

Rheinwerk Computing

The Rheinwerk Computing series offers new and established professionals comprehen-

sive guidance to enrich their skillsets and enhance their career prospects. Our publica-

tions are written by the leading experts in their fields. Each book is detailed and hands-on

to help readers develop essential, practical skills that they can apply to their daily work.

Explore more of the Rheinwerk Computing library!

Johannes Ernesti, Peter Kaiser

Python 3: The Comprehensive Guide

2022, 1036 pages, paperback and e-book
www.rheinwerk-computing.com/5566

Philip Ackermann

JavaScript: The Comprehensive Guide

2022, 1292 pages, paperback and e-book
www.rheinwerk-computing.com/5554

Sebastian Springer

Node.js: The Comprehensive Guide

2022, 834 pages, paperback and e-book
www.rheinwerk-computing.com/5556

Bernd Öggl, Michael Kofler

Git: Project Management for Developers and DevOps Teams

2023, 407 pages, paperback and e-book
www.rheinwerk-computing.com/5555

Sebastian Springer

React: The Comprehensive Guide

2024, 676 pages, paperback and e-book
www.rheinwerk-computing.com/5705

www.rheinwerk-computing.com

Veit Steinkamp
Python for

Engineering and

Scientific Computing

Imprint

This e-book is a publication many contributed to, specifically:

Editor Meagan White
Acquisitions Editor Hareem Shafi
German Edition Editor Christoph Meister
Translation Winema Language Services, Inc.
Copyeditor Yvette Chin
Cover Design Graham Geary
Photo Credit iStockphoto: 137993550/© OGphoto, 1336159068/© cemagraphics
Layout Design Vera Brauner
Production E-Book Kelly O’Callaghan
Typesetting E-Book SatzPro, Germany

We hope that you liked this e-book. Please share your feedback with us and read the
Service Pages to find out how to contact us.

Library of Congress Cataloging-in-Publication Control Number: 2024930350

ISBN 978-1-4932-2559-0 (print)
ISBN 978-1-4932-2560-6 (e-book)
ISBN 978-1-4932-2561-3 (print and e-book)

© 2024 by Rheinwerk Publishing, Inc., Boston (MA)
1st edition 2024
1st German edition published 2023 by Rheinwerk Verlag, Bonn, Germany

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed to
accept and adhere to the copyrights. You are entitled to use this e-book for personal pur-
poses. You may print and copy it, too, but also only for personal use. Sharing an electronic
or printed copy with others, however, is not permitted, neither as a whole nor in parts. Of
course, making them available on the Internet or in a company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section
Legal Notes.

This e-book copy contains a digital watermark, a signature that indicates which person
may use this copy:

Contents

1 Introduction 17

1.1 Development Environments .. 18

1.1.1 IDLE .. 18

1.1.2 Thonny ... 19

1.1.3 Spyder ... 20

1.1.4 Pip .. 21

1.2 The Modules of Python ... 22

1.2.1 NumPy .. 22

1.2.2 Matplotlib ... 23

1.2.3 SymPy ... 24

1.2.4 SciPy .. 24

1.2.5 VPython ... 25

1.3 The Keywords of Python .. 26

1.4 Your Path through This Book ... 27

2 Program Structures 29

2.1 Linear Program Structures ... 29

2.1.1 Linear Programs without Function Calls .. 30

2.2 Functions ... 37

2.2.1 Built-In Functions ... 38

2.2.2 Functions without Parameters and without Return Values 39

2.2.3 Functions with Parameters and a Return .. 40

2.2.4 Functions with Multiple Return Values .. 42

2.2.5 Functions Call Other Functions ... 44

2.3 Branching Structures ... 45

2.3.1 Single Selection ... 46

2.3.2 Multiple Selection .. 47

2.4 Repetitive Structures ... 50

2.4.1 The while Loop .. 50

2.4.2 The for Loop .. 56
7

Contents
2.5 Data Structures ... 63

2.5.1 Tuples ... 63

2.5.2 Lists ... 66

2.5.3 Dictionaries .. 72

2.5.4 Sets .. 75

2.6 Functional Program Style ... 76

2.7 Object-Oriented Program Style ... 79

2.7.1 Objects and Classes ... 80

2.7.2 Inheritance .. 84

2.8 Project Task: Dimensions of a Shaft .. 86

2.9 Tasks .. 88

3 Numerical Calculations Using NumPy 91

3.1 NumPy Functions ... 91

3.1.1 Creating One-Dimensional Arrays Using arange() and linspace() 91

3.1.2 Creating Two-Dimensional Arrays Using array() ... 94

3.1.3 Slicing ... 96

3.1.4 Mathematical NumPy Functions .. 97

3.1.5 Statistical NumPy Functions ... 99

3.2 Vectors .. 101

3.2.1 Addition of Vectors .. 101

3.2.2 Scalar Product .. 103

3.2.3 Cross Product ... 105

3.2.4 Triple Product ... 107

3.2.5 Dyadic Product .. 108

3.3 Matrix Multiplication .. 109

3.3.1 Chain Shape with B Parameters .. 113

3.3.2 Usage Example: Calculating the Energy of a Rotating Rigid Body

in Space .. 114

3.4 Linear Systems of Equations ... 116

3.4.1 Systems of Equations with Real Coefficients .. 116

3.4.2 Systems of Equations with Complex Coefficients 118

3.5 Project Task: Lightning Protection System .. 121

3.6 Tasks .. 124
8

Contents
4 Function Plots and Animations
Using Matplotlib 125

4.1 2D Function Plots ... 125

4.1.1 Basic Structure of a Function Plot ... 125

4.1.2 Gridlines .. 132

4.1.3 Labels .. 134

4.1.4 Line Styles ... 137

4.1.5 Designing Axes .. 138

4.1.6 Coloring Areas ... 144

4.1.7 Subplots ... 147

4.1.8 Parameter Representation .. 154

4.1.9 Changing Function Parameters Interactively ... 158

4.1.10 Contour Plots ... 163

4.2 3D Function Plots ... 166

4.2.1 Helical Line .. 166

4.2.2 Circular Ring ... 168

4.2.3 Combining a 3D Plot with a Contour Plot .. 169

4.3 Vectors .. 171

4.3.1 Vector Addition ... 171

4.3.2 Vector Field ... 173

4.4 Displaying Figures, Lines, and Arrows .. 174

4.4.1 Rectangles ... 174

4.4.2 Circles and Lines .. 176

4.4.3 Arrows .. 178

4.4.4 Polygons .. 179

4.4.5 Usage Example: A Metal Rod in a Magnetic Field 181

4.5 Animations ... 182

4.5.1 A Simple Animation: Shifting a Sine Function ... 183

4.5.2 Animated Oblique Throw .. 186

4.5.3 Animated Planetary Orbit .. 188

4.6 Project Task: Stirling Cycle .. 190

4.7 Project Task: Animating a Thread Pendulum ... 197

4.8 Project Task: Animating a Transmission ... 201

4.9 Tasks .. 204
9

Contents
5 Symbolic Computation Using SymPy 207

5.1 Basic Mathematical Operations .. 211

5.1.1 Addition ... 211

5.1.2 Multiplication of Terms .. 212

5.1.3 Multiplication of Linear Factors ... 213

5.1.4 Division .. 214

5.1.5 Exponentiation .. 215

5.1.6 Usage Example: Analyzing an Electrical Power

Transmission System .. 216

5.2 Multiplying Matrixes ... 217

5.2.1 Calculation Rule .. 217

5.2.2 Transmission Function of a Catenary Circuit .. 218

5.3 Equations .. 220

5.3.1 Linear Systems of Equations ... 221

5.3.2 Nonlinear Systems of Equations ... 223

5.4 Simplifications of Terms ... 226

5.5 Series Expansion .. 227

5.6 Partial Fractions ... 228

5.7 Continued Fractions ... 231

5.8 Limits ... 234

5.8.1 Limits of Sequences ... 234

5.8.2 Limits of Functions ... 236

5.8.3 Differential Quotient .. 237

5.9 Differentiation .. 238

5.9.1 Usage Example: Curve Sketching ... 239

5.10 Integrations .. 240

5.10.1 Indefinite Integral .. 241

5.10.2 Definite Integral .. 242

5.10.3 Usage Example: Stored Electrical Energy ... 243

5.11 Differential Equations ... 245

5.11.1 Linear First-Order Differential Equations ... 246

5.11.2 General Solution of a Second-Order Differential Equation 250

5.11.3 Special Solution of a Second-Order Differential Equation 252

5.12 Laplace Transform ... 254

5.12.1 Solving Differential Equations ... 255

5.12.2 Analyzing Networks with Transmission Functions 259

5.13 Project Task: Step Response of a Catenary Circuit ... 262
10

Contents
5.14 Project Task: Bending a Beam That Is Fixed at One End 265

5.14.1 Second Moment of Area .. 265

5.14.2 Equation of the Bending Line ... 267

5.15 Project Task: Reaction Kinetics .. 270

5.16 Project Task: Dual Mass Oscillator ... 274

5.17 Tasks .. 277

6 Numerical Computations and Simulations
Using SciPy 279

6.1 Numerical Computation of Zeros ... 280

6.2 Optimizations ... 282

6.3 Interpolations .. 284

6.4 Numerical Differentiation ... 286

6.4.1 Methods of Numerical Differentiation ... 286

6.4.2 Drawing a Tangent Slope .. 287

6.4.3 Derivative of a Sine Function .. 289

6.4.4 Usage Example: Free Fall ... 291

6.5 Numerical Integration ... 293

6.5.1 Methods of Numerical Integration .. 293

6.5.2 Definite Integral .. 295

6.5.3 Integrating a Constant ... 296

6.5.4 Usage Example: Free Fall ... 298

6.5.5 Improper Integral ... 300

6.5.6 Calculating Arc Lengths .. 302

6.5.7 Volume and Surfaces of Rotating Bodies ... 303

6.5.8 Double Integrals ... 305

6.5.9 Triple Integrals ... 306

6.6 Solving Differential Equations Numerically .. 307

6.6.1 Numerical Solution of Differential Equations .. 307

6.6.2 First-Order Linear Differential Equation ... 312

6.6.3 Second-Order Linear Differential Equation ... 315

6.6.4 Nonlinear Second-Order Differential Equation .. 318

6.6.5 Second-Order Differential Equation System:

Coupled Spring-Mass System ... 322

6.6.6 Nonlinear Second-Order Differential Equation System:

Double Pendulum .. 325
11

Contents
6.7 Discrete Fourier Transform ... 328

6.7.1 Basic Use of the Fast Fourier Transform Algorithm 329

6.7.2 Frequency Spectra of Non-Sinusoidal Periodic Signals 330

6.7.3 Reconstructing a Noisy Signal .. 332

6.8 Writing and Reading Sound Files ... 334

6.8.1 Generating and Saving Signals .. 334

6.8.2 Reading and Displaying Signals ... 335

6.9 Signal Processing ... 337

6.9.1 Frequency Response of a Butterworth Lowpass .. 337

6.9.2 Frequency Response of a Crossover ... 339

6.9.3 Filtering Signals ... 341

6.10 Project Task: Simulation of a Rolling Bearing Damage .. 342

6.11 Project Task: Predator-Prey Model .. 345

6.11.1 Exponential Growth .. 346

6.11.2 Logistic Growth ... 346

6.11.3 Predator-Prey Relationship for Exponential Growth 346

6.11.4 Predator-Prey Relationship for Logistic Growth .. 347

6.12 Project Task: Simulation of an Epidemic ... 349

6.13 Tasks .. 352

7 3D Graphics and Animations Using VPython 355

7.1 The Coordinate System ... 356

7.2 Basic Shapes, Points, and Lines ... 358

7.2.1 Cylinder .. 359

7.2.2 Cuboid .. 361

7.2.3 Points .. 363

7.2.4 Lines .. 364

7.2.5 Sphere .. 366

7.2.6 Penetration ... 369

7.2.7 Composite Bodies ... 370

7.3 Bodies in Motion .. 371

7.3.1 Vertical Movement .. 372

7.3.2 Horizontal Movement .. 373

7.3.3 Movement in Space ... 374

7.3.4 Composite Motion ... 377

7.3.5 Rotational Motion .. 378

7.3.6 Random Motion .. 383
12

Contents
7.4 Animation of Oscillations .. 385

7.4.1 Simple Pendulum ... 385

7.4.2 Spring Pendulum .. 387

7.5 Event Processing .. 389

7.6 Project Task: Animation of a Coupled Spring Pendulum 392

7.7 Project Task: Animation of Two Coupled Simple Pendulums 395

7.8 Tasks .. 398

8 Computing with Complex Numbers 399

8.1 Mathematical Operations ... 400

8.2 Euler’s Formula ... 402

8.2.1 Symbolic Method .. 403

8.3 Calculating with Complex Resistors ... 403

8.4 Function Plots with Complex Magnitudes ... 406

8.4.1 Complex Frequency Response of a Series Resonant Circuit 406

8.4.2 Locus Curves ... 408

8.5 Project Task: Electric Power Transmission System ... 410

8.5.1 Task ... 411

8.5.2 Equivalent Circuit Diagram of a Three-Phase Power Line 413

8.6 Tasks .. 415

9 Statistical Computations 417

9.1 Generating, Saving, and Reading Measurement Values 419

9.1.1 Generating Measurement Values .. 419

9.1.2 Converting a Measurement Series into a Table ... 420

9.1.3 Writing Measurement Values to a File ... 422

9.1.4 Reading Measurement Values from a File ... 423

9.2 Frequency Distribution ... 423

9.2.1 Frequency Tables .. 424

9.2.2 Histograms ... 425

9.3 Location Parameters .. 426

9.3.1 Arithmetic Mean ... 427

9.3.2 Mode, Median, Harmonic Mean, and Geometric Mean 428
13

Contents
9.4 Dispersion Parameters .. 430

9.5 Normal Distribution ... 434

9.5.1 Graphical Representation of the Density Function 434

9.5.2 Probability Distribution .. 435

9.6 Skew .. 437

9.7 Regression Analysis .. 439

9.7.1 Computing the Regression Parameters .. 439

9.7.2 Representing the Scatter Plot and the Regression Line 442

9.8 Project Task: Simulation of a Quality Control Chart .. 443

9.9 Tasks .. 448

10 Boolean Algebra 449

10.1 Logical Operations .. 450

10.1.1 Conjunction .. 450

10.1.2 Disjunction ... 451

10.1.3 Negation .. 452

10.2 Laws of Boolean Algebra .. 453

10.2.1 Simple Postulates ... 453

10.2.2 De Morgan’s Laws .. 454

10.2.3 Distributive Law .. 455

10.3 Circuit Synthesis ... 456

10.3.1 Simplifying Logic Functions by Factoring Out .. 456

10.3.2 Simplification Using the Disjunctive Normal Form 457

10.3.3 Simplification Using the Conjunctive Normal Form 460

10.4 Project Task: Seven-Segment Coding ... 460

10.5 Tasks .. 463

11 Interactive Programming Using Tkinter 465

11.1 Interactions with Command Buttons, Textboxes, and Labels 466

11.1.1 Labels .. 467

11.1.2 Textboxes and Command Buttons ... 468

11.2 The Layout Manager of Tkinter ... 468

11.2.1 The pack Method .. 470
14

Contents
11.2.2 The grid Method ... 472

11.2.3 Summary ... 474

11.3 Selection with Radio Button ... 475

11.4 Slider .. 477

11.5 The Canvas Drawing Area .. 478

11.5.1 Representing Lines ... 478

11.5.2 Function Plots .. 480

11.5.3 Querying Mouse Coordinates .. 482

11.6 Project Task: Rotational Frequency Control of an Externally

Excited DC Motor ... 484

11.7 Tasks .. 496

Appendices 497

A.1 Glossary: Basic Applied Computer Science Terminology 497

A.2 Derivatives of Elementary Functions .. 498

A.3 Antiderivative of Elementary Functions ... 499

A.4 Fourier Series of Important Electrotechnical Voltage Characteristics 500

A.5 Correspondence Table of Important Inverse Laplace Transforms 500

A.6 Bibliography ... 501

The Author ... 503

Index .. 505

Service Pages ..  I
Legal Notes ..  II
15

Chapter 1

Introduction

This chapter provides a brief overview of the extensibility, application

areas, and functionality of the Python programming language.

If you need to perform extensive calculations for your scientific work and also want to

present the results in a graphically appealing way, then you should seriously consider

using Python. Python is a programming language whose functionality is similar to that

of MATLAB when extended with appropriate modules. In addition, Python and all its

extension modules are provided free of charge. Using Python, you can, for example,

solve systems of equations, create function plots, differentiate, integrate, and also

solve differential equations. You can also create graphical user interfaces (GUIs). For

almost every problem in engineering and natural sciences, solutions exist that not

only cover a wide range of applications, but also excel in their user-friendliness and

performance.

The Python programming language was developed in the early 1990s by Dutchman

Guido van Rossum at Centrum voor Wiskunde & Informatica (CWI) in Amsterdam. Its

name has nothing to do with the snake but refers instead to the British comedy group

Monty Python.

The particular advantages and features of this programming language include the fol-

lowing:

� Python is an easy-to-learn and powerful programming language.

� It provides efficient data structures.

� It also allows object-oriented programming (OOP).

� It has a clear syntax and dynamic typing.

� Python programs are compiled using an interpreter and are therefore suitable for

the rapid development of prototypes.

� Python is available for Linux, macOS, and Windows.

� Python can be extended by modules.

The module concept is the cornerstone and one of Python’s outstanding strengths.

A module is a component of a software system and represents a functionally self-

contained unit that provides a specific service. For a definable scientific problem, a

module that is tailored precisely to this problem is provided in each case. In this book,

I will introduce you to the NumPy, Matplotlib, SymPy, SciPy, and VPython modules.
17

1 Introduction
1.1 Development Environments

A development environment is a software program that consists of a text editor, a

debugger, and an interpreter. The text editor of a development environment supports

a programmer in writing programs, for example, with features like syntax highlight-

ing, automatic indentation of the source code, and so on. The debugger helps pro-

grammers find errors, and the interpreter executes the program’s statements. Of the

many development environments that can be used to develop Python programs, only

the Integrated Development and Learning Environment (IDLE), Thonny, and Spyder

development environments will be briefly presented here.

1.1.1 IDLE

The abbreviation IDLE stands for “Integrated Development and Learning Environ-

ment.” Figure 1.1 shows the user interface for IDLE.

Figure 1.1 The IDLE Development Environment

IDLE is part of the standard Python download. During the installation of Python, IDLE

is installed at the same time as the Pip package manager. You can download the latest

version of Python for the Linux, macOS, and Windows operating systems at https://

www.python.org/downloads/. Then, you’ll need to install the NumPy, Matplotlib,

SymPy, SciPy, and VPython modules individually using the Pip package manager (Sec-

tion 1.1.4). This step may cause problems if you install a new Python version: The mod-

ules can no longer be imported with the new IDLE version, and the programs will no

longer run. I will show you a way to fix this problem in Section 1.1.4. If the installation

of the Python modules fails, I recommend you use the Thonny development environ-

ment.
18

https://www.python.org/downloads/
https://www.python.org/downloads/

1.1 Development Environments
When you click Run • Python Shell, the Python shell will open. Next to the >>> input

prompt, you can directly enter Python commands or mathematical expressions, such

as 2+3, 3*5, or 7/5. Note that you must complete each entry by pressing the (Return) key.

1.1.2 Thonny

Compared to the professional solutions, Thonny is a rather simply designed develop-

ment environment with a comparatively small range of functions. However, it is par-

ticularly suitable for programming beginners due to its ease of use. Using Thonny, you

can run and test all the sample programs discussed in this book. Figure 1.2 shows the

user interface.

Figure 1.2 The Thonny Development Environment

Thonny is available for Linux, macOS, and Windows and can be downloaded at https://

thonny.org.

The source code of the program must be entered into the text editor (upper left area).

Once the program has been started via the (F5) function key or by clicking the Start

button, a window opens where you’ll need to enter the file name of the program. The
19

https://thonny.org
https://thonny.org

1 Introduction
result of numerical calculations is then output in the Command Line window at the bot-

tom left of the Python shell. Each function plot of Matplotlib programs will be output

in a separate window. In the shell, also referred to as the Python console, you can also

enter Python commands directly. The Assistant in the main window, on the right, sup-

ports you in terms of troubleshooting, although you should temper your expectations

about its capabilities.

A particularly important feature of Thonny is that you can easily install and update the

NumPy, Matplotlib, SymPy, SciPy, and VPython modules. For these tasks, all you need

to do is open the Tools • Manage Packages dialog box, as shown in Figure 1.3. Then, in

the text box in the top-left corner, enter the name of the module you want to install

and click Install or Update.

Figure 1.3 Installing Modules

To remove a module, you must select the corresponding module in the pane on the

left. Then, the Uninstall command button appears to the right of the Install command

button. One notable advantage of the package manager in Thonny is that you can also

test older versions of all available modules. For this task, simply click the ... command

icon to the right of the Install button, which will open a window where you can select

the desired version of the module.

1.1.3 Spyder

Spyder is the development environment of the Anaconda distribution of Python.

Except for VPython, the modules covered in this book—NumPy, Matplotlib, SymPy,

and SciPy—are already built in.
20

1.1 Development Environments
Figure 1.4 The Spyder Development Environment

Spyder is available as a free download for Linux, macOS, and Windows at https://

www.spyder-ide.org.

To run an animation using a Matplotlib program, you must select Automatic as the

backend in the settings under IPython Console • Graphics. After starting the program, a

separate window will open where the animation will run. Matplotlib programs contain-

ing slider controls can also be executed interactively only with this option.

Spyder is an immensely powerful development environment. However, one disadvan-

tage is that the subsequent installation of modules that are not installed by default,

such as VPython, can be difficult for beginners. For more information on installing

Python modules, see the documentation for Spyder at https://www.spyder-ide.org.

1.1.4 Pip

To use development environments other than Thonny or Spyder, you can install

Python modules using Pip. Pip is not a development environment but the package

manager for Python that installs modules from the Python Package Index (PyPI) (https://

pypi.org/). Pip allows you to download and update modules easily—when you use

Python, Pip is a particularly important tool.

If you have installed Python and want to add only the NumPy module, for example,

you can enter the following command in a terminal on Windows, Linux, or macOS:
21

https://www.spyder-ide.org
https://www.spyder-ide.org
https://www.spyder-ide.org
https://pypi.org/
https://pypi.org/

1 Introduction
pip install numpy

The following command enables you to update an existing NumPy installation:

pip install –-upgrade numpy

If you use IDLE (e.g., version 3.9) and install a new version of Python (e.g., 3.11), then the

previously installed Python modules will no longer be imported into the updated ver-

sion. In this case, you should try installing via pip3.11 install numpy.

For more information about using Pip, see https://pypi.org/project/pip. If the installa-

tion or update of the Python modules fails, I recommend using the Thonny develop-

ment environment instead.

1.2 The Modules of Python

For our first look at the capabilities and features of the module concept in Python, I first

want to describe the five modules in a keyword-like manner. Instead of module, the

terms library or software library are also commonly used. The capabilities of Python are

best illustrated by using short sample programs. Of course, you don’t need understand

the source code shown in this section yet. After all, understanding is what the other

chapters are for.

1.2.1 NumPy

The NumPy module (numerical Python) enables you to perform extensive numerical

calculations. For example, you can solve linear systems of equations, even with com-

plex numbers. Listing 1.1 shows a simple vector calculus program.

01 import numpy as np
02 A=np.array([1, 2, 3])
03 B=np.array([4, 5, 6])
04 print("Vector A:",A)
05 print("Vector B:",B)
06 print("Total A+B:",A+B)
07 print("Product A*B:",A*B)
08 print("Cross product :",np.cross(A,B))
09 print("Scalar product:",np.dot(A,B))

Listing 1.1 A NumPy Program

Output

Vector A: [1 2 3]
Vector B: [4 5 6]
22

https://pypi.org/project/pip

1.2 The Modules of Python
Total A+B: [5 7 9]
Product A*B: [4 10 18]
Cross product : [-3 6 -3]
Scalar product: 32

The NumPy module is described in Chapter 3.

1.2.2 Matplotlib

The Matplotlib module allows you to display mathematical functions, histograms, and

many other diagram types as well as to simulate and animate physical processes. The

graphical design options are remarkably diverse and rich in detail. Listing 1.2 shows a

simple example of the function plot of a polynomial.

01 import numpy as np
02 import matplotlib.pyplot as plt
03 x=np.arange(-2,6,0.01)
04 y=x**3-7*x**2+7*x+15
05 plt.plot(x,y)
06 plt.show()

Listing 1.2 Function Plot with Matplotlib

Output

Figure 1.5 shows the output of the function plot.

Figure 1.5 A Function Plot Created Using Matplotlib

The Matplotlib module is discussed in detail in Chapter 4.
23

1 Introduction
1.2.3 SymPy

Using SymPy (symbolic Python), you can calculate integrals or derivatives symboli-

cally or solve differential equations symbolically. A simplification of mathematical

terms is also possible (and much more). Listing 1.3 shows a simple example of symbolic

differentiation and integration.

01 from sympy import *
02 x=symbols("x")
03 y=x**3-7*x**2+7*x+15
04 y_1=diff(y,x,1)
05 y_2=diff(y,x,2)
06 y_3=diff(y,x,3)
07 Y=integrate(y,x)
08 print("1. Derivative:",y_1)
09 print("2. Derivative:",y_2)
10 print("3. Derivative:",y_3)
11 print(" Integral :",Y)

Listing 1.3 Symbolic Differentiation and Integration Using SymPy

Output

1. Derivative: 3*x**2 - 14*x + 7
2. Derivative: 2*(3*x - 7)
3. Derivative: 6

Integral : x**4/4 - 7*x**3/3 + 7*x**2/2 + 15*x

The SymPy module is described in detail in Chapter 5.

1.2.4 SciPy

SciPy (scientific Python) allows you to numerically differentiate, integrate, and numer-

ically solve systems of differential equations. SciPy is as comprehensive as it is versa-

tile. The capabilities of SciPy can only be partially described in this book. Listing 1.4

shows a simple example of a numerical integration program.

01 import scipy.integrate as integral
02 def f(x):
03 return x**2
04 A=integral.quad(f,0,5)
05 print("Area A=",A[0])

Listing 1.4 Numerical Integration Using SciPy
24

1.2 The Modules of Python
Output

Area A= 41.66666666666666

The SciPy module is described in Chapter 6.

1.2.5 VPython

Using VPython, you can display fields in a 3D view or even animate their movements

in 3D space. As of version 7, the animations are displayed in the standard browser after

the program starts. Listing 1.5 shows an example of how you can program the anima-

tion of a bouncing ball.

01 from vpython import *
02 r=1. #radius
03 h=5. #height
04 scene.background=color.white
05 scene.center=vector(0,h,0)
06 box(pos=vector(0,0,0),size=vector(2*h,r/2,h), color=color.green)
07 ball = sphere(radius=r, color=color.yellow)
08 ball.pos=vector(0,2*h,0) #drop height
09 ball.v = vector(0,0,0) #initial velocity
10 g=9.81
11 dt = 0.01
12 while True:
13 rate(100)
14 ball.pos = ball.pos + ball.v*dt
15 if ball.pos.y < r:
16 ball.v.y = -ball.v.y
17 else:
18 ball.v.y = ball.v.y - g*dt

Listing 1.5 Animation of a Bouncing Ball

Output

Figure 1.6 shows a snapshot of the animation. The VPython module is described in

Chapter 7. Of course, not all the capabilities of the Python modules we’ve mentioned

can be treated exhaustively in this book. If you miss a particular topic, I recommend

referring to the online documentation as a supplemental source of information. A

module’s maintainers should have a website where you’ll find tutorials for each mod-

ule to get you started, including complete module descriptions.
25

1 Introduction
Figure 1.6 A Bouncing Ball Animation Created Using VPython

The chapters after Chapter 7 describe additional possible uses of the modules in greater

detail with a focus on the practical application options.

Chapter 8 describes how you can compute alternating current (AC) electrical networks

using the symbolic method. In the project assignment, you’ll learn how to size an elec-

trical power transmission system.

Chapter 9 focuses primarily on the simulation of a quality control chart. You’ll learn

how to generate normally distributed random numbers and save them to a file. This

data is then read again to calculate its statistical characteristics, such as arithmetic

mean and standard deviation.

Chapter 10 describes how to set up truth tables and simplify complex logical circuits

using SymPy.

In Chapter 11, you’ll learn how to program GUIs using Python. The project task shows

you how to simulate simple control circuits.

1.3 The Keywords of Python

Whenever you learn a new programming language, the first thing you must know are

the keywords defined in that language. Keywords are the reserved words of a program-

ming language. They have a specific meaning in the programming language definition

and must therefore not be used as variable names in a program. Python has 35 key-

words, which you can view by entering the following commands in the Python console:

>>> import keyword

>>> a=keyword.kwlist

>>> print(a)
26

1.4 Your Path through This Book
You’ll receive the following output:

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class',

'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from',

'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass',

'raise', 'return', 'try', 'while', 'with', 'yield']

Similarly, the following statement will output the number of keywords:

>>> print(len(a))

35

You don’t need to memorize all the keywords at first. For better overview of Python’s

keywords, a useful exercise is to first arrange them according to their functionalities.

Table 1.1 provides an overview of the most important keywords arranged according to

functional criteria.

With a few keywords like if, else, for, and while, along with the built-in Python func-

tion print(), you can already write simple Python programs.

1.4 Your Path through This Book

How should you read this book? Basically, you can read the individual chapters inde-

pendently of each other. If you already know the basic structures of Python, then you

Conditional

Statements

Loops Classes, Modules,

and Functions

Error

Handling

if for class try

else in def except

elif while global finally

not break lambda raise

or as nonlocal assert

and continue yield with

is import

True return

False from

None

Table 1.1 The Most Important Keywords in Python
27

1 Introduction
can skip Chapter 2. If just starting to learn, you must read that chapter first as a prereq-

uisite for understanding subsequent chapters.

Our approach to presentation and knowledge transfer is based on a uniform principle:

One to three examples from electrical engineering, mechanical engineering, or physics

are presented for each topic. After a brief description of the task, the complete source

code is printed. Directly after the source code, the output (the results of the calcula-

tions) takes place. The source code is then discussed and analyzed.

Our analysis of source code also includes an analysis of the results (output). Are the

results in line with expectations? Does the program solve the task set for it at all? Often,

you won’t fully understand the source code of a program until you’ve taken a closer

look at the output. After viewing the output, you can then analyze the source code

again.

At the end of each chapter, one or more project assignments are provided, discussed,

and fully solved to reinforce and expand on what was learned in that chapter.
28

Chapter 2

Program Structures

In this chapter, you’ll get to know the linear program structure as well as

the branching and repetition structures of the imperative programming

style of Python. Examples of object-oriented and functional program-

ming describe further ways to program using Python.

A program consists of a sequence of statements. A statement is a command that tells

the interpreter (in this case, the Python interpreter) what actions the CPU is supposed

to perform: for example, accept input, process the input, or output the processing

results to the screen. These actions, which always run in the same way, are referred to

as the input-process-output (IPO) model in computer science terminology.

Problems that are to be solved with a computer can be modeled and structured in a

variety of ways by programming languages. In applied computer science, the impera-

tive (procedural) programming, object-oriented programming (OOP), and functional

programming styles have become established. Python supports all three programming

styles, which I will introduce to you in this chapter.

Solutions to problems are also linked to logical conditions: Does the expected case

apply or not? Also, depending on the problem, repetitions of the same tasks must be

implemented, such as the calculation of value tables for mathematical functions. Like

any other procedural programming language, Python supports the linear program

structure as well as branching and repetition structures.

2.1 Linear Program Structures

In programs with the linear flow structure, calculations are performed in the order of

the logic of the problem solution. Thus, calculation C cannot be performed until calcu-

lation B has been performed, and calculation B cannot be performed until calculation

A has been performed first. So, you absolutely must retain the order of first A, then B,

then C, because this order is mandatory for this type of problem. An example from the

theory of motion illustrates this fact: If the acceleration of a vehicle is given, the veloc-

ity can be calculated from it, and the distance traveled can be calculated from the

velocity.
29

2 Program Structures
2.1.1 Linear Programs without Function Calls

In real life, most programs are divided into functions (also referred to as subroutines),

which I will explain in Section 2.2. As a rule, a program consists of multiple functions

and one main program.

Before we consider this division of a program into several subsections, let’s first exam-

ine the structure of a simple linear program. For many small, clearly defined problems,

this program structure is already sufficient.

A linear program has the following general structure:

Statement1
Statement2
Statement3
...

The individual statements are translated and executed sequentially line by line by the

Python interpreter. Branching and repetition do not occur.

Let’s explore some basic concepts of programming such as statement, assignment, vari-

able, data type, and object using the calculation of a simple power circuit with only one

consumer. In such a circuit, the voltage U and the resistance R of the load are given. The

program is supposed to calculate the current I, with the following formula:

In this simple case, the formula for calculating the current provides the development

steps for designing the program. The inputs U and R are to the right, and the output is

to the left of the equal sign of the formula.

Figure 2.1 Structure Chart for a Linear Program Flow

For the design phase of program development, structure charts are particularly useful

because they enable the description of the problem solution independently of the syn-

tax of any particular programming language. In addition, they help you understand the

Input U

Input R

I = U / R

Output I

Linear Program Structure
30

2.1 Linear Program Structures
problem and thus to find a suitable solution. Structure charts can be used to clearly

illustrate the flow structures of programs. In our example, to calculate the current, you

use the formula to create a structure chart with four statements, as shown in Figure 2.1.

You can implement this structure chart directly as Python source code by using the =
assignment operator for the simple assignments and using the print function for the

output. Formulas can also be transferred directly into the source code. Note that you

can use the usual mathematical operators (/, *, +, and -). In addition, the quantity

searched for must always be positioned to the left of the equal sign (the = assignment

operator). For testing, enter the source code from Listing 2.1 into your development

environment and start the program.

01 #!/usr/bin/env python3
02 #01_linear1.py
03 U=230
04 R=11.8
05 I=U/R
06 b="The current is:"
07 print(b, I, " A")

Listing 2.1 Linear Program Structure

Output

The current is: 19.491525423728813 A

Analysis

The program contains a total of five statements. In applied computer science, a state-

ment is a syntactically related section of source code that tells the Python interpreter

what action it is supposed to perform. In this sample program, a statement consists of

one program line each.

In line 01, which is referred to as the shebang, the operating system is told which inter-

preter should be used for running the program. Due to the env specification, you don’t

need to specify the path of the directory where the Python interpreter is located. To run

the program on Linux or macOS directly in the terminal using the ./01_linear1.py
command, you must first set the executable flag by using the chmod +x 01_linear1.py
command.

On Windows, the statement in line 01 gets ignored. In all the following sample pro-

grams, the shebang is not specified.

In line 02, the filename of the #01_linear1.py program is written as a comment. This

specification is useful so that the developer (and you as a learner) don’t lose track of the

numerous program examples. All lines preceded by a # character are ignored by the

Python interpreter. Comments are used to explain statements of the source code in

more detail.
31

2 Program Structures
Now, the actual program starts with a statement. Line 03 causes the U variable to be

assigned the value 230. In computer science, the term variable has a completely differ-

ent meaning than in mathematics. For a simple understanding, think of the U variable

as a symbolic address within the working memory where the number 230 is stored. At

the same time, this assignment declares the U variable.

The equal sign in the context of Python has the meaning of an assignment, not that of

a mathematical equal sign! An assignment is a type of statement that gives a variable a

new value. The U variable automatically receives the Integer data type because the num-

ber 230 is an integer.

Value Range for Integer

Theoretically, the value range of the integer data type is not limited in the current

Python version. For detailed information about the value ranges, refer to the Python

documentation at https://docs.python.org/3/reference/datamodel.html#the-standard-

type-hierarchy.

Thus, integers can consist of any number of digits. The internal designation for the

Integer data type is int. In Python, variables are declared indirectly; that is, the first

time a variable is used, its name and data type are made known to the interpreter

during runtime. However, the data type can still change during runtime.

In line 04, the R variable of the float data type is declared because the floating point

number 11.8 is assigned to it. This data type is the approximated representation of a

real number.

The Float Data Type

In Python, the Float data type has a precision of 64 bits (double precision) according to

the Institute of Electrical and Electronics Engineers (IEEE) 754 standard. The internal

designation for the float data type is float, which corresponds to a range of values

from about 2.225·10-308 to 1.798·10308. You can use the Python shell to determine the

range of values of float with the following commands:

>>> import sys
>>> print(sys.float_info)
sys.float_info(max=1.7976931348623157e+308,max_exp=1024,
max_10_exp=308,min=2.2250738585072014e-308,min_exp=-1021,
min_10_exp=-307,dig=15,mant_dig=53,epsilon=2.220446049250313e-16,
radix=2, rounds=1)

In line 05, the I variable is declared, and at the same time, the current is calculated.

Notice how you can also declare variables by assigning the result of a formula to them.

As in other imperative programming languages, in Python, the division operation is
32

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

2.1 Linear Program Structures
also written using the / operator (slash). The result of the division of voltage and resis-

tance is assigned to the I variable.

In line 06, the b variable of the string type is declared because a string is assigned to this

variable. A string is a sequence of individual characters. The quotation marks tell the

interpreter that this is a string variable. You can place any text between the quotation

marks. The internal name for the string type in Python is str.

In line 07, the result of the calculation using the print function is output in an unfor-

matted way. You can separate each output by using a comma. If the print function is

supposed to output a string, such as the unit of current (A) in this example, the string

must be enclosed in quotation marks.

What Are Objects?

Until this point, I’ve used the terms variable and data type in the same way as in the tra-

ditional imperative programming languages Pascal, C, C++, or Java. Strictly speaking,

however, these conceptual borrowings from traditional programming languages do

not apply to the Python programming language because, in Python, all variables, data

types, data structures, and functions are objects. Let’s explore exactly I mean with some

examples using the Python shell. You’ll get information about the type of each variable

if you enter the following statement into the Python shell:

>>> U=230
>>> R=11.8
>>> I=U/R
>>> b="string"
>>> type(U)
<class 'int'>
>>> type(R)
<class 'float'>
>>> type(I)
<class 'float'>
>>> type(b)
<class 'str'>

You can use the built-in type() function in Python to determine the type of an object.

The class keyword specifies the respective object type. The U object belongs to the int
class, the R and I objects belong to the float class, and the b object belongs to the str
class.

Each object is identified by a number. You can use the built-in id() function to deter-

mine these numbers (identities):

>>> id(U)
4505151824
33

2 Program Structures
>>> id(R)
4506525960
>>> id(I)
4506525888
>>> id(b)
4509028720

Each object is given its own integer as its identity, which is guaranteed to be unique and

remains constant for the lifetime of the program. The identities themselves represent

memory addresses in the working memory (RAM). Even if the type of an object should

change during runtime, its identity (memory address) remains the same. Thus, an

object has a name (identifier), a value, a type, and an identity, and it belongs to a certain

class. If we continue to talk about variables, then what we actually mean is objects. A

quote from the Python documentation should clarify this connection again:

Objects are Python’s abstraction for data. All data in a Python program is repre-

sented by objects or by relations between objects.... Every object has an identity, a

type and a value. An object’s identity never changes once it has been created; you

may think of it as the object’s address in memory. The “is” operator compares the

identity of two objects; the id() function returns an integer representing its identity.

Formatting the Output

The output for the current of Listing 2.1 has too many decimal places. Python provides

the option to format floating point numbers, so that the outputs have decimal places

that can be used in real life. As an example, just take a look at a series circuit with three

resistors. Listing 2.2 shows how you can implement floating point number formatting

in Python.

01 #02_linear2.py
02 U=230
03 R1,R2,R3=0.12,0.52,228
04 Rg=R1+R2+R3
05 I=U/Rg
06 P1=R1*I**2
07 P2=R2*I**2
08 P3=R3*I**2
09 print("Current I={0:6.3f} A " .format(I))
10 print("P1={0:3.2f} W, P2={1:3.2f} W, P3={2:3.2f} W".format(P1,P2,P3))
11 #print("P1=%3.2f W, P2=%3.2f W, P3=%3.2f W" %(P1,P2,P3))

Listing 2.2 Formatting Output
34

2.1 Linear Program Structures
Output

Current I= 1.006 A
P1=0.12 W, P2=0.53 W, P3=230.72 W

Analysis

The program calculates the total resistance of three resistors (line 04), the current, and

the partial powers of the resistors. The assignment in line 03 is new. The R1 resistor is

assigned the value 0.12; the R2 resistor, the value 0.52; and resistor R3, the value 228. The

declaration of the three variables is done simultaneously in one program line. The indi-

vidual identifiers of the variables are separated by commas just like the values of these

variables.

In lines 06 to 08, the current I is squared using the ** operator. The Python interpreter

considers the mathematical precedence rule. First, the current is squared and then

multiplied by the resistances.

The formatting of the outputs is specified in lines 09 and 10. The curly brackets tell the

interpreter to output the results in a formatted way. The number before the dot indi-

cates the total number of characters (digits plus separators) of a floating point number.

The number after the dot defines the number of decimal places. The output of the cur-

rent therefore has three decimal places, while those of the partial powers have two dec-

imal places each. The letter f stands for float. The number before the colon defines the

position within the output. The .format(I) and .format(P1,P2,P3) statements cause

the calculated results for the current and the partial powers to be output formatted.

Alternatively, the output could have been formatted more simply using the syntax of

line 11.

Interactive Input Using the input Function

Up to this point, all inputs were entered by means of static assignments. If you wanted

to change the input values, the program would have to be restarted each time. Listing

2.3 shows how this deficiency can be remedied by using the built-in input function.

01 #03_linear3.py
02 while True:
03 print("\n---Input---")
04 U=float(input("Voltage: "))
05 R=float(input("Resistance: "))
06 I=U/R
07 P=U*I
08 print("\n---Output---")
09 print("Current {0:6.2f} A " .format(I))
10 print("Power {0:6.2f} W " .format(P))

Listing 2.3 Interactive Input
35

2 Program Structures
Output

---Input---
Voltage: 230
Resistance: 24

---Output---
Current 9.58 A
Power 2204.17 W

Analysis

The program starts with a while loop in line 02. This loop construct is introduced at this

point because one-time console entries are just as useless as static assignments. Sec-

tion 2.4.1 discusses the syntax of the while loop in greater detail. The while keyword is

followed by the condition that must be met before the subsequent statements belong-

ing to the loop body can be executed. The while statement must be terminated with a

colon. The editor of a Python development environment automatically indents all sub-

sequent statements that should be run repeatedly (with four spaces by default). This

indentation is elementary because it tells the Python interpreter which statements

belong to the loop body.

Indentations Are Important

In other programming languages, indentations are solely used to make a program

more readable to humans, but actually the entire code could be placed in one line. Not

so in Python! Indentations and spacing have syntactic meaning in Python, which

means you must ensure that loops and branches are displayed correctly.

This requirement has the great advantage of producing readable code. If you look at a

program again after a few months or read code written by colleagues, you’ll be grateful

for indentations.

Since the condition is always True, the loop is an infinite loop. The prompt can be inter-

rupted by pressing the (Ctrl) + (C) shortcut (also often written as ̂ C) or by an incorrect

input (no number or no input). I’ll show you how to avoid this pretty inelegant pro-

gramming style in Section 2.4.

The escape sequence "\n" in lines 03 and 08 causes a line break in each case. An escape

sequence is a character combination that does not represent text but instead is a con-

trol statement that tells the computer how it should arrange the screen output. The n
after the backslash (\) stands for newline.

In line 04, the built-in input() function first outputs the text specified in the quotes to

the screen and then expects an input which must be terminated via (Return). Each

input is read as a string, converted to the float type via the built-in float() function

and then assigned to the U variable.
36

2.2 Functions
2.2 Functions

If you place all the statements needed for the calculation of a complex task in a single

coherent source code section (the main program), you’ll lose track of your own work as

the number of program lines increases. The development process itself and subse-

quent changes to the source code are thus unnecessarily complicated, if not impossi-

ble. In this context, the subroutine technique provides the option to break down

complex problems into subproblems that are easy to master. This structuring option is

available in every programming language. However, in the discourse about modern

programming languages (C, C++, Java), the term subroutine is no longer common;

instead, the term function is used. In general, in modern programming languages, a

function is understood to be a structural element that combines a logically related set

of instructions into a holistic unit.

The use of functions provides the following advantages:

� The source code of a program becomes clearer and is thus easier to understand.

� Troubleshooting (debugging) is simplified.

� Programs structured by functions are easier to maintain.

� Once written and tested, functions can be used by other programs.

� A function can be called at different places in the same program.

� A single function can be used for different calculations if the calculation rule for the

different tasks has the same structural design. The calculation of kinetic energy,

rotational energy, electrical energy, and magnetic energy provides a vivid example

of this flexibility, as shown in Listing 2.12.

The general syntax of a function definition is:

def functionname(parameter1, parameter2, parameter3):
statement1
statement2
statement3
...

return value

The expressions in parentheses are called parameters.

Function

A Python function is a subroutine that solves a subproblem. A function definition con-

sists of the function header and the function body. The function header is introduced

with the keyword def, followed by the function name func(), which must end with

parentheses. A colon marks the end of the function header.
37

2 Program Structures
The function body contains the individual statements. It ends with the return state-

ment. In a function call such as a=func(), the calculated values are stored in the

object, a.

2.2.1 Built-In Functions

Python provides a total of 68 built-in functions. We’ve already used some of them, such

as print(), input(), and type(). An overview of some selected functions can be found in

Table 2.1.

You may wonder why the second column in Table 2.1 does not contain the word

“parameter” but “argument” instead. Applied computer science distinguishes between

the term argument and the term parameter. An argument is a value that is passed when

the function is called. This value is assigned to the assigned parameters within the

function. A parameter is a name that is used within the function.

You can find documentation for all built-in functions at https://docs.python.org/3.12/

library/functions.html.

Function Argument Description

abs() Integer, Float Determines the absolute value of the argument.

bin() Integer Converts the argument to a binary string with the

prefix '0b'.

eval() String Evaluates a string as a mathematical expression.

float() Number or String Converts the argument to a float object.

hex() Integer Converts the argument to a hex value with

prefix '0x'.

id() Object Returns the integer value identity of the object.

int() Number or String Converts the argument to an integer object.

input() String Reads a string from standard input and returns it.

print() Objects Outputs values.

range() Integer, Integer, Integer Generates a list of integers.

round() Float, Integer Rounds a floating point number.

type() Variable Determines the type of a variable.

Table 2.1 Selection of Built-In Functions in Python
38

https://docs.python.org/3.12/library/functions.html
https://docs.python.org/3.12/library/functions.html

2.2 Functions
2.2.2 Functions without Parameters and without Return Values

The first example shown in Listing 2.4 illustrates how to use functions in a circuit with

one load to calculate the current, electrical power, electrical work, and cost of electrical

energy:

01 #04_function1.py
02 U,R = 230,460
03 t=8
04 price=0.3
05
06 def current():
07 I=U/R
08 print("Current: ", I, " A")
09
10 def power():
11 P=U**2/R
12 print("Power : ", P, " W")
13
14 def work():
15 P=U**2/R
16 W=P*t
17 print("Work: ", W, " Wh")
18
19 def cost():
20 I=U/R
21 W=U*I*t
22 c=W*price/1000.0
23 print("Cost: ", c, " Euro")
24
25 current()
26 power()
27 work()
28 cost()

Listing 2.4 Functions without Parameters and without Return Values

Output

Current: 0.5 A
Power: 115.0 W
Work: 920.0 Wh
Cost: 0.276 Euro
39

2 Program Structures
Analysis

This program consists of four functions. Each function solves a self-contained task. The

identifiers for the function names should be formulated in such a way that the task of

a function is immediately recognized. Only nouns should be used for function names

because an identifier such as calculate_current() contains a pleonasm, a meaningless

duplication, because the actual task of the function is already to perform a calculation.

A function name should describe the task of the function as precisely as possible. The

first character in a function name must not be a number or a special character.

In lines 02 to 04, the variables necessary for the calculations are defined. The values of

these variables are available to all four functions, which is why they are also referred to

as global variables.

Line 06 contains the function definition for the calculation of the current. All other

function definitions follow the same pattern. A function definition is introduced by the

def keyword. This keyword is followed by a freely selectable function name. The paren-

theses after the function name are mandatory, even if no parameters are used. Identi-

fiers for function names should consist of lowercase letters, as convention requires.

The function definition is terminated with a colon. The function body (lines 07 and 08)

consists of the individual statements. All statements of a function must be indented

evenly so that the interpreter recognizes which statements belong to the function defi-

nition. The function definition is complete when it is followed by a statement that has

the same indentation depth as the function header. The variables that are declared

within functions are referred to as local variables. A local variable cannot be changed

outside of the function in which it is declared.

In lines 25 to 28, the individual functions are called by specifying their name. The syn-

tax of a function call is similar to a simple statement without an assignment. When call-

ing the function, don’t forget the parentheses. Only the parentheses tell the interpreter

that the statement is a function call. The self-explanatory names of the identifiers for

the functions significantly improve the readability of the program. At first glance,

which calculations are performed can be immediately visible.

2.2.3 Functions with Parameters and a Return

The program shown in Listing 2.5 again performs the same calculations as the example

shown in Listing 2.4. With regard to the system, functions with a return can be

described as a black box, as shown in Figure 2.2, with inputs and outputs. The parame-

ters represent the inputs, and the return statement causes the output of the calculation

results to the outputs. The calculations themselves are performed within the black box.
40

2.2 Functions
Figure 2.2 The Black Box of a Function with a Return

01 #05_function2.py
02 def current(U,R):
03 return U/R
04
05 def power(U, R):
06 return U**2/R
07
08 def work(U, R, t):
09 P=U**2/R
10 W=P*t
11 return W
12
13 def cost(U, R, t, price):
14 I=U/R
15 W=U*I*t
16 c=W*price/1000.0
17 return c
18
19 Uq=230 #V
20 RLoad=23 #ohms
21 tn=8 #h, hours
22 price_actual=0.3 #euro
23 print("Current: ", current(Uq, RLoad), " A")
24 print("Power : ", power(Uq, RLoad), " W")
25 print("Work : ", work(Uq, RLoad,tn), " Wh")
26 print("Cost : ", cost(Uq, RLoad,tn,price_actual), " euros")

Listing 2.5 Functions with Return Value

U

R

U

R

I

41

2 Program Structures
Output

Current: 10.0 A
Power : 2300.0 W
Work : 18400.0 Wh
Cost : 5.52 euros

Analysis

In line 02, the current(U,R) function is defined with the U and R parameters. The return
statement in line 03 is followed by the calculation rule for the current. In line 23, this

function is called in the built-in print function, and the calculated value for the current

is output. As a result, there is a function call within a function. The variables in paren-

theses are referred to as parameters. A further distinction can be made between the

parameters of the function definition (called formal parameters) and the parameters

passed in the function call (called current parameters or arguments). The other function

definitions and calls follow the same pattern. The variables for the current parameters

are declared in lines 19 to 22.

In lines 23 to 26, the values for voltage Uq, resistance RLoad, time of use tn, and for the

present price preis_actual are passed as arguments to the functions.

Note: Difference between a Parameter and an Argument

Applied computer science distinguishes between the terms argument and parameter.

An argument is a value that is passed when the function is called. This value is assigned

to the assigned parameters within the function. A parameter is the name used within

the function.

The variables declared in the function bodies are only valid locally (i.e., these variables

cannot be accessed from outside). This principle of local validity, also known as data

encapsulation, ensures that the values of local variables cannot be changed. Thus, an

assignment at another position in the program does not cause these values to be over-

written. If this were the case, the calculations of the functions could be manipulated

from outside, and the function would return incorrect results.

2.2.4 Functions with Multiple Return Values

Unlike other programming languages, Python also allows the return of multiple values.

Let’s look at an example of a solid steel cylinder with a diameter of 1 decimeter and a

length of 10 decimeters. With only one function, the volume, mass, moment of inertia,

and acceleration torque can be calculated. All four values are supposed to be returned

with a return statement.
42

2.2 Functions
The acceleration torque Mb increases proportionally with the angular acceleration

and the moment of inertia J:

The moment of inertia J of a cylinder increases proportionally with its mass and pro-

portionally with the square of its radius r:

The mass is calculated from the volume V and the density of the cylinder:

To calculate the volume V, you need the diameter d and the length l of the cylinder:

To implement this task, you must enter the formulas according to the syntax rules in

reverse order into the text editor of a Python development environment. Your source

code should resemble the code shown in Listing 2.6. Start the program.

01 #06_function3.py
02 rho=7.85 #kg/dm^3, density for steel
03 alpha=1.2 #1/s^2, angular acceleration
04 g=3 #accuracy
05
06 def cylinder(d,l):
07 V=round(0.785*d**2*l,g)
08 m=round(rho*V,g)
09 J=round(0.5*m*(d/2/10)**2,g)
10 Mb=round(alpha*J,g)
11 return (V,m,J,Mb)
12 #return V,m,J,Mb
13 #return [V,m,J,Mb]
14
15 d1=1 #dm
16 l1=10 #dm
17 T=cylinder(d1, l1)
18 print("Cylinder data: ", T)
19 print("Volume: ", T[0]," dm^3")
20 print("Mass: ", T[1]," kg")
21 print("Moment of inertia: ", T[2]," kgm^2")
22 print("Acceleration torque:", T[3]," Nm")

Listing 2.6 Function with Four Return Values
43

2 Program Structures
Output

Cylinder data: (7.85, 61.622, 0.077, 0.092)
Volume: 7.85 dm^3
Mass: 61.622 kg
Moment of inertia: 0.077 kgm^2
Acceleration torque: 0.092 Nm

Analysis

In lines 06 to 11, the cylinder(d,l) function is defined. The formal parameters are the

diameter d and the length l of the cylinder. First, the volume V is calculated, then the

mass m, then the moment of inertia J and finally the acceleration torque Mb. The results

are rounded to three digits of precision using the built-in round function. The return
statement in line 11 returns the four calculated values as a tuple. A tuple is a data struc-

ture that consists of an immutable sequence of variables (here V, m, J and Mb). The ele-

ments of a tuple are enclosed in parentheses and separated by commas (line 11). The

parentheses can also be omitted (line 12).

If the return values are enclosed in square brackets (line 13), then the return is a list.

Because the elements of a list are changeable, however, you should avoid this option of

a return.

In line 17, the cylinder(d1,l1) function is called with the current parameters d1=1 and

l1=10. The results are assigned to the T variable. At this point, it becomes clear that T is

not a simple variable, but an object containing the memory addresses of the variables

V, m, J and Mb. In other words: T is a reference pointing to the memory addresses of the

elements of the tuple T.

Line 18 outputs the four values of tuple T. Since the output is not unique in this form, in

lines 19 to 22 the values are read individually from the tuple using the [] operator and

then output.

2.2.5 Functions Call Other Functions

Functions can also call other functions. To show you how such function calls can be

implemented, I want to use the example of the calculation of dynamic characteristics

of a cylinder once again, as shown in Listing 2.7.

01 #07_function4.py
02 rho=7.85 #kg/dm^3, density of steel
03
04 def volume(d,l):
05 return 0.785*d**2*l
06
07 def mass(d,l):
08 return rho*volume(d,l)
44

2.3 Branching Structures
09
10 def moment_of_inertia(d,l):
11 return 0.5*mass(d,l)*(d/2/10)**2
12
13 def acceleration_torque(d,l,alpha):
14 return alpha*moment_of_inertia(d,l)
15
16 d1=1 #dm
17 l1=10 #dm
18 alpha1=1.2 #1/s^2, angular acceleration
19 V=volume(d1,l1)
20 m=mass(d1,l1)
21 J=moment_of_inertia(d1,l1)
22 Mb=acceleration_torque(d1,l1,alpha1)
23 print("Volume: ", V, " dm^3")
24 print("Mass: ", m, " kg")
25 print("moment of inertia: ", J, " kgm^2")
26 print("Acceleration torque: ", Mb, " Nm")

Listing 2.7 Function Call in Other Functions

Output

Volume: 7.8500000000000005 dm^3
Mass: 61.6225 kg
Moment of inertia: 0.07702812500000002 kgm^2
Acceleration torque: 0.09243375000000002 Nm

Analysis

The functions are defined, as usual, in lines 04 to 14. In line 08, the first function call of

the volume() function occurs directly after the return statement. The volume is not cal-

culated until the mass() function is called in the main program (line 20). The function

calls are made in lines 19 to 22. The mass() function calls the volume() function. The

moment of inertia() function calls the mass() function, and the acceleration torque()
function calls the moment of inertia() function. The return values are assigned to the V,

m, J, and Mb variables, which are thus available for output in lines 23 to 26.

2.3 Branching Structures

The example on recursion has shown that certain algorithms are not executable with-

out control structures. Thus, in real life, you’ll always find programs with branching

structures. Applied computer science distinguishes between single selection and

multiple selection branches.
45

2 Program Structures
2.3.1 Single Selection

A single selection has the following general structure:

if condition:
statement1
statement2
statement3

else:
statement4
statement5

If the condition is true in the single selection, then the statement block from statement1
to statement3 will be executed; if the condition is false, then the statement block from

statement4 to statement5 will be run. Let’s use an example of a quadratic equation to

show how a choice between two possible cases is implemented.

The general form of a quadratic equation is as follows:

The solution of a quadratic equation is calculated in the following way:

The term under the root is called discriminant D in the technical language of mathe-

matics.

The expression under the root can also take negative values. When this case occurs, the

equation can no longer be solved within the real number space. For this reason, the

program must catch this case by checking whether D ≥ 0. For the problem to be solved,

the structure chart shown in Figure 2.3 can be created.

Figure 2.3 Structure Chart for the Single Selection

Listing 2.8 shows the implementation of the structure chart for this simple branching

structure.

Input p,q

Compute D

T
D ≥

F

Compute

Compute

Output

∅

x1

x2

x1,x2

0

46

2.3 Branching Structures
01 #08_branch1.py
02 import math as m
03 p=-8.
04 q=7.
05 D=(p/2)**2 - q
06 if D >= 0:
07 x1 = -p/2 + m.sqrt(D)
08 x2 = -p/2 - m.sqrt(D)
09 print("x1 =",x1,"\nx2 =",x2)
10 print("p =",-(x1+x2),"\nq =",x1*x2)
11 else:
12 print("The equation cannot be solved!")

Listing 2.8 Case Query for the Solution of a Quadratic Equation

Output

x1 = 7.0
x2 = 1.0
p = -8.0
q = 7.0

Analysis

In line 02, the math module is imported and assigned to the m alias. The values for the p
and q coefficients of the quadratic equation are specified in lines 03 and 04. Line 05

calculates the discriminant D. If this value is greater than zero, the if branch will be

executed, and the values for x1 and x2 (lines 07 and 08) will be calculated. The sqrt()
root function of the math module is accessed using the m alias and the dot operator,

m.sqrt(D). Line 09 outputs the result. Line 10 performs a control calculation according

to Vieta’s theorem.

If the discriminant is less than zero, the else branch will be executed from line 11, and

the message that the equation cannot be solved will be output.

2.3.2 Multiple Selection

A multiple selection is always used when there are multiple alternatives to choose

from, for example, in a menu that offers different calculations. A multiple selection has

the following formal structure:

if condition1:
statement1
statement2

elif condition2:
statement3
47

2 Program Structures
statement4
elif condition3:

statement5
statement6

The elif keyword is used to query further conditions. The sample program shown in

Listing 2.9 for multiple selection determines the numerical value of a ring from the

color coding of a resistor. A carbon film resistor is coded with four color rings. The first

two rings represent the digits of an integer. The third ring serves as a multiplier. The

fourth ring indicates the tolerance. For simplicity, the complete evaluation of the color

rings is omitted in this example. For multiple selection, the structure chart can be cre-

ated from Figure 2.4.

Figure 2.4 Structure Chart for Multiple Selection

The conversion of the structure chart is done in Listing 2.9.

01 #09_multiple_selection1.py
02 color=["black", "brown", "red", "orange", "yellow",
03 "\ngreen","blue","purple","gray","white"]
04 code="yellow" #input
05 if code==color[0]:
06 print("The color black is coded as 0.")
07 elif code==color[1]:
08 print("The color brown is coded as 1.")
09 elif code==color[2]:
10 print("The color red is coded as 2.")
11 elif code==color[3]:
12 print("The color orange is coded as 3.")
13 elif code==color[4]:
14 print("The color yellow is coded as 4.")

Input Color

Color

Black Brown Red Orange Amber Green Blue Purple Gray White Default

Multiple Selection
48

2.3 Branching Structures
15 elif code==color[5]:
16 print("The color green is coded as 5.")
17 elif code==color[6]:
18 print("The color blue is coded as 6.")
19 elif code==color[7]:
20 print("The color purple is coded as 7.")
21 elif code==color[8]:
22 print("The color gray is coded as 8.")
23 elif code==color[9]:
24 print("The color white is coded as 9.")

Listing 2.9 Multiple Selection for the Color Coding of Resistors

Output

The color yellow is coded as 4.

Analysis

In line 02, a list of ten colors is created and assigned to the variable color. All properties

of the list elements are now stored in the color variable (an object!). Each color rep-

resents a specific digit. In line 04, the color of the color ring is assigned to the code vari-

able. The list elements are accessed using the [] operator. The if statement in line 05

determines the first alternative. The check whether the respective case applies is per-

formed using the == operator. All other cases are queried using the elif statement

(from line 07). For example, since the color yellow stands for value 4 and has the index

4 in the list, the program outputs the value 4.

Multiple Selection for One Area

In real life, value ranges will need to be queried, for instance, when calculating the

energy costs at a specific electricity rate. If the calculations are within a defined range of

values, a case distinction must be made. Four ranges for hypothetical electricity rates

are calculated in Listing 2.10.

01 #10_multiple_selection2.py
02 rate1,rate2,rate3=0.3,0.25,0.2 #euros
03 consumption=5500 #kWh
04
05 if 0 < consumption<= 5000:
06 print("Amount for rate1:",consumption*rate1, "euros")
07 elif 5000 < consumption <= 10000:
08 print("Amount for rate2:",consumption*rate2, "euros")
09 elif 10000 < consumption <= 30000:
49

2 Program Structures
10 print("Amount for rate3:",consumption*rate3, "euros")
11 else:
12 print("industry_rate!")

Listing 2.10 Multiple Selection for One Area

Output

Amount for rate2: 1375.0 euros

Analysis

Line 02 establishes three electricity rates. Line 03 determines the actual consumption.

The case query for the value ranges is performed using the notation known from math-

ematics. If the consumption is exactly equal to 5000 kWh or below, then the amount to

be paid for rate1 is calculated and output in line 06 using the if statement. Line 07 uses

the elif statement to query the consumption between 5,000 and 10,000 kWh. The

amount to be paid for rate2 is calculated and output in line 08. The same applies to line

09. If the consumption is not in the specified range, the else branch in line 11 will be

executed.

2.4 Repetitive Structures

In Python, two constructs exist for implementing repetitive structures: the while loop

and the for loop. Loop constructs are always needed when a statement block must be

executed multiple times, for example, when value tables for mathematical functions

or when rectangle sums must be calculated for numerical integration.

2.4.1 The while Loop

A while loop consists of the loop head and the statement block or loop body that is sup-

posed to be repeated. This loop has the following general structure:

while condition:
statement1
statement2
statement3
...

The loop body can consist of one or more statements. The statements of the loop body

are executed as long as the condition is True, and its execution is aborted if the condi-

tion is no longer true (i.e., if this condition is False). The termination condition results

either from the calculations performed in the loop body or from a previously defined

condition.
50

2.4 Repetitive Structures
The first example shown in Listing 2.11 illustrates how to use a while loop to calculate

the value table of any mathematical function. The structure chart associated with the

program is shown in Figure 2.5. To focus on the essential structural elements of the pro-

gram, I have omitted the presentation of the function call.

Figure 2.5 Structure Chart for a while Loop

The conversion of the structure chart into a Python program is shown in Listing 2.11.

01 #11_while_loop1.py
02 def f(x):
03 return x**2
04 x=1
05 while x<=10:
06 y=f(x)
07 print(x,y)
08 x=x+1 #better x+=1

Listing 2.11 while Loop for a Value Table

Output

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

While Loop

x =

while x ≤

x = x +

Compute y = f(x)

Output x,y

1

10

1

51

2 Program Structures
Analysis

In lines 02 and 03, a function named f(x) is defined. The return statement can be fol-

lowed by the term of any mathematical function, 𝑓(x). Line 04 initializes the indepen-

dent variable x with 1. The while statement in line 05 sets the termination condition as

x<=10. The loop body will be executed as long as x<=10. Each termination condition

must be terminated using a colon. All statements of the loop body must be indented

evenly. In line 08, x is incremented by the value 1 with each loop pass; in technical jar-

gon, this step is referred to as incrementing. This increment and the x<=10 condition

determine that the program executes the loop ten times. Line 06 calls function f(x)
with the current value of x. Line 07 outputs the values for x and y. In line 08, the value

of x is increased by 1 with each loop pass. Instead of writing x=x+1, the formulation x+=1
is also common.

while Loop for Program Repetition

The next example shown in Listing 2.12 demonstrates how to run a program that con-

tains a menu for four selection options until the user forces the program termination.

The program calculates four kinds of energy: kinetic, rotational, electrical, and mag-

netic. Because all four formulas for calculating energy have the same structure, as

shown in Table 2.2, you also only need to implement one function.

For the storage variables mass, moment of inertia, capacity, and inductance, you gener-

ally specify the a variable. The physical quantities such as velocity, angular velocity,

voltage, and current are generally denoted by x:

In your development environment, enter the source code shown in Listing 2.12 and

then start the program.

Energy Type Formula Energy Storage

Kinetic energy Mass

Rotational energy Moment of inertia

Electrical energy Capacity

Magnetic energy Inductance

Table 2.2 Types of Energy
52

2.4 Repetitive Structures
01 #12_while_loop2.py
02 def f(a,x):
03 return 0.5*a*x**2
04
05 next=True
06 while next:
07 print("Kinetic energy......1")
08 print("Rotational energy...2")
09 print("Electrical energy...3")
10 print("Magnetic energy.....4")
11 selection=int(input("Select:"))
12 if selection==1:
13 m=float(input("Mass m="))
14 v=float(input("Velocity v="))
15 Wkin=f(m,v)
16 print("\nThe kinetic energy is %6.3f Ws\n" %Wkin)
17 elif selection==2:
18 omega=float(input("Angular velocity \u03C9="))
19 J=float(input("Moment of inertia J="))
20 Wrot=f(J,omega)
21 print("\nThe rotational energy is %6.3f Ws\n" %Wrot)
22 elif selection==3:
23 C=float(input("Capacity C="))
24 U=float(input("Voltage U="))
25 Wel=f(C,U)
26 print("\nThe electrical energy is %6.3f Ws\n" %Wel)
27 elif selection==4:
28 L=float(input("Inductance L="))
29 I=float(input("Current I="))
30 Wmag=f(L,I)
31 print("\nThe magnetic energy is %6.3f Ws\n" %Wmag)
32 else:
33 next =False

Listing 2.12 A while Loop with Internal Termination Condition

For example, if you select menu item 2, enter 1.2 s-1 for the angular velocity, and 2.4 kg

m2 for the moment of inertia, the program will calculate a value of 1.728 Ws for the rota-

tional energy.

