focus remains on
concepts and fundamentals for day-to-day work using Python in the most expressive
way possible.

ix

Preface to the First Edition

This book will teach you the fundamentals concepts that underpin probability and
statistics and illustrate how they relate to machine learning via the Python language
and its powerful extensions. This is not a good first book in any of these topics,
because we assume that you already had a decent undergraduate-level introduction
to probability and statistics. Furthermore, we also assume that you have a good
grasp of the basic mechanics of the Python language itself. Having said that, this
book is appropriate if you have this basic background and want to learn how to use
the scientific Python toolchain to investigate these topics. On the other hand, if you
are comfortable with Python, perhaps through working in another scientific field,
then this book will teach you the fundamentals of probability and statistics and how
to use these ideas to interpret machine learning methods. Likewise, if you are a
practicing engineer using a commercial package (e.g., Matlab, IDL), then you will
learn how to effectively use the scientific Python toolchain by reviewing concepts
you are already familiar with.

The most important feature of this book is that everything in it is reproducible
using Python. Specifically, all of the code, all of the figures, and (most of) the text
are available in the downloadable supplementary materials that correspond to this
book as IPython Notebooks. IPython Notebooks are live interactive documents that
allow you to change parameters, recompute plots, and generally tinker with all of
the ideas and code in this book. I urge you to download these IPython Notebooks
and follow along with the text to experiment with the topics covered. I guarantee
doing this will boost your understanding, because the IPython Notebooks allow
for interactive widgets, animations, and other intuition-building features that help
make many of these abstract ideas concrete. As an open-source project, the entire
scientific Python toolchain, including the IPython Notebook, is freely available.
Having taught this material for many years, I am convinced that the only way to
learn is to experiment as you go. The text provides instructions on how to get started
installing and configuring your scientific Python environment.

xi

xii Preface to the First Edition

This book is not designed to be exhaustive and reflects the author’s eclectic
background in industry. The focus is on fundamentals and intuitions for day-to-
day work, especially when you must explain the results of your methods to a
nontechnical audience. We have tried to use the Python language in the most
expressive way possible while encouraging good Python coding practices.

Contents

1 Getting Started with Scientific Python . 1
1.1 Installation and Setup. 2
1.2 Numpy . 4

1.2.1 Numpy Arrays and Memory . 6
1.2.2 Numpy Matrices . 9
1.2.3 Numpy Broadcasting . 10
1.2.4 Numpy Masked Arrays . 12
1.2.5 Floating-Point Numbers . 13
1.2.6 Numpy Optimizations and Prospectus. 16

1.3 Matplotlib . 17
1.3.1 Alternatives to Matplotlib . 19
1.3.2 Extensions to Matplotlib . 20

1.4 IPython . 20
1.5 Jupyter Notebook . 21
1.6 Scipy . 24
1.7 Pandas . 24

1.7.1 Series . 25
1.7.2 Dataframe . 27

1.8 Sympy . 29
1.9 Xarray for High Dimensional Dataframes. 31
1.10 Interfacing with Compiled Libraries . 41
1.11 Integrated Development Environments . 42
1.12 Quick Guide to Performance and Parallel Programming 42
1.13 Other Resources . 46

2 Probability . 47
2.1 Introduction . 47

2.1.1 Understanding Probability Density . 48
2.1.2 Random Variables . 49
2.1.3 Continuous Random Variables . 54
2.1.4 Transformation of Variables Beyond Calculus 57

xiii

xiv Contents

2.1.5 Independent Random Variables . 59
2.1.6 Classic Broken Rod Example . 61

2.2 Projection Methods . 63
2.2.1 Weighted Distance . 65

2.3 Conditional Expectation as Projection . 67
2.3.1 Appendix . 72

2.4 Conditional Expectation and Mean Squared Error 73
2.5 Worked Examples of Conditional Expectation and Mean

Square Error Optimization . 77
2.5.1 Example . 80
2.5.2 Example . 83
2.5.3 Example . 86
2.5.4 Example . 87
2.5.5 Example . 90

2.6 Useful Distributions . 91
2.6.1 Normal Distribution . 91
2.6.2 Multinomial Distribution . 92
2.6.3 Chi-Square Distribution . 94
2.6.4 Poisson and Exponential Distributions . 97
2.6.5 Gamma Distribution . 100
2.6.6 Beta Distribution. 101
2.6.7 Dirichlet-Multinomial Distribution . 103
2.6.8 Negative Binomial Distribution . 105
2.6.9 Negative Multinomial Distribution . 105

2.7 Information Entropy . 107
2.7.1 Information Theory Concepts . 107
2.7.2 Properties of Information Entropy . 110
2.7.3 Kullback-Leibler Divergence . 111
2.7.4 Conditional Entropy and Mutual Information 112
2.7.5 Cross-Entropy as Maximum Likelihood 113

2.8 Moment Generating Functions . 114
2.9 Monte Carlo Sampling Methods . 117

2.9.1 Inverse CDF Method for Discrete Variables 118
2.9.2 Inverse CDF Method for Continuous Variables 120
2.9.3 Rejection Method . 122

2.10 Sampling Importance Resampling . 126
2.11 Useful Inequalities . 128

2.11.1 Markov’s Inequality . 128
2.11.2 Chebyshev’s Inequality . 130
2.11.3 Hoeffding’s Inequality. 131
2.11.4 Jensen’s Inequality. 134

3 Statistics . 135
3.1 Introduction . 135
3.2 Python Modules for Statistics . 136

Contents xv

3.2.1 Scipy Statistics Module . 136
3.2.2 Sympy Statistics Module . 137
3.2.3 Other Python Modules for Statistics . 138

3.3 Types of Convergence . 138
3.3.1 Almost Sure Convergence. 139
3.3.2 Convergence in Probability . 141
3.3.3 Convergence in Distribution . 144
3.3.4 Limit Theorems . 144

3.4 Estimation Using Maximum Likelihood . 146
3.4.1 Setting Up the Coin Flipping Experiment 148
3.4.2 Delta Method . 157

3.5 Hypothesis Testing and P -Values. 162
3.5.1 Back to the Coin Flipping Example . 163
3.5.2 Receiver Operating Characteristic . 167
3.5.3 P -Values . 169
3.5.4 Test Statistics . 170
3.5.5 Testing Multiple Hypotheses . 177
3.5.6 Fisher Exact Test . 178
3.5.7 Contingency Table Protocols . 181

3.6 Confidence Intervals . 203
3.7 Sufficient Statistics . 206
3.8 Linear Regression. 209

3.8.1 Extensions to Multiple Covariates . 219
3.9 Maximum A Posteriori . 224
3.10 Robust Statistics . 229
3.11 Bootstrapping . 236

3.11.1 Parametric Bootstrap . 241
3.12 Gauss-Markov . 242
3.13 Nonparametric Methods . 246

3.13.1 Kernel Density Estimation . 246
3.13.2 Kernel Smoothing . 248
3.13.3 Nonparametric Regression Estimators. 254
3.13.4 Nearest Neighbors Regression . 255
3.13.5 Kernel Regression . 259
3.13.6 Curse of Dimensionality . 260
3.13.7 Nonparametric Tests . 262

3.14 Survival Analysis . 271
3.14.1 Survival Curves . 271
3.14.2 Censoring and Truncation . 273
3.14.3 Hazard Functions and Their Properties . 274
3.14.4 Expectations . 275
3.14.5 Parametric Regression Models . 276
3.14.6 Cox Proportional Hazards Model . 276

3.15 Expectation Maximization . 279
3.16 Survey Sampling . 292

xvi Contents

3.16.1 Unequal Sampling with Replacement for
Weighted Totals . 300

3.16.2 Unequal Sampling for Unweighted Totals 301
3.16.3 Unequal Sampling Without Replacement 302
3.16.4 Probability Proportional to Size (PPS) Cluster Sampling 304
3.16.5 Stratified Random Sampling . 306

3.17 Log-linear Models . 309
3.17.1 Poisson and Multinomial Models . 310
3.17.2 Log-linear Models . 312
3.17.3 I × J ×K Log-linear Models . 316
3.17.4 Iterative Proportional Fitting . 319
3.17.5 Hierarchical Models . 320
3.17.6 Deviance . 323
3.17.7 Degrees of Freedom . 324
3.17.8 Graphical Models . 327
3.17.9 Model Selection . 329
3.17.10 Table Raking . 333

3.18 Missing Data . 334
3.18.1 Multiple Imputation . 338
3.18.2 Canonical Example for Multiple Imputation 341
3.18.3 Worked Example for Multiple Imputation 344
3.18.4 Multivariate Imputation by Chained Equations (MICE). . 353
3.18.5 Diagnostics. 358

4 Machine Learning . 359
4.1 Introduction . 359
4.2 Python Machine Learning Modules . 360
4.3 Theory of Learning . 364

4.3.1 Introduction to Theory of Machine Learning 366
4.3.2 Theory of Generalization . 371
4.3.3 Worked Example for Generalization/

Approximation Complexity . 373
4.3.4 Cross-Validation . 379
4.3.5 Bias and Variance . 382
4.3.6 Learning Noise. 387

4.4 Decision Trees . 390
4.4.1 Random Forests . 397
4.4.2 Understanding Boosting Trees . 398

4.5 Logistic Regression . 406
4.6 Generalized Linear Models . 416
4.7 Regularization . 422

4.7.1 Ridge Regression . 426
4.7.2 Lasso Regression . 431

4.8 Support Vector Machines. 433
4.8.1 Kernel Tricks. 437

Contents xvii

4.9 Dimensionality Reduction. 438
4.9.1 Generalized PCA . 443
4.9.2 Independent Component Analysis . 447

4.10 Clustering . 452
4.11 Ensemble Methods . 456

4.11.1 Bagging . 456
4.11.2 Boosting . 459

4.12 Deep Learning . 460
4.12.1 Understanding Gradient Descent . 470
4.12.2 Image Processing Using Convolutional

Neural Networks . 483
4.13 Interpretability . 497

References . 505

Index . 507

Chapter 1
Getting Started with Scientific Python

Python is fundamental to data science and machine learning, as well as an
ever-expanding list of areas including cybersecurity, and web programming. The
fundamental reason for Python’s widespread use is that it provides the software
glue that permits easy exchange of methods and data across core routines typically
written in Fortran or C.

Python is a language geared toward scientists and engineers who may not have
formal software development training. It is used to prototype, design, simulate,
and test without getting in the way, because Python provides an inherently easy
and incremental development cycle, interoperability with existing codes, access to
a large base of reliable open-source codes, and a hierarchical compartmentalized
design philosophy. Python is known for enhancing user productivity, because it
reduces the development time (i.e., time spent programming).

Python is an interpreted language. This means that Python codes run on a
Python virtual machine that provides a layer of abstraction between the code and
the platform it runs on, thus making codes portable across different platforms.
For example, the same script that runs on a Windows laptop can also run on
a Linux-based supercomputer or on a mobile phone. This makes programming
easier, because the virtual machine handles the low-level details of implementing
the business logic of the script on the underlying platform.

Python is a dynamically typed language, which means that the interpreter itself
figures out the representative types (e.g., floats, integers) interactively or at run-
time. This is in contrast to a language like Fortran that has compilers that study
the code from beginning to end, perform many compiler-level optimizations, link
intimately with the existing libraries on a specific platform, and then create an
executable that is henceforth liberated from the compiler. As you may guess, the
compiler’s access to the details of the underlying platform means that it can utilize
optimizations that exploit chip-specific features and cache memory. Because the
virtual machine abstracts away these details, it means that the Python language
does not have programmable access to these kinds of optimizations. So, where is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04648-3_1&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3_1

2 1 Getting Started with Scientific Python

the balance between the ease of programming the virtual machine and these key
numerical optimizations that are crucial for scientific work?

The balance comes from Python’s native ability to bind to compiled Fortran
and C libraries. This means that you can send intensive computations to compiled
libraries directly from the interpreter. This approach has two primary advantages.
First, it gives you the fun of programming in Python, with its expressive syntax
and lack of visual clutter. This is a particular boon to scientists who typically want
to use software as a tool as opposed to developing software as a product. The
second advantage is that you can mix and match different compiled libraries from
diverse research areas that were not otherwise designed to work together. This works
because Python makes it easy to allocate and fill memory in the interpreter, pass it
as input to compiled libraries, and then recover the output back in the interpreter.

Moreover, Python provides a multiplatform solution for scientific codes. As an
open-source project, Python itself is available anywhere you can build it, even
though it typically comes standard nowadays, as part of many operating systems.
This means that once you have written your code in Python, you can just transfer
the script to another platform and run it, as long as the third-party compiled libraries
are also available there. What if the compiled libraries are absent? Building and
configuring compiled libraries across multiple systems used to be a painstaking job,
but as scientific Python has matured, a wide range of libraries have now become
available across all of the major platforms (i.e., Windows, MacOS, Linux, Unix) as
prepackaged distributions.

Finally, Scientific Python facilitates maintainability of scientific codes, because
Python syntax is clean and free of semicolon litter and other visual distractions that
make code hard to read and easy to obfuscate. Python has many built-in testing,
documentation, and development tools that ease maintenance. Scientific codes are
usually written by scientists unschooled in software development, so having solid
software development tools built into the language itself is a particular boon.

1.1 Installation and Setup

The easiest way to get started is to download the freely available Anaconda
distribution provided by Anaconda (anaconda.com), which is available for all
of the major platforms. On Linux, even though most of the toolchain is available
via the built-in Linux package manager, it is still better to install the Anaconda
distribution, because it provides its own powerful package manager (i.e., conda)
that can keep track of changes in the software dependencies of the packages that it
supports. If you do not have administrator privileges, there is also a corresponding
Miniconda distribution that does not require these privileges. Regardless of your
platform, we recommend Python version 3.6 or better.

You may have encountered other Python variants on the web, such as
IronPython (Python implemented in C#) and Jython (Python implemented
in Java). In this text, we focus on the C-implementation of Python (i.e., known

1.1 Installation and Setup 3

as CPython), which is, by far, the most popular implementation. These other
Python variants permit specialized, native interaction with libraries in C# or Java
(respectively), which is still possible (but clunky) using CPython. Even more
Python variants exist that implement the low-level machinery of Python differently
for various reasons, beyond interacting with native libraries in other languages.
Most notable of these is Pypy that implements a just-in-time compiler (JIT) and
other powerful optimizations that can substantially speed up pure Python codes.
The downside of Pypy is that its coverage of some popular scientific modules (e.g.,
Matplotlib, Scipy) is limited or nonexistent, which means that you cannot use those
modules in code meant for Pypy.

If you want to install a Python module that is not available via the conda
manager, the pip installer is available. This installer is the main one used outside of
the scientific computing community. The key difference between the two installers
is that conda implements a satisfiability solver that checks for conflicts in versions
among and between installed packages. This can result in conda decreasing
versions of certain packages to accommodate proposed package installation. The
pip installer does not check for such conflicts and only checks if the proposed
package already has its dependencies installed and will install them if not or remove
conflicting incompatible modules. The following commandline uses pip to install
the given Python module:

Terminal> pip install package_name

The pip installer will download the package you want and its dependencies and
install them in the existing directory tree. This works beautifully in the case where
the package in question is pure-Python, without any system-specific dependencies.
Otherwise, this can be a real nightmare, especially on Windows, which lacks freely
available Fortran compilers. If the module in question is a C-library, one way to cope
is to install the freely available Visual Studio Community Edition, which usually has
enough to compile many C-codes. This platform dependency is the problem that
conda was designed to solve by making the binary dependencies of the various
platforms available instead of attempting to compile them. On a Windows system,
if you installed Anaconda and registered it as the default Python installation (it asks
during the install process), then you can use the high-quality Python wheel files on
Christoph Gohlke’s laboratory site at the University of California, Irvine, where he
kindly makes a long list of scientific modules available.1 Failing this, you can try
the conda-forge site, which is a community-powered repository of modules that
conda is capable of installing but which are not formally supported by Anaconda.
Notably, conda-forge allows you to share Scientific Python configurations with
your remote colleagues using authentication so that you can be sure that you are
downloading and running code from users you trust.

1 Wheel files are a Python distribution format that you download and install using pip as in pip
install file.whl. Christoph names files according to Python version (e.g., cp27 means
Python 2.7) and chipset (e.g., amd32 vs. Intel win32).

4 1 Getting Started with Scientific Python

Again, if you are on Windows and none of the above works, then you may want
to consider installing a full virtual machine solution, as provided by VMWare’s
Player or Oracle’s VirtualBox (both freely available under liberal terms) or
with the Windows Subsystem for Linux (WSL) that is built into Windows 10. Using
either of these, you can set up a Linux machine running on top of Windows, which
should cure these problems entirely! The great part of this approach is that you
can share directories between the virtual machine and the Windows system so that
you don’t have to maintain duplicate data files. Anaconda Linux images are also
available on the cloud by Platform as a Service (PaaS) providers like Amazon Web
Services and Microsoft Azure. For the vast majority of users, especially newcomers
to Python, the Anaconda distribution should be more than enough on any platform. It
is just worth highlighting the Windows-specific issues and associated workarounds
early on. There are other well-maintained Scientific Python Windows installers like
WinPython and PythonXY. These provide the spyder integrated development
environment, which is very Matlab-like environment for transitioning Matlab users.

1.2 Numpy

As we touched upon earlier, to use a compiled scientific library, the memory
allocated in the Python interpreter must somehow reach this library as input.
Furthermore, the output from these libraries must likewise return to the Python
interpreter. This two-way exchange of memory is essentially the core function of
the Numpy (numerical arrays in Python) module. Numpy is the de facto standard
for numerical arrays in Python. It arose as an effort by Travis Oliphant and others
to unify the preexisting numerical arrays in Python. In this section, we provide an
overview and some tips for using Numpy effectively, but for much more detail,
Travis’ freely available book [34] is a great place to start.

Numpy provides specification of byte-sized arrays in Python. For example, below
we create an array of three numbers, each of four-bytes long (32 bits at 8 bits
per byte) as shown by the itemsize property. The first line imports Numpy as
np, which is the recommended convention. The next line creates an array of 32
bit floating-point numbers. The itemize property shows the number of bytes per
item.

>>> import numpy as np # recommended convention
>>> x = np.array([1,2,3],dtype=np.float32)
>>> x
array([1., 2., 3.], dtype=float32)
>>> x.itemsize
4

In addition to providing uniform containers for numbers, Numpy provides a
comprehensive set of universal functions (i.e., ufuncs) that process arrays element-
wise without additional looping semantics. Below, we show how to compute the
element-wise sine using Numpy:

1.2 Numpy 5

>>> np.sin(x)
array([0.841471 , 0.9092974, 0.14112], dtype=float32)

This computes the sine of the input array [1,2,3], using Numpy’s unary function,
np.sin. There is another sine function in the built-in math module, but the
Numpy version is faster, because it does not require explicit looping (i.e., using
a for loop) over each of the elements in the array. That looping happens in
the compiled np.sin function itself. Otherwise, we would have to do looping
explicitly as in the following:

>>> from math import sin
>>> [sin(i) for i in [1,2,3]] # list comprehension
[0.8414709848078965, 0.9092974268256817, 0.1411200080598672]

Numpy uses common-sense casting rules to resolve the output types. For
example, if the inputs had been an integer type, the output would still have been
a floating-point type. In this example, we provided a Numpy array as input to the
sine function. We could have also used a plain Python list instead, and Numpy would
have built the intermediate Numpy array (e.g., np.sin([1,1,1])). The Numpy
documentation provides a comprehensive (and very long) list of available ufuncs.

Numpy arrays come in many dimensions. For example, the following shows a
two-dimensional 2x3 array constructed from two conforming Python lists.

>>> x = np.array([[1,2,3],[4,5,6]])
>>> x.shape
(2, 3)

Numpy is limited to 32 dimensions unless you build it for more.2 Numpy arrays
follow the usual Python slicing rules in multiple dimensions as shown below where
the : colon character selects all elements along a particular axis.

>>> x = np.array([[1,2,3],[4,5,6]])
>>> x[:,0] # 0th column
array([1, 4])
>>> x[:,1] # 1st column
array([2, 5])
>>> x[0,:] # 0th row
array([1, 2, 3])
>>> x[1,:] # 1st row
array([4, 5, 6])

You can also select subsections of arrays by using slicing as shown below.

>>> x = np.array([[1,2,3],[4,5,6]])
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x[:,1:] # all rows, 1st thru last column
array([[2, 3],

[5, 6]])
>>> x[:,::2] # all rows, every other column

2 See arrayobject.h in the Numpy source code.

6 1 Getting Started with Scientific Python

array([[1, 3],
[4, 6]])

>>> x[:,::-1] # reverse order of columns
array([[3, 2, 1],

[6, 5, 4]])

1.2.1 Numpy Arrays and Memory

Some interpreted languages implicitly allocate memory. For example, in Matlab,
you can extend a matrix by simply tacking on another dimension as in the following
Matlab session:

>> x=ones(3,3)
x =

1 1 1
1 1 1
1 1 1

>> x(:,4)=ones(3,1) % tack on extra dimension
x =

1 1 1 1
1 1 1 1
1 1 1 1

>> size(x)
ans =

3 4

This works because Matlab arrays use pass-by-value semantics so that slice
operations actually copy parts of the array as needed. By contrast, Numpy uses
pass-by-reference semantics so that slice operations are views into the array without
implicit copying. This is particularly helpful with large arrays that already strain
available memory. In Numpy terminology, slicing creates views (no copying) and
advanced indexing creates copies. Let us start with advanced indexing.

If the indexing object (i.e., the item between the brackets) is a non-tuple sequence
object, another Numpy array (of type integer or boolean), or a tuple with at
least one sequence object or Numpy array, then indexing creates copies. For the
above example, to accomplish the same array extension in Numpy, you have to do
something like the following:

>>> x = np.ones((3,3))
>>> x
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> x[:,[0,1,2,2]] # notice duplicated last dimension
array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.]])

>>> y = x[:,[0,1,2,2]] # same as above, but do assign it to y

1.2 Numpy 7

Because of advanced indexing, the variable y has its own memory, because the
relevant parts of x were copied. To prove it, we assign a new element to x and see
that y is not updated.

>>> x[0,0]=999 # change element in x
>>> x # changed
array([[999., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> y # not changed!
Array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.]])

However, if we start over and construct y by slicing (which makes It a view) as
shown below, then the change we made does affect y, because a view is just a
window into the same memory.

>>> x = np.ones((3,3))
>>> y = x[:2,:2] # view of upper left piece
>>> x[0,0] = 999 # change value
>>> x
array([[999., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> y
array([[999., 1.],

[1., 1.]])

If you want to explicitly force a copy without any indexing tricks, you can do
y=x.copy(). The code below works through another example of advanced
indexing versus slicing.

>>> x = np.arange(5) # create array
>>> x
array([0, 1, 2, 3, 4])
>>> y = x[[0,1,2]] # index by integer list to force copy
>>> y
array([0, 1, 2])
>>> z = x[:3] # slice creates view
>>> z # note y and z have same entries
array([0, 1, 2])
>>> x[0] = 999 # change element of x
>>> x
array([999, 1, 2, 3, 4])
>>> y # note y is unaffected,
array([0, 1, 2])
>>> z # but z is (it's a view).
array([999, 1, 2])

In this example, y is a copy, not a view, because it was created using advanced
indexing whereas z was created using slicing. Thus, even though y and z have the

8 1 Getting Started with Scientific Python

same entries, only z is affected by changes to x. The flags property of Numpy
arrays can help sort this out until you get used to it.

Manipulating memory using views is particularly powerful for signal and image
processing algorithms that require overlapping fragments of memory. The following
is an example of how to use advanced Numpy to create overlapping blocks that do
not actually consume additional memory:

>>> from numpy.lib.stride_tricks import as_strided
>>> x = np.arange(16,dtype=np.int64)
>>> y = as_strided(x,(7,4),(16,8)) # overlapped entries
>>> y
array([[0, 1, 2, 3],

[2, 3, 4, 5],
[4, 5, 6, 7],
[6, 7, 8, 9],
[8, 9, 10, 11],
[10, 11, 12, 13],
[12, 13, 14, 15]])

The above code creates a range of integers and then overlaps the entries to create a
7x4 Numpy array. The final argument in the as_strided function are the strides,
which are the steps in bytes to move in the row and column dimensions, respectively.
Thus, the resulting array steps 8 bytes in the column dimension and 16 bytes in
the row dimension. Because the integer elements in the Numpy array are 8 bytes,
this is equivalent to moving by one element in the column dimension and by two
elements in the row dimension. The second row in the Numpy array starts at 16
bytes (two elements) from the first entry (i.e., 2) and then proceeds by 8 bytes (by
one element) in the column dimension (i.e, 2,3,4,5). The important part is that
memory is reused in the resulting 7x4 Numpy array. The code below demonstrates
this by reassigning elements in the original x array. The changes show up in the y
array because they point at the same allocated memory.

>>> x[::2]=99 # assign every other value
>>> x
array([99, 1, 99, 3, 99, 5, 99, 7, 99, 9, 99, 11, 99, 13,

99, 15])
>>> y # the changes appear because y is a view
array([[99, 1, 99, 3],

[99, 3, 99, 5],
[99, 5, 99, 7],
[99, 7, 99, 9],
[99, 9, 99, 11],
[99, 11, 99, 13],
[99, 13, 99, 15]])

Bear in mind that as_strided does not check that you stay within memory block
bounds. So, if the size of the target matrix is not filled by the available data, the
remaining elements will come from whatever bytes are at that memory location.
In other words, there is no default filling by zeros or other strategy that defends

1.2 Numpy 9

memory block bounds. One defense is to explicitly control the dimensions as in the
following code:

>>> n = 8 # number of elements
>>> x = np.arange(n) # create array
>>> k = 5 # desired number of rows
>>> y = as_strided(x,(k,n-k+1),(x.itemsize,)*2)
>>> y
array([[0, 1, 2, 3],

[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6],
[4, 5, 6, 7]])

1.2.2 Numpy Matrices

Matrices in Numpy are similar to Numpy arrays, but they can only have two
dimensions. They implement row-column matrix multiplication as opposed to
element-wise multiplication. If you have two matrices you want to multiply, you
can either create them directly or convert them from Numpy arrays. For example,
the following shows how to create two matrices and multiply them.

>>> import numpy as np
>>> A = np.matrix([[1,2,3],[4,5,6],[7,8,9]])
>>> x = np.matrix([[1],[0],[0]])
>>> A*x
matrix([[1],

[4],
[7]])

This can also be done using arrays as shown below:

>>> A = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> x = np.array([[1],[0],[0]])
>>> A.dot(x)
array([[1],

[4],
[7]])

Numpy arrays support element-wise multiplication, not row-column multiplication.
You must use Numpy matrices for this kind of multiplication, unless use the inner
product np.dot, which also works in multiple dimensions (see np.tensordot
for more general dot products). Python 3.x has a new @ notation for matrix
multiplication, so we can redo the last calculation as follows:

>>> A @ x
array([[1],

[4],
[7]])

10 1 Getting Started with Scientific Python

It is unnecessary to cast all multiplicands to matrices for multiplication. In
the next example, everything until the last line is a Numpy array, and thereafter,
we cast the array as a matrix with np.matrix, which then uses row-column
multiplication. It is unnecessary to cast the x variable as a matrix, because the left-
to-right order of the evaluation takes care of that automatically. If we need to use A
as a matrix elsewhere in the code, then we should bind it to another variable instead
of recasting it every time. If you find yourself casting back and forth for large arrays,
passing the copy=False flag to matrix avoids the expense of making a copy.

>>> A = np.ones((3,3))
>>> type(A) # array not matrix
<class 'numpy.ndarray'>
>>> x = np.ones((3,1)) # array not matrix
>>> A*x
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> np.matrix(A)*x # row-column multiplication
matrix([[3.],

[3.],
[3.]])

1.2.3 Numpy Broadcasting

Numpy broadcasting is a powerful way to make implicit multidimensional grids for
expressions. It is probably the single most powerful feature of Numpy and the most
difficult to grasp. Proceeding by example, consider the vertices of a two-dimensional
unit square as shown below:

>>> X,Y = np.meshgrid(np.arange(2),np.arange(2))
>>> X
array([[0, 1],

[0, 1]])
>>> Y
array([[0, 0],

[1, 1]])

Numpy’s meshgrid creates two-dimensional grids. The X and Y arrays have
corresponding entries that match the coordinates of the vertices of the unit square
(e.g., (0, 0), (0, 1), (1, 0), (1, 1)). To add the x- and y-coordinates, we could use X
and Y as in X+Y shown below. The output is the sum of the vertex coordinates of
the unit square.

>>> X+Y
array([[0, 1],

[1, 2]])

1.2 Numpy 11

Because the two arrays have compatible shapes, they can be added together element-
wise. It turns out we can skip a step here and not bother with meshgrid to
implicitly obtain the vertex coordinates by using broadcasting as shown below:

>>> x = np.array([0,1])
>>> y = np.array([0,1])
>>> x
array([0, 1])
>>> y
array([0, 1])
>>> x + y[:,None] # add broadcast dimension
array([[0, 1],

[1, 2]])
>>> X+Y
array([[0, 1],

[1, 2]])

On line 7 the None Python singleton tells Numpy to make copies of y along
this dimension to create a conformable calculation. Note that np.newaxis can
be used instead of None to be more explicit. The following lines show that
we obtain the same output as when we used the X+Y Numpy arrays. Note that
without broadcasting, x+y=array([0, 2]), which is not what we are trying to
compute. Let us continue with a more complicated example where we have differing
array shapes.

>>> x = np.array([0,1])
>>> y = np.array([0,1,2])
>>> X,Y = np.meshgrid(x,y)
>>> X
array([[0, 1],

[0, 1],
[0, 1]])

>>> Y
array([[0, 0],

[1, 1],
[2, 2]])

>>> X+Y
array([[0, 1],

[1, 2],
[2, 3]])

>>> x+y[:,None] # same as with meshgrid
array([[0, 1],

[1, 2],
[2, 3]])

In this example, the array shapes are different, so the addition of x and y is
not possible without Numpy broadcasting. The last line shows that broadcasting
generates the same output as using the compatible array generated by meshgrid.
This shows that broadcasting works with different array shapes. For the sake of
comparison, on line 3, meshgrid creates two conformable arrays, X and Y. On the
last line, x+y[:,None] produces the same output as X+Y without the meshgrid.

12 1 Getting Started with Scientific Python

We can also put the None dimension on the x array as x[:,None]+y, which
would give the transpose of the result.

Broadcasting works in multiple dimensions also. The output shown has shape
(4,3,2). On the last line, the x+y[:,None] produces a two-dimensional array
which is then broadcast against z[:,None,None], which duplicates itself along
the two added dimensions to accommodate the two-dimensional result on its left
(i.e., x + y[:,None]). The caveat about broadcasting is that it can potentially
create large, memory-consuming, intermediate arrays. There are methods for con-
trolling this by reusing previously allocated memory, but that is beyond our scope
here. Formulas in physics that evaluate functions on the vertices of high dimensional
grids are great use cases for broadcasting.

>>> x = np.array([0,1])
>>> y = np.array([0,1,2])
>>> z = np.array([0,1,2,3])
>>> x+y[:,None]+z[:,None,None]
array([[[0, 1],

[1, 2],
[2, 3]],

[[1, 2],
[2, 3],
[3, 4]],

[[2, 3],
[3, 4],
[4, 5]],

[[3, 4],
[4, 5],
[5, 6]]])

1.2.4 Numpy Masked Arrays

Numpy provides a powerful method to temporarily hide array elements without
changing the shape of the array itself:

>>> from numpy import ma # import masked arrays
>>> x = np.arange(10)
>>> y = ma.masked_array(x, x<5)
>>> print (y)
[-- -- -- -- -- 5 6 7 8 9]
>>> print (y.shape)
(10,)

The elements in the array for which the logical condition (x<5) is true are masked,
but the size of the array remains the same. This is particularly useful in plotting

1.2 Numpy 13

categorical data, where you may only want those values that correspond to a given
category for part of the plot. Another common use is for image processing, wherein
parts of the image may need to be excluded from subsequent processing. Creating
a masked array does not force an implicit copy operation unless copy=True
argument is used. For example, changing an element in x does change the
corresponding element in y, even though y is a masked array:

>>> x[-1] = 99 # change this
>>> print(x)
[0 1 2 3 4 5 6 7 8 99]
>>> print(y)# masked array changed!
[-- -- -- -- -- 5 6 7 8 99]

1.2.5 Floating-Point Numbers

There are precision limitations when representing floating-point numbers on a
computer with finite memory. For example, the following shows these limitations
when adding two simple numbers:

>>> 0.1 + 0.2
0.30000000000000004

So, then, why is the output not 0.3? The issue is the floating point representation of
the two numbers and the algorithm that adds them. To represent an integer in binary,
we just write it out in powers of 2. For example, 230 = (11100110)2. Python can
do this conversion using string formatting:

>>> print('{0:b}'.format(230))
11100110

To add integers, we just add up the corresponding bits and fit them into the allowable
number of bits. Unless there is an overflow (the results cannot be represented with
that number of bits), then there is no problem. Representing floating-point is trickier,
because we have to represent these numbers as binary fractions. The IEEE 754
standard requires that floating-point numbers be represented as ±C × 2E , where
C is the significand (mantissa) and E is the exponent.

To represent a regular decimal fraction as binary fraction, we need to compute
the expansion of the fraction in the following form a1/2+ a2/22+ a3/23... In other
words, we need to find the ai coefficients. We can do this using the same process we
would use for a decimal fraction: just keep dividing by the powers of the fraction
1/2 and keep track of the whole and fractional parts. Python’s divmod function can
do most of the work for this. For example, to represent 0.125 as a binary fraction:

>>> a = 0.125
>>> divmod(a*2,1)
(0.0, 0.25)

14 1 Getting Started with Scientific Python

The first item in the tuple is the quotient and the other is the remainder. If the
quotient was greater than 1, then the corresponding ai term is one and is zero
otherwise. For this example, we have a1 = 0. To get the next term in the expansion,
we just keep multiplying by 2, which moves us rightward along the expansion to
ai+1 and so on. Then,

>>> a = 0.125
>>> q,a = divmod(a*2,1)
>>> print (q,a)
0.0 0.25
>>> q,a = divmod(a*2,1)
>>> print (q,a)
0.0 0.5
>>> q,a = divmod(a*2,1)
>>> print (q,a)
1.0 0.0

The algorithm stops when the remainder term is zero. Thus, we have that 0.125 =
(0.001)2. The specification requires that the leading term in the expansion be one.
Thus, we have 0.125 = (1.000) × 2−3. This means the significand is 1 and the
exponent is -3.

Now, let us get back to our main problem 0.1+0.2 by developing the
representation 0.1 by coding up the individual steps above.

>>> a = 0.1
>>> bits = []
>>> while a>0:
... q,a = divmod(a*2,1)
... bits.append(q)
...
>>> print (''.join(['%d'%i for i in bits]))
0001100110011001100110011001100110011001100110011001101

Note that the representation has an infinitely repeating pattern. This means that we
have (1.1001)2×2−4. The IEEE standard does not have a way to represent infinitely
repeating sequences. Nonetheless, we can compute this:

∞∑

n=1

1

24n−3 +
1

24n
= 3

5

Thus, 0.1 = 1.6 × 2−4. Per the IEEE 754 standard, for float type, we have
24 bits for the significand and 23 bits for the fractional part. Because we cannot
represent the infinitely repeating sequence, we have to round off at 23 bits,
10011001100110011001101. Thus, whereas the significand’s representation
used to be 1.6, with this rounding, it is now

>>> b = '10011001100110011001101'
>>> 1+sum([int(i)/(2**n) for n,i in enumerate(b,1)])
1.600000023841858

1.2 Numpy 15

Thus, we now have 0.1 ≈ 1.600000023841858 × 2−4 = 0.10000000149011612.
For the 0.2 expansion, we have the same repeating sequence with a different expo-
nent, so that we have 0.2 ≈ 1.600000023841858 × 2−3 = 0.20000000298023224.
To add 0.1+0.2 in binary, we must adjust the exponents until they match the
higher of the two. Thus,

0.11001100110011001100110
+1.10011001100110011001101

10.01100110011001100110011

Now, the sum has to be scaled back to fit into the significand’s available bits, so the
result is 1.00110011001100110011010 with exponent -2. Computing this in
the usual way as shown below gives the result.

>>> k='00110011001100110011010'
>>> print('%0.12f'%((1+sum([int(i)/(2**n)
... for n,i in enumerate(k,1)]))

/2**2))
0.300000011921

which matches what we get with numpy

>>> import numpy as np
>>> print('%0.12f'%(np.float32(0.1) + np.float32(0.2)))
0.300000011921

The entire process proceeds the same for 64-bit floats. Python has a fractions
and decimal modules that allow more exact number representations. The
decimal module is particularly important for certain financial computations.

Roundoff Error Let us consider the example of adding 100,000,000 and 10
in 32-bit floating point.

>>> print('{0:b}'.format(100000000))
101111101011110000100000000

This means that 100, 000, 000 = (1.01111101011110000100000000)2 × 226.
Likewise, 10 = (1.010)2 × 23. To add these, we have to make the exponents match
as in the following:

1.01111101011110000100000000
+0.00000000000000000000001010

1.01111101011110000100001010

Now, we have to round off because we only have 23 bits to the right of the decimal
point and obtain 1.0111110101111000010000, thus losing the trailing 10
bits. This effectively makes the decimal 10 = (1010)2 that we started out with
instead become 8 = (1000)2. Thus, using Numpy again,

16 1 Getting Started with Scientific Python

>>> print(format(np.float32(100000000) +
np.float32(10),'10.3f'))

100000008.000

The problem here is that the order of magnitude between the two numbers was so
great that it resulted in loss in the significand’s bits as the smaller number was right-
shifted. When summing numbers like these, the Kahan summation algorithm (see
math.fsum()) can effectively manage these roundoff errors.

>>> import math
>>> math.fsum([np.float32(100000000),np.float32(10)])
100000010.0

Cancellation Error Cancellation error (loss of significance) results when two
nearly equal floating-point numbers are subtracted. Let us consider subtracting
0.1111112 and 0.1111111. As binary fractions, we have the following:

1.11000111000111001000101 E-4
-1.11000111000111000110111 E-4

0.00000000000000000011100

As a binary fraction, this is 1.11 with exponent -23 or (1.75)10 × 2−23 ≈
0.00000010430812836. In Numpy, this loss of precision is shown in the following:

>>> print(format(np.float32(0.1111112)-np.float32(0.1111111),
'1.17f'))

0.00000010430812836

To sum up, when using floating point, you must check for approximate equality
using something like Numpy allclose instead of the usual Python equality
(i.e., ==) sign. This enforces error bounds instead of strict equality. Whenever
practicable, use fixed scaling to employ integer values instead of decimal fractions.
Double precision 64-bit floating-point numbers are much better than single precision
and, reduces these problems for all but the strictest precision requirements. The
Kahan algorithm is effective for summing floating point numbers across very large
data without accruing roundoff errors. To minimize cancellation errors, re-factor the
calculation to avoid subtracting two nearly equal numbers.

1.2.6 Numpy Optimizations and Prospectus

The Scientific Python community continues to push the frontier of scientific
computing. Several important extensions to Numpy are under active development.
First, Numba is a compiler that generates optimized machine code from pure-Python
code using the LLVM compiler infrastructure. LLVM started as a research project
at the University of Illinois to provide a target-independent compilation strategy

1.3 Matplotlib 17

for arbitrary programming languages and is now a well-established technology. The
combination of LLVM and Python via Numba means that accelerating a block of
Python code can be as easy as putting a @numba.jit decorator above the function
definition, but this doesn’t work for all situations. Numba can target general graphics
processing units (GPGPUs) also.

The Dask project contains dask.array extensions for manipulating very large
datasets that are too big to fit in a single computer’s RAM (i.e., out-of-core) using
Numpy semantics. Furthermore, dask includes extensions for Pandas dataframes
(see Sect. 1.7). Roughly speaking, this means that dask understands how to unpack
Python expressions and translate them for a variety of distributed back-end data
services upon which the computing takes place. This means that dask separates
the expression of the computation from the particular implementation on a given
back end.

1.3 Matplotlib

Matplotlib is the primary visualization tool for scientific graphics in Python. Like all
great open-source projects, it originated to satisfy a personal need. At the time of its
inception, John Hunter primarily used Matlab for scientific visualization, but as he
began to integrate data from disparate sources using Python, he realized he needed
a Python solution for visualization, so he single-handedly wrote Matplotlib. Since
those early years, Matplotlib has displaced the other competing methods for two-
dimensional scientific visualization and today is a very actively maintained project,
even without John Hunter, who sadly passed away in 2012.

John had a few basic requirements for Matplotlib:

• Plots should look publication quality with beautiful text.
• Plots should output PostScript for inclusion within documents and publication

quality printing.
• Plots should be embeddable in a graphical user interface (GUI) for application

development.
• The code should be mostly Python to allow for users to become developers.
• Plots should be easy to make with just a few lines of code for simple graphs.

Each of these requirements has been completely satisfied, and Matplotlib’s capa-
bilities have grown far beyond these requirements. In the beginning, to ease the
transition from Matlab to Python, many of the Matplotlib functions were closely
named after the corresponding Matlab commands.

The following shows the quickest way to draw a plot using Matplotlib and the
plain Python interpreter. Later, we’ll see how to do this even faster using IPython.
The first line imports the requisite module as plt, which is the recommended

18 1 Getting Started with Scientific Python

Fig. 1.1 The Matplotlib figure window. The icons on the bottom allow some limited plot-editing
tools

convention. The next line plots a sequence of numbers generated using Python’s
range object. Note the output list contains a Line2D object. This is an artist in
Matplotlib parlance. Finally, the plt.show() function draws the plot in a GUI
figure window.

import matplotlib.pyplot as plt
plt.plot(range(10))
plt.show() # unnecessary in IPython (discussed later)

If you try this in your own plain Python interpreter (and you should!), you
will see that you cannot type in anything further in the interpreter until the figure
window (i.e., something like Fig. 1.1) is closed. This is because the plt.show()
function preoccupies the interpreter with the controls in the GUI and blocks further
interaction. As we discuss below, IPython provides ways to get around this blocking
so you can simultaneously interact with the interpreter and the figure window.3

As shown in Fig. 1.1, the plot function returns a list containing the Line2D
object. More complicated plots yield larger lists filled with artists. The terminology
is that artists draw on the canvas contained in the Matplotlib figure. The final
line is the plt.show function that provokes the embedded artists to render on

3 You can also do this in the plain Python interpreter by doing import
matplotlib;matplotlib.interactive(True).

1.3 Matplotlib 19

the Matplotlib canvas. The reason this is a separate function is that plots may
have dozens of complicated artists, and rendering may be a time-consuming task
undertaken at the end, when all the artists have been mustered. Matplotlib supports
plotting images, contours, and many others that we cover in detail in the following
chapters.

Even though this is the quickest way to draw a plot in Matplotlib, it is not
Recommended, because there are no handles to the intermediate products of the
plot such as the plot’s axis. While this is okay for a simple plot like this, later on we
will see how to construct complicated plots using the recommended method.

One of the best ways to get started with Matplotlib is to browse the extensive
online gallery of plots on the main Matplotlib site. Each plot comes with corre-
sponding source code that you can use as a starting point for your own plots. In
Sect. 1.4, we discuss special magic commands that make this particularly easy. The
annual John Hunter: Excellence in Plotting Contest provides fantastic, compelling
examples of scientific visualizations that are possible using Matplotlib.

1.3.1 Alternatives to Matplotlib

Even though Matplotlib is the most complete option for script-based plotting, there
are some alternatives for specialized scientific graphics that may be of interest.

If you require real-time data display and tools for volumetric data rendering
and complicated 3D meshes with isosurfaces, then PyQtGraph is an option.
PyQtGraph is a pure-Python graphics and GUI library that depends on Python
bindings for the Qt GUI library (i.e., PySide or PyQt4) and Numpy. This
means that the PyQtGraph relies on these other libraries (especially Qt’s
GraphicsView framework) for the heavy-duty number crunching and rendering.
This package is actively maintained, with solid documentation. You also need to
grasp a few Qt-GUI development concepts to use this effectively.

An alternative that comes from the R community is ggplot, which is a Python
port of the ggplot2 package that is fundamental to statistical graphics in R. From
the Python standpoint, the main advantage of ggplot is the tight integration with
the Pandas dataframe, which makes it easy to draw beautifully formatted statistical
graphs. The downside of this package is that it applies un-Pythonic semantics based
on the Grammar of Graphics [49], which is nonetheless a well-thought-out method
for articulating complicated graphs. Of course, because there are two-way bridges
between Python and R via the R2Py module (among others), it is workable to
send Numpy arrays to R for native ggplot2 rendering and then retrieve the so-
computed graphic back into Python. This is a workflow that is lubricated by the
Jupyter Notebook (see below) via the rmagic extension. Thus, it is quite possible
to get the best of both worlds via the Jupyter Notebook, and this kind of multi-
language workflow is quite common in data analysis communities.

20 1 Getting Started with Scientific Python

1.3.2 Extensions to Matplotlib

Initially, to encourage adoption of Matplotlib from Matlab, many of the graphical
sensibilities were adopted from Matlab to preserve the look and feel for transitioning
users. Modern sensibilities and prettier default plots are possible, because Matplotlib
provides the ability to drill down and tweak every element on the canvas. However,
this can be tedious to do and several alternatives offer relief. For statistical plots,
the first place to look is the seaborn module that includes a vast array of
beautifully formatted plots, including violin plots, kernel density plots, and bivariate
histograms. The seaborn gallery includes samples of available plots and the
corresponding code that generates them. Importing seaborn hijacks the default
settings for all plots, so you have to coordinate this if you only want to use seaborn
for some (not all) of your visualizations in a given session. You can find the defaults
for Matplotlib in the matplotlib.rcParams dictionary.

1.4 IPython

IPython [35] originated as a way to enhance Python’s basic interpreter for smooth
interactive scientific development. In the early days, the most important enhance-
ment was tab completion for dynamic introspection of workspace variables. For
example, you can start IPython at the commandline by typing ipython, and then
you should see something like the following in your terminal:

Python 3.10.0 | packaged by conda-forge | (default, Nov 20
2021, 02:25:18) [GCC 9.4.0]

Type 'copyright', 'credits' or 'license' for more information
IPython 8.0.1 -- An enhanced Interactive Python. Type '?' for
help.

In [1]:

Next, creating a string as shown and hitting the TAB key after the dot character
initiates the introspection, showing all the functions and attributes of the string
object in x.

In [1]: x = 'this is a string'

In [2]: x.<TAB>
x.capitalize x.encode x.format x.isalpha x.isidentifier
x.casefold x.endswith x.format_map x.isascii x.islower
x.center x.expandtabs x.index x.isdecimal x.isnumeric
x.count x.find x.isalnum x.isdigit x.isprintable

To get help about any of these, you simply add the ? character at the end as shown
below:

In [2]: x.center?
Signature: x.center(width, fillchar=' ', /)

1.5 Jupyter Notebook 21

Docstring:
Return a centered string of length width.

Padding is done using the specified fill character (default is
a space).

Type: builtin_function_or_method

and IPython provides the built-in help documentation. Note that you can also get
this documentation with help(x.center), which works in the plain Python
interpreter as well.

The combination of dynamic tab-based introspection and quick interactive help
accelerates development, because you can keep your eyes and fingers in one place
as you work. This was the original IPython experience, but IPython has since grown
into a complete framework for delivering a rich scientific computing workflow that
retains and enhances these fundamental features.

1.5 Jupyter Notebook

As you may have noticed investigating Python on the web, most Python users are
Web developers, not scientific programmers, meaning that the Python stack is very
well-developed for web technologies. The genius of the IPython development team
was to leverage these technologies for scientific computing by embedding IPython
in modern web browsers. In fact, this strategy has been so successful that IPython
has moved into other languages beyond Python such as Julia and R as the Jupyter
project. You can start the Jupyter Notebook with the following commandline:

Terminal> jupyter notebook

After starting the notebook, you should see something like the following in the
terminal:

[I 16:08:21.213 NotebookApp] Serving notebooks from local
directory: /home/user

[I 16:08:21.214 NotebookApp] The Jupyter Notebook is running
at:

[I 16:08:21.214 NotebookApp] http://localhost:8888/?token=
80281f0c324924d34a4e

[I 16:08:21.214 NotebookApp] Use Control-C to stop this
server and shut down

The first line reveals where Jupyter looks for default settings. The next line shows
where it looks for documents in the Jupyter Notebook format. The third line
shows that the Jupyter Notebook started a web server on the local machine (i.e.,
127.0.0.1) on port number 8888. This is the address your browser needs to
connect to the Jupyter session, although your default browser should have opened
automatically to this address. The port number and other configuration options are
available either on the commandline or in the profile file shown in the first line.
If you are on a Windows platform and you do not get this far, then the Window’s

22 1 Getting Started with Scientific Python

Fig. 1.2 The Jupyter Notebook dashboard

Fig. 1.3 A new Jupyter Notebook

firewall is probably blocking the port. For additional configuration help, see the
main Jupyter site (www.jupyter.org).

When Jupyter starts, it initiates several Python processes that use the blazing-
fast ZeroMQ message passing framework for interprocess communication, along
with the WebSocket protocol for back-and-forth communication with the browser.
To start Jupyter and get around your default browser, you can use the addi-
tional --no-browser flag and then manually type in the local host address
http://127.0.0.1:8888 into your favorite browser to get started. Once all
that is settled, you should see something like Fig. 1.2:

You can create a new document by clicking the New Notebook button shown
in Fig. 1.2. Then, you should see something like Fig. 1.3. To start using the
Jupyter Notebook, you just start typing code in the shaded textbox and then hit
SHIFT+ENTER to execute the code in that Jupyter cell. Figure 1.4 shows the

1.5 Jupyter Notebook 23

Fig. 1.4 Jupyter Notebook pulldown completion menu

dynamic introspection in the pulldown* menu when you type the TAB key after
the x.. Context-based help is also available as before by using the ? suffix, which
opens a help panel at the bottom of the browser window. There are many amazing
features including the ability to share notebooks between different users and to run
Jupyter Notebooks in the Amazon cloud, but these features go beyond our scope
here. Check the jupyter.org website or peek at the mailing list for the latest
work on these fronts.

The Jupyter Notebook supports high-quality mathematical typesetting using
MathJaX, which is a JavaScript implementation of most of, as well as video and
other rich content. The concept of consolidating mathematical algorithm descrip-
tions and the code that implements those algorithms into a shareable document is
more important than all of these amazing features. There is no understating the
importance of this in practice, because the algorithm documentation (if it exists) is
usually in one format and completely separate from the code that implements it. This
common practice leads to un-synchronized documentation and code that renders one
or the other useless. The Jupyter Notebook solves this problem by putting everything
into a living shareable document based upon open standards and freely available
software. Jupyter Notebooks can even be saved as static HTML documents for those
without Python!

Finally, Jupyter provides a large set of magic commands for creating macros,
profiling, debugging, and viewing codes. A full list of these can be found by
typing in %lsmagic in Jupyter. Help on any of these is available using the ?
character suffix. Some frequently used commands include the %cd command that

24 1 Getting Started with Scientific Python

changes the current working directory, the %ls command that lists the files in the
current directory, and the %hist command that shows the history of previous
commands (including optional searching). The most important of these for new
users is probably the %loadpy command that can load scripts from the local disk
or from the web. Using this to explore the Matplotlib gallery is a great way to
experiment with and reuse the plots there.

1.6 Scipy

Scipy was the first consolidated module for a wide range of compiled libraries,
all based on Numpy arrays. Scipy includes numerous special functions (e.g.,
Airy, Bessel, elliptical) as well as powerful numerical quadrature routines via
the QUADPACK Fortran library (see scipy.integrate), where you will also
find other quadrature methods. Some of the same functions appear in multiple
places within Scipy itself as well as in Numpy. Additionally, Scipy provides access
to the ODEPACK library for solving differential equations. Lots of statistical
functions, including random number generators, and a wide variety of probability
distributions are included in the scipy.stats module. Interfaces to the For-
tran MINPACK optimization library are provided via scipy.optimize. These
include methods for root-finding, minimization and maximization problems, with
and without higher-order derivatives. Methods for interpolation are provided in the
scipy.interpolate module via the FITPACK Fortran package. Some of the
modules are so big that you do not get all of them with import scipy, because
that would take too long to load. You may have to load some of these packages
individually as import scipy.interpolate, for example.

As we discussed, the Scipy module is already packed with an extensive list of
scientific codes. For that reason, the Scikits modules were originally established as a
way to stage candidates that could eventually make it into the already stuffed Scipy
module, but it turns out that many of these modules became so successful on their
own that they will never be integrated into Scipy proper. Some examples include
scikit-learn for machine learning and scikit-image for image processing.

1.7 Pandas

Pandas [30] is a powerful module that is optimized on top of Numpy and provides
a set of data structures particularly suited to time series and spreadsheet-style data
analysis (think of pivot tables in Excel). If you are familiar with the R statistical
package, then you can think of Pandas as providing a Numpy-powered dataframe
for Python.

1.7 Pandas 25

1.7.1 Series

There are two primary data structures in Pandas. The first is the Series Object,
which combines an index and corresponding data values.

>>> import pandas as pd # recommended convention
>>> x = pd.Series(index = range(5),data=[1,3,9,11,12])
>>> x
0 1
1 3
2 9
3 11
4 12
dtype: int64

The main thing to keep in mind with Pandas is that these data structures were
originally designed to work with time series data. In that case, the index in the
data structures corresponds to a sequence of ordered time stamps. In the general
case, the index must be a sortable array-like entity. For example:

>>> x = pd.Series(index = ['a','b','d','z','z'],
data=[1,3,9,11,12])

>>> x
a 1
b 3
d 9
z 11
z 12
dtype: int64

Note the duplicated z entries in the index. We can get at the entries in the Series
in a number of ways. First, we can used the dot notation to select as in the following:

>>> x.a
1
>>> x.z
z 11
z 12
dtype: int64

We can also use the indexed position of the entries with iloc as in the following:

>>> x.iloc[:3]
a 1
b 3
d 9
dtype: int64

which uses the same slicing syntax as Numpy arrays. You can also slice across the
index, even if it is not numeric with loc as in the following:

26 1 Getting Started with Scientific Python

>>> x.loc['a':'d']
a 1
b 3
d 9
dtype: int64

which you can get directly from the usual slicing notation:

>>> x['a':'d']
a 1
b 3
d 9
dtype: int64

Unlike with regular Python, slicing this way includes the endpoints. While that is
very interesting, the main power of Pandas comes from its power to aggregate and
group data. In the following, we build a more interesting Series object:

>>> x = pd.Series(range(5),[1,2,11,9,10])

and then group it in the following:

>>> grp = x.groupby(lambda i:i%2) # odd or even
>>> grp.get_group(0) # even group
2 1
10 4
dtype: int64
>>> grp.get_group(1) # odd group
1 0
11 2
9 3
dtype: int64

The first line groups the elements of the Series object by whether or not the index
is even or odd. The lambda function returns 0 or 1, depending on whether or not
the corresponding index is even or odd, respectively. The next line shows the 0
(even) group, and then the one after shows the 1 (odd) group. Now that we have
separate groups, we can perform a wide variety of summarizations on the group.
You can think of these as reducing each group into a single value. For example, in
the following, we get the maximum value of each group:

>>> grp.max() # max in each group
0 4
1 3
dtype: int64

Conspicuously, the operation above returns another Series object with an index
corresponding to the [0,1] elements.

1.7 Pandas 27

1.7.2 Dataframe

The Pandas DataFrame is an encapsulation of the Series that extends to
two dimensions. One way to create a DataFrame is with dictionaries as in the
following:

>>> df = pd.DataFrame({'col1': [1,3,11,2], 'col2': [9,23,0,2]})

The keys in the input dictionary are now the column headings (labels) of the
DataFrame, with each corresponding column matching the list of corresponding
values from the dictionary. Like the Series object, the DataFrame also has in
index, which is the [0,1,2,3] column on the far left. We can extract elements
from each column using the iloc method as discussed earlier as shown below:

>>> df.iloc[:2,:2] # get section
col1 col2

0 1 9
1 3 23

or by directly slicing or by using the dot notation as shown below:

>>> df['col1'] # indexing
0 1
1 3
2 11
3 2
Name: col1, dtype: int64
>>> df.col1 # use dot notation
0 1
1 3
2 11
3 2
Name: col1, dtype: int64

Subsequent operations on the DataFrame preserve its column-wise structure as in
the following:

>>> df.sum()
col1 17
col2 34
dtype: int64

where each column was totaled. Grouping and aggregating with the dataframe is
even more powerful than with series. Let us construct the following dataframe:

>>> df = pd.DataFrame({'col1': [1,1,0,0], 'col2': [1,2,3,4]})

In the above dataframe, note that the col1 column has only two entries. We can
group the data using this column as in the following:

28 1 Getting Started with Scientific Python

>>> grp = df.groupby('col1')
>>> grp.get_group(0)

col1 col2
2 0 3
3 0 4
>>> grp.get_group(1)

col1 col2
0 1 1
1 1 2

Each group corresponds to entries for which col1 was either of its two values. Now
that we have grouped on col1, as with the series object, we can also functionally
summarize each of the groups as in the following:

>>> grp.sum()
col2

col1
0 7
1 3

where the sum is applied across each of the dataframes present in each group. The
index of the output above is each of the values in the original col1.

The dataframe can compute new columns based on existing columns using the
eval method as shown below:

>>> df['sum_col']=df.eval('col1+col2')
>>> df

col1 col2 sum_col
0 1 1 2
1 1 2 3
2 0 3 3
3 0 4 4

You can assign the output to a new column to the dataframe as shown.4 We can
group by multiple columns as shown below:

>>> grp = df.groupby(['sum_col','col1'])

Doing the sum operation on each group gives the following:

>>> res = grp.sum()
>>> res

col2
sum_col col1
2 1 1
3 0 3

1 2
4 0 4

4 Note this kind of on-the-fly memory extension is not possible in regular Numpy. For example, x
= np.array([1,2]); x[3]=3 generates an error.

1.8 Sympy 29

This output is much more complicated than anything we have seen so far, so let
us carefully walk through it. Below the headers, the first row 2 1 1 indicates
that for sum_col=2 and for all values of col1 (namely, just the value 1), the
value of col2 is 1. For the next row, the same pattern applies except that for
sum_col=3, there are now two values for col1, namely 0 and 1, which each have
their corresponding two values for the sum operation in col2. This layered display
is one way to look at the result. The layers above are not uniform. Alternatively, we
can unstack this result to obtain the following tabular view of the previous result:

>>> res.unstack()
col2

col1 0 1
sum_col
2 NaN 1.0
3 3.0 2.0
4 4.0 NaN

The NaN values indicate positions in the table where there is no entry. For example,
for the pair (sum_col=2,col2=0), there is no corresponding value in the
dataframe, as you may verify by looking at the penultimate code block. There is also
no entry corresponding to the (sum_col=4,col2=1) pair. Thus, this shows that
the original presentation in the penultimate code block is the same as this one, just
without the abovementioned missing entries indicated by NaN.

We have barely scratched the surface of what Pandas is capable of, and we have
completely ignored its powerful features for managing dates and times. The text by
Mckinney [30] is a very complete and happily readable introduction to Pandas. The
online documentation and tutorials at the main Pandas site are also great for diving
deeper into Pandas.

1.8 Sympy

Sympy [8] is the main computer algebra module in Python. It is a pure-Python
package with no platform dependencies. With the help of multiple Google Summer
of Code sponsorships, it has grown into a powerful computer algebra system with
many collateral projects that make it faster and integrate it tighter with Numpy
and Jupyter. Sympy’s online tutorial is excellent and allows interacting with its
embedded code samples in the browser by running the code on the Google App
Engine behind the scenes. This provides an excellent way to interact and experiment
with Sympy.

If you find Sympy too slow or need algorithms that it does not implement, then
SAGE is your next stop. The SAGE project is a consolidation of over 70 of the
best open-source packages for computer algebra and related computation. Although
Sympy and SAGE share code freely between them, SAGE is a specialized build of
the Python kernel to facilitate deep integration with the underlying libraries. Thus, it
is not a pure-Python solution for computer algebra (i.e., not as portable), and it is a

30 1 Getting Started with Scientific Python

proper superset of Python with its own extended syntax. The choice between SAGE
and Sympy really depends on whether or not you intend primarily work in SAGE
or just need occasional computer algebra support in your existing Python code.

An important new development regarding SAGE is the freely available SAGE
Cloud (https://cloud.sagemath.com/), sponsored by the University of Washington
that allows you to use SAGE entirely in the browser with no additional setup.
Both SAGE and Sympy offer tight integration with the Jupyter Notebook for
mathematical typesetting in the browser using MathJaX.

To get started with Sympy, you must import the module as usual:

>>> import sympy as S # might take awhile

which may take a bit because it is a big package. The next step is to create a Sympy
variable as in the following:

>>> x = S.symbols('x')

Now we can manipulate this using Sympy functions and Python logic as shown
below:

>>> p=sum(x**i for i in range(3)) # 2nd order polynomial
>>> p
x**2 + x + 1

Now, we can find the roots of this polynomial using Sympy functions:

>>> S.solve(p) # solves p == 0
[-1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]

There is also a sympy.roots function that provides the same output but as a
dictionary.

>>> S.roots(p)
{-1/2 - sqrt(3)*I/2: 1, -1/2 + sqrt(3)*I/2: 1}

We can also have more than one symbolic element in any expression as in the
following:

>>> from sympy.abc import a,b,c # quick way to get common
symbols

>>> p = a* x**2 + b*x + c
>>> S.solve(p,x) # specific solving for x-variable
[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))

/(2*a)]

which is the usual quadratic formula for roots. Sympy also provides many mathe-
matical functions designed to work with Sympy variables. For example:

>>> S.exp(S.I*a) #using Sympy exponential
exp(I*a)

We can expand this using expand_complex to obtain the following:

https://cloud.sagemath.com/

1.9 Xarray for High Dimensional Dataframes 31

>>> S.expand_complex(S.exp(S.I*a))
I*exp(-im(a))*sin(re(a)) + exp(-im(a))*cos(re(a))

which gives us Euler’s formula for the complex exponential. Note that Sympy does
not know whether or not a is itself a complex number. We can fix this by making
that fact part of the construction of a as in the following:

>>> a = S.symbols('a',real=True)
>>> S.expand_complex(S.exp(S.I*a))
I*sin(a) + cos(a)

Note the much simpler output this time, because we have forced the additional
condition on a.

A powerful way to use Sympy is to construct complicated expressions that you
can later evaluate using Numpy via the lambdify method. For example:

>>> y = S.tan(x) * x + x**2
>>> yf= S.lambdify(x,y,'numpy')
>>> y.subs(x,.1) # evaluated using Sympy
0.0200334672085451
>>> yf(.1) # evaluated using Numpy
0.020033467208545055

After creating the Numpy function with lambdify, you can use Numpy arrays as
input as shown:

>>> yf(np.arange(3)) # input is Numpy array
array([0. , 2.55740772, -0.37007973])
>>> [y.subs(x,i).evalf() for i in range(3)] # need extra
work for Sympy

[0, 2.55740772465490, -0.370079726523038]

We can get the same output using Sympy, but that requires the extra programming
logic shown to do the vectorizing that Numpy performs natively.

Once again, we have merely scratched the surface of what Sympy is capable
of, and the online interactive tutorial is the best place to learn more. Sympy also
allows automatic mathematical typesetting within the Jupyter Notebook using , so
the so-constructed notebooks look almost publication-ready (see sympy.latex)
and can be made so with the jupyter nbconvert command. This makes it
easier to jump the cognitive gap between the Python code and the symbology of
traditional mathematics.

1.9 Xarray for High Dimensional Dataframes

Xarray implements multidimensional dataframes. Pandas used to do some of this
with the Panel object but gave up on it when Xarray came along. Xarray has
primarily been developed by the Earth sciences and astronomy communities, so

32 1 Getting Started with Scientific Python

much of their documentation is geared toward those audiences that typically have
large high dimensional cubes (i.e., not ragged/irregular) datasets.

There are two fundamental data structures in Xarray the DataArray and the
Dataset. The DataArray contains a single embedded Numpy data cube and
its corresponding coordinates. The Dataset holds multiple DataArray objects
that share the same coordinates. In a rough analogy to Pandas, DataArray is to
Dataset as Pandas Series is to DataFrame.

A DataArray has four attributes:

• values—multidimensional Numpy array
• dims—dimension names for each axis (e.g., x, y, z)
• coords—dictionary of arrays that label each point
• attrs—Python OrderedDict for metadata

Let’s construct one to see how this works.

>>> import xarray as xr
>>> d = xr.DataArray(np.arange(1,10))
>>> d
<xarray.DataArray (dim_0: 9)>
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
Dimensions without coordinates: dim_0

Xarray dim gives a dimension a descriptive name. Note that unlike Pandas, you
cannot set these after the fact.

>>> d = xr.DataArray(np.arange(1,10), dims=['x'])
>>> d.dims
('x',)

It’s more descriptive to define coordinates, which is similar to a Pandas index.

>>> d = xr.DataArray(np.arange(1,10),
... coords= {'x': ['a', 'b', 'c', 'd', 'e', 'f',

'g', 'h', 'i']})
>>> d
<xarray.DataArray (x: 9)>
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
Coordinates:

* x (x) <U1 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i'

You can slice the array using these coords as in Pandas loc accessor:

>>> d.loc['b':'c']
<xarray.DataArray (x: 2)>
array([2, 3])
Coordinates:

* x (x) <U1 'b' 'c'

Basic plotting is built-in:

d.plot(marker='o')

1.9 Xarray for High Dimensional Dataframes 33

You can slice using Numpy indexing as in the following:

>>> d[:3] # like .iloc[] in Pandas
<xarray.DataArray (x: 3)>
array([1, 2, 3])
Coordinates:

* x (x) <U1 'a' 'b' 'c'

The .sel() method is much more powerful for indexing using labels:

>>> d.sel(x='c')
<xarray.DataArray ()>
array(3)
Coordinates:

x <U1 'c'

There is a corresponding isel() also, if you still want to use the Numpy indexing.
Slicing is not built into the syntax, so you have to use slice explicitly.

>>> d.sel(x= slice('d','f'))
<xarray.DataArray (x: 3)>
array([4, 5, 6])
Coordinates:

* x (x) <U1 'd' 'e' 'f'

Basic arithmetic operations are supported:

>>> d*2 + d**2/3
<xarray.DataArray (x: 9)>
array([2.33333333, 5.33333333, 9. , 13.33333333,

18.33333333,
24. , 30.33333333, 37.33333333, 45.])

Coordinates:

* x (x) <U1 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i'

Slicing using dates and times is supported:

>>> ts = pd.date_range(start='1/1/2020', end='1/08/2021')
>>> d = xr.DataArray(np.arange(len(ts)), coords={'t': ts})
>>> d.sel(t = '2020-12-13')
<xarray.DataArray ()>
array(347)
Coordinates:

t datetime64[ns] 2020-12-13

You still need the slice to get a time interval:

>>> d.sel(t = slice('3/10/2020','2020-12-13')) # time formats
different
<xarray.DataArray (t: 279)>array([

69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,

108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,

34 1 Getting Started with Scientific Python

121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,
186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250,
251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263,
264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289,
290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302,
303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315,
316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328,
329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341,
342, 343, 344, 345, 346, 347])

Coordinates:
* t (t) datetime64[ns] 2020-03-10 2020-03-11 ...

2020-12-12 2020-12-13

Interpolation is possible while indexing as long as scipy is installed. Interpola-
tion also works in multiple dimensions. The interp_like method is also helpful.
The scipy documentation has more details regarding the interpolation methods
that are supported in the interp method (see Fig. 1.5).

>>> d = xr.DataArray(np.arange(10), coords = {'x':
np.arange(10)})

>>> d.interp({'x': np.linspace(0,8,10)})
<xarray.DataArray (x: 10)>
array([0. , 0.88888889, 1.77777778, 2.66666667,

3.55555556,
4.44444444, 5.33333333, 6.22222222, 7.11111111,
8.])

Coordinates:

* x (x) float64 0.0 0.8889 1.778 2.667 3.556 ...
5.333 6.222 7.111 8.0

Pandas Vs Xarray for Multilayered Dataframes DataArray handles mul-
tidimensional data better than Pandas. Consider the following dataframe with a
MultiIndex along the rows:

>>> midx = pd.MultiIndex.from_product([['A', 'B'],
... ['normal','high']])
>>> df = pd.DataFrame(index = midx,
... data = [[786,89],
... [207,25],
... [819,67],
... [176,22]],
... columns = ['BP','CP'])
>>> # add names in separately
>>> df.index.set_names(['type','measure'],inplace=True)

1.9 Xarray for High Dimensional Dataframes 35

Fig. 1.5 Xarray interpolation

>>> df.columns.set_names(['cost'],inplace=True)
>>> df
cost BP CP
type measure
A normal 786 89

high 207 25
B normal 819 67

high 176 22

Notice that we had to add in the names of the levels separately. This is where the
Xarray coords dictionary makes explicit and very useful. What if we want to sum
across the type index using Pandas:

>>> df.groupby(level=1,axis=0).sum() # need the groupby
cost BP CP
measure
high 383 47
normal 1605 156

Even though you can cast this Pandas dataframe into DataArray using the
constructor, it does not pick up the multiiindex correctly. Let’s consider the same
data using Xarray to build the DataArray object from scratch:

>>> data = np.array([[786,89],
... [207,25],
... [819,67],
... [176,22]])

>>> d = xr.DataArray(data.reshape((2,2,2)),
coords=dict(type=['A','B'],measure=['normal','high'],
cost=['BP','CP']))

>>> d
<xarray.DataArray (type: 2, measure: 2, cost: 2)>
array([[[786, 89],

[207, 25]],

36 1 Getting Started with Scientific Python

[[819, 67],
[176, 22]]])

Coordinates:

* type (type) <U1 'A' 'B'

* measure (measure) <U6 'normal' 'high'

* cost (cost) <U2 'BP' 'CP'

>>> d.sel(type='A', measure='high')
<xarray.DataArray (cost: 2)>
array([207, 25])
Coordinates:

type <U1 'A'
measure <U6 'high'

* cost (cost) <U2 'BP' 'CP'

>>> d.loc[:,'high','CP'] # using coords for slicing
<xarray.DataArray (type: 2)>
array([25, 22])
Coordinates:

* type (type) <U1 'A' 'B'
measure <U6 'high'
cost <U2 'CP'

This the same summation as before with Pandas but no groupby needed:

>>> d.sum('type').values # no groupby needed as with Pandas
array([[1605, 156],

[383, 47]])

Similarly, summation over multiple dimensions follows the same pattern:

>>> d.sum(['type','measure'])
<xarray.DataArray (cost: 2)>
array([1988, 203])
Coordinates:

* cost (cost) <U2 'BP' 'CP'

However, doing this in Pandas requires complex and unreadable grouping and
summing.

>>> df.groupby(level=1).sum().sum(axis=0) # far less clear
with Pandas

cost
BP 1988
CP 203
dtype: int64

To normalized by the partial sum, broadcasting and alignment is handled automati-
cally with Xarray:

>>> d/d.sum(['type','measure'])
<xarray.DataArray (type: 2, measure: 2, cost: 2)>
array([[[0.39537223, 0.43842365],

1.9 Xarray for High Dimensional Dataframes 37

[0.10412475, 0.12315271]],

[[0.41197183, 0.33004926],
[0.08853119, 0.10837438]]])

Coordinates:

* type (type) <U1 'A' 'B'

* measure (measure) <U6 'normal' 'high'

* cost (cost) <U2 'BP' 'CP'

Computing the same result using Pandas is much less intelligible:

>>> df/df.groupby(level=1).sum().sum(axis=0)
cost BP CP
type measure
A normal 0.395372 0.438424

high 0.104125 0.123153
B normal 0.411972 0.330049

high 0.088531 0.108374

Basic Calculations Built-in methods facilitate common calculations such as mean:

>>> d.mean('type')
<xarray.DataArray (measure: 2, cost: 2)>
array([[802.5, 78.],

[191.5, 23.5]])
Coordinates:

* measure (measure) <U6 'normal' 'high'

* cost (cost) <U2 'BP' 'CP'

and variance:

>>> d.var('type')
<xarray.DataArray (measure: 2, cost: 2)>
array([[272.25, 121.],

[240.25, 2.25]])
Coordinates:

* measure (measure) <U6 'normal' 'high'

* cost (cost) <U2 'BP' 'CP'

>>> d.mean(['type','cost'])
<xarray.DataArray (measure: 2)>
array([440.25, 107.5])
Coordinates:

* measure (measure) <U6 'normal' 'high'

The same calculation is much harder to read in Pandas:

>>> df.groupby(level=1).mean().mean(axis=1)
measure
high 107.50
normal 440.25
dtype: float64

38 1 Getting Started with Scientific Python

Groupby The Xarray groupby keeps the dimensions well-organized and largely
works the same as Pandas groupby:

>>> d.groupby('type').sum('cost')
<xarray.DataArray (type: 2, measure: 2)>
array([[875, 232],

[886, 198]])
Coordinates:

* type (type) <U1 'A' 'B'

* measure (measure) <U6 'normal' 'high'

Note that Xarray does do multiple groups that produce MultiIndex, like Pandas
does. Xarray does support indexing via Pandas MultiIndex, however, but this
is a separate issue from aggregations on groups.

Dataset The dataset holds multiple DataArray objects that share the same
coordinates. In a rough analogy to Pandas, DataArray is to Dataset as Pandas Series
is to DataFrame. Let’s start with some random data:

>>> price = np.random.rand(2,3,4)
>>> cost = np.random.rand(2,3,4)*10

The Dataset constructor has more options, but these are the basics. Notice that the
price and cost arrays have the same size and that the names of the dimensions
are specified in the tuples. Because these two arrays have the same dimension, they
can have the same coords as shown below:

>>> ds = xr.Dataset({'price': (['region', 'dates', 'store'],
price),

... 'cost' : (['region', 'dates', 'store'],
cost),

... },

... coords = {'region': ['usa','can'],

... 'dates' :
pd.date_range("2020-01-01", periods=3),

... 'store' : ['a','b','c','d'],

... })

>>> ds
<xarray.Dataset>
Dimensions: (region: 2, dates: 3, store: 4)
Coordinates:

* region (region) <U3 'usa' 'can'

* dates (dates) datetime64[ns] 2020-01-01 2020-01-02
2020-01-03

* store (store) <U1 'a' 'b' 'c' 'd'
Data variables:

price (region, dates, store) float64 0.1461 0.8069 ...
0.07674 0.6562

cost (region, dates, store) float64 1.753 4.63 0.9176
... 9.136 6.856

1.9 Xarray for High Dimensional Dataframes 39

The individual “DataArray”s that are embedded in the Dataset can be reference
using attributes or keys:

>>> ds.price - ds['cost']
<xarray.DataArray (region: 2, dates: 3, store: 4)>
array([[[-1.6072773 , -3.82336401, -0.18647072, -0.21047595],

[-0.93422365, -1.33608059, -4.23803009, -1.06452868],
[-0.26095129, -0.95536878, -0.51543561, -4.54364682]],

[[-8.51404155, -5.9075424 , -1.61412181, -3.40844964],
[-8.41904718, -6.93693035, -0.87115019, -3.29709936],
[-3.59088224, -4.84586913, -9.05939489, -6.20019101]]])

Coordinates:

* region (region) <U3 'usa' 'can'

* dates (dates) datetime64[ns] 2020-01-01 2020-01-02
2020-01-03

* store (store) <U1 'a' 'b' 'c' 'd'

As with Pandas dataframes, variables can be dropped using drop_vars, which
creates a new Dataset object.

>>> ds.drop_vars('price')
<xarray.Dataset>
Dimensions: (region: 2, dates: 3, store: 4)
Coordinates:

* region (region) <U3 'usa' 'can'

* dates (dates) datetime64[ns] 2020-01-01 2020-01-02
2020-01-03

* store (store) <U1 'a' 'b' 'c' 'd'
Data variables:

cost (region, dates, store) float64 1.753 4.63 0.9176
... 9.136 6.856

There is an assign function to create new variables in a new Dataset:

>>> ds.assign(profit = ds.price - ds.cost)
<xarray.Dataset>
Dimensions: (region: 2, dates: 3, store: 4)
Coordinates:

* region (region) <U3 'usa' 'can'

* dates (dates) datetime64[ns] 2020-01-01 2020-01-02
2020-01-03

* store (store) <U1 'a' 'b' 'c' 'd'
Data variables:

price (region, dates, store) float64 0.1461 0.8069 ...
0.07674 0.6562

cost (region, dates, store) float64 1.753 4.63 0.9176
... 9.136 6.856

profit (region, dates, store) float64 -1.607 -3.823 ...
-9.059 -6.2

40 1 Getting Started with Scientific Python

As with Pandas, functions can also be used for assign:

>>> ds.assign(profit = lambda i: (i.price-i.cost))
<xarray.Dataset>
Dimensions: (region: 2, dates: 3, store: 4)
Coordinates:

* region (region) <U3 'usa' 'can'

* dates (dates) datetime64[ns] 2020-01-01 2020-01-02
2020-01-03

* store (store) <U1 'a' 'b' 'c' 'd'
Data variables:

price (region, dates, store) float64 0.1461 0.8069 ...
0.07674 0.6562

cost (region, dates, store) float64 1.753 4.63 0.9176
... 9.136 6.856

profit (region, dates, store) float64 -1.607 -3.823 ...
-9.059 -6.2

>>> ds.drop_dims('region') # dimensions can be droppedwake up
<xarray.Dataset>
Dimensions: (dates: 3, store: 4)
Coordinates:

* dates (dates) datetime64[ns] 2020-01-01 2020-01-02
2020-01-03

* store (store) <U1 'a' 'b' 'c' 'd'
Data variables:

empty

For Dataset, groupby may not work as you expect unless you supply the ...
term, which indicates that you want to sum over all of the remaining dimensions.

>>> ds.groupby('region').sum(...)
<xarray.Dataset>
Dimensions: (region: 2)
Coordinates:

* region (region) object 'can' 'usa'
Data variables:

price (region) float64 6.266 4.682
cost (region) float64 68.93 24.36

If you want to sum over the dates variable, then you can specify it in the
aggregation sum:

>>> ds.groupby('region').sum('dates')
<xarray.Dataset>
Dimensions: (region: 2, store: 4)
Coordinates:

* region (region) <U3 'usa' 'can'

* store (store) <U1 'a' 'b' 'c' 'd'
Data variables:

price (region, store) float64 1.015 1.345 0.9973 ...
2.032 1.459 1.335

cost (region, store) float64 3.818 7.46 5.937 7.143
... 19.72 13.0 14.24

1.10 Interfacing with Compiled Libraries 41

Xarray is extremely powerful and the right solution for dealing with high
dimensional data cubes. We have just scratched the surface here, and Xarray can do
much more with data alignment and database like operations (e.g., Pandas merge)
via the align method. Much more excellent documentation is available on the
main Xarray website.

1.10 Interfacing with Compiled Libraries

As we have discussed, Python for scientific computing really consists of gluing
together different scientific libraries written in a compiled language like C or
Fortran. Ultimately, you may want to use libraries not available with existing Python
bindings. There are many, many options for doing this. The most direct way is to
use the built-in ctypes module, which provides tools for providing input/output
pointers to the library’s functions just as if you were calling them from a compiled
language. This means that you have to know the function signatures in the library
exactly—how many bytes for each input and how many bytes for the output. You are
responsible for building the inputs exactly the way the library expects and collecting
the resulting outputs. Even though this seems tedious, Python bindings for vast
libraries have been built this way.

If you want an easier way, then SWIG is an automatic wrapper generating tool
that can provide bindings to a long list of languages, not just Python; therefore, if
you need bindings for multiple languages, then this is your best and only option.
Using SWIG consists of writing an interface file so that the compiled Python
dynamically linked library (.pyd files) can be readily imported into the Python
interpreter. Huge and complex libraries like Trilinos (Sandia National Labs) have
been interfaced to Python using SWIG, so it is a well-tested option. SWIG also
supports Numpy arrays.

However, the SWIG model assumes that you want to continue developing
primarily in C/Fortran and you are hooking into Python for usability or other
reasons. On the other hand, if you start developing algorithms in Python and then
want to speed them up, then Cython is an excellent option, because it provides
a mixed language that allows you to have both C-language and Python code
intermixed. Like SWIG, you have to write additional files in this hybrid Python/C
dialect to have Cython generate the C-code that you will ultimately compile. The
best part of Cython is the profiler that can generate an HTML report showing
where the code is slow and could benefit from translation to Cython. The Jupyter
Notebook integrates nicely with Cython via its %cython magic command. This
means you can write Cython code in a cell in Jupyter Notebook, and the notebook
will handle all of the tedious details, like setting up the intermediate files to actually
compile the Cython extension. Cython also supports Numpy arrays.

Cython and SWIG are just two of the ways to create Python bindings for your
favorite compiled libraries. Other notable (but less popular) options include FWrap,
f2py, CFFI, and weave. It is also possible to use Python’s own API directly, but
this is a tedious undertaking that is hard to justify, given the existence of so many
well-developed alternatives.

42 1 Getting Started with Scientific Python

1.11 Integrated Development Environments

For those who prefer integrated development environments (IDEs), there is a lot
to choose from. The most comprehensive is Enthought Canopy, which includes
a rich, syntax-highlighted editor, integrated help, debugger, and even integrated
training. If you are already familiar with Eclipse from other projects or do mixed-
language programming, then there is a Python plug-in called PyDev that contains
all usual features from Eclipse with a Python debugger. Wingware provides an
affordable professional-level IDE with multi-project management support and
unusually clairvoyant code completion that works even in debug mode. Another
favorite is PyCharm, which also supports multiple languages and is particularly
popular among Python web developers, because it provides powerful templates for
popular web frameworks like Django. Visual Studio Code has quickly developed a
strong following among Python newcomers because of its beautiful interface and
plug-in ecosystem. If you are a VIM user, then the Jedi plug-in provides excellent
code completion that works well with pylint, which provides static code analysis
(i.e., identifies missing modules and typos). Naturally, emacs has many related
plugins for developing in Python. Note that are many other options, but I have tried
to emphasize those most suitable for Python beginners.

1.12 Quick Guide to Performance and Parallel Programming

There are many options available to improve the performance of your Python codes.
The first thing to determine is what is limiting your computation. It could be
CPU speed (unlikely), memory limitations (out-of-core computing), or data transfer
speed (waiting on data to arrive for processing). If your code is pure-Python, then
you can try running it with Pypy, which is an alternative Python implementation
that employs a just-in-time compiler. If your code does not experience a massive
speedup with Pypy, then there is probably something external to the code that is
slowing it down (e.g., disk access or network access). If Pypy doesn’t make any
sense because you are using many compiled modules that Pypy does not support,
then there are many diagnostic tools available.

Python has its own built-in profiler cProfile you can invoke from the
command line as in the following:

Terminal> python -m cProfile -o program.prof my_program.py

The output of the profiler is saved to the program.prof file. This file can be
visualized in runsnakerun to get a nice graphical picture of where the code
is spending the most time. The task manager on your operating system can also
provide clues as your program runs to see how it is consuming resources. The
line_profiler by Robert Kern provides an excellent way to see how the
code is spending its time by annotating each line of the code by its timings. In

1.12 Quick Guide to Performance and Parallel Programming 43

combination with runsnakerun, this narrows down problems to the line level
from the function level.

The most common situation is that your program is waiting on data from
disk or from some busy network resource. This is a common situation in web
programming, and there are lots of well-established tools to deal with this. Python
has a multiprocessing module that is part of the standard library. This makes
it easy to spawn child worker processes that can break off and individually process
small parts of a big job. However, it is still your responsibility as the programmer to
figure out how to distribute the data for your algorithm. Using this module means
that the individual processes are to be managed by the operating system, which will
be in charge of balancing the load.

The basic template for using multiprocessing is the following:

filename multiprocessing_demo.py
import multiprocessing
import time
def worker(k):

'worker function'
print('am starting process %d' % (k))
time.sleep(10) # wait ten seconds
print('am done waiting!')
return

if __name__ == '__main__':
for i in range(10):

p = multiprocessing.Process(target=worker, args=(i,))
p.start()

Then, you run this program at the terminal as in the following:
Terminal> python multiprocessing_demo.py

It is crucially important that you run the program from the terminal this way. It is not
possible to do this interactively from within Jupyter, say. If you look at the process
manager on the operating system, you should see a number of new Python processes
loitering for 10 seconds. You should also see the output of the print statements
above. Naturally, in a real application, you would be assigning some meaningful
work for each of the workers and figuring out how to send partially finished pieces
between individual workers. Doing this is complex and easy to get wrong, so Python
3 has the helpful concurrent.futures.

filename: concurrent_demo.py
from concurrent import futures
import time

def worker(k):
'worker function'
print ('am starting process %d' % (k))
time.sleep(10) # wait ten seconds
print ('am done waiting!')
return

44 1 Getting Started with Scientific Python

def main():
with futures.ProcessPoolExecutor(max_workers=3) as executor:

list(executor.map(worker,range(10)))

if __name__ == '__main__':
main()

Terminal> python concurrent_demo.py

You should see something like the following in the terminal. Note that we explicitly
restricted the number of processes to three.

am starting process 0
am starting process 1
am starting process 2
am done waiting!
am done waiting!
...

The futures module is built on top of multiprocessing and makes it
easier to use for this kind of simple task. There are also versions of both that
use threads instead of processes while maintaining the same usage pattern. The
main difference between threads and processes is that processes have their own
compartmentalized resources. The C-language Python (i.e., CPython) implementa-
tion uses a Global Interpreter Lock (GIL) that prevents threads from fighting over
internal data structures. This is a course-grained locking mechanism, where one
thread may individually run faster, because it does not have to keep track of all the
bookkeeping involved in running multiple threads simultaneously. The downside is
that you cannot run multiple threads simultaneously to speed up certain tasks.

There is no corresponding contention problem with processes, but these are
somewhat slower to start up, because each process has to create its own private
workspace for data structures that may be transferred between them. However,
each process can certainly run independently and simultaneously once all that is
set up. Certain alternative implementations of Python like IronPython use a finer-
grain threading design rather than a GIL approach. As a final comment, on modern
systems with multiple cores, it could be that multiple threads actually slow things
down, because the operating system may have to switch threads between different
cores. This creates additional overheads in the thread switching mechanism that
ultimately slow things down.

Jupyter itself has a parallel programming framework built (ipyparallel) that
is both powerful and easy to use. The first step is to fire up separate Jupyter engines
at the terminal as in the following:

Terminal> ipcluster start --n=4

Then, in an Jupyter window, you can get the client:

In [1]: from ipyparallel import Client
...: rc = Client()

1.12 Quick Guide to Performance and Parallel Programming 45

The client has a connection to each of the processes we started before using
ipcluster. To use all of the engines, we assign the DirectView object from
the client as in the following:

In [2]: dview = rc[:]

Now, we can apply functions for each of the engines. For example, we can get the
process identifiers using the os.getpid function:

In [3]: import os
In [4]: dview.apply_sync(os.getpid)
Out[4]: [6824, 4752, 8836, 3124]

Once the engines are up and running, data can be distributed to them using
scatter:

In [5]: dview.scatter('a',range(10))
Out[5]: <AsyncResult: finished>
In [6]: dview.execute('print(a)').display_outputs()
[stdout:0] [0, 1, 2]
[stdout:1] [3, 4, 5]
[stdout:2] [6, 7]
[stdout:3] [8, 9]

The execute method evaluates the given string in each engine. Now that the data
have been sprinkled among the active engines, we can do further computing on
them:

In [7]: dview.execute('b=sum(a)')
Out[7]: <AsyncResult: finished>
In [8]: dview.execute('print(b)').display_outputs()
[stdout:0] 3
[stdout:1] 12
[stdout:2] 13
[stdout:3] 17

In this example, we added up the individual a sub-lists available on each of the
engines. We can gather up the individual results into a single list as in the following:

In [9]: dview.gather('b').result
Out[9]: [3, 12, 13, 17]

This is one of the simplest mechanisms for distributing work to the individual
engines and collecting the results. Unlike the other methods we discussed, you
can do this iteratively, which makes it easy to experiment with how you want
to distribute and compute with the data. The Jupyter documentation has many
more examples of parallel programming styles that include running the engines on
cloud resources, supercomputer clusters, and across disparate networked computing
resources. Although there are many other specialized parallel programming pack-
ages, Jupyter provides the best trade-off for generality against complexity across all
of the major platforms.

46 1 Getting Started with Scientific Python

1.13 Other Resources

The Python community is filled with supersmart and amazingly helpful
people. One of the best places to get help with Scientific Python is the
www.stackoverflow.com site, which hosts a competitive Q&A forum that
is particularly welcoming for Python newbies. Several of the key Python developers
regularly participate there, and the quality of the answers is very high. The mailing
lists for any of the key tools (e.g., Numpy, Jupyter, Matplotlib) are also great
for keeping up with the newest developments. Anything written by Hans Petter
Langtangen [23] is excellent, especially if you have a physics background. The
Scientific Python conference held annually in Austin is also a great place to see
your favorite developers in person, ask questions, and participate in the many
interesting subgroups organized around niche topics. The PyData workshop is a
semiannual meeting focused on Python for large-scale data-intensive processing.
Also, [44] may be helpful if you liked the level of presentation in this chapter.

Chapter 2
Probability

2.1 Introduction

This chapter takes a geometric view of probability theory and relates it to familiar
concepts in linear algebra and geometry. This approach connects your natural
geometric intuition to the key abstractions in probability that can help guide your
reasoning. This is particularly important in probability, because it is easy to be
misled. We need a bit of rigor and some intuition to guide us.

In grade school, you were introduced to the natural numbers (i.e., 1,2,3,..),
and you learned how to manipulate them by operations like addition, subtraction,
and multiplication. Later, you were introduced to positive and negative numbers
and were again taught how to manipulate them. Ultimately, you were introduced
to the calculus of the real line and learned how to differentiate, take limits, and
so on. This progression not only provided more abstractions but also widened the
field of problems you could successfully tackle. The same is true of probability.
One way to think about probability is as a new number concept that allows you to
tackle problems that have a special kind of uncertainty built into them. Thus, the
key idea is that there is some number, say x, with a traveling companion, say, f (x),
and this companion represents the uncertainties about the value of x, as if looking
at the number x through a frosted window. The degree of opacity of the window is
represented by f (x). If we want to manipulate x, then we have to figure out what
to do with f (x). For example, if we want y = 2x, then we have to understand how
f (x) generates f (y).

Where is the random part? To conceptualize this, we need still another analogy:
think about a beehive with the swarm around it representing f (x) and the hive
itself, which you can barely see through the swarm, as x. The random piece is you
don’t know which bee in particular is going to sting you! Once this happens, the
uncertainty evaporates. Up until that happens, all we have is a concept of a swarm
(i.e., density of bees), which represents a potentiality of which bee will ultimately
sting. In summary, one way to think about probability is as a way of carrying through

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3_2

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04648-3_2&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3_2

48 2 Probability

mathematical reasoning (e.g., adding, subtracting, taking limits) with a notion of
potentiality that is so-transformed by these operations.

2.1.1 Understanding Probability Density

In order to understand the heart of modern probability, which is built on the
Lesbesgue theory of integration, we need to extend the concept of integration from
basic calculus. To begin, let us consider the following piecewise function:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 if 0 < x ≤ 1

4
7
6 if 1

4 < x ≤ 1

0 otherwise

as shown in Fig. 2.1. In calculus, you learned Riemann integration, which you can
apply here as

∫ 1

0
f (x)dx = 1

8
+ 21

24
= 1

which has the usual interpretation as the area of the two rectangles that make up
f (x). So far, so good.

With Lesbesgue integration, the idea is very similar except that we focus on
the y-axis instead of moving along the x-axis. The question is given f (x) = 1

2 ;
what is the set of x values for which this is true? For our example, this is true
whenever x ∈ (0, 1

4]. So now, we have a correspondence between the values of the

Fig. 2.1 Simple
piecewise-constant function

2.1 Introduction 49

function (namely, 1/2 and 7/6) and the sets of x values for which this is true,
namely, {(0, 1

4]} and {(1
4 , 1]}, respectively. To compute the integral, we simply take

the function values (i.e., 1/2,7/6) and some way of measuring the size of the
corresponding interval (i.e., μ) as in the following:

∫ 1

0
f dμ = 1

2
μ({(0,

1

4
]})+ 7

6
μ({(1

4
, 1]})

We have suppressed some of the notation above to emphasize generality. Note
that we obtain the same value of the integral as in the Riemann case when
μ((0, 1

4]) = 1
4 and μ((1

4 , 1]) = 3
4 . By introducing the μ function as a way of

measuring the intervals above, we have introduced another degree of freedom in our
integration. This accommodates many weird functions that are not tractable using
the usual Riemann theory, but we refer you to a proper introduction to Lesbesgue
integration for further study [19]. Nonetheless, the key step in the above discussion
is the introduction of the μ function, which we will encounter again as the so-called
probability density function.

2.1.2 Random Variables

Most introductions to probability jump straight into random variables and then
explain how to compute complicated integrals. The problem with this approach
is that it skips over some of the important subtleties that we will now consider.
Unfortunately, the term random variable is not very descriptive. A better term is
measurable function. To understand why this is a better term, we have to dive into
the formal constructions of probability by way of a simple example.

Consider tossing a fair six-sided die. There are only six outcomes possible,

Ω = {1, 2, 3, 4, 5, 6}

As we know, if the die is fair, then the probability of each outcome is 1/6.
To say this formally, the measure of each set (i.e., {1}, {2}, . . . , {6}) is μ({1}) =
μ({2}) . . . = μ({6}) = 1/6. In this case, the μ function we discussed earlier is the
usual probability mass function, denoted by P. The measurable function maps a set
into a number on the real line. For example, {1} �→ 1 is one such function.

Now, here’s where things get interesting. Suppose you were asked to construct
a fair coin from the fair die. In other words, we want to throw the die and then
record the outcomes as if we had just tossed a fair coin. How could we do this?
One way would be to define a measurable function that says if the die comes up
3 or less, then we declare heads and otherwise declare tails. This has some strong
intuition behind it, but let us articulate it in terms of formal theory. This strategy
creates two different nonoverlapping sets {1, 2, 3} and {4, 5, 6}. Each set has the
same probability measure,

50 2 Probability

P({1, 2, 3}) = 1/2

P({4, 5, 6}) = 1/2

And the problem is solved. Every time the die comes up {1, 2, 3}, we record heads
and record tails otherwise.

Is this the only way to construct a fair coin experiment from a fair die?
Alternatively, we can define the sets as {1}, {2}, {3, 4, 5, 6}. If we define the
corresponding measure for each set as the following:

P({1}) = 1/2

P({2}) = 1/2

P({3, 4, 5, 6}) = 0

then, we have another solution to the fair coin problem. To implement this, all we do
is ignore every time the die shows 3,4,5,6 and throw again. This is wasteful, but
it solves the problem. Nonetheless, we hope you can see how the interlocking pieces
of the theory provide a framework for carrying the notion of uncertainty/potentiality
from one problem to the next (e.g., from the fair die to the fair coin).

Let us consider a slightly more interesting problem where we toss two dice. We
assume that each throw is independent, meaning that the outcome of one does not
influence the other. What are the sets in this case? They are all pairs of possible
outcomes from two throws as shown below,

Ω = {(1, 1), (1, 2), . . . , (5, 6), (6, 6)}

What are the measures of each of these sets? By virtue of the independence claim,
the measure of each is the product of the respective measures of each element. For
instance,

P((1, 2)) = P({1})P({2}) = 1

62

With all that established, we can ask the following question: what is the probability
that the sum of the dice equals seven? As before, the first thing to do is characterize
the measurable function for this as X : (a, b) �→ (a + b). Next, we associate all of
the (a, b) pairs with their sum. We can create a Python dictionary for this as shown,

>>> d={(i,j):i+j for i in range(1,7) for j in range(1,7)}

The next step is to collect all of the (a, b) pairs that sum to each of the possible
values from 2 to 12.

>>> from collections import defaultdict
>>> dinv = defaultdict(list)
>>> for i,j in d.items():
... dinv[j].append(i)
...

2.1 Introduction 51

Programming Tip
The defaultdict object from the built-in collections module creates
dictionaries with default values when it encounters a new key. Otherwise, we
would have had to create default values manually for a regular dictionary.

For example, dinv[7] contains the following list of pairs that sum to seven:

>>> dinv[7]
[(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)]

The next step is to compute the probability measured for each of these items.
Using the independence assumption, this means we have to compute the sum of
the products of the individual item probabilities in dinv. Because we know that
each outcome is equally likely, the probability of every term in the sum equals
1/36. Thus, all we have to do is count the number of items in the corresponding
list for each key in dinv and divide by 36. For example, dinv[11] contains
[(5, 6), (6, 5)]. The probability of 5+6=6+5=11 is the probability of this
set, which is composed of the sum of the probabilities of the individual elements
{(5,6),(6,5)}. In this case, we have P(11) = P({(5, 6)}) + P({(6, 5)}) =
1/36 + 1/36 = 2/36. Repeating this procedure for all the elements, we derive the
probability mass function as shown below:

>>> X={i:len(j)/36. for i,j in dinv.items()}
>>> print(X)
{2: 0.027777777777777776, 3: 0.05555555555555555,
4: 0.08333333333333333, 5: 0.1111111111111111,
6: 0.1388888888888889, 7: 0.16666666666666666,
8: 0.1388888888888889, 9: 0.1111111111111111,
10: 0.08333333333333333, 11: 0.05555555555555555,
12: 0.027777777777777776}

Programming Tip
In the preceding code, note that 36. is written with the trailing decimal mark.
This is a good habit to get into, because the default division operation changed
between Python 2.x and Python 3.x. In Python 2.x, division is integer division
by default, and it is floating-point division in Python 3.x.

The above example exposes the elements of probability theory that are in play
for this simple problem while deliberately suppressing some of the gory technical
details. With this framework, we can ask other questions like the following: what
is the probability that half the product of three dice will exceed their sum? We can
solve this using the same method as in the following. First, let us create the first
mapping:

52 2 Probability

>>> d={(i,j,k):((i*j*k)/2>i+j+k) for i in range(1,7)
... for j in range(1,7)
... for k in range(1,7)}

The keys of this dictionary are the triples, and the values are the logical values of
whether or not half the product of three dice exceeds their sum. Now, we do the
inverse mapping to collect the corresponding lists:

>>> dinv = defaultdict(list)
>>> for i,j in d.items():
... dinv[j].append(i)
...

Note that dinv contains only two keys, True and False. Again, because the dice
are independent, the probability of any triple is 1/63. Finally, we collect this for
each outcome as in the following:

>>> X={i:len(j)/6.0**3 for i,j in dinv.items()}
>>> print(X)
{False: 0.37037037037037035, True: 0.6296296296296297}

Thus, the probability of half the product of three dice exceeding their sum is
136/(6.0**3) = 0.63. The set that is induced by the random variable has
only two elements in it, True and False, with P(True) = 136/216 and
P(False) = 1− 136/216.

As a final example to exercise another layer of generality, let is consider the first
problem with the two dice, where we want the probability of a seven, but this time
one of the dice is no longer fair. The distribution for the unfair die is the following:

P({1}) = P({2}) = P({3}) = 1

9

P({4}) = P({5}) = P({6}) = 2

9

From our earlier work, we know the elements corresponding to the sum of seven
are the following:

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
Because we still have the independence assumption, all we need to change is the
probability computation of each of elements. For example, given that the first die is
the unfair one, we have

P((1, 6)) = P(1)P(6) = 1

9
× 1

6

and likewise for (2, 5) we have the following:

P((2, 5)) = P(2)P(5) = 1

9
× 1

6

2.1 Introduction 53

and so forth. Summing all of these gives the following:

PX(7) = 1

9
× 1

6
+ 1

9
× 1

6
+ 1

9
× 1

6
+ 2

9
× 1

6
+ 2

9
× 1

6
+ 2

9
× 1

6
= 1

6

Let us try computing this using Pandas instead of Python dictionaries. First, we
construct a DataFrame object with an index of tuples consisting of all pairs of
possible dice outcomes.

>>> from pandas import DataFrame
>>> d=DataFrame(index=[(i,j) for i in range(1,7) for j in

range(1,7)],
... columns=['sm','d1','d2','pd1','pd2','p'])

Now, we can populate the columns that we set up above, where the outcome of the
first die is the d1 column and the outcome of the second die is d2:

>>> d.d1=[i[0] for i in d.index]
>>> d.d2=[i[1] for i in d.index]

Next, we compute the sum of the dices in the sm column:

>>> d.sm=list(map(sum,d.index))

With that established, the DataFrame now looks like the following:

>>> d.head(5) # show first five lines
sm d1 d2 pd1 pd2 p

(1, 1) 2 1 1 NaN NaN NaN
(1, 2) 3 1 2 NaN NaN NaN
(1, 3) 4 1 3 NaN NaN NaN
(1, 4) 5 1 4 NaN NaN NaN
(1, 5) 6 1 5 NaN NaN NaN

Next, we fill out the probabilities for each face of the unfair die (d1) and the fair die
(d2):

>>> d.loc[d.d1<=3,'pd1']=1/9.
>>> d.loc[d.d1 > 3,'pd1']=2/9.
>>> d.pd2=1/6.
>>> d.head(10)

sm d1 d2 pd1 pd2 p
(1, 1) 2 1 1 0.111111 0.166667 NaN
(1, 2) 3 1 2 0.111111 0.166667 NaN
(1, 3) 4 1 3 0.111111 0.166667 NaN
(1, 4) 5 1 4 0.111111 0.166667 NaN
(1, 5) 6 1 5 0.111111 0.166667 NaN
(1, 6) 7 1 6 0.111111 0.166667 NaN
(2, 1) 3 2 1 0.111111 0.166667 NaN
(2, 2) 4 2 2 0.111111 0.166667 NaN
(2, 3) 5 2 3 0.111111 0.166667 NaN
(2, 4) 6 2 4 0.111111 0.166667 NaN

Finally, we can compute the joint probabilities for the sum of the shown faces as the
following:

54 2 Probability

>>> d.p = d.pd1 * d.pd2
>>> d.head(5)

sm d1 d2 pd1 pd2 p
(1, 1) 2 1 1 0.111111 0.166667 0.018519
(1, 2) 3 1 2 0.111111 0.166667 0.018519
(1, 3) 4 1 3 0.111111 0.166667 0.018519
(1, 4) 5 1 4 0.111111 0.166667 0.018519
(1, 5) 6 1 5 0.111111 0.166667 0.018519

With all that established, we can compute the density of all the dice outcomes by
using groupby as in the following:

>>> d.groupby('sm')['p'].sum()
sm
2 0.018519
3 0.037037
4 0.055556
5 0.092593
6 0.12963
7 0.166667
8 0.148148
9 0.12963
10 0.111111
11 0.074074
12 0.037037
Name: p, dtype: object

These examples have shown how the theory of probability breaks down sets
and measurements of those sets and how these can be combined to develop the
probability mass functions for new random variables.

2.1.3 Continuous Random Variables

The same ideas work with continuous variables, but managing the sets becomes
trickier, because the real line, unlike discrete sets, has many limiting properties
already built into it that have to be handled carefully. Nonetheless, let us start with
an example that should illustrate the analogous ideas. Suppose a random variable X

is uniformly distributed on the unit interval. What is the probability that the variable
takes on values less than 1/2?

In order to build intuition onto the discrete case, let us go back to our dice-
throwing experiment with the fair dice. The sum of the values of the dice is a
measurable function:

Y : {1, 2, . . . , 6}2 �→ {2, 3, . . . , 12}

That is, Y is a mapping of the cartesian product of sets to a discrete set of outcomes.
In order to compute probabilities of the set of outcomes, we need to derive the
probability measure for Y , PY , from the corresponding probability measures for
each die. Our previous discussion went through the mechanics of that. This means
that

2.1 Introduction 55

PY : {2, 3, . . . , 12} �→ [0, 1]

Note there is a separation between the function definition and where the target items
of the function are measured in probability. More bluntly,

Y : A �→ B

with

PY : B �→ [0, 1]

Thus, to compute PY , which is derived from other random variables, we have to
express the equivalence classes in B in terms of their progenitor A sets.

The situation for continuous variables follows the same pattern, but with many
more deep technicalities that we are going to skip. For the continuous case, the
random variable is now

X : R �→ R

with corresponding probability measure

PX : R �→ [0, 1]

But where are the corresponding sets here? Technically, these are the Borel sets,
but we can just think of them as intervals. Returning to our question, what is the
probability that a uniformly distributed random variable on the unit interval takes
values less than 1/2? Rephrasing this question according to the framework, we have
the following:

X : [0, 1] �→ [0, 1]

with corresponding

PX : [0, 1] �→ [0, 1]

To answer the question, by the definition of the uniform random variable on the unit
interval, we compute the following integral:

PX([0, 1/2]) = PX(0 < X < 1/2) =
∫ 1/2

0
dx = 1/2

where the above integral’s dx sweeps through intervals of the B-type. The measure
of any dx interval (i.e., A-type set) is equal to dx, by definition of the uniform
random variable. To get all the moving parts into one notationally rich integral, we
can also write this as

56 2 Probability

PX(0 < X < 1/2) =
∫ 1/2

0
dPX(dx) = 1/2

Now, let us consider a slightly more complicated and interesting example. As
before, suppose we have a uniform random variable, X, and let us introduce another
random variable defined

Y = 2X

Now, what is the probability that 0 < Y < 1
2 ? To express this in our framework, we

write:

Y : [0, 1] �→ [0, 2]

with corresponding

PY : [0, 2] �→ [0, 1]

To answer the question, we need to measure the set [0, 1/2], with the probability
measure for Y , PY ([0, 1/2]). How can we do this? Because Y is derived from the X

random variable, as with the fair-dice throwing experiment, we have to create a set
of equivalences in the target space (i.e., B-type sets) that reflect back on the input
space (i.e., A-type sets). That is, what is the interval [0, 1/2] equivalent to in terms
of the X random variable? Because, functionally, Y = 2X, then the B-type interval
[0, 1/2] corresponds to the A-type interval [0, 1/4]. From the probability measure
of X, we compute this with the integral

PY ([0, 1/2]) = PX([0, 1/4]) =
∫ 1/4

0
dx = 1/4

Now, let us up the ante and consider the following random variable:

Y = X2

where now X is still uniformly distributed but now over the interval [−1/2, 1/2].
We can express this in our framework as

Y : [−1/2, 1/2] �→ [0, 1/4]

with corresponding

PY : [0, 1/4] �→ [0, 1]

What is the PY (Y < 1/8)? In other words, what is the measure of the set BY =
[0, 1/8]? As before, because X is derived from our uniformly distributed random

2.1 Introduction 57

variable, we have to reflect the BY set onto sets of the A-type. The thing to recognize
is that because X2 is symmetric about zero, all BY sets reflect back into two sets.
This means that for any set BY , we have the correspondence BY = A+X ∪ A−X. So,
we have

BY =
{

0 < Y <
1

8

}
=

{
0 < X <

1√
8

}⋃{
− 1√

8
< X < 0

}

From this perspective, we have the following solution:

PY (BY) = P(A+X)+ P(A−X)

Also,

A+X =
{

0 < X <
1√
8

}

A−X =
{
− 1√

8
< X < 0

}

Therefore,

PY (BY) = 1√
8
+ 1√

8

because P(A+X) = P(A−X) = 1/
√

8. Let us see if this comes out using the usual
transformation of variables method from calculus. Using this method, the density
fY (y) = 1√

y
. Then, we obtain

∫ 1
8

0

1√
y

dy = 1√
2

which is what we got using the sets method. Note that you would favor the calculus
method in practice, but it is important to understand the deeper mechanics, because
sometimes the usual calculus method fails, as the next problem shows.

2.1.4 Transformation of Variables Beyond Calculus

Suppose X and Y are uniformly distributed in the unit interval, and we define Z as

Z = X

Y −X

58 2 Probability

What is the fZ(z)? If you try this using the usual calculus method, you will fail (try
it!). The problem is one of the technical prerequisites for the calculus method is not
in force.

The key observation is that Z /∈ (−1, 0]. If this were possible, the X and Y

would have different signs, which cannot happen, given that X and Y are uniformly
distributed over (0, 1]. Now, let us consider when Z > 0. In this case, Y > X

because Z cannot be positive otherwise. For the density function, we are interested
in the set {0 < Z < z}. We want to compute

P(Z < z) =
∫ ∫

B1dXdY

with

B1 = {0 < Z < z}

Now, we have to translate that interval into an interval relevant to X and Y . For
0 < Z, we have Y > X. For Z < z, we have Y > X(1/z+ 1). Putting this together
gives

A1 = {max(X,X(1/z+ 1)) < Y < 1}

Integrating this over Y as follows:

∫ 1

0
{max(X,X(1/z+ 1)) < Y < 1}dY = z−X −Xz

z
where z >

X

1−X

and integrating this one more time over X gives

∫ z
1+z

0

−X + z−Xz

z
dX = z

2(z+ 1)
where z > 0

Note that this is the computation for the probability itself, not the probability density
function. To get that, all we have to do is differentiate the last expression to obtain

fZ(z) = 1

(z+ 1)2 where z > 0

Now, we need to compute this density using the same process for when z < −1.
We want the interval Z < z for when z < −1. For a fixed z, this is equivalent to
X(1 + 1/z) < Y . Because z is negative, this also means that Y < X. Under these
terms, we have the following integral:

∫ 1

0
{X(1/z+ 1) < Y < X}dY = −X

z
where z < −1

2.1 Introduction 59

and integrating this one more time over X gives the following:

− 1

2z
where z < −1

To get the density for z < −1, we differentiate this with respect to z to obtain the
following:

fZ(z) = 1

2z2
where z < −1

Putting this all together, we obtain

fZ(z) =

⎧
⎪⎪⎨

⎪⎪⎩

1
(z+1)2 if z > 0

1
2z2 if z < −1

0 otherwise

We will leave it as an exercise to show that this integrates out to one.

2.1.5 Independent Random Variables

Independence is a standard assumption. Mathematically, the necessary and sufficient
condition for independence between two random variables X and Y is the following:

P(X, Y) = P(X)P(Y)

Two random variables X and Y are uncorrelated if

E
(
(X −X)(Y − Y)

) = 0

where X = E(X). Note that uncorrelated random variables are sometimes
called orthogonal random variables. Uncorrelatedness is a weaker property than
independence, however. For example, consider the discrete random variables X and
Y uniformly distributed over the set {1, 2, 3}, where

X =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ω = 1

0 if ω = 2

−1 if ω = 3

and also

60 2 Probability

Y =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ω = 1

1 if ω = 2

0 if ω = 3

Thus, E(X) = 0 and E(XY) = 0, so X and Y are uncorrelated. However, we have

P(X = 1, Y = 1) = 0
= P(X = 1)P(Y = 1) = 1

9

So, these two random variables are not independent. Thus, uncorrelatedness does
not imply independence, generally, but there is the important case of Gaussian
random variables for which it does. To see this, consider the probability density
function for two zero-mean, unit-variance Gaussian random variables X and Y :

fX,Y (x, y) = e

x2−2ρxy+y2

2(ρ2−1)

2π
√

1− ρ2

where ρ := E(XY) is the correlation coefficient. In the uncorrelated case, where
ρ = 0, the probability density function factors into the following:

fX,Y (x, y) = e− 1
2

(
x2+y2

)

2π
= e− x2

2√
2π

e−
y2

2√
2π

= fX(x)fY (y)

which means that X and Y are independent.
Independence and conditional independence are closely related, as in the follow-

ing:

P(X, Y |Z) = P(X|Z)P(Y |Z)

which says that X and Y and independent conditioned on Z. Conditioning inde-
pendent random variables can break their independence. For example, consider two
independent Bernoulli-distributed random variables, X1, X2 ∈ {0, 1}. We define
Z = X1 +X2. Note that Z ∈ {0, 1, 2}. In the case where Z = 1, we have

P(X1|Z = 1) > 0

P(X2|Z = 1) > 0

Even though X1, X2 are independent, after conditioning on Z, we have the
following:

P(X1 = 1, X2 = 1|Z = 1) = 0
= P(X1 = 1|Z = 1)P(X2 = 1|Z = 1)

2.1 Introduction 61

Thus, conditioning on Z breaks the independence of X1, X2. This also works
in the opposite direction—conditioning can make dependent random variables
independent. Define Zn = ∑n

i Xi with Xi independent, integer-valued random
variables. The Zn variables are dependent because they stack the same telescoping
set of Xi variables. Consider the following:

P(Z1 = i, Z3 = j |Z2 = k) = P(Z1 = i, Z2 = k, Z3 = j)

P(Z2 = k)
(2.1)

= P(X1 = i)P(X2 = k − i)P(X3 = j − k)

P(Z2 = k)
(2.2)

where the factorization comes from the independence of the Xi variables. Using the
definition of conditional probability,

P(Z1 = i|Z2) = P(Z1 = i, Z2 = k)

P(Z2 = k)

We can continue to expand Eq. 2.1

P(Z1 = i, Z3 = j |Z2 = k) = P(Z1 = i|Z2)
P(X3 = j − k)P(Z2 = k)

P(Z2 = k)

= P(Z1 = i|Z2)P(Z3 = j |Z2)

where P(X3 = j − k)P(Z2 = k) = P(Z3 = j, Z2). Thus, we see that dependence
between random variables can be broken by conditioning to create conditionally
independent random variables. As we have just witnessed, understanding how
conditioning influences independence is important and is the main topic of study
in probabilistic graphical models, a field with many algorithms and concepts to
extract these notions of conditional independence from graph-based representations
of random variables.

2.1.6 Classic Broken Rod Example

Let us do one last example to exercise fluency in our methods by considering the
following classic problem: given a rod of unit-length, broken independently and
randomly at two places, what is the probability that you can assemble the three
remaining pieces into a triangle? The first task is to find a representation of a triangle
as an easy-to-apply constraint. What we want is something like the following:

P(triangle exists) =
∫ 1

0

∫ 1

0
{ triangle exists }dXdY

62 2 Probability

where X and Y are independent and uniformly distributed in the unit interval.
Heron’s formula for the area of the triangle

area = √
(s − a)(s − b)(s − c)s

where s = (a + b + c)/2 is what we need. The idea is that this yields a valid area
only when each of the terms under the square root is greater than or equal to zero.
Thus, suppose that we have

a = X

b = Y −X

c = 1− Y

assuming that Y > X. Thus, the criterion for a valid triangle boils down to

{(s > a) ∧ (s > b) ∧ (s > c) ∧ (X < Y)}

After a bit of manipulation, this consolidates into the following:

{1

2
< Y < 1

∧ 1

2
(2Y − 1) < X <

1

2

}

which we integrate out by dX first to obtain

P(triangle exists) =
∫ 1

0

∫ 1

0

{1

2
< Y < 1

∧ 1

2
(2Y − 1) < X <

1

2

}
dXdY

P(triangle exists) =
∫ 1

1
2

(1− Y)dY

and then by dY to obtain finally

P(triangle exists) = 1

8

when Y > X. By symmetry, we get the same result for X > Y . Thus, the final result
is the following:

P(triangle exists) = 1

8
+ 1

8
= 1

4

We can quickly check using this result using Python for the case Y > X using
the following code:

2.2 Projection Methods 63

>>> import numpy as np
>>> x,y = np.random.rand(2,1000) # uniform rv
>>> a,b,c = x,(y-x),1-y # 3 sides
>>> s = (a+b+c)/2
>>> np.mean((s>a) & (s>b) & (s>c) & (y>x)) # approx 1/8=0.125
0.121

Programming Tip
The chained logical & symbols above tell Numpy that the logical operation
should be considered element-wise.

2.2 Projection Methods

The concept of projection is key to developing an intuition about conditional
probability. We already have a natural intuition of projection from looking at the
shadows of objects on a sunny day. As we will see, this simple idea consolidates
many abstract ideas in optimization and mathematics. Consider Fig. 2.2, where we
want to find a point along the blue line (namely, x) that is closest to the black square
(namely, y). In other words, we want to inflate the gray circle until it just touches
the black line. Recall that the circle boundary is the set of points for which

√
(y− x)T (y− x) = ‖y− x‖ = ε

for some value of ε. So we want a point x along the line that satisfies this for the
smallest ε. Then, that point will be the closest point on the black line to the black
square. It may be obvious from the diagram, but the closest point on the line occurs,
where the line segment from the black square to the black line is perpendicular to
the line. At this point, the gray circle just touches the black line. This is illustrated
in Fig. 2.3.

Programming Tip
Figure 2.2 uses the matplotlib.patches module. This module contains
primitive shapes like circles, ellipses, and rectangles that can be assembled
into complex graphics. After importing a particular shape, you can apply
that shape to an existing axis using the add_patch method. The patches
themselves can by styled using the usual formatting keywords like color
and alpha.

64 2 Probability

Fig. 2.2 Given the point y
(black square), we want to
find the x along the line that
is closest to it. The gray circle
is the locus of points within a
fixed distance from y

Fig. 2.3 The closest point on the line occurs when the line is tangent to the circle. When this
happens, the black line and the line (minimum distance) are perpendicular

Now that we can see what’s going on, we can construct the solution analytically. We
can represent an arbitrary point along the black line as follows:

x = αv

where α ∈ R slides the point up and down the line with

2.2 Projection Methods 65

v = [1, 1]T

Formally, v is the subspace onto which we want to project y. At the closest point,
the vector between y and x (the error vector above) is perpedicular to the line. This
means that

(y− x)T v = 0

and by substituting and working out the terms, we obtain

α = yT v
‖v‖2

The error is the distance between αv and y. This is a right triangle, and we can use
the Pythagorean theorem to compute the squared length of this error as

ε2 = ‖(y− x)‖2 = ‖y‖2 − α2‖v‖2 = ‖y‖2 − ‖y
T v‖2

‖v‖2

where ‖v‖2 = vT v. Note that since ε2 ≥ 0, this also shows that

‖yT v‖ ≤ ‖y‖‖v‖

which is the famous and useful Cauchy-Schwarz inequality which we will exploit
later. Finally, we can assemble all of this into the projection operator

Pv = 1

‖v‖2 vv
T

With this operator, we can take any y and find the closest point on v by doing

Pvy = v
(
vT y
‖v‖2

)

where we recognize the term in parenthesis as the α we computed earlier. It’s called
an operator, because it takes a vector (y) and produces another vector (αv). Thus,
projection unifies geometry and optimization.

2.2.1 Weighted Distance

We can easily extend this projection operator to cases, where the measure of distance
between y and the subspace v is weighted. We can accommodate these weighted
distances by rewriting the projection operator as

66 2 Probability

Fig. 2.4 In the weighted case, the closest point on the line is tangent to the ellipse and is still
perpendicular in the sense of the weighted distance

Pv = v
vT QT

vT Qv
(2.3)

where Q is positive definite matrix. In the previous case, we started with a point y
and inflated a circle centered at y until it just touched the line defined by v, and this
point was closest point on the line to y. The same thing happens in the general case
with a weighted distance, except now we inflate an ellipse, not a circle, until the
ellipse touches the line.

Note that the error vector (y − αv) in Fig. 2.4 is still perpendicular to the line
(subspace v) but in the space of the weighted distance. The difference between
the first projection (with the uniform circular distance) and the general case (with
the elliptical weighted distance) is the inner product between the two cases. For
example, in the first case, we have yT v, and in the weighted case, we have yT QT v.
To move from the uniform circular case to the weighted ellipsoidal case, all we had
to do was change all of the vector inner products. Before we finish, we need a formal
property of projections:

PvPv = Pv

known as the idempotent property, which basically says that once we have projected
onto a subspace, subsequent projections leave us in the same subspace. You can
verify this by computing Eq. 2.2.1.

Thus, projection ties a minimization problem (closest point to a line) to an
algebraic concept (inner product). It turns out that these same geometric ideas from

2.3 Conditional Expectation as Projection 67

linear algebra [42] can be translated to the conditional expectation. How this works
is the subject of our next section.

2.3 Conditional Expectation as Projection

Now that we understand projection methods geometrically, we can apply them to
conditional probability. This is the key concept that ties probability to geometry,
optimization, and linear algebra.

Inner Product for Random Variables From our previous work on projection for
vectors in R

n, we have a good geometric grasp on how projection is related to
minimum mean squared error (MMSE). By one abstract step, we can carry all of
our geometric interpretations to the space of random variables. For example, we
previously noted that at the point of projection, we had the following orthogonal
(i.e., perpendicular vectors) condition,

(y− vopt)
T v = 0

which by noting the inner product slightly more abstractly as 〈x, y〉 = xT y, we can
express as

〈y− vopt , v〉 = 0

and by defining the inner product for the random variables X and Y as

〈X, Y 〉 = E(XY)

we have the same relationship:

〈X − hopt (Y), Y 〉 = 0

which holds not for vectors in R
n but for random variables X and Y and functions of

those random variables. Exactly why this is true is technical, but it turns out that one
can build up the entire theory of probability this way [33], by using the expectation
as an inner product.

Furthermore, by abstracting out the inner product concept, we have connected
Minimum mean squared error (MMSE) optimization problems, geometry, and
random variables. That’s a lot of mileage to get out of an abstraction, and it enables
us to shift between these interpretations to address real problems. Soon, we’ll do
this with some examples, but first we collect the most important result that flows
naturally from this abstraction.

68 2 Probability

Conditional Expectation as Projection The conditional expectation is the mini-
mum mean squared error (MMSE) solution to the following problem:1

min
h

∫

R2
(x − h(y))2fX,Y (x, y)dxdy

with the minimizing hopt (Y) as

hopt (Y) = E(X|Y)

which is another way of saying that among all possible functions h(Y), the one
that minimizes the MSE is E(X|Y). From our previous discussion on projection,
we noted that these MMSE solutions can be thought of as projections onto a
subspace that characterizes Y . For example, we previously noted that at the point
of projection, we have perpendicular terms,

〈X − hopt (Y), Y 〉 = 0 (2.4)

but since we know that the MMSE solution

hopt (Y) = E(X|Y)

we have by direct substitution

E(X − E(X|Y), Y) = 0 (2.5)

That last step seems pretty innocuous, but it ties MMSE to conditional expectation
to the inner project abstraction and, in so doing, reveals the conditional expectation
to be a projection operator for random variables. Before we develop this further,
let us grab some quick dividends. From the previous equation, by linearity of the
expectation, we obtain

E(XY) = E(YE(X|Y))

which is the so-called tower property of the expectation. Note that we could have
found this by using the formal definition of conditional expectation

E(X|Y) =
∫

R2
x

fX,Y (x, y)

fY (y)
dxdy

1 See appendix for proof using the Cauchy-Schwarz inequality.

2.3 Conditional Expectation as Projection 69

and brute-force direct integration

E(YE(X|Y)) =
∫

R

y

∫

R

x
fX,Y (x, y)

fY (y)
fY (y)dxdy

=
∫

R2
xyfX,Y (x, y)dxdy

= E(XY)

which is not very geometrically intuitive. This lack of geometric intuition makes it
hard to apply these concepts and keep track of these relationships.

We can keep pursuing this analogy and obtain the length of the error term from
the orthogonality property of the MMSE solution as

〈X − hopt (Y),X − hopt (Y)〉 = 〈X,X〉 − 〈hopt (Y), hopt (Y)〉

and then by substituting all the notation, we obtain

E(X − E(X|Y))2 = E(X)2 − E(E(X|Y))2

which would be tough to compute by direct integration.
To formally establish that E(X|Y) is in fact a projection operator, we need to

show idempotency. Recall that idempotency means that once we project something
onto a subspace, further projections do nothing. In the space of random variables,
E(X|·) is the idempotent projection as we can show by noting that

hopt = E(X|Y)

is purely a function of Y , so that

E(hopt (Y)|Y) = hopt (Y)

because Y is fixed, this verifies idempotency. Thus, conditional expectation is
the corresponding projection operator for random variables. We can continue
to carry over our geometric interpretations of projections for vectors (v) into
random variables (X). With this important result, let us consider some examples
of conditional expectations obtained by using brute force to find the optimal MMSE
function hopt as well as by using our new perspective on conditional expectation.

Example Suppose we have a random variable, X, then what constant is closest to
X in the sense of the mean squared error (MSE)? In other words, which c ∈ R

minimizes the following mean squared error:

MSE = E(X − c)2

70 2 Probability

we can work this out in many ways. First, use calculus-based optimization,

E(X − c)2 = E(c2 − 2cX +X2) = c2 − 2cE(X)+ E(X2)

and then take the first derivative with respect to c and solve

copt = E(X)

Remember that X may potentially take on many values, but this says that the closest
number to X in the MSE sense is E(X). This is intuitively pleasing. Coming at this
same problem using our inner product, from Eq. 2.3, we know that at the point of
projection

E((X − copt)1) = 0

where the 1 we are projecting onto. By linearity of the expectation, the following
gives

copt = E(X)

Using the projection approach, because E(X|Y) is the projection operator, with
Y = Ω (the entire underlying probability space), we have, using the definition of
conditional expectation:

E(X|Y = Ω) = E(X)

This is because of the subtle fact that a random variable over the entire Ω space
can only be a constant. Thus, we just worked the same problem three ways
(optimization, orthogonal inner products, projection).

Example Let us consider the following example with probability density fX,Y =
x + y where (x, y) ∈ [0, 1]2 and compute the conditional expectation straight from
the definition:

E(X|Y) =
∫ 1

0
x

fX,Y (x, y)

fY (y)
dx =

∫ 1

0
x

x + y

y + 1/2
dx = 3y + 2

6y + 3

That was pretty easy because the density function was so simple. Now, let us do it
the hard way by going directly for the MMSE solution h(Y). Then,

MSE = min
h

∫ 1

0

∫ 1

0
(x − h(y))2fX,Y (x, y)dxdy

= min
h

∫ 1

0
yh2(y)− yh(y)+ 1

3
y + 1

2
h2(y)− 2

3
h(y)+ 1

4
dy

2.3 Conditional Expectation as Projection 71

Now, we have to find a function h that is going to minimize this. Solving for a
function, as opposed to solving for a number, is generally very, very hard, but
because we are integrating over a finite interval, we can use the Euler-Lagrange
method from variational calculus to take the derivative of the integrand with respect
to the function h(y) and set it to zero. Using Euler-Lagrange methods, we obtain the
following result:

2yh(y)− y + h(y)− 2

3
= 0

Solving this gives

hopt (y) = 3y + 2

6y + 3

which is what we obtained before. Finally, we can solve this using our inner product
in Eq. 2.3 as

E((X − h(Y))Y) = 0

Writing this out gives,

∫ 1

0

∫ 1

0
(x − h(y))y(x + y)dxdy =

∫ 1

0

1

6
y(−3(2y + 1)h(y)+ 3y + 2)dy = 0

and the integrand must be zero,

2y + 3y2 − 3yh(y)− 6y2h(y) = 0

and solving this for h(y) gives the same solution:

hopt (y) = 3y + 2

6y + 3

Thus, doing it by the brute-force integration from the definition, optimization, or
inner product gives us the same answer, but, in general, no method is necessarily
easiest, because they both involve potentially difficult or impossible integration,
optimization, or functional equation solving. The point is that now that we have
a deep toolbox, we can pick and choose which tools we want to apply for different
problems.

Before we leave this example, let us use Sympy to verify the length of the error
function we found earlier for this example:

E(X − E(X|Y))2 = E(X)2 − E(E(X|Y))2

72 2 Probability

that is based on the Pythagorean theorem. First, we need to compute the marginal
densities:

>>> from sympy.abc import y,x
>>> from sympy import integrate, simplify
>>> fxy = x + y # joint density
>>> fy = integrate(fxy,(x,0,1)) # marginal density
>>> fx = integrate(fxy,(y,0,1)) # marginal density

Then, we need to write out the conditional expectation:

>>> EXY = (3*y+2)/(6*y+3) # conditional expectation

Next, we can compute the left side, E(X − E(X|Y))2, as the following:

>>> # from the definition
>>> LHS=integrate((x-EXY)**2*fxy,(x,0,1),(y,0,1))
>>> LHS # left-hand-side
1/12 - log(3)/144

We can similarly compute the right side, E(X)2 − E(E(X|Y))2, as the following:

>>> # using Pythagorean theorem
>>> RHS=integrate((x)**2*fx,(x,0,1))-integrate((EXY)**2*fy,

(y,0,1))
>>> RHS # right-hand-side
1/12 - log(3)/144

Finally, we can verify that the left and right sides match:

>>> print(simplify(LHS-RHS)==0)
True

In this section, we have pulled together all the projection and least-squares
optimization ideas from the previous sections to connect geometric notions of
projection from vectors in R

n to random variables. This resulted in the remarkable
realization that the conditional expectation is in fact a projection operator for
random variables. Knowing this allows to approach difficult problems in multiple
ways, depending on which way is more intuitive or tractable in a particular situation.
Indeed, finding the right problem to solve is the hardest part, so having many ways
of looking at the same concepts is crucial.

For much more detailed development, the book by Mikosch [31] has some excel-
lent sections covering much of this material with a similar geometric interpretation.
Kobayashi [21] does too. Nelson [33] also has a similar presentation based on
hyperreal numbers.

2.3.1 Appendix

We want to prove that the conditional expectation is the minimum mean squared
error minimizer of the following:

2.4 Conditional Expectation and Mean Squared Error 73

J = min
h

∫

R2
|X − h(Y)|2fX,Y (x, y)dxdy

We can expand this as follows:

J = min
h

∫

R2
|X|2fX,Y (x, y)dxdy +

∫

R2
|h(Y)|2fX,Y (x, y)dxdy

−
∫

R2
2Xh(Y)fX,Y (x, y)dxdy

To minimize this, we have to maximize the following:

A = max
h

∫

R2
Xh(Y)fX,Y (x, y)dxdy

Breaking up the integral using the definition of conditional expectation

A = max
h

∫

R

(∫

R

XfX|Y (x|y)dx

)
h(Y)fY (y)dy (2.6)

= max
h

∫

R

E(X|Y)h(Y)fY (Y)dy (2.7)

From the properties of the Cauchy-Schwarz inequality, we know that the maximum
happens when hopt (Y) = E(X|Y), so we have found the optimal h(Y) function as

hopt (Y) = E(X|Y)

which shows that the optimal function is the conditional expectation.

2.4 Conditional Expectation and Mean Squared Error

In this section, we work through a detailed example using conditional expectation
and optimization methods. Suppose we have two fair six-sided dice (X and Y) and
we want to measure the sum of the two variables as Z = X + Y . Further, let us
suppose that given Z, we want the best estimate of X in the mean-squared-sense.
Thus, we want to minimize the following:

J (α) =
∑

(x − αz)2
P(x, z)

where P is the probability mass function for this problem. The idea is that when
we have solved this problem, we will have a function of Z that is going to be the
minimum MSE estimate of X. We can substitute in for Z in J and get:

74 2 Probability

J (α) =
∑

(x − α(x + y))2
P(x, y)

Let us work out the steps in Sympy in the following:

>>> import sympy as S
>>> from sympy.stats import density, E, Die
>>> x = Die('D1',6) # 1st six sided die
>>> y = Die('D2',6) # 2nd six sides die
>>> a = S.symbols('a')
>>> z = x+y # sum of 1st and 2nd die
>>> J = E((x-a*(x+y))**2) # expectation
>>> S.simplify(J)
329*a**2/6 - 329*a/6 + 91/6

With all that setup, we can now use basic calculus to minimize the objective function
J :

>>> sol,=S.solve(S.diff(J,a),a) # using calculus to minimize
>>> sol # solution is 1/2
1/2

Programming Tip
Sympy has a stats module that can do some basic work with expressions
involving probability densities and expectations. The above code uses its E
function to compute the expectation.

This says that z/2 is the MSE estimate of X given Z, which means geometrically
(interpreting the MSE as a squared distance weighted by the probability mass
function) that z/2 is as close to x as we are going to get for a given z.

Let us look at the same problem using the conditional expectation operator E(·|z)
and apply it to our definition of Z. Then

E(z|z) = E(x + y|z) = E(x|z)+ E(y|z) = z

using the linearity of the expectation. Now, since by the symmetry of the problem
(i.e., two identical die), we have

E(x|z) = E(y|z)
we can plug this in and solve

2E(x|z) = z

which once again gives

E(x|z) = z

2

2.4 Conditional Expectation and Mean Squared Error 75

Fig. 2.5 The values of Z are in yellow with the corresponding values for X and Y on the axes.
The gray scale colors indicate the underlying joint probability density

which is equal to the estimate we just found by minimizing the MSE. Let us explore
this further with Fig. 2.5. Figure 2.5 shows the values of Z in yellow with the
corresponding values for X and Y on the axes. Suppose z = 2, then the closest
X to this is X = 1, which is what E(x|z) = z/2 = 1 gives. What happens when
Z = 7? In this case, this value is spread out diagonally along the X axis; so if
X = 1, then Z is 6 units away; if X = 2, then Z is 5 units away; and so on.

Now, back to the original question, if we had Z = 7 and we wanted to get as
close as we could to this using X, then why not choose X = 6, which is only one
unit away from Z? The problem with doing that is X = 6 only occurs 1/6 of the
time, so we are not likely to get it right the other 5/6 of the time. So, 1/6 of the time
we are one unit away but 5/6 of the time, we are much more than one unit away.
This means that the MSE score is going to be worse. Since each value of X from 1
to 6 is equally likely, to play it safe, we choose 7/2 as the estimate, which is what
the conditional expectation suggests.

We can check this claim with samples using Sympy below:

>>> from sympy import stats
>>> # Eq constrains Z
>>> samples_z7 = lambda : stats.sample(x, S.Eq(z,7))
>>> # using 6 as an estimate
>>> mn = np.mean([(6-samples_z7())**2 for i in range(100)])
>>> #7/2 is the MSE estimate
>>> mn0=np.mean([(7/2.-samples_z7())**2 for i in range(100)])
>>> print('MSE=%3.2f using 6 vs MSE=%3.2f using 7/2 '

% (mn,mn0))
MSE=9.91 using 6 vs MSE=3.47 using 7/2

76 2 Probability

Programming Tip
The stats.sample(x, S.Eq(z,7)) function call samples the x vari-
able subject to a condition on the z variable. In other words, it generates
random samples of x die, given that the sum of the outcomes of that die and
the y die add up to z==7.

Please run the above code repeatedly until you are convinced that the E(x|z) gives
the lower MSE every time. To push this reasoning, let us consider the case where
the die is so biased so that the outcome of 6 is ten times more probable than any of
the other outcomes. That is,

P(6) = 2/3

whereas P(1) = P(2) = . . . = P(5) = 1/15. We can explore this using Sympy as
in the following:

>>> # here 6 is ten times more probable than any other outcome
>>> x=stats.FiniteRV('D3',{1:1/15., 2:1/15.,
... 3:1/15., 4:1/15.,
... 5:1/15., 6:2/3.})

As before, we construct the sum of the two dice and plot the corresponding
probability mass function in Fig. 2.6. As compared with Fig. 2.5, the probability
mass has been shifted away from the smaller numbers.

Let us see what the conditional expectation says about how we can estimate X

from Z.

Fig. 2.6 The values of Z are in yellow with the corresponding values for X and Y on the axes

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 77

>>> E(x, S.Eq(z,7)) # conditional expectation E(x|z=7)
5.00000000000000

Now that we have E(x|z = 7) = 5, we can generate samples as before and see if
this gives the minimum MSE.

>>> samples_z7 = lambda : stats.sample(x, S.Eq(z,7))
>>> #using 6 as an estimate
>>> mn= np.mean([(6-samples_z7())**2 for i in range(100)])
>>> #5 is the MSE estimate
>>> mn0= np.mean([(5-samples_z7())**2 for i in range(100)])
>>> print('MSE=%3.2f using 6 vs MSE=%3.2f using 5 ' % (mn,mn0))
MSE=4.30 using 6 vs MSE=1.94 using 5

Using a simple example, we have emphasized the connection between minimum
mean squared error problems and conditional expectation. Hopefully, the last two
figures helped expose the role of the probability density. Next, we’ll continue
revealing the true power of the conditional expectation as we continue to develop
corresponding geometric intuition.

2.5 Worked Examples of Conditional Expectation and Mean
Square Error Optimization

Brzezniak [6] is a great book because it approaches conditional expectation through
a sequence of exercises, which is what we are trying to do here. The main difference
is that Brzezniak takes a more abstract measure-theoretic approach to the same
problems. Note that you do need to grasp measure theory for advanced areas in
probability, but for what we have covered so far, working the same problems in his
text using our methods is illuminating. It always helps to have more than one way
to solve any problem. I have numbered the examples corresponding to the book and
tried to follow its notation.

Example This is Example 2.1 from Brzezniak. Three coins, 10p, 20p, and 50p, are
tossed. The values of the coins that land heads-up are totaled. What is the expected
total given that two coins have landed heads-up? In this case, we have we want to
compute E(ξ |η), where

ξ := 10X10 + 20X20 + 50X50

where Xi ∈ {0, 1}, and where X10 is the Bernoulli-distributed random variable
corresponding to the 10p coin (and so on). Thus, ξ represents the total value of the
heads-up coins. The η represents the condition that only two of the three coins are
heads-up

η := X10X20(1−X50)+ (1−X10)X20X50 +X10(1−X20)X50

78 2 Probability

and is a function that is nonzero only, when two of the three coins lands heads-up.
Each triple term catches each of these three possibilities. For example, the first term
equals one, when the 10p and 20p are heads-up and the 50p is heads down. The
remaining terms are zero.

To compute the conditional expectation, we want to find a function h of η that
minimizes the mean-squared-error (MSE)

MSE =
∑

X∈{0,1}3

1

23 (ξ − h(η))2

where the sum is taken over all possible triples of outcomes for {X10, X20, X50},
because each of the three coins has a 1

2 chance of coming up heads.
Now, the question boils down to how can we characterize the function h(η). Note

that η �→ {0, 1}, so h takes on only two values. So, the orthogonal inner product
condition is the following:

〈ξ − h(η), η〉 = 0

Because are only interested in η = 1, this simplifies to

〈ξ − h(1), 1〉 = 0

〈ξ, 1〉 = 〈h(1), 1〉

This doesn’t look so hard to evaluate, but we have to compute the integral over the
set where η = 1. In other words, we need the set of triples {X10, X20, X50}, where
η = 1. That is, we can compute

∫

{η=1}
ξdX = h(1)

∫

{η=1}
dX

which is what Brzezniak does. Instead, we can define h(η) = αη and then find α.
Rewriting the orthogonal condition gives

〈ξ − η, αη〉 = 0

〈ξ, η〉 = α〈η, η〉

α = 〈ξ, η〉
〈η, η〉

where

〈ξ, η〉 =
∑

X∈{0,1}3

1

23
(ξη)

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 79

Note that we can just sweep over all triples {X10, X20, X50}, because the definition
of h(η) zeros out when η = 0 anyway. All we have to do is plug everything in and
solve. This tedious job is perfect for Sympy.

>>> import sympy as S
>>> X10,X20,X50 = S.symbols('X10,X20,X50',real=True)
>>> xi = 10*X10+20*X20+50*X50
>>> eta = X10*X20*(1-X50)+X10*(1-X20)*(X50)+(1-X10)*X20*(X50)
>>> num = S.summation(xi*eta,(X10,0,1),(X20,0,1),(X50,0,1))
>>> den = S.summation(eta*eta,(X10,0,1),(X20,0,1),(X50,0,1))
>>> alpha = num/den
>>> alpha # alpha=160/3
160/3

This means that

E(ξ |η) = 160

3
η

which we can check with a quick simulation

>>> import pandas as pd
>>> d = pd.DataFrame(columns=['X10','X20','X50'])
>>> d.X10 = np.random.randint(0,2,1000)
>>> d.X10 = np.random.randint(0,2,1000)
>>> d.X20 = np.random.randint(0,2,1000)
>>> d.X50 = np.random.randint(0,2,1000)

Programming Tip
The code above creates an empty Pandas dataframe with the named columns.
The next four lines assigns values to each of the columns.

The code above simulates flipping the three coins 1000 times. Each column of the
dataframe is either 0 or 1, corresponding to heads-down or heads-up, respectively.
The condition is that two of the three coins have landed heads-up. Next, we can
group the columns according to their sums. Note that the sum can only be in
{0, 1, 2, 3} corresponding to 0 heads-up, 1 heads-up, and so on.

>>> grp=d.groupby(d.eval('X10+X20+X50'))

Programming Tip
The eval function of the Pandas dataframe takes the named columns and
evaluates the given formula. At the time of this writing, only simple formulas
involving primitive operations are possible.

Next, we can get the 2 group, which corresponds to exactly two coins having landed
heads-up, and then evaluate the sum of the values of the coins. Finally, we can take
the mean of these sums.

80 2 Probability

>>> grp.get_group(2).eval('10*X10+20*X20+50*X50').mean()
52.60162601626016

The result is close to 160/3=53.33, which supports the analytic result. The
following code shows that we can accomplish the same simulation using pure
Numpy.

>>> import numpy as np
>>> from numpy import array
>>> x=np.random.randint(0,2,(3,1000))
>>> print(np.dot(x[:,x.sum(axis=0)==2].T,array([10,20,50]))

.mean())
52.860759493670884

In this case, we used the Numpy dot product to compute the value of the heads-
up coins. The sum(axis=0)==2 part selects the columns that correspond to two
heads-up coins.

Still another way to get at the same problem is to forego the random sampling
part and just consider all possibilities exhaustively using the itertools module
in Python’s standard library.

>>> import itertools as it
>>> list(it.product((0,1),(0,1),(0,1)))
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),

(1, 0, 1), (1, 1, 0), (1, 1, 1)]

Note that we need to call list above in order to trigger the iteration in
it.product. This is because the itertools module is generator-based so
it does not actually do the iteration until it is iterated over (by list in this case).
This shows all possible triples (X10, X20, X50), where 0 and 1 indicate heads-down
and heads-up, respectively. The next step is to filter out the cases that correspond to
two heads-up coins.

>>> list(filter(lambda i:sum(i)==2,it.product((0,1),(0,1),
(0,1))))

[(0, 1, 1), (1, 0, 1), (1, 1, 0)]

Next, we need to compute the sum of the coins and combine the prior code.

>>> list(map(lambda k:10*k[0]+20*k[1]+50*k[2],
... filter(lambda i:sum(i)==2,
... it.product((0,1),(0,1),(0,1)))))
[70, 60, 30]

The mean of the output is 53.33, which is yet another way to get the same result.
For this example, we demonstrated the full spectrum of approaches made possible
using Sympy, Numpy, and Pandas. It is always valuable to have multiple ways of
approaching the same problem and cross-checking the result.

2.5.1 Example

This is Example 2.2 from Brzezniak. Three coins, 10p, 20p, and 50p, are tossed
as before. What is the conditional expectation of the total amount shown by the

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 81

three coins, given the total amount shown by the 10p and 20p coins only? For this
problem,

ξ :=10X10 + 20X20 + 50X50

η :=30X10X20 + 20(1−X10)X20 + 10X10(1−X20)

which takes on four values η �→ {0, 10, 20, 30} and only considers the 10p and 20p
coins. In contrast to the last problem, here we are interested in h(η) for all of the
values of η. Naturally, there are only four values for h(η) corresponding to each of
these four values. Let us first consider η = 10. The orthogonal condition is then

〈ξ − h(10), 10〉 = 0

The domain for η = 10 is {X10 = 1, X20 = 0, X50}, which we can integrate out of
the expectation below:

E{X10=1,X20=0,X50}(ξ − h(10))10 = 0

E{X50}(10− h(10)+ 50X50) = 0

10− h(10)+ 25 = 0

which gives h(10) = 35. Repeating the same process for η ∈ {20, 30} gives h(20) =
45 and h(30) = 55, respectively. This is the approach Brzezniak takes. On the other
hand, we can just look at affine functions, h(η) = aη + b and use brute-force
calculus.

>>> from sympy.abc import a,b
>>> h = a*eta + b
>>> eta = X10*X20*30 + X10*(1-X20)*(10)+ (1-X10)*X20*(20)
>>> MSE=S.summation((xi-h)**2*S.Rational(1,8),(X10,0,1),
... (X20,0,1),
... (X50,0,1))
>>> sol=S.solve([S.diff(MSE,a),S.diff(MSE,b)],(a,b))
>>> print(sol)
{a: 64/3, b: 32}

Programming Tip
The Rational function from Sympy code expresses a rational number
that Sympy is able to manipulate as such. This is different that specifying a
fraction like 1/8., which Python would automatically compute as a floating
point number (i.e., 0.125). The advantage of using Rational is that
Sympy can later produce rational numbers as output, which are sometimes
easier to make sense of.

82 2 Probability

This means that

E(ξ |η) = 25+ η (2.8)

Since η takes on only four values, {0, 10, 20, 30}, we can write this out explicitly as

E(ξ |η) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

25 for η = 0

35 for η = 10

45 for η = 20

55 for η = 30

(2.9)

Alternatively, we can use orthogonal inner products to write out the following
conditions for the postulated affine function:

〈ξ − h(η), η〉 = 0 (2.10)

〈ξ − h(η), 1〉 = 0 (2.11)

Writing these out and solving for a and b is tedious and a perfect job for Sympy.
Starting with Eq. 2.10,

>>> expr=S.expand((xi-h)*eta)
>>> print(expr)
30*X10**2*X20*X50*a - 10*X10**2*X20*a - 10*X10**2*X50*a +

100*X10**2 + 60*X10*X20**2*X50*a - 20*X10*X20**2*a -
30*X10*X20*X50*a + 400*X10*X20 + 500*X10*X50 - 10*X10*b -
20*X20**2*X50*a + 400*X20**2 + 1000*X20*X50 - 20*X20*b

and then because E(X2
i) = 1/2 = E(Xi), we make the following substitutions:

>>> expr.xreplace({X10**2:0.5, X20**2:0.5,X10:0.5,X20:0.5,
X50:0.5})

-7.5*a - 15.0*b + 725.0

We can do this for the other orthogonal inner product in Eq. 2.11 as follows:

Programming Tip
Because Sympy symbols are hashable, they can be used as keys in Python
dictionaries as in the xreplace function above.

>>> S.expand((xi-h)*1).xreplace({X10**2:0.5,
... X20**2:0.5,
... X10:0.5,
... X20:0.5,
... X50:0.5})
-0.375*a - b + 40.0

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 83

Then, combining this result with the previous one and solving for a and b gives

>>> S.solve([-350.0*a-15.0*b+725.0,-15.0*a-b+40.0])
{a: 1.00000000000000, b: 25.0000000000000}

which again gives us the final solution:

E(ξ |η) = 25+ η

The following is a quick simulation to demonstrate this. We can build on the Pandas
dataframe we used for the last example and create a new column for the sum of the
10p and 20p coins, as shown below.

>>> d['sm'] = d.eval('X10*10+X20*20')

We can group this by the values of this sum:

>>> d.groupby('sm').mean()
X10 X20 X50

sm
0 0.0 0.0 0.502024
10 1.0 0.0 0.531646
20 0.0 1.0 0.457831
30 1.0 1.0 0.516854

But we want the expectation of the value of the coins:

>>> d.groupby('sm').mean().eval('10*X10+20*X20+50*X50')
sm
0 25.101215
10 36.582278
20 42.891566
30 55.842697
dtype: float64

which is very close to our analytical result in Eq. 2.5.1.

2.5.2 Example

This is Example 2.3 paraphrased from Brzezniak. Given X uniformly distributed on
[0, 1], find E(ξ |η), where

ξ(x) = 2x2

η(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ [0, 1/3]
2 if x ∈ (1/3, 2/3)

0 if x ∈ (2/3, 1]

Note that this problem is different from the previous two, because the sets
that characterize η are intervals instead of discrete points. Nonetheless, we will

84 2 Probability

eventually have three values for h(η) because η �→ {0, 1, 2}. For η = 1, we have
the orthogonal conditions:

〈ξ − h(1), 1〉 = 0

which boils down to

E{x∈[0,1/3]}(ξ − h(1)) = 0

∫ 1
3

0
(2x2 − h(1))dx = 0

and then by solving this for h(1) gives h(1) = 2/24. This is the way Brzezniak
works this problem. Alternatively, we can use h(η) = a+ bη+ cη2 and brute-force
calculus.

>>> x,c,b,a = S.symbols('x,c,b,a')
>>> xi = 2*x**2
>>> eta=S.Piecewise((1,S.And(S.Gt(x,0),
... S.Lt(x,S.Rational(1,3)))), # 0 < x < 1/3
... (2,S.And(S.Gt(x,S.Rational(1,3)),
... S.Lt(x,S.Rational(2,3)))),# 1/3 < x < 2/3,
... (0,S.And(S.Gt(x,S.Rational(2,3)),
... S.Lt(x,1)))) # 1/3 < x < 2/3
>>> h = a + b*eta + c*eta**2
>>> J = S.integrate((xi-h)**2,(x,0,1))
>>> sol = S.solve([S.diff(J,a),
... S.diff(J,b),
... S.diff(J,c),
...],
... (a,b,c))

>>> print(sol)
{a: 38/27, b: -20/9, c: 8/9}
>>> print(S.piecewise_fold(h.subs(sol)))
Piecewise((2/27, (x > 0) & (x < 1/3)), (14/27, (x > 1/3) &
(x < 2/3)), (38/27, (x > 2/3) & (x < 1)))

Thus, collecting this result gives

E(ξ |η) = 38

27
− 20

9
η + 8

9
η2

which can be rewritten as a piecewise function of x:

E(ξ |η(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

2
27 for 0 < x < 1

3
14
27 for 1

3 < x < 2
3

38
27 for 2

3 < x < 1

(2.12)

Alternatively, we can use the orthogonal inner product conditions directly by
choosing h(η) = c + ηb + η2a:

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 85

〈ξ − h(η), 1〉 = 0

〈ξ − h(η), η〉 = 0

〈ξ − h(η), η2〉 = 0

and then solving for a,b, and c.

>>> x,a,b,c,eta = S.symbols('x,a,b,c,eta',real=True)
>>> xi = 2*x**2
>>> eta=S.Piecewise((1,S.And(S.Gt(x,0),
... S.Lt(x,S.Rational(1,3)))), #
0 < x < 1/3

... (2,S.And(S.Gt(x,S.Rational(1,3)),

... S.Lt(x,S.Rational(2,3)))), #
1/3 < x < 2/3,

... (0,S.And(S.Gt(x,S.Rational(2,3)),

... S.Lt(x,1)))) # 1/3 < x < 2/3
>>> h = c+b*eta+a*eta**2

Then, the orthogonal conditions become

>>> S.integrate((xi-h)*1,(x,0,1))
-5*a/3 - b - c + 2/3
>>> S.integrate((xi-h)*eta,(x,0,1))
-3*a - 5*b/3 - c + 10/27
>>> S.integrate((xi-h)*eta**2,(x,0,1))
-17*a/3 - 3*b - 5*c/3 + 58/81

Now, we just combine the three equations and solve for the parameters:

>>> eqs=[-5*a/3 - b - c + 2/3,
... -3*a - 5*b/3 - c + 10/27,
... -17*a/3 - 3*b - 5*c/3 + 58/81]
>>> sol=S.solve(eqs)
>>> print(sol)
{a: 0.888888888888889, b: -2.22222222222222, c:

1.40740740740741}

We can assemble the final result by substituting in the solution

>>> print(S.piecewise_fold(h.subs(sol)))
Piecewise((0.074074074074074, (x > 0) & (x < 1/3)),
(0.518518518518518, (x > 1/3) & (x < 2/3)),
(1.40740740740741, (x > 2/3) & (x < 1)))

which is the same as our analytic result in Eq. 2.5.2, just in decimal format.

Programming Tip
The definition of Sympy’s piecewise function is verbose because of the way
Python parses inequality statements. As of this writing, this has not been
reconciled in Sympy, so we have to use the verbose declaration.

To reinforce our result, let us do a quick simulation using Pandas.

86 2 Probability

>>> d = pd.DataFrame(columns=['x','eta','xi'])
>>> d.x = np.random.rand(1000)
>>> d.xi = 2*d.x**2
>>> d.xi.head()
0 0.649201
1 1.213763
2 1.225751
3 0.005203
4 0.216274
Name: xi, dtype: float64

Now, we can use the pd.cut function to group the x values in the following:

>>> pd.cut(d.x,[0,1/3,2/3,1]).head()
0 (0.333, 0.667]
1 (0.667, 1.0]
2 (0.667, 1.0]
3 (0.0, 0.333]
4 (0.0, 0.333]
Name: x, dtype: category
Categories (3, interval[float64, right]): [(0.0, 0.333]
< (0.333, 0.667] < (0.667, 1.0]]

Note that the head() call above is only to limit the printout shown. The
categories listed are each of the intervals for eta that we specified using the
[0,1/3,2/3,1] list. Now that we know how to use pd.cut, we can just
compute the mean on each group as shown below:

>>> d.groupby(pd.cut(d.x,[0,1/3,2/3,1])).mean()['xi']
x
(0.0, 0.333] 0.073048
(0.333, 0.667] 0.524023
(0.667, 1.0] 1.397096
Name: xi, dtype: float64

which is pretty close to our analytic result in Eq. 2.5.2. Alternatively,
sympy.stats has some limited tools for the same calculation.

>>> from sympy.stats import E, Uniform
>>> x=Uniform('x',0,1)
>>> E(2*x**2,S.And(x < S.Rational(1,3), x > 0))
2/27
>>> E(2*x**2,S.And(x < S.Rational(2,3), x > S.Rational(1,3)))
14/27
>>> E(2*x**2,S.And(x < 1, x > S.Rational(2,3)))
38/27

which again gives the same result still another way.

2.5.3 Example

This is Example 2.4 from Brzezniak. Find E(ξ |η) for

ξ(x) = 2x2

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 87

η =
{

2 if 0 ≤ x < 1
2

x if 1
2 < x ≤ 1

Once again, X is uniformly distributed on the unit interval. Note that η is no longer
discrete for every domain. For the domain 0 < x < 1/2, h(2) takes on only one
value, say, h0. For this domain, the orthogonal condition becomes

E{η=2}((ξ(x)− h0)2) = 0

which simplifies to
∫ 1/2

0
2x2 − h0dx = 0

∫ 1/2

0
2x2dx =

∫ 1/2

0
h0dx

h0 = 2
∫ 1/2

0
2x2dx

h0 = 1

6

For the other domain, where {η = x} in Eq. 2.5.3, we again use the orthogonal
condition:

E{η=x}((ξ(x)− h(x))x) = 0
∫ 1

1/2
(2x2 − h(x))xdx = 0

h(x) = 2x2

Assembling the solution gives

E(ξ |η(x)) =
{

1
6 for 0 ≤ x < 1

2

2x2 for 1
2 < x ≤ 1

although this result is not explicitly written as a function of η.

2.5.4 Example

This is Exercise 2.6 in Brzezniak. Find E(ξ |η), where

ξ(x) = 2x2

η(x) = 1− |2x − 1|

88 2 Probability

and X is uniformly distributed in the unit interval. We can write this out as a
piecewise function in the following:

η =
{

2x for 0 ≤ x < 1
2

2− 2x for 1
2 < x ≤ 1

The discontinuity is at x = 1/2. Let us start with the {η = 2x} domain.

E{η=2x}((2x2 − h(2x))2x) = 0
∫ 1/2

0
(2x2 − h(2x))2xdx = 0

We can make this explicitly a function of η by a change of variables (η = 2x), which
gives

∫ 1

0
(η2/2− h(η))

η

2
dη = 0

Thus, for this domain, h(η) = η2/2. Note that due to the change of variables, h(η)

is valid defined over η ∈ [0, 1].
For the other domain where {η = 2− 2x}, we have

E{η=2−2x}((2x2 − h(2− 2x))(2− 2x)) = 0
∫ 1

1/2
(2x2 − h(2− 2x))(2− 2x)dx = 0

Once again, a change of variables makes the η dependency explicit using η = 2−2x,
which gives

∫ 1

0
((2− η)2/2− h(η))

η

2
dη = 0

h(η) = (2− η)2/2

Once again, the change of variables means this solution is valid over η ∈ [0, 1].
Thus, because both pieces are valid over the same domain (η ∈ [0, 1]), we can just
add them to get the final solution:

h(η) = η2 − 2η + 2

A quick simulation can help bear this out.

>>> from pandas import DataFrame
>>> d = DataFrame(columns=['xi','eta','x','h','h1','h2'])

2.5 Worked Examples of Conditional Expectation and Mean Square Error. . . 89

>>> # 100 random samples
>>> d.x = np.random.rand(100)
>>> d.xi = d.eval('2*x**2')
>>> d.eta =1-abs(2*d.x-1)
>>> d.h1=d[(d.x<0.5)].eval('eta**2/2')
>>> d.h2=d[(d.x>=0.5)].eval('(2-eta)**2/2')
>>> d.fillna(0,inplace=True)
>>> d.h = d.h1+d.h2
>>> d.head()

xi eta x h h1 h2
0 1.102459 0.515104 0.742448 1.102459 0.000000 1.102459
1 0.239610 0.692257 0.346128 0.239610 0.239610 0.000000
2 1.811868 0.096389 0.951806 1.811868 0.000000 1.811868
3 0.000271 0.023268 0.011634 0.000271 0.000271 0.000000
4 0.284240 0.753977 0.376988 0.284240 0.284240 0.000000

Note that we have to be careful, where we apply the individual solutions using
the slice (d.x<0.5) index. The fillna part ensures that the default NaN
that fills out the empty row-etries is replaced with zero before combining the
individual solutions. Otherwise, the NaN values would circulate through the rest
of the computation. The following is the essential code that draws Fig. 2.7.

from matplotlib.pyplot import subplots
fig,ax=subplots()
ax.plot(d.xi,d.eta,'.',alpha=.3,label='η')
ax.plot(d.xi,d.h,'k.',label='$h(\eta)$')
ax.legend(loc=0,fontsize=18)
ax.set_xlabel('$2 x^2$',fontsize=18)
ax.set_ylabel('$h(\eta)$',fontsize=18)

Programming Tip
Basic formatting works for the labels in Fig. 2.7. The loc=0 in the
legend function is the code for the best placement for the labels in the
legend. The individual labels should be specified when the elements are
drawn individually, otherwise they will be hard to separate out later. This is
accomplished using the label keyword in the plot commands.

Figure 2.7 shows the ξ data plotted against η and h(η) = E(ξ |η). Points on
the diagonal are points where ξ and E(ξ |η) match. As shown by the dots, there
is no agreement between the raw η data and ξ . Thus, one way to think about the
conditional expectation is as a functional transform that bends the curve onto the
diagonal line. The black dots plot ξ versus E(ξ |η) and the two match everywhere
along the diagonal line. This is to be expected because the conditional expectation
is the MSE best estimate for ξ among all functions of η.

90 2 Probability

Fig. 2.7 The diagonal line
shows where the conditional
expectation equals the ξ

function

2.5.5 Example

This is Exercise 2.14 from Brzezniak. Find E(ξ |η) where

ξ(x) = 2x2

η =
{

2x if 0 ≤ x < 1
2

2x − 1 if 1
2 < x ≤ 1

and X is uniformly distributed in the unit interval. This is the same as the last
example, and the only difference here is that η is not continuous at x = 1

2 , as before.
The first part is exactly the same as the first part of the prior example, so we will
skip it here. The second part follows the same reasoning as the last example, so we
will just write the answer for the {η = 2x − 1} case as the following:

h(η) = (1+ η)2

2
, ∀η ∈ [0, 1]

and then adding these up as before gives the full solution:

h(η) = 1

2
+ η + η2

The interesting part about this example is shown in Fig. 2.8. The dots show where η

is discontinuous, yet the h(η) = E(ξ |η) solution is equal to ξ (i.e., matches the
diagonal). This illustrates the power of the orthogonal inner product technique,
which does not need continuity or complex set-theoretic arguments to calculate

2.6 Useful Distributions 91

Fig. 2.8 The diagonal line
shows where the conditional
expectation equals the ξ

function

solutions. By contrast, I urge you to consider Brzezniak’s solution to this problem
which requires such methods.

Extending projection methods to random variables provides multiple ways for
calculating solutions to conditional expectation problems. In this section, we also
worked out corresponding simulations using a variety of Python modules. It is
always advisable to have more than one technique at hand to cross-check potential
solutions. We worked out some of the examples in Brzezniak’s book using our
methods as a way to show multiple ways to solve the same problem. Comparing
Brzezniak’s measure-theoretic methods to our less abstract techniques is a great
way to get a handle on both concepts, which are important for advanced study in
stochastic process.

2.6 Useful Distributions

2.6.1 Normal Distribution

Without a doubt, the normal (Gaussian) distribution is the most important and
foundational probability distribution. The one-dimensional form is the following:

f (x) = e
− (x−μ)2

2σ2

√
2πσ 2

where E(x) = μ and V(x) = σ 2. The multidimensional version for x ∈ R
n is the

following:

92 2 Probability

f (x) = 1

det(2πR)
1
2

e−
1
2 (x−μ)T R−1(x−μ)

where R is the covariance matrix with entries

Ri,j = E
[
(xi − x̄i)(xj − x̄j)

]

A key property of the normal distribution is that it is completely specified by its
first two moments. Another key property is that the normal distribution is preserved
under linear transformations. For example:

y = Ax

means y ∼ N (Ax,ARxAT). This means that it is easy to do linear algebra
and matrix operations with normal distributed random variables. There are many
intuitive geometric relationships that are preserved with normal distributed random
variables, as discussed in the Gauss-Markov chapter.

2.6.2 Multinomial Distribution

The multinomial distribution generalizes the binomial distribution. Recall that
the binomial distribution characterizes the number of heads obtained in n trials.
Consider the problem of n balls to be divided among r available bins, where each
bin may accommodate more than one ball. For example, suppose n = 10 and and
r = 3, then one possible valid configuration is N10 = [3, 3, 4]. The probability
that a ball lands in the ith bin is pi , where

∑
pi = 1. The multinomial distribution

characterizes the probability distribution of Nn. The binomial distribution is a spe-
cial case of the multinomial distribution with n = 2. The multinomial distribution
is implemented in the scipy.stats module as shown below:

>>> from scipy.stats import multinomial
>>> rv = multinomial(10,[1/3]*3)
>>> rv.rvs(4)
array([[2, 2, 6],

[4, 2, 4],
[2, 4, 4],
[2, 6, 2]])

Note that the sum across the columns is always n:

>>> rv.rvs(10).sum(axis=1)
array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])

To derive the probability mass function, we define the occupancy vector, ei ∈ R
r ,

which is a binary vector with exactly one nonzero component (i.e., a unit vector).

2.6 Useful Distributions 93

Then, the Nn vector can be written as the sum of n vectors X, each drawn from the
set {ej }rj=1:

Nn =
n∑

i=1

Xi

where the probability P(X = ej) = pj . Thus, Nn has a discrete distribution over the
set of vectors with nonnegative components that sum to n. Because the X vectors
are independent and identically distributed, the probability of any particular Nn =
[x1, x2, · · · , xr]� = x is

P(Nn = x) = Cnp
x1
1 p

x2
2 · · ·pxr

r

where Cn is a combinatorial factor that accounts for all the ways a component can
sum to xj . Consider that there are

(
n
x1

)
ways that the first component can be chosen.

This leaves n− x1 balls left for the rest of the vector components. Thus, the second
component has

(
n−x1
x2

)
ways to pick a ball. Following the same pattern, the third

component has
(
n−x1−x2

x3

)
ways and so forth

Cn =
(

n

x1

)(
n− x1

x2

)(
n− x1 − x2

x3

)
· · ·

(
n− x1 − x2 − · · · − xr−1

xr

)

simplifies to the following:

Cn = n!
x1! · · · xr !

Thus, the probability mass function for the multinomial distribution is the following:

P(Nn = x) = n!
x1! · · · xr !p

x1
1 p

x2
2 · · ·pxr

r

The expectation of this distribution is the following:

E(Nn) =
n∑

i=1

E(Xi)

by the linearity of the expectation. Then,

E(Xi) =
r∑

j=1

pjej = Ip = p

94 2 Probability

where pj are the components of the vector p and I is the identity matrix. Then,
because this is the same for any Xi , we have

E(Nn) = np

For the covariance of Nn, we need to compute the following:

Cov(Nn) = E

(
NnN�n

)
− E(Nn)E(Nn)

�

For the first term on the right, we have

E

(
NnN�n

)
= E

⎛

⎝(

n∑

i=1

Xi)(

n∑

j=1

X�j)

⎞

⎠

and for i = j , we have

E(XiX
�
i) = diag(p)

and for i
= j , we have

E(XiX
�
j) = pp�

Note that this term has elements on the diagonal. Then, combining the above two
equations gives the following:

E(NnN�n) = ndiag(p)+ (n2 − n)pp�

Now, we can assemble the covariance matrix:

Cov(Nn) = ndiag(p)+ (n2 − n)pp� − n2pp� = ndiag(p)− npp�

Specifically, the off-diagonal terms are npipj and the diagonal terms are npi(1−pi).

2.6.3 Chi-Square Distribution

The χ2 distribution appears in many different contexts so it’s worth understanding.
Suppose we have n independent random variables Xi such that Xi ∼ N (0, 1). We

are interested in the following random variable R =
√∑

i X2
i . The joint probability

density of Xi is the following:

2.6 Useful Distributions 95

fX(X) = e− 1
2

∑
i X2

i

(2π)
n
2

where the X represents a vector of Xi random variables. You can think of R as
the radius of an n-dimensional sphere. The volume of this sphere is given by the
following formula:

Vn(R) = π
n
2

Γ (n
2 + 1)

Rn

To reduce the amount of notation we define,

A := π
n
2

Γ (n
2 + 1)

The differential of this volume is the following:

dVn(R) = nARn−1dR

In terms of the Xi coordinates, the probability (as always) integrates out to one.

∫
fX(X)dVn(X) = 1

In terms of R, the change of variable provides

∫
fX(R)nARn−1dR

Thus,

fR(R) := fX(R) = nARn−1 e− 1
2 R2

(2π)
n
2

But we are interested in the distribution Y = R2. Using the same technique again,

∫
fR(R)dR =

∫
fR(
√

Y)
dY

2
√

Y

Finally,

fY (Y) := nAY
n−1

2
e− 1

2 Y

(2π)
n
2

1

2
√

Y

96 2 Probability

Table 2.1 Diagnosis table Mild infection Strong infection No infection Total

128 136 420 684

Then, finally substituting back in A gives the χ2 distribution with n degrees of
freedom:

fY (Y) = n
π

n
2

Γ (n
2 + 1)

Y n/2−1 e− 1
2 Y

(2π)
n
2

1

2
= 2− n

2−1n

Γ
(

n
2 + 1

)e−Y/2Y
n
2−1

with corresponding mean and variance

Y = n, V(Y) = 2n

Example Hypothesis testing is a common application of the χ2 distribution.
Consider Table 2.1, which tabulates the infection status of a certain population. The
hypothesis is that these data are distributed according to the multinomial distribution
with the following rates for each group, p1 = 1/4 (mild infection), p2 = 1/4 (strong
infection), and p3 = 1/2 (no infection). Suppose ni is the count of persons in the
ith column and

∑
i ni = n = 684. Let k denote the number of columns. Then, in

order to apply the central limit theorem, we want to sum the ni random variables, but
these all sum to n, a constant, which prohibits using the theorem. Instead, suppose
we sum the ni variables up to k − 1 terms. Then,

z =
k−1∑

i=1

ni

is asymptotically normally distributed by the theorem with mean E(z) =∑k−1
i=1 npi .

Using our previous results and notation for multinomial random variables, we can
write this as

z = [1�k−1, 0]Nn

where 1k−1 is a vector of all ones of length k − 1 and Nn ∈ R
k . With this notation,

we have

E(z) = n[1�k−1, 0]p =
k−1∑

i=1

npi = n(1− pk)

We can get the variance of z using the same method,

V(z) = [1�k−1, 0]Cov(Nn)[1�k−1, 0]�

2.6 Useful Distributions 97

which gives

V(z) = [1�k−1, 0](ndiag(p)− npp�)[1�k−1, 0]�

The variance is then

V(z) = n(1− pk)pk

With the mean and variance established, we can subtract the hypothesized mean for
each column under the hypothesis and create the transformed variable,

z′ =
k−1∑

i=1

ni − npi√
n(1− pk)pk

∼ N (0, 1)

by the central limit theorem. Likewise,

k−1∑

i=1

(ni − npi)
2

n(1− pk)pk

∼ χ2
k−1

With all that established, we can test if the data in the table follows the
hypothesized multinomial distribution.

>>> from scipy import stats
>>> p1 = p2 = 1/4
>>> p3, n = 1/2, 684
>>> v = n*p3*(1-p3)
>>> z = (128-n*p1)**2/v + (136-n*p2)**2/v
>>> degrees_freedom = 2
>>> 1-stats.chi2(degrees_freedom).cdf(z)
0.00012486166748693073

This value is very low and suggests that the hypothesized multinomial distribution
is not a good one for this data. Note that this approximation only works when n is
large in comparison to the number of columns in the table or when there are few
columns but a large number of counts in each entry of the table. The latter case
arises because each table entry converges to a normally distribution. The z statistic
we computed above is known more generally as the Pearson chi-square test statistic.

2.6.4 Poisson and Exponential Distributions

The Poisson distribution for a random variable X represents a number of outcomes
occurring in a given time interval (t).

98 2 Probability

p(x; λt) = e−λt (λt)x

x!
The Poisson distribution is closely related to the binomial distribution, b(k; n, p)

where p is small and n is large. That is, when there is a low-probability event but
many trials, n. Recall that the binomial distribution is the following:

b(k; n, p) =
(

n

k

)
pk(1− p)n−k

for k = 0 and taking the logarithm of both sides, we obtain

log b(0; n, p) = (1− p)n =
(

1− λ

n

)n

Then, the Taylor expansion of this gives the following:

log b(0; n, p) ≈ −λ− λ2

2n
− · · ·

For large n, this results in

b(0; n, p) ≈ e−λ

A similar argument for k leads to the Poisson distribution. Conveniently, we have
E(X) = V(X) = λ. For example, suppose that the average number of vehicles
passing under a tollgate per hour is 3. Then, the probability that six vehicles pass
under the gate in a given hour is p(x = 6; λt = 3) = 81

30e3 ≈ 0.05.
The Poisson distribution is available from the scipy.stats module. The

following code computes the last result:

>>> from scipy.stats import poisson
>>> x = poisson(3)
>>> print(x.pmf(6))
0.05040940672246224

The Poisson distribution is important for applications involving reliability and
queueing and is closely related to the exponential distribution in this case. The
Poisson distribution is used to compute the probability of specific numbers of events
during a particular time period. In many cases, the time period (X) itself is the
random variable. For example, we might be interested in understanding the time
X between arrivals of vehicles at a checkpoint. With the Poisson distribution, the
probability of no events occurring in the span of time up to time t is given by the
following:

p(0; λt) = e−λt

2.6 Useful Distributions 99

Now, suppose X is the time to the first event. The probability that the length of time
until the first event will exceed x is given by the following:

P(X > x) = e−λx

Then, the cumulative distribution function is given by the following:

P(0 ≤ X ≤ x) = FX(x) = 1− e−λx

Taking the derivative gives the exponential distribution:

fX(x) = λe−λx

where E(X) = 1/λ and V(X) = 1
λ2 . For example, suppose we want to know

the probability of a certain component lasting beyond T = 10 years, where T is
modeled as a an exponential random variable with 1/λ = 5 years. Then, we have
1− FX(10) = e−2 ≈ 0.135.

The exponential distribution is available in the scipy.stats module. The
following code computes the result of the example above. Note that the parameters
are described in slightly different terms as above, as described in the corresponding
documentation for expon.

>>> from scipy.stats import expon
>>> x = expon(0,5) # create random variable object
>>> print(1 - x.cdf(10))
0.1353352832366127

Connection Between Poisson and Multinomial Distributions Suppose we
observe a sample of K independent Poisson random variables with t = 1:

Xi ∼ Poisson(μi)

The total count of Poisson events

XT =
K∑

i=1

Xi

is another random variable. By properties of the Poisson distribution, XT ∼
Poisson(

∑n
i=1 μi). Consider the following conditional probability:

P (X1 = x1, · · · , XK = xK |XT = n) = P (X1 = x1, · · · , XK = xK ∧XT = n)

P (XT = n)

= Πi exp(−μi)μ
xi

i /xi !
exp(−∑K

i=1 μi)(
∑K

i=1 μi)n/n!

=
(

n!
Πixi !

) K∏

i=1

p
xi

i

100 2 Probability

where pi = μi/(
∑K

i=j μi). This is the multinomial distribution with parameters
pi , so this means that the set of independent Poisson distributed random variables
conditioned on a fixed sum is multinomially distributed.

2.6.5 Gamma Distribution

We have previously discussed how the exponential distribution can be created
from the Poisson events. The exponential distribution has the memoryless property,
namely,

P(T > t0 + t |T > t0) = P(T > t)

For example, given T as the random variable representing the time until failure,
this means that a component that has survived up through t0 has the same failure
probability of lasting t units beyond that point. To derive this result, it is easier to
compute the complementary event:

P(t0 < T < t0 + t |T > t0) = P(t0 < T < t0 + t) = e−λt
(
eλt − 1

)

Then, one minus this result shows the memoryless property, which, unrealistically,
does not account for wear over the first t hours. The gamma distribution can remedy
this.

Recall that the exponential distribution describes the time until the occurrence
of a Poisson event. The random variable X for the time until a specified number of
Poisson events (α) is described by the gamma distribution. Thus, the exponential
distribution is a special case of the gamma distribution when α = 1 and β = 1/λ.
For x > 0, the gamma distribution is the following:

f (x;α, β) = β−αxα−1e
− x

β

Γ (α)

and f (x;α, β) = 0 when x ≤ 0 and Γ is the gamma function. For example, suppose
that vehicles passing under a gate follows a Poisson process, with an average of five
vehicles passing per hour, what is the probability that at most an hour will have
passed before two vehicles pass the gate? If X is time in hours that transpires before
the two vehicles pass, then we have β = 1/5 and α = 2. The required probability
P(X < 1) ≈ 0.96. The gamma distribution has E(X) = αβ and V(X) = αβ2.

The following code computes the result of the example above. Note that the
parameters are described in slightly different terms as above, as described in the
corresponding documentation for gamma.

>>> from scipy.stats import gamma
>>> x = gamma(2,scale=1/5) # create random variable object
>>> print(x.cdf(1))
0.9595723180054873

2.6 Useful Distributions 101

2.6.6 Beta Distribution

The uniform distribution assigns a single constant value over the unit interval. The
beta distribution generalizes this to a function over the unit interval. The probability
density function of the beta distribution is the following:

f (x) = 1

β(a, b)
xa−1(1− x)b−1

where

β(a, b) =
∫ 1

0
xa−1(1− x)b−1dx

Note that a = b = 1 yields the uniform distribution. In the special case for integers
where 0 ≤ k ≤ n, we have

∫ 1

0

(
n

k

)
xk(1− x)n−kdx = 1

n+ 1

To get this result without calculus, we can use an experiment by Thomas Bayes.
Start with n white balls and one gray ball. Uniformly at random, toss them onto
the unit interval. Let X be the number of white balls to the left of the gray ball.
Thus, X ∈ {0, 1, . . . , n}. To compute P(X = k), we condition on the probability of
the position B of the gray ball, which is uniformly distributed over the unit interval
(f (p) = 1). Thus, we have

P(X = k) =
∫ 1

0
P(X = k|B = p)f (p)dp =

∫ 1

0

(
n

k

)
pk(1− p)n−kdp

Now, consider a slight variation on the experiment, where we start with n+ 1 white
balls, and again toss them onto the unit interval and then later choose one ball at
random to color gray. Using the same X as before, by symmetry, because any one
of the n+ 1 balls is equally likely to be chosen, we have

P(X = k) = 1

n+ 1

for k ∈ {0, 1, . . . , n}. Both situations describe the same problem, because it does
not matter whether we paint the ball before or after we throw it. Setting the last two
equations equal gives the desired result without using calculus.

∫ 1

0

(
n

k

)
pk(1− p)n−kdp = 1

n+ 1

102 2 Probability

The following code shows where to get the beta distribution from the scipy
module.

>>> from scipy.stats import beta
>>> x = beta(1,1) # create random variable object
>>> print(x.cdf(1))
1.0

Given this experiment, it is not too surprising that there is an intimate relationship
between the beta distribution and binomial random variables. Suppose we want to
estimate the probability of heads for coin-tosses using Bayesian inference. Using
this approach, all unknown quantities are treated as random variables. In this
case, the probability of heads (p) is the unknown quantity that requires a prior
distribution. Let us choose the beta distribution as the prior distribution, Beta(a, b).
Then, conditioning on p, we have

X|p ∼ binom(n, p)

which says that X is conditionally distributed as a binomial. To get the posterior
probability, f (p|X = k), we have the following Bayes rule:

f (p|X = k) = P(X = k|p)f (p)

P(X = k)

with the corresponding denominator:

P(X = k) =
∫ 1

0

(
n

k

)
pk(1− p)n−kf (p)dp

Note that unlike with our experiment before, f (p) is not constant. Without
substituting in all of the distributions, we observe that the posterior is a function
of p which means that everything else that is not a function of p is a constant. This
gives

f (p|X = k) ∝ pa+k−1(1− p)b+n−k−1

which is another beta distribution with parameters a + k, b + n − k. This special
relationship in which the beta prior probability distribution on p on data that
are conditionally binomial distributed yields the posterior that is also binomial
distributed is known as conjugacy. We say that the beta distribution is the conjugate
prior of the binomial distribution.

2.6 Useful Distributions 103

2.6.7 Dirichlet-Multinomial Distribution

The Dirichlet-multinomial distribution is a discrete multivariate distribution, also
known as the multivariate Polya distribution. The Dirichlet-multinomial distribution
arises in situations, where the usual multinomial distribution is inadequate. For
example, if a multinomial distribution is used to model the number of balls that
land in a set of bins and the multinomial parameter vector (i.e., probabilities of balls
landing in particular bins) varies from trial to trial, then the Dirichlet distribution can
be used to include variation in those probabilities, because the Dirichlet distribution
is defined over a simplex that describes the multinomial parameter vector.

Specifically, suppose we have K rival events, each with probability μk . Then, the
probability of the vector μ, given that each event has been observed αk times, is the
following:

P(μ|α) ∝
K∏

k=1

μ
αk−1
k

where 0 ≤ μk ≤ 1 and
∑

μk = 1. Note that this last sum is a constraint that makes
the distribution K−1 dimensional. The normalizing constant for this distribution is
the multinomial beta function:

Beta(α) =
∏K

k=1 Γ (αk)

Γ (
∑K

k=1 αk)

The elements of the α vector are also called concentration parameters. As before,
the Dirichlet distribution can be found in the scipy.stats module:

>>> from scipy.stats import dirichlet
>>> d = dirichlet([1,1,1])
>>> d.rvs(3) # get samples from distribution
array([[0.33938968, 0.62186914, 0.03874119],

[0.21593733, 0.54123298, 0.24282969],
[0.37483713, 0.07830673, 0.54685613]])

Note that each of the rows sums to one. This is because of the
∑

μk = 1 constraint.
We can generate more samples and plot this using Axes3D in Matplotlib in Fig. 2.9.

Notice that the generated samples lie on the triangular simplex shown. The
corners of the triangle correspond to each of the components in the μ. Using, a
nonuniform α = [2, 3, 4] vector, we can visualize the probability density function
using the pdf method on the dirichlet object as shown in Fig. 2.10. By
choosing the α ∈ R

3, the peak of the density function can be moved within the
corresponding triangular simplex.

We have seen that the beta distribution generalizes the uniform distribution
over the unit interval. Likewise, the Dirichlet distribution generalizes the beta
distribution over a vector with components in the unit interval. Recall that the

104 2 Probability

Fig. 2.9 One thousand
samples from a Dirichlet
distribution with α = [1, 1, 1]

Fig. 2.10 Probability density
function for the Dirichlet
distribution with α = [2, 3, 4]

binomial distribution and the beta distribution form a conjugate pair for Bayesian
inference, because with p ∼ Beta,

X|p ∼ Binomial(n, p)

That is, the data conditioned on p is binomial distributed. Analogously, the
multinomial distribution and the Dirichlet distribution also form such a conjugate
pair with multinomial parameter p ∼ Dirichlet:

X|p ∼ multinomial(n, p)

For this reason, the Dirichlet-multinomial distribution is popular in machine
learning text processing, because nonzero probabilities can be assigned to words
absent in specific documents, which helps generalization performance.

2.6 Useful Distributions 105

2.6.8 Negative Binomial Distribution

The negative binomial distribution is used to characterize the number of trials until
a specified number of failures (r) occur. For example, suppose 1 indicates failure
and 0 indicates success. Then, the negative binomial distribution characterizes the
probability of n=2 successes with four (k=4) prior failures, with the sequence
terminating in a success (e.g., 001001) with success probability P(1) = 1/3. For
the negative binomial distribution, P(k) = 80

729 .
The probability mass function is the following:

P(k) =
(

n+ k − 1

n− 1

)
pn(1− p)k

which describes the distribution of k failures in a sequence of trials with p success
probability before n successes occur. The mean and variance of this distribution is
the following:

E(k) = n(1− p)

p

V(k) = n(1− p)

p2

The following simulation shows an example sequence generated for the negative
binomial distribution.

>>> import random
>>> n=2 # num of failures
>>> p=1/3 # prob of failure
>>> nc = 0 # counter
>>> seq= []
>>> while nc< n:
... v,=random.choices([0,1],[1-p,p])
... seq.append(v)
... nc += (v == 1)
...
>>> seq,len(seq)
([1, 0, 0, 0, 1], 5)

Keep in mind that the negative binomial distribution characterizes the family of such
sequences with the specified number of failures.

2.6.9 Negative Multinomial Distribution

The discrete negative multinomial distribution is an extension of the negative
binomial distribution to account for more than two possible outcomes. That is,
there are other alternatives whose respective probabilities sum to one less the failure

106 2 Probability

probability, pf = 1−∑n
k=1 pi . For example, a random sample from this distribution

with parameters n = 2 (number of observed failures) and with pa = 1
3 , pb = 1

2
means that the failure probability, pf = 1

6 . Thus, a sample from this distribution
like [2, 9] means that 2 of the a objects were observed in the sequence, 9 of the b

objects were observed, and there were two failure symbols (say, F) with one of them
at the end of the sequence.

The probability mass function is the following:

P(k) = (n)∑m
i=0 ki

pn
f

m∏

i=1

p
ki

i

ki !

where pf is the probability of failure and the other pi terms are the probabilities
of the other alternatives in the sequence. The (a)n notation is the rising factorial
function (e.g., a3 = a(a + 1)(a + 2)). The mean and variance of this distribution is
the following:

E(k) = n

pf

p

V(k) = n

p2
f

ppT + n

pf

diag(p)

The following simulation shows the sequences generated for the negative multino-
mial distribution.

>>> import random
>>> from collections import Counter
>>> n=2 # num of failure items
>>> p=[1/3,1/2] # prob of other non-failure items
>>> items = ['a','b','F'] # F marks failure item
>>> nc = 0 # counter
>>> seq= []
>>> while nc< n:
... v,=random.choices(items,p+[1-sum(p)])
... seq.append(v)
... nc += (v == 'F')
...
>>> c=Counter(seq)
>>> print(c)
Counter({'a': 5, 'b': 2, 'F': 2})

The values of the Counter dictionary above are the k vectors in the probability
mass function for the negative multinomial distribution. Importantly, these are not
the probabilities of a particular sequence but of a family of sequences with the
same corresponding Counter values. The probability mass function implemented
in Python is the following:

2.7 Information Entropy 107

>>> from scipy.special import factorial
>>> import numpy as np
>>> def negative_multinom_pdf(p,n):
... assert len(n) == len(p)
... term = [i**j for i,j in zip(p,n)]
... num=np.prod(term)*(1-sum(p))*factorial(sum(n))
... den = np.prod([factorial(i) for i in n])
... return num/den
...

Evaluating this with the prior Counter result,

>>> negative_multinom_pdf([1/3,1/2],[c['a'],c['b']])
0.00360082304526749

2.7 Information Entropy

We are in a position to discuss information entropy. This will give us a powerful per-
spective on how information passes between experiments and will prove important
in certain machine learning algorithms.

There used to be a TV game show where the host would hide a prize behind one
of three doors and the contestant would have to pick one of the doors. However,
before opening the door of the contestant’s choice, the host would open one of the
other doors and ask the contestant if she wanted to change her selection. This is
the classic Monty Hall problem. The question is should the contestant stay with
her original choice or switch after seeing what the host has revealed? From the
information theory perspective, does the information environment change when the
host reveals what is behind one of the doors? The important detail here is that the
host never opens the door with the prize behind it, regardless of the contestant’s
choice. That is, the host knows where the prize is, but he does not reveal that
information directly to the contestant. This is the fundamental problem information
theory addresses—how to aggregate and reason about partial information. We need
a concept of information that can accommodate this kind of question.

2.7.1 Information Theory Concepts

The Shannon information content of an outcome x is defined as

h(x) = log2
1

P(x)

where P(x) is the probability of x. The entropy of the ensemble X is defined to be
the Shannon information content of

108 2 Probability

H(X) =
∑

x

P (x) log2
1

P(x)

It is no accident that the entropy has this functional form as the expectation of h(x).
It leads to a deep and powerful theory of information.

To get some intuition about what information entropy means, consider a sequence
of three-bit numbers, where each individual bit is equally likely. Thus, the individual
information content of a single bit is h(x) = log2(2) = 1. The units of entropy are
bits, so this says that information content of a single bit is one bit. Because the
three-bit number has elements that are mutually independent and equally likely, the
information entropy of the three-bit number is h(X) = 23 × log2(2

3)/8 = 3. Thus,
the basic idea of information content at least makes sense at this level.

A better way to interpret this question is as follows: how much information would
I have to provide in order to uniquely encode an arbitrary three-bit number? In this
case, you would have to answer three questions: Is the first bit zero or one? Is the
second bit zero or one? Is the third bit zero or one? Answering these questions
uniquely specifies the unknown three-bit number. Because the bits are mutually
independent, knowing the state of any of the bits does not inform the remainder.

Next, let us consider a situation that lacks this mutual independence. Suppose in
a group of nine otherwise identical balls there is a heavier one. Furthermore, we also
have a measuring scale that indicates whether one side is heavier, lighter, or equal
to the other. How could we identify the heavier ball? At the outset, the information
content, which measures the uncertainty of the situation, is log2(9), because one
of the nine balls is heavier. Figure 2.11 shows one strategy. We could arbitrarily
select out one of the balls (shown by the square), leaving the remaining eight to be
balanced. The thick, black horizontal line indicates the scale. The items below and
above this line indicate the counterbalanced sides of the scale.

If we get lucky, the scale will report that the group of four walls on either side
of the balance are equal in weight. This means that the ball that was omitted is the
heavier one. This is indicated by the hashed left-pointing arrow. In this case, all
the uncertainty has evaporated, and the informational value of that one weighing is
equal to log2(9). In other words, the scale has reduced the uncertainty to zero (i.e.,
found the heavy ball). On the other hand, the scale could report that the upper group
of four balls is heavier (black, upward-pointing arrow) or lighter (gray, downward-
pointing arrow). In this case, we cannot isolate the heavier ball until we perform all
of the indicated weighings, moving from left to right. Specifically, the four balls on
the heavier side have to be split by a subsequent weighing into two balls and then
to one ball before the heavy ball can be identified. Thus, this process takes three
weighings. The first one has information content log2(9/8), the next has log2(4),
and the final one has log2(2). Adding all these up sums to log2(9). Thus, whether or
not the heavier ball is isolated in the first weighing, the strategy consumes log2(9)

bits, as it must, to find the heavy ball.
However, this is not the only strategy. Figure 2.12 shows another. In this

approach, the nine balls are split up into three groups of three balls apiece. Two

2.7 Information Entropy 109

Fig. 2.11 One heavy ball is hidden among eight identical balls. By weighing groups sequentially,
we can determine the heavy ball

Fig. 2.12 For this strategy, the balls are broken up into three groups of equal size and subsequently
weighed

groups are weighed. If they are of equal weight, then this means the heavier ball is in
the group that was left out (dashed arrow). Then, this group is split into two groups,
with one element left out. If the two balls on the scale weigh the same, then it means
the excluded one is the heavy one. Otherwise, it is one of the balls on the scale. The
same process follows if one of the initially weighed groups is heavier (black upward-
facing arrow) or lighter (gray lower-facing arrow). As before the information content
of the situation is log2(9). The first weighing reduces the uncertainty of the situation
by log2(3) and the subsequent weighing reduces it by another log2(3). As before,
these sum to log2(9), but here we only need two weighings, whereas the first strategy
in Fig. 2.11 takes an average of 1/9+3∗8/9 ≈ 2.78 weighings, which is more than
two from the second strategy in Fig. 2.12.

Why does the second strategy use fewer weighings? To reduce weighings, we
need each weighing to adjudicate equally probable situations as many times as

110 2 Probability

possible. Choosing one of the nine balls at the outset (i.e, first strategy in Fig. 2.11)
does not do this because the probability of selecting the correct ball is 1/9. This
does not create a equiprobable situation in the process. The second strategy leaves
an equally probable situation at every stage (see Fig. 2.12), so it extracts the most
information out of each weighing as possible. Thus, the information content tells us
how many bits of information have to be resolved using any strategy (i.e., log2(9)

in this example). It also illuminates how to efficiently remove uncertainty, namely,
by adjudicating equiprobable situations as many times as possible.

2.7.2 Properties of Information Entropy

Now that we have the flavor of the concepts, consider the following properties of
the information entropy:

H(X) ≥ 0

with equality if and only if P(x) = 1 for exactly one x. Intuitively, this means that
when just one of the items in the ensemble is known absolutely (i.e., with P(x) =
1), the uncertainty collapses to zero. Also note that entropy is maximized when
P is uniformly distributed across the elements of the ensemble. This is illustrated
in Fig. 2.13 for the case of two outcomes. In other words, information entropy is
maximized when the two conflicting alternatives are equally probable. This is the
mathematical reason why using the scale in the last example to adjudicate equally
probable situations was so useful for abbreviating the weighing process.

Most importantly, the concept of entropy extends jointly as follows:

Fig. 2.13 The information entropy is maximized when p = 1/2

2.7 Information Entropy 111

H(X, Y) =
∑

x,y

P (x, y) log2
1

P(x, y)

If and only if X and Y are independent, entropy becomes additive:

H(X, Y) = H(X)+H(Y)

2.7.3 Kullback-Leibler Divergence

Notions of information entropy lead to notions of distance between probabil-
ity distributions that will become important for machine learning methods. The
Kullback-Leibler divergence between two probability distributions P and Q that
are defined over the same set is defined as

DKL(P,Q) =
∑

x

P (x) log2
P(x)

Q(x)

Note that DKL(P,Q) ≥ 0 with equality if and only if P = Q. Sometimes
the Kullback-Leibler divergence is called the Kullback-Leibler distance, but it
is not formally a distance metric, because it is asymmetrical in P and Q. The
Kullback-Leibler divergence defines a relative entropy as the loss of informa-
tion if P is modeled in terms of Q. There is an intuitive way to interpret
the Kullback-Leibler divergence and understand its lack of symmetry. Suppose
we have a set of messages to transmit, each with a corresponding probability
{(x1, P (x1)), (x2, P (x2)), . . . , (xn, P (xn))}. Based on what we know about infor-
mation entropy, it makes sense to encode the length of the message by log2

1
p(x)

bits. This parsimonious strategy means that more frequent messages are encoded
with fewer bits. Thus, we can rewrite the entropy of the situation as before:

H(X) =
∑

k

P (xk) log2
1

P(xk)

Now, suppose we want to transmit the same set of messages, but with a different
set of probability weights, {(x1,Q(x1)), (x2,Q(x2)), . . . , (xn,Q(xn))}. In this
situation, we can define the cross-entropy as

Hq(X) =
∑

k

P (xk) log2
1

Q(xk)

Note that only the purported length of the encoded message has changed, not the
probability of that message. The difference between these two is the Kullback-
Leibler divergence:

112 2 Probability

DKL(P,Q) = Hq(X)−H(X) =
∑

x

P (x) log2
P(x)

Q(x)

In this light, the Kullback-Leibler divergence is the average difference in the
encoded lengths of the same set of messages under two different probability
regimes. This should help explain the lack of symmetry of the Kullback-Leibler
divergence up because left to themselves, P and Q would provide the optimal-
length encodings separately, but there can be no necessary symmetry in how each
regime would rate the informational value of each message (Q(xi) versus P(xi)).
Given that each encoding is optimal length in its own regime means that it must
therefore be at least suboptimal in another, thus giving rise to the Kullback-Leibler
divergence. In the case where the encoding length of all messages remains the same
for the two regimes, then the Kullback-Leibler divergence is zero.2

2.7.4 Conditional Entropy and Mutual Information

Given the joint density p(X, Y), the conditional entropy is defined as the following:

H(Y |X) = −EX,Y log p(Y |X)

This leads to the following intuitive (chain rule) relationship:

H(X, Y) = H(X)+H(Y |X)

That is, the joint information in X, Y is the sum of the information in X plus the
new information in Y , conditioned on X. The conditioning on X is important,
because we already have all of the information about X from H(X), so we just
need the additional nonredundant information from Y . To derive this result, note that
p(X, Y) = p(Y |X)p(X), so that taking the following expectation of the logarithm,
we obtain the following:

E log p(X, Y) =E log p(Y |X)+ E log p(X)

H(X, Y) =H(Y |X)+H(X)

Importantly, H(Y |X)
= H(X|Y) but H(X)−H(X|Y) = H(Y)−H(Y |X).

Mutual Information The Kullback-Leibler Divergence between p(X, Y) and
p(X)p(Y) is the mutual information:

2 The best, easy-to-understand presentation of this material is Chapter 4 of Mackay’s text [28].
Another good reference is Chapter 4 of [14].

2.7 Information Entropy 113

I (X;Y) = DKL(p(X, Y), p(X)p(Y))

=
∑

p(X, Y) log2
p(X, Y)

p(X)p(Y)

By writing out the conditional distributions, it is straightforward to show that

I (X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X)

where the last equality comes from symmetry. The mutual information represents
the reduction in the uncertainty of X, given the knowledge of Y . Because we have
H(X, Y) = H(X)+H(Y |X), we have

I (X;Y) = H(X)+H(Y)−H(X, Y)

Interestingly, taking Y = X gives the so-called self-information:

I (X;X) = H(X)

which is just the entropy of the random variable.

2.7.5 Cross-Entropy as Maximum Likelihood

Reconsidering maximum likelihood from our statistics chapter in more general
terms, we have

θML = arg max
θ

n∑

i=1

log pmodel(xi; θ)

where pmodel is the assumed underlying probability density function parameterized
by θ for the xi data elements. Dividing the above summation by n does not change
the derived optimal values, but it allows us to rewrite this using the empirical density
function for x as the following:

θML = arg max
θ

Ex∼p̂data(log pmodel(xi; θ))

Note that we have the distinction between pdata and p̂data, where the former is the
unknown distribution of the data and the latter is the estimated distribution of the
data we have on hand.

The cross-entropy can be written as the following:

DKL(P,Q) = EX∼P (log P(x))− EX∼P (log Q(x))

114 2 Probability

where X ∼ P means the random variable X has distribution P . Thus, we have

θML = arg max
θ

DKL(p̂data, pmodel)

That is, we can interpret maximum likelihood as the cross-entropy between the
pmodel and the p̂data distributions. The first term has nothing to do with the estimated
θ , so maximizing this is the same as minimizing the following:

Ex∼p̂data(log pmodel(xi; θ))

because information entropy is always nonnegative. The important interpretation is
that maximum likelihood is an attempt to choose θ model parameters that make the
empirical distribution of the data match the model distribution.

2.8 Moment Generating Functions

Generating moments usually involves integrals that are extremely difficult to
compute. Moment generating functions make this much, much easier. The moment
generating function is defined as

M(t) = E(exp(tX))

The first moment is the mean, which we can easily compute from M(t) as

dM(t)

dt
= d

dt
E(exp(tX)) = E

d

dt
(exp(tX))

= E(X exp(tX))

Now, we have to set t = 0 and we have the mean:

M(1)(0) = E(X)

continuing this derivative process again, we obtain the second moment as

M(2)(t) = E(X2 exp(tX))

M(2)(0) = E(X2)

With this in hand, we can easily compute the variance as

V(X) = E(X2)− E(X)2 = M(2)(0)−M(1)(0)2

2.8 Moment Generating Functions 115

Example Returning to our favorite binomial distribution, let us compute some
moments using Sympy.

>>> import sympy as S
>>> from sympy import stats
>>> p,t = S.symbols('p t',positive=True)
>>> x=stats.Binomial('x',10,p)
>>> mgf = stats.E(S.exp(t*x))

Now, let us compute the first moment (aka, mean) using the usual integration method
and using moment generating functions:

>>> print(S.simplify(stats.E(x)))
10*p
>>> print(S.simplify(S.diff(mgf,t).subs(t,0)))
10*p

Otherwise, we can compute this directly as follows:

>>> print(S.simplify(stats.moment(x,1))) # mean
10*p
>>> print(S.simplify(stats.moment(x,2))) # 2nd moment
10*p*(9*p + 1)

In general, the moment generating function for the binomial distribution is the
following:

MX(t) = (p(et − 1)+ 1)n

A key aspect of moment generating functions is that they are unique identifiers
of probability distributions. By the uniqueness theorem, given two random variables
X and Y , if their respective moment generating functions are equal, then the
corresponding probability distribution functions are equal.

Example Let us use the uniqueness theorem to consider the following problem.
Suppose we know that the probability distribution of X given U = p is binomial
with parameters n and p. For example, suppose X represents the number of heads
in n coin flips, given the probability of heads is p. We want to find the unconditional
distribution of X. Writing out the moment generating function as the following:

E(etX|U = p) = (pet + 1− p)n

Because U is uniform over the unit interval, we can integrate this part out

E(etX) =
∫ 1

0
(pet + 1− p)ndp

= 1

n+ 1

et(n+1)−1

et − 1

= 1

n+ 1
(1+ et + e2t + e3t + . . .+ ent)

116 2 Probability

Thus, the moment generating function of X corresponds to that of a random variable
that is equally likely to be any of the values 0, 1, . . . , n. This is another way of
saying that the distribution of X is discrete uniform over {0, 1, . . . , n}. Concretely,
suppose we have a box of coins whose individual probability of heads is unknown
and that we dump the box on the floor, spilling all of the coins. If we then count the
number of coins facing heads-up, that distribution is uniform.

Moment generating functions are useful for deriving distributions of sums of
independent random variables. Suppose X1 and X2 are independent and Y = X1 +
X2. Then, the moment generating function of Y follows from the properties of the
expectation:

MY (t) = E(etY) = E(etX1+tX2)

= E(etX1etX2) = E(etX1)E(etX2)

= MX1(t)MX2(t)

Example Suppose we have two normally distributed random variables, X1 ∼
N (μ1, σ1) and X2 ∼ N (μ2, σ2) with Y = X1 + X2. We can save some tedium
by exploring this in Sympy:

>>> S.var('x:2',real=True)
(x0, x1)
>>> S.var('mu:2',real=True)
(mu0, mu1)
>>> S.var('sigma:2',positive=True)
(sigma0, sigma1)
>>> S.var('t',positive=True)
t
>>> x0=stats.Normal(x0,mu0,sigma0)
>>> x1=stats.Normal(x1,mu1,sigma1)

Programming Tip
The S.var function defines the variable and injects it into the global
namespace. This is sheer laziness. It is more expressive to define variables
explicitly as in x = S.symbols(’x’). Also notice that we used the Greek
names for the mu and sigma variables. This will come in handy later when
we want to render the equations in the Jupyter notebook which understands
how to typeset these symbols in . The var(’x:2’) creates two symbols,
x0 and x1. Using the colon this way makes it easy to generate array-like
sequences of symbols.

2.9 Monte Carlo Sampling Methods 117

In the next block, we compute the moment generating functions:

>>> mgf0=S.simplify(stats.E(S.exp(t*x0)))
>>> mgf1=S.simplify(stats.E(S.exp(t*x1)))
>>> mgfY=S.simplify(mgf0*mgf1)

The moment generating functions of a normally distributed random variable is the
following:

eμ0t+ σ2
0 t2

2

Note the coefficients of t . To show that Y is normally distributed, we want to match
the moment generating function of Y to this format. The following is the form of
the moment generating function of Y :

MY (t) = e
t
2

(
2μ0+2μ1+σ 2

0 t+σ 2
1 t

)

We can extract the exponent using Sympy and collect on the t variable using the
following code:

>>> S.collect(S.expand(S.log(mgfY)),t)
t**2*(sigma0**2/2 + sigma1**2/2) + t*(mu0 + mu1)

Thus, by the uniqueness theorem, Y is normally distributed with μY = μ0+μ1 and
σ 2

Y = σ 2
0 + σ 2

1 .

Programming Tip
When using the Jupyter notebook, you can do S.init_printing to
get the mathematical typesetting to work in the browser. Otherwise, if
you want to keep the raw expression and to selectively render to ,
then you can from IPython.display import Math, and then use
Math(S.latex(expr)) to see the typeset version of the expression.

2.9 Monte Carlo Sampling Methods

So far, we have studied analytical ways to transform random variables and how to
augment these methods using Python. In spite of all this, we frequently must resort
to purely numerical methods to solve real-world problems. Hopefully, now that
we have seen the deeper theory, these numerical methods will feel more concrete.
Suppose we want to generate samples of a given density, f (x), given we already
can generate samples from a uniform distribution, U [0, 1]. How do we know a
random sample v comes from the f (x) distribution? One approach is to look at
how a histogram of samples of v approximates f (x). Specifically,

118 2 Probability

Fig. 2.14 The histogram
approximates the target
probability density

P(v ∈ NΔ(x)) = f (x)Δx (2.13)

which says that the probability that a sample is in some NΔ neighborhood of x

is approximately f (x)Δx. Figure 2.14 shows the target probability density function
f (x) and a histogram that approximates it. The histogram is generated from samples
v. The hatched rectangle in the center illustrates Eq. 2.9. The area of this rectangle
is approximately f (x)Δx where x = 0, in this case. The width of the rectangle is
NΔ(x) The quality of the approximation may be clear visually, but to know that v

samples are characterized by f (x), we need the statement of Eq. 2.9, which says that
the proportion of samples v that fill the hatched rectangle is approximately equal to
f (x)Δx.

Now that we know how to evaluate samples v that are characterized by the
density f (x), let us consider how to create these samples for both discrete and
continuous random variables.

2.9.1 Inverse CDF Method for Discrete Variables

Suppose we want to generate samples from a fair six-sided die. Our workhouse
uniform random variable is defined continuously over the unit interval, and the fair
six-sided die is discrete. We must first create a mapping between the continuous
random variable u and the discrete outcomes of the die. This mapping is shown in
Fig. 2.15, where the unit interval is broken up into segments, each of length 1/6.
Each individual segment is assigned to one of the die outcomes. For example, if
u ∈ [1/6, 2/6), then the outcome for the die is 2. Because the die is fair, all segments
on the unit interval are the same length. Thus, our new random variable v is derived
from u by this assignment.

For example, for v = 2, we have

P(v = 2) = P(u ∈ [1/6, 2/6)) = 1/6

2.9 Monte Carlo Sampling Methods 119

Fig. 2.15 A uniform distribution random variable on the unit interval is assigned to the six
outcomes of a fair die using these segments

where, in the language of Eq. 2.9, f (x) = 1 (uniform distribution), Δx = 1/6, and
NΔ(2) = [1/6, 2/6). Naturally, this pattern holds for all the other die outcomes
in {1, 2, 3, .., 6}. Let us consider a quick simulation to make this concrete. The
following code generates uniform random samples and stacks them in a Pandas
dataframe.

>>> import pandas as pd
>>> import numpy as np
>>> from pandas import DataFrame
>>> u= np.random.rand(100)
>>> df = DataFrame(data=u,columns=['u'])

The next block uses pd.cut to map the individual samples to the set {1, 2, . . . , 6}
labeled v.

>>> labels = [1,2,3,4,5,6]
>>> df['v']=pd.cut(df.u,np.linspace(0,1,7),
... include_lowest=True,labels=labels)

The v column contains the samples drawn from the fair die.

>>> df.head()
u v

0 0.356225 3
1 0.466557 3
2 0.776817 5
3 0.836790 6
4 0.037928 1

The following is a count of the number of samples in each group. There should be
roughly the same number of samples in each group because the die is fair.

>>> df.groupby('v').count()
u

v
1 17
2 15
3 18
4 20
5 14
6 16

So far, so good. We now have a way to simulate a fair die from a uniformly
distributed random variable.

To extend this to unfair die, we need only make some small adjustments to this
code. For example, suppose that we want an unfair die so that P(1) = P(2) =

120 2 Probability

P(3) = 1/12 and P(4) = P(5) = P(6) = 1/4. The only change we have to make is
with pd.cut as follows:

>>> df['v']=pd.cut(df.u,[0,1/12,2/12,3/12,2/4,3/4,1],
... include_lowest=True,labels=labels)
>>> df.groupby('v').count()/df.shape[0]

u
v
1 0.10
2 0.07
3 0.05
4 0.28
5 0.29
6 0.21

where now these are the individual probabilities of each digit. You can take more
than 100 samples to get a clearer view of the individual probabilities, but the
mechanism for generating them is the same. The method is called the inverse CDF 3

method, because the CDF (namely,[0,1/12,2/12,3/12,2/4,3/4,1]) in
the last example has been inverted (using the pd.cut method) to generate the
samples. The inversion is easier to see for continuous variables, which we consider
next.

2.9.2 Inverse CDF Method for Continuous Variables

The method above applies to continuous random variables, but now we have to
squeeze the intervals down to individual points. In the example above, our inverse
function was a piecewise function that operated on uniform random samples. In this
case, the piecewise function collapses to a continuous inverse function. We want to
generate random samples v for an invertible CDF. Consider u ∼ U [0, 1] and the
following:

Pu(Fv(x) < u < Fv(x +Δx)) = Fv(x +Δx)− Fv(x)

=
∫ x+Δx

x

f (v)dv ≈ f (x)Δx

which says that the probability that the sample u is contained in the interval
[Fv(x), Fv(x+Δx)] is approximately equal to fv(x)Δx. For invertible Fv , we have
the following:

Pu(x < F−1
v (u) < x +Δx) = Pu(Fv(x) < u < Fv(x +Δx))

= Fv(x +Δx)− Fv(x)

=
∫ x+Δx

x

fv(v)dv ≈ fv(x)Δx

3 Cumulative density function. Namely, F(x) = P(X < x).

2.9 Monte Carlo Sampling Methods 121

This means that v = F−1
v (u) is distributed according to fv(x), which is what we

want.
Let us try this to generate samples from the exponential distribution:

fα(x) = αe−αx

which has the following CDF:

F(x) = 1− e−αx

and corresponding inverse:

F−1(u) = 1

α
ln

1

(1− u)

Now, all we have to do is generate some uniformly distributed random samples and
then feed them into F−1.

>>> from numpy import array, log
>>> import scipy.stats
>>> alpha = 1. # distribution parameter
>>> nsamp = 1000 # num of samples
>>> # define uniform random variable
>>> u=scipy.stats.uniform(0,1)
>>> # define inverse function
>>> Finv=lambda u: 1/alpha*log(1/(1-u))
>>> # apply inverse function to samples
>>> v = array(list(map(Finv,u.rvs(nsamp))))

Now, we have the samples from the exponential distribution, but how do we
know the method is correct with samples distributed accordingly? Fortunately,
scipy.stats already has an exponential distribution, so we can check our work
against the reference using a probability plot (i.e., also known as a quantile-quantile
plot). The following code sets up the probability plot from scipy.stats.

fig,ax=subplots()
scipy.stats.probplot(v,(1,),dist='expon',plot=ax)

Note that we have to supply an axes object (ax) for it to draw on. The result is
Fig. 2.16. The more the samples line match the diagonal line, the more they match
the reference distribution (i.e., exponential distribution in this case). You may also
want to try dist=norm in the code above to see what happens when the normal
distribution is the reference distribution.

122 2 Probability

Fig. 2.16 The samples created using the inverse cdf method match the exponential reference
distribution

2.9.3 Rejection Method

In some cases, inverting the CDF may be impossible. The rejection method can
handle this situation. The idea is to pick two uniform random variables u1 ∼ U [a, b]
and u2 ∼ U [0, 1] so that

P

(
u1 ∈ NΔ(x)

∧
u2 <

f (u1)

M

)
≈ Δx

b − a

f (u1)

M

where we take x = u1 and f (x) < M . This is a two-step process. First, draw u1
and u2. Second, feed u1 into f (x), and if u2 < f (u1)/M , then u1 is a valid sample
for f (x). Thus, u1 is the proposed sample from f that may or may not be rejected,
depending on u2. The only job of the M constant is to scale down the f (x), so that
the u2 variable can span the range. The efficiency of this method is the probability
of accepting u1, which comes from integrating out the above approximation:

∫
f (x)

M(b − a)
dx = 1

M(b − a)

∫
f (x)dx = 1

M(b − a)

This means that we don’t want an unnecessarily large M , because that makes it more
likely that samples will be discarded.

2.9 Monte Carlo Sampling Methods 123

Fig. 2.17 The rejection method generate samples in the histogram that nicely match the target
distribution. Unfortunately, the efficiency is not so good

Let us try this method for a density that does not have a continuous inverse.4

f (x) = exp

(
− (x − 1)2

2x

)
(x + 1)/12

where x > 0. The following code implements the rejection plan.

>>> x = np.linspace(0.001,15,100)
>>> f= lambda x: np.exp(-(x-1)**2/2./x)*(x+1)/12.
>>> fx = f(x)
>>> M=0.3 # scale factor
>>> u1 = np.random.rand(10000)*15 # uniform random samples

scaled out
>>> u2 = np.random.rand(10000) # uniform random samples
>>> idx,= np.where(u2<=f(u1)/M) # rejection criterion
>>> v = u1[idx]

Figure 2.17 shows a histogram of the so-generated samples that nicely fits the
probability density function. The title in the figure shows the efficiency (the number
of rejected samples), which is poor. It means that we threw away most of the
proposed samples. Thus, even though there is nothing conceptually wrong with this
result, the low efficiency must be fixed, as a practical matter. Figure 2.18 shows
where the proposed samples were rejected. Samples under the curve were retained
(i.e., u2 <

f (u1)
M

), but the vast majority of the samples are outside this umbrella.
The rejection method uses u1 to select along the domain of f (x), and the other

u2 uniform random variable decides whether to accept or not. One idea would be to
choose u1 so that x values are coincidentally those that are near the peak of f (x),
instead of uniformly anywhere in the domain, especially near the tails, which are

4 Note that this example density does not exactly integrate out to one like a probability density
function should, but the normalization constant for this is distracting for our purposes here.