Kinetic energy......1
Rotational energy...2
Electrical energy...3
Magnetic energy.....4
Select:2
53

2 Program Structures
Angular velocity ω=1.2
Moment of inertia J=2.4

The rotational energy is 1.728 Ws

Analysis

Line 05 initializes the Boolean variable further via the True value. Line 06 contains the

loop header of the while loop. The loop body is executed as long as next equals True,

which is the case if the values 1, 2, 3, or 4 were entered for the Select variable. For all

other values, the else branch in line 32 is executed, and the next variable is set to False.

while Loop with a break Statement

If you need to perform divisions in a loop body, during the course of the calculations,

the denominator of a fraction might become zero or be very small. If divided by zero,

the result would become infinite, resulting in a memory overflow. This case must be

intercepted. For this purpose, Python provides the break statement, which causes a

loop to abort.

Based on the example of a zero point calculation, I want to show you how a break state-

ment works. Using regula falsi, zeros can be calculated numerically in a simple way:

The denominator of the fraction contains the difference between the newly calculated

and the previously calculated function value. This value may become zero or take a

very small value during the calculations.

Listing 2.13 calculates the zero for the function:

Using a sketch for the function graphs f1 (x) = x and f2(x) = cos x, you’ll get an intersec-

tion point of both function graphs that is approximately at x = 0.74. Therefore, x1 = 0 is

set for the start value, and x2 = 1, for the end value.

01 #13_while_loop3.py
02 import math as m
03 def f(x):
04 return x-m.cos(x)
05
06 eps=1e-12 #termination condition
07 x1=0 #start value
08 x2=1 #end value
09 n=0
10 f1=f(x1)
54

2.4 Repetitive Structures
11 while abs(x2-x1)>eps and n<100:
12 n+=1
13 x0=x1
14 x1=x2
15 f0=f1
16 f1=f(x1)
17 if abs((f1-f0))<eps: break
18 x2=x1-f1*(x1-x0)/(f1-f0)
19 print(n,":", x2)

Listing 2.13 A while Loop with a break Statement

Output

1 : 0.6850733573260451
2 : 0.736298997613654
3 : 0.7391193619116293
4 : 0.7390851121274639
5 : 0.7390851332150012
6 : 0.7390851332151607

The result can be checked in the Python shell with the following command:

>>> import math
>>> 0.7390851332151607 - math.cos(0.7390851332151607)
0.0
>>>

Analysis

Line 02 imports the math module (math), which is needed for the calculation of the cos
function. The m alias saves some typing work. Instead of math.cos(), the program calls

the cosine function via the m alias and the m.cos() dot operator. The function definition

is performed in lines 03 and 04. In lines 06 to 10, the variables are initialized with their

initial values.

Line 11 contains the termination condition of the while loop. The loop is supposed to be

executed as long as the amount of eps is greater than 10-12 and n<100. In line 13, the value

of variable x1 is assigned to variable x0. This assignment causes the last calculated value

of x1 to be temporarily stored in the (x1-x0) counter for the calculation of the differ-

ence. For the calculation of the denominator, the last value of f1 is assigned to the f0
variable in line 15 and thus also temporarily stored. The difference of the denominator

(f1-f0) can thus be calculated from the current and the previously calculated values.

Line 17 contains the termination condition. The loop is then exited when the amount

of the counter becomes less than 10-12. A check whether the case f1-f0==0 occurs or
55

2 Program Structures
whether it becomes f1==f0 would even work in this case. However, I strongly recom-

mend you avoid such an implementation because two floats are very rarely really

equal.

In line 18, the calculation of the zero is performed according to the regula falsi iteration

rule. The result is output with the number of required calculation steps in line 19.

2.4.2 The for Loop

The for loop is a counter-driven loop. The number of times the loop body should be

executed is already specified in the loop header. This kind of loop is always used when

the number of loop passes is known in advance. It has the following general structure:

for i in range(start value, end value, increment):
statements

The count variable i must always be of type integer. The range function sets the start

value, the end value, and the increment for the count variable. The head of the for loop

must end with a colon. The range(n) function internally generates a list of integers for

a range of values from 0 to n -1 with an increment of 1. For range(10), the count variable

i takes the values i = 0 to 9 in succession:

>>> for i in range(10):
print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

The count variable of a for loop can also iterate over a string, list, tuple, or dictionary.

These options are discussed in more detail in Section 2.5.

Figure 2.6 shows the structure chart for a for loop. The program should calculate the

value table of a mathematical function.

Figure 2.6 Structure Chart for a for Loop

The conversion of the structure chart into a Python source code is shown in Listing 2.14.

The program calculates the table of values for a parabola for the range from x = 0 to x =

10. The count variable x is of the integer type. You can also enter any other mathemat-

ical functions in the function definition (line 03).

for x ←

Compute f(x)

Output x,y

0 to 10
56

2.4 Repetitive Structures
01 #14_for_loop1.py
02 def f(x):
03 return x**2
04
05 print(" x\ty")
06 for x in range(11):
07 y=f(x)
08 print("%2i %6.3f" %(x, y))

Listing 2.14 Calculating a Value Table Using a for Loop

Output

x y
0 0.000
1 1.000
2 4.000
3 9.000
4 16.000
5 25.000
6 36.000
7 49.000
8 64.000
9 81.000

10 100.000

Analysis

The program outputs 11 pairs of values for x and y. The loop header in line 06 contains

the count variable x, which is automatically declared as int, and the range function,

whose parameters must also be of type int. The loop header must always end with a

colon. The loop body must be evenly indented. Line 07 calls the y = 𝑓(x) function. With

each new loop pass, x is incremented by 1, and the function value is recalculated until

the termination condition is reached. Line 08 outputs the values for x and y in a for-

matted manner. You can test the loop construct by inserting other start and stop val-

ues and other increments into the range function. If you type help(range) in the Python

shell, you’ll get detailed information about the range class.

Reducing the Increment

Often, values of functions must be calculated whose increment is not 1 but less than 1.

This case arises, for example, in numerical integration with rectangle sums. The area A

of the rectangles is calculated from the sum of products of the current function value,𝑓(xk) and a that’s chosen as small as possible:
57

2 Program Structures
The program in Listing 2.15 calculates the rectangle sums of the e-function between the

limits from 0 to 1. The expected result is A = 1.718281828459045 area units (e1 – 1).

01 #15_for_loop2.py
02 import math
03 def f(x):
04 #return x
05 #return -x+1
06 return math.exp(x)
07
08 a=0 #lower limit
09 b=1 #upper limit
10 n=1000
11 delta_x=(b-a)/n
12 r=0
13 x=a
14 for k in range(1,n+1):
15 r=r+f(x)*delta_x
16 x=a+k*delta_x
17 print("%6d %6.3f %6.15f" %(k, x, r))

Listing 2.15 Numerical Integration with Rectangle Sums

Output

1000 1.000 1.718422830734965

Analysis

The function definition is made in lines 03 and 06. The lines that have been com-

mented out can be used for further test functions. Lines 08 and 09 define the lower and

upper integration limits. The n variable in line 10 defines the number of subproducts

. For the intercept on the x-axis (called the abscissa), the somewhat unwieldy

identifier delta_x was chosen so as to avoid creating a false association with the differ-

ential dx. delta_x is calculated in line 11 from the difference between upper and lower

limits divided by the number of subproducts n.

The r variable is initialized with 0 (line 12), and the x variable is initialized with the

lower limit a (line 13). The for loop in line 14 is run through from k=1 to n+1. Thus, 1,000

subproducts (rectangles r) are added up. The number n of subproducts determines the

accuracy of numerical integration. Since rectangle sums are calculated, no improved

accuracy can be achieved by increasing n compared to other integration methods (i.e.,

trapezoidal, Simpson, or Romberg).
58

2.4 Repetitive Structures
The summation of the individual rectangle areas is performed via the summation algo-

rithm in line 15. On the right-hand side of the assignment, the sum of the old r value

and the rectangle area f(x)*delta_x at location k is calculated. The f(x) function is

called anew for each loop pass. The function argument x is recalculated at position k in

line 16 for each loop pass.

Line 17 outputs the number of calculations, the value of the upper limit, and the area.

Except for the third digit, the result calculated by the program matches the exact value.

Numerical Solution of First-Order Differential Equations

In engineering and science, you must be able to solve differential equations. Based on

the example of the Euler-Cauchy method, I want to show you how easily you can solve

differential equations. This method is described using the following sum algorithm:

Listing 2.16 calculates differential equations of the following type: . In this

concrete case, the solution of the differential equation is to be calculated at the

point x = 1. The exact solution of this differential equation is:

For x = 1, the exact value of the solution is thus y = 1.6487.

01 #16_for_loop3.py
02 def f(x,y):
03 return x*y
04
05 x0=0
06 xn=1
07 y0=1
08 n=1000
09 delta_x=(xn-x0)/n
10 y=y0
11 for k in range(n+1):
12 x=x0+k*delta_x
13 y=y + f(x,y)*delta_x
14 print("%3i %6.3f %6.4f" %(k, x, y))

Listing 2.16 Solution of a First-Order Differential Equation

Output

1000 1.000 1.6493
59

2 Program Structures
Analysis

The function definition in line 02 expects two parameters when called. With each func-

tion call, the product of x and y is returned. The statement in line 09 calculates the

delta_x increment from the start and end values as well as the number n. In line 12, the

current x value is calculated for the function call in line 13. The algorithm of the Euler-

Cauchy method is implemented directly in line 13 in Python syntax. The print function

in line 14 outputs the number of calculations and the function value of the solution y at

position x=1. The result shows that the Euler-Cauchy method is not suitable for practi-

cal purposes because this algorithm still yields an error of 0.0006 even after 1,000 loop

passes. Doubling n only halves the error. The Heun method or the Runge–Kutta method

provide more accurate results.

Nested Loops

Loops can also be nested within each other. You can use two nested for loops to create

triangular or rectangular number schemes. Pascal’s triangle is an example of a triangu-

lar number scheme. It can be generated using the following binomial coefficient:

The math function comb(n,k) calculates the binomial coefficient. Listing 2.17 demon-

strates how you can create Pascal’s triangle using this function and two nested for
loops.

01 #17_for_for_loop1.py
02 from math import *
03 k=8
04 for n in range(k):
05 for k in range(n+1):
06 print(comb(n,k),end=' ')
07 print()

Listing 2.17 Two Nested for Loops

Output

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
60

2.4 Repetitive Structures
Analysis

The first for loop creates the lines of Pascal’s triangle (line 04). In line 05, the counting

range is increased by 1 with each new loop pass of the inner loop. Line 06 creates the

column entries. The end=' ' parameter prevents a line break. In line 07, the print func-

tion forces a new line break.

Usage Example: BubbleSort

What’s called the BubbleSort method compares adjacent pairs of numbers in a sequence

of numbers. These pairs of numbers are compared and swapped until the sequence of

numbers has been sorted. While this procedure is rather inefficient, it is particularly

well suited to illustrate the operation of two nested for loops. Listing 2.18 shows a quite

simple implementation of this sorting procedure.

01 #18_for_for_loop2.py
02 a=[5,4,3,2,1] #list
03 print(a)
04 for i in range(len(a)-1):
05 for i in range(len(a)-1):
06 if a[i]>a[i+1]: #compare
07 a[i],a[i+1]=a[i+1],a[i] #swap
08 print(a)

Listing 2.18 BubbleSort

Output

[5, 4, 3, 2, 1]
[4, 3, 2, 1, 5]
[3, 2, 1, 4, 5]
[2, 1, 3, 4, 5]
[1, 2, 3, 4, 5]

Analysis

The statement in line 02 creates list a. The list data structure is discussed in Section

2.5.2. Line 06 compares the predecessor a[i] with its direct successor a[i+1]. If the pre-

decessor is greater than its successor, the corresponding elements in the list will be

swapped (line 07). The swap process is performed using tuples, which is a data structure

described in Section 2.5.1.

Usage Example: Double Integral

Nested loops are also needed, for example, to calculate a double integral numerically. A

typical application is the calculation of the second area moment. The second area
61

2 Program Structures
moment indicates how stiff a beam is based on its cross-sectional area. For the second

area moment of a rectangle cross section, the following applies:

You can calculate the double integral numerically by applying the sum algorithm

within two nested for loops. Listing 2.19 shows the implementation of such an algo-

rithm.

01 #19_for_for_loop3.py
02 b=5 #width in cm
03 h=10 #height in cm
04 y1,y2=-b/2,b/2 #limits of the y-axis
05 z1,z2=-h/2,h/2 #limits of the z-axis
06 #Function definition
07 def f(y,z):
08 return z**2
09 #Calculate double integral
10 dy=dz=1e-2
11 m=int((z2-z1)/dz) #height
12 n=int((y2-y1)/dy) #width
13 sz=0
14 for i in range(m): #outside
15 z=z1+i*dz
16 sy=0
17 for j in range(n): #inside
18 y=y1+j*dy
19 sy=sy+f(y,z)
20 sz=sz+sy
21 Iy=sz*dy*dz
22 #Output
23 print("First moment of area for a rectangle cross section")
24 print("Iy =",Iy, "cm^4")
25 print("Iy =",b*h**3/12,"cm^4 exactly")
26 print(m,n)

Listing 2.19 Numerical Calculation of a Double Integral

Output

First moment of area for a rectangle cross section
Iy = 416.6675 cm^4
62

2.5 Data Structures
Iy = 416.6666666666667 cm^4 exactly
1000 500

Analysis

In line 10, you can define the dy and dz increments. The increments determine the accu-

racy of the numerical integration. Lines 11 and 12 calculate the number of loop passes

for the outer and inner loops. For m = 1000 and n = 500, we obtain 1000 × 500 = 50000

computational steps in the inner loop.

In lines 15 and 18, the current values z and y are calculated for the z and y coordinates.

In line 19, these values are passed as arguments to the function f(y,z) and added to the

sum sy at each new loop pass.

In line 20, the sum is calculated in the z-direction. Line 21 calculates the second

moment of area, Iy.

The comparison between numerical integration and exact value shows that the accu-

racy is still acceptable. In Chapter 6 on using SciPy, you’ll learn how to use the function

dblquad(f,z1,z2,y1,y2)[0] to calculate the second moment of area in a much easier

way by using only one line of source code.

2.5 Data Structures

Programs are composed of algorithms and data structures. So far, data structures such

as lists and tuples have already appeared in some of the sample programs. Let’s now

take a closer look at what data structures Python brings to the table.

Data Structures and Data Types

You should not confuse data structures with simple data types, such as int, float, and

str. An essential difference between data types and data structures is that data struc-

tures have a much more complex structure than the simple data types.

In applied computer science, a data structure is a set of objects that may only be manip-

ulated by means of well-defined operations. In a nutshell, data structure = objects +

operations. The data is organized in a way that is ideal for the particular data structure

in order to access it as efficiently as possible.

Python has the following built-in data structures: tuples, lists, dictionaries, and sets.

2.5.1 Tuples

A tuple is a sequence of elements that are iterable but cannot be modified. The ele-

ments of a tuple do not all need to be of the same type. The immutability of the
63

2 Program Structures
elements is the decisive characteristic of a tuple. You can define a tuple by enclosing

the elements in parentheses separated by commas. The Python shell is helpful again

with our first encounter with the tuple data structure through the following com-

mands:

>>> t=(2,4,6)
>>> t
(2, 4, 6)
>>> t[1]
4
>>> t[1]=8
Traceback (most recent call last):
File "<pyshell>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment
>>> type(t)
<class 'tuple'>
>>>

The individual elements of a tuple can only be accessed in read-only mode. If an

attempt is made to assign a value to an element of a tuple, then the Python interpreter

throws an error message.

Listing 2.20 shows how tuples are defined and which operations are applicable to

tuples.

01 #20_tuple1.py
02 t1=(1,2,3)
03 t2= 4,5,6
04 t3=t1+t2
05 t4=3*t2
06 print("Tuple1 contains the elements",t1)
07 print("Tuple2 contains the elements",t2)
08 print("Tuple3 contains the elements",t3)
09 print("Tuple4 contains the elements",t4)
10 print("The third object of t3 has the value", t3[2])
11 print("Are t1 and t2 the same?",t1==t2)
12 print("t3 belongs to the class",type(t3))
13 print("t1 has id",(id(t1)))
14 print("t1[0] has id",(id(t1[0])))
15 print("t1[1] has id",(id(t1[1])))
16 print("t1[2] has id",(id(t1[2])))

Listing 2.20 Operations on Tuples
64

2.5 Data Structures
Output

Tuple1 contains the elements (1, 2, 3)
Tuple2 contains the elements (4, 5, 6)
Tuple3 contains the elements (1, 2, 3, 4, 5, 6)
Tuple4 contains the elements (4, 5, 6, 4, 5, 6, 4, 5, 6)
The third object of t3 has the value 3
Are t1 and t2 the same? False
t3 belongs to the class <class 'tuple'>
t1 has id 4344167376
t1[0] has id 4335508656
t1[1] has id 4335508688
t1[2] has id 4335508720

Analysis

Two tuples (i.e., t1 and t2) are defined in lines 02 and 03. You can also omit the paren-

theses. Line 04 concatenates tuples t1 and t2 to form the new tuple, t3. In line 05,

another new tuple t4 is created, this one containing three copies of tuple t2. Each ele-

ment of a tuple can be accessed in read-only mode via the [] operator (line 10). Tuples

can also be checked for equality using the == operator (line 11). Not only does a tuple

have its own identity (line 13), but also each element of a tuple has its own identity

(lines 14 to 16).

Are Tuples Really Immutable?

In the sorting program shown in Listing 2.18, the value of two variables has been

swapped:

a[i], a[i+1] = a[i+1], a[i]

The left-hand value of tuple a[i], a[i+1] was assigned the right-hand value a[i+1], a[i].

a[i] had the value of a[i+1] and a[i+1] the value of a[i] after the swap. The swap oper-

ation was apparently performed successfully because the program worked. How can

we explain this contradiction, that tuples are supposed to be immutable, but during

the exchange process the values of two tuple elements were changed? Listing 2.21

resolves this contradiction.

01 #21_tuple2.py
02 a,b=10,20
03 t=(a,b)
04 print("----before----")
05 print("Value of a=%i id of a=%i" %(a,id(a)))
06 print("Value of b=%i id of b=%i" %(b,id(b)))
07 print("Value of t=",t,"id of t=",id(t))
08 a,b=b,a
65

2 Program Structures
09 print("----after----")
10 print("Value of a=%i id of a=%i" %(a,id(a)))
11 print("Value of b=%i id of b=%i" %(b,id(b)))
12 print("Value of t=",t,"id of t=",id(t))

Listing 2.21 Swapping Two Variables with a Tuple

Output

----before----
Value of a=10 id of a=4317511120
Value of b=20 id of b=4317511440
Value of t= (10, 20) id of t= 4326503240
----after----
Value of a=20 id of a=4317511440
Value of b=10 id of b=4317511120
Value of t= (10, 20) id of t= 4326503240

Analysis

The left-hand value of the tuple consists of the variables a and b (line 02). Variable a is

assigned the value 10, and variable b, the value 20. Line 03 defines a tuple with elements

a and b. In lines 05 to 07, the values and the identities of the variables and the tuple are

output. In line 08, the swap process takes place. After swapping, variable a has the value

20 and variable b has the value 10. The values and the IDs of a and b have changed after

the swap. That is, only the memory addresses of a and b were swapped. In contrast, the

values and ID of tuple t have not changed.

Tuples in for Loops

In a for loop, a count variable can also iterate over a tuple. The following console exam-

ple shows a possible implementation:

>>> for i in ('Iron','Chromium','Nickel'):
print(i,end=' ')

Iron Chromium Nickel

2.5.2 Lists

A list is an ordered summary of various objects. The values contained in a list are also

referred to as elements. The list itself is also considered an object. The special thing

about a list is that its length can be changed at runtime. The Python interpreter recog-

nizes a list definition by the square brackets in which the elements of a list are embed-

ded. The individual elements are separated by commas. Objects of a list can be, for

example, floats of measured values of a measuring sequence or any other objects. Lists
66

2.5 Data Structures
themselves can also be components of lists. The range function enables you to generate

lists automatically:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(2,10,2))
[2, 4, 6, 8]
>>> list(range(1,10,2))
[1, 3, 5, 7, 9]

Many operations are applicable to lists, such as inserting or removing single or multi-

ple elements, accessing single elements, sorting elements, and so on. The elements of a

list can be accessed via an index. Table 2.3 illustrates the structure of a list through a

model.

Each element of a list is assigned an index. This index can be used for read and write

access to the individual elements of the list. The count always starts with index 0.

Again, you can use the Python shell to explore the list data structure, for instance,

with the following commands:

>>> l=[2,4,6]
>>> l[1]
4
>>> l[1]=8
>>> l
[2, 8, 6]
>>> type(l)
<class 'list'>
>>>

By specifying the index, the value of the element at position i is output. A new assign-

ment can change this value. The list l belongs to the list class.

A count variable can also iterate over a list in a for loop, as the following console exam-

ple shows:

>>> for i in [1,3,5,7,9]:
print(i+1,end=';')

2;4;6;8;10;

Index 0 1 2 3 4

Value 5.7 6.8 5.9 6.2 5.1

Table 2.3 Model of a List Structure
67

2 Program Structures
You can perform numerous operations on lists, such as sorting the list elements, deter-

mining their length, and appending or removing elements. Table 2.4 contains selected

functions for operations on lists.

In addition to these functions, you can also use methods. Table 2.5 contains important

methods for performing operations on lists. The letter l stands for list, and the letter e
stands for the element of a list.

Difference between Functions and Methods

Methods are functions that are defined within a class. To use methods, an obj object

must be created beforehand. Otherwise, no other difference exists between the way a

function works and the way a method works.

A function is called via a=functionname(parameter), while a method is called using a=
obj.methodname(parameter).

Function Description

n=len(l) Returns the number of elements.

l2=sorted(l1) Returns the sorted list l1.

s=sum(l) Returns the sum of list l.

mi=min(l) Returns the smallest element.

ma=max(l) Returns the largest element.

l3=zip(l1,l2) Connects lists l1 and l2 to l3.

Table 2.4 Functions for Operations on Lists

Method Description

l1.extend(l2) List l2 is appended to list l1 at the end.

l.append(e) Element e is appended to the end of the list.

l.remove(e) Removes element e from the list.

l.insert(i,e) Inserts an element e into list l at position i.

l.count(e) Determines how often element e is contained in list l.

Table 2.5 Methods for Operations on Lists
68

2.5 Data Structures
Connecting Two Lists Using the zip Function

You should briefly test the zip function in the Python shell because it will be needed

later in connection with the dictionary data structure. The following console example

creates a new list from two lists:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> list(zipped)
[(1, 4), (2, 5), (3, 6)]

The zip function creates a new list of three tuples from the two lists, x and y.

Operations on Lists

Listing 2.22 shows how you can implement some selected operations on lists. For this

purpose, uniform data of type float was deliberately selected as list elements in order

to establish a reference to technically relevant topics. The program calculates import-

ant statistical parameters of a measuring sequence.

01 #22_list1.py
02 import statistics as stat
03 l1=[52.1,48.7,50.1,49.6,51.8]
04 l2=[50.5,48.5,49.5,51.5,48.8]
05 l1.extend(l2) #method
06 sl=sorted(l1) #function
07 n=len(sl)
08 minimum=min(l1)
09 maximum=max(l1)
10 s=sum(l1)
11 m=s/n
12 r=maximum-minimum
13 z=stat.median(l1)
14 print("sorted list:\n",sl)
15 print("Number of elements:",n)
16 print("Minimum: %6.2f Maximum: %6.2f" %(minimum,maximum))
17 print("Sum:",s)
18 print("Mean:",m)
19 print("Median:",z)
20 print("Span:",r)

Listing 2.22 Operations on a List
69

2 Program Structures
Output

sorted list:
[48.5, 48.7, 48.8, 49.5, 49.6, 50.1, 50.5, 51.5, 51.8, 52.1]
Number of elements 10
Minimum: 48.50 Maximum: 52.10
Sum: 501.1
Average: 50.11
Median: 49.85
Span: 3.6000000000000014

Analysis

The program calculates the arithmetic mean, the median, and the range of a measuring

sequence. In lines 03 and 04, two lists with five float types each are defined. The values

of the two lists are stored in objects l1 and l2. In line 05, list l2 is appended to list l1 via

the l1.extend(l2) method.

In line 06, the sorted(l1) function sorts the extended list l1 and assigns the result to

the sl variable. In line 07, the len(sl) function determines the length of the sorted list

and assigns it to the n variable. From the sum of the measured values (line 10), the mean

value m of the measured values can then be calculated in line 11. The determination of

the minimum (line 08) and the maximum (line 09) is performed via the built-in func-

tions min(sl) and max(sl) respectively. In line 10, the built-in sum(sl) function calcu-

lates the sum of the measuring sequence. The span r is calculated from the difference

between maximum and minimum (line 12). In line 13, the stat.median(l1) function cal-

culates the median of the measuring sequence. For this purpose, the statistics mod-

ule (line 02) must be imported.

Lines 14 to 20 show the output of the results.

Nested Lists

Nested lists are important for the representation of two-dimensional matrices with

NumPy arrays. To convert two nested lists a and b into NumPy arrays and then add

them, consider the following console commands:

>>> from numpy import array
>>> a=[[1,2,3],[4,5,6]]
>>> b=[[7,8,9],[10,11,12]]
>>> A=array(a)
>>> B=array(b)
>>> A
array([[1, 2, 3],

[4, 5, 6]])
>>> B
70

2.5 Data Structures
array([[7, 8, 9],
[10, 11, 12]])

>>> A+B
array([[8, 10, 12],

[14, 16, 18]])

List Comprehension

Python even enables you to run statements within a list, while the list is not generated

until runtime. During runtime, its length can be changed (almost) at will. This feature

is referred to as list comprehension. Listing 2.23 demonstrates the power of the list com-

prehension feature by calculating the Pythagorean numbers within a selected range.

01 #23_list2.py
02 ug=1
03 og=20
04 p=[(a,b,c)
05 for a in range(ug,og)
06 for b in range(a,og)
07 for c in range(b,og)
08 if a**2 + b**2 == c**2]
09 n=len(p)
10 print(p)
11 print("Between %i and %i there are %i Pythagorean triples." %(ug,og,n))

Listing 2.23 Dynamic Generation of a List via List Comprehension

Output

[(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15)]
Between 1 and 20 there are 5 Pythagorean triples.

Analysis

Lines 02 and 03 define the upper and lower limits in which the Pythagorean numbers

are to be calculated. The list definition starts at line 04 and ends at line 08. The list con-

sists of only one element: a tuple of the triangle sides (a,b,c) including the three for
loops with the if query.

In line 05, the a variable is iterated from ug to og. The b variable is iterated from a to og
(line 06), and variable c is iterated from b to og (line 07). Line 08 checks that the sum of

the squares of a and b is equal to the square of the hypotenuse c. If this is the case, then

the Pythagorean triples are generated as list elements and stored in variable p (line 04).

Line 09 determines the length of list p. In line 10, the output of the Pythagorean num-

bers occurs in tuples.
71

2 Program Structures
2.5.3 Dictionaries

A dictionary is a sequence of key-value pairs. Unlike the elements of a list, an element

of a dictionary consists of two components: a key value and a data value. A key value

and its data value are separated by a colon. The individual key-value pairs are separated

by commas and enclosed in curly brackets. The first entry is the key value, while the

second entry is the data value: {key value:data value}. Table 2.6 illustrates the dictio-

nary data structure. The left-hand column contains the key values, while the right-hand

column contains the data values.

The following console example shows how a dictionary is implemented and how an

element can be accessed:

>>> d={"unique":"eindeutig","statement":"Anweisung"}
>>> d["unique"]
'eindeutig'
>>> type(d)
<class 'dict'>
>>>

Access to the value of a dictionary is enabled by using the key value with the [] opera-

tor. Table 2.7 lists the most important methods for operations on dictionaries.

Key Value Data Value

unique eindeutig

Anweisung statement

Zuweisung assignment

Schleife loop

Klammern parentheses

Table 2.6 Table for an English-German Dictionary

Method Description

d.keys() Returns the key values of the dictionary d.

d.values() Returns the data values of the dictionary d.

d.items() Returns a list of tuples. Each tuple contains a key-value pair from the

dictionary d.

Table 2.7 Important Methods for Operations on Dictionaries
72

2.5 Data Structures
The first sample program shown in Listing 2.24 shows how lists can be converted to dic-

tionaries and how basic operations on dictionaries must be implemented.

01 #24_dictionary1.py
02 l1=["Al","Mg"]
03 l2=[2.71,1.738]
04 l12=zip(l1,l2)
05 m1=dict(l12)
06 new={"Ti":4.5}
07 m1.update(new)
08 m2={"Fe":7.85,"V":6.12,"Mn":7.43,"Cr":7.2}
09 print("Key values of light metals:",m1.keys())
10 print("Densities of light metals:",m1.values())
11 print("Key values of heavy metals:",m2.keys())
12 print("Densities of heavy metals:",m2.values())
13 print("Light metals %s %i entries" %(m1,len(m1)))
14 print("Heavy metals %s %i entries" %(m2,len(m2)))
15 m2.update(m1)
16 print("Metals %s %i entries" %(m2,len(m2)))
17 del m2["V"]
18 print("Metals %s %i entries" %(m2,len(m2)))
19 print("Density of chromium: %s kg/dm^3" %(m2["Cr"]))

Listing 2.24 Operations on Dictionaries

Output

Key values of light metals: dict_keys(['Al', 'Mg', 'Ti'])
Densities of light metals: dict_values([2.71, 1.738, 4.5])
Key values of heavy metals: dict_keys(['Fe', 'V', 'Mn', 'Cr'])
Densities of heavy metals: dict_values([7.85, 6.12, 7.43, 7.2])
Light metals {'Al': 2.71, 'Mg': 1.738, 'Ti': 4.5} 3 entries
Heavy metals {'Fe': 7.85, 'V': 6.12, 'Mn': 7.43, 'Cr': 7.2}
4 entries
Metals {'Fe': 7.85, 'V': 6.12, 'Mn': 7.43, 'Cr': 7.2, 'Al': 2.71,
'Mg': 1.738, 'Ti': 4.5} 7 entries
Metals {'Fe': 7.85, 'Mn': 7.43, 'Cr': 7.2, 'Al': 2.71, 'Mg': 1.738,
'Ti': 4.5} 6 entries
Density of chromium: 7.2 kg/dm^3

del d[k] Deletes the key-value pair with the key value k from the dictionary d.

k in d Checks if k is a key value of the dictionary d.

Method Description

Table 2.7 Important Methods for Operations on Dictionaries (Cont.)
73

2 Program Structures
Analysis

Line 02 creates a list (i.e., list l1), which contains two light metals. Line 03 generates a

list (i.e., list l2) containing the corresponding densities. In line 04, the zip() method is

used to join both lists into a new list: l12. The dict() method converts list l12 to a dic-

tionary in line 05. In line 06, a new dictionary is created with only one key-value pair,

{"Ti":4.5}. In line 07, this element is inserted into dictionary m1. In line 08, a new dic-

tionary is created containing heavy metals m2. In lines 09 and 10, the key values are out-

put using the m1.keys() method, while the data values are output via the m1.values()
method of the m1 light metals. The same statements apply to heavy metals m2 (lines 11

and 12). Lines 13 and 14 output the key-value pairs of the light metals and heavy metals.

The m2.update(m1) method in line 15 merges the two dictionaries m1 and m2 into a new

dictionary named m2. The dictionary, which now contains the light and heavy metals, is

output in line 16. The del() method deletes vanadium from dictionary m2 in line 17. The

output in line 18 confirms the deletion. Line 19 illustrates once again how the [] opera-

tor is used to access the key of a dictionary.

A Dictionary

Listing 2.25 shows how an English–German and German–English dictionary is created

from two lists.

01 #25_dictionary2.py
02 e=["unique","statement","assignment","loop","parentheses"]
03 d=["eindeutig","Anweisung","Zuweisung","Schleife","Klammern"]
04 e2d=dict(zip(e,d))
05 d2e=dict(zip(d,e))
06 print("statement:", e2d["statement"])
07 print("Schleife:", d2e["Schleife"])

Listing 2.25 A Simple Dictionary

Output

statement: Anweisung
Schleife: loop

Analysis

Line 02 contains a list of English words. Line 03 contains a list of German words. In line

04, a dictionary for an English–German translation is created. In line 05, a dictionary

for the German–English translation is created. In lines 06 and 07, the translations are

output. The special trick behind this dictionary is that only one list is created for one

language at a time. If we were to proceed intuitively, we would probably implement

two dictionaries, each with two entries (key value and data value).
74

2.5 Data Structures
2.5.4 Sets

A set is an unordered collection of elements that can be iterated and modified. A set

never contains any duplicate elements. Sets are defined like a dictionary using curly

brackets. Empty curly brackets create an empty dict, not an empty set. The set Python

class implements the notion of sets known from mathematics. Consequently, the three

set operations—union (& operator), intersection (- operator), and difference quantity

(| operator)—are possible. For these set operations, the following methods are also

available: s1.union(s2), s1.intersection(s2), and s1.difference(s2), as described in

Table 2.8. Compared to the list data structure, the main advantage of a set is that it has

a highly optimized method for checking whether a particular object is included in the

set.

Let’s get a first impression of sets using the Python shell:

>>> s={1,2,3}
>>> s
{1, 2, 3}
>>> s.add(23)
>>> s
{1, 2, 3, 23}
>>> type(s)
<class 'set'>

A set is created by enclosing the comma-separated numbers in curly brackets. The add
method adds the element 23 to the set s. A type check reveals that s is an object of the

set class. Table 2.8 contains the most important methods for operations on sets.

Listing 2.26 forms the intersection, the difference, and the union of two quantities.

Methods Description

s.add(e) Inserts the element e as a new element into the set s.

s.clear() Removes all elements from the set s.

s.copy() Copies the set s.

s.discard(e) The element e is removed from the set s.

s1.difference(s2) Calculates the difference of the two quantities s1 and s2.

s1.intersection(s2) Returns the intersection of s1 and s2.

s1.union(s2) Forms the union of s1 and s2.

Table 2.8 Methods for Operations on Sets
75

2 Program Structures
01 #26_sets.py
02 set1={"A","B","C","D"}
03 set2={"C","D","E","F"}
04 intersection= set1 & set2
05 difference=set1 - set2
06 union=set1 | set2
07 print("Set1:",set1)
08 print("Set2:",set2)
09 print("Intersection:",intersection)
10 print("Difference:",difference)
11 print("Union:",union)
12 print("Is B contained in set1:", set1.issuperset("B"))

Listing 2.26 Operations on Sets

Output

Set1: {'B', 'D', 'A', 'C'}
Set2: {'F', 'E', 'D', 'C'}
Intersection: {'D', 'C'}
Difference: {'B', 'A'}
Union: {'B', 'F', 'D', 'C', 'E', 'A'}
Is B contained in set1? True

Analysis

Two sets are defined in lines 02 and 03. The set operations are performed in lines 04 to

06. Line 12 checks if element B is contained in set1.

2.6 Functional Program Style

The first functional programming language, Lisp, was developed as early as 1958 at the

Massachusetts Institute of Technology (MIT) by John McCarthy. After Fortran, it is con-

sidered the second oldest programming language. The design of the language is not

based on the architecture of a computer, as is the case, for example, with Fortran, but

instead on how a mathematically trained programmer thinks.

The functional programming style can be characterized in the following way:

� Programs are composed of functions.

� Functions are not represented as a sequence of statements but as nested function

calls instead.

� Functions can also be passed back to other functions as arguments.
76

2.6 Functional Program Style
� Functions can also be defined without explicit naming. This type of function is also

referred to as a lambda function.

� For elementary mathematical operations, the prefix notation is used.

To illustrate the functional programming style in an example, I want to use the calcula-

tion of the moment of inertia and acceleration torque of a solid cylinder again. This

time, however, we won’t start with a Python program, but with a “real” functional pro-

gramming language. Listing 2.27 is written in the Racket programming language, which

is a Lisp derivative. The fact that Python does not support a true functional program-

ming style becomes clear when you compare these two programming languages. In

addition, a common approach to learning a programming language is to highlight the

differences among them.

#lang racket
;cylinder.rkt
(define (volume d l)

(* 0.785 d d l))

(define (mass d l)
(* 7.85 (volume d l)))

(define (momentofinertia d l)
(* 0.5 (mass d l) 0.25e-3 d d))

(define (accelerationtorque d l alpha)
(* alpha 0.5 (mass d l) 0.25e-3 d d))

(display "Volume: ")(writeln (volume 1 10))
(display "Mass: ")(writeln (mass 1 10))
(display "Moment of inertia:")(writeln (momentofinertia 1 10))
(display "Acceleration torque: ")
(writeln(accelerationtorque 1 10 1.2))

Listing 2.27 Functional Program Using Racket

Output

Volume: 7.8500000000000005
Mass: 61.6225
Moment of inertia: 0.0770281
Acceleration torque: 0.0924337
77

2 Program Structures
Analysis

The function definitions are made using the define keyword. What is noticeable in this

context is the high number of parentheses. Suitable development environments, such

as DrRacket, are available if you ever want to develop professional applications in

Racket.

The function arguments are not enclosed in parentheses, only the functions them-

selves. Formatting the source code is not mandatory. You could also place all the func-

tions on one line. To improve clarity, the definition part and the calculation part should

be separated from each other. The prefix notation, also referred to as the Polish nota-

tion, is also unusual. Polish mathematician Jan Łukasiewicz used prefix notation in the

1920s to describe mathematical propositional logic in a more compact way. To those

accustomed to school mathematics, Polish notation may seem difficult to understand.

But enthusiasts of functional programming languages defend it as particularly simple

and elegant because not only is it clearer, but also much easier to handle than infix

notation.

The outputs are realized either using the display or writeln keywords. The units have

been deliberately omitted in our example.

Functional programs are implemented in Python using the lambda operator. The lambda
calculus was originally introduced in the 1930s by Alonzo Church and Stephen Cole

Kleene for the description of function definitions. John McCarthy used this concept in

the late 1950s to define the functions of the functional programming language Lisp.

The general syntax of a lambda function looks as follows:

lambda param1, param2, param3: calculation rule

The Python version programmed in a functional programming style is implemented in

Listing 2.28. Compared to the previous Python variants, this version turns out to be par-

ticularly compact as only one line is needed for each function.

01 #28_functional.py
02 rho=7.85 #kg/dm^3
03 volume=lambda d,l: 0.785*d**2*l
04 mass=lambda d,l: rho*volume(d,l)
05 moment_of_inertia=lambda d,l: 0.5*mass(d,l)*(d/2/10)**2
06 acceleration_torque=lambda d,l,omega:omega*moment_of_inertia(d,l)
07 #Output d and l in dm
08 print("Volume:",volume(1,10), "dm^3")
09 print("Mass:",mass(1,10),"kg")
10 print("Moment of inertia:",moment_of_inertia(1,10),"kgm^2")
11 print("Acceleration torque:",acceleration_torque(1,10,1.2),"Nm")

Listing 2.28 Functional Program Using Python
78

2.7 Object-Oriented Program Style
Output

Volume: 7.8500000000000005 dm^3
Mass: 61.6225 kg
Moment of inertia: 0.07702812500000002 kgm^2
Acceleration torque: 0.09243375000000002 Nm

Analysis

In lines 03 to 06, the functions are defined using the lambda operator. Because these

functions are not given a name, they are also called anonymous functions. Directly after

the lambda operator and separated by commas are the formal parameters. The colon is

followed by the calculation rules. Anonymous functions are treated like normal

expressions. For this reason, they can also be assigned to variables.

The output is shown in lines 08 to 11. Inside the print functions, the variables are

treated like normal function calls with current parameter passes.

2.7 Object-Oriented Program Style

In the 1960s, as the size of software projects increased, so did their complexity. During

the test phases, unforeseen effects occurred, and the programs did not provide the

desired results. One answer to the question of how to reduce complexity was the inven-

tion of object-oriented programming (OOP) languages.

Simula is considered to be the first OOP language. It was developed by Ole-Johan Dahl

and Kristen Nygaard in the 1960s at the Norsk Regnesentral (Norwegian Computing

Center) at the University of Oslo to simulate physical processes on a computer.

Alan Kay took up the basic ideas of the Simula programming language and developed

the OOP language Smalltalk in the 1970s, which was equipped with an extensive class

library in the course of its development process. His definition of OOP contains six cri-

teria:

1. Everything is an object.

2. Objects communicate by sending and receiving messages (in terms of objects),

3. Objects have their own memory (in terms of objects),

4. Every object is an instance of a class (which must be an object),

5. The class holds the shared behavior for its instances (in the form of objects in a pro-

gram list),

6. To eval a program list, control is passed to the first object and the remainder is treated

as its message.

(“The Early History of Smalltalk,” 1993, abridged)
79

2 Program Structures
Python has adopted criteria 1 to 5. The basic idea is simple: All data and operations are

combined into one unit, the object. This principle is referred to as data encapsulation.

In the terminology of current OOP, instead of the terms data and operations, the terms

attributes and methods are used, where a method is just another name for the already

familiar term function. The syntax of methods and functions is completely consistent.

In a nutshell:

Object = Attributes + Methods

The concept behind OOP has three goals in particular:

� The principle of reusability

Once defined, classes are supposed to be reusable in other software projects.

� The principle of data encapsulation

The fact that extensive programs with many thousands of program lines (state-

ments) are divided into clearly arranged classes is supposed to reduce the complex-

ity. As a result, software projects become more manageable. Each programmer can

freely choose their own variables for their classes without mutual interference (side

effects) during program execution.

� Increased maintainability

For example, if a more effective algorithm with a better runtime has been found for

certain methods of a class, it can be re-implemented in its class as a method with the

same name as its predecessor without having to change the main program.

2.7.1 Objects and Classes

The class definition for a solid cylinder clearly explains the concept of OOP. Cylinders

play an important role in drive technology (e.g., as drive rollers or rope winches, for the

production of films). They occur in the real world in an infinite variety. For IT-based

modeling, the diversity of real circumstances must be abstracted from, while only the

properties relevant for the calculations are selected. If the rotational frequency of a cyl-

inder must be controlled, then its moment of inertia must be known for the calculation

of the acceleration torque. The moment of inertia is determined by the density, diame-

ter, and length of the cylinder. If you then combine these three attributes with the

methods for calculating the moment of inertia to form a self-contained unit, then we

speak of a class. A class is a custom abstract data type (ADT) that contains all properties

(attributes) and all arithmetic operations (methods) that can be applied to the objects

of this class.

Class

A class combines data (properties) and methods (functions). Classes are the smallest

units of an object-oriented program. A class definition describes how objects are con-

structed and which operations can be performed on them.
80

2.7 Object-Oriented Program Style
According to the unified modeling language (UML) notation, classes are represented as

class diagrams.

Figure 2.7 Class Diagram for the Cylinder Class

Figure 2.7 shows the class diagram for the Cylinder class. A class diagram consists of a

rectangle divided into three horizontal areas. The upper rectangle contains the name of

the class. The properties are listed in the middle area. The negative sign means that the

variables must not be changed from the outside. Formulated in the technical language

of OOP, these variables are defined as private. This concept is called data encapsula-

tion.

Data Encapsulation

Data encapsulation is the prevention of uncontrolled access to the properties (the

data) of a class.

The lower area contains the methods of the class. The positive sign identifies the meth-

ods as public, which means that they are accessible from the outside, that is, from out-

side the class definition.

Methods

The Python functions defined within a class are called methods.

An object-oriented program always consists of a definition part, which contain class

definitions, and an execution part. In the execution part, the objects are created by an

assignment:

objName = class(parameterlist)

Cylinder

-diameter:float

-length:float

-alpha:float

+volume()

+mass()

+moment of inertia()

+acceleration torque()
81

2 Program Structures
On the left-hand side of the assignment operator is a freely selectable identifier. On the

right-hand side of the assignment operator is the name of the class with the list of

parameters enclosed in parentheses.

The methods of a class are accessed using a dot operator in the following way:

objName.method()

Object

An object is a symbolically addressed memory area in which all data and methods of

the class definition are stored. An object is an instance of a class. Every object has a

name, and via this name, the methods of a class can be accessed. Any number of

objects can be created from one class.

When an object is created, what’s referred to as a constructor is called:

def __init__(self, paramterlist):

The two underscores mark Python internal special functions. In this case, this special

function is about the initialization of the properties (hence init).

Constructor

A constructor is a special method that is called when an object is created. This special

method takes care of the initialization of the properties.

Listing 2.29 shows how the Cylinder class is implemented. The volume, mass, moment

of inertia, and acceleration torque of a solid cylinder are calculated.

01 #29_oop.py
02 class Cylinder:
03 rho=7.85
04 def __init__(self,diameter,length,alpha):
05 self.__d=diameter #private
06 self.__l=length #private
07 self.__a=alpha #private
08
09 def volume(self):
10 return 0.785*self.__d**2*self.__l
11
12 def mass(self):
13 return self.rho*self.volume()
14
15 def moment_of_inertia(self):
16 return 0.5*self.mass()*(self.__d/2/10)**2
17
82

2.7 Object-Oriented Program Style
18 def accelerationtorque(self):
19 return self.__a*self.moment_of_inertia()
20 #Main program d and l in dm
21 z=Cylinder(1,10,1.2)
22 #Cylinder.rho=2.3
23 #z.__d=100
24 print("Volume:",z.volume(),"dm^3")
25 print("Mass: ",z.mass(),"kg")
26 print("Moment of inertia: ",z.moment_of_inertia(),"kgm^2")
27 print("Acceleration torque:",z.accelerationtorque(),"Nm")

Listing 2.29 OOP Program Using Python

Output

Volume: 7.8500000000000005 dm^3
Mass: 61.6225 kg
Moment of inertia: 0.07702812500000002 kgm^2
Acceleration torque: 0.09243375000000002 Nm

Analysis

The class definition, shown in lines 02 to 19, is preceded by the class keyword. A class

name should always start with an uppercase letter, as convention demands. The header

of a class definition is terminated with a colon.

In line 03, the class variable rho is defined. The namespace of these variables spans the

entire class, which means that all methods can use them in their calculations. A class

variable with the notation cylinder.rho=2.3 (line 22) allows for external write access.

In lines 04 to 07, the __init__() method is defined. This method is introduced and con-

cluded with two underscores and followed by the parameter list enclosed in parenthe-

ses with the self parameter and the parameters of the diameter, length, and alpha
attributes. The self parameter is not a keyword, and thus, its name can be freely

chosen. However, the convention is to use this identifier. In the function body of the

__init__ function, the assignments follow the pattern self.__d = diameter (line 05). All

variables that are prefixed with a self are called instance variables. As a result, each

newly created object (line 21) gets its own namespace. The two underscores in front of

an instance variable have the effect that these variables are declared as private; that is,

they cannot be modified from the outside (through the principle of data encapsula-

tion). If, for example, you remove the comment in line 23, the intended result won’t

change. If, on the other hand, the underscores of the instance variables are removed,

the value for the diameter can still be changed in line 23. Just try it!

The methods of the Cylinder class are defined from line 09 onwards. What is new

compared to the usual function definition is that only self is passed as a parameter. In
83

2 Program Structures
addition, the instance variables and methods with the self parameter as prefix are con-

nected by the dot operator. This notation causes a separate namespace to be formed for

each method whenever a new object is created.

In line 21, the z object is created by calling the Cylinder(1,10,1.2) method. A method

that bears the name of the class is called a constructor. Unlike C++ and Java, Python’s

language concept does not include an explicit constructor. When an object is created,

the implicit constructor is started first, and the init method is called immediately

afterwards. The constructor forms a clearly defined interface to the “outside world”

with its parameters.

Instance variables should only be addressed through such an interface. The z object is a

copy of the Cylinder class. This object can be used to access the methods of the Cylinder
class via the dot operator (lines 24 to 27). Many other objects of the Cylinder class can be

re-created with different current parameters. All instance variables and methods are

then each assigned their own namespace. The access of an object to a method of the

Cylinder class can also be interpreted in this way: The object z sends the message “Cal-

culate the acceleration torque” to the accelerationtorque() method of the Cylinder
class, and the method, thus addressed, returns the response “Here is the result.”

2.7.2 Inheritance

Inheritance is another important concept in OOP. The basic idea is again the reusability

of source code.

This concept can be confusing at first because the derived classes not only take over the

properties of the base class, but they also extend them. More vividly, you can think of

inheritance as a takeover or an extension. A derived class inherits attributes and meth-

ods from one or more base classes.

Inheritance

A base class makes its properties and methods available to other classes (the derived

classes).

Listing 2.30 shows the mechanism of inheritance through an example—calculating the

volume of a cuboid.

01 #30_inheritance.py
02 class Area:
03
04 def __init__(self,width,length):
05 self.w=width
06 self.l=length
84

2.7 Object-Oriented Program Style
07
08 def area(self):
09 return self.w*self.l
10
11 class Volume(Area):
12
13 def __init__(self,width,length,height):
14 Area.__init__(self,width,length)
15 #super().__init__(width,length)
16 self.h=height
17
18 def volume(self):
19 return Area.area(self)*self.h
20 #return super().area()*self.h
21
22 A=Area(1,2)
23 V=Volume(1,2,3)
24 print("Area: ",A.area()," m^2")
25 print("Volume:",V.volume()," m^3")

Listing 2.30 Inheritance

Output

Area: 2 m^2
Volume: 6 m^3

Analysis

The base class Area (line 02 to 09) contains the area() method for the calculation of a

rectangular area. Starting from line 11, the derived class Volume takes over the attri-

butes width and length as well as the area() method from the base class. The fact that

a class inherits from another class is communicated to the Python interpreter by pass-

ing the name of the base class as a parameter to the derived class (line 11). The __init__
method in line 13 requires the width, length, and height of a cuboid as parameters. The

__init__ method of the base class is accessed either through the name of the base class

Area (line 14) or through the built-in function super() in line 15. In line 19 or line 20, the

volume is calculated according to the well-known formula “base area multiplied by

height.” Line 22 creates an object A for the base area, and line 23 creates an object V for

the volume calculation. These two objects can be used to access the methods of the

Area and Volume classes using the dot operator in the print() function (lines 24 and 25).
85

2 Program Structures
2.8 Project Task: Dimensions of a Shaft

For a shaft subjected to deflection only, as shown in Figure 2.8, the minimum diameter,

static deflection, and critical rotational frequency need to be calculated. The load

caused by twisting (torsion) can be neglected.

Figure 2.8 Deflected Shaft

Given is the mass of the load ma = 1 kg, the modulus of elasticity E = 216 ⋅ 103 N/mm2, the

length of the shaft l = 120 mm, and the maximum permissible bending stress = 100

N/mm2.

The minimum diameter d, the static deflection 𝑓, and the critical rotational speed nk are

to be determined.

For the calculation of the deflection and the bending stiffness, we need the second

moment of area Ia:

If the second moment of area is divided by half the shaft diameter, we obtain the axial

section modulus W. This value is needed for the calculation of the shaft diameter.

Using the bending main equation, the bending stress of the shaft can then be used to

calculate the minimum diameter of the shaft.

If the force acts exactly in the center of the shaft, the maximum bending moment is

calculated with the following formula:

For the deflection in the center of the shaft, the following formula applies:
86

2.8 Project Task: Dimensions of a Shaft
Based on the deflection, the bending stiffness can be determined:

The critical rotational speed nk is calculated from the root of the quotient of the bend-

ing stiffness Rb and the mass m:

All formulas can be transferred directly into Python source code, as shown in Listing

2.31.

01 #31_project_shaft.py
02 from math import sqrt,pi
03 g=9.81 #Acceleration due to gravity
04 rho=7.85 #kg/dm^3
05 E=216e3 #N/mm^2
06 l=120 #mm
07 sigma=100 #N/mm^2
08 m=1 #kg
09 #Calculations
10 F=m*g
11 Mb=F*l/4
12 d=pow((32*Mb)/(pi*sigma),1/3)
13 d=round(d+0.5)
14 Ia=pi*d**4/64.0
15 f=F*l**3/(48*E*Ia)
16 Rb=48*E*Ia/l**3 #F/f
17 nk=sqrt(1e3*Rb/m)/(2*pi)
18 #Outputs
19 print("Diameter in mm:",round(d,2))
20 print("Deflection in mm:",round(f,3))
21 print("Critical rotational speed 1/min:",int(60*nk))

Listing 2.31 Dimensioning a Shaft

Output

Diameter in mm: 4
Deflection in mm: 0.13
Critical rotational speed 1/min: 2622
87

2 Program Structures
Analysis

The inputs are implemented as assignments in lines 03 to 08. If several different

parameters are to be tested, these assignments can be replaced by input functions.

The individual calculations are performed in lines 10 to 17. In line 12, the cube root is cal-

culated using the pow function. The rounding function round(d+0.5) in line 13 ensures

that the next larger integer diameter is determined.

Outputs are shown in lines 19 through 21. The program calculates a diameter of 4 mm

for the given sizes. At this diameter and the load with the mass of 1 kg, the shaft deflects

by 0.13 mm. Dangerous resonance effects occur at the critical rotational speed of 2622

1/min. Due to the increased deflection, the shaft may break at this speed.

2.9 Tasks

1. Write a Python program that calculates the air resistance of a car (or bicycle) in com-

plete calm according to this formula:

Furthermore, the program should calculate the drive power and the work done for a

given travel time.

2. Formulate the following mathematical expressions as Python source code:

3. The central difference quotient is to be calculated for an arbitrarily differentiable

function. Write a Python program that calculates the slope and angle of the secant.

4. Write a Python program for calculating a root using the Heron algorithm (Babylo-

nian root extraction).

5. Write a Python program that calculates the greatest common divisor of two num-

bers.

6. The integration by rectangle sums can be done either by lower or upper sums. Opti-

mize this procedure by selecting the center of the interval for a rectangle.
88

2.9 Tasks
7. For the function z = 𝑓(x,y) = 5 − x − y, the volume is to be calculated numerically

with a double integral. In the direction of the x-axis, you should integrate from 0

to 2, and in the direction of the y-axis, from 0 to 1. Write a program with two nested

for loops that meets these requirements.

8. Write a Python program that, when given a trigonometric function, outputs the

root function of that function as a string. Use the dictionary data structure for the

solution.

9. Write a program as an object-oriented version for the calculation of the air resis-

tance of a passenger car (formula from task 1).

10. Implement the computation of the acceleration torque of a cylinder as classes with

inheritance (Mb inherits from J, J inherits from m, and m inherits from V).
89

Chapter 3

Numerical Calculations Using NumPy

In this chapter, you’ll learn how to perform operations on vectors and

matrices and solve systems of linear equations using NumPy.

The acronym NumPy stands for numeric Python. As this name suggests, this module

provides functions for numerical calculations. Besides the number of functions pro-

vided, the short runtime of the NumPy functions is particularly noteworthy. You

should always import the NumPy module using the import numpy as np import state-

ment. Assigning the np alias has become the accepted convention. NumPy forms the

basis for almost all scientific calculations and is therefore often used in combination

with the Matplotlib and SciPy modules.

3.1 NumPy Functions

The most commonly used NumPy functions are arange() and linspace(). Both func-

tions create one-dimensional arrays of length n. During runtime, n can no longer be

modified. If you choose the arange() function, the distances between the array ele-

ments will be defined; on the other hand, if you choose the linspace() function, the

number of array elements will be defined. One of the two functions occurs in every

Matplotlib program for generating the independent variables in value tables. The

NumPy function array() creates a two-dimensional array when given a nested list as an

argument. Furthermore, NumPy also provides trigonometric, hyperbolic, and logarith-

mic functions as well as important statistical functions.

3.1.1 Creating One-Dimensional Arrays Using arange() and linspace()

The NumPy functions arange() and linspace() can be used to create one-dimensional

arrays of a given length. The data type of the elements of an array must be uniform. The

general syntax for arange() is as follows:

np.arange(start,stop,step,dtype=None)

You don’t need to specify the data type, which is determined automatically by NumPy.

As a rule, numbers of the float type are processed. Three different float data types are

possible:
91

3 Numerical Calculations Using NumPy
� Float16: Half precision with 10-bit mantissa and 5-bit exponent

� Float32: Single precision with 23-bit mantissa and 8-bit exponent

� Float64: Double precision with 52-bit mantissa and 11-bit exponent

The linspace() function specifies the number of elements (num) instead of the incre-

ment (step). The default value is 50. The general syntax for linspace() is:

linspace(start,stop,num=50,endpoint=True,retstep=False, dtype=None, axis=0)

Listing 3.1 compares both functions with each other.

01 #01_1dim_array.py
02 import numpy as np
03 x1=list(range(10))
04 x2=np.arange(10)
05 x3=np.arange(1,10,0.5)
06 x4=np.linspace(1,10,10)
07 x5=np.linspace(1,10,10,endpoint=False)
08 print("Python list:",type(x1) ,"\n",x1)
09 print("arange() Increment 1:",type(x2),"\n",x2)
10 print("arange() Increment 0.5:",type(x3),"\n",x3)
11 print("linspace() Increment 1:",type(x4),"\n",x4)
12 print("linspace() Increment 0.9:",type(x5),"\n",x5)

Listing 3.1 Arrays with arange() and linspace()

Output

Python list: <class 'list'>
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
arange() Increment 1: <class 'numpy.ndarray'>
[0 1 2 3 4 5 6 7 8 9]
arange() Increment 0.5: <class 'numpy.ndarray'>
[1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5]
linspace() Increment 1: <class 'numpy.ndarray'>
[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
linspace() Increment 0.9: <class 'numpy.ndarray'>
[1. 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1]

Analysis

Line 03 generates the list x1 from Python function range(10). Line 08 outputs the num-

bers from 0 to 9 for x1. The preset increment is 1.

Line 04 creates an array x2 with NumPy function arange(). Line 09 also outputs the

numbers from 0 to 9 for x2. The increment of 1 is also preset.
92

3.1 NumPy Functions
Line 05 creates a NumPy array x3 with increment 0.5. The final value is not output (line

10).

In lines 06 and 07, two arrays are created via NumPy function linspace(). If the end-
point=False property is set, then the last element won’t be output, and the increment is

0.9 (line 12). The default is endpoint=True.

The NumPy functions arange() and linspace() are of type numpy.ndarray. The nd prefix

stands for multi-dimensional arrays (n-dimensional).

Runtime of arange() and linspace()

A particular advantage of NumPy functions is said to be their short runtimes. Listing 3.2

calculates and compares the runtimes of a Python list with the runtimes of the NumPy

functions arange() and linspace(). All three functions—version1(n), version2(n), and

version3(n)—add 1 million numbers from two arrays element by element. The runtime

is determined using the time() function from Python module time.

01 #02_runtime_comparison.py
02 import time as t
03 import numpy as np
04 #Python list
05 def version1(n):
06 t1=t.time()
07 x1=list(range(n)) #generate list
08 x2=list(range(n))
09 sum=[]
10 for i in range(n):
11 sum.append(x1[i]+x2[i])
12 return t.time() - t1
13 #NumPy arange()
14 def version2(n):
15 t1=t.time()
16 x1=np.arange(n)
17 x2=np.arange(n)
18 sum=x1+x2
19 return t.time() - t1
20 #NumPy linspace()
21 def version3(n):
22 t1=t.time()
23 x1=np.linspace(0,n,n)
24 x2=np.linspace(0,n,n)
25 sum=x1+x2
26 return t.time() - t1
27
28 nt=1000000
93

3 Numerical Calculations Using NumPy
29 runtime1=version1(nt)
30 runtime2=version2(nt)
31 runtime3=version3(nt)
32 factor1=runtime1/runtime2
33 factor2=runtime1/runtime3
34 #Output
35 print("Runtime for Python range()...:",runtime1)
36 print("Runtime for NumPy arange()..:",runtime2)
37 print("Runtime for NumPy linspace():",runtime3)
38 print("arange() is%4d times faster than range()" %factor1)
39 print("linspace() is%4d times faster than range()" %factor2)

Listing 3.2 Runtime Comparison

Output

Runtime for Python range()...: 0.1445789337158203
Runtime for NumPy arange()..: 0.0028200149536132812
Runtime for NumPy linspace(): 0.0020291805267333984
arange() is 51 times faster than range()
linspace() is 71 times faster than range()

Analysis

The NumPy function arange() is about 51 times faster, and the NumPy function lin-
space() is about 71 times faster than the Python list generated by the Python function,

range(). The time measurements are only rough estimates. With each new program

start and with different hardware, the results will turn out differently.

In conclusion, for the numerical analysis of large data sets, you should use NumPy

arrays.

3.1.2 Creating Two-Dimensional Arrays Using array()

Up to this point, only one-dimensional arrays were created using the NumPy functions

arange() and linspace(). In real life, for example, for the calculation of electrical net-

works or for the solution of linear systems of equations, two-dimensional arrays are

also required. Two-dimensional arrays are created from nested lists using the NumPy

function, array(). You should use only the array() function for calculations involving

matrices because the matrix() function will be removed from the NumPy module in

the future.

Matrices

Matrices are represented by NumPy arrays.
94

3.1 NumPy Functions
The following console example demonstrates the difference between a one-dimensional

array and a two-dimensional array:

>>> import numpy as np
>>> a=np.array([1,2,3])
>>> a
array([1, 2, 3])
>>> b=np.array([[1,2,3],[4,5,6]])
>>> b
array([[1, 2, 3],

[4, 5, 6]])
>>> a.ndim
1
>>> b.ndim
2
>>> type(b)
<class 'numpy.ndarray'>

The array function is a member of the ndarray class, as are the NumPy functions

arange() and linspace(). To test the operations on arrays, it is convenient to automate

the creation of two-dimensional arrays. You can use the NumPy method obj.reshape()
to convert a one-dimensional array into a two-dimensional array. Listing 3.3 creates an

m×n matrix from a one-dimensional array. The program also determines the type (i.e.,

the shape) of the array with the shape property and shows how a matrix is transposed.

01 #03_2dim_array.py
02 import numpy as np
03 m=3 #lines
04 n=4 #columns
05 a=np.arange(m*n).reshape(m,n)
06 b=a.reshape(n*m,)
07 print("Type of the array",a.shape,"\n",a)
08 print("Linearize\n",b)
09 print("Transpose\n",a.T)

Listing 3.3 Generating a Two-Dimensional Array

Output

Type of the array (3, 4)
[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]

Linearize
[0 1 2 3 4 5 6 7 8 9 10 11]

Transpose
95

3 Numerical Calculations Using NumPy
[[0 4 8]
[1 5 9]
[2 6 10]
[3 7 11]]

Analysis

In lines 03 and 04, you can change the number of lines and columns of the array.

In line 05, the NumPy method reshape(m,n) converts the one-dimensional array into a

two-dimensional array.

In line 06, the a.reshape(n*m,) method linearizes the two-dimensional array a. The

a.reshape(m,n) statement is called a method here because reshape() requires an object

to execute. The object notation a.reshape(m,n) can be translated into everyday lan-

guage using the phrase “create an array object with m lines and n columns from array

object a.”

In line 07, the shape property determines the type of array a.

In line 09, array a is transposed via a.T. You can also transpose an array using the

np.transpose(a) statement.

3.1.3 Slicing

Slicing allows you to read selected portions of elements from a two-dimensional array.

With the general syntax a[start:stop:step,start:stop:step], a subrange of an array a
defined by the parameters start,stop,step is read from the m-th line and the n-th col-

umn. The default value of step is 1. Using a[m,:] you can read the m-th line, and using

a[:,n], you can read the n-th column of the array a. Listing 3.4 shows in a 4×4 matrix

how slicing works for reading columns. The matrix is created using the NumPy method

reshape().

01 #04_slicing.py
02 import numpy as np
03 m=4 #lines
04 n=4 #columns
05 a=np.arange(m*n).reshape(m,n)
06 #Output
07 print(a)
08 print("First column\n",a[:,0])
09 print("Second column\n",a[:,1])
10 print("First line\n", a[0,:])
11 print("Second line\n", a[1,:])
12 print("a[1:3,0:2]\n", a[1:3,0:2])

Listing 3.4 Slicing
96

3.1 NumPy Functions
Output

[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]]

First column
[0 4 8 12]

Second column
[1 5 9 13]

First line
[0 1 2 3]

Second line
[4 5 6 7]

a[1:3,0:2]
[[4 5]
[8 9]]

Analysis

In lines 03 and 04, the number of lines and columns for the matrix created in 05 is

defined. In line 05, the NumPy method reshape(m,n) creates a 4×4 matrix from a

sequence of 16 integers.

In lines 08 to 11, individual columns and lines are read. Note that the count starts at

index 0.

In line 12, a range of the matrix is read.

3.1.4 Mathematical NumPy Functions

NumPy provides the same mathematical functions that are known from the Python

module math. But only mathematical functions from the NumPy module may be used

when passing arguments from a NumPy array to these functions, as shown in Listing

3.5.

01 #05_numpy_functions.py
02 import numpy as np
03 #import math
04 x=np.arange(-3,4,1)
05 #y1=math.sin(x)
06 y1=np.sin(x)
07 y2=np.exp(x)
08 y3=np.sinh(x)
09 y4=np.cosh(x)
10 y5=np.hypot(3,4)#diagonal
97

3 Numerical Calculations Using NumPy
11 y1,y2,y3,y4=np.round((y1,y2,y3,y4),decimals=3)
12 #Output
13 print("x values:\n",x)
14 print("sin function:\n",y1)
15 print("e-function:\n",y2)
16 print("sinh function:\n",y3)
17 print("cosh function:\n",y4)
18 print("Hypotenuse:",y5)

Listing 3.5 Selected Mathematical NumPy Functions

Output

x values
[-3 -2 -1 0 1 2 3]
sin function:
[-0.141 -0.909 -0.841 0. 0.841 0.909 0.141]
e-function:
[0.05 0.135 0.368 1. 2.718 7.389 20.086]
sinh function
[-10.018 -3.627 -1.175 0. 1.175 3.627 10.018]
cosh function
[10.068 3.762 1.543 1. 1.543 3.762 10.068]
Hypotenuse: 5.0

Analysis

The program calculates value tables for a sin, an e, a sinh, and a cosh function. The value

range is between -3 and +3 (line 04). The increment is 1. The fact that the upper limit for

the x values breaks off at +3, although 4 was specified as the upper limit in the source

code, may be confusing at first. The NumPy documentation provides the explanation:

For both integer and non-integer increments, the interval end of the value range is not

included. Thus, x < 4 is always valid. In exceptional cases, rounding effects may cause

the end of the interval to be included.