124 2 Probability

Fig. 2.18 The proposed samples under the curve were accepted and the others were not. This
shows the majority of samples were rejected

low probability anyway. Now, the trick is to find a new density function g(x) to
sample from that has a similar concentration of probability density. One way to
find such a g(x) is to familiarize oneself with the probability density functions that
have adjustable parameters and fast random sample generators already (e.g., see
scipy.stats). For densities with bounded support, the family of β densities is a
good place to start.

To be explicit, what we want is u1 ∼ g(x) so that, returning to our earlier
argument,

P

(
u1 ∈ NΔ(x)

∧
u2 <

f (u1)

M

)
≈ g(x)Δx

f (u1)

M

but this is not what we need here. The problem is with the second part of the logical∧
conjunction, u <

f (u1)
M

. We need to put a condition there that will give us
something proportional to f (x). Let us define the following:

h(x) = f (x)

g(x)
(2.14)

with corresponding maximum on the domain as hmax and then go back and construct
the second part of the clause as

P

(
u1 ∈ NΔ(x)

∧
u2 <

h(u1)

hmax

)
≈ g(x)Δx

h(u1)

hmax
= f (x)/hmax

Recall that satisfying this criterion means that u1 = x. As before, we can estimate
the probability of acceptance of the u1 as 1/hmax.

Now, how to construct the g(x) function in the denominator of Eq. 2.9.3? Here’s
where familarity with some standard probability densities pays off. For this case, we
choose the χ2 distribution. The following plots the g(x) and f (x) (left plot) and the

2.9 Monte Carlo Sampling Methods 125

Fig. 2.19 The plot on the right shows h(x) = f (x)/g(x) and the one on the left shows f (x) and
g(x) separately

Fig. 2.20 Using the updated method, the histogram matches the target probability density function
with high efficiency

corresponding h(x) = f (x)/g(x) (right plot). Note that g(x) and f (x) have peaks
that almost coincide, which is what we are looking for (Fig. 2.19).

>>> ch=scipy.stats.chi2(4) # chi-squared
>>> h = lambda x: f(x)/ch.pdf(x) # h-function

Now, let us generate some samples from this χ2 distribution with the rejection
method.

>>> hmax=h(x).max()
>>> u1 = ch.rvs(5000) # samples from chi-square

distribution
>>> u2 = np.random.rand(5000)# uniform random samples
>>> idx = (u2 <= h(u1)/hmax) # rejection criterion
>>> v = u1[idx] # keep these only

Using the χ2 distribution with the rejection method results in throwing away
less than 10% of the generated samples compared with our prior example, where
we threw out at least 80%. This is dramatically more efficient! Figure 2.20 shows
that the histogram and the probability density function match. For completeness,
Fig. 2.21 shows the samples with the corresponding threshold h(x)/hmax that was
used to select them.

126 2 Probability

Fig. 2.21 Fewer proposed points were rejected in this case, which means better efficiency

2.10 Sampling Importance Resampling

An alternative to the rejection method that does not involve rejecting samples
or coming up with M bounds or bounding functions is the sampling importance
resampling (SIR) method. Choose a tractable g probability density function, and
draw a n samples from it, {xi}ni=1. Our objective is to derive samples f . Next,
compute the following:

qi = wi∑
wi

where

wi = f (xi)

g(xi)

The qi defines a probability mass function whose samples approximate samples
from f . To see this, consider

P(X ≤ a) =
n∑

i=1

qiI(−∞,a](xi)

=
∑n

i=1 wiI(−∞,a](xi)∑n
i=1 wi

=
1
n

∑n
i=1

f (xi)
g(xi)

I(−∞,a](xi)

1
n

∑n
i=1

f (xi)
g(xi)

2.10 Sampling Importance Resampling 127

Fig. 2.22 Two densities to generate samples using SIR

Because the xi samples are generated from the g probability distribution, the
numerator is approximately

Eg

(
f (x)

g(x)

)
=

∫ a

−∞
f (x)dx

which gives, because the denominator is just for normalization, the following:

P(X ≤ a) =
∫ a

−∞
f (x)dx

which shows that the samples generated this way are f -distributed. Note more
samples have to be generated from this probability mass function the further away
g is from the desired function f . Further, because there is no rejection step, we no
longer have the issue of efficiency.

For example, let us choose a beta distribution for g, as in the following code:

>>> g = scipy.stats.beta(2,3)

This distribution does not bear a strong resemblance to our desired f function from
last section. as shown in Fig. 2.22 below. Note that we scaled the domain of the beta
distribution to get it close to the support of f .

In the next block, we sample from the g distribution and compute the weights as
described above. The final step is to sample from this new probability mass function.
The resulting normalized histogram is shown compared to the target f probability
density function in Fig. 2.23.

>>> xi = g.rvs(500)
>>> w = np.array([f(i*15)/g.pdf(i) for i in xi])
>>> fsamples=np.random.choice(xi*15,5000,p = w/w.sum())

In this section, we investigated how to generate random samples from a given
distribution, beit discrete or continuous. For the continuous case, the key issue was

128 2 Probability

Fig. 2.23 Histogram and probability density function using SIR

whether or not the cumulative density function had a continuous inverse. If not,
we had to turn to the rejection method and find an appropriate related density that
we could easily sample from to use as part of a rejection threshold. Finding such a
function is an art, but many families of probability densities have been studied over
the years that already have fast random number generators.

The rejection method has many complicated extensions that involve careful par-
titioning of the domains and lots of special methods for corner cases. Nonetheless,
all of these advanced techniques are still variations on the same fundamental theme
we illustrated here [12], [18].

2.11 Useful Inequalities

In practice, few quantities can be analytically calculated. Some knowledge of
bounding inequalities helps find the ballpark for potential solutions. This sections
discusses three key inequalities that are important for probability, statistics, and
machine learning.

2.11.1 Markov’s Inequality

Let X be a nonnegative random variable and suppose that E(X) < ∞. Then, for
any t > 0,

P(X > t) ≤ E(X)

t

This is a foundational inequality that is used as a stepping stone to other inequalities.
It is easy to prove. Because X > 0, we have the following:

2.11 Useful Inequalities 129

Fig. 2.24 The χ2
1 density has

much of its weight on the left,
which is excluded in the
establishment of the Markov
inequality

Fig. 2.25 The shaded area
shows the region between the
curves on either side of the
Markov inequality

E(X) =
∫ ∞

0
xfx(x)dx =

∫ t

0
xfx(x)dx

︸ ︷︷ ︸
omit this

+
∫ ∞

t

xfx(x)dx

≥
∫ ∞

t

xfx(x)dx ≥ t

∫ ∞

t

fx(x)dx = tP(X > t)

The step that establishes the inequality is the part where the
∫ t

0 xfx(x)dx is omitted.
For a particular fx(x) that may be concentrated around the [0, t] interval, this
could be a lot to throw out. For that reason, the Markov inequality is considered
a loose inequality, meaning that there is a substantial gap between both sides of
the inequality. For example, as shown in Fig. 2.24, the χ2 distribution has a lot of
its mass on the left, which would be omitted in the Markov inequality. Figure 2.25
shows the two curves established by the Markov inequality. The gray-shaded region
is the gap between the two terms and indicates that looseness of the bound (fatter-
shaded region) for this case.

130 2 Probability

2.11.2 Chebyshev’s Inequality

Chebyshev’s inequality drops out directly from the Markov inequality. Let μ =
E(X) and σ 2 = V(X). Then, we have

P(|X − μ| ≥ t) ≤ σ 2

t2

Note that if we normalize so that Z = (X − μ)/σ , we have P(|Z| ≥ k) ≤ 1/k2.
In particular, P(|Z| ≥ 2) ≤ 1/4. We can illustrate this inequality using Sympy
statistics module:

>>> import sympy
>>> import sympy.stats as ss
>>> t=sympy.symbols('t')
>>> x=ss.ChiSquared('x',1)

To get the left side of the Chebyshev inequality, we have to write this out as the
following conditional probability:

>>> r = ss.P((x-1) > t,x>1)+ss.P(-(x-1) > t,x<1)

We could take the above expression, which is a function of t and attempt to compute
the integral, but that would take a very long time (the expression is very long and
complicated, which is why we did not print it out above). In this situation, it’s
better to use the built-in cumulative density function as in the following (after some
rearrangement of the terms):

>>> w=(1-ss.cdf(x)(t+1))+ss.cdf(x)(1-t)

To plot this, we can evaluate at a variety of t values by using the .subs substitution
method, but it is more convenient to use the lambdify method to convert the
expression to a function.

>>> fw=sympy.lambdify(t,w)

Then, we can evaluate this function using something like

>>> [fw(i) for i in [0,1,2,3,4,5]]
[1.0,0.157299207050285,0.08326451666355039,0.045500263896358
42,0.0253473186774682,0.014305878435429631]

to produce the following Fig. 2.26.

Programming Tip
Note that we cannot use vectorized inputs for the lambdify function
because it contains embedded functions that are only available in Sympy.
Otherwise, we could have used lambdify(t,fw,numpy) to specify the
corresponding functions in Numpy to use for the expression.

2.11 Useful Inequalities 131

Fig. 2.26 The shaded area shows the region between the curves on either side of the Chebyshev
inequality

2.11.3 Hoeffding’s Inequality

Hoeffding’s inequality is similar, but less loose, than Markov’s inequality. Let
X1, . . . , Xn be iid observations such that E(Xi) = μ and a ≤ Xi ≤ b. Then,
for any ε > 0, we have

P(|Xn − μ| ≥ ε) ≤ 2 exp(−2nε2/(b − a)2)

where Xn = 1
n

∑n
i Xi . Note that we further assume that the individual random

variables are bounded.

Corollary If X1, . . . , Xn are independent with P(a ≤ Xi ≤ b) = 1 and all with
E(Xi) = μ. Then, we have

|Xn − μ| ≤
√

c

2n
log

2

δ

where c = (b − a)2. We will see this inequality again in the machine learning
chapter. Figure 2.27 shows the Markov and Hoeffding bounds for the case of ten
identically and uniformly distributed random variables, Xi ∼ U [0, 1]. The solid
line shows P(|Xn−1/2| > ε). Note that the Hoeffding inequality is tighter than the
Markov inequality and that both of them merge when ε gets big enough.

Proof of Hoeffding’s Inequality We will need the following lemma to prove
Hoeffding’s inequality.

132 2 Probability

Fig. 2.27 This shows the
Markov and Hoeffding
bounds for the case of ten
identically and uniformly
distributed random variables

Lemma Let X be a random variable with E(X) = 0 and a ≤ X ≤ b. Then, for any
s > 0, we have the following:

E(esX) ≤ es2(b−a)2/8 (2.15)

Because X is contained in the closed interval [a, b], we can write it as a convex
combination of the endpoints of the interval.

X = α1a + α2b

where α1 + α2 = 1. Solving for the αi terms, we have

α1 =x − a

b − a

α2 =b − x

b − a

From Jensen’s inequality, for a convex functions f , we know that

f
(∑

αixi

)
≤

∑
αif (xi)

Given the convexity of eX, we therefore have

esX ≤ α1e
sa + α2e

sb

With E(X) = 0, we can write the expectation of both sides

E(esX) ≤ E(α1)e
sa + E(α2)e

sb

with E(α1) = b
b−a

and E(α2) = −a
b−a

. Thus, we have

2.11 Useful Inequalities 133

E(esX) ≤ b

b − a
esa − a

b − a
esb

Using p := −a
b−a

, we can rewrite the following:

b

b − a
esa − a

b − a
esb = (1− p)esa + pesb =: eφ(u)

where

φ(u) = −pu+ log(1− p + peu)

and u = s(b − a). Note that φ(0) = φ′(0) = 0. Also, φ′′(0) = p(1 − p) ≤ 1/4.
Thus, the Taylor expansion of φ(u) ≈ u2

2 φ′′(t) ≤ u2

8 for t ∈ [0, u]�.
To prove Hoeffding’s inequality, we start with Markov’s inequality:

P(X ≥ ε) ≤ E(X)

ε

Then, given s > 0, we have the following,

P(X ≥ ε) = P(esX ≥ esε) ≤ E(esX)

esε

We can write the one-sided Hoeffding inequality as the following:

P(Xn − μ ≥ ε) ≤ e−sε
E(exp(

s

n

n∑

i=1

(Xi − E(Xi))))

= e−sε
n∏

i=1

E(e
s
n
(Xi−E(Xi)))

≤ e−sε
n∏

i=1

e
s2

n2 (b−a)2/8

= e−sεe
s2
n

(b−a)2/8

Now, we want to pick s > 0 to minimize this upper bound. Then, with s = 4nε
(b−a)2

P(Xn − μ ≥ ε) ≤ e
− 2nε2

(b−a)2

The other side of the inequality follows similarly to obtain Hoeffding’s inequality
�.

134 2 Probability

2.11.4 Jensen’s Inequality

If f is a convex function with random variable v, then

E(f (v)) ≥ f (E(v))

The proof of this is straightforward. Define L(v) = av + b with a, b ∈ R. Choose
a and b so that L(E(v)) = f (E(v)), which makes L tangent to f at E(v). By the
convexity of f , we have f (v) ≥ L(v). We can take the expectation of both sides of
this:

E(f (v)) ≥E(L(v))

=E(av + b)

=aE(v)+ b

=L(E(v))

=f (E(v))

equality holds when f is linear. For a concave function f , the sense of the inequality
is reversed.

Chapter 3
Statistics

3.1 Introduction

Statistics starts with the data and then, by careful argument, draws conclusions about
the underlying probability structure that generated the data. In this way, statistics
is the inverse problem to probability, where we started with the probability density
function and then reasoned about transformations of that function. Statistics is about
developing a model about the data that has both explanatory and predictive powers.
That model must emphasize aspects of the data that are important to our motives.
Any model must necessarily be a simplification of reality, and there are always many
models to choose from, so a big part of statistics is choosing well. For example,
here’s a practical problem:

• You have already taken the entrance exam twice, and you want to know if it’s
worth it to take it a third time in the hopes that your score will improve. Because
only the last score is reported, you are worried that you may do worse the third
time. How do you decide whether or not to take the test again?

For this problem, we have relative few data points, and we want to choose a
statistical model that has good predictive power as opposed to explanatory power.
We need to quantify the quality of our prediction, so we can make the decision to
take the exam again or not. Statistics provides structured methods to address our
concerns.

Statistics, as an inverse problem, is seldom well-posed, meaning that there is
not only one model for each dataset. When we start with just the data, we lack the
underlying probability density that we discussed in the last chapter. In the following,
we consider some of the most widely used statistical tools both conceptually and as
implemented in Python modules. This chapter provides many numerical examples
painstakingly detailed in math and in code.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3_3

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04648-3_3&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3_3

136 3 Statistics

3.2 Python Modules for Statistics

Python has powerful third-party modules for both numerical and symbolic statistical
analysis.

3.2.1 Scipy Statistics Module

Although there are some basic statistical functions in Numpy (e.g., mean, std,
median), the real repository for statistical functions is in scipy.stats. There
are over 80 continuous probability distributions implemented in scipy.stats
and an additional set of more than 10 discrete distributions, along with many other
supplementary statistical functions.

To get started with scipy.stats, you have to load the module and create an
object that has the distribution you’re interested in. For example,

>>> import scipy.stats # might take awhile
>>> n = scipy.stats.norm(0,10) # create normal distrib

The n variable is an object that represents a normally distributed random variable
with mean zero and standard deviation, σ = 10. Note that the more general term
for these two parameters is location and scale, respectively. Now that we have this
defined, we can compute mean, as in the following:

>>> n.mean() # we already know this from its definition!
0.0

We can also compute higher-order moments as

>>> n.moment(4)
30000.0

The main public methods for continuous random variables are:

• rvs: random variates
• pdf: probability density function
• cdf: cumulative distribution function
• sf: survival Function (1-CDF)
• ppf: percent point function (Inverse of CDF)
• isf: inverse survival function (Inverse of SF)
• stats: mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
• moment: non-central moments of the distribution

For example, we can compute the value of the pdf at a specific point

>>> n.pdf(0)
0.03989422804014327

3.2 Python Modules for Statistics 137

or the cdf for the same random variable.

>>> n.cdf(0)
0.5

You can also create samples from this distribution as in the following:

>>> n.rvs(10)
array([15.3244518 , -9.4087413 , 6.94760096, 0.61627683,

-3.92073633,
6.9753351 , 7.95314387, -3.18127815, 5.69087949,
0.84197674])

Many common statistical tests are already built-in. For example, Shapiro-Wilks tests
the null hypothesis that the data were drawn from a normal distribution,1 as in the
following:

>>> scipy.stats.shapiro(n.rvs(100))
ShapiroResult(statistic=0.9749656915664673,

pvalue=0.05362436920404434)

The second value in the tuple is the p-value (discussed below).

3.2.2 Sympy Statistics Module

Sympy has its own much smaller, but still extremely useful, statistics module that
enables symbolic manipulation of statistical quantities. For example,

>>> from sympy import stats, sqrt, exp, pi
>>> X = stats.Normal('x',0,10) # create normal random variable

We can obtain the probability density function as

>>> from sympy.abc import x
>>> stats.density(X)(x)
sqrt(2)*exp(-x**2/200)/(20*sqrt(pi))
>>> sqrt(2)*exp(-x**2/200)/(20*sqrt(pi))
sqrt(2)*exp(-x**2/200)/(20*sqrt(pi))

and we can evaluate the cumulative density function as the following:

>>> stats.cdf(X)(0)
1/2

Note that you can evaluate this numerically by using the evalf() method on the
output. Sympy provides intuitive ways to consider standard probability questions by
using the stats.P function, as in the following:

1 We will explain null hypothesis and the rest of it later.

138 3 Statistics

>>> stats.P(X>0) # prob X >0?
1/2

There is also a corresponding expectation function stats.E you can use to com-
pute complicated expectations using all of Sympy’s powerful built-in integration
machinery. For example, we can compute E(

√|X|) in the following:

>>> stats.E(abs(X)**(1/2)).evalf()
2.59995815363879

Unfortunately, there is very limited support for multivariate distributions at the time
of this writing.

3.2.3 Other Python Modules for Statistics

There are many other important Python modules for statistical work. Two important
modules are Seaborn and Statsmodels. As we discussed earlier, Seaborn is library
built on top of Matplotlib for very detailed and expressive statistical visualizations,
ideally suited for exploratory data analysis. Statsmodels is designed to complement
Scipy with descriptive statistics, estimation, and inference for a large variety of
statistical models. Statsmodels includes (among many others) generalized linear
models, robust linear models, and methods for timeseries analysis, with an emphasis
on econometric data and problems. Both these modules are well supported and very
well documented and designed to integrate tightly into Matplotlib, Numpy, Scipy,
and the rest of the scientific Python stack. Because the focus of this text is more
conceptual as opposed to domain-specific, I have chosen not to emphasize either of
these, notwithstanding how powerful each is.

3.3 Types of Convergence

The absence of the probability density for the raw data means that we have to argue
about sequences of random variables in a structured way. From basic calculus, recall
the following convergence notation:

xn → xo

for the real number sequence xn. This means that for any given ε > 0, no matter
how small, we can exhibit a m such that for any n > m, we have

|xn − xo| < ε

Intuitively, this means that once we get past m in the sequence, we get to within ε of
xo. This means that nothing surprising happens in the sequence on the long march

3.3 Types of Convergence 139

to infinity, which gives a sense of uniformity to the convergence process. When we
argue about convergence for statistics, we want to have the same look-and-feel as
we have here, but because we are now talking about random variables, we need
other concepts. There are two moving parts for random variables. Recall from our
probability chapter that random variables are really functions that map sets into the
real line: X : Ω �→ R. Thus, one part is the behavior of the subsets of Ω in terms
of convergence. The other part is how the sequences of real values of the random
variable behave in convergence.

3.3.1 Almost Sure Convergence

The most straightforward extension into statistics of this convergence concept is
almost sure convergence, which is also known as convergence with probability one

P{for each ε > 0 there is nε > 0 such that for all n > nε, |Xn −X| < ε} = 1
(3.1)

Note the similarity to the prior notion of convergence for real numbers. When this

happens, we write this as Xn
as→ X. In this context, almost sure convergence means

that if we take any particular ω ∈ Ω and then look at the sequence of real numbers
that are produced by each of the random variables,

(X1(ω),X2(ω),X3(ω), . . . , Xn(ω))

then this sequence is just a real-valued sequence in the sense of our convergence
on the real line and converges in the same way. If we collect all of the ω for which
this is true and the measure of that collection equals one, then we have almost sure
convergence of the random variable. Notice how the convergence idea applies to
both sides of the random variable: the (domain) Ω side and the (co-domain) real-
valued side.

An equivalent and more compact way of writing this is the following:

P

(
ω ∈ Ω : lim

n→∞Xn(ω) = X(ω)
)
= 1

Example To get some feel for the mechanics of this kind of convergence, consider
the following sequence of uniformly distributed random variables on the unit
interval, Xn ∼ U [0, 1]. Now, consider taking the maximum of the set of n such
variables as the following:

X(n) = max{X1, . . . , Xn}

140 3 Statistics

In other words, we scan through a list of n uniformly distributed random variables
and pick out the maximum over the set. Intuitively, we should expect that X(n)

should somehow converge to one. Let us see if we can make this happen almost
surely. We want to exhibit m so that the following is true:

P(|1−X(n)|) < ε when n > m

Because X(n) < 1, we can simplify this as the following:

1− P(X(n) < 1− ε) = 1− (1− ε)m −→
m→∞ 1

Thus, this sequence converges almost surely. We can work this example out in
Python using Scipy to make it concrete with the following code:

>>> from scipy import stats
>>> u = stats.uniform()
>>> xn = lambda i: u.rvs(i).max()
>>> xn(5)
0.966717838482003

Thus, the xn variable is the same as the X(n) random variable in our example.
Figure 3.1 shows a plot of these random variables for different values of n and
multiple realizations of each random variable (multiple gray lines). The dark
horizontal line is at the 0.95 level. For this example, suppose we are interested in
the convergence of the random variable to within 0.05 of one so we are interested
in the region between one and 0.95. Thus, in our Eq. 3.1, ε = 0.05. Now, we have
to find nε to get the almost sure convergence. From Fig. 3.1, as soon as we get past
n > 60, we can see that all the realizations start to fit in the region above the 0.95
horizontal line. However, there are still some cases where a particular realization

Fig. 3.1 Almost sure convergence example for multiple realizations of the limiting sequence

3.3 Types of Convergence 141

will skip below this line. To get the probability guarantee of the definition satisfied,
we have to make sure that for whatever nε we settle on, the probability of this
kind of noncompliant behavior should be extremely small, say, less than 1%. Now,
we can compute the following to estimate this probability for n = 60 over 1000
realizations:

>>> import numpy as np
>>> np.mean([xn(60) > 0.95 for i in range(1000)])
0.961

So, the probability of having a noncompliant case beyond n > 60 is pretty good, but
not still what we are after (0.99). We can solve for the m in our analytic proof of
convergence by plugging in our factors for ε and our desired probability constraint

>>> np.log(1-.99)/np.log(.95)
89.78113496070968

Now, rounding this up and re-visiting the same estimate as above,

>>> import numpy as np
>>> np.mean([xn(90) > 0.95 for i in range(1000)])
0.995

which is the result we were looking for. The important thing to understand from
this example is that we had to choose convergence criteria for both the values of the
random variable (0.95) and for the probability of achieving that level (0.99) in
order to compute the m. Informally speaking, almost sure convergence means that
not only will any particular Xn be close to X for large n, but whole sequence of
values will remain close to X with high probability.

3.3.2 Convergence in Probability

A weaker kind of convergence is convergence in probability which means the
following:

P(| Xn −X |> ε)→ 0

as n→∞ for each ε > 0.
This is notationally shown as Xn

P→ X. For example, let us consider the
following sequence of random variables where Xn = 1/2n with probability pn

and where Xn = c with probability 1 − pn. Then, we have Xn
P→ 0 as pn → 1.

This is allowable under this notion of convergence because a diminishing amount
of non-converging behavior (namely, when Xn = c) is possible. Note that we have
said nothing about how pn → 1.

Example To get some sense of the mechanics of this kind of convergence, let
{X1, X2, X3, . . .} be the indicators of the corresponding intervals:

142 3 Statistics

(0, 1], (0, 1
2], (1

2 , 1], (0, 1
3], (1

3 , 2
3], (2

3 , 1]

In other words, just keep splitting the unit interval into equal chunks and enumerate
those chunks with Xi . Because each Xi is an indicator function, it takes only two
values: zero and one. For example, for X2 = 1 if 0 < x ≤ 1/2 and zero otherwise.
Note that x ∼ U(0, 1). This means that P(X2 = 1) = 1/2. Now, we want to
compute the sequence of P(Xn > ε) for each n for some ε ∈ (0, 1). For X1, we
have P(X1 > ε) = 1 because we already chose ε in the interval covered by X1.
For X2, we have P(X2 > ε) = 1/2; for X3, we have P(X3 > ε) = 1/3; and
so on. This produces the following sequence: (1, 1

2 , 1
2 , 1

3 , 1
3 , . . .). The limit of the

sequence is zero so that Xn
P→ 0. However, for every x ∈ (0, 1), the sequence

of function values of Xn(x) consists of infinitely many zeros and ones (remember
that indicator functions can evaluate to either zero or one). Thus, the set of x

for which the sequence Xn(x) converges is empty because the sequence bounces
between zero and one. This means that almost sure convergence fails here even
though we have convergence in probability. The key distinction is that convergence
in probability considers the convergence of a sequence of probabilities, whereas
almost sure convergence is concerned about the sequence of values of the random
variables over sets of events that fill out the underlying probability space entirely
(i.e., with probability one).

This is a good example so let us see if we can make it concrete with some Python.
The following is a function to compute the different subintervals:

>>> make_interval= lambda n: np.array(list(zip(range(n+1),
... range(1,n+1))))/n

Now, we can use this function to create a Numpy array of intervals, as in the
example:

>>> intervals= np.vstack([make_interval(i) for i in range(1,5)])
>>> print(intervals)
[[0. 1.]
[0. 0.5]
[0.5 1.]
[0. 0.33333333]
[0.33333333 0.66666667]
[0.66666667 1.]
[0. 0.25]
[0.25 0.5]
[0.5 0.75]
[0.75 1.]]

The following function computes the bit string in our example: {X1, X2, . . . , Xn},
>>> bits= lambda u:((intervals[:,0] < u) &

(u<=intervals[:,1])).astype(int)
>>> bits(u.rvs())
array([1, 0, 1, 0, 0, 1, 0, 0, 0, 1])

Now that we have the individual bit strings, to show convergence we want to show
that the probability of each entry goes to a limit. For example, using ten realizations,

3.3 Types of Convergence 143

Fig. 3.2 Convergence in probability for the random variable sequence

>>> print(np.vstack([bits(u.rvs()) for i in range(10)]))
[[1 1 0 1 0 0 0 1 0 0]
[1 1 0 1 0 0 0 1 0 0]
[1 1 0 0 1 0 0 1 0 0]
[1 0 1 0 0 1 0 0 1 0]
[1 0 1 0 0 1 0 0 1 0]
[1 1 0 0 1 0 0 1 0 0]
[1 1 0 1 0 0 1 0 0 0]
[1 1 0 0 1 0 0 1 0 0]
[1 1 0 0 1 0 0 1 0 0]
[1 1 0 1 0 0 1 0 0 0]]

We want the limiting probability of a one in each column to convert to a limit. We
can estimate this over 1000 realizations using the following code:

>>> np.vstack([bits(u.rvs()) for i in range(1000)]).mean(axis=0)
array([1. , 0.493, 0.507, 0.325, 0.34 , 0.335, 0.253, 0.24 , 0.248,

0.259])

Note that these entries should approach the (1, 1
2 , 1

2 , 1
3 , 1

3 , . . .) sequence we found
earlier. Figure 3.2 shows the convergence of these probabilities for a large number
of intervals. Eventually, the probability shown on this graph will decrease to zero
with large enough n. Again, note that the individual sequences of zeros and ones
do not converge, but the probabilities of these sequences converge. This is the key
difference between almost sure convergence and convergence in probability. Thus,
convergence in probability does not imply almost sure convergence. Conversely,
almost sure convergence does imply convergence in probability.

The following notation should help emphasize the difference between almost
sure convergence and convergence in probability, respectively:

144 3 Statistics

P
(

lim
n→∞ |Xn −X| < ε

)
= 1(almost sure convergence)

lim
n→∞P(|Xn −X| < ε) = 1(convergence in probability)

3.3.3 Convergence in Distribution

So far, we have been discussing convergence in terms of sequences of probabilities
or sequences of values taken by the random variable. By contrast, the next major
kind of convergence is convergence in distribution where

lim
n→∞Fn(t) = F(t)

for all t for which F is continuous and F is the cumulative density function. For this
case, convergence is only concerned with the cumulative density function, written

as Xn
d→ X.

Example To develop some intuition about this kind of convergence, consider a
sequence of Xn Bernoulli random variables. Furthermore, suppose these are all

really just the same random variable X. Trivially, Xn
d→ X. Now, suppose we define

Y = 1−X, which means that Y has the same distribution as X. Thus, Xn
d→ Y . By

contrast, because |Xn−Y | = 1 for all n, we can never have almost sure convergence
or convergence in probability. Thus, convergence in distribution is the weakest of
the three forms of convergence in the sense that it is implied by the other two, but
implies neither of the two.

As another striking example, we could have Yn
d→ Z where Z ∼ N (0, 1), but

we could also have Yn
d→ −Z. That is, Yn could converge in distribution to either

Z or −Z. This may seem ambiguous, but this kind of convergence is practically
very useful because it allows for complicated distributions to be approximated by
simpler distributions.

3.3.4 Limit Theorems

Now that we have all of these notions of convergence, we can apply them to different
situations and see what kinds of claims we can construct from them.

Weak Law of Large Numbers Let {X1, X2, . . . , Xn} be an iid (independent,
identically distributed) set of random variables with finite mean E(Xk) = μ and

finite variance. Let Xn = 1
n

∑
k Xk . Then, we have Xn

P→ μ. This result is

3.3 Types of Convergence 145

important because we frequently estimate parameters using an averaging process
of some kind. This basically justifies this in terms of convergence in probability.
Informally, this means that the distribution of Xn becomes concentrated around μ

as n→∞.

Strong Law of Large Numbers Let {X1, X2, . . . , } be an iid set of random
variables. Suppose that μ = E|Xi | < ∞, then Xn

as→ μ. The reason this is called
the strong law is that it implies the weak law because almost sure convergence
implies convergence in probability. The so-called Kolmogorov criterion gives the
convergence of the following:

∑

k

σ 2
k

k2

as a sufficient condition for concluding that the strong law applies to the sequence
{Xk} with corresponding {σ 2

k }.
As an example, consider an infinite sequence of Bernoulli trials with Xi = 1 if

the ith trial is successful. Then Xn is the relative frequency of successes in n trials,
and E(Xi) is the probability p of success on the ith trial. With all that established,
the weak law says only that if we consider a sufficiently large and fixed n, the
probability that the relative frequency will converge to p is guaranteed. The strong
law states that if we regard the observation of all the infinite {Xi} as one performance
of the experiment, the relative frequency of successes will almost surely converge
to p. The difference between the strong law and the weak law of large numbers is
subtle and rarely arises in practical applications of probability theory.

Central Limit Theorem Although the weak law of large numbers tells us that the
distribution of Xn becomes concentrated around μ, it does not tell us what that
distribution is. The central limit theorem (CLT) says that Xn has a distribution that
is approximately normal with mean μ and variance σ 2/n. Amazingly, nothing is
assumed about the distribution of Xi , except the existence of the mean and variance.
The following is the central limit theorem: Let {X1, X2, . . . , Xn} be iid with mean
μ and variance σ 2. Then,

Zn =
√

n(Xn − μ)

σ

P−→ Z ∼ N (0, 1)

The loose interpretation of the central limit theorem is that Xn can be legitimately
approximated by a normal distribution. Because we are talking about convergence
in probability here, claims about probability are legitimized, not claims about the
random variable itself. Intuitively, this shows that normality arises from sums of
small, independent disturbances of finite variance. Technically, the finite variance
assumption is essential for normality. Although the Central Limit Theorem provides
a powerful, general approximation, the quality of the approximation for a particular
situation still depends on the original (usually unknown) distribution.

146 3 Statistics

3.4 Estimation Using Maximum Likelihood

The estimation problem starts with the desire to infer something meaningful from
data. For parametric estimation, the strategy is to postulate a model for the data and
then use the data to fit model parameters. This leads to two fundamental questions:
where to get the model and how to estimate the parameters. The first question is
best answered by the maxim: all models are wrong; some are useful. In other words,
choosing a model depends as much on the application as on the model itself. Think
about models as building different telescopes to view the sky. No one would ever
claim that the telescope generates the sky! It is same with data models. Models give
us multiple perspectives on the data that themselves are proxies for some deeper
underlying phenomenon.

Some categories of data may be more commonly studied using certain types of
models, but this is usually very domain-specific and ultimately depends on the aims
of the analysis. In some cases, there may be strong physical reasons behind choosing
a model. For example, one could postulate that the model is linear with some noise
as in the following:

Y = aX + ε

which basically says that you, as the experimenter, dial in some value for X and
then read off something directly proportional to X as the measurement, Y , plus
some additive noise that you attribute to jitter in the apparatus. Then, the next step
is to estimate the parameter a in the model, given some postulated claim about
the nature of ε. How to compute the model parameters depends on the particular
methodology. The two broad rubrics are parametric and nonparametric estimation.
In the former, we assume we know the density function of the data and then try to
derive the embedded parameters for it. In the latter, we claim only to know that the
density function is a member of a broad class of density functions and then use the
data to characterize a member of that class. Broadly speaking, the former consumes
less data than the latter, because there are fewer unknowns to compute from the data.

Let us concentrate on parametric estimation for now. The tradition is to denote
the unknown parameter to be estimated as θ which is a member of a large space of
alternates, Θ . To judge between potential θ values, we need an objective function,
known as a risk function, L(θ, θ̂), where θ̂ (x) is an estimate for the unknown θ that
is derived from the available data x. The most common and useful risk function is
the squared error loss:

L(θ, θ̂) = (θ − θ̂)2

Although neat, this is not practical because we need to know the unknown θ to
compute it. The other problem is because θ̂ is a function of the observed data, it is
also a random variable with its own probability density function. This leads to the
notion of the expected risk function:

3.4 Estimation Using Maximum Likelihood 147

R(θ, θ̂) = Eθ (L(θ, θ̂)) =
∫

L(θ, θ̂(x))f (x; θ)dx

In other words, given a fixed θ , integrate over the probability density function of the
data, f (x), to compute the risk. Plugging in for the squared error loss, we compute
the mean squared error:

Eθ (θ − θ̂)2 =
∫

(θ − θ̂)2f (x; θ)dx

This has the important factorization into the bias

bias = Eθ (θ̂)− θ

with the corresponding variance, Vθ (θ̂), as in the following mean squared error
(MSE):

Eθ (θ − θ̂)2 = bias2 + Vθ (θ̂)

This is an important trade-off that we will return to repeatedly. The idea is the bias is
nonzero when the estimator θ̂ , integrated over all possible data, f (x), does not equal
the underlying target parameter θ . In some sense, the estimator misses the target, no
matter how much data is used. When the bias equals zero, the estimated is unbiased.
For fixed MSE, low bias implies high variance and vice versa. This trade-off was
once not emphasized, and instead much attention was paid to the smallest variance
of unbiased estimators (see Cramer-Rao bounds). In practice, understanding and
exploiting the trade-off between bias and variance and reducing the MSE is more
important.

With all this set up, we can now ask how bad can bad get by examining minimax
risk

Rmmx = inf
θ̂

sup
θ

R(θ, θ̂)

where the inf is take over all estimators. Intuitively, this means if we found the
worst possible θ and swept over all possible parameter estimators θ̂ , and then took
the smallest possible risk we could find, we would have the minimax risk. Thus, an
estimator, θ̂mmx, is a minimax estimator if it achieves this feat:

sup
θ

R(θ, θ̂mmx) = inf
θ̂

sup
θ

R(θ, θ̂)

In other words, even in the face of the worst θ (i.e., the supθ), θ̂mmx still achieves the
minimax risk. There is a greater theory that revolves around minimax estimators of
various kinds, but this is far beyond our scope here. The main thing is that maximum
likelihood estimator is approximately minimax under certain technical, but easily

148 3 Statistics

satisfiable, conditions. Maximum likelihood is the subject of the next section. Let
us get started with the simplest application: coin flipping.

3.4.1 Setting Up the Coin Flipping Experiment

Suppose we have coin and want to estimate the probability of heads (p) for it.
We model the distribution of heads and tails as a Bernoulli distribution with the
following probability mass function:

φ(x) = px(1− p)(1−x)

where x is the outcome, 1 for heads and 0 for tails. Maximum likelihood is a
parametric method that requires the specification of a particular model for which
we will compute embedded parameters. For n independent flips, we have the joint
density as the product of n of these functions as in

φ(x) =
n∏

i=1

px
i (1− p)(1−xi)

The following is the likelihood function:

L(p; x) =
n∏

i=1

pxi (1− p)1−xi

This is basically notation. We have just renamed the previous equation to emphasize
the p parameter, which is what we want to estimate.

The principle of maximum likelihood is to maximize the likelihood as the
function of p after plugging in all of the xi data. We then call this maximizer p̂

which is a function of the observed xi data and, as such, is a random variable with
its own distribution. This method therefore ingests data and a postulated probability
density and produces a function that estimates the embedded parameter in the
assumed probability density. Thus, maximum likelihood generates the functions of
data that we need to get the underlying parameters of the model. Note that there is
no limit to the ways we can functionally manipulate the data we have collected. The
maximum likelihood principle gives us a systematic method for constructing these
functions subject to the assumed model. This is a point worth emphasizing: the
maximum likelihood principle yields functions as solutions the same way solving
differential equations yields functions as solutions. It is very, very much harder to
produce a function than to produce a value as a solution, even with the assumption
of a convenient probability density. Thus, the power of the principle is that you can
construct such functions subject to the model assumptions.

3.4 Estimation Using Maximum Likelihood 149

Simulating the Experiment We need the following code to simulate coin flipping:

>>> from scipy.stats import bernoulli
>>> p_true=1/2.0 # estimate this!
>>> fp=bernoulli(p_true) # create bernoulli random variate
>>> xs = fp.rvs(100) # generate some samples
>>> print(xs[:30]) # see first 30 samples
[0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1]

Now, we can write out the likelihood function using Sympy. Note that we give the
Sympy variables the positive=True attribute upon construction because this
eases Sympy’s internal simplification algorithms.

>>> import numpy as np
>>> import sympy
>>> x,p,z = sympy.symbols('x p z', positive=True)
>>> phi = p**x*(1-p)**(1-x) # distribution function
>>> L = np.prod([phi.subs(x,i) for i in xs]) # likelihood function
>>> print(L) # approx 0.5?
p**57*(1 - p)**43

Note that, once we plug in the data, the likelihood function is solely a function of
the unknown parameter (p in this case). The following code uses calculus to find
the extrema of the likelihood function. Note that taking the log of L makes the
maximization problem tractable but doesn’t change the extrema.

>>> logL = sympy.expand_log(sympy.log(L))
>>> sol, = sympy.solve(sympy.diff(logL,p),p)
>>> print(sol)
57/100

Programming Tip
Note that sol,=sympy.solve statement includes a comma after the sol
variable. This is because the solve function returns a list containing a single
element. Using this assignment unpacks that single element into the sol
variable directly. This is another one of the many small elegancies of Python.

The following code generates Fig. 3.3:

fig,ax=subplots()
x=np.linspace(0,1,100)
ax.plot(x,map(sympy.lambdify(p,logJ,'numpy'),x),'k-',lw=3)
ax.plot(sol,logJ.subs(p,sol),'o',

color='gray',ms=15,label='Estimated')
ax.plot(p_true,logJ.subs(p,p_true),'s',

color='k',ms=15,label='Actual')
ax.set_xlabel('p',fontsize=18,usetex=True)
ax.set_ylabel('Likelihood',fontsize=18)
ax.set_title('Estimate not equal to true value',fontsize=18)
ax.legend(loc=0)

150 3 Statistics

Fig. 3.3 Maximum
likelihood estimate vs. true
parameter. Note that the
estimate is slightly off from
the true value. This is a
consequence of the fact that
the estimator is a function of
the data and lacks knowledge
of the true underlying value

Programming Tip
In the prior code, we use the lambdify function in
lambdify(p,logJ,’numpy’) to take a Sympy expression and
convert it into a Numpy version that is easier to compute. The lambdify
function has an extra argument where you can specify the function space that
it should use to convert the expression. In the above this is set to Numpy.

Figure 3.3 shows that our estimator p̂ (circle) is not equal to the true value of
p (square), despite being the maximum of the likelihood function. This may sound
disturbing, but keep in mind this estimate is a function of the random data; and since
that data can change, the ultimate estimate can likewise change. Remember that the
estimator is a function of the data and is thus also a random variable, just like the
data is. This means it has its own probability distribution with corresponding mean
and variance. So, what we are observing is a consequence of that variance.

Figure 3.4 shows what happens when you run many thousands of coin experi-
ments and compute the maximum likelihood estimate for each experiment, given a
particular number of samples per experiment. This simulation gives us a histogram
of the maximum likelihood estimates, which is an approximation of the probability
distribution of the p̂ estimator itself. This figure shows that the sample mean of the
estimator (μ = 1

n

∑
p̂i) is pretty close to the true value, but looks can be deceiving.

The only way to know for sure is to check if the estimator is unbiased, namely, if

E(p̂) = p

Because this problem is simple, we can solve for this in general noting that the terms
above are either p, if xi = 1, or 1− p if xi = 0. This means that we can write

L(p|x) = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi

with corresponding logarithm as

3.4 Estimation Using Maximum Likelihood 151

Fig. 3.4 Histogram of maximum likelihood estimates. The title shows the estimated mean and
standard deviation of the samples

J = log(L(p|x)) = log(p)

n∑

i=1

xi + log(1− p)

(
n−

n∑

i=1

xi

)

Taking the derivative of this gives

dJ

dp
= 1

p

n∑

i=1

xi + (n−∑n
i=1 xi)

p − 1

and solving this for p leads to

p̂ = 1

n

n∑

i=1

xi

This is our estimator for p. Up until now, we have been using Sympy to solve for
this based on the data xi , but now that we have it analytically, we don’t have to solve
for it each time. To check if this estimator is biased, we compute its expectation

E
(
p̂
) = 1

n

n∑

i

E(xi) = 1

n
nE(xi)

by linearity of the expectation and where

E(xi) = p

Therefore,

E
(
p̂
) = p

152 3 Statistics

This means that the estimator is unbiased. Similarly,

E

(
p̂2

)
= 1

n2
E

⎡

⎣
(

n∑

i=1

xi

)2
⎤

⎦

and where

E

(
x2
i

)
= p

and by the independence assumption,

E
(
xixj

) = E(xi)E(xj) = p2

Thus,

E

(
p̂2

)
=

(
1

n2

)
n
[
p + (n− 1)p2

]

So, the variance of the estimator, p̂, is the following:

V(p̂) = E

(
p̂2

)
− E

(
p̂
)2 = p(1− p)

n

Note that the n in the denominator means that the variance asymptotically goes to
zero as n increases (i.e., we consider more and more samples). This is good news
because it means that more and more coin flips lead to a better estimate of the
underlying p.

Unfortunately, this formula for the variance is practically useless because we
need p to compute it and p is the parameter we are trying to estimate in the first
place! However, this is where the plug-in principle2 saves the day. It turns out in this
situation, you can simply substitute the maximum likelihood estimator, p̂, for the p

in the above equation to obtain the asymptotic variance for V(p̂). The fact that this
works is guaranteed by the asymptotic theory of maximum likelihood estimators.

Nevertheless, looking at V(p̂)2, we can immediately notice that if p = 0, then
there is no estimator variance because the outcomes are guaranteed to be tails. Also,
for any n, the maximum of this variance happens at p = 1/2. This is our worst-case
scenario, and the only way to compensate is with larger n.

All we have computed is the mean and variance of the estimator. In general, this
is insufficient to characterize the underlying probability density of p̂, except if we
somehow knew that p̂ were normally distributed. This is where the powerful central
limit theorem we discussed in Sect. 3.3.4 comes in. The form of the estimator, which

2 This is also known as the invariance property of maximum likelihood estimators. It basically
states that the maximum likelihood estimator of any function, say, h(θ), is the same h with the
maximum likelihood estimator for θ substituted in for θ ; namely, h(θML).

3.4 Estimation Using Maximum Likelihood 153

is just a sample mean, implies that we can apply this theorem and conclude that
p̂ is asymptotically normally distributed. However, it doesn’t quantify how many
samples n we need. In our simulation this is no problem because we can generate as
much data as we like, but in the real world, with a costly experiment, each sample
may be precious.3 In the following, we won’t apply the central limit theorem and
instead proceed analytically.

Probability Density for the Estimator To write out the full density for p̂, we first
have to ask what is the probability that the estimator will equal a specific value and
the tally up all the ways that could happen with their corresponding probabilities.
For example, what is the probability that

p̂ = 1

n

n∑

i=1

xi = 0

This can only happen one way: when xi = 0 ∀i. The probability of this happening
can be computed from the density

f (x, p) =
n∏

i=1

pxi (1− p)1−xi

f

(
n∑

i=1

xi = 0, p

)
= (1− p)n

Likewise, if {xi} has only one nonzero element, then

f

(
n∑

i=1

xi = 1, p

)
= np

n−1∏

i=1

(1− p)

where the n comes from the n ways to pick one element from the n elements xi .
Continuing this way, we can construct the entire density as

f

(
n∑

i=1

xi = k, p

)
=

(
n

k

)
pk(1− p)n−k

where the first term on the right is the binomial coefficient of n things taken k at a
time. This is the binomial distribution and it’s not the density for p̂, but rather for

3 It turns out that the central limit theorem augmented with an Edgeworth expansion tells us
that convergence is regulated by the skewness of the distribution [13]. In other words, the more
symmetric the distribution, the faster it converges to the normal distribution according to the central
limit theorem.

154 3 Statistics

np̂. We’ll leave this as-is because it’s easier to work with below. We just have to
remember to keep track of the n factor.

Confidence Intervals Now that we have the full density for p̂, we are ready to ask
some meaningful questions. For example, what is the probability the estimator is
within ε fraction of the true value of p?

P
(|p̂ − p| ≤ εp

)

More concretely, we want to know how often the estimated p̂ is trapped within ε

of the actual value. That is, suppose we ran the experiment 1000 times to generate
1000 different estimates of p̂. What percentage of the 1000 so-computed values
are trapped within ε of the underlying value. Rewriting the above equation as the
following:

P
(
p − εp < p̂ < p + εp

) = P

(
np − nεp <

n∑

i=1

xi < np + nεp

)

Let us plug in some live numbers here for our worst-case scenario (i.e., highest
variance scenario) where p = 1/2. Then, if ε = 1/100, we have

P

(
99n

200
<

n∑

i=1

xi <
101n

200

)

For example for n = 101, we have the following:

P

(
9999

200
<

101∑

i=1

xi <
10201

200

)
= f

(
101∑

i=1

xi = 50, p

)

=
(

101

50

)
(1/2)50(1− 1/2)101−50 = 0.079

This means that in the worst-case scenario for p = 1/2, given n = 101 trials, we
will only get within 1% of the actual p = 1/2 about 8% of the time. If you feel
disappointed, it is because you’ve been paying attention. What if the coin was really
heavy and it was hard work to repeat this 101 times?

Let us come at this another way: given I could only flip the coin 100 times, how
close could I come to the true underlying value with high probability (say, 95%)? In
this case, instead of picking a value for ε, we are solving for ε. Plugging in gives

P

(
50− 50ε <

100∑

i=1

xi < 50+ 50ε

)
= 0.95

3.4 Estimation Using Maximum Likelihood 155

Fig. 3.5 Probability mass function for p̂. The two vertical lines form the confidence interval

which we have to solve for ε. Fortunately, all the tools we need to solve for this are
already in Scipy.

>>> from scipy.stats import binom
>>> # n=100, p = 0.5, distribution of the estimator phat
>>> b=binom(100,.5)
>>> # symmetric sum the probability around the mean
>>> g = lambda i:b.pmf(np.arange(-i,i)+50).sum()
>>> print(g(10)) # approx 0.95
0.9539559330706571

The two vertical lines in Fig. 3.5 show how far out from the mean we have to go to
accumulate 95% of the probability. Now, we can solve this as

50+ 50ε = 60

which makes ε = 1/5 or 20%. So, flipping 100 times means I can only get within
20% of the real p 95% of the time in the worst-case scenario (i.e., p = 1/2). The
following code verifies the situation:

>>> from scipy.stats import bernoulli
>>> b=bernoulli(0.5) # coin distribution
>>> xs = b.rvs(100) # flip it 100 times
>>> phat = np.mean(xs) # estimated p
>>> print(abs(phat-0.5) < 0.5*0.20) # make it w/in interval?
True

Let us keep doing this and see if we can get within this interval 95% of the time.

>>> out=[]
>>> b=bernoulli(0.5) # coin distribution
>>> for i in range(500): # number of tries
... xs = b.rvs(100) # flip it 100 times
... phat = np.mean(xs) # estimated p
... out.append(abs(phat-0.5) < 0.5*0.20) # within 20% ?

156 3 Statistics

...
>>> # percentage of tries w/in 20% interval
>>> print(100*np.mean(out))
97.39999999999999

Well, that seems to work! Now we have a way to get at the quality of the estimator,
p̂.

Maximum Likelihood Estimator Without Calculus The prior example showed
how we can use calculus to compute the maximum likelihood estimator. It’s
important to emphasize that the maximum likelihood principle does not depend on
calculus and extends to more general situations where calculus is impossible. For
example, let X be uniformly distributed in the interval [0, θ]. Given n measurements
of X, the likelihood function is the following:

L(θ) =
n∏

i=1

1

θ
= 1

θn

where each xi ∈ [0, θ]. Note that the slope of this function is not zero anywhere
so the usual calculus approach is not going to work here. Because the likelihood is
the product of the individual uniform densities, if any of the xi values were outside
of the proposed [0, θ] interval, then the likelihood would go to zero, because the
uniform density is zero outside of the [0, θ]. This is no good for maximization.
Thus, observing that the likelihood function is strictly decreasing with increasing θ ,
we conclude that the value for θ that maximizes the likelihood is the maximum of
the xi values. To summarize, the maximum likelihood estimator is the following:

θML = max
i

xi

As always, we want the distribution of this estimator to judge its performance. In
this case, this is pretty straightforward. The cumulative density function for the max
function is the following:

P

(
θ̂ML < v

)
= P(x0 ≤ v ∧ x1 ≤ v . . . ∧ xn ≤ v)

and since all the xi are uniformly distributed in [0, θ], we have

P

(
θ̂ML < v

)
=

(v

θ

)n

So, the probability density function is then

f
θ̂ML

(θML) = nθn−1
ML θ−n

Then, we can compute the E(θML) = (θn)/(n+ 1) with corresponding variance as
V(θML) = (θ2

MLn)/(n+ 1)2/(n+ 2).

3.4 Estimation Using Maximum Likelihood 157

For a quick sanity check, we can write the following simulation for θ = 1 as in
the following:

>>> from scipy import stats
>>> rv = stats.uniform(0,1) # define uniform random variable
>>> mle=rv.rvs((100,500)).max(0) # max along row-dimension
>>> print(np.mean(mle)) # approx n/(n+1) = 100/101 ~= 0.99
0.989942138048
>>> print(np.var(mle)) #approx n/(n+1)**2/(n+2) ~= 9.61E-5
9.95762009884e-05

Programming Tip
The max(0) suffix on for the mle computation takes the maximum of the
so-computed array along the row (axis=0) dimension.

You can also plot hist(mle) to see the histogram of the simulated maximum
likelihood estimates and match it up against the probability density function we
derived above.

In this section, we explored the concept of maximum likelihood estimation using
a coin flipping experiment both analytically and numerically with the scientific
Python stack. We also explored the case when calculus is not workable for maximum
likelihood estimation. There are two key points to remember. First, maximum
likelihood estimation produces a function of the data that is itself a random
variable, with its own probability distribution. We can get at the quality of the
so-derived estimators by examining the confidence intervals around the estimated
values using the probability distributions associated with the estimators themselves.
Second, maximum likelihood estimation applies even in situations where using
basic calculus is not applicable [48].

3.4.2 Delta Method

Sometimes we want to characterize the distribution of a function of a random
variable. In order to extend and generalize the central limit theorem in this way,
we need the Taylor series expansion. Recall that the Taylor series expansion is an
approximation of a function of the following form:

Tr(x) =
r∑

i=0

g(i)(a)

i! (x − a)i

this basically says that a function g can be adequately approximated about a point
a using a polynomial based on its derivatives evaluated at a. Before we state the
general theorem, let us examine an example to understand how the mechanics work.

158 3 Statistics

Example Suppose that X is a random variable with E(X) = μ
= 0. Furthermore,
supposedly we have a suitable function g and we want the distribution of g(X).
Applying the Taylor series expansion, we obtain the following:

g(X) ≈ g(μ)+ g′(μ)(X − μ)

If we use g(X) as an estimator for g(μ), then we can say that we approximately
have the following:

E(g(X)) = g(μ)

V(g(X)) = (g′(μ))2
V(X)

Concretely, suppose we want to estimate the odds, p
1−p

. For example, if p = 2/3,
then we say that the odds is 2:1 meaning that the odds of the one outcome are twice
as likely as the odds of the other outcome. Thus, we have g(p) = p

1−p
, and we want

to find V(g(p̂)). In our coin flipping problem, we have the estimator p̂ = 1
n

∑
Xk

from the Bernoulli-distributed data Xk individual coin flips. Thus,

E(p̂) = p

V(p̂) = p(1− p)

n

Now, g′(p) = 1/(1− p)2, so we have

V(g(p̂)) = (g′(p))2
V(p̂)

=
(

1

(1− p)2

)2
p(1− p)

n

= p

n(1− p)3

which is an approximation of the variance of the estimator g(p̂). Let us simulate
this and see how it agrees.

>>> from scipy import stats
>>> # compute MLE estimates
>>> d=stats.bernoulli(0.1).rvs((10,5000)).mean(0)
>>> # avoid divide-by-zero
>>> d=d[np.logical_not(np.isclose(d,1))]
>>> # compute odds ratio
>>> odds = d/(1-d)
>>> print('odds ratio=',np.mean(odds),'var=',np.var(odds))
odds ratio= 0.12289206349206351 var= 0.01797950092214664

The first number above is the mean of the simulated odds Ratio, and the second is
the variance of the estimate. According to the variance estimate equation above, we

3.4 Estimation Using Maximum Likelihood 159

have V(g(1/10)) ≈ 0.0137, which is not too bad for this numerical approximation.
Recall we want to estimate the odds from p̂. The code above takes 5000 estimates
of the p̂ to estimate V(g). The odds ratio for p = 1/10 is 1/9 ≈ 0.111.

Programming Tip
The code above uses the np.isclose function to identify the ones from the
simulation, and the np.logical_not removes these elements from the data
because the odds ratio has a zero in the denominator for these values.

Let us try this again with a probability of heads of 0.5 instead of 0.3.

>>> from scipy import stats
>>> d = stats.bernoulli(.5).rvs((10,5000)).mean(0)
>>> d = d[np.logical_not(np.isclose(d,1))]
>>> print('odds ratio=',np.mean(d),'var=',np.var(d))
odds ratio= 0.499379627776666 var= 0.024512322762879256

The odds ratio in this case is equal to one, which is not close to what was reported.
According to our approximation, we should have V(g) = 0.4, which does not look
like what our simulation just reported. This is because the approximation is best
when the odds ratio is nearly linear and worse otherwise (see Fig. 3.6).

Delta Method for Variance Stabilization To summarize the delta method more
formally, we have n samples for the Tn statistic that estimates θ . If we have

√
n (Tn − θ)

P→ N (0, τ (θ)2)

then

√
n (g(Tn)− g(θ))

P→ N (0, τ (θ)2(g′(θ))2)

Fig. 3.6 The odds ratio is
close to linear for small
values but becomes
unbounded as p approaches
one. The delta method is
more effective for small
underlying values of p, where
the linear approximation is
better

160 3 Statistics

where convergence comes from the central limit theorem. Loosely speaking, this
means that if the statistic Tn has a limiting normal distribution, then g(Tn) also has a
limiting normal distribution, with an explicit formula for the asymptotic variance of
g(Tn)! This is a powerful result because it is not generally the case that a nonlinear
function of a normal random variable has a normal distribution.

The unfortunate part of the previous example is that the variance depended on
the estimated parameter, p. To fix this, we want to find a variance stabilizing
transformation that makes the asymptotic variance independent of the estimated
parameter. That is, we want

√
n (g(Tn)− g(θ))

P→ N (0, c2)

We are almost there using the delta method because we already have

√
n (g(Tn)− g(θ))

P→ N (0, (g′(θ))2τ(θ)2)

so by judicious choice of g, we can force

g′(θ)τ (θ) = c

Returning to our previous Bernoulli example, we had

τ(p) =
√

p(1− p)

n

This time, let us choose

g′(p) = 1/τ(p)

which means that

g(p) = 2
√

n arcsin(
√

p)

where we plug in p̂ for p. The variance stabilizing transformation is used to compute
confidence intervals because it avoids having to re-use the plug-in estimate value for
the variance.

>>> from scipy.stats import bernoulli, norm
>>> n = 100 # num samples
>>> p = 0.1 # target parameter
>>> # simulate estimating p using MLE
>>> mns = bernoulli(p).rvs((n,5_000)).mean(axis=0)
>>> # variance stabilizing transformation
>>> v = 2*np.sqrt(n)*(np.arcsin(np.sqrt(mns))-np.arcsin(np.sqrt(p)))

Figure 3.7 shows the resulting histogram of the MLE estimates using this transfor-
mation as compared to the N (0, 1) density. This shows that the transformed MLE

3.4 Estimation Using Maximum Likelihood 161

Fig. 3.7 The variance
stabilizing transformation
versus the limiting normal
distribution

estimates following a normal distribution. To summarize, using this transformation,
we have

2
√

n
(

arcsin(
√

p̂)− arcsin(
√

p)
)
→ N (0, 1)

converging in distribution. This means that

P

{∣∣∣arcsin
(√

p̂
)
− arcsin(

√
p)

∣∣∣ ≤ zα/2

2
√

n

}
→ 1− α as n→∞

so the (1− α) confidence interval for
√

p̂ is the following:

[
sin

(
arcsin

(√
p̂
)
− zα/2

2
√

n

)
, sin

(
arcsin

(√
p̂
)
+ zα/2

2
√

n

)]

Beware that the left side might become negative so it will have to be thresholded at
zero. To get the confidence interval for p̂, we just square the ends of the interval

[
sin2

(
arcsin

(√
p̂
)
− zα/2

2
√

n

)
, sin2

(
arcsin

(√
p̂
)
+ zα/2

2
√

n

)]

The advantage of using this variance stabilizing transformation is that otherwise we
would have

√
n
(
p̂ − p

) d→ N(0, p(1− p))

where the variance on the right depends on the unknown p we are trying to estimate
with p̂.

162 3 Statistics

3.5 Hypothesis Testing and P -Values

It is sometimes very difficult to unequivocally attribute outcomes to causal factors.
For example, did your experiment generate the outcome you were hoping for or not?
Maybe something did happen, but the effect is not pronounced enough to separate it
from inescapable measurement errors or other factors in the ambient environment?
Hypothesis testing is a powerful statistical method to address these questions. Let
us begin by again considering our coin-tossing experiment with unknown parameter
p. Recall that the individual coin flips are Bernoulli distributed. The first step is to
establish separate hypotheses. First, H0 is the so-called null hypothesis. In our case
this can be

H0 : θ <
1

2

and the alternative hypothesis is then

H1 : θ ≥ 1

2

With this setup, the question now boils down to figuring out which hypothesis the
data is most consistent with. To choose between these, we need a statistical test
that is a function, G, of the sample set Xn = {Xi}n into the real line, where Xi is
the heads or tails outcome (Xi ∈ {0, 1}). In other words, we compute G(Xn) and
check if it exceeds a threshold c. If not, then we declare H0 (otherwise, declare H1).
Notationally, this is the following:

G(Xn) < c ⇒ H0

G(Xn) ≥ c ⇒ H1

In summary, we have the observed data Xn and a function G that maps that data
onto the real line. Then, using the constant c as a threshold, the inequality effectively
divides the real line into two parts, one corresponding to each of the hypotheses.

Whatever this test G is, it will make mistakes of two types—false negatives and
false positives. The false positives arise from the case where we declare H0 when
the test says we should declare H1. This is summarized in Table 3.1.

Table 3.1 Truth table for hypotheses testing

Declare H0 Declare H1

H0 true Correct False positive (type I error)

H1 true False negative (type II error) Correct (true-detect)

3.5 Hypothesis Testing and P -Values 163

For this example, here are the false positives (a.k.a. false alarms):

PFA = P

(
G(Xn) > c | θ ≤ 1

2

)

Or, equivalently,

PFA = P (G(Xn) > c | H0)

Likewise, the other error is a false negative, which we can write analogously as

PFN = P (G(Xn) < c | H1)

By choosing some acceptable values for either of these errors, we can solve for
the other one. The practice is usually to pick a value of PFA and then find the
corresponding value of PFN . Note that it is traditional in engineering to speak about
detection probability, which is defined as

PD = 1− PFN = P (G(Xn) > c | H1)

In other words, this is the probability of declaring H1 when the test exceeds the
threshold. This is otherwise known as the probability of a true detection or true-
detect.

3.5.1 Back to the Coin Flipping Example

In our previous maximum likelihood discussion, we wanted to derive an estimator
for the value of the probability of heads for the coin flipping experiment. For
hypthesis testing, we want to ask a softer question: Is the probability of heads greater
or less than 1/2? As we just established, this leads to the two hypotheses:

H0 : θ <
1

2
versus

H1 : θ >
1

2

Let us assume we have five observations. Now we need the G function and a
threshold c to help pick between the two hypotheses. Let us count the number of
heads observed in five observations as our criterion. Thus, we have

G(X5) :=
5∑

i=1

Xi

164 3 Statistics

Fig. 3.8 Power function for the all-heads test. The dark circle indicates the value of the function
indicating α

and suppose further that we pick H1 only if exactly five out of five observations are
heads. We’ll call this the all-heads test.

Now, because all of the Xi are random variables, so is G, and we must find the
corresponding probability mass function for G. Assuming the individual coin tosses
are independent, the probability of five heads is θ5. This means that the probability
of rejecting the H0 hypothesis (and choosing H1, because there are only two choices
here) based on the unknown underlying probability is θ5. In the parlance, this is
known as the power function as in denoted by β as in

β(θ) = θ5

Let us get a quick plot of this in Fig. 3.8.
Now, we have the following false alarm probability:

PFA = P(G(Xn) = 5|H0) = P(θ5|H0)

Notice that this is a function of θ , which means there are many false alarm
probability values that correspond to this test. To be on the conservative side, we’ll
pick the supremum (i.e., maximum) of this function, which is known as the size of
the test, traditionally denoted by α,

α = sup
θ∈Θ0

β(θ)

with domain Θ0 = {θ < 1/2} which in our case is

α = sup
θ< 1

2

θ5 =
(

1

2

)5

= 0.03125

Likewise, for the detection probability,

3.5 Hypothesis Testing and P -Values 165

PD(θ) = P(θ5|H1)

which is again a function of the parameter θ . The problem with this test is that the
PD is pretty low for most of the domain of θ . For instance, values in the nineties for
PD only happen when θ > 0.98. In other words, if the coin produces heads 98 times
out of 100, then we can detect H1 reliably. Ideally, we want a test that is zero for the
domain corresponding to H0 (i.e., Θ0) and equal to one otherwise. Unfortunately,
even if we increase the length of the observed sequence, we cannot escape this effect
with this test. You can try plotting θn for larger and larger values of n to see this.

Majority Vote Test Due to the problems with the detection probability in the all-
heads test, maybe we can think of another test that will have the performance we
want. Suppose we reject H0 if the majority of the observations are heads. Then,
using the same reasoning as above, we have

β(θ) =
5∑

k=3

(
5

k

)
θk(1− θ)5−k

Figure 3.9 shows the power function for both the majority vote and the all-heads
tests.
In this case, the new test has size

α = sup
θ< 1

2

θ5 + 5θ4 (−θ + 1)+ 10θ3 (−θ + 1)2 = 1

2

As before we only get to upward of 90% for detection probability only when the
underlying parameter θ > 0.75. Let us see what happens when we consider more
than five samples. For example, let us suppose that we have n = 100 samples and
we want to vary the threshold for the majority vote test. For example, let us have
a new test where we declare H1 when k = 60 out of the 100 trials turns out to be

Fig. 3.9 Compares the power function for the all-heads test with that of the majority vote test

166 3 Statistics

heads. What is the β function in this case?

β(θ) =
100∑

k=60

(
100

k

)
θk(1− θ)100−k

This is too complicated to write by hand, but the statistics module in Sympy has all
the tools we need to compute this.

>>> from sympy.stats import P, Binomial
>>> theta = S.symbols('theta',real=True)
>>> X = Binomial('x',100,theta)
>>> beta_function = P(X>60)
>>> print(beta_function.subs(theta,0.5)) # alpha
0.0176001001088524
>>> print(beta_function.subs(theta,0.70))
0.979011423996075

These results are much better than before because the β function is much steeper.
If we declare H1 when we observe 60 out of 100 trials are heads, then we wrongly
declare heads approximately 1.8% of the time. Otherwise, if it happens that the true
value for p > 0.7, we will conclude correctly approximately 97% of the time. A
quick simulation can sanity check these results as shown below:

>>> from scipy import stats
>>> rv=stats.bernoulli(0.5) # true p = 0.5
>>> # number of false alarms ~ 0.018
>>> print(sum(rv.rvs((1000,100)).sum(axis=1)>60)/1000.)
0.015

The above code is pretty dense, so let us unpack it. In the first line, we use
the scipy.stats module to define the Bernoulli random variable for the coin
flip. Then, we use the rvs method of the variable to generate 1000 trials of the
experiment where each trial consists of 100 coin flips. This generates a 1000× 100
matrix where the rows are the individual trials and the columns are the outcomes of
each respective set of 100 coin flips. The sum(axis=1) part computes the sum
across the columns. Because the values of the embedded matrix are only 1 or 0, this
gives us the count of flips that are heads per row. The next >60 part computes the
boolean 1000-long vector of values that are bigger than 60. The final sum adds these
up. Again, because the entries in the array are True or False, the sum computes
the count of times the number of heads has exceeded 60 per 100 coin flips in each
of 1000 trials. Then, dividing this number by 1000 gives a quick approximation of
false alarm probability we computed above for this case where the true value of
p = 0.5.

3.5 Hypothesis Testing and P -Values 167

3.5.2 Receiver Operating Characteristic

Because the majority vote test is a binary test, we can compute the receiver
operating characteristic (ROC) which is the graph of the (PFA, PD). The term
comes from radar systems but is a very general method for consolidating all of
these issues into a single graph. Let us consider a typical signal processing example
with two hypotheses. In H0, there is noise but no signal present at the receiver

H0 : X = ε

where ε ∼ N (0, σ 2) represents additive noise. In the alternative hypothesis, there
is a deterministic signal at the receiver:

H1 : X = μ+ ε

Again, the problem is to choose between these two hypotheses. For H0, we have
X ∼ N (0, σ 2), and for H1, we have X ∼ N (μ, σ 2). Recall that we only observe
values for x and must pick either H0 or H1 from these observations. Thus, we need
a threshold, c, to compare x against in order to distinguish the two hypotheses.
Figure 3.10 shows the probability density functions under each of the hypotheses.
The dark vertical line is the threshold c. The gray shaded area is the probability of
detection, PD , and the shaded area is the probability of false alarm, PFA. The test
evaluates every observation of x and concludes H0 if x < c and H1 otherwise.

Fig. 3.10 The two density functions for the H0 and H1 hypotheses. The shaded gray area is the
detection probability, and the shaded dark gray area is the probability of false alarm. The vertical
line is the decision threshold

168 3 Statistics

Fig. 3.11 The receiver
operating characteristic
(ROC) corresponding to
Fig. 3.10

Programming Tip
The shading shown in Fig. 3.10 comes from Matplotlib’s fill_between

function. This function has a where keyword argument to specify which part
of the plot to apply shading with specified color keyword argument. Note
there is also a fill_betweenx function that fills horizontally. The text
function can place formatted text anywhere in the plot and can utilize basic
formatting.

As we slide the threshold left and right along the horizontal axis, we naturally
change the corresponding areas under each of the curves shown in Fig. 3.10 and
thereby change the values of PD and PFA. The contour that emerges from sweeping
the threshold this way is the ROC as shown in Fig. 3.11. This figure also shows the
diagonal line which corresponds to making decisions based on the flip of a fair coin.
Any meaningful test must do better than coin flipping, so the more the ROC bows
up to the top left corner of the graph, the better. Sometimes ROCs are quantified into
a single number called the area under the curve (AUC), which varies from 0.5 to
1.0 as shown. In our example, what separates the two probability density functions
is the value of μ. In a real situation, this would be determined by signal processing
methods that include many complicated trade-offs. The key idea is that whatever
those trade-offs are, the test itself boils down to the separation between these two
density functions—good tests separate the two density functions and bad tests do
not. Indeed, when there is no separation, we arrive at the diagonal-line coin flipping
situation we just discussed.

What values for PD and PFA are considered acceptable depends on the
application. For example, suppose you are testing for a fatal disease. It could be that

3.5 Hypothesis Testing and P -Values 169

you are willing to except a relatively high PFA value if that corresponds to a good
PD because the test is relatively cheap to administer compared to the alternative of
missing a detection. On the other hand, maybe a false alarm triggers an expensive
response, so that minimizing these alarms is more important than potentially missing
a detection. These trade-offs can only be determined by the application and design
factors.

3.5.3 P -Values

There are a lot of moving parts in hypothesis testing. What we need is a way to
consolidate the findings. The idea is that we want to find the minimum level at
which the test rejects H0. Thus, the p-value is the probability, under H0, that the
test-statistic is at least as extreme as what was actually observed. Informally, this
means that smaller values imply that H0 should be rejected, although this doesn’t
mean that large values imply that H0 should be retained. This is because a large
p-value can arise from either H0 being true or the test having low statistical power.

If H0 is true, the p-value is uniformly distributed in the interval (0, 1). If H1 is
true, the distribution of the p-value will concentrate closer to zero. For continuous
distributions, this can be proven rigorously and implies that if we reject H0 when
the corresponding p-value is less than α, then the probability of a false alarm is α.
Perhaps it helps to formalize this a bit before computing it. Suppose τ(X) is a test
statistic that rejects H0 as it gets bigger. Then, for each sample x, corresponding to
the data we actually have on-hand, we define

p(x) = sup
θ∈Θ0

Pθ (τ (X) > τ(x))

This equation states that the supremum (i.e., maximum) probability that the test
statistic, τ(X), exceeds the value for the test statistic on this particular data (τ(x))
over the domain Θ0 is defined as the p-value. Thus, this embodies a worst-case
scenario over all values of θ .

Here’s one way to think about this. Suppose you rejected H0, and someone says
that you just got lucky and somehow just drew data that happened to correspond to
a rejection of H0. What p-values provide is a way to address this by capturing the
probability of just such a favorable data-draw. Thus, suppose that your p-value is
0.05. Then, what you are showing is that the odds of just drawing that data sample,
given H0 is in force, is just 5%. This means that there’s a 5% chance that you
somehow lucked out and got a favorable draw of data.

Let us make this concrete with an example. Given the majority vote rule above,
suppose we actually do observe three of five heads. Given the H0, the probability of
observing this event is the following:

170 3 Statistics

p(x) = sup
θ∈Θ0

5∑

k=3

(
5

k

)
θk(1− θ)5−k = 1

2

For the all-heads test, the corresponding computation is the following:

p(x) = sup
θ∈Θ0

θ5 = 1

25 = 0.03125

From just looking at these p-values, you might get the feeling that the second
test is better, but we still have the same detection probability issues we discussed
above; so, p-values help in summarizing some aspects of our hypothesis testing, but
they do not summarize all the salient aspects of the entire situation.

3.5.4 Test Statistics

As we have seen, it is difficult to derive good test statistics for hypothesis testing
without a systematic process. The Neyman-Pearson test is derived from fixing a
false-alarm value (α) and then maximizing the detection probability

L(x) = fX|H1(x)
fX|H0(x)

H1
≷
H0

γ

where L is the likelihood ratio and where the threshold γ is chosen such that

∫

x:L(x)>γ

fX|H0(x)dx = α

The Neyman-Pearson test is one of a family of tests that use the likelihood ratio.

Example Suppose we have a receiver and we want to distinguish whether just noise
(H0) or signal plus noise (H1) is received. For the noise-only case, we have x ∼
N (0, 1), and for the signal plus noise case, we have x ∼ N (1, 1). In other words, the
mean of the distribution shifts in the presence of the signal. This is a very common
problem in signal processing and communications. The Neyman-Pearson test then
boils down to the following:

L(x) = e−
1
2+x

H1
≷
H0

γ

Now we have to find the threshold γ that solves the maximization problem
that characterizes the Neyman-Pearson test. Taking the natural logarithm and re-
arranging gives,

3.5 Hypothesis Testing and P -Values 171

x
H1
≷
H0

1

2
+ log γ

The next step is find γ corresponding to the desired α by computing it from the
following:

∫ ∞

1/2+log γ

fX|H0(x)dx = α

For example, taking α = 1/100 gives γ ≈ 6.21. To summarize the test in this case,
we have

x
H1
≷
H0

2.32

Thus, if we measure X and see that its value exceeds the threshold above, we declare
H1 and otherwise declare H0. The following code shows how to solve this example
using Sympy and Scipy. First, we set up the likelihood ratio:

>>> import sympy as S
>>> from sympy import stats
>>> s = stats.Normal('s',1,1) # signal+noise
>>> n = stats.Normal('n',0,1) # noise
>>> x = S.symbols('x',real=True)
>>> L = stats.density(s)(x)/stats.density(n)(x)

Next, to find the γ value

>>> g = S.symbols('g',positive=True) # define gamma
>>> v=S.integrate(stats.density(n)(x),
... (x,S.Rational(1,2)+S.log(g),S.oo))

Programming Tip
Providing additional information regarding the Sympy variable by using
the keyword argument positive=True helps the internal simplification
algorithms work faster and better. This is especially useful when dealing with
complicated integrals that involve special functions. Furthermore, note that
we used the Rational function to define the 1/2 fraction, which is another
way of providing hints to Sympy. Otherwise, it’s possible that the floating-
point representation of the fraction could disguise the simple fraction and
thereby miss internal simplification opportunities.

We want to solve for g in the above expression. Sympy has some built-in numerical
solvers as in the following:

>>> print(S.nsolve(v-0.01,3.0)) # approx 6.21
6.21116124253284

172 3 Statistics

Note that in this situation, it is better to use the numerical solvers because Sympy
solve may grind along for a long time to resolve this.

Generalized Likelihood Ratio Test The likelihood ratio test can be generalized
using the following statistic:

Λ(x) = supθ∈Θ0
L(θ)

supθ∈Θ L(θ)
= L(θ̂0)

L(θ̂)

where θ̂0 maximizes L(θ) subject to θ ∈ Θ0 and θ̂ is the maximum likelihood
estimator. The intuition behind this generalization of the likelihood ratio test is that
the denominator is the usual maximum likelihood estimator and the numerator is
the maximum likelihood estimator, but over a restricted domain (Θ0). This means
that the ratio is always less than unity because the maximum likelihood estimator
over the entire space will always be at least as maximal as that over the more
restricted space. When this Λ ratio gets small enough, it means that the maximum
likelihood estimator over the entire domain (Θ) is larger which means that it is safe
to reject the null hypothesis H0. The tricky part is that the statistical distribution
of Λ is usually eye-wateringly difficult. Fortunately, Wilks theorem says that with
sufficiently large n, the distribution of −2 log Λ is approximately chi-square (see
Sect. 2.6.3) with r−r0 degrees of freedom, where r is the number of free parameters
for Θ and r0 is the number of free parameters in Θ0. With this result, if we want
an approximate test at level α, we can reject H0 when −2 log Λ ≥ χ2

r−r0
(α) where

χ2
r−r0

(α) denotes the 1 − α quantile of the χ2
r−r0

chi-square distribution. However,
the problem with this result is that there is no definite way of knowing how big n

should be. The advantage of this generalized likelihood ratio test is that it can test
multiple hypotheses simultaneously, as illustrated in the following example.

Example Let us return to our coin flipping example, except now we have three
different coins. The likelihood function is then

L(p1, p2, p3) = binom(k1; n1, p1)binom(k2; n2, p2)binom(k3; n3, p3)

where binom is the binomial distribution with the given parameters. For example,

binom(k; n, p) =
n∑

k=0

(
n

k

)
pk(1− p)n−k

The null hypothesis is that all three coins have the same probability of heads,
H0 : p = p1 = p2 = p3. The alternative hypothesis is that at least one of these
probabilities is different. Let us consider the numerator of the Λ first, which will
give us the maximum likelihood estimator of p. Because the null hypothesis is that
all the p values are equal, we can just treat this as one big binomial distribution with
n = n1 + n2 + n3, and k = k1 + k2 + k3 is the total number of heads observed

3.5 Hypothesis Testing and P -Values 173

for any coin. Thus, under the null hypothesis, the distribution of k is binomial
with parameters n and p. Now, what is the maximum likelihood estimator for this
distribution? We have worked this problem before and have the following:

p̂0 = k

n

In other words, the maximum likelihood estimator under the null hypothesis is the
proportion of ones observed in the sequence of n trials total. Now, we have to
substitute this in for the likelihood under the null hypothesis to finish the numerator
of Λ

L(p̂0, p̂0, p̂0) = binom(k1; n1, p̂0)binom(k2; n2, p̂0)binom(k3; n3, p̂0)

For the denominator of Λ, which represents the case of maximizing over
the entire space, the maximum likelihood estimator for each separate binomial
distribution is likewise

p̂i = ki

ni

which makes the likelihood in the denominator the following:

L(p̂1, p̂2, p̂3) = binom(k1; n1, p̂1)binom(k2; n2, p̂2)binom(k3; n3, p̂3)

for each of the i ∈ {1, 2, 3} binomial distributions. Then, the Λ statistic is then the
following:

Λ(k1, k2, k3) = L(p̂0, p̂0, p̂0)

L(p̂1, p̂2, p̂3)

Wilks theorems states that −2 log Λ is chi-square distributed. We can compute this
example with the statistics tools in Sympy and Scipy.

>>> from scipy.stats import binom, chi2
>>> import numpy as np
>>> # some sample parameters
>>> p0,p1,p2 = 0.3,0.4,0.5
>>> n0,n1,n2 = 50,180,200
>>> brvs= [binom(i,j) for i,j in zip((n0,n1,n2),(p0,p1,p2))]
>>> def gen_sample(n=1):
... 'generate samples from separate binomial distributions'
... if n==1:
... return [i.rvs() for i in brvs]
... else:
... return [gen_sample() for k in range(n)]
...

174 3 Statistics

Programming Tip
Note the recursion in the definition of the gen_sample function where a
conditional clause of the function calls itself. This is a quick way to reusing
code and generating vectorized output. Using np.vectorize is another
way, but the code is simple enough in this case to use the conditional clause. In
Python, it is generally bad for performance to have code with nested recursion
because of how the stack frames are managed. However, here we are only
recursing once so this is not an issue.

Next, we compute the logarithm of the numerator of the Λ statistic,

>>> k0,k1,k2 = gen_sample()
>>> print(k0,k1,k2)
12 68 103
>>> pH0 = sum((k0,k1,k2))/sum((n0,n1,n2))
>>> numer = np.sum([np.log(binom(ni,pH0).pmf(ki))
... for ni,ki in
... zip((n0,n1,n2),(k0,k1,k2))])
>>> print(numer)
-15.545863836567923

Note that we used the null hypothesis estimate for the p̂0. Likewise, for the
logarithm of the denominator, we have the following:

>>> denom = np.sum([np.log(binom(ni,pi).pmf(ki))
... for ni,ki,pi in
... zip((n0,n1,n2),(k0,k1,k2),(p0,p1,p2))])
>>> print(denom)
-8.424106480792464

Now, we can compute the logarithm of the Λ statistic as follows and see what the
corresponding value is according to Wilks theorem:

>>> chsq=chi2(2)
>>> logLambda =-2*(numer-denom)
>>> print(logLambda)
14.243514711550919
>>> print(1-chsq.cdf(logLambda))
0.0008073467083287156

Because the value reported above is less than the 5% significance level, we reject the
null hypothesis that all the coins have the same probability of heads. Note that there
are two degrees of freedom because the difference in the number of parameters
between the null hypothesis (p) and the alternative (p1, p2, p3) is two. We can
build a quick Monte Carlo simulation to check the probability of detection for this
example using the following code, which is just a combination of the last few code
blocks:

>>> c= chsq.isf(.05) # 5% significance level
>>> out = []
>>> for k0,k1,k2 in gen_sample(100):

3.5 Hypothesis Testing and P -Values 175

... pH0 = sum((k0,k1,k2))/sum((n0,n1,n2))

... numer = np.sum([np.log(binom(ni,pH0).pmf(ki))

... for ni,ki in

... zip((n0,n1,n2),(k0,k1,k2))])

... denom = np.sum([np.log(binom(ni,pi).pmf(ki))

... for ni,ki,pi in

... zip((n0,n1,n2),(k0,k1,k2),(p0,p1,p2))])

... out.append(-2*(numer-denom)>c)

...
>>> print(np.mean(out)) # estimated probability of detection
0.59

The above simulation shows the estimated probability of detection, for this set of
example parameters. This relative low probability of detection means that while
the test is unlikely (i.e., at the 5% significance level) to mistakenly pick the null
hypothesis, it is likewise missing many of the H1 cases (i.e., low probability of
detection). The trade-off between which is more important is up to the particular
context of the problem. In some situations, we may prefer additional false alarms in
exchange for missing fewer H1 cases.

Permutation Test The permutation test is good way to test whether or not samples
come from the same distribution. For example, suppose that

X1, X2, . . . , Xm ∼ F

and also

Y1, Y2, . . . , Yn ∼ G

That is, Yi and Xi come from different distributions. Suppose we have some test
statistic, for example

T (X1, . . . , Xm, Y1, . . . , Yn) = |X − Y |

Under the null hypothesis for which F = G, any of the (n + m)! permutations are
equally likely. Thus, suppose for each of the (n + m)! permutations, we have the
computed statistic:

{T1, T2, . . . , T(n+m)!}
Then, under the null hypothesis, each of these values is equally likely. The
distribution of T under the null hypothesis is the permutation distribution that puts
weight 1/(n + m)! on each T -value. Suppose to is the observed value of the test
statistic and assume that large T rejects the null hypothesis, then the p-value for the
permutation test is the following:

P(T > to) = 1

(n+m)!
(n+m)!∑

j=1

I (Tj > to)

176 3 Statistics

where I () is the indicator function. For large (n + m)!, we can sample randomly
from the set of all permutations to estimate this p-value.

Example Let us return to our coin flipping example from last time, but now we
have only two coins. The hypothesis is that both coins have the same probability
of heads. We can use the built-in function in Numpy to compute the random
permutations.

>>> x=binom(10,0.3).rvs(5) # p=0.3
>>> y=binom(10,0.5).rvs(3) # p=0.5
>>> z = np.hstack([x,y]) # combine into one array
>>> t_o = abs(x.mean()-y.mean())
>>> out = [] # output container
>>> for k in range(1000):
... perm = np.random.permutation(z)
... T=abs(perm[:len(x)].mean()-perm[len(x):].mean())
... out.append((T>t_o))
...
>>> print('p-value = ', np.mean(out))
p-value = 0.0

Note that the size of total permutation space is 8! = 40320 so we are taking
relatively few (i.e., 1000) random permutations from this space.

Wald Test The Wald test is an asymptotic test. Suppose we have H0 : θ = θ0 and
otherwise H1 : θ
= θ0, the corresponding statistic is defined as the following:

W = θ̂n − θ0

se

where θ̂ is the maximum likelihood estimator and se is the standard error:

se =
√
V(θ̂n)

Under general conditions, W
d→ N (0, 1). Thus, an asymptotic test at level α rejects

when |W | > zα/2 where zα/2 corresponds to P(|Z| > zα/2) = α with Z ∼ N (0, 1).
For our favorite Coin flipping example, if H0 : θ = θ0, then

W = θ̂ − θ0√
θ̂ (1− θ̂)/n

We can simulate this using the following code at the usual 5% significance level:

>>> from scipy import stats
>>> theta0 = 0.5 # H0
>>> k=np.random.binomial(1000,0.3)
>>> theta_hat = k/1000. # MLE

3.5 Hypothesis Testing and P -Values 177

>>> W = (theta_hat-theta0)/np.sqrt(theta_hat*(1-theta_hat)/1000)
>>> c = stats.norm().isf(0.05/2) # z_{alpha/2}
>>> print(abs(W)>c) # if true, reject H0
True

This rejects H0 because the true θ = 0.3 and the null hypothesis is that θ = 0.5.
Note that n = 1000 in this case which puts us well inside the asymptotic range of
the result. We can re-do this example to estimate the detection probability for this
example as in the following code:

>>> theta0 = 0.5 # H0
>>> c = stats.norm().isf(0.05/2.) # z_{alpha/2}
>>> out = []
>>> for i in range(100):
... k=np.random.binomial(1000,0.3)
... theta_hat = k/1000. # MLE
... W = (theta_hat-theta0)/np.sqrt(theta_hat*(1-theta_hat)/1000.)
... out.append(abs(W)>c) # if true, reject H0
...
>>> print(np.mean(out)) # detection probability
1.0

3.5.5 Testing Multiple Hypotheses

Thus far, we have focused primarily on two competing hypotheses. Now, we
consider multiple comparisons. The general situation is the following. We test the
null hypothesis against a sequence of n competing hypotheses Hk . We obtain p-
values for each hypothesis, so now we have multiple p-values to consider {pk}. To
boil this sequence down to a single criterion, we can make the following argument.
Given n independent hypotheses that are all untrue, the probability of getting at least
one false alarm is the following:

PFA = 1− (1− p0)
n

where p0 is the individual p-value threshold (say, 0.05). The problem here is that
PFA → 1 as n → ∞. If we want to make many comparisons at once and control
the overall false alarm rate, the overall p-value should be computed under the
assumption that none of the competing hypotheses is valid. The most common
way to address this is with the Bonferroni correction which says that the individual
significance level should be reduced to p/n. Obviously, this makes it much harder
to declare significance for any particular hypothesis. The natural consequence of
this conservative restriction is to reduce the statistical power of the experiment, thus
making it more likely the true effects will be missed.

In 1995, Benjamini and Hochberg devised a simple method that tells which p-
values are statistically significant. The procedure is to sort the list of p-values in
ascending order, choose a false-discovery rate (say, q), and then find the largest p-
value in the sorted list such that pk ≤ kq/n, where k is the p-value’s position in the
sorted list. Finally, declare that pk value and all the others less than it statistically

178 3 Statistics

Table 3.2 Example
contingency table

Infection No infection Total

Male 13 11 24

Female 12 1 13

Total 25 12 37

significant. This procedure guarantees that the proportion of false positives is less
than q (on average). The Benjamini-Hochberg procedure (and its derivatives) is fast
and effective and is widely used for testing hundreds of primarily false hypotheses
when studying genetics or diseases. Additionally, this procedure provides better
statistical power than the Bonferroni correction.

3.5.6 Fisher Exact Test

Contingency tables represent the partitioning of a sample population of two
categories between two different classifications as shown in Table 3.2. The question
is whether or not the observed table corresponds to a random partition of the sample
population, constrained by the marginal sums. Note that because this is a two-by-
two table, a change in any of the table entries automatically affects all of the other
terms because of the row and column sum constraints. This means that equivalent
questions like “Under a random partition, what is the probability that a particular
table entry is at least as large as a given value?” can be meaningfully posed.

The Fisher exact test addresses this question. The idea is to compute the
probability of a particular entry of the table, conditioned upon the marginal row
and column sums

P(Xi,j |r1, r2, c1, c2)

where Xi,j is (i, j) table entry, r1 represents the sum of the first row, r2 represents
the sum of the second row, c1 represents the sum of the first column, and c2 is
the sum of the second column. This probability is given by the hypergeometric
distribution. Recall that the hypergeometric distribution gives the probability of
sampling (without replacement) k items from a population of N items consisting
of exactly two different kinds of items

P(X = k) =
(
K
k

)(
N−K
n−k

)
(
N
n

)

where N is the population size, K is the total number of possible favorable draws, n

is the number of draws, and k is the number of observed favorable draws. With the
corresponding identification of variables, the hypergeometric distribution gives the
desired conditional probability: K = r1, k = x, n = c1, N = r1 + r2.

3.5 Hypothesis Testing and P -Values 179

Table 3.2 shows the data for x = 13 male infections among a population of
r1 = 24 males, in a total population of c1 = 25 infected persons, including r2 =
13 females. The scipy.stats module has the Fisher exact test implemented as
shown below:

>>> from scipy.stats import fisher_exact
>>> table = [[13,11],[12,1]]
>>> odds_ratio, p_value=fisher_exact(table)
>>> p_value
0.02718387758955712

The default for fisher_exact is the two-sided test. The following result is for the
less option:

>>> odds_ratio, p_value=fisher_exact(table,alternative='less')
>>> p_value
0.018976707519532877

This means that the p-value is computed by summing over the probabilities of
contingency tables that are less extreme than the given table. To understand what
this means, we can use the hypergeom function to compute the probabilities of
these with the number of infected men less than or equal to 13.

>>> from scipy.stats import hypergeom
>>> hg = hypergeom(37, 24, 25)
>>> probs = [(hg.pmf(i)) for i in range(14)]
>>> print(probs)
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0014597467322717626, 0.017516960787261115]

>>> print(sum(probs))
0.018976707519532877

This is the same as the prior p-value result we obtained from fisher_exact.
Another option is greater which derives from the following analogous summa-
tion:

>>> odds_ratio, p_value=fisher_exact(table,alternative='greater')
>>> probs = [hg.pmf(i) for i in range(13,25)]
>>> print(probs)
[0.017516960787261115, 0.08257995799708828, 0.2018621195484381,
0.28386860561499044, 0.24045340710916852, 0.12467954442697629,
0.039372487713781906, 0.00738234144633414, 0.0007812001530512284,
4.261091743915799e-05, 1.0105355914424832e-06,
7.017608273906114e-09]

>>> print(p_value)
0.9985402532677288
>>> print(sum(probs))
0.9985402532677288

Finally, the two-sided version excludes those individual table probabilities that are
less than that of the given table:

180 3 Statistics

>>> _,p_value=fisher_exact(table)
>>> probs = [hg.pmf(i) for i in range(25)]
>>> print(sum(i for i in probs if i<= hg.pmf(13)))
0.027183877589557117
>>> print(p_value)
0.02718387758955712

Thus, for this particular contingency table, we could reasonably conclude that 13
infected males in this total population is statistically significant with a p-value less
than five percent.

Performing this kind of analysis for tables larger than 2x2 easily becomes
computationally challenging due to the nature of the underlying combinatorics and
usually requires specialized approximations.

Contingency Table Odds Ratio Using a two-by-two contingency table, we can
write the odds ratio:

odds_ratio =
π0,0
π0,1
π1,0
π1,1

For the multinomial distribution, we have the maximum likelihood estimators for
the individual probabilities:

π̂i,j = Xi,j /N

Via the plug-in principle, the MLE of the odds ratio is therefore

odds_ratioMLE = X0,0X1,1

X0,1X1,0

Note that under independence, πi,j = πi,•π•,j so that odds_ratio = 1
Whereas tests like the Fisher exact test inform the validity of the association in
the contingency table, the odds ratio quantifies the strength of that association with
the value of one indicating independence or absence of association. Consider the
following example from the fisher_exact documentation:

Atlantic Indian

Whales 8 2

Sharks 1 5

>>> table = [[8,2],[1,5]]
>>> odds_ratio, p_value = fisher_exact(table)
>>> print(f'{odds_ratio=}, {p_value=}')
odds_ratio=20.0, p_value=0.03496503496503495

3.5 Hypothesis Testing and P -Values 181

The interpretation for the odds ratio above indicates that the association for whales
in the Atlantic versus the Indian ocean is 20 times stronger than for sharks in the
Atlantic versus the Indian Ocean. If the threshold for significance in the p-value
is the usual five percent, then the p-value above indicates that there is a valid
association in the contingency table.

3.5.7 Contingency Table Protocols

Contingency tables summarize the joint relationships between categorical variables
where each cell denotes the count of the cross-tabulated data for that column
and row. As shown in the two-by-two table below, the rows usually indicate the
independent (exogenous or explanatory) variables, and the columns indicate the
dependent (endogenous or response) variables. The • subscript denotes summation
of the entries along that positional index. Contingency tables can have I × J

rows by columns and can extend into multiple dimensions, but for our discussion
we consider at most three dimensions I × J × K , simply because the notation
becomes unwieldy, even though the same principles extend to higher dimensional
contingency tables. For certain situations, it may be unrealistic to designate the
variables independent versus dependent variables so the contingency table can also
be considered a two dimensional probability density histogram.

In this section, we start out with the simplest two-by-two contingency tables
and examine common methods to understand and analyze them. Then, we move
onto larger two-dimensional and three-dimensional tables and consider methods of
analysis for these.

X/Y Y0 Y1 Total

X0 n0,0 n0,1 n0,•
X1 n1,0 n1,1 n1,•
Total n•,0 n•,1 n•,•

Note that the rows are called factors and the columns cases. The rectangular grids
of the contingency table impose structural relationships among the constituent
variables that are reflected in the probability models used to represent the data. For
example, the simplest relationship between the columns and rows is no relationship
at all, which can be characterized by the Poisson distribution with the count in
each cell as a separate Poisson random sample process with its own Poisson mean
parameter, say μi,j . This means that the marginal sums of the contingency table
are likewise Poisson distributed. At the other extreme, we can consider the total of
sum of all cells and the marginals as fixed, which is modeled by the hypergeometric
distribution. In between these two cases are the multinomial distributions, or their
binary special cases, the binomial distributions.

182 3 Statistics

Example: Voting Partisanship Consistency Let us consider the following two-
by-two contingency table for the longitudinal study characterized by repeated
observations of the same individuals. A total of 433 males were observed voting
in 2004 and then again in 2008. The table summarizes whether voting behavior with
respect to political party was consistent between these two elections. For example,
of 191 men who voted Democrat in 2004, 175 of them voted Democrat in 2008. For
this study, the 191 Democrats and 242 Republicans were selected in 2004, and the
same group was surveyed again in 2008. Because the future voting behavior was
unknown when the 191 Democrats and 242 Republicans were chosen for the study,
the column proportions are unknown. The row marginals are fixed (no one dropped
out in the interim), but the column marginals are not. The null hypothesis is that
there is no difference in the consistency of the voting pattern between Democrats
and Republicans.

X/Y Democrat-2008 Republican-2008 Total

Democrat-2004 175 16 191

Republican-2004 54 188 242

Total 229 204 433

We can model each row as a separate binomial distribution with parameter p. If
the null hypothesis is valid, then there is no statistical difference between the two
rows, so they can be collapsed into a single row with overall binomial probability
p = (175+ 188)/433 for voting for the same party. Then, the expected value (μ̂i,j)
for each of the cells using this value is the following.

X/Expected Y Democrat-2008 Republican-2008 Total

Democrat-2004 160.1 30.9 191

Republican-2004 39.1 202.9 242

Total 199.2 233.8 433

Taking the squared difference between what we observed and what the model
expects under the null hypothesis gives us the χ2

1 statistic, X2 = 15.3, which is
larger than the 0.05 threshold (i.e., 3.84), so we can confidently reject the null
hypothesis and conclude that there is a difference in partisanship voting between
the two political parties.

As interesting as this rejection may be, we want to know why the null hypothesis
has failed. To investigate, we can compute the Pearson standardized residuals

ei,j = ni,j − μ̂i,j√
μ̂i,j

which are asymptotically normal with zero mean, but, unfortunately, their asymp-
totic variances are less than unity. A residual that is easier to interpret is the

3.5 Hypothesis Testing and P -Values 183

standardized residual that results from dividing the numerator by its standard error√
p(1− p).

X/Standardized residuals Democrat-2008 Republican-2008

Democrat-2004 3.19 −7.27

Republican-2004 6.46 −2.83

This shows that more Democrats than expected continue to vote Democrat in 2008
(3.19) and also that more Republicans from 2004 switched to Democrat in 2008
(6.46). There were fewer than expected Democrats voting Republican in 2008
(-7.27) and fewer than expected Republicans voting Republican in 2008 (-2.83).
Thus, voting behavior shifted toward the Democrats from 2004 to 2008.

Example: Cigarette Smoking and Lung Cancer The previous longitudinal study
had fixed row marginals, but now we consider a case-control or retrospective study
with the column marginals fixed. People once thought that lung cancer was caused
by air pollution generated by burning coal and not by cigarette smoking. The table
below shows some relevant data from a 1950 study by Doll and Hill taken from 20
hospitals in London, England. For each of the 709 patients admitted, they recorded
the smoking behavior of a noncancer patient at the same hospital of the same gender
and within the same 5-year age bracket. A smoker was defined as a person who had
smoked at least one cigarette a day for at least a year.

Smoker/Case Cancer Cases Controls Total

Yes 688 650 1338

No 21 59 80

Total 709 709 1418

The column-sums are deliberately matched between the two cases. Case-control
studies provide the conditional distribution of smoking behavior given cancer status.
Thus, the two following conditional probabilities

P(smoker|cancer) = 688/709

and

P(smoker|control) = 650/709

should be statistically equal under the null hypothesis. Obviously, we would prefer
to analyze P(cancer|smoker) but the data was not collected to determine this (i.e.,
by randomly partitioning participants and then forcing one group to smoke!). Under
the null hypothesis, cancer status has nothing to do with being a smoker, so the
distribution of controls and cases should be statistically equivalent. Because the

184 3 Statistics

column-sums are fixed, we need to know only one entry in each column to define
the table. For the 0th column the count of the n0,0 is binomially distributed

n0,0 ∼
(

n•,0
n0,0

)
pn0,0(1− p)n•,0−n0,0

and similarly for the n0,1 column. The null hypothesis is that each n0,0 and n0,1 of
the table are independent. For the smoker data, we can estimate p̂ = 1338/1418,
and using the Pearson χ2 test discussed below, we can compute the expected values
for each entry in the table

Smoker/Case Cancer Cases Controls Total

Yes 669 669 1338

No 40 40 80

Total 709 709 1418

and compute the χ2
1 statistic as 19.1292, which is above the 3.84 value so we

reject the null hypothesis. Scipy has the tools to compute these parameters

>>> from scipy.stats import fisher_exact, chi2_contingency
>>> from scipy.stats.contingency import expected_freq
>>> expected_freq([[688,650],[21,59]])
array([[669., 669.],

[40., 40.]])

and to compute the χ2
1 test

>>> (xistat, pvalue,
... degfreedom, expectation) = chi2_contingency([[688,650],
... [21,59]],
... correction=False)
>>> print(f'{xistat=},{pvalue=},{degfreedom=}')
xistat=19.129222720478325,pvalue=1.2216007893346798e-05,
degfreedom=1
>>> print(f'{expectation=}')
expectation=array([[669., 669.],

[40., 40.]])

The expected value array is the same one we computed earlier with expected_freq.
The reported pvalue is far below the usual 0.05 value, so we reject the null
hypothesis.

Example: Cross-Sectional Study For this study, the population is sampled at a
specific point in time, and the resulting contingency table has no fixed marginals but
does maintain a fixed total of samples, n•,•. This means that the entries of the table
are determined by the multinomial distribution so that the marginals M1 and N1 are
random variables. The following code illustrates a contingency table created from
the multinomial distribution:

3.5 Hypothesis Testing and P -Values 185

>>> from scipy.stats import multinomial
>>> table=multinomial(100,[.1,.2,.3,.4]).rvs().reshape((2,2))
>>> print(table) # contingency table
[[12 26]
[24 38]]

>>> print(table.sum(axis=0)) # column sums
[36 64]
>>> print(table.sum(axis=1)) # row sums
[38 62]

Let us consider the following contingency table where only N is fixed. The
marginal sums N1,M1 are binomially distributed with parameters pn, pm, respec-
tively, as a consequence of the multinomial distribution of the table entries.

X/Y Y1 Y2 Total

X1 n0,0 - M1

X2 - - M2

Total N1 N2 N

Under the null hypothesis, n0,0 ∼ Binom(N, pmpn), which means that the
probability for that entry is independent of the row or column (i.e., p0,0 = pmpn).
The test statistic (sometimes called the association test) is the following:

Y = n0,0

N
− M1

N

N1

N

which says that p̂0,0 = p̂np̂m, which is the claim of the null hypothesis. We next
determine the distribution of this statistic under the null hypothesis. The expectation
is zero, E(Y) = 0. Furthermore, we have

E(Y 2) = pmpn (pm ((1− 3N)pn +N − 1)+ (N − 1)pn +N + 1)

N2

With these two facts, using p̂m = M1
N

and p̂n = N1
N

, we can compute the normalized
score as

Z = N
(
Nn0,0 −M1N1

)
√

M1
√

N1
√

M1 ((N − 1)N + (1− 3N)N1)+N (N(N + 1)+ (N − 1)N1)

Let us use a Monte Carlo simulation to check the distribution of the statistic Y

against the asymptotic normal distribution with the given variance (see Fig. 3.12).

>>> from scipy.stats import binom, norm

>>> p_m, p_n = 0.1, 0.2 # simulation parameters

>>> N, nsamples = 500, 1000

>>> M1, N1, n00 = binom(N,p_m), binom(N,p_n), binom(N,p_n*p_m)

>>> # plotted below in Figure

>>> association = n00.rvs(nsamples)/N-M1.rvs(nsamples)*N1.rvs(nsamples)/N/N

186 3 Statistics

Fig. 3.12 Association test
density vs. histogram

50

E
st

im
at

ed
 P

D
F

Association test density vs. histogram

Association test statistic

40

30

20

−0.02 −0.01 0.00 0.01 0.02

10

0

Fig. 3.13 Shaded area
correspondence to p-value
≈ 0.2

0.40

0.35

0.30

0.25

0.20

0.15

0 1 2 3

0.10

0.05

0.00

E
st

im
at

ed
 P

D
F

−3 −2 −1

Normalized statistic

Let us consider a sample contingency table under this protocol using the values
in the previous code:

X/Y Y1 Y2 Total

X1 7 41 48

X2 95 357 452

Total 102 398 500

The code below computes the normalized statistic for this table gives Fig. 3.13
which shows that rejecting the null hypothesis (i.e., that the aforementioned entries
are all mutually independent) is not reasonable (i.e., shaded area for p-value≈ 0.2).

>>> val = 7/N - 48/N*102/N
>>> p_m, p_n = 48/N, 102/N
>>> std = np.sqrt((p_m*p_n*(1+N+(-1+N)*p_n
... +p_m*(-1+N+(1-3*N)*p_n)))/N**2)
>>> Y = val/std
>>> nrv = norm(0,1) # standard normal distribution
>>> nrv.cdf(Y) # p-value
0.21174395725924777

The chi-square statistic is proportional to the square of Y above, so we can also
test against the chi-square statistic with one degree of freedom. Here is the Monte

3.5 Hypothesis Testing and P -Values 187

Fig. 3.14 Asymptotic
distribution for Y 2 vs.
histogram 1.2

Asymptotic distribution for vs histogrm

1.0

0.8

0.6

0.4

0.2

0 2 4 6
Y2

X2 Y2

8 10
0.0

E
st

im
at

ed
 P

D
F

Carlo simulation for Y 2. Figure 3.14 shows the corresponding comparison with the
asymptotic χ2 distribution.

>>> from scipy.stats import chi2
>>> std = np.sqrt((p_m*p_n*(1+N+(N-1)*p_n+
... p_m*(-1+N+(1-3*N)*p_n)))/N**2)
>>> d = (n00.rvs(nsamples)/N-M1.rvs(nsamples)*\
... N1.rvs(nsamples)/N/N)**2/(std**2)

Continuing the contingency table example above using the chi-square statistic shows
that the null hypothesis is rejected again. Note that the Pearson chi-square statistic
is N

N−1Y 2 so it shares the same asymptotic behavior for large N . The following code
computes the p-value for the ξ2 statistic:

>>> p_m, p_n = 48/N, 102/N
>>> val = 7/N - p_m*p_n
>>> std = np.sqrt((p_m*p_n*(1+N+(N-1)*p_n+
... p_m*(N-1+(1-3*N)*p_n)))/N**2)
>>> Y2 = (val/std)**2
>>> 1-chirv.cdf(Y2) # p-value
0.42348791451849566

Case-Control Contingency Table Analysis We can use the same pattern of
analysis for case-control contingency tables. Recall that in this case, the column-
sums are fixed. Here is the corresponding contingency table:

X/Y Y1 Y2 Total

X1 n0,0 - M1

X2 n1,0 - M2

Total N1 N2 N

In this case N1, N2, and N are fixed with M1 ∼ Binom(N, pm). The null
hypothesis is that there is no relationship between the counts in the rows. That
is, the two factors (rows) are irrelevant to the cases (columns). This means that

188 3 Statistics

n0,0 ∼ Binom(M1, p1) and n1,0 ∼ Binom(M2, p2) with the null hypothesis that
H0 : p1 = p2. Notice that once M1 is drawn, M2 is fixed because the row marginals
sum to N . We form the following statistic:

Y = p̂1 − p̂2

with p̂1 = n0,0
M1

and p̂2 = n1,0
M2

Under the null hypothesis, we have E(Y) = 0 and

E(Y 2) = V(Y) = 1

M2
1

V(n0,0)+ 1

M2
2

V(n1,0)

and because we have V(n0,0) = M1p1(1 − p1) with corresponding V(n1,0) =
M2p2(1− p2) so that we have

V(Y) = 1

M1
p1(1− p1)+ 1

M2
p2(1− p2)

Note that if we scale the Y by
√

N to form the new statistic,

Y1 =
√

NY = √N(p̂1 − p̂2)

We then obtain,

V(Y1) = N

M1
p1(1− p1)+ N

M2
p2(1− p2) =

(
N

M1
+ N

M2

)
p1(1− p1)

under the null hypothesis that p1 = p2. Then, using the estimate p̂m = M1
N

, we
obtain the following:

V(Y1) = p1(1− p1)

pm(1− pm)

Thus, we have the parameters for the asymptotically normal distribution of the
statistic, Y1, to obtain

Z = √N

(
n0,0

M1
− n1,0

N −M1

)√√√√
M1
N

(1− M1
N

)
n0,0
M1

(1− n0,0
M1

)

The following code simulates the data under these conditions. Figure 3.15 shows the
sample histogram and corresponding asymptotic density.

>>> nsamples, N = 1000, 500
>>> p_1, p_m = 0.3, 0.8
>>> M1 = binom(N,p_m)

3.5 Hypothesis Testing and P -Values 189

Fig. 3.15 Histogram and
asymptotic density for
case-control analysis

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

E
st

im
at

ed
 P

D
F

−4 −2 0 2
Y

4

>>> def gen_samples(n=1):
... M = M1.rvs()
... n00 = binom(M,p_1).rvs(n)
... n10 = binom(N-M,p_1).rvs(n)
... return (n00/M-n10/(N-M))*np.sqrt(N)
...
>>> y = gen_samples(nsamples)

Using the parameters above, let us consider a sample contingency table for the
null hypothesis under this protocol with pm = 0.8 and p1 = 0.3,

X/Y Y1 Y2 Total

X1 116 290 406

X2 27 67 94

Total 143 357 500

The Y1 statistic is then Z ≈ −0.029. This is very close to the mean so the p-value
is approximately 0.5, which means that we cannot reject the null hypothesis that the
rows are independent, which is reassuring because we generated this contingency
table under the null hypothesis anyway. Let us consider a contingency table that is
not generated under the null hypothesis with p1 = 0.3, p2 = 0.8:

X/Y Y1 Y2 Total

X1 116 290 406

X2 67 27 94

Total 183 317 500

This means that n1,0 was generated under Binom(M2, p2). For this case we have
Z ≈ −8.25 with corresponding p-value ≈ 0. The Fisher exact test is frequently
used for this situation. Figure 3.16 (on the left) shows the comparison of the p-
values obtained using the Fisher exact test and the Z statistic. Note that the p-value

190 3 Statistics

Fig. 3.16 Comparison of p-values for Fisher exact test and Z-statistic for case-control analysis

corresponding to the Fisher exact test is bounded below by the corresponding p-
value of our Z statistic. This gap (rightmost figure) means that there are cases where
the Fisher exact test fails to reject the null hypothesis that would otherwise have been
rejected by the Z statistic. The difference between the two is significant near where
n2,1 = 27, indicating that this is a particularly sensitive value for the contingency
table in terms of rejecting the null hypothesis.

Pearson Chi-Square Test For I × J tables larger than two by two, the Pearson
chi-square statistic is commonly used to analyze contingency tables when N is large
compared to the number of columns in the table. We define πi,j = P (X = i, Y = j)

with π•,• = 1. The parameters for the corresponding multinomial distributions
are estimated using the usual proportions π̂i,j = ni,j /N . For independence, the
joint outcome factors into a product of the marginals, πi,j = πi,•π•,j . Without
independence, there are IJ − 1 free parameters in the table because the constraint
π•,• = 1; however, with independence we have (I − 1)+ (J − 1) free parameters.
This is because the original constraint breaks into π•,• =∑

j π•,j
∑

i πi,• = 1 and
the marginal probabilities

∑
j π•,j = 1 and

∑
i πi,• = 1. Thus, there are one fewer

free parameters each by row and column and a (IJ−1)−(I+J−2) = (I−1)(J−1)

reduction in free parameters for the same table without independence.
The Pearson chi-square test is the squared difference of the observed count minus

the estimated expected count divided by the estimated expected count. The expected
count under the independence assumption is

Nπ̂i,•π̂•,j = ni,•n•,j /N

So, the Pearson chi-square test statistic is the following:

X2 =
I∑

i=1

J∑

j=1

(ni,j − ni,•n•,j /N)2

ni,•n•,j /N

3.5 Hypothesis Testing and P -Values 191

When the null hypothesis is false, we expect large values for the squared difference
in X2 and therefore reject the null hypothesis (i.e., not independent) when X >

χ2
(I−1)(J−1),1−α .

Odds Ratio for Association. The odds ratio provides a consistent and interpretable
measure of association and is fundamental to contingency table analysis. It is
incorrect, but common, to use the value of the p-value as a way to measure such
association. Consider the following two-by-two contingency table:

X/Y Y1 Y2 Total

X1 n0,0 n0,1 M1

X2 n1,0 n1,1 M2

Total N1 N2 N

If the marginal sums are fixed, then choosing any one of the ni,j values determines
the other three. We can divide all the values by N to obtain the corresponding
probabilities. Note that these would be the estimators for the parameters for the
multinomial distribution.

X/Y Y1 Y2 Total

X1 p0,0 p0,1 p0,•
X2 p1,0 p1,1 p1,•
Total p•,0 p•,1 1

The odds across the first row is the following:

odds0 = p0,0

p0,1

and similarly along the next row. Thus, the odds ratio for the table is then

oddsRatio = p0,0p1,1

p0,1p1,0

To get a feel for the odds ratio in this situation, consider the following table from
the scipy.stats.fisher_exact Documentation:

Animal/Ocean Atlantic Indian

whales 8 2

sharks 1 5

Using the fisher_exact test, we compute the following:

>>> from scipy.stats import fisher_exact
>>> odds_ratio, p_value = fisher_exact([[8,2],[1,5]])
>>> print(f'{odds_ratio=}, {p_value=}')
odds_ratio=20.0, p_value=0.03496503496503495

192 3 Statistics

The interpretation is that the odds of finding a whale in the Atlantic Ocean as
opposed to the Indian Ocean is about 20 times that than of finding a shark in the
Atlantic Ocean versus the Indian Ocean.

Interestingly, the odds ratio and the two marginals (p0,•, p•,0) completely
characterize the contingency table in that each of them can be set independently
of the others and produce a valid table. In this sense, these three numbers are like
the orthogonal coordinates of the table that summarize the information without
mutually interfering with each other. This is not the only way to parameterize the
table, as one could use the marginals and the p0,0 value to derive the required
parameters, but in this case, changing the value of p0,0 affects the marginals. The
technical term for this non-mutual-interfering behavior of a parameterization is
variation independent.

Consider the following code that solves for the table probabilities where the
marginals are set to 0.1 and 0.2, respectively, with the odds ratio set to 5:

>>> import sympy as S
>>> S.var('p:2(:2)',positive=True)
(p00, p01, p10, p11)
>>> eqs = [p00+p01- .1, # marginal
... p00+p10-.2, # marginal
... p00*p11/p01/p10 - 5, # odds ratio
... p00+p11+p01+p10-1, # probabilities sum
...]
>>> sol, = S.solve(eqs)
>>> print((p00+p01).subs(sol)) # marginal
0.100000000000000
>>> print((p00+p10).subs(sol)) # marginal
0.200000000000000
>>> print((p00*p11/p01/p10).subs(sol)) # odds ratio
5.00000000000000
>>> print(sol)
{p00: 0.0500000000000000, p01: 0.0500000000000000,

p10: 0.150000000000000, p11: 0.750000000000000}

Notice the solution provides all the terms for the contingency table. Now, if we leave
everything the same and double the odds ratio, we get the following:

>>> eqs[2] = p00*p11/p01/p10 - 10 # increase odds ratio
>>> sol, = S.solve(eqs)
>>> print((p00+p01).subs(sol)) # marginal unchanged
0.100000000000000
>>> print((p00+p10).subs(sol)) # marginal unchanged
0.200000000000000
>>> print((p00*p11/p01/p10).subs(sol)) # new odds ratio
10.0000000000000

Notice that the marginals have stayed the same even though the odds ratio has
doubled. This is what variation independent means.

The parameterization using the marginals and the odds ratio also provides a way
to assess the degree of independence among the rows and columns because if the

3.5 Hypothesis Testing and P -Values 193

rows and columns are independent, then the odds ratio is one. This follows easily
by plugging in the independence condition pi,j = p•,jpi,•. The MLE estimate of
the odds ratio is composed of the MLE estimates of each entry in the table

ÔR = p̂0,0p̂1,1

p̂0,1p̂1,0

where p̂i,j = ni,j /n•,•. Under the multinomial distribution, the asymptotic variance
of the MLE estimate of the log odds ratio is the following:

V
(
ÔR

) =
(

1

n0,0
+ 1

n0,1
+ 1

n1,0
+ 1

n1,1

)

Importantly, this does not depend on the value of the odds ratio itself. Let us look at
a quick example using this estimate for the following contingency table:

Smoker/Case Cancer Cases Controls

Yes 483 477

No 1101 1121

The estimated odds ratio is the following:

483× 1121

477× 1101
≈ 1.03

which is close to one, hinting at independence. Because we have the variance of the
estimator above, we can compute the asymptotic standard error,

√
1

438
+ 1

447
+ 1

1101
+ 1

1121
≈ 0.0786

Then, with the 95% confidence interval, our odds ratio estimate becomes

1.03± 0.154

Wide Contingency Table So far, we have been only using two-by-two contingency
table, but the same pattern of analysis follows for wider tables. For example,
consider the following data of 52 males who had knee surgeries with results
classified as excellent (E), good (G), and fair/poor (F) according to type of injury
(twist, direct, both).

>>> data = np.array([[21,11,4],
... [3,2,2],
... [7,1,1]]).reshape((3,3))
>>> xa = xr.DataArray(data,

194 3 Statistics

... coords = {'i':['twist','direct','both'],

... 'j':['excellent', 'good', 'poor']})
>>> xa
<xarray.DataArray (i: 3, j: 3)>
array([[21, 11, 4],

[3, 2, 2],
[7, 1, 1]])

Coordinates:

* i (i) <U6 'twist' 'direct' 'both'

* j (j) <U9 'excellent' 'good' 'poor'

We can model this as product-multinomial with each type of injury representing a
separate population with its own multinomial distribution. The null hypothesis is
that the surgical results have nothing to do with the kind of injury.

H0 : pi,j = pi,•p•,j

We can estimate the expected table of each of the outcomes as the following:

>>> expected = xa.sum('j')*xa.sum('i')/xa.sum() # expected
table under H0

>>> expected
<xarray.DataArray (i: 3, j: 3)>
array([[21.46153846, 9.69230769, 4.84615385],

[4.17307692, 1.88461538, 0.94230769],
[5.36538462, 2.42307692, 1.21153846]])

Coordinates:

* i (i) <U6 'twist' 'direct' 'both'

* j (j) <U9 'excellent' 'good' 'poor'

As before, we can use the χ2 statistic to check the null hypothesis.

>>> float(((xa - expected)**2/expected).sum()) # X^2 chi-squared
statistic

3.2288420744641946

To compute the degrees of freedom, we have to tally the number of unknowns
in under the product-multinomial hypothesis (three injury-types times two free
pi parameters per type) minus the number of parameters we estimated under the
null hypothesis. We can compute the threshold for the 5% p-value using the isf
function in stats.chi2 as follows:

>>> degrees_freedom = 2*3 - 2
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
9.487729036781158

Note that we set the Yates continuity correction flag to False to get the values
to match exactly even though it doesn’t matter in this case. The main idea is that we
can use the same pattern of analysis for contingency tables bigger than two-by-two.

>>> chi2_stat, pvalue, dof, expected_array =
stats.chi2_contingency(xa.values,correction=False)

3.5 Hypothesis Testing and P -Values 195

where expected_array is the same as expected we computed above and
chi2_stat is the χ2 statistic as above.

Simpson’s Paradox Simpson’s paradox is important to understand as we move
onward to study high-dimensional contingency tables. Let us get started with an
example regarding treatments and outcomes across gender.

>>> data = np.array([[60, 20,40,80],
... [100,50,10,30]]).reshape((2,2,2))
>>> xa = xr.DataArray(data,
... coords = {'treatment':[1,2],
... 'sex': ['male','female'],
... 'outcome':['success','failure']})
>>> xa
<xarray.DataArray (treatment: 2, sex: 2, outcome: 2)>
array([[[60, 20],

[40, 80]],

[[100, 50],
[10, 30]]])

Coordinates:

* treatment (treatment) int64 1 2

* sex (sex) <U6 'male' 'female'

* outcome (outcome) <U7 'success' 'failure'

Let us consider the males separately,

>>> xa.sel(sex='male') # treatment 1 works for males
<xarray.DataArray (treatment: 2, outcome: 2)>
array([[60, 20],

[100, 50]])
Coordinates:

* treatment (treatment) int64 1 2
sex <U6 'male'

* outcome (outcome) <U7 'success' 'failure'

This result indicates that Treatment 1 has a better success rate than
Treatment 2 (i.e., 60/80 vs. 100/150). Likewise considering the females
separately,

>>> xa.sel(sex='female') # treatment 1 works for females
<xarray.DataArray (treatment: 2, outcome: 2)>
array([[40, 80],

[10, 30]])
Coordinates:

* treatment (treatment) int64 1 2
sex <U6 'female'

* outcome (outcome) <U7 'success' 'failure'

shows that the success rate for Treatment 1 is better also. Now, let us combine
the genders and obtain the following table:

196 3 Statistics

>>> # treatment 2 is better than treatment 1
>>> xa.sum('sex')
<xarray.DataArray (treatment: 2, outcome: 2)>
array([[100, 100],

[110, 80]])
Coordinates:

* treatment (treatment) int64 1 2

* outcome (outcome) <U7 'success' 'failure'

Surprisingly, the success rate for Treatment 2 is better here (110/190 vs.
100/200). This is the paradox—why is the superior treatment (i.e., Treatment
1) for each separate group different for the pooled group? To unpack this paradox,
we need to understand models of independence for three-dimensional tables.

Model of Complete Independence Complete independence means that all three
dimensions are independent of each other. Consider the following table regarding
personality type (A vs. B), cholesterol (CHL) level, and blood pressure (BP):

>>> data = np.array([[716,79],
... [207,25],
... [819,67],
... [186,22]]).reshape((2,2,2))
>>> xa = xr.DataArray(data,
... coords ={'personality': ['A','B'],
... 'cholesterol': ['normal','high'],
... 'blood_pressure': ['normal','high'],
... }
...).astype(np.int64)
>>> xa
<xarray.DataArray (personality:2, cholesterol:2, blood_pressure:2)>
array([[[716, 79],

[207, 25]],

[[819, 67],
[186, 22]]])

Coordinates:

* personality (personality) <U1 'A' 'B'

* cholesterol (cholesterol) <U6 'normal' 'high'

* blood_pressure (blood_pressure) <U6 'normal' 'high'

Under the null hypothesis, we compute the expected table as shown

>>> expected =(xa.sum(['personality','cholesterol'])*
... xa.sum(['cholesterol','blood_pressure'])*
... xa.sum(['personality','blood_pressure'])/xa.sum()**2)
>>> expected.transpose('personality','cholesterol', 'blood_pressure')
<xarray.DataArray (personality: 2, cholesterol: 2, blood_
pressure: 2)>
array([[[739.88436419, 74.06518791],

[193.66396207, 19.38648583]],

[[788.15335387, 78.89709403],
[206.29831987, 20.65123223]]])

Coordinates:

3.5 Hypothesis Testing and P -Values 197

* blood_pressure (blood_pressure) <U6 'normal' 'high'

* personality (personality) <U1 'A' 'B'

* cholesterol (cholesterol) <U6 'normal' 'high'

where the transpose at the end is just to orient the data for comparison with xa.
Now, we compute the usual Pearson χ2 test

>>> degrees_freedom = 7 - 3
>>> print(((xa-expected)**2/expected).sum()) # chi^2 statistic
<xarray.DataArray ()>
array(8.73016317)
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
9.487729036781158

where the degrees of freedom tally the number of parameters in the original table
(8 − 1 = 7) minus the number of parameters we estimated under this hypothesis
(one for each of the three dimensions). Thus, we cannot reject the null hypothesis
here, and this indicates there may be a more complicated relationship among the
three dimensions.

Models of One Factor Independent of the Others As opposed to the hypothesis
of complete independence for all three dimensions, another possible hypothesis
is that one of the dimensions is independent of the other two joint dimensions.
Let us consider the following three-dimensional data regarding 97 10-year-old
schoolchildren classified according to classroom behavior, risk of home conditions,
and adversity of school conditions. Classroom behavior was judged by teachers to
be deviant or non-deviant. Risk of home conditions identify as not-at-risk (N) or
at risk (R). Adversity of school condition was judged either low, medium, or high.
Here is the corresponding dataframe where the index names have the index variable
names (e.g., (i), (j), (k)) included in the coordinate names for clarity.

>>> data = np.array([[16,7,15,34,5,3],[1,1,3,8,1,3]]).reshape((2,3,2))
>>> xa = xr.DataArray(data, coords = {
... 'behavior(i)':['deviant','non-deviant'],
... 'adversity(j)':['low','medium','high'],
... 'risk(k)': ['N','R']
... }
...).astype(np.int64)
>>> xa
<xarray.DataArray (behavior(i): 2, adversity(j): 3, risk(k): 2)>
array([[[16, 7],

[15, 34],
[5, 3]],

[[1, 1],
[3, 8],
[1, 3]]])

Coordinates:

* behavior(i) (behavior(i)) <U11 'deviant' 'non-deviant'

* adversity(j) (adversity(j)) <U6 'low' 'medium' 'high'

* risk(k) (risk(k)) <U1 'N' 'R'

198 3 Statistics

Consider the hypothesis that the rows are independent of joint columns and layers
(third dimension),

H1 : pi,j,k = pi,•,•p•,j,k

This means that behavior is independent of joint home-risk and adversity and
likewise

H2 : pi,j,k = p•,•,kpi,j,•

means that home-risk is independent of joint behavior and adversity and finally,

H3 : pi,j,k = p•,j,•pi,•,k

means that adversity is independent of joint behavior and home-risk.
Let us test the H1 hypothesis that behavior is independent of joint risk and

adversity. The following is the expected table under this hypothesis:

>>> expected =
xa.sum(['adversity(j)','risk(k)'])*xa.sum('behavior(i)')/xa.sum()

>>> expected
<xarray.DataArray (behavior(i):2, adversity(j):3, risk(k):2)>
array([[[14.02061856, 6.59793814],

[14.84536082, 34.63917526],
[4.94845361, 4.94845361]],

[[2.97938144, 1.40206186],
[3.15463918, 7.36082474],
[1.05154639, 1.05154639]]])

Coordinates:

* behavior(i) (behavior(i)) <U11 'deviant' 'non-deviant'

* adversity(j) (adversity(j)) <U6 'low' 'medium' 'high'

* risk(k) (risk(k)) <U1 'N' 'R'

The first xa.sum isolates the behavior dimension by summing over the other
dimensions. The second xa.sum isolates the join risk and adversity dimensions by
summing over the behavior dimension. Next, we compute the degrees of freedom
and the χ2 statistic:

>>> degrees_freedom = 12-1-6
>>> print('X^2 = ',((xa-expected)**2/expected).sum()) # chi^2

statistic
X^2 = <xarray.DataArray ()>
array(6.19138681)
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
11.070497693516355

Thus, we cannot reject H1 hypothesis that behavior is independent of joint home-
risk and adversity. Next, let us test the H2 Hypothesis that home-risk is independent
of joint behavior and adversity:

3.5 Hypothesis Testing and P -Values 199

H2 : pi,j,k = p•,•,kpi,j,•

The following is the expected table under this hypothesis:

>>> expected = xa.sum(['adversity(j)','behavior(i)'])*xa.
sum('risk(k)')/xa.sum()

>>> expected
<xarray.DataArray (risk(k):2, behavior(i):2, adversity(j):3)>
array([[[9.72164948, 20.71134021, 3.3814433],

[0.84536082, 4.64948454, 1.69072165]],

[[13.27835052, 28.28865979, 4.6185567],
[1.15463918, 6.35051546, 2.30927835]]])

Coordinates:

* risk(k) (risk(k)) <U1 'N' 'R'

* behavior(i) (behavior(i)) <U11 'deviant' 'non-deviant'

* adversity(j) (adversity(j)) <U6 'low' 'medium' 'high'

Next, we compute the degrees of freedom and the χ2 statistic:

>>> degrees_freedom = (12-1) -5 -1
>>> print('X^2 = ',((xa-expected)**2/expected).sum()) # chi^2

statistic
X^2 = <xarray.DataArray ()>
array(12.64459949)
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
11.070497693516355

In this case, we reject the null hypothesis that home-risk is independent of joint
behavior and adversity. Finally, we examine the H3 hypothesis that adversity is
independent of joint behavior and home-risk:

H3 : pi,j,k = p•,j,•pi,•,k

The following is the expected table under this hypothesis:

>>> expected = xa.sum('adversity(j)')*xa.sum(['behavior(i)',
'risk(k)'])/xa.sum()

>>> expected
<xarray.DataArray (behavior(i):2, risk(k):2, adversity(j):3)>
array([[[9.27835052, 22.26804124, 4.45360825],

[11.34020619, 27.21649485, 5.44329897]],

[[1.28865979, 3.09278351, 0.6185567],
[3.09278351, 7.42268041, 1.48453608]]])

Coordinates:

* behavior(i) (behavior(i)) <U11 'deviant' 'non-deviant'

* risk(k) (risk(k)) <U1 'N' 'R'

* adversity(j) (adversity(j)) <U6 'low' 'medium' 'high'

200 3 Statistics

Next, we compute the degrees of freedom and the χ2 statistic:

>>> degrees_freedom = (2*2-1)*(3-1)
>>> print('X^2 = ',((xa-expected)**2/expected).sum()) # chi^2

statistic
X^2 = <xarray.DataArray ()>
array(15.06798653)
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
12.59158724374398

In this case, we can reject the null hypothesis that adversity is independent of joint
behavior and home-risk.

Returning to Simpson’s Paradox Data Now that we have considered several
options for applying Pearson’s χ2 test to three-dimensional contingency tables,
we can revisit our earlier data for Simpson’s paradox in Sect. 3.5.7 and investigate
further. Recall the dataframe from Simpson’s paradox:

>>> data=np.array([[60,20,40,80],
... [100,50,10,30]]).reshape((2,2,2))
>>> xa = xr.DataArray(data,
... coords = {'treatment': [1,2],
... 'sex': ['male','female'],
... 'outcome': ['success','failure']}
...).astype(np.int64)
>>> xa
<xarray.DataArray (treatment: 2, sex: 2, outcome: 2)>
array([[[60, 20],

[40, 80]],

[[100, 50],
[10, 30]]])

Coordinates:

* treatment (treatment) int64 1 2

* sex (sex) <U6 'male' 'female'

* outcome (outcome) <U7 'success' 'failure'

Recall that the paradox was that although treatment 1 was best for each gender
separately, treatment 2 was best when the genders were pooled. Consider the
hypothesis that gender is independent of joint treatment and outcome (i.e., p•,j,•).
>>> expected = xa.sum('sex')*xa.sum(['treatment','outcome'])/

xa.sum()
>>> expected
<xarray.DataArray (treatment: 2, outcome: 2, sex: 2)>
array([[[58.97435897, 41.02564103],

[58.97435897, 41.02564103]],

[[64.87179487, 45.12820513],
[47.17948718, 32.82051282]]])

Coordinates:

* treatment (treatment) int64 1 2

* outcome (outcome) <U7 'success' 'failure'

* sex (sex) <U6 'male' 'female'

3.5 Hypothesis Testing and P -Values 201

As before, we compute the degrees of freedom and the χ2 statistic as shown below:

>>> degrees_freedom = (8-1)-3-1
>>> print('X^2 = ',((xa-expected)**2/expected).sum()) # chi^2

statistic
X^2 = <xarray.DataArray ()>
array(109.60319911)
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
7.814727903251178

The result below suggests that we can reject the hypothesis of independence
between gender and joint treatment and outcome. If the result had been other-
wise (i.e., not reject the independence hypothesis), then we may feel safe about
marginalizing over gender to examine treatment and outcome, but this result for this
data shows that we cannot do this and thus illustrates that Simpson’s paradox is a
symptom of this result. In other words, because the model was rejected means that
there is a relationship between gender and treatment-outcome so we cannot pool
the genders without addressing this relationship. The rejection of the independence
hypothesis here just highlights this fact, but it does not explain what that relationship
is, which would require further analysis to uncover.

Models of Conditional Independence We have examined multiple ways of exam-
ining the idea of independence for the three-dimensional contingency table. Now, let
us consider conditional independence starting with the following contingency table
regarding personality type (A vs. B), cholesterol (CHL) level, and blood pressure
(BP):

>>> data = np.array([[716,79],
... [207,25],
... [819,67],
... [186,22]]).reshape((2,2,2))
>>> xa = xr.DataArray(data,
... coords = {'personality': ['A','B'],
... 'cholesterol': ['normal','high'],
... 'blood_pressure': ['normal','high']}
...).astype(np.int64)
>>> xa
<xarray.DataArray (personality: 2, cholesterol: 2,

blood_pressure: 2)>
array([[[716, 79],

[207, 25]],

[[819, 67],
[186, 22]]])

Coordinates:

* personality (personality) <U1 'A' 'B'

* cholesterol (cholesterol) <U6 'normal' 'high'

* blood_pressure (blood_pressure) <U6 'normal' 'high'

202 3 Statistics

Consider the following model of conditional independence between cholesterol and
blood pressure given personality type:

pi,j,k = pi,j,•pi,•,k/pi,•,•

The following is the expected table under this hypothesis:

>>> expected =(xa.sum('blood_pressure')*
... xa.sum('cholesterol')/xa.sum(['cholesterol',
... 'blood_pressure']))
>>> expected
<xarray.DataArray (personality: 2, cholesterol: 2,
blood_pressure: 2)>
array([[[714.49367089, 80.50632911],

[208.50632911, 23.49367089]],

[[813.9213894 , 72.0786106],
[191.0786106 , 16.9213894]]])

Coordinates:

* personality (personality) <U1 'A' 'B'

* cholesterol (cholesterol) <U6 'normal' 'high'

* blood_pressure (blood_pressure) <U6 'normal' 'high'

As before, we compute the degrees of freedom and the χ2 statistic:

>>> degrees_freedom = 2
>>> print('X^2 =',((xa-expected)**2/expected).sum()) # chi^2

statistic
X^2 = <xarray.DataArray ()>
array(2.18757144)
>>> stats.chi2(degrees_freedom).isf(.05) # chi^2 threshold
5.991464547107983

Given these values, we cannot reject the null hypothesis that given personality
type, cholesterol and blood pressure are statistically independent, and perhaps we
should investigate the relationship between cholesterol and blood pressure for each
personality type separately.

In this section, we discussed the structure of statistical hypothesis testing and
defined the various terms that are commonly used for this process, along with the
illustrations of what they mean in our running coin flipping example. From an
engineering standpoint, hypothesis testing is not as common as confidence intervals
and point estimates. On the other hand, hypothesis testing is very common in
social and medical science, where one must deal with practical constraints that
may limit the sample size or other aspects of the hypothesis testing rubric. In
engineering, we can usually have much more control over the samples and models
we employ because they are typically inanimate objects that can be measured
repeatedly and consistently. This is obviously not so with human studies, which
generally have other ethical and legal considerations. We also detailed using
contingency tables for specific study protocols, which is a very common use case
for healthcare and medical applications, along with Fisher exact test, which is a
powerful nonparametric test for such tables.

3.6 Confidence Intervals 203

3.6 Confidence Intervals

In a previous coin flipping discussion, we discussed estimation of the underlying
probability of getting a heads. There, we derived the estimator as

p̂n = 1

n

n∑

i=1

Xi

where Xi ∈ {0, 1}. Confidence intervals allow us to estimate how close we can get
to the true value that we are estimating. Logically, that seems strange, doesn’t it?
We really don’t know the exact value of what we are estimating (otherwise, why
estimate it?), and yet, somehow we know how close we can get to something we
admit we don’t know. Ultimately, we want to make statements like the probability
of the value in a certain interval is 90%. Unfortunately, that is something we will
not be able to say using our methods. Note that Bayesian estimation gets closer to
this statement by using credible intervals, but that is a story for another day. In our
situation, the best we can do is say roughly the following: if we ran the experiment
multiple times, then the confidence interval would trap the true parameter 90% of
the time.

Let us return to our coin flipping example and see this in action. One way to get
at a confidence interval is to use Hoeffding’s inequality from Sect. 2.11 specialized
to our Bernoulli variables as

P(| p̂n − p |> ε) ≤ 2 exp(−2nε2)

Now, we can form the interval I = [p̂n − εn, p̂n + εn], where εn is carefully
constructed as

εn =
√

1

2n
log

2

α

which makes the right side of the Hoeffding’s inequality equal to α. Thus, we finally
have

P(p /∈ I) = P
(| p̂n − p |> εn

) ≤ α

Thus, P(p ∈ I) ≥ 1−α. As a numerical example, let us take n = 100, α = 0.05;
then plugging into everything we have gives εn = 0.136. So, the 95% confidence
interval here is therefore

I = [p̂n − εn, p̂n + εn] = [p̂n − 0.136, p̂n + 0.136]

The following code sample is a simulation to see if we can really trap the
underlying parameter in our confidence interval.

204 3 Statistics

>>> from scipy import stats
>>> import numpy as np

>>> b= stats.bernoulli(.5) # fair coin distribution
>>> nsamples = 100
>>> # flip it nsamples times for 200 estimates
>>> xs = b.rvs(nsamples*200).reshape(nsamples,-1)
>>> phat = np.mean(xs,axis=0) # estimated p
>>> # edge of 95% confidence interval
>>> epsilon_n=np.sqrt(np.log(2/0.05)/2/nsamples)
>>> pct=np.logical_and(phat-epsilon_n<=0.5,
... 0.5 <= (epsilon_n +phat)
...).mean()*100
>>> print('Interval trapped correct value ', pct,'% of the

time')
Interval trapped correct value 99.0 % of the time

The result shows that the estimator and the corresponding interval was able to
trap the true value at least 95% of the time. This is how to interpret the action of
confidence intervals.

However, the usual practice is to not use Hoeffding’s inequality and instead use
arguments around asymptotic normality. The definition of the standard error is the
following:

se =
√
V(θ̂n)

where θ̂n is the point-estimator for the parameter θ , given n samples of data Xn,
and V(θ̂n) is the variance of θ̂n. Likewise, the estimated standard error is ŝe.
For example, in our coin flipping example, the estimator was p̂ = ∑

Xi/n with
corresponding variance V(p̂n) = p(1− p)/n. Plugging in the point estimate gives
us the estimated standard error: ŝe = √

p̂(1− p̂)/n. Because maximum likelihood
estimators are asymptotically normal,4 we know that p̂n ∼ N (p, ŝe2). Thus, if we
want a 1− α confidence interval, we can compute

P(| p̂n − p |< ξ) > 1− α

but since we know that (p̂n − p) is asymptotically normal, N (0, ŝe2), we can
instead compute

∫ ξ

−ξ

N (0, ŝe2)dx > 1− α

4 Certain technical regularity conditions must hold for this property of maximum likelihood
estimator to work. See [48] for more details.

3.6 Confidence Intervals 205

Fig. 3.17 The gray circles
are the point estimates that
are bounded above and below
by both asymptotic
confidence intervals and
Hoeffding intervals. The
asymptotic intervals are
tighter because the
underpinning asymptotic
assumptions are valid for
these estimates

This looks ugly to compute because we need to find ξ , but Scipy has everything we
need for this.

>>> # compute estimated se for all trials
>>> se=np.sqrt(phat*(1-phat)/xs.shape[0])
>>> # generate random variable for trial 0
>>> rv=stats.norm(0, se[0])
>>> # compute 95% confidence interval for that trial 0
>>> np.array(rv.interval(0.95))+phat[0]
array([0.3623159, 0.5576841])
>>> def compute_CI(i):
... return stats.norm.interval(0.95,loc=i,
... scale=np.sqrt(i*(1-i)/xs.shape[0]))
...
>>> lower,upper = compute_CI(phat)

Figure 3.17 shows the asymptotic confidence intervals and the Hoeffding-derived
confidence intervals. As shown, the Hoeffding intervals are a bit more generous
than the asymptotic estimates. However, this is only true so long as the asymptotic
approximation is valid. In other words, there exists some number of n samples for
which the asymptotic intervals may not work. So, even though they may be a bit
more generous, the Hoeffding intervals do not require arguments about asymptotic
convergence. In practice, nonetheless, asymptotic convergence is always in play
(even if not explicitly stated).

Confidence Intervals and Hypothesis Testing It turns out that there is a close
dual relationship between hypothesis testing and confidence intervals. Consider the
following hypothesis test for a normal distribution, H0 : μ = μ0 versus H1 : μ
=
μ0. A reasonable test has the following rejection region:

{
x :| x̄ − μ0 |> zα/2

σ√
n

}

206 3 Statistics

where P(Z > zα/2) = α/2 and P(−zα/2 < Z < zα/2) = 1 − α and where
Z ∼ N (0, 1). This is the same thing as saying that the region corresponding to
acceptance of H0 is then

x̄ − zα/2
σ√
n
≤ μ0 ≤ x̄ + zα/2

σ√
n

(3.2)

Because the test has size α, the false alarm probability, P(H0rejected | μ =
μ0) = α. Likewise, the P(H0accepted | μ = μ0) = 1 − α. Putting this all
together with interval defined above means that

P

(
x̄ − zα/2

σ√
n
≤ μ0 ≤ x̄ + zα/2

σ√
n

∣∣∣H0

)
= 1− α

Because this is valid for any μ0, we can drop the H0 condition and say the following:

P

(
x̄ − zα/2

σ√
n
≤ μ0 ≤ x̄ + zα/2

σ√
n

)
= 1− α

As may be obvious by now, the interval in Eq. 3.6 above is the 1− α confidence
interval! Thus, we have just obtained the confidence interval by inverting the
acceptance region of the level α test. The hypothesis test fixes the parameter
and then asks what sample values (i.e., the acceptance region) are consistent with
that fixed value. Alternatively, the confidence interval fixes the sample value and
then asks what parameter values (i.e., the confidence interval) make this sample
value most plausible. Note that sometimes this inversion method results in disjoint
intervals (known as confidence sets).

3.7 Sufficient Statistics

The concept of sufficient statistics provides a powerful way to think about and
organize statistical data [32]. Recall that a statistic is a random variable in the sense
that it is a mapping between events and real numbers. For example, the mean is a
statistic that computes the following:

X = 1

n

n∑

i=1

Xn

Thus, for every set of {Xi} random variables, we compute the mean. Thus, because
the mean is a function of random variables, then the statistic is also a random
variable. In the general case, the statistic condenses the set of random variables to a
single value, which is useful for reducing the dimension of the problem. However,

3.7 Sufficient Statistics 207

in this reduction, we need to ensure that we do not somehow lose any relevant
information. Concretely, suppose we have triples from a Bernoulli distribution.
These consist of three-dimensional vectors of zeros and ones. Thus, there are 23

possible three-dimensional vectors. Given the statistic

t (x1 + x2 + x3) = x1 + x2 + x3

there are exactly four possible values (0, 1, 2, 3). Each of these values induces a
partition on the original eight possibilities. For example, 0 �→ (0, 0, 0) and 1 �→
{(0, 0, 1), (0, 1, 0), (0, 0, 1)}, and so on. Thus, we have four possible values to keep
track of versus the original eight. The sufficient statistic has condensed the original
eight values into four.

Importantly, many statistics can induce the same partition. For example, t =
(x1 + x2 + x3)

2 induces the same partition as above. From the condensation
standpoint, statistics that induce the same partition are equally useful. Now, we are
in a position to define a sufficient statistic.

Sufficient Statistic Let {X1, · · · , Xn} be a a random sample from fθ (X) where
θ is the parameter for f . A statistic (s) is sufficient if and only if the conditional
distribution of X1, · · · , Xn given s does not depend on θ for any value of s.
Intuitively, this means that the sufficient statistic does not lose any information about
θ .

Returning to our Bernoulli distribution example. For s = X1+X2+X3, we have
the conditional probability

P((0, 0, 0)|s = 0) = (1− p)3

(1− p)3
= 1

Note that this does not depend on the parameter p. Let us consider another statistic
t = X1X2 +X3

P((0, 0, 0)|t = 0) = (1− p)3

(1− p)3 + 2p(1− p)2 =
1− p

1+ p

In this case, the conditional probability is a function of the parameter, which means
that t is not a sufficient statistic. The condensation idea of sufficient statistics is
useful for constructing estimators, as embodied by the Rao-Blackwell theorem.

Rao-Blackwell Theorem Let X1, · · · , Xn be a random sample from density
fθ (X1, · · · , Xn) with S1, · · · , Sk a set of jointly sufficient statistics. Let T be the
unbiased estimator of τ(θ). Define T ′ = E(T |S1, · · · , Sk). Then,

Vθ (T
′) ≤ Vθ (T)

208 3 Statistics

Loosely speaking, the theorem says that given an unbiased estimator, another
unbiased estimator that is a function of sufficient statistics can be derived that
will not have a larger variance. To derive this new unbiased estimator requires
computing the conditional expectation. The jointly sufficient statistics referred to
above pertains when no single sufficient statistic exists. Otherwise, the definition
for jointly sufficient statistics is the same as for an individual sufficient statistic.

Example Consider our usual Bernoulli distribution samples, X1, · · · , Xn with
corresponding probability mass function, fp(x) = px(1−p)1−x . To keep it simple,
suppose our estimator of the parameter p uses only the first sample. Thus, in terms
of our notation, we have T = X1. We know that S = ∑

Xi is a sufficient statistic.
To derive T ′ as described in the Theorem, we need to compute the conditional
expectation

E(X1|S = s) = s

n

The expectation is equivalent to observing s successes in n samples. In other words,
what is the probability that the first sample is a success (i.e., X1 = 1)? Thus, we
have the derived estimator

T ′ =
n∑

i=1

Xi/n

with corresponding variance p(1 − p)/n, whereas our original estimator has
variance np(1 − p). As long as n > 1, the derived estimator has a lower variance,
as promised by the theorem.

Exponential Family Exponential families have probability density functions with
the following Format:

fθ (x) = exp (K(x)p(θ)+ S(x)+ q(θ))

The notion of sufficient statistic is equivalent to the factorization of the density into
two factors, where one factor depends on the data only through the sufficient statistic
and the other factor does not. This is known as the Fisher-Neyman Factorization
theorem. With respect to this format for the exponential family, we can conclude
that the statistic

n∑

i=1

K(Xi)

is sufficient for θ . This is because the joint PDF of {X1, X2, · · · , Xn} can be written
as the following two factors:

3.8 Linear Regression 209

{
exp

(
p(θ)

n∑

i=1

K(xi)+ nq(θ)

)}{
exp

(
n∑

i=1

S(xi)

)}

Note that the first factor only depends on the data via the
∑n

i=1 K(xi) which
identifies it as the sufficient statistic.

Example Consider {X1, X2, · · · , Xn} independently distributed according to the
Poisson distribution (t = 1). Then the joint distribution is the following:

fλ(X1, X2, · · · , Xn) =
n∏

i=1

e−λλxi

xi !

To fit this into the exponential family format, we rewrite the univariate Poisson
density

fλ(X) = e−λλx

x! = exp(x ln λ− ln(x!)− λ)

For the joint distribution, by identifying K(x) = x, we have the sufficient statistic
for the λ parameter

n∑

i=1

Xi

Note that 1
n

∑n
i=1 Xi is also a sufficient statistic (see Rao-Blackwell theorem).

3.8 Linear Regression

Linear regression gets to the heart of statistics: Given a set of data points, what is
the relationship of the data in-hand to data yet seen? How should information from
one dataset propagate to other data? Linear regression offers the following model to
address this question:

E(Y |X = x) ≈ ax + b

That is, given specific values for X, assume that the conditional expectation is a
linear function of those specific values. However, because the observed values are
not the expectations themselves, the model accommodates this with an additive
noise term. In other words, the observed variable (a.k.a. response, target, dependent
variable) is modeled as

210 3 Statistics

E(Y |X = xi)+ εi ≈ ax + b + εi = y

where E(εi) = 0 and the εi are iid and where the distribution function of εi depends
on the problem, even though it is often assumed Gaussian. The X = x values are
known as independent variables, covariates, or regressors.

Let us see if we can use all of the methods we have developed so far to understand
this form of regression. The first task is to determine how to estimate the unknown
linear parameters, a and b. To make this concrete, let us assume that ε ∼ N (0, σ 2).
Bear in mind that E(Y |X = x) is a deterministic function of x. In other words, the
variable x changes with each draw, but after the data have been collected these are no
longer random quantities. Thus, for fixed x, y is a random variable generated by ε.
Perhaps we should denote ε as εx to emphasize this, but because ε is an independent,
identically distributed (iid) random variable at each fixed x, this would be excessive.
Because of Gaussian additive noise, the distribution of y is completely characterized
by its mean and variance.

E(y) = ax + b

V(y) = σ 2

Using the maximum likelihood procedure, we write out the log-likelihood function
as

L(a, b) =
n∑

i=1

logN (axi + b, σ 2) ∝ 1

2σ 2

n∑

i=1

(yi − axi − b)2

Note that we suppressed the terms that are irrelevant to the maximum-finding.
Taking the derivative of this with respect to a gives the following equation:

∂L(a, b)

∂a
= 2

n∑

i=1

xi(b + axi − yi) = 0

Likewise, we do the same for the b parameter

∂L(a, b)

∂b
= 2

n∑

i=1

(b + axi − yi) = 0

The following code simulates some data and uses Numpy tools to compute the
parameters as shown:

>>> import numpy as np
>>> a = 6;b = 1 # parameters to estimate
>>> x = np.linspace(0,1,100)
>>> y = a*x + np.random.randn(len(x))+b

3.8 Linear Regression 211

Fig. 3.18 The panel on the left shows the data and regression line. The panel on the right shows a
histogram of the regression errors

>>> p,var_=np.polyfit(x,y,1,cov=True) # fit data to line
>>> y_ = np.polyval(p,x) # estimated by linear regression

The graph on the left of Fig. 3.18 shows the regression line plotted against the
data. The estimated parameters are noted in the title. The histogram on the right of
Fig. 3.18 shows the residual errors in the model. It is always a good idea to inspect
the residuals of any regression for normality. These are the differences between the
fitted line for each xi value and the corresponding yi value in the data. Note that the
x term does not have to be uniformly monotone.

To decouple the deterministic variation from the random variation, we can fix the
index and write separate problems of the form

yi = axi + b + εi

where εi ∼ N (0, σ 2). What could we do with just this one component of the
problem? In other words, suppose we had m-samples of this component as in
{yi,k}mk=1. Following the usual procedure, we could obtain estimates of the mean
of yi as

ŷi = 1

m

m∑

k=1

yi,k

However, this tells us nothing about the individual parameters a and b because they
are not separable in the terms that are computed, namely, we may have

E(yi) = axi + b

but we still only have one equation and the two unknowns, a and b. How about we
fix another component j as in

yj = axj + b + εi

212 3 Statistics

Fig. 3.19 The fitted and true lines are plotted with the data values. The squares at either end of the
solid line show the mean value for each of the data groups shown

Then, we have

E(yj) = axj + b

so at least now we have two equations and two unknowns and we know how to
estimate the left hand sides of these equations from the data using the estimators ŷi

and ŷj . Let us see how this works in the code sample below (Fig. 3.19).

>>> x0, xn =x[0],x[80]
>>> # generate synthetic data
>>> y_0 = a*x0 + np.random.randn(20)+b
>>> y_1 = a*xn + np.random.randn(20)+b
>>> # mean along sample dimension
>>> yhat = np.array([y_0,y_1]).mean(axis=1)
>>> a_,b_=np.linalg.solve(np.array([[x0,1],
... [xn,1]]),yhat)

Programming Tip
The prior code uses the solve function in the Numpy linalg module,
which contains the core linear algebra codes in Numpy that incorporate the
battle-tested LAPACK library.

We can write out the solution for the estimated parameters for this case where x0 = 0

â = ŷi − ŷ0

xi

b̂ = ŷ0

3.8 Linear Regression 213

The expectations and variances of these estimators are the following:

E(â) = axi

xi

= a

E(b̂) = b

V(â) = 2σ 2

x2
i

V(b̂) = σ 2

The expectations show that the estimators are unbiased. The estimator â has a
variance that decreases as larger points xi are selected. That is, it is better to have
samples further out along the horizontal axis for fitting the line. This variance
quantifies the leverage of those distant points.

Regression from Projection Methods Let us see if we can apply our knowledge
of projection methods to the general case. In vector notation, we can write the
following:

y = ax+ b1+ ε

where 1 is the vector of all ones. Let us use the inner-product notation,

〈x, y〉 = E(xT y)

Then, by taking the inner-product with some x1 ∈ 1⊥ we obtain5

〈y, x1〉 = a〈x, x1〉

Recall that E(ε) = 0. We can finally solve for a as

â = 〈y, x1〉
〈x, x1〉 (3.3)

That was pretty neat but now we have the mysterious x1 vector. Where does this
come from? If we project x onto the 1⊥, then we get the MMSE approximation to x
in the 1⊥ space. Thus, we take

x1 = P1⊥(x)

Remember that P1⊥ is a projection matrix so the length of x1 is at most x. This means
that the denominator in the â equation above is really just the length of the x vector

5 The space of all vectors, a such that 〈a, 1〉 = 0 is denoted 1⊥.

214 3 Statistics

in the coordinate system of P1⊥ . Because the projection is orthogonal (namely, of
minimum length), the Pythagorean theorem gives this length as the following:

〈x, x1〉2 = 〈x, x〉 − 〈1, x〉2

The first term on the right is the length of the x vector, and last term is the length
of x in the coordinate system orthogonal to P1⊥ , namely, that of 1. We can use this
geometric interpretation to understand what is going on in typical linear regression
in much more detail. The fact that the denominator is the orthogonal projection
of x tells us that the choice of x1 has the strongest effect (i.e., largest value) on
reducing the variance of â. That is, the more x is aligned with 1, the worse the
variance of â. This makes intuitive sense because the closer x is to 1, the more
constant it is, and we have already seen from our one-dimensional example that
distance between the x terms pays off in reduced variance. We already know that â

is an unbiased estimator, and, because we chose x1 deliberately as a projection, we
know that it is also of minimum variance. Such estimators are known as minimum-
variance unbiased estimators (MVUE).

In the same spirit, let us examine the numerator of â in Eq. 3.8. We can write x1
as the following:

x1 = x− P1x

where P1 is projection matrix of x onto the 1 vector. Using this, the numerator of â

becomes

〈y, x1〉 = 〈y, x〉 − 〈y, P1x〉

Note that,

P1 = 11T 1

n

so that writing this out explicitly gives

〈y, P1x〉 =
(
yT 1

) (
1T x

)
/n =

(∑
yi

) (∑
xi

)
/n

and similarly, we have the following for the denominator:

〈x, P1x〉 =
(
xT 1

) (
1T x

)
/n =

(∑
xi

) (∑
xi

)
/n

So, plugging all of this together gives the following:

â = xT y− (
∑

xi)(
∑

yi)/n

xT x− (
∑

xi)2/n

3.8 Linear Regression 215

with corresponding variance

V(â) = σ 2 ‖x1‖2

〈x, x1〉2

= σ 2

‖x‖2 − n(x2)

where x =∑n
i=1 xi/n. Using the same approach with b̂ gives

b̂ = 〈y, x⊥〉
〈1, x⊥〉 (3.4)

= 〈y, 1− Px(1)〉
〈1, 1− Px(1)〉 (3.5)

= xT x(
∑

yi)/n− xT y(
∑

xi)/n

xT x− (
∑

xi)2/n
(3.6)

where

Px = xxT

‖x‖2

with variance

V(b̂) = σ 2 〈1− P x(1), 1− P x(1)〉
〈1, 1− P x(1)〉2

= σ 2

n− (nx)2

‖x‖2

Qualifying the Estimates Our formulas for the variance above include the
unknown σ 2, which we must estimate from the data itself using our plug-in
estimates. We can form the residual sum of squares as

RSS =
∑

i

(âxi + b̂ − yi)
2

Thus, the estimate of σ 2 can be expressed as

σ̂ 2 = RSS

n− 2

216 3 Statistics

where n is the number of samples. This is also known as the residual mean square.
The n − 2 represents the degrees of freedom (df). Because we estimated two
parameters from the same data, we have n − 2 instead of n. Thus, in general,
df = n−p, where p is the number of estimated parameters. Under the assumption
that the noise is Gaussian, the RSS/σ 2 is chi-squared distributed with n−2 degrees
of freedom. Another important term is the sum of squares about the mean (a.k.a
corrected sum of squares),

SYY =
∑

(yi − ȳ)2

The SYY captures the idea of not using the xi data and just using the mean of the yi

data to estimate y. These two terms lead to the R2 term:

R2 = 1− RSS

SYY

Note that for perfect regression, R2 = 1. That is, if the regression gets each yi data
point exactly right, then RSS = 0 this term equals one. Thus, this term is used to
measure of goodness of fit. The stats module in scipy computes many of these
terms automatically

from scipy import stats
slope,intercept,r_value,p_value,stderr = stats.linregress(x,y)

where the square of the r_value variable is the R2 above. The computed p-value
is the two-sided hypothesis test with a null hypothesis that the slope of the line is
zero. In other words, this tests whether or not the linear regression makes sense for
the data for that hypothesis. The Statsmodels module provides a powerful extension
to Scipy’s stats module by making it easy to do regression and keep track of these
parameters. Let us reformulate our problem using the Statsmodels framework by
creating a Pandas dataframe for the data:

import statsmodels.formula.api as smf
from pandas import DataFrame
import numpy as np
d = DataFrame({'x':np.linspace(0,1,10)}) # create data
d['y'] = a*d.x+ b + np.random.randn(*d.x.shape)

Now that we have the input data in the above Pandas dataframe, we can perform the
regression as in the following:

results = smf.ols('y ~ x', data=d).fit()

The ∼ symbol is notation for y = ax + b + ε, where the constant b is implicit in
this usage of Statsmodels. The names in the string are taken from the columns in
the dataframe. This makes it very easy to build models with complicated interactions
between the named columns in the dataframe. We can examine a report of the model
fit by looking at the summary:

3.8 Linear Regression 217

print(results.summary2())
Results: Ordinary least squares

===
Model: OLS Adj. R-squared: 0.808
Dependent Variable: y AIC: 28.1821
Date: 0000-00-00 00:00 BIC: 00.0000
No. Observations: 10 Log-Likelihood: -12.091
Df Model: 1 F-statistic: 38.86
Df Residuals: 8 Prob (F-statistic): 0.000250
R-squared: 0.829 Scale: 0.82158

Coef. Std.Err. t P>|t| [0.025 0.975]

Intercept 1.5352 0.5327 2.8817 0.0205 0.3067 2.7637
x 5.5990 0.8981 6.2340 0.0003 3.5279 7.6701

There is a lot more here than we have discussed so far, but the Statsmodels
documentation is the best place to go for complete information about this report. The
F-statistic attempts to capture the contrast between including the slope parameter or
leaving it off. That is, consider two hypotheses:

H0 : E(Y |X = x) = b

H1 : E(Y |X = x) = b + ax

In order to quantify how much better adding the slope term is for the regression, we
compute the following:

F = SYY− RSS

σ̂ 2

The numerator computes the difference in the residual squared errors between
including the slope in the regression or just using the mean of the yi values. Once
again, if we assume (or can claim asymptotically) that the ε noise term is Gaussian,
ε ∼ N (0, σ 2), then the H0 hypothesis will follow an F-distribution6 with degrees
of freedom from the numerator and denominator. In this case, F ∼ F(1, n−2). The
value of this statistic is reported by Statsmodels above. The corresponding reported
probability shows the chance of F exceeding its computed value if H0 were true.
So, the take-home message from all this is that including the slope leads to a much
smaller reduction in squared error than could be expected from a favorable draw of
n points of this data, under the Gaussian additive noise assumption. This is evidence
that including the slope is meaningful for this data.

The Statsmodels report also shows the adjusted R2 term. This is a correction to
the R2 calculation that accounts for the number of parameters p that the regression
is fitting and the sample size n:

6 The F(m, n) F-distribution has two integer degree-of-freedom parameters, m and n.

218 3 Statistics

Adjusted R2 = 1− RSS/(n− p)

SYY/(n− 1)

This is always lower than R2 except when p = 1 (i.e., estimating only b). This
becomes a better way to compare regressions when one is attempting to fit many
parameters with comparatively small n.

Linear Prediction Using linear regression for prediction introduces some other
issues. Recall the following expectation:

E(Y |X = x) ≈ âx + b̂

where we have determined â and b̂ from the data. Given a new point of interest, xp,
we would certainly compute

ŷp = âxp + b̂

as the predicted value for ŷp. This is the same as saying that our best prediction
for y based on xp is the above conditional expectation. The variance for this is the
following:

V(yp) = x2
pV(â)+ V(b̂)+ 2xpcov(âb̂)

Note that we have the covariance above because â and b̂ are derived from the same
data. We can work this out below using our previous notation from 3.8:

cov(âb̂) =xT
1 V{yyT }x⊥

(xT
1 x)(1

T x⊥)
= xT

1 σ 2Ix⊥

(xT
1 x)(1

T x⊥)

=σ 2 xT
1 x
⊥

(xT
1 x)(1

T x⊥)
= σ 2 (x− P1x)T x⊥

(xT
1 x)(1

T x⊥)

=σ 2 −xT P T
1 x⊥

(xT
1 x)(1

T x⊥)
= σ 2−xT 1

n
11T x⊥

(xT
1 x)(1

T x⊥)

=σ 2−xT 1
n
1

(xT
1 x)

= −σ 2x
∑n

i=1(x
2
i − x2)

After plugging all this in, we obtain the following:

V(yp) = σ 2 x2
p − 2xpx + ‖x‖2/n

‖x‖2 − nx2

3.8 Linear Regression 219

where, in practice, we use the plug-in estimate for the σ 2.
There is an important consequence for the confidence interval for yp. We cannot

simply use the square root of V(yp) to form the confidence interval because the
model includes the extra ε noise term. In particular, the parameters were computed
using a set of statistics from the data, but now must include different realizations for
the noise term for the prediction part. This means we have to compute

η2 = V(yp)+ σ 2

Then, the 95% confidence interval yp ∈ (yp − 2η̂, yp + 2η̂) is the following:

P(yp − 2η̂ < yp < yp + 2η̂) ≈ P(−2 < N (0, 1) < 2) ≈ 0.95

where η̂ comes from substituting the plug-in estimate for σ .

3.8.1 Extensions to Multiple Covariates

With all the machinery we have, it is a short notational hop to consider multiple
regressors as in the following:

Y = Xβ + ε

with the usual E(ε) = 0 and V(ε) = σ 2I. Thus, X is a n × p full rank matrix
of regressors, and Y is the n-vector of observations. Note that the constant term has
been incorporated into X as a column of ones. The corresponding estimated solution
for β is the following:

β̂ = (XT X)−1XT Y

with corresponding variance,

V(β̂) = σ 2(XT X)−1

and with the assumption of Gaussian errors, we have

β̂ ∼ N (β, σ 2(XT X)−1)

The unbiased estimate of σ 2 is the following:

σ̂ 2 = 1

n− p

∑
ε̂2
i

220 3 Statistics

where ε̂ = Xβ̂−Y is the vector of residuals. Tukey christened the following matrix
as the hat matrix (a.k.a. influence matrix),

V = X(XT X)−1XT

because it maps Y into Ŷ,

Ŷ = VY

As an exercise you can check that V is a projection matrix. Note that that matrix is
solely a function of X. The diagonal elements of V are called the leverage values
and are contained in the closed interval [1/n, 1]. These terms measure of distance
between the values of xi and the mean values over the n observations. Thus, the
leverage terms depend only on X. This is the generalization of our initial discussion
of leverage where we had multiple samples at only two xi points. Using the hat
matrix, we can compute the variance of each residual, ei = ŷ − yi as

V(ei) = σ 2(1− vi)

where vi = Vi,i . Given the above-mentioned bounds on vi , these are always less
than σ 2.

Degeneracy in the columns of X can become a problem. This is when two or
more of the columns become co-linear. We have already seen this with our single
regressor example wherein x close to 1 was bad news. To compensate for this effect
we can load the diagonal elements and solve for the unknown parameters as in the
following:

β̂ = (XT X+ αI)−1XT Y

where α > 0 is a tunable hyper-parameter. This method is known as ridge regression
and was proposed in 1970 by Hoerl and Kenndard. It can be shown that this is the
equivalent to minimizing the following objective:

‖Y− Xβ‖2 + α‖β‖2

In other words, the length of the estimated β is penalized with larger α. This has the
effect of stabilizing the subsequent inverse calculation and also providing a means
to trade bias and variance, which we will discuss at length in Sect. 4.7.

Interpreting Residuals Our model assumes an additive Gaussian noise term. We
can check the voracity of this assumption by examining the residuals after fitting.
The residuals are the difference between the fitted values and the original data:

ε̂i = âxi + b̂ − yi

3.8 Linear Regression 221

While the p-value and the F-ratio provide some indication of whether or not
computing the slope of the regression makes sense, we can get directly at the key
assumption of additive Gaussian noise.

For sufficiently small dimensions, the scipy.stats.probplot we dis-
cussed in the last chapter provides quick visual evidence one way or another by
plotting the standardized (Student-ized) residuals

ri = ei

σ̂
√

1− vi

where vi is the leverage statistic equal to the diagonal of the influence matrix.
The other part of the iid assumption implies homoscedasticity (all ri have equal
variances). Under the additive Gaussian noise assumption, the ei should also be
distributed according to N (0, σ 2(1− vi)). The normalized residuals ri should then
be distributed according to N (0, 1). Thus, the presence of any ri /∈ [−1.96, 1.96]
should not be common at the 5% significance level and thereby breeds suspicion
regarding the homoscedasticity assumption.

The Levene test in scipy.stats.leven tests the null hypothesis that all the
variances are equal. This basically checks whether or not the standardized residuals
vary across xi more than expected. Under the homoscedasticity assumption, the
variance should be independent of xi . If not, then this is a clue that there is a missing
variable in the analysis or that the variables themselves should be transformed (e.g.,
using the log function) into another format that can reduce this effect. Also, we can
use weighted least-squares instead of ordinary least-squares.

Variable Scaling It is tempting to conclude in a multiple regression that small
coefficients in any of the β terms implies that those terms are not important.
However, simple unit conversions can cause this effect. For example, if one of the
regressors is in units of kilometers and the others are in meters, then just the scale
factor can give the impression of outsized or under-sized effects. The common way
to account for this is to scale the regressors so that

x′ = x − x̄

σx

This has the side effect of converting the slope parameters into correlation coeffi-
cients, which is bounded by ±1.

Influential Data We have already discussed the idea of leverage. The concept
of influence combines leverage with outliers. To understand influence, consider
Fig. 3.20.

The point on the right in Fig. 3.20 is the only one that contributes to the
calculation of the slope for the fitted line. Thus, it is very influential in this sense.
Cook’s distance is a good way to get at this concept numerically. To compute this,
we have to compute the j th component of the estimated target variable with the ith

222 3 Statistics

Fig. 3.20 The point on the
right has outsized influence in
this data because it is the only
one used to determine the
slope of the fitted line

Fig. 3.21 The calculated
Cook’s distance for the data
in Fig. 3.20

point deleted. We call this ŷj (i). Then, we compute the following:

Di =
∑

j (ŷj − ŷj (i))
2

p/n
∑

j (ŷj − yj)2

where, as before, p is the number of estimated terms (e.g., p = 2 in the bivariate
case). This calculation emphasizes the effect of the outlier by predicting the target
variable with and without each point. In the case of Fig. 3.20, losing any of the
points on the left cannot change the estimated target variable much, but losing the
single point on the right surely does. The point on the right does not seem to be an
outlier (it is on the fitted line), but this is because it is influential enough to rotate
the line to align with it. Cook’s distance helps capture this effect by leaving each
sample out and re-fitting the remainder as shown in the last equation. Figure 3.21
shows the calculated Cook’s distance for the data in Fig. 3.20, showing that the data
point on the right (sample index 5) has outsized influence on the fitted line. As a
rule of thumb, Cook’s distance values that are larger than one are suspect.

3.8 Linear Regression 223

Fig. 3.22 The upper panel
shows data that fit on a line
and an outlier point (filled
black circle). The lower panel
shows the calculated Cook’s
distance for the data in upper
panel and shows that the tenth
point (i.e., the outlier) has
disproportionate influence

As another illustration of influence, consider Fig. 3.22 which shows some data
that nicely line up, but with one outlier (filled black circle) in the upper panel. The
lower panel shows so-computed Cook’s distance for this data and emphasizes the
presence of the outlier. Because the calculation involves leaving a single sample
out and re-calculating the rest, it can be a time-consuming operation suitable to
relatively small datasets. There is always the temptation to downplay the importance
of outliers because they conflict with a favored model, but outliers must be carefully
examined to understand why the model is unable to capture them. It could be
something as simple as faulty data collection, or it could be an indication of deeper
issues that have been overlooked. The following code shows how Cook’s distance
was computed for Figs. 3.21 and 3.22:

>>> fit = lambda i,x,y: np.polyval(np.polyfit(x,y,1),i)
>>> omit = lambda i,x: ([k for j,k in enumerate(x) if j !=i])
>>> def cook_d(k):
... num = sum((fit(j,omit(k,x),omit(k,y))-fit(j,x,y))**2 for j in x)
... den = sum((y-np.polyval(np.polyfit(x,y,1),x))**2/len (x)*2)
... return num/den
...

Programming Tip
The function omit sweeps through the data and excludes the ith data element.
The embedded enumerate function associates every element in the iterable
with its corresponding index.

224 3 Statistics

3.9 Maximum A Posteriori

We saw with maximum likelihood estimation how we could use the principle
of maximum likelihood to derive a formula of the data that would estimate the
underlying parameters (say, θ). Under that method, the parameter was fixed,
but unknown. If we change our perspective slightly and consider the underlying
parameter as a random variable in its own right, this leads to additional flexibility in
estimation. This method is the simplest of the family of Bayesian statistical methods
and is most closely related to maximum likelihood estimation. It is very popular
in communications and signal processing and is the backbone of many important
algorithms in those areas.

Given that the parameter θ is also a random variable, it has a joint distribution
with the other random variables, say, f (x, θ). Bayes’ theorem gives the following:

P(θ |x) = P(x|θ)P(θ)

P(x)

The P(x|θ) term is the usual likelihood term we have seen before. The term in
the denominator is prior probability of the data x, and it explicitly makes a very
powerful claim: even before collecting or processing any data, we know what the
probability of that data is. The P(θ) is the prior probability of the parameter. In other
words, regardless of the data that is collected, this is the probability of the parameter
itself.

In a particular application, whether or not you feel justified making these claims
is something that you have to reconcile for yourself and the problem at hand. There
are many persuasive philosophical arguments one way or the other, but the main
thing to keep in mind when applying any method is whether or not the assumptions
are reasonable for the problem at hand.

However, for now, let us just assume that we somehow have P(θ), and the next
step is the maximizing of this expression over the θ . Whatever results from that
maximization is the maximum a posteriori (MAP) estimator for θ . Because the
maximization takes place with respect to θ and not x, we can ignore the P(x) part.
To make things concrete, let us return to our original coin flipping problem. From
our earlier analysis, we know that the likelihood function for this problem is the
following:

�(θ) := θk(1− θ)(n−k)

where the probability of the coin coming up heads is θ . The next step is the prior
probability, P(θ). For this example, we will choose the β(6, 6) distribution (shown
in the top left panel of Fig. 3.23). The β family of distributions is a gold mine
because it allows for a wide variety of distributions using few input parameters.
Now that we have all the ingredients, we turn to maximizing the posterior function,

3.9 Maximum A Posteriori 225

Fig. 3.23 The prior probability is the β(6, 6) distribution shown in the top left panel. The dots
near the peaks of each of the subgraphs indicate the MAP estimate at that frame

P(θ |x). Because the logarithm is convex, we can use it to make the maximization
process easier by converting the product to a sum without changing the extrema that
we are looking for. Thus, we prefer to work with the logarithm of P(θ |x) as in the
following:

L := logP(θ |x) = log �(θ)+ logP(θ)− logP(x)

This is tedious to do by hand and therefore an excellent job for Sympy.

>>> from sympy import simplify, log, diff, expand_log, solve
>>> from sympy import stats as st
>>> from sympy.abc import p,k,n
>>> beta_density = st.density(st.Beta('p',6,6))
setup objective function using sympy.log
>>> obj=expand_log(log(p**k*(1-p)**(n-k)*

beta_density(p)))
use calculus to maximize objective
>>> sol=solve(simplify(diff(obj,p)),p)[0]
>>> sol
(k + 5)/(n + 10)

226 3 Statistics

which means that our MAP estimator of θ is the following:

θ̂MAP = k + 5

n+ 10

where k is the number of heads in the sample. This is obviously a biased estimator
of θ :

E(θ̂MAP) = 5+ nθ

10+ n

= θ

But is this bias bad? Why would anyone want a biased estimator? Remember that
we constructed this entire estimator using the idea of the prior probability of P(θ)

which favors (biases!) the estimate according to the prior. For example, if θ = 1/2,
the MAP estimator evaluates to θ̂MAP = 1/2. No bias there! This is because the
peak of the prior probability is at θ = 1/2.

To compute the corresponding variance for this estimator, we need this interme-
diate result

E(θ̂2
MAP) = 25+ 10nθ + nθ((n− 1)p + 1)

(10+ n)2

which gives the following variance:

V(θ̂MAP) = n(1− θ)θ

(n+ 10)2

Let us pause and compare this to our previous maximum likelihood (ML)
estimator shown below:

θ̂ML = 1

n

n∑

i=1

Xi = k

n

As we discussed before, the ML-estimator is unbiased with the following variance:

V(θ̂ML) = θ(1− θ)

n

How does this variance compare to that of the MAP? The ratio of the two is the
following:

V(θ̂MAP)

V(θ̂ML)
= n2

(n+ 10)2

This ratio shows that the variance for the MAP estimator is smaller than that of
the ML-estimator. This is payoff for having a biased MAP estimator—it requires
fewer samples to estimate if the underlying parameter is consistent with the prior
probability. If not, then it will take more samples to pull the estimator away from

3.9 Maximum A Posteriori 227

the bias. In the limit as n→∞, the ratio goes to one. This means that the benefit of
the reduced variance vanishes with enough samples.

The above discussion admits a level of arbitrariness via the prior distribution. We
don’t have to choose just one prior, however. The following shows how we can use
the previous posterior distribution as the prior for the next posterior distribution:

P(θ |xk+1) = P(xk+1|θ)P(θ |xk)

P(xk+1)

This is a very different strategy because we are using every data sample xk as a
parameter for the posterior distribution instead of lumping all the samples together
in a summation (this is where we got the k term before). This case is much harder
to analyze because now every incremental posterior distribution is itself a random
function because of the injection of the x random variable. On the other hand, this
is more in line with more general Bayesian methods because it is clear that the
output of this estimation process is a posterior distribution function, not just a single
parameter estimate.

Figure 3.23 illustrates this method. The graph in the top row, far left shows
the prior probability (β(6, 6)), and the dot on the top shows the most recent MAP
estimate for θ . Thus, before we obtain any data, the peak of the prior probability is
the estimate. The next graph to right shows the effect of x0 = 0 on the incremental
prior probability. Note that the estimate has barely moved to the left. This is because
the influence of the data has not caused the prior probability to drift away from the
original β(6, 6)-distribution. The first two rows of the figure all have xk = 0 just to
illustrate how far left the original prior probability can be moved by those data. The
dots on the tops of the sub-graphs show how the MAP estimate changes frame-by-
frame as more data is incorporated. The remaining graphs, proceeding top-down,
left-to-right show the incremental change in the prior probability for xk = 1. Again,
this shows how far to the right the estimate can be pulled from where it started.
For this example, there are an equal number of xk = 0 and xk = 1 data, which
corresponds to θ = 1/2.

Programming Tip
The following is a quick paraphrase of how Fig. 3.23 was constructed. The
first step is to recursively create the posteriors from the data. Note the example
data is sorted to make the progression easy to see as a sequence.

from sympy.abc import p,x
from scipy.stats import density, Beta, Bernoulli
prior = density(Beta('p',6,6))(p)
likelihood=density(Bernoulli('x',p))(x)
data = (0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)
posteriors = [prior]

(continued)

228 3 Statistics

for i in data:
posteriors.append(posteriors[-1]*likelihood.subs(x,i))

With the posteriors in hand, the next step is to compute the peak values at each
frame using the fminbound function from Scipy’s optimize module.

pvals = linspace(0,1,100)
mxvals = []
for i,j in zip(ax.flat,posteriors):

i.plot(pvals,sympy.lambdify(p,j)(pvals),color='k')
mxval = fminbound(sympy.lambdify(p,-j),0,1)
mxvals.append(mxval)
h = i.axis()[-1]
i.axis(ymax=h*1.3)
i.plot(mxvals[-1],h*1.2,'ok')
i.plot(mxvals[:-1],[h*1.2]*len(mxvals[:-1]),'o')

Figure 3.24 is the same as Fig. 3.23 except that the initial prior probability is the
β(1.3, 1.3)-distribution, which has a wider lobe than the β(6, 6)-distribution. As

Fig. 3.24 For this example, the prior probability is the β(1.3, 1.3) distribution, which has a wider
main lobe than the β(6, 6) distribution. The dots near the peaks of each of the subgraphs indicate
the MAP estimate at that frame

3.10 Robust Statistics 229

shown in the figure, this prior has the ability to be swayed more violently one way
or the other based on the xk data that is incorporated. This means that it can more
quickly adapt to data that is not so consistent with the initial prior and thus does not
require a large amount of data in order to unlearn the prior probability. Depending
on the application, the ability to unlearn the prior probability or stick with it is a
design problem for the analyst. In this example, because the data are representative
of a θ = 1/2 parameter, both priors eventually settle on an estimated posterior that
is about the same. However, if this had not been the case (θ
= 1/2), then the second
prior would have produced a better estimate for the same amount of data.

Because we have the entire posterior density available, we can compute some-
thing that is closely related to the confidence interval we discussed earlier; except
in this situation, given the Bayesian interpretation, it is called a credible interval or
credible set. The idea is that we want to find a symmetric interval around the peak
that accounts for 95% (say) of the posterior density. This means that we can then say
the probability that the estimated parameter is within the credible interval is 95%.
The computation requires significant numerical processing because even though we
have the posterior density in hand, it is hard to integrate analytically and requires
numerical quadrature (see Scipy’s integrate module). Figure 3.25 shows extent
of the interval and the shaded region under the posterior density that accounts for
95%.

3.10 Robust Statistics

We considered maximum likelihood estimation (MLE) and maximum a posteriori
(MAP) estimation, and in each case we started out with a probability density
function of some kind, and we further assumed that the samples were identically
distributed and independent (iid). The idea behind robust statistics [29] is to
construct estimators that can survive the weakening of either or both of these

Fig. 3.25 The credible
interval in Bayesian
maximum a posteriori is the
interval corresponding to the
shaded region in the posterior
density

230 3 Statistics

assumptions. More concretely, suppose you have a model that works great except
for a few outliers. The temptation is to just ignore the outliers and proceed. Robust
estimation methods provide a disciplined way to handle outliers without cherry-
picking data that works for your favored model.

The Notion of Location The first notion we need is location, which is a general-
ization of the idea of central value. Typically, we just use an estimate of the mean for
this, but we will see later why this could be a bad idea. The general idea of location
satisfies the following requirements: Let X be a random variable with distribution F ,
and let θ(X) be some descriptive measure of F . Then θ(X) is said to be a measure
of location if for any constants a and b, we have the following:

θ(X + b) = θ(X)+ b (3.7)

θ(−X) = −θ(X) (3.8)

X ≥ 0 ⇒ θ(X) ≥ 0 (3.9)

θ(aX) = aθ(X) (3.10)

The first condition is called location equivariance (or shift-invariance in signal
processing lingo). The fourth condition is called scale equivariance, which means
that the units that X is measured in should not effect the value of the location
estimator. These requirements capture the intuition of centrality of a distribution
or where most of the probability mass is located.

For example, the sample mean estimator is μ̂ = 1
n

∑
Xi . The first requirement is

obviously satisfied as μ̂ = 1
n

∑
(Xi+b) = b+ 1

n

∑
Xi = b+μ̂. Let us consider the

second requirement:μ̂ = 1
n

∑−Xi = −μ̂. Finally, the last requirement is satisfied
with μ̂ = 1

n

∑
aXi = aμ̂.

Robust Estimation and Contamination Now that we have the generalized loca-
tion of centrality embodied in the location parameter, what can we do with it?
Previously, we assumed that our samples were all identically distributed. The key
idea is that the samples might be actually coming from a single distribution that is
contaminated by another nearby distribution, as in the following:

F(X) = εG(X)+ (1− ε)H(X)

where ε randomly toggles between zero and one. This means that our data samples
{Xi} actually derived from two separate distributions, G(X) and H(X). We just
don’t know how they are mixed together. What we really want is an estimator that
captures the location of G(X) in the face of random intermittent contamination by
H(X). For example, it may be that this contamination is responsible for the outliers
in a model that otherwise works well with the dominant F distribution. It can get
even worse than that because we don’t know that there is only one contaminating

3.10 Robust Statistics 231

H(X) distribution out there. There may be a whole family of distributions that are
contaminating G(X). This means that whatever estimators we construct have to
be derived from a more generalized family of distributions instead of from a single
distribution, as the maximum-likelihood method assumes. This is what makes robust
estimation so difficult—it has to deal with spaces of function distributions instead
of parameters from a particular probability distribution.

Generalized Maximum Likelihood Estimators M-estimators are generalized
maximum likelihood estimators. Recall that for maximum likelihood, we want to
maximize the likelihood function as in the following:

Lμ(xi) =
∏

f0(xi − μ)

and then to find the estimator μ̂ so that

μ̂ = arg max
μ

Lμ(xi)

So far, everything is the same as our usual maximum-likelihood derivation except
for the fact that we don’t assume a specific f0 as the distribution of the {Xi}. Making
the definition of

ρ = − log f0

we obtain the more convenient form of the likelihood product and the optimal μ̂ as

μ̂ = arg min
μ

∑
ρ(xi − μ)

If ρ is differentiable, then differentiating this with respect to μ gives

∑
ψ(xi − μ̂) = 0 (3.11)

with ψ = ρ′, the first derivative of ρ, and for technical reasons we will assume that
ψ is increasing. So far, it looks like we just pushed some definitions around, but
the key idea is we want to consider general ρ functions that may not be maximum
likelihood estimators for any distribution. Thus, our focus is now on uncovering the
nature of μ̂.

Distribution of M-estimates For a given distribution F , we define μ0 = μ(F) as
the solution to the following:

EF (ψ(x − μ0)) = 0

232 3 Statistics

It is technical to show, but it turns out that μ̂ ∼ N (μ0,
v
n
) with

v = EF (ψ(x − μ0)
2)

(EF (ψ ′(x − μ0)))2

Thus, we can say that μ̂ is asymptotically normal with asymptotic value μ0 and
asymptotic variance v. This leads to the efficiency ratio which is defined as the
following:

Eff(μ̂) = v0

v

where v0 is the asymptotic variance of the MLE and measures how near μ̂ is to the
optimum. In other words, this provides a sense of how much outlier contamination
costs in terms of samples. For example, if for two estimates with asymptotic
variances v1 and v2, we have v1 = 3v2; then first estimate requires three times as
many observations to obtain the same variance as the second. Furthermore, for the
sample mean (i.e., μ̂ = 1

n

∑
Xi) with F = N , we have ρ = x2/2 and ψ = x and

also ψ ′ = 1. Thus, we have v = V(x). Alternatively, using the sample median
as the estimator for the location, we have v = 1/(4f (μ0)

2). Thus, if we have
F = N (0, 1), for the sample median, we obtain v = 2π/4 ≈ 1.571. This means
that the sample median takes approximately 1.6 times as many samples to obtain the
same variance for the location as the sample mean. The sample median is far more
immune to the effects of outliers than the sample mean, so this gives a sense of how
much this robustness costs in samples.

M-Estimates as Weighted Means One way to think about M-estimates is a
weighted means. Operationally, this means that we want weight functions that can
circumscribe the influence of the individual data points, but, when taken as a whole,
still provide good estimated parameters. Most of the time, we have ψ(0) = 0, and
ψ ′(0) exists so that ψ is approximately linear at the origin. Using the following
definition:

W(x) =
{

ψ(x)/x if x
= 0

ψ ′(x) if x = 0

We can write our Eq. 3.11 as follows:

∑
W(xi − μ̂)(xi − μ̂) = 0 (3.12)

Solving this for μ̂ yields the following:

μ̂ =
∑

wixi∑
wi

3.10 Robust Statistics 233

where wi = W(xi − μ̂). This is not practically useful because the wi contains μ̂,
which is what we are trying to solve for. The question that remains is how to pick
the ψ functions. This is still an open question, but the Huber functions are a well-
studied choice.

Huber Functions The family of Huber functions is defined by the following:

ρk(x) =
{

x2 if |x| ≤ k

2k|x| − k2 if |x| > k

with corresponding derivatives 2ψk(x) with

ψk(x) =
{

x if |x| ≤ k

sgn(x)k if |x| > k

where the limiting cases k → ∞ and k → 0 correspond to the mean and median,
respectively. To see this, take ψ∞ = x and therefore W(x) = 1 and thus the defining
Eq. 3.12 results in

n∑

i=1

(xi − μ̂) = 0

and then solving this leads to μ̂ = 1
n

∑
xi . Note that choosing k = 0 leads to the

sample median, but that is not so straightforward to solve for. Nonetheless, Huber
functions provide a way to move between two extremes of estimators for location
(namely, the mean vs. the median) with a tunable parameter k. The W function
corresponding to Huber’s ψ is the following:

Wk(x) = min
{

1,
k

|x|
}

Figure 3.26 shows the Huber weight function for k = 2 with some sample points.
The idea is that the location, μ̂, is computed from Eq. 3.12 to lie somewhere in
the middle of the weight function so that those terms (i.e., insiders) have their
values fully reflected in the location estimate. The black circles are the outliers that
have their values attenuated by the weight function so that only a fraction of their
presence is represented in the location estimate.

Breakdown Point So far, our discussion of robustness has been very abstract.
A more concrete concept of robustness comes from the breakdown point. In the
simplest terms, the breakdown point describes what happens when a single data
point in an estimator is changed in the most damaging way possible. For example,
suppose we have the sample mean, μ̂ = ∑

xi/n, and we take one of the xi points

234 3 Statistics

Fig. 3.26 This shows the Huber weight function, W2(x), and some cartoon data points that are
insiders or outsiders as far as the robust location estimate is concerned

to be infinite. What happens to this estimator? It also goes infinite. This means that
the breakdown point of the estimator is 0%. On the other hand, the median has a
breakdown point of 50%, meaning that half of the data for computing the median
could go infinite without affecting the median value. The median is a rank statistic
that cares more about the relative ranking of the data than the values of the data,
which explains its robustness.

The simplest but still formal way to express the breakdown point is to take n data
points, D = {(xi, yi)}. Suppose T is a regression estimator that yields a vector of
regression coefficients, θ ,

T (D) = θ

Likewise, consider all possible corrupted samples of the data D′. The maximum
bias caused by this contamination is the following:

biasm = sup
D′
‖T (D′)− T (D)‖

where the sup sweeps over all possible sets of m contaminated samples. Using this,
the breakdown point is defined as the following:

εm = min
{m

n
: biasm →∞

}

For example, in our least-squares regression, even one point at infinity causes an
infinite T . Thus, for least-squares regression, εm = 1/n. In the limit n → ∞, we
have εm → 0.

3.10 Robust Statistics 235

Estimating Scale In robust statistics, the concept of scale refers to a measure of
the dispersion of the data. Usually, we use the estimated standard deviation for
this, but this has a terrible breakdown point. Even more troubling, in order to get
a good estimate of location, we have to either somehow know the scale ahead of
time or jointly estimate it. None of these methods have easy-to-compute closed form
solutions and must be computed numerically.

The most popular method for estimating scale is the median absolute deviation

MAD = Med(|x− Med(x)|)

In words, take the median of the data x, and then subtract that median from the data
itself, and then take the median of the absolute value of the result. Another good
dispersion estimate is the interquartile range

IQR = x(n−m+1) − x(n)

where m = [n/4]. The x(n) notation means the nth data element after the data have
been sorted. Thus, in this notation, max(x) = x(n). In the case where x ∼ N (μ, σ 2),
then MAD and IQR are constant multiples of σ such that the normalized MAD is the
following:

MADN(x) = MAD

0.675

The number comes from the inverse CDF of the normal distribution corresponding
to the 0.75 level. Given the complexity of the calculations, jointly estimating both
location and scale is a purely numerical matter. Fortunately, the Statsmodels module
has many of these ready to use. Let us create some contaminated data in the
following code:

import statsmodels.api as sm
from scipy import stats
data=np.hstack([stats.norm(10,1).rvs(10),

stats.norm(0,1).rvs(100)])

These data correspond to our model of contamination that we started this section
with. As shown in the histogram in Fig. 3.27, there are two normal distributions,
one centered neatly at zero, representing the majority of the samples, and another
coming less regularly from the normal distribution on the right. Notice that the group
of infrequent samples on the right separates the mean and median estimates (vertical
dotted and dashed lines). In the absence of the contaminating distribution on the
right, the standard deviation for this data should be close to one. However, the usual
non-robust estimate for standard deviation (np.std) comes out to approximately
three. Using the MADN estimator (sm.robust.scale.mad(data)), we obtain
approximately 1.25. Thus, the robust estimate of dispersion is less moved by the
presence of the contaminating distribution.

236 3 Statistics

Fig. 3.27 Histogram of sample data. Notice that the group of infrequent samples on the right
separates the mean and median estimates indicated by the vertical lines

The generalized maximum likelihood M-estimation extends to joint scale and
location estimation using Huber functions. For example,

huber = sm.robust.scale.Huber()
loc,scl=huber(data)

which implements Huber’s proposal two method of joint estimation of
location and scale. This kind of estimation is the key ingredient to robust
regression methods, many of which are implemented in Statsmodels in
statsmodels.formula.api.rlm. The corresponding documentation has
more information.

3.11 Bootstrapping

As we have seen, it can be very difficult or impossible to determine the probability
density distribution of the estimator of some quantity. The idea behind the bootstrap
is that we can use computation to approximate these functions which would
otherwise be impossible to solve for analytically.

Let us start with a simple example. Suppose we have the following set of random
variables, {X1, X2, . . . , Xn} where each Xk ∼ F . In other words the samples are
all drawn from the same unknown distribution F . Having run the experiment, we
thereby obtain the following sample set:

{x1, x2, . . . , xn}

The sample mean is computed from this set as

x̄ = 1

n

n∑

i=1

xi

3.11 Bootstrapping 237

The next question is how close is the sample mean to the true mean, θ = EF (X).
Note that the second central moment of X is as follows:

μ2(F) := EF (X2)− (EF (X))2

The standard deviation of the sample mean, x̄, given n samples from an underlying
distribution F , is the following:

σ(F) = (μ2(F)/n)1/2

Unfortunately, because we have only the set of samples {x1, x2, . . . , xn} and not F

itself, we cannot compute this and instead must use the estimated standard error

σ̄ = (μ̄2/n)1/2

where μ̄2 =∑
(xi−x̄)2/(n−1), which is the unbiased estimate of μ2(F). However,

this is not the only way to proceed. Instead, we could replace F by some estimate,
F̂ obtained as a piecewise function of {x1, x2, . . . , xn} by placing probability mass
1/n on each xi . With that in place, we can compute the estimated standard error as
the following:

σ̂B = (μ2(F̂)/n)1/2

which is called the bootstrap estimate of the standard error. Unfortunately, the story
effectively ends here. In even a slightly more general setting, there is no clean
formula σ(F) within which F can be swapped for F̂ .

This is where the computer saves the day. We actually do not need to know the
formula σ(F) because we can compute it using a resampling method. The key idea
is to sample with replacement from {x1, x2, . . . , xn}. The new set of n independent
draws (with replacement) from this set is the bootstrap sample:

y∗ = {x∗1 , x∗2 , . . . , x∗n}

The Monte Carlo algorithm proceeds by first by selecting a large number of
bootstrap samples, {y∗k }, then computing the statistic on each of these samples, and
then computing the sample standard deviation of the results in the usual way. Thus,
the bootstrap estimate of the statistic θ is the following:

θ̂∗B =
1

B

∑

k

θ̂∗(k)

238 3 Statistics

with the corresponding square of the sample standard deviation as

σ̂ 2
B =

1

B − 1

∑

k

(θ̂∗(k)− θ̂∗B)2

The process is much simpler than the notation implies. Let us explore this with a
simple example using Python. The next block of code sets up some samples from a
β(3, 2) distribution:

>>> from scipy import stats
>>> rv = stats.beta(3,2)
>>> xsamples = rv.rvs(50)

Because this is simulation data, we already know that the mean is μ1 = 3/5 and the
standard deviation of the sample mean for n = 50 is σ̄ = √

2/50, which we will
verify later.

Figure 3.28 shows the β(3, 2) distribution and the corresponding histogram of
the samples. The histogram represents F̂ and is the distribution we sample from
to obtain the bootstrap samples. As shown, the F̂ is a pretty crude estimate for
the F density (smooth solid line), but that’s not a serious problem insofar as the
following bootstrap estimates are concerned. In fact, the approximation F̂ has a
naturally tendency to pull toward the bulk of probability mass. This is a feature, not
a bug, and is the underlying mechanism that explains bootstrapping, but the formal
proofs that exploit this basic idea are far out of our scope here. The next block
generates the bootstrap samples

>>> yboot = np.random.choice(xsamples,(100,50))
>>> yboot_mn = yboot.mean()

and the bootstrap estimate is therefore

>>> np.std(yboot.mean(axis=1)) # approx sqrt(1/1250)
0.025598763883825818

Figure 3.29 shows the distribution of computed sample means from the bootstrap
samples. As promised, the next block shows how to use sympy.stats to compute
the β(3, 2) parameters we quoted earlier. Keep in mind we want to compute the
standard deviation of the sample mean estimator and not the standard deviation of
the samples themselves.

>>> import sympy as S
>>> import sympy.stats
>>> for i in range(50): # 50 samples
... # load sympy.stats Beta random variables
... # into global namespace using exec
... execstring = f"x{i} = S.stats.Beta('x{i}',3,2)"
... exec(execstring)
...
>>> # populate xlist with the sympy.stats random variables
>>> # from above
>>> xlist = [eval(f'x{i}') for i in range(50)]
>>> # compute sample mean
>>> sample_mean = sum(xlist)/len(xlist)
>>> # compute expectation of sample mean

3.11 Bootstrapping 239

Fig. 3.28 The β(3, 2) distribution and the histogram that approximates it

Fig. 3.29 For each bootstrap draw, we compute the sample mean. This is the histogram of those
sample means that will be used to compute the bootstrap estimate of the standard deviation

>>> sample_mean_1 = S.stats.E(sample_mean).evalf()
>>> # compute 2nd moment of sample mean
>>> sample_mean_2 = S.stats.E(S.expand(sample_mean**2)).evalf()
>>> # standard deviation of sample mean
>>> # use sympy sqrt function
>>> sigma_smn = S.sqrt(sample_mean_2-sample_mean_1**2)# sqrt(2)/50
>>> print(sigma_smn)
0.0282842712474623

Programming Tip
Using the exec function enables the creation of a sequence of Sympy random
variables. Sympy has the var function which can automatically create a
sequence of Sympy symbols, but there is no corresponding function in the
statistics module to do this for random variables.

240 3 Statistics

Example: Delta Method vs. Bootstrap Recall the delta method from Sect. 3.4.2.
Suppose we have a set of Bernoulli coin flips (Xi) with probability of head p. Our
maximum likelihood estimator of p is p̂ = ∑

Xi/n for n flips. We know this
estimator is unbiased with E(p̂) = p and V(p̂) = p(1 − p)/n. Suppose we want
to use the data to estimate the variance of the Bernoulli trials (V(X) = p(1 −
p)). By the notation the delta method, g(x) = x(1 − x). By the plug-in principle,
our maximum likelihood estimator of this variance is then p̂(1 − p̂). We want the
variance of this quantity. Using the results of the delta method, we have

V(g(p̂)) = (1− 2p̂)2
V(p̂)

V(g(p̂)) = (1− 2p̂)2 p̂(1− p̂)

n

Let us see how useful this is with a short simulation.

>>> p = 0.25 # true head-up probability
>>> n = 10
>>> x = stats.bernoulli(p).rvs(n)
>>> print(x)
[0 0 0 0 0 0 1 0 0 0]

The maximum likelihood estimator of p is p̂ =∑
Xi/n:

>>> phat = x.mean()
>>> print(phat)
0.1

Then, plugging this into the delta method approximant above,

>>> print((1-2*phat)**2*(phat)*(1-phat)/n)
0.005760000000000001

Now, let us try this using the bootstrap estimate of the variance:

>>> phat_b=np.random.choice(x,(50,n)).mean(1)
>>> print(np.var(phat_b*(1-phat_b)))
0.0050490000000000005

This shows that the delta method’s estimated variance is different from the bootstrap
method, but which one is better? For this situation we can solve for this directly
using Sympy:

>>> import sympy as S
>>> from sympy.stats import E, Bernoulli
>>> xdata =[Bernoulli(i,p) for i in S.symbols('x:10')]
>>> ph = sum(xdata)/len(xdata)
>>> g = ph*(1-ph)

3.11 Bootstrapping 241

Programming Tip
The argument in the S.symbols(’x:10’) function returns a sequence of
Sympy symbols named x1,x2, and so on. This is shorthand for creating and
naming each symbol sequentially.

Note that g is the g(p̂) = p̂(1− p̂) whose variance we are trying to estimate. Then,
we can plug in for the estimated p̂ and get the correct value for the variance:

>>> print(E(g**2)-E(g)**2)
0.00442968749999999

This case is generally representative—the delta method tends to underestimate the
variance, and the bootstrap estimate is better here.

3.11.1 Parametric Bootstrap

In the previous example, we used the {x1, x2, . . . , xn} samples themselves as the
basis for F̂ by weighting each with 1/n. An alternative is to assume that the samples
come from a particular distribution, estimate the parameters of that distribution from
the sample set, and then use the bootstrap mechanism to draw samples from the
assumed distribution, using the so-derived parameters. For example, the next code
block does this for a normal distribution.

>>> rv = stats.norm(0,2)
>>> n = 100
>>> xsamples = rv.rvs(n)
>>> # estimate mean and var from xsamples
>>> mn_ = np.mean(xsamples)
>>> std_ = np.std(xsamples)
>>> # bootstrap from assumed normal distribution with
>>> # mn_,std_ as parameters
>>> rvb = stats.norm(mn_,std_) #plug-in distribution
>>> yboot = rvb.rvs((n,500)).var(axis=0)

Recall the sample variance estimator is the following:

S2 = 1

n− 1

∑
(Xi − X̄)2

Assuming that the samples are normally distributed, this means that (n − 1)S2/σ 2

has a chi-squared distribution with n − 1 degrees of freedom. Thus, the variance,
V(S2) = 2σ 4/(n − 1). Likewise, the MLE plug-in estimate for this is V(S2) =
2σ̂ 4/(n− 1). The following code computes the variance of the sample variance, S2

using the MLE and bootstrap methods.

242 3 Statistics

>>> # MLE-Plugin Variance of the sample mean
>>> print(2*std_**4/(n-1)) # MLE plugin
0.35547420180385103
>>> # Bootstrap variance of the sample mean
>>> print(yboot.var())
0.30032404479182445
>>> # True variance of sample mean
>>> print(2*(2**4)/(n-1))
0.32323232323232326

This shows that the bootstrap estimate is better here than the MLE plug-in estimate.
Note that this technique becomes even more powerful with multivariate distri-

butions with many parameters because all the mechanics are the same. Thus, the
bootstrap is a great all-purpose method for computing standard errors, but, in the
limit, is it converging to the correct value? This is the question of consistency.
Unfortunately, to answer this question requires more and deeper mathematics than
we can get into here. The short answer is that for estimating standard errors, the
bootstrap is a consistent estimator in a wide range of cases, and so it definitely
belongs in your toolkit.

3.12 Gauss-Markov

The Gauss-Markov model is the fundamental model for noisy parameter estimation
because it estimates unobservable parameters given a noisy indirect measurement.
Incarnations of the same model appear in all studies of Gaussian models. This case
is an excellent opportunity to use everything we have so far learned about projection
and conditional expectation.

Following Luenberger [27] let us consider the following problem:

y =Wβ+ ε

where W is a n × m matrix and y is a n × 1 vector. Also, ε is a n-dimensional
normally distributed random vector with zero-mean and covariance:

E(εεT) = Q

Note that engineering systems usually provide a calibration mode where you can
estimate Q, so it’s not fantastical to assume you have some knowledge of the noise
statistics. The problem is to find a matrix K so that β̂ = KT y approximates β. Note
that we only have knowledge of β via y so we can’t measure it directly. Further,
note that K is a matrix, not a vector, so there are m× n entries to compute.

We can approach this problem the usual way by trying to solve the MMSE
problem:

3.12 Gauss-Markov 243

min
K

E(‖β̂− β‖2)

which we can write out as

min
K

E(‖β̂− β‖2) = min
K

E(‖KT y− β‖2) = min
K

E(‖KT Wβ+KT ε − β‖2)

and since ε is the only random variable here, this simplifies to

min
K
‖KT Wβ− β‖2 + E(‖KT ε‖2)

The next step is to compute

E(‖KT ε‖2) = TrE(KT εεT K) = Tr(KTQK)

using the properties of the trace of a matrix. We can assemble everything as

min
K
‖KTWβ− β‖2 + Tr(KTQK)

Now, if we were to solve this for K, it would be a function of β, which is the same
thing as saying that the estimator, β̂, is a function of what we are trying to estimate,
β, which makes no sense. However, writing this out tells us that if we had KTW = I,
then the first term vanishes and the problem simplifies to

min
K

Tr(KTQK)

with the constraint

KTW = I

This requirement is the same as asserting that the estimator is unbiased,

E(β̂) = KT Wβ = β

To line this problem up with our earlier work, let us consider the ith column of K,
ki . Now, we can rewrite the problem as

min
k

(kT
i Qki)

with

WT ki = ei

244 3 Statistics

and we know how to solve this from our previous work on constrained optimization:

ki = Q−1W(WTQ−1W)−1ei

Now all we have to do is stack these together for the general solution:

K = Q−1W(WTQ−1W)−1

It’s easy when you have all of the concepts lined up! For completeness, the
covariance of the error is

E(β̂− β)(β̂− β)T = KT QK = (WT Q−1W)−1

Figure 3.30 shows the simulated y data as red circles. The black dots show the
corresponding estimates, β̂ for each sample. The black lines show the true value
of β versus the average of the estimated β-values, β̂m. The matrix K maps the red
circles in the corresponding dots. Note there are many possible ways to map the red
circles to the plane, but the K is the one that minimizes the MSE for β.

Programming Tip
The following snippets provide a quick code walkthrough. To simulate the
target data, we define the relevant matrices below:

Q = np.eye(3)*0.1 # error covariance matrix
this is what we are trying estimate
beta = matrix(ones((2,1)))
W = matrix([[1,2],

[2,3],
[1,1]])

Then, we generate the noise terms and create the simulated data, y,

ntrials=50
epsilon=np.random.multivariate_normal((0,0,0),Q,ntrials).T
y=W*beta+epsilon

Figure 3.31 shows more detail in the horizontal xy-plane of Fig. 3.30. Figure 3.31
shows the dots, which are individual estimates of β̂ from the corresponding
simulated y data. The dashed line is the true value for β, and the filled line (β̂m)
is the average of all the dots. The gray ellipse provides an error ellipse for the
covariance of the estimated β values.

3.12 Gauss-Markov 245

Fig. 3.30 The red circles show the points to be estimated in the xy-plane by the black points

Fig. 3.31 Focusing on the xy-plane in Fig. 3.30, the dashed line shows the true value for β versus
the mean of the estimated values β̂m

246 3 Statistics

Programming Tip
The following snippets provide a quick walkthrough of the construction of
Fig. 3.31. To draw the ellipse, we need to import the patch primitive:

from matplotlib.patches import Ellipse

To compute the parameters of the error ellipse based on the covariance matrix
of the individual estimates of β in the bm_cov variable below:

bm_cov = np.linalg.inv(W.T*Q*W)
U,S,V = np.linalg.svd(bm_cov)
err = np.sqrt((matrix(bm))*(bm_cov)*(matrix(bm).T))
theta = np.arccos(U[0,1])/np.pi*180

Then, we draw the add the scaled ellipse in the following:

ax.add_patch(Ellipse(bm,err*2/np.sqrt(S[0]),
err*2/np.sqrt(S[1]),
angle=theta,color='gray'))

3.13 Nonparametric Methods

So far, we have considered parametric methods that reduce inference or prediction to
parameter-fitting. However, for these to work, we had to assume a specific functional
form for the unknown probability distribution of the data. Nonparametric methods
eliminate the need to assume a specific functional form by generalizing to classes
of functions.

3.13.1 Kernel Density Estimation

We have already made heavy use of this method with the histogram, which is
a special case of kernel density estimation. The histogram can be considered
the crudest and most useful nonparametric method that estimates the underlying
probability distribution of the data.

To be formal and place the histogram on the same footing as our earlier
estimations, suppose that X = [0, 1]d is the d dimensional unit cube and that h

is the bandwidth or size of a bin or sub-cube. Then, there are N ≈ (1/h)d such
bins, each with volume hd , {B1, B2, . . . , BN }. With all this in place, we can write
the histogram has a probability density estimator of the form

3.13 Nonparametric Methods 247

p̂h(x) =
N∑

k=1

θ̂k

h
I (x ∈ Bk)

where

θ̂k = 1

n

n∑

j=1

I (Xj ∈ Bk)

is the fraction of data points (Xk) in each bin, Bk . We want to bound the bias and
variance of p̂h(x). Keep in mind that we are not trying to estimate a function of x,
but the set of all possible probability distribution functions is extremely large and
hard to manage. Thus, we need to restrict our attention to the following class of
probability distribution of so-called Lipschitz functions:

P(L) = {p : |p(x)− p(y)| ≤ L‖x − y‖,∀ x, y}

Roughly speaking, these are the density functions whose slopes (i.e., growth rates)
are bounded by L. It turns out that the bias of the histogram estimator is bounded in
the following way:

∫
|p(x)− E(p̂h(x))|dx ≤ Lh

√
d

Similarly, the variance is bounded by the following:

V(p̂h(x)) ≤ C

nhd

for some constant C. Putting these two facts together means that the risk is bounded
by

R(p, p̂) =
∫

E(p(x)− p̂h(x))2dx ≤ L2h2d + C

nhd

This upper bound is minimized by choosing

h =
(

C

L2nd

) 1
d+2

In particular, this means that

sup
p∈P(L)

R(p, p̂) ≤ C0

(
1

n

) 2
d+2

248 3 Statistics

where the constant C0 is a function of L. There is a theorem [48] that shows
this bound in tight, which basically means that the histogram is a really powerful

probability density estimator for Lipschitz functions with risk that goes as
(

1
n

) 2
d+2

.

This class of functions is not necessarily smooth because the Lipschitz condition
admits non-smooth functions. While this is a reassuring result, we typically do not
know which function class (Lipschitz or not) a particular probability belongs to
ahead of time. Nonetheless, the rate at which the risk changes with both dimension d

and n samples would be hard to understand without this result. Figure 3.32 shows the
probability distribution function of the β(2, 2) distribution compared to computed
histograms for different values of n. The box plots on each of the points show
how the variation in each bin of the histogram reduces with increasing n. The risk
function R(p, p̂) above is based upon integrating the squared difference between the
histogram (as a piecewise function of x) and the probability distribution function.

Programming Tip
The following snippet is the main element of the code for Fig. 3.32:

def generate_samples(n,ntrials=500):
phat = np.zeros((nbins,ntrials))
for k in range(ntrials):

d = rv.rvs(n)
phat[:,k],_=histogram(d,bins,density=True)

return phat

The code uses the histogram function from Numpy. To be consistent
with the risk function R(p, p̂), we have to make sure the bins keyword
argument is formatted correctly using a sequence of bin-edges instead of just a
single integer. Also, the density=True keyword argument normalizes the
histogram appropriately so that the comparison between it and the probability
distribution function of the simulated beta distribution is correctly scaled.

3.13.2 Kernel Smoothing

We can extend our methods to other function classes using kernel functions. A one-
dimensional smoothing kernel is a smooth function K with the following properties:

∫
K(x)dx = 1

∫
xK(x)dx = 0

3.13 Nonparametric Methods 249

Fig. 3.32 The box plots on each of the points show how the variation in each bin of the histogram
reduces with increasing n

0 <

∫
x2K(x)dx <∞

For example, K(x) = I (x)/2 is the boxcar kernel, where I (x) = 1 when |x| ≤ 1
and zero otherwise. The kernel density estimator is very similar to the histogram,
except now we put a kernel function on every point as in the following:

p̂(x) = 1

n

n∑

i=1

1

hd
K

(‖x −Xi‖
h

)

where X ∈ R
d . Figure 3.33 shows an example of a kernel density estimate using a

Gaussian kernel function, K(x) = e−x2/2/
√

2π . There are five data points shown
by the vertical lines in the upper panel. The dotted lines show the individual K(x)

function at each of the data points. The lower panel shows the overall kernel density
estimate, which is the scaled sum of the upper panel.

There is an important technical result in [48] that states that kernel density
estimators are minimax in the sense we discussed in the maximum likelihood
Sect. 3.4. In broad strokes, this means that the analogous risk for the kernel density
estimator is approximately bounded by the following factor:

R(p, p̂) � n−
2m

2m+d

for some constant C where m is a factor related to bounding the derivatives of the
probability density function. For example, if the second derivative of the density

250 3 Statistics

Fig. 3.33 The upper panel shows the individual kernel functions placed at each of the data points.
The lower panel shows the composite kernel density estimate which is the sum of the individual
functions in the upper panel

function is bounded, then m = 2. This means that the convergence rate for this
estimator decreases with increasing dimension d.

Cross-Validation As a practical matter, the tricky part of the kernel density
estimator (which includes the histogram as a special case) is that we need to
somehow compute the bandwidth h term using data. There are several rule-of-
thumb methods that for some common kernels, including Silverman’s rule and
Scott’s rule for Gaussian kernels. For example, Scott’s factor is to simply compute
h = n−1/(d+4), and Silverman’s is h = (n(d + 2)/4)(−1/(d+4)). Rules of this
kind are derived by assuming the underlying probability density function is of a
certain family (e.g., Gaussian) and then deriving the best h for a certain type of
kernel density estimator, usually equipped with extra functional properties (say,
continuous derivatives of a certain order). In practice, these rules seem to work
pretty well, especially for unimodal probability density functions. Avoiding these
kinds of assumptions means computing the bandwidth from data directly and that is
where cross-validation comes in.