NumPy functions can be accessed via the dot operator with the np alias. If the com-

ments in lines 03 and 05 are removed, the following error message appears after the

program start:

y1=math.sin(x)
TypeError: only size-1 arrays can be converted to Python scalars

This message means that value tables for the mathematical functions from the math
module may only be created with loop constructs. For each new calculation of a func-

tion value for math.sin(x), the loop must be run again. If, on the other hand, value
98

3.1 NumPy Functions
tables are created using the NumPy functions arange() or linspace() and the pre-

defined mathematical functions from the NumPy module, then a for or while loop is

no longer needed. All mathematical NumPy functions return an ndarray. Each discrete

value of the variables (i.e., y1 to y4) can thus be accessed via the index operator. The

expenditures on lines 14 to 17 demonstrate this result: For each x argument, the corre-

sponding function value is output.

The statement in line 11 is interesting. At this point, the NumPy function round()
rounds the outputs for all four function values to three digits by passing it a tuple of

four elements. The round() function returns a tuple with four elements as well.

3.1.5 Statistical NumPy Functions

NumPy also provides functions for generating uniformly and normally distributed

random numbers. Using statistical NumPy functions, you can calculate the arithmetic

mean, median, variance, and standard deviation from these numbers. These statistical

functions are also provided by the Python statistics module by default. However,

NumPy’s statistical functions are much more powerful. For this reason, you should

prefer using NumPy functions when statistically analyzing large volumes of data. Lis-

ting 3.6 shows how you can use these functions.

01 #06_numpy_statistics.py
02 import numpy as np
03 lines=5
04 columns=10
05 np.random.seed(1)
06 x=np.random.normal(8,4,size=(lines,columns))
07 mw=np.mean(x)
08 md=np.median(x)
09 v=np.var(x)
10 staw=np.std(x)
11 minimum=np.amin(x)
12 maximum=np.amax(x)
13 min_index=np.where(x==np.amin(x))
14 max_index=np.where(x==np.amax(x))
15 #min_index=np.argmin(x)
16 #max_index=np.argmax(x)
17 #Output
18 print("Random numbers\n",np.round(x,decimals=2),"\n")
19 print("Smallest number...........:",minimum)
20 print("Largest number............:",maximum)
21 print("Index of the smallest number:",min_index)
22 print("Index of the largest number..:",max_index)
23 print("Mean....................:",mw)
99

3 Numerical Calculations Using NumPy
24 print("Median..................:",md)
25 print("Variance................:",v)
26 print("Standard deviation......:",staw)
27 print("Type of x:",type(x))
28 print("Type of mw:",type(mw))

Listing 3.6 Statistical NumPy Functions

Output

Random numbers
[[14.5 5.55 5.89 3.71 11.46 -1.21 14.98 4.96 9.28 7.]
[13.85 -0.24 6.71 6.46 12.54 3.6 7.31 4.49 8.17 10.33]
[3.6 12.58 11.61 10.01 11.6 5.27 7.51 4.26 6.93 10.12]
[5.23 6.41 5.25 4.62 5.32 7.95 3.53 8.94 14.64 10.97]
[7.23 4.45 5.01 14.77 8.2 5.45 8.76 16.4 8.48 10.47]]

Smallest number...........: -1.2061547875211307
Largest number............: 16.40102054591537
Index of the smallest number: (array([0]), array([5]))
Index of the largest number..: (array([4]), array([7]))
Mean....................: 7.8979406079693995
Median..................: 7.271472480175898
Variance................: 15.041654042036352
Standard deviation......: 3.8783571318325434
Type of x: <class 'numpy.ndarray'>
Type of mw: <class 'numpy.float64'>

Analysis

In line 06, the NumPy function random.normal(8,4,size=(lines,columns)) generates 50

normally distributed random numbers as a matrix with five lines and ten columns.

This function expects the center of the distribution as a first argument, a rough specifi-

cation for the spread of the random numbers to be generated as a second argument

and a tuple for the number of lines and columns as the third argument.

To ensure that the same random numbers are generated each time the program is

restarted, line 05 contains the random.seed() function. If new random numbers should

also be generated at each new program start, this function must be commented out or

deleted.

Lines 07 to 10 calculate the desired statistical measures: the mean mw, median md, vari-

ance v, and standard deviation staw.

An interesting task is to find the array index for the smallest and the largest random

number in lines 13 and 14. In line 13, the where(x==np.amin(x)) function determines the

position in the array with the smallest random number: [0.5] (output in line 21). The
100

3.2 Vectors
same applies to the determination of the index of the largest random number. The pro-

gram outputs the index [4.7] for this number in line 22. A check against the random

numbers output in line 18 confirms the results. A simpler way to determine the loca-

tion in the array where the smallest or largest random number is located is to use the

functions in lines 15 and 16, which have been commented out.

All calculated statistical measures are of type Float64 (line 28). So, you have double pre-

cision with 52-bit mantissa and 11-bit exponent.

3.2 Vectors

Vectors (Latin vector; English carrier, driver) are physical quantities that, in contrast to

scalar quantities, are characterized by a direction in addition to a magnitude. Examples

of directed magnitudes include velocities, forces, or field strengths. In physics and

mathematics, vectors are graphically represented as arrows, as shown in Figure 3.1.

Figure 3.1 Vector Shift

As shown in Figure 3.1, vectors can be shifted arbitrarily in the plane, provided that

their magnitudes and directions do not change. The same statement is true in three-

dimensional space. The vectors shown have the same x and y components of x = 6 and

y = 4. In mathematics, the formulation (6,4) is common. The angle is about 33.7° in each

case.

3.2.1 Addition of Vectors

Vectors are added component by component, an operation shown in Figure 3.2.
101

3 Numerical Calculations Using NumPy
Figure 3.2 Addition of Three Vectors

If you add up vector F1 = (–6,4), vector F2 = (4,–8), and vector F3 = (4,2), you get the result-

ing vector Fres = (2,–2). In the language of mathematics:

Vectors can be created from tuples or lists using the array function. Listing 3.7 shows

the implementation of a vector addition via tuples.

01 #07_vectoraddition.py
02 import numpy as np
03 F1=-6,4
04 F2=4,-8
05 F3=4,2
06 F1=np.array(F1)
07 F2=np.array(F2)
08 F3=np.array(F3)
09 Fres=F1+F2+F3
10 F_1=np.sqrt(F1[0]**2+F1[1]**2)
11 F_2=np.sqrt(F2[0]**2+F2[1]**2)
12 F_3=np.sqrt(F3[0]**2+F3[1]**2)
13 F_res=np.sqrt(Fres[0]**2+Fres[1]**2)
14 angle=np.arctan(Fres[0]/Fres[1])
15 angle=np.degrees(angle)
16 #Output
17 print("Coordinates of F1:",F1)
18 print("Coordinates of F2:",F2)
102

3.2 Vectors
19 print("Coordinates of F3:",F3)
20 print("Magnitude of F1 :",F_1)
21 print("Magnitude of F2 :",F_2)
22 print("Magnitude of F3 :",F_3)
23 print("Resulting force :",Fres)
24 print("Magnitude of Fres:",F_res)
25 print("Angle of Fres :",angle,"°")

Listing 3.7 Addition of Three Vectors

Output

Coordinates of F1: [-6 4]
Coordinates of F2: [4 -8]
Coordinates of F3: [4 2]
Magnitude of F1 : 7.211102550927978
Magnitude of F2 : 8.94427190999916
Magnitude of F3 : 4.47213595499958
Resulting force : [2 -2]
Magnitude of Fres: 2.8284271247461903
Angle of Fres : -45.0 °

Analysis

In lines 03 to 05, the x-y components of the three forces are passed as tuples to vari-

ables F1 to F3. The statements in lines 06 to 08 each create a one-dimensional NumPy

array from the force components.

In line 09, the vector addition takes place. The forces are added element by element.

The internal processes remain hidden from the user. Internally, the program calculates

Fres[0]=F1[0]+F2[0]+F3[0] and Fres[1]=F1[1]+F2[1]+F3[1]. Line 23 outputs the result.

The program calculates the magnitudes of the three forces using the Pythagorean the-

orem (lines 10 to 12). Line 14 calculates the angle of the resulting force using NumPy

function arctan(Fres[0]/Fres[1]). The degrees(angle) NumPy function in line 15

ensures that the angle is converted to degrees.

The output of the program in lines 17 to 25 can be easily checked using Figure 3.2. The

units have been deliberately omitted.

3.2.2 Scalar Product

In mechanical engineering, work is defined as the product of the force F multiplied by

the displacement s multiplied by the cosine of the angle between the two magni-

tudes:
103

3 Numerical Calculations Using NumPy
From this definition, the coordinate form of the scalar product can be derived using the

cosine theorem:

The scalar product is calculated as the sum of the products of force and displacement

components.

In abbreviated notation, the following applies to the definition of the scalar product:

The magnitude of the force is calculated from the square root of the scalar product of

the force vector with itself:

And the magnitude of the displacement is calculated from the square root of the scalar

product of the displacement vector with itself:

For the angle between force vector and path vector, the following applies:

Now, let’s consider an example referring to and to show

how the scalar product is calculated for three-dimensional vectors. The following

applies:

For the specified components of the force and path vectors, a work of 5 Nm is per-

formed. The NumPy function dot(F,s) calculates the scalar product. Listing 3.8 shows

how the mechanical work is calculated from the scalar product of the force and path

vectors.

01 #08_scalarproduct.py
02 import numpy as np
03 F=2,7,-3
04 s=-2,3,4
05 F_B=np.sqrt(np.dot(F,F))
06 s_B=np.sqrt(np.dot(s,s))
07 cos_Fs=np.dot(F,s)/(F_B*s_B)
08 angle=np.degrees(np.arccos(cos_Fs))
09 W=np.dot(F,s)
10 #Output
104

3.2 Vectors
11 print("Magnitude of force: ",F_B, "N")
12 print("Magnitude of path: ",s_B,"m")
13 print("Angle between F and s:",angle,"°")
14 print("Work:",W,"Nm")

Listing 3.8 Scalar Product

Output

Magnitude of force: 7.874007874011811 N
Magnitude of path: 5.385164807134504 m
Angle between F and s:83.22811782220313 °
Work: 5 Nm

Analysis

In lines 03 and 04, three force and three path components are passed as tuples to the F
and s variables, respectively. The first element of a tuple contains the x-component, the

second the y-component, and the third the z-component of the force (F) and path (s)

vectors.

Lines 05 and 06 calculate the magnitudes of the vectors with the scalar product of the

NumPy function dot(F,F) and dot(s,s), respectively. The angle between the force vec-

tor and the path vector is also calculated using the dot function (line 07). Line 09 calcu-

lates the mechanical work W with the scalar product W=np.dot(F,s). The program

internally calculates the mechanical work by the element-wise multiplication as

required by the definition of the scalar product: W=F[0]s[0]+F[1]s[1]+F[2]s[2].

Line 14 outputs the mechanical work W performed on a mass point shift in space. The

result of 5 Nm matches the previously determined value.

3.2.3 Cross Product

The magnitude of torque M is defined as the product of the force F multiplied by the

lever arm l multiplied by the sine of angle α between the two magnitudes:

From this definition, the coordinate form of the cross product can be derived:

The abbreviated variant applies to the definition of the cross product:

For and , the following torque vector results:
105

3 Numerical Calculations Using NumPy
Listing 3.9 calculates the torque from the force and the lever vector in three-

dimensional space with the NumPy function cross(F,l).

01 #09_crossproduct.py
02 import numpy as np
03 F=2,7,-3
04 l=-2,3,4
05 F_B=np.sqrt(np.dot(F,F))
06 l_B=np.sqrt(np.dot(l,l))
07 cos_Fl=np.dot(F,l)/(F_B*l_B)
08 angle=np.degrees(np.arccos(cos_Fl))
09 M=np.cross(F,l)
10 M_B=np.sqrt(np.dot(M,M))
11 #Output
12 print("Magnitude of force :",F_B,"N")
13 print("Magnitude of lever arm:",l_B,"m")
14 print("Angle between F and l : ",angle,"°")
15 print("Torque M :",M,"Nm")
16 print("Magnitude of torque :",M_B,"Nm")

Listing 3.9 Cross Product

Output

Magnitude of force : 7.874007874011811 N
Magnitude of lever arm: 5.385164807134504 m
Angle between F and l : 83.22811782220313 °
Torque M : [37 -2 20] Nm
Magnitude of torque : 42.1070065428546 Nm

Analysis

The force vector F and the vector of the lever arm l are again defined as tuples in lines

03 and 04.

In line 09, the program calculates the cross product using the NumPy function, M=
np.cross(F,l). The result is again a vector [37 -2 20] Nm (output in line 15). The magni-

tude of 42.1 Nm of the torque corresponds to the area of the parallelogram spanned by

the force vector F and the vector of the lever arm l.
106

3.2 Vectors
3.2.4 Triple Product

The triple product calculates the volume of a parallelepiped from the cross product and

the scalar product:

Listing 3.10 calculates the volume of a cuboid using the triple product dot(c,

np.cross(a,b)).

01 #10_tripleproduct.py
02 import numpy as np
03 a=2,0,0
04 b=0,3,0
05 c=0,0,4
06 a_B=np.sqrt(np.dot(a,a))
07 b_B=np.sqrt(np.dot(b,b))
08 c_B=np.sqrt(np.dot(c,c))
09 V=np.dot(c,np.cross(a,b))
10 #Output
11 print("Magnitude of a:",a_B)
12 print("Magnitude of b:",b_B)
13 print("Magnitude of c:",c_B)
14 print("Triple product:",V)

Listing 3.10 Triple Product

Output

Magnitude of a: 2.0
Magnitude of b: 3.0
Magnitude of c: 4.0
Triple product: 24

Analysis

The components of the three vectors a, b, and c were chosen to form a cuboid with the

following sides: a=2, b=3 and c=4.

Line 09 calculates the triple product of NumPy functions dot() and cross(). The dot
function is passed the variable c for the height of the box and the cross(a,b) function

for the calculation of the base area as arguments.

The output in line 14 returns the correct result of 24 space units.
107

3 Numerical Calculations Using NumPy
3.2.5 Dyadic Product

In the dyadic product, also called the outer product, the row vectors are multiplied by

the column vector:

Listing 3.11 calculates the dyadic product for the given matrices.

01 #11_outer.py
02 import numpy as np
03 A=np.array([[1,2,3]])
04 B=np.array([[4],[5],[6]])
05 C=np.outer(A,B)
06 print("Matrix A")
07 print(A)
08 print("Matrix B")
09 print(B)
10 print("Dyadic product")
11 print(C)

Listing 3.11 Dyadic Product

Output

Matrix A
[[1 2 3]]
Matrix B
[[4]
[5]
[6]]
Dyadic product
[[4 5 6]
[8 10 12]
[12 15 18]]

Analysis

In line 03, a row vector A is defined and in line 04, a column vector B is defined. The

dyadic product is calculated by NumPy function outer(A,B) in line 05. The result

matches the manually calculated value.
108

3.3 Matrix Multiplication
3.3 Matrix Multiplication

Matrix multiplication is needed, for example, in the calculation of electrical networks. If

several two-port networks are connected in series (catenary circuit), then the catenary

shape (A parameter) can be used to calculate the required input voltage and current for

a given output voltage and current by matrix multiplication.

Two matrices are multiplied with each other by multiplying the rows of the first matrix

by the columns of the second matrix, element by element, and adding the individual

products (according to Falk’s scheme):

A simple example will demonstrate the matrix multiplication using a schema (see

Table 3.1). The following two matrices are to be multiplied:

The first matrix is entered in the first and second columns and the third and fourth

rows of a table. The second matrix is entered in the third and fourth columns and in the

first and second rows of the table.

The first row of the first matrix is multiplied element by element by the first column of

the second matrix. The two products are added up. The second row of the first matrix is

multiplied by the first column of the second matrix. The two products are added up

again. The second column is calculated according to the same schema.

NumPy provides the array([[a11,a12],[a21,a22]]) function for generating the matri-

ces. You can adjust the number of rows and columns as needed.

The easiest way to perform matrix multiplication is to use the infix operator @. Alterna-

tives are matmul(A,B) or multi_dot([A,B,C,...]).

Listing 3.12 shows how you can perform matrix multiplication using the numbers from

our earlier example.

01 #12_mulmatrix1.py
02 import numpy as np

5 6

7 8

1 2 1 · 5 + 2 · 7 = 19 1 · 6 + 2 · 8 = 22

3 4 3 · 5 + 4 · 7 = 43 3 · 6 + 4 · 8 = 50

Table 3.1 Schema for Matrix Multiplication
109

3 Numerical Calculations Using NumPy
03 A=np.array ([[1, 2],
04 [3, 4]])
05 B=np.array ([[5, 6],
06 [7, 8]])
07 C=A@B
08 D=B@A
09 #Output
10 print(type(A))
11 print("Matrix A\n",A)
12 print("Matrix B\n",B)
13 print("Product A*B\n",C)
14 print("Product B*A\n",D)

Listing 3.12 Matrix Multiplication

Output

<class 'numpy.ndarray'>
Matrix A
[[1 2]
[3 4]]
Matrix B
[[5 6]
[7 8]]
Product A*B
[[19 22]
[43 50]]
Product B*A
[[23 34]
[31 46]]

Analysis

Lines 03 to 06 define matrices with two rows and two columns each. The values of the

individual coefficients are stored in variables A and B.

Line 07 performs the matrix multiplication C=A@B, while line 08 performs the multipli-

cation with an interchanged order of factors D=B@A.

The product for C is correctly output line 13 and matches the value that was manually

calculated in Table 3.1. The result from line 14, on the other hand, deviates from this.

This result is also correct, as you can easily check by recalculation. (You thus learn from

this that the commutative law does not apply to a matrix product.)
110

3.3 Matrix Multiplication
Usage Example: Analysis of a π-Substitute Circuit

Let’s say a Python program needs to calculate the matrix of catenary parameters and the

required input variables U1 and I1 for given output variables U2 and I2 for a π-substitute

circuit, as shown in Figure 3.3.

Figure 3.3 π-Substitute Circuit

Any passive two-port network can be described in general terms by a linear system of

equations with a matrix of four parameters and the column vectors from voltages or

currents.

Catenary Shape with A Parameters

For this problem, the catenary shape must be chosen. On the left-hand side of the equa-

tion system, a column vector contains the input variables we are looking for. On the

right-hand side, we have a catenary matrix with the four coefficients A11 to A22. The cat-

enary matrix is multiplied by the column vector of the output variables. If the coeffi-

cients of the catenary matrix and the column vector of the output variables are known,

the input variables U1 and I1 can be calculated:

For the transverse resistors R1 and R3, the following A parameters can be determined

from the circuit shown in Figure 3.3:

For the series resistance R2, the following matrix results:

I1 = 7 A 2 A R2 = 2 Ω I2 = 1 A

U1 = 5 V R1
1 Ω

5 A 4 V 1 A

R3
1 Ω

U2 = 1 V
111

3 Numerical Calculations Using NumPy
To obtain the system matrix of the entire circuit shown in Figure 3.3, you need to mul-

tiply all three partial matrices with each other.

Listing 3.13 performs the matrix multiplication from the three partial matrices for the

π-substitution circuit. You can of course change the values of the resistors for further

testing.

01 #13_mulmatrix2.py
02 import numpy as np
03 R1=1
04 R2=2
05 R3=1
06 U2=1
07 I2=1
08 A1q=np.array([[1, 0],
09 [1/R1, 1]])
10 Al=np.array([[1, R2],
11 [0, 1]])
12 A2q=np.array([[1, 0],
13 [1/R3, 1]])
14 A=A1q@Al@A2q
15 b=np.array([[U2],[I2]])
16 E=A@b
17 U1,I1=E[0,0],E[1,0]
18 print("Chain shape A\n",A)
19 print("Input variables\n",E)
20 print("Input voltage U1=%3.2f V" %U1)
21 print("Input current I1=%3.2f A" %I1)

Listing 3.13 Matrix Multiplication with A Catenary Parameters

Output

Chain shape A
[[3. 2.]
[4. 3.]]
Input variables
[[5.]
[7.]]
Input voltage U1=5.00 V
Input current I1=7.00 A

Analysis

The values for the output voltage U2; the output current I2; and the three resistors R1, R2,

and R3 were taken from the specifications of the circuit shown in Figure 3.3.
112

3.3 Matrix Multiplication
In lines 08 to 13, the three partial matrices A1q, Al, and A2q are defined for the transverse

resistances R1 and R3 and the series resistance R2. Line 14 performs the matrix multipli-

cation A=A1q@Al@A2q. Pay attention to the correct sequence of factors. As shown earlier

in Listing 3.12, the commutative law does not apply to matrix multiplication! Changing

the order of the partial matrices would also represent a different circuit structure.

Line 15 creates the column vector b=np.array([[U2],[I2]]) for the output variables. In

line 16, system matrix A is multiplied by column vector b. The result of the matrix mul-

tiplication is assigned to column vector E.

The input voltage must be 5 V so that a voltage of U2 = 1 V is present at the output of the

π-substitute circuit. A current of I1 = 7 A must flow at the input of the circuit so that a

current of I2 = 1 A flows at the output. You can check the results using the circuit shown

in Figure 3.3.

3.3.1 Chain Shape with B Parameters

The output variables U2 and I2 of a two-port network are calculated using the B catenary

parameters. The following two-port equations are then obtained for a π-substitute cir-

cuit:

For the transverse resistors R1 and R3, the B parameters can be determined from the cir-

cuit shown in as follows:

For the series resistance R2, the following matrix is obtained:

In general, the B parameters can be determined from the inverse matrix of A. The fol-

lowing applies:

Listing 3.14 calculates the output voltage U2 and output current I2 of a π-substitute cir-

cuit with the B catenary parameters.

01 #14_mulmatrix3.py
02 import numpy as np
03 R1=1
04 R2=2
05 R3=1
06 U1=5
07 I1=7
113

3 Numerical Calculations Using NumPy
08 B1q=np.array([[1, 0],
09 [-1/R1, 1]])
10 B2l=np.array([[1, -R2],
11 [0, 1]])
12 B3q=np.array([[1, 0],
13 [-1/R3, 1]])
14 B=B1q@B2l@B3q
15 b=np.array([[U1],[I1]])
16 E=B@b
17 U2,I2=E[0,0],E[1,0]
18 print("Chain shape B\n",B)
19 print("Output variables\n",E)
20 print("Output voltage U2=%3.2fV" %U2)
21 print("Output current I2=%3.2fA" %I2)

Listing 3.14 Matrix Multiplication with B Catenary Parameters

Output

Chain shape B
[[3. -2.]
[-4. 3.]]
Output variables
[[1.]
[1.]]
Output voltage U2=1.00V
Output current I2=1.00A

Analysis

Basically, the program is structured in the same way as shown in Listing 3.13, except

that the parameters in the secondary diagonal have a negative sign.

The result for the output voltage U2 and the output current I2 matches the values deter-

mined using Kirchhoff’s circuit laws in the circuit shown in .

3.3.2 Usage Example: Calculating the Energy of a Rotating Rigid Body in Space

The next example shows the multiplication of the row vector of an angular velocity

with an inertia tensor I (3×3 matrix) and the column vector of an angular velocity.

For the rotational energy, the following applies:
114

3.3 Matrix Multiplication
The superscript T means that the vector of angular velocity must be transposed, that is,

the column vector is converted into a row vector. In component notation, you obtain

the following:

For the inertia tensor of a point mass m, the following applies:

The product of the mass m and the matrix with the location coordinates is referred to

as the inertia tensor. If you perform the matrix multiplication, you’ll get the rotational

energy, which is stored in the rotating body.

For a case where mass m with radius x = r rotates around the z-axis in the x-y-plane, the

following applies in a simplified way:

Listing 3.15 calculates the rotational energy of a point mass of mass m = 6 kg rotating in

space around the z-axis with an angular velocity of .

01 #15_mulmatrix4.py
02 import numpy as np
03 x=1 #distance in m
04 y=0
05 z=0
06 wx=0
07 wy=0
08 wz=1 #angular velocity
09 m=6 #mass in kg
10 w_Z=np.array([wx,wy,wz])
11 I=m*np.array([[y**2+z**2, -x*y, -x*z],
12 [-x*y, x**2+z**2, -y*z],
13 [-x*z, -y*z, x**2+y**2]])
14 w_S=np.array([[wx],
15 [wy],
16 [wz]])
17 #Calculation of the rotational energy
18 Erot=0.5*w_Z@I@w_S
19 #Erot=0.5*w_S.T@I@w_S
20 Er=Erot[0]
115

3 Numerical Calculations Using NumPy
21 #Output
22 print("Rotational energy: %3.2f joules" %Er)

Listing 3.15 Matrix Multiplication with Three Vectors

Output

Rotational energy: 3.00 joules

Analysis

The rotational energy is calculated according to the rule: “row vector multiplied by 3×3

matrix multiplied by column vector.” Following this sequence is mandatory because

the commutative law does not apply with matrices! Line 10 contains the row vector of

angular velocity, lines 11 to 13 contain the 3×3 matrix of the inertia tensor, and lines 14

to 16 contain the column vector of the angular velocity.

The statement in line 18 performs the matrix multiplication and stores the result in the

Erot variable. Alternatively, you can comment out lines 10 and 18 and remove the com-

ment in line 19. In this line, the column vector from line 14 is transposed into a row vec-

tor using the T property.

3.4 Linear Systems of Equations

Electrical engineering uses linear systems of equations to calculate mesh currents and

node voltages in networks. Structural analysis also uses linear systems of equations for

the calculation of member forces in trusses. Thus, solving systems of linear equations

with n unknowns is an important and indispensable tool in engineering. The NumPy

function solve() enables you to solve systems of equations with real and complex coef-

ficients as easily and without much effort as, for example, using the MATLAB program.

3.4.1 Systems of Equations with Real Coefficients

A linear system of equations can generally be represented as a matrix product of coef-

ficient matrix (system matrix) a11 to amn and solution vector x as an equation. On the

right-hand side of the equation system, we have the inhomogeneity vector b.

The following abbreviated notation is commonly used:
116

3.4 Linear Systems of Equations
To determine solution vector x, the inverse matrix A-1 must be formed and multiplied

by the inhomogeneity vector b:

Based a simple example, let’s walk you through the solution of a simple system of equa-

tions with three unknowns:

Listing 3.16 solves a linear system of equations for three unknowns using NumPy func-

tion solve(A,b).

01 #16_equation_system.py
02 import numpy as np
03 from numpy.linalg import solve
04 #coefficient matrix
05 A = np.array([[1, 1, 1],
06 [2, -2, 3],
07 [3, -4, 2]])
08 #inhomogeneity vector
09 b = np.array([6, 7, 1])
10 #solution
11 solution=solve(A,b)
12 #Output
13 print("Solution of a linear system of equations")
14 print("Coefficient matrix\n",A)
15 print("Inhomogeneity vector\n",b)
16 print("Solution:\n",solution)

Listing 3.16 Solution of a Linear System of Equations

Output

Solution of a linear system of equations
Coefficient matrix
[[1 1 1]
[2 -2 3]
[3 -4 2]]

Inhomogeneity vector
[6 7 1]

Solution:
[1. 2. 3.]
117

3 Numerical Calculations Using NumPy
Analysis

Line 03 imports the linalg submodule with the solve function.

In lines 05 to 07, the coefficient matrix A of the equation system is generated as a two-

dimensional NumPy array.

In line 09, the inhomogeneity vector array([6,7,1]) is assigned to variable b.

In line 11, NumPy function solve(A,b) calculates the solution of the linear system of

equations. The solution vector is stored in variable solution.

The solution vector contains floats although the coefficient matrix and the inhomoge-

neity vector consist of integers. If you use

print(type(A[0,0]))
print(type(b[0]))
print(type(solution[0]))

to output the data types, you’ll get the following output:

<class 'numpy.int64'>
<class 'numpy.int64'>
<class 'numpy.float64'>

When a mathematical operation on arrays produces floats, then all the integers in the

array are converted to floats. If you declare a single arbitrary integer of an array as a

float (e.g., 2. instead of 2), then all other elements of the array are automatically con-

verted to floats.

3.4.2 Systems of Equations with Complex Coefficients

In an alternating current (AC) network, a complex resistor consists of either an induc-

tive or capacitive impedance:

For a network with four meshes, the general rule is:

Using the network shown in Figure 3.4 as an example, try reading a system of equations

directly from the circuit using mesh analysis.
118

3.4 Linear Systems of Equations
Figure 3.4 AC Network with Four Meshes

The coefficient matrix is entered in Table 3.2. This table consists of four rows and five

columns. The fifth column is for the vector of source voltages.

The sums of the impedances from the individual meshes are shown along the main

diagonal. The secondary diagonals track the common impedances of two meshes. If

two meshes have no common impedances, a 0 is entered in the table. All coefficients of

the secondary diagonals have a negative sign and are reflected on the main diagonal of

the impedance matrix. As shown in Listing 3.17, the coefficient matrix of rows 1 to 4 and

columns 1 to 4 from Table 3.2 is transferred directly into a NumPy array.

I1 I2 I3 I4 U

1 Z1 + Z2 + Z4 –Z2 –Z4 0 U1

2 –Z2 Z2 + Z3 + Z5 0 –Z5 –U2

3 –Z4 0 Z4 + Z6 + Z7 –Z7 U3

4 0 –Z5 –Z7 Z5 + Z7 + Z8 –U4

Table 3.2 System of Equations according to the Mesh Analysis Method

Z1

Z5

U1

I4

I2

I3

I1

Z7

Z4

Z6 Z8

Z2

Z3

U2

U3 U4
119

3 Numerical Calculations Using NumPy
01 #17_mesh4c.py
02 import numpy as np
03 import numpy.linalg
04 U1=230
05 U2=-230
06 U3=230
07 U4=-230
08 Z1=1+2j
09 Z2=2-4j
10 Z3=3+4j
11 Z4=2+5j
12 Z5=1+5j
13 Z6=2+5j
14 Z7=4-5j
15 Z8=1+5j
16 Z=np.array([[Z1+Z2+Z4,-Z2,-Z4, 0],
17 [-Z2,Z2+Z3+Z5, 0,-Z5],
18 [-Z4, 0,Z4+Z6+Z7,-Z7],
19 [0,-Z5,-Z7,Z5+Z7+Z8]])
20 U=np.array([U1,-U2,U3,-U4])
21 current=np.linalg.solve(Z,U) #numpy.ndarray
22 for k, I in enumerate(current,start=1):
23 print("I%d = (%0.2f, %0.2fj)A" %(k,I.real,I.imag))

Listing 3.17 Network with Complex Resistors

Output

I1 = (33.16, -52.04j)A
I2 = (19.63, -49.35j)A
I3 = (20.09, -41.98j)A
I4 = (18.09, -51.66j)A

Analysis

Lines 04 to 15 contain the values for the voltages and impedances of the network. The

coefficient matrix Z is defined in lines 16 to 19. The rows and columns of the matrix are

arranged in a NumPy array([[],...,[]]) according to Table 3.2. For the calculation of

the solution vector I, the inhomogeneity vector U must still be defined in line 20. The

solution is calculated using NumPy function linalg.solve(Z,U) in line 21. The solution

vector current contains the four mesh currents I[0], I[1], I[2], and I[3].

The Python function enumerate(current) allows for the output of the individual mesh

currents within a for loop (line 23). Each individual mesh current I is marked with the

index k. With each iteration, the enumerate(current) function returns a tuple contain-

ing the index k and the corresponding element I of the current array.
120

3.5 Project Task: Lightning Protection System
3.5 Project Task: Lightning Protection System

Let’s say, for a cuboid-shaped building, the currents in the lightning conductor and

down conductor need to be calculated. The building has a length of 10 m, a width of 5

m, and a height of 3 m. The lightning and down conductors made of steel with a con-

ductor cross-section of A = 50 mm2 are installed on the edges of the building. For the

top view, this results in a network with four nodes and eight resistors, as shown in

Figure 3.5. The time course of a lightning current can be approximately described by a

triangle with a rise time of about 10 µs and a fall time of about 1 ms. The maximums of

the currents are approximately between 10,000 A and 300,000 A.

Figure 3.5 Substitute Circuit for a Lightning Protection System

The voltage drops between the nodes are calculated using the node potential method.

You can read the system of equations directly from the circuit and represent it as a

matrix:

21

3 4

Gh

Iq

Gh

Gh Gh

Gb Gb

Gı

Gı
121

3 Numerical Calculations Using NumPy
The following applies to the conductance of the lightning and down conductors:

We can use Ohm’s law to calculate the currents in the lightning and down conductors

from the potential differences of the node voltages and the conductances of the light-

ning and down conductors.

Listing 3.18 solves the system of equations for the four unknown nodal voltages using

NumPy function U=linalg.solve(G,I).

01 #18_project_lightning_protection.py
02 import numpy as np
03 Iq=1e5 #current of the lightning in A
04 g=10 #conductance for steel S*m/mm^2
05 A=50 #conductor cross section in mm^2
06 l=10 #length in m
07 b=5 #width in m
08 h=3 #height in m
09 Gh=g*A/h #conductance for height in S
10 Gl=g*A/l #conductance for length in S
11 Gb=g*A/b #conductance for width in S
12 G=np.array([[Gb+Gh+Gl, -Gl, -Gb, 0],
13 [-Gl, Gb+Gh+Gl, 0,-Gb],
14 [-Gb, 0, Gb+Gh+Gl,-Gl],
15 [0,-Gb,-Gl, Gb+Gh+Gl]])
16 I=np.array([Iq,0,0,0])
17 U=np.linalg.solve(G,I)
18 I10=U[0]*Gh
19 I20=U[1]*Gh
20 I30=U[2]*Gh
21 I40=U[3]*Gh
22 I12=(U[0]-U[1])*Gl
23 I13=(U[0]-U[2])*Gb
24 I34=(U[2]-U[3])*Gl
25 I24=(U[1]-U[3])*Gb
26 print("--Voltage drops of down conductors--")
27 print("Voltage U10: %3.2f V" %U[0])
28 print("Voltage U20: %3.2f V" %U[1])
29 print("Voltage U30: %3.2f V" %U[2])
30 print("Voltage U40: %3.2f V" %U[3])
31 print("--Currents in down conductors--")
32 print("Current I10: %3.2f A" %I10)
33 print("Current I20: %3.2f A" %I20)
34 print("Current I30: %3.2f A" %I30)
122

3.5 Project Task: Lightning Protection System
35 print("Current I40: %3.2f A" %I40)
36 print("--Currents in lightning conductors--")
37 print("Current I12: %3.2f A" %I12)
38 print("Current I13: %3.2f A" %I13)
39 print("Current I34: %3.2f A" %I34)
40 print("Current I24: %3.2f A" %I24)

Listing 3.18 Distribution of Currents in the Lightning and Down Conductors

Output

--Voltage drops of down conductors--
Voltage U10: 365.50 V
Voltage U20: 70.86 V
Voltage U30: 122.00 V
Voltage U40: 41.64 V
--Currents in down conductors--
Current I10: 60917.21 A
Current I20: 11810.06 A
Current I30: 20332.79 A
Current I40: 6939.94 A
--Currents in lightning conductors--
Current I12: 14732.14 A
Current I13: 24350.65 A
Current I34: 4017.86 A
Current I24: 2922.08 A

Analysis

Line 03 specifies the peak lightning current value of 100,000 A. The cross-section of the

lightning and down conductors is usually 50 mm2 (line 05). Lines 06 to 08 define the

length, width, and height of the building in meters.

In lines 09 to 11, the conductances of the lightning and down conductors are calculated.

The coefficient matrix of the conductances is written in lines 12 to 15. In line 16, the

inhomogeneity vector specifies that lightning strikes node 1. The solution vector for

the voltage drops is calculated in line 17 using NumPy function linalg.solve(G,I) and

assigned to variable U. The calculation of the currents in the down conductors is per-

formed in lines 18 to 21. Lines 22 to 25 calculate the currents in the lightning conductors

from the potential differences.

The outputs in lines 26 to 40 show that very high currents can flow with a maximum

current density of about 1,218 A/mm2. These high current densities are still acceptable

because the current only flows for a few milliseconds.
123

3 Numerical Calculations Using NumPy
3.6 Tasks

1. Calculate the volume of a parallelepiped using a determinant and the dot(cross(a,

b),c) function.

2. A catenary circuit is composed of three voltage dividers (longitudinal link R1, cross

link R2). All resistors have the same value of 1Ω. The output voltage is U2 = 1 V. Using

the catenary parameter method, calculate the input voltage U1 and the input current

I1.

3. Calculate the dyadic product for:

4. The expanded coefficient matrix of a linear system of equations is given as the fol-

lowing:

Solve this system of equations using NumPy function solve(). The coefficient

matrix and the inhomogeneity vector should be determined by means of slicing

from the extended coefficient matrix.

5. A linear system of equations with a large number of unknowns (50 to 1000) is to be

solved using NumPy function solve(). Generate the coefficient matrix and the inho-

mogeneity vector using NumPy function random.normal(). Test the limits of solve()
by gradually increasing the number of unknowns.

6. Calculate all the mesh currents for the catenary circuit from Task 2 using the mesh

analysis method. The input voltage is 13 V.

7. Calculate all node voltages for the catenary circuit from Task 2 using the node poten-

tial method. The input current has a value of 8 A.
124

Chapter 4

Function Plots and Animations
Using Matplotlib

In this chapter, you’ll learn how to use the Matplotlib module to display

and animate mathematical functions, vectors, and geometric figures in

different variations.

Matplotlib is a program library for plotting mathematical functions and geometric fig-

ures. With just a few statements, you can easily create meaningful diagrams for scien-

tific papers and publications.

The matplotlib module is usually imported together with the pyplot submodule. The

pyplot submodule serves as an interface, specifically an application programming

interface (API), to the matplotlib module. Matplotlib contains a collection of functions

similar to the functionality of MATLAB. Matplotlib methods create drawing areas for

diagrams (plots), draw lines or points in a predefined drawing area, specify line styles,

and provide numerous options for labels and the scaling of coordinate axes. Several

mathematical functions can be represented in one plot or in different subplots. Exten-

sive design options for labels (legends) of the individual function plots support the

reader in finding their way around.

The module can include using the import matplotlib.pyplot as plt statement. The plt
alias is commonly accepted as a convention.

4.1 2D Function Plots

Matplotlib provides the option to display 2D function plots in either Cartesian or polar

coordinates. I will show you how to implement this type of function plot and how you

can vary their representation style using real-life examples from mathematics, electri-

cal engineering, and physics.

4.1.1 Basic Structure of a Function Plot

For the representation of function plots, the Matplotlib method plot(x_coordinate,y_
coordinate) holds a central place. This method, however, does not immediately display
125

4 Function Plots and Animations Using Matplotlib
mathematical functions on the screen as they are first stored in a two-dimensional

array. This process runs in the background and is not visible to the user.

Creating a Function Plot with a for Loop

Listing 4.1 shows the implementation of a function plot with a for loop and two lists.

The individual function values of the x and y coordinates of a parabola are stored in

two lists and then displayed.

01 #01_plot_loop.py
02 import matplotlib.pyplot as plt
03 lx,ly = [],[]
04 for x in range(11):
05 y=x**2
06 lx.append(x)
07 ly.append(y)
08 plt.plot(lx,ly)
09 plt.show()

Listing 4.1 Function Plot with Loop

Output

Figure 4.1 shows the output of the parabola whose function plot was programmed with

a loop.

Figure 4.1 Function Plot of a Parabola

Indications and Procedures

In line 02, the matplotlib module is imported with the pyplot submodule. The plt alias

allows you to access all matplotlib methods used in the program.
126

4.1 2D Function Plots
Line 03 creates two empty lists. Inside the for loop (lines 04 to 07), the parabola is

defined in line 05. The x and y values of the parabola are stored in lines 06 and 07 in

lists lx and ly. In line 08, the values of the x-y coordinates are prepared for the plot
using the plot(lx,ly) method. In line 09, the show() method displays the parabola on

the screen.

The approach shown in Listing 4.1 is cumbersome because you must implement a loop.

In some programming languages, such as Java, C, C++, and Delphi, a loop construct is

necessary for the creation of function plots. In Python, you can do without a loop con-

struct if you import the numpy module in addition to the matplotlib.pyplot module.

The Object-Oriented Variant of a Function Plot

To better understand the object-oriented variant of Matplotlib, the terms figure and

axes must be clarified up front. Figure 4.2 shows these terms in context.

Figure 4.2 The Terms "Figure" and "Axes" Illustrated

Figure

In the Matplotlib documentation, a figure is a container for the top level of all plot ele-

ments. A figure object defines the entire drawing area.

One or more axes objects can be embedded in a figure.

A figure object (fig) can be created using the fig = plt.figure() statement.

The coordinate data of a figure object cannot be changed; as shown in Figure 4.2, the

coordinates are fixed. You can use the print(fig.get_figwidth()) and print(fig.get_
figheight()) statements to output the width and height of the figure object. The
127

4 Function Plots and Animations Using Matplotlib
default values are 6.4 inches for the width and 4.8 inches for the height. If you multiply

these values by the default resolution of 100 dpi, you get a drawing area of 640×480

pixels.

The fig.set_figwidth(12) and fig.set_figheight(10) statements enable you to in-

crease the width and height of the drawing area. These values enlarge the drawing area

to 1200×1000 pixels.

Axes

The most important container element is an axis. The documentation defines axes as a

coordinate system in which one or more function plots can be displayed. Several axes

objects (subplots) can be embedded in one figure object.

The following statement allows you to change the coordinates of the axes objects:

fig.subplots_adjust(left=0.15,bottom=0.15,right=0.7,top=0.8)

For the arguments, you can only use values between 0 and 1. Usually, you don’t need to

care about the coordinate data of an axis because the set default values are pretty con-

venient.

The frame lines (axes) of an axes object are referred to as spines in the Matplotlib docu-

mentation. You can use the methods of the axes class to label coordinate axes, insert

legends and any text into a plot, and give a plot a meaningful title. LaTeX notation even

enables you to represent complicated mathematical expressions, such as formulas,

Greek letters, and operators.

A coordinate system can be created using the ax=fig.add_subplot() or ax=fig.sub-
plots() statements.

You can also create a figure and an axes object using a single statement: fig,ax =
fig.subplots(). The subplots() method returns the fig,ax tuple. The fig and ax identi-

fiers are from the Matplotlib documentation and have now become accepted as a con-

vention.

The following console program enables you to display the default coordinate data of

the axes object:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> print(ax.get_position())
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88)

The following statement allows you to hide the upper and right spines:

ax.spines[['top', 'right']].set_visible(False)
128

4.1 2D Function Plots
Table 4.1 contains an overview of the most important figure methods.

Table 4.2 contains a selection of important axes methods.

Method Description

add_axes([l,b,w,h]) Creates a coordinate system: left border, bottom left border,

width, height. The values must be between 0 and 1.

add_subplot(r,c,n) Creates subplots with r rows and c columns. The number n indi-

cates the number of subplots. If you enter no parameters at all,

only one plot will be created.

savefig("name.png") Saves a graphic in PNG format. The file extension defines the file

format. The following formats are also possible: EPS (eps), JPEG

(jpeg), JPG (jpg), PDF (pdf), PGF (pgf), PNG (png), PS (ps), RAW

(raw), RGBA (rgba), SVG (svg), SVGGZ (svgz), TIF (tif), TIFF

(tiff), and WEBP (webp).

show() Causes the plot to be displayed on the screen.

subplots_adjust(par) Sets the position of the drawing area. The following parameters

(par) are possible: left, right, bottom, and top.

subplots(r,c) Creates subplots with r rows and c columns.

tight_layout() Creates spacing between subplots.

Table 4.1 Figure Methods (Selection)

Method Description

annotate(parameter) Labels a point of a function plot to be highlighted.

axis([x1,x2,y1,y2]) Sets the range of values for a function plot within an axes

object.

grid() Draws grid lines on a plot.

legend() Places a legend on the drawing area.

plot(x,f(x), …) Internally generates a value table for a function plot. The show

method displays the function plot on the screen.

set_title('Text') Inserts a heading in a plot.

set_xlabel('Text') Labels the x-axis.

set_ylabel("Text") Labels the y-axis.

set_xlim(x1,x2) Sets the display range for the x-axis.

Table 4.2 Important Axes Methods (Selection)
129

4 Function Plots and Animations Using Matplotlib
Representing a Mathematical Function

The representation of a mathematical function is performed in seven steps:

1. Importing the numpy module

2. Importing the matplotlib.pyplot module

3. Creating an array via np.linspace(start,stop,number) or np.arange(start,stop,dx)
for the range of values of the independent variables

4. Defining one or multiple mathematical functions

5. Creating a fig and an ax object

6. Preparing the function chart for plotting using the ax.plot(x,y) method

7. Displaying the function plot on the screen using the fig.show() method

A minimal, object-oriented version of a function plot thus consists of only seven pro-

gram lines.

Listing 4.2 shows a program in the object-oriented style for the function plot of the

parabola defined earlier in Listing 4.1.

01 #02_plotnumpy.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 x=np.linspace(0,10,10)
05 y=x**2
06 fig, ax = plt.subplots(figsize=(6.4,4.8),dpi=100)#640x480 pixels
07 ax.plot(x,y)
08 fig.show()

Listing 4.2 Parabola with NumPy Array

The program produces the same output as shown earlier in Figure 4.1.

set_ylim(y1,y2) Sets the display range for the y-axis.

set_xticks([0,1,2, …]) Sets the scaling of the x-axis. If the list does not contain any

entries, the display of the scaling will be suppressed.

set_yticks([0,1,2, …]) Sets the scaling of the y-axis.

set_text('y=%3.2f'%x) Outputs the value of the x variable as formatted text.

text(x,y,'Text') Places a text at the x and y position on the plot.

Method Description

Table 4.2 Important Axes Methods (Selection) (Cont.)
130

4.1 2D Function Plots
Indications and Procedures

Line 02 imports the NumPy module for creating an array. The one-dimensional array

for the value range of the independent variable x is created in line 04 using the NumPy

function, linspace(). This function automatically determines the value range of the x-

axis. Line 05 contains the mathematical function definition for a parabola. Other math-

ematical functions can also be placed here. The number of functions is limited only by

the representability. A user doesn’t need to worry about the scaling of the axes and

their labeling with numbers since these tasks are performed automatically by the plot
method.

In line 06, the subplots(figsize=(6.4,4.8)) method creates the fig and ax objects. The

figsize(width, height) parameter determines the size of the graphic. The first number

sets the width, and the second number sets the height of the window (figure). The num-

bers given are the default values. You can also omit this parameter if the default values

are sufficient for your requirements. The fig object provides access to the methods

responsible for the entire drawing area. You can access the methods for axis design via

the ax object.

In line 07, the plot(x,y) method calculates a table of values for the coordinate data of

the mathematical function. This process remains hidden from the user.

The fig.show() method (line 08) displays the function plot on the screen. However, the

Matplotlib documentation and the technical literature use the notation plt.show().

I will adopt this convention for all the following program examples.

You can test the program using plt.show(fig), which makes it more clear that the

entire window will be displayed on the screen. But a common practice is to avoid using

this parameter.

Programming graphics applications in object-oriented style is not mandatory, as the

following console program shows:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x=np.linspace(0,10,10)
>>> plt.plot(x,x**2)
[<matplotlib.lines.Line2D object at 0x13195e980>]
>>> plt.show()

Thus, you could get by with only five program lines for the representation of a simple

function plot. However, to provide richer functionality for presenting graphics, the

object-oriented style is preferred in Matplotlib programs.

The fig and ax objects do not have to be implemented as shown in line 06 by using fig,
ax=plt.subplots() within one program line. The fig and ax objects can also be created

using the figure() and fig.add_subplot() methods, as in the following examples:
131

4 Function Plots and Animations Using Matplotlib
fig=plt.figure(parameter) #designing the user interface
ax=fig.add_subplot(parameter) #designing the coordinate system
#ax=fig.subplots(parameter) #for multiple subplots

In the following examples, I want to show in greater detail which parameters you can

use. Given the large number of options, only a small selection can be presented in this

chapter. For more details, see the Matplotlib documentation.

Suggestions for the Program Test

To better understand all the details of the program, you must change the parameters in

the NumPy function linspace(par1,par2,par3) in line 04 and observe closely the

effects on the display of the function plot. Alternatively, you can test the program

using the NumPy function arange(0,10,0.1). If you change the range of values for the

x-axis, you’ll notice that the scaling of the y-axis adjusts automatically.

In line 05, you can also test the program using another function, such as np.sin(x).

Notice how the scaling of the y-axis is automatically done.

In line 06, you can try out the different options for object creation. In particular, you

should vary the figsize and dpi parameters to observe their corresponding effects on

the plot’s size. The values entered are default values.

To hide the display of the upper and right spines of the axes object, you must insert the

following statement between lines 06 and 08:

ax.spines[['top', 'right']].set_visible(False)

Below line 07, you can insert the fig.savefig("parabel.png") statement. The savefig

("name.fileextension",dpi=number) method saves the function plot in a selectable file

format. The file extension defines the file type. Besides the PNG file format, PDF (pdf),

EPS (eps), JPG (jpg), and SVG (svg) formats are also possible. The dpi parameter sets the

resolution. The default setting is 100. Thus, the graphic has a size of 640×480 pixels.

You can double the size of the graphic by using dpi=200.

4.1.2 Gridlines

To better read function values, a useful step is to include gridlines in the function plot.

The grid() method provides numerous design options for this feature, as shown in Lis-

ting 4.3.

01 #03_grid.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 t=np.linspace(0,20,500)
05 u=325*np.sin(2*np.pi*50*t/1000)
06 fig, ax = plt.subplots()
132

4.1 2D Function Plots
07 ax.plot(t,u,linewidth=2)
08 ax.grid(color='black',linestyle='solid',lw=0.5)
09 #ax.grid(color='black',ls='dashed',lw=0.5)
10 #ax.grid(color='black',ls='dotted',lw=0.5)
11 #ax.grid(color='black',ls='dashdot',lw=0.5)
12 #ax.grid(True)
13 plt.show()

Listing 4.3 Gridlines

Output

An example function plot with an integrated grid is shown in Figure 4.3.

Figure 4.3 Gridlines

Analysis

The program represents the course u(t) of a 50 Hz alternating voltage. The linewidth=2
parameter in line 07 sets the line width of the function plot. The abbreviated notation

lw=2 has the same effect.

Lines 08 to 12 show the different styles of possible gridlines. By removing the com-

ments, you can test their appearance. The simplest way to display gridlines in function

plots is shown by line 12, which has been commented out. The linestyle property can

also be replaced by the abbreviated notation ls.

The fig object is not needed in this program. But if you leave it out, an error message

will be displayed after the program starts. You can also use this object to save the func-

tion plot as a file by using fig.savefig('name.fileformat').

For the syntax in line 06, one alternative is to create the fig and ax objects separately

using fig=plt.figure() or ax=fig.add_subplot().
133

4 Function Plots and Animations Using Matplotlib
4.1.3 Labels

For the labels of function plots, Matplotlib provides the legend() and annotate() meth-

ods. You can use the set() method to label the x and y axes. In addition, this method

can also include the title of a plot. The set_title(), set_xlabel, and set_ylabel() meth-

ods allow you to implement these specifications separately.

Legends and Labeling the Axes

If special features of a mathematical function are to be identified, a useful task is to

explain them in more detail in the function plot by using legends. For this purpose,

Matplotlib provides the legend(location) method. The location parameter specifies

the position of the legend. In addition, the x-axis and y-axis should also be labeled to

clearly show the relationship between independent and dependent variables. For this

purpose, Matplotlib provides the set_xlabel() and set_ylabel() methods. The separate

labeling of the axes can be accommodated along with the plot title in only one program

line by using the set(xlabel='x',ylabel='y',title='Title') method. Through the

example of a 50 Hz alternating voltage, Listing 4.4 shows the implementation of a leg-

end and the axis labels.

01 #04_labels_legend.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 t=np.arange(0,20,0.001)
05 Ueff=[230,230]
06 u=325*np.sin(2*np.pi*50*t*1e-3)
07 fig, ax = plt.subplots()
08 ax.plot(t,u,'b',lw=2,label='Instantaneous value: u(t)')
09 ax.plot([0,20],Ueff,'r--',label='RMS value: 230V')
10 ax.plot(5,325,'ro',label='Peak value:325V')
11 ax.set(xlabel='t in ms',ylabel='u(t) in V',title='50 Hz AC voltage')
12 #ax.legend(loc='upper right')
13 #ax.legend(loc='lower left')
14 ax.legend(loc='best')
15 ax.grid(color='g',ls='dashed',lw='0.5')
16 plt.show()

Listing 4.4 Legend

Output

Figure 4.4 shows the integration of a legend.
134

4.1 2D Function Plots
Figure 4.4 Legend

Analysis

The Ueff=[230,230] statement in line 05 specifies the y-coordinates of a constant volt-

age. The plot() method is passed the line colors (b stands for blue) as the third parame-

ter (line 08). The fifth parameter label='Instantaneous value: u(t)' contains the label

of the legend.

The third parameter ('ro') in line 10 causes a red dot to be drawn at the point t=5ms and

u=325V. The letter r stands for the color red. The o means that a point is to be drawn.

The set() method in line 11 creates the labels for the x-axis and the y-axis as well as the

title of the plot. The ax.legend(loc='best') method searches for the optimal location to

place the legend (line 14). The commented-out lines 12 and 13 show alternatives.

You can also spread the labels across three program lines, as in the following example:

ax.set_title('50 Hz AC voltage')
ax.set_xlabel('t in ms')
ax.set_ylabel('u(t) in V')

This variant provides more options for the positioning and color design of the axis

labels.

Labeling Using the annotate() Method

The sample program shown in Listing 4.5 illustrates how you can display and mark sev-

eral mathematical functions in a plot using the annotate() method. The program dis-

plays three resistance characteristic curves and one power hyperbola.
135

4 Function Plots and Animations Using Matplotlib
01 #05_labels_functions.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 R1,R2,R3=2,4,8
05 I=0.2
06 P=1
07 I=np.linspace(0.1, 1, 100)
08 U1=R1*I
09 U2=R2*I
10 U3=R3*I
11 U=P/I
12 fig, ax = plt.subplots()
13 ax.plot(I,U1,I,U2,I,U3,lw=2,color='blue')
14 ax.plot(I,U,lw=2,color='green')
15 ax.set(xlabel='I in A',ylabel='U in V',title='Power hyperbola U=P/I')
16 ax.annotate(r'R_1',xy=(1,2),xytext=(+2,-3),textcoords='offset points')
17 ax.annotate(r'R_2',xy=(1,4),xytext=(+2,-3),textcoords='offset points')
18 ax.annotate(r'R_3',xy=(1,8),xytext=(+2,-3),textcoords='offset points')
19 ax.grid(True)
20 plt.show()

Listing 4.5 Labeling Functions

Output

Figure 4.5 shows how multiple functions can be represented and labeled in the function

plot.

Figure 4.5 Marking Functions
136

4.1 2D Function Plots
Analysis

In lines 08 to 11, the functions for the resistance characteristic curves and the power

hyperbola are defined. Lines 13 and 14 generate the function plots for the resistance

characteristic curves and the power hyperbola.

The statements in lines 16 to 18 create the labels using the annotate(param1,param2,

param3,param4) method. The R_1 label of the resistance characteristic curve is passed

as the first parameter. The underscore in the LaTeX notation causes the index to be sub-

script. The second parameter sets the x-y coordinates of the label. The third parameter

determines the offset. The label is moved two points to the right in the x-direction and

three points down in the y-direction. The fourth parameter specifies that the displace-

ment of the label should be in terms of points.

Within the drawing area, you can also place a commenting text or even formulas by

using the text() method, such as in the following example:

ax.text(0.2,9,r'voltage $U=\frac{P}{I}$',fontsize=12)

In this example, the first number determines the x-coordinate, and the second number

determines the y-coordinate where the text should be positioned.

4.1.4 Line Styles

To better identify individual functions when plotting multiple functions in a function

plot, each individual mathematical function can be assigned a special line style. Listing

4.6 shows four different line styles for the basic oscillation and three harmonics of a

rectangular function.

01 #06_linestyle.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 x=np.linspace(0,6.3,500)
05 y1=np.sin(x)
06 y3=np.sin(3*x)/3
07 y5=np.sin(5*x)/5
08 y7=np.sin(7*x)/7
09 y=y1+y3+y5+y7
10 fig, ax = plt.subplots()
11 ax.plot(x,y1,color='b',lw=2,linestyle='-') #blue
12 ax.plot(x,y3,color='r',lw=2,linestyle='--')#red
13 ax.plot(x,y5,color='m',lw=2,linestyle=':') #magenta
14 ax.plot(x,y7,color='g',lw=2,linestyle='-.')#green
15 ax.plot(x,y,color='black',lw=3)
16 ax.set_xlabel('x')
137

4 Function Plots and Animations Using Matplotlib
17 ax.set_ylabel('y')
18 ax.grid(True)
19 plt.show()

Listing 4.6 Line Styles

Output

The line styles that can be used to distinguish between different functions are shown in

Figure 4.6.

Figure 4.6 Different Line Styles

Analysis

Lines 11 to 14 define the line styles. For a solid line, a dash is assigned to the linestyle=
'-' property. A double hyphen (--) draws a dashed line. A colon (:) draws a dotted line.

A dash and a dot (-.) draw a dash-dot line. If no property is specified for the line style

(line 15), then a solid line will be drawn by default. The linestyle property can also be

abbreviated as ls.

You can also change the line styles and line colors using the abbreviations b-, r--, m:,

and g-.

4.1.5 Designing Axes

Previously, Matplotlib automatically performed axis scaling and specified the outer

frame of the function plot. However, in many cases, changing the axis scaling or the

shape of the coordinates in the form of a cross might be desirable.
138

4.1 2D Function Plots
Changing the Axis Scaling

Listing 4.7 shows how to change axis scaling. This data originates from a tensile test.

The relationship between the length of the test bar and the tensile force applied is

shown.

01 #07_axis_scaling.py
02 import matplotlib.pyplot as plt
03 l=[0,0.02,0.1,0.2,1.15,2.2,3.25,4.3,5.4,6.4]
04 F=[5.7,7.5,7.2,7.3,8.9,10.4,11.3,12,11.4,9.3]
05 fig, ax = plt.subplots()
06 ax.plot(l, F,'ro-')
07 ax.set_xticks([0,1,2.2,3.25,4.3,5.4,6.4])
08 ax.set_yticks([0,5.7,7.5,8.9,10.4,12,9.3])
09 #ax.axis([-0.5,7,5,13])
10 ax.set_xlabel("l in mm")
11 ax.set_ylabel("F in kN")
12 plt.show()

Listing 4.7 Individual Axis Scaling

Output

The output of the individual axis scaling from Listing 4.7 is shown in Figure 4.7.

Figure 4.7 Individual Axis Scaling
139

4 Function Plots and Animations Using Matplotlib
Analysis

Lines 03 and 04 contain the data for the bar length and the tensile force obtained from

a tensile test. Line 06 specifies that the tensile force is displayed as a red line with red

markings of the measuring points over the bar length.

The set_xticks([]) and set_yticks([]) methods in lines 07 and 08 set the scaling for

prominent function values. The alternative in the commented-out line 09 causes

the function to be displayed on the x-axis for the value range from -0.5 to 7 and on the

y-axis for the value range from 5 to 13.

Creating an Axis Cross

Listing 4.8 shows how you can create an axis cross using the spines method. The follow-

ing statements hide the top and right spines of the axes object via set_visible(False):

spines['top'].set_visible(False)
spines['right'].set_visible(False)

The following statements move the left and right spines to the coordinate origin:

spines['left'].set_position(("data", 0))
spines[,'bottom']].set_position(("data", 0))

A parabola y = x2 − 4 shifted on the y-axis serves as a demonstration object:

01 #08_axis_style.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 #Function definition
05 def f(x):
06 #y=np.sin(np.pi*x)
07 y=x**2-4
08 return y
09 #Graphics area
10 fig, ax = plt.subplots()
11 ax.spines[['top', 'right']].set_visible(False)
12 ax.spines[['left', 'bottom']].set_position(("data", 0))
13 x = np.linspace(-5, 5, 100)
14 ax.plot(x,f(x),'r-',lw=2)
15 ax.set_xlabel('x',loc='right')
16 ax.set_ylabel('f(x)',loc='top',rotation=0)
17 plt.show()

Listing 4.8 Axis Cross
140

4.1 2D Function Plots
Output

The result of the conversion to an axis cross is shown in Figure 4.8.

Figure 4.8 Axis Cross

Analysis

The statement in line 11 will hide the upper and right spines.

In line 12, the left and bottom axes are moved to the coordinate origin.

To embellish the x-axis and the y-axis with arrows, you must insert the following lines

into the graphics area:

ax.plot(1,0,'>k',transform=ax.get_yaxis_transform(), clip_on=False)
ax.plot(0,1,'^k',transform=ax.get_xaxis_transform(), clip_on=False)

Logarithmic Scale Division

A logarithmic scale division is useful when the range of values of the data to be repre-

sented spans many orders of magnitude. The logarithmic representation makes cor-

relations in the range of small values more visible. For the representation of the

transmission behavior of low-pass filters, a logarithmic scale division of the frequency

axis is usually always selected. The transfer behavior (frequency response) of a Butter-

worth low-pass filter of the nth degree is described by the following formula:
141

4 Function Plots and Animations Using Matplotlib
Ω is the frequency normalized to 1 Hz and n is the degree of the filter. Up to the cutoff

frequency of 1 Hz, the transfer factor remains almost constant, especially when the

degree of the filter is increased.

Listing 4.9 shows how the transfer behavior A = 𝑓(Ω) of a Butterworth low-pass filter of

the first to third degree with logarithmic scale division is represented. Due to the semi-
logx() method, the x-axis gets a logarithmic scale division.

01 #09_log_axis.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 omega=np.linspace(0.1,100,1000)
05 fig, ax = plt.subplots()
06 for n in range(1,4):
07 A=1./(np.sqrt(1.+omega**(2*n)))
08 ax.semilogx(omega,A)
09 ax.set_xlabel('Frequency in Hz')
10 ax.set_ylabel('A')
11 ax.grid(True)
12 plt.show()

Listing 4.9 Logarithmic Scale Division

Output

The logarithmic scale generated using the semilogx() method is shown in Figure 4.9.

Figure 4.9 Logarithmic Scale Division
142

4.1 2D Function Plots
Analysis

The transmission behavior shown in this example clearly shows that the transmission

factor hardly changes up to the cutoff frequency of 1 Hz. The semilogx(omega,A) method

in line 08 causes the x-axis to be scaled logarithmically in the range from 0.1 Hz to 100

Hz. Between the frequencies of 0.1 to 1 Hz, 1 Hz to 10 Hz and 10 Hz to 100 Hz, the sec-

tions on the x-axis have the same length.

If you add the ax.set_xscale('log') method below line 05 and change the ax.semilogx

(omega,A) statement to ax.plot (omega,A), the x-axis will also get a logarithmic scale

division.

Polar Coordinates

In mathematics, a polar coordinate system (also called a circular coordinate system) is

a two-dimensional coordinate system in which each point is defined by the distance

from the center and an angle. Lines are represented using the plot(a1,a2,r1,r2)
method. The abbreviations a and r stand for angle and radius, respectively. Listing 4.10

demonstrates how a square and a line are represented in a polar coordinate system.

01 #10_polar_coordinates.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04
05 def theta_rad(angle1,angle2):
06 theta=[angle1,angle2]
07 return np.radians(theta)
08
09 fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
10 ax.plot(theta_rad(0,90),[1,1],'r',lw=3)
11 ax.plot(theta_rad(90,180),[1,1],'g',lw=3)
12 ax.plot(theta_rad(180,270),[1,1],'m',lw=3)
13 ax.plot(theta_rad(270,0),[1,1],'b',lw=3)
14 ax.plot(theta_rad(0,45),[0,0.6],'black',lw=3)
15 ax.grid(True)
16 plt.show()

Listing 4.10 Polar Coordinates

Output

Figure 4.10 shows lines in a diagram with polar coordinates.
143

4 Function Plots and Animations Using Matplotlib
Figure 4.10 Polar Coordinates

Analysis

In line 09, the subplot_kw={'projection': 'polar'} parameter in the subplots() method

specifies that the default Cartesian coordinate system is converted to a polar coordi-

nate system. The labels for the angles and radiuses are generated automatically. Using

lines 10 to 13, the plot method draws the four lines of a square.

In line 14, the following method draws a black line (radius) with polar coordinates 45°

and 0.6:

ax.plot(theta_rad(0,45),[0,0.6],'black',lw=3)

4.1.6 Coloring Areas

A convenient task, in some cases, is to highlight a surface by coloring, which occurs

when a parabola opens in the direction of the positive y-axis and a parabola opens in

the direction of the negative y-axis intersect at two points. Likewise, the coloring of the

area under a function graph and its intersections with the x-axis could be equally use-

ful. You can perform this task using the fill_between() method.

Coloring Areas between Two Function Graphs

By coloring areas between two function graphs, you can illustrate the calculation of an

area integral. Listing 4.11 shows how to color the areas between the intersections of two

parabolas defined by the following equations:
144

4.1 2D Function Plots
01 #11_color_parabola.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 x = np.linspace(0,5,100)
05 y1 = (x-3)**2
06 y2 = -(x-2)**2+8
07 fig, ax=plt.subplots()
08 ax.plot(x, y1, x, y2, color='black')
09 ax.fill_between(x,y1,y2,where=y2>=y1,facecolor='b',alpha=0.2)
10 ax.set_xlabel('x')
11 ax.set_ylabel('y')
12 plt.show()

Listing 4.11 Coloring Areas between Function Graphs

Output

The result of the coloring between the function graphs from Listing 4.11 is shown in

Figure 4.11.

Figure 4.11 Coloring Areas between Function Graphs

Analysis

In line 09, the following method is used to color the area between the intersections of

the two parabolas:

ax.fill_between(x,y1,y2,where=y2>=y1,facecolor='b',alpha=0.2)
145

4 Function Plots and Animations Using Matplotlib
The range of coloring is defined by the where=y2>=y1 condition. Thus, only for the range

of values in which y2 is greater than or equal to y1, the coloring should be done. The

alpha=0.2 parameter sets the transparency (translucency) of the coloring. The smaller

the value, the higher the transparency.