Cross-validation is a method to estimate the bandwidth from the data itself. The
idea is to write out the following integrated squared error (ISE):

ISE(p̂h, p) =
∫

(p(x)− p̂h(x))2dx

=
∫

p̂h(x)2dx − 2
∫

p(x)p̂hdx +
∫

p(x)2dx

3.13 Nonparametric Methods 251

The problem with this expression is the middle term,7

∫
p(x)p̂hdx

where p(x) is what we are trying to estimate with p̂h. The form of the last expression
looks like an expectation of p̂h over the density of p(x), E(p̂h). The approach is to
approximate this with the mean:

E(p̂h) ≈ 1

n

n∑

i=1

p̂h(Xi)

The problem with this approach is that p̂h is computed using the same data that
the approximation utilizes. The way to get around this is to split the data into two
equally sized chunks D1, D2 and then compute p̂h for a sequence of different h

values over the D1 set. Then, when we apply the above approximation for the data
(Zi) in the D2 set,

E(p̂h) ≈ 1

|D2|
∑

Zi∈D2

p̂h(Zi)

Plugging this approximation back into the integrated squared error provides the
objective function:

ISE ≈
∫

p̂h(x)2dx − 2

|D2|
∑

Zi∈D2

p̂h(Zi)

Some code will make these steps concrete. We will need some tools from Scikit-
learn.

>>> from sklearn.model_selection import train_test_split
>>> from sklearn.neighbors import KernelDensity

The train_test_split function makes it easy to split and keep track of the D1
and D2 sets we need for cross-validation. Scikit-learn already has a powerful and
flexible implementation of kernel density estimators. To compute the objective func-
tion, we need some basic numerical integration tools from Scipy. For this example,
we will generate samples from a β(2, 2) distribution, which is implemented in the
stats submodule in Scipy.

>>> from scipy.integrate import quad
>>> from scipy import stats
>>> rv= stats.beta(2,2)

7 The last term is of no interest because we are only interested in relative changes in the ISE.

252 3 Statistics

>>> n=100 # number of samples to generate
>>> d = rv.rvs(n)[:,None] # generate samples as column-vector

Programming Tip
The use of the [:,None] in the last line formats the Numpy array returned
by the rvs function into a Numpy vector with a column dimension of one.
This is required by the KernelDensity constructor because the column
dimension is used for different features (in general) for Scikit-learn. Thus,
even though we only have one feature, we still need to comply with the
structured input that Scikit-learn relies upon. There are many ways to inject
the additional dimension other than using None. For example, the more
cryptic, np.c_, or the less cryptic [:,np.newaxis] can do the same, as
can the np.reshape function.

The next step is to split the data into two halves and loop over each of the hi

bandwidths to create a separate kernel density estimator based on the D1 data:

>>> train,test,_,_=train_test_split(d,d,test_size=0.5)
>>> kdes=[KernelDensity(bandwidth=i).fit(train)
... for i in [.05,0.1,0.2,0.3]]

Programming Tip
Note that the single underscore symbol in Python refers to the last evaluated
result. The above code unpacks the tuple returned by train_test_split

into four elements. Because we are only interested in the first two, we assign
the last two to the underscore symbol. This is a stylistic usage to make it clear
to the reader that the last two elements of the tuple are unused. Alternatively,
we could assign the last two elements to a pair of dummy variables that we
do not use later, but then the reader skimming the code may think that those
dummy variables are relevant.

The last step is to loop over the so-created kernel density estimators and compute
the objective function (Fig. 3.34).

>>> for i in kdes:
... f = lambda x: np.exp(i.score_samples(x))
... f2 = lambda x: f([[x]])**2
... h = i.bandwidth
... if2 = quad(f2,0,1)[0]
... mn = np.mean(f(test))
... print('h=%3.2f\t %3.4f'%(h,if2-2*mn))
...
h=0.05 -1.1323

3.13 Nonparametric Methods 253

Fig. 3.34 Each line above is a different kernel density estimator for the given bandwidth as an
approximation to the true density function. A plain histogram is imprinted on the bottom for
reference

h=0.10 -1.1336
h=0.20 -1.1330
h=0.30 -1.0810

Programming Tip
The lambda functions defined in the last block are necessary because
Scikit-learn implements the return value of the kernel density estimator as
a logarithm via the score_samples function. The numerical quadrature
function quad from Scipy computes the

∫
p̂h(x)2dx part of the objective

function.

Scikit-learn has many more advanced tools to automate this kind of hyper-
parameter (i.e., kernel density bandwidth) search. To utilize these advanced tools,
we need to format the current problem slightly differently by defining the following
wrapper class:

>>> class KernelDensityWrapper(KernelDensity):
... def predict(self,x):
... return np.exp(self.score_samples(x))
... def score(self,test):
... f = lambda x: self.predict(x)
... f2 = lambda x: f([[x]])**2
... return -(quad(f2,0,1)[0]-2*np.mean(f(test)))
...

254 3 Statistics

This is tantamount to reorganizing the above previous code into functions that
Scikit-learn requires. Next, we create the dictionary of parameters we want to search
over (params) below and then start the grid search with the fit function:

>>> from sklearn.model_selection import GridSearchCV
>>> params = {'bandwidth':np.linspace(0.01,0.5,10)}
>>> clf = GridSearchCV(KernelDensityWrapper(),

param_grid=params,cv=2)
>>> clf.fit(d)
GridSearchCV(cv=2,estimator=KernelDensityWrapper(),
param_grid={'bandwidth':array([0.01,0.06444444,0.11888889,
0.17333333,0.22777778,
0.28222222,0.33666667,0.39111111,0.44555556,0.5])})
>>> print(clf.best_params_)
{'bandwidth': 0.17333333333333334}

The grid search iterates over all the elements in the params dictionary and reports
the best bandwidth over that list of parameter values. The cv keyword argument
above specifies that we want to split the data into two equally sized sets for training
and testing. We can also examine the values of the objective function for each point
on the grid as follows:

>>> clf.cv_results_['mean_test_score']
array([0.60758058,1.06324954,1.11858734,1.13187097,1.12006532,
1.09186225,1.05391076,1.01126161,0.96717292,0.92354959])

Keep in mind that the grid search examines multiple folds for cross-validation
to compute the above means and standard deviations. Note that there is also
a RandomizedSearchCV in case you would rather specify a distribution of
parameters instead of a list. This is particularly useful for searching very large
parameter spaces where an exhaustive grid search would be too computationally
expensive. Although kernel density estimators are easy to understand and have many
attractive analytical properties, they become practically prohibitive for large, high-
dimensional datasets.

3.13.3 Nonparametric Regression Estimators

Beyond estimating the underlying probability density, we can use nonparametric
methods to compute estimators of the underlying function that is generating the
data. Nonparametric regression estimators of the following form are known as linear
smoothers:

ŷ(x) =
n∑

i=1

�i(x)yi

To understand the performance of these smoothers, we can define the risk as the
following,

3.13 Nonparametric Methods 255

R(ŷ, y) = E

(
1

n

n∑

i=1

(ŷ(xi)− y(xi))
2

)

and find the best ŷ that minimizes this. The problem with this metric is that we do
not know y(x), which is why we are trying to approximate it with ŷ(x). We could
construct an estimation by using the data at hand as in the following:

R̂(ŷ, y) = 1

n

n∑

i=1

(ŷ(xi)− Yi)
2

where we have substituted the data Yi for the unknown function value, y(xi). The
problem with this approach is that we are using the data to estimate the function
and then using the same data to evaluate the risk of doing so. This kind of double-
dipping leads to overly optimistic estimators. One way out of this conundrum is to
use leave-one-out cross-validation, wherein the ŷ function is estimated using all but
one of the data pairs, (Xi, Yi). Then, this missing data element is used to estimate
the above risk. Notationally, this is written as the following:

R̂(ŷ, y) = 1

n

n∑

i=1

(ŷ(−i)(xi)− Yi)
2

where ŷ(−i) denotes computing the estimator without using the ith data pair.
Unfortunately, for anything other than relatively small datasets, it quickly becomes
computationally prohibitive to use leave-one-out cross-validation in practice. We’ll
get back to this issue shortly, but let us consider a concrete example of such a
nonparametric smoother.

3.13.4 Nearest Neighbors Regression

The simplest possible nonparametric regression method is the k-nearest neighbors
regression. This is easier to explain in words than to write out in math. Given an
input x, find the closest one of the k clusters that contains it, and then return the
mean of the data values in that cluster. As a univariate example, let us consider the
following chirp waveform:

y(x) = cos

(
2π

(
fox + BWx2

2τ

))

This waveform is important in high-resolution radar applications. The fo is the start
frequency, and BW/τ is the frequency slope of the signal. For our example, the fact

256 3 Statistics

that it is nonuniform over its domain is important. We can easily create some data
by sampling the chirp as in the following:

>>> xi = np.linspace(0,1,100)[:,None]
>>> xin = np.linspace(0,1,12)[:,None]
>>> f0 = 1 # init frequency
>>> BW = 5 # bandwidth
>>> y = np.cos(2*np.pi*(f0*xin+(BW/2)*xin**2))

We can use this data to construct a simple nearest neighbor estimator using Scikit-
learn:

>>> from sklearn.neighbors import KNeighborsRegressor
>>> knr=KNeighborsRegressor(2)
>>> knr.fit(xin,y)
KNeighborsRegressor(n_neighbors=2)

Programming Tip
Scikit-learn has a fantastically consistent interface. The fit function above
fits the model parameters to the data. The corresponding predict function
returns the output of the model given an arbitrary input. We will spend a lot
more time on Scikit-learn in the machine learning chapter. The [:,None]
part at the end is just injecting a column dimension into the array in order to
satisfy the dimensional requirements of Scikit-learn.

Figure 3.35 shows the sampled signal (gray circles) against the values generated
by the nearest neighbor estimator (solid line). The dotted line is the full unsampled
chirp signal, which increases in frequency with x. This is important for our example
because it adds a non-stationary aspect to this problem in that the function gets

Fig. 3.35 The dotted line shows the chirp signal, and the solid line shows the nearest neighbor
estimate. The gray circles are the sample points that we used to fit the nearest neighbor estimator.
The shaded area shows the gaps between the estimator and the unsampled chirp

3.13 Nonparametric Methods 257

Fig. 3.36 This is the same as Fig. 3.35 except that here there are three nearest neighbors used to
build the estimator

progressively wigglier with increasing x. The area between the estimated curve and
the signal is shaded in gray. Because the nearest neighbor estimator uses only two
nearest neighbors, for each new x, it finds the two adjacent Xi that bracket the x

in the training data and then averages the corresponding Yi values to compute the
estimated value. That is, if you take every adjacent pair of sequential gray circles in
the Figure, you find that the horizontal solid line splits the pair on the vertical axis.
We can adjust the number of nearest neighbors by changing the constructor

>>> knr=KNeighborsRegressor(3)
>>> knr.fit(xin,y)
KNeighborsRegressor(n_neighbors=3)

which produces Fig. 3.36.
For this example, Fig. 3.36 shows that with more nearest neighbors, the fit

performs poorly, especially toward the end of the signal, where there is increasing
variation, because the chirp is not uniformly continuous.

Scikit-learn provides many tools for cross-validation. The following code sets up
the tools for leave-one-out cross-validation:

>>> from sklearn.model_selection import LeaveOneOut
>>> loo=LeaveOneOut()

The LeaveOneOut object is an iterable that produces a set of disjoint indices
of the data—one for fitting the model (training set) and one for evaluating the
model (testing set). The next block loops over the disjoint sets of training, and test
indices iterates provided by the loo variable to evaluate the estimated risk, which
is accumulated in the out list.

>>> out=[]
>>> for train_index, test_index in loo.split(xin):
... _=knr.fit(xin[train_index],y[train_index])
... out.append((knr.predict(xi[test_index])-y[test_index])**2)
...

258 3 Statistics

>>> print('Leave-one-out Estimated Risk: ',np.mean(out),)
Leave-one-out Estimated Risk: 1.0351713662681845

The last line in the code above reports leave-one-out’s estimated risk.
Linear smoothers of this type can be rewritten in using the following matrix:

S = [
�i(xj)

]
i,j

so that

ŷ = Sy

where y = [Y1, Y2, . . . , Yn] ∈ R
n and ŷ = [

ŷ(x1), ŷ(x2), . . . , ŷ(xn)
] ∈ R

n. This
leads to a quick way to approximate leave-one-out cross-validation as the following:

R̂ = 1

n

n∑

i=1

(
yi − ŷ(xi)

1− Si,i

)2

However, this does not reproduce the approach in the code above because it assumes
that each ŷ(−i)(xi) is consuming one fewer nearest neighbor than ŷ(x).

We can get this S matrix from the knr object as in the following:

>>> _= knr.fit(xin,y) # fit on all data
>>> S=(knr.kneighbors_graph(xin)).todense()/knr.n_neighbors

The todense part reformats the sparse matrix that is returned into a regular Numpy
matrix. The following shows a subsection of this S matrix:

>>> print(S[:5,:5])
[[0.33333333 0.33333333 0.33333333 0. 0.]
[0.33333333 0.33333333 0.33333333 0. 0.]
[0. 0.33333333 0.33333333 0.33333333 0.]
[0. 0. 0.33333333 0.33333333 0.33333333]
[0. 0. 0. 0.33333333 0.33333333]]

The sub-blocks show the windows of the y data that are being processed by the
nearest neighbor estimator. For example,

>>> print(np.hstack([knr.predict(xin[:5]),(S*y)[:5]]))#columns match
[[0.55781314 0.55781314]
[0.55781314 0.55781314]
[-0.09768138 -0.09768138]
[-0.46686876 -0.46686876]
[-0.10877633 -0.10877633]]

Or, more concisely checking all entries for approximate equality,

>>> np.allclose(knr.predict(xin),S*y)
True

3.13 Nonparametric Methods 259

which shows that the results from the nearest neighbor object and the matrix
multiply match.

Programming Tip
Note that because we formatted the returned S as a Numpy matrix, we
automatically get the matrix multiplication instead of default element-wise
multiplication in the S*y term.

3.13.5 Kernel Regression

For estimating the probability density, we started with the histogram and moved to
the more general kernel density estimate. Likewise, we can also extend regression
from nearest neighbors to kernel-based regression using the Nadaraya-Watson
kernel regression estimator. Given a bandwidth h > 0, the kernel regression
estimator is defined as the following:

ŷ(x) =
∑n

i=1 K
(

x−xi

h

)
Yi∑n

i=1 K
(

x−xi

h

)

Unfortunately, Scikit-learn does not implement this regression estimator; however,
Jan Hendrik Metzen makes a compatible version available on github.com.

>>> from kernel_regression import KernelRegression

This code makes it possible to internally optimize over the bandwidth parameter
using leave-one-out cross-validation by specifying a grid of potential bandwidth
values (gamma), as in the following:

>>> kr = KernelRegression(gamma=np.linspace(6e3,7e3,500))
>>> kr.fit(xin,y)
KernelRegression(gamma=6000.0)

Figure 3.37 shows the kernel estimator (heavy black line) using the Gaussian kernel
compared to the nearest neighbor estimator (solid light black line). As before, the
data points are shown as circles. Figure 3.37 shows that the kernel estimator can
pick out the sharp peaks that are missed by the nearest neighbor estimator.

Thus, the difference between nearest neighbor and kernel estimation is that
the latter provides a smooth moving averaging of points, whereas the former
provides a discontinuous averaging. Note that kernel estimates suffer near the
boundaries where there is mismatch between the edges and the kernel function. This
problem gets worse in higher dimensions because the data naturally drift toward the
boundaries (this is a consequence of the curse of dimensionality). Indeed, it is not

260 3 Statistics

Fig. 3.37 The heavy blue line is the Gaussian kernel estimator. The light black line is the nearest
neighbor estimator. The data points are shown as gray circles. Note that unlike the nearest neighbor
estimator, the Gaussian kernel estimator is able to pick out the sharp peaks in the training data

possible to simultaneously maintain local accuracy (i.e., low bias) and a generous
neighborhood (i.e., low variance). One way to address this problem is to create a
local polynomial regression using the kernel function as a window to localize a
region of interest. For example,

ŷ(x) =
n∑

i=1

K

(
x − xi

h

)
(Yi − α − βxi)

2

and now we have to optimize over the two linear parameters α and β. This method is
known as local linear regression [14, 25]. Naturally, this can be extended to higher-
order polynomials. Note that these methods are not yet implemented in Scikit-learn.

3.13.6 Curse of Dimensionality

The so-called curse of dimensionality occurs as we move into higher and higher
dimensions. The term was coined by Bellman in 1961 while he was studying
adaptive control processes. Nowadays, the term vaguely refers to anything that
becomes more complicated as the number of dimensions increases substantially.
Nevertheless, the concept is useful for recognizing and characterizing the practical
difficulties of high-dimensional analysis and estimation.

Consider the volume of an d-dimensional sphere of radius r:

Vs(d, r) = πd/2rd

Γ
(

d
2 + 1

)

3.13 Nonparametric Methods 261

Further, consider the sphere Vs(d, 1/2) enclosed by an d dimensional unit cube. The
volume of the cube is always equal to one, but limd→∞ Vs(d, 1/2) = 0. What does
this mean? It means that the volume of the cube is pushed away from its center,
where the embedded hypersphere lives. Specifically, the distance from the center
of the cube to its vertices in d dimensions is

√
d/2, whereas the distance from the

center of the inscribing sphere is 1/2. This diagonal distance goes to infinity as d

does. For a fixed d, the tiny spherical region at the center of the cube has many long
spines attached to it, like a hyper-dimensional sea urchin or porcupine.

Another way to think about this is to consider the ε > 0 thick peel of the
Hypersphere:

Pε = Vs(d, r)− Vs(d, r − ε)

Then, we consider the following limit:

lim
d→∞Pε = lim

d→∞Vs(d, r)

(
1− Vs(d, r − ε)

Vs(d, r)

)
(3.13)

= lim
d→∞Vs(d, r)

(
1− lim

d→∞

(
r − ε

r

)d
)

(3.14)

= lim
d→∞Vs(d, r) (3.15)

So, in the limit, the volume of the ε-thick peel consumes the volume of the
hypersphere.

What are the consequences of this? For methods that rely on nearest neighbors,
exploiting locality to lower bias becomes intractable. For example, suppose we have
an d dimensional space and a point near the origin we want to localize around.
To estimate behavior around this point, we need to average the unknown function
about this point, but in a high-dimensional space, the chances of finding neighbors
to average are slim. Looked at from the opposing point of view, suppose we have a
binary variable, as in the coin flipping problem. If we have 1000 trials, then, based
on our earlier work, we can be confident about estimating the probability of heads.
Now, suppose we have ten binary variables. Now we have 210 = 1024 vertices to
estimate. If we had the same 1000 points, then at least 24 vertices would not get any
data. To keep the same resolution, we would need 1000 samples at each vertex for
a grand total of 1000 × 1024 ≈ 106 data points. So, for a tenfold increase in the
number of variables, we now have about 1000 times more data points to collect to
maintain the same statistical resolution. This is the curse of dimensionality.

Perhaps some code will clarify this. The following code generates samples in
two dimensions that are plotted as points in Fig. 3.38 with the inscribed circle in
two dimensions. Note that for d = 2 dimensions, most of the points are contained
in the circle.

>>> import numpy as np
>>> v=np.random.rand(1000,2)-1/2.

262 3 Statistics

Fig. 3.38 Two-dimensional
scatter of points randomly
and independently uniformly
distributed in the unit square.
Note that most of the points
are contained in the circle.
Counter to intuition, this does
not persist as the number of
dimensions increases

The next code block describes the core computation in Fig. 3.39. For each of
the dimensions, we create a set of uniformly distributed random variates along
each dimension and then compute how close each d dimensional vector is to the
origin. Those that measure one-half are those contained in the hypersphere. The
histogram of each measurement is shown in the corresponding panel in Fig. 3.39.
The dark vertical line shows the threshold value. Values to the left of this indicate
the population that are contained in the hypersphere. Thus, Fig. 3.39 shows that as
d increases, fewer points are contained in the inscribed hypersphere. The following
code paraphrases the content of Fig. 3.39:

fig,ax=subplots()
for d in [2,3,5,10,20,50]:

v=np.random.rand(5000,d)-1/2.
ax.hist([np.linalg.norm(i) for i in v])

3.13.7 Nonparametric Tests

Determining whether or not two sets of observations derive from the same under-
lying probability distribution is an important problem. The most popular way to do
this is with a standard t-test, but that requires assumptions about normality that may
be hard to justify, which leads to nonparametric methods that can get at this question
without such assumptions.

Let V and W be continuous random variables. The variable V is stochastically
larger than W if,

P(V ≥ x) ≥ P(W ≥ x)

3.13 Nonparametric Methods 263

Fig. 3.39 Each panel shows the histogram of lengths of uniformly distributed d dimensional
random vectors. The population to the left of the dark vertical line are those that are contained
in the inscribed hypersphere. This shows that fewer points are contained in the hypersphere with
increasing dimension

Fig. 3.40 The black line
density function is
stochastically larger than the
gray one

for all x ∈ R with strict inequality for at least one x. This can be expressed using
CDFs as the following:

FV (x) ≤ FW(x)

The term stochastically smaller means the obverse of this. For example, the black
line density function shown in Fig. 3.40 is stochastically larger than the gray one.

The Mann-Whitney-Wilcoxon Test The Mann-Whitney-Wilcoxon test
approaches the following alternative hypotheses:

264 3 Statistics

• H0 : F(x) = G(x) for all x versus
• Ha : F(x) < G(x), F stochastically larger than G.

where F and G are two CDFs. Suppose we have two datasets X and Y and we want
to know if they are drawn from the same underlying probability distribution or if one
is stochastically larger than the other. There are nx elements in X and ny elements in
Y . If we combine these two datasets and rank them, then, under the null hypothesis,
any data element should be as likely as any other to be assigned any particular rank.
That is, the combined set Z,

Z = {X1, . . . , Xnx , Y1, . . . , Yny }

contains n = nx + ny elements. Thus, any assignment of ny ranks from the integers

{1, . . . , n} to {Y1, . . . , Yny } should be equally likely (i.e., P = (
n
ny

)−1). Importantly,
this property is independent of the F distribution.

That is, we can define the U statistic as the following:

UX =
nx∑

i=1

ny∑

j=1

I(Xi ≥ Yj)

where I(·) is the usual indicator function. For an interpretation, this counts the
number of times that elements of Y outrank elements of X. For example, let us
suppose that X = {1, 3, 4, 5, 6} and Y = {2, 7, 8, 10, 11}. We can get a this in one
move using Numpy broadcasting:

>>> x = np.array([1,3,4,5,6])
>>> y = np.array([2,7,8,10,11])
>>> U_X = (y <= x[:,None]).sum()
>>> U_Y = (x <= y[:,None]).sum()
>>> (U_X, U_Y)
(4, 21)

Note that

UX + UY =
nx∑

i=1

ny∑

j=1

I(Yi ≥ Xj)+ I(Xi ≥ Yj) = nxny

because I(Yi ≥ Xj)+ I(Xi ≥ Yj) = 1. We can verify this in Python,

>>> (U_X+U_Y) == len(x)*len(y)
True

Now that we can compute the UX statistic, we have to characterize it. Let us
consider UX. If H0 is true, then X and Y are identically distributed random variables.
Thus all

(
nx+ny

nx

)
allocations of the X-variables in the ordered combined sample are

equally likely. Among these, there are
(
nx+ny−1

nx

)
allocations that have a Y variable

3.13 Nonparametric Methods 265

as the largest observation in the combined sample. For these, omitting this largest
observation does not affect UX because it would not have been counted anyway.
The other

(nx+ny−1
nx−1

)
allocations have an element of X as the largest observation.

Omitting this observation reduces UX by ny .
With all that, suppose Nnx,ny (u) be the number of allocations of X and Y

elements that result in UX = u. Under H0 situation of equally likely outcomes,
we have

pnx,ny (u) = P(UX = u) = Nnx,ny (u)
(
nx+ny

nx

)

From our previous discussion, we have the recursive relationship:

Nnx,ny (u) = Nnx,ny−1(u)+Nnx−1,ny (u− ny)

After dividing all of this by
(
nx+ny

nx

)
and using the pnx,ny (u) notation above, we

obtain the following:

pnx,ny (u) = ny

nx + ny

pnx,ny−1(u)+ nx

nx + ny

pnx−1,ny (u− ny)

where 0 ≤ u ≤ nxny . To start this recursion, we need the following initial
conditions:

p0,ny (ux = 0) = 1

p0,ny (ux > 0) = 0

pnx,0(ux = 0) = 1

pnx,0(ux > 0) = 0

To see how this works in Python,

>>> def prob(n,m,u):
... if u<0: return 0
... if n==0 or m==0:
... return int(u==0)
... else:
... f = m/float(m+n)
... return (f*prob(n,m-1,u) +
... (1-f)*prob(n-1,m,u-m))
...

These are shown in Fig. 3.41 and approach a normal distribution for large nx, ny ,
with the following mean and variance:

E(U) = nxny

2
(3.16)

266 3 Statistics

Fig. 3.41 The normal approximation to the distribution improves with increasing nx, ny

V(U) = nxny(nx + ny + 1)

12
(3.17)

The variance becomes more complicated when there are ties.

Example We are trying to determine whether or not one network configuration
is faster than another. We obtain the following round-trip times for each of the
networks:

>>> X=np.array([50.6,31.9,40.5,38.1,39.4,
... 35.1,33.1,36.5,38.7,42.3])
>>> Y=np.array([28.8,30.1,18.2,38.5,44.2,
... 28.2,32.9,48.8,39.5,30.7])

Because there are too few elements to use the scipy.stats.mannwhitneyu
function (which internally uses the normal approximation to the U-statistic), we can
use our custom function above, but first we need to compute the UX statistic using
Numpy:

>>> U_X = (Y <= X[:,None]).sum()

For the p-value, we want to compute the probability that the observed UX statistic
at least as great as what was observed:

>>> print(sum(prob(10,10,i) for i in range(U_X,101)))
0.08274697438784127

This is close to the usual five percent p-value threshold, so it is possible at a slightly
higher threshold to conclude that the two sets of samples do not originate from the
same underlying distribution. Keep in mind that the usual five percent threshold is
just a guideline. Ultimately, it is up to the analyst to make the call.

3.13 Nonparametric Methods 267

ProvingMean and Variance for U-Statistic To prove Eq. 3.13.7, we assume there
are no ties. One way to get at the result E(U) = nxny/2,

E(UY) =
∑

j

∑

i

P(Xi ≤ Yj)

because E(I(Xi ≤ Yj)) = P(Xi ≤ Yj). Further, because all the subscripted X and
Y variables are drawn independently from the same distribution, we have

E(UY) = nxnyP(X ≤ Y)

and also

P(X ≤ Y)+ P(X ≥ Y) = 1

because those are the two mutually exclusive conditions. Because the X variables
and Y variables are drawn from the same distribution, we have P(X ≤ Y) = P(X ≥
Y), which means P(X ≤ Y) = 1/2 and therefore E(UY) = nxny/2. Another way
to get the same result is to note that, as we showed earlier, UX +UY = nxny . Then,
taking the expectation of both sides noting that E(UX) = E(UY) = E(U) gives

2E(U) = nxny

which gives E(U) = nxny/2.
Getting the variance is trickier. To start, we compute the following:

E(UXUY) =
∑

i

∑

j

∑

k

∑

l

P(Xi ≥ Yj ∧Xk ≤ Yl)

Of these terms, we have P(Yj ≤ Xi ≤ Yj) = 0 because these are continuous
random variables. Let us consider the terms of the following type, P(Yi ≤ Xk ≤ Yl).
To reduce the notational noise, let us rewrite this as P(Z ≤ X ≤ Y). Writing this
out gives

P(Z ≤ X ≤ Y) =
∫

R

∫ ∞

Z

(F (Y)− F(Z))f (y)f (z)dydz

where F is the cumulative density function and f is the probability density function
(dF(x)/dx = f (x)). Let us break this up term by term. Using some calculus for
the term:

∫ ∞

Z

F(Y)f (y)dy =
∫ 1

F(Z)

FdF = 1

2
(1− F(Z))

268 3 Statistics

Then, integrating out the Z variable from this result, we obtain the following:

∫

R

1

2

(
1− F(Z)2

2

)
f (z)dz = 1

3

Next, we compute

∫

R

F(Z)

∫ ∞

Z

f (y)dyf (z)dz =
∫

R

(1− F(Z))F (Z)f (z)dz

=
∫

R

(1− F)FdF = 1

6

Finally, assembling the result, we have

P(Z ≤ X ≤ Y) = 1

3
− 1

6
= 1

6

Also, terms like P(Xk ≥ Yi ∧ Xm ≤ Yi) = P(Xm ≤ Yi ≤ Xk) = 1/6 by the same
reasoning. That leaves the terms like P(Xk ≥ Yi ∧ Xm ≤ Yl) = 1/4 because of
mutual independence and P(Xk ≥ Yi) = 1/2. Now that we have all the terms, we
have to assemble the combinatorics to get the final answer.

There are ny(ny − 1)nx + nx(nx − 1)ny terms of type P(Yi ≤ Xk ≤ Yl). There
are ny(ny−1)nx(nx−1) terms like P(Xk ≥ Yi∧Xm ≤ Yl). Putting this all together,
this means that

E(UXUY) = nxny(nx + ny − 2)

6
+ nxny(nx − 1)(ny − 1)

4

To assemble the E(U2) result, we need to appeal to our earlier result:

UX + UY = nxny

Squaring both sides of this and taking the expectation gives

E(U2
X)+ 2E(UXUY)+ E(U2

Y) = n2
xn

2
y

Because E(U2
X) = E(U2

Y) = E(U), we can simplify this as the following:

E(U2) = n2
xn

2
y − 2E(UXUY)

2

E(U2) = nxny(1+ nx + ny + 3nxny)

12

3.13 Nonparametric Methods 269

Then, since V(U) = E(U2)− E(U)2, we finally have

V(U) = nxny(1+ nx + ny)

12

Kolmogorov-Smirnov Test When you suspect that data come from a specific
distribution, whose CDF you can calculate, the Kolmogorov-Smirnov test can
help test whether or not this is the case. The Kolmogorov-Smirnov test calculates
the maximum absolute difference between the empirical cumulative distribution
function (CDF) and the suspected distribution.

Dn = sup
x
|Fn(x)− F(x)|

where Fn is the empirical CDF for n-data points and purported F(x). The empirical
CDF is defined as the following:

Fn(x) = 1

n

n∑

i=1

I(xi ≤ x)

where I is the indicator function. Amazingly,
√

nDn converges to the following
Kolmogorov distribution for large n, for any CDF:

f (x) = −8
∞∑

k=1

(−1)kk2x exp
{
−2k2x2

}
I(0,∞)(x)

with corresponding cumulative density function

F(x) =
[

1+ 2
∞∑

k=1

(−1)k exp
{
−2k2x2

}]
I(0,∞)(x)

where I(0,∞)(x) is the indicator function over the (0,∞) interval to enforce that x >

0. The Kolmogorov-Smirnov test is implemented in scipy.stats.kstest. It
turns to that accurate calculation of the Kolmogorov distribution for all values is
numerically difficult, so scipy.stats.kstest uses different approximations
for input different values.

>>> import numpy as np
>>> @np.vectorize
... def fK(x):
... 'Kolmogorov PDF distribution'
... k=np.arange(1,100)
... return -8*np.sum((-1)**k*k**2 *x*np.exp(-2*k**2*x**2))
...
>>> @np.vectorize

270 3 Statistics

... def FK(x):

... 'Kolmogorov CDF distribution'

... k = np.linspace(1,100)

... return np.sqrt(2*np.pi)/x*np.sum(np.exp(-(2*k-1)**2

... *np.pi**2/(8*x**2)))

...
>>> def estcdf(a):
... 'empirical CDF'
... x = np.sort(a)
... y = np.arange(len(x))/float(len(x))
... return x,y
...

Consider the following example of n = 100 samples from a χ2
3 distribution.

We use the estcdf function to create an estimated CDF for comparison with the
analytical CDF from the same distribution. Figure 3.42 shows the two curves and
the maximum absolute difference between them, which is distributed proportion to
the Kolmogorov distribution.

>>> from scipy import stats
>>> n=100
>>> chirv = stats.chi2(3)
>>> a = chirv.rvs(n)
>>> xe,ye = estcdf(a)
>>> tdist = stats.chi2(3)
>>> Dn=np.abs(tdist.cdf(xe)-ye)
>>> print(Dn.max()) # KS statistic below
0.1394954506688874
>>> stats.kstest(a,tdist.cdf) # two-sided KS test in

scipy.stats
KstestResult(statistic=0.14949545066888742, pvalue=
0.0204598580916997)

We can write a short simulation to repeat this exercise and compare the histograms
from the simulation with the analytical Kolmogorov distribution, as shown in
Fig. 3.43.

>>> # simulation
>>> def run_simulation(n=100,ntrials=1000):
... o = []
... for i in range(ntrials):
... a = chirv.rvs(n)
... xe,ye = estcdf(a)
... o.append(np.max(np.abs(tdist.cdf(xe)-ye)))
... Dns = np.array(o)*np.sqrt(n)
... return Dns

3.14 Survival Analysis 271

Fig. 3.42 Empirical CDF vs. analytical χ2
3 distribution and maximum absolute difference between

them

Fig. 3.43 Comparing simulated histograms with Kolmogorov distribution

3.14 Survival Analysis

3.14.1 Survival Curves

The problem is to estimate the length of time units (e.g., subjects, individuals,
components) that exist in a cohort over time. For example, consider the following
data. The rows are the days in a 7-day period, and the columns are the individual
units. For example, these could be five people on a life raft. Those who survive for
a given day are indicated by 1 and those that do not by 0.

>>> import pandas as pd
>>> d = pd.DataFrame(index=range(1,8),
... columns=['A','B','C','D','E'],
... data=1)
>>> d.loc[3:,'A']=0
>>> d.loc[6:,'B']=0
>>> d.loc[5:,'C']=0
>>> d.loc[4:,'D']=0

272 3 Statistics

Fig. 3.44 The red squares
indicate a dead subject, and
the blue, a living subject

>>> d.index.name='day'
>>> d.T
day 1 2 3 4 5 6 7
A 1 1 0 0 0 0 0
B 1 1 1 1 1 0 0
C 1 1 1 1 0 0 0
D 1 1 1 0 0 0 0
E 1 1 1 1 1 1 1

Importantly, survival is a one-way street—once a subject is dead, then that
subject cannot return to the experiment. This is important because survival analysis
is also applied to component failure or other topics where this fact is not so obvious.
The following chart shows the survival status of each of the subjects for all 7 days.
The blue circles indicate that the subject is alive, and the red squares indicate death
of the subject (see Fig. 3.44). The survival probability is plotted in Fig. 3.45.

There is another important recursive perspective on this calculation. Imagine
there is a life raft containing [A,B,C,D,E]. Everyone survives until day two when
A dies. This leaves four in the life raft [B,C,D,E]. Thus, from the perspective
of day one, the survival probability is the probability of surviving just up until
day two and then surviving day two, PS(t ≥ 2) = P(t /∈ [0, 2)|t < 2)PS(t =
2) = (1)(4/5) = 4/5. In words, this means that surviving past the second day
is the product of surviving the second day itself and not having a death up to that
point (i.e., surviving up to that point). Using this recursive approach, the survival
probability for the third day is PS(t ≥ 3) = PS(t > 3)PS(t = 3) = (4/5)(3/4) =
3/5. Recall that just before the third day, the life raft contains [B,C,D,E] and on
the third day we have [B,C,E]. Thus, from the perspective of just before the third
day, there are four survivors in the raft, and on the third day, there are three 3/4.
Using this recursive argument generates the same plot and comes in handy with
censoring.

3.14 Survival Analysis 273

Fig. 3.45 The survival
probability decreases by day

3.14.2 Censoring and Truncation

Censoring occurs when a subject leaves (right censoring) or enters (left censoring)
the study. There are two general types of right censoring. The so-called Type I right
censoring is when a subject randomly drops out of the study. This random dropout is
another statistical effect that has to be accounted for in estimating survival. Type II
right censoring occurs when the study is terminated when enough specific random
events occur.

Likewise, left censoring occurs when a subject enters the study prior to a certain
date, but exactly when this happened is unknown. This happens in study designs
involving two separate studies stages. For example, a subject might enroll in the first
selection process but be ineligible for the second process. Specifically, suppose a
study concerns drug use and certain subjects have used the drug before the study but
are unable to report exactly when. These subjects are left censored. Left truncation
(a.k.a. staggered entry, delayed entry) is similar except the date of entry is known.
For example, a subject that starts taking a drug after being initially left out of the
study.

Right censoring is the most common, so let us consider an example. Let us
estimate the survival function given the following survival times in days:

{1, 2, 3+, 4, 5, 6+, 7, 8}

where the censored survival times are indicated by the plus symbol. As before, the
survival time at the 0th day is 8/8 = 1; the first day is 7/8; the second day =
(7/8)(6/7). Now, we come to the first right censored entry. The survival time for the
third day is (7/8)(6/7)(5/5) = (7/8)(6/7). Thus, the subject who dropped out is not
considered dead and cannot be counted as such but is considered just absent as far
as the functional estimation of the probabilities goes. Continuing for the fourth day,
we have (7/8)(6/7)(5/5)(4/5), the fifth day, (7/8)(6/7)(5/5)(4/5)(3/4), the sixth
(right censored) day (7/8)(6/7)(5/5)(4/5)(3/4)(3/3), and so on (see Table 3.3).

274 3 Statistics

Table 3.3 Survival
probabilities with censoring

Day PS

0 1

1 7/8

2 3/4

3+ 3/4

4 3/5

5 9/20

6+ 9/20

7 9/40

8 0

3.14.3 Hazard Functions and Their Properties

Generally, the survival function is a continuous function of time S(t) = P(T > t)

where T is the event time (e.g., time of death). Note that the cumulative density
function, F(t) = P(T ≤ t) = 1 − S(t) and f (t) = dF(t)

dt
, is the usual probability

density function. The so-called hazard function is the instantaneous rate of failure
at time t :

h(t) = f (t)

S(t)
= lim

Δt→0

P(T ∈ (t, t +Δt]|T ≥ t)

Δt

Note that is a continuous-limit version of the calculation we performed above. In
words, it says given the event time T ≥ t (subject has survived up to t), what is the
probability of the event occurring in the differential interval Δt for a vanishingly
small Δt . Note that this is not the usual derivative-slope from calculus because
there is no difference term in the numerator. The hazard function is also called
the force of mortality, intensity rate, or the instantaneous risk. Informally, you can
think of the hazard function as encapsulating the two issues we are most concerned
about: deaths and the population at risk for those deaths. Loosely speaking, the
probability density function in the numerator represents the probability of a death
occurring in a small differential interval. However, we are not particularly interested
in unqualified deaths, but only deaths that can happen to a specific at-risk population.
Returning to our lifeboat analogy, suppose there are 1000 people in the lifeboat
and the probability of anybody falling off the lifeboat is 1/1000. Two things are
happening here: (1) the probability of the bad event is small, and (2) there are a lot
of subjects over which to spread the probability of that bad event. This means that
the hazard rate for any particular individual is small. On the other hand, if there are
only two subjects in the life raft and the probability of falling off is 3/4, then the
hazard rate is high because not only is the unfortunate event probable, the risk of
that unfortunate event is shared by only two subjects.

3.14 Survival Analysis 275

It is a mathematical fact that

h(t) = −d log S(t)

dt

This leads to the following interpretation:

S(t) = exp

(
−

∫ t

0
h(u)du

)
:= exp(−H(t))

where H(t) is the cumulative hazard function. Note that H(t) = − log S(t).
Consider a subject whose survival time is 5 years. For this subject to have died
at the fifth year, it had to be alive during the fourth year. Thus, the hazard at 5 years
is the failure rate per-year, conditioned on the fact that the subject survived until
the fourth year. Note that this is not the same as the unconditional failure rate per
year at the fifth year, because the unconditional rate applies to all units at time zero
and does not use information about survival up to that point gleaned from the other
units. Thus, the hazard function can be thought of as the point-wise unconditional
probability of experiencing the event, scaled by the fraction of survivors up to that
point.

Example To get a sense of this, let us consider the example where the probability
density function is exponential with parameter λ, f (t) = λ exp(−tλ), ∀t > 0.
This makes S(t) = 1 − F(t) = exp(−tλ), and then the hazard function becomes
h(t) = λ, namely, a constant. To see this, recall that the exponential distribution is
the only continuous distribution that has no memory:

P(X ≤ u+ t |X > u) = 1− exp(−λt) = P(X ≤ t)

This means no matter how long we have been waiting for a death to occur, the
probability of a death from that point onward is the same—thus the hazard function
is a constant.

3.14.4 Expectations

Given all these definitions, it is an exercise in integration by parts to show that the
expected life remaining is the following:

E(T) =
∫ ∞

0
S(u)du

This is equivalent to the following:

E(T
∣∣t = 0) =

∫ ∞

0
S(u)du

276 3 Statistics

and we can likewise express the expected remaining life at t as the following:

E(T
∣∣T ≥ t) =

∫∞
t

S(u)du

S(t)

3.14.5 Parametric Regression Models

Because we are interested in how study parameters affect survival, we need a model
that can accommodate regression in exogenous (independent) variables (x).

h(t |x) = ho(t) exp(xT β)

where β are the regression coefficients and ho(t) is the baseline instantaneous
hazard function. Because the hazard function is always nonnegative, the effects of
the covariates enter through the exponential function. These kinds of models are
called proportional hazard rate models. If the baseline function is a constant (λ),
then this reduces to the exponential regression model given by the following:

h(t |x) = λ exp(xT β)

3.14.6 Cox Proportional Hazards Model

The tricky part about the above proportional hazard rate model is the specification of
the baseline instantaneous hazard function. In many cases, we are not so interested
in the absolute hazard function (or its correctness), but rather a comparison of
such hazard functions between two study populations. The Cox model emphasizes
this comparison by using a maximum likelihood algorithm for a partial likelihood
function. There is a lot to keep track of in this model, so let us try the mechanics
first to get a feel for what is going on.

Let j denote the j th failure time, assuming that failure times are sorted in
increasing order. The hazard function for subject i at failure time j is hi(tj). Using
the general proportional hazards model, we have

hi(tj) = h0(tj) exp(ziβ) := h0(tj)ψi

To keep it simple, we have zi ∈ {0, 1} that indicates membership in the
experimental group (zi = 1) or the control group (zi = 0). Consider the first failure
time, t1, for subject i failing is the hazard function hi(t1) = h0(t1)ψi . From the
definitions, the probability that subject i is the one who fails is the following:

3.14 Survival Analysis 277

p1 = hi(t1)∑
hk(t1)

= h0(t1)ψi∑
h0(t1)ψk

where the summation is over all surviving units up to that point. Note that the
baseline hazard cancels out and gives the following:

p1 = ψi∑
k ψk

We can keep computing this for the other failure times to obtain {p1, p2, . . . pD}.
The product of all of these is the partial likelihood, L(ψ) = p1 · p2 · · ·pD . The
next step is to maximize this partial likelihood (usually logarithm of the partial
likelihood) over β. There are a lot of numerical issues to keep track of here.
Fortunately, the Python lifelines module can keep this all straight for us.

Let us see how this works using the Rossi dataset that is available in lifelines.

>>> from lifelines.datasets import load_rossi
>>> from lifelines import CoxPHFitter
>>> rossi_dataset = load_rossi()

The Rossi dataset concerns prison recidivism. The fin variable indicates
whether or not the subjects received financial assistance upon discharge from prison.

• week: week of first arrest after release, or censoring time.
• arrest: the event indicator, equal to 1 for those arrested during the period of

the study and 0 for those who were not arrested.
• fin: a factor, with levels yes if the individual received financial aid after release

from prison, and no if he did not; financial aid was a randomly assigned factor
manipulated by the researchers.

• age: in years at the time of release.
• race: a factor with levels black and other.
• wexp: a factor with levels yes if the individual had full-time work experience

prior to incarceration and no if he did not.
• mar: a factor with levels married if the individual was married at the time of

release and not married if he was not.
• paro: a factor coded yes if the individual was released on parole and no if he

was not.
• prio: number of prior convictions.
• educ: education, a categorical variable coded numerically, with codes 2 (grade

6 or less), 3 (grades 6 through 9), 4 (grades 10 and 11), 5 (grade 12), or 6 (some
post-secondary).

• emp1—emp52: factors coded yes if the individual was employed in the
corresponding week of the study and no otherwise.

>>> rossi_dataset.head()
week arrest fin age race wexp mar paro prio

0 20 1 0 27 1 0 0 1 3

278 3 Statistics

1 17 1 0 18 1 0 0 1 8
2 25 1 0 19 0 1 0 1 13
3 52 0 1 23 1 1 1 1 1
4 52 0 0 19 0 1 0 1 3

Now, we just have to set up the calculation in lifelines, using the
scikit-learn style. The lifelines module handles the censoring issues.

>>> cph = CoxPHFitter()
>>> cph.fit(rossi_dataset,
... duration_col='week',
... event_col='arrest')
<lifelines.CoxPHFitter: fitted with 432 total observations,
318 right-censored observations>
>>> cph.print_summary() # access the results using cph.summary
<lifelines.CoxPHFitter: fitted with 432 total observations,
318 right-censored observations>

duration col = 'week'
event col = 'arrest'

baseline estimation = breslow
number of observations = 432

number of events observed = 114
partial log-likelihood = -658.75

time fit was run = 2022-02-08 21:37:54 UTC

coef exp(coef) se(coef) coef lower 95%

covariate
fin -0.38 0.68 0.19 -0.75
age -0.06 0.94 0.02 -0.10
race 0.31 1.37 0.31 -0.29
wexp -0.15 0.86 0.21 -0.57
mar -0.43 0.65 0.38 -1.18
paro -0.08 0.92 0.20 -0.47
prio 0.09 1.10 0.03 0.04

coef upper 95% exp(coef) lower 95% exp(coef) upper 95%
covariate
fin -0.00 0.47 1.00
age -0.01 0.90 0.99
race 0.92 0.75 2.50
wexp 0.27 0.57 1.30
mar 0.31 0.31 1.37
paro 0.30 0.63 1.35
prio 0.15 1.04 1.16

z p -log2(p)
covariate
fin -1.98 0.05 4.40
age -2.61 0.01 6.79
race 1.02 0.31 1.70

3.15 Expectation Maximization 279

Fig. 3.46 This shows the
fitted coefficients from the
summary table for each
covariate

race

prio

age

0 2 4
log(HR) (95% CI)

S
ur

vi
va

l p
ro

ba
bi

lit
y

6

paro

wexp

fin

mar

wexp -0.71 0.48 1.06
mar -1.14 0.26 1.97
paro -0.43 0.66 0.59
prio 3.19 <0.005 9.48

Concordance = 0.64
Partial AIC = 1331.50
log-likelihood ratio test = 33.27 on 7 df
-log2(p) of ll-ratio test = 15.37

The values in the summary are plotted in Fig. 3.46.
The Cox proportional hazards model object from lifelines allows us to

predict the survival function for an individual with given covariates, assuming that
the individual just entered the study. For example, for the first individual (i.e., row)
in the rossi_dataset, we can use the model to predict the survival function for
that individual.

>>> cph.predict_survival_function(rossi_dataset.iloc[0,:]).head()
0

1.0 0.998
2.0 0.995
3.0 0.993
4.0 0.990
5.0 0.988

This result is plotted in Fig. 3.47.

3.15 Expectation Maximization

Expectation maximization (EM) is a powerful algorithm for handling cases where
the variables of interest are hidden or latent in the data available. Let us denote
the visible variable as v and the hidden variable as h. For example, consider a

280 3 Statistics

Fig. 3.47 The Cox
proportional hazards model
can predict the survival
probability for an individual
based on their covariates

1.00

0.95

0.90

0.85

0.80

0.75

0 10 20 30 40 50

0

S
ur

vi
va

l p
ro

ba
bi

lit
y

Survival probability for 0th subject

model pθ(v, h) where we only have data for v. For maximum likelihood we want to
maximize the log-likelihood given the visible data to estimate the parameter θ . Let
us consider h as a discrete random variable (common for mixture distributions). One
idea is to maximize the log-likelihood of v and integrate out h as in the following:

∑

v

log pθ(v) =
∑

v

log
∑

h

pθ (vi, h)

Sometimes this is called the incomplete log-likelihood. Now that the missing h issue
has been settled, we can proceed with our usual maximum likelihood approach by
maximizing this over θ , which can become very complicated as the dimension of
the problem increases. Expectation maximization uses an alternative approach. We
can rewrite the summand above as the following:

log pθ(v) = log
∑

h

pθ (v, h)

so that for any probability distribution r(h|v), we have

log pθ(v) = log
∑

h

r(h|v)

(
pθ(v, h)

r(h|v)

)

We can rewrite this as

log pθ(v) = logEr(h|v)

(
pθ(v, h)

r(h|v)

)

So that with concave log, we can use Jensen’s inequality 2.11 in the following:

3.15 Expectation Maximization 281

log pθ(v) ≥ Er(h|v)(log

(
pθ(v, h)

r(h|v)

)
)

and then expand this as the following:

log pθ(v) ≥
∑

h

r(h|v) log

(
pθ(v, h)

r(h|v)

)

and then summing this up is the log-likelihood:

�(θ) =
∑

v

log pθ(vi) ≥
∑

v

∑

h

r(h|v) log

(
pθ(v, h)

r(h|v)

)

We define the lower bound on the right as

q =
∑

v

∑

h

r(h|v) log

(
pθ(v, h)

r(h|v)

)

Our usual strategy is to maximize the likelihood �(θ), but now we want to maximize
the lower bound q. Because we arbitrarily picked r(h|v), the next obvious step is to
pick another r distribution that increases the lower bound. Specifically, we want to
maximize the following objective function:

∑

h

r(h|v) log

(
pθ(v, h)

r(h|v)

)
=

∑

h

r(h|v) log pθ(v, h)−
∑

h

r(h|v) log r(h|v)

subject to the constraints
∑

h r(h|v) = 1 and r(h|v) ≥ 0. We can do this by
expanding the logarithm and composing the Lagrangian:

L =
∑

h

r(h|v) log pθ(v, h)−
∑

h

r(h|v) log r(h|v)−
∑

h

λzr(h|v)−ν(1−
∑

h

r(h|v))

Then, using unconstrained maximization,

dL
dr
= log pθ(v, h)− log r(h|v)− 1− ν = 0

and solving for the optimimum r∗(h|v) and normalizing
∑

h r∗(h|v) = 1 gives the
final result:

r∗(h|v) = pθ(h|v)

This maximization process is called the Expectation step in the expectation maxi-
mization algorithm. The Maximization step works on the θ parameters,

282 3 Statistics

arg max
θ

∑

v

∑

h

r∗(h|v) log pθ(v, h)

Example To see how this all works together, let us consider the following problem
from [4]. The hidden variable is h ∈ {1, 2}, and the visible variable is v ∈ R with
parameter θ ∈ R

pθ(v|h) = 1√
π

e−(v−θh)2

The prior probability on h is p(h = 1) = p(h = 2) = 1
2 . We only observe values

of v and not h, and we want to estimate θ . From our result above for the expectation
step, we know that to optimize the lower bound, we need the following density for
some initial θ0:

pθ(h|v) = pθ(v|h)p(h)

p(v)

Note that because h takes only two values and that
∑

h pθ (h|v) = 1, we only need
to keep track of one of the h values. We can get p(v) by summing over p(h) as
shown in Fig. 3.48.

p(v) = pθ(v|h = 1)
1

2
+ pθ(v|h = 2)

1

2
= e−(v−θ)2 + e−(v−2θ)2

2
√

π

Then, to do the expectation step, we compute

pθ0(h = 1|v) = pθ0(v|h = 1)p(h = 1)

p(v)
= e−(v−θ0)

2

e−(v−θ0)
2 + e−(v−2θ0)

2

Fig. 3.48 There are two
lumps here because of the
ambiguity in the hidden
variable

0.30

0.25

0.20

p(
v=

3)

0.15

0.10

0.05

0.00

0 1 2 3
θ

4 5 6

3.15 Expectation Maximization 283

Note that θ0 is from the prior iteration. The maximization step is then

arg max
θ

∑

v

∑

h

pθ0(h|v) log pθ(v, h)

For the maximization over θ , simplifying out the irrelevant terms,

arg max
θ

∑

v

∑

h

pθ0(h|v) log pθ(v|h)

This is the usual maximum likelihood problem weighted by the result of the
expectation step using the previous value of θ0. We can reduce the notation and
emphasize the relevant terms by writing the inner summation as the following:

arg max
θ

∑

v

Epθo (h|v)(−(v − hθ)2)

Maximizing this using calculus gives the following for a single v:

θ∗ = vEpθo (h|v)(h)/Epθo (h|v)(h
2)

which gives the iteration

θk+1 = v
e3θ2

k + 2e2θkv

e3θ2
k + 4e2θkv

= v

(
1− 2

e(3θk−2v)θk + 4

)

The following Python code implements the EM algorithm:

>>> import numpy as np
>>> theta=2 # starting point
>>> v=3 # visible data
>>> for i in range(5):
... theta = v*(1-2/(np.exp((3*theta-2*v)*theta)+4))
... print(f'theta={theta}')
...
theta=1.7999999999999998
theta=1.6173826651486614
theta=1.5563791505956408
theta=1.5458135899717353
theta=1.5442871279738428

The following is the lower bound for the algorithm.

Epθo (h|v)(−(v − hθ)2) = −
eθ2

o−4vθo+v2
(
(v − 2θ)2e2vθo + e3θ2

o (v − θ)2
)

e(v−2θo)2 + e(v−θo)2

At convergence, when θ = θo, this simplifies to the following:

284 3 Statistics

Fig. 3.49 The lower bound
of for the EM algorithm

θ

0.0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

−4.0
0 1 2

Lo
w

er
 B

ou
nd

3 4 5

Epθ (h|v)(−(v − hθ)2) = −
eθ2+v2−4θv

(
e3θ2

(v − θ)2 + e2θv(v − 2θ)2
)

(
e(v−2θ)2 + e(v−θ)2)

which is shown in Fig. 3.49. Notice that the maximum is achieved when θ = 3, but
that is not found by the EM algorithm when its starting value is closer to the local
maximum at θ = 1.5. Because the EM algorithm is greedy, once it locks into the
local minimum, it can never escape and find the global maximum.

Example: Censoring Sometimes collected data are thresholded due to limitations
in the data collection apparatus, for example. For example, if yi are the samples then
some zi = min(yi, a). One approach is to drop the thresholded values and then just
use the other yi for estimation. However, the thresholded values zi can still help with
the estimation. Consider Y ∼ N (μ, 1). The complete log-likelihood for n samples
is the following:

�(μ) = −1

2

m∑

i=1

(yi − μ)2 − 1

2

n∑

i=m+1

(zi − μ)2

We need the following definitions for the standard normal distribution with the
following corresponding probability density function, φ(x):

φ(x) = e− x2
2√

2π

with corresponding cumulative density function, Φ(x) The expectation step uses the
truncated normal distribution. To simplify this, we can take the derivative first and
then do the expectation step. This will make it easier to do the maximization step
later. This is legitimate due to a technicality.

3.15 Expectation Maximization 285

d

dμ
�(μ) =

m∑

i=1

(yi − μ)+
n∑

i=m+1

Eμo(zi − μ) = 0

This simplifies as

J = mȳ −mμ+ (n−m)Eμo [(z− μ)]

where

Eμo [(z− μ)] =
∫ ∞

a

(z− μ)φ(z− μo)dz

To proceed, we need the following fact:

∫ ∞

a

(x − μ)φ(x − μ)dx = e−
(a−μ)2

2√
2π

= φ(a − μ)

Then,

Eμo [(z− μ)] =
∫ ∞

a

(z− μo + μo − μ)φ(z− μo)dz

=
∫ ∞

a

(z− μo)φ(z− μo)dz+
∫ ∞

a

(μo − μ)φ(z− μo)dz

= φ(a − μo)+ (μo − μ)(1−Φ(a − μo))

Now, we can rewrite J above as the following,

J = mȳ −mμ+ (n−m)(φ(a − μo)+ (μo − μ)(1−Φ(a − μo))) = 0

Then, solving for μ gives the update step.

μk+1 = mȳ + (n−m)φ(a − μk)+ (n−m)μk(1−Φ(a − μk))

m+ (n−m)(1−Φ(a − μk))

Let us try evaluating this using Python. First, let us assemble the modules:

>>> import numpy as np
>>> from scipy import stats

Now, we construct the terms we need for the update equation:

>>> phi = stats.norm().pdf
>>> Phi = stats.norm().cdf
>>> a = 4.5 # cutoff threshold

286 3 Statistics

Let us create some samples. Remember that the parameter of this generative
distribution is what we want to estimate.

>>> nrm = stats.norm(4) # mean is 4
>>> samples = nrm.rvs(25)

Next, we assemble the terms we need for the update equation:

>>> y = samples[samples<a]
>>> z = samples[samples>=a] # clipped
>>> m = len(y)
>>> n = len(y)+len(z)
>>> ym = np.mean(y)

>>> mu = 3 # initialize
>>> for i in range(5):
... print(f'mu={mu}')
... mu = ((m * ym) + (n - m)*phi(a-mu)
... + (n-m)*mu*(1-Phi(a-mu)))/(m+(n-m)*(1-Phi(a-mu)))
...
mu=3
mu=3.609396048783591
mu=3.7007889552321247
mu=3.72018353521635
mu=3.72448619620872

Let us compare this result to just estimating using only the yi samples (i.e., the
unclipped ones) and using all of the samples.

>>> print(f'mu={mu:3.2f},ym={ym:3.2f},all={np.mean(samples):3.2f}')
mu=3.73,ym=3.56,all=3.99

Note that the μ is greater than ȳ so that just using the yi data and excluding the
clipped data results in an underestimation of the parameter. This means that the
algorithm has derived important value from the clipped data in terms of estimating
the underlying parameter. A good exercise would be to try more samples and change
the cutoff threshold to see how this changes.

Example: Telephone Plans Suppose there are n regions that are surveyed, but
for the first m regions, respondents are asked to select between four plans, and
in the remaining n − m regions, the respondents chose among an additional fifth
plan.8 The response for the ith participant is modeled as a multinomial distribution,
M(1, (p1, p2, p3, p4, p5)). This means that the sum of all respondents in the ith
region is Ti ∼M(ni, (p1, p2, p3, p4, p5)), but this is only for those n−m regions
for which the respondents had five options. The distribution for the other m regions
that had only four option is modeled by the following multinomial distribution for
the ith region:

8 This example is inspired from p.179 in [38] and is presented here in excruciating detail with
Python code.

3.15 Expectation Maximization 287

(
ni + xi

Ti,1, Ti,2, Ti,3, Ti,4, x

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

xi

5

The notation above means the following:

(
n

k1, k2, · · · , km

)
= n!

k1!k2! · · · km!
Conceptually, there are xi more hypothetical participants, beyond the ni participants
who answered only among four options. The hidden variable is xi , which is the
number of participants who would have filled out the fifth option. The process to
apply the EM algorithm is the same. The complete likelihood is the following:

L(x,T) =
m∏

i=1

(
ni + xi

Ti,1, Ti,2, Ti,3, Ti,4, xi

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

xi

5 ×

n∏

i=m+1

(
ni

Ti,1, · · · , Ti,5

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

Ti,5
5

We must marginalize xi out to obtain the incomplete likelihood. The key step is to
recall the negative binomial distribution sums to one as in the following:

∞∑

k=0

(
k + r − 1

k

)
(1− p)rpk = 1

which gives the useful equation

∞∑

k=0

(
k + r − 1

k

)
pk = 1

(1− p)r

Focusing on the key part of the summation to marginalize and using the above
equation, we obtain the following:

∞∑

xi=0

(
ni + xi

xi

)
p

xi

5 =
1

(1− p5)ni+1

This now gives the incomplete likelihood:

L(T) =
m∏

i=1

ni !
Ti1!Ti2!Ti3!Ti4!

p
Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4

(1− p5)ni+1 ×

288 3 Statistics

n∏

i=m+1

(
ni

Ti,1, Ti,2, Ti,3, Ti,4, Ti,5

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

Ti,5
5

To set up the expectation step, we have to find the distribution of the hidden variable
given the visible variable by dividing L(x,T) by L(T) to obtain the following:

P(x|T) =
m∏

i=1

(
ni + xi

ni

)
π

xi

5 (1− π5)
ni+1

which is a product of m negative binomial distributions and π5 is the current value
for p5. With all that established, we are ready to compute the lower bound for the
expectation step:

Exi∼P(xi|T) (log L(x,T))

The logarithm of the complete likelihood is the following:

log L(x,T) =
m∑

i=1

log
{(ni + xi

Ti,1, Ti,2, Ti,3, Ti,4, xi

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

xi

5

}
+

n∑

i=m+1

log
{(ni

Ti,1, Ti,2, Ti,3, Ti,4, Ti,5

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

Ti,5
5

}
=: A+ B

(3.18)

Separating out the terms with and without xi , we have

A =
m∑

i=1

log
{ (ni + xi)!
Ti,1!Ti,2!Ti,3!Ti,4!xi !p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

xi

5

}

=
m∑

i=1

log
{ (ni + xi)!
Ti,1!Ti,2!Ti,3!Ti,4!xi !

}
+ log

{
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

xi

5

}

=
m∑

i=1

log
{
(ni + xi)!/xi !

}− log
{
Ti,1!Ti,2!Ti,3!Ti,4!

}+ xi log(p5)

+ log
{
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4

}

Breaking out terms with xi , we have the following expectation:

Exi∼P(xi|T){xi log(p5)} = π5 (ni + 1) log(p5)

1− π5

3.15 Expectation Maximization 289

Furthermore,

Exi∼P(xi|T){log

(
(ni + xi)!

xi !
)
} = Exi∼P(xi|T){log ((ni + xi)× · · · (xi + 1))}

= Exi∼P(xi|T)(

ni−1∑

k=0

(ni + xi − k))

= (π5 + 1) ni (ni + 1)

2 (1− π5)

Assembling this again gives

Exi∼P(xi|T)(A) =
m∑

i=1

(π5 + 1) ni (ni + 1)

2 (1− π5)
− log

{
Ti,1!Ti,2!Ti,3!Ti,4!

}+ π5 (ni + 1) log(p5)

1− π5

+ log
{
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4

}

Thus, putting everything together for the expected log-likelihood gives the follow-
ing objective that we have to maximize over pi :

Exi∼P(xi|T)(A+ B) =
m∑

i=1

(π5 + 1) ni (ni + 1)

2 (1− π5)
− log

{
Ti,1!Ti,2!Ti,3!Ti,4!

}π5 (ni + 1) log(p5)

1− π5

+ log
{
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4

}

+
n∑

i=m+1

log
{(ni

Ti,1, Ti,2, Ti,3, Ti,4, Ti,5

)
p

Ti,1
1 p

Ti,2
2 p

Ti,3
3 p

Ti,4
3 p

Ti,4
4 p

Ti,5
5

}
=: J (p)

(3.19)

Also, we have to enforce the constraint that
∑5

i=1 pi = 1 in the optimization. Using
calculus to take the partial derivatives of the objective. Here is the partial derivative
for p1.

∂p1J =
−1

(1− p1 − p2 − p3 − p4)

π5

1− π5

m∑

i=1

(ni + 1)

+ 1

p1

m∑

i=1

Ti,1 + 1

p1

n∑

i=m+1

Ti,1

− 1

(1− p1 − p2 − p3 − p4)

n∑

i=m+1

Ti,5 = 0 (3.20)

290 3 Statistics

With the following definitions:

nm =
m∑

i=1

ni

cj =
∑n

i=1 Ti,j

π5(nm+m)
1−π5

+∑n
i=m+1 Ti,5

In general, solving this for pi gives the following iteration:

p
(k+1)
1 = c

(k)
1 (1− p

(k)
2 − p

(k)
3 − p

(k)
4)

c
(k)
1 + 1

p
(k+1)
2 = c

(k)
2 (1− p

(k)
1 − p

(k)
3 − p

(k)
4)

c
(k)
2 + 1

p
(k+1)
3 = c

(k)
3 (1− p

(k)
1 − p

(k)
2 − p

(k)
4)

c
(k)
3 + 1

p
(k+1)
4 = c

(k)
4 (1− p

(k)
1 − p

(k)
2 − p

(k)
3)

c
(k)
4 + 1

p
(k+1)
5 = (1− p

(k+1)
1 − p

(k+1)
2 − p

(k+1)
3 − p

(k+1)
4)

The iteration starts with the initial condition π5 and then updates the cj terms and
then the p5 term.

>>> df # NaN means no data available for Plan 5
Plan 1 2 3 4 5
Region
0 2 4 2 2 NaN
1 4 4 1 1 NaN
2 2 1 5 2 NaN
3 3 4 0 3 NaN
4 1 2 6 1 NaN
5 3 2 1 4 NaN
6 3 1 2 4 NaN
7 0 3 4 3 NaN
8 3 3 2 2 NaN
9 2 3 3 2 NaN
10 2 3 3 2 NaN
11 2 4 2 2 NaN
12 2 2 3 3 NaN
13 1 2 3 4 NaN
14 5 1 2 2 NaN
15 4 0 4 0 12.0
16 5 0 1 2 12.0
17 3 2 5 5 5.0

3.15 Expectation Maximization 291

18 4 5 3 3 5.0
19 0 2 3 3 12.0

Note that only in the last few rows are there values for the fifth plan.

>>> m, n, p5 = 15, 20, 0.5
>>> p1 = p2 = p3 = p4 = (1-p5)/4
>>> W = df.sum(axis=0)
>>> nm = df.sum(axis=1)[:m].sum()
>>> c = W/(p5*(nm+m)/(1-p5)+df.loc[m:,5].sum())

The next block shows the iteration:

>>> from collections import defaultdict
>>> out = defaultdict(list)
>>> for i in range(1,12):
... p1=c[1]/(1+c[1])*(1-p2-p3-p4)
... p2=c[2]/(1+c[2])*(1-p1-p3-p4)
... p3=c[3]/(1+c[3])*(1-p1-p2-p4)
... p4=c[4]/(1+c[4])*(1-p1-p2-p3)
... p5=1-p1-p2-p3-p4
... c=W/(p5*(nm+m)/(1-p5)+df.loc[(m):,5].sum())
... print('p1=%0.3f, p2=%0.3f, p3=%0.3f, p4=%0.3f,

p5=%0.3f'%(p1,p2,p3,p4,p5))
... out[i].extend([p1,p2,p3,p4,p5])
...
p1=0.122, p2=0.116, p3=0.132, p4=0.121, p5=0.509
p1=0.120, p2=0.114, p3=0.130, p4=0.119, p5=0.517
p1=0.119, p2=0.112, p3=0.129, p4=0.117, p5=0.523
p1=0.118, p2=0.111, p3=0.128, p4=0.116, p5=0.527
p1=0.117, p2=0.110, p3=0.127, p4=0.115, p5=0.531
p1=0.116, p2=0.110, p3=0.126, p4=0.115, p5=0.533
p1=0.116, p2=0.109, p3=0.125, p4=0.114, p5=0.535
p1=0.116, p2=0.109, p3=0.125, p4=0.114, p5=0.537
p1=0.115, p2=0.109, p3=0.125, p4=0.113, p5=0.538
p1=0.115, p2=0.109, p3=0.124, p4=0.113, p5=0.538
p1=0.115, p2=0.108, p3=0.124, p4=0.113, p5=0.539

This is the estimate for p5 just using the last rows for which data are available.

>>> (df.loc[m:,5]/df.loc[m:,:].sum(axis=1)).mean()
0.45999999999999996

Compare this to the estimate from EM for p5 below (Fig. 3.50).

>>> print('p1=%0.3f, p2=%0.3f, p3=%0.3f, p4=%0.3f,
p5=%0.3f'%(p1,p2,p3,p4,p5))

p1=0.115, p2=0.108, p3=0.124, p4=0.113, p5=0.539

If we perform the exact same analysis but starting with p5=0.9, we get the result
in Fig. 3.51 with the final estimate below.

>>> print('p1=%0.3f, p2=%0.3f, p3=%0.3f, p4=%0.3f,
p5=%0.3f'%(p1,p2,p3,p4,p5))

p1=0.091, p2=0.085, p3=0.097, p4=0.087, p5=0.640

292 3 Statistics

Fig. 3.50 EM iterations for multinomial probabilities starting with p5 = 0.5

Fig. 3.51 EM iterations for multinomial probabilities starting with p5 = 0.9. Compare to Fig. 3.50

These are different because EM is sensitive to initial values.

3.16 Survey Sampling

The purpose of survey sampling is to estimate statistical quantities based on a n-
sized subsample of a larger N population. For example, we want to estimate the

3.16 Survey Sampling 293

number of cigarette smokers in a given city. We could telephone everybody in the
city and ask if they smoke, but that would be expensive and laborious. Instead,
suppose we go to a busy downtown street corner and ask people if they smoke.
Then, based on the responses, we could easily compute the proportion of smokers
to non-smokers, but then how does this result reflect on the entire population?
Furthermore, what if the streetcorner we chose just happens to be in front of a
health-food store? How does the health food store effect the number of potential
smokers who answered your survey? That is, more generally, how can other ambient
information influence the final estimate of the survey across the entire city? These
are the questions survey sampling is designed to address.

The population under survey consists of individual units. Each unit ui has an
attribute (or set of attributes) denoted by Yi . The goal is to statistically characterize
Yi over the entire finite population N using a subsample of size n < N , denoted
Sn. The sampling design is the probability of any particular Sn and this probability
ultimately determines the statistical properties that characterize our conclusions
about Sn in terms of the larger N population. The inclusion probability under
the sampling design is the probability that any particular unit appears in Sn,
P
(
ui = Uj

)
. There are two primary categories of sampling: replacement and

nonreplacement. Under replacement, a particular unit can appear multiple times in
Sn which cannot happen with nonreplacement.

The inclusion probabilities are key to analysis. For example, we have

ȳs = 1

n

n∑

i=1

yi

where ui ∈ Sn. Because of linearity of the expectation and sampling with
replacement means P(yi = Yj) = 1

N
, we also have E(yi) = Y and therefore

E(ȳs) = Y

To explore this, let us consider a small simulation of heights where N = 100 and
n = 10.

>>> import numpy as np
>>> from scipy import stats
>>> heights = stats.norm(5,1).rvs(100)

Now, let us select a random sample with replacement:

>>> sample = np.random.choice(heights,10)
>>> sample.mean() # ybar above
4.795029626941257

If we keep randomly sampling like this, we obtain the mean over all sampled sets:

>>> sample = np.random.choice(heights,(10,100))
>>> sample.mean(axis=0).mean()
5.0721303754908185

294 3 Statistics

The axis=0 means we first took the mean over the 10 samples for each of the 100
sample selections. Compare this to the result using all N samples:

>>> heights.mean()
5.095579243655205

There is naturally some difference here. To quantify this, we compute the variance
of ȳs :

V(ȳs) = 1

n2

n∑

i=1

V(yi) = σ 2
Y

n

To see this, note that

σ 2
Y :=

1

N

N∑

i=1

(Yi − Y)2

= 1

N

N∑

i=1

(
Y 2

i − 2YiY + Y
2
)

= Y
2 + 1

N

N∑

i=1

(
Y 2

i − 2YiY
)

= Y
2 + 1

N

N∑

i=1

Y 2
i − 2

1

N
Y

N∑

i=1

Yi

= Y
2 + 1

N

N∑

i=1

Y 2
i − 2Y

2

σ 2
Y = −Y

2 + 1

N

N∑

i=1

Y 2
i

From which we can identify the following term:

E(y2
s) =

N∑

i=1

1

N
Y 2

i = σ 2
Y + Y

2

Then, we need E
(
ȳ2
s

)
,

E

(
ȳ2
s

)
= E

⎛

⎝ 1

n2

(
n∑

i=1

yi

)2
⎞

⎠ = 1

n2

⎛

⎝
n∑

i=1

E

(
y2
i

)
+

n∑

i=1

n∑

j
=i

E (yi)E
(
yj

)
⎞

⎠

3.16 Survey Sampling 295

= 1

n2

⎛

⎝
n∑

i=1

E

(
y2
i

)
+

n∑

i=1

n∑

j
=i

E (yi)E
(
yj

)
⎞

⎠

= 1

n

(
σ 2

Y + Y
2
)
+ n2 − n

n2 Y
2

= 1

n

(
σ 2

Y + Y
2
)
+ Y

2 − 1

n
Y

2

= 1

n
σ 2

Y + Y
2

Finally we have our result

V(ȳs) = E(ȳ2
s)− Y

2 = σ 2
Y

n
(3.21)

which means we can reduce the variance by taking larger n. Of course, we don’t
know σ 2

Y ahead of time, so we have to estimate it with the sample variance over Sn:

s2
y =

1

n− 1

n∑

i=1

(yi − ȳs)
2

To prove this is an unbiased estimator, we can use the conditional variance formula,

V(A) = VB(E(A|B))+ EB(V(A|B))

where A = Y and B = Sn. Then using our previous result,

VSn
(E(Y |Sn)) = VSn

(ȳs) = σ 2
Y

n

and

ESn
(V(y|Sn)) = ESn

(
1

n

(
n∑

i=1

(yi − ȳs)
2

))
= n− 1

n
E(s2

y)

Putting it together in the conditional variance formula gives the following:

σ 2
Y =

σ 2
Y

n
+ n− 1

n
E(s2

y)

which gives,

E(s2
y) = σ 2

Y

296 3 Statistics

which says that the expectation of the adjusted population variance over the sample
Sn is the variance over the entire population. Because we don’t know the σ 2

Y ahead
of time, we have to estimate it from the sample

V̂(ȳs) =
s2
y

n

which is justified by the prior result.

SamplingWithout Replacement Everything we have derived so far as for the case
of sampling with replacement. For sampling without replacement, all

(
N
n

)
outcomes

are equally probable so we have

P(yi ∈ Sn) =
(
N−1
n−1

)
(
N
n

) = n

N

So we have

E(yi) =
N∑

j=1

1

N
Yj = Y

We also have

E(y2
i) = 1

N

N∑

j=1

Y 2
j

The nonreplacement makes the covariance trickier than for replacement case. For
simplicity and without loss of generality, we can assume Y = 0. We have the
following probability for both Yk and Yl to be in the n-sample:

P(yj ∈ Sn

∧
yi ∈ Sn) =

(
N−2
n−2

)
(
N
n

) = n(n− 1)

N(N − 1)

Then, given particular yi and yj , we have the following probability:

P(yj = Yk

∧
yi = Yl) = 1

N(N − 1)

So, for the expectation, we have the following:

E(yiyj) =
N∑

l=1

N∑

k
=l

YkYlP(yj = Yk

∧
yi = Yl)

3.16 Survey Sampling 297

By substitution for the probability of the pair, we obtain

E(yiyj) = 1

N(N − 1)

N∑

l=1

N∑

k
=l

YkYl = 1

N(N − 1)

N∑

l=1

Yl

N∑

k
=l

Yk

= 1

N(N − 1)

N∑

l=1

Yl

(
NY − Yl

)

= 1

N(N − 1)

N∑

l=1

Yl (0− Yl)

= −1

N(N − 1)

N∑

l=1

Y 2
l =

−σ 2
Y

N − 1

where we used the Y = 0 assumption on the penultimate line above.
With the individual yi terms settled, we can get to the main event of computing

the mean of ys . The mean follows directly from linearity and the above result for
E (yi):

E
(
ys

) = E

(
1

n

n∑

i=1

yi

)
= 1

n

n∑

i=1

E (yi) = Y

For the variance, using the Y = 0 assumption, we have

V
(
ys

) = E

(
y2

s

)

Now we can write out the E
(
y2

s

)
term as

E

⎡

⎣
(

1

n

n∑

i=1

yi

)2
⎤

⎦ = 1

n2

n∑

i=1

E

(
y2
i

)
+ 1

n2

n∑

i=1

n∑

j
=i

E
(
yiyj

)

= σ 2
Y

n
+ σ 2

Y

n2

n∑

i=1

n∑

j
=i

−1

N − 1

= σ 2
Y

n
− σ 2

Y

n

(n− 1)

N − 1

V
(
ys

) = σ 2
Y

n

N − n

N − 1

298 3 Statistics

Recall that the adjusted population variance is

S2
Y =

1

N − 1

N∑

i=1

(Yi − Y)2 = σ 2
Y

N

N − 1

So, by substituting this into the prior equation, we obtain

V
(
ys

) =
(

1

n
− 1

N

)
S2

Y

We can once again use the conditional variance formula:

σ 2
Y =

(
1− 1

N

)
S2

Y = VSn
(E (y | Sn))+ ESn

(V(y | Sn))

(
1− 1

N

)
S2

Y = VSn

(
ySn

)+ ESn

(
1

n

n∑

i=1

(
yi − ys

)2

)

(
1− 1

N

)
S2

Y =
(

1

n
− 1

N

)
S2

Y + ESn

(
1

n

n∑

i=1

(
yi − ys

)2

)

(
1− 1

N

)
S2

Y =
(

1

n
− 1

N

)
S2

Y +
n− 1

n
ESn

(
s2
y

)

By clearing the terms above, we can identify

ESn
(s2

y) = S2
Y

The punchline here is that the expectation of the adjusted population variance of
the n-sample is the adjusted population variance for the full population. As with
the sampling with replacement case, we still need an estimator for the variance of
V
(
ŷs

)

̂
V
(
ys

) = s2
y

n

(
1− n

N

)

which is justified by the prior result. The factor
(
1− n

N

)
is usually called the finite

population correction.

Example: Estimating Variance Using Finite Population Correction To make
the above calculations concrete, consider the following data:

>>> data = np.array([-1]*100 + [0]*100 +[1]*100)
>>> N, n = len(data), 20

3.16 Survey Sampling 299

Here is a random sample without replacement:

>>> sample = np.random.choice(data,n,replace=False)
>>> ys = np.mean(sample)
>>> ys
0.0

Let us estimate the V (ȳs) by drawing multiple samples:

>>> x = [np.mean(np.random.choice(data,n,replace=False)) for
i in range(1000)]

>>> np.var(x), (1-n/N)*np.var(sample)/n
(0.033226977500000004, 0.023333333333333334)

The last line shows the estimated variance by using the simulation compared to
using the finite population correction factor on a single sample. These two numbers
are pretty close, so we can estimate the variance of the sample mean ys using single
sample which, practically speaking, is all we have.

Example: Sorties Suppose we have a 100-mile-wide region over which we
fly sorties exactly north-south. For each flight, we record the number of deer
observed alongside the mile-wide view of the aircraft. We have a sample (without
replacement) of 20 flights. We want to estimate the number of deer in this region. For
this, the unit is the individual flight. The feature y is the number of deer observed,
and N = 100 is the total number of possible units available (number of 1-mile wide
flights). Given the following data:

>>> y = [9,12,1,1,10,9,9,12,13,12,6,4,12,11,1,5,2,12,12,4]

According to our results, we have the following sample mean and variance, ys and
s2
y :

>>> ys = np.mean(y)
>>> sy2 = np.var(y,ddof=1)
>>> ys, sy2
(7.85, 19.18684210526316)

To estimate the variance of the sample mean, we compute

>>> n, N = 20, 100
>>> var_ys = (1/n - 1/N)*sy2
>>> var_ys
0.7674736842105264

To estimate the total deer population using our survey, we can compute the
following:

>>> total_pop_ = ys * N
>>> total_pop_
785.0

300 3 Statistics

With corresponding estimated variance, we can write out the complete result:

>>> var_total_pop_ = N**2 * var_ys
>>> print(f'total = {total_pop_} with estimated standard

error = {np.sqrt(var_total_pop_):3.2f}')
total = 785.0 with estimated standard error = 87.61

Note the subtle choice of what constitutes a unit for this example and how N was
therefore known a priori.

3.16.1 Unequal Sampling with Replacement for Weighted
Totals

So far, we have only considered the unweighted case of estimating

Y = 1

N

N∑

i=1

Yi

but what about the more general weighted case

Y =
N∑

i=1

piYi

with
∑n

i=1 pi = 1 using a Sn sample with replacement? Sampling with unequal
probability pi facilitates this more general weighted sum. To see this, consider the
following:

E (yi) =
N∑

j=1

P
(
yi = Yj

)
Yj

If we take the inclusion probability as the following:

pj := P
(
yi = Yj

)

then, the expectation over the unweighted sample Sn becomes the following:

E
(
ys

) = 1

n

n∑

i=1

E (yi) = 1

n

n∑

i=1

N∑

j=1

pjYj = Y

Because all of the corresponding derivations for the with replacement case follow
through, we have the following:

3.16 Survey Sampling 301

V̂(ȳs) =
s2
y

n

Thus, by using unequal sampling, we can estimated weighted averages as Y .
Conversely, this means that unequal sampling leads to estimating Y as a weighted
sum.

3.16.2 Unequal Sampling for Unweighted Totals

We want unweighted total but are forced to using unequal sampling with replace-
ment for practical reasons. In other words, we want to estimate YT =∑N

i=1 Yi using
an unequal probability sampling with the following probability:

pj = P
(
yi = Yj

)

This is reducible to the previous case by substituting Zi = Yi/pi . Thus, for the
unequal probability sample, Sn, we have the usual estimator:

zs = 1

n

n∑

i=1

zi = 1

n

n∑

i=1

yi

pi

The corresponding estimator for the variance is the same as before

V̂ (zs) = s2
z

n

where

s2
z =

1

n− 1

n∑

i=1

(
yi

pi

− zs

)2

which is known as the Hansen-Hurwitz estimator.

Example: Unequal Sampling for Unweighted Total Let us generate some simu-
lated data:

>>> N, n = 100, 50
>>> Y = np.arange(1,N+1)
>>> pY = np.array([1,]*50 + [2,]*50) # setup weights
>>> pY = pY/pY.sum() # normalize

We want to estimate the sum of the elements in Y :

>>> Y.sum() # want to estimate this with sample mean
5050

302 3 Statistics

By re-weighting and defining the Zi terms, we can use unequal probability
sampling:

>>> Z = Y/pY # re-weight Y-values
>>> sample = np.random.choice(Z,size=n,p=pY)
>>> sample.mean(), Y.sum() # pretty close
(5206.5, 5050)

And the for the variance,

>>> sample.var()/n # Hansen-Hurwitz estimate
49387.905

Because we are using simulated data, we can estimate the variance using simulation

>>> nsamples = 5_000
>>> np.random.choice(Z, size=(n,nsamples), p=pY).mean(axis=0).var()
63367.63790796

which is pretty close to the Hansen-Hurwitz result.

3.16.3 Unequal Sampling Without Replacement

As in the previous section, we want to estimate the total YT , but here we sample
without replacement. Consider the following Horvitz-Thompson estimator:

YHT =
n∑

i=1

yi

πi

where πi = P (Yi ∈ Sn). If we define aj = 1 if Yj ∈ Sn with probability πj and
zero otherwise, then we can write this over all N of the elements of Yj as follows:

YHT =
N∑

j=1

Yj

πj

aj

Note that

E
(
aj

) = πj

with corresponding variance,

V
(
aj

) = πj (1− πj)

3.16 Survey Sampling 303

With these definition, we can compute the following:

E (YHT) =
N∑

j=1

E
(
aj

) Yj

πj

=
N∑

j=1

Yj = YT

which means that YHT is an unbiased estimator of YT . Let us define πij =
P
(
Yi ∈ Sn ∧ Yj ∈ Sn

)
. We want to compute the variance using

V (YHT) = E

(
Y 2

HT

)
− E (YHT)2

To get the second term, we can write the mean as the following:

E (YHT) = YT =
N∑

i=1

πi

(
Yi

πi

)

and then square it as shown:

E (YHT)2 =
(

N∑

i=1

πi

(
Yi

πi

))2

=
N∑

i=1

π2
i

(
Yi

πi

)2

+
N∑

i=1

N∑

j
=i

πiπj

(
Yi

πi

)(
Yj

πj

)

Writing out the first term,

E

(
Y 2

HT

)
= E

⎡

⎣
(

N∑

i=1

ai

Yi

πi

)2⎤

⎦ =
N∑

i=1

πi

(
Yi

πi

)2

+
N∑

i=1

N∑

j
=i

πij

(
Yi

πi

)(
Yj

πj

)

Combining the two terms gives the variance:

V (YHT) =
N∑

i=1

[
πi

(
Yi

πi

)2
− π2

i

(
Yi

πi

)2
]
+

N∑

i=1

N∑

j
=i

[
πij

(
YiYj

πiπj

)
− πiπj

(
YiYj

πiπj

)]

=
N∑

i=1

(
πi − π2

i

)(
Yi

πi

)2
+

N∑

i=1

N∑

j
=i

(
πij − πiπj

) (YiYj

πiπj

)

To combine the result, we add and then subtract the diagonal terms to get rid of the
j
= i in the sum:

V (YHT) =
N∑

i=1

(
πi − π2

i

)(
Yi

πi

)2

+
N∑

i=1

⎛

⎝
N∑

j=1

(
πij − πiπj

) (YiYj

πiπj

)⎞

⎠−

304 3 Statistics

N∑

i=1

(
πi − π2

i

)(
Yi

πi

)2

=
N∑

i=1

N∑

j=1

(
πij − πiπj

) (YiYj

πiπj

)

To estimate this variance using Sn, we can use the following:

V̂ (YHT) =
n∑

i=1

n∑

j=1

(
1− πiπj

πij

)
yiyj

πiπj

which is attributed to Horvitz and Thompson. Note that there is an alternative Yates-
Grundy form of this estimate. The variance estimator is unbiased as long as πij > 0
but is unstable (especially for small samples) and can become negative in certain
cases. Practically speaking, it can be difficult to derive the second-order probabilities
πij which may involve calculating

(
n
2

)
possible pairs in the sample.

3.16.4 Probability Proportional to Size (PPS) Cluster Sampling

For practical reasons, it is often more convenient to sample using clusters as
opposed to directly sampling individual units. Consider N clusters C1, C2, . . . , CN

of cardinality X1, X2, . . . , XN . Suppose n clusters are selected with replacement
with probability proportional to cardinality of each cluster

pj = Xj∑N
i=1 Xj

= Xj

XT

where XT is the total over all clusters and Yj is the total of y in the j th cluster,
Cj , and we want to estimate YT . Then, the Hansen-Hurwitz unbiased population
estimator is the following:

ŶT = 1

n

n∑

i=1

yi

pi

= XT

n

n∑

i=1

yi

xi

Note that yi

xi
is the mean of the values of y(k) in the Ci cluster. Recall that the

unbiased estimator of the population mean, Y is the following:

Y =
N∑

i=1

pjY j

3.16 Survey Sampling 305

From our previous result, we have

V
(
ŶT

) = X2
T

n

N∑

j=1

pj

(
Y j − Y

)2

with corresponding estimator for the variance

̂
V
(
ŶT

) = X2
T

n

1

n− 1

n∑

i=1

(
yi − ys

)2

where ys is the sample mean of the cluster means.

Example: Probability Proportional to Size (PPS) Cluster Sampling Suppose
we have four hotels (i.e., clusters) and we want to estimate the total number of pet-
friendly hotel rooms in town. The following table shows the number of rooms and
number of pet-friendly rooms in each hotel. The Ym_i in the table shows the mean
of pet-friendly rooms per hotel, and the p_i is the probability of selecting each
hotel which is the proportion of rooms available in that hotel over the total number
of available hotel rooms. Thus, each hotel is randomly selected based upon the total
number of available rooms there.

>>> rd
num_rooms num_pets p_i Ym_i

0 57 18 0.291 0.316
1 71 31 0.362 0.437
2 13 5 0.066 0.385
3 55 26 0.281 0.473

Our survey sample consists of two hotels selected with replacement according to
p_i,

>>> sample = np.random.choice(rd.Ym_i, 2, p=rd['p_i'])
>>> sample
array([0.31578947, 0.43661972])
>>> rd.num_rooms.sum()*sample.mean(), rd.num_pets.sum()
(73.73610081541882, 80)

The last line shows the Hansen-Hurwitz estimator for the number of total pet-
friendly rooms compared to the actual number of pet-friendly rooms available.
The estimated variance of the total number of pet-friendly rooms available is given
below:

>>> ((sample - sample.mean())**2).sum()*rd.num_rooms.sum()**2/2
140.2179007484884

Because there are few available hotels overall and sampling with replacement means
that the same sample can appear more than once, it is possible for the estimated
variance to equal zero.

306 3 Statistics

3.16.5 Stratified Random Sampling

The practical motivation behind stratified random sampling is to ensure that no
one group dominates the overall estimate without accounting for potentially smaller
groups’ contribution. For example, if a region is dominated by a few large hospitals,
and we want to estimate the number of available beds using PPS methods, then
we may have repeated samples of the large hospitals, just because these have the
most beds overall. By using stratified random sampling, we can have large, medium,
and small groups and then sample each group independently, which reduces the
dominating effect of the large hospitals in this estimation. The sampling population
is split into separate groups, and sampling is performed separately within each group
(i.e., stratum).

Convenient and practically workable strata may already be defined by geographic
region, administrative criteria (e.g., voting districts), or some other factor like age
or gender. The main disadvantage of stratified sampling is that it requires every
enumeration unit to be identified by stratum before sampling.

Instead of using pre-existing and convenient strata, you could create strata
by splitting the population with respect to another feature that is thought to be
associated with the feature of interest. In our hospital example, we could stratify
hospitals with respect to floor space, data which may be easily available from tax
records and which should be highly associated with number of beds because beds
consume floor space. On the other hand, if we want to estimate the average daily
cost of a hospital bed per patient, then the geographic region of the hospital may be
more important, supposing that wealthy areas can charge patients more than poor
areas.

Let us consider a numerical example using some penguin data from seaborn.

>>> import seaborn as sns
>>> df =

sns.load_dataset('penguins')[['island','body_mass_g',
'species']]

>>> df.head()
island body_mass_g species

0 Torgersen 3750.0 Adelie
1 Torgersen 3800.0 Adelie
2 Torgersen 3250.0 Adelie
3 Torgersen NaN Adelie
4 Torgersen 3450.0 Adelie

We want to use stratified sampling to estimate the body mass of the penguins by
stratifying on the islands they live on. As shown, some islands are more highly
populated with penguins than others, and some islands have heavier penguins than
others (see Fig. 3.52):

>>> df.groupby('island').count()['species']
island
Biscoe 168
Dream 124

3.16 Survey Sampling 307

Fig. 3.52 The heavier
penguins live on Biscoe
island

Torgersen 52
Name: species, dtype: int64

For this example, we want to sample 30 penguins total by stratifying across the
islands. In the following, the groupby partitions the dataframe by island, and
then the apply function uses the sample method to collect ten samples of
body_mass_g in each partition with replacement (replace=True). The next
groupby partitions the result by level=0, which corresponds to the island name,
and the remainder computes the average weight of the penguins. Because this is a
simulation, we can do this 1000 times and collect the result in the stratified
variable.

>>> # generate samples by stratifying on island
>>> nsamples = 30
>>> stratified =[df.groupby('island')
... .apply(lambda i:i.sample(nsamples//3,
... replace=True))['body_mass_g']
... .groupby(level=0).sum().sum()/nsamples
... for i in range(1000)]

As a comparison, we generate 1000 random samples that ignore the islands and
collect the result in the unstratified variable:

>>> # generate unstratified samples ignoring islands
>>> unstratified =[df['body_mass_g'].sample(nsamples,
... replace =True).mean()
... for i in range(1000)]

We next assemble the two sets of samples into a single dataframe, sampled_data,

>>> sampled_data=pd.DataFrame(dict(stratified=stratified,
... unstratified=unstratified))

that we can compare using Seaborn histplot

>>> ax = sns.histplot(data=sampled_data,
... element='poly',
... kde=True)

308 3 Statistics

Fig. 3.53 The samples
stratified by island have a
smaller variance but
significant bias

Fig. 3.54 Penguin body
weight stratified by species

which shows that the samples stratified by island create estimates of smaller variance
but with significant bias. The variance (i.e., spread) of the unstratified
samples is greater but with less bias (see Fig. 3.53).

To continue with this example, let us redo this exercise but now stratifying on
species instead of island. Figure 3.54 shows that the Gentoo penguins are heavier.
Note that this species stratification variable is closely related to body weight.

Now, we repeat the process as before and generate 1000 simulated estimates and
Fig. 3.55. Note that the bias for the stratified estimates of body weight is significantly
reduced because destratification variable (species) is strongly correlated with the
study variable body_mass_g.

>>> # generate samples by stratifying on species
>>> stratified =[df.groupby("species")
... .apply(lambda i:i.sample(nsamples//3,
... replace

=True))['body_mass_g']
... .groupby(level=0).sum().sum()/nsamples
... for i in range(1000)]
>>> sampled_data = pd.DataFrame(dict(stratified=stratified,
... unstratified=unstratified))

Discussion Survey sampling is a large and mature area of statistics, so here we have
just tried to highlight the key issues. Note that we have only considered estimating

3.17 Log-linear Models 309

Fig. 3.55 The bias for the
stratified estimates of body
weight is reduced
significantly when the
stratification variable
(species) is strongly
correlated with the study
variable (body_mass_g).
Compare to Fig. 3.53

the mean and total using survey sampling but other statistics such as the median and
ratio metrics are also possible, albeit with much more complicated calculations for
variance. Recall that the sampling design is the P (Sn) and the inclusion probability
is πi ; these are obviously related, but it turns out that Hanurav’s algorithm (1966)
established the correspondence between these two sampling considerations because
he proved that any sampling design results in a πi and vice versa. Thus, there is no
meaningful differentiation between these two.

We did not discuss whether or not estimators are minimum variance unbiased
estimators. In the most formal sense, specific estimators should be paired with
specific sampling strategies to ensure minimum variance properties, but most survey
sampling strategies are dominated by practical considerations. Thus, the choice
of desired metric and the corresponding estimator for that metric are both design
parameters for the analyst.

It is typical for sampling results to include weights which reflect the sampling
design. For example, wi = 1/πi for all survey units reported. This makes it
straightforward to compute totals and averages by just using these unit weights.
It is common to collect partial responses for all or certain elements of a survey.
Missing responses require special handling and use methods related to missing data
imputation (see Sect. 3.18).

3.17 Log-linear Models

Log-linear models are a generalization of generalized linear models (GLMs) and
facilitate regression analyses of contingency tables with complex interactions
between the variables while accounting for the structure of the contingency table.
Specifically, GLMs require you to select input/output variables to perform the
regression and then focus on interpreting the resulting regression coefficients. For
example, logistic regression is a special case of log-linear models where a single
binary value response variable is a function of the covariates, but log-linear models

310 3 Statistics

do not need to choose any one variable as the response to the others. This is
important in situations where several factors simultaneously interact and the cause
and effect relationship is unknown.

We have already covered the Fisher exact test (see Sect. 3.5.6) and the odds
ratio for two-by-two contingency tables in Sect. 3.5.7. Our goal is to generalize this
analysis to larger two- and three-dimensional contingency tables. For contingency
table analysis, we are primarily concerned with multinomial and Poisson probability
sampling models. Poisson models are easier to extend to multidimensional contin-
gency tables and are fundamental to log-linear models.

Unfortunately, as of the time of this writing, there is no established Python
module that implements log-linear models, although Statsmodels does consider
the two-by-two contingency table. Consequently, we illustrate the main features of
this theory using Xarray and Pandas methods. We build on our prior examples of
contingency table analysis and show how log-linear models provide more flexibility
and extensions for analysis. Log-linear models comprise a vast statistical theory,
so our coverage here is by no means comprehensive, and we refer you to references
[1, 2, 10, 39, 41, 43, 45], and [51] for deeper study. The main struggle with log-linear
models is notational, with different approaches to the topic using differing notations.
We have tried to pick a middle road for notation that aligns with the corresponding
illustrative Python code. It is easy to get lost in the fog of mathematical symbols,
so this section has many worked out numerical examples that you can experiment
with to cement your conceptual understanding. We provide intuitive motivation and
references for the key mathematical results that are too technical and distracting to
be included here.

3.17.1 Poisson and Multinomial Models

Contingency tables are used to summarize categorical data and are naturally
characterized by multinomial distributions. Recall that the form of the multinomial
distribution is a product of its parameters. The great idea with log-linear models is
to use logarithms to expand these distributions and thereby enable a wide range of
categorical data models to use with these distributions. It is technically difficult to
work with the multinomial distribution in high dimensions, but there is a maximum
likelihood equivalence between the multinomial and the Poisson distribution that
facilitates log-linear modeling. Suppose we start with the following Poisson log-
linear model:

log μ = Ψ β

where Ψ is a binary matrix. The Poisson distribution parameter is μ, so this model
says that the logarithm of the μ parameters is a subset of the β vector variables
picked off by the Ψ matrix. Consider the j th row:

3.17 Log-linear Models 311

log μj = ψT
j β = φj

This is the Poisson log-likelihood:

L = −
n∑

i=1

log xi ! +
n∑

i=1

xi log μi −
n∑

i=1

μi

Substituting φi , we now have

L = −
n∑

i=1

log xi ! +
n∑

i=1

xiφi − τ

where τ =∑n
j=1 μj . Note that

N log τ = N log

⎛

⎝
n∑

j=1

μj

⎞

⎠

with N = ∑n
j=1 xi . We can add and subtract N log τ into the log-likelihood to

obtain

L = −
n∑

i=1

log xi ! +
n∑

i=1

⎛

⎝xiφi − xi log

⎛

⎝
n∑

j=1

μj

⎞

⎠

⎞

⎠+N log τ − τ

With the following:

pi = μi∑n
j=1 μj

= exp(φi)∑n
j=1 exp(φj)

we can substitute into the log-likelihood:

L = −
n∑

i=1

log xi ! +
n∑

i=1

(
xiφi − xi log

exp(φi)

pi

)
+N log τ − τ

= −
n∑

i=1

log xi ! +
n∑

i=1

(xiφi − xiφi + xi log pi)+N log τ − τ

= −
n∑

i=1

log xi ! +
n∑

i=1

xi log pi +N log τ − τ

312 3 Statistics

Compare this result to the log-likelihood for the multinomial distribution:

log

{
n!∏
i xi

}
+

n∑

i=1

xi log pi

Keep in mind that for solving the log-likelihood to obtain the maximum likelihood
estimator, we only care about terms that contain the parameter (pi in this case). The
τ terms at the end reflect the unconditional Poisson distribution where the total count
is not constrained, so the distribution for the sum of N = ∑n

i=1 xi is also random
with Poisson distribution with parameter τ = ∑n

j=1 μj and thus the trailing terms
are the log-likelihood for N . For computing the maximum likelihood, these trailing
terms are ignored, and the solutions for this Poisson log-likelihood are identical to
those for the multinomial log likelihood. This is important because it is much easier
to reason about the Poisson model, especially for high-dimensional contingency
tables.

3.17.2 Log-linear Models

Consider a Poisson log-linear model for counts in a two-dimensional contingency
table with nr rows and nc columns. We have already seen multiple methods for
assessing independence for two-by-two contingency tables but here want to examine
the same issues using log-linear models. Suppose that the data in the table are
independent counts according to a Poisson distribution with parameter μi,j , then

μi,j = μφiψj

where φi, ψj are positive constants with
∑

i φi = ∑
i ψi = 1 and μ = ∑

i,j μi,j .
The statement of independence here means that μi,j is a product of terms that
depend only on i and j separately, not jointly. Keep in mind that there is no loss of
generality by focusing on the μi,j terms instead of the individual cell probabilities
pi,j because μi,j = Npi,j . The Poisson log-linear model is the following:

log μi,j = β0 + βA
i + βB

j

where A and B denote the categorical variables in the two-dimensional table. The
problem is that this model is seriously over-parameterized, especially for a 2 × 2
table. The binary matrix shown is only of rank three which means the model is not
identifiable because more than one set of parameter values can produce the same
model.

3.17 Log-linear Models 313

⎛

⎜⎜⎝

log μ1,1

log μ1,2

log μ2,1

log μ2,2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

β0

βA
1

βA
2

βB
1

βB
2

⎞

⎟⎟⎟⎟⎟⎠

By setting βA
1 = βB

1 = 0, we can reduce the matrix above to three columns.

⎛

⎜⎜⎝

log μ1,1

log μ1,2

log μ2,1

log μ2,2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0
1 0 1
1 1 0
1 1 1

⎞

⎟⎟⎠

⎛

⎝
β0

βA
2

βB
2

⎞

⎠

We can plug this model into the log-likelihood equations above to obtain the
Following:

∂L

∂βA
i

= xi,• −
nc∑

j=1

exp
(
β0 + βA

i + βB
j

)
= xi,• − μi,•

and also

∂L

∂βB
j

= x•,j −
nr∑

i=1

exp
(
β0 + βA

i + βB
j

)
= x•,j − μ•,j

Thus, the maximum likelihood solution is the following:

μ̂i,j = xi,•x•,j /N

where N = ∑
i,j xi,j = μ. Given the matrix above, we can solve for the β̂ terms

using the μ̂ terms:

β̂0 = log μ̂1,1

β̂A
2 = log μ̂2,2 − log μ̂1,2

β̂B
2 = log μ̂2,2 − log μ̂2,1

As before, the quality of the model can be assessed with the Pearson statistic (see
Sect. 3.5.7) for testing the goodness of fit

X2 =
nc∑

i=1

nr∑

j=1

(
xi,j − μ̂i,j

)2

μ̂i,j

with χ2 distribution, (nr − 1)(nc − 1) degrees of freedom.

314 3 Statistics

It may have occurred to you that we could have chosen another set of conditions
to achieve identifiability and that these choices are motivated by the interpretability
of the terms. For example, proceeding directly from the maximum likelihood
solution,

log μ̂i,j = − log n+ log xi,• + log x•,j

This means that log-linear independence boils down to terms that depend on i and
j separately, and in this case,

β̂0 = − log N

β̂A
2 = log x2,•

β̂B
2 = log x•,2

Notice that the terms only depend on the marginals of the second row and column
and the β0 term is the log of the sum of all the elements in the contingency table.
Because the terms depend only on the marginals, they cannot capture any between-
cell interactions. Now, let us consider a more general model that accounts for
possible interactions between the rows and columns.

log μi,j = β0 + βA
i + βB

j + γ AB
i,j

Once again, we have to supply additional constraints because there are too many
free variables. Consider the equations for a 2× 2 table,

⎛

⎜⎜⎝

log μ1,1

log μ1,2

log μ2,1

log μ2,2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

βA
1

βA
2

βB
1

βB
2

γ AB
1,1

γ AB
1,2

γ AB
2,1

γ AB
2,2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix rank equals four so we can set βA
1 = βB

1 = 0 as before and also set
γ AB
i,j = 0 except for γ AB

2,2 , for all i, j .

3.17 Log-linear Models 315

⎛

⎜⎜⎝

log μ1,1

log μ1,2

log μ2,1

log μ2,2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

β0

βA
2

βB
2

γ AB
2,2

⎞

⎟⎟⎠

Plugging this model into the log-likelihood equations and solving for the model
parameters gives the following:

γ̂ AB
2,2 = log

x1,1x2,2

x2,1x1,2

The term on the right is the log odds ratio because p̂i,j = xi,j /N . We can rewrite
this as the following:

exp
(
γ̂ AB

2,2

)
= p̂1,1p̂2,2

p̂2,1p̂1,2

This model for the two-by-two contingency table adds (nr − 1)(nc − 1) = 1
parameters, so it is the saturated (i.e., overfitted) model. Interestingly, as compared
to the independent model, we estimated only one additional parameter γ AB

2,2 to
achieve saturation, and this turned out to be the odds ratio we have previously
discussed. The following are the rest of the estimated terms for this model:

β̂0 = log x1,1

β̂A
2 = log x2,1 − log x1,1

β̂B
2 = log x1,2 − log x1,1

As opposed to the independence model, note that the terms do not depend on the
marginals, but on the table cell values (xi,j) individually.

Example: Tumors in Mice Consider the following data concerning tumor devel-
opment in mice exposed to a fungicide [51].

>>> import numpy as np
>>> import xarray as xr
>>> data =np.array([[4,5],[12,74]])
>>> xa = xr.DataArray(data,coords={'i':['exposed','control'],
... 'j':['tumors','no tumors']}
...)
>>> xa
<xarray.DataArray (i: 2, j: 2)>
array([[4, 5],

[12, 74]])
Coordinates:

* i (i) <U7 'exposed' 'control'

* j (j) <U9 'tumors' 'no tumors'

316 3 Statistics

First, we consider the expected table under the independence model:

>>> expected = xa.sum('j')*xa.sum('i')/xa.sum()
>>> expected
<xarray.DataArray (i: 2, j: 2)>
array([[1.51578947, 7.48421053],

[14.48421053, 71.51578947]])
Coordinates:

* i (i) <U7 'exposed' 'control'

* j (j) <U9 'tumors' 'no tumors'

As the dimension of the contingency tables increases, it will be more difficult to
attach a meaningful interpretation to each of the determined coefficients in the
regression, but the included terms allow us to control the within-model interactions
and then rate the fit of the overall model.

3.17.3 I × J × K Log-linear Models

As we begin our discussion of high-dimensional contingency tables, let us first
convince ourselves that our prior analysis of three-dimensional contingency tables
can be captured using log-linear models. Recall that we considered several different
ways to formulate the notion of independence, either jointly or conditionally. Now,
let us consider how these prior formulations can be represented as log-linear models.

Below is our data from the previous section on contingency tables

>>> import pandas as pd
>>> import numpy as np
>>> import xarray as xr

>>> data = np.array([[16,7,15,34,5,3],
... [1,1,3,8,1,3]]).reshape((2,3,2))
>>> xa = xr.DataArray(data, coords = {
... 'behavior(i)':['deviant','non-deviant'],
... 'adversity(j)':['low','medium','high'],
... 'risk(k)': ['N','R']
... }
...).astype(np.int64)
>>> xa
<xarray.DataArray (behavior(i):2, adversity(j):3, risk(k):2)>
array([[[16, 7],

[15, 34],
[5, 3]],

[[1, 1],
[3, 8],
[1, 3]]])

Coordinates:

* behavior(i) (behavior(i)) <U11 'deviant' 'non-deviant'

* adversity(j) (adversity(j)) <U6 'low' 'medium' 'high'

* risk(k) (risk(k)) <U1 'N' 'R'

3.17 Log-linear Models 317

along with the following hypothesis:

H1 : pi,j,k = pi,•,•p•,j,k

As shown previously, we can compute the expected table as the following:

>>> expected =
xa.sum(['adversity(j)','risk(k)'])*xa.sum('behavior(i)')/xa.sum()

>>> expected
<xarray.DataArray (behavior(i):2, adversity(j):3, risk(k):2)>
array([[[14.02061856, 6.59793814],

[14.84536082, 34.63917526],
[4.94845361, 4.94845361]],

[[2.97938144, 1.40206186],
[3.15463918, 7.36082474],
[1.05154639, 1.05154639]]])

Coordinates:

* behavior(i) (behavior(i)) <U11 'deviant' 'non-deviant'

* adversity(j) (adversity(j)) <U6 'low' 'medium' 'high'

* risk(k) (risk(k)) <U1 'N' 'R'

Note that in our discussion of this data, we did not discuss maximum likelihood
estimation for this expected table, but we used the maximum likelihood equations
to derive the coefficients in the log-linear model. Keeping with this approach, let us
configure the maximum likelihood equations for this particular problem and solve
for the maximum likelihood estimator of this expected table.

Using Sympy, we define the appropriate variables:

>>> import sympy as S
>>> muv = S.symbols('mu1:3(1:4)(1:3)', positive=True)
>>> xv = S.symbols('x1:3(1:4)(1:3)', positive=True)
>>> bAv = S.symbols('bA1:3', real=True)
>>> bBCv = S.symbols('bBC1:4(1:3)', real=True)

For this next step, we want to pack the Sympy variables into Numpy arrays that are
easier to manipulate:

>>> mu = np.array(muv).reshape(2,3,2)
>>> xd = np.array(xv).reshape(2,3,2)
>>> bBC = np.array(bBCv).reshape(3,2)
>>> subsdict = {bAv[1]:0}
>>> values = xa.values.flatten().tolist()

Now, we construct the log-likelihood function as in the following, using nested loops
to make sure and assign the correct values from the Xarray xa into the equations:

>>> L = 0
>>> for i in range(2):
... for j in range(3):
... for k in range(2):
... L += (bAv[i]+bBC[j,k])*xd[i,j,k]-S.exp(bAv[i]+bBC[j,k])
... subsdict[xd[i,j,k]] = values.pop(0)
...

318 3 Statistics

The next step is the maximize the log-likelihood using calculus as in the following:

>>> t = L.subs(subsdict)
>>> sols, = S.solve([t.diff(i) for i in t.free_symbols])
>>> sols
{bA1: log(80/17), bBC11: log(289/97), bBC12: log(136/97),
bBC21: log(306/97), bBC22: log(714/97), bBC31: log(102/97),
bBC32: log(102/97)}

Because we want to compare this to our existing expected table, we can extract
the terms as follows:

>>> mudict = {}
>>> for i in range(2):
... for j in range(3):
... for k in range(2):
... mudict[mu[i,j,k]]=(S.exp((bAv[i]+bBC[j,k])
... .subs(sols)
... .subs(subsdict))
... .evalf())
...
>>> mudict
{mu111: 14.0206185567010, mu112: 6.59793814432990,
mu121: 14.8453608247423, mu122: 34.6391752577320,
mu131: 4.94845360824742, mu132: 4.94845360824742,
mu211: 2.97938144329897, mu212: 1.40206185567010,
mu221: 3.15463917525773,
mu222: 7.36082474226804, mu231: 1.05154639175258,
mu232: 1.05154639175258}

These terms match one-for-one with the values shown in the Xarray expected
above. We glossed over certain technicalities above. For example, we did not check
the second derivative when we maximized the log-likelihood equations. It turns out
that the Poisson distribution we are using for this model, and, in fact, the exponential
family that contains the Poisson distribution, does not require it. Nonetheless, this
is a very tedious procedure that can only get worse as the number of dimensions
increases.

What we want is a way to compute the maximum likelihood estimator for the
expected table without all this work. Fortunately, Birch criteria provide exactly this
in two parts. First, for all nonzero entries of each marginal subtable that are nonzero,
these marginal subtables are sufficient statistics for μi,j,k . Second, all sufficient
marginal subtables must be equal to the corresponding marginal subtables of their
estimated means for the estimated means to be the maximum likelihood estimators.
This is a consequence of the fact that sufficient statistics for this exponential family
are the maximum likelihood estimators. Note that Birch criteria provide a way to
test whether or not the estimated means in the table are the maximum likelihood
estimators, but not how to construct these estimators. Here is an example of a
marginal subtable that matches the maximum likelihood estimator:

3.17 Log-linear Models 319

μ̂i,• = xi,•

This criterion is the basic result that powers the iterative proportional fitting
algorithm.

3.17.4 Iterative Proportional Fitting

The Birch criteria give us a way of testing whether or not the estimator is maximum
likelihood estimates, but it does not tell us how to construct such an estimate. Some
maximum likelihood estimates may not have a closed form and may require iterated
solutions, which is what the iterative proportional fitting algorithm (IPF) provides.
The algorithm is based upon the fact that

1 = ni,j,•
μ̂i,j,•

= ni,•,j
μ̂i,•,j

= n•,i,j
μ̂•,i,j

which leads to these identities:

μ̂i,j,k = ni,j,•
μ̂i,j,•

μ̂i,j,k

μ̂i,j,k = ni,•,j
μ̂i,•,j

μ̂i,j,k

μ̂i,j,k = n•,i,j
μ̂•,i,j

μ̂i,j,k

Thus the iteration becomes

μ̂
[3t+1]
i,j,k = ni,j,•

μ̂i,j,•
μ̂
[3t]
i,j,k

μ̂
[3t+2]
i,j,k = ni,•,j

μ̂i,•,j
μ̂
[3t+1]
i,j,k

μ̂
[3t+3]
i,j,k = n•,i,j

μ̂•,i,j
μ̂
[3t+2]
i,j,k

The initial cases are usually taken to be

μ̂
[0]
i,j,k = 1 ∀i, j, k

Birch’s results enable us to derive estimates of the expected cell counts for all of
the elementary cells from the configurations of sums, without having to go through
the intermediate step of estimating the individual regression terms. The code below
makes this algorithm concrete, but before we can use it, we have to identify the
log-linear models that it facilitates.

320 3 Statistics

3.17.5 Hierarchical Models

We need some definitions to proceed. Non-comprehensive models are those that do
not have at least one parameter for every dimension in the table. For example, for a
three-dimensional model

log μi,j,k = β0 + βA
i + βB

j + βC
k

setting any of the parameters to zero results in a non-comprehensive model.
Conversely, a comprehensive model has at least the main effect (i.e., any of the
terms above except for β0) in every dimension.

Hierarchical log-linear models are the easiest to fit and explain and require that
high-order interactions always accompany lower-order interactions. For example,
the following is not a hierarchical log-linear model:

log μi,j,k,l = βABC
i,j,k

However, by including all subsets of interaction terms, we obtain a hierarchical
model:

log μi,j,k,l = β0 + βA
i + βB

j + βC
k + βD

l + βBC
j,k + βAB

i,j + βBD
j,l + βAC

i,k + βABC
i,j,k

The notation for keeping track of all of these terms is tricky, so this model can be
specified by its generating class which is a shorthand for specifying the maximum
interactions as brackets in a set. For the model above, the generating class would
be {[ABC], [BD]}. The [ABC] element of the generating class requires that [AB],
[BC], and [AC] be included in the hierarchical model. This model is comprehensive
because it includes the [A], [B], [C], and [D] terms.

Because of the Poisson/multinomial distribution, maximum likelihood estimates
can be derived from the sufficient statistics in the model. We can use the Birch’s
results with the generating class notation to identify the maximum likelihood
estimates using the marginal subtables. For example, given the generating class
{[ABC], [BD]}, the marginal subtable ni,j,k,• is needed to identify the maximum
likelihood estimate for [ABC]. Likewise, the generating class [BD] marginal
subtable, n•,j,•,l . Some examples can make this notation easier to understand.

Consider the two-dimensional log-linear model with the generating class
{[A], [B]}

log μi,j = β0 + βA
i + βB

j

This means that log μi,j can be written as a function of i and j , separately. The
marginal subtables are n•,j and ni,•. Using the Birch criteria, we have

μ̂•,j = n•,j

3.17 Log-linear Models 321

and

μ̂i,• = ni,•

and thus our familiar result

μ̂i,j = ni,•n•,j /n•,•

Keep in mind that the marginal totals have to be greater than zero, according to
Birch. Next, consider the comprehensive three-dimensional log-linear model with
generating class {[AB], [C]}:

log μi,j,k = β0 + βA
i + βB

j + βC
k + βAB

i,j

That is, the log-linear model is a function of (i, j) and k, so using Birch’s results
again, we have

μ̂i,j,k = ni,j,•n•,•,k/n•,•,•

That satisfies the conditions for the model. An alternative, three-dimensional model
for the generating class {[AB], [BC]} is the following:

log μi,j,k = β0 + βA
i + βB

j + βC
k + βAB

i,j + βBC
j,k

for which we have via Birch’s results

μ̂i,j,k = ni,j,•n•,j,k/n•,•,•

For the following model with the generating class {[AB], [AC], [BC]}, we have

log μi,j,k = β0 + βA
i + βB

j + βC
k + βAB

i,j + βBC
j,k + βAC

i,k

with sufficient marginal subtables ni,j,•, ni,•,k , and n•,j,k , but in this case we don’t
have a closed form solution for μ̂i,j,k and must rely on an iterative solution that
satisfies the following equations:

μ̂i,j,• = ni,j,•
μ̂i,•,k = ni,•,k
μ̂•,j,k = n•,j,k

Example: Conditional Independence IPF To see this in action using iterative
proportional fitting, let us return to the personality-cholesterol data from before

322 3 Statistics

>>> data = np.array([[716,79],

... [207,25],

... [819,67],

... [186,22]]).reshape((2,2,2))

>>> xa = xr.DataArray(data,

... coords = {'personality(i)': ['A','B'],

... 'cholesterol(j)': ['normal','high'],

... 'blood_pressure(k)': ['normal','high'],

... }

...).astype(np.int64)

>>> xa

<xarray.DataArray (personality(i): 2, cholesterol(j): 2,

blood_pressure(k): 2)>

array([[[716, 79],

[207, 25]],

[[819, 67],

[186, 22]]])

Coordinates:

* personality(i) (personality(i)) <U1 'A' 'B'

* cholesterol(j) (cholesterol(j)) <U6 'normal' 'high'

* blood_pressure(k) (blood_pressure(k)) <U6 'normal' 'high'

with the same hypothesis that cholesterol and blood pressure are independent given
personality type:

pi,j,k = pi,j,•pi,•,k/pi,•,•

Using our generating class notation, this is written {[AB][AC]}. Now, we set up the
initial conditions The, iterative proportional fitting algorithm:

>>> mu = xa*0+1 # initialize

Then, we can do the iteration:

>>> for i in range(5):
... mu = (xa.sum('blood_pressure(k)')/
... mu.sum('blood_pressure(k)'))*mu # [AB]
... mu = (xa.sum('cholesterol(j)')/
... mu.sum('cholesterol(j)'))*mu # [AC]
...
>>> mu.transpose('personality(i)',
... 'cholesterol(j)',
... 'blood_pressure(k)') # realign for comparison
<xarray.DataArray (personality(i): 2, cholesterol(j): 2, blood
_pressure(k): 2)>

array([[[714.49367089, 80.50632911],
[208.50632911, 23.49367089]],

[[813.9213894 , 72.0786106],
[191.0786106 , 16.9213894]]])

Coordinates:

* personality(i) (personality(i)) <U1 'A' 'B'

3.17 Log-linear Models 323

* blood_pressure(k) (blood_pressure(k)) <U6 'normal' 'high'

* cholesterol(j) (cholesterol(j)) <U6 'normal' 'high'

Note that the iteration stops when the values for mu stop changing significantly,
but I left that logic out of the loop to reduce clutter. It turns out the IPF converges
very quickly and is guaranteed to converge. The result for mu here is exactly the
same as we got for using the formula in the contingency table approach, which is
encouraging, given that we made no claims to maximum likelihood properties of
that formula.

Example: Complete Independence IPF While we have the personality-
cholesterol data at hand, let us re-visit the complete independence model,
{[A][B][C]}:
>>> mu0 = xa*0+1 # initialize

>>> for i in range(5):

... mu0 = (xa.sum(['cholesterol(j)','blood_pressure(k)'])/

... mu0.sum(['cholesterol(j)','blood_pressure(k)']))*mu0 # [A]

... mu0 = (xa.sum(['personality(i)','blood_pressure(k)'])/

... mu0.sum(['personality(i)','blood_pressure(k)']))*mu0 # [B]

... mu0 = (xa.sum(['personality(i)','cholesterol(j)'])/

... mu0.sum(['personality(i)','cholesterol(j)']))*mu0 # [C]

...

>>> mu0.transpose('personality(i)','cholesterol(j)', 'blood_pressure(k)')

<xarray.DataArray (personality(i): 2, cholesterol(j): 2, blood_pressure(k): 2)>

array([[[739.88436419, 74.06518791],

[193.66396207, 19.38648583]],

[[788.15335387, 78.89709403],

[206.29831987, 20.65123223]]])

Coordinates:

* blood_pressure(k) (blood_pressure(k)) <U6 'normal' 'high'

* cholesterol(j) (cholesterol(j)) <U6 'normal' 'high'

* personality(i) (personality(i)) <U1 'A' 'B'

Again, this result exactly matches our previous contingency table analysis (see
Sect. 3.5.7).

3.17.6 Deviance

The ability to compute the maximum likelihood expected contingency table using
IPF is great, but now that we can consider many different kinds of models, we
need to compare them against each other systematically, and for that, we return to
the deviance (also known as KL-divergence in machine learning) that we used for
generalized linear models, which is commonly denoted as G2 for log-linear models.
For example, given the two models for the personality-cholesterol data above, we
can compute the deviance between the expected table for conditional independence
and the original data as follows:

324 3 Statistics

>>> float(2*(xa*np.log(xa/mu)).sum()) # conditional independence
2.062585010431811

We can likewise compute the deviance between the expected table for the complete
independence model and the original data as follows:

>>> float(2*(xa*np.log(xa/mu0)).sum()) # complete independence
8.722939543258185

Because the conditional independence has a smaller deviance from the actual data
than the complete independence model, we can conclude that it fits the data better,
but we must also consider the degrees of freedom in each case to really judge
between then. Typically, we want a small deviance with many degrees of freedom.
For the conditional independence model, we have two degrees of freedom, and
for the complete independence model, we have four. Degrees of freedom can be
tricky to calculate, so the next section goes into the details. Due to properties of the
deviance we can directly compute

>>> float(2*(mu0*np.log(mu0/mu)).sum())
6.66702094574363

which is the difference of the two deviance values above. The χ2
2 threshold for 95%

significance for two degrees of freedom is the following:

>>> from scipy import stats
>>> stats.chi2(2).isf(.05)
5.991464547107983

Thus, we can conclude that the difference between the conditional independence
and complete independence model is statistically significant because it exceeds this
threshold.

3.17.7 Degrees of Freedom

The degrees of freedom is the difference between the number of parameters
that could be estimated minus the parameters that the model requires. Consider
the generating class {[A][B][C]} which corresponds to the following complete
independence model for a three-dimensional contingency table:

β0 + βA
i + βB

j + βC
k

The β0 is one parameter to estimate, and the other terms give nr − 1, nc − 1, and
nl − 1 parameters, from left to right, where nl is the size of the third dimension
(sometimes called layers). Remember that each of the marginals have to sum to
one, so each of the dimensions has one parameter that is completely determined by
the rest. The total degrees of freedom in this case is

3.17 Log-linear Models 325

nrncnl − (1+ (nr − 1)+ (nc − 1)+ (nl + 1))

For example, for nc = nr = nl = 2, we have four degrees of freedom. Consider the
{[AB][C]} model:

β0 + βA
i + βB

j + βC
k + γ AB

i,j

In this case, we gain another (nr − 1)(nc − 1) parameters to estimate because the
new term represents a valid two-dimensional probability distribution that has to total
to one as do its marginals. The total degrees of freedom is therefore

nrncnl − (1+ (nr − 1)+ (nc − 1)+ (nl − 1)+ (nr − 1)(nc − 1))

For the nc = nr = nl = 2 case, this computes out to be three. Now, consider the
{[AB][BC]} model of conditional independence:

β0 + βA
i + βB

j + βC
k + γ AB

i,j + γ BC
j,k

This is the same number of parameters of the previous case except for the additional
(nc − 1)(nl − 1) terms. Thus, the total degrees of freedom is therefore

nrncnl− (1+ (nr −1)+ (nc−1)+ (nl−1)+ (nr −1)(nc−1))+ (nl−1)(nc−1))

and in the nc = nr = nl = 2 case, we have two degrees of freedom. For the
{[AB][BC][AC]} case, we have (nr−1)(nl−1) additional parameters compared to
the previous case which gives one degree of freedom when nc = nr = nl = 2. The
final fully saturated case is {[ABC]} which adds the (nr − 1)(nc − 1)(nl − 1) terms
which makes for zero total degree of freedom. Hopefully, you can see the general
pattern here which applies to larger than three-dimensional contingency tables.

Example: Four-Dimensional Mouse Tension Data Consider the following four
dimensional contingency table for a study to determine the relationship between
two different drugs and muscle tension in mice. For each mouse, a muscle was
identified, and its tension was measured. A randomly chosen drug was given to the
mouse, and the muscle tension was measured again. The muscle was then tested to
identify which type of muscle it was. The weight of the muscle was also measured.

>>> data = np.array([[3,21],[23,11],
... [22,32],[4,12],
... [3,10],[41,21],
... [45,23],[6,22]])
>>> x = xr.DataArray(data.reshape((2,2,2,2)),
... coords = {'T': ['hi','lo'],
... 'W': ['hi','lo'],
... 'M': ['1','2'],
... 'D': ['1','2']
... },
... attrs = {'description':'muscle tension data',

326 3 Statistics

... 'T': 'muscle tension',

... 'W': 'muscle weight',

... 'M': 'muscle type',

... 'D': 'drug type'

... }

...)
>>> x
<xarray.DataArray (T: 2, W: 2, M: 2, D: 2)>
array([[[[3, 21],

[23, 11]],

[[22, 32],
[4, 12]]],

[[[3, 10],
[41, 21]],

[[45, 23],
[6, 22]]]])

Coordinates:

* T (T) <U2 'hi' 'lo'

* W (W) <U2 'hi' 'lo'

* M (M) <U1 '1' '2'

* D (D) <U1 '1' '2'
Attributes:

description: muscle tension data
T: muscle tension
W: muscle weight
M: muscle type
D: drug type

Let us consider the complete independence model {[T][W][M][D]} where the
letters correspond to each of the variables as described in the attrs attribute above.
We can compute the expected contingency table using the formula

μ̂i,j,k,l = xi,•,•,•x•,j,•,•x•,•,k,•x•,•,•,l/N3

This is implemented in the code below using itertools.combinations and
functools.reduce:

>>> from functools import reduce
>>> import itertools as it
>>> mu = reduce(lambda i,j:i*j, [x.sum(i)
... for i in it.combinations(x.coords,3)
...])/x.sum()**3
>>> float(2*(x*np.log(x/mu)).sum()) # dof = 11
127.3506927454614

The number of degrees of freedom for this model is 16-(1+1+1+1+1)=11. Next,
let us consider the model of all two-way interactions

{[T W][T M][WM][T D][WD][MD]}

3.17 Log-linear Models 327

We need the IPF algorithm to compute this because there is no closed form
estimator:

>>> mui = x*0+1 # initialize
>>> for i in range(6):
... mui = x.sum(['T','W'])/mui.sum(['T','W']) * mui
... mui = x.sum(['T','M'])/mui.sum(['T','M']) * mui
... mui = x.sum(['W','M'])/mui.sum(['W','M']) * mui
... mui = x.sum(['T','D'])/mui.sum(['T','D']) * mui
... mui = x.sum(['W','D'])/mui.sum(['W','D']) * mui
... mui = x.sum(['M','D'])/mui.sum(['M','D']) * mui
...
>>> float(2*(x*np.log(x/mui)).sum()) # dof = 5
47.66855634814131

The number of degrees of freedom for this model is six fewer in the previous
complete independence model 11-6=5. Next, let us consider the model of all three-
way interactions

{[T WM][T WD][T MD][WMD]}

with one degree of freedom.

>>> mui = x*0+1
>>> for i in range(6):
... mui = x.sum('T')/mui.sum('T') * mui
... mui = x.sum('W')/mui.sum('W') * mui
... mui = x.sum('M')/mui.sum('M') * mui
... mui = x.sum('D')/mui.sum('D') * mui
...
>>> float(2*(x*np.log(x/mui)).sum()) # dof = 1
0.11122288953007559

This shows that we can get a smaller (i.e., better) deviance if we use more degrees
of freedom (i.e., overfit the data).

3.17.8 Graphical Models

Using generating classes makes it easy to specify a wide variety of potential
models, and using the deviance, we can compare them pair-wise, but now we
can have too many models to choose from, and so our new problem is model
interpretability. Graphical models add certain addition restrictions to our models,
but the benefit is that we can draw the models as a network graph of nodes
and edges and then interpret them graphically. A model is graphical if all two-
factor terms generated by a higher-order interaction includes the higher-order
interaction term. For example, the graphical model {[ABCD][CDE]} is deter-
mined by the four-factor term {[ABCD]} and the three-factor term {[CDE]}.

328 3 Statistics

Fig. 3.56 Graphical model
for log-linear model
{[ABD], [BCD]}

Fig. 3.57 Graphical model
for log-linear model
{[ABC], [BD], [DEF]}

All two-factor terms generated by {[ABCD]} are included in the model, namely,
[AB], [AC], [AD], [BC], [BD], [CD]. Likewise, {[CDE]} generates the follow-
ing two-factor terms that are also included in the model, [CD], [CE], [DE].
Conversely, if a model includes two-factor terms like {[AB], [BC], [AC]}, then it
must include the [ABC] higher-order term in order to be a graphical model.

Because the saturated model is the graphical model containing all possible two-
factor terms, any log-linear model can be embedded in a graphical model. Thus, to
interpret a log-linear model, we want the smallest graphical model that contains that
log-linear model. For example, the non-graphical model {[AB][AC][AD][BC]} is
embedded in the graphical model {[ABC][AD]}, which has the conditional inde-
pendence interpretation that BC is independent of D, given A. This interpretation
applies to the embedded non-graphical model, although the non-graphical model
involves additional constraints. Consider the log-linear model {[ABD], [BCD]}
shown in Fig. 3.56.

Recall that a clique is a graph with all nodes mutually connected. Another way
to look at log-linear models as graphical models is to consider the items of the
generating class a maximal clique (i.e., not contained in a bigger clique). With
this interpretation, it is easy to read off log-linear models and their independence
relations from network graphs. A chain is a sequence of edges that lead from one
node to another node. The main theorem for using chains in graphical models says
that if node sets A,B, and C are disjoint node subsets and (if and only if) every
chain between a node in A and a node in B contains at least one node in C, then the
nodes in A and the nodes in B are independent given C.

For example, for Fig. 3.57, we can read off the independence relationships
that A and C are independent of D,E,F given B, which can be symbolized as
AC ⊥ DEF |B. Also, EF ⊥ ABC|D. Marginal relationships (i.e., those that do
not involve all terms) can also be read off the graph. For example, AC ⊥ DE|B.

3.17 Log-linear Models 329

3.17.9 Model Selection

Choosing between so many possible log-linear models is tricky. There are two pri-
mary methods: backward selection and forward selection. With backward selection,
you start with a saturated model and then incrementally delete terms with the least
significant χ2 statistic until all remaining terms have the prespecified minimum level
of significance. The forward selection model is basically the same but in the other
direction—start with the independence model, and keep adding terms until no term
achieves a predetermined minimum level of significance. The advantage of either of
these methods is that they are quick to implement, but that is primarily because they
consider a relatively small subset of all possible models available. They are also both
sensitive to the choice of the initial model and furthermore can miss intermediate
good models entirely and sometimes require complicated reparameterization along
the way.

In 1976, Brown proposed looking at marginal association and partial association
measures as a way of navigating between multiple proposed models. Marginal
association is the deviance obtained when all other terms are collapsed and the
resulting marginalized table is measured against the independence model for that
table. For example, the test of marginal association for [ABC] is the differential
deviance between [AB][BC][AC] and [ABC] and that for [ABCD] is the differ-
ential deviance between [ABC][ABD][ACD][BCD] and [ABCD].

Partial association involves computing the differential deviance between the
model with and without the term of interest (see example below). The idea is
that when the partial association and the marginal association are significantly
different for a given term, then this can indicate the presence of Simpson’s paradox.
Looking at these two measures of association also makes it obvious which terms are
important in the final resulting model.

It is best to examine Brown’s ideas by example. Consider the following data
regarding perching behavior of lizards, organized and coded into the following
categories: height above ground under/over 5 ft (h ∈ {0, 1}), diameter of branch
under/over 2 inches (d ∈ {0, 1}), insolation sun/shade (i ∈ {0, 1}), time of day
morning/midday/afternoon (t ∈ {0, 1, 2}), species anolis grahami/opalinus (s ∈
{0, 1}).
>>> x
<xarray.DataArray (h: 2, d: 2, i: 2, t: 3, s: 2)>
array([[[[[20, 2],

[8, 1],
[4, 4]],

[[34, 11],
[69, 20],
[18, 10]]],

[[[8, 3],

330 3 Statistics

[4, 1],
[5, 3]],

[[17, 15],
[60, 32],
[8, 8]]]],

[[[[13, 0],
[8, 0],
[12, 0]],

[[31, 5],
[55, 4],
[13, 3]]],

[[[6, 0],
[0, 0],
[1, 1]],

[[12, 1],
[21, 5],
[4, 4]]]]])

Coordinates:

* h (h) int64 0 1

* d (d) int64 0 1

* i (i) int64 0 1

* t (t) int64 0 1 2

* s (s) int64 0 1

To compute the marginal association for the [dh] term, we sum over all the other
terms to obtain the reduced table:

>>> m = x.sum(('i','t','s'))
>>> m
<xarray.DataArray (h: 2, d: 2)>
array([[201, 164],

[144, 55]])
Coordinates:

* h (h) int64 0 1

* d (d) int64 0 1

Next, we use this table to compute the independence model (which we have done
previously) to obtain

>>> indep = reduce(lambda i,j: i*m.sum(j) ,['h','d'],1)/m.sum()
>>> indep
<xarray.DataArray (d: 2, h: 2)>
array([[223.2712766, 121.7287234],

[141.7287234, 77.2712766]])

3.17 Log-linear Models 331

Coordinates:

* d (d) int64 0 1

* h (h) int64 0 1

Finally, we compute the deviance between this independence model and the original
table:

>>> float(2*(m*np.log(m/indep)).sum())
16.619383942523577

We can repeat this process for all the two and three factor terms to obtain the
following summary including degrees of freedom and p-value (mpval):

>>> df
marginal_assoc dof mpval

item
dh 16.619 1 0.000
hs 26.856 1 0.000
hi 0.945 1 0.331
ht 2.317 2 0.314
ds 18.524 1 0.000
di 3.574 1 0.059
dt 3.735 2 0.155
is 6.472 1 0.011
st 6.368 2 0.041
it 47.969 2 0.000
dhs 0.474 1 0.491
dhi 0.181 1 0.670
dht 1.088 2 0.580
his 2.181 1 0.140
hst 0.401 2 0.818
hit 1.070 2 0.586
dis 0.305 1 0.581
dst 0.007 2 0.996
dit 2.373 2 0.305
ist 1.099 2 0.577

Note that the items with the t variable have an additional degree of freedom because
there are three levels in the t category.

Partial association computes the differential deviance with and without a given
factor. For example, to compute the partial association for the [hd] term, we
have to first compute the model with all two factor terms included, namely,
[ht][dh][hi][hs][dt][it][st][di][ds][is]. Then compute the same model without the
[hd] factor and compute the deviance between these two models. The result is
summarized next in the extended dataframe:

>>> df
marginal_assoc dof mpval partial_assoc ppval

item
dh 16.619 1 0.000 9.821 0.002
hs 26.856 1 0.000 22.010 0.000

332 3 Statistics

hi 0.945 1 0.331 0.034 0.853
ht 2.317 2 0.314 2.532 0.282
ds 18.524 1 0.000 12.703 0.000
di 3.574 1 0.059 0.806 0.369
dt 3.735 2 0.155 2.682 0.262
is 6.472 1 0.011 7.562 0.006
st 6.368 2 0.041 11.453 0.003
it 47.969 2 0.000 48.896 0.000
dhs 0.474 1 0.491 0.318 0.573
dhi 0.181 1 0.670 0.393 0.531
dht 1.088 2 0.580 1.481 0.477
his 2.181 1 0.140 3.714 0.054
hst 0.401 2 0.818 1.648 0.439
hit 1.070 2 0.586 2.976 0.226
dis 0.305 1 0.581 0.040 0.841
dst 0.007 2 0.996 0.011 0.994
dit 2.373 2 0.305 2.497 0.287
ist 1.099 2 0.577 2.654 0.265

Examining the above dataframe shows that the two-factor terms [it] and [hs] have
the highest marginal associations which indicates that the independence model is
failing spectacularly for these factors and these should therefore be included in the
final model. We can start with {[it][hs][ds]} that has 37 degrees of freedom and
gives a deviance of 59.26. This corresponds to the following graphical model in
Fig. 3.58:

We can easily interpret that (i, t) and (h, s, d) are mutually independent and
that h ⊥ d|s so that given species, height, and branch diameter are independent.
Proceeding in order by partial association, we can add the [ts] factor for 35 degrees
of freedom and deviance of 52.9. This gives the updated graphical model in
Fig. 3.59.

The addition of the extra edge enables us to conclude that given t (time of day),
i (insolation) is independent of s (species). Additionally, (it) is independent of h

given s, also. The χ2 p-value for this model is 0.045, which is on the edge of
rejection using the standard 0.05 level. By adding the [hd] term, we could get the
corresponding p-value to 0.27 for 34 degrees of freedom. Looking at the values

Fig. 3.58 Graphical model
for log-linear model
{[it][hs][ds]}

Fig. 3.59 Graphical model
for log-linear model
{[it][hs][ds][ts]}

3.17 Log-linear Models 333

for partial and marginal association, it does not look like adding three factor terms
is worth it in terms of degrees of freedom or interpretability. Remember we seek the
smallest sensible model that fits the data. The [hd] term is likely there because tree
branches get thinner with height. The [it] term suggests that insolation and time-
of-day interact, probably due to the diurnal cycle. The model further suggests that
the two species have different preferences regarding branch heights, diameters, and
time-of-day. These are all insights (among others) that would be hard to hypothesize
by just looking at the raw five-dimensional table!

3.17.10 Table Raking

The IPF algorithm can help interpret contingency tables by forcing the marginals
to add up to the same number (typically 100), which makes it easier to interpret the
individual table cells. This is called table raking. The primary assumption is that any
biases are limited to misrepresentation of the frequencies of the categories, not to the
joint relationships between them. This means that if you somehow generated fake
samples to fill in the marginal sums, the joint relationships between the variables
would stay the same for the log-linear model, which is equivalent to stating that the
main effect terms are incorrect, but all the interactions are correct.

Let us consider the following dataframe regarding political party classifications
and the simple independence model:

>>> data = [[306,279,116],
... [185,312,194],
... [26,134,338]]
>>> x = xr.DataArray(data,
... coords = {'i':['democrat','independent','republican'],
... 'j':['liberal','moderate', 'conservative'], }
...)

Now, we set up the usual IPF iteration:

>>> mui =x.copy() # initialize

>>> for i in range(6):
... mui = 100/mui.sum('i') * mui
... mui = 100/mui.sum('j') * mui # marginals forced to 100
...
>>> mui
<xarray.DataArray (i: 3, j: 3)>
array([[55.01212733, 32.45331276, 12.53455991],

[36.74463004, 40.09540122, 23.15996874],
[8.23156706, 27.44933262, 64.31910032]])

Coordinates:

* i (i) <U11 'democrat' 'independent' 'republican'

* j (j) <U12 'liberal' 'moderate' 'conservative'

Note that the marginals are now all approximately equal to 100.

334 3 Statistics

>>> mui.sum('i')
<xarray.DataArray (j: 3)>
array([99.98832443, 99.9980466 , 100.01362897])
Coordinates:

* j (j) <U12 'liberal' 'moderate' 'conservative'

>>> mui.sum('j')
<xarray.DataArray (i: 3)>
array([100., 100., 100.])
Coordinates:

* i (i) <U11 'democrat' 'independent' 'republican'

The advantage is the new raked table is easier to interpret than the original data, and
we can see the political independents are most strongly moderate compared to
democrat and republican groups.

>>> mui.sel({'i': 'independent'})
<xarray.DataArray (j: 3)>
array([36.74463004, 40.09540122, 23.15996874])
Coordinates:

i <U11 'independent'

* j (j) <U12 'liberal' 'moderate' 'conservative'

3.18 Missing Data

Missing data is common and usually handled by simply omitting any incomplete
cases and proceeding as usual with the remainder of the data. The problem with
this approach is that it can lead to serious bias in the estimated parameters and
cause pernicious downstream consequences. For example, for medical applications,
a dense and complete set of features for a patient is expensive to collect, but ignoring
missing data and keeping only those complete records means that the model is
biased to those who could afford to pay for expensive diagnostics. This may be
acceptable if the model is intended for use among affluent patients, with ready
access to high-quality medical diagnostics, but what about everybody else? The
ultimate result of such a model is poor performance among those only partially
represented because of missing data.

Another common strategy to missing data is to fill in the missing values with
a fixed number like zero. This again is another form of bias because it draws
the model’s parameters toward optimizing loss functions near the origin, which is
especially bad if zero is not even in the domain of the data. Still another strategy
is to fill the missing row elements in a given column with the mean or median of
the non-missing values of that column. This again is another form of bias because
it essentially asserts that the missing data were in fact derivable from the observed
data, which begs the question of trying to collect so much data if a section of it
is fully derivable from a subset. That is, the potential for new information distinct
from the observed data is now lost in the missing elements.

3.18 Missing Data 335

Missing data has many subtle issues, so we must start by classifying these
scenarios before we can figure out how to deal with them.

Categories ofMissingness Suppose R is the binary matrix that stores the locations
of the missing Y where 1 means the data is present and 0 absent; and ψ are
parameters of the missing data model. The missingness model is the probabilistic
mechanism that generates the R matrix.

Missing completely at random (MCAR) means that the probability of being
missing depends only on ψ and not on the Y variables. This means that the
probability of missing is the same for all elements. That is, the cause of the missing
data is unrelated to the data itself. Mathematically, this means that the probability
that data is missing is solely a function of the parameters of the missingness model
(ψ), not any of the other variables, Yobs ,

P(R = 0|Yobs, Ymis, ψ) = P(R = 0|ψ)

MAR (missing at random) means that the missingness probability may depend
on observed information, Yobs . MAR represents the probability of being missing
equally only within strata defined by the observed data. For example, suppose we
are measuring body weight, and, due to a mechanical problem with the measuring
scale, we get missing data with a certain probability when a scale is placed upon
a soft surface as opposed to a hard surface. If we note whether the measurement
was taken on a hard or soft surface, and within each group we have MCAR, then
for the whole experiment, we have MAR. The key idea is that we are observing the
variable that partitions into MCAR. Mathematically this means that the probability
an element is missing is not just a function of the missingness model, but also of the
observed Y values.

P(R = 0|Yobs, Ymis, ψ) = P(R = 0|Yobs, ψ)

MNAR (missing not at random) does not yield any simplifications, meaning that
the probability of missing data depends on observed and unobserved information.
MNAR is other than MCAR or MAR and includes the idea that the probability of
missing data depends on unknown variables. For the scale example, it could be that
the scale falls out of calibration with use on either surface and affects the probability
of missingness. The calibration problem may be unknown to us.

Using the ψ variable above leaves the impression that this is something we need
to estimate from the data. We would really prefer to ignore ψ because this deals with
the issue of missingness as opposed to the embedded parameters θ of the Yi data,
which is our main objective. This question was articulated by Little and Rubin in
2002 with the concept of ignorable. That is, the missing data mechanism is ignorable
for likelihood inference if (1) the data are MAR and (2) the joint parameter space of
(ψ, θ) is the product of the parameter space of ψ and θ , respectively. This is another
way of saying that there is no functional relationship ψ and θ .

336 3 Statistics

The concept of ignorability is important for imputation models. Under ignorabil-
ity,

P(Ymis |Yobs, R) = P(Ymis |Yobs)

which implies that

P(Y |Yobs, R = 1) = P(Y |Yobs, R = 0)

This means that we can model the posterior distribution from the observed data and
use this model to impute missing data. That is, if we don’t have ignorability, then
we have to include the R into the posterior distribution. Practically speaking, this
means we have to develop two models for the posterior distribution, one for R = 1
and the other for R = 0. The MAR requirement above is important. For example, if
we measure body weight between genders and ignorability is assumed, then missing
data in a particular gender can be imputed from the other data in the same gender,
not across different genders. It may be that ignorability is not appropriate, as in
the case where missing data in one of the genders is based upon the measurement
itself. That is, there may be some factor that increases the absent data in one of
the genders based upon the measurement itself. This scenario requires careful data
collection design and more advanced modeling techniques. The goal of multiple
imputation is to obtain estimates of the parameter of interest that is valid for the
entire population as if it had been available from the start. Because missingness
fundamentally represents a lack of information, one can only say that the estimated
population parameter under imputation should on average be equal to the target
population parameter.

Example Let us consider a simple missingness model that illustrates these cate-
gories. Consider the following pair of jointly distributed Gaussian random variables
where (Y1, Y2) ∼ N (0, ρ = 0.5). In this case Y2 is missing (R2 = 0) according to
the following missing data model:

PM(R2 = 0) = ψ0 + exp Y1

1+ exp Y1
ψ1 + exp Y2

1+ exp Y2
ψ2

Under MCAR (Missing Completely at Random), we have ψ = (0.5, 0, 0) which
means that whether or not Y2 is missing does not depend on either of the Yi variables.
Under MAR (missing at random), we have ψ = (0, 1, 0) which means that the
probability of missing Y2 depends upon the observed variable Y1. Importantly, there
is no ψ0, meaning that there is no arbitrariness of the missing Y2. Under MNAR
(Missing Not at Random), we have ψ = (0, 0, 1), which means that the probability
of missing Y2 is a function of Y2. The following code illustrates this missingness
model:

3.18 Missing Data 337

>>> from scipy.stats import multivariate_normal, bernoulli
>>> from scipy.special import expit
>>> import pandas as pd
>>> rho = 0.5 # correlation coefficient
>>> rv = multivariate_normal([0,0],[[1,rho],[rho,1]])
>>> Ns = 2000
>>> df = pd.DataFrame(data=rv.rvs(Ns),columns=['Y_1','Y_2'])
>>> df['MCAR'] = bernoulli(0.5).rvs(Ns)
>>> df['MAR'] = bernoulli(expit(df.Y_1)).rvs()
>>> df['MNAR'] = bernoulli(expit(df.Y_2)).rvs()
>>> df.head()

Y_1 Y_2 MCAR MAR MNAR
0 -0.504 0.030 0 0 1
1 0.263 0.959 1 1 1
2 0.844 1.451 0 1 0
3 -0.390 -0.830 1 1 0
4 0.432 -0.115 1 0 0

Now, we can compute the correlation matrix when omitting the missing cases for
each category:

>>> df.loc[df.MCAR==1 ,['Y_1','Y_2']].corr()
Y_1 Y_2

Y_1 1.000 0.486
Y_2 0.486 1.000

>>> df.loc[df.MAR==1 ,['Y_1','Y_2']].corr()
Y_1 Y_2

Y_1 1.000 0.506
Y_2 0.506 1.000

>>> df.loc[df.MNAR==1 ,['Y_1','Y_2']].corr()
Y_1 Y_2

Y_1 1.000 0.501
Y_2 0.501 1.000

Although mechanically similar, imputation is not prediction. The difference is
that prediction is an attempt to re-create the lost data and imputation is trying
to obtain statistically valid inferences from incomplete data. For example, to
develop a prediction model, we can start with a complete dataset and then remove
certain elements to artificially create missingness and then replace those elements
according to the prediction model. We naturally choose the prediction model that
minimizes the difference (e.g., minimizes the mean squared error between the
two datasets) between the original complete data and the data that has been filled
in with the predictions. The problem with this procedure is that the prediction
model is optimized to the most probable values that are present and diminishes the
uncertainty in the actual incomplete data. For example, it could be that in the real
incomplete data, the missing data represents the majority of difficult cases and that
the prediction model only optimizes for observed values, thus short-changing the
uncertainty in the missing data, which is unable to influence the solution.

338 3 Statistics

Standard Approaches Let us quickly review some standard approaches to data
imputation.

• Listwise deletion: Eliminate all cases with missing data. This causes bias and
loses valuable data. This is also known as complete-case only.

• Mean imputation: Replace missing data rows with the column mean. It is fast and
easy to compute but will underestimate the variance and distort the relationship
between variables. It will bias any other estimate besides the mean when the data
are not MCAR.

• Regression imputation: Build a model for the observed data, and the fill in the
missing values with predictions from that model. This gives unbiased estimates
of the mean under MCAR and unbiased estimates under MAR if the factors that
influence missingness are part of the regression model. The variability of the
imputed data is systematically underestimated. This method produces predictive
values that are realistic if the existing model is perfect, which implies that there
was not any missing information in the first place.

• Stochastic regression imputation: Similar to regression imputation but adds noise
to the model. It preserves regression weights and correlation between variables.
The main idea is to randomly draw from the distribution of the residuals.

• Indicator method: Add a zero for each missing value and extend the regression
model by a response indicator for that variable. Produces biased regression
estimates even under MCAR.

The best known general method is multiple imputation (MI) which is a stochastic
regression method.

3.18.1 Multiple Imputation

Multiple imputation is very general. The main idea is to compute multiple complete
datasets for a single incomplete dataset and then aggregate the desired statistic
across these data.

1. Start with incomplete dataset and replace missing values by generated plausible
data drawn from a distribution specifically modeled for the missing entry. Each
generated dataset is identical with respect to the observed values but differs in
the imputed values.

2. Estimate the parameters of interest from each newly completed dataset sepa-
rately. These are different for each completed dataset.

3. Pool the derived parameters and create a single consolidated estimate with
corresponding variance. This variance combines the within-imputation (per
completed dataset) variance and the new variance caused by the missing data
(between-imputation variance).

3.18 Missing Data 339

The big advantage here is that multiple imputation separates the solution of the miss-
ing data problem from the solution of the completed data problem (i.e., estimating
the desired statistical quantities). This contributes insight. The disadvantage is that
it can be computationally expensive to impute for large datasets with many variables
(i.e., many columns of data).

Fraction of Missing Information Consider K imputed datasets, and let ei be the
estimates of the parameter θ with Ui the corresponding estimated sample variances
of these estimates. The multiple imputation estimate is the following:

ēMI = 1

K

∑
ei (3.22)

The following measures the variance across the K imputed entries:

BM = 1

K − 1

K∑

i=1

(ei − ēMI)
2

The multiple imputation sampling variance is defined as the following,

TM = ŪM +
(

1+ 1

K

)
BM (3.23)

where

ŪM = 1

K

K∑

i=1

Ui

is the average of the completed-data sampling variances. With these definitions, the
ratio

rM =
(

1+ 1

K

)
BM

TM

is the proportionate increase in the variance due to missing data. This is called the
fraction of missing information (FMI). Also,

aM = TM

ŪM

is the efficiency of the multiple imputation estimate relative to the observed-data
estimate. The quantities are used to determine the number of imputations required
and the impact of the missing data on downstream inferences and to judge the
recovery of information from subjects with partial information via imputation. For

340 3 Statistics

example, if FMI is smaller than the proportion of subjects that would have been
discarded in the complete-case-only analysis, the information has been recovered
by including the partially observed subjects. This recovery of information depends
on the parameter θ being estimated and the information in the observed subjects.

The t-distributed confidence intervals for θ have the following degrees of
freedom:

νM = (K − 1)/r2
M (3.24)

for the confidence interval for the θ

θ̂MI = ēMI ± tα/2,νM

√
TM

Theoretical Bayesian Justification of Multiple Imputation Let β be the param-
eters we want to estimate with YM and YO , the missing and observed data,
respectively. What we really want is f (β,YM |YO). From the Bayesian perspective,
the YM is a so-called nuisance parameter that is in the way of our objective to
estimate β. We can expand this out into the following:

f (β,YM |YO) = f (YM |YO) f (β|YM,YO)

and then marginalize this over the YM to obtain the following:

f (β|YO) = EYM |YO
{f (β|YM,YO)}

Under standard regularity conditions, the order of integration can be exchanged to
obtain the posterior mean and variance for the parameters of interest β

E (β|YO) =EYM |YO

{
Eβ|YM,YO

(β)
}

V (β|YO) =EYM |YO

{
Vβ|YM,YO

(β)
}+ VYM |YO

{
Eβ|YM,YO

(β)
}

where we used the law of total variance for the variance above. All of this work is
designed to produce something we can approximate using K samples drawn from
the fYM |YO

density

E (β|YO) � 1

K

K∑

k=1

{
E

β|ỸM,k,YO
(β)

}
= β̂

with corresponding

3.18 Missing Data 341

V (β|YO) � 1

K

K∑

k=1

V
β|ỸM,k,YO

(β)

+ 1

K − 1

K∑

i=1

{
E

β|ỸM,k,YO
(β)− β̂

} {
E

β|ỸM,k,YO
(β)− β̂

}T

Keep in mind that in order to compute the summation, we have to characterize
the fYM |YO

. However, the full posterior density f (β,YM |YO) cannot generally
be characterized by just the first two moments. This is where the Bernstein von-
Mises theorem comes in. The Bernstein von-Mises theorem applies when the full
data estimating equations are likelihood score equations. Briefly, the Bernstein von-
Mises theorem states that the joint posterior distribution tends to the multivariate
normal distribution as the sample size increases. Furthermore, as the sample size
increases, the likelihood dominates the prior distribution so the mode of the
likelihood (i.e., maximum likelihood estimator) can be used to obtain the required
moments above. Because of the prior marginalization of YM , only the resulting
part of the posterior is being approximated in this way, which improves the
approximation. More details in [7].

3.18.2 Canonical Example for Multiple Imputation

Normal Distribution with Known Variance (σ 2) In this section we will investi-
gate the case for which the estimates for the mean and variance for the MI estimator
are exact. Consider n samples for Y ∼ N (μ, σ) where σ is known a priori with nO

the number of values observed and nM , the number of missing items. To construct
each imputed dataset, we have to draw from the posterior density YM |YO . Given
the observed items, we compute the unbiased estimator of μ

μ̂ = 1

nO

∑

i∈O
Yi

with corresponding variance

V
(
μ̂
) = σ 2

nO

From the Bernstein von-Mises theorem, we know what the posterior distribution
for this case is f (μ|YO) ∼ N (μ, σ 2) which we approximate as N (μ̂, σ 2).
Nonetheless, in order to complete the imputation process, we have to design a
posterior distribution for YM |YO which we define as the following:

342 3 Statistics

YM |YO ∼ N
(

μ̂1nM
, σ 2

(
InM

+ 1

nO

1nM
1T
nM

))
(3.25)

For the kth iteration in MI, we have to draw the missing values and put them into
the estimator for the mean:

Ȳk = 1

n

(
∑

i∈M
Ym,i + nOμ̂

)

It is straightforward to show that

EYM |YO
(Ȳk) = μ̂

Keep in mind that for fixed YO , μ̂ is also fixed because it is a function of the
observed data. Thus, we have the following:

Ȳk ∼ N (μ̂, σ 2 nM

n2
+ σ 2 n2

M

n2nO

)

Note that the second term in the variance comes from the off diagonal terms in
the above covariance matrix for YM |YO . The MI estimator for the mean is the
following:

μ̂MI = 1

K

K∑

k=1

Ȳk

Importantly, this is an unbiased estimator for μ̂,

EYM |YO
(μ̂MI) = μ̂

and the Ȳk are mutually independent. Thus, we have the following:

VYM |YO
(μ̂MI) = 1

K

nMσ 2

n2 + 1

K

n2
Mσ 2

n2nO

To remove the conditioning on YO and obtain the unconditional variance, we use
the law of total variance,

V(μ̂MI) = E(V(μ̂MI |YO))+ V(E(μ̂MI |YO))

Plugging in the prior terms and recognizing that we are taking the expectations over
the YO ∼ N (μ, σ 2), we obtain

3.18 Missing Data 343

V(μ̂MI) =
(

σ 2

nO

+ 1

K

nMσ 2

n2 + 1

K

n2
Mσ 2

n2nO

)
= σ 2

nO

(
1+ 1

K

nM

n

)

The MI procedure provides estimates for the mean and variance for this estimator,
as we noted previously. Taking the

E
(
ŪM

) = σ 2

n

and likewise for

E (BM) = nMσ 2

nnO

we obtain the following:

E (TM) = E
(
ŪM

)+
(

1+ 1

K

)
E (BM) = σ 2

nO

(
1+ 1

K

nM

n

)

which is exactly what we obtained earlier without using the MI estimators. This
illustrates that MI is not inventing data out of nowhere, as these relationships
arise automatically for this canonical situation. The subtle part is the design of the
posterior distribution YM ∼ YO for sampling the missing items.

The more general case for unknown σ 2 follows the same process, except now
the σ 2 terms for the distribution of the imputed values has to be drawn from a new
distribution. A good choice for this, based upon the Fisher Cochran theorem, is the
following:

σ 2|YO ∼ (nO − 1)SO

X2

where X2 ∼ χ2
nO−1 and SO is the usual sample variance over the observed

data. First, sample v ∼ χ2
nO−1 and then compute a value for the variance as

σ 2
s = (nO − 1)SO/v and use this for the variance for the posterior distribution

YM |YO in Eq. 3.25. This means use σ 2
s instead of σ 2 and proceed as before. The key

detail is to ensure a new sample for each of the MI trials generated using Eq. 3.25.
Specifically, the mean used for each MI trial is a sample of N (μ̂, σ 2

s) and σ 2
s is used

for the posterior distribution in Eq. 3.25. The samples from this posterior distribution
are used to fill the missing rows for the multiple imputation.

344 3 Statistics

3.18.3 Worked Example for Multiple Imputation

There are many moving parts with multiple imputation, so let us code up a specific
example in detail to see how everything we have discussed in this section fits
together. For this example, we won’t use the aggregation formulas that combine
the final estimate from the individual imputed datasets, but instead examine the
histograms of the estimated parameters generated by the imputations. This provides
a better feeling for how the imputation process generates the parameters that are
aggregated for the final estimate.

Consider the following missingness model:

PM = Bernoulli

(
p = S

(
−1− 1

2
δ − 1

2
ξ + 3ξδ

))

where S(·) is the sigmoid function inverse of the logit function.

S(x) = 1

1+ e−x

Notice that PM is a probabilistic function of ξ, x and δ, which we observe in the
data. This means that the probability model for missing data is different for each
row because each row may have different values for ξ and δ. Given x ∼ N (0, 1),
we define the following:

ξ ∼ Bernoulli

(
p = S

(
1

4
+ 3

4
x

))

δ ∼ Bernoulli

(
p = S

(
−1

2
+ 1

2
ξ + 1

2
x

))

The following code marks rows as missing according to PM .

>>> from scipy.stats import norm
>>> def gen_data(nsamples=1000):
... x = norm(0,1).rvs(nsamples)
... # independent exposure variable
... xi = bernoulli(expit(0.25+0.75*x)).rvs()
... # binary dependent variable
... d = bernoulli(expit(-0.5+0.5*xi+0.5*x)).rvs()
... df = pd.DataFrame(dict(x=x,xi=xi,d=d))
... # missingness model
... missing = bernoulli(expit(-1-0.5*d-0.5*xi+3*d*xi)).rvs()
... df['missing']=missing.astype(bool)
... return df
...

Note that missing==True means that the entire row is absent. The next block
creates a sample for this data:

3.18 Missing Data 345

>>> df = gen_data()
>>> df.head()

x xi d missing
0 -0.997 1 0 True
1 -0.220 1 0 False
2 -0.005 1 1 True
3 -0.178 1 0 False
4 -0.130 0 0 False

The following function simulates the data. Our goal is to compute the logistic
regression of δ as a function of x, ξ . We want to understand the effect of missingness
on the so-derived regression coefficients (including the intercept term).

Programming Tip
The Statsmodels smf module allows specifying regression formulas in a more
natural format, similar to the R-language. For example, d ∼ x + y means
that the variable d is a function of x and y where the intercept term is implied.

>>> import statsmodels.formula.api as smf
>>> def run_simulation(n=1000):
... df = gen_data(n)
... # the intercept term is implied
... r = smf.logit('d ~ xi + x',df).fit(disp=False)
... rm = smf.logit('d ~ xi + x',df[~df.missing]).fit(disp=False)
... return pd.DataFrame(dict(complete=r.params,nonmissing=rm.params))
...

For each run of the simulation, we collect the so-derived logistic regression
parameters. Figure 3.60 shows the histogram of the intercept value for the logistic
regression for the simulated data. The red vertical line indicates the true value
(i.e., −1/2). Note the significant bias in the estimate for the case of missing data.
Importantly, because the missingness model depends on the values of the columns
themselves, it is not simply reducing the statistical power (i.e., shrinking the
variance of the so-computed logistic regression parameters); it is causing this bias.
Figures 3.61 and 3.62 show the corresponding histograms for the other estimated
coefficients for the ξ and the x terms in the logistic regression.

>>> res = pd.concat([run_simulation() for i in range(500)])
>>> res.head()

complete nonmissing
Intercept -0.868 -0.757
xi 0.841 -0.555
x 0.395 0.404
Intercept -0.393 -0.282
xi 0.315 -0.888

Let us investigate the missingness model PM analytically, so we can understand
how it drives the bias we have observed. The subtle part is how the random variables

346 3 Statistics

Fig. 3.60 The respective histograms show the derived intercept term for simulated data, without
(top) and with missingness (bottom). Observe the bias in the data where the vertical line indicates
the true value of the intercept

Fig. 3.61 The respective histograms show the derived coefficients for the ξ term for simulated
data, without (top) and with missingness (bottom). Observe the bias in the data where the vertical
line indicates the true value of the coefficient of ξ

interact. Keep in mind that each row of the data has its own distinct Bernoulli
distribution based on the values along that row. First, let us consider the ξ variable:

3.18 Missing Data 347

Fig. 3.62 The respective histograms show the derived coefficients for the x term for simulated
data, without (top) and with missingness (bottom). Note the lack of previously observed bias in the
data where the vertical line indicates the true value of the coefficient of x

ξ ∼ Bernoulli

(
S

(
1

4
+ 3

4
x

))

The probability that ξ = 1 is the following:

EX

(
S

(
1

4
+ 3

4
x

))
≈ 0.555

and check it against our simulated data.

>>> (df.xi==1).mean()
0.538

Given the following:

δ ∼ Bernoulli

(
S

(
−1

2
+ 1

2
ξ + 1

2
x

))

the expected P(δ = 1) is the following:

348 3 Statistics

EX,ξ

(
S

(
−1

2
+ 1

2
ξ + 1

2
x

))
= EX

(
S

(
−1

2
+ 1

2
x

)
(1− S

(
1

4
+ 3

4
x

)
)

+ S

(
1

2
x

)
S

(
1

4
+ 3

4
x

))

≈ 0.1523+ 0.2972 = 0.4495

which checks out approximately against our simulated data:

>>> (df.d==1).mean()
0.416

To consider the joint probabilities of ξ, δ we have to consider four cases of ξ ∈ {0, 1}
and δ ∈ {0, 1}. For the case with δ = 0 ∧ ξ = 0,

EX

((
1− S

(
x

2
− 1

2

))(
1− S

(
3x

4
+ 1

4

)))
≈ 0.2923

For the case with δ = 0 ∧ ξ = 1,

EX

(
S

(
3x

4
+ 1

4

)(
1− S

(x

2

)))
≈ 0.2581

For the case with δ = 1 ∧ ξ = 0,

EX

(
S

(
x

2
− 1

2

)(
1− S

(
3x

4
+ 1

4

)))
≈ 0.1523

For the case with δ = 1 ∧ ξ = 1,

EX

(
S

(
3x

4
+ 1

4

)
S
(x

2

))
≈ 0.2971

We can quickly check these values using our simulated data:

>>> df.groupby(['d','xi'])['x'].count().unstack()/len(df)
xi 0 1
d
0 0.316 0.268
1 0.146 0.270

To compute the probability of missing (PM), we compute the logistic sigmoid for
PM each case of δ and ξ , arranged in Table 3.4 for clarity. Then, taking the EX over
these entries yields the following:

(
0.0786242 0.047093
0.0277916 0.217241

)

3.18 Missing Data 349

Table 3.4 Terms to compute PM

δ

0 1

ξ 0 S(−1)
(

1− S
(

x
2 − 1

2

)) (
1− S

(
3x
4 + 1

4

))
S
(
− 3

2

)
S
(

3x
4 + 1

4

) (
1− S

(
x
2

))

1 S
(
− 3

2

)
S
(

x
2 − 1

2

) (
1− S

(
3x
4 + 1

4

))
S(1)S

(
3x
4 + 1

4

)
S
(

x
2

)

then, finally summing this up gives ≈ 0.3707. This checks out (approximately)
against our simulated data:

>>> df.missing.mean()
0.347

Programming Tip
The Fortran library QUADPACK is available via scipy.integrate
module and can compute the expectations above. For example, to compute
EX(S(1

4 + 3
4x)), we can do the following:

>>> from scipy.stats import norm
>>> from scipy.integrate import quad
>>> nrv = norm(0,1) # N(0,1) random variable
>>> f = lambda x: expit(1/4+3/4*x)*nrv.pdf(x) # integrand
>>> quad(f,-10,10) # no need to integrate all infinity
(0.5553083202603288, 4.393639370728342e-09)

The second term in the tuple above is the absolute error of the result. See the
scipy.integrate.quad documentation for more details.

Figures 3.60, 3.61 and 3.62 show the bias of the logistic regression parameters
created by missingness. The purpose of MI is to squeeze more out of the observed
data by imputing data that reduces this bias. Our next step is to implement the
analytical results in Sect. 3.18.2 by imputing the normally distributed variable with
unknown variance:

>>> from scipy import stats
>>> from scipy.stats import multivariate_normal as mvn
>>> def imputeRows(Yo,m=100):
... 'Impute m-items with observed data, Yo.'
... assert m>0
... nO = len(Yo)
... omu = Yo.mean() # observed mean
... ovar = Yo.var() # observed variance
... mns=[]
... vars=[]
... X2 = stats.chi2(nO-1) # chi2 distribution
... v=(nO-1)*ovar/X2.rvs() # random variate

350 3 Statistics

... muhatk=stats.norm(omu,np.sqrt(v/nO)) # normal
distribution

... # Y_M|Y_O multivariate normal distribution

... Ymi=mvn(np.ones(m)*muhatk.rvs(),

... v*np.ones((m,m))/nO+v*np.eye(m)).rvs()

... # concatenate imputed data

... Yc = np.r_[Ymi,Yo]

... return Yc

...

Because δ and ξ are discrete, we partition the x-data into subsets based on these
pairs. For example,

>>> Xvals = df.query('d==0 and xi==0 and not missing')['x']

Then we impute x for the number of missing items in that subset:

>>> nO = Xvals.shape[0] # number observed in subset
>>> n = df.query('d==0 and xi==0').shape[0] # number total

per subset
>>> Xc = imputeRows(Xvals,m=n-nO) # m is number imputed
>>> tf = pd.DataFrame(dict(x=Xc)).assign(xi=0,d=0) #

construct completed data
>>> tf.head()

x xi d
0 -2.133 0 0
1 0.138 0 0
2 -0.540 0 0
3 -0.363 0 0
4 0.672 0 0

This approach reduces the problem to that of Sect. 3.18.2 on a per-subset basis where
each subset is indexed by the discrete (ξ, δ) pair. Thus, the parameters required to
impute x are derived from the observed x data each subset. Then, the imputation
uses these parameters that fill in the missing data for each of the respective subsets.
The next function computes this for all of the subsets and then assembles the final
imputed data.

>>> def imputeDF(df):
... def process_subset(df,d,xi):
... 'each (d,xi) pair is a subset'
... Xvals = df.query(f'd=={d} and xi=={xi} and not

missing')['x']
... # number observed in subset
... nO = Xvals.shape[0]
... # number total per subset
... n = df.query(f'd=={d} and xi=={xi}').shape[0]
... Xc = imputeRows(Xvals,m=n-nO)
... # pack into dataframe
... return pd.DataFrame(dict(x=Xc)).assign(d=d,xi=xi)
... tf =pd.concat([process_subset(df,i,j)
... for i in [0,1] for j in [0,1]],

3.18 Missing Data 351

... ignore_index=True)

... return tf

...

Now that we have a way of imputing the missing x items, we want to re-run
our original simulation where we repeatedly performed the logistic regression and
examined the population of so-created regression coefficients (see Figs. 3.60, 3.61
and 3.62). However, in this case, we impute the missing data for each run and then
examine the population of logistic regression coefficients as shown in Figs. 3.63,
3.64 and 3.65 that show the corresponding histograms using the imputed data.
Note how the bias in each case has been greatly reduced. This is the great value
of imputing missing data.

>>> def run_MI_simulation(n=1000):
... # simulate fresh data
... df = gen_data(n)
... # do full regression with complete data
... r=smf.logit('d ~ xi + x',df).fit(disp=False)

Fig. 3.63 The respective
histograms show the derived
coefficients for the intercept
term for simulated data,
without (top), with
missingness (middle), and
with multiple imputation
(bottom). The red vertical line
is the true value. The top two
plots are similar to Fig. 3.60
but for a different simulation
run. Note that the bottom plot
shows that missing
imputation is able to correct
the bias shown in the middle
plot

352 3 Statistics

Fig. 3.64 The respective
histograms show the derived
coefficients for the ξ term for
simulated data, without (top),
with missingness (middle),
and with multiple imputation
(bottom). The red vertical line
is the true value. The top two
plots are similar to Fig. 3.61,
but for a different simulation
run. Multiple imputation has
reduced the bias observed in
the top plot

... # do logistic regression with observed data

... rm=smf.logit('d ~ xi + x',df[~df.missing]).fit(disp=False)

... # build imputed data

... tf = imputeDF(df)

... # do logistic regression on the imputed data

... tm=smf.logit('d ~ xi + x',tf).fit(disp=False)

... # assemble and return logistic regression coefficients

... return pd.DataFrame(dict(complete=r.params,

... nonmissing=rm.params,

... mi=tm.params))

...
>>> # run simulation to gather logistic regression coefficients
>>> res=pd.concat([run_MI_simulation() for i in range(500)])

This example highlights the following central points:

• Multiple imputation’s main advantage is that it does not require specification of
the imputation model or special calculations.

• Multiple imputation yields good estimators for few imputations.

3.18 Missing Data 353

Fig. 3.65 The respective
histograms show the derived
coefficients for the x term for
simulated data, without (top),
with missingness (middle),
and with missing imputation
(bottom). The top two plots
are similar to Fig. 3.62, but
for a different simulation run.
There is no bias in this case
so multiple imputation is not
helpful here

• Multiple imputation works best with estimators which are (asymptotically)
normally distributed. For example, for logistic regression, the log-odds ratio scale
is asymptotically normally distributed.

3.18.4 Multivariate Imputation by Chained Equations (MICE)

The prior example and the one before that used a known model to impute values
for a univariate normally distributed random variable. For the general case, we
can use multivariate imputation by chained equations (MICE). Recall when we
discussed Gibbs sampling for Markov chain Monte Carlo, we marginalized a joint
distribution and then sampled along each of the marginal distributions. This allowed
us to sample from a complicated joint distribution when doing so directly was too
difficult. Similarly, the main idea with MICE is to sample for missing variables
conditional on the remaining covariates and use the samples to fill in for the missing

354 3 Statistics

values.

f (Ymiss |Yobs, X1, . . . , Xn)

Because we don’t know the joint distribution f , we cannot directly marginalize
to obtain samples for Ymiss . Here we denote Xi as those covariates that are
complete (i.e., have no missing values) and Yi for other variables that are subject
to missingness. We signify Y−j as the set of Yi variables except for j .

Let us assume the columns can be ordered by the number of missing values per
column such that the first Y column has the least missing values. Concretely, the
algorithm starts by identifying the Y1 value with the fewest missing values and
then regressing Xi onto Y1. This generates regression parameters β̂1. The next
step is to draw from f

β̂1
(Y1|Xi) and use those values to fill in for the missing

values in Y1. Note that each filled-in value is different because it is a random draw
from the regressed conditional distribution. By the end of this step, we have a
freshly completed Y1 column with no missing values. Next, we take the next Y2
and regress again using the Xi variables and also the newly completed Y1 column.
Again, this generates regression parameters β̂2, and again those are used to sample
f

β̂2
(Y2|Y1, Xi) and fill in the missing Y2 values. The algorithm proceeds through

the remaining Yi variables until the entire dataset is now completed. The flexibility
of this approach is that we are free to choose the regression models for each Yi

variables, and this works with continuous or discrete data.
Let us examine the case of imputing a continuous variable using a basic example

to reduce the notational noise that comes with trying to write out the general
case. Given Y1 has the least number of missing entries, we compute the following
regression:

Y1 ≈Wβ + ε

where W = [1,X] is the design matrix of the linear regression and ε is additive
Gaussian noise vector with zero mean. Using ordinarily squares, the only random
element here is the ε, and so we can solve for the expected value of β with the usual:

β̂ = (WT W)−1WT Y1

We need to account for the fact the β̂ is a random variable due to ε, so we compute
the covariance matrix of β̂ as

R
β̂
= σ̂ 2

ε (WT W)−1

where σ̂ 2
ε is the estimated residual noise variance. We estimate this after the

regression by dividing the sum of the squared residuals by the number of degrees
of freedom in the regression. In this case, there would be two estimated parameters
(two columns in the design matrix), so the number of degrees of freedom k for this

3.18 Missing Data 355

particular example would be the count of the number of complete rows in Y1 minus
two.

Next, we need to compute a sample of β coefficients by sampling from
a two-dimensional standard normal distribution z and then using the Cholesky
factorization of R

β̂
to correct for the estimated covariance. Note that we have to

draw a sample u for σ̂ε from the χ2 distribution with k degrees of freedom noted
above. Then, we compute a sample of the estimated variance of the residual using

σ 2
� = kσ̂ 2

ε /u

Now, when we impute, we have a sample for the R
β̂

as the following:

R
β̂
= σ 2

� (WT W)−1

Recall that the Cholesky factorization L is the following:

LLT = R
β̂

Thus for our first imputation, we compute the regression parameters β using z as in
the following:

β� = β̂ + σ�Lz

With these sampled regression parameters in hand, we draw v of standard normal
random variates and then compute the imputed Y1� values as

Y1� =Wβ� + σ�v

Bear in mind all of that was just for a single imputation, so for multiple imputation
we would repeat the same process with a new set of random variates multiple times
to construct the consolidated result. There are a lot of steps to keep track of, so next
we will code a short example that should make this clearer.

Example To illustrate MICE, let us generate some 500 samples from jointly
Gaussian normal distribution:

>>> Rcov = np.array([[1, 0.3, 0.2],
... [0.3, 1, 0.3],
... [0.2, 0.3, 1]])
>>> df = pd.DataFrame(data =

multivariate_normal(np.zeros(3),Rcov).rvs(500),
... columns=['Y1','Y2','X'])

We want to impose MAR missingness, so we compute the following:

>>> R1 = expit(df.X+1).round().astype(int) # Y1 column
>>> R2 = expit(df.X+df.Y1+0.5).round().astype(int) # Y2 column

356 3 Statistics

Note that the missingness matrix R1 for Y1 is a function of the ever present X1 and
R2 is a function of both X1 and Y1. This makes everything MAR. Next, we generate
new dataframe with the R matrices applied to each of the columns, respectively.

>>> dfm = df.copy()
>>> dfm.loc[~R1.astype(bool),'Y1'] = np.nan
>>> dfm.loc[~R2.astype(bool),'Y2'] = np.nan

Let us see the fraction of missing data for each column:

>>> dfm.Y1.isna().mean(), dfm.Y2.isna().mean() # fraction
missing

(0.176, 0.368)

Note the difference in the estimated parameters between

>>> df.corr()
Y1 Y2 X

Y1 1.000 0.304 0.244
Y2 0.304 1.000 0.283
X 0.244 0.283 1.000

and the complete cases of dfm:

>>> dfm.loc[dfm.apply(lambda i:not i.hasnans,axis=1),:].corr()
Y1 Y2 X

Y1 1.000 0.170 -0.042
Y2 0.170 1.000 0.124
X -0.042 0.124 1.000

Note that the off-diagonal cross-correlation terms are really far from the Rcov
matrix that generated this data, which is due to the missing data in the Y1 and Y2
columns.

With all that setup, we are ready to start MICE. Since Y1 has the fewest missing
values, we start with the following regression:

>>> y1 = smf.ols('Y1 ~ X', data=dfm).fit()

which will automatically drop the missing values in Y1. Keep in mind that X has no
missing values. The degrees of freedom is the following:

>>> dof = y1.nobs - 2 # two params in linear regression
>>> u = stats.chi2(dof).rvs() # random chi2 variate
>>> sigma_star = np.sqrt(y1.ssr/u)

where ssr is the sum of the squared residuals. Because statsmodels already
provides it, we don’t have to compute the W matrix and can compute the Cholesky
factorization as the following:

>>> L = np.linalg.cholesky(y1.normalized_cov_params

*sigma_star**2)
>>> beta_star = y1.params + sigma_star * L @

stats.norm([0,0]).rvs()

3.18 Missing Data 357

Now we have all the ingredients impute for the missing rows of Y_1. We can
shoe-horn this into the existing statsmodels regression object and then use it
to predict for the missing Y1 values:

>>> y1.params[:] = beta_star # force it
>>> dfm.loc[dfm.Y1.isna(),'Y1'] =

y1.predict(dfm.loc[dfm.Y1.isna(),'X'])

Just to double check if we missed anything,

>>> dfm.Y1.hasnans # any more missing values?
False

Now that we have a completed Y1, let us impute Y2 using the same pattern. Note
the degrees of freedom has changed because we have an extra parameter for Y1.

>>> y2 = smf.ols('Y2 ~ Y1+X', data=dfm).fit()
>>> dof = y2.nobs - 3 # now three params in linear regression
>>> u = stats.chi2(dof).rvs() # random chi2 variate
>>> sigma_star = np.sqrt(y2.ssr/u)

Again, we compute the Cholesky factorization and then draw a sample from the
distribution of β̂,

>>> L =
np.linalg.cholesky(y2.normalized_cov_params*sigma_star**2)

>>> beta_star =
y2.params + sigma_star * L @ stats.norm([0,0,0]).rvs()

Then, fill the missing values for Y2:

>>> y2.params[:] = beta_star
>>> dfm.loc[dfm.Y2.isna(),'Y2'] =

y2.predict(dfm.loc[dfm.Y2.isna(),['X','Y1']])

Now, we have imputed all the missing values for each of the Y1 and Y2 columns;
let us compute the new updated correlation

>>> dfm.corr()
Y1 Y2 X

Y1 1.000 0.166 0.318
Y2 0.166 1.000 0.111
X 0.318 0.111 1.000

and compare it to the complete original data df:

>>> df.corr()
Y1 Y2 X

Y1 1.000 0.304 0.244
Y2 0.304 1.000 0.283
X 0.244 0.283 1.000

358 3 Statistics

To use the MI estimates, we would have to repeat this entire process a few more
times with different random variates to create the multiple imputations that MI
requires for its ultimate parameter estimation. Even though this is an artificial
example, it shows the individual calculations required for imputing continuous data.
There is no restriction on the regression methods used even though we used simple
linear regression here..

3.18.5 Diagnostics

There are only suggested guidelines for how many imputations to compute.
Equation 3.24 shows the degrees of freedom, and the fraction of missing information
varies by the amount of missing data in the target parameter. One strategy is to
choose 100 × rM as the number of imputations. Alternatively, given adequate
computational capacity, is to keep increasing the number of imputations until TM

(Eq. 3.23) and ēMI (see Eq. 3.22) numerically stabilize.
Because bias due to missing data is less of an issue with MCAR, we want

to check if the data is MCAR. The imputation model is reasonable if the two
conditional probability density functions are equivalent

f (Uobs |X1, X2, . . . , Xp) = f (U∗missing|X1, X2, . . . , Xp)

where U∗missing is the so-completed data vector consisting of both observed and
imputed values. This means we want to evaluate the histograms of the residuals
of the both of these densities after we have used the Xi covariates (independent
variables) to construct the estimated values for the parameters. This equivalence can
be checked using the response propensity method as follows:

1. Using the covariates, compute the response propensity

p = P(R = 1|X1, X2, . . . , Xp)

using logistic regression or something using the observed data (i.e., R = 1).
2. Evaluate the logistic regression on the rows. This gives a vector of propensity

scores.
3. Regress the vector of observed and imputed values against p, and construct

a histogram of the residuals for the observed and imputed values, and note
the amount of overlap. Significant overlap indicates that the imputations are
reasonable for MAR.

Chapter 4
Machine Learning

4.1 Introduction

Machine learning is an exciting and accelerating area. In in this chapter, we provide
context and some connections to probability and statistics that should make it
easier to think about machine learning and how to apply these methods to real-
world problems. Statistics and machine learning both start with data, but machine
learning is primarily concerned with prediction, whereas statistics is also concerned
with explaining data with models. Keep in mind that the foundational ideas in
statistics were developed before computation became cheap and ubiquitous so
its foundations are analytical. Machine learning is not particularly interested in
explanations but rather in algorithmic predictions, in the context of readily available
computing storage and power. This has started to change recently due to the spread
of machine learning into sensitive areas like medicine, where the predictions have
to be interpreted and justified in terms of emerging privacy and legal standards. Our
section on machine learning interpretability introduces some of these ideas.

This chapter starts with the overarching theory of machine learning. Getting
a good handle on this theory can help contextualize the many machine learning
methods in this chapter. The main Python module for this chapter is Scikit-learn,
and we provide a short introduction and include many detailed worked examples that
you can try for yourself. The deep learning section covers the fastest growing area
of machine learning, especially for image processing, and we use the Tensorflow
module for that section with many graphical examples to illustrate the internals of
such methods.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3_4

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04648-3_4&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3_4

360 4 Machine Learning

4.2 Python Machine Learning Modules

Python provides many bindings for machine learning libraries, some specialized for
technologies such as neural networks and others geared toward novice users. For our
discussion, we focus on the powerful and popular Scikit-learn module. Scikit-learn
is distinguished by its consistent and sensible API, its wealth of machine learning
algorithms, its clear documentation, and its readily available datasets that make it
easy to follow along with the online documentation. Like Pandas, Scikit-learn relies
on Numpy for numerical arrays. Since its release in 2007, Scikit-learn has become
the most widely used, general-purpose, open-source machine learning module that
is popular in both industry and academia. As with all of the Python modules we use,
Scikit-learn is available on all the major platforms.

To get started, let us revisit the familiar ground of linear regression using Scikit-
learn. First, let us create some data.

>>> import numpy as np
>>> from matplotlib.pylab import subplots
>>> from sklearn.linear_model import LinearRegression
>>> X = np.arange(10) # create some data
>>> Y = X+np.random.randn(10) # linear with noise

We next import and create an instance of the LinearRegression class from
Scikit-learn.

>>> lr = LinearRegression() # create model

Scikit-learn has a wonderfully consistent API. All Scikit-learn objects use the fit
method to compute model parameters and the predict method to evaluate the
model. For the LinearRegression instance, the fit method computes the
coefficients of the linear fit. This method requires a matrix of inputs where the rows
are the samples and the columns are the features. The target of the regression are
the Y values, which must be correspondingly shaped, as in the following,

>>> X,Y = X.reshape((-1,1)), Y.reshape((-1,1))
>>> lr.fit(X,Y)
LinearRegression()
>>> lr.coef_
array([[1.0247141]])

Programming Tip

The negative one in the reshape((-1,1)) call above is for the truly lazy.
Using a negative one tells Numpy to figure out what that dimension should be
given the other dimension and number of array elements.

The coef_ property of the linear regression object shows the estimated parameters
for the fit. The convention is to denote estimated parameters with a trailing

4.2 Python Machine Learning Modules 361

Fig. 4.1 The Scikit-learn module can easily perform basic linear regression. The circles show the
training data and the fitted line is shown in black

underscore. The model has a score method that computes the R2 value for the
regression. Recall from our statistics Sect. 3.8 that the R2 value is an indicator of
the quality of the fit and varies between zero (bad fit) and one (perfect fit).

>>> lr.score(X,Y)
0.9056630819239118

Now, that we have this fitted, we can evaluate the fit using the predict method,

>>> xi = np.linspace(0,10,15) # more points to draw
>>> xi = xi.reshape((-1,1)) # reshape as columns
>>> yp = lr.predict(xi)

The resulting fit is shown in Fig. 4.1

Multilinear Regression The Scikit-learn module easily extends linear regression
to multiple dimensions. For example, for multilinear regression,

y = α0 + α1x1 + α2x2 + . . .+ αnxn

The problem is to find all of the α terms given the training set {x1, x2, . . . , xn, y}.
We can create another example dataset and see how this works,

>>> X=np.random.randint(20,size=(10,2))
>>> Y=X.dot([1,3])+1 + np.random.randn(X.shape[0])*20

Figure 4.2 shows the two-dimensional regression example, where the size of the
circles is proportional to the targeted Y value. Note that we salted the output with
random noise just to keep things interesting. Nonetheless, the interface with Scikit-
learn is the same,

362 4 Machine Learning

Fig. 4.2 Scikit-learn can easily perform multilinear regression. The size of the circles indicate the
value of the two-dimensional function of (X1, X2)

>>> lr = LinearRegression()
>>> lr.fit(X,Y)
LinearRegression()
>>> print(lr.coef_)
[0.52252609 2.52281536]

The coef_ variable now has two terms in it, corresponding to the two input
dimensions. Note that the constant offset is already built-in and is an option on the
LinearRegression constructor. Figure 4.3 shows how the regression performs.

Polynomial Regression We can extend this to include polynomial regression by
using the PolynomialFeatures in the preprocessing submodule. To keep
it simple, let us go back to our one-dimensional example. First, let us create some
synthetic data,

>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(10).reshape(-1,1) # create some data
>>> Y = X+X**2+X**3+ np.random.randn(*X.shape)*80

Next, we have to create a transformation from X to a polynomial of X,

>>> qfit = PolynomialFeatures(degree=2) # quadratic
>>> Xq = qfit.fit_transform(X)
>>> print(Xq)
[[1. 0. 0.]
[1. 1. 1.]
[1. 2. 4.]
[1. 3. 9.]

4.2 Python Machine Learning Modules 363

Fig. 4.3 The predicted data is plotted in black. It overlays the training data, indicating a good fit

[1. 4. 16.]
[1. 5. 25.]
[1. 6. 36.]
[1. 7. 49.]
[1. 8. 64.]
[1. 9. 81.]]

Note there is an automatic constant term in the output 0th column where
fit_transform has mapped the single-column input into a set of columns
representing the individual polynomial terms. The middle column has the linear
term, and the last has the quadratic term. With these polynomial features stacked
as columns of Xq, all we have to do is fit and predict again. The following
draws a comparison between the linear regression and the quadratic regression (see
Fig. 4.4),

>>> lr=LinearRegression() # create linear model
>>> qr=LinearRegression() # create quadratic model
>>> lr.fit(X,Y) # fit linear model
LinearRegression()
>>> qr.fit(Xq,Y) # fit quadratic model
LinearRegression()
>>> lp = lr.predict(xi)
>>> qp = qr.predict(qfit.fit_transform(xi))

This just scratches the surface of Scikit-learn. We will go through many more
examples later, but the main thing is to concentrate on the usage (i.e., fit,
predict) which is standardized across all of the machine learning methods in
Scikit-learn.

364 4 Machine Learning

Fig. 4.4 The title shows the R2 score for the linear and quadratic rogressions

4.3 Theory of Learning

There is nothing so practical as a good theory. In this section, we establish the
formal framework for thinking about machine learning. Having a good theory is
particularly important for machine learning because of all the parameter-tweaking
that is unavoidable, and absent theory, can quickly devolve into superstition. This
framework will help us think beyond particular methods for machine learning so we
can integrate new methods or combine existing methods intelligently.

Both machine learning and statistics strive to develop understanding from data.
Some historical perspective helps. Most of the methods in statistics were derived
toward the start of the twentieth century when data were hard to come by. Society
was preoccupied with the potential dangers of human overpopulation, and work
was focused on studying agriculture and crop yields. At this time, even a dozen
data points was considered plenty. Around the same time, the deep foundations of
probability were being established by Kolmogorov. Thus, the lack of data meant that
the conclusions had to be buttressed by strong assumptions and solid mathematics
provided by the emerging theory of probability. Furthermore, inexpensive powerful
computers were not yet widely available. The situation today is much different:
there are lots of data collected and powerful and easily programmable computers are
available. The important problems no longer revolve around a dozen data points on a
farm acre, but rather millions of points on a square millimeter of a DNA microarray.
Does this mean that statistics will be superseded by machine learning?

In contrast to classical statistics, which is concerned with developing models that
characterize, explain, and describe phenomena, machine learning is overwhelmingly
concerned with prediction. Areas like exploratory statistics are very closely related

4.3 Theory of Learning 365

Fig. 4.5 In the classical
statistics problem, we observe
a sample and model what the
urn contains

to machine learning, but still not as focused on prediction. In some sense, this is
unavoidable because the size of the data machine learning can reduce. In other
words, machine learning can help distill a table of a million columns into one
hundred columns, but can we still interpret one hundred columns meaningfully?
In classical statistics, this was never an issue because data were of a much
smaller scale. Whereas mathematical models, usually normal distributions, fitted
with observations are common in statistics, machine learning uses data to construct
models that sit on complicated data structures and exploit nonlinear optimizations
that lack closed-form solutions. A common maxim is that statistics is data plus
analytical theory and machine learning is data plus computable structures. This
makes it seem like machine learning is completely ad hoc and devoid of underlying
theory, but this is not the case, and both machine learning and statistics share many
important theoretical results. By way of contrast, let us consider a concrete problem.

Let us consider the classic balls in urns problem (see Fig. 4.5): we have an urn
containing red and blue balls, and we draw five balls from the urn, note the color of
each ball, and then try to determine the proportion of red and blue balls in the urn.
We have already studied many statistical methods for dealing with this problem.
Now, let us generalize the problem slightly. Suppose the urn is filled with white
balls and there is some target unknown function f that paints each selected ball
either red or blue (see Fig. 4.6). The machine learning problem is how to find the
f function, given only the observed red/blue balls. So far, this doesn’t sound much
different from the statistical problem. However, now we want to take our estimated
f function, say f̂ , and use it to predict the next handful of balls from another urn.
Now, here’s where the story takes a sharp turn. Suppose the next urn already has
some red and blue balls in it? Then, applying the function f may result in purple
balls which were not seen in the training data (see Fig. 4.7). What can we do? We
have just scraped the surface of the issues machine learning must confront using
methods that are not part of the statistics canon.

366 4 Machine Learning

Fig. 4.6 In the machine
learning problem, we want
the function that colors the
marbles

Fig. 4.7 The problem is
further complicated because
we may see colored marbles
that were not present in the
original problem

4.3.1 Introduction to Theory of Machine Learning

Some formality and an example can get us going. We define the unknown target
function, f : X �→ Y . The training set is {(x, y)} which means that we only see
the function’s inputs/outputs. The hypothesis set H is the set of all possible guesses
at f . This is the set from which we will ultimately draw our final estimate, f̂ . The
machine learning problem is how to derive the best element from the hypothesis
set by using the training set. Let us consider a concrete example in the code below.
Suppose X consists of all three-bit vectors (i.e., X = {000, 001, . . . , 111}) as in the
code below,

>>> df = pd.DataFrame(index=pd.Index(['{0:04b}'.format(i)
... for i in range(2**4)],
... dtype='str',
... name='x'),
... columns=['f'])

Programming Tip

The string specification above uses Python’s advanced string formatting mini-
language. In this case, the specification says to convert the integer into a fixed-
width, four-character (04b) binary representation.

4.3 Theory of Learning 367

Next, we define the target function f below which just checks if the number of zeros
in the binary representation exceeds the number of ones. If so, then the function
outputs 1 and 0 otherwise (i.e., Y = {0, 1}).
>>> df.f = np.array(df.index.map(lambda i:i.count('0'))
... > df.index.map(lambda i:i.count('1')),

dtype=int)
>>> df.head(8) # show top half only

f
x
0000 1
0001 1
0010 1
0011 0
0100 1
0101 0
0110 0
0111 0

The hypothesis set for this problem is the set of all possible functions of X . The
set D represents all possible input/output pairs. The corresponding hypothesis set H
has 216 elements, one of which matches f . There are 216 elements in the hypothesis
set because for each of 16 input elements; there are 2 possible corresponding values
(zero or one) for each input. Thus, the size of the hypothesis set is 2×2× . . .×2 =
216. Now, presented with a training set consisting of the first eight input/output
pairs, our goal is to minimize errors over the training set (Ein(f̂)). There are 28

elements from the hypothesis set that exactly match f over the training set. But how
to pick among these 28 elements? It seems that we are stuck here. We need another
element from the problem in order to proceed. The extra piece we need is to assume
that the training set represents a random sampling (in-sample data) from a greater
population (out-of-sample data) that would be consistent with the population that f̂

would ultimately predict upon. In other words, we are assuming a stable probability
structure for both the in-sample and out-of-sample data. This is a major assumption!

There is a subtle consequence of this assumption—whatever the machine
learning method does once deployed, in order for it to continue to work, it cannot
disturb the data environment that it was trained on. Said differently, if the method
is not to be trained continuously, then it cannot break this assumption by altering
the generative environment that produced the data it was trained on. For example,
suppose we develop a model that predicts hospital readmissions based on seasonal
weather and patient health. Because the model is so effective, in the next 6 months,
the hospital forestalls readmissions by delivering interventions that improve patient
health. Clearly using the model cannot change seasonal weather, but because the
hospital used the model to change patient health, the training data used to build the
model is no longer consistent with the forward-looking health of the patients. Thus,
there is little reason to think that the model will continue to work as well going
forward.

368 4 Machine Learning

Returning to our example, let us suppose that the first eight elements from X
are twice as likely as the last eight. The following code is a function that generates
elements from X according to this distribution.

>>> np.random.seed(12)
>>> def get_sample(n=1):
... if n==1:
... return '{0:04b}'.format(np.random.choice(list(range

(8))*2
... +list(range(8,16))))
... else:
... return [get_sample(1) for _ in range(n)]
...

Programming Tip

The function that returns random samples uses the np.random.choice
function from Numpy which takes samples (with replacement) from the given
iterable. Because we want the first eight numbers to be twice as frequent
as the rest, we simply repeat them in the iterable using range(8)*2.
Recall that multiplying a Python list by an integer duplicates the entire list
by that integer. It does not do element-wise multiplication as with Numpy
arrays. If we wanted the first eight to be 10 times more frequent, then
we would use range(8)*10, for example. This is a simple but powerful
technique that requires very little code. Note that the p keyword argument
in np.random.choice also provides an explicit way to specify more
complicated distributions.

The next block applies the function definition f to the sampled data to generate the
training set consisting of eight elements.

>>> train = df.loc[get_sample(8),'f'] # 8-element training set
>>> train.index.unique().shape # how many unique elements?
(6,)

Notice that even though there are eight elements, there is redundancy because
these are drawn according to an underlying probability. Otherwise, if we just got
all 16 different elements, we would have a training set consisting of the complete
specification of f , and then we would therefore know what h ∈ H to pick! However,
this effect gives us a clue as to how this will ultimately work. Given the elements in
the training set, consider the set of elements from the hypothesis set that exactly
match. How to choose among these? The answer is it does not matter! Why?
Because under the assumption that the prediction will be used in an environment
that is determined by the same probability, getting something outside of the training
set is just as likely as getting something inside the training set. The size of the
training set is key here—the bigger the training set, the less likely that there will be

4.3 Theory of Learning 369

real-world data that fall outside of it and the better f̂ will perform.1 The following
code shows the elements of the training set in the context of all possible data.

>>> df['fhat']=df.loc[train.index.unique(),'f']
>>> df.fhat
x
0000 NaN
0001 NaN
0010 1.000
0011 0.000
0100 1.000
0101 NaN
0110 0.000
0111 NaN
1000 1.000
1001 0.000
1010 NaN
1011 NaN
1100 NaN
1101 NaN
1110 NaN
1111 NaN
Name: fhat, dtype: float64

There are NaN symbols where the training set had no values. For definiteness, we
fill these in with zeros, although we can fill them with anything we want so long as
whatever we do is not determined by the training set.

>>> df.fhat.fillna(0,inplace=True) #final specification of fhat

Now, let us pretend we have deployed this and generate some test data.

>>> test= df.loc[get_sample(50),'f']
>>> (df.loc[test.index,'fhat'] != test).mean()
0.18

The result shows the error rate, given the probability mechanism that generates the
data. The following Pandas-fu compares the overlap between the training set and the
test set in the context of all possible data. The NaN values show the rows where the
test data had items absent in the training data. Recall that the method returns zero
for these items. As shown, sometimes this works in its favor, and sometimes not.

>>> pd.concat([test.groupby(level=0).mean(),
... train.groupby(level=0).mean()],
... axis=1,
... keys=['test','train'])

test train
x

1 This assumes that the hypothesis set is big enough to capture the entire training set (which it is
for this example). We will discuss this trade-off in greater generality shortly.

370 4 Machine Learning

0000 1.000 NaN
0001 1.000 NaN
0010 1.000 1.000
0011 0.000 0.000
0100 1.000 1.000
0101 0.000 NaN
0110 0.000 0.000
0111 0.000 NaN
1000 1.000 1.000
1001 0.000 0.000
1010 0.000 NaN
1011 0.000 NaN
1100 0.000 NaN
1101 0.000 NaN
1110 0.000 NaN
1111 0.000 NaN

Where the test data and training data shared elements, the prediction matched; but
when the test set produced an unseen element, the prediction may or may not have
matched.

Programming Tip

The pd.concat function concatenates the two Series objects in the list.
The axis=1 means join the two objects along the columns where each
newly created column is named according to the given keys. The level=0
in the groupby for each of the Series objects means group along the
index. Because the index corresponds to the 4-bit elements, this accounts
for repetition in the elements. The mean aggregation function computes the
values of the function for each 4-bit element. Because all functions in each
respective group have the same value, the mean just picks out that value
because the average of a list of constants is that constant.

Now, we are in position to ask how big the training set should be to achieve a
level of performance. For example, on average, how many in-samples do we need
for a given error rate? For this problem, we can ask how large (on average) must the
training set be in order to capture all of the possibilities and achieve perfect out-of-
sample error rates? For this problem, this turns out to be 63.2 Let us start over and
retrain with these many in-samples.

>>> train=df.loc[get_sample(63),'f']
>>> del df['fhat']
>>> df['fhat']=df.loc[train.index.unique(),'f']
>>> df.fhat.fillna(0,inplace=True) #final specification of fhat
>>> test= df.loc[get_sample(50),'f']

2 This is a slight generalization of the classic coupon collector problem.

4.3 Theory of Learning 371

>>> # error rate
>>> (df.loc[test.index,'fhat']!= df.loc[test.index,'f']).mean()
0.0

Notice that this bigger training set has a better error rate because it is able to identify
the best element from the hypothesis set because the training set captured more
of the complexity of the unknown f . This example shows the trade-offs between
the size of the training set, the complexity of the target function, the probability
structure of the data, and the size of the hypothesis set. Upon exposure to the data,
the so-called learning method did nothing besides memorize the data and give any
unknown, newly encountered data the zero output. This means that the hypothesis
set contains the single hypothesis function that memorizes and defaults to zero
output. If the method attempted to change the default zero output based on the
particular data, then we could say that meaningful learning took place. What we
lack here is generalization, which is the topic of the next section.

4.3.2 Theory of Generalization

What we really want to know is how our method will perform once deployed. It
would be nice to have some kind of performance guarantee. In other words, we
worked hard to minimize the errors in the training set, but what errors can we expect
at deployment? In training, we minimized the in-sample error, Ein(f̂), but that’s not
good enough. We want guarantees about the out-of-sample error, Eout(f̂). This is
what generalization means in machine learning. The mathematical statement of this
is the following,

P

(
|Eout(f̂)− Ein(f̂)| > ε

)
< δ

for ε and δ. Informally, this says that the probability of the respective errors differing
by more than a given ε is less than some quantity, δ. This means that whatever
the performance on the training set, it should probably be pretty close to the
corresponding performance once deployed. This does not say that the in-sample
errors (Ein) are any good in an absolute sense. It just says that we would not expect
much different after deployment. Thus, good generalization means no surprises
after deployment, not necessarily good performance. There are two main ways to
get at this: cross-validation and probability inequalities. Let us consider the latter
first. There are two entangled issues: the complexity of the hypothesis set and the
probability of the data. It turns out we can separate these two by deriving a separate
notion of complexity free from any particular data probability.

VC Dimension We first need a way to quantify model complexity. Following
Wasserman [48], let A be a class of sets and F = {x1, x2, . . . , xn}, a set of n data
points. Then, we define

372 4 Machine Learning

NA(F) = # {F ∩ A : A ∈ A}

This counts the number of subsets of F that can be extracted by the sets of A. The
number of items in the set (i.e., cardinality) is noted by the # symbol. For example,
suppose F = {1} and A = {(x ≤ a)}. In other words, A consists of all intervals
closed on the right and parameterized by a. In this case, we have NA(F) = 1
because all elements can be extracted from F using A. Specifically, any a > 1
means that A contains F .

The shatter coefficient is defined as,

s(A, n) = max
F∈Fn

NA(F)

where F consists of all finite sets of size n. Note that this sweeps over all finite
sets so we don’t need to worry about any particular dataset of finitely many points.
The definition is concerned with A and how its sets can pick off elements from the
dataset. A set F is shattered by A if it can pick out every element in it. This provides
a sense of how the complexity in A consumes data. In our last example, the set of
half-closed intervals shattered every singleton set {x1}.

Now, we come to the main definition of the Vapnik-Chervonenkis [47] dimension
dVC which is defined as the largest k for which s(A, n) = 2k , except in the case
where s(A, n) = 2n for which it is defined as infinity. For our example where
F = {x1}, we already saw that A shatters F . How about when F = {x1, x2}? Now,
we have two points, and we have to consider whether all subsets can be extracted
by A. In this case, there are four subsets, {�, {x1} , {x2} , {x1, x2}}. Note that �
denotes the empty set. The empty set is easily extracted—pick a so that it is smaller
than both x1 and x2. Assuming that x1 < x2, we can get the next set by choosing
x1 < a < x2. The last set is likewise do-able by choosing x2 < a. The problem is
that we cannot capture the third set, {x2}, without capturing x1 as well. This means
that we cannot shatter any finite set with n = 2 using A. Thus, dVC = 1.

Here is the climatic result

Eout(f̂) ≤ Ein(f̂)+
√

8

n
ln

(
4((2n)dVC + 1)

δ

)

with probability at least 1 − δ. This basically says that the expected out-of-sample
error can be no worse than the in-sample error plus a penalty due to the complexity
of the hypothesis set. The expected in-sample error comes from the training set but
the complexity penalty comes from just the hypothesis set, thus disentangling these
two issues.

A general result like this, for which we do not worry about the probability of the
data, is certain to be pretty generous, but nonetheless, it tells us how the complexity
penalty enters into the out-of-sample error. In other words, the bound on Eout(f̂)

gets worse for a more complex hypothesis set. Thus, this generalization bound is a
useful guideline but not very practical if we want to get a good estimate of Eout(f̂).

4.3 Theory of Learning 373

Fig. 4.8 In the ideal situation, there is a best model that represents the optimal trade-off between
complexity and error. This is shown by the vertical line

4.3.3 Worked Example for Generalization/Approximation
Complexity

The stylized curves in Fig. 4.8 illustrate the idea that there is some optimal point of
complexity that represents the best generalization given the training set.

To get a firm handle on these curves, let us develop a simple one-dimensional
machine learning method and go through the steps to create this graph. Let us
suppose we have a training set consisting of x-y pairs {(xi, yi)}. Our method groups
the x-data into intervals and then averages the y-data in those intervals. Predicting
for new x-data means simply identifying the interval containing the new data and
then reporting the corresponding value. In other words, we are building a simple
one-dimensional, nearest neighbor classifier. For example, suppose the training set
x-data is the following,

>>> train = pd.DataFrame(columns=['x','y'])
>>> train['x']=np.sort(np.random.choice(range(2**10),size=90))
>>> train.x.head(10) # first ten elements
0 15
1 30
2 45
3 65
4 76
5 82
6 115
7 145
8 147
9 158
Name: x, dtype: int64

374 4 Machine Learning

In this example, we took a random set of 10-bit integers. To group these into, say,
ten intervals, we simply use Numpy reshape as in the following,

>>> train.x.values.reshape(10,-1)
array([[15, 30, 45, 65, 76, 82, 115, 145, 147],

[158, 165, 174, 175, 181, 209, 215, 217, 232],
[233, 261, 271, 276, 284, 296, 318, 350, 376],
[384, 407, 410, 413, 452, 464, 472, 511, 522],
[525, 527, 531, 534, 544, 545, 548, 567, 567],
[584, 588, 610, 610, 641, 645, 648, 659, 667],
[676, 683, 684, 697, 701, 703, 733, 736, 750],
[754, 755, 772, 776, 790, 794, 798, 804, 830],
[831, 834, 861, 883, 910, 910, 911, 911, 937],
[943, 946, 947, 955, 962, 962, 984, 989, 998]])

where every row is one of the groups. The range of each group (i.e., length of the
interval) is not preassigned and is learned from the training data. For this example,
the y-values correspond to the number of ones in the bit representation of the x-
values. The following code defines this target function,

>>> f_target=np.vectorize(lambda i:i.count('1'))

Programming Tip

The above function uses np.vectorize which is a convenience method
in Numpy that converts plain Python functions into Numpy versions. This
basically saves additional looping semantics and makes it easier to use with
other Numpy arrays and functions.

Next, we create the bit representations of all of the x-data below and then complete
training set y-values,

>>> train['xb']= train.x.map('{0:010b}'.format)
>>> train.y=train.xb.map(f_target)
>>> train.head(5)

x y xb
0 15 4 0000001111
1 30 4 0000011110
2 45 4 0000101101
3 65 2 0001000001
4 76 3 0001001100

To train on this data, we just group by the specified amount and then average the
y-data over each group.

4.3 Theory of Learning 375

>>> train.y.values.reshape(10,-1).mean(axis=1)
array([3.55555556, 4.88888889, 4.44444444, 4.88888889,

4.11111111,
4. , 6. , 5.11111111, 6.44444444,
6.66666667])

Note that the axis=1 keyword argument just means average across the columns.
So far, this defines the training. To predict using this method, we have to extract the
edges from each of the groups and then fill in with the group-wise mean we just
computed for y. The following code extracts the edges of each group.

>>> le,re=train.x.values.reshape(10,-1)[:,[0,-1]].T
>>> print (le) # left edge of group
[15 158 233 384 525 584 676 754 831 943]
>>> print (re) # right edge of group
[147 232 376 522 567 667 750 830 937 998]

Next, we compute the group-wise means and assign them to their respective edges.

>>> val = train.y.values.reshape(10,-1).mean(axis=1).round()
>>> func = pd.Series(index=range(1024))
>>> func[le]=val # assign value to left edge
>>> func[re]=val # assign value to right edge
>>> func.iloc[0]=0 # default 0 if no data
>>> func.iloc[-1]=0 # default 0 if no data
>>> func.head()
0 0.000
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

The Pandas Series object automatically fills in unassigned values with NaN. We
have thus far only filled in values at the edges of the groups. Now, we need to fill in
the intermediate values.

>>> fi=func.interpolate('nearest')
>>> fi.head()
0 0.000
1 0.000
2 0.000
3 0.000
4 0.000
dtype: float64

The interpolate method of the Series object can apply a wide variety of
powerful interpolation methods, but we only need the simple nearest neighbor
method to create our piecewise approximant. Figure 4.9 shows how this looks for
the training data we have created.

Now, with all that established, we can now draw the curves for this machine
learning method. Instead of partitioning the training data for cross-validation (which

376 4 Machine Learning

10

8

6

4

2

0
0 200 400 600 800 1000

X

Y

Fig. 4.9 The vertical lines show the training data and the thick black line is the approximant we
have learned from the training data

we’ll discuss later), we can simulate test data using the same mechanism as for the
training data, as shown next,

>>> test=pd.DataFrame(columns=['x','xb','y'])
>>> test['x']=np.random.choice(range(2**10),size=500)
>>> test.xb= test.x.map('{0:010b}'.format)
>>> test.y=test.xb.map(f_target)
>>> test.sort_values('x',inplace=True)

The curves are the respective errors for the training data and the testing data. For
our error measure, we use the mean squared error,

Eout = 1

n

n∑

i=1

(f̂ (xi)− yi)
2

where {(xi, yi)}ni=1 come from the test data. The in-sample error (Ein) is defined
the same except for the in-sample data. In this example, the size of each group is
proportional to dVC, so the more groups we choose, the more complexity in the
fitting. Now, we have all the ingredients to understand the trade-offs of complexity
versus error.

Figure 4.10 shows the curves for our one-dimensional clustering method. The
dotted line shows the mean squared error on the training set, and the other line
shows the same for the test data. The shaded region is the complexity penalty of
this method. With enough complexity, the method can exactly memorize the testing
data, but that only penalizes the testing error (Eout). This effect is exactly what the
Vapnik-Chervonenkis theory expresses. The horizontal axis is proportional to the
VC dimension. In this case, complexity boils down to the number of intervals used
in the sectioning. At the far right, we have as many intervals as there are elements in
the dataset, meaning that every element is wrapped in its own interval. The average
value of the data in that interval is therefore just the corresponding y value because
there are no other elements to average over.

4.3 Theory of Learning 377

4.0
train

test

0 20 40 60 80
Complexity

M
ea

n-
sq

ua
re

d-
er

ro
r

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Fig. 4.10 The dotted line shows the mean squared error on the training set and the other line
shows the same for the test data. The shaded region is the complexity penalty of this method. As
the complexity of the model increases, the training error decreases, and the method essentially
memorizes the data. However, this improvement in training error comes at the cost of larger testing
error

Before we leave this problem, there is another way to visualize the performance
of our learning method. This problem can be thought of as a multi-class identifica-
tion problem. Given a 10-bit integer, the number of ones in its binary representation
is in one of the classes {0, 1, . . . , 10}. The output of the model tries to put each
integer in its respective class. How well this was done can be visualized using a
confusion matrix as shown in the next code block,

>>> from sklearn.metrics import confusion_matrix
>>> cmx = confusion_matrix(test.y.values,fi[test.x].values)
>>> print(cmx)
[[1 0 0 0 0 0 0 0 0 0]
[1 0 1 0 1 1 0 0 0 0]
[0 0 3 9 7 4 0 0 0 5]
[1 0 3 23 19 6 6 0 2 0]
[0 0 1 26 27 14 27 2 2 0]
[0 0 3 15 31 28 30 8 1 0]
[0 0 1 8 18 20 25 23 2 2]
[1 0 1 10 5 13 7 19 3 6]
[4 0 1 2 0 2 2 7 4 3]
[2 0 0 0 0 1 0 0 0 0]]

The rows of this 10 × 10 matrix show the true class, and the columns indicate the
class that the model predicted. The numbers in the matrix indicate the number of
times that association was made. For example, the first row shows that there was
one entry in the test set with no ones in its binary representation (i.e., the number
zero) and it was correctly classified (namely, it is in the first row, first column
of the matrix). The second row shows there were four entries total in the test set
with a binary representation containing exactly a single one. This was incorrectly

378 4 Machine Learning

classified as the 0-class (i.e., first column) once, the 2-class (third column) once,
the 4-class (fifth column) once, and the 5-class (sixth column) once. It was never
classified correctly because the second column is zero for this row. In other words,
the diagonal entries show the number of times it was correctly classified.

Using this matrix, we can easily estimate the true-detection probability that we
covered earlier in our hypothesis testing section,

>>> print(cmx.diagonal()/cmx.sum(axis=1))
[1. 0. 0.10714286 0.38333333 0.27272727
0.24137931
0.25252525 0.29230769 0.16 0.]