Coloring Areas above and below the x-Axis of a Sine Function

Listing 4.12 shows the coloring between the function graph of the power curve p(t) and

the x-axis using the example of the AC power.

01 #12_color_power.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 f=50
05 URms=230
06 R=10
07 Xc=10
08 XL=0
09 Z=np.sqrt(R**2 + (XL-Xc)**2)
10 phi=np.arctan((XL-Xc)/R)
11 I=URms/Z
12 t=np.linspace(0,20,500)
13 u=np.sqrt(2)*URms*np.sin(2*np.pi*f*t*1e-3)
14 i=np.sqrt(2)*I*np.sin(2*np.pi*f*t*1e-3-phi)
15 p=u*i
16 fig, ax=plt.subplots()
17 ax.plot(t, p, color='black')
18 ax.fill_between(t,0,p,where=p >=0,facecolor='r',alpha=0.2,
label='positive portion')
19 ax.fill_between(t,0,p,where=p <=0,facecolor='g',alpha=0.2,
label='negative portion')
20 ax.set(xlabel='t in ms',ylabel='p(t) in Watt',title= 'AC power')
21 ax.legend(loc='best')
22 plt.show()

Listing 4.12 Coloring between the Function Graph and the x-Axis

Output

How helpful this coloring can be for visualizing and quickly grasping the content using

the matplotlib module is shown in Figure 4.12.

Analysis

The statement in line 18 colors the area of the power curve for the positive range where=
p>=0 in red, while line 19 colors the negative range where=p<=0 of the power curve in

green. The legend at the bottom left of the diagram identifies the two areas.
146

4.1 2D Function Plots
Figure 4.12 Coloring between Function Graph and x-Axis

4.1.7 Subplots

Matplotlib provides the following method:

fig,ax = plt.subplots(rows,columns)

This method enables you to display multiple mathematical functions with different

value ranges in subplots.

This method returns the fig,ax tuple. The fig object determines the dimensions of the

entire drawing area, and the ax object lets you access the properties of the axes.

Row and Column Layout

Listing 4.13 represents four function plots: a linear function with positive slope, a linear

function with negative slope, a parabola, and a hyperbola. The four subplots are created

internally using the ax= subplots(2,2) statement. The ax object is of the <class 'numpy.

ndarray'> type and can be treated like a 2×2 matrix. The indexes determine the position

of the subplot on the screen.

01 #13_subplot_functions.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 x = np.linspace(0, 10, 100)
05 y1=x
06 y2=5-x
07 y3=x**2
147

4 Function Plots and Animations Using Matplotlib
08 y4=1/(0.2*x+1)
09 fig, ax = plt.subplots(2, 2)
10 #1st row, 1st column
11 ax[0,0].set(ylabel='y',title='Linear function')
12 ax[0,0].plot(x,y1,'b',lw=2)#blue
13 ax[0,0].grid(True)
14 #1st row, 2nd column
15 ax[0,1].set(title='negative slope')
16 ax[0,1].plot(x,y2,'r',lw=2)#red
17 ax[0,1].grid(True)
18 #2nd row, 1st column
19 ax[1,0].set(xlabel='x',ylabel='y',title='Parabola')
20 ax[1,0].plot(x,y3,'g',lw=2)#green
21 ax[1,0].grid(True)
22 #2nd row, 2nd column
23 ax[1,1].set(xlabel='x',title='Hyperbola')
24 ax[1,1].plot(x,y4,'k',lw=2)#black
25 ax[1,1].grid(True)
26 fig.tight_layout()
27 plt.show()

Listing 4.13 Function Representation in Four Subplots

Output

How the four functions are represented in four subplots is shown in Figure 4.13.

Figure 4.13 Function Representation in Four Subplots
148

4.1 2D Function Plots
Analysis

In lines 05 to 08, four mathematical functions are defined. The first two parameters of

the subplots(2,2) method in line 09 specify that the diagram consists of subplots with

two rows and two columns. The first number determines the number of rows, and the

second number determines the number of columns.

The arrangement of the subplots is determined by the indexing. For example, the

index pair [0,0] specifies that the first subplot is placed in the first row and column.

The second subplot in the first row and second column is indexed with [0,1] and so on.

The tight_layout() method in line 26 is tasked with creating enough space between the

four function plots. You can change the spacing using the pad, w_pad, and h_pad param-

eters. The pad property determines the distance between the edges of the drawing area

and the edges of the subplots as a fraction of the font size. The default value of pad is

1.08. The w_pad and h_pad properties set the vertical and horizontal spacing between

subplots.

Usage Example: AC Power

The next example shown in Listing 4.14 represents the time history of voltage, current,

and power in a 50 Hz AC circuit. The subplots are arranged below each other in three

lines.

01 #14_subplot_power.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 f=50
05 URms=230
06 R=0.001
07 Xc=10
08 XL=0
09 Z= np.sqrt(R**2+(XL-Xc)**2)
10 phi=np.arctan((XL-Xc)/R)
11 I=URms/Z
12 t=np.linspace(0.0, 20, 1000)
13 u=np.sqrt(2)*URms*np.sin(2*np.pi*f*t*1e-3)
14 i=np.sqrt(2)*I*np.sin(2*np.pi*f*t*1e-3-phi)
15 p=u*i
16 fig, ax = plt.subplots(3,1)
17 #voltage
18 ax[0].plot(t, u,'b',lw=2)
19 ax[0].set_ylabel('u(t)')
20 ax[0].grid(True)
21 #current
22 ax[1].plot(t,i,'r',lw=2)
149

4 Function Plots and Animations Using Matplotlib
23 ax[1].set_ylabel('i(t)')
24 ax[1].grid(True)
25 #power
26 ax[2].plot(t,p,'g',lw=2)
27 ax[2].set(xlabel='Time in ms',ylabel='p(t)')
28 ax[2].grid(True)
29 fig.tight_layout()
30 plt.show()

Listing 4.14 Function Representation in Three Rows

Output

How the functions of the example are represented in three subplots in three rows

below each other is shown in Figure 4.14.

Figure 4.14 Function Representation in Three Rows

Analysis

In line 16, the fig and ax objects are created using the subplots(3,1) method. The two

parameters specify that the subplots are arranged in three rows and one column. The

index of ax determines the order of the subplots to be displayed. First, the course of the

voltage is shown with the line color blue, then the course of the current with the line

color red, and finally in the third line the course of the power with the line color green.

You can arrange the code for the subplots in a different order, and the described repre-

sentation will not change.
150

4.1 2D Function Plots
Inserting an Axes Object Into Another Axes Object

Sometimes, highlighting a particular detail of a function plot is useful. The following

statement allows you to embed a subplot into an already existing plot:

ax2=fig.add_axes([left,bottom,width,height])

The numerical values for the parameters must be between 0 and 1.

Figure 4.15 Embedding a Subplot

Listing 4.15 shows how a small section of a noisy sinusoidal signal is clarified in an

embedded plot (subplot). This section is displayed enlarged (zoomed) to make the

details of the signal more visible.

01 #15_axes_axes.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 f=50 #Frequency in Ht
05 tmax=20 #Time in ms
06 t = np.linspace(0, tmax, 500)
07 ut=5*np.sin(2*np.pi*f*t*1e-3) + 0.8*np.random.randn(t.size)
08 fig=plt.figure()
09 #left, bottom, width, height
10 ax1=fig.add_axes([0.12,0.1,0.8,0.8]) #outside
11 ax2=fig.add_axes([0.6,0.6,0.28,0.25])#inside
12 #x1,x2,y1,y2
13 ax1.axis([0,tmax,-10,10])
151

4 Function Plots and Animations Using Matplotlib
14 ax2.axis([2.5,3.5,0,10])
15 #Graphics output
16 ax1.plot(t,ut,"b-")
17 ax1.set_xlabel('t in ms')
18 ax1.set_ylabel('u(t)')
19 ax2.plot(t,ut,"b-")
20 plt.show()

Listing 4.15 Inserting an Axes Object into Another Axes Object

Output

The output is shown in Figure 4.15.

Analysis

In line 08, the figure() method creates the fig object. Using this object, you can access

the add_axes() method.

In line 11, the add_axes([0.6,0.6,0.28,0.25]) method creates the ax2 object. For the

subplot, the default values of 640×480 pixels and a resolution of 100 dpi apply: The

left-hand distance is 0.6×640 pixels = 384 pixels, and the bottom-left corner has a dis-

tance of 0.6×480 pixels = 288 pixels from the bottom edge. This corresponds to 60%

each of the total width and height of the plot area. The width has a value of 0.28×640

pixels = 179 pixels, and the height has a value of 0.25×480 pixels = 120 pixels. This rep-

resents 28% of the total width and 25% of the total height of the plot area.

In lines 13 and 14, the axis() method sets the range of values for the x and y axes. In line

14, you can influence the zoom effect by changing the x1, x2, y1, and y2 arguments.

The ax1 object in line 10 can also be created more easily via the ax1=fig.add_subplot()
statement. In this case, the default values apply. You can query them using print(ax1.

get_position()), which will return the following output:

Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88)

Combining Polar and Cartesian Coordinates

In the third example on subplots (see Listing 4.16), we want to combine a polar coor-

dinate system with a Cartesian coordinate system. This time, the Cartesian coordi-

nate system is created using the spines() method. In fact, although the word spine

has the connotation of a backbone or spinal column, the Matplotlib documentation

understands spines to be lines that delimit the drawing area. These lines can be made

invisible via spines['location'].set_visible(False). By using spines[location].

set_position(('data',0)), you can move lines to the origin of the coordinate system.

For location, only the top, bottom, left, and right parameters are allowed.
152

4.1 2D Function Plots
01 #16_subplot_polar_sinus.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04
05 def theta_rad(angle1,angle2):
06 theta=[angle1,angle2]
07 return np.radians(theta)
08
09 angle=45
10 x=np.linspace(0, 360, 500)
11 y=np.sin(np.pi*x/180)
12 r=[np.cos(np.radians(angle)),1]
13 fig=plt.figure(figsize=(8,4))
14 #Polar coordinates
15 ax1=fig.add_subplot(1,2,1,projection='polar')
16 ax1.set_rticks([])
17 ax1.plot(theta_rad(0,angle),[0,1],'b',lw=2)
18 ax1.plot(theta_rad(0,angle),r,'b',lw=2)
19 ax1.plot(theta_rad(0,angle),[0,1],'ro')
20 ax1.grid(True)
21 #Cartesian coordinates
22 ax2=fig.add_subplot(1,2,2)
23 ax2.spines[['top', 'right']].set_visible(False)
24 ax2.spines[['bottom', 'left']].set_position(('data',0))
25 ax2.plot(x, y,'b',linewidth=2)
26 ax2.plot(angle,np.sin(np.radians(angle)),'ro')
27 ax2.plot(0,np.sin(np.radians(0)),'ro')
28 wg=[]
29 for w in range(0,361,45):
30 wg.append(w)
31 ax2.set_xticks(wg[1:])
32 ax2.set_xlabel('x in °',loc='right')
33 ax2.set_ylabel('f(x)',loc='top',rotation=0)
34 plt.show()

Listing 4.16 Combining Polar and Cartesian Coordinates

Output

The output of the combination of polar and Cartesian coordinates in two subplots side

by side is shown in Figure 4.16.
153

4 Function Plots and Animations Using Matplotlib
Figure 4.16 Polar and Cartesian Coordinates

Analysis

The most important implementation details are already known from our earlier exam-

ples. In line 15, the add_subplot(1,2,1,projection='polar') method creates the ax1
object. The two subplots are displayed in one row and two columns. The fourth param-

eter (projection='polar') specifies that the first subplot is displayed with polar coordi-

nates.

In line 22, the add_subplot(1,2,2) method creates the ax2 object. This object accesses

the spines method in lines 23 and 24.

The statement in line 23 causes the upper and right-hand frame lines (spines) of the

drawing frame not to be displayed. In line 24, set_position(('data',0)) causes the bot-

tom line of the drawing frame to be moved to the origin of the coordinate system. You

can test the program by inserting a value other than 0 for the position in line 24, and

you’ll see how the x-axis shifts upward or downward.

The set_xticks() method sets the individual label of the x-axis (line 31). The degree

measure used in this context, which is not popular with mathematicians, can also be

represented as a radian using LaTeX notation, as in the following example:

ax2.set_xticks([45,90,135,180,225,270,315,360],
[r'$\frac{1}{4}\pi$',r'$\frac{1}{2}\pi$',
r'$\frac{3}{4}\pi$',r'π',r'$\frac{5}{4}\pi$',
r'$\frac{3}{2}\pi$',r'$\frac{7}{4}\pi$',r'2π'])

4.1.8 Parameter Representation

In mathematics, a parameter representation is the representation of a mathematical

function in which the (x,y) points of a curve are traversed as a function of a variable (i.e.,
154

4.1 2D Function Plots
the parameter). The oblique throw and the lemniscate were chosen as examples of

parameter representation.

Oblique Throw

In an oblique throw, the time t is the parameter on which the x and y components of

the trajectory (throwing parabola) depend. The place-time law is determined by the ini-

tial velocity and by the cosine and sine of the throwing angle :

The throwing time is calculated with the following formula:

Listing 4.17 shows how you can implement parameter equations as Python source code.

The course of the trajectory of an oblique throw for a throwing angle of 45° with an ini-

tial velocity of 20 m/s is shown.

01 #17_parameter_throw.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 g=9.81 #Gravitational acceleration in m/s^2
05 v0=20 #Initial velocity in m/s
06 alpha=45 #Throwing angle in °
07 alpha=np.radians(alpha)
08 tmax=2*v0*np.sin(alpha)/g
09 t=np.linspace(0,tmax,100)
10 #Parameter equations
11 x=v0*np.cos(alpha)*t
12 y=v0*np.sin(alpha)*t-0.5*g*t**2
13 #Representation
14 fig, ax=plt.subplots()
15 ax.plot(x,y,linewidth=2)
16 ax.set(xlabel='x in m',ylabel='y in m')
17 ax.grid(True)
18 plt.show()

Listing 4.17 Oblique Throw

Output

The output of the trajectory of the oblique throw is shown in Figure 4.17.
155

4 Function Plots and Animations Using Matplotlib
Figure 4.17 Trajectory of an Oblique Throw

Analysis

Line 08 calculates the throwing time tmax. This time is needed to set the array for the

parameter t in line 09. In lines 11 and 12, the x and y components of the trajectory are

calculated and stored as an array with 100 values each in variables x and y. The prepara-

tion for the representation of the function plot is again done using the plot(x,y,...)
method.

Lemniscate

The lemniscate by Jakob Bernoulli (1654–1705) is a plane curve in the shape of a lying

eight. It describes the motion curve in the Watt parallelogram (James Watt, 1736–1819).

The following parameter equations can be used to plot the lemniscate as a function

plot:

Listing 4.18 shows the source code for the graphical representation of a lemniscate.

01 #18_parameter_lemniscate.py
02 import numpy as np
03 import matplotlib.pyplot as plt
156

4.1 2D Function Plots
04 t=np.linspace(-np.pi,np.pi,200)
05 a=1
06 #Parameter equations
07 x=a*np.sqrt(2)*np.cos(t)/(np.sin(t)**2+1)
08 y=a*np.sqrt(2)*np.cos(t)*np.sin(t)/(np.sin(t)**2+1)
09 #Representation
10 fig, ax=plt.subplots()
11 ax.plot(x,y,linewidth=2)
12 ax.set(xlabel='x',ylabel='y')
13 ax.grid(True)
14 plt.show()

Listing 4.18 Lemniscate

Output

Figure 4.18 shows the graphical representation of the lemniscate.

Figure 4.18 Lemniscate

Analysis

The t parameter in line 04 does not have the meaning of a time in this case but of a

range of values. In the t variable, 200 values from −π to +π are stored. Lines 07 and 08

each calculate the 200 values for the x and y components for the t parameter, which

are then cached in line 11 via ax.plot(x,y,...) for display using plt.show() in line 14.

The a variable in line 05 determines the extent of the lemniscate on the x-axis.
157

4 Function Plots and Animations Using Matplotlib
4.1.9 Changing Function Parameters Interactively

The matplotlib module also provides the option to write interactive programs using

the widgets submodule. The usual controls are available for this purpose, such as a

command button (Button); selection controls (CheckButton, RadioButton); sliders

(Slider); and text boxes (TextBox). You can import the controls using the following

statement:

from matplotlib.widgets import Slider, Button, …
An overview of the controls provided by matplotlib.widgets can be found at https://

matplotlib.org/stable/api/widgets_api.html.

However, the options to write “real” interactive programs using the widgets submodule

are rather limited. If you want to write more complex interactive programs with graph-

ical user interfaces (GUIs), you should use tkinter or PyQt5, for example.

The implementation of an interactive Matplotlib program is done in six steps:

1. Importing matplotlib.widgets with the classes for the controls.

2. Defining a mathematical function whose parameters are to be changed.

3. Positioning the controls.

4. Creating objects for controls.

5. Defining functions for event processing.

6. Querying events using the built-in on_changed() and on_clicked() methods.

The example shown in Listing 4.19 is taken from the Matplotlib documentation. This

example shows how the amplitude and frequency of a sine function can be changed

interactively during runtime using two sliders.

01 #19_slider_sinus.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.widgets import Slider,Button
05 fig,ax=plt.subplots()
06 fig.subplots_adjust(left=0.2,bottom=0.25)
07 t=np.linspace(0.0,1.0,200)
08 a0=5
09 f0=5
10 s=a0*np.sin(2*np.pi*f0*t)
11 kurve, = ax.plot(t,s,lw=2,color='blue')
12 ax.axis([0, 1, -10, 10])
13 #Position objects for controls
14 #left margin, bottom margin, length, height
15 xyAmp = fig.add_axes([0.25, 0.15, 0.65, 0.03])
158

https://matplotlib.org/stable/api/widgets_api.html
https://matplotlib.org/stable/api/widgets_api.html

4.1 2D Function Plots
16 xyFreq = fig.add_axes([0.25, 0.1, 0.65, 0.03])
17 xyReset= fig.add_axes([0.8,0.025,0.1,0.04])
18 #Create objects for controls
19 sldAmp=Slider(xyAmp,'Amplitude',1,10,valinit=a0,valstep=0.1)
20 sldFreq=Slider(xyFreq,'Frequency',1,10,valinit=f0,valstep=0.1)
21 cmdReset=Button(xyReset,'Reset')
22
23 def update(val):
24 A = sldAmp.val
25 f = sldFreq.val
26 kurve.set_data(t,A*np.sin(2*np.pi*f*t))
27
28 def reset(event):
29 sldFreq.reset()
30 sldAmp.reset()
31 #Event processing
32 sldAmp.on_changed(update)
33 sldFreq.on_changed(update)
34 cmdReset.on_clicked(reset)
35 plt.show()

Listing 4.19 Changing Function Parameters Interactively

Output

Figure 4.19 shows the output of the interactively changeable function parameters.

Figure 4.19 Changing Function Parameters Interactively
159

4 Function Plots and Animations Using Matplotlib
Analysis

In line 04, the widgets submodule with the Slider and Button classes is imported. Line

10 defines a sine function with the amplitude a0 and frequency f0 parameters. The

function coordinates with the initialization values are assigned to the curve variable in

line 11. When the program is started, a sine function with amplitude 5 and frequency 5

will be displayed.

The coordinates for the sldAmp slider, which is supposed to change the amplitude, are

assigned to the xyAmp variable in line 15. For the coordinates of the sldFreq slider, which

is supposed to change the frequency, the same applies in line 16.

The objects for the sldAmp and sldFreq sliders as well as for the cmdReset command but-

ton are created in lines 19 to 21. The Slider() constructor of the Slider class expects the

x-y coordinates of the control as the first parameter, the second parameter determines

the label, the third and the fourth parameters determine the adjustment range, the

fifth parameter valinit=5 determines the initialization value, and the sixth and final

parameter determines the increment of the value change.

In lines 23 to 26, the update(val) function is defined. This function is responsible for

assigning the values set by the sliders to the A and f variables. The val variable is

accessed via the sldAmp and sldFreq slider objects. In line 26, the values for amplitude

and frequency are updated using the set_data() method and prepared for display on

the screen.

In lines 28 to 30, the reset function is defined. The sldAmp and sldFreq objects are reset

by the built-in reset() method. If this function is called in line 34 by a mouse click on

the Reset command button, then the sine function will be displayed again with its ini-

tialization values.

In lines 32 to 34, the event query is done via the built-in on_changed(update) method.

This method is accessed with the name of the object. The sld and cmd prefixes, which do

not exist in the original, were assigned to better identify the controls in the source

code.

This program is a negative example of a programming style you should avoid! The

arrangement of inputs (lines 08 and 09), graphic elements (line 05, lines 11 to 21) and

function definitions (lines 23 to 30) does not correspond to the desirable arrangement

of the program parts, which would adhere to this sequence:

1. Inputs

2. Function definitions

3. Graphic area

Proposed change: Change the order of the instructions to meet these criteria and test

the program.
160

4.1 2D Function Plots
Usage Example: Phase Angle Control

The output voltage of a bridge rectifier circuit is changed by using a phase angle con-

trol. The voltage waveform u = 𝑓(𝛼) is supposed to be simulated as a function of the con-

trol angle 𝛼. Figure 4.20 shows the output voltage waveform of such a control.

Figure 4.20 Phase Angle Control

The slider adjusts the control angle from 0 to 180°. The current value of the arithmetic

mean UAV of the output voltage and the control angle 𝛼 should be displayed in the GUI

of the program.

The following holds true for the arithmetic mean value of the output voltage:

Listing 4.20 allows you to simulate phase angle control.

01 #20_sld_phase_angle_control.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.widgets import Slider
05 Us=325 #peak value in V
06 a0=np.pi/4 #initial value 45°
07 xmax=np.pi
08 #u(x), x is an angle
161

4 Function Plots and Animations Using Matplotlib
09 def u(x):
10 return Us*np.sin(x)
11 #query slider
12 def update(val):
13 alpha = sldAlpha.val #control angle in °
14 a=np.radians(alpha) #control angle in rad
15 x = np.arange(a,xmax,0.01)
16 y.set_data(x,u(x))
17 line.set_data([a,a],[u(0),u(a)])
18 Uav=Us*(1.0 + np.cos(a))/np.pi
19 txtAngle.set_text(r'α = %.2f °' %alpha)
20 txtUav.set_text(r'U_{av} = %.2f V' %Uav)
21 #Graphics area
22 fig, ax = plt.subplots()
23 txtAngle=ax.text(0.1,1.12*Us,r'α = %.2f °' %45)
24 txtUav=ax.text(0.1,1.05*Us,r'U_{av} = 176.60 V')
25 fig.subplots_adjust(left=0.12,bottom=0.15)
26 ax.set_xlim(0,xmax)
27 ax.set_ylim(0,1.2*Us)
28 x0 = np.arange(a0,xmax,0.01) #for initial values
29 line, = ax.plot([a0,a0],[u(0),u(a0)],'b-')
30 y, = ax.plot(x0,u(x0),'b-')
31 xyAlpha = fig.add_axes([0.1, 0.02, 0.8, 0.03])
32 sldAlpha=Slider(xyAlpha,r'α',0,180,valinit=np.degrees(a0),
valstep=1)
33 sldAlpha.on_changed(update)
34 ax.set(xlabel=r'$\alpha \ in\ rad$',ylabel='U in V')
35 secax = ax.secondary_xaxis('top',functions=(lambda x:10*x/np.pi,
lambda x:np.pi*x))
36 secax.set_xlabel('t in ms')
37 plt.show()

Listing 4.20 Phase Angle Control

Analysis

In line 15, the NumPy function arange(a,xmax,0.01) updates the range of values for con-

trol angle a on the x-axis. In line 16, this value is adopted by the matplotlib method,

set_data(x,u(x)). In the range from 0 to a, the sine function does not display. To make

the phase angle clearly visible, the set_data([a,a],[u(0),u(a)]) method in line 17 cre-

ates a vertical line. The statement in line 18 calculates the arithmetic mean value Uav of

the output voltage.
162

4.1 2D Function Plots
What is new in this case is the dynamic output of control angle alpha in line 19 on the

drawing area (ax object). On line 19, the set_text() method outputs the updated slider

setting of alpha at the x,y position of the axes object ax specified in line 23. The same

rule applies to the output of the output voltage Uav in lines 20 and 24. A dynamic text

output always consists of two parts:

1. Placement of the static text object with text(x-position,y-position,'text') in the

drawing area

2. The dynamic output using the set_text('y=%.2f'%x) method

The statement in line 35 causes the corresponding time segments in ms to be assigned

to control angle a. The new scale is displayed on the top x-axis ('top' property). The

specifications apply to 50 Hz alternating current.

4.1.10 Contour Plots

A contour line is a plane cut through a three-dimensional graph of function 𝑓(x, y)

parallel to the (x,y) plane. This line therefore describes the course of a three-

dimensional graph in the plane. The points with the same values are connected to form

a curve. In cartography, a contour plot represents the depths of valleys and the heights

of mountains as contour lines. To display contour plots, you’ll need the meshgrid()
NumPy function and the contour() Matplotlib method.

Demonstrating the meshgrid Function

To plot contour lines via Pyplot, the meshgrid(x,y) NumPy function must be used to

capture all relevant points in the (x,y) plane. Listing 4.21 shows how this function works.

01 #21_meshgrid_demo.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 x=y=np.linspace(1,6,6)
05 x,y=np.meshgrid(x,y)
06 fig, ax=plt.subplots()
07 plt.plot(x,y,marker='x',color='red',ls='none')
08 plt.show()

Listing 4.21 Mesh Grid

Output

How the mesh grid presents itself in the user interface (UI) is shown in Figure 4.21.
163

4 Function Plots and Animations Using Matplotlib
Figure 4.21 Mesh Grid for Magnetic Field Lines

Analysis

Line 04 creates an array for each of the variables x and y with the numbers from 1 to 6.

In line 05, the meshgrid(x,y) NumPy function generates a matrix with six rows and six

columns from it. In line 07, the plot(x,y,marker='x',color='red',ls='none') method

creates a square matrix as a graph with 36 red crosses.

Now, we can insert the following statements below line 06:

ax.set_xticks([])
ax.set_yticks([])
ax.set_frame_on(False)

In this case, the x-axis and y-axis will not be labeled, and the borders (frame) will not be

displayed. You can then use this graph to illustrate magnetic field lines.

Contour Plot for the Field Strength Curve

The next sample program shows in a contour plot how the magnetic field of a straight

current-carrying conductor runs. The magnetic field strength H increases proportion-

ally to the current strength I and decreases inversely proportionally to the distance r of

the conductor:

To ensure that all points in the (x,y) plane are captured, the radiuses for each x-y coor-

dinate must be calculated:

A contour plot is created using the contour() matplotlib method, as shown in Listing

4.22:

01 #22_contour_plot_circles.py
02 import numpy as np
164

4.1 2D Function Plots
03 import matplotlib.pyplot as plt
04 I=62.8 #current
05 rmax=10
06 n=100
07 lev=[1,2,4,8,16]
08 x=y=np.linspace(-rmax,rmax,n)
09 x,y=np.meshgrid(x,y)
10 H=I/(2*np.pi*np.hypot(x,y))
11 fig,ax=plt.subplots()
12 cp=ax.contour(x,y,H,levels=lev,colors='red')
13 ax.clabel(cp,inline=True)
14 ax.set(xlabel='x', ylabel='y')
15 ax.set_aspect('equal')
16 plt.show()

Listing 4.22 Contour Plot of a Magnetic Field

Output

Figure 4.22 shows how the contour plot for a magnetic field is graphically represented

in the output.

Figure 4.22 Contour Plot for a Magnetic Field

Analysis

In line 08, the linspace() NumPy function creates an array of 100 values in the value

range ±10 for the x and y coordinates. From this array, the np.meshdrid(x,y) function

creates a matrix of 100 rows and 100 columns in line 09.
165

4 Function Plots and Animations Using Matplotlib
Line 10 calculates the magnetic field strength H. The hypot(x,y) NumPy function deter-

mines the distance (hypotenuse) of the field lines from the center point for each point

at location (x|y) according to the Pythagorean theorem. Since the matrix generated by

np.meshgrid(100,100) contains 100 rows and 100 columns, a total of 10,000 values is

stored in variable H.

In line 12, following Matplotlib method calculates the circles (contour lines) of the mag-

netic field lines:

contour(x,y,H,levels=lev,colors='red')

The first two parameters contain all x-y coordinate data. The data of the H variable for

the contour plot is in the third place of the parameter list. The fourth parameter (lev-
els) is assigned the lev=[1,2,4,8,16] list from line 07. Spreading out the spacing

prevents the field lines from being too dense around the center point. All contour line

data is stored in the cp variable so that it can be provided as the first parameter to

the clabel(cp,inline=True) Matplotlib method in line 13. The inline=True parameter

causes the values of the field strengths to be displayed in the graph. To keep the outer

dimensions of the contour graphic the same length on screen output, the set_aspect

('equal') method is added to the source code in line 15.

You can test the set_aspect('equal') method by commenting out line 16.

4.2 3D Function Plots

Up to this point, mathematical or physical relationships were visualized in the plane

using the plot(x,y) method. However, in reality, for example, electromagnetic waves

propagate in three-dimensional space, and physical bodies can only exist with a spatial

extension. Thus, an option would have to be provided to add a third dimension to

the x-y plane. Matplotlib provides the option to create 3D plots using the plt.figure().

add_subplot(projection='3d') statement. Mathematical functions of the form 𝑓(x,y,z)

are projected onto a 2D plane. Using the mouse pointer (keep the left mouse button

pressed), the screen outputs can be rotated to any position you want. A helical line and

a circular ring were selected as examples.

4.2.1 Helical Line

An electron shot into a homogeneous magnetic field with velocity rotates with angu-

lar velocity on the path of a helical line of radius R. The spatial representation of a

helix is described by the following three parameter equations:
166

4.2 3D Function Plots
The first two parameter equations describe a circular path. The third equation defines

the slope of the helix in the z-direction.

Listing 4.23 shows how a helical line can be plotted using the plot(x,y,z) function:

01 #23_3d_helix.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 R=6
05 v0=5
06 omega=3
07 t=np.linspace(0,2*np.pi,500)
08 x=R*np.cos(omega*t)
09 y=R*np.sin(omega*t)
10 z=v0*t
11 ax = plt.figure(figsize=(6,6)).add_subplot(projection='3d')
12 ax.plot(x,y,z,lw=2)
13 ax.set(xlabel='x',ylabel='y',zlabel='z',title='Electron in the magnetic
field')
14 plt.show()

Listing 4.23 Helical Line

Output

The graphical implementation of the helical in the coordinate system is shown in

Figure 4.23.

Figure 4.23 Helical Line
167

4 Function Plots and Animations Using Matplotlib
Analysis

In line 07, 500 values in the range from 0 to 2π are stored in the t variable. With these

values, the np.cos(), np.sin(), and v0*t functions in lines 08 to 10 calculate the values

for the x, y, and z coordinates. The R variable determines the radius of the helical line.

The projection='3d' parameter in line 11 ensures that, in the further course of the pro-

gram, the functions and properties necessary for the 3D plot can be accessed using the

ax object. The plot(x,y,z, ...) method is used to prepare the 3D plot for output in line

12 and displayed on the screen via show() in line 14.

4.2.2 Circular Ring

The second example shows how you can use Matplotlib to plot a circular ring (torus) in

a 3D coordinate system. A torus is described by the following system of equations:

R is the mean diameter, and r is the diameter of the circular cross-section of a circular

ring.

Since the surface of a body is to be represented, the plot_surface() method must be

used instead of plot(). Listing 4.24 shows how to use this function.

01 #24_3d_torus.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 n=100
05 R=2 #mean radius
06 r=1 #cross-sectionradius
07 p=np.linspace(0,2*np.pi,n)
08 t=np.linspace(0,2*np.pi,n)
09 p,t=np.meshgrid(p,t)
10 #Parameter equations
11 x=(R+r*np.cos(p))*np.cos(t)
12 y=(R+r*np.cos(p))*np.sin(t)
13 z=r*np.sin(p)
14 #Draw circular ring
15 ax = plt.figure().add_subplot(projection='3d')
16 ax.plot_surface(x,y,z,rstride=5,cstride=5,color='y',edgecolors='r')
17 ax.set(xlabel='x',ylabel='y',zlabel='z',title='Torus')
18 ax.set_zlim(-3,3)
19 plt.show()

Listing 4.24 Circular Ring
168

4.2 3D Function Plots
Output

The circular ring generated using the plot_surface() method is shown in Figure 4.24.

Figure 4.24 Circular Ring

Analysis

Lines 11 to 13 contain the three parameter equations. The method in line 16 is new:

plot_surface(x,y,z,rstride=5,cstride=5,color='y',
edgecolors='r')

The rstride=5 parameter sets the increment of the horizontal lines, while cstride=5
sets the increment of the vertical lines.

4.2.3 Combining a 3D Plot with a Contour Plot

A 3D function plot can also be combined with a contour plot. Listing 4.25 shows how the

3D plot of a paraboloid, which is described by this equation:

This task can be implemented with the corresponding level lines.

01 #25_3d_mountain.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 width=10
05 h=100
06 x=y=np.linspace(-width,width,100)
07 x,y=np.meshgrid(x,y)
169

4 Function Plots and Animations Using Matplotlib
08 #Equation for paraboloid
09 z=h-x**2-y**2
10 #Show paraboloid
11 fig=plt.figure(figsize=(4.2,8))
12 ax1=fig.add_subplot(2,1,1,projection='3d')
13 ax1.plot_surface(x,y,z,rstride=5,cstride=5,color='g',edgecolors='y')
14 ax1.set_zlim(-h,h)
15 ax1.set(xlabel='x',ylabel='y',zlabel='z',title='Paraboloid')
16 #Level lines
17 ax2=fig.add_subplot(2,1,2)
18 hl=ax2.contour(x,y,z,levels=10,colors='b')
19 ax2.clabel(hl,inline=True)
20 ax2.set_xlim(-width,width)
21 ax2.set_ylim(-width,width)
22 ax2.set(xlabel='x',ylabel='y',title='Level lines')
23 ax2.set_aspect('equal')
24 plt.show()

Listing 4.25 Combination of "plot_surface" and "contour"

Output

The output of the paraboloid and level lines of the contour plot according to Listing 4.25

in Figure 1.25.

Figure 4.25 Mountain with Contour Lines
170

4.3 Vectors
Analysis

Almost all programming elements are known from the previous examples. In line 12,

the add_subplot(2,1,1,projection='3d') method creates the subplot for the 3D plot. In

line 17, the add_subplot(2,1,2) method creates the subplot for the contour plot.

The set_aspect('equal') method in line 23 scales the x-axis and y-axis of the second

subplot with equal drawing units.

You can also test the figure() method using the figsize=plt.figaspect(2) parameter

(line 11). Then, the graphic will be displayed twice as high as it is wide.

4.3 Vectors

Vectors describe directed quantities in physics, such as forces or field strengths. For the

representation of vectors, the Matplotlib module provides the quiver([X,Y],U,V,

[C],**kwargs) method.

The [X,Y] list sets the initial coordinates of the vector. The U parameter determines the

x-component, while the V parameter determines the y-component of the vector arrow.

If you omit the [X,Y] parameter, then the start of the arrow is automatically placed at

the origin of the coordinate system, and the arrowhead points to the specified u-v coor-

dinate. The C parameter allows you to set the color of the vector arrow. The optional

parameter **kwargs provides supplementary properties.

More information on this topic is available at https://matplotlib.org/stable/api/_as_

gen/matplotlib.pyplot.quiver.html.

4.3.1 Vector Addition

Listing 4.26 shows how you can add three force vectors using matplotlib method

quiver().

01 #26_vector_add.py
02 import matplotlib.pyplot as plt
03 xmin, xmax=-8, 5
04 ymin, ymax=-6,6
05 F1x,F1y=-4,4
06 F2x,F2y=-4,-4
07 F3x,F3y=2,0
08 Fresx=F1x+F2x+F3x
09 Fresy=F1y+F2y+F3y
10 fig, ax=plt.subplots()
11 #vectors
12 ax.quiver(F1x,F1y,angles='xy',scale_units='xy',scale=1,color='m')
13 ax.quiver(F2x,F2y,angles='xy',scale_units='xy',scale=1,color='g')
171

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html

4 Function Plots and Animations Using Matplotlib
14 ax.quiver(F3x,F3y,angles='xy',scale_units='xy',scale=1,color='b')
15 ax.quiver(Fresx,Fresy,angles='xy',
16 scale_units='xy',scale=1,color='r',label="F_{res}")
17 ax.axis([xmin,xmax,ymin,ymax])
18 ax.set(xlabel="F_{x}",title="Vector addition ")
19 ax.set_ylabel("F_{y}",rotation=True)
20 ax.legend(loc='best')
21 plt.show()

Listing 4.26 Addition of Three Force Vectors

Output

The graphical output of the vector addition is shown in Figure 1.26.

Figure 4.26 Addition of Three Force Vectors

Analysis

In lines 05 to 07, the x-y components for three force vectors are given. Line 08 calculates

the total of the x-components, and line 09 calculates the total of the y-components.

The following method in lines 12 to 15 defines force vectors:

quiver(F1x,F1y,angles='xy',scale_units='xy',scale=1)

The various parameters have the following meanings:

� F1x,F1y: The endpoints of vector arrows.

� angles='xy': The arrows point from (x,y) to (x + u, y + v). Since x and y were not used

in the program (i.e., they are zero), the arrows point from the coordinate origin to

(u,v).
172

4.3 Vectors
� scale_units='xy': The units of the given axis scalings are taken over.

� scale=1: The scaling factor is 1, which means that the given axis scaling is not

changed. A smaller number increases the length of the vector arrow.

4.3.2 Vector Field

Listing 4.27 enables you to represent a vector field. The program draws 90 parallel vec-

tors in the x-direction.

01 #27_vector_field.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 n=10
05 x1,x2=0, 10
06 u=2 #length
07 v=0 #direction
08 xk=yk=np.linspace(x1,x2+u,n)
09 x,y=np.meshgrid(xk,yk)
10 fig, ax=plt.subplots()
11 #Define vectors
12 ax.quiver(x,y,u,v,units='xy',scale=2,color='blue')
13 #Range of the x-axis
14 ax.set_xlim(x1-u/2,x2+u)
15 plt.show()

Listing 4.27 Homogeneous Vector Field

Output

The graphical output of the vector field is shown in Figure 4.27.

Figure 4.27 Homogeneous Vector Field
173

4 Function Plots and Animations Using Matplotlib
Analysis

In line 09, the meshgrid() NumPy function generates the matrix for the x-y coordinates

of the vectors (arrow beginnings). In line 12, the following method defines the vector

field:

quiver(x,y,u,v,units='xy',scale=2,color='blue')

The x,y parameters define the coordinates of the arrow beginnings of the individual

vectors. The length of a vector is set to two length units in line 06. The scale=2 scaling

factor shortens the length of a vector by a factor of 0.5. You could have obtained the

same result with u=1 and scale=1.

4.4 Displaying Figures, Lines, and Arrows

The matplotlib module can plot geometric figures such as rectangles, circles, and trian-

gles. These figures can then illustrate mathematical, technical, and physical relation-

ships. I’ll now demonstrate the creative options of matplotlib through three examples

by illustrating the Pythagorean theorem: a gear representation, a pointer diagram, and

a current-carrying conductor in a homogeneous magnetic field.

4.4.1 Rectangles

Rectangle objects r are created using the following method:

r=patches.Rectangle((x1,y1),b,h,fill,edgecolor,angle)

These objects are then inserted into the drawing area via add_patch(r).

The x1,y1 tuple defines the lower-left corner of the rectangle. The b and h parameters

determine its width and height. The fill parameter is set to True by default and pro-

vides the option to fill the rectangle with a specific color: facecolor=color. The edge-
color parameter can be used to change the edge color, and the angle parameter allows

the rectangle to be rotated by a specified angle in degrees.

Listing 4.28 shows how the Rectangle() function can be used to display three rectangles

with predefined dimensions in a drawing area.

01 #28_pythagoras.py
02 import numpy as np
03 import matplotlib as mlt
04 import matplotlib.pyplot as plt
05 x1,x2=-3,8
06 y1,y2=-1,11
174

4.4 Displaying Figures, Lines, and Arrows
07 a,b=3,4
08 alpha=np.degrees(np.arctan(b/a))
09 beta=90-np.degrees(np.arctan(a/b))
10 c=np.hypot(a,b)
11 fig,ax=plt.subplots()
12 ax.axis([x1,x2,y1,y2])
13 #(x1,y1),width,height
14 ra=mlt.patches.Rectangle((0,c),a,a,fill=False,lw=2,edgecolor='b',
angle=alpha)
15 rb=mlt.patches.Rectangle((c,c),b,b,fill=False,lw=2,edgecolor='b',
angle=beta)
16 rc=mlt.patches.Rectangle((0,0),c,c,fill=False,lw=2,edgecolor='b')
17 ax.add_patch(ra)
18 ax.add_patch(rb)
19 ax.add_patch(rc)
20 ax.set_aspect('equal')
21 ax.set_xticks([])
22 ax.set_yticks([])
23 ax.set_frame_on(False)
24 plt.show()

Listing 4.28 Representation of Three Rectangles

Output

Figure 4.28 shows how the program from Listing 4.28 illustrates the Pythagorean theo-

rem.

Figure 4.28 Illustration of the Pythagorean Theorem
175

4 Function Plots and Animations Using Matplotlib
Analysis

Lines 05 and 06, together with the axis([x1,x2,y1,y2]) method in line 12, specify the

dimensions of the drawing area. In lines 14 to 16, the three rectangle objects ra, rb, and

rc are generated using the following method:

Rectangle((x1,y1),b,h,fill=False,lw=2,edgecolor='b',angle=…)

In this example, the fill parameter is set to False. The edges of the rectangles are

drawn in blue due to edgecolor='b'. The rectangle in the upper left is rotated by the

angle alpha in the mathematically positive direction (i.e., counterclockwise). The rect-

angle in the upper right is rotated by the angle beta. The calculations of the angles are

performed using the arctan() NumPy function in lines 08 and 09.

The add_patch() method in lines 17 to 19 places the rectangles in the drawing area.

4.4.2 Circles and Lines

Circle objects (circle) can be created using the following method:

kreis=patches.Circle((x,y),radius,fill,lw,edgecolor)

These objects can then be embedded into the drawing area via the add_patch(circle)
function. In this case, the (x,y) tuple stands for the coordinates of the center of a circle.

The third parameter determines the radius.

Lines can be created using the plot([x1,x2],[y1,y2]) method you already know. The

known properties can be used to change the line styles and widths.

Based on the transmission with three gears example, Listing 4.29 demonstrates how

circles and lines can be displayed using the Circle() and plot() methods. The simpli-

fied representation of gears as circles with the mean diameters is used whenever the

structures and gear ratios of transmissions must be illustrated.

01 #29_transmission.py
02 import matplotlib as mlt
03 import matplotlib.pyplot as plt
04 x1,x2=-12,22
05 y1,y2=-17,12
06 fig,ax=plt.subplots()
07 ax.axis([x1,x2,y1,y2])
08 #(x,y),radius
09 c1=mlt.patches.Circle((-5,5),5,fill=False,lw=2,edgecolor='b')
10 c2=mlt.patches.Circle((-5,-5),5,fill=False,lw=2,edgecolor='b')
11 c3=mlt.patches.Circle((10,-5),10,fill=False,lw=2,edgecolor='b')
12 ax.add_patch(c1)
13 ax.add_patch(c2)
14 ax.add_patch(c3)
176

4.4 Displaying Figures, Lines, and Arrows
15 #x1,x2,y1,y2
16 ax.plot([-5,-5],[-5, 5],lw=1,color='black',ls='-.')
17 ax.plot([-5,10],[-5,-5],lw=1,color='black',ls='-.')
18 ax.plot([-5,10],[5,-5],lw=1,color='black',ls='-.')
19 ax.set_aspect('equal')
20 ax.set_xticks([])
21 ax.set_yticks([])
22 ax.set_frame_on(False)
23 plt.show()

Listing 4.29 Circles with a Triangle

Output

As a result of Listing 4.29, three circles and a triangle are output in the drawing area as

a technology schema of a transmission, as shown in Figure 1.29.

Figure 4.29 Technology Schema of a Transmission

Analysis

The lines of the triangle illustrate the distances between the individual gears. The three

circle objects (c1, c2, and c3) are created in lines 09 to 11 using the following method:

mlt.patches.Circle((x,y),radius,fill=False,lw=2,edgecolor='b')

These lines are embedded in the drawing area in lines 12 to 14 by using the add_patch()
method.

To change the diameters of the circles for further program tests, then a useful approach

is to comment out the statements in lines 20 to 22, while inserting the ax.grid() state-

ment below line 22. In this way, you can better check coordinate changes.

The circle.center=(x,y) statement allows you to move the circle object to the desired

x,y position. This statement is used in Listing 4.35 for the animation of circular objects.
177

4 Function Plots and Animations Using Matplotlib
4.4.3 Arrows

Pointer diagrams are needed in AC theory to illustrate the phase shift between voltage

and current. Listing 4.30 demonstrates how the arrow() method can generate a pointer

diagram of arrows for a series circuit consisting of an ohmic resistor and an inductor.

01 #30_pointer_diagram.py
02 import matplotlib.pyplot as plt
03 x1,x2=0,12
04 y1,y2=0,8
05 lb=2 #line width
06 pb=0.5 #arrow width
07 pl=1 #arrow length
08 U_R=10 #ohmic voltage drop
09 U_L=5 #inductive voltage drop
10 I=12 #current
11 fig,ax=plt.subplots()
12 ax.axis([x1,x2,y1,y2])
13 #Arrows: x,y,x+dx,y+dy
14 ax.arrow(0,1.8,I,0,color='r',lw=lb,length_includes_head=True,
15 head_width=pb,head_length=pl)
16 ax.arrow(0,2,U_R,0,color='b',lw=lb,length_includes_head=True,
17 head_width=pb,head_length=pl)
18 ax.arrow(U_R,2,0,U_L,color='b',lw=lb,length_includes_head=True,
19 head_width=pb,head_length=pl)
20 ax.arrow(0,2,U_R,U_L,color='b',lw=lb,length_includes_head=True,
21 head_width=pb,head_length=pl)
22 #Labels
23 ax.annotate("I",xy=(5,1),xytext=(5,1),fontsize=12)
24 ax.annotate("U_g",xy=(5,5),xytext=(5,5.5),fontsize=12)
25 ax.annotate("U_L",xy=(10.5,4),xytext=(10.5,4),fontsize=12)
26 ax.annotate("U_R",xy=(5,3),xytext=(5,2.5),fontsize=12)
27 ax.set_xticks([])
28 ax.set_yticks([])
29 ax.set_frame_on(False)
30 ax.set_aspect('equal')
31 plt.show()

Listing 4.30 Pointer Diagram

Output

Figure 4.30 shows see the output pointer diagram.
178

4.4 Displaying Figures, Lines, and Arrows
Figure 4.30 Pointer Diagram for R-L Series Circuit

Analysis

Arrows can be represented using the following method:

arrow(x,y,x+dx,y+dy,color,lw,length_includes_head=True, head_width,head_length)

The arrow() method is accessed via the ax object created in line 11. The first two param-

eters (x and y) define the coordinates of the start of the arrow. The dx and dy parameters

determine the direction and length of the arrow. The head_width and head_length prop-

erties set the width and length of the arrowhead. An especially important point is that

the length_includes_head property must be set to True so that a closed pointer triangle

is displayed when rendering.

4.4.4 Polygons

A polygon is a plane geometric figure formed by a traverse line. A polygon can be cre-

ated using the Polygon(xy) constructor of the following class:

class matplotlib.patches.Polygon(xy, closed=True, **kwargs)

The first parameter (xy) is an array containing the coordinates of the vertices of a poly-

gon. Listing 4.31 enables you to draw polygons with any number of corners.

01 #31_polygon.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.patches import Polygon
05 r=10
06 n=6
07 R=1.1*r
08 fig,ax=plt.subplots()
09 ax.axis([-R,R,-R,R])
179

4 Function Plots and Animations Using Matplotlib
10 for k in range(n):
11 w=2*np.pi/n
12 x1,y1=r*np.cos(k*w),r*np.sin(k*w)
13 x2,y2=r*np.cos((k+1)*w),r*np.sin((k+1)*w)
14 ax.plot([0,x2],[0,y2],lw=1,color='b')
15 p=Polygon([[x1,y1],[x2,y2]],fill=False,lw=2)
16 ax.add_patch(p)
17 ax.set_aspect('equal')
18 ax.grid(True)
19 plt.show()

Listing 4.31 Drawing Polygons

Output

Figure 4.31 shows an example of a polygon drawn using the Polygon method.

Figure 4.31 Hexagon

Analysis

Line 04 imports the patches submodule with the Polygon class. In line 05, you can

define the radius r of the perimeter, and in line 06, the number of corners n of the poly-

gon.

The most important program actions take place within the for loop (line 10 to 16). Line

11 calculates the angle w of a circle sector (circle section). In lines 12 and 13, the coordi-

nates of the corner points are calculated. The plot() method in line 14 marks the

boundaries of the circle sectors. In line 15, the Polygon([[x1,y1],[x2,y2]], ...) con-

structor of the Polygon class creates the p object. The add_patch(p) method in line 16

adds the p object to the drawing area.
180

4.4 Displaying Figures, Lines, and Arrows
You could also have represented a regular polygon much more easily, without a loop

construct, using the following statement:

p=RegularPolygon((x,y),n,radius=10,fill=False)
ax.add_patch(p)

The (x,y) tuple specifies the center of the polynomial. The n and radius parameters

define the number of corners and the radius of the polygon. However, the effort of the

algorithm for the calculation of the x-y coordinates, which appears complicated at first

sight, is justified because it is absolutely necessary in many applications, for example,

for the representation of pointers in the complex plane.

4.4.5 Usage Example: A Metal Rod in a Magnetic Field

Matplotlib also allows you to create drawings that illustrate physical relationships. Lis-

ting 4.32 demonstrates how to plot a homogeneous magnetic field with a current-

carrying conductor resting on two bus bars.

01 #32_mag_field.py
02 import numpy as np
03 import matplotlib as mlt
04 import matplotlib.pyplot as plt
05 x1,x2=0,12
06 y1,y2=0,7
07 x=np.linspace(1,9,9)
08 y=np.linspace(1,6,6)
09 x,y=np.meshgrid(x,y)
10 fig,ax=plt.subplots()
11 ax.axis([x1,x2,y1,y2])
12 rod=mlt.patches.Rectangle((1.4,0.25),0.2,6.5,color='black')#width,height
13 circle=mlt.patches.Circle((10,3.5),0.8,fill=False,lw=2,edgecolor='black')
14 ax.add_patch(circle)
15 ax.add_patch(rod)
16 ax.plot([1,10],[6.5,6.5],lw=2,color='black') #upper line
17 ax.plot([1,10],[0.5,0.5],lw=2,color='black') #bottom line
18 ax.plot([10,10],[0.5,6.5],lw=2,color='black') #right line
19 ax.plot(x,y,marker='x',color='red',ls='none') #magnetic field lines
20 ax.arrow(1.6,3.5,1,0,color='k',lw=2,head_width=0.15)#x,y,x+dx,y+dy
21 ax.arrow(11,6,0,-4.5,color='b',lw=2,head_width=0.16,head_length=0.5)
22 ax.annotate("v",xy=(3,3),xytext=(3,3.4),fontsize=12) #labels
23 ax.annotate("U_q",xy=(11.2,3),xytext=(11.3,3.2),fontsize=12)
24 ax.set_xticks([])#no axis labels
25 ax.set_yticks([])#no axis labels
26 ax.set_frame_on(False)
181

4 Function Plots and Animations Using Matplotlib
27 ax.set_aspect('equal')
28 plt.show()

Listing 4.32 Current-Carrying Conductor in a Magnetic Field

Output

Figure 4.32 Current-Carrying Conductor in a Magnetic Field

Analysis

Figure 4.32 shows the top view of a homogeneous magnetic field with two parallel bus

bars, a rod of conducting material, and a voltage source. The magnetic field lines are

represented by red crosses, which should mean that the magnetic field lines are at right

angles to the drawing plane and point in the direction of the drawing plane according

to convention.

Almost all display elements are known from earlier examples.

4.5 Animations

Computer animation is a process in which a moving image is created from a sequence

of frames. An algorithm continuously changes the positions of the individual images.

In the process, each frame must be deleted before it is then moved to a new position

and displayed there. If the algorithm generates 24 new images in 1 second, for example,

then the viewer is given the illusion of an almost fluid movement. Computer anima-

tions can be used to illustrate physical phenomena that are beyond human perception

by slowing down fast processes or speeding up slow processes.

The from matplotlib.animation import FuncAnimation statement imports the FuncAnima-
tion method.
182

4.5 Animations
The following method creates the ani object:

ani=FuncAnimation(fig, func, frames=None, init_func=None, fargs=None,
save_count=None, cache_frame_data=True)

Not all possible parameters are specified. Although this object is not needed in the ani-

mation program, it must be created; otherwise, the animation will not be executed, and

only a static image will appear on the screen.

Note

You must store an animation in a variable, which means you should always create an

explicit object. If you don’t, an implicitly created animation object will be subjected to

an automatic garbage collection process, and the animation will be stopped.

You can create an implicit object by not assigning a variable to a method. The following

console example creates an implicit object:

>>> import matplotlib.pyplot as plt
>>> from matplotlib.animation import FuncAnimation
>>> fig=plt.Figure()
>>> def func():pass
>>> FuncAnimation(fig,func) #no variable present
<matplotlib.animation.FuncAnimation object at 0x135e65c30>

The warning generated by this console program was not included in this case.

The second parameter (func) stands for the name of a custom Python function that is

to be animated. This function is called without specifying a parameter. The other

parameters will be discussed during the analysis of each program.

The examples selected for this purpose include the time-based shifting of a sine wave

on the x-axis, the oblique throw, and the motion of a planet in an elliptical orbit.

4.5.1 A Simple Animation: Shifting a Sine Function

Listing 4.33 shows how to use the FuncAnimation() method to shift a sine wave in the

direction of the x-axis.

01 #33_animation_sine.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.animation import FuncAnimation
05
06 def f(x,k):
07 return np.sin(x-k/20)
08
183

4 Function Plots and Animations Using Matplotlib
09 def v(k):
10 y.set_data(x,f(x,k))
11 return y,
12
13 fig,ax=plt.subplots()
14 x=np.linspace(0,4*np.pi,200)
15 y, = ax.plot(x,f(x,0),'r-',lw=3)
16 #Animation
17 ani=FuncAnimation(fig,v,
18 interval=20,
19 #frames=200,
20 blit=True,
21 # save_count=50,
22 # cache_frame_data=False
23)
24 plt.show()

Listing 4.33 Shifted Sine Wave in Positive x-Direction

Output

Figure 4.33 shows a snapshot of the animation.

Figure 4.33 Snapshot of a Sine Wave

Analysis

This program draws a sine curve that is moving on the screen in the x-direction. The

direction of the movement can be changed by the sign in line 07. If the k parameter is

negative, the curve moves from left to right. If the k parameter is positive, it moves

from right to left.
184

4.5 Animations
The program consists of three parts: the v(k) function in line 09, the initialization part

in line 15, and the animation in line 17.

To perform an animation, the matplotlib.animation module must be imported (line 4).

In lines 06 and 07, the sine function sin(x-k/20) with variables x and k is defined. The x
variable changes the angle, while the k variable causes the movement of the sine func-

tion on the x-axis.

In line 09, the most important function for the animation is defined, namely, v(k). The

y.set_data(x,f(x,k)) method in line 10 changes the value k for the shift on the x-axis

at each function call of v(k) in line 17. The y object returned in line 11 must be termi-

nated with a comma because the return value must be a tuple. If you omit the comma,

an error message will display.

Line 13 creates the fig and ax objects. The fig object is needed for the animation in line

17. The ax object is used to access the plot method.

In line 14, the linspace(0,4*np.pi,200) NumPy function stores 200 values in the x vari-

able for the range from 0 to 4π. When the y object is initialized in line 15, the 200 values

for the x angles and for k=0 are stored in this object. Thus, the y object contains a static

image for two sine waves. The y object must be followed by a comma again, otherwise

the animation will not be executed.

In line 17, the following method performs the animation:

ani=FuncAnimation(fig,v,interval=20,blit=True)

Notice that an explicit ani object must be created (line 17), although it is not used in the

program. The identifier of this object is freely selectable. If you do not create an explicit

object, then the animation will not be executed. This object has the task of controlling

an internal counter (timer) that accesses the explicitly created animation object ani. If

this is missing, then the implicit animation object will be collected by the automatic

memory management functionality (garbage collection) as data garbage, and the ani-

mation will be stopped. A static image will appear on the monitor.

The first parameter (fig) sets the properties of the drawing area in which the animation

will take place.

As the second parameter, the FuncAnimation() method expects the custom animation

function v(k), which must be called without the k argument.

The interval parameter determines the delay (in milliseconds) with which the individ-

ual images are to be generated. The standard value is 200 ms. The larger this value, the

greater the pauses between the generation of new images. The animation no longer

runs as “smoothly” and shows clear signs of “bucking.”

The frames=200 parameter sets the number of frames to be drawn. This parameter is not

needed in this animation and will be explained in more detail in later examples.
185

4 Function Plots and Animations Using Matplotlib
The blit parameter specifies whether blitting should be used to optimize dynamic

drawing. The default value is False. Blitting means the fast copying and moving of the

object to be moved. If blit=True, only the areas of the image that have changed will be

redrawn. The animations should run more or less “smoothly” due to blitting. If you

comment out this parameter, however, you’ll notice that hardly any change is per-

ceptible. You can learn more about blitting at https://matplotlib.org/stable/tutorials/

advanced/blitting.html.

The save_count parameter sets the number of frames to be stored in the cache. This

parameter is used only if no value is assigned to the frames parameter.

The cache_frame_data parameter prevents a memory overflow from occurring in the

cache. The default value is True. If the frames parameter is not assigned a value, you

should set cache_frame_data=False as of Matplotlib version 3.7. Otherwise, the Python

interpreter will issue the following warning:

UserWarning: frames=None which we can infer the length of, did not pass an
explicit *save_count* and passed cache_frame_data=True. To avoid a possibly
unbounded cache, frame data caching has been disabled. To suppress this warning
either pass `cache_frame_data=False` or `save_count=MAX_FRAMES`.
ani=FuncAnimation(fig,v,

You should test this program extensively by changing the individual parameters and

closely observing the effects on the animation.

4.5.2 Animated Oblique Throw

The animated oblique throw shows the motion sequence of a ball thrown with a certain

initial velocity at a certain throwing angle. The parameter equations can be taken from

Listing 4.17. For the determination of the drawing area, the throw distance and the

climb height must be calculated.

Listing 4.34 enables you to animate the motion sequence of the oblique throw.

01 #34_animation_throw.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.animation import FuncAnimation
05 g=9.81
06 v0=10
07 throwing_angle=45
186

https://matplotlib.org/stable/tutorials/advanced/blitting.html
https://matplotlib.org/stable/tutorials/advanced/blitting.html

4.5 Animations
08 alpha=np.radians(throwing_angle)
09 tmax=2*v0*np.sin(alpha)/g
10 xmax=v0**2*np.sin(2*alpha)/g
11 ymax=v0**2*np.sin(alpha)**2/(2*g)
12 #Calculate trajectory
13 def throw(t):
14 x = v0*np.cos(alpha)*t
15 y = v0*np.sin(alpha)*t-0.5*g*t**2
16 ball.set_data([x],[y])
17 return ball,
18 #generate objects
19 fig,ax=plt.subplots()
20 ax.axis([0,xmax+0.5,0,ymax+0.5])
21 ball, = ax.plot([],[],'ro')
22 t=np.linspace(0,tmax,100)
23 ani=FuncAnimation(fig,throw,frames=t,interval=20,blit=True)
24 ax.set(xlabel="x in m",ylabel="y in m",title="Oblique throw")
25 plt.show()

Listing 4.34 Animated Oblique Throw

Output

Figure 4.34 shows a snapshot of the animation of the oblique throw.

Figure 4.34 Snapshot of the Animation of the Oblique Throw
187

4 Function Plots and Animations Using Matplotlib
Analysis

Of course, the animated throwing process cannot be shown in this book. For testing

purposes, you can run the program with different initial velocities in line 06 and

throwing angles in line 07.

The custom throw(t) function in lines 13 to 17 calculates the new positions of the x and

y coordinates for each new function call by the FuncAnimation() method and stores

them in the ball object. As of Matplotlib version 3.7, the x and y arguments must be

enclosed in square brackets (line 16) because the set_data() method only accepts

sequences as arguments. If you omit the brackets, the following warning appears:

MatplotlibDeprecationWarning: Setting data with a non sequence type is deprecated
since 3.7 and will be remove two minor releases later.

Line 21 initializes the ball object with an empty list for the plot method. The ro param-

eter causes the ball to be displayed as a red dot. If you insert the markersize='15' param-

eter, the diameter of the ball will increase.

The FuncAnimation() method in line 23 executes the animation. The frames parameter

sets the number of frames to be displayed per second if the parameter is assigned an

integer. In this animation, frames is assigned a sequence t from 0 to tmax out of 100 val-

ues, which guarantees an almost smooth display. If you were to assign an integer to the

frames parameter, the ball would flash at a fixed position on the trajectory and not

move.

4.5.3 Animated Planetary Orbit

Planets move in an elliptical orbit. The shape of an ellipse is described by the two axes

a and b. The x-y components are described by the following parameter equations:

Listing 4.35 enables you to animate the motion sequence of a planet around a star.

01 #35_animation_elipse.py
02 import numpy as np
03 import matplotlib as mlt
04 import matplotlib.pyplot as plt
05 from matplotlib.animation import FuncAnimation
06 #Data
07 r1,r2=0.5,0.25
08 a,b=8,4 #Ellipse axes
09 width=10
10 #Initialization
11 def init():
12 planet.center=(1,2)
188

4.5 Animations
13 ax.add_patch(planet)
14 return planet,
15 #Trajectory calculation
16 def trajectory(t):
17 x,y=a*np.cos(np.radians(t)),b*np.sin(np.radians(t))
18 planet.center=(x,y)
19 return planet,
20 #Graphics area
21 fig,ax=plt.subplots()
22 ax.axis([-width,width,-width,width])
23 planet= mlt.patches.Circle((0,0),radius=r2, color='blue')
24 star= mlt.patches.Circle((2.5,0),radius=r1, color='red')
25 ax.add_artist(star)
26 ani=FuncAnimation(fig,trajectory,

init_func=init,frames=360,interval=20,blit=True)
27 ax.set_aspect('equal')
28 ax.set(xlabel='x',ylabel='y',title='elliptical orbit')
29 plt.show()

Listing 4.35 Animated Planetary Orbit

Output

Figure 4.35 shows a snapshot of the animation of a planetary orbit.

Figure 4.35 Snapshot of the Animation of a Planetary Orbit
189

4 Function Plots and Animations Using Matplotlib
Analysis

Basically, the program has the same structure as the animation of the throwing parab-

ola. Line 08 defines the a and b axes of the elliptical orbit.

In lines 11 to 14, the init() function initializes the circular object planet created in line

23 for the x = 1 und y = 2 values (line 12) using the planet.center=(1,2) statement. These

values are chosen arbitrarily. When the program starts, this placement cannot be per-

ceived.

The custom trajectory(t) function in lines 16 to 19 contains the parameter equations

of the ellipse. The coordinate data is calculated in line 17. The planet.center=(x,y) state-

ment takes the coordinates of the orbit and stores them in the planet object.

The FuncAnimation() method in line 26 calls the trajectory function and the init func-

tion without parameters and creates the animation. In line 24, the star object is cre-

ated, and in line 25, this object is added to the center of the drawing area using the

add_artist(stern) method. Determining the number of frames is important. For exam-

ple, you can test the program with frames=300. Then, after 300°, you’ll observe the

jumping movement of the planet.

4.6 Project Task: Stirling Cycle

For a Stirling engine, the cycle can be represented in a p-V state diagram. First, the cycle

is visualized statically using Matplotlib. The individual states are identified by dots and

numbers. Based on this information, a simulation program with slider controls for the

temperature and volume change of the cyclic process will be developed. This program

should calculate the amount of volume work output and the efficiency of the Stirling

engine. The results should be displayed simultaneously with each slider change in the

user interface of the program.

The Stirling engine is a hot-air engine, invented in 1816 by the Scottish clergyman Rob-

ert Stirling (1790–1878). Figure 4.36 shows a cylinder with a piston that moves freely up

and down. The model is highly simplified and is only intended to illustrate the basic

operation of the Stirling engine. We won’t go into technical details in this example.

Heat energy is supplied to the gas of the cylinder from a heat reservoir. Subsequently,

the thermal energy is extracted from the gas again by shifting the cold reservoir to the

left.

The cylinder is alternately heated and cooled. When heated, the gas in the cylinder

expands, and the piston moves upward. Thus, some mechanical work (volume work) is

performed. As the cylinder cools, the volume of the gas decreases, and the piston

moves back down. As a rule, air is used as the gas. If the air is not compressed too much,

it behaves like an ideal gas, and general gas laws can be applied.
190

4.6 Project Task: Stirling Cycle
Figure 4.36 Basic Operation of a Stirling Engine

The pressure p in the cylinder is proportional to the absolute temperature T and

inversely proportional to the volume V of the gas (according to Boyle-Mariotte law):

The formula symbol n is the amount of substance of the gas in mols. The constant R is

the general gas constant for ideal gases (R = 8.31446261815324 J ⋅ mol-1 ⋅ K-1).

For the volume work done on the piston, the equation following applies:

By integration, you’ll obtain the following result:

When heating with the temperature Tw, the volume work defined by the following

equation is performed:

warm

Gas

cold
191

4 Function Plots and Animations Using Matplotlib
When cooling to temperature Tk, the following applies:

The index w stands for the warm state, and the index k stands for the cold state. The

indexes for work W12 and W34 are shown in Figure 4.37.

The utilizable mechanical work ∆W is calculated from the difference:

The usual convention in thermodynamics that the work done (W12) is given a negative

sign is not followed in this case, for once. Just think of the volume of work as amounts.

For the efficiency level, the following applies:

Representing the Stirling Cycle

Figure 4.37 shows the individual process states 1 to 4 for the pressures and volumes of

the expanded and compressed air of the Stirling cycle was created using Listing 4.36.