In other words, the first element is the probability of detecting 0 when 0 is in force,
the second element is the probability of detecting 1 when 1 is in force, and so on. We
can likewise compute the false-alarm rate for each of the classes in the following,

>>> print((cmx.sum(axis=0)-cmx.diagonal())/(cmx.sum()-cmx.
sum(axis=1)))

[0.01803607 0. 0.02330508 0.15909091 0.20199501
0.15885417
0.17955112 0.09195402 0.02105263 0.03219316]

Programming Tip

The Numpy sum function can sum across a particular axis or, if the axis is
unspecified, will sum all entries of the array.

In this case, the first element is the probability that 0 is declared when another
category is in force, the next element is the probability that 1 is declared when
another category is in force, and so on. For a decent classifier, we want a true-
detection probability to be greater than the corresponding false-alarm rate; otherwise
the classifier is no better than a coin-flip.

The missing feature of this problem, from the learning algorithm standpoint, is
that we did not supply the bit representation of every element which was used to
derive the target variable, y. Instead, we just used the integer value of each of the 10-
bit numbers, which essentially concealed the mechanism for creating the y values.
In other words, there was an unknown transformation from the input space X to Y
that the learning algorithm had to overcome, but that it could not overcome, at least
not without memorizing the training data. This lack of knowledge is a key issue
in all machine learning problems, although we have made it explicit here with this
stylized example. This means that there may be one or more transformations from
X → X ′ that can help the learning algorithm get traction on the so-transformed
space while providing a better trade-off between generalization and approximation
than could have been achieved otherwise. Finding such transformations is called
feature engineering.

4.3 Theory of Learning 379

4.3.4 Cross-Validation

In the last section, we explored a stylized machine learning example to understand
the issues of complexity in machine learning. However, to get an estimate of out-of-
sample errors, we simply generated more synthetic data. In practice, this is not an
option, so we need to estimate these errors from the training set itself. This is what
cross-validation does. The simplest form of cross-validation is k-fold validation. For
example, if K = 3, then the training data is divided into three sections wherein each
of the three sections is used for testing and the remaining two are used for training.
This is implemented in Scikit-learn as in the following,

>>> import numpy as np
>>> from sklearn.model_selection import KFold
>>> data =np.array(['a',]*3+['b',]*3+['c',]*3) # example
>>> print (data)
['a' 'a' 'a' 'b' 'b' 'b' 'c' 'c' 'c']
>>> kf = KFold(3)
>>> for train_idx,test_idx in kf.split(data):
... print (train_idx,test_idx)
...
[3 4 5 6 7 8] [0 1 2]
[0 1 2 6 7 8] [3 4 5]
[0 1 2 3 4 5] [6 7 8]

In the code above, we construct a sample data array and then see how KFold splits
it up into indices for training and testing, respectively. Notice that there are no
duplicated elements in each row between training and testing indices. To examine
the elements of the dataset in each category, we simply use each of the indices as in
the following,

>>> for train_idx,test_idx in kf.split(data):
... print('training', data[train_idx])
... print('testing' , data[test_idx])
...
training ['b' 'b' 'b' 'c' 'c' 'c']
testing ['a' 'a' 'a']
training ['a' 'a' 'a' 'c' 'c' 'c']
testing ['b' 'b' 'b']
training ['a' 'a' 'a' 'b' 'b' 'b']
testing ['c' 'c' 'c']

This shows how each group is used in turn for training/testing. There is no random
shuffling of the data unless the shuffle keyword argument is given. The error
over the test set is the cross-validation error. The idea is to postulate models of
differing complexity and then pick the one with the best cross-validation error. For
example, suppose we had the following sine wave data,

>>> xi = np.linspace(0,1,30)
>>> yi = np.sin(2*np.pi*xi)

380 4 Machine Learning

Fig. 4.11 This shows the folds and errors for the linear model. The shaded areas show the errors
in each respective test set (i.e., cross-validation scores) for the linear model

and we want to fit this with polynomials of increasing order.
Figure 4.11 shows the individual folds in each panel. The circles represent the

training data. The diagonal line is the fitted polynomial. The gray shaded areas
indicate the regions of errors between the fitted polynomial and the held-out testing
data. The larger the gray area, the bigger the cross-validation errors, as are reported
in the title of each frame.

After reviewing the last four figures and averaging the cross-validation errors, the
one with the least average error is declared the winner. Thus, cross-validation pro-
vides a method of using a single dataset to make claims about unseen out-of-sample
data insofar as the model with the best complexity can be determined. The entire
process to generate the above figures can be captured using cross_val_score
as shown for the linear regression (compare the output with the values in the titles
in each panel of Fig. 4.11),

>>> from sklearn.metrics import make_scorer, mean_squared_error
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.linear_model import LinearRegression
>>> Xi = xi.reshape(-1,1) # refit column-wise
>>> Yi = yi.reshape(-1,1)
>>> lf = LinearRegression()
>>> scores = cross_val_score(lf,Xi,Yi,cv=4,
... scoring=make_scorer(mean_squared

_error))
>>> print(scores)
[0.3554451 0.33131438 0.50454257 0.45905672]

4.3 Theory of Learning 381

Programming Tip

The make_scorer function is a wrapper that enables cross_val_score
to compute scores from the given estimator’s output.

The process can be further automated by using a pipeline as in the following,

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.preprocessing import PolynomialFeatures
>>> polyfitter = Pipeline([('poly', PolynomialFeatures
... (degree=3)), ('linear', LinearRegression())])
>>> polyfitter.get_params()
{'memory': None, 'steps': [('poly', PolynomialFeatures
(degree=3)), ('linear', LinearRegression())], 'verbose':
False, 'poly': PolynomialFeatures(degree=3), 'linear':
LinearRegression(), 'poly__degree': 3, 'poly__include_
bias': True, 'poly__interaction_only': False, 'poly__
order': 'C','linear__copy_X': True, 'linear__fit_
intercept': True, 'linear__n_jobs': None, 'linear__
normalize': 'deprecated', 'linear__positive': False}

The Pipeline object is a way of stacking standard steps into one big estimator,
while respecting the usual fit and predict interfaces. The output of the
get_params function contains the polynomial degrees we previously looped over
to create Fig. 4.11, etc. We will use these named parameters in the next code block.
To do this automatically using this polyfitter estimator, we need the Grid
Search Cross Validation object, GridSearchCV. The next step is to use this to
create the grid of parameters we want to loop over as in the following,

>>> from sklearn.model_selection import GridSearchCV
>>> gs=GridSearchCV(polyfitter,{'poly__degree':[1,2,3]},
... cv=4,return_train_score=True)

The gs object will loop over the polynomial degrees up to cubic using four-fold
cross-validation cv=4, like we did manually earlier. The poly__degree item
comes from the previous get_params call. Now, we just apply the usual fit
method on the training data,

>>> _ = gs.fit(Xi,Yi)
>>> gs.cv_results_
{'mean_fit_time': array([0.00063854, 0.00056225, 0.0005722]),
'std_fit_time': array([1.11161160e-04, 4.99674308e-05,
5.23417027e-05]), 'mean_score_time': array([0.00030696,
0.0003503 , 0.00029844]), 'std_score_time': array
([2.13144743e-05, 6.21535275e-05, 2.81502458e-05]),
'param_poly__degree': masked_array(data=[1, 2, 3],

mask=[False, False, False],
fill_value='?',

dtype=object), 'params': [{'poly__degree': 1},
{'poly__degree': 2}, {'poly__degree': 3}], 'split0

382 4 Machine Learning

_test_score': array([-2.03118491, -68.54947351,
-1.64899934]), 'split1_test_score': array
([-1.38557769, -3.20386236, 0.81372823]),
'split2_test_score': array([-7.82417707,
-11.8740862 , 0.47246476]), 'split3_test_score':
array([-3.21714294, -60.70054797, 0.14328163]),
'mean_test_score': array([-3.61452065,
-36.08199251, -0.05488118]), 'std_test_score':
array([2.51765044, 28.84096377, 0.95040218]),
'rank_test_score': array([2, 3, 1], dtype=int32),
'split0_train_score': array([0.52652515,
0.93434227, 0.99177894]), 'split1_train_score':
array([0.5494882 , 0.60357784, 0.99154288]),
'split2_train_score': array([0.54132528,
0.59737218, 0.99046089]), 'split3_train_score':
array([0.57837263, 0.91061274, 0.99144127]),
'mean_train_score': array([0.54892781, 0.76147626,
0.99130599]), 'std_train_score': array([0.01888775,
0.16123462, 0.00050307])}

The scores shown correspond to the cross-validation scores for each of the
parameters (e.g., polynomial degrees) using four-fold cross-validation. The higher
scores are better here and the cubic polynomial is best, as we observed earlier.
The default R2 metric is used for the scoring in this case as opposed to mean
squared error. The validation results of this pipeline for the quadratic fit are shown
in Fig. 4.12 and for the cubic fit, in Fig. 4.13. This can be changed by passing
the scoring=make_scorer(mean_squared_error) keyword argument
to GridSearchCV. There is also RandomizedSearchCV that does not nec-
essarily evaluate every point on the grid and instead randomly samples the grid
according to an input probability distribution. This is very useful for a large number
of hyper-parameters.

4.3.5 Bias and Variance

Considering average error in terms of in-samples and out-samples depends on a
particular training dataset. What we want is a concept that captures the performance
of the estimator for all possible training data. For example, our ultimate estimator,
f̂ , is derived from a particular set of training data (D) and is thus denoted, f̂D. This
makes the out-of-sample error explicitly, Eout(f̂D). To eliminate the dependence
on a particular set of training dataset, we have to compute the expectation across all
training datasets,

EDEout(f̂D) = bias+ var

where

bias(x) = (f̂ (x)− f (x))2

4.3 Theory of Learning 383

Fig. 4.12 This shows the folds and errors as in Figs. 4.10 and 4.11. The shaded areas show the
errors in each respective test set for the quadratic model

Fig. 4.13 This shows the folds and errors. The shaded areas show the errors in each respective test
set for the cubic model

and

var(x) = ED(f̂D(x)− f̂ (x))2

384 4 Machine Learning

and where f̂ is the mean of all estimators for all datasets. There is nothing to say that
such a mean is an estimator that could have arisen from any particular training data,
however. It just implies that for any particular point x, the mean of the values of all

the estimators is f̂ (x). Therefore, bias captures the sense that, even if all possible
data were presented to the learning method, it would still differ from the target
function by this amount. On the other hand, var shows the variation in the final
hypothesis, depending on the training dataset, notwithstanding the target function.
Thus, the tension between approximation and generalization is captured by these
two terms. For example, suppose there is only one hypothesis. Then, var = 0
because there can be no variation due to a particular set of training data because
no matter what that training data is, the learning method always selects the one
and only hypothesis. In this case, the bias could be very large, because there is no
opportunity for the learning method to alter the hypothesis due to the training data,
and the method can only ever pick the single hypothesis!

Let us construct an example to make this concrete. Suppose we have a hypothesis
set consisting of all linear regressions without an intercept term, h(x) = ax. The
training data consists of only two points {(xi, sin(πxi))}2i=1 where xi is drawn
uniformly from the interval [−1, 1]. From Sect. 3.8 on linear regression, we know
that the solution for a is the following (Fig. 4.14),

a = xT y
xT x

(4.1)

where x = [x1, x2] and y = [y1, y2]. The f̂ (x) represents the solution over all
possible sets of training data for a fixed x. The following code shows how to
construct the training data,

>>> from scipy import stats
>>> def gen_sindata(n=2):
... x=stats.uniform(-1,2) # define random variable
... v = x.rvs((n,1)) # generate sample
... y = np.sin(np.pi*v) # use sample for sine
... return (v,y)
...

Again, using Scikit-learn’s LinearRegression object, we can compute the a

parameter. We have to set fit_intercept=False keyword to suppress the
default automatic fitting of the intercept. Figure 4.14 shows the best fitted line.

>>> lr = LinearRegression(fit_intercept=False)
>>> lr.fit(*gen_sindata(2))
LinearRegression(fit_intercept=False)
>>> lr.coef_
array([[0.24974914]])

4.3 Theory of Learning 385

Fig. 4.14 For a two-element training set consisting of the points shown, the line is the best fit over
the hypothesis set, h(x) = ax

Programming Tip

We designed gen_sindata to return a tuple to use the automatic unpacking
feature of Python functions in lr.fit(*gen_sindata()). In other
words, using the asterisk notation means we don’t have to separately assign
the outputs of gen_sindata before using them for lr.fit.

In this case, f̂ (x) = ax, where a is the expected value of the parameter over all
possible training datasets. Using our knowledge of probability, we can write this out
explicitly as the following,

a = E

(
x1 sin(πx1)+ x2 sin(πx2)

x2
1 + x2

2

)

where x = [x1, x2] and y = [sin(πx1), sin(πx2)] in Eq. (4.1). However, computing
this expectation analytically is hard, but for this specific situation, a ≈ 1.43. To get
this value using simulation, we just loop over the process, collect the outputs, and
average them as in the following,

>>> a_out=[] # output container
>>> for i in range(100):
... _=lr.fit(*gen_sindata(2))
... a_out.append(lr.coef_[0,0])
...
>>> np.mean(a_out) # approx 1.43
1.5476180748170176

386 4 Machine Learning

You may have to loop over many more iterations to get close to the purported value.
The var requires the variance of a,

var(x) = E((a − a)x)2 = x2
E(a − a)2 ≈ 0.71x2

The bias is the following,

bias(x) = (sin(πx)− ax)2

Fig. 4.15 shows the bias, var, and mean squared error for this problem. Notice
that there is zero bias and zero variance when x = 0. This is because the learning
method cannot help but get that correct because all the hypotheses happen to match
the value of the target function at that point! Likewise, the var is zero because all
possible pairs, which constitute the training data, are fitted through zero because
h(x) = ax has no choice but to go through zero. The errors are worse at the end
points. As we discussed in our statistics chapter, those points have the most leverage
against the hypothesized models and result in the worst errors. Notice that reducing
the edge-errors depends on getting exactly those points near the edges as training
data. The sensitivity to a particular dataset is reflected in this behavior.

What if we had more than two points in the training data? What would happen to
var and bias? Certainly, the var would decrease because it would be harder and
harder to generate training datasets that would be substantially different from each
other. The bias would also decrease because more points in the training data means
better approximation of the sine function over the interval. What would happen if
we changed the hypothesis set to include more complex polynomials? As we have
already seen with our polynomial regression earlier in this chapter, we would see
the same overall effect as here, but with relatively smaller absolute errors and the
same edge effects we noted earlier.

Fig. 4.15 These curves decompose the mean squared error into its constituent bias and variance
for this example

4.3 Theory of Learning 387

4.3.6 Learning Noise

We have thus far not considered the effect of noise in our analysis of learning. The
following example should help resolve this. Let us suppose we have the following
scalar target function,

y(x) = wT
o x+ η

where η ∼ N (0, σ 2) is an additive noise term and w, x ∈ R
d . Furthermore, we have

n measurements of y. This means the training set consists of {(xi , yi)}ni=1. Stacking
the measurements together into a vector format,

y = Xwo + η

with y, η ∈ R
n,wo ∈ R

d and X contain xi as columns. The hypothesis set consists
of all linear models,

h(w, x) = wT x

We need to the learn the correct w from the hypothesis set given the training data.
So far, this is the usual setup for the problem, but how does the noise factor play into
this? In our usual situation, the training set consists of randomly chosen elements
from a larger space. In this case, that would be the same as getting random sets of
xi vectors. That still happens in this case, but the problem is that even if the same
xi appears twice, it will not be associated with the same y value due the additive
noise coming from η. To keep this simple, we assume that there is a fixed set of xi

vectors and that we get all of them in the training set. For every specific training set,
we know how to solve for the MMSE from our earlier statistics work,

w = (XT X)−1XT y

Given this setup, what is the in-sample mean squared error? Because this is the
MMSE solution, we know from our study of the associated orthogonality of such
systems that we have,

Ein = ‖y‖2 − ‖Xw‖2 (4.2)

where our best hypothesis, h = Xw. Now, we want to compute the expectation of
this over the distribution of η. For instance, for the first term, we want to compute,

E|y|2 = 1

n
E(yT y) = 1

n
Tr E(yyT)

where Tr is the matrix trace operator (i.e., sum of the diagonal elements). Because
each η are independent, we have

388 4 Machine Learning

Tr E(yyT) = Tr XwowT
o X

T + σ 2Tr I = Tr XwowT
o X

T + nσ 2 (4.3)

where I is the n× n identity matrix. For the second term in Eq. (4.2), we have

|Xw|2 = Tr XwwT XT = Tr X(XT X)−1XT yyT X(XT X)−1XT

The expectation of this is the following,

E|Xw|2 = Tr X(XT X)−1XT
E(yyT)X(XT X)−1XT (4.4)

which, after substituting in Eq. (4.3), yields,

E|Xw|2 = Tr XwowT
o X

T + σ 2d (4.5)

Next, assembling Eq. (4.2) from this and Eq. (4.3) gives,

E(Ein) = 1

n
Ein = σ 2

(
1− d

n

)
(4.6)

which provides an explicit relationship between the noise power, σ 2, the complexity
of the method (d), and the number of training samples (n). This is very illustrative
because it reveals the ratio d/n, which is a statement of the trade-off between
model complexity and in-sample data size. From our analysis of the VC dimension,
we already know that there is a complicated bound that represents the penalty for
complexity, but this problem is unusual in that we can actually derive an expression
for this without resorting to bounding arguments. Furthermore, this result shows
that with a very large number of training examples (n → ∞), the expected in-
sample error approaches σ 2. Informally, this means that the learning method cannot
generalize from noise and thus can only reduce the expected in-sample error by
memorizing the data (i.e., d ≈ n).

The corresponding analysis for the expected out-of-sample error is similar, but
more complicated because we don’t have the orthogonality condition. Also, the out-
of-sample data has different noise from that used to derive the weights, w. This
results in extra cross-terms,

Eout = Tr

(
XwowT

o X
T + ξξT + XwwT XT − XwwT

o X
T

−XwowT XT

)
(4.7)

where we are using the ξ notation for the noise in the out-of-sample case, which is
different from that in the in-sample case. Simplifying this leads to the following,

E(Eout) = Tr σ 2I+ σ 2X(XT X)−1XT (4.8)

4.3 Theory of Learning 389

Then, assembling all of this gives,

E(Eout) = σ 2
(

1+ d

n

)
(4.9)

which shows that even in the limit of large n, the expected out-of-sample error
also approaches the noise power limit, σ 2. This shows that memorizing the in-
sample data (i.e., d/n ≈ 1) imposes a proportionate penalty on the out-of-sample
performance (i.e., EEout ≈ 2σ 2 when EEin ≈ 0).

The following code simulates this important example:

>>> def est_errors(d=3,n=10,niter=100):
... assert n>d
... wo = np.matrix(arange(d)).T
... Ein = list()
... Eout = list()
... # choose any set of vectors
... X = np.matrix(np.random.rand(n,d))
... for ni in range(niter):
... y = X*wo + np.random.randn(X.shape[0],1)
... # training weights
... w = np.linalg.inv(X.T*X)*X.T*y
... h = X*w
... Ein.append(np.linalg.norm(h-y)**2)
... # out of sample error
... yp = X*wo + np.random.randn(X.shape[0],1)
... Eout.append(np.linalg.norm(h-yp)**2)
... return (np.mean(Ein)/n,np.mean(Eout)/n)
...

Programming Tip

Python has an assert statement to make sure that certain entry conditions
for the variables in the function are satisfied. It is a good practice to use
reasonable assertions at entry and exit to improve the quality of code.

The following runs the simulation for the given value of d.

>>> d=10
>>> xi = arange(d*2,d*10,d//2)
>>> ei,eo=np.array([est_errors(d=d,n=n,niter=100) for n in xi]).T

which results in Fig. 4.16. This figure shows the estimated expected in-sample
and out-of-sample errors from our simulation compared with our corresponding
analytical result. The heavy horizontal line shows the variance of the additive noise
σ 2 = 1. Both these curves approach this asymptote because the noise is the ultimate
learning limit for this problem. For a given dimension d, even with an infinite

390 4 Machine Learning

1.4

1.2

1.0

0.8

0.6

20 30 40 50 60 70 80 90

dimension = 10

size of training set (n)

Ein

Eout

Ein

Eout

M
S

E

^

^

Fig. 4.16 The dots show the learning curves estimated from the simulation and the solid lines
show the corresponding terms for our analytical result. The horizontal line shows the variance of
the additive noise (σ 2 = 1 in this case). Both the expected in-sample and out-of-sample errors
asymptotically approach this line

amount of training data, the learning method cannot generalize beyond the limit
of the noise power. Thus, the expected generalization error is E(Eout)−E(Ein) =
2σ 2 d

n
.

4.4 Decision Trees

A decision tree is the easiest classifier to understand, interpret, and explain. A
decision tree is constructed by recursively splitting the dataset into a sequence of
subsets based on if-then questions. The training set consists of pairs (x, y) where
x ∈ R

d where d is the number of features available and where y is the corresponding
label. The learning method splits the training set into groups based on x while
attempting to keep the assignments in each group as uniform as possible. In order to
do this, the learning method must pick a feature and an associated threshold for that
feature upon which to divide the data. This is tricky to explain in words, but easy to
see with an example. First, let us set up the Scikit-learn classifier,

>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier()

Let us also create some example data,

>>> import numpy as np
>>> M=np.fromfunction(lambda i,j:j>=2,(4,4)).astype(int)
>>> print(M)
[[0 0 1 1]

4.4 Decision Trees 391

[0 0 1 1]
[0 0 1 1]
[0 0 1 1]]

Programming Tip

The fromfunction creates Numpy arrays using the indices as inputs to a
function whose value is the corresponding array entry.

We want to classify the elements of the matrix based on their respective positions in
the matrix. By just looking at the matrix, the classification is pretty simple—classify
as 0 for any positions in the first two columns of the matrix, and classify 1 otherwise.
Let us walk through this formally and see if this solution emerges from the decision
tree. The values of the array are the labels for the training set and the indices of
those values are the elements of x. Specifically, the training set has X = {(i, j)} and
Y = {0, 1}. Now, let us extract those elements and construct the training set.

>>> i,j = np.where(M==0)
>>> x=np.vstack([i,j]).T # build nsamp by nfeatures
>>> y = j.reshape(-1,1)*0 # 0 elements
>>> print(x)
[[0 0]
[0 1]
[1 0]
[1 1]
[2 0]
[2 1]
[3 0]
[3 1]]

>>> print(y)
[[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]]

Thus, the elements of x are the two-dimensional indices of the values of y. For
example, M[x[0,0],x[0,1]]=y[0,0]. Likewise, to complete the training set,
we just need to stack the rest of the data to cover all the cases,

>>> i,j = np.where(M==1)
>>> x=np.vstack([np.vstack([i,j]).T,x]) # build nsamp

nfeatures
>>> y=np.vstack([j.reshape(-1,1)*0+1,y]) # 1 elements

392 4 Machine Learning

With all that established, all we have to do is train the classifier,

>>> clf.fit(x,y)
DecisionTreeClassifier()

To evaluate how the classifier performed, we can report the score,

>>> clf.score(x,y)
1.0

For this classifier, the score is the accuracy, which is defined as the ratio of the sum
of the true-positive (T P) and true-negatives (T N) divided by the sum of all the
terms, including the false terms,

accuracy = T P + T N

T P + T N + FN + FP

In this case, the classifier gets every point correctly, so FN = FP = 0. On a
related note, two other common names from information retrieval theory are recall
(aka sensitivity) and precision (aka positive predictive value, T P/(T P +FP)). We
can visualize this tree in Fig. 4.17. The Gini coefficients (aka categorical variance)
in the figure are a measure of the purity of each so-determined class. This coefficient
is defined as,

Ginim =
∑

k

pm,k(1− pm,k)

where

pm,k = 1

Nm

∑

xi∈Rm

I (yi = k)

which is the proportion of observations labeled k in the mth node and I (·) is the
usual indicator function. Note that the maximum value of the Gini coefficient is
maxGinim = 1 − 1/m. For our simple example, half of the 16 samples are in
category 0 and the other half are in the 1 category. Using the notation above, the
top box corresponds to the 0th node, so p0,0 = 1/2 = p0,1. Then, Gini0 = 0.5.
The next layer of nodes in Fig. 4.17 is determined by whether or not the second
dimension of the x data is greater than 1.5. The Gini coefficients for each of these
child nodes is zero because after the prior split, each subsequent category is pure.
The value list in each of the nodes shows the distribution of elements in each
category at each node.

To make this example more interesting, we can contaminate the data slightly,

>>> M[1,0]=1 # put in different class
>>> print(M) # now contaminated
[[0 0 1 1]
[1 0 1 1]
[0 0 1 1]
[0 0 1 1]]

4.4 Decision Trees 393

Fig. 4.17 Example decision
tree. The Gini coefficient in
each branch measures the
purity of the partition in each
node. The samples item in
the box shows the number of
items in the corresponding
node in the decision tree

Now we have a 1 entry in the previously pure first column’s second row. Let us redo
the analysis as in the following,

>>> i,j = np.where(M==0)
>>> x=np.vstack([i,j]).T
>>> y = j.reshape(-1,1)*0
>>> i,j = np.where(M==1)
>>> x=np.vstack([np.vstack([i,j]).T,x])
>>> y = np.vstack([j.reshape(-1,1)*0+1,y])
>>> clf.fit(x,y)
DecisionTreeClassifier()

The result is shown in Fig. 4.18. Note the tree has grown significantly due to this one
change! The 0th node has the following parameters, p0,0 = 7/16 and p0,1 = 9/16.

This makes the Gini coefficient for the 0th node equal to 7
16

(
1− 7

16

)
+ 9

16 (1− 9
16) =

0.492. As before, the root node splits on X[1] ≤ 1.5. Let us see if we can reconstruct
the succeeding layer of nodes manually, as in the following,

>>> y[x[:,1]>1.5] # first node on the right
array([[1],

[1],
[1],
[1],
[1],
[1],
[1],
[1]])

This obviously has a zero Gini coefficient. Likewise, the node on the left contains
the following,

>>> y[x[:,1]<=1.5] # first node on the left
array([[1],

[0],
[0],
[0],
[0],
[0],
[0],
[0]])

394 4 Machine Learning

Fig. 4.18 Decision tree for
contaminated data. Note that
just one change in the training
data caused the tree to grow
five times as large as before!

The Gini coefficient in this case is computed as (1/8)*(1-1/8)+(7/8)*
(1-7/8)=0.21875. This node splits based on X[1]<0.5. The child node to
the right derives from the following equivalent logic,

>>> np.logical_and(x[:,1]<=1.5,x[:,1]>0.5)
array([False, False, False, False, False, False, False, False,

False, False, True, True, False, True, False, True])

with corresponding classes,

>>> y[np.logical_and(x[:,1]<=1.5,x[:,1]>0.5)]
array([[0],

[0],
[0],
[0]])

Programming Tip

The logical_and in Numpy provides element-wise logical conjunction.
It is not possible to accomplish this with something like 0.5< x[:,1]
<=1.5 because of the way Python parses this syntax.

Notice that for this example as well as for the previous one, the decision tree
was exactly able to memorize (overfit) the data with perfect accuracy. From our
discussion of machine learning theory, this is an indication potential problems in
generalization.

4.4 Decision Trees 395

Fig. 4.19 The decision tree divides the training set into regions by splitting successively along
each dimension until each region is as pure as possible

The key step in building the decision tree is to come up with the initial split. There
are a number of algorithms that can build decision trees based on different criteria,
but the general idea is to control the information entropy as the tree is developed.
In practical terms, this means that the algorithms attempt to build trees that are
not excessively deep. It is well-established that this is a very hard problem to solve
completely and there are many approaches to it. This is because the algorithms must
make global decisions at each node of the tree using the local data available up to
that point.

For this example, the decision tree partitions the X space into different regions
corresponding to different Y labels as shown in Fig. 4.19. The root node at the top
of Fig. 4.18 splits the input data based on X[1] ≤ 1.5. This corresponds to the top
left panel in Fig. 4.19 (i.e., node 0) where the vertical line divides the training data
shown into two regions, corresponding to the two subsequent child nodes. The next
split happens with X[1] ≤ 0.5 as shown in the next panel of Fig. 4.19 titled node
1. This continues until the last panel on the lower right, where the contaminated
element we injected has been isolated into its own sub-region. Thus, the last panel
is a representation of Fig. 4.18, where the horizontal/vertical lines correspond to
successive splits in the decision tree.

Figure 4.20 shows another example, but now using a simple triangular matrix. As
shown by the number of vertical and horizontal partitioning lines, the decision tree
that corresponds to this figure is tall and complex. Notice that if we apply a simple
rotational transform to the training data, we can obtain Fig. 4.21, which requires
a trivial decision tree to fit. Thus, there may be transformations of the training
data that simplify the decision tree, but these are very difficult to derive in general.
Nonetheless, this highlights a key weakness of decision trees wherein they may be

396 4 Machine Learning

Fig. 4.20 The decision tree
fitted to this triangular matrix
is very complex, as shown by
the number of horizontal and
vertical partitions. Thus, even
though the pattern in the
training data is visually clear,
the decision tree cannot
automatically uncover it

Fig. 4.21 Using a simple
rotation on the training data
in Fig. 4.20, the decision tree
can now easily fit the training
data with a single partition

easy to understand, to train, and to deploy but may be completely blind to such
time-saving and complexity-saving transformations. Indeed, in higher dimensions,
it may be impossible to even visualize the potential of such latent transformations.
Thus, the advantages of decision trees can be easily outmatched by other methods
that we will study later that do have the ability to uncover useful transformations,
but which will necessarily be harder to train. Another disadvantage is that because
of how decision trees are built, even a single misplaced data point can cause the tree
to grow very differently. This is a symptom of high variance.

In all of our examples, the decision tree was able to memorize the training data
exactly, as we discussed earlier, this is a sign of potentially high generalization
errors. There are pruning algorithms that strategically remove some of the deepest
nodes, but these are not yet fully implemented in Scikit-learn, as of this writing.
Alternatively, restricting the maximum depth of the decision tree can have a similar
effect. The DecisionTreeClassifier and DecisionTreeRegressor in
Scikit-learn both have keyword arguments that specify maximum depth.

4.4 Decision Trees 397

4.4.1 Random Forests

It is possible to combine a set of decision trees into a larger composite tree that has
better performance than its individual components by using ensemble learning. This
is implemented in Scikit-learn as RandomForestClassifier. The composite
tree helps mitigate the primary weakness of decision trees—high variance. Random
forest classifiers help by averaging out the predictions of many constituent trees to
minimize this variance by randomly selecting subsets of the training set to train the
embedded trees. On the other hand, this randomization can increase bias because
there may be a subset of the training set that yields an excellent decision tree, but
the averaging effect over randomized training samples washes this out in the same
averaging that reduces the variance. This is a key trade-off. The following code
implements a simple random forest classifier from our last example.

>>> from sklearn.ensemble import RandomForestClassifier
>>> rfc = RandomForestClassifier(n_estimators=4,max_depth=2)
>>> rfc.fit(X_train,y_train.flat)
RandomForestClassifier(max_depth=2, n_estimators=4)

Note that we have constrained the maximum depth max_depth=2 to help
with generalization. To keep things simple we have only set up a forest with four
individual classifiers.3 Figure 4.22 shows the individual classifiers in the forest that
have been trained above. Even though all the constituent decision trees share the
same training data, the random forest algorithm randomly picks feature subsets
(with replacement) upon which to train individual trees. This helps avoid the
tendency of decision trees to become too deep and lopsided, which hurts both
performance and generalization. At the prediction step, the individual outputs of
each of the constituent decision trees are put to a majority vote for the final
classification. To estimate generalization errors without using cross-validation, the
training elements not used for a particular constituent tree can be used to test that
tree and form a collaborative estimate of generalization errors. This is called the
out-of-bag estimate.

The main advantage of random forest classifiers is that they require very
little tuning and provide a way to trade-off bias and variance via averaging
and randomization. Furthermore, they are fast and easy to train in parallel (see
the n_jobs keyword argument) and fast to predict. On the downside, they are
less interpretable than simple decision trees. There are many other powerful tree
methods in Scikit-learn like ExtraTrees and Gradient Boosted Regression Trees
GradientBoostingRegressor which are discussed in the online documenta-
tion.

3 We have also set the random seed to a fixed value to make the figures reproducible in the Jupyter
Notebook corresponding to this section.

398 4 Machine Learning

Fig. 4.22 The constituent
decision trees of the random
forest and how they
partitioned the training set are
shown in these four panels.
The random forest classifier
uses the individual outputs of
each of the constituent trees
to produce a collaborative
final estimate

4.4.2 Understanding Boosting Trees

To understand additive modeling using trees, recall the Gram-Schmidt orthogonal-
ization procedure for vectors. The purpose of this orthogonalization procedure is to
create an orthogonal set of vectors starting with a given vector u1. We have already
discussed the projection operator in Sect. 2.2. The Gram-Schmidt orthogonalization
procedure starts with a vector v1, which we define as the following:

u1 = v1

with the corresponding projection operator proju1 . The next step in the procedure
is to remove the residual of u1 from v2, as in the following:

u2 = v2 − proju1(v2)

This procedure continues for v3 as in the following:

u3 = v3 − proju1(v3)− proju2(v3)

and so on. The important aspect of this procedure is that new incoming vectors
(i.e., vk) are stripped of any pre-existing components already present in the set of
{u1,u2, . . . ,uM }.

Note that this procedure is sequential. That is, the order of the incoming
vi matters.4 Thus, any new vector can be expressed using the so-constructed

4 At least up to a rotation of the resulting orthonormal basis.

4.4 Decision Trees 399

{u1,u2, . . . ,uM } basis set, as in the following:

x =
∑

αiui

The idea behind additive trees is to reproduce this procedure for trees instead of
vectors. There are many natural topological and algebraic properties that we lack
for the general problem, however. For example, we already have well established
methods for measuring distances between vectors for the Gram-Schmidt procedure
outlined above (namely, the L2 distance), which we lack here. Thus, we need the
concept of loss function, which is a way of measuring how well the process is
working out at each sequential step. This loss function is parameterized by the
training data and by the classification function under consideration: Ly(f (x)). For
example, if we want a classifier (f) that selects the label yi based upon the input
data xi (f : xi → yi), then the squared error loss function would be the following:

Ly(f (x)) =
∑

i

(yi − f (xi))
2

We represent the classifier in terms of a set of basis trees:

f (x) =
∑

k

αkux(θk)

The general algorithm for forward stagewise additive modeling is the following:

• Initialize f (x) = 0
• For m = 1 to m = M , compute the following:

(βm, γm) = arg min
β,γ

∑

i

L(yi, fm−1(xi)+ βb(xi; γ))

• Set fm(x) = fm−1(x)+ βmb(x; γm)

The key point is that the residuals from the prior step are used to fit the basis function
for the subsequent iteration. That is, the following equation is being sequentially
approximated.

fm(x)− fm−1(x) = βmb(xi; γm)

Let us see how this works for decision trees and the exponential loss function.

L(x, f (x)) = exp(−yf (x))

Recall that for the classification problem, y ∈ {−1, 1}. For AdaBoost, the basis
functions are the individual classifiers, Gm(x) �→ {−1, 1}. The key step in the

400 4 Machine Learning

algorithm is the minimization step for the objective function

J (β,G) =
∑

i

exp(yi(fm−1(xi)+ βG(xi)))

(βm,Gm) = arg min
β,G

∑

i

exp(yi(fm−1(xi)+ βG(xi)))

Now, because of the exponential, we can factor out the following:

w
(m)
i = exp(yifm−1(xi))

as a weight on each data element and rewrite the objective function as the following:

J (β,G) =
∑

i

w
(m)
i exp(yiβG(xi))

The important observation here is that yiG(xi) �→ 1 if the tree classifies xi correctly
and yiG(xi) �→ −1 otherwise. Thus, the above sum has terms like the following:

J (β,G) =
∑

yi
=G(xi)

w
(m)
i exp(−β)+

∑

yi=G(xi)

w
(m)
i exp(β)

For β > 0, this means that the best G(x) is the one that incorrectly classifies for the
largest weights. Thus, the minimizer is the following:

Gm = arg min
G

∑

i

w
(m)
i I (yi
= G(xi))

where I is the indicator function (i.e., I (True) = 1, I (False) = 0).
For β > 0, we can rewrite the objective function as the following:

J = (exp(β)− exp(−β))
∑

i

w
(m)
i I (yi
= G(xi))+ exp(−β)

∑

i

w
(m)
i

and substitute θ = exp(−β) so that

J
∑

i w
(m)
i

=
(

1

θ
− θ

)
εm + θ (4.10)

where

εm =
∑

i w
(m)
i I (yi
= G(xi))
∑

i w
(m)
i

4.4 Decision Trees 401

is the error rate of the classifier with 0 ≤ εm ≤ 1. Now, finding β is a straightforward
calculus minimization exercise on the right side of Eq. (4.10), which gives the
following:

βm = 1

2
log

1− εm

εm

Importantly, βm can become negative if εm < 1
2 , which would violate our

assumptions on β. This is captured in the requirement that the base learner be
better than just random guessing, which would correspond to εm > 1

2 . Practically
speaking, this means that boosting cannot fix a base learner that is no better than
a random guess. Formally speaking, this is known as the empirical weak learning
assumption [40].

Now we can move to the iterative weight update. Recall that

w
(m+1)
i = exp(yifm(xi)) = w

(m)
i exp(yiβmGm(xi))

which we can rewrite as the following:

w
(m+1)
i = w

(m)
i exp(βm) exp(−2βmI (Gm(xi) = yi))

This means that the data elements that are incorrectly classified have their cor-
responding weights increased (boosted!) by exp(βm) and those that are correctly
classified have their corresponding weights reduced by exp(−βm). The reason for
the choice of the exponential loss function comes from the following:

f ∗(x) = arg min
f (x)

EY |x(exp(−Yf (x))) = 1

2
log

P(Y = 1|x)

P(Y = –1|x)

This means that boosting is approximating a f (x) that is actually half the log-odds
of the conditional class probabilities. This can be rearranged as the following

P(Y = 1|x) = 1

1+ exp(–2f ∗(x))

The important benefit of this general formulation for boosting, as a sequence of
additive approximations, is that it opens the door to other choices of loss function,
especially loss functions that are based on robust statistics that can account for errors
in the training data (c.f. [14]).

Regression Tree Boosting Example To understand how this works, let us code up
a simple one-dimensional regression problem using the squared error loss. Suppose
we want to approximate the following cosine function,

>>> xi = np.linspace(0,1,20)
>>> yi = np.cos(np.pi*2*1.5*xi)

402 4 Machine Learning

In one dimension, a tree is a rectangular function,

>>> h = lambda a,b:np.logical_and(a<=xi,xi <=b).astype(int)

Our goal is to compute up with a sequential expansion

fm(xi)− fm−1(xi) = βmh[ai ,bi](xi)

that minimizes the squared error of the residual, yi−F(xi), for each sequential data
point,

E(F (xi), yi) = ((yi − F(xi))− βmh[a,b](xi))
2

where h[a,b](x) is only nonzero in the interval x ∈ [a, b] and

F(x) =
n∑

m=1

βmh[am,bm](x)

Once we know the [ai, bi] parameters of the rectangular functions, then computing
the corresponding coefficient is straightforward using inner products since we are
approximating using the squared difference,

βm = 〈(yi − F0), h[a,b](xi)〉
〈h[a,b](xi), h[a,b](xi)〉

Consider the following example, where we start the sequential iteration with
F0(x) = 0. Then

>>> # choose a particular interval [a,b]
>>> a,b = [0.0, 0.8]
>>> F0 = 0 # initial condition
>>> beta = (yi-F0) @ h(a,b)/(h(a,b) @ h(a,b))
>>> # residual error
>>> np.linalg.norm((yi-F0)-beta*h(a,b),2)
3.1790811634752045

If we want to minimize this over the parameters [a, b], then we can do a grid
search using ParameterGrid from sklearn,

>>> from sklearn.model_selection import ParameterGrid
>>> param_grid = {'a': np.linspace(0,1,20), 'b': np.linspace

(0,1,20)}
>>> minval = [np.inf,{}]
>>> for params in ParameterGrid(param_grid):
... if params['b'] <= params['a']: continue # skip

backwards interval
... a, b = params['a'], params['b']
... beta = (yi-F0) @ h(a,b)/ (h(a,b) @ h(a,b))
... # residual error with corresponding params

4.4 Decision Trees 403

Fig. 4.23 The shaded blue area is the difference between F0 and the curve y. The orange line is
the F1 iterative fit to y

Fig. 4.24 As with Fig. 4.23, this shows Fm iteratively fitting y. Notice that the blue area decreases
in the sequence as Fm improves

... err =(np.linalg.norm((yi-F0)-beta*h(a,b),2),
(a,b,beta))

... minval = min(minval, err, key=lambda i:i[0])

...
>>> print(minval) # squared err, (a, b, beta)
(2.7589037651370742, (0.5789473684210527, 0.7894736842105263,

0.7600592101556926))

The result is shown in Fig. 4.23 where the shaded blue area is the difference
between F0 and the curve. The shaded gray area shows the interval [a, b] that was
found as the minimizer, and the orange line shows F1, the updated approximation to
the curve y. Note that because the squared error is minimized and not the difference,
the shaded area is not exactly what is being minimized here. The sequence in
Fig. 4.24 shows Fm updating step by step, which is essentially doing the Gram-
Schmidt procedure we started with.

Gradient Boosting Gradient boosting is the extension of AdaBoost for more gen-
eral loss functions, especially those that are robust to outliers. Given a differentiable

404 4 Machine Learning

Fig. 4.25 Now the data has
certain outlier points that can
cause problems fitting the tree

loss function, the optimization process can be formulated using numerical gradients.
The key step is to fit the gradients instead of the residuals with trees. Let us consider
the absolute loss function

Labs(x, y) =
n∑

i=1

|xi − yi |

This loss function is more robust to outliers, as compared to the usual squared loss
function. To see how to use this loss function with gradient boosting, let us revisit
the example from the end of the last section and just add a couple of outliers,

>>> yi[10], yi[4] = 5, -2 # add outliers

Figure 4.25 below shows the result of this change,
Proceeding to approximate this using the usual squared loss would ultimately

focus on mitigating the outliers, due to their outsized effect on the error function,
but what if we want to reduce their influence on the final result? We want to use the
absolute loss with gradient boosting, and the key step is to compute the gradient of
the absolute loss, Labs , which is the following,

∂Labs(t)

∂t
= sign(t)

The next step is to fit the tree to this gradient instead of the residual, which is what
we did previously, Using the same code as before but now we can no longer compute
β directly and must instead use a one-dimensional optimization to find it,

>>> from scipy.optimize import fmin
>>> F0 = 0 # initial condition
>>> minval = [np.inf,{}]
>>> for params in ParameterGrid(param_grid):
... if params['b'] <= params['a']: continue # interval

backward
... a, b = params['a'], params['b']

4.4 Decision Trees 405

... obj = lambda beta: np.linalg.norm(np.sign(yi-F0)
-beta*h(a,b),2)

... beta, fval, *tmp = fmin(obj, .1, disp=False,
full_output=True)

... err =(fval, (a,b,float(beta)))

... minval = min(minval, err, key=lambda i:i[0])

...
>>> print(minval)
(3.7416573867739413, (0.21052631578947367,

0.47368421052631576, -0.9999999999999978))

Note that the squared norm is used to find the best fitting tree because the absolute
loss is used for the Fm function, not the individual tree. The above block finds tree
that best fits the gradient of the absolute loss. With that settled, now we find the next
sequential term for our approximation Fm using a line search,

>>> a, b, beta = minval[1] # unpack
>>> obj = lambda rho: np.abs(yi - (F0 + rho*h(a,b))).sum()
>>> rho = fmin(obj,0.1, disp=False)
>>> F0 = F0 + rho*h(a,b) # update F_m

The obj function is the absolute loss that measure the discrepancy between
Fm and y. Iterating these steps repeatedly produces the approximation shown
in Fig. 4.26 along with the result from GradientBoostingRegressor from
Scikit-learn, which is obviously better, with many more features than our own crude
approximation, but which still matches pretty well.

Recall that from our section on gradient descent for deep learning, we saw
that we can proceed in the direction opposite to the gradient in order to improve
the differentiable loss function. For AdaBoost, the fitted trees were driven by the
incremental re-weighting (i.e., boosting) of the residuals. That is, the sequential
decision trees fitted the residuals. For gradient boosting, we want to fit the decision
trees using the negative gradients. These two approaches turn out to be the same for
the sum of squares loss function, but not for more general loss functions.

Fig. 4.26 Absolute loss
makes the resulting tree less
sensitive to outliers

406 4 Machine Learning

4.5 Logistic Regression

The Bernoulli distribution we studied earlier answers the question of which of two
outcomes (Y ∈ {0, 1}) would be selected with probability, p.

P(Y) = pY (1− p)1−Y

We also know how to solve the corresponding likelihood function for the maximum
likelihood estimate of p given observations of the output, {Yi}ni=1. However, now
we want to include other factors in our estimate of p. For example, suppose we
observe not just the outcomes, but a corresponding continuous variable, x. That is,
the observed data is now {(xi, Yi)}ni=1. How can we incorporate x into our estimation
of p?

The most straightforward idea is to model p = ax+ b where a, b are parameters
of a fitted line. However, because p is a probability with value bounded between
zero and one, we need to wrap this estimate in another function that can map the
entire real line into the [0, 1] interval. The logistic (aka sigmoid) function has this
property,

θ(s) = es

1+ es

Thus, the new parameterized estimate for p is the following,

p̂ = θ(ax + b) = eax+b

1+ eax+b
(4.11)

The logit function is defined as the following,

logit(t) = log
t

1− t

It has the important property of extracting the regression components from the
probability estimator,

logit(p) = b + ax

More continuous variables can be accommodated easily as

logit(p) = b +
∑

k

akxk

This can be further extended beyond the binary case to multiple target labels. The
maximum likelihood estimate of this uses numerical optimization methods that are
implemented in Scikit-learn.

4.5 Logistic Regression 407

Fig. 4.27 This scatterplot shows the binary Y variables and the corresponding x data for each
category

Let us construct some data to see how this works. In the following, we assign
class labels to a set of randomly scattered points in the two-dimensional plane,

>>> v = 0.9
>>> @np.vectorize
... def gen_y(x):
... if x<5: return np.random.choice([0,1],p=[v,1-v])
... else: return np.random.choice([0,1],p=[1-v,v])
...
>>> xi = np.sort(np.random.rand(500)*10)
>>> yi = gen_y(xi)

Programming Tip

The np.vectorize decorator used in the code above makes it easy to
avoid looping in code that uses Numpy arrays by embedding the looping
semantics inside of the so-decorated function. Note, however, that this does
not necessarily accelerate the wrapped function. It’s mainly for convenience.

Figure 4.27 shows a scatterplot of the data we constructed in the above code,
{(xi, Yi)}. As constructed, it is more likely that large values of x correspond to
Y = 1. On the other hand, values of x ∈ [4, 6] of either category are heavily
overlapped. This means that x is not a particularly strong indicator of Y in this
region. Figure 4.28 shows the fitted logistic regression curve against the same data.
The points along the curve are the probabilities that each point lies in either of
the two categories. For large values of x, the curve is near one, meaning that the

408 4 Machine Learning

Fig. 4.28 This shows the fitted logistic regression on the data shown in Fig. 4.27. The points along
the curve are the probabilities that each point lies in either of the two categories

probability that the associated Y value is equal to one. On the other extreme, small
values of x mean that this probability is close to zero. Because there are only two
possible categories, this means that the probability of Y = 0 is thereby higher. The
region in the middle corresponding to the middle probabilities reflect the ambiguity
between the two categories because of the overlap in the data for this region. Thus,
logistic regression cannot make a strong case for one category here. The following
code fits the logistic regression model,

>>> from sklearn.linear_model import LogisticRegression
>>> lr = LogisticRegression()
>>> lr.fit(np.c_[xi],yi)
LogisticRegression()

For a deeper understanding of logistic regression, we need to alter our notation
slightly and once again use our projection methods. More generally we can rewrite
Eq. (4.11) as the following,

p(x) = 1

1+ exp(−βT x)
(4.12)

where β, x ∈ R
n. From our prior work on projection, we know that the signed

perpendicular distance between x and the linear boundary described by β is
βT x/‖β‖. This means that the probability that is assigned to any point in R

n is a
function of how close that point is to the linear boundary described by the following
equation,

βT x = 0

4.5 Logistic Regression 409

Fig. 4.29 Scaling can arbitrarily increase the probabilities of points near the decision boundary

But there is something subtle hiding here. Note that for any α ∈ R,

αβT x = 0

describes the same hyperplane. This means that we can multiply β by an arbitrary
scalar and still get the same geometry. However, because of exp(−αβT x) in
Eq. (4.12), this scaling determines the intensity of the probability attributed to
x. This is illustrated in Fig. 4.29. The panel on the left shows two categories
(squares/circles) split by the dotted line that is determined by βT x = 0. The
background colors show the probabilities assigned to points in the plane. The right
panel shows that by scaling with α, we can increase the probabilities of class
membership for the given points, given the exact same geometry. The points near
the boundary have lower probabilities because they could easily be on the opposite
side. However, by scaling by α, we can raise those probabilities to any desired level
at the cost of driving the points further from the boundary closer to one. Why is this
a problem? By driving the probabilities arbitrarily using α, we can overemphasize
the training set at the cost of out-of-sample data. That is, we may wind up insisting
on emphatic class membership of yet unseen points that are close to the boundary
that otherwise would have more equivocal probabilities (say, near 1/2). Once again,
this is another manifestation of bias/variance trade-off.

Regularization is a method that controls this effect by penalizing the size of β as
part of its solution. Algorithmically, logistic regression works by iteratively solving
a sequence of weighted least squares problems. Regression adds a ‖β‖/C term to
the least squares error. To see this in action, let us create some data from a logistic

410 4 Machine Learning

regression and see if we can recover it using Scikit-learn. Let us start with a scatter
of points in the two-dimensional plane,

>>> x0,x1 = np.random.rand(2,20)*6-3
>>> X = np.c_[x0,x1,x1*0+1] # stack as columns

Note that X has a third column of all ones. This is a trick to allow the corresponding
line to be offset from the origin in the two-dimensional plane. Next, we create a
linear boundary and assign the class probabilities according to proximity to the
boundary.

>>> beta = np.array([1,-1,1]) # last coordinate for affine offset
>>> prd = X.dot(beta)
>>> probs = 1/(1+np.exp(-prd/np.linalg.norm(beta)))
>>> c = (prd>0) # boolean array class labels

This establishes the training data. The next block creates the logistic regression
object and fits the data.

>>> lr = LogisticRegression()
>>> _ = lr.fit(X[:,:-1],c)

Note that we have to omit the third dimension because of how Scikit-learn internally
breaks down the components of the boundary. The resulting code extracts the
corresponding β from the LogisticRegression object.

>>> betah = np.r_[lr.coef_.flat,lr.intercept_]

Programming Tip

The Numpy np.r_ object provides a quick way to stack Numpy arrays
horizontally instead of using np.hstack.

The resulting boundary is shown in the left panel in Fig. 4.30. The crosses and
triangles represent the two classes we created above, along with the separating gray
line. The logistic regression fit produces the dotted black line. The dark circle is the
point that logistic regression categorizes incorrectly. The regularization parameter is
C = 1 by default. Next, we can change the strength of the regularization parameter
as in the following,

>>> lr = LogisticRegression(C=1000)

and re-fit the data to produce the right panel in Fig. 4.30. By increasing the
regularization parameter, we essentially nudged the fitting algorithm to believe the
data more than the general model. That is, by doing this we accepted more variance
in exchange for better bias.

4.5 Logistic Regression 411

Fig. 4.30 The left panel shows the resulting boundary (dashed line) with C = 1 as the
regularization parameter. The right panel is for C = 1000. The gray line is the boundary used
to assign the class membership for the synthetic data. The dark circle is the point that logistic
regression categorizes incorrectly

Maximum Likelihood Estimation for Logistic Regression Let us again consider
the binary classification problem. We define yk = P(C1|xk), the conditional
probability of the data as a member of given class. Our construction of this problem
provides

yk = θ([w, w0] · [xk, 1])

where θ is the logistic function. Recall that there are only two classes for this
problem. The dataset looks like the following,

{(x0, r0), . . . , (xk, rk), . . . , (xn−1, rn−1)}

where rk ∈ {0, 1}. For example, we could have the following sequence of observed
classes,

{C0, C1, C1, C0, C1}

For this case, the likelihood is then the following,

� = P(C0|x0)P(C1|x1)P(C1|x2)P(C0|x3)P(C1|x4)

which we can rewrite as the following,

�(w, w0) = (1− y0)y1y2(1− y3)y4

412 4 Machine Learning

Recall that there are two mutually exhaustive classes. More generally, this can be
written as the following,

�(w|X) =
n∏

k

y
rk
k (1− yk)

1−rk

Naturally, we want to compute the logarithm of this as the cross-entropy,

E = −
∑

k

rk log(yk)+ (1− rk) log(1− yk)

and then minimize this to find w and w0. This is difficult to do with calculus because
the derivatives have nonlinear terms in them that are hard to solve for.

Multi-Class Logistic Regression Using Softmax The logistic regression problem
provides a solution for the probability between exactly two alternative classes. To
extend to the multi-class problem, we need the softmax function. Consider the
likelihood ratio between the ith class and the reference class, Ck ,

log
p(x|Ci)

p(x|Ck)
= wT

i x

Note that the bias term is baked into the wi . Taking the exponential of this and
normalizing across all the classes gives the softmax function,

yi(x) = p(Ci |x) = exp
(
wT

i x
)

∑
k exp

(
wT

k x
)

Note that
∑

i yi = 1. If the wT
i x term is larger than the others, after the

exponentiation and normalization, it automatically suppresses the other yj∀j
= i,
which acts like the maximum function, except this function is differentiable, hence
soft, as in softmax. While that is all straightforward, the trick is deriving the wi

vectors from the training data {xi , Ci} where rk(Ck) = 1 and rk(Ci) = 0 is the
indicator function for the kth class.

Once again, the launching point is the likelihood function. As with the two-class
logistic regression problem, we have the likelihood as the following,

� =
∏

k

∏

i

yi(xk)
ri (Ck)

4.5 Logistic Regression 413

where k indexes the data and i indexes the classes, Ci . The log-likelihood of this is
the same as the cross-entropy,

E = −
∑

k

∑

i

ri(Ck) log yi(xk)

This is the error function we want to minimize. The computation works as before
with logistic regression, except there are more derivatives to keep track of in this
case.

Understanding Logistic Regression To generalize this technique beyond logistic
regression, we need to rethink the problem more abstractly as the dataset {xi, yi}.
We have the yi ∈ {0, 1} data modeled as Bernoulli random variables. We also have
the xi data associated with each yi , but it is not clear how to exploit this association.
What we would like is to construct E(Y |X) which we already know (see 2.1) is the
best MSE estimator. For this problem, we have

E(Y |X) = P(Y |X)

because only Y = 1 is nonzero in the summation. Regardless, we don’t have the
conditional probabilities anyway. One way to look at logistic regression is as a way
to build in the functional relationship between yi and xi . The simplest thing we
could do is approximate,

E(Y |X) ≈ β0 + β1x := η(x)

If this is the model, then the target would be the yi data. We can force the output
of this linear regression into the interval [0, 1] by composing it with a sigmoidal
function,

θ(x) = 1

1+ exp(−x)

Then we have a new function θ(η(x)) to match against yi using

J (β0, β1) =
∑

i

(θ(η(xi))− yi)
2

This is a nice setup for an optimization problem. We could certainly solve this
numerically using scipy.optimize. Unfortunately, this would take us into the
black box of the optimization algorithm where we would lose all of our intuitions
and experience with linear regression. We can take the opposite approach. Instead

414 4 Machine Learning

of trying to squash the output of the linear estimator into the desired domain, we can
map the yi data into the unbounded space of the linear estimator. Thus, we define
the inverse of the above θ function as the link function.

g(y) = log

(
y

1− y

)

This means that our approximation to the unknown conditional expectation is the
following,

g(E(Y |X)) ≈ β0 + β1x := η(x)

We cannot apply this directly to the yi , so we compute the Taylor series expansion
centered on E(Y |X), up to the linear term, to obtain the following,

g(Y) ≈ g(E(Y |X))+ (Y − E(Y |X))g′(E(Y |X))

≈ η(x)+ (Y − θ(η(x)))g′(θ(η(x))) := z

Because we do not know the conditional expectation, we replaced these terms with
our earlier θ(η(x)) function. This new approximation defines our transformed data
that we will use to feed the linear model. Note that the β parameters are embedded
in this transformation. The (Y − θ(η(x))) term acts as the usual additive noise term.
Also,

g′(x) = 1

x(1− x)

The following code applies this transformation to the xi,yi data

>>> b0, b1 = -2,0.5
>>> g = lambda x: np.log(x/(1-x))
>>> theta = lambda x: 1/(1+np.exp(-x))
>>> eta = lambda x: b0 + b1*x
>>> theta_ = theta(eta(xi))
>>> z=eta(xi)+(yi-theta_)/(theta_*(1-theta_))

Note the two vertical scales shown in Fig. 4.31. The red scale on the right is
the {0, 1} domain of the yi data (red dots) and the left scale is transformed zi data
(black dots). Note that the transformed data is more linear where the original data
is less equivocal at the extremes. Also, this transformation is used a specific pair
of βi parameters. The idea is to iterate over this transformation and derive new βi

parameters. With this approach, we have

V(Z|X) = (g′)2
V(Y |X)

Recall that, for this binary variable, we have

4.5 Logistic Regression 415

Fig. 4.31 The transformation
underlying logistic regression

P(Y |X) = θ(η(x)))

Thus,

V(Y |X) = θ(η(x))(1− θ(η(x)))

from which we obtain

V(Z|X) = [θ(η(x))(1− θ(η(x)))]−1

The important fact here is that the variance is a function of the X (i.e., heteroskedas-
tic). As we discussed with Gauss-Markov, the appropriate linear regression is
weighted least squares where the weights at each data point are inversely pro-
portional to the variance. This ensures that the regression process accounts for
this heteroskedasticity. Numpy has a weighted least squares implemented in the
polyfit function,

>>> w = (theta_*(1-theta_))
>>> p = np.polyfit(xi,z,1,w=np.sqrt(w))

The output of this fit is shown in Fig. 4.32, along with the raw data and V(Z|X)

for this particular fitted βi . Iterating a few more times refines the estimated line but
it does not take many such iterations to converge. As indicated by the variance line,
the fitted line favors the data at either extreme.

Interpreting Logistic Regression Coefficients Logistic regression coefficients are
easier to interpret using the odds ratio. To get started, let us define the odds as the
following,

Ω = P(y = 1|x1, x2, . . . , xn)

P(y = 0|x1, x2, . . . , xn)

416 4 Machine Learning

Fig. 4.32 The output of the
weighted least squares fit is
shown, along with the raw
data and V(Z|X)

because there are only two outcomes P(y = 0) = 1−P(y = 1). For example, if the
Ω = 5, then we can say that the y = 1 outcome is five times more likely than the
alternative. Under logistic regression, the logarithm of this gives the following,

log

(
P(y = 1|x1, x2, . . . , xn)

1− P(y = 1|x1, x2, . . . , xn)

)
=

n∑

i=1

βixi

The problem is to interpret the βi coefficients meaningfully. For example, saying
that a unit change in xi means that the logit changes by betai , while holding the
other variables constant, is not particularly easy to understand because the logarithm
is nonintuitive. Let us define the odds ratio as the following and consider x1,

Ω(x1 + 1, x2, . . . , xn)

Ω(x1, x2, . . . , xn)
= eβ1

With this definition, we can say that for a unit increase in x1, the odds of y increase
by eβ1 , if everything else stays constant. Thus, defining the odds ratio gets around
the nonintuitive nature of the logarithm by focusing on the relative odds.

4.6 Generalized Linear Models

Logistic regression is one example of a wider class of generalized linear models
(GLMs). These GLMs have the following three key features

• A target Y variable distributed according to one of the exponential family of
distributions (e.g., normal, binomial, Poisson)

• An equation that links the expected value of Y with a linear combination of the
observed variables (i.e., {x1, x2, . . . , xn}).

• A smooth invertible link function g(x) such that g(E(Y)) =∑
k βkxk

4.6 Generalized Linear Models 417

Exponential Family Here is the one-parameter exponential family,

f (y; λ) = eλy−γ(λ)

The natural parameter is λ and y is the sufficient statistic. For example, for logistic
regression, we have γ(λ) = log(1+ eλ) and λ = log p

1−p
.

An important property of this exponential family is that

Eλ(y) = dγ(λ)

dλ
= γ′(λ) (4.13)

To see this, we compute the following,

1 =
∫

f (y; λ)dy =
∫

eλy−γ(λ)dy

0 =
∫

df (y; λ)

dλ
dy =

∫
eλy−γ(λ)

(
y − γ′(λ)

)
dy

∫
yeλy−γ(λ)dy = Eλ(y) = γ′(λ)

Using the same technique, we also have,

Vλ(Y) = γ′′(λ)

which explains the usefulness of this generalized notation for the exponential family.

Deviance The scaled Kullback-Leibler divergence is called the deviance as defined
below,

D(f1, f2) = 2
∫

f1(y) log
f1(y)

f2(y)
dy

Hoeffding’s Lemma

Using our exponential family notation, we can write out the deviance as the
following,

1

2
D(f (y; λ1), f (y; λ2)) =

∫
f (y; λ1) log

f (y; λ1)

f (y; λ2)
dy

=
∫

f (y; λ1)((λ1 − λ2)y − (γ (λ1)− γ (λ2)))dy

418 4 Machine Learning

= Eλ1 [(λ1 − λ2)y − (γ (λ1)− γ (λ2))]
= (λ1 − λ2)Eλ1(y)− (γ (λ1)− γ (λ2))

= (λ1 − λ2)μ1 − (γ (λ1)− γ (λ2))

where μ1 := Eλ1(y). For the maximum likelihood estimate λ̂1, we have μ1 =
y. Plugging this into the above equation gives the following,

1

2
D(f (y; λ̂1), f (y; λ2)) = (λ̂1 − λ2)y − (γ (λ̂1)− γ (λ2))

= log f (y; λ̂1)− log f (y; λ2)

= log
f (y; λ̂1)

f (y; λ2)

Taking the negative exponential of both sides gives,

f (y; λ2) = f (y; λ̂1)e
− 1

2 D(f (y;λ̂1),f (y;λ2))

Because D is always non-negative, the likelihood is maximized when the
deviance is zero. In particular, for the scalar case, it means that y itself is
the best maximum likelihood estimate for the mean. Also, f (y; λ̂1) is called
the saturated model. We write Hoeffding’s lemma as the following,

f (y;μ) = f (y; y)e−
1
2 D(f (y;y),f (y;μ)) (4.14)

to emphasize that f (y; y) is the likelihood function when the mean is replaced
by the sample itself and f (y;μ) is the likelihood function when the mean is
replaced by μ.

Vectorizing Eq. (4.14) using mutual independence gives the following,

f (y;μ) = e−
∑

i D(yi ,μi)
∏

f (yi; yi)

The idea now is to minimize the deviance by deriving,

μ(β) = g−1(MT β)

This means the MLE β̂ is the best p × 1 vector β that minimizes the total deviance
where g is the link function and M is the p×n structure matrix. This is the key step
with GLM estimation because it reduces the number of parameters from n to p. The
structure matrix is where the associated xi data enters into the problem. Thus, GLM

4.6 Generalized Linear Models 419

maximum likelihood fitting minimizes the total deviance like plain linear regression
minimizes the sum of squares.

With the following,

λ =MT β

with 2×n dimensional M. The corresponding joint density function is the following,

f (y;β) = eβ
T ξ−ψ(β)f0(y)

where

ξ =My

and

ψ(β) =
∑

γ(mT
i β)

where now the sufficient statistic is ξ and the parameter vector is β, which fits into
our exponential family format, and mi is the ith column of M.

Given this joint density, we can compute the log likelihood as the following,

� = βT ξ − ψ(β)

To maximize this likelihood, we take the derivative of this with respect to β to obtain
the following,

d�

dβ
=My−Mμ(MT β)

since γ′(mT
i β) = mT

i μi (β) and (c.f. Eq. (4.6)), γ′ = μλ. Setting this derivative
equal to zero gives the conditions for the maximum likelihood solution,

M(y− μ(MT β)) = 0 (4.15)

where μ is the element-wise inverse of the link function. This leads us to exactly
the same place we started: trying to regress y against μ(MT β).

Example The structure matrix M is where the xi data associated with the corre-
sponding yi enters the problem. If we choose

MT = [1, x]

where 1 is an n-length vector and

420 4 Machine Learning

β = [β0,β1]T

with μ(x) = 1/(1+ e−x), we have the original logistic regression problem.
Generally, μ(β) is a nonlinear function, and thus we regress against our

transformed variable z

z =MT β+ diag(g′(μ))(y− μ(MT β))

This fits the format of the Gauss-Markov (see 3.12) problem and has the following
solution,

β̂ = (MR−1
z MT)−1MR−1

z z (4.16)

where

Rz := V(z) = diag(g′(μ))2R = v(μ) diag(g′(μ))2I

where g is the link function and v is the variance function on the designated
distribution of the yi . Thus, β̂ has the following covariance matrix,

V(β̂) = (MR−1
z MT)−1

These results allow inferences about the estimated parameters β̂. We can easily
write Eq. (4.6) as an iteration as follows,

β̂k+1 = (MR−1
zk

MT)−1MR−1
zk

zk

Example Consider the data shown in Fig. 4.33. Note that the variance of the data
increases for each x and the data increases as a power of x along x. This makes this
data a good candidate for a Poisson GLM with g(μ) = log(μ).

We can use our iterative matrix-based approach. The following code initializes
the iteration.

>>> M = np.c_[x*0+1,x].T
>>> gi = np.exp # inverse g link function
>>> bk = np.array([.9,0.5]) # initial point
>>> muk = gi(M.T @ bk).flatten()
>>> Rz = np.diag(1/muk)
>>> zk = M.T @ bk + Rz @ (y-muk)

and this next block establishes the main iteration

4.6 Generalized Linear Models 421

Fig. 4.33 Some data for
Poisson example 40

1 2 3 4 5 6 7

X

Y

30

20

10

>>> while abs(sum(M @ (y-muk))) > .01: # orthogonality
condition as threshold

... Rzi = np.linalg.inv(Rz)

... bk = (np.linalg.inv(M @ Rzi @ M.T)) @ M @ Rzi @ zk

... muk = gi(M.T @ bk).flatten()

... Rz =np.diag(1/muk)

... zk = M.T @ bk + Rz @ (y-muk)

...

with corresponding final β computed as the following,

>>> print(bk)
[0.72411051 0.48722401]

with corresponding estimated V(β̂) as

>>> print(np.linalg.inv(M @ Rzi @ M.T))
[[0.01859313 -0.00357958]
[-0.00357958 0.00073252]]

The orthogonality condition Eq. (4.6) is the following,

>>> print(M @ (y-muk))
[-5.83936237e-05 -3.13227667e-04]

For comparison, the statsmodels module provides the Poisson GLM object.
Note that the reported standard error is the square root of the diagonal elements of
V(β̂). A plot of the data and the fitted model is shown below in Fig. 4.34.

>>> pm=sm.GLM(y, sm.tools.add_constant(x),

... family=sm.families.Poisson())

>>> pm_results=pm.fit()

>>> pm_results.summary()

<class 'statsmodels.iolib.summary.Summary'>

"""

Generalized Linear Model Regression Results

==

Dep. Variable: y No. Observations: 50

Model: GLM Df Residuals: 48

Model Family: Poisson Df Model: 1

422 4 Machine Learning

Fig. 4.34 Fitted using the
Poisson GLM 40

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

X

Ŷ

30

20

10

Link Function: log Scale: 1.0000

Method: IRLS Log-Likelihood: -133.41

Date: Tue, 08 Feb 2022 Deviance: 42.659

Time: 13:39:17 Pearson chi2: 41.9

No. Iterations: 5 Pseudo R-squ. (CS): 0.9994

Covariance Type: nonrobust

==

coef std err z P>|z| [0.025 0.975]

--

const 0.7241 0.136 5.310 0.000 0.457 0.991

x1 0.4872 0.027 17.999 0.000 0.434 0.540

==

"""

4.7 Regularization

We have referred to regularization in Sect. 4.5, but we want to develop this
important idea more fully. Regularization is the mechanism by which we navigate
the bias/variance trade-off. To get started, let us consider a classic constrained least
squares problem,

minimize
x

‖x‖2
2

subject to: x0 + 2x1 = 1

where ‖x‖2 =
√

x2
0 + x2

1 is the L2 norm. Without the constraint, it would be easy to
minimize the objective function—just take x = 0. Otherwise, suppose we somehow
know that ‖x‖2 < c, then the locus of points defined by this inequality is the circle
in Fig. 4.35. The constraint is the line in the same figure. Because every value of c

defines a circle, the constraint is satisfied when the circle touches the line. The circle
can touch the line at many different points, but we are only interested in the smallest
such circle because this is a minimization problem. Intuitively, this means that we

4.7 Regularization 423

Fig. 4.35 The solution of the
constrained L2 minimization
problem is at the point where
the constraint (dark line)
intersects the L2 ball (gray
circle) centered at the origin.
The point of intersection is
indicated by the dark circle.
The two neighboring squares
indicate points on the line that
are close to the solution

inflate a L2 ball at the origin and stop when it just touches the constraint. The point
of contact is our L2 minimization solution.

We can obtain the same result using the method of Lagrange multipliers. We
can rewrite the entire L2 minimization problem as one objective function using the
Lagrange multiplier, λ,

J (x0, x1, λ) = x2
0 + x2

1 + λ(1− x0 − x1)

and solve this as an ordinary function using calculus. Let us do this using Sympy.

>>> import sympy as S
>>> S.var('x:2 l',real=True)
(x0, x1, l)
>>> J=S.Matrix([x0,x1]).norm()**2 + l*(1-x0-2*x1)
>>> sol=S.solve(map(J.diff,[x0,x1,l]))
>>> print(sol)
{l: 2/5, x0: 1/5, x1: 2/5}

Programming Tip

Using the Matrix object is overkill for this problem, but it does demonstrate
how Sympy’s matrix machinery works. In this case, we are using the norm
method to compute the L2 norm of the given elements. Using S.var defines
Sympy variables and injects them into the global namespace. It is more
Pythonic to do something like x0 = S.symbols(’x0’,real=True)
instead but the other way is quicker, especially for variables with many
dimensions.

424 4 Machine Learning

The solution defines the exact point where the line is tangent to the circle in
Fig. 4.35. The Lagrange multiplier has incorporated the constraint into the objective
function.

There is something subtle and very important about the nature of the solution,
however. Notice that there are other points very close to the solution on the circle,
indicated by the squares in Fig. 4.35. This closeness could be a good thing, in case
it helps us actually find a solution in the first place, but it may be unhelpful in so far
as it creates ambiguity. Let us hold that thought and try the same problem using the
L1 norm instead of the L2 norm. Recall that

‖x‖1 =
d∑

i=1

|xi |

where d is the dimension of the vector x. Thus, we can reformulate the same
problem in the L1 norm as in the following,

minimize
x

‖x‖1

subject to: x1 + 2x2 = 1

It turns out that this problem is somewhat harder to solve using Sympy, but we have
convex optimization modules in Python that can help.

>>> from cvxpy import Variable, Problem, Minimize, norm1, norm
>>> x=Variable((2,1),name='x')
>>> constr=[np.matrix([[1,2]]) @ x==1]
>>> obj=Minimize(norm1(x))
>>> p= Problem(obj,constr)
>>> p.solve()
0.5000000003101714
>>> print(x.value)
[[6.2034426e-10]
[5.0000000e-01]]

Programming Tip

The cvxy module provides a unified and accessible interface to the powerful
cvxopt convex optimization package, as well as other open-source solver
packages.

As shown in Fig. 4.36, the constant-norm contour in the L1 norm is shaped like
a diamond instead of a circle. Furthermore, the solutions found in each case are
different. Geometrically, this is because inflating the circular L2 reaches out in
all directions whereas the L1 ball creeps out along the principal axes. This effect
is much more pronounced in higher dimensional spaces where L1 balls get more

4.7 Regularization 425

Fig. 4.36 The diamond is the
L1 ball in two dimensions
and the line is the constraint.
The point of intersection is
the solution to the
optimization problem. Note
that for L1 optimization, the
two nearby points on the
constraint (squares) do not
touch the L1 ball. Compare
this with Fig. 4.35

spikey.5 Like the L2 case, there are also neighboring points on the constraint line,
but notice that these are not close to the boundary of the corresponding L1 ball, as
they were in the L2 case. This means that these would be harder to confuse with the
optimal solution because they correspond to a substantially different L1 ball.

To double-check our earlier L2 result, we can also use the cvxpy module to find
the L2 solution as in the following code,

>>> constr=[np.matrix([[1,2]])@x==1]
>>> obj=Minimize(norm(x,2)) #L2 norm
>>> p= Problem(obj,constr)
>>> p.solve()
0.44721359549995604
>>> print(x.value)
[[0.2]
[0.4]]

The only change to the code is the L2 norm and we get the same solution as before.
Let us see what happens in higher dimensions for both L2 and L1 as we move

from two dimensions to four dimensions.

>>> x=Variable((4,1),name='x')
>>> constr=[np.matrix([[1,2,3,4]])@x==1]
>>> obj=Minimize(norm1(x))
>>> p= Problem(obj,constr)
>>> p.solve()
0.2500000009072798
>>> print(x.value)
[[3.88487210e-10]
[8.33295420e-10]

5 We discussed the geometry of high-dimensional space when we covered the curse of dimension-
ality in the statistics chapter.

426 4 Machine Learning

[7.97158511e-10]
[2.49999999e-01]]

And also in the L2 case with the following code,

>>> constr=[np.matrix([[1,2,3,4]])@x==1]
>>> obj=Minimize(norm(x,2))
>>> p= Problem(obj,constr)
>>> p.solve()
0.1825741858350547
>>> print(x.value)
[[0.03333333]
[0.06666667]
[0.1]
[0.13333333]]

Note that the L1 solution has selected out only one dimension for the solution, as the
other components are effectively zero. This is not so with the L2 solution, which has
meaningful elements in multiple coordinates. This is because the L1 problem has
many pointy corners in the four-dimensional space that poke at the hyperplane that
is defined by the constraint. This essentially means the subsets (namely, the points at
the corners) are found as solutions because these touch the hyperplane. This effect
becomes more pronounced in higher dimensions, which is the main benefit of using
the L1 norm as we will see in the next section.

4.7.1 Ridge Regression

Now that we have a sense of the geometry of the situation, let us revisit our classic
linear regression problem. To recap, we want to solve the following problem,

min
β∈Rp

‖y − Xβ‖

where X = [
x1, x2, . . . , xp

]
and xi ∈ R

n. Furthermore, we assume that the p

column vectors are linearly independent (i.e., rank(X) = p). Linear regression
produces the β that minimizes the mean squared error above. In the case where
p = n, there is a unique solution to this problem. However, when p < n, then there
are infinitely many solutions.

To make this concrete, let us work this out using Sympy. First, let us define an
example X and y matrix,

>>> import sympy as S
>>> from sympy import Matrix
>>> X = Matrix([[1,2,3],
... [3,4,5]])
>>> y = Matrix([[1,2]]).T

4.7 Regularization 427

Now, we can define our coefficient vector β using the following code,

>>> b0,b1,b2=S.symbols('b:3',real=True)
>>> beta = Matrix([[b0,b1,b2]]).T # transpose

Next, we define the objective function we are trying to minimize

>>> obj=(X*beta -y).norm(ord=2)**2

Programming Tip

The Sympy Matrix class has useful methods like the norm function used
above to define the objective function. The ord=2 means we want to use the
L2 norm. The expression in parenthesis evaluates to a Matrix object.

Note that it is helpful to define real variables using the keyword argument whenever
applicable because it relieves Sympy’s internal machinery of dealing with complex
numbers. Finally, we can use calculus to solve this by setting the derivatives of the
objective function to zero.

>>> sol=S.solve([obj.diff(i) for i in beta])
>>> beta.subs(sol)
Matrix([
[b2],
[1/2 - 2*b2],
[b2]])

Notice that the solution does not uniquely specify all the components of the beta
variable. This is a consequence of the p < n nature of this problem where p = 2
and n = 3. While the existence of this ambiguity does not alter the solution,

>>> obj.subs(sol)
0

But it does change the length of the solution vector beta,

>>> beta.subs(sol).norm(2)
sqrt(2*b2**2 + (2*b2 - 1/2)**2)

If we want to minimize this length, we can easily use the same calculus as before,

>>> S.solve((beta.subs(sol).norm()**2).diff())
[1/6]

This provides the solution of minimum length in the L2 sense,

>>> betaL2=beta.subs(sol).subs(b2,S.Rational(1,6))
>>> betaL2
Matrix([
[1/6],
[1/6],
[1/6]])

428 4 Machine Learning

But what is so special about solutions of minimum length? For machine learning,
driving the objective function to zero is symptomatic of overfitting the data. Usually,
at the zero bound, the machine learning method has essentially memorized the
training data, which is bad for generalization. Thus, we can effectively stall this
problem by defining a region for the solution that is away from the zero-bound.

minimize
β

‖y − Xβ‖2
2

subject to: ‖β‖2 < c

where c is the tuning parameter. Using the same process as before, we can rewrite
this as the following,

min
β∈Rp

‖y − Xβ‖2
2 + α‖β‖2

2

where α is the tuning parameter. These are the penalized or Lagrange forms of
these problems derived from the constrained versions. The objective function is
penalized by the ‖β‖2 term. For L2 penalization, this is called ridge regression.
This is implemented in Scikit-learn as Ridge. The following code sets this up for
our example,

>>> from sklearn.linear_model import Ridge
>>> clf = Ridge(alpha=100.0,fit_intercept=False)
>>> clf.fit(np.array(X).astype(float),np.array(y).astype(float))
Ridge(alpha=100.0, fit_intercept=False)

Note that the alpha scales of the penalty for the ‖β‖2. We set the
fit_intercept=False argument to omit the extra offset term from our
example. The corresponding solution is the following,

>>> print(clf.coef_)
[[0.0428641 0.06113005 0.07939601]]

To double-check the solution, we can use some optimization tools from Scipy and
our previous Sympy analysis, as in the following,

>>> from scipy.optimize import minimize
>>> f = S.lambdify((b0,b1,b2),obj+beta.norm()**2*100.)
>>> g = lambda x:f(x[0],x[1],x[2])
>>> out = minimize(g,[.1,.2,.3]) # initial guess
>>> out.x
array([0.0428641 , 0.06113005, 0.07939601])

4.7 Regularization 429

Programming Tip

We had to define the additional g function from the lambda function we
created from the Sympy expression in f because the minimize function
expects a single object vector as input instead of a three separate arguments.

which produces the same answer as the Ridge object. To better understand the
meaning of this result, we can re-compute the mean squared error solution to this
problem in one step using matrix algebra instead of calculus,

>>> betaLS=X.T*(X*X.T).inv()*y
>>> betaLS
Matrix([
[1/6],
[1/6],
[1/6]])

Notice that this solves the posited problem exactly,

>>> X*betaLS-y
Matrix([
[0],
[0]])

This means that the first term in the objective function goes to zero,

‖y − XβLS‖ = 0

But, let us examine the L2 length of this solution versus the ridge regression
solution,

>>> print(betaLS.norm().evalf(), np.linalg.norm(clf.coef_))
0.288675134594813 0.1089859641257551

Thus, the ridge regression solution is shorter in the L2 sense, but the first term in the
objective function is not zero for ridge regression,

>>> print((y-X*clf.coef_.T).norm()**2)
1.86870864136429

Ridge regression solution trades fitting error (‖y−Xβ‖2) for solution length (‖β‖2).
Let us see this in action with a familiar example from 3.13.4. Consider Fig. 4.37.

For this example, we created our usual chirp signal and attempted to fit it with
a high-dimensional polynomial, as we did in Sect. 4.3.4. The lower panel is the
same except with ridge regression. The shaded gray area is the space between the
true signal and the approximant in both cases. The horizontal hash marks indicate
the subset of xi values that each regressor was trained on. Thus, the training set
represents a non-uniform sample of the underlying chirp waveform. The top panel
shows the usual polynomial regression. Note that the regressor fits the given points

430 4 Machine Learning

Fig. 4.37 The top figure shows polynomial regression and the lower panel shows polynomial ridge
regression. The ridge regression does not match as well throughout most of the domain, but it does
not flare as violently at the ends. This is because the ridge constraint holds the coefficient vector
down at the expense of poorer performance along the middle of the domain

extremely well, but fails at the endpoint. The ridge regressor misses many of the
points in the middle, as indicated by the gray area, but does not overshoot at the
ends as much as the plain polynomial regression. This is the basic trade-off for
ridge regression. The main steps are shown in the following,

create chirp signal
xi = np.linspace(0,1,100)[:,None]
sample chirp randomly
xin= np.sort(np.random.choice(xi.flatten(),20,replace=False))

[:,None]
create sampled waveform
y = np.cos(2*pi*(xin+xin**2))
create full waveform for reference
yi = np.cos(2*pi*(xi+xi**2))

create polynomial features
from sklearn.preprocessing import PolynomialFeatures
qfit = PolynomialFeatures(degree=8) # quadratic
Xq = qfit.fit_transform(xin)

4.7 Regularization 431

reformat input as polynomial
Xiq = qfit.fit_transform(xi)

from sklearn.linear_model import LinearRegression
lr=LinearRegression() # create linear model
lr.fit(Xq,y) # fit linear model

create ridge regression model and fit
clf = Ridge(alpha=1e-9,fit_intercept=False)
clf.fit(Xq,y)

4.7.2 Lasso Regression

Lasso regression follows the same basic pattern as ridge regression, except with the
L1 norm in the objective function.

min
β∈Rp

‖y − Xβ‖2 + α‖β‖1

The interface in Scikit-learn is likewise the same. The following is the same problem
as before using lasso instead of ridge regression,

>>> X = np.array([[1,2,3],
... [3,4,5]])
>>> y = np.array([[1,2]]).T
>>> from sklearn.linear_model import Lasso
>>> lr = Lasso(alpha=1.0,fit_intercept=False)
>>> _=lr.fit(X,y)
>>> print(lr.coef_)
[0. 0. 0.32352941]

As before, we can use the optimization tools in Scipy to solve this also,

>>> from scipy.optimize import fmin
>>> obj = 1/4.*(X*beta-y).norm(2)**2 + beta.norm(1)*l
>>> f = S.lambdify((b0,b1,b2),obj.subs(l,1.0))
>>> g = lambda x:f(x[0],x[1],x[2])
>>> fmin(g,[0.1,0.2,0.3])
Optimization terminated successfully.

Current function value: 0.360297
Iterations: 121
Function evaluations: 221

array([2.27469304e-06, 4.02831864e-06, 3.23134859e-01])

432 4 Machine Learning

Fig. 4.38 As α increases, more of the model coefficients are driven to zero for lasso regression

Programming Tip

The fmin function from Scipy’s optimization module uses an algorithm that
does not depend upon derivatives. This is useful because, unlike the L2 norm,
the L1 norm has sharp corners that make it harder to estimate derivatives.

This result matches the previous one from the Scikit-learn Lasso object. Solving
it using Scipy is motivating and provides a good sanity check, but specialized
algorithms are required in practice. The following code block re-runs the lasso
with varying α and plots the coefficients in Fig. 4.38. Notice that as α increases,
all but one of the coefficients are driven to zero. Increasing α makes the trade-
off between fitting the data in the L1 sense and wanting to reduce the number of
nonzero coefficients (equivalently, the number of features used) in the model. For a
given problem, it may be more practical to focus on reducing the number of features
in the model (i.e., large α) than the quality of the data fit in the training data. The
lasso provides a clean way to navigate this trade-off.

The following code loops over a set of α values and collects the corresponding
lasso coefficients to be plotted in Fig. 4.38

>>> o=[]
>>> alphas= np.logspace(-3,0,10)
>>> for a in alphas:
... clf = Lasso(alpha=a,fit_intercept=False)
... _=clf.fit(X,y)
... o.append(clf.coef_)
...

4.8 Support Vector Machines 433

Fig. 4.39 In the
two-dimensional plane, the
two classes (gray and white
circles) are easily separated
by any one of the lines shown

4.8 Support Vector Machines

Support vector machines (SVM) originated from the statistical learning theory
developed by Vapnik-Chervonenkis. As such, it represents a deep application of
statistical theory that incorporates the VC dimension concepts we discussed in the
first section. Let us start by looking at some pictures. Consider the two-dimensional
classification problem shown in Fig. 4.39. Figure 4.39 shows two classes (gray and
white circles) that can be separated by any of the lines shown. Specifically, any such
separating line can be written as the locus of points (x) in the two-dimensional plane
that satisfy the following,

β0 + βT x = 0

To classify an arbitrary x using this line, we just compute the sign of β0 + βT x
and assign one class to the positive sign and the other class to the negative sign.
To uniquely specify such a separating line (or hyperplane in a higher-dimensional
space), we need additional criteria.

Figure 4.40 shows the data with two bordering parallel lines that form a margin
around the central separating line. The maximal margin algorithm finds the widest
margin and the unique separating line. As a consequence, the algorithm uncovers
the elements in the data that touch the margins. These are the support elements. The
other elements away from the border are not relevant to the solution. This reduces
model variance because the solution is insensitive to the removal of elements other
than these supporting elements (usually a small minority).

To see how this works for linearly separable classes, consider a training set
consisting of {(x, y)} where y ∈ {−1, 1}. For any point xi , we compute the
functional margin as γ̂i = yi(β0 + βT xi). Thus, γ̂i > 0 when xi is correctly
classified. The geometrical margin is γ = γ̂ /‖β‖. When xi is correctly classified,
the geometrical margin is equal to the perpendicular distance from xi to the line. Let
us see how the maximal margin algorithm works.

434 4 Machine Learning

Fig. 4.40 The maximal
margin algorithm finds the
separating line that
maximizes the margin shown.
The elements that touch the
margins are the support
elements. The dotted
elements are not relevant to
the solution

Let M be the width of the margin. The maximal margin algorithm is can
be formulated as a quadratic programming problem. We want to simultaneously
maximize the margin M while ensuring that all of the data points are correctly
classified.

maximize
β0,β,‖β‖=1

M

subject to: yi(β0 + βT xi) ≥ M, i = 1, . . . , N.

The first line says we want to generate a maximum value for M by adjusting β0 and
β while keeping ‖β‖ = 1. The functional margins for each ith data element are
the constraints to the problem and must be satisfied for every proposed solution. In
words, the constraints enforce that the elements have to be correctly classified and
outside of the margin around the separating line. With some reformulation, it turns
out that M = 1/‖β‖ and this can be put into the following standard format,

minimize
β0,β

‖β‖

subject to: yi(β0 + βT xi) ≥ 1, i = 1, . . . , N.

This is a convex optimization problem and can be solved using powerful methods
in that area.

The situation becomes more complex when the two classes are not separable and
we have to allow some unavoidable mixing between the two classes in the solution.
This means that the constraints have to modified as in the following,

yi(β0 + βT xi) ≥ M(1− ξi)

where the ξi are the slack variables and represent the proportional amount that the
prediction is on the wrong side of the margin. Thus, elements are misclassified when
ξi > 1. With these additional variables, we have a more general formulation of the

4.8 Support Vector Machines 435

convex optimization problem,

minimize
β0,β

‖β‖

subject to: yi(β0 + βT xi) ≥ 1− ξi,

ξi ≥ 0,
∑

ξi ≤ constant, i = 1, . . . , N.

which can be rewritten in the following equivalent form,

minimize
β0,β

1

2
‖β‖ + C

∑
ξi

subject to: yi(β0 + βT xi) ≥ 1− ξi, ξi ≥ 0 i = 1, . . . , N.

(4.17)

Because the ξi terms are all positive, the objective is to maximize the margin (i.e.,
minimize ‖β‖) while minimizing the proportional drift of the predictions to the
wrong side of the margin (i.e., C

∑
ξi). Thus, large values of C shunt algorithmic

focus toward the correctly classified points near the decision boundary and small
values focus on further data. The value C is a hyperparameter for the SVM.

The good news is that all of these complicated pieces are handled neatly inside of
Scikit-learn. The following sets up the linear kernel for the SVM (more on kernels
soon),

>>> from sklearn.datasets import make_blobs
>>> from sklearn.svm import SVC
>>> sv = SVC(kernel='linear')

We can create some synthetic data using make_blobs and then fit it to the SVM,

>>> X,y=make_blobs(n_samples=200, centers=2, n_features=2,
... random_state=0,cluster_std=.5)
>>> sv.fit(X,y)
SVC(kernel='linear')

After fitting, the SVM now has the estimated support vectors and the coefficients of
the β in the sv.support_vectors_ and sv.coef_ attributes, respectively.
Figure 4.41 shows the two sample classes (white and gray circles) and the line
separating them that was found by the maximal margin algorithm. The two parallel
dotted lines show the margin. The large circles enclose the support vectors, which
are the data elements that are relevant to the solution. Notice that only these elements
can touch the edges of the margins.

Figure 4.42 shows what happens when the value of C changes. Increasing this
value emphasizes the ξ part of the objective function in Eq. (4.8). As shown in the
top left panel, a small value for C means that the algorithm is willing to accept many
support vectors at the expense of maximizing the margin. That is, the proportional
amount that predictions are on the wrong side of the margin is more acceptable with
smaller C. As the value of C increases, there are fewer support vectors because the

436 4 Machine Learning

Fig. 4.41 The two class shown (white and gray circles) are linearly separable. The maximal
margin solution is shown by the dark black line in the middle. The dotted lines show the extent of
the margin. The large circles indicate the support vectors for the maximal margin solution

Fig. 4.42 The maximal margin algorithm finds the separating line that maximizes the margin
shown. The elements that touch the margins are the support elements. The dotted elements are
not relevant to the solution

optimization process prefers to eliminate support vectors that are far away from the
margins and accept fewer of these that encroach into the margin. Note that as the
value of C progresses through this figure, the separating line tilts slightly.

4.8 Support Vector Machines 437

4.8.1 Kernel Tricks

Support vector machines provide a powerful method to deal with linear separations,
but they can also apply to nonlinear boundaries by exploiting the so-called kernel
trick. The convex optimization formulation of the SVM includes a dual formulation
that leads to a solution that requires only the inner products of the features. The
kernel trick is to substitute inner products by nonlinear kernel functions. This can
be thought of as mapping the original features onto a possibly infinite dimensional
space of new features. That is, if the data are not linearly separable in two-
dimensional space (for example) maybe they are separable in three-dimensional
space (or higher)?

To make this concrete, suppose the original input space is R
n, and we want to

use a nonlinear mapping ψ : x �→ F where F is an inner product space of higher
dimension. The kernel trick is to calculate the inner product in F using a kernel
function, K(xi , xj) = 〈ψ(xi), ψ(xj)〉. The long way to compute this is to first
compute ψ(x) and then do the inner product. The kernel trick way to do it is to
use the kernel function and avoid computing ψ . In other words, the kernel function
returns what the inner product in F would have returned if ψ had been applied.
For example, to achieve an nth polynomial mapping of the input space, we can use
κ(xi , xj) = (xT

i xj + θ)n. For example, suppose the input space is R2 and F = R
4

and we have the following mapping,

ψ(x) : (x0, x1) �→ (x2
0 , x2

1 , x0x1, x1x0)

The inner product in F is then,

〈ψ(x), ψ(y)〉 = 〈x, y〉2

In other words, the kernel is the square of the inner product in input space. The
advantage of using the kernel instead of simply enlarging the feature space is
computational because you only need to compute the kernel on all distinct pairs
of the input space. The following example should help make this concrete. First we
create some Sympy variables,

>>> import sympy as S
>>> x0,x1=S.symbols('x:2',real=True)
>>> y0,y1=S.symbols('y:2',real=True)

Next, we create the ψ function that maps into R
4 and the corresponding kernel

function,

>>> psi = lambda x,y: (x**2,y**2,x*y,x*y)
>>> kern = lambda x,y: S.Matrix(x).dot(y)**2

Notice that the inner product in R
4 is equal to the kernel function, which only uses

the R
2 variables.

438 4 Machine Learning

>>> print(S.Matrix(psi(x0,x1)).dot(psi(y0,y1)))
x0**2*y0**2 + 2*x0*x1*y0*y1 + x1**2*y1**2
>>> print(S.expand(kern((x0,x1),(y0,y1)))) # same as above
x0**2*y0**2 + 2*x0*x1*y0*y1 + x1**2*y1**2

Polynomial Regression Using Kernels Recall our favorite linear regression prob-
lem from the regularization chapter,

min
β
‖y − Xβ‖2

where X is a n×m matrix with m > n. As we discussed, there are multiple solutions
to this problem. The least squares solution is the following:

βLS = XT (XXT)-1y

Given a new feature vector x, the corresponding estimator for y is the following,

ŷ = xT βLS = xT XT (XXT)-1y

Using the kernel trick, the solution can be written more generally as the following,

ŷ = k(x)T K-1y

where the n × n kernel matrix K replaces XXT and where k(x) is a n-vector of
components k(x) = [κ(xi , x)] and where Ki,j = κ(xi , xj) for the kernel function
κ . With this more general setup, we can substitute κ(xi , xj) = (xT

i xj + θ)n for nth-
order polynomial regression [5]. Note that ridge regression can also be incorporated
by inverting (K+ αI), which can help stabilize poorly conditioned K matrices with
a tunable α hyper-parameter [5].

For some kernels, the enlarged F space is infinite-dimensional. Mercer’s con-
ditions provide technical restrictions on the kernel functions. Powerful and well-
studied kernels have been implemented in Scikit-learn. The advantage of kernel
functions may evaporate for when n → m in which case using the ψ functions
instead can be more practicable.

4.9 Dimensionality Reduction

The features from a particular dataset that will ultimately prove important for
machine learning can be difficult to know ahead of time. This is especially true
for problems that do not have a strong physical underpinning. The row dimension
of the input matrix (X) for fitting data in Scikit-learn is the number of samples and
the column dimension is the number of features. There may be a large number of
column dimensions in this matrix, and the purpose of dimensionality reduction is

4.9 Dimensionality Reduction 439

to somehow reduce these to only those columns that are important for the machine
learning task.

Fortunately, Scikit-learn provides some powerful tools to help uncover the most
relevant features. Principal component analysis (PCA) consists of taking the input
X matrix and (1) subtracting the mean, (2) computing the covariance matrix, and (3)
computing the eigenvalue decomposition of the covariance matrix. For example, if
X has more columns than is practicable for a particular learning method, then PCA
can reduce the number of columns to a more manageable number. PCA is widely
used in statistics and other areas beyond machine learning, so it is worth examining
what it does in some detail. First, we need the decomposition module from Scikit-
learn.

>>> from sklearn import decomposition
>>> import numpy as np
>>> pca = decomposition.PCA()

Let us create some very simple data and apply PCA.

>>> x = np.linspace(-1,1,30)
>>> X = np.c_[x,x+1,x+2] # stack as columns
>>> pca.fit(X)
PCA()
>>> print(pca.explained_variance_ratio_)
[1.00000000e+00 4.44789028e-32 6.56191018e-33]

Programming Tip

The np.c_ is a shorcut method for creating stacked column-wise arrays.

In this example, the columns are just constant offsets of the first column. The
explained variance ratio is the percentage of the variance attributable to the
transformed columns of X. You can think of this as the information that is relatively
concentrated in each column of the transformed matrix X. Figure 4.43 shows the
graph of this dominant transformed column in the bottom panel. Note that a constant
offset in each of the columns does not change its respective variance and thus,
as far as PCA is concerned, the three columns are identical from an information
standpoint.

To make this more interesting, let us change the slope of each of the columns as
in the following,

>>> X = np.c_[x,2*x+1,3*x+2,x] # change slopes of columns
>>> pca.fit(X)
PCA()
>>> print(pca.explained_variance_ratio_)
[1.00000000e+00 1.36443189e-32 1.71524927e-33 3.68262901e-34]

440 4 Machine Learning

Fig. 4.43 The top panel shows the columns of the feature matrix and the bottom panel shows the
dominant component that PCA has extracted

However, changing the slope did not impact the explained variance ratio. Again,
there is still only one dominant column. This means that PCA is invariant to both
constant offsets and scale changes. This works for functions as well as simple lines,

>>> x = np.linspace(-1,1,30)
>>> X = np.c_[np.sin(2*np.pi*x),
... 2*np.sin(2*np.pi*x)+1,
... 3*np.sin(2*np.pi*x)+2]
>>> pca.fit(X)
PCA()
>>> print(pca.explained_variance_ratio_)
[1.00000000e+00 3.63254364e-32 3.47777102e-33]

Once again, there is only one dominant column, which is shown in the bottom panel
of Fig. 4.44. The top panel shows the individual columns of the feature matrix.
To sum up, PCA is able to identify and eliminate features that are merely linear
transformations of existing features. This also works when there is additive noise in
the features, although more samples are needed to separate the uncorrelated noise
from between features.

To see how PCA can simplify machine learning tasks, consider Fig. 4.45 wherein
the two classes are separated along the diagonal. After PCA, the transformed data
lie along a single axis where the two classes can be split using a one-dimensional
interval, which greatly simplifies the classification task. The class identities are
preserved under PCA because the principal component is along the same direction
that the classes are separated. On the other hand, if the classes are separated
along the direction orthogonal to the principal component, then the two classes
become mixed under PCA and the classification task becomes much harder (see
Fig. 4.46). Note that in both cases, the explained_variance_ratio_ is the

4.9 Dimensionality Reduction 441

Fig. 4.44 The top panel shows the columns of the feature matrix and the bottom panel shows the
dominant component that PCA has computed

Fig. 4.45 The left panel shows the original two-dimensional data space of two easily distinguish-
able classes, and the right panel shows the reduced data space transformed using PCA. Because
the two classes are separated along the principal component discovered by PCA, the classes are
preserved under the transformation

same because the explained variance ratio does not account for class membership
(Fig. 4.46).

442 4 Machine Learning

Fig. 4.46 As compared with Fig. 4.45, the two classes differ along the coordinate direction that is
orthogonal to the principal component. As a result, the two classes are no longer distinguishable
after transformation

PCA works by decomposing the covariance matrix of the data using the singular
value decomposition (SVD). This decomposition exists for all matrices and returns
the following factorization for an arbitrary matrix A,

A = USVT

Because of the symmetry of the covariance matrix, U = V. The elements of the
diagonal matrix S are the singular values of A whose squares are the eigenvalues
of AT A. The eigenvector matrix U is orthogonal: UT U = I. The singular values
are in decreasing order so that the first column of U is the axis corresponding to
the largest singular value. This is the first dominant column that PCA identifies.
The entries of the covariance matrix are of the form E(xixj) where xi and xj

are different features.6 This means that the covariance matrix is filled with entries
that attempt to uncover mutually correlated relationships between all pairs of
columns of the feature matrix. Once these have been tabulated in the covariance
matrix, the SVD finds optimal orthogonal transformations to align the components
along the directions most strongly associated with these correlated relationships.
Simultaneously, because orthogonal matrices have columns of unit-length, the SVD
collects the absolute squared lengths of these components into the S matrix. In our
example above in Fig. 4.45, the two feature vectors were obviously correlated along

6 Note that these entries are constructed from the data using an estimator of the covariance matrix
because we do not have the full probability densities at hand.

4.9 Dimensionality Reduction 443

the diagonal, meaning that PCA selected that diagonal direction as the principal
component.

We have seen that PCA is a powerful dimension reduction method that is
invariant to linear transformations of the original feature space. However, this
method performs poorly with transformations that are nonlinear. In that case, there
are a wide range of extensions to PCA, such as kernel PCA, that are available in
Scikit-learn, which allow for embedding parameterized nonlinearities into the PCA
at the risk of overfitting.

4.9.1 Generalized PCA

PCA is equivalent to the following optimization problem

minimize
Z

‖A− Z‖2
F

subject to: Rank(Z) < k

where A,Z ∈ R
m×n. The rank constraint can be expressed by setting the non-

unique factorization

Z = XY

where X ∈ R
m×k and Y ∈ R

k×n. Let xi ∈ R
k by the ith row of X and yj ∈ R

k the
j th column of Y . Thus, any entry of XY can be expressed as

(XY)ij = xiyj

where the inner product is compactly expressed as xiyj . With all this notation, the
objective function in the optimization problem can be written as,

n∑

i

m∑

j

(Aij − xiyj)
2

You can think of yj as the coefficients mapping the k features in xi into the original
feature j .

Singular Value Decomposition (SVD) The standard way to solve this problem is
with the singular value decomposition,

A = UΣV T

where U ∈ R
m×r and V ∈ R

n×r have orthonormal columns and Σ =
diag(σ1, . . . , σr) is the diagonal matrix of ordered singular values (largest to

444 4 Machine Learning

smallest) and where r = Rank(A). With this decomposition, the Frobenius norm
can be rewritten as the following,

‖A−XY‖2
F = ‖Σ − UT XYV ‖2

F

which means that

X = UkΣ
1/2
k , Y = Σ

1/2
k V T

k

where k indicates taking the top k singular values and their associated columns from
U and V .

Alternating Minimization The alternating minimization method switches
between minimizing the objective for X while Y is fixed and vice versa. This
algorithm is easier to extend for versions of PCA than SVD. The stable stationary
points of the iteration are viable solutions, but there may be certain unstable
stationary points that will not converge to the global solution of the problem, but
as a practical matter, alternating minimization converges to the optimal value. The
minimization proceeds using the iterative update, given some starting conditions on
X and Y . Here is the basic iteration,

X = AYT (YYT)−1, Y = (XT X)−1XT A

>>> A = np.arange(1,17).reshape((4,4)) # rank 2 matrix
>>> X, Y = np.ones((4,1)), np.ones((1,4))
>>> err = [np.linalg.norm(A-X*Y,'fro')]
>>> for i in range(4):
... X = A@Y.T @ np.linalg.inv((Y@Y.T))
... Y = np.linalg.inv((X.T @X)) @ X.T @ A
... err.append(np.linalg.norm(A-X*Y,'fro'))
...
>>> err
[35.21363372331802, 2.0823168251814144, 2.0713231580658165,

2.0713230668794935, 2.071323066878739]

Let us compute the usual SVD solution,

>>> u,s,v = np.linalg.svd(A)
>>> u = np.matrix(u) # convert to Numpy matrix
>>> v = np.matrix(v.T)

Here is the result of the alternating minimization solution,

>>> X @ Y
array([[2.22916951, 2.46831501, 2.70746051, 2.94660601],

[5.63832164, 6.24320129, 6.84808093, 7.45296057],
[9.04747378, 10.01808757, 10.98870135, 11.95931514],
[12.45662592, 13.79297384, 15.12932177, 16.4656697]])

4.9 Dimensionality Reduction 445

and compared to the SVD solution,

>>> u[:,0]*s[0]*v[:,0].T
matrix([[2.22916951, 2.46831501, 2.70746051, 2.94660601],

[5.63832164, 6.24320129, 6.84808093, 7.45296058],
[9.04747378, 10.01808757, 10.98870135, 11.95931514],
[12.45662591, 13.79297384, 15.12932177, 16.4656697]])

Quadratically Regularized PCA We can extend PCA to limit the norm of the X

and Y matrices by adding a regularization parameter, γ .

minimize
X,Y

‖A−XY‖2
F + γ ‖X‖2

F + γ ‖Y‖2
F

when γ = 0, this reduces to regular PCA. Also, there is no reason that γ has to be
the same for both X and Y . The alternating minimization solution is the same except
for including the γ term as a diagonal loading on the inverse.