Figure 4.37 Stirling Cycle in p-V State Diagram
192

4.6 Project Task: Stirling Cycle
The dots symbolize the respective states for the pressures, volumes, and temperatures.

The transitions from one state to another state are referred to as a process. The individ-

ual process steps run as follows:

� 1 to 2: The air is heated by supplying thermal energy at a constant temperature Tw.

It expands, so the air volume increases, and the piston moves upward. Because of

p ⋅ V = const. the pressure decreases (isothermal change of state).

� 2 to 3: The air is cooled down. The volume does not change (isochoric change of

state).

� 3 to 4: The volume decreases from V2 to V1 with the low temperature Tk being kept

constant, and the pressure increases because p ⋅ V = const. (isothermal change of

state).

� 4 to 1: The temperature of the air is increased from the low temperature Tk to a

higher temperature Tw by supplying thermal energy. The volume remains constant

(isochoric change of state).

Listing 4.36 can generate the state diagram shown in Figure 4.37. The specification of

the amount of substance in line 09 of n = 0.045 mol corresponds to the volume of one

liter of air under normal conditions (T = 273.15 K, p = 1 bar).

01 #36_plot_cycle.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 Tw, Tk= 800, 400 #K
05 V1,V2=0.2,1 #dm^3
06 #Function definition p=f(V)
07 def p(V,T):
08 R=8.314 #J/(mol*K)
09 n=0.045 #mol
10 return 1e-2*n*R*T/V
11 #Graphics area
12 fig, ax = plt.subplots()
13 V=np.linspace(V1,V2,100)
14 ax.plot(V,p(V,Tw),'r-') #warm
15 ax.plot(V,p(V,Tk),'b-') #cold
16 #Dots
17 ax.plot([V1,V1],[p(V1,Tw),p(V1,Tk)],'ko')
18 ax.plot([V2,V2],[p(V2,Tw),p(V2,Tk)],'ko')
19 #vertical lines
20 ax.plot([V1,V1],[p(V1,Tk),p(V1,Tw)],'k-')
21 ax.plot([V2,V2],[p(V2,Tk),p(V2,Tw)],'k-')
22 ax.set_xlim(0.1,1.2)
193

4 Function Plots and Animations Using Matplotlib
23 ax.set_ylim(0,16)
24 #x,y labels
25 ax.text(V1-0.04,p(V1,Tw)-0.25,'1')
26 ax.text(V2+0.02,p(V2,Tw),'2')
27 ax.text(V2+0.02,p(V2,Tk)-0.25,'3')
28 ax.text(V1-0.04,p(V1,Tk)-0.25,'4')
29 ax.text(0.6,5.6,r'Q_{to}')
30 ax.text(0.5,1.8,r'Q_{from}')
31 ax.text(0.55,3.8,'∆W')
32 ax.set(xlabel='V in liters',ylabel='p in bars')
33 ax.fill_between(V,p(V,Tw),p(V,Tk),alpha=0.2,color='green')
34 plt.show()

Listing 4.36 Generating a p-V State Diagram

Analysis

The temperatures must be specified in kelvin (line 4). The factor in line 10 1e-2 causes

the pressure to be converted from Pa to bar.

In lines 14 and 15, the plot method calculates the coordinate data for the warm and cold

temperatures. The r- and b- parameters create a red and blue solid line, respectively.

The ko parameter in lines 17 and 18 draws four black dots. In lines 20 and 21, the plot
method specifies the coordinate data for the volume boundary between volumes V1
and V2. Two vertical lines are drawn.

In lines 25 to 28, the text(x,y,'number') method marks the numberings for the individ-

ual process states from 1 to 4.

Simulating the Stirling Cycle

Figure 4.38 shows the Matplotlib program interface with four slider controls. This pro-

gram enables you to simulate the effects of the individual changes of state on the deliv-

ered volume work and the efficiency. The delivered volume work and the efficiency are

displayed in the upper-right corner of the program interface.

If you change the slider markings (circles) of volumes V1 and V2, you’ll notice that only

the work done by the system changes, whereas the efficiency remains constant. By

changing the temperatures, you can influence efficiency. In an upward direction, the

temperature is limited by the material properties of the system. Generating lower tem-

peratures below 400 K no longer makes physical sense because the energy required for

this would no longer be justifiable. In real life, the Stirling engine achieves efficiencies

of around 20% to 30%.
194

4.6 Project Task: Stirling Cycle
Figure 4.38 Simulating the Stirling Cycle

Listing 4.37 creates the program’s user interface from Figure 4.38. Again, an air volume

of one liter is assumed, which corresponds to a substance quantity of n = 0.045 mol

(line 05). The gas constant R and the amount of substance n are already declared at the

start of the program in lines 05 and 06 because they are needed in Python function

update(val) for the calculation of the volume work (line 23).

01 #37_sld_p_V_diagram.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.widgets import Slider
05 n=0.045 #mol
06 R=8.314 #J/(mol*K)
07 #p=f(V), isothermal, T as parameter
08 def p(V,T):
09 return 1e-2*n*R*T/V
10 #query slider
11 def update(val):
12 Tw, Tk = sldTw.val, sldTk.val #warm, cold
13 V1, V2 = sldV1.val,sldV2.val
195

4 Function Plots and Animations Using Matplotlib
14 Vx = np.arange(V1,V2,0.001)
15 y1.set_data(Vx,p(Vx,Tw)) #isotherm
16 y2.set_data(Vx,p(Vx,Tk))
17 point1.set_data([V1],[p(V1,Tw)]) #point1
18 point2.set_data([V2],[p(V2,Tw)]) #point2
19 point3.set_data([V2],[p(V2,Tk)]) #point3
20 point4.set_data([V1],[p(V1,Tk)]) #point4
21 line1.set_data([V1,V1],[p(V1,Tk),p(V1,Tw)]) #vertical line
22 line2.set_data([V2,V2],[p(V2,Tk),p(V2,Tw)]) #vertical line
23 W=n*R*(Tw-Tk)*np.log(V2/V1)
24 eta=1-Tk/Tw
25 txtW.set_text('W = %.2f J' %W)
26 txtEta.set_text(r'η = %.2f' %eta)
27 #Graphics area
28 fig, ax = plt.subplots(figsize=(6,6))
29 txtW=ax.text(0.9,15,'')
30 txtEta=ax.text(0.9,14,'')
31 fig.subplots_adjust(left=0.12,bottom=0.25)
32 ax.set_xlim(0.1,1.2)
33 ax.set_ylim(0,16)
34 ax.set(xlabel='V in Liter',ylabel='p in bar',title='p-V diagram')
35 y1, = ax.plot([],[],'k-',lw=2) #ordinate
36 y2, = ax.plot([],[],'k-',lw=2) #ordinate
37 line1,line2 = ax.plot([],[],'r--',[],[],'r--')
38 point1,point2 = ax.plot([],[],'bo',[],[],'ro')
39 point3,point4 = ax.plot([],[],'go',[],[],'mo')
40 #x-, y-position, length, height
41 xyV1 = fig.add_axes([0.1, 0.12, 0.8, 0.03])
42 xyV2 = fig.add_axes([0.1, 0.08, 0.8, 0.03])
43 xyTw = fig.add_axes([0.1, 0.04, 0.8, 0.03])
44 xyTk = fig.add_axes([0.1, 0.0, 0.8, 0.03])
45 #create slider objects
46 sldTw=Slider(xyTw,r'T_{w}',501,800,valinit=800,valstep=1) #warm
47 sldTk=Slider(xyTk,r'T_{k}',400,500, valinit=400,valstep=1) #cold
48 sldV1=Slider(xyV1,r'V_{1}',0.2,0.5, valinit=0.2,valstep=0.01)
49 sldV2=Slider(xyV2,r'V_{2}',0.6,1, valinit=1.0,valstep=0.01)
50 #query changes
51 sldTw.on_changed(update)
52 sldTk.on_changed(update)
53 sldV1.on_changed(update)
54 sldV2.on_changed(update)
55 plt.show()

Listing 4.37 Simulation of a Stirling Cycle
196

4.7 Project Task: Animating a Thread Pendulum
Analysis

The n and R variables are already declared at the beginning of the program (line 05 and

06), so that they are available within the update(val) Python function (line 11). Alterna-

tively, they could also be inserted as additional parameters in the custom p(V,T,R=
8.314,n) Python function (line 08). Although this approach would follow better pro-

gramming style, the programming effort would increase because a Python function

would need to be defined for the calculation of the volume work (line 23).

In lines 12 and 13, the current values of the slider settings are assigned to the state vari-

ables Tw, Tk, V1, and V2. In line 14, the volume limits for V1 and V2 are adjusted.

The calculations for the volume work W and the efficiency eta are performed in lines 23

and 24. The set_text() method causes the currently calculated results (lines 25 and 26)

to be output at the positions in the program’s user interface that were specified in lines

29 and 30.

The on_changed(update) method (lines 51 to 54) calls the update Python function and

passes it the current numerical values of the slider settings.

4.7 Project Task: Animating a Thread Pendulum

In this project task, the movement of a thread pendulum is to be animated, as shown in

Figure 4.39.

Figure 4.39 Snapshot of the Animation
197

4 Function Plots and Animations Using Matplotlib
The current potential energy Epot = m⋅h and the current kinetic energy Ekin = 0.5⋅m⋅v2

need to be displayed in the user interface of the program. The height h can be calculated

using the diagram shown in Figure 4.40.

Figure 4.40 Forces on the Thread Pendulum

The total of the acceleration force Fa = m⋅a and the tangentially acting restoring force Ft

must be equal to 0 at any time of the pendulum motion:

Using and , you obtain the 2nd order nonlinear differential

equation:

By rearrangement and using the abbreviation , we obtain:

To solve this differential equation numerically, it must be transformed into a 2nd order

differential equation system:

m

I

s

F
t

F
g

h

I – h
198

4.7 Project Task: Animating a Thread Pendulum
Using the sum algorithm (Euler method), this differential equation system can be

solved numerically in a particularly simple way:

repeat for t=0 to tmax with increment dt
phi = phi + w*dt
w = w - w0^2*sin(phi)*dt - d*w*dt

The additionally added term d*w*dt considers the effect of the damping d. For the

damping, you can make the simplified assumption that it damps the oscillations pro-

portionally to the angular velocity 𝜔..

The sum algorithm is executed within a for loop.

Listing 4.38 shows the solution for this project task. In line 07, you can change the

deflection angle.

01 #38_animation_thread_pendulum.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from matplotlib.animation import FuncAnimation
05 #Data
06 l = 1.0 #pendulum length in m
07 angle = 60 #deflection angle
08 d = 0.0 #damping
09 m=10 #mass in kg
10 tmax = 50 #simulation duration
11 g = 9.81 #m/s^2
12 w02=g/l #square of the circular frequency
13 #solution of the differential equation using the Euler method
14 dt = 1e-3 #increment
15 phi,w=np.radians(angle), 0.0 #initial values
16 t = np.arange(0, tmax, dt)
17 x,y = np.empty((len(t))),np.empty((len(t)))
18 v=np.empty((len(t)))
19 x[0]=y[0]=0
20 for i in range(len(t)):
21 phi = phi + w*dt #deflection
22 w = w - w02*np.sin(phi)*dt - d*w*dt
23 v[i]=l*w
24 x[i],y[i] = l*np.sin(phi),-l*np.cos(phi) #x-y coordinates
25 #Animation function
26 def pendulum(j):
199

4 Function Plots and Animations Using Matplotlib
27 h=l+y[j]
28 Epot=m*h
29 Ekin=m*v[j]**2/2.0
30 txtEpot.set_text(f'$E_{{pot}}$={Epot:3.1f} J')
31 txtEkin.set_text(f'$E_{{kin}}$={Ekin:3.1f} J')
32 rod.set_data([0,x[j]],[0,y[j]])
33 sphere.set_data([x[j]],[y[j]])
34 return rod,sphere,txtEpot,txtEkin
35 #Graphics area
36 fig,ax= plt.subplots(figsize=(6, 6))
37 txtEpot=ax.text(-l,l,'',fontsize=12)
38 txtEkin=ax.text(-l,0.85,'',fontsize=12)
39 ival=1e3*dt
40 n=len(y)-1
41 width=1.1*l
42 ax.axis([-width,width,-width,width])
43 ax.set(xlabel='x',ylabel='y')
44 ax.set_aspect('equal')
45 ax.plot(0,0,'ko') #bearing
46 rod, = ax.plot([],[], 'b-', lw=1) #rod
47 sphere, = ax.plot([],[], 'ro', markersize='15') #sphere
48 ani = FuncAnimation(fig, pendulum,frames=n,interval=ival,blit=True)
49 plt.show()

Listing 4.38 Animation of a Thread Pendulum

Analysis

The program consists of four parts:

1. Inputs (lines 06 through 09)

2. Solution of the differential equation (lines 14 to 24)

3. Definition of the animation function (lines 26 to 34)

4. Graphics area (lines 36 to 49)

To animate different scenarios, you can change the deflection angle in line 07, change

the damping in line 08, and change the mass in line 09. You should not extend the set-

ting for the pendulum length because the animation won’t run as smoothly.

In line 14, you can adjust the increment dt to optimize the speed of the animation. Even

on the same computer, program execution speeds differ when tested with different

development environments. In lines 20 to 22, the sum algorithm is executed. For each

individual support point i, the trajectory velocity v[i] of the pendulum is calculated

from the angular velocity w and the pendulum length l in line 23. In line 24, the current

trajectory coordinates x[i] and y[i] are calculated.
200

4.8 Project Task: Animating a Transmission
Within the custom animation function pendulum(j) (lines 26 to 34), the current values

for the potential and kinetic energy (lines 28 and 29) are calculated and prepared for

output on the screen in lines 30 and 31 using the set_text() method. In lines 32 and 33,

the current coordinate data x[j] and y[j] are passed to the set_data() method and

stored in the rod and sphere objects.

In line 48, the FuncAnimation() method processes the values of the rod, sphere, txtEpot,

and txtEkin objects returned by the pendulum() function. In line 49, the show() method

displays the animation on the screen.

4.8 Project Task: Animating a Transmission

A gear transmission is intended to reduce the rotational frequency of an electric motor

from n1 = 1500 min-1 to n2 = 750 min-1. The module chosen is m = 0.5. The pitch circle

diameter (mean diameter) d1 of the first gear is 8 cm. The transmission is supposed to

be animated to illustrate the motion sequences.

The formulas necessary for dimensioning the transmission are listed in Table 4.3. The

transmission ratio is i = 2.

The animation program is based on the original by Magnus Benjes. Only the identifiers

of some variables were changed, a calculation part for the dimensioning of the trans-

mission was added, and compact statements were distributed across several program

lines.

In the program, the usual involute gearing is replaced by a trapezoidal one. The pitch

circle of the gear is simulated by a polygon. The number of polygon sides corresponds

to the number of teeth of a gear.

Meaning Formula

Pitch circle diameter of the second gear (mean diameter)

Distance between the gears

Number of teeth of the first gear

Number of teeth of the second gear

Tooth height

Tooth clearance

Table 4.3 Dimensioning of a Two-Stage Gear Transmission
201

4 Function Plots and Animations Using Matplotlib
The x-y coordinates of the polygon corners are calculated using the Euler’s formula:

The animation is performed using the ArtistAnimation(fig,img,intv) method. The img
object must be a list. This method is used whenever geometric figures are to be ani-

mated. You can use Listing 4.39 to animate the motion of a gear transmission.

01 #39_animation_transmission.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 import matplotlib.animation as ani
05 from matplotlib.patches import Polygon
06 m=0.5 #module
07 i=2 #transmission ratio
08 d1=8 #mean diameter
09 d2=i*d1
10 a=(d1+d2)/2
11 z1=d1/m #number of teeth
12 z2=i*z1
13 h=13*m/6 #tooth height
14 c=0.2*m #tooth clearance
15 i=complex(0,i)
16 x1=1/7
17 x2=1/3
18 tooth_shape=np.array([-x2,-x1,x1,x2])
19 frames=60
20 xmax=-11/16*d2,22/16*d2
21 ymax=-10/16*d2,10/16*d2
22 #Function definition for a gear
23 def gear(d,z,h):
24 r=d/2
25 alpha=2*np.pi/z #angle range
26 sector=tooth_shape*alpha
27 gear_section=np.array([r-h/2,r+h/2,r+h/2,r-h/2])-c
28 tooth=gear_section*np.exp(1j*sector)
29 return np.outer(np.exp(1j*alpha*np.arange(z)),tooth).ravel('C')
30 #Create gear objects
31 zr1=gear(d1,z1,h)
32 zr2=gear(d2,z2,h)*np.exp(1j*np.pi/z2)
33 step=2*np.pi/(z2*frames)
34 fig=plt.figure(figsize=(6,4))
35 ax=fig.add_axes([-0.2,-0.1,1.2,1.2])
36 image=[] #empty list
37 for k in range(frames):
38 zr1=zr1*np.exp(-i*step) #right turning
202

4.8 Project Task: Animating a Transmission
39 zr2=zr2*np.exp(1j*step) #left turning
40 P1=Polygon(zr1.view(float).reshape(zr1.size,2),color='grey')
41 P2=Polygon(zr2.view(float).reshape(zr2.size,2)+[a,0],color='k')
42 image.append([ax.add_patch(P1),ax.add_patch(P2)])
43 an=ani.ArtistAnimation(fig,image,interval=20)
44 ax.set_aspect("equal")
45 ax.set_xlim(xmax)
46 ax.set_ylim(ymax)
47 plt.show()

Listing 4.39 Animation of a Gear Transmission

Output

Figure 4.41 shows a snapshot of the animation of a gear transmission.

Figure 4.41 Snapshot of the Animation of a Gear Transmission

Analysis

The program consists of a total of six parts:

1. The input of the gear data for module m, the transmission ratio i and the pitch circle

diameter d1 of the first gear (line 06 to 08).

2. The calculation of the pitch circle diameter d2 of the second gear, the distance a
between the gears, the number of teeth z1 and z2, the tooth height h and the tooth

clearance c (line 09 to 14).

3. The definition of the gear(d,z,h) function for the calculation of the geometric data

of a gear (line 23 to 29). The function expects three parameters when called: the

diameter d of the gear, the number z of teeth, and the height h of a tooth. The gear()
function returns the dyadic product of the term np.exp(1j*alpha*np.arange(z)) and

the gear object, flattened using NumPy method ravel().
203

4 Function Plots and Animations Using Matplotlib
4. The creation of two gear objects, zr1 and zr2 (lines 31 and 32). The second gear is

rotated one tooth position further by multiplying by the rotation factor np.exp(1j*

np.pi/z2) so that the teeth do not overlap.

5. The generation of the images from two polygons (lines 36 to 42). Inside the for loop,

the Polygon() constructors of the Polygon class create the P1 and P2 objects for the

images of the two gears. The x and y coordinates for the polygon corners calculated

in lines 38 and 39 are passed as the first parameter. The NumPy method reshape

(zr1.size,2) transforms the coordinate data into a two-dimensional array. The

image.append() method creates an array of 60 images from the two polygons

because the frames variable was assigned the value 60 in line 19.

6. The ArtistAnimation(fig,image,interval=20) method that performs the animation

(line 43). The first parameter passed is the fig object from line 34. The second param-

eter (image) contains all 60 images created within the for loop. They are displayed

repeatedly with a delay of 20 ms.

4.9 Tasks

1. Write a program that represents the following two functions in a diagram:

y1 = cos x

y2 = x

2. Write a program that plots the voltage drop U = 𝑓(I) and power P = 𝑓(I) for a 1-Ω resis-

tor in a function plot. On the left axis, plot the voltage U in volts and, on the right

axis, plot the power P in watts. To add scaling to the right axis, you must create a new

object using the twinx method a2=a1.twinx().

3. The gas consumption of a heating system for one week from Monday to Sunday is to

be represented in a diagram as a line graph. For this period, the total gas consump-

tion and its average value should be calculated and displayed within the diagram.

You can save the days of the week in a list:

days=['Mon','Tue','Wed','Thu','Fri','Sat','Sun']#label x-axis

You can use the set_xticks(np.arange(n),days) method to label the x-axis. Write a

program that meets these requirements.

4. A rectangular function is to be approximated by the Fourier series y = ∑10·sin(kx)/k

(for k = 1, 3, 5, …). You can have the series calculated inside a for loop using for k in
range(1,n,2). The individual harmonics and the sum of these harmonics are to be

represented. Write an appropriate program.

5. The AC resistance for an inductance, and a capacitance is to be

plotted in two subplots one below the other. Write an appropriate program.
204

4.9 Tasks
6. Write a program that plots the time and location pattern of a sound wave (𝑓 = 440

Hz) in two subplots side by side as a cross of axes. The following applies:

Figure 4.42 Time and Place Image of a Sound Wave

7. The function y = cos(1/x) is to be represented in the interval . In an

internal coordinate system, a detail of this function is to be displayed for the range

from 0 to 0.2. For the Axes objects, the following shall apply:

ax1=fig.add_axes([0.1,0.1,0.8,0.8])#external
ax2=fig.add_axes([0.58,0.18,0.28,0.25])#internal

Write a program that meets these requirements.

8. Write a program that draws a circle involute.

9. A sphere is to be represented using a 3D function plot. Write an appropriate pro-

gram.

10. A pointer triangle is to be drawn for a series resonant circuit. Write an appropriate

program.

11. A regular polygon is to be represented using the RegularPolygon() method. Write

an appropriate program. The number of corners should be freely selectable.

12. For a damped vibration,

the amplitude, the damping and the period duration are to be changed using a

slider control. Write a program that meets these requirements.

13. Fourier synthesis with a slider control is to be simulated for a rectangular signal.

Only the sums of the individual harmonics are to be displayed. Write a program

that meets these requirements.

14. The slider control is intended to simulate the superposition of two oscillations. The

period duration is 20 ms. Both oscillations have an amplitude of 10. Only the phase

angle of the second oscillation is to be changed. Write an appropriate program.

15. Modify Listing 4.20 so that the circuit operates as a phase section control.
205

4 Function Plots and Animations Using Matplotlib
16. Write a program that animates the motion of two sine functions in the direction of

the x-axis. The first sine function should move from left to right, and the second

sine function should move from right to left. The sum of both functions should also

be represented.

17. A point is said to move on a sine curve . Write an animation program.

18. The Earth and Mars move in elliptical orbits around the Sun. The motion of Earth

and Mars should be animated with a phase shift and with different velocities. You

do not need to consider exact astronomical measurements. Only the qualitative

correlations need to be illustrated. Write a program that displays the planets using

the mlt.patches.Circle() method and animates them using the FuncAnimation()
method.

19. Animate the Moon-Earth-Sun rotation system using the FuncAnimation() method.

All three objects must be represented via the mlt.patches.Circle() method. You

should only consider qualitative relationships.

20. The sine curve oscillates up and down in the direction of the y-axis. Write an anima-

tion program for the process described by the following equation:
206

Chapter 5

Symbolic Computation Using SymPy

In this chapter, you’ll learn how to perform symbolic computations

using the SymPy module. This chapter covers standard topics in engi-

neering mathematics such as differentiations, integrations, differential

equations, and Laplace transformations.

SymPy is a Python library for computer algebra. The SymPy module is written entirely

in Python and consists of several hundred thousand program lines. The developers of

SymPy pursued the goal of creating a complete computer algebra system (CAS).

A CAS is a computer program for computing algebraic expressions. In this context,

mathematical operations are not performed with numbers but with symbols. A mini-

mal CAS consists of a user interface (Window-based version, terminal version); an

interpreter for parsing mathematical commands; and a system kernel that executes

the commands. For example, after entering a command such as diff(x^2,x);, you can

press (Shift) + (Return) (in CAS, Maxima), and the result 2x appears in the user inter-

face. In this way, you can write even extensive mathematical papers: Variables and

functions must be defined, then they are manipulated, linked, and parsed according to

the previously designed specifications. Comments can be inserted between the sym-

bolic computations. A user can then save the worksheet that results from these compu-

tations in LaTeX or other formats.

For custom extensions, every CAS provides a script language that can be integrated

into a worksheet. The CAS is the base system, while the scripting language has a com-

plementary function.

Python, however, goes the opposite way: The programming language is the base sys-

tem, and the respective desired functionality is provided as a module and imported

into the Python program as required. Thus, a particular advantage of the modular con-

cept is its flexibility.

Due to the SymPy module, Python can also be used like a conventional CAS (e.g., Max-

ima) in the terminal. Let’s consider a simple example like the following function:

Now, we want to calculate the first and the second derivative as well as the antideriva-

tive. Type the following statements into the Python console:
207

5 Symbolic Computation Using SymPy
>>> from sympy import *
>>> x=symbols('x')
>>> y=x**3-2*x**2+10
>>> diff(y,x)
3*x**2 - 4*x
>>> diff(y,x,2)
2*(3*x - 2)
>>> integrate(y,x)
x**4/4 - 2*x**3/3 + 10*x

The first step is to import the SymPy module. The asterisk operator (*) specifies that all

functions, methods, and mathematical constants of the sympy module should be

loaded. As a beginner, you should prefer this module import option so that the execu-

tion of your scripts won’t be blocked due to missing methods. As your experience

grows, you can then incorporate the specific submodules and methods you need for

your projects.

The second statement specifies the names of the mathematical variables. If multiple

variables are to be used, the statement is, for example, x,y,z=symbols('x y z').

In another CAS, the console input in the third line defines the function on which the

mathematical operations are to be performed.

The diff(y,x) command calculates the first derivative of the polynomial. After press-

ing (Return), the solution appears directly in the next line. The calculation of the sec-

ond derivative follows the same pattern, the difference being that a 2 must exist after

the independent x variable, separated by a comma. Notice in this context that the term

of the second derivative has already been simplified.

The integrate(y,x) command computes the antiderivative of the y polynomial. SymPy

does not output an integration constant.

To understand the next few examples, we’ve provided an overview of the most import-

ant functions of SymPy, which are listed in Table 5.1.

Function Description

apart(p) Decomposes polynomial p into its partial fractions.

cancel(p) Generates a polynomial function from partial fractions p.

diff(f,x,k) Computes the k-th derivative of function f.

dsolve(eq,f(x)) Solves an ordinary differential equation (eq) for function f(x).

N(Z,n) Generates a number with n digits for the number Z of

type Float.

Table 5.1 Selected Functions of SymPy
208

Symbolic Computation Using SymPy
Table 5.2 contains a selection of frequently used SymPy methods.

You can use certain SymPy functions as if they were methods, as the following console

dialog shows:

>>> from sympy import *
>>> x=symbols('x')
>>> y=x**2
>>> y.diff(x)
2*x
>>> y.integrate(x)
x**3/3

For this reason, consistently referring to all SymPy functions as methods makes sense

for the sake of better readability.

expand(T) Computes the term T.

integrate(f,x) Computes the antiderivative F(x) of function f(x).

integrate(f,(x,a,b)) Computes the definite integral of function f in the limits

from a to b.

limit(y,x,0) Computes the limit of a function.

simplify(term) Simplifies a term.

solve(F,x) Solves an equation.

together() Combines two expressions.

Method Description

obj.doit() Analyzes obj objects that are not parsed by default, such as

sums, products, limits, derivatives, and integrals. The analysis

is recursive.

Z.evalf(n) Generates a float with n digits for the number Z of type Float.

f.series(x,0,n) Develops a series for the mathematical function f with n mem-

bers at point x0 = 0.

s.subs(x,y) Replaces expressions.

Table 5.2 Selected Methods of SymPy

Function Description

Table 5.1 Selected Functions of SymPy (Cont.)
209

5 Symbolic Computation Using SymPy
Note

In this chapter, all SymPy functions are referred to as methods. This choice of this term

has the additional advantage of avoiding confusion with the mathematical term func-

tion.

SymPy also provides its own mathematical constants, listed in Table 5.3. Using the

pi.evalf(10) method, for example, you can display the value of π with nine decimal

places.

SymPy provides the trigonometric functions cos, sin, and tan as well as the e-function

exp() and the hyperbolic functions sinh, cosh, and tanh, so you don’t need to resort to

using the NumPy module. In fact, using the corresponding NumPy functions is not rec-

ommended to avoid conflicts between the namespaces of both modules.

Note: Do Not Mix NumPy and SymPy

Do not use NumPy functions in the SymPy module.

Other common mathematical functions are listed in Table 5.4.

Constant Symbol Meaningπ = 3.141592654 pi Pi

e = 2.718281828 E Euler numberΦ = 1.618033989 GoldenRatio Golden ratio∞ oo Infinite

Table 5.3 Constants of SymPy

Function Description

Abs(x) Amount function

binomial(n,k) Binomial coefficient

factorial(n) Factorial

fibonacci(n) n-th element of a Fibonacci sequence

log(x) Natural logarithm

log(x,a) Logarithm for basis a

Table 5.4 Important Built-In Functions of SymPy
210

5.1 Basic Mathematical Operations
5.1 Basic Mathematical Operations

Like other CAS, SymPy is adept at symbolic addition, subtraction, multiplication, divi-

sion, and exponentiation operations. For basic mathematical operations, the known

operators +, -, /, and * are available. Internally, SymPy uses the Add() and Mul() meth-

ods for basic arithmetic:

>>> Add(2,3)
5
>>> Mul(2,3)
6
>>> Mul(6,1/3)
2.00000000000000

However, you don’t need to use this inconvenient notation. You can perform all basic

arithmetic operations using the infix operators.

The following examples show how SymPy performs these operations on symbolic vari-

ables.

5.1.1 Addition

Listing 5.1 shows the addition of the four terms T1, T2, T3, and T4, which are composed of

the variables a, b, c, and d.

01 #01_add.py
02 from sympy import *
03 a,b,c,d=symbols("a b c d")
04 T1=9*a+7*b-2*c+3*d
05 T2=8*a+2*b+3*c+4*d
06 T3=7*a-3*b+2*c+5*d
07 T4=4*a+2*b+5*c-6*d
08 T=T1+T2+T3+T4
09 print("Sum of terms")
10 pprint(T)

Listing 5.1 Summarizing Terms

Output

Sum of terms
28・a + 8・b + 8・c + 6・d

Indications and Procedures

Line 02 imports all methods of the SymPy module without taking into account that, in

this example, actually only the symbols and pprint methods are needed. This approach
211

5 Symbolic Computation Using SymPy
is justified because, if SymPy wants to compete with another CAS, the effort would no

longer be justifiable for a beginner if they had to explicitly import the required meth-

ods for each new task.

In line 02, you could use the following statement to import only the required methods:

from sympy import symbols, pprint

However, this option is more complex and error prone in complex programs.

Line 03 specifies the symbols for the mathematical variables the program should use to

perform the computations. At this point, you can use the variable identifiers known

from mathematics, which means that SymPy allows user-defined variable names.

You’re free to decide which variable names you want to use, and you’re not locked into

x-y math.

The assignments in lines 04 to 07 define the terms that are added up in line 08. The

multiplication operator * must be placed between the factors and the variables, for

example, 7*b. The notation 7b would trigger an error message.

In line 10, the pprint() method outputs the formatted result in which Unicode charac-

ters are used. The first p is supposed to stand for pretty.

You can check the correctness of the result by doing your own recalculation.

Both print(type(a)) and print(type(T)) enable you to print the types of the a and T
variables, as shown in the following examples:

<class 'sympy.core.symbol.Symbol'> #a
<class 'sympy.core.add.Add'> #T

You can use print(srepr(T)) to display the internal structure of the term T, as shown in

the following examples:

Add(Mul(Integer(28), Symbol('a')), Mul(Integer(8), Symbol('b')), Mul(Integer(8),
Symbol('c')), Mul(Integer(6), Symbol('d')))

The different parenthetical levels can be visualized in a tree structure. For an example

of the visualization of a tree structure, refer to https://docs.sympy.org/latest/tutorials/

intro-tutorial/manipulation.html.

5.1.2 Multiplication of Terms

Of course, SymPy is also adept at symbolic multiplication. Listing 5.2 shows how to

multiply two terms (T1 and T2) with the symbolic variables a, b, and c.

01 #02_mul.py
02 from sympy import *
03 a,b,c=symbols("a b c")
04 T1=2*a+4*b-5*c
212

https://docs.sympy.org/latest/tutorials/intro-tutorial/manipulation.html
https://docs.sympy.org/latest/tutorials/intro-tutorial/manipulation.html

5.1 Basic Mathematical Operations
05 T2=4*a+2*b+3*c
06 T=T1*T2
07 print("Products of the terms")
08 pprint(T)
09 print("Terms multiplied")
10 print(expand(T))
11 print("Formatted output")
12 pprint(expand(T))

Listing 5.2 Multiplication of Terms

Output

Products of the terms
(2⋅a + 4⋅b - 5⋅c)⋅(4⋅a + 2⋅b + 3⋅c)
Terms multiplied
8*a**2 + 20*a*b - 14*a*c + 8*b**2 + 2*b*c - 15*c**2
Formatted output

2 2 2
8⋅a + 20⋅a⋅b - 14⋅a⋅c + 8⋅b + 2⋅b⋅c - 15⋅c
Analysis

In line 06, the multiplication operation is executed, but the result that is output in line

08 does not match the expectation. For the parentheses to be multiplied out, the T
object must be passed to the expand(T) method (line 12).

print(type(T)) allows you to output the type of the T variable: <class 'sympy.core.

mul.Mul'>.

5.1.3 Multiplication of Linear Factors

The multiplication of n linear factors (x+x1)*(x+x2)* ... *(x+xn) results in polynomials

of the n-th degree. x1 to xn represent the zeros of the polynomial. The number of linear

factors determines the degree of the polynomial. Listing 5.3 generates a fourth-degree

polynomial from three linear factors using the expand() method.

01 #03_mul_linear_factors.py
02 from sympy import *
03 x=symbols("x")
04 lf=(x-1)*(x-2)*(x-3)*(x-4)
05 p=expand(lf)
06 print("\nThe multiplication of the linear factors")
07 pprint(lf)
213

5 Symbolic Computation Using SymPy
08 print("generates the polynomial of the 4th degree")
09 pprint(p)

Listing 5.3 Multiplication of Linear Factors

Output

The multiplication of the linear factors
(x - 4)・(x - 3)・(x - 2)・(x - 1)
generates the polynomial of the 4th degree
4 3 2
x - 10・x + 35・x - 50・x + 24

Analysis

In line 05, the linear factors from line 04 are multiplied using the expand(lf) method

and stored in the p object. The output in line 09 confirms the expected result.

5.1.4 Division

Listing 5.4 demonstrates the division of terms. The symbolic division operation is per-

formed using the / operator.

01 #04_div.py
02 from sympy import *
03 a,b,c=symbols("a b c")
04 T1=2*a+4*b-5*c
05 T2=4*a+2*b+3*c
06 T3=5*a-3*b+4*c
07 T=T1/(T2*T3)
08 print("Division of terms")
09 pprint(T)
10 print("Terms multiplied")
11 print(expand(T))

Listing 5.4 Division of Terms

Output

Division of terms
 2・a + 4・b - 5・c──────────────────────────────────────
(4・a + 2・b + 3・c)⋅(5・a - 3・b + 4・c)
Terms multiplied
214

5.1 Basic Mathematical Operations
2*a/(20*a**2 - 2*a*b + 31*a*c - 6*b**2 - b*c + 12*c**2) + 4*b/(20*a**2 - 2*a*b +
31*a*c - 6*b**2 - b*c + 12*c**2) - 5*c/(20*a**2 - 2*a*b + 31*a*c - 6*b**2 - b*c
+ 12*c**2)

Analysis

Line 07 performs the symbolic division operation. The expand(T) method is used to cal-

culate three fractions in line 11 with the denominator terms that have been multiplied

with each other. The example clearly shows how SymPy’s CAS methods can greatly

facilitate the necessary computational work.

If you output the type of the T variable via print(type(T)), you’ll obtain the following

output: <class 'sympy.core.mul.Mul'>. From this result, we can conclude that no Div()
method exists.

5.1.5 Exponentiation

Symbolic exponentiation can be illustrated through an example with the binomial for-

mula:

Listing 5.5 calculates the binomials for n = 1 through 6.

01 #05_binom.py
02 from sympy import *
03 a,b=symbols("a b")
04 for n in range(7):
05 p=(a+b)**n
06 print(expand(p))

Listing 5.5 Powers of Sums

Output

1
a + b
a**2 + 2*a*b + b**2
a**3 + 3*a**2*b + 3*a*b**2 + b**3
a**4 + 4*a**3*b + 6*a**2*b**2 + 4*a*b**3 + b**4
a**5 + 5*a**4*b + 10*a**3*b**2 + 10*a**2*b**3 + 5*a*b**4 + b**5
a**6 + 6*a**5*b + 15*a**4*b**2 + 20*a**3*b**3 + 15*a**2*b**4 +
6*a*b**5 + b**6
215

5 Symbolic Computation Using SymPy
Analysis

This program illustrates that symbolic exponentiation is also possible using SymPy. In

line 06, the expand(p) method calculates the powers of the binomials from line 05.

Again, this example shows the capabilities of SymPy’s CAS functionality.

If you output the type of the p variable via print(type(p)), you’ll obtain the following

output: <class 'sympy.core.power.Pow'>. Thus, a method exists for the exponentiation

operation. You can test this method using Pow(2,100), for example.

5.1.6 Usage Example: Analyzing an Electrical Power Transmission System

Let’s now apply computation using symbolic variables for the analysis of an electrical

network. Using a simple example, I will show you how to use SymPy to compute the

efficiency of an electrical power transmission system for a direct current (DC), as shown

in Figure 5.1. For this purpose, we need to compute the total resistance and the current.

Figure 5.1 Equivalent Circuit Diagram for a Power Transmission System

Each DC power transmission system consists of the internal resistance of the voltage

source R0, the conductor resistance R1, and the consumer resistance R2. Based on this

information, you can derive a formula to calculate the efficiency of the network. For the

total resistance, the following equation applies:

The total current Ig is calculated from the input voltage and the total resistance:

The following equation applies to the input power P1:

For the output power, P2 applies accordingly:

R1

R2

R0I

U1 U2
216

5.2 Multiplying Matrixes
Using these equations, you can obtain the formula for the efficiency:

SymPy performs these symbolic arithmetic operations, as shown in Listing 5.6, and

establishes a general formula for calculating the efficiency of a power transmission sys-

tem for direct current.

01 #06_efficiency.py
02 from sympy import *
03 R0,R1,R2,U1,U2=symbols("R0 R1 R2 U1 U2")
04 Rg=R0+R1+R2
05 Ig=U1/Rg
06 P1=Rg*Ig**2
07 P2=R2*Ig**2
08 eta=P2/P1
09 print(u"\N{GREEK SMALL LETTER ETA}= ",eta)

Listing 5.6 Efficiency of a Direct Current Line

Outputη = R2/(R0 + R1 + R2)

Analysis

This example illustrates that you can use any identifier for the required symbolic vari-

ables (line 03). In lines 04 to 08, symbolic computations are executed according to the

specifications. Line 09 outputs the expected result.

5.2 Multiplying Matrixes

SymPy also handles all arithmetic operations defined on matrixes. In electrical engi-

neering, the analysis and synthesis of two-port networks can be performed particularly

elegantly using the addition and multiplication of matrixes. For the analysis of cate-

nary circuits from elementary two-port networks, only the matrix multiplication is

needed.

5.2.1 Calculation Rule

Matrixes are multiplied based on the rule, “row vector multiplied by column vector,” as

illustrated in the following:
217

5 Symbolic Computation Using SymPy
Listing 5.7 shows how to multiply matrixes symbolically with each other using SymPy.

01 #07_matrix_mul1.py
02 from sympy import *
03 a,b,c,d = symbols("a,b,c,d")
04 e,f,g,h = symbols("e,f,g,h")
05 A=Matrix([[a,b],
06 [c,d]])
07 B=Matrix([[e,f],
08 [g,h]])
09 C=A*B
10 D=B*A
11 print("Product A*B\n")
12 pprint(C)
13 print("\nProduct B*A\n")
14 pprint(D)

Listing 5.7 Matrix Multiplication

Output

Product A*B⎡a・e + b・g a・f + b・h⎤⎣c・e + d・g c・f + d・h⎦
Product B*A⎡a・e + c・f b・e + d・f⎤⎣a・g + c・h b・g + d・h⎦
Analysis

The symbolic definition of a matrix is performed in lines 05 and 07 using the Matrix

([[row1],[[row2]]) method. The multiplications of matrixes A and B in lines 09 and 10

show that the commutative law does not apply to matrixes.

5.2.2 Transmission Function of a Catenary Circuit

A transmission function describes the ratio of the output voltage to the input voltage

of a two-port network, according to the following equation:

If the transmission function and the input voltage are given, then you can calculate the

output voltage using the following equation:
218

5.2 Multiplying Matrixes
Figure 5.2 shows a catenary circuit consisting of three inductances as longitudinal links

and two capacitances as cross links. The terminating resistor R = 1 Ω is also a cross link.

Figure 5.2 Catenary Circuit for a Fifth-Degree Low-Pass Filter

A catenary circuit is composed of n cross links and m longitudinal links. The chain

parameters of these links are shown in Table 5.5.

Z can be a resistive, capacitive, or inductive alternating current (AC) resistance (imped-

ance). The following equation applies to the inductive reactance XL:

The following equation applies to the capacitive conductance YC:

To calculate the resulting chain matrix, you must multiply the matrixes of the cross

links and longitudinal links with each other.

Listing 5.8 multiplies the individual partial matrixes with each other. The resulting

chain matrix and the denominator polynomial of the transmission function are out-

put.

01 #08_matrix_mul2.py
02 from sympy import *
03 s,L1,C2,L3,C4,L5 = symbols("s L1 C2 L3 C4 L5")
04 A1=Matrix([[1, L1*s],
05 [0, 1]])
06 A2=Matrix([[1, 0],
07 [C2*s,1]])

Cross Link Longitudinal Link

Table 5.5 Chain Parameters for Elementary Links

R = 1U1 U2

L1 L3 L5

C2 C4
219

5 Symbolic Computation Using SymPy
08 A3=Matrix([[1,L3*s],
09 [0, 1]])
10 A4=Matrix([[1, 0],
11 [C4*s, 1]])
12 A5=Matrix([[1,L5*s],
13 [0, 1]])
14 A6=Matrix([[1, 0],
15 [1, 1]])
16 A=A1*A2*A3*A4*A5*A6
17 print("Chain parameters")
18 print(A)
19 print("Denominator polynomial of the transmission function")
20 print(expand(A[0,0]))

Listing 5.8 Parameters of a Catenary Circuit

Output

Chain parameters
Matrix([[C2*L1*s**2 + C4*s*(L1*s + L3*s*(C2*L1*s**2 + 1)) + L1*s +
L3*s*(C2*L1*s**2 + 1) + L5*s*(C2*L1*s**2 + C4*s*(L1*s + L3*s*(C2*L1*s**2 + 1)) +
1) + 1, L1*s + L3*s*(C2*L1*s**2 + 1) + L5*s*(C2*L1*s**2 + C4*s*(L1*s +
L3*s*(C2*L1*s**2 + 1)) + 1)], [C2*L3*s**2 + C2*s + C4*s*(C2*L3*s**2 + 1) +
L5*s*(C2*s + C4*s*(C2*L3*s**2 + 1)) + 1, C2*L3*s**2 + L5*s*(C2*s +
C4*s*(C2*L3*s**2 + 1)) + 1]])
Denominator polynomial of the transmission function
C2*C4*L1*L3*L5*s**5 + C2*C4*L1*L3*s**4 + C2*L1*L3*s**3 + C2*L1*L5*s**3 +
C2*L1*s**2 + C4*L1*L5*s**3 + C4*L1*s**2 + C4*L3*L5*s**3 + C4*L3*s**2 + L1*s +
L3*s + L5*s + 1

Analysis

The definition of the matrixes for the individual elementary two-port networks is per-

formed in lines 04 to 15. The matrix multiplication is performed in line 16. Special care

must be taken to ensure that the order of the multipliers corresponds to the circuit’s

structure. The outputs show that such complex operations can hardly be performed

manually.

5.3 Equations

Systems of linear equations play a central role in the calculation of node voltages and

mesh currents in electrical networks and the distribution of forces in trusses. In math-

ematics, partial fraction decomposition and the solving of linear differential equations

with constant coefficients and higher orders also require equations to be solved.
220

5.3 Equations
5.3.1 Linear Systems of Equations

SymPy solves a linear system of equations using the following method:

solve((g1, g2, g3, g4), x1, x2, x3, x4)

The objects g1 to gn represent the rows of a linear system of equations. The variables x1
to xn are the unknowns.

The individual lines of the equation system, such as 7*x1+5*x2-2*x3+7*x4=9 are trans-

formed so that the row elements of the result vector are on the left side of the equation

system: 7*x1+5*x2-2*x3+7*x4-9=0, where the zero is no longer considered in the solve
method.

Listing 5.9 shows the implementation.

01 #09_solve1.py
02 from sympy import *
03 x1,x2,x3,x4 = symbols('x1 x2 x3 x4')
04 #linear system of equations
05 g1=7*x1+5*x2-2*x3+7*x4-9
06 g2=6*x1+3*x2-4*x3+6*x4-8
07 g3=3*x1+2*x2-5*x3+5*x4-4
08 g4=2*x1+9*x2-6*x3+3*x4-2
09 #solution
10 L=solve((g1,g2,g3,g4),x1,x2,x3,x4)
11 #Output
12 print("Solution set\n",L)

Listing 5.9 Linear System of Equations

Output

Solution set
{x1: 431/305, x2: -34/305, x3: -19/305, x4: -4/61}

Analysis

The rows of the rearranged equation system are assigned to objects g1 to g4 in rows

05 to 08. The solution follows in line 10 using the solve((g1,g2,g3,g4),x1,x2,x3,x4)
method. The rows of the equation system are passed as tuples. Next, follow the param-

eters of the unknown variables x1 to x4 separated by commas. As expected, the solution

set does not consist of real numbers but of rational numbers. Consequently, SymPy

computes exactly in this case.
221

5 Symbolic Computation Using SymPy
Usage Example: Nodal Analysis

Using the example of a low-pass filter in a π circuit, I will show you how a system of

equations with two unknowns can generally be solved.

Figure 5.3 Low-Pass Filter in π Circuit

From the circuit shown in Figure 5.3, you can use nodal analysis to set up a system of

equations for the node voltages U1,0 and U2,0, for example:

Listing 5.10 computes these node voltages as general expressions.

01 #10_solve2.py
02 from sympy import *
03 s,U0,U1,U2,R,C,L = symbols("s,U0,U1,U2,R,C,L")
04 #node equations
05 I1=(1/R+C*s+1/(L*s))*U1-U2/(L*s)-U0/R
06 I2=-U1/(L*s)+(1/R+C*s+1/(L*s))*U2
07 #solving the node equations
08 U=solve((I1,I2),U1,U2)
09 print(U)

Listing 5.10 General Solution of a Second-Degree System of Equations

Output

{U1:-L*U0*s*(C*L*R*s**2+L*s+R)/(R**2-(C*L*R*s**2+L*s+R)**2),
U2:-L*R*U0*s/(R**2-(C*L*R*s**2+L*s+R)**2)}

R

R L

C C U2U0

1 2

0

222

5.3 Equations
Analysis

In lines 05 and 06, the rows of the equation system are assigned to the I1 and I2 objects.

Line 08 computes the general solution of the equation system. The output of the node

voltages U1 and U2 is performed using the dictionary data structure.

5.3.2 Nonlinear Systems of Equations

Let’s now consider the following nonlinear equations:

For these equations, Listing 5.11 calculates the zeros.

01 #11_solve3.py
02 from sympy import *
03 a,b,x=symbols("a,b,x")
04 #Equations
05 y1=x**4-7*x**3-13*x**2+79*x+84
06 y2=log(sqrt(x)-2)-1
07 y3=exp(sqrt(x)-2)-1
08 y4=sinh(x)-10
09 y5=cosh(x)-10
10 #Outputs
11 print("Solutions")
12 print("f(x)=%s|f(x=0)=%s" %(y1,solve(y1,x)))
13 print("f(x)=%s|f(x=0)=%s" %(y2,solve(y2,x)))
14 print("f(x)=%s|f(x=0)=%s" %(y3,solve(y3,x)))
15 print("f(x)=%s|f(x=0)=%s" %(y4,solve(y4,x)))
16 print("f(x)=%s|f(x=0)=%s" %(y5,solve(y5,x)))

Listing 5.11 Nonlinear Systems of Equations

Output

Solutions
f(x)=x**4 - 7*x**3 - 13*x**2 + 79*x + 84|f(x=0)=[-3, -1, 4, 7]
f(x)=log(sqrt(x) - 2) - 1|f(x=0)=[(2 + E)**2]
f(x)=exp(sqrt(x) - 2) - 1|f(x=0)=[4]
f(x)=sinh(x)-10|f(x=0)=[log(-10+sqrt(101))+I*pi,
223

5 Symbolic Computation Using SymPy
log(10 + sqrt(101))]
f(x)=cosh(x) - 10|f(x=0)=[log(10 - 3*sqrt(11)),
log(3*sqrt(11) + 10)]

Analysis

The mathematical functions defined in lines 05 to 09 are solved and output in lines 12

to 16 using the solve() SymPy method. The outputs provide the exact values (i.e., no

floats).

In output I*pi, I stands for the imaginary unit. Using plot(yi,(x,ug,og)), you can use

the function plots to illustrate the solutions (intersections with the x-axis).

Usage Example: Design of a Butterworth Low-Pass Filter

One method of design low-pass filters is to compare the electrical components L and C

with the coefficients of the transmission function. The number of equations that are

set up in the coefficient comparison corresponds to the degree of the filter. For exam-

ple, to design a fifth-degree Butterworth lowpass filter, you’ll obtain a nonlinear system

of equations with five equations. Such a system of equations can most likely no longer

be solved manually.

For Butterworth coefficients, the literature provides the following normalized trans-

mission function:

Using Listing 5.11, the denominator polynomial of the transmission function for a fifth-

degree low-pass filter can be calculated in the following way:

C2*C4*L1*L3*L5*s**5 + C2*C4*L1*L3*s**4 + C2*L1*L3*s**3 + C2*L1*L5*s**3 +
C2*L1*s**2 + C4*L1*L5*s**3 + C4*L1*s**2 + C4*L3*L5*s**3 + C4*L3*s**2 + L1*s +
L3*s + L5*s + 1

As a result of the coefficient comparison, you can obtain the following system of equa-

tions:

For ohmic resistance, the value of 1 Ω is set. The calculated values for the inductances

and capacitances have the units 1 H (Henry) and 1 F (Farad), respectively. Listing 5.12

solves the nonlinear equation system we’ve set up and outputs the values for the vari-

ous components as a dictionary.
224

5.3 Equations
01 #12_solve4.py
02 from sympy import *
03 s,L1,C2,L3,C4,L5 = symbols("s L1 C2 L3 C4 L5")
04 #Butterworth coefficients
05 a=[0,3.236,5.236,5.236,3.236,1]
06 #nonlinear system of equations
07 g1=L1+L3+L5-a[1]
08 g2=C2*L1 + C4*L1 + C4*L3-a[2]
09 g3=C2*L1*L3 + C2*L1*L5 + C4*L1*L5-a[3]
10 g4=C2*C4*L1*L3-a[4]
11 g5=C2*C4*L1*L3*L5-a[5]
12 components=solve((g1,g2,g3,g4,g5),L1,C2,L3,C4,L5,dict=True)
13 #Output
14 print(components[1])
15 print(components[1].keys())
16 print(components[1].values())
17 for item in components[1].items():
18 print("%s = %.3f"%item)

Listing 5.12 Dimensioning a Butterworth Low-Pass Filter

Output

{C2: 1.85739429156729, C4: 0.815341330818977, L1: 1.53414656573512, L3:
1.39282994847996, L5: 0.309023485784920}
dict_keys([C2, C4, L1, L3, L5])
dict_values([1.85739429156729, 0.815341330818977, 1.53414656573512,
1.39282994847996, 0.309023485784920])
C2 = 1.857
C4 = 0.815
L1 = 1.534
L3 = 1.393
L5 = 0.309

Analysis

Line 05 stores Butterworth coefficients in array object a. The value zero was provided as

the first element to make how Python indexes arrays match the indexing of the Butter-

worth coefficients.

Lines 07 to 11 contain the individual equations of the nonlinear system of equations. In

line 12, the system of equations is solved. The last parameter (dict=True) specifies that

the solution set is stored as a dictionary in the components object.
225

5 Symbolic Computation Using SymPy
Line 14 outputs the complete solution set as a dictionary. Line 15 outputs the keys, and

line 16 outputs the dictionary values. The values for the individual components are

output in line 18.

The values for the components are again the values normalized to 1 Ω, 1 F, and 1 H.

5.4 Simplifications of Terms

When deriving physical laws or calculating transmission functions for AC electrical

networks, mathematical terms can arise that can still be greatly simplified. For this pur-

pose, SymPy provides the simplify(term) method. Listing 5.13 is intended to simplify

the following five terms:

01 #13_simplify.py
02 from sympy import *
03 a,b,c,n,x,y=symbols("a b c n x y")
04 #Terms
05 t1=exp(log(x)+log(y))
06 t2=n*x**n/x
07 t3=a**3/((a-b)*(a-c))+b**3/((b-c)*(b-a))+c**3/((c-a)*(c-b))
08 t4=2*sqrt(1/x)-1/sqrt(x)
09 t5=(y**2 + y)/(y*sin(a)**2 + y*cos(a)**2)
10 #Outputs
11 print("1: exp(log(x)+log(y)), simplified:",t1)
12 print("2:",t2,",simplified:",simplify(t2))
13 print("3:",t3,"\n simplified:",simplify(t3))
14 print("4:",t4,",simplified",simplify(t4))
15 print("5:",t5,",simplified:",simplify(t5))

Listing 5.13 Simplification of Mathematical Terms
226

5.5 Series Expansion
Output

1: exp(log(x)+log(y)), simplified: x*y
2: n*x**n/x, simplified: n*x**(n - 1)
3: a**3/((a-b)*(a-c))+b**3/((-a + b)*(b-c))+c**3/((-a+c)*(-b+c))

simplified: a + b + c
4: 2*sqrt(1/x) - 1/sqrt(x), simplified 2*sqrt(1/x) - 1/sqrt(x)
5: (y**2 + y)/(y*sin(a)**2 + y*cos(a)**2), simplified: y + 1

Analysis

As expected, SymPy uses the simplify() method to simplify all terms correctly except

the third term. For the third term, 2*sqrt(1/x)-1/sqrt(x), the expected output is

1/sqrt(x). Maple, for example, provides this result. Strictly speaking, however, this

result is only correct if you assume that the positive sign of the root term was meant.

This problem is also pointed out in the SymPy documentation. SymPy automatically

simplifies the first term when output via print().

5.5 Series Expansion

Using the f(x).series(x,x0,n) method, SymPy calculates n members for the series of

function f(x) at position x0. Listing 5.14 proves Euler’s formula with the series expan-

sion for the sine and cosine functions:

01 #14_series_expansion.py
02 from sympy import *
03 x=symbols('x')
04 n=10
05 a=cos(x).series(x,0,n)
06 b=(sin(x)*I).series(x,0,n)
07 c=exp(x*I).series(x,0,n)
08 d=a+b
09 #Output
10 print("Series expansion cos\n",a)
11 print("\nSeries expansion sin\n",b)
12 print("\nSeries expansion cos+sin\n",c)
13 print("\nSeries expansion e-function\n",d)

Listing 5.14 Series Expansion
227

5 Symbolic Computation Using SymPy
Output

Series expansion cos
1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**10)
Series expansion sin
I*x - I*x**3/6 + I*x**5/120 - I*x**7/5040 + I*x**9/362880 + O(x**10)
Series expansion cos+sin
1 + I*x - x**2/2 - I*x**3/6 + x**4/24 + I*x**5/120 - x**6/720 –
I*x**7/5040 + x**8/40320 + I*x**9/362880 + O(x**10)
Series expansion e-function
1 + I*x - x**2/2 - I*x**3/6 + x**4/24 + I*x**5/120 - x**6/720 –
I*x**7/5040 + x**8/40320 + I*x**9/362880 + O(x**10)

Analysis

In lines 06 and 07, the sine function and the exponential function are multiplied by the

imaginary unit I. In line 08, the addition of the series for the cosine and sine functions

takes place. The outputs in lines 10 to 13 confirm the results from the literature. The val-

ues for the members from line 12 match the values of the series members from line 13.

As expected, the imaginary unit I disappears in members with even exponents.

5.6 Partial Fractions

Any rational function can be decomposed into n partial fractions. If you calculate the

main denominator for these partial fractions, you get back the original rational func-

tion with its numerator and denominator polynomial. In the synthesis of electrical

inputs, transfer functions of complex conductance (admittance) Y(s) or complex resis-

tance (impedance) Z(s) are given as rational functions. From these specifications, the

individual elements of the circuit can be dimensioned using partial fraction decompo-

sition. Based on two simple electrical networks, I will now demonstrate how the syn-

thesis of one-ports is performed using the method of decomposing partial fractions.

Figure 5.4 shows a parallel circuit of three R-L series circuits. For the ohmic resistance,

R = 1 Ω is specified again.

The total conductance can be read directly from the circuit using the following equa-

tion:

By calculating the main denominator, the rational function for the complex conduc-

tance is obtained for L1 = 3 H, L2 = 2 H, and L3 = 1 H:
228

5.6 Partial Fractions
Figure 5.4 Parallel Circuit of R-L Elements

In network synthesis, transmission functions are given in this form. The individual

components of the circuit must then be calculated using partial fraction decomposi-

tion. How we’ve described how to calculate the transmission function from a given cir-

cuit serves only to illustrate the synthesis procedure and to check the results for circuit

synthesis. The reverse way of calculating the values for the components of a circuit

from a transmission function Y(s) or Z(s) is thus easier to understand.

In the next circuit, shown in Figure 5.5, three parallel resonant circuits are connected in

a series.

Figure 5.5 Series Circuit of L-C Elements

From this circuit, you can easily determine the partial fractions for the transmission

function of the impedance:

For , the transmission function

of the impedance results as a rational function for the following:

R R R = 1

Y(s)

L1 L2 L3

C1 C2 C3

L1 L2 L3Z(s)
229

5 Symbolic Computation Using SymPy
From the partial fractions for Y(s) and Z(s), Listing 5.15 calculates the rational functions

and, from the rational functions again, calculates the partial fractions through the

apart(rationalfunction) method. By comparing coefficients, the normalized values of

inductances and capacitances can be calculated.

01 #15_partial_fraction.py
02 from sympy import *
03 s=symbols("s")
04 #Parallel circuit from R-L series circuits
05 Yb1=1/(s+1)+1/(2*s+1)+1/(3*s+1)
06 Yp1=cancel(Yb1)
07 # Series circuit from L-C parallel circuits
08 Zb2=s/(2*s**2+1)+2*s/(3*s**2+1)+3*s/(4*s**2+1)
09 Zp2=cancel(Zb2)
10 #Calculation of partial fractions
11 pb1=apart(Yp1)
12 pb2=apart(Zp2)
13 #Output
14 print(Yp1,"=\n",pb1)
15 print("\n",Zp2,"=\n", pb2)

Listing 5.15 Partial Fraction Decomposition

Output

(11*s**2 + 12*s + 3)/(6*s**3 + 11*s**2 + 6*s + 1) =
1/(3*s + 1) + 1/(2*s + 1) + 1/(s + 1)
(46*s**5 + 34*s**3 + 6*s)/(24*s**6 + 26*s**4 + 9*s**2 + 1) =
3*s/(4*s**2 + 1) + 2*s/(3*s**2 + 1) + s/(2*s**2 + 1)

Evaluation and Analysis

For calculating admittance, the program calculates the three partial fractions:

By comparing the coefficients, you should obtain the following results for the induc-

tances:

For calculating impedance, the program calculates the three partial fractions:
230

5.7 Continued Fractions
By comparing the coefficients, you should obtain the following results for the induc-

tances and capacitances:

In lines 05 and 08, three partial fractions are provided in each case so you can more eas-

ily check the result of the partial fraction calculation step. In lines 06 and 09, these par-

tial fractions are multiplied with the cancel() method in such a way that the two

fractional rational functions Y(s) and Z(s) are obtained as a result. In lines 11 and 12, par-

tial fraction decomposition is then performed using the apart() method. The outputs

in lines 14 and 15 confirm the expected results.

5.7 Continued Fractions

Let’s assume you need an ohmic resistor of exactly 37/14Ω, but you only have resistors

of 1Ω available. This problem can be solved with a catenary circuit of six resistors, as

shown in Figure 5.6.

Figure 5.6 Continued Fraction Circuit

From this circuit, you can read the following continued fraction:

You can calculate the continued fraction for 37/14 using the following Euclidean algo-

rithm:

R1

R2

R5R3

R4 R6Rg
231

5 Symbolic Computation Using SymPy
This results in the continued fraction for the following:

Or written in short notation:

By comparing the continued fraction decomposition of the circuit shown in Figure 5.6

with the continued fraction representation, you’ll obtain the values for the resistors, as

listed in Table 5.6.

Listing 5.16 uses the Euclidean algorithm to calculate the continued fraction for 37/14

and, from the coefficients of the continued fraction again, calculates the following con-

tinued fraction.

01 #16_continued_fraction1.py
02 from sympy import *
03 z=37 #numerator
04 n=14 #denominator
05 #Calculate continued fraction
06 def kb(z,n):
07 r=[]
08 while n>0:
09 r.append(z//n)
10 z=z%n
11 z,n=n,z
12 return r
13 #Conversion to fraction
14 def ikb(ls):
15 a = Integer(0)
16 for i in reversed(ls[1:]):
17 a=a+i
18 a=1/a
19 return ls[0] + a
20 #calculates continued fraction
21 kb1=kb(z,n)

R1 R2 R3 R4 R5 R6

2 1/1 1 1/1 2 2

Table 5.6 Resistance Values for the Catenary Circuit
232

5.7 Continued Fractions
22 #calculates fraction
23 ikb1=ikb(kb1)
24 #Output
25 print("Coefficients:",kb1)
26 print("Fraction:",ikb1)

Listing 5.16 Algorithms for Continued Fraction Decomposition

Output

Coefficients: [2, 1, 1, 1, 4]
Fraction: 37/14

Analysis

In lines 06 to 12, a function is defined that calculates the coefficients for a continued

fraction according to the Euclidean algorithm. When calling function kb(z,n) in line 21,

the numerator z and the denominator n of the fraction are passed as parameters. The

ikb(ls) defined in lines 14 to 19 calculates the fraction again from the coefficients of the

continued fraction.

SymPy facilitates the calculation of a continued fraction to a great extent. Listing 5.17

uses the continued_fraction_periodic(z,n) method to calculate the coefficients of a

continued fraction, while it uses the continued_fraction_reduce(continued fraction)
method from the coefficients to calculate again the continued fraction.

01 #17_continued_fraction2.py
02 from sympy import *
03 z=37 #numerator
04 n=14 #denominator
05 #Calculate continued fraction
06 kb=continued_fraction_periodic(z,n)
07 #Calculate fraction
08 fraction=continued_fraction_reduce(kb)
09 #Output
10 print("Coefficients:",kb)
11 print("Fraction:",fraction)

Listing 5.17 Continued Fraction Decomposition Using SymPy

Output

Coefficients: [2, 1, 1, 1, 4]
Fraction: 37/14
233

5 Symbolic Computation Using SymPy
Analysis

The numerator z and the denominator n of the fraction are passed to the continued_
fraction_periodic(z,n) method in line 06. The result of the continued fraction decom-

position step is stored in the kb object. This object is passed to the continued_fraction_
reduce(kb) method in line 08. The outputs confirm the expected result.

5.8 Limits

The concept of limits is fundamental to the understanding of differential and integral

calculus. By calculating the limit, the slope of the tangent (first derivative) can be calcu-

lated in general from the secant slope of a function. Many antiderivatives (integrals)

can also be calculated from the limits for the upper and lower sums. SymPy calculates

the limit of a sequence or function using the limit(f,x,g) method. The f object stands

for a mathematical sequence or function; x is the independent variable; and, for g, the

limit can be specified.

5.8.1 Limits of Sequences

Let’s use SymPy to calculate the limits of the five sequences shown in Table 5.7.

The sequences listed in Table 5.7 are in accordance with the following formation laws:

n 1 2 3 4 5 6 7 8 9 10

an 1 4 6 8 10 12 14 16 18 20

bn 1 4 9 16 25 36 49 64 81 100

cn 1 0.5 0.33 0.25 0.2 0.16 0.143 0.125 0.111 0.1

dn -1.33 2.57 1.81 1.73 1.74 1.75 1.78 1.8 1.81 1.828

en 2 2.25 2.37 2.44 2.49 2.52 2.55 2.57 2.58 2.59

Table 5.7 Sample Sequences
234

5.8 Limits
An exception is the last sequence:

For this sequence, the formation law cannot be read from the value table. The limit of

this sequence for is the Eulerian number e.

Listing 5.18 calculates the limits of the following sequences: an, bn, cn, dn, and en.

01 #18_limit1.py
02 from sympy import *
03 n=symbols("n")
04 #Sequences
05 a1=2*n
06 a2=n**2
07 a3=1/n
08 a4=(2*n**3+2)/(n**3+n**2-5)
09 a5=(1+1/n)**n
10 #Output
11 print("Limits for n towards ∞")
12 print("Limit of %s is: %s" %(a1,limit(a1,n,oo)))
13 print("Limit of %s is: %s" %(a2,limit(a2,n,oo)))
14 print("Limit of %s is: %s" %(a3,limit(a3,n,oo)))
15 print("Limit of %s is: %s" %(a4,limit(a4,n,oo)))
16 print("Limit of %s is: %s" %(a5,limit(a5,n,oo)))

Listing 5.18 Limits of Sequences

Output

Limits for n towards ∞
Limit of 2*n is: oo
Limit of n**2 is: oo
Limit of 1/n is: 0
Limit of (2*n**3 + 2)/(n**3 + n**2 - 5) is: 2
Limit of (1 + 1/n)**n is: E

Analysis

In lines 12 to 16, the limits of the sequences defined in lines 05 to 09 are calculated and

output using the limit(a1,n,oo) method. As a first parameter, this method expects the

name of the sequence, the second parameter specifies the variable of the limit, and the

third parameter specifies against which limit the sequence should strive. The outputs

confirm the expected results.
235

5 Symbolic Computation Using SymPy
5.8.2 Limits of Functions

SymPy can also calculate the limits of functions. Now, let’s calculate the limits for the

following functions:

Listing 5.19 calculates the limits for the listed functions.

01 #19_limit2.py
02 from sympy import *
03 a,x=symbols("a x")
04 #Functions
05 y1=sin(x)/x
06 y2=tan(x)/x
07 y3=a*(1-exp(-x))
08 y4=1/x+2
09 y5=(x**2-1)/(x-1)
10 #Output
11 print("Limit of %s toward 0 is: %s" %(y1,limit(y1,x,0)))
12 print("Limit of %s toward 0 is: %s" %(y2,limit(y2,x,0)))
13 print("Limit of %s toward ∞ is: %s" %(y3,limit(y3,x,oo)))
14 print("Limit of %s toward ∞ is: %s" %(y4,limit(y4,x,oo)))
15 print("Limit of %s toward 1 is: %s" %(y5,limit(y5,x,1)))

Listing 5.19 Limits of Functions

Output

Limit of sin(x)/x toward 0 is: 1
Limit of tan(x)/x toward 0 is: 1
Limit of a*(1 - exp(-x)) toward ∞ is: a
Limit of 2 + 1/x toward ∞ is: 2
Limit of (x**2 - 1)/(x - 1) toward 1 is: 2

Analysis

In lines 05 to 09, those functions are defined whose limits must be calculated using the

limit() method. The arguments are passed in the same order as the sequences. The

outputs in lines 11 to 15 again confirm the expected results.
236

5.8 Limits
5.8.3 Differential Quotient

For the following functions, we’ll use SymPy to calculate the differential quotient by

computing the limits from the difference quotient:

Listing 5.20 shows the implementation.

01 #20_limit3.py
02 from sympy import *
03 a,x,h,n=symbols('a x h n')
04 f1_1=((x+h)**n-x**n)/h #power rule
05 f1_2=(a**(x+h)-a**x)/h #exponential function
06 f1_3=(sin(x+h)-sin(x))/h #trigonometric function
07 f1_4=(sinh(x+h)-sinh(x))/h #hyberbolic function
08 f1_5=(sin(x+h)*cos(x+h)-sin(x)*cos(x))/h #product rule
09 #Output
10 print("Limits for h toward zero")
11 print("limes",f1_1," = ",simplify(limit(f1_1,h,0)))
12 print("limes",f1_2," = ",simplify(limit(f1_2,h,0)))
13 print("limes",f1_3," = ",simplify(limit(f1_3,h,0)))
14 print("limes",f1_4," = ",simplify(limit(f1_4,h,0)))
15 print("limes",f1_5," = ",simplify(limit(f1_5,h,0)))

Listing 5.20 Limits of Difference Quotients

Output

limes (-x**n + (h + x)**n)/h = n*x**(n - 1)
limes (-a**x + a**(h + x))/h = a**x*log(a)
limes (-sin(x) + sin(h + x))/h = cos(x)
limes (-sinh(x) + sinh(h + x))/h = cosh(x)
limes (-sin(x)*cos(x) + sin(h + x)*cos(h + x))/h = cos(2*x)

Analysis

Lines 04 to 08 define five difference quotients known from school math. The limit()
method calculates the limits of these difference quotients for h toward zero in lines 11

to 15. These outputs have been simplified using simplify() but confirm the expected

results.
237

5 Symbolic Computation Using SymPy
5.9 Differentiation

SymPy can calculate the derivatives of functions using the diff(f,x,k) method, where

the f object is the function to be derived, x is defined as the independent variable, and

the natural number k stands for the k-th derivative of the function to be differentiated.

If k does not occur, SymPy calculates the first derivative. Listing 5.21 calculates the first

derivative for each of the functions.

It also calculates the first, second and third derivatives for the following function:

01 #21_differential.py
02 from sympy import *
03 x,a,b,A=symbols("x a b A")
04 y1=x**4-3*x**3+x**2-20 #power rule
05 y2=sin(x)*cos(x) #product rule
06 y3=(x**3-4*x+3)/(x+4) #quotient rule
07 y4=A*exp(-a*x)*sin(b*x) #chain rule
08 #Calculations and outputs
09 print("1st derivative of:",y1,"\n", diff(y1,x))
10 print("1st derivative of:",y2,"\n", diff(y2,x))
11 print("1st derivative of:",y3,"\n", diff(y3,x))
12 print("1st derivative of:",y4,"\n", diff(y4,x,1))
13 print("2nd derivative of:",y4,"\n", diff(y4,x,2))
14 print("3rd derivative of:",y4,"\n", diff(y4,x,3))

Listing 5.21 Differentiation

Output

1st derivative of: x**4-3*x**3+x**2-20
4*x**3 - 9*x**2 + 2*x
1st derivative of: sin(x)*cos(x)
-sin(x)**2 + cos(x)**2
1st derivative of: (x**3-4*x+3)/(x+4)
(3*x**2 - 4)/(x + 4) - (x**3 - 4*x + 3)/(x + 4)**2
1st derivative of: A*exp(-a*x)*sin(b*x)
-A*a*exp(-a*x)*sin(b*x) + A*b*exp(-a*x)*cos(b*x)
2nd derivative of: A*exp(-a*x)*sin(b*x)
A*(a**2*sin(b*x) - 2*a*b*cos(b*x) - b**2*sin(b*x))*exp(-a*x)
3rd derivative of: A*exp(-a*x)*sin(b*x)
238

5.9 Differentiation
A*(-a**3*sin(b*x) + 3*a**2*b*cos(b*x) + 3*a*b**2*sin(b*x) -
b**3*cos(b*x))*exp(-a*x)

Analysis

The function types defined in lines 04 to 07 were selected based on the fact that they

represent known differentiation rules. Hidden from the user, however, is whether

SymPy uses these rules at all. You can check from the results that SymPy has differen-

tiated correctly. But checking the higher derivatives of the damped sine function y4
requires some effort.

Alternatively, you can calculate the derivative of a function such as y=𝑓(x) using the fol-

lowing statements:

>>> from sympy import *
>>> x=symbols('x')
>>> y=x**2
>>> y.diff(x)
2*x
>>> Derivative(y,x).doit()
2*x

The Derivative(y,x) method initially accepts the term x**2 without checking whether

the derivative can be calculated at all (unevaluated derivative). Only the doit() method

checks (evaluates) whether the calculation can be performed, and the derivative is then

calculated if necessary. This delayed execution of a symbolic computation operation is

useful when a term can be simplified further.

5.9.1 Usage Example: Curve Sketching

If a mathematical function is given and its principal shape in a Cartesian coor-

dinate system is to be examined, the mathematician refers to this process as a curve

sketching. The shape of a function can be roughly estimated from the points of inter-

section with the x- and y-axis, the local places for the minimums and maximums, the

limits for x toward ± ∞ and the inflection points. In the following example, I deliber-

ately omitted a detailed curve sketching to keep the source code as clean as possible.

Listing 5.22 calculates the zeros, the extremums, and the inflection points for the fol-

lowing polynomial:

The function plot can be displayed on the screen for verification.

01 #22_curve_sketching.py
02 from sympy import *
03 x=symbols("x")
04
239

5 Symbolic Computation Using SymPy
05 def f(x):
06 #y=4*x**3-16*x
07 #y=x**3-x**2-4*x+4
08 y=-x**4+20*x**2-64
09 return y
10 #Derivatives
11 f_1=diff(f(x),x,1)
12 f_2=diff(f(x),x,2)
13 x0=solve(f(x),x) #zeros
14 xe=solve(f_1,x) #extremums
15 xw=solve(f_2,x) #inflection points
16 #Output
17 print(f(x))
18 print("Zeros:",x0)
19 print("Extremums:",xe)
20 print("Inflection points",xw)
21 #plot(f(x),(x,-5,5))

Listing 5.22 Curve Sketching

Output

-x**4 + 20*x**2 - 64
Zeros: [-4, -2, 2, 4]
Extremums: [0, -sqrt(10), sqrt(10)]
Inflection points [-sqrt(30)/3, sqrt(30)/3]

Analysis

In lines 05 to 09, the function to be examined is defined. If the commented-out func-

tions are supposed to be tested, you merely need to remove the corresponding com-

ments. In lines 11 and 12, the diff method calculates the first and second derivatives.

Line 13 calculates the zeros of the polynomial using the solve method. In line 14, the

extremums are calculated by setting the first derivative equal to zero. Line 15 calculates

the inflection points by setting the second derivative equal to zero. A case distinction

was deliberately omitted in favor of better clarity. The “exact” numbers of the outputs

remind the user that the calculations were performed using a CAS.

5.10 Integrations

Integrations represent the inverse operations of differentiations. If you form the deriv-

ative of a function, then the original function is the antiderivative, that is, the integral

of the derived function. However, the reversal is not always clear. As a result, there is

not an antiderivative F for every function 𝑓.
240

5.10 Integrations
Mathematically, this relationship can be described by rearranging the differential quo-

tient according to dy. For the derivation, the following applies:

By rearranging according to dy and integrating on both sides, you obtain the following:

The product can be interpreted as the surface element dA. By summing up (i.e.,

through integration), you obtain the total surface under a curve.

You need integral calculus not only to calculate surfaces under nonlinear function

graphs but also to calculate line lengths and volumes and to solve differential equa-

tions.

5.10.1 Indefinite Integral

Listing 5.23 calculates the antiderivatives for the following five functions:

01 #23_integral1.py
02 from sympy import *
03 x=symbols("x")
04 print("∫%sdx=%s" %(1/x,integrate(1/x)))
05 print("∫%sdx=%s" %(exp(-x),integrate(exp(-x))))
06 print("∫%sdx=%s" %(exp(-x)*x**2,integrate(exp(-x)*x**2)))
07 print("∫%sdx=%s" %(sin(x),integrate(sin(x))))
08 print("∫%sdx=%s" %(exp(-x)*sin(x),simplify(integrate(exp(-x)*sin(x)))))
09 #plot(exp(-x),integrate(exp(-x)),(x,0,10))

Listing 5.23 Indefinite Integrals

Output∫1/xdx=log(x)∫exp(-x)dx=-exp(-x)∫x**2*exp(-x)dx=(-x**2 - 2*x - 2)*exp(-x)∫sin(x)dx=-cos(x)∫exp(-x)*sin(x)dx=-sqrt(2)*exp(-x)*sin(x + pi/4)/2
241

5 Symbolic Computation Using SymPy
Analysis

SymPy calculates the indefinite integrals (antiderivatives) in lines 04 to 08 using the

integrate() method. With the plot method, you can output the function graphs and

the graphs of the antiderivative.

Alternatively, you can also calculate integrals using the following statements:

>>> from sympy import *
>>> x=symbols('x')
>>> y=x**2
>>> y.integrate(x)
x**3/3
>>> Integral(y).doit()
x**3/3

5.10.2 Definite Integral

Using the definite integral, you can calculate the surface area of the surface enclosed by

the lower limit a, the line of the function graph, the upper limit b, and the x-axis inter-

cept. Listing 5.24 calculates the surface area of the five functions from Listing 5.23 in the

limits from a = 1 to b = 2. For further testing purposes, you can of course change the lim-

its according to your individual requirements.

01 #24_integral2.py
02 from sympy import *
03 x=symbols("x")
04 a,b=1,2 #lower limits
05 F1=integrate(1/x,(x,a,b))
06 F2=integrate(exp(-x),(x,0,oo))
07 F3=integrate(exp(-x)*x**2,(x,0,oo))
08 F4=integrate(sin(x),(x,0,pi))
09 F5=integrate(exp(-x)*sin(x),(x,0,oo))
10 #Output
11 print("∫%s from %s to %s = %s" %(1/x,a,b,F1))
12 print("∫%s from 0 to ∞ = %s" %(exp(-x),F2))
13 print("∫%s from 0 to ∞ = %s" %(exp(-x)*x**2,F3))
14 print("∫%s from 0 to π = %s" %(sin(x),F4))
15 print("∫%s from 0 to ∞ = %s" %(exp(-x)*sin(x),F5))
16 #plot(exp(-x)*sin(x),(x,0,10))

Listing 5.24 Definite Integrals

Output∫1/x from 1 to 2 = log(2)∫exp(-x) from 0 to ∞ = 1
242

5.10 Integrations
∫x**2*exp(-x) from 0 to ∞ = 2∫sin(x) from 0 to π = 2∫exp(-x)*sin(x) from 0 to ∞ = 1/2

Analysis

In lines 05 to 09, the definite integrals of the test functions are calculated using the

integrate(func,(x,a,b)) method. The func function is passed as the first argument, fol-

lowed by the integration variable x, the lower limit a, and the upper limit b. The integra-

tion variable and the integration limits must be placed in parentheses. Again, this

example shows that you can also use constants as integration limits, such as pi (π) and

oo (infinity).

5.10.3 Usage Example: Stored Electrical Energy

A capacitor with capacitance C is connected in series with a resistor R to a voltage

source with voltage U0, as shown in Figure 5.7. For this example, we need to determine

the electrical energy Wel stored in the capacitor.

Figure 5.7 R-C Link

The following equation applies to the capacitor voltage uc while charging:

The capacitor current ic decreases exponentially, according to the following formula:

The electrical power p(t) is the product of the voltage and current waveforms:

R

CU0 Uc

I

243

5 Symbolic Computation Using SymPy
To calculate the stored electrical energy Wel, the surface area under the power curve

must be calculated, according to the following formula:

Listing 5.25 calculates the stored electrical energy for a capacitor with a capacitance of

1F connected to a 10V voltage source.

01 #25_integral3.py
02 from sympy import *
03 t = symbols('t')
04 U0=10
05 R,C =1,1
06 I0=U0/R
07 tau=R*C
08 uc=U0*(1-exp(-t/tau)) #voltage curve
09 ic=I0*exp(-t/tau) #current curve
10 p=uc*ic #electrical power
11 Wel=integrate(p,(t,0,oo)) #electrical energy
12 #Output
13 print("Stored el. energy:",Wel.evalf(3),"Ws")
14 plt=plot(uc,ic,p,(t,0,5*tau),show=False,legend=True)
15 plt[0].line_color = 'b'
16 plt[0].label='Voltage'
17 plt[1].line_color = 'r'
18 plt[1].label='Current'
19 plt[2].line_color = 'g'
20 plt[2].label='Power'
21 #plt.save('power.png')
22 plt.show()

Listing 5.25 Stored Energy of a Capacitor

Output

Stored el. energy: 50.0 Ws

Figure 5.8 shows what the output looks like in the function plot.

Analysis

In line 08, the voltage curve is stored in the uc object. In line 09, the current curve is

stored in the ic object. To calculate the power curve, the only operation that needs to

be performed is the multiplication p=uc*ic in line 10. Notice that—unlike what was nec-

essary with NumPy—no array needs to be defined to make all power values available
244

5.11 Differential Equations
for the integration step in line 11. Also, the upper integration limit for this numerical

problem is not five times the time constant, as is usually the case, but oo (∞). As a result,

the program calculates the “exact” value for the stored electrical energy with 50 Ws

without rounding errors.

Figure 5.8 Stored Electrical Energy of a Capacitor

To illustrate this result, in line 14, the voltage, the current, and the power curve are

stored in the plt variable. To display all three function plots in one diagram, you must

set the show=False parameters in the plot method. Then, all three function plots will be

saved into a list, and you can assign an individual color to each function plot. The

stored electrical energy corresponds to the surface area below the green curve.

In line 21, you can save the graphic. Supported file formats include eps, jpeg, jpg, pdf,

pgf, png, ps, raw, rgba, svg, svgz, tif, tiff, and webp.

5.11 Differential Equations

Ordinary differential equations contain the independent variable x and the dependent

variable y as well as the derivatives y(n)(x) of the function, y(x). The highest occurring

derivative order determines the order of a differential equation. For a first-order differ-

ential equation, the formal notation is:

The function 𝑓(x) can be any continuous function or a constant. The function g(x) is

referred to as a perturbation function.
245

5 Symbolic Computation Using SymPy
A linear second-order differential equation with constant coefficients can be repre-

sented in the following way:

The solution of a differential equation is a function. A differential equation can be

solved by means of an integration operation. Since integration constants arise with

each integration operation, theoretically, an infinite number of solution functions

exist for any given differential equation. Solving a first-order differential equation

results in one integration constant, and solving a differential equation of the nth order

results in n integration constants. If the constants are not specified in more detail,

mathematicians speak of a general solution to the differential equation. If the integra-

tion constants are determined by the initial conditions, the solution function y(x) is a

special solution of the differential equation. If the perturbation function g(x) equals

zero, then mathematicians refer to the differential equation as being homogeneous,

otherwise as inhomogeneous.

Electrical networks, drive systems, and physical processes can be described via differ-

ential equations. If the input signal of a technical system and the differential equation

of the system are known, the output signal can be calculated from it.

To describe a technical system in mathematical terms, you must use differential equa-

tions. This is because every non-trivial engineering system consists of energy stores,

such as rotating masses with the moment of inertia J, capacitors with capacitance C,

and coils with inductance L. The following laws apply to these energy stores:

Thus, the listed energy stores differentiate the angular velocity of the rotating

mass, the voltage across a capacitor, and the current i(t) flowing through a coil.

This relationship seems trivial. But real systems can be quite complex. The art of mod-

eling a complex technical system consists of setting up the adequate differential equa-

tions. For this task, you need extensive expertise and a lot of hands-on experience.

Once you have found the differential equation, SymPy does the often-tedious work of

solving it for you. SymPy solves differential equations using the dsolve(dgl,y) method.

Note

SymPy can only solve linear differential equations.

5.11.1 Linear First-Order Differential Equations

In this section, I will describe the solution of a first-order differential equation using the

example of discharging and charging a capacitor. A capacitor is charged to the voltage

U0 and then discharged through the resistor R.
246

5.11 Differential Equations
At any time during the discharging process, the capacitor voltage must be equal to the

voltage drop across the resistor:

For the current i(t), the capacitor current can be used:

When the capacitor is discharged, the current flows in the opposite direction than

during the charging process, which is why the current receives a negative sign. By sub-

stituting the capacitor current in the output equation, you can obtain a first-order dif-

ferential equation:

By rearranging and using the time constant , we obtain the following equation:

Through integration on both sides, you get the following equation:

The integration constant K1 must not become zero because it represents the initial con-

dition U0. You must exponentiate both sides of the equation with the base e, and you’ll

get the general solution of the differential equation with the new integration constant

K:

At the point at which the discharging operation starts, the capacitor is charged to the

voltage . Thus, for the initial condition, applies:

This results in the special solution of the differential equation for:

If you connect a series circuit of capacitor and resistor to a voltage source with voltage

U0, you obtain the following differential equation:

In the language of mathematics, the voltage U0 is also referred to as the perturbation

function. Separating the variables results in the following equation:
247

5 Symbolic Computation Using SymPy
Then, both sides are integrated, as in the following example:

By exponentiating on both sides, you can thus obtain the general solution of the differ-

ential equation:

And for the initial condition , you can obtain the special solution:

For any first-order linear differential equation with perturbation function g(x)

you can find the following general solution formula in the literature:

Note that, in this context, F is an antiderivative of 𝑓.

Listing 5.26 calculates the voltage on the capacitor for the discharging process and

for the cases that the RC series circuit is connected to a voltage source with the follow-

ing features:

� Constant voltage (voltage jump, step function)

� Linearly increasing voltage

� Exponentially increasing voltage

� Sinusoidal excitation

These voltage sources represent the perturbation functions of the differential equation

and are called perturbation elements.

01 #26_first_order_differential_equation.py
02 from sympy import *
03 t=symbols("t")
04 u=Function("f")(t)
05 R,C=1,2
06 U0=10
07 tau=R*C
08 #first-order differential equation
09 dgl1=tau*Derivative(u,t)+u
10 dgl2=tau*Derivative(u,t)+u-U0
11 dgl3=tau*Derivative(u,t)+u-U0*t
12 dgl4=tau*Derivative(u,t)+u-U0*exp(t)
13 dgl5=tau*Derivative(u,t)+u-U0*sin(t)
248

5.11 Differential Equations
14 #solution of the differential equation
15 L1=dsolve(dgl1,u)
16 L2=dsolve(dgl2,u)
17 L3=simplify(dsolve(dgl3,u))
18 L4=dsolve(dgl4,u)
19 L5=simplify(dsolve(dgl5,u))
20 #Output of the solution
21 print(L1,"\n",L2,"\n",L3,"\n",L4,"\n",L5)

Listing 5.26 Solutions of a First-Order Differential Equation with Different Perturbation

Functions

Output

Eq(f(t), C1*exp(-t/2))
Eq(f(t), C1*exp(-t/2) + 10)
Eq(f(t), C1*exp(-t/2) + 10*t - 20)
Eq(f(t), (C1 + 10*exp(3*t/2)/3)*exp(-t/2))
Eq(f(t), C1*exp(-t/2) + 2*sin(t) - 4*cos(t))

Analysis

In line 04, the Function("f")(t) method specifies that the dependent variable u should

be a function of time t. In lines 09 to 13, the differential equations are defined and

assigned to the dgl1 to dgl5 objects. The definition of a differential equation is per-

formed using the Derivative(u,t) method. This method represents the first derivative

of the differential equation. The independent variable u is noted as the first parameter

and the dependent variable t is noted as the second parameter. The first derivative is

followed by the independent variable u. Thus, SymPy’s syntax formally corresponds to

the usual mathematical notation for a differential equation. The perturbation func-

tions must all have a negative sign because they have been moved from the right-hand

side of the differential equation to the left-hand side.

In lines 15 to 19, the dsolve(dgl,u) method solves the five differential equations. This

method is passed the dgl object as the first parameter. Instead of the dgl object, the

complete notation of the differential equation could also be written in this case. As a

second parameter, dsolve() expects the independent variable u. The solutions are

stored in objects L1 to L5.

The outputs (line 21) confirm the expected solutions, which are performed using the

Eq(f(t),...) method, where the abbreviation Eq stands for equation. C1 stands for the

integration constant—not be confused with a capacitance C. A procedure for determin-

ing this integration constant is described next.
249

5 Symbolic Computation Using SymPy
5.11.2 General Solution of a Second-Order Differential Equation

Let’s now use the example of a series resonant circuit to demonstrate the general solu-

tion of a second-order differential equation, as shown in Figure 5.9.

Figure 5.9 Series Resonant Circuit

Using the mesh rule for voltage drops, we can read the following from the circuit:

Due to the law of induction and the voltage drop across the ohmic resistor, we obtain

the following:

By inserting the capacitor current, you obtain a second-order differential equation:

If we divide both sides by , we obtain:

You can use the characteristic equation to find the general solution of the differential

equation:

The homogeneous solution is:

For the inhomogeneous solution, if the perturbation function is a constant K,

then:

R

CU1 Uc

I L
250

5.11 Differential Equations
The special solution is the total of the homogeneous and the inhomogeneous solu-

tions:

Depending on how large the values for R, L and C turn out, you have to distinguish

three cases:

� Case 1: If the following applies:

Then the differential equation gets the following general solution:

� Case 2: If the following case arises:

Then the differential equation gets the general solution with the following:

� Case 3: If the following applies:

Then the differential equation looks as follows where parameter a must always have

a negative value:

Listing 5.27 calculates the voltage across the capacitor for a series resonant circuit for all

three cases:

01 #27_second_order_differential_equation.py
02 from sympy import *
03 t=symbols("t")
04 u=Function("f")(t)
05 U1=10 #input voltage
06 R1,L1,C1=5/2,1,1
07 R2,L2,C2=2,1,1
08 R3,L3,C3=2,1/2,1/4
09 #second-order differential equation
10 dgl1=L1*C1*Derivative(u,t,t)+R1*C1*Derivative(u,t)+u-U1
11 dgl2=L2*C2*Derivative(u,t,t)+R2*C2*Derivative(u,t)+u-U1
12 dgl3=L3*C3*Derivative(u,t,t)+R3*C3*Derivative(u,t)+u-U1
13 #solution of the differential equation
14 L1=dsolve(dgl1,u)
251

5 Symbolic Computation Using SymPy
15 L2=dsolve(dgl2,u)
16 L3=dsolve(dgl3,u)
17 #Output of the solution
18 print(L1,"\n",L2,"\n",L3)

Listing 5.27 General Solution of a Second-Order Differential Equation

Output

Eq(f(t), C1*exp(-2.0*t) + C2*exp(-0.5*t) + 10)
Eq(f(t), (C1 + C2*t)*exp(-t) + 10)
Eq(f(t), (C1*sin(2.0*t) + C2*cos(2.0*t))*exp(-2.0*t) + 10)

Analysis

In lines 06 to 08, the values for R, C, and L were chosen so that all three possible solu-

tions occur. To make clear that the solution of the differential equation is a symbolic

procedure, I deliberately avoided choosing real numbers.

The definitions of the differential equations in lines 10 to 12 follow the same pattern as

shown in Listing 5.26, the only difference being that, for the second derivative in the

Derivative(u,t,t) method, the independent variable t must occur twice.

The calculated solutions meet the expectations. C1 and C2 are again the integration con-

stants.

5.11.3 Special Solution of a Second-Order Differential Equation

The solution set pertaining to the general solution of a differential equation can theo-

retically be infinitely large. However, practitioners are generally interested in the spe-

cial solution of a differential equation. Such a special solution is defined by initial

conditions. For example, was electrical or magnetic energy stored in the capacitor or

coil before the interference element g(t) was connected? If not the case, then all initial

conditions have the value zero.

The differential equation for an oscillating circuit can be put into a generally valid form

with the damping D and the angular frequency in the following way:

This differential equation, referred to as a harmonic oscillator, also applies to a damped

spring pendulum oscillating either horizontally or vertically. For better comprehensi-

bility, in the differential equation that describes the motion of a spring pendulum, you

should replace the uc variable by x for a horizontal or by y for a vertical motion of the

mass.

In real life, voltage jumps or periodic functions occur as perturbation functions g(t).
252

5.11 Differential Equations
By comparing coefficients, you can obtain the following result for the angular fre-

quency:

You can also obtain the following result for damping:

SymPy also provides a different syntax for the notation of the differential equation:

dgl=Eq(uc(t).diff(t,2)+2*D*w0*uc(t).diff(t,1)+w0**2*uc(t),Us)

If initial conditions must be taken into account, then you must pass the ics={…}
parameter to the dsolve() method in addition to the dgl object:

dsolve(dgl,uc(t),ics=aw)

The abbreviation ics stands for initial conditions. SymPy sets the initial conditions with

a dictionary:

aw={uc(0):0, uc(t).diff(t,1).subs(t,0):0}

For the differential equation solved using Listing 5.28, the initial conditions

and are valid.

01 #28_differential_equation_special_solution.py
02 from sympy import *
03 t=symbols("t")
04 uc=Function("uc")
05 U1=10
06 R=2
07 L=1/2
08 C=1/4
09 Us=U1/(L*C) #perturbation function
10 w0=sqrt(1/(L*C)) #angular frequency
11 D=R/(2*L*w0) #damping
12 dgl=Eq(uc(t).diff(t,2)+2*D*w0*uc(t).diff(t,1)+w0**2*uc(t),Us)
13 #initial values
14 aw={uc(0):0, uc(t).diff(t,1).subs(t,0):0}
15 ua_t=dsolve(dgl,uc(t)) #general solution
16 us_t=dsolve(dgl,uc(t),ics=aw)#special solution
17 uc_t=us_t.rhs
18 #plot(uc_t,(t,0,5))
19 #Output
20 print("general solution\n",ua_t)
253

5 Symbolic Computation Using SymPy
21 print("special solution\n",us_t)
22 print("right side of function uc(t) =",uc_t)

Listing 5.28 Special Solution of a Second-Order Differential Equation

Output

general solution
Eq(uc(t), (C1*sin(2.0*t) + C2*cos(2.0*t))*exp(-2.0*t) + 10.0)
special solution
Eq(uc(t), (-10.0*sin(2.0*t) - 10.0*cos(2.0*t))*exp(-2.0*t) + 10.0)
right side of function
uc(t) = (-10.0*sin(2.0*t) - 10.0*cos(2.0*t))*exp(-2.0*t) + 10.0

Analysis

In line 12, the differential equation is defined using the diff() method within the Eq()
method and assigned to the dgl object. The searched uc(t) function is linked via the dot

operator with the diff() method to uc(t).diff(t,2). The first parameter is the inde-

pendent variable t, and the second parameter specifies which derivative is meant. A 2

represents the second derivative, while a 1 represents the first derivative. The parame-

ters for the damping and the angular frequency of the differential equation are

adopted according to the mathematical representation. The perturbation function Us is

the second parameter, separated by a comma, after the definition of the differential

equation in the parentheses of the Eq() method. The initial values are set as a dictio-

nary in line 14 and assigned to the aw object. For t = 0, the first derivative of the capacitor

voltage and the voltage across the capacitor should be zero. uc(0) and uc(t).diff(t,1).

subs(t,0) are the keys of the dictionary.

In line 16, the dsolve(dgl,uc(t),ics=aw) method solves the differential equation with

the given initial values. The third parameter contains the initial values: The ics object

is assigned the initial values aw, where ics is supposed to stand for initial conditions.

In line 17, rhs (right hand side) is used to determine the right-hand side of the function

equation uc = 𝑓(t). If you remove the comment in line 18, you can also display the course

of the function graphically.

In lines 20 and 21, the general and the special solutions are output. In line 22, the right-

hand side of the function equation is output.

5.12 Laplace Transform

The Laplace transform is an integral transform which greatly simplifies the solving of

differential equations and the analysis of AC networks. In both cases, you only need to
254

5.12 Laplace Transform
set up algebraic equations according to the computational rules of the Laplace trans-

form or according to the theorems of network theory in the image. The solution in the

image is an algebraic function consisting of a numerator and denominator polyno-

mial. This algebraic function is then transformed back into the time domain using cor-

respondence tables.

5.12.1 Solving Differential Equations

Consider the following linear differential equation with constant third-order coeffi-

cients:

Three steps are required to solve this equation and any other differential equation of

this type:

1. Transforming the differential equation into the image

2. Solving the differential equation in the image

3. Transforming the image function back to the original domain

Step 1: Transforming the Differential Equation into the Image

The transformation of the derivatives and the perturbation function g(t) into the

image is performed using the improper integral, which performs the transformation

from the time domain into the image domain:

The transformation of the first derivative is:

The transformation of the second derivative is:

The transformation of the third derivative is:

Transformation of the Perturbation Function g(t)

Voltage sources with constant, linearly increasing, and sinusoidal voltage occur as a

perturbation function in electrical networks. The step function is used particularly

frequently in real life:
255

5 Symbolic Computation Using SymPy
The input of a (two-port) network is connected to a voltage source with voltage U1 = a at

time t = 0. The course of the output voltage U2(t), called the step response, must now be

calculated.

For a voltage jump the following applies:

SymPy calculates these and other important transforms of perturbation functions in

the following way:

>>> from sympy import *
>>> a,s,t = symbols("a,s,t")
>>> laplace_transform(a, t, s)
(a/s, 0, True)
>>> laplace_transform(a*t, t, s)
(a/s**2, 0, True)
>>> laplace_transform(exp(-a*t), t, s)
(1/(a + s), 0, Abs(arg(a)) < pi/2)
>>> laplace_transform(sin(a*t), t, s)
(a/(a**2 + s**2), 0, Eq(2*Abs(arg(a)), 0))
>>> laplace_transform(cos(a*t), t, s)
(s/(a**2 + s**2), 0, Eq(2*Abs(arg(a)), 0))

The perturbation functions calculated using SymPy are listed in Table 5.8.

Original Function g(t) Image Function F(s)

Table 5.8 Correspondence Table for Transforming the Perturbation Functions into the Image

Domain
256

5.12 Laplace Transform
Step 2: Solving the Differential Equation in the Image

The general solution for an ordinary third-order differential equation is the following

fractional rational function:

Step 3: Transforming the Image Function Back into the Time Domain

The inverse Laplace transform is performed using the following inverse integral:

SymPy calculates the inverse Laplace transform using the following method:

>>>inverse_laplace_transform(Fs,s,t)

Except for equation No. 9 from Table 5.9, all transforms from the image domain to the

time domain were performed using SymPy and compared to the data from the litera-

ture.

No. Image Function F(s) Original Function 𝑓(t)

1

2

3

4

5

6

7

8

9

with and for

Table 5.9 Correspondence Table for the Transformation into the Time Domain
257

5 Symbolic Computation Using SymPy
SymPy calculates all transformations of the image functions 1 through 8 (see Table 5.9)

without any problem in a runtime that’s still acceptable. However, SymPy fails at the

transformation of the third-degree polynomial (No. 9) with the symbolic variables D

and . If, on the other hand, numerical values are used for the damping and the angu-

lar frequency, SymPy provides the correct result, as the following example shows.

Usage Example: Capacitor Voltage at the Series Resonant Circuit

A simple example will illustrate the transformation of the original domain (time

domain) into the image domain. A series resonant circuit is connected to a voltage

source with voltage U1 = 8V. Thus, the step function is a constant for . We are

searching the step response for the voltage across the capacitor. According to the

mesh rule, the following differential equation results:

The voltage uc is a function of time in the original range (time domain).

This differential equation must now be transformed from the original domain to the

image domain. The first step consists of defining the initial conditions. The following

initial conditions are supposed to apply at time t = 0: , , and .

Next, the differential operators are replaced by the Laplace operators. For the second

derivative, we use , for the first derivative , and for uc, we use . For

each term, the corresponding initial condition is also written:

Putting the individual transforms together yields the image function of the differential

equation:

By rearranging, you obtain the image function with the values for the components R =

2Ω, L = ½H and C = ¼F:
258

5.12 Laplace Transform
The transformation back into the time domain is done using equation No. 9 from the

correspondence table:

The damping D is determined by means of a coefficient comparison:

The following applies to the damping constant, :

And it applies to the natural frequency:

By inserting it into the time function from the correspondence table, the time function

is then obtained for the voltage curve at the capacitor:

SymPy calculates the following for the transformation back into the time domain:

>>> from sympy import *
>>> s,t=symbols("s t", positive=True)
>>> Fs=80/(s*(s**2+4*s+8))
>>> LT_inv=inverse_laplace_transform(Fs,s,t)
>>> LT_inv
10 - 10*exp(-2*t)*sin(2*t) - 10*exp(-2*t)*cos(2*t)
>>> simplify(LT_inv)
10 - 10*sqrt(2)*exp(-2*t)*sin(2*t + pi/4)

5.12.2 Analyzing Networks with Transmission Functions

The step response of a two-port network can also be calculated without setting up a dif-

ferential equation. Only the transmission function of the two-port network and the

image function of the input voltage U1(s) are required. The transmission function H(s)

is the ratio between the output voltage and the input voltage, as in the following equa-

tion:

By rearranging, you can obtain the output voltage U2(s) in the image domain:
259

5 Symbolic Computation Using SymPy
Figure 5.10 R-L-C Two-Port Network

Based on the voltage divider rule, the transmission function H(s) shown in Figure 5.10

can be set up with the following equation:

Using the input voltage in the image

you obtain the output voltage for the image:

In the image, the current I(s) can also be calculated using Ohm’s law:

The transformation back into the time domain is performed using the following

method:

inverse_laplace_transform(F(s),s,t)

Listing 5.29 calculates the step response of the output voltage and the capacitor current

for the circuit from Figure 5.10 using the inverse Laplace transform method.

01 #29_inv_laplace1.py
02 from sympy import *
03 s,C,L,R = symbols("s C L R")
04 t = symbols("t",positive=True)
05 U1=10

R

1/sCU1(s) U2(s)

sL
260

5.12 Laplace Transform
06 R=2
07 L=Rational(1,2)
08 C=Rational(1,4)
09 U1_s=U1/s
10 Z_s=R+L*s+1/(C*s)
11 I_s=U1_s/Z_s
12 H_s=1/(R + L*s + 1/(C*s))/(C*s)
13 H_s=expand(H_s) #transmission function
14 U2_s=U1_s*H_s #step response
15 uc=inverse_laplace_transform(U2_s,s,t)
16 ic=inverse_laplace_transform(I_s,s,t)
17 #Outputs
18 print("Transmission function\n",H_s)
19 print("Voltage at capacitor\n","uc =",simplify(uc))
20 print("Capacitor current\n","ic =",ic)
21 plt=plot(uc,ic,(t, 0, 5),show=False)
22 plt[0].line_color = 'b'
23 plt[1].line_color = 'r'
24 plt.show()

Listing 5.29 Inverse Laplace Transform

Output

Transmission function
4/(s**2/2 + 2*s + 4)

Voltage at capacitor
uc = 10 - 10*sqrt(2)*exp(-2*t)*sin(2*t + pi/4)

Capacitor current
ic = 10*exp(-2*t)*sin(2*t)

Figure 5.11 shows the output as a function plot.

Analysis

In line 03, the symbols for the components and the variables for the time and image

domains are defined. The positive=True parameter causes the suppression of the out-

put of the Heaviside(t) expression. In line 05, the level of the voltage jump for the

input voltage is set to 10V.

In lines 06 to 08, you can enter other values for the components. You can use only val-

ues of the int type. For example, if you assign the value 2. to the R variable, the program

will not be executed. If you want to assign rational numbers as values to the compo-

nents, you must convert them into a fraction using the Rational(numerator,denomina-
tor) method. You can use print(type(L)) to display the type of the variable L: <class
'sympy.core.numbers.Half'>.
261

5 Symbolic Computation Using SymPy
Figure 5.11 Step Response for an R-L-C Two-Port Network

Line 09 defines the step function for the image. Line 10 shows the total resistance in the

image. The current that flows through all components in the image (series connection)

is calculated in line 11 using Ohm’s law. Line 12 contains the transmission function. It

was deliberately not brought to the usual form as a fractional rational function to show

that SymPy can cope with elementary terms (double fractions, partial fractions). In line

13, the expand() method converts the term from line 12 into the common fractional

rational function. In line 14, the step response in the image is calculated. In lines 13 and

14, the transformation from the image domain to the time domain is performed using

the inverse_laplace_transform(F(s),s,t) method.

The results calculated by the inverse Laplace transform for the current and voltage

curves at the capacitor are also output as a function plot (lines 21 to 24).

This example clearly shows how effectively a step response can be simulated using the

inverse Laplace transform: The transmission function is set up directly in the image

domain according to the rules of network theory, multiplied by the image function 1/s

for the unit step, and then transformed into the time domain using the inverse_
laplace_transform() method. As elegant and effective as this procedure seems, it

unfortunately comes up against SymPy’s limited resources, as the next project task

example shows.

5.13 Project Task: Step Response of a Catenary Circuit

For the catenary circuit shown in Figure 5.12, which consists of three capacitors (as cross

links) and two coils (as longitudinal links), we want to calculate the transmission func-

tion and the step response of the output voltage using the Laplace transform method,
262

5.13 Project Task: Step Response of a Catenary Circuit
which means that the circuit is a fifth-order low-pass filter. For the internal resistance

of the voltage source and the terminating resistor, R = 1Ω is specified in each case.

Figure 5.12 L-C Catenary Circuit as a Fifth-Degree Low-Pass Filter

Listing 5.30 calculates the transmission function for the circuit shown in Figure 5.12

using symbolic matrix multiplication from the elementary two-port elements of the

catenary circuit (longitudinal and cross links). SymPy calculates the course of the out-

put voltage (step response) using the inverse Laplace transform.

01 #30_inv_laplace2.py
02 from sympy import *
03 s,C,L,R = symbols("s C L R")
04 t = symbols("t",positive=True)
05 #Values of the components
06 R=1
07 L=5
08 C=10
09 #Matrixes of the longitudinal and cross links
10 A1=Matrix([[1, R],
11 [0, 1]])
12 A2=Matrix([[1, 0],
13 [C*s,1]])
14 A3=Matrix([[1,L*s],
15 [0, 1]])
16 A4=Matrix([[1, 0],
17 [C*s, 1]])
18 A5=Matrix([[1, L*s],
19 [0, 1]])
20 A6=Matrix([[1, 0],
21 [C*s,1]])
22 A7=Matrix([[1, 0],
23 [1/R,1]])

RCU1(s) U2(s)

L

C

L

C

R

263

5 Symbolic Computation Using SymPy
24 #Matrix multiplication
25 A=A1*A2*A3*A4*A5*A6*A7
26 #Transmission function
27 H_s=1/A[0,0]
28 U2_s=H_s/s
29 u2=inverse_laplace_transform(U2_s,s,t)
30 #Outputs
31 print("Transmission function\n",expand(H_s))
32 plot(u2,(t,0,100))

Listing 5.30 Step Response of a Catenary Circuit

Output

Transmission function
1/(25000*s**5+5000.0*s**4+2250.0*s**3+300.0*s**2+40.0*s+2.0)

A graphical representation of the step response is shown in Figure 5.13.

Figure 5.13 Step Response for a Fifth-Degree Low-Pass Filter

Analysis

The circuit consists of three capacitors as cross links and two coils as longitudinal links,

which can store electrical energy and magnetic energy, respectively. Thus, the denom-

inator polynomial of the transmission function is a fifth-degree polynomial.
264

5.14 Project Task: Bending a Beam That Is Fixed at One End
This project task combines all the programming techniques covered so far: the sym-

bolic multiplication of matrixes and the inverse Laplace transform. The matrixes of the

A parameters for the longitudinal and cross links are defined in lines 10 to 23. The mul-

tiplication is performed in line 25. For the calculation of the transmission function in

line 27, only the A[0,0] parameter is needed. In line 28, the transmission function is

multiplied by the step function of the unit step, 1/s. The transformation to the time

domain is carried out in line 29.

When running the program, the long translation time shows that SymPy has almost

reached its limits when transforming a fifth-degree transmission function into the

time domain.

5.14 Project Task: Bending a Beam That Is Fixed at One End

For a beam of length l that is fixed at one end, we want to calculate the deflection w =𝑓(x). The deflection (bending line) depends on the cross-section and length of the beam,

the elastic modulus E of the material and the force F that’s acting on the beam. The

influence of the cross-section on the deflection is determined by the second axial

moment of area, Iy. The second moment of area and the deflection of a beam are sup-

posed to be computed symbolically using SymPy. The deflection should also be repre-

sented as a function graph.

5.14.1 Second Moment of Area

The second moment of area determines how the shape of the cross-sectional area of a

beam (girder) affects its stiffness. Figure 5.14 shows a beam with a rectangular cross-

section. The load should only act in the z direction.

The second moment of area (Iy) is defined as the surface integral of z2:

To ensure that the entire cross-sectional area is covered, you must integrate in the y

and z directions. For this reason, you must compute a double integral in the following

way:
265

5 Symbolic Computation Using SymPy
Figure 5.14 Cross-Section of a Beam

SymPy computes this double integral using the integrate(fz,(y,y1,y2),(z,z1,z2))
method. The function fz to be integrated is passed as the first argument; then, the inte-

gration variable y with the associated lower and upper limits for the inner integral is

passed as a tuple. The tuple for the integration variable y of the outer integral with the

associated limits is passed as the third argument. The index 1 stands for the lower inte-

gration limit, and the index 2 for the upper integration limit. Instead of parentheses,

you can also use square brackets.

Listing 5.31 uses the double integral (line 05) to calculate the general formula for the

second moment of area (Iy) of a beam with a rectangular cross-section.

01 #31_moment_of_area.py
02 from sympy import *
03 Iy,y,z,h,b =symbols('Iy,y,z,h,b')
04 Iy=z**2
05 zI=integrate(Iy,(y,-b/2,b/2),(z,-h/2,h/2))
06 print("Moment of area\n Iy =",zI)

Listing 5.31 Moment of Area for a Rectangular Cross-Section

Output

Moment of area
Iy = b*h**3/12

h

b

dA

z

y

266

5.14 Project Task: Bending a Beam That Is Fixed at One End
Analysis

In line 03, the symbolic variables are declared. Line 04 contains the calculation rule for

the second moment of area. In line 05, the integration is carried out using the inte-
grate(Iy,(y,-b/2,b/2),(z,-h/2,h/2)) method. First, the inner integral with the inte-

gration variable y and then the outer integral with the integration variable z are

inserted. The integrals must be enclosed in parentheses or square brackets with their

lower and upper limits. If you swap the order of inner and outer integrals, you’ll get the

same result.

5.14.2 Equation of the Bending Line

Figure 5.15 shows a beam (cantilever) with a rectangular cross-section firmly clamped in

the wall. This beam has length l and is loaded with force F.

The bending line of the beam is described by the following second-order linear differ-

ential equation:

For the calculation of bending girders, a common practice is to choose a coordinate sys-

tem where the x-axis points in the direction of the beam. The y-axis is perpendicular to

the drawing plane, and the z-axis points downwards.

Figure 5.15 Beam, Fixed on One Side

x

l

Fl – x
267

5 Symbolic Computation Using SymPy
The deflection w(x) depends on the modulus of elasticity E, the second moment of area

ly, and the bending moment M. The bending moment, acting at point x, is described by

the following linear equation:

The bending moment is greatest at the fastening point x = 0. Its magnitude decreases

linearly down to the point x = l, where its value is zero.

If you insert this torque equation into the above differential equation, you obtain the

following:

This differential equation can be solved simply by integrating twice. Due the two

boundary conditions w(0) = 0 und w´(0) = 0, you can determine the special solution.

Listing 5.32 calculates the general and the special solutions of the differential equation.

The course of the bending line is also shown as function plot w = 𝑓(x). For the elasticity

modulus, let’s use the value for steel E = 2,1 ⋅ 105 N/mm2 (see line 21).

01 #32_bending_line.py
02 from sympy import *
03 F,Iy,E,l=symbols('F,Iy,E,l')
04 x = symbols('x')
05 w = Function('w')(x)
06 #Inputs
07 b=20 #width in mm
08 h=30 #height in mm
09 lx=1e3 #length in mm
10 Fz=1e2 #force in N
11 #solution of the differential equation
12 dgl=Eq(w.diff(x,2),F/(E*Iy)*(l-x))
13 aL=dsolve(dgl) #general solution of the differential equation
14 rb={ #boundary conditions
15 w.subs(x,0):0,
16 w.diff(x,1).subs(x,0):0
17 }
18 sL=dsolve(dgl,ics=rb) #special solution
19 rL=sL.rhs #right-hand side of the equation
20 mL=sL.rhs.subs(x,l)
21 wmax=mL.subs(F,Fz).subs(l,lx).subs(E,2.1e5).subs(Iy,b*h**3/12)
22 wx=rL.subs(F,Fz).subs(l,lx).subs(E,2.1e5).subs(Iy,b*h**3/12)
23 #Outputs
24 print("Width b =",b, "mm")
25 print("Height h =",h, "mm")
26 print("Length l =",lx, "mm")
268

5.14 Project Task: Bending a Beam That Is Fixed at One End
27 print("Force F =",Fz, "N")
28 print("General solution\n",aL)
29 print("Special solution\n",sL)
30 print("Right-hand side of the equation\n w(x) =",rL)
31 print(" w(x) =",wx)
32 print("Maximum deflection\n w(x=l) =",mL,"=",N(wmax,3),"mm")
33 p=plot(wx,(x,0,lx),ylabel='w(x)',show=False)
34 #p.save('bending_line.png')
35 #p.save('bending_line.svg')
36 p.show()

Listing 5.32 Calculation of the Bending Line

Output

Width b = 20 mm
Height h = 30 mm
Length l = 1000.0 mm
Force F = 100.0 N
General solution
Eq(w(x), C1 + C2*x + F*l*x**2/(2*E*Iy) - F*x**3/(6*E*Iy))

special solution
Eq(w(x), F*l*x**2/(2*E*Iy) - F*x**3/(6*E*Iy))

Right-hand side of the equation
w(x) = F*l*x**2/(2*E*Iy) - F*x**3/(6*E*Iy)
w(x) = -1.7636684303351e-9*x**3 + 5.29100529100529e-6*x**2

Maximum deflection
w(x=l) = F*l**3/(3*E*Iy) = 3.53 mm

Figure 5.16 Course of the Bending Line w=𝑓(x) in Millimeters
269

5 Symbolic Computation Using SymPy
Analysis

In line 03, the symbolic variables are determined. A separate line is reserved for the

independent variable x to highlight its importance (line 04). Line 05 specifies the func-

tional relationship between the deflection w and the variable x.

In lines 07 to 09, you can change the geometric data defining the beam. Line 10 speci-

fies the load Fz at the end of the beam in the direction of the z-axis.

Line 12 contains the mathematical term of the differential equation; it is assigned to the

dgl object. In line 13, the dsolve(dgl) method solves the differential equation to derive

its general solution.

In lines 14 to 17, the boundary conditions are specified for the deflection at point x = 0,

i.e., w(0) = 0, and for the first derivative at point x = 0, i.e., w'(0) = 0. They are stored in a

dictionary—{w.subs(x,0):0, w.diff(x,1).subs(x,0):0}. In line 18, the dsolve() method

calculates the special solution of the differential equation. The expression ics (initial

conditions) stands for the boundary conditions of the differential equation.

Using rhs (right-hand side) the right-hand side of the special solution sL is determined

(line 19). Lines 20 and 21 use the mL object to calculate the maximum deflection of the

beam at point x = l. In line 22, the course of the function, w = 𝑓(x)is calculated using the

notation rL.subs(variable,value).

In line 33, the plot data is stored in the p object. The p.show() method causes the graphic

to be displayed on the screen (line 36). You can also use the p object to save the function

plot in a file format of your choice (png or svg) (lines 34 and 35). To determine which file

formats are still supported, you can try saving the graphic in gif format. This format is

not supported, and you’ll receive an error message indicating what other file formats

are available as storage options.

5.15 Project Task: Reaction Kinetics

In this project task, we must solve a linear differential equation system with three dif-

ferential equations. For this purpose, I chose an example from physical chemistry. Let's

look at the following consecutive reaction:

In a chemical reaction, substance A (the reactant) gives rise to substance B (the interme-

diate), which in turn gives rise to substance C (the product). Each substance has the

molar concentration c at a certain point in time. This value is the ratio of the amount of

substance n and the volume V of the substance and is defined in the following way:

The unit mol/liter is often used for units of molar concentration.
270

5.15 Project Task: Reaction Kinetics
The rates at which the reactions proceed are determined by the reaction rate constant

k. Its unit is s-1.

A consecutive chemical reaction produces substance B from substance A; and sub-

stance C, from substance B. During the course of this reaction, the molar concentra-

tions cA, cB, and cC of these reactants change. The reaction rate constants k1 and k2

influence the time course of the molar concentrations. This kinetic reaction can be

described by the following linear differential equation system:

Using the example of the breeding of plutonium-239 from uranium-238, let’s look at

how such a differential equation system can be solved using SymPy. For the start reac-

tion, the following applies:

This results in the consecutive reaction:

The half-lives are indicated above the arrows. From the half-lives, the rate constants can

be calculated:

Then you obtain the following values for the rate constants k1 and k2:

In Listing 5.33, the dsolve_system(equations) SymPy method solves the linear differen-

tial equation system for the breeding of plutonium-239 from uranium-238. In lines 08

and 09, you can enter the corresponding rate constants for other consecutive reac-

tions.

01 #33_differential_equation_system.py
02 from sympy import symbols,Eq,Function,plot,N
03 from sympy.solvers.ode.systems import dsolve_system
04 t = symbols("t")
05 cA = Function("cA") #mol/dm^3
06 cB = Function("cB")
07 cC = Function("cC")
271

5 Symbolic Computation Using SymPy
08 k1=0.0295 #1/min, U in Np
09 k2=2.0483e-4 #1/min, Np in Pu
10 #differential equation system
11 dgl1=Eq(cA(t).diff(t,1),-k1*cA(t)) #reactant
12 dgl2=Eq(cB(t).diff(t,1), k1*cA(t)-k2*cB(t)) #intermediate
13 dgl3=Eq(cC(t).diff(t,1), k2*cB(t)) #product
14 #initial values
15 aw={
16 cA(0): 1,
17 cB(0): 0,
18 cC(0): 0
19 }
20 #Solution of the differential equation system
21 equations = [dgl1,dgl2,dgl3]
22 aL=dsolve_system(equations) #general solution
23 sL=dsolve_system(equations,ics=aw) #special solution
24 gA=sL[0][0].rhs #reactant
25 gB=sL[0][1].rhs #intermediate
26 gC=sL[0][2].rhs #product
27 #Outputs
28 print("General solution\n",aL)
29 print("Special solution")
30 print("cA(t) =",N(gA,3))
31 print("cB(t) =",N(gB,3))
32 print("cC(t) =",N(gC,3))
33 p=plot(gA,gB,gC,(t,0,600),show=False,legend=True)
34 p.title='Consecutive reaction'
35 p.xlabel='t in min'
36 p.ylabel='Concentration'
37 p[0].line_color='blue'
38 p[0].label='Uranium'
39 p[1].line_color='green'
40 p[1].label='Neptunium'
41 p[2].line_color='red'
42 p[2].label='Plutonium'
43 p.show()

Listing 5.33 Solving a Linear Differential Equation System of Equations Using SymPy

Output

General solution
 [[Eq(cA(t), 143.021871796124*C1*exp(-0.0295*t)), Eq(cB(t),
-144.021871796124*C1*exp(-0.0295*t) - 1.0*C2*exp(-0.00020483*t)), Eq(cC(t),
1.0*C1*exp(-0.0295*t) + 1.0*C2*exp(-0.00020483*t) + 1.0*C3)]]
272

5.15 Project Task: Reaction Kinetics
Special solution
cA(t) = 1.0*exp(-0.0295*t)
cB(t) = -1.01*exp(-0.0295*t) + 1.01*exp(-0.00020483*t)
cC(t) = 1.0 + 0.00699*exp(-0.0295*t) - 1.01*exp(-0.00020483*t)

Figure 5.17 Consecutive Reaction for Uranium → Neptunium → Plutonium

Analysis

In line 02, all methods necessary for the program are imported. Line 03 imports the

dsolve_system method, which is to solve the differential equation system. We set t as

the independent variable (line 04). In lines 05 to 07, the concentrations cA, cB and cC are

declared as functions.

In lines 08 and 09, you can assign different values to the rate constants k1 and k2 for

other consecutive reactions.

Lines 11 to 13 contain the terms of the differential equations of the differential equation

system. The data of the individual differential equations are stored in objects dgl1, dgl2,

and dgl3.

In lines 15 to 19, the initial values for the individual concentrations are specified. Only

reactant A has an initial value. The concentrations of intermediate B and product C are

zero at the beginning of the reaction.

In line 21, the dgl1, dgl2, and dgl3 objects are combined into a list and stored in the equa-
tions object.
273

5 Symbolic Computation Using SymPy
In lines 22 and 23, the dsolve_system(equations) method calculates the general and spe-

cial solutions of the differential equation system.

In lines 24 to 26, the data of the right-hand side of the equation is determined and

stored in objects gA, gB, and gC. The print function outputs the general and special solu-

tions stored in these objects in lines 28 to 32.

In line 33, the data of the function plot is stored in the p object. Lines 34 to 42 use this

object to specify the colors of the function graphs and the labels for the legend.

5.16 Project Task: Dual Mass Oscillator

The model of the coupled oscillator can be used to study complex technical systems

such as electromechanical drives and structures. In this task, we want to example the

dual mass oscillator shown in Figure 5.18.

Figure 5.18 Dual Mass Oscillator

The dual mass oscillator consists of two masses (m1 and m2), which are connected (cou-

pled) by three springs. The vibration behavior of the system is influenced by the

masses m, the spring constants c, and the damping d.

The vibration behavior of the dual mass oscillator can be described by the following dif-

ferential equation system (see Vöth: 80):

The dsolve_system() SymPy method calculates the deflection x(t), the velocity v(t), and

the acceleration of the masses a(t). You can pass the left-hand side of the equation

terms to this method as arguments without transformations.

Listing 5.34 solves the differential equation system of the dual mass oscillator and dis-

plays the deflections x1 and x2 of the masses graphically on the screen.

01 #34_differential_equation_dual_mass_oscillator.py
02 from sympy import symbols,Eq,Function,plot,N
03 from sympy.solvers.ode.systems import dsolve_system
04 t = symbols("t")

c1, d1 c2, d2 c3, d3

m1 m2

x1 x2
274

5.16 Project Task: Dual Mass Oscillator
05 x1 = Function("x1")(t)
06 x2 = Function("x2")(t)
07 m=1000 #kg
08 c=1e7 #N/m
09 d=1e3 #kg/s
10 m1,m2=m,2*m
11 c1,c2,c3=c,c,c
12 d1,d2,d3=d,d,d
13 #differential equation system
14 dgl1=Eq(m1*x1.diff(t,2)+d1*x1.diff(t,1)+d2*(x1.diff(t,1)\
15 -x2.diff(t,1))+c1*x1+c2*(x1-x2),0)
16 dgl2=Eq(m2*x2.diff(t,2)+d2*(x2.diff(t,1)-x1.diff(t,1))\
17 +d3*x2.diff(t,1)+c2*(x2-x1)+c3*x2,0)
18 #initial values
19 aw={
20 x1.subs(t,0): 0.01, #m
21 x2.subs(t,0): 0,
22 x1.diff(t,1).subs(t,0):0,
23 x2.diff(t,1).subs(t,0):0
24 }
25 #Solution of the differential equation system
26 equations = [dgl1,dgl2]
27 aL=dsolve_system(equations) #general solution
28 sL=dsolve_system(equations,ics=aw) #special solution
29 gX1=sL[0][0].rhs #deflection for m1
30 gX2=sL[0][1].rhs #deflection for m2
31 #Outputs
32 #print("General solution\n",aL)
33 #print("Special solution")
34 #print("x1(t) =",N(gX1,3))
35 #print("x2(t) =",N(gX2,3))
36 p=plot(gX1,gX2,(t,0,0.2),show=False,legend=True)
37 p.xlabel='t'
38 p.ylabel='Deflection in m'
39 p[0].line_color='blue'
40 p[0].label='x1'
41 p[1].line_color='red'
42 p[1].label='x2'
43 p.show()

Listing 5.34 Solution of the Differential Equation System for the Dual Mass Oscillator

The general and special solutions have not been printed here because they are quite

long and complex.
275

5 Symbolic Computation Using SymPy
Output

Figure 5.19 Deflection of the Dual Mass Oscillator

Analysis

The numerical values for the masses, spring constants, and damping are taken from

Vöth: 79f (lines 07 to 09). In that source, for the spring constants, c2 = 2c, c3=3c and for

the damping d2= 2d, d3 = 3d is used. If you test the program with these values, you’ll find

that the differential equation system is no longer solved or that the computation takes

an unacceptable amount of time.

In lines 14 and 16, the two differential equations are passed as arguments to the Eq()
method. All symbolic data of these differential equations is stored in the dgl1 and dgl2
objects.

The initial values are defined in lines 19 to 24. Only the mass m1 is shifted with the initial

value x1 = 0.01 m. All other initial values are set to 0.

In lines 27 and 28, the dsolve_system() SymPy method solves the differential equation

system. The general solution and the special solution are stored in the aL and sL objects.

The statements in lines 29 and 30 cause only the deflections x1 and x2 to be selected

from the entire solution set.

Lines 36 to 43 contain the statements for the graphical output. You can use p.save

('dual_mass_oscillator.png') to save the graphic in PNG format.
276

5.17 Tasks
Note

You should not use SymPy to solve differential equation systems if their equations are

composed of complicated mathematical terms. In Chapter 6, I show you how to solve

the differential equation system of the dual mass oscillator more effectively numeri-

cally using the SciPy function solve_ivp().

5.17 Tasks

1. Simplify the following term:

2. Calculate the limits for the following functions:

3. Calculate the following derivatives:

4. Calculate the following integrals:

5. Solve the following differential equations:
277

5 Symbolic Computation Using SymPy
6. Decompose the image function into its partial fractions:

Then, transform the individual partial fractions into the time domain using a corre-

spondence table.

Check the result using the following method:

inverse_laplace_transform(Fs,s,t)

7. Calculate the transfer function for an unbalanced third-order low-pass filter. The

internal resistance of the voltage source and the terminating resistor each have a

value of 1Ω.
278

Chapter 6

Numerical Computations and
Simulations Using SciPy

This chapter describes how you can carry out numerical differentiations

and integrations using SciPy, how to numerically solve differential equa-

tions, and how SciPy can support you in analyzing non-sinusoidal waves.

The acronym SciPy stands for Scientific Python. SciPy is a Python-based collection of

open-source software for mathematics, science, and engineering.

This module provides users with numerous user-friendly and efficient routines for

numerical differentiation, integration, interpolation, optimization, linear algebra, and

statistics.

In contrast to SymPy, the SciPy module performs engineering mathematical calcula-

tions numerically rather than symbolically. Since the numerical representation of the

results of extensive numerical computations (such as solving differential equations) is

not particularly meaningful, the SciPy module is almost always used in combination

with the Matplotlib module to visualize the solutions. The NumPy module provides

the linspace() and arange() functions for creating one-dimensional arrays. The Mat-

plotlib method plot() is used for visualizing the results. Thus, the NumPy and Matplot-

lib modules form the basis of SciPy.

From the large range of functions, only a limited selection can be discussed in this

book, covering as broad a range of topics in engineering mathematics as possible. For

this reason, this chapter is limited to the exemplary treatment of submodules most rel-

evant to engineering and science: optimize, interpolate, integrate, fft, and signal.

In accordance with convention, the modules for NumPy and Matplotlib can be

included in a Python source code using the names np and plt:

import numpy as np
import matplotlib.pylot as plt

The following notation is common for importing submodules:

from scipy.submodule import function1, function2, etc.
279

6 Numerical Computations and Simulations Using SciPy
6.1 Numerical Computation of Zeros

There are many mathematical functions whose zeros cannot be computed analytically.

In these cases, the zeros (i.e., the points of intersection with the x-axis) must be calcu-

lated using numerical methods, such as secants or the Newton method. In addition to

the Newton method, SciPy also provides other methods. The SciPy functions for calcu-

lating zeros are part of the optimize subpackage. To use the Newton method, you must

transfer the mathematical function fun and the start values x0 to the SciPy function

newton(fun, x0, ...). If, on the other hand, you want to use other methods, you must

also pass the name of the mathematical method method, which is used to calculate the

zeros, to the SciPy function root(fun, x0, method, ...). The possible mathematical

methods, such as hybr, lm, and so on, are listed in the commented-out lines 13 and 14.

They can be tested if necessary.

Listing 6.1 calculates the zeros for the damped sinusoidal oscillation:

01 #01_zeros.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.optimize import root
05
06 def f(x):
07 #y=(x-1)*(x-2)*(x-5)*(x-10)
08 y=10*np.exp(-0.5*x)*np.sin(x)
09 return y
10
11 x = np.linspace(0,15,100)
12 x0=[0,2,6,9,12] #start values
13 #hybr,lm,broyden1,broyden2,anderson
14 #linearmixing,diagbroyden,excitingmixing,krylov,df-sane
15 xn=root(f,x0,method='hybr')
16 print(xn.x)
17 fig, ax = plt.subplots()
18 ax.plot(x,f(x),"r-",lw=2)
19 ax.scatter(xn.x,[0,0,0,0,0],color="k",marker="x")
20 ax.set(xlabel="x",ylabel="y")
21 ax.grid(True)
22 plt.show()

Listing 6.1 Calculation of Zeros
280

6.1 Numerical Computation of Zeros
Output

[0. 3.14159265 6.28318531 9.42477796 12.5663707]

Figure 6.1 Zeros of a Damped Sinusoidal Oscillation

Analysis

Line 04 imports the root function from the optimize submodule. The commented-out

polynomial in line 07 serves as a test function. The list in line 12 contains the initial val-

ues for the calculation of the zeros. The specification of the start values is actually the

critical part of the program because their approximate position must be known before

the calculation of the exact values. Here, the function plot from Figure 6.1 is useful. The

commented-out lines 13 and 14 contain the names of the possible mathematical meth-

ods to calculate zeros. For testing purposes, you can use them in line 15 to replace hybr.

In this line, the SciPy function root(f,x0,method='hybr') computes the zeros of func-

tion f using the mathematical method, hybr. More details about the mathematical

methods of zero calculation can be found in the SciPy documentation. The x0 parame-

ter contains the list of start values. The zeros are stored in the xn object and output with

xn.x in line 16.

The Matplotlib method scatter() in line 19 marks the zeros with a cross. The length of

the list with zeros (second parameter) must correspond to the length of the x0[] list

from line 12.
281

6 Numerical Computations and Simulations Using SciPy
6.2 Optimizations

From school mathematics, we know the problem of how to calculate the smallest pos-

sible surface area for a tin can (cylinder) to minimize material consumption. SciPy pro-

vides the minimize(fun,x0,...) function from the optimize submodule for this kind of

optimization task. This function must be passed an initial value x0 in addition to a

mathematical function fun, which describes the optimization problem.

The following applies to the volume of a cylinder:

The surface is composed of the two flat surfaces and the curved surface:

The height h can be replaced by :

If you set the first derivative of the surface function to equal zero, you’ll obtain the opti-

mum radius of a tin can with minimal surface:

The calculation in Listing 6.2 confirms this result.

01 #02_minimum.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.optimize import minimize
05 V=1 #volume
06
07 def f(r):
08 h=V/(np.pi*r**2)
09 A=2*np.pi*r**2+2*np.pi*r*h
10 return A
11
12 x = np.linspace(0.1, 2, 100)
13 opt=minimize(f,0.5)
14 #Output
15 print("r=%4.6f A=%4.6f" %(opt.x[0],opt.fun))
282

6.2 Optimizations
16 fig, ax = plt.subplots()
17 ax.plot(x,f(x),"b-",lw=2)
18 ax.plot(opt.x[0],opt.fun,"rx",lw=2)
19 ax.set(xlabel="Radius",ylabel="Surface")
20 ax.grid(True)
21 plt.show()

Listing 6.2 Optimization of a Cylinder Surface

Output

r=0.541926 A=5.535810

Figure 6.2 shows the optimal radius in a function plot.

Figure 6.2 Optimal Radius

Analysis

In line 04, the SciPy function minimize is imported from the optimize submodule. Line

05 sets the volume of the cylinder to 1 volume unit (V). In line 13, the minimize(f,0.5)
function calculates the optimal radius for a minimum cylinder surface for the f(r)
function defined in line 07 and stores the result in the opt object. With the help of this

object, the optimal values opt.x[0],opt.fun for the radius x and the cylinder surface fun
can be output in line 15 and used to mark the minimum in line 18.
283

6 Numerical Computations and Simulations Using SciPy
6.3 Interpolations

Interpolation determines a value between two points on a curve. For any given discrete

data set (e.g., measured values), a continuous function must be found that maps this

data. Interpolation is used to predict trends or curve progressions.

The SciPy function interp1d(x,y,kind='linear',...) from the interpolate submodule

can solve interpolation problems in the plane. The x and y parameters are arrays with

the x-y coordinates of the measuring points. The third parameter specifies the interpo-

lation method, such as linear, next, previous, quadratic, or cubic.

The discrete data shown in Figure 6.3 represents some sampled values of a sine wave.

Let’s now search for the interpolating function.

Figure 6.3 Sampled Signal

Listing 6.3 calculates the interpolating function using the kind='cubic' interpolation

method.