X = AYT (YYT + γ I)−1, Y = (XT X + γ I)−1XT A

Note the lengths of the previous solution,

>>> np.linalg.norm(X), np.linalg.norm(Y)
(19.209665893798814, 2.010584517471534)

Using alternating minimization, we can compute the regularized solution,

>>> X = np.ones((4,1))
>>> Y = np.ones((1,4))
>>> gamma = 15
>>> I = np.eye(1) # seeking rank-1 solution
>>> err = [np.linalg.norm(A-X*Y,'fro')]
>>> for i in range(6):
... X = A@Y.T @ np.linalg.inv(Y@Y.T+I*gamma)
... Y = np.linalg.inv(X.T @X+I*gamma) @ X.T @ A
... err.append(np.linalg.norm(A-X*Y,'fro'))
...
>>> err
[35.21363372331802, 18.593730968257972, 15.24757497172155,
15.147525413246921, 15.14259575959744, 15.142350192552591,
15.142337953273561]

Because this solution is penalized for size, the norms here are smaller than before,

>>> # norms are smaller but approximation is worse
>>> np.linalg.norm(X), np.linalg.norm(Y)
(4.860314307022855, 4.860314517029094)

SVD with soft-thresholding of the singular values gives the identical result,

Σ̃k = diag((σ1 − γ)+, · · · , (σn − γ)+)

446 4 Machine Learning

and then truncating up to k terms, where (a)+ = max(0, a) Then,

X = UkΣ̃
1/2
k , Y = Σ̃

1/2
k V T

k

Here is the alternating minimization solution,

>>> X @ Y # alternating minimization
array([[1.36342005, 1.50968788, 1.6559557 , 1.80222353],

[3.44854923, 3.8185099 , 4.18847057, 4.55843123],
[5.53367841, 6.12733192, 6.72098543, 7.31463894],
[7.61880759, 8.43615395, 9.2535003 , 10.07084665]])

which is identical to the following soft-threshold SVD solution,

>>> u[:,0]*max(s[0]-gamma,0)*v[:,0].T # soft-threshold
matrix([[1.36342009, 1.50968792, 1.65595575, 1.80222358],

[3.44854933, 3.81851001, 4.18847068, 4.55843136],
[5.53367857, 6.12733209, 6.72098562, 7.31463914],
[7.6188078 , 8.43615418, 9.25350055, 10.07084692]])

Interpreting PCA Even though we can compute PCA easily, to understand it, we
can think of PCA in a maximum variance problem. Suppose we have a set of N data
vectors {xi} where xi ∈ R

n. We want to project the data onto a smaller subspace
(k < n) while maximizing the variance of the projected data. To keep it simple,
let us suppose k = 1 and we want to find the unit vector u that leads to maximum
variance. To estimate the variance, we compute the mean

x = 1

N

N∑

i

uT xi

and the variance as

V = uT Ru

where R is the covariance matrix

R = 1

N

N∑

i

(xi − x)(xi − x)T

With all that said, the problem is to maximize the variance, keeping in mind that
u is a unit vector; otherwise we could increase the variance by simply scaling up
u. Using Lagrange multipliers, we can write this as an unconstrained maximization
problem,

uT Ru+ λ(1− uT u)

4.9 Dimensionality Reduction 447

with the following stationary points satisfying,

Ru = λu

which shows the u is an eigenvector of R, and since

uT Ru = λ

we see that λ is the eigenvalue. This means that the maximum variance is obtained
when u is the eigenvector corresponding to the maximum eigenvalue. The general
case for multiple u vectors follows the same pattern, just using the other orthogonal
eigenvectors. Let us compute an example using multivariate Gaussian data,

>>> from scipy.stats import multivariate_normal as mvn
>>> rxy = 0.6
>>> R =[[1,rxy],
... [rxy,1]]
>>> x,y=mvn([0,0], R).rvs(5000).T
>>> s,u=np.linalg.eig(R)
>>> u
array([[0.70710678, -0.70710678],

[0.70710678, 0.70710678]])

Figure 4.47 shows the scatter of the two-dimensional Gaussian random variates.
The arrows indicate the eigenvectors drawn in proportion to their eigenvalues. Note
the variance of the data along each axis is maximized.

4.9.2 Independent Component Analysis

Independent component analysis (ICA) via the FastICA algorithm is also available
in Scikit-learn. This method is fundamentally different from PCA in that it is the

Fig. 4.47 The scatter of
two-dimensional Gaussian
random variates where the
arrows show the eigenvectors
with length proportional to
their corresponding
eigenvalues

448 4 Machine Learning

small differences between components that are emphasized, not the large principal
components. This method is adopted from signal processing. Consider a matrix of
signals (X) where the rows are the samples and the columns are the different signals.
For example, these could be EKG signals from multiple leads on a single patient.
The analysis starts with the following model,

X = SAT (4.18)

In other words, the observed signal matrix is an unknown mixture (A) of some set
of conformable, independent random sources S,

S = [s1(t), s2(t), . . . , sn(t)]

The distribution on the random sources is otherwise unknown, except there can be
at most one Gaussian source; otherwise, the mixing matrix A cannot be identified
because of technical reasons. The problem in ICA is to find A in Eq. (4.18) and
thereby un-mix the si(t) signals, but this cannot be solved without a strategy to
reduce the inherent arbitrariness in this formulation.

To make this concrete, let us simulate the situation with the following code,

>>> from numpy import matrix, c_, sin, cos, pi
>>> t = np.linspace(0,1,250)
>>> s1 = sin(2*pi*t*6)
>>> s2 =np.maximum(cos(2*pi*t*3),0.3)
>>> s2 = s2 - s2.mean()
>>> s3 = np.random.randn(len(t))*.1
>>> # normalize columns
>>> s1=s1/np.linalg.norm(s1)
>>> s2=s2/np.linalg.norm(s2)
>>> s3=s3/np.linalg.norm(s3)
>>> S =c_[s1,s2,s3] # stack as columns
>>> # mixing matrix
>>> A = matrix([[1, 1,1],
... [0.5, -1,3],
... [0.1, -2,8]])
>>> X= S*A.T # do mixing

The individual signals (si(t)) and their mixtures (Xi(t)) are shown in Fig. 4.48. To
recover the individual signals using ICA, we use the FastICA object and fit the
parameters on the X matrix,

>>> from sklearn.decomposition import FastICA
>>> ica = FastICA()
>>> # estimate unknown S matrix
>>> S_=ica.fit_transform(X)

The results of this estimation are shown in Fig. 4.49, showing that ICA is able to
recover the original signals from the observed mixture. Note that ICA is unable

4.9 Dimensionality Reduction 449

Fig. 4.48 The left column shows the original signals and the right column shows the mixed
signals. The object of ICA is to recover the left column from the right

to distinguish the signs of the recovered signals or preserve the order of the input
signals.

To develop some intuition as to how ICA accomplishes this feat, consider the
following two-dimensional situation with two uniformly distributed independent
variables, ux, uy ∼ U [0, 1]. Suppose we apply the following orthogonal rotation
matrix to these variables,

[
u′x
u′y

]
=

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

] [
ux

uy

]

The so-rotated variables u′x, u′y are no longer independent, as shown in Fig. 4.50.
Thus, one way to think about ICA is as a search through orthogonal matrices so
that the independence is restored. This is where the prohibition against Gaussian
distributions arises. The two dimensional Gaussian distribution of independent
variables is proportional the following,

f (x) ∝ exp(−1

2
xT x)

450 4 Machine Learning

Fig. 4.49 The left column shows the original signals and the right column shows the signals that
ICA was able to recover. They match exactly, outside of a possible sign change

Now, if we similarly rotated the x vector as,

y = Qx

the resulting density for y is obtained by plugging in the following,

x = QT y

because the inverse of an orthogonal matrix is its transpose, we obtain

f (y) ∝ exp(−1

2
yT QQT y) = exp(−1

2
yT y)

In other words, the transformation is lost on the y variable. This means that ICA
cannot search over orthogonal transformations if it is blind to them, which explains
the restriction of Gaussian random variables. Thus, ICA is a method that seeks to
maximize the non-Gaussian-ness of the transformed random variables. There are
many methods to doing this, some of which involve cumulants and others that use
the negentropy,

4.9 Dimensionality Reduction 451

Fig. 4.50 The left panel shows two classes labeled on the ux, uy uniformly independent random
variables. The right panel shows these random variables after a rotation, which removes their
mutual independence and makes it hard to separate the two classes along the coordinate directions

J (Y) = H(Z)−H(Y)

where H(Z) is the information entropy of the Gaussian random variable Z that has
the same variance as Y . Further details would take us beyond our scope, but that is
the outline of how the FastICA algorithm works.

The implementation of this method in Scikit-learn includes two different ways
of extracting more than one independent source component. The deflation method
iteratively extracts one component at a time using an incremental normalization
step. The parallel method also uses the single-component method but carries
out normalization of all the components simultaneously, instead of for just the
newly computed component. Because ICA extracts independent components, a
whitening step is used beforehand to balance the correlated components from
the data matrix. Whereas PCA returns uncorrelated components along dimensions
optimal for Gaussian random variables, ICA returns components that are as far from
the Gaussian density as possible.

The left panel on Fig. 4.50 shows the original uniform random sources. The
white and black colors distinguish between two classes. The right panel shows the
mixture of these sources, which is what we observe as input features. The top row
of Fig. 4.51 shows the PCA (left) and ICA (right) transformed data spaces. Notice
that ICA is able to un-mix the two random sources whereas PCA transforms along
the dominant diagonal. Because ICA is able to preserve the class membership, the
data space can be reduced to two non-overlapping sections, as shown. However,
PCA cannot achieve a similar separation because the classes are mixed along the
dominant diagonal that PCA favors as the main component in the decomposition.

For a good principal component analysis treatment, see [3, 11, 17, 37]. Indepen-
dent component analysis is discussed in more detail in [16].

452 4 Machine Learning

Fig. 4.51 The panel on the top left shows two classes in a plane after a rotation. The bottom
left panel shows the result of dimensionality reduction using PCA, which causes mixing between
the two classes. The top right panel shows the ICA transformed output and the lower right panel
shows that, because ICA was able to un-rotate the data, the lower dimensional data maintains the
separation between the classes

4.10 Clustering

Clustering is the simplest member of a family of machine learning methods that do
not require supervision to learn from data. Unsupervised methods have training sets
that do not have a target variable. These unsupervised learning methods rely upon a
meaningful metric to group data into clusters. This makes it an excellent exploratory
data analysis method because there are very few assumptions built into the method
itself. In this section, we focus on the popular K-means clustering method that is
available in Scikit-learn.

Let us manufacture some data to get going with make_blobs from Scikit-learn.
Figure 4.52 shows some example clusters in two dimensions. Clustering methods
work by minimizing the following objective function,

J =
∑

k

∑

i

‖xi − μk‖2

4.10 Clustering 453

Fig. 4.52 The four clusters
are pretty easy to see in this
example and we want
clustering methods to
determine the extent and
number of such clusters
automatically

The distortion for the kth cluster is the summand,

∑

i

‖xi − μk‖2

Thus, clustering algorithms work to minimize this by adjusting the centers of the
individual clusters, μk . Intuitively, each μk is the center of mass of the points in the
cloud. The Euclidean distance is the typical metric used for this,

‖x‖2 =
∑

x2
i

There are many clever algorithms that can solve this problem for the best μk cluster-
centers. The K-means algorithm starts with a user-specified number of K clusters
to optimize over. This is implemented in Scikit-learn with the KMeans object that
follows the usual fitting conventions in Scikit-learn,

>>> from sklearn.cluster import KMeans
>>> kmeans = KMeans(n_clusters=4)
>>> kmeans.fit(X)
KMeans(n_clusters=4)

where we have chosen K = 4. How do we choose the value of K? This is the
eternal question of generalization versus approximation—too many clusters provide
great approximation but bad generalization. One way to approach this problem is to
compute the mean distortion for increasingly larger values of K until it no longer
makes sense. To do this, we want to take every data point and compare it to the
centers of all the clusters. Then, take the smallest value of this across all clusters
and average those. This gives us an idea of the overall mean performance for the K

clusters. The following code computes this explicitly.

454 4 Machine Learning

Fig. 4.53 The mean distortion shows that there is a diminishing value in using more clusters

Programming Tip

The cdist function from Scipy computes all the pairwise differences
between the two input collections according to the specified metric.

>>> from scipy.spatial.distance import cdist
>>> m_distortions=[]
>>> for k in range(1,7):
... kmeans = KMeans(n_clusters=k)
... _=kmeans.fit(X)
... tmp=cdist(X,kmeans.cluster_centers_,'euclidean')
... m_distortions.append(sum(np.min(tmp,axis=1))/X.shape[0])
...

Note that code above uses the cluster_centers_, which are estimated from
K-means algorithm. The resulting Fig. 4.53 shows the point of diminishing returns
for added additional clusters.

Another figure-of-merit is the silhouette coefficient, which measures how com-
pact and separated the individual clusters are. To compute the silhouette coefficient,
we need to compute the mean intra-cluster distance for each sample (ai) and the
mean distance to the next nearest cluster (bi). Then, the silhouette coefficient for the
ith sample is

sci = bi − ai

max(ai, bi)

The mean silhouette coefficient is just the mean of all these values over all the
samples. The best value is one and the worst is negative one, with values near zero
indicating overlapping clusters and negative values showing that samples have been
incorrectly assigned to the wrong cluster. This figure-of-merit is implemented in
Scikit-learn as in the following,

4.10 Clustering 455

Fig. 4.54 The figure shows how the silhouette coefficient varies as the clusters move closer and
become more compact

>>> from sklearn.metrics import silhouette_score

Figure 4.54 shows how the silhouette coefficient varies as the clusters become more
dispersed and/or closer together.

K-means is easy to understand and to implement but can be sensitive to the
initial choice of cluster-centers. The default initialization method in Scikit-learn
uses a very effective and clever randomization to come up with the initial cluster-
centers. Nonetheless, to see why initialization can cause instability with K-means,
consider the following Fig. 4.55. In Fig. 4.55, there are two large clusters on the left
and a very sparse cluster on the far right. The large circles at the centers are the
cluster-centers that K-means found. Given K = 2, how should the cluster-centers
be chosen? Intuitively, the first two clusters should have their own cluster-center
somewhere between them and the sparse cluster on the right should have its own
cluster-center.7 Why isn’t this happening?

The problem is that the objective function for K-means is trading the distance
of the far-off sparse cluster with its small size. If we keep increasing the number
of samples in the sparse cluster on the right, then K-means will move the cluster-
centers out to meet them, as shown in Fig. 4.55. That is, if one of the initial
cluster-centers was right in the middle of the sparse cluster, the algorithm would
have immediately captured it and then moved the next cluster-center to the middle
of the other two clusters (bottom panel of Fig. 4.55). Without some thoughtful

7 Note that we are using the init=random keyword argument for this example in order to
illustrate this.

456 4 Machine Learning

Fig. 4.55 The large circles indicate the cluster-centers found by the K-means algorithm

initialization, this may not happen and the sparse cluster would have been merged
into the middle cluster (top panel of Fig. 4.55). Furthermore, such problems are hard
to visualize with high-dimensional clusters. Nonetheless, K-means is generally very
fast, easy-to-interpret, and easy to understand. It is straightforward to parallelize
using the n_jobs keyword argument so that many initial cluster-centers can
be easily evaluated. Many extensions of K-means use different metrics beyond
Euclidean and incorporate adaptive weighting of features. This enables the clusters
to have ellipsoidal instead of spherical shapes.

4.11 Ensemble Methods

With the exception of the random forest, we have so far considered machine learning
models as stand-alone entities. Combinations of models that jointly produce a
classification are known as ensembles. There are two main methodologies that create
ensembles: bagging and boosting.

4.11.1 Bagging

Bagging refers to bootstrap aggregating, where bootstrap here is the same as we
discussed in Sect. 3.11. Basically, we resample the data with replacement and then
train a classifier on the newly sampled data. Then, we combine the outputs of each
of the individual classifiers using a majority-voting scheme (for discrete outputs)
or a weighted average (for continuous outputs). This combination is particularly

4.11 Ensemble Methods 457

Fig. 4.56 Two regions in the
plane are separated by a
nonlinear boundary. The
training data is sampled from
this plane. The objective is to
correctly classify the
so-sampled data

effective for models that are easily influenced by a single data element. The
resampling process means that these elements cannot appear in every bootstrapped
training set so that some of the models will not suffer these effects. This makes the
so-computed combination of outputs less volatile. Thus, bagging helps reduce the
collective variance of individual high-variance models.

To get a sense of bagging, let us suppose we have a two-dimensional plane that
is partitioned into two regions with the following boundary: y = −x + x2. Pairs
of (xi, yi) points above this boundary are labeled one and points below are labeled
zero. Figure 4.56 shows the two regions with the nonlinear separating boundary as
the black curved line.

The problem is to take samples from each of these regions and classify them
correctly using a perceptron (see Sect. 4.12). A perceptron is the simplest possible
linear classifier that finds a line in the plane to separate two purported categories.
Because the separating boundary is nonlinear, there is no way that the perceptron can
completely solve this problem. The following code sets up the perceptron available
in Scikit-learn.

>>> from sklearn.linear_model import Perceptron
>>> p=Perceptron()
>>> p
Perceptron()

The training data and the resulting perceptron separating boundary are shown
in Fig. 4.57. The circles and crosses are the sampled training data and the gray
separating line is the perceptron’s separating boundary between the two categories.
The black squares are those elements in the training data that the perceptron misclas-
sified. Because the perceptron can only produce linear separating boundaries, and
the boundary in this case is nonlinear, the perceptron makes mistakes near where
the boundary curves. The next step is to see how bagging can improve upon this by
using multiple perceptrons.

The following code sets up the bagging classifier in Scikit-learn. Here we select
only three perceptrons. Figure 4.58 shows each of the three individual classifiers

458 4 Machine Learning

Fig. 4.57 The perceptron
finds the best linear boundary
between the two classes

Fig. 4.58 Each panel with
the single gray line is one of
the perceptrons used for the
ensemble bagging classifier
on the lower right

and the final bagged classifier in the panel on the bottom right. As before, the
black circles indicate misclassifications in the training data. Joint classifications are
determined by majority voting.

>>> from sklearn.ensemble import BaggingClassifier
>>> bp = BaggingClassifier(Perceptron(),max_samples=0.50,

n_estimators=3)
>>> bp
BaggingClassifier(base_estimator=Perceptron(),max_samples=0.5,

n_estimators=3)

The BaggingClassifier can estimate its own out-of-sample error if passed
the oob_score=True flag upon construction. This keeps track of which samples

4.11 Ensemble Methods 459

were used for training and which were not and then estimates the out-of-sample
error using those samples that were unused in training. The max_samples
keyword argument specifies the number of items from the training set to use for
the base classifier. The smaller the max_samples used in the bagging classifier,
the better the out-of-sample error estimate, but at the cost of worse in-sample
performance. Of course, this depends on the overall number of samples and the
degrees-of-freedom in each individual classifier. The VC dimension surfaces again!

4.11.2 Boosting

As we discussed, bagging is particularly effective for individual high-variance
classifiers because the final majority-vote tends to smooth out the individual
classifiers and produce a more stable collaborative solution. On the other hand,
boosting is particularly effective for high-bias classifiers that are slow to adjust to
new data. On the one hand, boosting is similar to bagging in that it uses a majority-
voting (or averaging for numeric prediction) process at the end; and it also combines
individual classifiers of the same type. On the other hand, boosting is serially
iterative, whereas the individual classifiers in bagging can be trained in parallel.
Boosting uses the misclassifications of prior iterations to influence the training of
the next iterative classifier by weighting those misclassifications more heavily in
subsequent steps. This means that, at every step, boosting focuses more and more
on specific misclassifications up to that point, letting the prior classifications be
carried by earlier iterations.

The primary implementation for boosting in Scikit-learn is the Adaptive Boosting
(AdaBoost) algorithm, which does classification (AdaBoostClassifier) and
regression (AdaBoostRegressor). The first step in the basic AdaBoost algo-
rithm is to initialize the weights over each of the training set indices, D0(i) = 1/n

where there are n elements in the training set. Note that this creates a discrete
uniform distribution over the indices, not over the training data {(xi, yi)} itself. In
other words, if there are repeated elements in the training data, then each gets its own
weight. The next step is to train the base classifier hk and record the classification
error at the kth iteration, εk . Two factors can next be calculated using εk ,

αk = 1

2
log

1− εk

εk

and the normalization factor,

Zk = 2
√

εk(1− εk)

460 4 Machine Learning

Fig. 4.59 The individual
perceptron classifiers
embedded in the AdaBoost
classifier are shown along
with the misclassified points
(in black). Compare this to
the lower right panel of
Fig. 4.58

For the next step, the weights over the training data are updated as in the following,

Dk+1(i) = 1

Zk

Dk(i) exp (−αkyihk(xi))

The final classification result is assembled using the αk factors, g = sgn(
∑

k αkhk).
To redo the problem above using boosting with perceptrons, we set up the

AdaBoost classifier in the following,

>>> from sklearn.ensemble import AdaBoostClassifier
>>> clf=AdaBoostClassifier(Perceptron(),n_estimators=3,
... algorithm='SAMME',
... learning_rate=0.5)
>>> clf
AdaBoostClassifier(algorithm='SAMME',base_estimator=Perceptron(),

learning_rate=0.5, n_estimators=3)

The learning_rate above controls how aggressively the weights are updated.
The resulting classification boundaries for the embedded perceptrons are shown in
Fig. 4.59. Compare this to the lower right panel in Fig. 4.58. The performance for
both cases is about the same.

4.12 Deep Learning

Neural networks have a long history going back to the 1960s, but the recent avail-
ability of large-scale, high-quality data and new parallel computing infrastructures
have reinvigorated neural networks in terms of size and complexity. This new
reinvigoration, with many new and complex topologies, is called deep learning.
There have been exciting developments in image and video processing, speech
recognition, and automated video captioning based on deep learning systems.
However, this is still a very active area of research. Fortunately, big companies
with major investments in this area have made much of their research software
open source (e.g., Tensorflow, PyTorch), with corresponding Python-bindings. To

4.12 Deep Learning 461

build up our understanding of neural networks, we begin with Rosenblatt’s 1960
perceptron.

Perceptron Learning The perceptron is the primary ancestor of the most popular
deep learning technologies (i.e., multilayer perceptron), and it is the best place to
start as it will reveal the basic mechanics and themes of more complicated neural
networks. The job of the perceptron is to create a linear classifier that can separate
points in R

n between two classes. The basic idea is that given a set of associations:

{(x0, y0), . . . , (xm, ym)}

where each x ∈ R
n−1 is augmented with a unit-entry to account for an offset term,

and a set of weights w ∈ R
n, compute the following as an estimate of the label

y ∈ {−1, 1}.

ŷ = wT x

Concisely, this means that we want w such that

wT xi

C2
≷
C1

0

where xi is in class C2 if xT
i w > 0 and class C1 otherwise. To determine these

weights, we apply the following learning rule:

w(k+1) = w(k) − (y − ŷ)xi

The output of the perceptron can be summarized as

ŷ = sgn(xT
i w)

The sign is the activation function of the perceptron. With this setup, we can write
out the perceptron’s output as the following:

>>> def yhat(x,w):
... return np.sign(np.dot(x,w))
...

Let us create some fake data to play with:

>>> npts = 100
>>> X=np.random.rand(npts,2)*6-3 # random scatter in 2-d plane
>>> labels=np.ones(X.shape[0],dtype=np.int)# labels are 0 or 1
>>> labels[(X[:,1]<X[:,0])]=-1
>>> X = np.c_[X,np.ones(X.shape[0])]# augment with offset term

462 4 Machine Learning

Note that we added a column of ones to account for the offset term. Certainly, by
our construction, this problem is linearly separable, so let us see if the perceptron can
find the boundary between the two classes. Let us start by initializing the weights,

>>> winit = np.random.randn(3)

and then apply the learning rule,

>>> w= winit
>>> for i,j in zip(X,labels):
... w = w - (yhat(i,w)-j)*i
...

Note that we are taking a single ordered pass through the data. In practice, we
would have randomly shuffled the input data to ensure that there is no incidental
structure in the order of the data that would influence training. Now, let us examine
the accuracy of the perceptron,

>>> from sklearn.metrics import accuracy_score
>>> print(accuracy_score(labels,[yhat(i,w) for i in X]))
0.96

We can re-run the training rule over the data to try to improve the accuracy. A
pass through the data is called an epoch.

>>> for i,j in zip(X,labels):
... w = w - (yhat(i,w)-j)*i
...
>>> print(accuracy_score(labels,[yhat(i,w) for i in X]))
0.98

Note that our initial weight for this epoch is the last weight from the previous
pass. It is common to randomly shuffle the data between epochs. More epochs will
result in better accuracy in this case.

We can redo this entire example with Keras. First, we define the model,

>>> from tensorflow.keras.optimizers import SGD
>>> from keras.models import Sequential
>>> from keras.layers import Dense
>>> model = Sequential()
>>> model.add(Dense(1,input_shape=(2,),activation='softsign'))
>>> model.compile(SGD(), 'hinge')

Note that we use the softsign activation instead of the sgn that we used
earlier because we need a differentiable activation function. Given the form of
the weight update in perceptron learning, it is equivalent to the hinge loss
function. Stochastic gradient descent (SGD) is chosen for updating the weights. The
softsign function is defined as the following:

s(t) = x

1+ |x|

4.12 Deep Learning 463

Fig. 4.60 The softsign
function is a smooth
approximation to the sign
function. This makes it easier
to differentiate for
backpropagation

Fig. 4.61 Trajectory of the
loss function 1.2

1.0

0.8

0.6

0.4

0 50 100 150

epochs

Lo
ss

200 250 300

We can pull it out from the tensorflow backend that keras uses as in the
following, plotted in Fig. 4.60

>>> import tensorflow as tf
>>> xi = np.linspace(-10,10,100)
>>> y_ = tf.math.softsign(xi)

Next, all we have to do is fit the model on data,

>>> h=model.fit(X[:,:2], labels, epochs=300, verbose=0)

The h variable is the history that contains the internal metrics and parameters
involved in the fit training phase. We can extract the trajectory of the loss function
from this history and draw the loss in Fig. 4.61.

Multilayer Perceptron The multilayer perceptron (MLP) generalizes the percep-
tron by stacking them as fully connected individual layers. The basic topology is
shown in Fig. 4.62. In the previous section, we saw that the basic perceptron could
generate a linear boundary for data that is linearly separable. The MLP can create

464 4 Machine Learning

Fig. 4.62 The basic multilayer perceptron has a single hidden layer between input and output.
Each of the arrows has a multiplicative weight associated with it

Fig. 4.63 Data from
make_moons

1.25

1.00

0.0 0.5 1.0 1.5 2.0

0.75

0.50

0.25

0.00

−0.25

−0.50

−0.75

−1.0 −0.5

more complex nonlinear boundaries. Let us examine the moons dataset from Scikit-
learn,

>>> from sklearn.datasets import make_moons
>>> X, y =make_moons(n_samples=1000,noise=0.1,random_state=1234)

The purpose of the noise term is to make data for each of the categories harder
to disambiguate. These data are shown in Fig. 4.63.

The challenge for the MLP is to derive a nonlinear boundary between these two
classes. We construct our MLP using keras,

>>> from tensorflow.keras.optimizers import Adam
>>> model = Sequential()
>>> model.add(Dense(4,input_shape=(2,),activation='sigmoid'))
>>> model.add(Dense(2,activation='sigmoid'))
>>> model.add(Dense(1,activation='sigmoid'))
>>> model.compile(Adam(learning_rate=0.05),'binary_crossentropy')

This MLP has three layers. The input layer has four units and the next layer has
two units and the output layer has one unit to distinguish between the two available

4.12 Deep Learning 465

classes. Instead of plain stochastic gradient descent, we use the more advanced
Adam optimizer. A quick summary of the model elements and parameters comes
from the model.summary() method,

>>> model.summary()
Model: "sequential_1"

Layer (type) Output Shape Param #
===
dense_1 (Dense) (None, 4) 12

dense_2 (Dense) (None, 2) 10

dense_3 (Dense) (None, 1) 3
===
Total params: 25
Trainable params: 25
Non-trainable params: 0

As usual, we split the input data into train and test sets,

>>> from sklearn.model_selection import train_test_split
>>> X_train,X_test,y_train,y_test=train_test_split(X,y,
... test_size=0.3,
... random_state=1234)

Thus, we reserve 30% of the data for testing. Next, we train the MLP,

>>> h=model.fit(X_train, y_train, epochs=100, verbose=0)

To compute the accuracy metric using the test set, we need to compute the model
prediction on the this set.

>>> y_train_ = (model.predict(X_train) > 0.5).astype("int32")
>>> y_test_ = (model.predict(X_test) > 0.5).astype("int32")
>>> print(accuracy_score(y_train,y_train_))
1.0
>>> print(accuracy_score(y_test,y_test_))
0.9966666666666667

To visualize the so-derived boundary between these two classes, we use the
contourf function from matplotlib which generates a filled contour plot shown
in Fig. 4.64.

Instead of computing the accuracy separately, we can assign it as a metric for
keras to track by supplying it on the compile step, as in the following,

>>> model.compile(Adam(learning_rate=0.05), 'binary_
crossentropy',

... metrics=['accuracy'])

Then, we can train again,

>>> h=model.fit(X_train, y_train, epochs=100, verbose=0)

466 4 Machine Learning

Fig. 4.64 The derived
boundary separates the two
classes 1.00

1.25

0.0 0.5 1.0 1.5 2.0

0.75

0.50

0.25

0.00

−0.25

−0.50

−0.75

−1.0 −0.5

Now, we can evaluate the model on the test data,

>>> loss,acc=model.evaluate(X_test,y_test,verbose=0)
>>> print(acc)
0.996666669845581

where loss is the loss function and acc is the corresponding accuracy. The Keras
documentation has other metrics that can be specified during the compile step.

Backpropagation We have seen that the MLP can generate complicated nonlinear
boundaries for classification problems. The key algorithm underpinning MLP is
backpropagation. The idea is that when we stack layers into the MLP, we are
applying function composition, which basically means we take the output of one
function and then feed it into the input of another.

h = (f ◦ g)(x) = f (g(x))

For example, for the simple perceptron, we have g(x) = wT x and f (x) = sgn(x).
They key property of this composition is that derivatives use the chain rule from
calculus.

h′(x) = f ′(g(x))g′(x)

Notice this has turned the differentiation operation into a multiplication operation.
Explaining backpropagation in general is a notational nightmare, so let us see if we
can get the main idea from a specific example. Consider the following two layer
MLP with one input and one output.

There is only one input (x1). The output of the first layer is

z1 = f (x1w1 + b1) = f (p1)

4.12 Deep Learning 467

where f is the sigmoid function and b1 is the bias term. The output of the second
layer is

z2 = f (z1w2 + b2) = f (p2)

To keep it simple, let us suppose that the loss function for this MLP is the squared
error,

J = 1

2
(z2 − y)2

where y is the target label. Backpropagation has two phases. The forward phase
computes the MLP loss function given the values of the inputs and corresponding
weights. The backward phase applies the incremental weight updates to each weight
based on the forward phase. To implement gradient descent, we have to calculate the
derivative of the loss function with respect to each of the weights.

∂J

∂w2
= ∂J

∂z2

∂z2

∂p2

∂p2

∂w2

The first term is the following,

∂J

∂z2
= z2 − y

The second term is the following,

∂z2

∂p2
= f ′(p2) = f (p2)(1− f (p2))

Note that by property of the sigmoid function, we have f ′(x) = (1 − f (x))f (x).
The third term is the following,

∂p2

∂w2
= z1

Thus, the update for w2 is the following,

Δw2 ∝ (z2 − y)z1(1− z2)z2

The corresponding analysis for b2 gives the following,

Δb2 = (z2 − y)z2(1− z2)

Let us keep going backward to w1,

468 4 Machine Learning

∂J

∂w1
= ∂J

∂z2

∂z2

∂p2

∂p2

∂z1

∂z1

∂p1

∂p1

∂w1

The first new term is the following,

∂p2

∂z1
= w2

and then the next two terms,

∂z1

∂p1
= f (p1)(1− f (p1)) = z1(1− z1)

∂p1

∂w1
= x1

This makes the update for w1,

Δw1 ∝ (z2 − y)z2(1− z2)w2z1(1− z1)x1

To understand why this is called backpropagation, we can define

δ2 := (z2 − y)z2(1− z2)

This makes the weight update for w2,

Δw2 ∝ δ2z1

This means that the weight update for w2 is proportional to the output of the prior
layer (z1) and a factor that accounts steepness of the activation function. Likewise,
the weight update for w1 can be written as the following,

Δw1 ∝ δ1x1

where

δ1 := δ2w2z1(1− z1)

Note that this weight update is proportional to the input (prior layer’s output)
just as the weight update for w2 was proportional to the prior layer output z1. Also,
the δ factors propagate recursively backward to the input layer. These character-
istics permit efficient numerical implementations for large networks because the
subsequent computations are based on prior calculations. This also means that each
individual unit’s calculations are localized upon the output of the prior layer. This
helps segregate the individual processing behavior of each unit within each layer.

4.12 Deep Learning 469

Functional Deep Learning Keras has an alternative API that makes it possible to
understand the performance of neural networks using the composition of functions
ideas we discussed. The key objects for this functional interpretation are the Input
object and the Model object.

>>> from keras.layers import Input
>>> from keras.models import Model
>>> import keras.backend as K

We can re-create the data from our earlier classification example

>>> X, y = make_moons(n_samples=1000, noise=0.1, random_state=1234)

The first step is to construct a placeholder for the input using the Input object,

>>> inputs = Input(shape=(2,))

Next, we can stack the Dense layers as before but now tie their inputs to the
previous layer’s outputs by calling Dense as a function.

>>> l1=Dense(3,input_shape=(2,),activation='sigmoid')(inputs)
>>> l2=Dense(2,input_shape=(3,),activation='sigmoid')(l1)
>>> outputs=Dense(1,input_shape=(3,),activation='sigmoid')(l1)

This means that output = (�2 ◦ �1)(input) where �1 and �2 are the middle layers.
With that established, we collect the individual pieces in the Model object and then
fit and train as usual.

>>> model = Model(inputs=inputs,outputs=outputs)
>>> model.compile(Adam(learning_rate=0.05),
... 'binary_crossentropy',
... metrics=['accuracy'])
>>> h=model.fit(X_train, y_train, epochs=500, verbose=0)

This gives the same result as before. The advantage of the functional perspective
is that now we can think of the individual layers as mappings between multi-
dimensional R

n spaces. For example, �1 : R
2 �→ R

3 and �2 : R
3 �→ R

2.
Now, we can investigate the performance of the network from the inputs just up
until the final mapping to R at the output by defining the functional mapping
(�2 ◦ �1)(inputs) : R2 �→ R

2, as shown in Fig. 4.65.
To get this result, we have to define a Keras function using the inputs.

>>> l2_function = K.function([inputs], [l2])
>>> # functional mapping just before output layer
>>> l2o=l2_function([X_train])

the l2o list contains the output of the l2 layer that is shown in Fig. 4.65.

470 4 Machine Learning

Fig. 4.65 The embedded
representation of the input
just before the final output
that shows the internal
divergence of the two target
classes

0.50

0.45

0.40

0.35

0.30

0.30 0.35 0.40 0.45 0.50

4.12.1 Understanding Gradient Descent

As gradient descent is fundamental to training neural networks, let us examine how
it works in detail. Consider a smooth function f over Rn suppose we want to find
the minimum value of f (x) over this domain, as in the following,

x∗ = arg min
x

f (x)

The idea with gradient descent is to choose an initial point x(0) ∈ R
n

x(k+1) = x(k) − α∇f (x(k))

where α is the step size (learning rate). The intuition here is that ∇f is the direction
of increase and so that moving in the opposite direction scaled by α moves toward
a lower function value. This approach turns out to be very fast for well-conditioned,
strongly convex f but in general there are practical issues to manage.

Figure 4.66 shows the function f (x) = 2 − 3x3 + x4 and its first-order
Taylor series approximation at a selected points along the curve for a given width
parameter. That is, the Taylor approximation approximates the function at a specific
point with a corresponding interval around that point for which the approximation
is assumed valid. The size of this width is determined by the α step parameter.
Crucially, the quality of the approximation varies along the curve. In particular,
there are sections where two nearby approximations overlap given the width, as
indicated by the dark shaded regions. This is key because gradient descent works by
using such first-order approximations to estimate the next step in the minimization.
That is, the gradient descent algorithm never actually sees f (x), but rather only the
given first-order approximant. It judges the direction of the next iterative step by
sliding down the slope of the approximant to the edge of a region (determined by α)
and then using that next point for the next calculated approximant. As shown by the

4.12 Deep Learning 471

2

0.0 0.5 1.0 1.5
x

f(x)

2.0 2.5 3.0
0

−2

−4

−6

−8

Fig. 4.66 The piecewise linear approximant to f (x)

shaded regions, it is possible that the algorithm will overshoot the minimum because
the step size (α) is too large. This can cause oscillations as shown in Fig. 4.67.

Let us consider the following Python implementation of gradient descent, using
Sympy.

>>> import sympy as sm
>>> x = sm.symbols('x',real=True)
>>> fx = 2 - 3*x**3 + x**4
>>> df = fx.diff(x) # compute derivative
>>> x0 =.1 # initial guess
>>> xlist = [(x0,fx.subs(x,x0))]
>>> alpha = 0.1 # step size
>>> for i in range(20):
... x0 = x0 - alpha*df.subs(x,x0)
... xlist.append((x0,fx.subs(x,x0)))
...

Figure 4.67 shows the sequential steps. Note that the algorithm oscillates at the end
because the step size is too large. Practically speaking, it is not possible to know the
optimal step size for general functions without strong assumptions on f (x).

Figure 4.68 shows how the algorithm moves along the function as well as the
approximant (f̂ (x)) that the algorithm sees along the way. Note that initial steps are
crowded around the initial point because the corresponding gradient is small there.
Toward the middle, the algorithm makes a big jump because the gradient is steep,
before finally oscillating toward the end. Sections of the underlying function that are
relatively flat can cause the algorithm to converge very slowly. Furthermore, if there
are multiple local minima, then the algorithm cannot guarantee finding the global
minimum.

As we have seen, the step size is key to both performance and convergence.
Indeed, a step size that is too big can cause divergence and one that is too small can
take a very long time to converge.

472 4 Machine Learning

2.5

2.0

1.5

1.0

0.5

0.0
0 2 4 6 8 10

iteration (k)

X
k

12 14 16 18 20

Fig. 4.67 The step size may cause oscillations

2

0.0 0.5 1.0 1.5

x

2.0 2.5 3.0
0

−2

−4

−6

Fig. 4.68 Gradient descent produces a sequence of approximants

Newton’s Method Consider the following second-order Taylor series expansion

J (x) = f (x0)+∇f (x0)
T (x− x0)+ 1

2
(x− x0)

T∇2f (x0)(x− x0)

where H(x) := ∇2f (x) is the Hessian matrix of second derivatives. The (i, j)th
entry of this matrix is the following:

∂2f (x)
∂xi∂xj

We can use basic matrix calculus to find the minimum by computing:

∇xJ (x) = ∇f (x0)+H(x)(x− x0) = 0

4.12 Deep Learning 473

Solving this for x gives the following:

x = x0 −H(x)−1∇f (x0)

Thus, after renaming some terms, the descent algorithm works by the following
update equation:

x(k+1) = x(k) −H(x(k))−1∇f (x(k))

There are a number of practical problems with this update equation. First, it
requires computing the Hessian matrix at every step. For a significant problem,
this means managing a potentially very large matrix. For example, given 1000
dimensions the corresponding Hessian has 1000×1000 elements. Some other issues
are that the Hessian may not be numerically stable enough to invert, the functional
form of the partial derivatives may have to be separately approximated, and the
initial guess has to be in a region where the convexity of the function matches the
derived assumption. Otherwise, just based on these equations, the algorithm will
converge on the local maximum and not the local minimum. Consider a slight change
of the previous code to implement Newton’s method:

>>> x0 = 2.0 # init guess is near to solution
>>> xlist = [(x0,fx.subs(x,x0))]
>>> df2 = fx.diff(x,2) # 2nd derivative
>>> for i in range(5):
... x0 = x0 - df.subs(x,x0)/df2.subs(x,x0)
... xlist.append((x0,fx.subs(x,x0)))
...
>>> xlist = np.array(xlist).astype(float)
>>> print (xlist)
[[2. -6.]
[2.33333333 -6.4691358]
[2.25555556 -6.54265522]
[2.25002723 -6.54296874]
[2.25 -6.54296875]
[2.25 -6.54296875]]

Note that it took very few iterations to get to the minimum (as compared to our
prior method), but if the initial guess is too far away from the actual minimum, the
algorithm may not find the local minimum at all and instead find the local maximum.
Naturally, there are many extensions to this method to account for these effects, but
the main thrust of this section is to illustrate how higher-order derivatives (when
available) in a computationally feasible context can greatly accelerate convergence
of descent algorithms.

Managing Step Size The problem of determining a good step size (learning rate)
can be approached with an exact line search. That is, along the ray that extends
along x+ q∇f (x), find

474 4 Machine Learning

qmin = arg min
q≥0

f (x+ q∇f (x))

In words, this means that given a direction from a point x along the direction
∇f (x), find the minimum for this one-dimensional problem. Thus, the minimization
procedure alternates at each iteration between moving to a new x position in R

n and
finding a new step size by solving the one-dimensional minimization.

While this is conceptually clean, the problem is that solving the one-dimensional
line search at every step means evaluating the objective function f (x) at many points
along the one-dimensional slice. This can be very time-consuming for an objective
function that is computationally expensive to evaluate. With Newton’s method, we
have seen that higher-order derivatives can accelerate convergence, and we can
apply those ideas to the one-dimensional line search, as with the backtracking
algorithm.

• Fix parameters β ∈ [0, 1) an α > 0.
• If f (x − α∇f (x)) > f (x)− α‖∇f (x)‖2

2, then reduce α → βα. Otherwise, do
the usual gradient descent update: x(k+1) = x(k) − α∇f (x(k)).

To gain some intuition about how this works, return to our second-order Taylor
series expansion of the function f about x0,

f (x0)+∇f (x0)
T (x− x0)+ 1

2
(x− x0)

T∇2f (x0)(x− x0)

We have already discussed the numerical issues with the Hessian term, so one
approach is to simply replace that term with an n × n identity matrix I to obtain
the following:

hα(x) = f (x0)+ ∇f (x0)
T (x− x0)+ 1

2α
‖x− x0‖2

This is our more tractable surrogate function. But what is the relationship between
this surrogate and what we are actually trying to minimize? The key difference
is that the curvature information that is contained in the Hessian term has now
been reduced to a single 1/α factor. Intuitively, this means that local complicated
curvature of f about a given point x0 has been replaced with a uniform bowl-shaped
structure, the steepness of which is determined by scaling 1/α. Given a specific α,
we already know how to step directly to the minimum of hα(x); namely, using the
following gradient descent update equation:

x(k+1) = x(k) − α∇f (x(k))

That is the immediate solution to the surrogate problem, but it does not directly
supply the next iteration for the function we really want: f . Let us suppose that
our minimization of the surrogate has taken us to a new point x(k) that satisfies the
following inequality,

4.12 Deep Learning 475

f (x(k+1)) ≤ hα(x(k+1))

or, more explicitly,

f (x(k+1)) ≤ f (x(k))+∇f (x(k))T (x(k+1) − x(k))+ 1

2α
‖x(k+1) − x(k)‖2

We can substitute the update equation into this and simplify as,

f (x(k+1)) ≤ f (x(k))− α∇f (x(k))T (∇f (x(k)))+ α

2
‖∇f (x(k))‖2

which ultimately boils down to the following,

f (x(k+1)) ≤ f (x(k))− α

2
‖∇f (x(k))‖2 (4.19)

The important observation here is that if we have not reached the minimum of f ,
then the last term is always positive and we have moved downward,

f (x(k+1)) < f (x(k))

which is what we were after. Conversely, if the inequality in Eq. (4.19) holds for
some α > 0, then we know that hα > f . This is the key observation behind the
backtracking algorithm. That is, we can test a sequence of values for α until we find
one that satisfies Eq. (4.19). For example, we can start with some initial α and then
scale it up or down until the inequality is satisfied which means that we have found
the correct step size and then can proceed with the descent step. This is what the
backtracking algorithm is doing as shown in Fig. 4.69. The dotted line is the hα(x)

and the gray line is f (x). The algorithm hops to the quadratic minimum of the hα(x)

function which is close to the actual minimum of f (x).
The basic implementation of backtracking is shown below:

>>> x0 = 1
>>> alpha = 0.5
>>> xnew = x0 - alpha*df.subs(x,x0)
>>> while fx.subs(x,xnew)>(fx.subs(x,x0)-(alpha/2.)*(fx.subs(x,x0))**2):
... alpha = alpha * 0.8
... xnew = x0 - alpha*df.subs(x,x0)
...
>>> print (alpha,xnew)
0.32000000000000006 2.60000000000000

Stochastic Gradient Descent A common variation on gradient descent is to
alter how the weights are updated. Specifically, suppose we want to minimize an
objective function of the following form:

476 4 Machine Learning

2

0
0.0 0.5 1.0 1.5

x

f(x)

f(x)
hα(x)

2.0 2.5 3.0

6

4

−2

−4

−6

Fig. 4.69 The approximation hα(x) (dotted line) moves the next iteration from x = 1 to the
indicated point that is near the minimum of f (x) by finding an appropriate step size (α)

min
x

m∑

i=1

fi(x)

where i indexes the ith data element for an error function. Equivalently, each
summand is parameterized by a data element.

For the usual gradient descent algorithm, we would compute the incremental
weights, component-wise as in the following

x(k+1) = x(k) − αk

m∑

i=1

∂fi(x
(k))

by summing over all of the data. The key idea for stochastic gradient descent is to
not sum over all of the data but rather to update the weights for each randomized ith
data element:

x(k+1) = x(k) − αk∂fi(x
(k))

A compromise between batch and this jump-every-time stochastic gradient
descent is mini-batch gradient descent in which a randomized subset (σr, |σr | =
Mb) of the data is summed over at each step as in the following:

x(k+1) = x(k) − αk

∑

i∈σr

∂fi(x
(k))

Each step update for the standard gradient descent algorithm processes m data points
for each of the p dimensions, O(mp), whereas for stochastic gradient descent, we
have O(p). Mini-batch gradient descent is somewhere in-between these estimates.
For very large, high-dimensional data, the computational costs of gradient descent

4.12 Deep Learning 477

can become prohibitive, thus favoring stochastic gradient descent. Outside of the
computational advantages, stochastic gradient descent has other favorable attributes.
For example, the noisy jumping around helps the algorithm avoid getting stalled in
local minima, and this helps the algorithm when the starting point is far away from
the actual minimum. The obverse is that stochastic gradient descent can struggle
to clinch the minimum when it is close to it. Another advantage is robustness to a
minority of bad data elements. Because only random subsets of the data are actually
used in the update, the few individual outlier data points (perhaps due to poor data
integrity) do not necessarily contaminate every step update.

Momentum The gradient descent algorithm can be considered as a particle moving
along a high-dimensional landscape in search of a minimum. Using a physical
analogy, we can add the concept of momentum to the particle’s motion. Consider the
position of the particle (x(k)) at any time k under a net force proportional to −∇J .
This setup induces an estimated velocity term for the particle motion proportional
to η(x(k+1) − x(k)). That is, the particle’s velocity is estimated proportional to the
difference in two successive positions. The simplest version of stochastic gradient
descent update that incorporates this momentum is the following:

x(k+1) = x(k) − α∇f (x(k))+ η(x(k+1) − x(k))

Momentum is particularly useful when gradient descent sloshes up and down a
steep ravine in the error surface instead of pursuing the descending ravine directly
to the local minimum. This oscillatory behavior can cause slow convergence. There
are many extensions to this basic idea such as Nesterov momentum.

Advanced Stochastic Gradient Descent Methods that aggregate histories of the
step updates can provide superior performance to the basic stochastic gradient
descent algorithm. For example, Adam (Adaptive Moment Estimator) implements
an adaptive step size for each parameter. It also keeps track of an exponentially
decaying mean and variance of past gradients using the exponentially weighted
moving average (EWMA). This smoothing technique computes the following
recursion,

yn = axn + (1− a)yn−1

with y0 = x0 as the initial condition. The 0 < a < 1 factor controls the amount
of mixing between the previous moving average and the new data point at n. For
example, if a = 0.9, the EWMA favors the new data xn over the prior value yn−1
(1 − a = 0.1) of the EWMA. This calculation is common in a wide variety of
time-series applications (e.g., signal processing, quantitative finance). The impulse
response of the EWMA (x = δn) is (1− a)n. You can think of this as the weighted
window function that is applied to xn. As opposed to the standard moving average
that considers a fixed window of data to average over, this exponential window
retains prior memory of the entire sequence, albeit weighted by powers of (1 − a).

478 4 Machine Learning

1.0

0.8

0.6

0.4

0.2

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Moving average

EWMA

17.5 20.0
n

Fig. 4.70 The exponential moving average versus the plain moving average

To see this, we can generate the response to an impulse data series using pandas
(Fig. 4.70),

>>> import pandas as pd
>>> x = pd.Series([1]+[0]*20)
>>> ma =x.rolling(window=3, center=False).mean()
>>> ewma = x.ewm(1).mean()

As shown in Fig. 4.71, the single nonzero data point thereafter influences the
EWMA whereas for the fixed-width moving window average, the effect terminates
after the window passes. Note that mini-batch smoothes out data at each iteration
by averaging over training data and EWMA smoothes out the descent motion across
iterations of the algorithm.

Advanced stochastic gradient descent algorithms are themselves an area of
intense interest and development. Each method has its strengths and weaknesses
pursuant to the data at hand (i.e., sparse vs. dense data), and there is no clear favorite
appropriate to all circumstances. As a practical matter, some variants have parallel
implementations that accelerate performance (i.e., Nui’s Hogwild update scheme).

Python Example Using Sympy Each of these methods will make more sense
with some Python. We emphasize that this implementation is strictly expository
and unsuitable for a large-scale application. Let us reconsider the classification
problem in the section on logistic regression with the target yi ∈ {0, 1}. The logistic
regression seeks to minimize the cross-entropy:

J (β) =
m∑

i

log(1+ exp(xT
i β))− yixT

i β

4.12 Deep Learning 479

Fig. 4.71 Different variations of gradient descent

with the corresponding gradient,

∇βJ (β) =
m∑

i

1

1+ exp(−xT
i β)

xi − yixi

To get started, let us create some sample data for logistic regression

>>> import numpy as np
>>> import sympy as sm
>>> npts = 100
>>> X=np.random.rand(npts,2)*6-3 # random scatter in 2-d plane
>>> labels=np.ones(X.shape[0],dtype=np.int)# labels are 0 or 1
>>> labels[(X[:,1]<X[:,0])]=0

This provides the data in the X Numpy array and the target labels in the labels
array. Next, we want to develop the objective function with Sympy,

>>> x0,x1 = sm.symbols('x:2',real=True) # data placeholders
>>> b0,b1 = sm.symbols('b:2',real=True) # parameters
>>> bias = sm.symbols('bias',real=True) # bias term
>>> y = sm.symbols('y',real=True) # label placeholders
>>> summand = sm.log(1+sm.exp(x0*b0+x1*b1+bias))-y*(x0*b0+x1*b1+bias)
>>> J = sum([summand.subs({x0:i,x1:j,y:y_i})
... for (i,j),y_i in zip(X,labels)])

We can use Sympy to compute the gradient as in the following:

>>> from sympy.tensor.array import derive_by_array
>>> grad = derive_by_array(summand,(b0,b1,bias))

480 4 Machine Learning

Using the sm.latex function renders grad as the following:

[
−x0y + x0e

b0x0+b1x1+bias

eb0x0+b1x1+bias+1
−x1y + x1e

b0x0+b1x1+bias

eb0x0+b1x1+bias+1
−y + eb0x0+b1x1+bias

eb0x0+b1x1+bias+1

]

which matches our previous computation of the gradient. For standard gradient
descent, the gradient is computed by summing over all of the data,

>>> grads=np.array([grad.subs({x0:i,x1:j,y:y_i})
... for (i,j),y_i in zip(X,labels)]).sum(axis=0)

Now, to implement gradient descent, we set up the following loop:

>>> # convert expression into function
>>> Jf = sm.lambdify((b0,b1,bias),J)
>>> gradsf = sm.lambdify((b0,b1,bias),grads)
>>> niter = 200
>>> winit = np.random.randn(3)*20
>>> alpha = 0.1 # learning rate (step-size)
>>> WK = winit # initialize
>>> Jout=[] # container for output
>>> for i in range(niter):
... WK = WK - alpha * np.array(gradsf(*WK))
... Jout.append(Jf(*WK))
...

For stochastic gradient descent, the above code changes to the following:

>>> import random
>>> sgdWK = winit # initialize
>>> Jout=[] # container for output
>>> # don't sum along all data as before
>>> grads=np.array([grad.subs({x0:i,x1:j,y:y_i})
... for (i,j),y_i in zip(X,labels)])
>>> for i in range(niter):
... gradsf = sm.lambdify((b0,b1,bias),random.choice(grads))
... sgdWK = sgdWK - alpha * np.array(gradsf(*sgdWK))
... Jout.append(Jf(*sgdWK))
...

The main difference here is that the gradient calculation no longer sums across
all of the input data (i.e., grads list) and is instead randomly chosen by the
random.choice function the above body of the loop. The extension to batch
gradient descent from this code just requires averaging over a sub-selection of the
data for the gradients in the batch variable.

>>> mbsgdWK = winit # initialize
>>> Jout=[] # container for output
>>> mb = 10 # number of elements in batch
>>> for i in range(niter):
... batch = np.vstack([random.choice(grads)
... for i in range(mb)]).mean(axis=0)

4.12 Deep Learning 481

... gradsf = sm.lambdify((b0,b1,bias),batch)

... mbsgdWK = mbsgdWK-alpha*np.array(gradsf(*mbsgdWK))

... Jout.append(Jf(*mbsgdWK))

...

It is straightforward to incorporate momentum into this loop using a Python
deque, as in the following,

>>> from collections import deque
>>> momentum = deque([winit,winit],2)
>>> mbsgdWK = winit # initialize
>>> Jout=[] # container for output
>>> mb = 10 # number of elements in batch
>>> for i in range(niter):
... batch=np.vstack([random.choice(grads)
... for i in range(mb)]).mean(axis=0)
... gradsf=sm.lambdify((b0,b1,bias),batch)
... mbsgdWK=mbsgdWK-alpha*np.array(gradsf(*mbsgdWK))+0.5*

(momentum[1]-momentum[0])
... Jout.append(Jf(*mbsgdWK))
...

Figure 4.71 shows the three variants of the gradient descent algorithm. Notice
that the stochastic gradient descent algorithm is the most erratic, as it is character-
ized by taking a new direction for every randomly selected data element. Mini-batch
gradient descent smoothes these out by averaging across multiple data elements. The
momentum variant is somewhere in-between the two as the effect of the momentum
term is not pronounced in this example.

Python Example Using Theano The code shown makes each step of the gradient
descent algorithms explicit using Sympy, but this implementation is far too slow.
The theano module provides thoughtful and powerful high-level abstractions for
algorithm implementation that relies upon underlying C/C++ and GPU execution
models. This means that calculations that are prototyped with theano can be
executed downstream outside of the Python interpreter which makes them much
faster. The downside of this approach is that calculations can become much harder
to debug because of the multiple levels of abstraction. Nonetheless, theano is a
powerful tool for algorithm development and execution.

To get started we need some basics from theano.

>>> import theano.tensor as T
>>> from theano import function, shared

The next step is to define variables, which are essentially placeholders for values
that will be computed downstream later. The next block defines two named variables
as a double-sized float matrix and vector. Note that we did not have to specify the
dimensions of each at this point.

>>> x = T.dmatrix("x") # double matrix
>>> y = T.dvector("y") # double vector

482 4 Machine Learning

The parameters of our implementation of gradient descent come next, as the
following:

>>> w = shared(np.random.randn(2), name="w") # parameters to fit
>>> b = shared(0.0, name="b") # bias term

Variables that are shared are ones whose values can be set separately via other
computations or directly via the set_value() method. These values can also be
retrieved using the get_value() method. Now, we need to define the probability
of obtaining a 1 from the given data as p. The cross-entropy function and the T.dot
function are already present (along with a wide range of other related functions) in
theano. The conformability of the constituent arguments is the responsibility of
the user.

>>> p=1/(1+T.exp(-T.dot(x,w)-b)) # probability of 1
>>> error = T.nnet.binary_crossentropy(p,y)
>>> loss = error.mean()
>>> gw, gb = T.grad(loss, [w, b])

The error variable is TensorVariable type which has many built-
in methods such as mean. The so-derived loss function is therefore also a
TensorVariable. The last T.grad line is the best part of Theano because
it can compute these gradients automatically.

>>> train = function(inputs=[x,y],
... outputs=[error],
... updates=((w, w - alpha * gw),
... (b, b - alpha * gb)))

The last step is to set up training by defining the training function in theano.
The user will supply the previously defined and named input variables (x and y),
and theano will return the previously defined error variable. Recall that the w
and b variables were defined as shared variables. This means that the function
train can update their values between calls using the update formula specified
in the updates keyword variable. In this case, the update is just plain gradient
descent with the previously defined alpha step-size variable.

We can execute the training plain using the train function in the following
loop:

>>> training_steps=1000
>>> for i in range(training_steps):
... error = train(X, labels)
...

The train(X,labels) call is where the X and labels arrays we defined
earlier replace the placeholder variables. The update step refreshes all of the
shared variables at each iterative step. At the end of the iteration, the so-computed
parameters are in the w and b variables with values available via get_value().
The implementation for stochastic gradient descent requires just a little modification
to this loop, as in the following:

4.12 Deep Learning 483

>>> for i in range(training_steps):
... idx = np.random.randint(0,X.shape[0])
... error = train([X[idx,:]], [labels[idx]])
...

where the idx variable selects a random data element from the set and uses that
for the update step at every iteration. Likewise, batch stochastic gradient descent
follows with the following modification,

>>> batch_size = 50
>>> indices = np.arange(X.shape[0])
>>> for i in range(training_steps):
... idx = np.random.permutation(indices)[:batch_size]
... error = train(X[idx,:], labels[idx])
...
>>> print (w.get_value())
[-4.74033204 4.74110223]
>>> print (b.get_value()) # bias term
0.09935801044334443

Here, we set up an indices variable that is used for randomly selecting
subsets in the idx variable that are passed to the train function. All of these
implementations parallel the corresponding previous implementations in Sympy, but
these are many orders of magnitude faster due to theano.

4.12.2 Image Processing Using Convolutional Neural
Networks

In this section, we develop the convolutional neural network (CNN) which is the
fundamental deep learning image processing application. We deconstruct every
layer of this network to develop insight into the purpose of the individual operations.
CNNs take image as inputs and images can be represented as Numpy arrays, which
make them fast and easy to use with any of the scientific Python tools. The individual
entries of the Numpy array are the pixels and the row/column dimensions are the
height/width of the image, respectively. The array values are between 0 through
255 and correspond to the intensity of the pixel at that location. Three-dimensional
images have a third third depth-dimension as the color channel (e.g., red, green,
blue). Two-dimensional image arrays are grayscale.

Programming Tip

Matplotlib makes it easy to draw images using the underlying Numpy arrays.
For instance, we can draw Fig. 4.72 using the following MNIST image from
sklearn.datasets, which represents grayscale hand-drawn digits (the
number zero in this case).

484 4 Machine Learning

Fig. 4.72 Image of a hand
drawn number zero from the
MNIST dataset

Fig. 4.73 Samples of the
other hand-drawn digits from
MNIST

>>> from matplotlib.pylab import subplots, cm
>>> from sklearn import datasets
>>> mnist = datasets.load_digits()
>>> fig, ax = subplots()
>>> ax.imshow(mnist.images[0],
... interpolation='nearest',
... cmap=cm.gray)
<matplotlib.image.AxesImage object at 0x7fcee01db8b0>

The cmap keyword argument specifies the colormap as gray. The
interpolation keyword means that the resulting image from imshow
does not try to visually smooth out the data, which can be confusing when
working at the pixel level. The other hand-drawn digits are shown below in
Fig. 4.73.

Convolution Convolution is an intensive calculation, and it is the core of con-
volutional neural networks. The purpose of convolution is to create alternative
representations of the input image that emphasize or deemphasize certain features
represented by the kernel. The convolution operation consists of a kernel and an
input matrix. The convolution operation is a way of aligning and comparing image
data with the corresponding data in an image kernel. You can think of an image
kernel as a template for a canonical feature that the convolution operation will
uncover. To keep it simple, suppose we have the following 3x3 kernel matrix,

>>> kern = np.eye(3,dtype=np.int)
>>> kern
array([[1, 0, 0],

[0, 1, 0],
[0, 0, 1]])

4.12 Deep Learning 485

Using this kernel, we want to find anything in an input image that looks like a
diagonal line. Let us suppose we have the following input Numpy image

>>> tmp = np.hstack([kern,kern*0])
>>> x = np.vstack([tmp,tmp])
>>> x
array([[1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0]])

Note that this image is just the kernel stacked into a larger Numpy array. We want
to see if the convolution can pull out the kernel that is embedded in the image. Of
course, in a real application, we would not know whether or not the kernel is present
in the image, but this example helps us understand the convolution operation step-
by-step. There is a convolution function available in the scipy module.

>>> from scipy.ndimage.filters import convolve
>>> res = convolve(x,kern,mode='constant',cval=0)
>>> res
array([[2, 0, 0, 0, 0, 0],

[0, 3, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0],
[2, 0, 0, 1, 0, 0],
[0, 3, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0]])

Each step of the convolution operation is represented in Fig. 4.74. The kern
matrix (light blue square) is overlaid upon the x matrix and the element-wise
product is computed and summed. Thus, the 0,0 array output corresponds to
this operation applied to the top-left 3 × 3 slice of the input, which results in 3.
The convolution operation is sensitive to boundary conditions. For this example,
we have chosen mode=constant and cval=0 which means that the input
image is bordered by zeros when the kernel sweeps outside of the input image
boundary. This is the simplest option for managing the edge conditions and
scipy.ndimage.filters.convolve provides other practical alternatives.
It is also common to normalize the output of the convolution operation by dividing
the number of pixels in the kernel (i.e., 3 in this example). Another way to think
about the convolution operation is as a matched filter that peaks when it finds a
compatible sub-feature. The final output of the convolution operation is shown in
Fig. 4.75. The values of the individual pixels are shown in color. Notice where the
maximum values of the output image are located on the diagonals.

However, the convolution operation is not a perfect detector and results in
nonzero values for other cases. For example, suppose the input image is a forward
slash diagonal line. The step-by-step convolution with the kernel is shown in
Fig. 4.76 with corresponding output in Fig. 4.77 that looks nothing like the kernel or
the input image.

486 4 Machine Learning

Fig. 4.74 The convolution process that produces the res array. As shown in the sequence, the
light blue kern array is slid around, overlaid, multiplied, and summed upon the x array to generate
the values of shown in the title. The output of the convolution is shown in Fig. 4.75

Fig. 4.75 The res array
output of the convolution is
shown in Fig. 4.74. The
values (in red) shown are the
individual outputs of the
convolution operation. The
grayscale indicates relative
magnitude of the shown
values (darker is greater)

0

0

2

2

4

4

2

2

2

2

3

3

1

We can use multiple kernels to explore an input image. For example, suppose we
have the input image shown on the left in Fig. 4.78. The two kernels are shown in
the upper row, with corresponding outputs on the bottom row. Each kernel is able to
emphasize its particular feature but extraneous features appear in both outputs. We
can have as many outputs as we have kernels but because each output image is as
large as the input image, we need a way to reduce the size of this data.

4.12 Deep Learning 487

Fig. 4.76 The input array is a forward slash diagonal. This sequence shows the step-by-step
convolution operation. The output of this convolution is shown in Fig. 4.77

Fig. 4.77 The output of the
convolution operation shown
in Fig. 4.76. Note that the
output has nonzero elements
where there is no match
between the input image and
the kernel

0 1

1 1

1

1

1

1

1

1

1

1

1

11

1

2

3

4

5

0 2 4

Maximum Pooling To reduce the size of the output images, we can apply
maximum pooling to replace a tiled subset of the image with the maximum pixel
value in that particular subset. The following Python code illustrates maximum
pooling,

>>> def max_pool(res,width=2,height=2):
... m,n = res.shape
... xi = [slice(i,i+width) for i in range(0,m,width)]
... yi = [slice(i,i+height) for i in range(0,n,height)]
... out = np.zeros((len(xi),len(yi)),dtype=res.dtype)
... for ni,i in enumerate(xi):

488 4 Machine Learning

0

0

0 2

0 5 0 5

0 2

1

2

0 2 1 1 1 1

1

1
1

1

1
1

11
1

112

2

113
3

3

3

3

3
3

3

1
1

1

1 1 2

1

1

11

1
2

4

0

2

4

0

1

21

2

3

4

5

0 1 2

Input image

kernel1

kernel1 output kernel2 output

kernel2

1

1 1

1

1 1

11

1

11

1

1

1

1 1

1

1

3 4 5

Fig. 4.78 Given two kernels (upper row) and the input image on the left, the output images are
shown on the bottom row. Note that each kernel is able to emphasize its feature on the input
composite image but other extraneous features appear in the outputs

... for nj,j in enumerate(yi):

... out[ni,nj]= res[i,j].max()

... return out

...

Programming Tip

The slice object provides programmatic array slicing. For example,
x[0,3]=x[slice(0,3)]. This means you can separate the slice
from the array, which makes it easier to manage.

Pooling reduces the dimensionality of the output of the convolution and makes
stacking convolutions together computationally feasible. Figure 4.79 shows the
output of the max_pool function on the indicated input images.

Rectified Linear Activation Rectified linear activation units (ReLUs) are neural
network units that implement the following activation function,

r(x) =
{

x if x > 0

0 otherwise

To use this activation properly, the kernels in the convolutional layer must be scaled
to the {−1, 1} range. We can implement our own rectified linear activation function
using the following code,

4.12 Deep Learning 489

Fig. 4.79 The max_pool
function reduces the size of
the output images (left
column) to the images on the
right column. Note that the
pool size is 2x2 so that the
resulting pooled images are
half the size of the original
images in each dimension

res1

0

0

2

2

4

0

0

1

1

2

0

1

2

2

0 1 24

0 2 4

0

2

4

res2

max_pool(res1)

max_pool(res2)

1 1
11

1 1
1

1 1

1

11

1 1

1 1

11

11
1

1
1

1 1
1

11

1
1

1
1

1
1

1
1

1
1

1 1

2

2

2

2

3

3
3

3
3

3
3

3 3

3

3

3

3

3

>>> def relu(x):
... 'rectified linear activation function'
... out = np.zeros(x.shape,dtype=x.dtype)
... idx = x>=0
... out[idx]=x[idx]
... return out
...

Now that we understand the basic building blocks, let us investigate how the
operations fit together. To create some training image data, we use the following
function to create some random backward and forward slashed images as shown
in Fig. 4.80. As before, we have the scaled kernels shown in Fig. 4.81. We are
going to apply the convolution, max-pooling, and rectified linear activation function
sequence step-by-step and observe the outputs at each step.

>>> def gen_rand_slash(m=6,n=6,direction='back'):
... '''generate random forward/backslash images.
... Must have at least two pixels'''
... assert direction in ('back','forward')
... assert n>=2 and m>=2
... import random
... out = -np.ones((m,n),dtype=float)
... i = random.randint(2,min(m,n))
... j = random.randint(-i,max(m,n)-1)
... t = np.diag([1,]*i,j)
... if direction == 'forward':
... t = np.flipud(t)
... try:
... assert t.sum().sum()>=2
... out[np.where(t)]=1
... return out
... except:
... return gen_rand_slash(m=m,n=n,direction=direction)
...
>>> # create slash-images training data with classification id 1 or 0
>>> training=[(gen_rand_slash(),1) for i in range(10)] + \
... [(gen_rand_slash(direction='forward'),0) for i in range(10)]

490 4 Machine Learning

Fig. 4.80 The training
dataset for our convolutional
neural network. The forward
slash images are labeled
category 0 and the backward
slash images are category 1

Fig. 4.81 The two scaled
feature kernels for the
convolutional neural network

kern1 kern2

−0.1 −0.1 −0.1

−0.1 −0.1

−0.1−0.1

−0.1−0.1

−0.1 −0.1

0.1

0.1

0.1

0.1

0.1

0.1

Figure 4.82 shows the output of convolving the training data in Fig. 4.80 with
kern1, as shown on the left panel of Fig. 4.81. Note that the following code defines
each of these kernels,

>>> kern1 = (np.eye(3)*2-1)/9. # scale
>>> kern2 = np.flipud(kern1)

The next operation is the activation function for the rectified linear unit with
output shown in Fig. 4.83. Note that all of the negative terms have been replaced
by zeros. The next step is the maximum pooling operation as shown in Fig. 4.84.
Notice that the number of total pixels in the training data has reduced from 36 per
image to 9 per image. With these processed images, we have the inputs we need for
the final classification step.

Convolutional Neural Network Using Keras Now that we have experimented
with the individual operations using our own Python code, we can construct the
convolutional neural network using Keras. In particular, we use the Keras functional
interface to define this neural network because that makes it easy to unpack the
operations at the individual layers.

4.12 Deep Learning 491

Fig. 4.82 The output of
convolving the training data
in Fig. 4.80 with kern1, as
shown on the left panel of
Fig. 4.81

Fig. 4.83 The output of the
rectified linear unit activation
function with the input shown
in Fig. 4.82

>>> from keras import metrics
>>> from keras.models import Model
>>> from keras.layers.core import Dense, Activation, Flatten
>>> from keras.layers import Input
>>> from keras.layers.convolutional import Conv2D
>>> from keras.layers.pooling import MaxPooling2D
>>> from tensorflow.keras.optimizers import SGD
>>> from keras import backend as K
>>> from tensorflow.keras.utils import to_categorical

492 4 Machine Learning

Fig. 4.84 The output of
maximum pooling operation
with the input shown in
Fig. 4.83 for fixed image
kernel kern1

Note that the names of the modules are consistent with their operations. We also
need to tell Keras how to manage the input images,

>>> K.set_image_data_format('channels_first') # image data format
>>> inputs = Input(shape=(1,6,6)) # input data shape

Now we can build the individual convolutional layers. Note the specification of
the activations at each layer and placement of the inputs.‘

>>> clayer = Conv2D(2,(3,3),padding='same',
... input_shape=(1,6,6),name='conv',
... use_bias=False,
... trainable=False)(inputs)

>>> relu_layer= Activation('relu')(clayer)
>>> maxpooling = MaxPooling2D(pool_size=(2,2),data_format='channels_first',
... name='maxpool')(relu_layer)
>>> flatten = Flatten()(maxpooling)
>>> softmax_layer = Dense(2,
... activation='softmax',
... name='softmax')(flatten)
>>> model = Model(inputs=inputs, outputs=softmax_layer)
>>> # inject fixed kernels into convolutional layer
>>> fixed_kernels = [np.dstack([kern1,kern2]).reshape(3,3,1,2)]
>>> model.layers[1].set_weights(fixed_kernels)

Observe that the functional interface means that each layer is explicitly a function
of the previous one. Note that trainable=False for the convolutional layer
because we want to inject our fixed kernels into it at the end. The flatten layer
reshapes the data so that the entire processed image at the point is fed into the
softmax_layer, whose output is proportional to the probability that the image
belongs to either class. The set_weights() function is where we inject our fixed

4.12 Deep Learning 493

kernels. These are not going to be updated by the optimization algorithm because
of the prior trainable=False option. With the topology of the neural network
defined, we now have to choose the optimization algorithm and pack all of this
configuration into the model with the compile step.

>>> lr = 0.01 # learning rate
>>> sgd = SGD(learning_rate=lr, decay=1e-6, momentum=0.9, nesterov=True)
>>> model.compile(loss='categorical_crossentropy',
... optimizer=sgd,
... metrics=['accuracy',
... metrics.categorical_crossentropy])

The metrics specification means that we want the training process to keep
track of those named items. Next, we generate some training data using our
gen_rand_slash function with the associated class of each image (1 or 0). Most
of this code is just shaping the tensors for Keras. The final model.fit() step is
where the internal weights of the neural network are adjusted according to the given
inputs.

>>> # generate some training data
>>> ntrain = len(training)
>>> t=np.dstack([training[i][0].T
... for i in range(ntrain)]).T.reshape(ntrain,1,6,6)
>>> y_binary=to_categorical(np.hstack([np.ones(ntrain//2),
... np.zeros(ntrain//2)]))
>>> # fit the configured model
>>> h=model.fit(t,y_binary,epochs=500,verbose=0)

With that completed, we can investigate the functional mapping of each layer
with K.function. The following creates a mapping between the input layer and
the convolutional layer,

>>> convFunction = K.function([inputs],[clayer])

Now, we can feed the training data into this function as seen in the output of just
the convolutional layer, which is shown (Fig. 4.85),

We can do this again for the pooling layer by creating another Keras function,

>>> maxPoolingFunction = K.function([inputs],[maxpooling])

whose output is shown in Fig. 4.86. We can examine the final output of this network
using the predict function,

>>> fixed_kernels = model.predict(t)
>>> fixed_kernels
array([[0.4104765 , 0.5895235],

[0.50148225, 0.49851784],
[0.16382763, 0.83617234],
[0.24335606, 0.75664395],
[0.34367517, 0.6563248],
[0.12688082, 0.8731192],
[0.43925983, 0.5607402],
[0.20650622, 0.79349375],

494 4 Machine Learning

Fig. 4.85 Compare this to Fig. 4.82. This shows our hand-tooled convolution is the same as that
implemented by Keras

Fig. 4.86 Output of max-pooling layer for fixed kernel kern1. Compare this to Fig. 4.84. This
shows our hand-tooled implementation is equivalent to that by Keras

4.12 Deep Learning 495

[0.50148225, 0.49851784],
[0.12688082, 0.8731192],
[0.6909458 , 0.30905417],
[0.74993294, 0.25006709],
[0.5368913 , 0.46310875],
[0.75481373, 0.24518625],
[0.5368913 , 0.46310875],
[0.7956373 , 0.20436268],
[0.8836856 , 0.11631437],
[0.7956373 , 0.20436268],
[0.39666745, 0.6033326],
[0.741312 , 0.258688]], dtype=float32)

and we can see the weights given to each of the classes. Taking the maximum of
these across the columns gives the following,

>>> np.argmax(fixed_kernels,axis=1)
array([1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])

which means that our convolutional neural network with the fixed kernels did
well predicting the classes of each of our input images. Recall that our model
configuration prevented our fixed kernels from updating in the training process.
Thus, the main work of model training was changing the weights of the final output
layer. We can redo this exercise by removing this constraint and see how the network
performs if it is able to adaptively re-weight the kernel terms as part of training by
changing the trainable keyword argument and then re-build and train the model,
as shown next.

>>> clayer = Conv2D(2,(3,3),padding='same',
... input_shape=(1,6,6),name='conv',
... use_bias=False)(inputs)

>>> relu_layer= Activation('relu')(clayer)
>>> maxpooling = MaxPooling2D(pool_size=(2,2),data_format='channels_first',
... name='maxpool')(relu_layer)
>>> flatten = Flatten()(maxpooling)
>>> softmax_layer = Dense(2,
... activation='softmax',
... name='softmax')(flatten)
>>> model = Model(inputs=inputs, outputs=softmax_layer)
>>> model.compile(loss='categorical_crossentropy',
... optimizer=sgd)
>>> h=model.fit(t,y_binary,epochs=500,verbose=0)
>>> new_kernels = model.predict(t)
>>> new_kernels
array([[5.7992584e-04, 9.9942005e-01],

[2.0522181e-02, 9.7947776e-01],
[3.0357076e-04, 9.9969649e-01],
[3.8909286e-03, 9.9610907e-01],
[1.5166619e-02, 9.8483342e-01],
[3.5102875e-04, 9.9964893e-01],
[1.2327342e-05, 9.9998772e-01],
[6.3458519e-06, 9.9999368e-01],
[2.0522181e-02, 9.7947776e-01],
[3.5102875e-04, 9.9964893e-01],
[9.9289131e-01, 7.1087363e-03],
[9.9987829e-01, 1.2172712e-04],

496 4 Machine Learning

Fig. 4.87 Kernels updated
during the training process.
Compare to Fig. 4.81

Fig. 4.88 Recall that the
second half of the training set
was classified as category 1.
The updated kernels provide a
wider margin for
classification than our fixed
kernels, even though the
ultimate performance is very
similar between them

[9.9026382e-01, 9.7361971e-03],
[9.9617696e-01, 3.8230598e-03],
[9.9026382e-01, 9.7361971e-03],
[9.9812239e-01, 1.8776212e-03],
[9.9886048e-01, 1.1395670e-03],
[9.9812239e-01, 1.8776212e-03],
[9.5428187e-01, 4.5718122e-02],
[9.9982661e-01, 1.7345019e-04]], dtype=float32)

with corresponding max output,

>>> np.argmax(new_kernels,axis=1)
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

The newly updated kernels are shown in Fig. 4.87. Note how different these are
from the original fixed kernels. We can see the change in the respective predictions
in Fig. 4.88. Thus, the benefit of updating the kernels in the training process is
to improve the accuracy overall, but at the cost of interpretability of the kernels
themselves. Nonetheless, it is seldom the case that the kernels are known ahead of
time, as in our artificial example here, so in practice, there may be nothing to really
interpret anyway. Nonetheless, for other problems where there is a target feature
in the data for which good a priori exemplars exist that could serve a kernels, then
priming these kernels early in training may help to tune into those target features,
especially if they are rare in the training data.

4.13 Interpretability 497

4.13 Interpretability

Although machine learning methods are primarily focused on prediction, machine
learning for mission-critical applications often require a justifiable understand-
ing of how features were applied to a specific prediction instance. Indeed, in
some jurisdictions, the law mandates such interpretations. Beyond consequences,
understanding how features interact with predictions allows the machine learning
specialist to retain only significant features and discard superfluous ones, thus saving
computation, storage, and other maintenance costs.

Partial Dependence Plots Interpretation must start with the results of an opaque
optimization process that generates predictions and then somehow convert the
results of this process that humans can understand. Humans easily process visual
information and partial dependence plots (PDP) attempt to display the relative
importance of features visually. This works by showing the marginal effect of a
feature on a particular outcome by averaging over the other features used in the
prediction.

We denote the particular feature of interest as xS and the set of all the other
complementary features, XC . The partial dependence function (PD) is defined as

PD(xS) = EXC
f (xS,XC)

where f is the prediction based on all the features. As usual, this is usually far
too difficult to compute analytically and must be approximated using Monte Carlo
integration that averages over the training data,

PD(xS) ≈ 1

N

n∑

i=1

f (xS, x
(i)
C)

where N is the number of samples and x
(i)
C denotes the ith instance of the

complementary feature set. Because partial dependence integrates over all of the
training data, it describes an overall relationship of the given feature xS and the
predicted outcome. Partial dependence has certain advantages: it is straightforward
to compute and it yields an intuitive visual. On the other hand, if the given feature xS

is strongly correlated with the other complementary features, then the plot cannot
distinguish how the average prediction changes only with xS . Moreover, because
the marginal effects are averaged away, the calculation of the average itself may be
skewed due to outlier or symmetry effects, which can exaggerate or suppress the
value of the given feature of interest, xS . Fortunately, Scikit-learn provides tools to
compute these values.

To get going, let us consider the housing dataset from Scikit-learn,

>>> from sklearn.datasets import fetch_california_housing
>>> d = fetch_california_housing(as_frame=True)
>>> d.data.head()

498 4 Machine Learning

3.5

3.0

2.5

2.0

1.5

2 3 4 5 6 2.0 2.5 3.0 3.5 4.0

Median income ($10,000)

P
re

ic
te

d
ho

us
e

pr
ic

e
($

10
0,

00
0)

Average occupancy
7

Fig. 4.89 Partial dependence plot for a random forest regression on the housing data

MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude

0 8.325 41.000 6.984 1.024 322.000 2.556 37.880 -122.230

1 8.301 21.000 6.238 0.972 2401.000 2.110 37.860 -122.220

2 7.257 52.000 8.288 1.073 496.000 2.802 37.850 -122.240

3 5.643 52.000 5.817 1.073 558.000 2.548 37.850 -122.250

4 3.846 52.000 6.282 1.081 565.000 2.181 37.850 -122.250

To keep it simple, let us consider a random forest regression,

>>> from sklearn.ensemble import RandomForestRegressor
>>> rg = RandomForestRegressor(max_depth=3, random_state=0)
>>> rg.fit(d.data,d.target)
RandomForestRegressor(max_depth=3, random_state=0)

Once we have the regressor fitted, we can compute the partial dependence,

>>> from sklearn.inspection import partial_dependence
>>> pdep = partial_dependence(rg,d.data,[0],kind='average')

The data structure that is returned shows the values of the prediction (house
prices) and the average, which are the values of the partial dependence. The [0]
argument of the function means that our feature of interest is the 0th feature, which
is Median income. The partial dependence is evaluated by default on 100 grid points
for the given feature. This can be changed using the grid_resolution keyword
argument in the function. The resulting partial dependence plot is shown in Fig. 4.89
and indicates that increasing median income is associated with the value of the house
prices prediction. Put another way, predicted increasing house prices is dependent
upon increasing median income, at least as far as this random forest regression is
concerned.

Scikit-learn also provides feature importances, which are a way to gauge, at least
for those models that provide them, how much a particular future influences the
prediction globally,

>>> rg.feature_importances_
array([8.49572874e-01, 3.13355677e-04, 1.86084488e-02, 0.00000000e+00,

7.80734981e-05, 1.30845192e-01, 5.82056545e-04, 0.00000000e+00])

which shows that the 0th feature (median income) is the most important overall.
Note that these feature importances are computed differently than the partial

4.13 Interpretability 499

dependence, so you have to understand the particular calculation for each model.
For example, for random forests, they are computed by keeping track of the
statistics of the accumulated purity changes (i.e., Gini coefficient) for each of the
features. Nonetheless, these can be helpful in determining how to value each feature
for a particular model and dataset. For example, the next most important feature
according to feature_importances_ is the Average occupancy for the data.
We can quickly compute the partial dependence for this features as the following,

>>> pdep = partial_dependence(rg,d.data,[5],kind='average')

and then plot it on the right side of Fig. 4.89. Keep in mind that this shows the
partial dependence of each feature separately and is not accounting for correlation
between the two features. This figure shows that the average occupancy does not
strongly affect the prediction for larger values of occupancy, at least as much as the
prediction is affected by large values of median income. It is possible to compute the
joint partial dependence for a pair of features and then plot it as an image density.
The PartialDependenceDisplay class in Scikit-learn facilitates this kind of
graph.

Individual Conditional Expectation Plots Individual conditional expectation
(ICE) plots are closely related to partial dependence plots but instead of averaging
across values of the complementary features, ICE plots show the dependence of the
prediction on a feature for each x

(i)
C individually on the same graph. Thus PDP is

the average of all of the ICE lines. The distribution of lines is key to dealing with
the lack of independence between feature sets, which are obscured by computing the
average. These are computed using the same function, but with different arguments,

>>> pdice = partial_dependence(rg,d.data.sample(150),[0],
kind='individual')

Figure 4.90 shows the individual lines from the training data. Note that we
subsample the data down to only 150 rows out of the 20,640 rows to reduce clutter.
The average of these lines is the partial dependence. One problem with this plot is
that the predicted values start at different levels, which make it hard to interpret. By
getting all the traces to start at zero and then overlaying the partial dependence, it is
easier to understand the spread as in Fig. 4.91.

Shapley Values Shapley values emerge from cooperative game theory, distant from
the concepts and aims of everyday machine learning. Nonetheless, Shapley values
can help discern feature importances on a per-prediction basis. To develop the main
theory behind Shapley values would take us deep into cooperative game theory, but
we can get a sense for the idea by considering a simple game. Consider a game show
where three players must answer a question with multiple choice answers. The first
player (A) gets the first attempt and can select one of five possible responses or just
pass on the question. If A passes, then the game show host will review one of the
incorrect answers. This means that the next player B has only to choose out of four
possible answers, but can also choose to pass to the final player C. If player B passes,

500 4 Machine Learning

Fig. 4.90 Individual conditional expectation plot for a random forest regression on the housing
data

Fig. 4.91 Centered individual conditional expectation plots for a random forest regression on the
housing data. The partial dependence is overlaid on the individual traces. Compare this to Fig. 4.90

then C will have only three possible answers to choose from and so on. Whoever can
answer the question correctly wins a payoff amount.

It could be that A and C choose to play cooperatively and share equally in the
payoff. Likewise, any pair or all or none of them could play cooperatively (i.e., form
a coalition) and split the payoff. However, instead of splitting the payoff equally,

4.13 Interpretability 501

another way is to split based on the contribution of the individual player to the total
payoff. Shapley values are a way to determine how to split the payoff averaged
over all possible cooperative arrangements. This applies to machine learning by
considering each feature as a player where the payoff is the prediction. Then,
Shapley values can be used to determine how much of the payoff a specific feature
should get. For instance, suppose your prediction value is 100 using three features,
x1, x2, x3 for test instance a1. If the average prediction over all of the instances
is 70, then the problem is to determine how much of the individual features
contributed to the difference of 30. For example, it could be that each of the three
features contributed equally. More likely, the contribution for a particular instance
is dependent on the order that the different features interacted jointly. Because there
are many possible joint interactions (i.e., coalitions) between features, the Shapley
value is the average marginal contribution of a feature value across all possible
coalitions. Obviously, the more the features, the more expensive it is to compute
the Shapley value for all coalitions.

The shap package implements Shapley values and comes with excellent plotting
features and can work with machine learning models in Scikit-learn as well as
others. The first step is to create an explainer for the particular model,

>>> import shap
>>> explainer = shap.TreeExplainer(rg)

and then compute the Shapley value for a particular test instance,

>>> idx = 20 # instance of interest
>>> shap_values = explainer.shap_values(d.data.iloc[idx,:])

>>> shap_values
array([-7.54311256e-01, 3.28829908e-04, -8.21936049e-02, 0.00000000e+00,

1.65724263e-05, -2.42569670e-02, -3.12794276e-03, 0.00000000e+00])

There are as many entries as there are features. Note that some of the values
are negative because Shapley values indicate whether, with respect to a particular
instance, the feature increased or decreased (negative) the value of the prediction.
The shap package comes with truly beautiful visualizations that integrate into
Jupyter Notebook.

Permutation Importance Permutation importance comes with Scikit-learn and,
although computationally expensive, is straightforward to understand. The first step
is to keep a separate set of training data out of the training process. We call this the
validation set and we use it to compute the permutation importance. We fit the model
the usual way with the training data and compute a baseline score. Then, given a
particular column (i.e., feature) from the validation set, we randomly shuffle (i.e.,
permute) the rows for that feature which makes that feature look like noise as far
as the prediction is concerned. Then, the permutation importance is the difference
between the baseline score and the score from shuffling that column. This process
can be repeated multiple times for different shuffles to compute basic statistics for
the permutation importance. The basic implementation is shown below but without
the separation of the validation set,

502 4 Machine Learning

>>> from sklearn.inspection import permutation_importance
>>> r = permutation_importance(rg, d.data, d.target, n_repeats=10)
>>> r.importances_mean
array([1.03206668e+00, 1.95856532e-04, 1.71783822e-02, 0.00000000e+00,

5.23246962e-05, 1.39180824e-01, 4.35646848e-04, 0.00000000e+00])

Note that we trained the model once but permutation importance works if the
model is re-fitted with every shuffle, but it takes substantially longer to compute.
Permutation importance is also not giving a per-predicted instance value for a
particular feature, as with partial dependence or Shapley values. It is less sensitive
to mutually correlated features than partial dependence because shuffling effectively
breaks such correlation feature-by-feature. Additionally, you can choose your metric
or group of metrics for the score in permutation importance.

Notation

Symbol Meaning

σ Standard deviation

μ Mean

V Variance

E Expectation

f (x) Function of x

x → y Mapping from x to y

(a, b) Open interval

[a, b] Closed interval

(a, b] Half-open interval

Δ Differential of

Π Product operator

Σ Summation of

|x| Absolute value of x

‖x‖ Norm of x

#A Number of elements in A

A ∩ B Intersection of sets A, B

A ∪ B Union of sets A, B

A× B Cartesian product of sets A, B

∈ Element of

∧ Logical conjunction

¬ Logical negation

{} Set delimiters

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3

503

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3

504 Notation

P(X|Y) Probability of X given Y

∀ For all

∃ There exists

A ⊆ B A is a subset of B

A ⊂ B A is a proper subset of B

fX(x) Probability density function of random variable X

FX(x) Cumulative density function of random variable X

∼ Distributed according to

∝ Proportional to

� Equal by definition

:= Equal by definition

⊥ Perpendicular to

∴ Therefore

⇒ Implies

≡ Equivalent to

X Matrix X

x Vector x

sgn(x) Sign of x

R Real line

R
n n-dimensional vector space

R
m×n m× n-dimensional matrix space

U(a,b) Uniform distribution on the interval (a, b)

N (μ, σ 2) Normal distribution with mean μ and variance σ 2

as→ Converges almost surely
d→ Converges in distribution
P→ Converges in probability

Tr Sum of the diagonal of a matrix

diag Matrix diagonal

References

1. A. Agresti, Categorical Data Analysis (Wiley, New York, 2003)
2. A. Agresti, An Introduction to Categorical Data Analysis. (Wiley, New York, 2018)
3. E. Alpaydin, Introduction to Machine Learning (Wiley Press, New York, 2014)
4. D. Barber, Bayesian Reasoning and Machine Learning (Cambridge University Press,

Cambridge, 2012)
5. C. Bauckhage, Numpy/scipy recipes for data science: Kernel least squares optimization (1).

researchgate.net, March 2015
6. Z. Brzezniak, T. Zastawniak, Basic Stochastic Processes: a Course Through Exercises.

Springer Undergraduate Mathematics Series (Springer, London, 1999)
7. J. Carpenter, M. Kenward, Multiple Imputation and its Application (Wiley, New York, 2012)
8. O. Certik et al., SymPy: Python library for symbolic mathematics (2016). http://sympy.org/
9. A. Chaudhuri, Modern Survey Sampling (CRC Press, Boca Raton, 2014)

10. R. Christensen, Log-Linear Models and Logistic Regression (Springer Science & Business
Media, Berlin, 2006)

11. H. Cuesta, Practical Data Analysis (Packt Publishing Ltd, Birmingham, 2013)
12. W.L. Dunn, J.K. Shultis, Exploring Monte Carlo Methods (Elsevier Science, Oxford, 2011)
13. W. Feller, An Introduction to Probability Theory and Its Applications: Volume One (Wiley,

New York, 1950)
14. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer Series in Statistics (Springer, New York, 2013)
15. S.G. Heeringa, B.T. West, P.A. Berglund, Applied Survey Data Analysis. Chapman &

Hall/CRC Statistics in the Social and Behavioral Sciences (CRC Press, Boca Raton, 2017)
16. A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis, vol. 46 (Wiley, New

York, 2004)
17. A.J. Izenman, Modern Multivariate Statistical Techniques, vol. 1 (Springer, New York, 2008)
18. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 2. Wiley

Series in Probability and Mathematical Statistics: Applied probability and statistics (Wiley,
New York, 1995)

19. F. Jones, Lebesgue Integration on Euclidean Space. Jones and Bartlett Books in Mathematics
(Jones and Bartlett, Boston, 2001)

20. P. Knottnerus, Sample Survey Theory (3Island Press, Washington, 2002)
21. H. Kobayashi, B.L. Mark, W. Turin, Probability, Random Processes, and Statistical Analysis:

Applications to Communications, Signal Processing, Queueing Theory and Mathematical
Finance. EngineeringPro Collection (Cambridge University Press, Cambridge, 2011)

22. H.P. Langtangen, DocOnce markup language (2020). https://github.com/hplgit/doconce

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3

505

27898 29228 a 27898 29228 a

http://sympy.org/

20133 55795 a 20133 55795 a

https://github.com/hplgit/doconce

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3

506 References

23. H.P. Langtangen, Python Scripting for Computational Science, vol. 3, 3rd edn. Texts in
Computational Science and Engineering (Springer, New York, 2009)

24. P.S. Levy, S. Lemeshow, Sampling of Populations: Methods and Applications. Wiley Series
in Survey Methodology (Wiley, New York, 2013)

25. C. Loader, Local Regression and Likelihood (Springer, New York, 2006)
26. S.L. Lohr, Sampling: Design and Analysis (Duxbury Press, Pacific Grove, 1999)
27. D.G. Luenberger, Optimization by Vector Space Methods. Professional Series (Wiley, New

York, 1968)
28. D.J.C. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge

University Press, Cambridge, 2003)
29. R.A. Maronna, D.R. Martin, V.J. Yohai, Robust Statistics: Theory and Methods. Wiley Series

in Probability and Statistics (Wiley, New York, 2006)
30. W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

(O’Reilly, Newton, 2012)
31. T. Mikosch, Elementary Stochastic Calculus with Finance in View. Advanced Series on

Statistical Science & Applied Probability (World Scientific, Singapore, 1998)
32. A.M.F. Mood, F.A. Graybill, D.C. Boes, Introduction to the Theory of Statistics. International

Student Edition (McGraw-Hill, New York, 1974)
33. E. Nelson, Radically Elementary Probability Theory. Annals of Mathematics Studies

(Princeton University Press, Princeton, 1987)
34. T.E. Oliphant, A Guide to NumPy (Trelgol Publishing, Austin, 2006)
35. F. Perez, B.E. Granger, et al., IPython software package for interactive scientific computing

(2007). http://ipython.org/
36. G.M. Poore, Pythontex: reproducible documents with latex, python, and more. Computat.

Sci. Discov. 8(1), 014010 (2015)
37. W. Richert, Building Machine Learning Systems With Python (Packt Publishing Ltd,

Birmingham, 2013)
38. C. Robert, Monte Carlo Statistical Methods (Springer Science and Business Media, New

York, 2013)
39. T. Rudas, Lectures on Categorical Data Analysis (Springer, New York, 2018)
40. R.E. Schapire, Y. Freund, Boosting Foundations and Algorithms. Adaptive Computation and

Machine Learning (MIT Press, Cambridge, 2012)
41. J. Simonoff, Analyzing Categorical Data (Springer, New York, 2003)
42. G. Strang, Linear Algebra and Its Applications (Thomson, Brooks/Cole, Pacific Grove, 2006)
43. W. Tang, Applied Categorical and Count Data Analysis (CRC Press, Boca Raton, 2012)
44. J. Unpingco, Python Programming for Data Analysis (Springer, New York, 2021)
45. G.J.G. Upton, Categorical Data Analysis by Example (Wiley, New York, 2016)
46. R. Valliant, J.A. Dever, F. Kreuter, Practical Tools for Designing and Weighting Survey

Samples. Statistics for Social and Behavioral Sciences (Springer International Publishing,
New York, 2018)

47. V. Vapnik, The Nature of Statistical Learning Theory. Information Science and Statistics
(Springer, New York, 2000)

48. L. Wasserman, All of Statistics: A Concise Course in Statistical Inference (Springer, New
York, 2004)

49. L. Wilkinson, D. Wills, D. Rope, A. Norton, R. Dubbs, The Grammar of Graphics. Statistics
and Computing (Springer, New York, 2006)

50. C. Wu, M.E. Thompson, Sampling Theory and Practice. ICSA Book Series in Statistics
(Springer International Publishing, Birkhäuser, 2020)

51. D. Zelterman, Models for Discrete Data (Oxford University Press, Oxford, 1999)

 2887 24046 a 2887 24046
a

http://ipython.org/

Index

A
AdaBoost, 459
Almost Sure Convergence, 139
Association test, 185

B
Backpropagation, 466
Backtracking algorithm, 474
Bagging, 456
Bernstein von-Mises theorem, 341
Beta distribution, 101
Bias/Variance trade-off, 382
Boosting, 459
Boosting trees, 398
Breakdown point, 233

C
Cauchy-Schwarz inequality, 65, 73
Censoring, 273
Central limit theorem, 145
Chebyshev Inequality, 130
Chi-squared distribution, 94
Cluster distortion, 453
Complexity penalty, 376
conda package manager, 2
Conditional Expectation Projection, 67
Confidence intervals, 154, 205
Confidence sets, 206
Confusion matrix, 376
Convergence in distribution, 144
Convergence in probability, 141
Convolution, 484
Convolutional Neural Network Using Keras,

490

Cook’s distance, 221
Cox proportional hazards model, 276
Cross-Validation, 379
ctypes, 41
Curse of dimensionality, 260
Cython, 41

D
Delta Method, 157
Dirichlet distribution, 103

E
Exact line search, 473
Expectation Maximization, 279
Explained variance ratio, 439
Exponential Family, 417
Exponentially Weighted Moving Average, 477

F
False-discovery rate, 177
FastICA, 448
Feature engineering, 378
Fisher Exact Test, 178
Functional Deep Learning, 469

G
Gamma distribution, 100
Gauss Markov, 242
Generalized Likelihood Ratio Test, 172
Generalized Linear Models, 416
Generalized Maximum Likelihood Estimators,

231
Generalized PCA, 443
Gradient Boosting, 403

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Unpingco, Python for Probability, Statistics, and Machine Learning,
https://doi.org/10.1007/978-3-031-04648-3

507

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-04648-3

508 Index

H
Hazard functions, 274
Hoeffding Inequality, 131
Huber Functions, 233

I
Idempotent property, 66
Independent Component Analysis, 447
Information entropy, 107, 394
Inner Product, 67
Inverse CDF Method, 118, 120
ipcluster, 44

J
Jensen’s inequality, 134
Jupyter notebook, 21

K
Keras, 462
Kernel Density Estimation, 246
Kernel trick, 437
Kolmogorov-Smirnov test, 269
Kullback-Leibler Divergence, 111

L
Lagrange multipliers, 423
Lasso regression, 431
Lesbesgue integration, 48
Loglinear models, 309

M
Mann-Whitney-Wilcoxon Test, 263
Markov inequality, 128
Maximal margin algorithm, 433
Maximum A Posteriori Estimation, 224
Maximum Pooling, 487
MCAR, 335
Measurable function, 49
Measure, 49
M-estimates, 231
Mini-batch gradient descent, 476
Minimax risk, 147
Minimum mean squared error (MMSE), 67
Missing at random (MAR), 335
Missing not at random (MNAR), 335
Moment generating functions, 114
Momentum, 477
Monte Carlo Sampling Methods, 117
Multi-Layer Perceptron, 463
Multilinear regression, 361
Multinomial distribution, 92

Multiple Imputation, 338
multiprocessing, 43

N
Negative binomial distribution, 105
Negative multinomial distribution, 105
Newton’s method, 472
Neyman-Pearson test, 170
Normal distribution, 91

O
Out-of-sample data, 367

P
Pandas, 24

dataframe, 27
series, 25

Parametric regression models, 276
Perceptron, 457, 461
Permutation test, 175
Plug-in principle, 152
Poisson distribution, 97
Polynomial regression, 362
Probability Proportional to Size Cluster

Sampling, 304
Projection operator, 65
P-Values, 169
Pypy, 42

R
Random forests, 397
Receiver Operating Characteristic, 167
Rectified Linear Activation, 488
Regression regression, 426
Rejection Method, 122
Robust Estimation, 230
runsnakerun, 42

S
SAGE, 29
Sampling without replacement, 296
scipy, 24
Seaborn, 138
Shatter coefficient, 372
Silhouette coefficient, 454
Stochastic gradient descent, 475
Stratified Random Sampling, 306
Strong law of large numbers, 145
Sufficient statistics, 206
Survey sampling, 292
Survival curves, 271
SWIG, 41

Index 509

Sympy, 29
lambdify, 150
Statistics module, 137

T
Theano, 481
Tower property of expectation, 68

U
Uniqueness theorem, 115
universal functions, 4

V
Vapnik-Chervonenkis Dimension, 371

W
Wald Test, 176
Weak law of large numbers, 145

X
xarray, 31

	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Getting Started with Scientific Python
	1.1 Installation and Setup
	1.2 Numpy
	1.2.1 Numpy Arrays and Memory
	1.2.2 Numpy Matrices
	1.2.3 Numpy Broadcasting
	1.2.4 Numpy Masked Arrays
	1.2.5 Floating-Point Numbers
	1.2.6 Numpy Optimizations and Prospectus

	1.3 Matplotlib
	1.3.1 Alternatives to Matplotlib
	1.3.2 Extensions to Matplotlib

	1.4 IPython
	1.5 Jupyter Notebook
	1.6 Scipy
	1.7 Pandas
	1.7.1 Series
	1.7.2 Dataframe

	1.8 Sympy
	1.9 Xarray for High Dimensional Dataframes
	1.10 Interfacing with Compiled Libraries
	1.11 Integrated Development Environments
	1.12 Quick Guide to Performance and Parallel Programming
	1.13 Other Resources

	2 Probability
	2.1 Introduction
	2.1.1 Understanding Probability Density
	2.1.2 Random Variables
	2.1.3 Continuous Random Variables
	2.1.4 Transformation of Variables Beyond Calculus
	2.1.5 Independent Random Variables
	2.1.6 Classic Broken Rod Example

	2.2 Projection Methods
	2.2.1 Weighted Distance

	2.3 Conditional Expectation as Projection
	2.3.1 Appendix

	2.4 Conditional Expectation and Mean Squared Error
	2.5 Worked Examples of Conditional Expectation and Mean Square Error Optimization
	2.5.1 Example
	2.5.2 Example
	2.5.3 Example
	2.5.4 Example
	2.5.5 Example

	2.6 Useful Distributions
	2.6.1 Normal Distribution
	2.6.2 Multinomial Distribution
	2.6.3 Chi-Square Distribution
	2.6.4 Poisson and Exponential Distributions
	2.6.5 Gamma Distribution
	2.6.6 Beta Distribution
	2.6.7 Dirichlet-Multinomial Distribution
	2.6.8 Negative Binomial Distribution
	2.6.9 Negative Multinomial Distribution

	2.7 Information Entropy
	2.7.1 Information Theory Concepts
	2.7.2 Properties of Information Entropy
	2.7.3 Kullback-Leibler Divergence
	2.7.4 Conditional Entropy and Mutual Information
	2.7.5 Cross-Entropy as Maximum Likelihood

	2.8 Moment Generating Functions
	2.9 Monte Carlo Sampling Methods
	2.9.1 Inverse CDF Method for Discrete Variables
	2.9.2 Inverse CDF Method for Continuous Variables
	2.9.3 Rejection Method

	2.10 Sampling Importance Resampling
	2.11 Useful Inequalities
	2.11.1 Markov's Inequality
	2.11.2 Chebyshev's Inequality
	2.11.3 Hoeffding's Inequality
	2.11.4 Jensen's Inequality

	3 Statistics
	3.1 Introduction
	3.2 Python Modules for Statistics
	3.2.1 Scipy Statistics Module
	3.2.2 Sympy Statistics Module
	3.2.3 Other Python Modules for Statistics

	3.3 Types of Convergence
	3.3.1 Almost Sure Convergence
	3.3.2 Convergence in Probability
	3.3.3 Convergence in Distribution
	3.3.4 Limit Theorems

	3.4 Estimation Using Maximum Likelihood
	3.4.1 Setting Up the Coin Flipping Experiment
	3.4.2 Delta Method

	3.5 Hypothesis Testing and P-Values
	3.5.1 Back to the Coin Flipping Example
	3.5.2 Receiver Operating Characteristic
	3.5.3 P-Values
	3.5.4 Test Statistics
	3.5.5 Testing Multiple Hypotheses
	3.5.6 Fisher Exact Test
	3.5.7 Contingency Table Protocols

	3.6 Confidence Intervals
	3.7 Sufficient Statistics
	3.8 Linear Regression
	3.8.1 Extensions to Multiple Covariates

	3.9 Maximum A Posteriori
	3.10 Robust Statistics
	3.11 Bootstrapping
	3.11.1 Parametric Bootstrap

	3.12 Gauss-Markov
	3.13 Nonparametric Methods
	3.13.1 Kernel Density Estimation
	3.13.2 Kernel Smoothing
	3.13.3 Nonparametric Regression Estimators
	3.13.4 Nearest Neighbors Regression
	3.13.5 Kernel Regression
	3.13.6 Curse of Dimensionality
	3.13.7 Nonparametric Tests

	3.14 Survival Analysis
	3.14.1 Survival Curves
	3.14.2 Censoring and Truncation
	3.14.3 Hazard Functions and Their Properties
	3.14.4 Expectations
	3.14.5 Parametric Regression Models
	3.14.6 Cox Proportional Hazards Model

	3.15 Expectation Maximization
	3.16 Survey Sampling
	3.16.1 Unequal Sampling with Replacement for Weighted Totals
	3.16.2 Unequal Sampling for Unweighted Totals
	3.16.3 Unequal Sampling Without Replacement
	3.16.4 Probability Proportional to Size (PPS) Cluster Sampling
	3.16.5 Stratified Random Sampling

	3.17 Log-linear Models
	3.17.1 Poisson and Multinomial Models
	3.17.2 Log-linear Models
	3.17.3 I JK Log-linear Models
	3.17.4 Iterative Proportional Fitting
	3.17.5 Hierarchical Models
	3.17.6 Deviance
	3.17.7 Degrees of Freedom
	3.17.8 Graphical Models
	3.17.9 Model Selection
	3.17.10 Table Raking

	3.18 Missing Data
	3.18.1 Multiple Imputation
	3.18.2 Canonical Example for Multiple Imputation
	3.18.3 Worked Example for Multiple Imputation
	3.18.4 Multivariate Imputation by Chained Equations (MICE)
	3.18.5 Diagnostics

	4 Machine Learning
	4.1 Introduction
	4.2 Python Machine Learning Modules
	4.3 Theory of Learning
	4.3.1 Introduction to Theory of Machine Learning
	4.3.2 Theory of Generalization
	4.3.3 Worked Example for Generalization/Approximation Complexity
	4.3.4 Cross-Validation
	4.3.5 Bias and Variance
	4.3.6 Learning Noise

	4.4 Decision Trees
	4.4.1 Random Forests
	4.4.2 Understanding Boosting Trees

	4.5 Logistic Regression
	4.6 Generalized Linear Models
	4.7 Regularization
	4.7.1 Ridge Regression
	4.7.2 Lasso Regression

	4.8 Support Vector Machines
	4.8.1 Kernel Tricks

	4.9 Dimensionality Reduction
	4.9.1 Generalized PCA
	4.9.2 Independent Component Analysis

	4.10 Clustering
	4.11 Ensemble Methods
	4.11.1 Bagging
	4.11.2 Boosting

	4.12 Deep Learning
	4.12.1 Understanding Gradient Descent
	4.12.2 Image Processing Using ConvolutionalNeural Networks

	4.13 Interpretability

	Notation
	References
	Index