01 #03_interpolation.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.interpolate import interp1d
05 ta=np.arange(0,12)
06 ti=np.arange(0,11,0.01)
07 #sampled signal
08 s=np.sin(ta)
284

6.3 Interpolations
09 #interpolation methods
10 #linear,next,previous,quadratic,cubic
11 f = interp1d(ta, s, kind='cubic')
12 fig, ax = plt.subplots()
13 ax.plot(ta,s, 'rx') #points
14 ax.plot(ti,f(ti),'b-') #interpolated
15 ax.set(xlabel='Time', ylabel='Signal')
16 plt.show()

Listing 6.3 Interpolation of Sampling Signals

Output

Figure 6.4 shows the recovered signal.

Figure 6.4 Recovered Signal by Interpolation

Analysis

Line 04 imports SciPy function interp1d. The array in line 05 contains twelve interpola-

tion values. From these values, the sine function in line 08 generates the sampled

amplitudes. In line 11, the SciPy function interp1d(ta,s,kind='cubic') reconstructs the

original signal from these sampled amplitude values. The interpolation method used is

cubic interpolation (cubic), which uses a third-degree polynomial as the interpolation

function. For further testing purposes, you can try the interpolation methods com-

mented out in line 10.
285

6 Numerical Computations and Simulations Using SciPy
6.4 Numerical Differentiation

Numerical differentiation is the approximate calculation of the slope of a mathemati-

cal function for a given point (xs,ys). Since the slopes are calculated using the difference

quotient ∆y/∆x, there is always an error, which cannot be eliminated even by reducing∆x.

6.4.1 Methods of Numerical Differentiation

The accuracy of numerical differentiation by calculating the difference quotient,

can be improved by using the central difference quotient,

Note

As of SciPy version 2.0.0, the misc submodule has been removed. Thus, the deriva-
tive() function is no longer available. The SciPy documentation recommends using

the Derivative() function from the numdifftools module instead. In the download

area of https://www.rheinwerk-computing.com/5852/ or https://drsteinkamp.de, you

can find source code versions in which derivatives are still calculated using the SciPy

function derivative().

The numdifftools function Derivative(fun,n=1) expects at least one argument to be

passed: a mathematical function fun. The n parameter specifies that the nth derivative

must be calculated, but this step is optional. If you omit this parameter, the first deriv-

ative will be calculated.

If you can’t install the numdifftools module or don’t want to use it, you can also test the

differentiation examples covered in this section using the following custom Python

function:

def derivative(f,x,h=1e-9):
return (f(x+h)-f(x-h))/(2.0*h)

Listing 6.4 calculates for the following parabola, , the slope of the secant or

tangent at point xs = 2 for the distance h = 10-6 on the x-axis using the central difference

quotient and the Derivative() function from the numdifftools module.

01 #04_slope1.py
02 import numpy as np
03 from numdifftools import Derivative
286

https://www.rheinwerk-computing.com/5852/
https://drsteinkamp.de

6.4 Numerical Differentiation
04 #Function
05 def f(x):
06 return 0.25*x**2
07 #central difference quotient
08 def df(x,h):
09 return (f(x+h)-f(x-h))/(2*h)
10
11 xs=2 #place of the slope
12 h=1e-6 #accuracy
13 mS=df(xs,h) #secant slope
14 mT=Derivative(f,n=1) #tangent slope
15 a1=np.degrees(np.arctan(mS))
16 a2=np.degrees(np.arctan(mT(xs)))
17 print("Secant slope m=%2.6f %s=%2.1f°"%(mS,chr(945),a1))
18 print("Tangent slope m=%2.6f %s=%2.1f°"%(mT(xs),chr(945),a2))

Listing 6.4 Comparison of Secant and Tangent Slopes

Output

Secant slope m=1.000000 α=45.0°
Tangent slope m=1.000000 α=45.0°
Analysis

Line 03 imports the Derivative function from the numdifftools module. The slope at

point xs=2 (line 11) is calculated in line 13 using the custom Python function df() and in

line 14 using the Derivative(f,n=1) function. The accuracy (increment) of the slope cal-

culation has been set to a small value (h=1e-6 in line 12). Surprisingly, the custom func-

tion df(x,h) from line 08 provides the same result as the Derivative function.

6.4.2 Drawing a Tangent Slope

To illustrate numerical differentiation, let’s draw the slope tangent of a parabola at

point (xs,ys). For the intersection of the tangent with the x-axis, the following applies:

From the slope m at point (xs,ys) the straight-line equation of the tangent can be de-

rived.

Figure 6.5 shows for the parabola the tangent calculated using Listing 6.5 at point x = 2.
287

6 Numerical Computations and Simulations Using SciPy
01 #05_slope2.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from numdifftools import Derivative
05 #Function
06 def f(x):
07 return x**2/2
08 #Tangent
09 def f2(x,xs):
10 m=Derivative(f,n=1)
11 x0=xs-f(xs)/m(xs)
12 return m(xs)*(x-x0)
13
14 x = np.linspace(0, 5, 100)
15 xs=2 #place of the slope
16 fig, ax = plt.subplots()
17 ax.plot(x, f(x),"g-", lw=2) #function
18 ax.plot(x, f2(x,xs),"b-", lw=1) #tangent
19 ax.plot(xs, f(xs), "or") #red point
20 ax.set(xlabel="x",ylabel="y")
21 ax.grid(True)
22 plt.show()

Listing 6.5 Tangent Slope

Output

Figure 6.5 Tangent Slope
288

6.4 Numerical Differentiation
Analysis

In lines 09 to 12, the function f2(x,xs) is defined for the calculation of the tangent

slope. Figure 6.5 shows the result.

The tangent has a slope of 2 at point xs = 2, which corresponds to a slope angle of 63.43°.

Note that the x and y axes are scaled unequally.

6.4.3 Derivative of a Sine Function

Figure 6.6 shows a coil through which flows an impressed current. Impressed currents

are generated by power sources.

Figure 6.6 Inductive Voltage Drop

If an impressed current i = 𝑓(t) flows through a coil with inductance , then an inductive

voltage drop is created at the coil according to the induction law:

Listing 6.6 calculates and visualizes this inductive voltage drop.

01 #06_slope3.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from numdifftools import Derivative
05 L=1 #H
06 f=50 #frequency in Hz
07 omega=2*np.pi*f #1/s
08 imax=1. #A
09 #power source
10 def i(t):
11 return imax*np.sin(omega*t*1e-3)#t in ms!
12 #inductive voltage drop
13 def u(t):
14 df=Derivative(i)
15 return 1e3*L*df(t)
16
17 t = np.linspace(0,20,500) #ms
18 fig,(ax1,ax2)=plt.subplots(2,1)
19 ax1.plot(t, i(t), 'r-', lw=2)

UL

Li(t)
289

6 Numerical Computations and Simulations Using SciPy
20 ax1.set(ylabel='Current in A',title='impressed current')
21 ax1.grid(True)
22 #inductive voltage drop
23 ax2.plot(t, u(t), 'b-',lw=2)
24 ax2.set(xlabel='t in ms',ylabel='Voltage in V',title='inductive voltage
drop')
25 ax2.grid(True)
26 fig.tight_layout()
27 plt.show()

Listing 6.6 Derivative of the Current: Inductive Voltage Drop

Output

The output of Listing 6.6 is shown in Figure 6.7.

Figure 6.7 Derivative of a Sine Function

Analysis

In line 14, the Derivative(i) function calls function i(t) from line 10. The t parameter

must not be passed here. All information of function i(t) is stored in the df object. In

line 15, this df(t) object is passed the argument t, and it calculates the first derivative

for the i(t) current for the values of the array from line 17. The scaling factor 1e3
undoes the scaling of the time axis in ms from line 11.

As expected, a cosine function is displayed in line 23 as the result.
290

6.4 Numerical Differentiation
6.4.4 Usage Example: Free Fall

Galileo Galilei (1564–1641) allegedly figured out the law of falling bodies by experiment-

ing with an inclined plane: The traveled path of a sphere obeys the law of a geometric

time series. The fact that this finding is basically correct can be experimentally proven

with today’s technical means. But by mere measurements, no matter how accurate

they may be, the following formula cannot be precisely confirmed:

The exact formulation of the distance-time law can only be derived from the measured

acceleration due to gravity g by means of the integral calculus. In our case, we’ll use the

distance-time law to illustrate using the Derivative() function to compute from the

distance s the velocity and from the velocity the acceleration a of a falling sphere.

Listing 6.7 shows the implementation.

01 #07_slope4.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from numdifftools import Derivative
05 g=9.81
06 #distance
07 def s(t):
08 return g*t**2/2
09 #velocity
10 def v(t):
11 df=Derivative(s,n=1)
12 return df(t)
13 #acceleration
14 def a(t):
15 df=Derivative(v,n=1)
16 return df(t)
17 #time
18 t = np.linspace(0,5,100)#seconds
19 fig, ax = plt.subplots(3,1,figsize=(6,6))
20 #distance
21 ax[0].plot(t, s(t), 'b-', lw=2)
22 ax[0].set(ylabel='s in m',title='Distance')
23 #velocity
24 ax[1].plot(t, v(t), 'r-', lw=2)
25 ax[1].set(ylabel='v in m/s',title='Velocity')
291

6 Numerical Computations and Simulations Using SciPy
26 #acceleration
27 ax[2].plot(t, a(t), 'g-', lw=2)
28 ax[2].set(xlabel='t in s',ylabel='a',title='Acceleration')
29 ax[2].set_ylim(0,12)
30 [ax[i].grid(True) for i in range(len(ax))]
31 fig.tight_layout()
32 plt.show()

Listing 6.7 Free Fall

Output

The free fall of the sphere is graphically summarized by the diagrams for distance,

velocity, and acceleration shown in Figure 6.8.

Figure 6.8 Free Fall: Distance, Velocity, Acceleration

Analysis

In lines 12 and 16, the derivatives for velocity v(t) and acceleration a(t) are calculated

and returned via the return statement in the function calls in lines 24 and 27. They are

shown as expected.
292

6.5 Numerical Integration
In line 15, you can also calculate the acceleration a(t) from the second derivative of the

distance function s(t) using the df=Derivative(s,n=2) statement.

6.5 Numerical Integration

Numerical integration is the approximate calculation of certain integrals. Numerical

methods are always used when integrals cannot be solved analytically or when only the

numerical solutions are relevant. The latter is the case with engineering tasks.

SciPy provides numerous numerical integration methods in the integrate submodule,

which can also compute double and triple integrals. The user is therefore free to select

a method that suits their purposes. You can use the following statement to import the

integrate submodule:

import scipy.integrate as integral

6.5.1 Methods of Numerical Integration

From school mathematics, you already know the numerical method of rectangle sums.

But even with very small selected axis intercepts on the x-axis, this method is too inac-

curate for practical purposes. For this reason, optimized methods approximate the

curve section of the function to be integrated by suitable polynomials. Table 6.1 shows

an overview of the numerical integration methods of the integrate submodule of

SciPy.

The SciPy function quad(func, a, b, ...) expects three parameters. The name of the

mathematical function func is passed as the first parameter without a function argu-

ment, so instead of f(x) simply f is passed. The second and third parameters set the

Method Description

quad Standard procedure for single integration

dblquad Standard procedure for double integration

tplquad Standard procedure for triple integration

fixed_quad Calculates a given integral using the Gaussian quadrature rule for a given

order n

quadrature Calculates a given integral using the Gaussian quadrature rule for a given

tolerance

romberg Calculates a given integral using the Romberg method

Table 6.1 Numerical Integration Methods of SciPy
293

6 Numerical Computations and Simulations Using SciPy
lower and upper integration limits. Other parameters are optional. They can be taken

from the SciPy documentation.

Listing 6.8 calculates the definite integral using a custom function of rectangle sums

and the integration methods listed in Table 6.1.

01 #08_integral_comparison.py
02 import scipy.integrate as integral
03
04 def f(x):
05 return x**2
06 #rectangle sums
07 def rect(f,a,b,h=1e-6):
08 n=int((b-a)/h)
09 s=0
10 for k in range(1,n):
11 x=a+k*h
12 s=s+f(x)
13 return s*h
14
15 a=0 #lower limit
16 b=2 #upper limit
17 A1=rect(f,a,b)
18 A2=integral.quad(f,a,b)#[0]
19 A3=integral.fixed_quad(f,a,b,n=4)#[0]
20 A4=integral.quadrature(f,a,b,tol=1e-6)#[0]
21 A5=integral.romberg(f,a,b,tol=1e-6,show=False)
22 #Outputs
23 print("Rectangle sums\t: ",A1)
24 print("quad\t\t:",A2)
25 print("fixed_quad\t:",A3)
26 print("quadrature\t:",A4)
27 print("romberg\t\t: ",A5)

Listing 6.8 Methods of Numerical Integration

Output

Rectangle sums: 2.6666646666669664
quad : (2.666666666666667, 2.960594732333751e-14)
fixed_quad : (2.6666666666666665, None)
quadrature : (2.6666666666666665, 4.440892098500626e-16)
romberg : 2.6666666666666665
294

6.5 Numerical Integration
Analysis

As expected, the custom function rect() calculates the integral less accurately than the

SciPy functions. Line 02 imports the integrate submodule and sets the integral alias.

In lines 18 to 21, this alias is used to access the SciPy integration functions. The results

are saved in objects A2 to A5. The quadrature() and romberg() functions enable you to

specify a value for the error tolerance. In lines 24 and 26, the quad() and quadrature()
functions output a second value with an error estimation in addition to the surface

areas. You can suppress the output of this error estimation if you remove the com-

ments in lines 18 to 20.

6.5.2 Definite Integral

The next example, in Listing 6.9, calculates for the parabola

the definite integral between the limits x01 and x02:

The zeros of the parabola were chosen as integration limits.

01 #09_area_parabola.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 import scipy.integrate as integral
05 from scipy.optimize import root
06
07 def f(x):
08 return -(x-4)**2+10
09
10 x = np.linspace(0,8,100)
11 x0=[0,5]
12 xn=root(f,x0,method='hybr')
13 a,b=xn.x[0],xn.x[1]
14 A=integral.quad(f,a,b)[0]
15 #Output
16 print("Zeros:",a,b)
17 print("Area:",A)
18 #Display
19 fig, ax = plt.subplots()
20 ax.plot(x, f(x), "b-", lw=2)
21 ax.grid(True)
295

6 Numerical Computations and Simulations Using SciPy
22 ax.set(xlabel="x",ylabel="f(x)")
23 ax.fill_between(x,f(x),where=f(x)>=0,color='g',alpha=0.2)
24 plt.show()

Listing 6.9 Area between Zeros

Output

Zeros: 0.8377223398316203 7.162277660168379
Area: 42.1637021355784

Figure 6.9 shows the area between the zeros colored.

Figure 6.9 Area under a Parabola

Analysis

This example should illustrate on the one hand how you must calculate a certain inte-

gral with SciPy and on the other hand, how you can color the area between the zeros. As

expected, the values calculated by the program for the zeros and the area meet the

requirements for sufficient accuracy.

6.5.3 Integrating a Constant

The integration of a constant results in an ascending straight line. An uncharged capac-

itor is connected to a constant current source supplying a constant current of i(t) = 10 A,

as shown in Figure 6.10.
296

6.5 Numerical Integration
Figure 6.10 Voltage at the Capacitor

Using an oscilloscope, you can then measure a linearly increasing voltage.

To simulate this voltage profile, Listing 6.10 is used to calculate the following deter-

mined integral:

01 #10_constant_integration1.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 import scipy.integrate as integral
05 C=1 #F
06 imax=10
07 #Constant current source
08 @np.vectorize
09 def i(t):
10 return imax
11 #Capacitor voltage
12 @np.vectorize
13 def u(t):
14 uc=(1/C)*integral.quad(i,0,t)[0]
15 return uc
16
17 x = np.linspace(0, 20, 500)
18 fig, (ax1,ax2)=plt.subplots(2,1)
19 ax1.plot(x, i(x), 'r-', lw=2)
20 ax1.set(ylabel='Current in A',title='Voltage at capacitor')
21 ax2.plot(x, u(x),'b-',lw=2)
22 ax2.set(xlabel='t in s',ylabel='$u_c(t)$ in V')
23 ax1.grid(True);ax2.grid(True)
24 plt.show()

Listing 6.10 Simulating the Voltage at the Capacitor

C

i(t)

Uc
297

6 Numerical Computations and Simulations Using SciPy
Output

Figure 6.11 Voltage Profile at the Capacitor

Analysis

The integration of a constant is by no means trivial. In line 10, the custom function i(t)
returns a constant named imax. This constant must be converted to an array via

@np.vectorize so that it can be numerically integrated and plotted using the plot func-

tion, as shown in Figure 6.11. In lines 08 and 12, the @np.vectorize statement creates a

NumPy array with 500 elements from the custom functions i(t) and u(t). The number

of elements is specified using NumPy function np.linspace(0, 20, 500) in line 17.

6.5.4 Usage Example: Free Fall

In Section 6.4.4, we solved this free fall problem by means of differential calculus. This

time, the fall velocity and the distance will be calculated by integrating the acceleration

caused by gravity. The following equation thus applies to the velocity:

For the distance, the following equation applies:

Listing 6.11 shows the implementation.
298

6.5 Numerical Integration
01 #11_constant_integration2.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 import scipy.integrate as integral
05 g=9.81
06 @np.vectorize
07 def a(t):
08 return g
09 @np.vectorize
10 def v(t):
11 return integral.quad(a, 0, t)[0]
12 @np.vectorize
13 def s(t):
14 return integral.quad(v, 0, t)[0]
15 #time values
16 t = np.linspace(0,5,100)
17 fig, ax=plt.subplots(3,1,figsize=(6,8))
18 ax[0].plot(t, a(t), 'g-', lw=2)
19 ax[0].set(ylabel='a in m/s^2',title='Acceleration')
20 ax[0].set_ylim(0,12)
21 ax[1].plot(t, v(t), 'r-',lw=2)
22 ax[1].set(ylabel='v in m/s',title='Velocity')
23 ax[2].plot(t, s(t), 'b-', lw=2)
24 ax[2].set(xlabel='t in s',ylabel='s in m',title='Distance')
25 [ax[i].grid(True) for i in range(len(ax))]
26 fig.tight_layout()
27 plt.show()

Listing 6.11 Free Fall: Acceleration, Velocity, Distance

Output

The graphical output of this free fall computation is shown in Figure 6.12.

Analysis

Basically, the program does not contain any new programming elements. The custom

functions a(t), v(t), and s(t) must be vectorized again using @np.vectorize so that

they can be integrated numerically and their time courses can be displayed. The func-

tions a(t) and v(t) can be called and integrated directly after the return statement

(lines 11 and 14).
299

6 Numerical Computations and Simulations Using SciPy
Figure 6.12 Free Fall: Acceleration, Velocity, and Distance

6.5.5 Improper Integral

Simply put, an improper integral is an integral where the integration limits can be

between −∞ and +∞. For example, when a capacitor is charged, as shown in Figure 6.13,

the charging process theoretically never ends. However, real-life everyday experience

shows that a capacitor is charged after about five times the time constant RC.

Figure 6.13 Charging an R-C Element

C

i(t)

UcU0

R

UR
300

6.5 Numerical Integration
You can compute the stored electrical energy using the improper integral from the

electrical power:

The NumPy constant np.inf is used as the upper limit for the term ∞. Listing 6.12 shows

the implementation.

01 #12_improper_integral.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 import scipy.integrate as integral
05 U0=10
06 R=1
07 C=1
08 tau=R*C
09 #voltage profile at the capacitor
10 def u(t):
11 return U0*(1-np.exp(-t/tau))
12 #capacitor current
13 def i(t):
14 return U0*np.exp(-t/tau)/R
15 #power
16 def p(t):
17 return u(t)*i(t)
18 #upper limit->infinity
19 g=np.inf
20 t = np.linspace(0,5,1000)
21 W=integral.quad(p,0,g)[0]
22 print("Stored electrical energy:",W,"Ws")
23 fig, ax = plt.subplots()
24 ax.plot(t,u(t),"b-",lw=2,label="Voltage")
25 ax.plot(t,i(t),"r-",lw=2,label="Current")
26 ax.plot(t,p(t),"k-",lw=1,label="Power")
27 ax.fill_between(t,p(t),where=p(t)>=0,color='g',alpha=0.2)
28 ax.legend(loc="best")
29 ax.annotate(r"W_{el}",xy=(2,1),xytext=(1,10))
30 ax.set(xlabel="Time",ylabel="i, u, p")
31 plt.show()

Listing 6.12 Computing an Area under a Curve

Output

Stored electrical energy: 50.00000000000001 Ws
301

6 Numerical Computations and Simulations Using SciPy
Figure 6.14 shows what the whole thing looks like in a function plot.

Figure 6.14 Stored Electrical Energy

Analysis

The custom functions u(t) and i(t) for the voltage and current profiles already contain

the NumPy function np.exp() as an array, which is why they do not need to be vector-

ized anymore. Line 19 sets the limit g=np.inf. In line 21, this value is passed to SciPy

function integral.quad(p,0,g)[0]. The zero [0] suppresses the output of the error esti-

mation. The numerically calculated value for the stored electrical energy comes close

to the theoretically calculated value of 50 Ws.

6.5.6 Calculating Arc Lengths

The calculation of arc lengths is also a typical task of the integral calculus. The following

formula for the calculating arc lengths is derived from the Pythagorean theorem:

A root expression must be integrated that contains the first derivative of a function𝑓(x), which describes the course of the line. A typical application is the calculation of the

length of a catenary, which is mathematically described by the hyperbolic cosine with

the following curvature radius :
302

6.5 Numerical Integration
Listing 6.13 shows how to calculate the length of a rope suspended between two posts

with a distance of 20 meters.

01 #13_catenary.py
02 import numpy as np
03 import scipy.integrate as integral
04 from numdifftools import Derivative
05 a=10 #curvature radius
06 def k(x):
07 return a*np.cosh(x/a)
08 #calculate length
09 def dl(x):
10 df=Derivative(k)
11 return np.sqrt(1+df(x)**2)
12 #Distances
13 x1,x2=-10,10
14 length=integral.quad(dl,x1,x2)[0]
15 print("Length of the catenary %3.2f m" %length)

Listing 6.13 Arc Length of a Catenary

Output

Length of the catenary 23.50 m

Analysis

Lines 06 and 07 contain the function definition for catenary a*np.cosh(x/a). In lines 09

to 11, the dl(x) function is defined for a line element of the catenary. In line 10, the

Derivative(k) function calls the custom Python function k(x) from line 06. The x
parameter must be omitted. The data of the cosh function is stored in the df object. In

line 11, the derivative is squared. Line 14 uses the quad(dl,x1,x2)[0] function to calcu-

late the defined integral of the catenary for the given limits between ±10 m. Thus, the

chain is 3.5 m longer than the distance.

6.5.7 Volume and Surfaces of Rotating Bodies

The volume of a symmetrical body rotating the x-axis can be calculated using the fol-

lowing integral:
303

6 Numerical Computations and Simulations Using SciPy
The following equation applies to the curved surface:

Listing 6.14 shows how to calculate the volume and the surface area of a rotating

paraboloid within the limits from 0 to 1.

01 #14_integral7.py
02 import numpy as np
03 import scipy.integrate as integral
04 from numdifftools import Derivative
05 #function definition
06 def f(x):
07 #return x
08 return np.sqrt(x)
09 #square function f(x)
10 def f2(x):
11 return f(x)**2
12 #for curved surface
13 def m(x):
14 df=Derivative(f)
15 return f(x)*np.sqrt(1+df(x)**2)
16 #limits
17 a,b=0,1
18 V=np.pi*integral.quad(f2,a,b)[0] #volume
19 M=2*np.pi*integral.quad(m,a,b)[0] #curved surface
20 print("Volume %3.6f" %V)
21 print("Curved surface %3.6f" %M)

Listing 6.14 Volume and Curved Surface of Rotating Bodies

Output

Volume 1.570796
Curved surface 5.330414

Analysis

In line 18, the volume V and in line 19, the curved surface M of the rotating paraboloid is

calculated for the limits 0 to 1 using the quad() function. The commented-out function

in line 07 (f(x)=x) creates a cone that rotates around the x-axis. This function makes it

easy to check if the program calculates correctly.
304

6.5 Numerical Integration
6.5.8 Double Integrals

A typical application for a double integral is the calculation of the second area moment.

The second area moment indicates the stiffness of a beam based on its cross-sectional

area. For the second area moment of a rectangular beam of width b and height h, the

following equation applies:

SciPy calculates a double integral using the following function:

dblquad(func, a, b, c, d, ...)

In this context, the func parameter expects a mathematical function of the form z =𝑓(x,y). Parameters a and b represent the outer integration limits, and parameters c and

d represent the inner integration limits.

Listing 6.15 calculates the second area moment for a beam with a rectangular cross-sec-

tion. The girder has a width of 5 centimeters and a height of 10 centimeters.

01 #15_double_integral.py
02 import scipy.integrate as integral
03 b=5 #width in cm
04 h=10 #height in cm
05 #function definition
06 def f(y,z):
07 return z**2
08 #calculation
09 Iy=integral.dblquad(f,-h/2,h/2,-b/2,b/2)[0]
10 print("Iy =",Iy,"cm^4")
11 print("Iy =",b*h**3/12,"cm^4 exactly")

Listing 6.15 Volume Calculation with Double Integral

Output

Iy = 416.66666666666674 cm^4
Iy = 416.6666666666667 cm^4 exactly

Analysis

In lines 06 and 07, the Python function f(y,z) is used to define the second area

moment. In line 09, the SciPy function dblquad(f,-h/2,h/2,-b/2,b/2)[0] calculates the

second area moment Iy. The accuracy of the result is stunning.
305

6 Numerical Computations and Simulations Using SciPy
For further program testing, try reversing the order of the arguments in line 06 and the

integration limits in line 09.

6.5.9 Triple Integrals

Triple integrals have the following general form:

A typical example of using a triple integral is the calculation of the air mass for a given

base area and height of an air column. The density of the air decreases exponentially

with increasing height h:

In this context, α stands for:

The mass m of an air column with the base area ab and the height h is calculated using

the following the triple integral:

SciPy calculates triple integrals using the following function:

tplquad(func, x1, x2, y1, y2, z1, z2, ...)

The func parameter expects a mathematical function of the following form:

The x1 and x2 parameters define the integration limits on the x-axis. The y1 and y2
parameters determine the integration limits on the y-axis. The z1 and z2 parameters

define the integration limits on the z-axis.

Listing 6.16 calculates the mass of an air column for a height of 8,223 meters with a base

area of 1m2 and compares the result with the analytically calculated value.

01 #16_triple_integral.py
02 import numpy as np
03 import scipy.integrate as integral
04 g=9.81 #gravitational acceleration
05 rho_0=1.28 #air density
06 p0=10e5 #air pressure
07 alpha=g*rho_0/p0
08
306

6.6 Solving Differential Equations Numerically
09 def density(z,x,y):
10 return rho_0*np.exp(-alpha*z)
11
12 a=1 #x2
13 b=1 #y2
14 h=8.223e3 #z2 height of the air column in m
15 #mass of the air column
16 m1=a*b*rho_0*(1-np.exp(-alpha*h))/alpha
17 #x1,x2,y1,y2,z1,z2
18 m2=integral.tplquad(density,0,a,0,b,0,h)[0]
19 print("Mass of air column m1:",m1, "kg")
20 print("Mass of air column m2:",m2, "kg")

Listing 6.16 Triple Integral

Output

Mass of air column m1: 10000.269980245075 kg
Mass of air column m2: 10000.269980245075 kg

Analysis

In line 09, the density(z,x,y) function is defined for the calculation of the air mass. An

important requirement is that the function arguments are passed in the specified

order. The SciPy function tplquad(density,0,a,0,b,0,h)[0] calculates the air mass for a

height of 8,223 meters on a footprint of 1m2 in line 18. The comparison with the calcula-

tion in line 16 shows that the triple integral was calculated correctly.

6.6 Solving Differential Equations Numerically

Numerous types of differential equations cannot be solved analytically. These equa-

tions include, among others, nonlinear differential equations. However, these types of

differential equations can be solved numerically with sufficient accuracy and relatively

little effort. A particular advantage of numerical solution methods is that the initial val-

ues are a necessary part of the solution algorithm. Thus, the initial value problem no

longer needs to be solved explicitly. Another advantage of numerical solution methods

is that the calculated solution set is available as an array and can thus be visualized

using the plot method.

6.6.1 Numerical Solution of Differential Equations

If a differential equation is to be solved numerically, the equation must first be con-

verted into the explicit form:
307

6 Numerical Computations and Simulations Using SciPy
In other words, must be on the left side of the equal sign, and the term of the differ-

ential equation must be on the right side of the equal sign (rhs). For starters, let’s con-

sider an analytical, easily solvable linear first-order differential equation:

This equation will serve as a test function for checking the accuracy of the numerical

solution methods. The solution function y = 𝑓(x) can be determined by separating the

variables:

The simplest numerical method for solving first-order differential equations is the

Euler method. The basic idea of this method to approximate the course of the solution

function with a polygonal line.

The Euler algorithm computes the values for the independent variable xk from the k-

fold of increment h:

The algorithm can be derived from the following approach:

By rearranging, we obtain the following:

The respective new discrete function value yk + 1 of the solution function is calculated

using the sum algorithm from the sum of the old function value yk and the slope

:

Thus, the slopes are added to the respective function values of the solution function.

Listing 6.17 and Figure 6.15 visualize this process.

01 #17_differential_equation1.py
02 import math as math
03 import matplotlib.pyplot as plt
04
05 def f(x,y):
06 return x*y
07
08 x0=0
09 xk=2
10 y=1 #initial value
11 h=0.25 #increment
12 n=int((xk-x0)/h)
13 lx,lyu,lyg =[],[],[]
308

6.6 Solving Differential Equations Numerically
14 for k in range(n):
15 x=x0+k*h
16 y=y+h*f(x,y) #Euler method
17 yg=math.exp(x**2/2) #exact
18 lx.append(x)
19 lyu.append(y)
20 lyg.append(yg)
21 fig, ax = plt.subplots()
22 ax.plot(lx,lyu,"b--",label="inexact")
23 ax.plot(lx,lyg,"r-",label="exact")
24 ax.set(xlabel="x",ylabel="y")
25 ax.legend(loc="best")
26 plt.show()

Listing 6.17 Numerical Integration according to the Euler Method

Output

Figure 6.15 Numerical Solution of a Differential Equation Based on the Euler Method

Analysis

Line 11 defines the increment h. In this case, the increment must not be too small, so

that the polygonal lines are also clearly visible. The empty lists created in line 13 are

used to store the results for saving the exact values and the values calculated using the

Euler method. In lines 14 to 20, the calculations within the for loop are then performed,

and their results are stored in the empty lists. In lines 22 and 23, the output is done

using the plot method. Clearly visible is the fact that the values calculated using the

Euler method are somewhat smaller than the exact values of the solution.
309

6 Numerical Computations and Simulations Using SciPy
Comparing SciPy Functions: odeint versus solve_ivp

The integrate submodule provides a variety of functions and methods for the numer-

ical solution of differential equations. Since almost all methods are based on the

Runge–Kutta algorithm, I want to introduce it briefly at this point.

The fourth-order Runge–Kutta method is based on the following algorithm:

For this algorithm, the following values are given:

The Runge-Kutta algorithm exists in many different variants. As you can easily see

from its structure, it optimizes the Euler algorithm in terms of accuracy but worsens

runtimes. When you apply these algorithms, you must be aware of the restriction that

only first-order differential equations can be solved with them. Higher-order differen-

tial equations must be transformed into a first-order system, and they must be in the

explicit form.

Note

� All higher-order differential equations must be transformed into a first-order dif-

ferential equation system.

� These differential equations must be in explicit form.

You can use the SciPy functions odeint() and solve_ivp() to solve differential equa-

tions and systems of differential equations numerically. The odeint() function is an

interface function that accesses the ODEPACK Fortran library. From this library,

odeint() uses the LSODA solution method, which switches between optimal solution

methods in case of problem behavior (numerical instability, too large error).

However, the odeint() function is now considered deprecated. The SciPy documenta-

tion recommends using the solve_ivp() function for new code instead. Although

odeint() has been declared obsolete, both methods will be compared here.

The odeint(func, y0, t, args=(...), ...) function requires at least three parameters:

The func name of a first-order differential equation is passed as the first parameter. The

second parameter odeint() expects an array with the initial values y0. The third param-

eter represents the independent variable t. The fourth parameter, which is optional, can

contain additional arguments necessary for the solution of the differential equation.
310

6.6 Solving Differential Equations Numerically
The SciPy function solve_ivp(fun, t_span, y0, method='RK45', ...) must be passed at

least the first three arguments when called: The first parameter fun stands for the name

of the differential equation. The second parameter t_span is the integration interval.

The third parameter to be passed (y0) must be an array with the initial values of the dif-

ferential equation. The default value for the integration method is the Runge-Kutta

method RK45 of order 5(4).

Listing 6.18 solves the differential equation y´ = xy in the interval [0,1] using odeint()
and solve_ivp(). The exact value is also output so that the accuracy of both integration

methods can be compared.

01 #18_differential_equation_comparison.py
02 import numpy as np
03 from scipy.integrate import odeint,solve_ivp
04
05 def dgl(x,y):
06 dy_dx=y*x
07 return dy_dx
08
09 n=5
10 xmax=1
11 y0=[1] #initial value
12 xi=[0,xmax] #integration range
13 x = np.linspace(0,xmax,n)
14 #solutions
15 y1 = np.exp(x**2/2)#exact
16 y2 = odeint(dgl,y0,x)
17 #methods for solve_ivp
18 #RK45, RK23, DOP853, Radau, BDF, LSODA
19 z = solve_ivp(dgl,xi,y0,method='RK45',dense_output=True)
20 y3 = z.sol(x)
21 #comparison
22 print("Exactly :",y1)
23 print("odeint:",y2.reshape(n,))
24 print("ivp :",y3.reshape(n,))

Listing 6.18 Comparison of odeint() and solve_ivp()

Output

Exactly : [1. 1.03174341 1.13314845 1.32478476 1.64872127]
odeint: [1. 1.03174355 1.13314863 1.32478499 1.6487216]
ivp : [1. 1.03209666 1.13355731 1.32438841 1.64883123]
311

6 Numerical Computations and Simulations Using SciPy
Analysis

A comparison of the outputs clearly shows that the deprecated interface function

odeint() provides much more accurate values than the SciPy function solve_ivp().

However, you can fix this deficiency by passing two additional arguments to the solve_
ivp() function in line 19, namely, the constant for the relative tolerance rtol=1e-12 and

the constant for the absolute tolerance atol=1e-12. In this case, the solve_ivp() func-

tion calculates the exact value. You can use the commented-out solution methods in

line 18 for testing purposes in line 19.

The dense_output=True parameter and the y3 = z.sol(x) statement in line 20 are ex-

plained in the next example.

In lines 23 and 24, the outputs are linearized. You should test the outputs also without

linearization by using the NumPy method flatten().

6.6.2 First-Order Linear Differential Equation

In the following sections, I’ll describe how a linear first-order differential equation can

be solved using the SciPy function solve_ivp(). For this purpose, our example involves

a series circuit of a resistor and an inductor, as shown in Figure 6.16.

Figure 6.16 Activating a Coil

At time t = 0, the switch will be closed. We are searching for the current profile i(t).

At any point in the transient state, the following equation applies:

With the voltage drops at the coil and at the resistor, we obtain the following equation:

By rearranging, we get the explicit form of the differential equation for the current pro-

file:

L

i(t)

U0

R

UL

UR
312

6.6 Solving Differential Equations Numerically
Listing 6.19 solves the differential equation and displays it graphically, as shown in

Figure 6.17.

01 #19_differential_equation3.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.integrate import solve_ivp
05 U0=10
06 R,L=1,1
07 Tau=L/R
08 tmax=5*Tau
09 ti=[0,tmax] #integration interval
10 IL0 =[0] #initial value
11 #First-order differential equation
12 def dgl(t,ia):
13 i=ia #initial value
14 di_dt=(U0-R*i)/L
15 return di_dt
16 #t.shape (500,)
17 t = np.linspace(0,tmax,500)
18 #solution of the differential equation
19 z = solve_ivp(dgl,ti,IL0,dense_output=True)
20 iL = z.sol(t) #iL.shape (1,500)
21 #Display of the solution
22 fig, ax = plt.subplots()
23 ax.plot(t, iL.flatten(),"r-",lw=2) #iL.flatten().shape (500,)
24 ax.set(xlabel="t",ylabel="$I_L(t)$")
25 ax.grid(True)
26 plt.show()

Listing 6.19 Activating a Coil

Output

The graphical output is shown in Figure 6.17.

Analysis

Line 09 sets the integration interval ti=[0,tmax], and line 10 determines the initial

value IL0=[0] of the current. Note that the initial values are enclosed in square brackets.

Line 19 solves the differential equation and stores the data of the solution in the z
object. This object can then be used to access the sol(t) function in line 20. The solu-

tion vector is stored in the iL object and prepared for plotting in line 23 using the

Matplotlib method plot(t,iL.flatten()). The NumPy method flatten() converts the

two-dimensional iL array with the shape (1,500) into a one-dimensional array with the

shape (500,). If you do not perform this operation, you’ll get an error message because,
313

6 Numerical Computations and Simulations Using SciPy
in the plot method, only one-dimensional arrays are allowed as arguments for the

independent and dependent variables. You can determine the dimension and type

(shape) of the arrays using print(name.ndim) and print(name.shape), respectively.

Figure 6.17 Activating a Coil

The dense_output=True parameter is of particular importance. The default value of

dense_output is False. If you omit this parameter or set it to False, the following error

message will appear:

TypeError: 'NoneType' object is not callable

This parameter allows you to use the sol(t) function. In the documentation, this func-

tion is referred to as an object (Found solution as `OdeSolution` instance). In fact, sol()
should be referred to as a method because it accesses the z object. sol(t) computes the

numerical solution of the differential equation for the time values specified in NumPy

array t. You can use print(z) to display the contents of the z object:

message: The solver successfully reached the end of the integration interval.
success: True
status: 0

t: [0.000e+00 1.000e-04 … 5.000e+00]
y: [[0.000e+00 1.000e-03 … 9.735e+00 9.931e+00]]
sol: <scipy.integrate._ivp.common.OdeSolution object at 0x141659c30>

t_events: None
y_events: None

nfev: 56
njev: 0
nlu: 0
314

6.6 Solving Differential Equations Numerically
The contents of z can also be output individually in the Python shell via print(z.mes-
sage). You can find out the meaning of each statement by typing help(solve_ivp) in the

Python shell.

6.6.3 Second-Order Linear Differential Equation

Based on our example series resonant circuit, let’s now solve a second-order linear dif-

ferential equation, as shown in Figure 6.18. We need to calculate the voltage profile uc(t)

for the transient state (step response).

Figure 6.18 Equivalent Circuit Diagram for a DC Motor with Separate Excitation

Our series circuit of a resistor, an inductor, and a capacitor can model the dynamic

behavior of a DC motor with separate excitation. The resistance R, the inductance L,

and the capacitance C represent the ohmic resistance of the copper winding, the arma-

ture inductance, and the what’s called the dynamic capacitance of a DC motor with sep-

arate excitation. The dynamic capacitance describes the mechanical inertia of the

armature (rotor) of a DC motor. The rotational energy stored in the armature is equal to

the electrical energy stored in a capacitor.

The dynamic capacitance is calculated from the moment of inertia of the working

machine J, the rated armature current IAN, and the rated torque MN:

The course of the rotational frequency n(t) corresponds to the voltage profile at the

capacitor ic(t). If the value of the battery voltage U0 is 100V, then the normalized rota-

tional frequency profile can be read on the y-axis as a percentage value for each time of

the transient state.

To obtain the differential equation for the capacitor voltage, you must first set up the

mesh equation for the voltage drops on the components:

C

i(t)

UCU0

R

UR

L

UL
315

6 Numerical Computations and Simulations Using SciPy
The following applies for the capacitor current:

The voltage drop across the coil is determined by the law of induction:

Substituting the coil voltage into the mesh equation provides:

And substituting the capacitor current into the mesh equation provides:

By rearranging, you obtain a system of two differential equations. The first is for the

capacitor voltage:

The second is for the coil current:

Because this differential equation system was set up in explicit form, it can be coded

directly as source code, as shown in Listing 6.20.

01 #20_differential_equation_second_order.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.integrate import solve_ivp
05 U0 = 100 #input voltage in V
06 R = 1.5 #armature resistance in Ohms
07 L = 0.025 #armature inductance in H
08 Mn=150 #rated torque in Nm
09 In=50 #rated current in A
10 J=0.2 #moment of inertia in kgm^2
11 tmax=0.5 #time in seconds
12 #system of differential equations
13 def dgl(t,initial_values,R,L,C):
14 uc,i = initial_values
15 duc_dt = i/C
16 di_dt = (U0 - R*C*duc_dt-uc)/L
17 return [duc_dt, di_dt]
18
19 C = J*(In/Mn)**2 #dynamic capacitance
316

6.6 Solving Differential Equations Numerically
20 a0 = [0,0] #initial values
21 ti=[0,tmax] #integration interval
22 t = np.linspace(0,tmax,500)
23 z=solve_ivp(dgl,ti,a0,args=(R,L,C),dense_output=True)
24 uc,ic = z.sol(t)
25 fig,axes=plt.subplots(2,1,figsize=(6,6))
26 #capacitor voltage
27 axes[0].plot(t, uc,'b-',lw=2)
28 axes[0].set_title("Step response of a DC motor with separate excitation")
29 axes[0].set_ylabel('Output voltage in V')
30 #current_profile
31 axes[1].plot(t, ic,'r-',lw=2)
32 axes[1].set(xlabel='Time in seconds',ylabel='Armature current in A')
33 axes[0].grid(True);axes[1].grid(True)
34 print("Dynamic capacitance:",C, "F")
35 fig.tight_layout()
36 plt.show()

Listing 6.20 Step Response of a DC Motor with Separate Excitation

Output

Dynamic capacitance: 0.0222 F

The graphical output of the step response is shown in Figure 6.19.

Figure 6.19 Step Response of a DC Motor with Separate Excitation
317

6 Numerical Computations and Simulations Using SciPy
Analysis

In lines 13 to 17, the function for the differential equation system dgl(t,initialval-
ues,R,L,C) is defined. This function returns the array [duc_dt, di_dt] as the solution

set.

In line 23, this differential equation is solved. The additional parameters for the values

of the components are passed as tuples args=(R,L,C). Since the z object contains the

solution set for the voltage and current profiles, they must be separated in line 24. The

solution of the differential equation is stored in the tuple uc, ic.

6.6.4 Nonlinear Second-Order Differential Equation

The particular strengths of numerical solution methods are that they can also solve

nonlinear differential equations. For example, the pendulum motion of a mathemati-

cal pendulum can be described by a nonlinear differential equation. We now want to

simulate the movement of the pendulum shown in Figure 6.20. For this purpose, the

differential equation of the oscillating system must be set up and converted into the

explicit form.

Figure 6.20 Simple Pendulum

A sphere of mass m is attached to a rod. The rod is assumed to be massless, while the

entire mass of the system is concentrated as a point mass in the sphere. Bearing

m

I

s

F
t

F
g

h

I – h
318

6.6 Solving Differential Equations Numerically
friction is also neglected. However, the air friction of the sphere, which is described by

the following equation, should not be neglected:

In detail, this equation means the following:

� 𝜌: air density 1.28kg/m3

� cw: drag coefficient

� A: cross-section of the sphere

� l: length of the pendulum

� ω: angular velocity of the pendulum in 1/s

The tangential force acts against the acceleration:

For the force component of the acceleration, the following equation applies:

At any point in time, the sum of all forces must equal zero:

By inserting the values, you obtain a nonlinear second-order differential equation:

Dividing by ml provides the following result:

Using the abbreviations for the friction and for the angular fre-

quency provides the following clear form:

The frequency of the pendulum movement decreases with the pendulum length and

the period duration increases with the length of the pendulum:

The pendulum swings back and forth on a circular path after being deflected because

the potential energy of the sphere is converted into kinetic energy and the kinetic

energy of the sphere is in turn converted into potential energy. This process is damped

by air friction and bearing friction.
319

6 Numerical Computations and Simulations Using SciPy
The sphere of the pendulum moves along a circular path. The maximum orbital veloc-

ity can be calculated from the energy balance with the following equation:

The second-order differential equation of the pendulum motion can be solved using

the solve_ivp() function only if it is transformed into a system of two first-order differ-

ential equations.

With , we can obtain the explicit first-order differential equation system:

As shown in Listing 6.21, we can simulate Foucault’s pendulum, which was a famous

experiment held at the Panthéon in Paris on March 26, 1851. This pendulum had a

length of 67 meters and a spherical mass of 28 kilograms.

Although the deflection angle of 179° specified in line 07 is unrealistic for a pendulum

length of 10 meters (line 05), it was deliberately chosen so that the nonlinearities of the

motion sequence become clearly visible, as shown in Figure 6.21.

01 #21_differential_equation_simple_pendulum.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.integrate import solve_ivp
05 l=10 #length of the pendulum in m
06 d=1 #diameter of the sphere in dm
07 phi0=179 #deflection
08 cw=0.3 #drag coefficient for the sphere
09 rho_K=7.85 #density of steel kg/dm^2
10 rho_L=1.28 #Density of air kg/m^3
11 g=9.81 #gravitational acceleration
12 tmax=50
13 #system of differential equations
14 def dgl(t,ya,b,w02):
15 phi, w = ya
16 dphi_dt = w
17 dw_dt = -b*np.abs(w)*w-w02*np.sin(phi)
18 return [dphi_dt,dw_dt]
19 #computations
20 r=d/2 #radius of the sphere in dm
21 A=np.pi*(0.1*r)**2 #circle area in m^2
22 m=rho_K*4/3*np.pi*r**3 #mass of the sphere in kg
23 b=cw*rho_L*A*l/(2*m) #damping constant
24 w02=g/l
320

6.6 Solving Differential Equations Numerically
25 T=2.0*np.pi*np.sqrt(l/g)
26 f=1.0/T #frequency
27 vmax=np.sqrt(2*g*l*(1-np.cos(np.radians(phi0))))
28 #solution of the differential equation
29 y0 = [np.radians(phi0),0]
30 t = np.linspace(0, tmax, 500)
31 z=solve_ivp(dgl,[0,tmax],y0,args=(b,w02),dense_output=True)
32 phi, w = z.sol(t)
33 v=l*w
34 #Output
35 fig,ax=plt.subplots(2,1)
36 #Deflection
37 ax[0].plot(t, np.degrees(phi),'r-',lw=2)
38 ax[0].set(ylabel=r"φ in °",title="Simple pendulum")
39 #Velocity
40 ax[1].plot(t, v,'b-',lw=2)
41 ax[1].set(xlabel='Time in s',ylabel="v in m/s")
42 [ax[i].grid(True) for i in range(len(ax))]
43 fig.tight_layout()
44 print("Mass of the sphere %3.2f kg"%m)
45 print("Period duration %3.2f s"%T)
46 print("Frequency %3.2f Hz"%f)
47 print("Damping %3.4f"%b)
48 print("Maximum velocity %3.2f m/s"%vmax)
49 plt.show()

Listing 6.21 Simple Pendulum

Output

Figure 6.21 shows the graphical output of the program.

Mass of the sphere 4.11 kg
Period duration 6.34 s
Frequency 0.16 Hz
Damping 0.0037
Maximum velocity 19.81 m/s

Analysis

The structure of the simulation program results from the previously derived formulas.

At a deflection angle of 179°, the nonlinearity of the curves is clearly visible. If you

reduce the angle in line 07 to about less than 90°, then the nonlinearity is already no

longer visible to the naked eye. For the variation of the simulations, you can change the

diameter of the sphere in line 06 and the density of the material in line 09.
321

6 Numerical Computations and Simulations Using SciPy
Figure 6.21 Deflection and Velocity of a Simple Pendulum

If you want to simulate Foucault’s pendulum, then you must enter 67m for the pendu-

lum length and 1.896dm for the sphere diameter. A deflection angle of 1.71° corresponds

to a deflection of about 2m.

6.6.5 Second-Order Differential Equation System: Coupled Spring-Mass System

A coupled spring-mass system, shown in Figure 6.22, forms an oscillating system in

which the two masses influence each other’s movements.

Figure 6.22 Two-Mass Oscillator with Damping

The masses and are supposed to only move horizontally along the x-axis, in the

horizontal direction. The deflections x1 and x2 refer to the idle state. The physical

behavior of the two springs is determined by the damping constants d1, d2, and d3 and

the spring constants c1, c2, and c3 .

c1, d1 c2, d2 c3, d3

x1 x2

m1 m2
322

6.6 Solving Differential Equations Numerically
The spring-mass system is described by the following differential equation system

(from Vöth: 80):

Both sides must be divided by the masses to obtain the explicit form:

With the substitutions

we obtain the following differential equation system:

Listing 6.22 solves this differential equation system using the solve_ivp() function and

visualizes the motion sequences of the coupled spring-mass system, as shown in

Figure 6.23.

01 #22_differential_equation_two-mass_oscillator.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.integrate import solve_ivp
05 m=1e3 #mass in kg
06 c=1e7 #spring constant N/m
07 d=1e3 #damping kg/s
08 m1,m2=m,2*m
09 c1,c2,c3=c,2*c,3*c
10 d1,d2,d3=d,2*d,3*d
11 tmax=0.2 #seconds
12 #system of differential equations
13 def dgl(t,xa,c1,c2,c3,d1,d2,d3,m1,m2):
14 x1,v1,x2,v2=xa
15 dx1_dt=v1
16 dv1_dt=-(d1*v1+d2*(v1-v2)+c1*x1+c2*(x1-x2))/m1
17 dx2_dt=v2
18 dv2_dt=-(d3*v2+d2*(v2-v1)+c3*x2+c2*(x2-x1))/m2
19 return np.array([dx1_dt,dv1_dt,dx2_dt,dv2_dt])
323

6 Numerical Computations and Simulations Using SciPy
20 #Solution of the differential equation system
21 t = np.linspace(0,tmax,500)
22 x0 = [0.1, 0.0, 0.0, 0.0]#initial values
23 parameter=(c1,c2,c3,d1,d2,d3,m1,m2)
24 z=solve_ivp(dgl,[0,tmax],x0,args=parameter,dense_output=True)
25 x1,v1,x2,v2 = z.sol(t)
26 fig,ax=plt.subplots()
27 #deflection m1
28 ax.plot(t, 1e3*x1,'r-',lw=1.5,label=r'm_{1}')
29 #deflection m2
30 ax.plot(t, 1e3*x2,'b-',lw=1.5,label=r'm_{2}')
31 ax.legend()
32 ax.set(xlabel='t in s',ylabel='Deflection in mm')
33 ax.grid(True)
34 plt.show()

Listing 6.22 Solution of the Differential Equation System for a Two-Mass Oscillator

Output

Figure 6.23 Motion Profile of a Two-Mass Oscillator

Analysis

The values for the masses, damping, and spring constants were taken from Vöth: 79f.

(lines 05 to 10).

The function definition dgl() in lines 13 to 19 contains the code for the differential

equation system in explicit form. The derivatives are returned as a NumPy array in line

19. This approach shortens the computation time compared to the return with lists.
324

6.6 Solving Differential Equations Numerically
In line 24, the solve_ivp() function solves the differential equation system. The solu-

tion data is stored in the z object. In line 25, the solutions are separated and stored in

the tuple x1,v1,x2,v2.

The graphics area for the graphic representation of the mass deflections m1 and m2

begins in line 26. The factor 1e3 in lines 28 and 30 causes the values for the x-axis to be

converted to ms and the values for the y-axis to be converted to mm.

Compared to the SymPy method dsolve_system(), the numerical calculation using the

SciPy function solve_ivp() is much faster and more effective.

6.6.6 Nonlinear Second-Order Differential Equation System: Double Pendulum

In the next example, the motion sequences of a double pendulum will be simulated, as

shown in Figure 6.24.

Figure 6.24 Double Pendulum

The two masses are connected by rigid rods. The bearing friction and air friction as well

as the moment of inertia of the rods can be neglected.

A double pendulum is a complex oscillating system whose motion can be described by

two nonlinear differential equations, in this scenario from http://www.physics.usyd.

edu.au/~wheat/dpend_html/.

m1

I1

I2

1

2

m2
325

http://www.physics.usyd.edu.au/~wheat/dpend_html/
http://www.physics.usyd.edu.au/~wheat/dpend_html/
http://www.physics.usyd.edu.au/~wheat/dpend_html/

6 Numerical Computations and Simulations Using SciPy
For the first pendulum, the following equation applies:

For the second pendulum, the following equation applies:

In this case, the abbreviations Δ and m stand for and m = m1 + m2.

Listing 6.23 solves this differential equation system using the solve_ivp() function and

visualizes the deflections of a double pendulum in x and y direction, as shown in Figure

6.25, as a function of time and as a trajectory.

01 #23_differential_equation_double_pendulum.py
02 import numpy as np
03 from numpy import sin,cos
04 import matplotlib.pyplot as plt
05 from scipy.integrate import solve_ivp
06 #pendulum data
07 g = 9.81 #gravitational acceleration
08 l1,l2 = 2,1 #pendulum lengths
09 m1,m2 = 5,1 #pendulum masses
10 phi1, phi2 = 120, -10 #deflection
11 tmax=20
12 #system of differential equations
13 def dgl(t,ya,l1, l2, m1, m2):
14 phi1,w1,phi2,w2 = ya
15 delta=phi2-phi1; m=m1+m2 #abbreviation for angle and mass
16 phi1_dt = w1 #1. Derivative top angle
17 w1_dt=(m2*l1*w1**2*sin(delta)*cos(delta)\
18 +m2*g*sin(phi2)*cos(delta)+m2*l2*w2**2*sin(delta)-m*g*sin(phi1))\
19 /(m*l1-m2*l1*cos(delta)**2)
20 phi2_dt = w2 #1. Derivative bottom angle
21 w2_dt=(-m2*l2*w2**2*sin(delta)*cos(delta)\
22 + m*(g*sin(phi1)*cos(delta)-l1*w1**2*sin(delta)-g*sin(phi2)))\
23 /(m*l2-m2*l2*cos(delta)**2)
24 return np.array([phi1_dt, w1_dt, phi2_dt, w2_dt])
25 #Solution of the differential equation system
26 omega1 = omega2 = 0
27 ya =[np.radians(phi1),omega1,np.radians(phi2),omega2]
28 t = np.linspace(0,tmax,1000)
29 z=solve_ivp(dgl,[0,tmax],ya,args=(l1,l2,m1,m2),dense_output=True)
326

6.6 Solving Differential Equations Numerically
30 phi1, w1, phi2, w2 = z.sol(t) #solutions
31 #calculation of the x,y coordinates, l1 is anchored in the origin
32 x1,y1 = l1*sin(phi1), -l1*cos(phi1) #1st pendulum
33 x2,y2 = x1+l2*sin(phi2),y1-l2*cos(phi2) #2nd pendulum
34 fig, ax = plt.subplot_mosaic([['upper left', 'right'],
35 ['lower left', 'right']],
36 figsize=(8,4), layout="constrained")
37 #Deflection pendulum l1 (top)
38 width=1.1*(l1+l2)
39 ax['upper left'].plot(t,x1,'r-',lw=1)#x-direction top
40 ax['upper left'].plot(t,y1,'b-',lw=1)#y-direction top
41 ax['upper left'].set(ylabel='x_1, y_1',title='Pendulum 1')
42 #Deflection pendulum l2 (bottom)
43 ax['lower left'].plot(t,x2,'r-',lw=1) #x-direction bottom
44 ax['lower left'].plot(t,y2,'b-',lw=1) #y-direction bottom
45 ax['lower left'].set(xlabel='t',ylabel='x_2, y_2',title='Pendulum 2')
46 #Trajectories
47 width=1.1*(l1+l2)
48 ax['right'].plot(x1,y1,'r-',lw=1,label='Pendulum 1')
49 ax['right'].plot(x2,y2,'b-',lw=1,label='Pendulum 2')
50 ax['right'].set(xlabel='x',ylabel='y',title='Trajectories')
51 ax['right'].legend(loc='best')
52 ax['right'].set_xlim(-width,width)
53 ax['right'].set_ylim(-width,width)
54 plt.show()

Listing 6.23 Double Pendulum

Output

Figure 6.25 Motion Profile of a Double Pendulum
327

6 Numerical Computations and Simulations Using SciPy
Analysis

As clearly indicated by the trajectories shown in Figure 6.25, pendulum 1 is forced to

move on a circular path, while pendulum 2 performs chaotic movements. By changing

the pendulum lengths in line 08 and the pendulum masses in line 09, you can perform

various simulations.

In lines 13 to 24, the differential equation system dgl for the pendulum motions is

implemented as required by the specifications. In line 29, the solve_ivp() function

solves this differential equation system and stores the solution vector in the z object.

In line 30, the solutions are separated and stored in the tuple phi1, w1, phi2, w2.

In line 32, the x-y coordinates of the pendulum motion are calculated for pendulum 1

and in line 33 for pendulum 2.

6.7 Discrete Fourier Transform

Any periodic non-sine wave can be approximated by an infinite series of sinusoidal

oscillations. For example, a rectangular periodic signal consists of a fundamental fre-

quency and a sum of an infinite number of harmonics, whose frequencies consist of an

odd multiple of the fundamental frequency. The amplitudes of the harmonic decrease

by an odd fraction:

In amplifiers, sinusoidal signals (voltages or currents) are distorted by the nonlinear

characteristic curves of the transistors. This results in harmonics. To assess the devia-

tion of a signal from the sine wave, the term total harmonic distortion was introduced:

The smaller the total harmonic distortion, the better the “quality” of the sine wave.

For a rectangular function, the following equation applies:

According to Shannon’s sampling theorem, the signal must be sampled with at least

twice the frequency to detect these harmonics. Mathematically, the sampling process

is described by the discrete Fourier transform. This transformation determines the fre-

quency components of a non-sine wave. This approach transforms a signal s(t) from

the time domain to the frequency domain , using the following algorithm:
328

6.7 Discrete Fourier Transform
The inverse Fourier transform is used to transform back into the time domain:

SciPy provides the Fourier transform functions in the fft subpackage. The fft(x) func-

tion transforms the x array from the time domain to the frequency domain. It calcu-

lates the one-dimensional discrete Fourier transform (DFT) for N sample points using

the efficient fast Fourier transform (FFT) algorithm. The first letter f (fast) in the identi-

fier of the function refers to the efficiency of the algorithm.

The inverse ifft(x) function transforms the signal back to the time domain s(t).

6.7.1 Basic Use of the Fast Fourier Transform Algorithm

Listing 6.24 shows how the discrete voltage values u_t1 are transformed from the time

domain to the frequency domain using the fft(u_t1) function and then transformed

back to the time domain using the ifft(U_fft) function.

01 #24_fourier1.py
02 from scipy.fft import fft,ifft
03 u_t1=[0,1,2,3,4,5]
04 #transformation to the frequency domain
05 U_fft=fft(u_t1)
06 #transformation to the time domain
07 u_t2=ifft(U_fft)
08 print("Original signal :\n",u_t1)
09 print("Transformed signal:\n",U_fft)
10 print("Reconstructed signal:\n",u_t2.real)

Listing 6.24 Fourier Transform and Inverse Transform

Output

Original signal:
[0, 1, 2, 3, 4, 5]

Transformed signal:
[15.-0.j -3.+5.19615242j -3.+1.73205081j -3.-0.j
-3.-1.73205081j -3.-5.19615242j]

Reconstructed signal:
[0. 1. 2. 3. 4. 5.]

Analysis

In line 05, the fast Fourier transform function fft(u_t1) from the fft submodule trans-

forms the u_t1 list from line 03 to the frequency domain. The output in line 09 is an

array of complex numbers whose practical usability cannot be seen at this point. In line
329

6 Numerical Computations and Simulations Using SciPy
07, the inverse Fourier transform function ifft(U_fft) transforms the U_fft function

from the frequency domain back to the time domain. The output in line 10 shows that

the reverse transformation is exact. By specifying the real property, the outputs of the

imaginary parts, which are zero anyway, are suppressed.

6.7.2 Frequency Spectra of Non-Sinusoidal Periodic Signals

In our next example, Listing 6.25 shows the computation of frequency spectra and the

total harmonic distortion for rectangular, sawtooth, triangular, and parabolic signals

using the Fourier transform. In line 43, the desired waveform can be tested by changing

the function name.

01 #25_fourier_rectangle.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.fft import fft,fftfreq
05 f=50 #frequency in Hz
06 T=1/f #period duration
07 umax=325 #amplitude
08 N=6000 #number of samplings
09 Ta=T/N #sampling time
10 t=np.linspace(0,T,N)
11 #compute total harmonic distortion
12 def total_harmonic_distortion(u):
13 z=0
14 for i in range(1,len(u)):
15 z=z+u[i]**2
16 return np.sqrt(z)/u[0]
17 #rectangle function
18 @np.vectorize
19 def ur(t):
20 if t < T/2:
21 return umax
22 else:
23 return -umax
24 #sawtooth
25 @np.vectorize
26 def us(t):
27 return 1e4*(t-T/2)
28 #triangle
29 @np.vectorize
30 def ud(t):
31 m=100
32 if t < T/2:
330

6.7 Discrete Fourier Transform
33 return m*t
34 else:
35 return -m*(t-T/2)+m*T/2
36 #parabolic arcs
37 @np.vectorize
38 def up(t):
39 if t < T/2:
40 return -(t-T/4)**2+(T/4)**2
41 else:
42 return (t-3*T/4)**2-(T/4)**2
43 u_t=ur(t)
44 #transformation to the frequency domain
45 U_fft = fft(u_t)
46 #magnitudes of the amplitudes in the frequency domain
47 U_f=2*np.abs(U_fft)/N
48 #compute harmonics
49 fk=fftfreq(N,Ta)
50 pos=np.where(fk>0) #only positive frequencies
51 #create subdiagrams
52 print("Total harmonic distortion %2.3f"%total_harmonic_distortion(U_f[pos]))
53 fig,ax=plt.subplots(2,1)
54 #display square wave display
55 ax[0].plot(1e3*t,u_t,"b-",lw=2)
56 ax[0].set(xlabel="t in ms",ylabel="U in V")
57 #display frequency spectrum
58 ax[1].stem(fk[pos],U_f[pos])
59 ax[1].set(xlabel="f in Hz",ylabel="Amplitudes")
60 ax[1].set_xlim(0,1000)
61 fig.tight_layout()
62 plt.show()

Listing 6.25 Computing Frequency Spectra of Non-Sinusoidal Signals

Output

Figure 6.26 shows the graphical output of the program.

Total harmonic distortion 0.483

Analysis

All custom functions must be vectorized via @np.vectorize so that they can be repre-

sented on the time axis. In line 43, the function call of the custom signal function takes

place. By changing the function name, you can select the desired waveform (rectangle

ur(t), sawtooth us(t), triangle ud(t), or parabolic arcs up(t)) for the calculation of the

total harmonic distortion and the display of the frequency spectrum.
331

6 Numerical Computations and Simulations Using SciPy
Figure 6.26 Frequency Spectrum of a 50 Hz Square Wave

The total harmonic distortion (u) function for the calculation of the total harmonic dis-

tortion is defined in lines 12 to 16. The algorithm sums up the individual amplitudes of

the frequency spectrum (so-called harmonics) within a for loop. Note that the loop pass

must start with index 1 so that the fundamental frequency u[0] is not added up with it.

In line 45, the SciPy function fft(u_t) transforms the time function u_t into the fre-

quency domain. Since the transformation produces complex frequencies, the NumPy

function abs() in line 47 computes the amounts of the amplitudes. In line 49, the fft-
freq(N,Ta) function determines the harmonics from the number of sampling points N
and from the sampling time Ta. In line 50, the NumPy function where(fk>0) suppresses

all negative harmonics and stores them in the pos variable.

In line 55, the plot method prepares the display of the temporal signal wave u_t. The

time axis was realistically scaled to milliseconds. In line 58, the matplotlib method

stem(x,y) plots the amplitudes of the frequency spectrum (i.e., the harmonics) as verti-

cal lines for each calculated x-y position, as shown in Figure 6.26.

The total harmonic distortion of 0.483 calculated for the square wave function corre-

sponds to the theoretically determined value.

6.7.3 Reconstructing a Noisy Signal

If for any periodic non-sinusoidal function the frequency spectrum can be calculated

using the Fourier transform, then it must also be possible to suppress unwanted
332

6.7 Discrete Fourier Transform
frequencies (such as noise) in the frequency domain. Above a certain frequency, what’s

called the cutoff frequency 𝑓g, these frequencies are no longer taken into account in the

frequency domain by a comparison 𝑓<𝑓g when transforming back into the time

domain. This method allows you to suppress certain harmonics or noise. Listing 6.26

shows how a noisy sine wave is filtered in the frequency domain and transformed back

into the time domain using the inverse Fourier transform ifft(F).

01 #26_low-pass_filter.py
02 import numpy as np
03 from matplotlib import pyplot as plt
04 from scipy.fft import fft,ifft,fftfreq
05 f=50 #frequency in Hz
06 T = 1/f #period duration
07 fg=1.1*f #cutoff frequency
08 N=6000 #number of samplings
09 Ta=T/N #sampling time
10 t = np.linspace(0,T,N)
11 u_t=10*np.sin(2*np.pi*f*t)+8*np.random.randn(t.size)
12 #transformation to the frequency domain
13 U_fft = fft(u_t)
14 #compute sampling frequency
15 fk = fftfreq(u_t.size,Ta)
16 #filter signal
17 F_g=U_fft*(np.abs(fk) < fg)
18 #transformation back to the time domain
19 u_g = ifft(F_g)
20 fig, ax=plt.subplots(2,1,figsize=(6,6))
21 #noisy signal
22 ax[0].plot(1e3*t, u_t)
23 ax[0].set(xlabel="t in ms",ylabel="u(t)",title="Noisy signal")
24 #filtered signal
25 ax[1].plot(1e3*t, u_g.real,lw=2)
26 ax[1].set(xlabel="t in ms",ylabel="u(t)",title="Filtered signal")
27 fig.tight_layout()
28 plt.show()

Listing 6.26 Simulation of a Low-Pass Filter

Output

The graphical output of the noisy and filtered signals is shown in Figure 6.27.
333

6 Numerical Computations and Simulations Using SciPy
Figure 6.27 Reconstruction of a Noisy Signal

Analysis

In line 11, a sine function u_t with a superimposed noisy signal is defined. In line 13, the

transformation into the frequency domain takes place.

The crucial operation takes place in line 17 where all harmonics greater than the cutoff

frequency fg are suppressed by a simple mathematical comparison operation. In the

F_g variable, only those harmonics that are below the cutoff frequency are stored.

The original sine wave is reconstructed by the reverse transformation into the time

domain (line 19).

6.8 Writing and Reading Sound Files

SciPy has many submodules, classes, and functions that you can use to read and write

data from various file formats (e.g., MATLAB or Fortran files). This section focuses on

the treatment of the write() and read() functions of the io submodule for saving and

reading sound files in the WAV format.

6.8.1 Generating and Saving Signals

The write(filename,rate,data) function expects three arguments when called: The

first parameter filename creates a wav file from a NumPy array. As the second argument,
334

6.8 Writing and Reading Sound Files
the function expects the sampling rate rate. The third parameter (data) expects a

NumPy array containing the sampled audio signals.

Listing 6.27 produces the concert pitch A (440 Hz). A program that can play WAV files

can make this sound audible. The program can also be used for a hearing test if you

increase the frequencies in line 05 step by step up to about 20,000 Hz.

01 #27_pitch_generation.py
02 import numpy as np
03 from scipy.io import wavfile
04 samplingrate = 44100
05 f=440 #frequency in Hz
06 t = np.linspace(0,1,samplingrate)
07 amp = np.iinfo(np.int16).max
08 pitch = amp*np.sin(2*np.pi*f*t)
09 print("Amplitude:",amp)
10 wavfile.write("sinus440Hz.wav", samplingrate, pitch)

Listing 6.27 Generating and Saving Concert Pitch A

Output

Amplitude: 32767

Analysis

Line 04 specifies that the signal is sampled 44,100 times in 1 second. Line 05 determines

the frequency f of the pitch to be generated. If necessary, you can vary the frequency of

the sound in this line. In line 06, 1 second must be entered for the duration of the tone

because the sampling rate refers to the interval from 0 to 1 second. In line 07, you can

also enter other values for the amplitude (amp) of the signal. By superimposing different

sinusoidal oscillations, other sounds can also be generated in line 08. In line 10, the fol-

lowing SciPy function generates a sound file in WAV format:

wavefile.write("sinus440Hz.wav",samplingrate,pitch)

This file is saved in binary format as sinus440Hz.wav to the hard disk. The sampling rate

(samplingrate) and the pitch object must be passed to the wavefile.write() function.

6.8.2 Reading and Displaying Signals

The read(filename) function is used to read WAV files. Listing 6.28 reads the signal data

from the sinus440Hz.wav file and displays it graphically as a function of time, as shown

in Figure 6.28.
335

6 Numerical Computations and Simulations Using SciPy
01 #28_read_pitch.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.io import wavfile
05 sampling_rate,data = wavfile.read("sinus440Hz.wav")
06 t = np.linspace(0, 1, sampling_rate)
07 fig, ax=plt.subplots()
08 ax.plot(t,data)
09 ax.set_xlim(0,0.01)
10 ax.set(xlabel="Time in seconds")
11 plt.show()

Listing 6.28 Reading and Graphically Displaying Sound Data

Output

Figure 6.28 440 Hz Signal of a WAV File

Analysis

The output shows that the data of the sound file sinus440Hz.wav was read correctly: In

10 ms, about four periods of the 440 Hz signal with the amplitude of about 33,000 are

displayed.

In line 05, the SciPy function wavfile.read("sinus440Hz.wav") reads the data of the

sinus440Hz.wav file and saves it in the samplingrate,data tuple. The sampling rate

(samplingrate) is needed in line 06 to define the distances on the t-axis.

In line 08, the coordinate data t,data is passed to the plot method. To ensure that indi-

vidual oscillations of the signal remain recognizable, the t-axis was limited to a final

value of 10 ms in line 09.
336

6.9 Signal Processing
6.9 Signal Processing

The signal subpackage provides a variety of signal processing functions such as con-

volution, B-splines, spectral analysis, filter design, and many others. For more infor-

mation, I recommend reading the SciPy documentation as I will describe only the

Butterworth filter in this section.

6.9.1 Frequency Response of a Butterworth Lowpass

The following function computes the numerator and denominator coefficients of a

Butterworth filter:

b,a=butter(N,Wn,btype='low',analog=False,output='ba',fs=None)

The meaning of the individual parameters is described in Table 6.2.

To plot the frequency response of a filter, you’ll need the w,h=freqs(b,a) function. This

function returns two arrays with the values of the frequency response h calculated

from the numerator and denominator coefficients b and a and the corresponding

frequency values w as tuples. Using the Matplotlib method plot() or even better, the

semilogx() method, the frequency response of an analog filter can be displayed as a

function plot.

Parameter Description

N Degree of the filter

Wn Cutoff frequency (-3 dB for Butterworth filters). For analog filters, Wn is an

angular frequency (rad/s).

For lowpass and highpass filters, Wn is a scalar.

For bandpass and bandstop filters, Wn is an array containing the lower and

upper cutoff frequencies.

btype Type of filter: Options include lowpass, highpass, bandpass, and band-
stop. The default setting is lowpass.

analog=False Selects an analog or digital filter. If the parameter is omitted, a digital

filter will be implemented.

output='ba' Type of output:

� ba: Numerator/denominator coefficients (default setting)

� zpk: Poles and zeros

� sos: Used for the filter function (second order section)

fs=None Sampling frequency of a digital filter

Table 6.2 Parameters for a Butterworth Filter
337

6 Numerical Computations and Simulations Using SciPy
Listing 6.29 represents the frequency response of a third-degree Butterworth lowpass

filter for the cutoff frequency 1 Hz with logarithmic scale division. The 'lowpass'
parameter in line 08 specifies that a lowpass is supposed to be simulated.

01 #29_tp_frequency_response.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.signal import butter,freqs
05 g=3 #degree of the filter
06 fg=1 #cutoff frequency in Hz
07 #numerator, denominator coefficients
08 b,a=butter(g,fg,'lowpass',analog=True)
09 #angular frequency, frequency response
10 omega,h_t = freqs(b,a)
11 fig, ax=plt.subplots(figsize=(8,6))
12 ax.semilogx(omega, 20*np.log10(abs(h_t)))
13 #ax.plot(omega, 20*np.log10(abs(h_t)))
14 ax.set_title('Butterworth lowpass')
15 ax.set_xlabel('f in Hz')
16 ax.set_ylabel('Amplitude in dB')
17 ax.margins(0, 0.1)
18 ax.grid(which='both', axis='both')
19 ax.axvline(fg, color='red') #cutoff frequency
20 plt.show()

Listing 6.29 Frequency Response of a Butterworth Lowpass

Output

Figure 6.29 Frequency Response of a Butterworth Lowpass
338

6.9 Signal Processing
Analysis

A third-degree lowpass has an attenuation of 60 dB per decade, which is confirmed by

the function plot shown in Figure 6.29.

Strictly speaking, the cutoff frequency fg in line 06 is an angular frequency. However,

since the angular frequency is plotted on the frequency axis, the "error" undoes itself.

In line 08, the butter(g,fg,'lowpass',analog=True) function computes from the signal
submodule the coefficients a of the denominator polynomial and the coefficients b of

the numerator polynomial of the Butterworth lowpass of the transmission function.

These coefficients are used in line 10 by the freqs(b,a) function to compute the fre-

quency response. The frequency response data is stored in the omega,h_t tuple and

passed to the Matplotlib method semilogx() in line 12.

You can also use the butter() function to compute Butterworth coefficients for various

filter types such as lowpass, highpass, bandpass, and bandreject. The results can be out-

put as numpy.ndarray via the print function.

6.9.2 Frequency Response of a Crossover

Crossovers for three-way speaker systems filter the low frequencies for the woofer (up

to about 500 Hz), the mid frequencies (about 500 to 5,000 Hz) for the midrange

speaker, and the high frequencies (from about 5,000 Hz) for the tweeter from the entire

signal from the amplifier.

Listing 6.30 simulates the frequency response of such a crossover with Butterworth fil-

ters.

01 #30_crossover.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.signal import butter,freqs
05 g=3 #degree of the filter
06 fgu=500 #lower cutoff frequency in Hz
07 fgo=5000 #upper cutoff frequency in Hz
08 #numerator, denominator coefficients
09 bt,at=butter(g,fgu,'lowpass',analog=True)
10 bb,ab=butter(g,[fgu,fgo],'bandpass',analog=True)
11 bh,ah=butter(g,fgo,'highpass', analog=True)
12 #angular frequency, frequency response
13 f1, ht_t = freqs(bt,at)
14 f2, hb_t = freqs(bb,ab)
15 f3, hh_t = freqs(bh,ah)
16 fig, ax = plt.subplots(figsize=(8,6))
17 ax.semilogx(f1,20*np.log10(abs(ht_t)))
18 ax.semilogx(f2,20*np.log10(abs(hb_t)))
339

6 Numerical Computations and Simulations Using SciPy
19 ax.semilogx(f3,20*np.log10(abs(hh_t)))
20 ax.set_title('Crossover')
21 ax.set_xlabel('f in Hz')
22 ax.set_ylabel('Amplitude in dB')
23 ax.set_xlim(50,20e3)
24 ax.set_ylim(-20,3)
25 ax.margins(0, 0.1)
26 ax.grid(which='both', axis='both')
27 ax.axvline(fgu, color='red')
28 ax.axvline(fgo, color='red')
29 plt.show()

Listing 6.30 Frequency Response of a Crossover

Output

Figure 6.30 shows the frequency response of the crossover.

Figure 6.30 Frequency Response of a Crossover

Analysis

Basically, the program does not contain any new code. In lines 09 to 11, the butter()
function computes the coefficients of the transmission functions for the lowpass, the

bandpass, and the highpass. In lines 13 to 15, the freqs() function computes the fre-

quency responses of the filters.
340

6.9 Signal Processing
6.9.3 Filtering Signals

From an array x, the sosfilt(sos,x) function filters out the signal components speci-

fied by the filter coefficients sos of a certain filter characteristic. Listing 6.31 shows how

a digital Butterworth lowpass filter filters out the low frequency from a 10 Hz and 30 Hz

frequency mixing.

01 #31_tpfilter.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 import scipy.signal as signal
05 g=10 #degree of the filter
06 f1=10
07 f2=30
08 fs=1e3 #sampling frequency
09 fg=1.1*f1 #cutoff frequency
10 tmaxes=1
11 t = np.linspace(0,tmaxes,2000)
12 u_t = np.sin(2*np.pi*f1*t) + np.sin(2*np.pi*f2*t)/3
13 #u_t = 10*np.sin(2*np.pi*f1*t) + 5*np.random.randn(t.size)
14 TPK = signal.butter(g,fg,'low',analog=False,output='sos',fs=fs)
15 filter = signal.sosfilt(TPK, u_t)
16 fig, ax = plt.subplots(2, 1)
17 #mixed signal
18 ax[0].plot(t, u_t)
19 ax[0].set(ylabel='u(t)',title='10-Hz und 30-Hz Signal')
20 #filtered signal
21 ax[1].plot(t, filter)
22 ax[1].set(xlabel='t in s',ylabel='u(t)',title='Filtered signal:
10 Hz')

23 plt.tight_layout()
24 plt.show()

Listing 6.31 Signal Filtered with a Lowpass Filter

Output

Figure 6.31 shows the distorted and the filtered signals.

Analysis

As expected, Figure 6.31 shows ten periods within a time of 1 second. The filtered signal

therefore has a frequency of 10 Hz.

In line 14, the following function computes the data for the filtered signal and stores it

in the TPK object:

butter(g,fg,'low',analog=False,output='sos',fs=fs)
341

6 Numerical Computations and Simulations Using SciPy
The output parameter must be assigned the sos (second-order sections) value. As a

result, the filter function of butter() will be activated. The lowpass is a digital filter

because the analog parameter has not been set to True. The last parameter is assigned

the sampling frequency fs defined in line 08. In line 15, the sosfilt(TPK,u_t) function

suppresses all frequency components that are above the cutoff frequency of 11 Hz.

Figure 6.31 Signal Filtered with a Lowpass Filter

6.10 Project Task: Simulation of a Rolling Bearing Damage

Every machine tool generates mechanical vibrations during operation, generally

caused by the rotary movements of its shafts. These vibrations can be captured by a

microphone, converted to digital signals by an analog-to-digital converter, and dis-

played on a laptop screen using special software. These oscillations are accelerations

that become visible on the screen as non-specific signals, which we call “noise” due to

the large number of bearings and the complexity of the movements.

However, bearing damage generates additional machine noise that cannot be detected

in the frequency mixing of the time signal. This scenario is exactly where the Fourier

transform finds an important application. Special software can transform the noisy

time signals of machine vibrations into the frequency domain. Then, the diagnosis of

whether bearing damage is present at all is made based on the distribution of the

amplitudes of the frequency spectrum (i.e., its harmonics). If only one particular

expression of an amplitude exists, called the fundamental vibration, then the bearing

is not damaged. In the case of bearing damage, several harmonics occur in addition to

the fundamental frequency.
342

6.10 Project Task: Simulation of a Rolling Bearing Damage
In this project task, we need to develop a program that simulates bearing damage. For

this purpose, only two waveforms, one with a lot of harmonics and one with only a lit-

tle, must be generated from sine functions. The SciPy function fft() then transforms

both waveforms into the frequency domain. By displaying the harmonics, a diagnosis

is then made as to whether a bearing is damaged. If the signals were available in WAV

format, they could also be read using the read function and analyzed using the fft()
function. Listing 6.32 simulates the frequency spectrum of a damaged bearing and

compares it with the frequency spectrum of an undamaged bearing. The shaft rotates

at a frequency of 1,200 rpm.

01 #32_bearing_damage.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.fft import fft,fftfreq
05 f1=20 #1200 1/min
06 fn=[f1,2*f1,3*f1,4*f1,5*f1]
07 a1=[4,5,4,3,2,1] #defect
08 a2=[4,0.22,0.21,0.15,0.11] #undamaged
09 #Frequency
10 T=20
11 N=5000
12 Ta=T/N #sampling time
13 t = np.linspace(0,T,N)
14 #noisy signals
15 ur = a1[0]*np.sin(2*np.pi*fn[0]*t)\
16 +a1[1]*np.sin(2*np.pi*fn[1]*t)\
17 +a1[2]*np.sin(2*np.pi*fn[2]*t)\
18 +a1[3]*np.sin(2*np.pi*fn[3]*t)\
19 +a1[4]*np.sin(2*np.pi*fn[4]*t)\
20 +np.random.normal(size=N)
21
22 ug = a2[0]*np.sin(2*np.pi*fn[0]*t)\
23 +a2[1]*np.sin(2*np.pi*fn[1]*t)\
24 +a2[2]*np.sin(2*np.pi*fn[2]*t)\
25 +a2[3]*np.sin(2*np.pi*fn[3]*t)\
26 +a2[4]*np.sin(2*np.pi*fn[4]*t)\
27 +np.random.normal(size=N)
28 #transformation to the frequency domain
29 U_fftd = fft(ur) #defect
30 U_fftg = fft(ug)
31 fk=fftfreq(N,Ta)
32 pos=np.where(fk>0)
33 #amplitude magnitudes
34 Usd=2.0/N*np.abs(U_fftd) #defect
343

6 Numerical Computations and Simulations Using SciPy
35 Usf=2.0/N*np.abs(U_fftg)
36 #Frequency spectrum
37 fig,ax=plt.subplots(3,1,figsize=(6,6))
38 #Time domain
39 ax[0].plot(t,ur,"b-",lw=1)
40 ax[0].set_xlim(0,10)
41 ax[0].set(xlabel="t in s",ylabel="a",title="Noisy signal")
42 #damaged bearing
43 ax[1].plot(fk[pos],Usd[pos],"r-",lw=2)
44 ax[1].set(xlabel="f in Hz",ylabel="a",title="Damaged bearing")
45 #undamaged bearing
46 ax[2].plot(fk[pos],Usf[pos],"g-",lw=2)
47 ax[2].set(xlabel="f in Hz",ylabel="a",title="Undamaged bearing")
48 fig.tight_layout()
49 plt.show()

Listing 6.32 Simulation of a Bearing Damage

Output

Figure 6.32 shows the frequency spectrum of an undamaged and a damaged bearing.

Figure 6.32 Frequency Spectrum of a Damaged and an Undamaged Rolling Bearing
344

6.11 Project Task: Predator-Prey Model
Analysis

The rotation frequency of 20 Hz specified in line 05 corresponds to a speed of 1,200

rpm. In line 06, in the fn list, you can enter which harmonics should occur for the sim-

ulation of a damaged bearing. The a1 list in line 07 contains the Fourier coefficients for

the simulation of a damaged bearing, and the a2 list in line 08 stores the Fourier coeffi-

cients for an undamaged bearing.

Lines 15 to 20 contain the code for the Fourier series of the defective bearing. Lines 22 to

27 contain the code for the Fourier series of the undamaged bearing. A noisy signal is

superimposed on both signals to simulate the disturbances of real operation.

In lines 29 and 30, the fft() function transforms both time signals ur and ug into the

frequency domain. In lines 34 and 35, the amplitudes for the amplitude spectra are cal-

culated.

In the output shown in Figure 6.32, notice the clear difference between the defective

bearing and the undamaged bearing. The undamaged bearing has only one amplitude,

at 20 Hz, which is the specified rotational frequency, while in the case of the defective

bearing, multiple harmonics are pronounced.

6.11 Project Task: Predator-Prey Model

Several animal species eat a purely plant-based diet. Other animal species (predators),

on the other hand, depend on live animals (prey) as a food source. In this project task,

the relationship between the predator and prey populations will be studied in its devel-

opment over time. This development can be described by means of a first-order non-

linear differential equation system. The following idealized assumptions will be made:

� In the considered area, no in-migrations and no out-migrations of either population

occur.

� Neither predators nor prey are decimated by pathogens.

� Predators specialize in one prey species.

For the derivation of the differential equation system, the notion of the growth rate is

crucial. This rate is the number of births minus the number of deaths related in a given

time period divided by the total number of the population.

For example, let’s suppose a population of 1,000 individuals (equivalent to 500 pairs)

were to have 1,000 offspring in 1 year. Then, 500 deaths would result in the following

growth rate:
345

6 Numerical Computations and Simulations Using SciPy
6.11.1 Exponential Growth

For , you obtain the following basic equation of population dynamics by rear-

ranging the following equation:

Resulting in the following solution:

This equation describes exponential growth for a positive growth rate, which can real-

istically occur only exceptionally and temporarily in nature.

6.11.2 Logistic Growth

Any real growth is constrained by a capacity limit K. The following then applies to the

growth rate:

By rearranging, you get the differential equation for what’s called logistic growth:

For time t = 0 and when the number N of a population has reached the capacity limit K,

the slope of the searched function N(t) takes the value zero. Thus, an S-shaped course

for N(t) between the bounds N = 0 and N = K is to be assumed.

In task 10 (see Section 6.13), we’ll simulate both exponential growth and logistic growth.

6.11.3 Predator-Prey Relationship for Exponential Growth

If N2 prey animals live in a territory where there are also N2 predators, their growth rate

will be limited not only by the capacity limit of the available resources, but also by the

existence of the predators. In other words, the growth rate of the prey species is limited

by the predators’ hunting success. The situation in which predator and prey meet and

the predator is successful in its hunt is to be modeled by the prey probability of hunt-

ing success:
346

6.11 Project Task: Predator-Prey Model
By rearranging, you obtain the following differential equation for the prey animals:

For the predator, a mortality rate s is assumed instead of the growth rate because, with-

out the existence of the prey animals, it would become extinct. The population of pred-

ators can only grow if prey animals also exist and if these could be hunted successfully.

The probability of hunting success is again to be described by the prey probability b.

For the predator growth rate, the following applies:

By rearranging, you obtain the following differential equation for the predators:

This differential equation system is also referred to as a Lotka-Volterra system. In the

SciPy documentation, a source code example demonstrates how you can solve this dif-

ferential equation system using the SciPy function solve_ivp() at https://docs.scipy.

org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html.

However, you can also simulate the predator-prey relationship for exponential growth

using Listing 6.33 by setting the constants c and d equal to 0 in line 12.

6.11.4 Predator-Prey Relationship for Logistic Growth

If the number of herbivores and predators increases, the competitive situation also

worsens for both genera: The dwindling food supply reduces both growth rates. Differ-

ent capacity limits are assumed for the two genera. For prey, the growth rate is reduced

by ; and for predators, by . These considerations specify the predator-prey

model for logistic growth:

Listing 6.33 simulates the predator-prey relationship for the assumption that the

growth of both populations is limited by capacity constraints.

01 #33_predator_prey.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.integrate import solve_ivp
347

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

6 Numerical Computations and Simulations Using SciPy
05 K1=10e3 #prey capacity limit
06 K2=1e3 #predator capacity limit
07 prey=500
08 predator=50
09 r=0.25 #prey reproduction rate
10 b=0.001 #prey probability
11 s=0.5 #predator mortality rate
12 c,d = r/K1, s/K2
13 tmax=50 #period
14 xy0=[prey,predator]
15 #system of differential equations
16 def dgl(t,xy,r,b,s,c,d):
17 N1,N2 = xy #initial values
18 dN1_dt= r*N1-b*N1*N2-c*N1**2 #prey
19 dN2_dt=-s*N2+b*N1*N2-d*N2**2 #predator
20 return [dN1_dt,dN2_dt]
21 #Solution of the differential equation system
22 t = np.linspace(0,tmax,500)
23 z=solve_ivp(dgl,[0,tmax],xy0,args=(r,b,s,c,d),dense_output=True)
24 N1, N2 = z.sol(t) #separation of the solutions
25 mbmean=int(np.mean(N1)) #prey, mean value
26 mrmean=int(np.mean(N2)) #predator, mean value
27 fig,ax=plt.subplots(2,1,figsize=(6,6))
28 #time chart
29 ax[0].plot(t, N1,"g--",lw=2,label="Prey")
30 ax[0].plot(t, N2,"r-",lw=2,label="Predator")
31 ax[0].plot([0,tmax],[mbmean,mbmean],"g-.",lw=1)
32 ax[0].plot([0,tmax],[mrmean,mrmean],"r-.",lw=1)
33 ax[0].set(xlabel="Time",ylabel="N_{1}, N_{2}")
34 ax[0].legend(loc="best")
35 #phase diagram
36 ax[1].plot(N1, N2,'b-',lw=1)
37 ax[1].set(xlabel="Prey",ylabel="Predator",title="Phase diagram")
38 fig.tight_layout()
39 plt.show()

Listing 6.33 Simulation of the Predator-Prey Model with Logistic Growth
348

6.12 Project Task: Simulation of an Epidemic
Output

Figure 6.33 Simulation of the Predator-Prey Model with Logistic Growth

Analysis

The predator-prey relationship is described in the phase diagram by a spiral running

from the outside to the inside, as shown in Figure 6.33. The number N1 of prey stabilizes

at a mean of 644 individuals, and the number N2 of predators stabilizes at a mean of 229

individuals. These values are illustrated by the predator-prey ratio endpoint in the

phase diagram.

In lines 16 to 20, the differential equation system dgl for logistic growth is imple-

mented according to the specifications and solved in line 23. The separation of the solu-

tion is performed in line 24: N1,N2= z.sol(t). In lines 29 and 30, the plot method

prepares the visualization for the relation N1, N2 = 𝑓(t).

In the first graph, the mean value of both populations is visualized by a dash-dot line.

6.12 Project Task: Simulation of an Epidemic

The spread of an epidemic can be described by means of a differential equation system

that consists of three differential equations. In this case, a population N is divided into
349

6 Numerical Computations and Simulations Using SciPy
three groups: the healthy S (Susceptible), the infected I (Infective), and the recovered R

(Removed).

The following conditions should apply when we create the model:

� Deaths and births are to be disregarded. As a result, at all times, the following

applies: .

� Infected individuals are immediately contagious.

� Healthy individuals are infected at an infection rate of b > 0.

� Infected individuals recover at a recovery rate of g > 0.

The differential equation system of the Susceptible-Infected-Removed model (SIR) of

Kermack and McKendrick (1927) describes the spread of infectious diseases in this way:

Listing 6.34 simulates the infection process for a population of N = 1,000 individuals

over a period of 120 days. For the recovery rate and infection rate, the assumptions are

g = 0.04 and b = 0.4.

01 #34_epidemic.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy.integrate import solve_ivp
05 tmax=120
06 S0=997 #not immune healthy individuals
07 I0=3 #infected
08 R0=0 #recovered
09 N=S0+I0+R0 #Population
10 b=0.4 #infection rate
11 g=0.04 #recovery rate
12 #system of differential equations
13 def dgl(t,ya):
14 S,I,R=ya
15 dS_dt=-b*S*I/N #not immune healthy individuals
16 dI_dt=b*S*I/N-g*I #infected
17 dR_dt=g*I #recovered
18 return [dS_dt,dI_dt,dR_dt]
19 #Initial values
20 y0 = [S0,I0,R0]
21 t = np.linspace(0, tmax, 500)
22 z=solve_ivp(dgl,[0,tmax],y0,dense_output=True)
350

6.12 Project Task: Simulation of an Epidemic
23 S, I, R = z.sol(t)
24 fig, ax = plt.subplots()
25 ax.plot(t, S,'b-',label="Healthy")
26 ax.plot(t, I,'r--',label="Infected")
27 ax.plot(t, R,'g-.',label="Recovered")
28 ax.legend(loc='best')
29 ax.set(xlabel="Time",ylabel="Individuals")
30 ax.grid(True)
31 plt.show()

Listing 6.34 Simulation of an Epidemic

Output

Figure 6.34 Simulation of an Epidemic

Analysis

In lines 06 to 08, the initial values for the healthy S0, infected I0, and recovered R0 are

defined. Line 09 uses these values to compute the total number N of the population in

which the epidemic is spreading. By changing the infection rate b in line 10 and the

recovery rate g in line 11, you can simulate different infection profiles.

The code of the differential equation system consists of three lines (lines 15 to 17). In line

23, the entire solution set of the differential equation system is assigned to the S, I,R
tuple.

The output shown in Figure 6.34 clearly and plausibly shows that, during the course of

infection, the number of uninfected S decreases and the number of infected I increases
351

6 Numerical Computations and Simulations Using SciPy
to a maximum. The number of recovered R increases in the shape of an S curve until it

reaches the threshold value of N.

6.13 Tasks

1. A triangular current with imax = 1 A runs through a coil. The period duration is 20 ms.

Write a program that visualizes the current profile and calculates and graphs the

voltage profile.

2. Write a program that calculates the length of a logarithmic spiral defined by the fol-

lowing:

Use the SciPy function quad() in the limits between 0 to 2π.

3. Write a program that calculates the area of a circle using the SciPy function quad().

The program should also calculate the error that arises during the numerical inte-

gration.

4. Write a program that calculates the circumference of a circle using the SciPy func-

tion quad(). The program should also calculate the error that arises during the

numerical integration.

5. Write a program that calculates the surface area and volume of a sphere using the

SciPy function quad(). The program should also calculate the error that arises during

the numerical integration.

6. In a rectangular conductor with a = 4mm and b = 2mm, a current flows with the cur-

rent density of . Write a program that computes the current using

the dblquad() function.

7. A cuboid with the dimensions of x = 0.3m, y = 0.4m, z = 0.5m contains the volume

charge density defined by the following:

Write a program that computes the amount of charge Q contained in the cuboid

using the tplquad() function.

8. Write a program that solves the following differential equations in the interval [-1,1]

numerically:

The results should be presented as a function plot. The following applies to the ini-

tial values: y(0) = 1.
352

6.13 Tasks
9. The pendulum motion of a rod with length is described by the following differen-

tial equation:

The damping d has the value 0.5. Write a program that computes the deflection φ,

the angular velocity , and the trajectory. The solutions of the differential equation

should be represented in each case in a subdiagram.

10. Write a program that simulates exponential growth and logistic growth. The differ-

ential equations should be solved using the solve_ivp() function.

11. A spring pendulum oscillating in the direction of the y-axis is described by the dif-

ferential equation . The mass is m = 0.5kg. The damping has a

value of d = 0.5. The value of the spring constant is c = 10 N/m. Solve the initial value

problem using solve_ivp() for y0 = 0.1m and v0 = 0. The deflection y(t), the velocity

v(t), and the phase diagram v=𝑓(y) should each be shown in a subdiagram.

12. Simulate Foucault’s pendulum. The pendulum has a length of l = 67m. The steel

sphere has a diameter of d = 1.896dm. The pendulum is deflected by 2m from the

rest position in the direction of the x-axis. In addition, the trajectory and the phase

diagram v = 𝑓(x) should be shown in two additional subdiagrams. Supplement the

code provided in Listing 6.21 accordingly.

13. An oscillatory system consisting of two string pendulums whose masses are cou-

pled with a helical spring is described by the following system of differential equa-

tions:

The spring constant has a value of c = 1N/m. The two masses each have a value of m

= 0.2kg. The threads both have a length of l = 0.2m. The differential equation system

is to be solved using the solve_ivp() function. The deflections of angles 𝜑1 and 𝜑2

should each be plotted in a subplot. Write an appropriate program.

14. Write a program that will solve the following differential equation system in the

interval of [0,10]:

Use the solve_ivp() function for y1(0) = y2(0) = 1. For the coefficients: a = b = c = 1 and

d = 0.1. The result should be displayed as a function plot.
353

6 Numerical Computations and Simulations Using SciPy
15. Write a program that will solve the following differential equation system in the

interval of [0,1]:

Use the solve_ivp() function for y1(0)=1 and y2(0)=0. The result should be presented

in three subdiagrams.

16. Write a program that solves the following fourth-order differential equation in the

interval of [0,5]:

Use the solve_ivp() function. All initial values are zero.

17. Extend the SIR model to a SIRD model in which deaths D are also to be considered:

The following assumptions apply: N = 1,000, t = 120 days, recovery rate g = 0.035,

infection rate b = 0.4, and mortality rate m = 0.005.

18. Write a program that computes the harmonic distortion and frequency spectrum

of a sinusoidal AC voltage rectified by a one-way rectifier.

19. Write a program that computes the Butterworth coefficients for a fifth-degree low-

pass for a cutoff frequency of 1Hz using the butter() function.

20. Simulate the frequency response of a third-degree Butterworth bandstop using the

butter() function for the cutoff frequencies 50 Hz and 500 Hz.
354

Chapter 7

3D Graphics and Animations
Using VPython

In this chapter, you’ll learn how to represent and animate objects in 3D

space using the VPython module. Sophisticated animations of physical

processes will showcase the capabilities of VPython.

The letter “V” in the name of the VPython module stands for visual, referring to the rep-

resentation and movement of objects in 3D space. The dynamics of physical relation-

ships and processes are no longer depicted as function plots, as done with the SciPy

module, but rather as how an observer perceives them in reality. It is important to con-

sider that many physical processes, such as an oblique throw, may not be captured in

detail by the human eye. VPython provides the ability to slow down (slow motion) or

speed up processes using the rate(frequency) function as needed. When real move-

ments are simulated on a computer, the field of computer graphics refers to this pro-

cess as animation, which means giving “life” to objects.

The canvas where the objects are represented is referred to as a scene. Within a scene,

you can rotate the displayed object around the x-y-z axis by holding down the right

mouse button and moving the mouse cursor. This task allows the observer to view an

object from different perspectives.

Starting from version 7, the VPython module is imported using the from vpython import
* statement. Other modules do not need to be imported. After starting the program,

the default browser opens, and the program runs within Web Graphics Library (WebGL).

WebGL is a JavaScript programming interface that allows hardware-accelerated 3D

graphics to be displayed in a web browser without additional extensions.

The position of an object in 3D space can be determined using the vector(x, y, z)
method and can be changed if the object is supposed to move. Since the concept of vec-

tors plays a central role in VPython, let’s briefly discuss this topic using a small console

example:

>>> from vpython import *
>>> v1=vector(1,2,3)
>>> v2=vector(4,5,6)
>>> v1+v2
355

7 3D Graphics and Animations Using VPython
<5, 7, 9>
>>> type(v1)
<class 'vpython.cyvector.vector'>

In the second and third lines, the vector(x,y,z) method creates the v1 and v2 objects as

three-dimensional vectors with the data for the x-y-z coordinates. In the fourth line,

the addition of these vectors takes place. Besides the addition, the scalar product and

the cross product are also implemented. Instead of vector(), the abbreviation vec() is

also allowed.

A body object obj is created using the following statement:

obj=body(pos=vec,size=vec,axis=vec,color=color.color,...)

In this context, the body method represents basic shapes such as box(), sphere(), cylin-
der(), cone(), and so on, which are provided by the VPython module. If you need other

bodies, you can create them from the basic bodies (k1, k2, etc.) using the compound

([k1,k2, ...]) method.

7.1 The Coordinate System

Figure 7.1 shows the coordinate system of VPython created using Listing 7.1. The coordi-

nate origin is located in the center of the canvas. The x-axis points from left to right, the

y-axis from bottom to top, and the z-axis is perpendicular to the canvas.

Figure 7.1 Coordinate System in VPython

Start the program, which will run in your default browser after a short time delay. Then,

right-click on the canvas, hold the right mouse button down, and rotate the coordinate

system so that you can observe as many perspectives as possible. The gray point with
356

7.1 The Coordinate System
the coordinates (5,5,0) inserted in the coordinate system facilitates your orientation in

space and to clarify the mode of action of the coordinate transformation in VPython.

01 #01_coordinates.py
02 from vpython import *
03 h=10. #height
04 b=10. #width
05 t=10. #depth
06 scene.title="<h2>Coordinate system of VPython</h2>"
07 scene.width=scene.height=600
08 scene.background=color.white
09 scene.center=vector(0,0,0)
10 scene.range=1.5*b
11 x0=vector(-b,0,0)
12 y0=vector(0,-h,0)
13 z0=vector(0,0,-t)
14 #x-axis is red
15 arrow(pos=x0,axis=vector(2*b,0,0),shaftwidth=0.15,color=color.red)
16 #y-axis is green
17 arrow(pos=y0,axis=vector(0,2*h,0),shaftwidth=0.15,color=color.green)
18 #z-axis is blue
19 arrow(pos=z0,axis=vector(0,0,2*t),shaftwidth=0.15,color=color.blue)
20 label(pos=vec(b,-1,0),text="x",height=30,box=False,opacity=0)
21 label(pos=vec(-1,h,0),text="y",height=30,box=False,opacity=0)
22 label(pos=vec(-1,0,t),text="z",height=30,box=False,opacity=0)
23 points(pos=vector(5,5,0))
24 scene.caption="\nPress right mouse button and drag"

Listing 7.1 The Coordinate System of VPython

Analysis

In line 02, the vpython module is imported with all available methods and properties.

Lines 03 to 05 define the height, width, and depth of the display window (canvas).

The scene.title="..." command in line 06 outputs the headline of the program with

the HTML tag <h2> ... </h2> in the browser.

In line 07, the scene.width=scene.height=600 command sets the width and height of the

display window to 600 pixels each.

In line 08, scene.background=color.white sets the background of the canvas to the color

white. The default setting is the color black.

The scene.center=vector(0,0,0) statement in line 09, which sets the origin of the coor-

dinate system, is actually not necessary because the default value places the origin
357

7 3D Graphics and Animations Using VPython
exactly in the center of the canvas. We only included it in this example so we could

carry out further program tests.

Due to scene.range=1.5*b (line 10), the display range is enlarged so that enough space

on the canvas exists when you rotate the coordinate system.

In lines 11 to 13, the VPython method vector() is used to move the coordinate axes.

A negative sign causes a shift in positive direction of the coordinate axis to the right

(x-axis) or upwards (y-axis) or forwards (z-axis). All three axes have a length of 20 units.

The arrow() method draws the coordinate axes as arrow objects in lines 15, 17, and 19.

The label() method labels the coordinate axes (lines 20 to 22).

The point created using the points(pos=vector(5,5,0)) method should confirm the

correctness of the coordinate transformations: The point lies exactly on half of the

intercept of the x- and y-axis.

Using scene.caption="...", you can output any text in the browser (line 24).

Exercise

The point should be represented in the second, third, and fourth quadrants. Change

the source code in each case and restart the program. Check the positions of the point

by rotating the coordinate system within the scene.

7.2 Basic Shapes, Points, and Lines

The following basic shapes can be created using VPython: cuboid, sphere, cylinder,

cone, pyramid, ellipsoid, and circular ring. The general syntax for creating a body object

is:

obj=body(pos=vec(x0,y0,z0),axis=vec(x,y,z),size=vec(a,b,c),
color=color.red)

The first parameter specifies the position of the body in 3D space. The default setting

for the position is pos=vector(0,0,0). The position can be changed within the anima-

tion loop using obj.pos=vector(x,y,z). If only the position in x-direction needs to be

changed, the obj.pos.x= value statement is sufficient.

The axis vector defines the orientation of the body object. For example, if vector

(1,0,0) is assigned to axis, the body will be aligned in the direction of the x-axis. The

same applies to the y- and z-axes.

The size vector determines the dimensions of the body object. For example, the

box(size=vector(10,5,2) method creates a cuboid object with a width of 10 units of

length (LE), a height of 5 LE, and a depth of 2 LE.
358

7.2 Basic Shapes, Points, and Lines
The color property can be varied via the obj.color=vector(R,G,B) vector. The colors red,

green, and blue can have values between 0 and 1. The default color setting is gray.

7.2.1 Cylinder

A cylinder object has the following properties: position, length, orientation, radius, and

color. The pos=vector(x0,y0,z0) vector defines the position (center of the base of the

cylinder) in space. The axis=vector(x,y,z) vector determines the length and orienta-

tion of a cylinder object. Using the following method, a cylinder object of the cylin-
der() class can be created from the VPython module:

cylinder(pos=vector(x0,y0,z0),axis=vector(x,y,z),radius=r,...)

The default color (the default value) is gray. The radius has the default value radius=1.

For example, if x0=-20, x=40, and all other values of the position and axis vector are zero,

then a cylinder object with the length of 40 units of length (LE) is created, shifted left by

20 LE on the x-axis. The centerline of the cylinder lies exactly on the x-axis.

Alternatively, the dimensions of a cylinder object can be specified using the size=

vector(length,height,width) property.

Listing 7.2 shows how to create a cylinder object in VPython.

01 #02_cylinder.py
02 from vpython import *
03 scene.title="<h2>Cylinder</h2>"
04 scene.autoscale=True
05 scene.background=color.white
06 scene.width=600
07 scene.height=600
08 scene.center=vector(0,0,0)
09 scene.range=30
10 #Position: x0,y0,z0
11 p=vector(-20,0,0)
12 #alignment and length
13 a=vector(40,0,0)
14 r=10. #radius
15 #col=color.gray(0.5)
16 #red, green, blue
17 col=vector(1,0,0)
18 cylinder(pos=p,axis=a,radius=r,color=col,opacity=0.5)
19 #length, height, width
20 #cylinder(pos=p,size=vector(40,20,20),color=col)
21 scene.caption="\nPress the right mouse button and rotate the object"

Listing 7.2 Cylinder
359

7 3D Graphics and Animations Using VPython
Output

Figure 7.2 shows the cylinder created by Listing 7.2 in the canvas.

Figure 7.2 Cylinder

Analysis

The scene.range=30 property (line 09) changes the width of the display area. A value

smaller than 30 (line 09) enlarges the cylinder object, and a value larger than 30

reduces the cylinder object.

The p=vector(-20,0,0) vector in line 11 specifies that the cylinder is moved 20 LE to the

left on the x-axis. The a=vector(40,0,0) vector (line 13) defines the length of the cylin-

der of 40 LE. The centerline of the cylinder lies on the x-axis because the y- and z-com-

ponents of the alignment vector axis have the value zero.

The color of a body is determined as an RGB value in line 17 by the col=vector(1,0,0)
vector. The color saturation can be set with values from 0 to 1. The opacity property

determines the opacity of a color. A value between 0 and 1 is permissible. If opacity has

the value 0, the body is completely transparent.
360

7.2 Basic Shapes, Points, and Lines
In line 18, the following method generates a cylinder object:

cylinder(pos=p,axis=a,radius=r,color=col,opacity=0.5)

This cylinder object has its properties stored in the objects p, a, r, and col (lines 11, 13, 14,

and 17).

Exercise

Change the property of the scene.range canvas in line 09 to 40, 50, and 60. What

exactly is happening here?

Change the colors, the positions, and the dimensions of the cylinder. Restart the pro-

gram after each individual change. Check if the changes have the expected effects.

Comment out line 18 and remove the comment in line 20. Restart the program and

observe the result by rotating the cylinder within the scene. Vary the values of the

size() vector and restart the program after each change.

7.2.2 Cuboid

A cuboid object can be created using the following method:

box(pos=vec(x0,y0,z0),axis=vec(x,y,z),size=vec(L,H,B), ...)

The pos vector defines the position of the cuboid. In contrast to the cylinder object, the

position in this case does not refer to one end of the object, but to the center of the

cuboid. The axis vector defines the orientation, while the size vector defines the

dimensions (length, height, width) of the cuboid object.

Listing 7.3 creates a cuboid with length 40, height 20, and width 10.

01 #03_cuboid.py
02 from vpython import *
03 scene.title="<h2>Cuboids and other shapes</h2>"
04 scene.autoscale=True
05 scene.background=color.white
06 scene.width=600
07 scene.height=600
08 scene.center=vector(0,0,0)
09 #x0,y0,z0
10 p=vector(0,0,0)
11 #alignment
12 a=vector(1,0,0)
13 #dimensions: length, height, width
14 dim=vector(40,20,10)
15 scene.range=30
361

7 3D Graphics and Animations Using VPython
16 #rotation
17 d=vector(0,0,0)
18 c=color.gray(0.5)
19 box(pos=p,axis=a,size=dim,up=d,color=c)
20 #cone(pos=vec(-5,0,0),axis=vector(10,0,0),radius=5,color=c)
21 #ellipsoid(pos=vec(0,0,0),axis=vec(1,0,0),size=vec(10,5,5),color=c)
22 #pyramid(pos=vec(0,5,0),axis=vec(0,1,0),size=vec(10,12,12),color=c)
23 #ring(pos=vec(0,0,0),axis=vec(0,0,1),radius=10,thickness=3,color=c)
24 scene.caption="\nPress the right mouse button and rotate the object"

Listing 7.3 Cuboids and Other Shapes

Output

The cuboid that is output to the canvas is shown in Figure 7.3.

Figure 7.3 Cuboid
362

7.2 Basic Shapes, Points, and Lines
Analysis

In line 10, the p=vector(0,0,0) vector specifies that the cuboid is positioned exactly in

the center of the drawing area. The a=vector(1,0,0) vector (line 12) determines the

orientation of the cuboid: Its centerline lies on the x-axis. The dim=vector(40,20,10)
vector in line 14 provides the dimensions of the box: It has a length of 40 LE, a height of

20 LE, and a width of 10 LE. Using the d=vector(0,0,0) vector in line 17, you can rotate

the object around its own axis.

In line 19, the box() method creates the cuboid object with the given properties.

Exercise

Change the alignment vector in line 12 a=vector(0,1,1) and restart the program. What

exactly is happening here?

Change the d=vector(0,0,1) vector in line 17 for the property up in line 19 and restart

the program. What exactly is happening now?

Test the program with the basic shapes that have been commented out.

7.2.3 Points

Point objects can be created using the following method:

points(pos=[vector(-1,0,0), vector(1,0,0)], radius=0, ...)

The pos property expects a list of vectors containing the positions of the point objects.

Specifying the radius property is not necessary. According to the VPython documenta-

tion, the radius should have a default value of 2.5 pixels, even if assigned the value zero.

Listing 7.4 represents the center and the vertices of a cube as point objects, resulting in

the graphical output shown in Figure 7.4.

01 #04_points.py
02 from vpython import *
03 scene.width=600
04 scene.height=600
05 scene.background=color.white
06 e=1.
07 scene.center=vector(e/2,e/2,e/2)
08 scene.range=1.2*e
09 v=[(0,0,0),(0,0,e),(0,e,0),(0,e,e),
10 (e,0,0),(e,0,e),(e,e,0),(e,e,e),(e/2,e/2,e/2)]
11 box(pos=vector(e/2,e/2,e/2),size=vector(e,e,e),
12 axis=vector(1,0,0),opacity=0.5)
13 points(pos=v,color=color.red)

Listing 7.4 Vertices of a Cube
363

7 3D Graphics and Animations Using VPython
Output

Figure 7.4 Vertices of a Cube

Analysis

Line 06 specifies the edge length e of the cube. In line 07, the center of the coordinate

system is scaled to half the edge length. Line 09 contains a list named v containing the

positions for the center and the vertices of the cube. In line 11, the box() method creates

a transparent cube with the edge length e. In line 13, the points() method creates nine

red point objects with the default radius.

7.2.4 Lines

The following method draws a line between two points:

curve(vector(-1,0,0), vector(1,0,0), ...)

For example, let’s suppose the two vectors v1 and v2 are given. Then, you can draw a

connecting line between the two vectors using five different syntax variants:

>>> curve(v1,v2) #1
>>> curve([v1,v2]) #2
>>> curve(pos=[v1,v2]) #3
>>> c = curve(v1) #4
>>> c.append(v2)
>>> c=curve() #5
>>> c.append(v1,v2)

Listing 7.5 shows how the curve() method connects the vertices of a tetrahedron with

lines of the length . The base of the tetrahedron is placed in the x-y plane. From the
364

7.2 Basic Shapes, Points, and Lines
radius r of the circumcircle of the base area, the edge length can be computed in the fol-

lowing way:

The height of the tetrahedron

points in the direction of the positive z-axis.

01 #05_lines.py
02 from vpython import *
03 scene.width=600
04 scene.height=600
05 scene.background=color.white
06 r=10. #radius of the plane
07 e=sqrt(3.)*r #edge length
08 scene.center=vector(0,0,0)
09 scene.range=1.8*r
10 x=r*cos(pi/6.)
11 y=r*sin(pi/6.)
12 z=sqrt(6.)*e/3. #height
13 #triangle: bottom left-top, bottom right-bottom left
14 v1=[(-x,-y,0),(0,r,0),(x,-y,0),(-x,-y,0)]
15 #star: bottom left-center, top-center, bottom right-center
16 v2=[(-x,-y,0),(0,0,z),(0,r,0),(0,0,z),(x,-y,0)]
17 points(pos=v2,radius=10.,color=color.red)
18 c=curve(pos=v1,color=color.green)
19 c.append(v2,color=color.yellow)

Listing 7.5 Vertices of a Tetrahedron Connected by Lines

Output

Figure 7.5 shows the result of Listing 7.5 on the canvas.

Analysis

Line 06 sets the radius r of the x-y plane circumcircle (circumscribed circle) to 10 units

of length. Line 07 calculates the edge length e. In lines 10 and 11, the x and y coordinates

of the x-y plane are calculated. The statement in line 12 computes the height z of the

tetrahedron in the direction of the z-axis. The v1 list in line 14 contains the coordinate

data of the triangular base area of the x-y plane. The v2 list in line 16 contains the x-y-z

coordinates of the tetrahedron corners. In line 17, the points() method draws the four

vertices of the tetrahedron. The curve() method draws the line objects of the v1 list as a

triangle in line 18. In line 19, the star-shaped lines of the v2 list are added to the polyline c.
365

7 3D Graphics and Animations Using VPython
Figure 7.5 Vertices of a Tetrahedron

Exercise

Comment out lines 17 and 19, and restart the program. What do you see now?

Only the polyline of v2 should be displayed. Change the program accordingly and re-

start the program.

7.2.5 Sphere

The sphere(pos=vector(x0,y0,z0),radius=r,...) method creates a sphere object. The

pos vector determines the coordinates of the center of a sphere in space, and the radius
property determines its radius.

Listing 7.6 shows how the sphere() method can be used to arrange nine spheres sym-

metrically in space.

01 #06_spheres1.py
02 from vpython import *
03 scene.width=600
04 scene.hight=600
05 scene.background=color.white
06 x0=5.
07 y0=5.
08 z0=5.
09 R1=1.
10 R2=0.25
11 #center
12 sphere(pos=vector(0,0,0),radius=R1,color=color.red)
13 #top
14 sphere(pos=vector(0,y0,0),radius=R2,color=color.blue)
15 #bottom
16 sphere(pos=vector(0,-y0,0),radius=R2,color=color.blue)
366

7.2 Basic Shapes, Points, and Lines
17 #left
18 sphere(pos=vector(-x0,0,0),radius=R2,color=color.blue)
19 #right
20 sphere(pos=vector(x0,0,0),radius=R2,color=color.blue)
21 #back
22 sphere(pos=vector(0,0,-z0),radius=R2,color=color.blue)
23 #front
24 sphere(pos=vector(0,0,z0),radius=R2,color=color.blue)
25 label(pos=vec(0,0,0), text="O",height=30,box=False,opacity=0)
26 sphere(pos=vector(x0/2,0,0),radius=R2,color=color.blue)
27 sphere(pos=vector(-x0/2,0,0),radius=R2,color=color.blue)

Listing 7.6 Nine Spheres in Space

Output

Figure 7.6 Spheres in Space

Analysis

Lines 06 to 08 define the coordinates of the small blue spheres in space. The center red

sphere has a radius of R1=1 (line 09), and the six other spheres have a radius of R2=0.25
each. In lines 12 to 24, the sphere() method creates the individual sphere objects. The

comments describe the positions of the individual spheres. In line 25, a label object

named O is created. This label suggests that a Bohr model of an oxygen atom (without

the inner shell) is represented by this object, as shown in Figure 7.6.

Exercise

Start the program and view the scene from different perspectives.

Add the statements for the two electrons of the inner shell of the oxygen atom to the

source code and start the program.
367

7 3D Graphics and Animations Using VPython
Crystal Lattice

The example shown in Listing 7.7 illustrates how you can place spheres within space

using three nested for loops and the sphere() method.

01 #07_spheres2.py
02 from vpython import *
03 scene.background=color.white
04 scene.width=600
05 scene.height=600
06 e = 5 #lattice spacing
07 R = 0.5 #radius of an atomic nucleus
08 for x in range(-e,e):
09 for y in range(-e,e):
10 for z in range(-e,e):
11 sphere(pos=vector(x,y,z),radius=R,color=color.red)

Listing 7.7 Spheres as a Lattice Structure

Output

Figure 7.7 Crystal Lattice

Analysis

Three nested for loops (lines 08 to 11) compute the x-y-z coordinates for the red

spheres. The first for loop in line 08 sets the positions of the sphere objects on the x-

axis. The second for loop in line 09 sets the positions on the y-axis. The third for loop

in line 10 sets the positions on the z-axis. In line 11, the sphere(pos=vector(x,y,z),...)
method creates the individual red sphere objects. The representation in shown in

Figure 7.7 can be interpreted as a model for a crystal lattice, with the red spheres repre-

senting positively charged atomic nuclei.
368

7.2 Basic Shapes, Points, and Lines
Exercise

Start the program and view the scene from different perspectives.

How many spheres are represented?

7.2.6 Penetration

A problem known from descriptive geometry, penetration explores how mutually pen-

etrating bodies must be represented in three views, a concept often difficult for begin-

ners. For this purpose, a program that illustrates the spatial representation of

interpenetrating bodies is provided in Listing 7.8. Its graphical output is shown in

Figure 7.8, which spatially represents the interpenetration of a cone and a cylinder. This

program can be used to simulate different views of this penetration.

01 #08_penetration.py
02 from vpython import *
03 rc=10. #radius of the cone
04 hc=3.*rc #height of the cone
05 scene.background=color.white
06 scene.width=600
07 scene.hight=600
08 scene.range=2.1*rc
09 rz=rc/2. #radius of the cylinder
10 lz=2.5*rc #length of the cylinder
11 z=rc/1.5 #displacement of the cylinder
12 cone(pos=vec(0,-hc/2.5,0),axis=vec(0,hc,0),radius=rc)
13 cylinder(pos=vec(-lz/2.,0,z),axis=vec(lz,0,0),radius=rz)

Listing 7.8 Interpenetration of a Cone and a Cylinder

Output

Figure 7.8 Interpenetration of a Cylinder and a Cone
369

7 3D Graphics and Animations Using VPython
Analysis

The radius rc and the height hc of the cone are the reference values (lines 03 and 04).

The radius rz and the length lz of the cylinder (lines 09 and 10) depend on these values.

In line 12, a cone object is created using the cone() method. The axis=vec(0,hc,0) vector

defines its orientation in the direction of the y-axis.

In line 13, a cylinder object is created using the cylinder() method. The axis=vec

(lz,0,0) vector defines its orientation in the direction of the x-axis.

Exercise

Start the program and view the scene of the cone-cylinder penetration from the per-

spective of the front view, the side view from the left and of the top view.

Simulate different distances on the z-axis and different penetration angles.

7.2.7 Composite Bodies

You can use the compound([G1,G2,G3, ...]) method to create solid objects from the

basic shapes G1, G2, and G3. Listing 7.9 shows how a compound body can be created from

the combination of two basic shapes: a cube and a pyramid.

01 #09_combination.py
02 from vpython import *
03 scene.background=color.white
04 scene.width=scene.height=600
05 a=5.
06 b=10.
07 scene.range=1.5*b
08 scene.autocenter=True
09 p1=pyramid(pos=vec(0,a,0),axis=vec(0,1,0),size=vec(a,a,a),color=color.green)
10 q1=box(pos=vector(0, a/2,0),size=vector(a,a,a),color=color.red)
11 q2=box(pos=vector(0,-b/2,0),size=vector(b,b,b),color=color.blue)
12 werkstueck=compound([p1,q1,q2])

Listing 7.9 Composite Body

Output

Figure 7.9 shows the resulting body composed of two cubes and a pyramid.

Analysis

In line 09, the p1 object is created using the following method:

pyramid(pos=vec(0,a,0),axis=vec(0,1,0),size=vec(a,a,a)
370

7.3 Bodies in Motion
Figure 7.9 Composite Body

The pyramid object p1 is shifted upwards by 5 units of length in the direction of the pos-

itive y-axis. The alignment is in the direction of the y-axis. The length, width, and

height of the pyramid each have a value of 5 units of length.

The q1 cube is shifted upwards by 2.5 units of length on the positive y-axis (line 10). The

q2 cube is shifted downwards by 5 units of length on the negative y-axis (line 11).

In line 12, the compound([p1,q1,q2]) method creates the workpiece object as a com-

pound body.

Exercise

Start the program and view the composite body in the front view, side view, and top

view.

Test the program with different dimensions.

7.3 Bodies in Motion

The main purpose of an animation is to move bodies. As in the real world, the body

objects created using VPython methods should be able to move through 3D space in

accordance with the laws of physics. All mathematical operations of location changes

usually run within an infinite loop, which I also refer to as an animation loop in the fur-

ther course of this book. You can use the rate(frequency) method to set how often the

animation should be executed in 1 second. The body.pos=vector(x,y,z) property sets

the current position of the body in 3D space.
371

7 3D Graphics and Animations Using VPython
7.3.1 Vertical Movement

For a vertical movement, the x and z components of the 3D coordinates have the value

zero. The body.v=vector(0,0,0) property initializes the velocity vector. The body.v*dt
property computes the current position from the product of the current velocity and a

freely selectable time interval dt. The identifier v is freely selectable.

Listing 7.10 animates the motion sequence of a bouncing ball. Damping influences

were not taken into account in our example. The result is shown in Figure 7.10.

01 #10_ball_vertical.py
02 from vpython import *
03 r=1. #radius
04 h=5. #height
05 scene.background=color.white
06 scene.center=vector(0,h,0)
07 box(pos=vector(0,0,0),size=vector(2*h,r/2,h), color=color.green)
08 ball = sphere(radius=r, color=color.yellow)
09 ball.pos=vector(0,2*h,0)
10 ball.v = vector(0,0,0) #velocity vector
11 g=9.81 #gravitational acceleration
12 dt = 0.01
13 while True:
14 rate(100)
15 ball.pos = ball.pos + ball.v*dt
16 if ball.pos.y < r:
17 ball.v.y = abs(ball.v.y) #upwards
18 else:
19 ball.v.y = ball.v.y - g*dt #downwards

Listing 7.10 Bouncing Ball

Output

Figure 7.10 Animation of a Bouncing Ball
372

7.3 Bodies in Motion
Analysis

Line 06 causes the floor object box() from line 07 to be moved down by 5 units of

length. In line 08, the ball object is created. Line 09 determines the drop height of

10 units of length. In line 10, the velocity of the ball is initialized with the ball.v=

vector(0,0,0) property. In line 12, the time interval dt=0.01 was set to a realistic value.

The infinite loop runs between lines 13 to 19. This loop is executed 100 times per second

because of rate(100) (line 14). In line 15, the new ball position ball ball.pos is computed

from the old ball position and the product of velocity ball.v and time interval dt. If the

ball position is smaller than the ball radius r, the ball object ball moves upwards (lines

16 and 17); otherwise, it moves downwards (lines 18 and 19).

Exercise

Test the program with different time intervals and frame rates.

Test the program with different radii and heights.

Test the program with different accelerations (such as Moon and Jupiter).

7.3.2 Horizontal Movement

As an example for a horizontal movement, I chose the process of induction. As shown

in Listing 7.11, a bar magnet moves back and forth in the direction of the x-axis inside a

coil. The coil object is created using the helix() method.

01 #11_cylinder_horizontal.py
02 from vpython import *
03 scene.background=color.white
04 scene.width=600
05 scene.height=300
06 l=10. #length of the coil
07 r=l/5. #radius of the core
08 scene.center=vector(0,0,0)
09 cs=vector(1,0.7,0.2) #copper-colored
10 helix(pos=vec(-l/2,0,0),axis=vec(l,0,0),radius=1.25*r,
coils=10,thickness=0.3,color=cs)
11 np = cylinder(pos=vec(l/2,0,0),axis=vec(l/2,0,0),radius=r, color=color.red)
12 sp = cylinder(pos=vec(0,0,0),axis=vec(l/2,0,0),radius=r, color=color.green)
13 magnet=compound([np,sp])
14 magnet.pos=vector(0,0,0)
15 dx = 0.1
16 while True:
17 rate(50)
18 x = magnet.pos
373

7 3D Graphics and Animations Using VPython
19 x = x+vector(dx,0,0)
20 magnet.pos = x
21 if x.x>l/4. or x.x<=-l/4.:
22 dx = -dx

Listing 7.11 Bar Magnet Moves in Coil

Output

A snapshot of the resulting animated magnet movement is shown in Figure 7.11.

Figure 7.11 A Bar Magnet Moving in a Coil

Analysis

In line 10, the coil object is created using the helix() method. The left edge is shifted

5 units of length to the left on the negative x-axis. The length l of the coil is 10 units of

length. The coil has ten turns. In line 11, the red-colored north pole np of the bar magnet

is created using the cylinder() method. The same process is repeated in line 12 for the

green-colored south pole sp of the bar magnet. In line 13, the compound([np,sp]) method

creates the magnet object.

The animation of the horizontal movement of the bar magnet is performed in the

while loop (lines 16 to 22). In line 18, the x variable is assigned the magnet.pos position of

the magnet initialized in line 14. The sum algorithm in line 19 calculates the new x posi-

tion of the magnet. This position is assigned to the magnet.pos property in line 20. If the

deflection is greater than l/4 or less than -l/4 (line 21), a reversal of the direction of

motion occurs due to the change in sign dx = -dx (line 22).

7.3.3 Movement in Space

Our next example, shown in Listing 7.12, was taken from the VPython documentation.

This example shows how a ball, driven by an impulse, moves back and forth between

the walls of a room.

01 #12_ball_wall.py
02 from vpython import *
374

7.3 Bodies in Motion
03 scene.width=scene.height=600
04 scene.background=color.white
05 cw=color.gray(0.9) #color of the walls
06 b = 5.0 #width
07 d = 0.3 #thickness of the wall
08 r=0.4 #ball radius
09 s2 = 2*b - d
10 s3 = 2*b + d
11 #right hand wall
12 box (pos=vec(b, 0, 0), size=vec(d, s2, s3), color = cw)
13 #left hand wall
14 box (pos=vec(-b, 0, 0), size=vec(d, s2, s3), color = cw)
15 #bottom wall
16 box (pos=vec(0, -b, 0), size=vec(s3, d, s3), color = cw)
17 #top wall
18 box (pos=vec(0, b, 0), size=vec(s3, d, s3), color = cw)
19 #back wall
20 box(pos=vec(0, 0, -b), size=vec(s2, s2, d), color = cw)
21 ball = sphere(radius=r,color=color.yellow)
22 ball.m = 2.0 #mass of the ball
23 ball.p = vec(-0.15, -0.23, 0.27) #impulse
24 #ball.p = vec(0,-1,0)
25 #ball.p = vec(-1,0,0)
26 #ball.p = vec(0,-1,-1)
27 b = b - d*0.5 - ball.radius
28 dt = 0.2
29 while True:
30 rate(100)
31 ball.pos = ball.pos + (ball.p/ball.m)*dt
32 if not (b > ball.pos.x > -b):
33 ball.p.x = -ball.p.x
34 if not (b > ball.pos.y > -b):
35 ball.p.y = -ball.p.y
36 if not (b > ball.pos.z > -b):
37 ball.p.z = -ball.p.z

Listing 7.12 A Ball Moving in Space

Output

A snapshot of the resulting animated ball movement is shown in Figure 7.12.
375

7 3D Graphics and Animations Using VPython
Figure 7.12 A Ball Moving in Space

Analysis

In lines 12 to 20, the box objects for the walls are created. The yellow sphere object ball
created in line 21 has a radius of r=0.4 (line 08). Line 22 defines a new property m for the

ball object. The identifier m is freely selectable. One could have chosen the designator

mass for the mass of the ball. The ball.p vector defined and initialized in line 23 rep-

resents the impulse of a mass. The identifier p is also freely selectable. As a reminder,

the following equation applies for the impulse:

This equation enables you to compute the distance traveled:

The same applies to the y and z directions.

The animation of the ball movement can be performed within the while loop (lines 29

to 37). In line 31, the following sum algorithm calculates the current position of the ball

from the impulse p, the mass m, and the time interval dt:

ball.pos = ball.pos + (ball.p/ball.m)*dt

When the ball bounces on the side, top, bottom, or back walls, respectively, the if que-

ries in lines 32 to 37 cause the ball motion to reverse its direction.
376

7.3 Bodies in Motion
Exercise

Test the program with the commented-out lines 24 to 26. What exactly is happening?

In line 21, add the make_trail=True, retain=200 properties and restart the program.

Test the program with other masses.

7.3.4 Composite Motion

An oblique throw provides a good example of animating a composite motion. For the

x- and y-components of the throwing motion, let’s say the following equations apply:

The trajectory depends on the initial velocity v0, the throwing angle α, and the throwing

height h.

Listing 7.13 shows the implementation of the animation of the oblique throw. The pro-

gram does not start the motion sequence until the left mouse button is clicked on the

canvas.

01 #13_oblique_throw.py
02 from vpython import *
03 h=1.2 #throwing height
04 b=60. #width of the reference plane
05 v0=22.5 #initial velocity
06 alpha=45. #throwing angle
07 alpha=radians(alpha)
08 g=9.81
09 r=b/40.
10 h=h+r
11 scene.background=color.white
12 scene.width=600
13 scene.height=600
14 scene.center=vector(0,b/4.,0)
15 ball = sphere(pos=vector(-b/2.,h,0),radius=r,color=color.yellow)
16 box(pos=vec(0,-b/50.,0),size=vec(b,b/25.,b/2.),color=color.green)
17 scene.caption="\nStart with mouse click"
18 scene.waitfor('click')
19 dt=0.01
20 t=0.0
21 while True:
22 rate(50)
377

7 3D Graphics and Animations Using VPython
23 x = v0*t*cos(alpha)
24 y = h + v0*t*sin(alpha) - 0.5*g*t**2
25 ball.pos = vector(x-b/2.,y+r,0)
26 if y<=0.0:
27 break
28 t=t+dt

Listing 7.13 Animation of the Oblique Throw

Output

A snapshot of the resulting animated oblique throw is shown in Figure 7.13.

Figure 7.13 Graphic Implementation of the Animation of the Oblique Throw

Analysis

In line 18, the scene.waitfor('click') statement causes the animation not to be exe-

cuted until after a mouse click within the scene. With this interruption, it is possible to

better identify the throwing height. Within the animation loop (lines 21 to 28), the x and

y components of the ball motion are computed in lines 23 and 24. In line 25, the current

vector of the motion position is assigned to the ball.pos property. When the ball

reaches the reference plane (line 26), the break statement aborts the animation.

Exercise

Test the program with different throwing angles and throwing velocities.

Vary the throwing heights as well.

7.3.5 Rotational Motion

The rotational motion of a body on an elliptical trajectory can be animated by the x-y

coordinates that change in time:

If the semiaxes a and b are equal, a circular motion is animated; otherwise, the body

moves on an elliptical trajectory.
378

7.3 Bodies in Motion
Rotation of a Body on an Elliptical Trajectory

Listing 7.14 animates the movement of the Moon on an elliptical orbit around the

Earth. The mean orbital eccentricity of the Moon (0.0549) has been greatly exaggerated

to illustrate that the Earth is not at the center of the ellipse.

01 #14_elliptical_orbit.py
02 from vpython import *
03 scene.width=600
04 scene.height=600
05 b=10. #semiaxis of the ellipse
06 a=1.157*b #semiaxis of the ellipse
07 Rm=1. #Moon radius
08 Re=3.7*Rm #Earth radius
09 rem=10.*Re #Earth-Moon distance
10 scene.background=color.white
11 earth = sphere(pos=vector(0.1*a,0,0),radius=Re,texture=textures.earth)
12 moon = sphere(pos=vector(rem,0,0),radius=Rm,color=color.gray(0.8))
13 w=1.0 #angular velocity
14 t=0
15 dt=1e-3
16 while True:
17 rate(100)
18 x = a*cos(w*t)
19 y = b*sin(w*t)
20 moon.pos = vector(x,y,0)
21 t=t+dt

Listing 7.14 Animation of the Elliptical Orbit of the Moon

Output

A snapshot of the resulting animated elliptical orbit of the moon is shown in Figure

7.14.

Figure 7.14 Animation of the Elliptical Orbit of the Moon

Analysis

In lines 05 to 09, the data for our Earth-Moon planetary system is defined. In line 11, the

sphere() method creates the earth object. The spherical earth object is moved to the
379

7 3D Graphics and Animations Using VPython
right on the positive x-axis by the amount 0.1*a. We chose this unrealistically high

value to illustrate that the geometric location of the Earth does not coincide with

the center of the ellipse. The surface of a body object can represented visually with the

texture property; obviously, we chose the textures.earth value. The earth object would

not actually need to be created explicitly because it will no longer be used further down

in the source code. The situation is different with the Moon. An object must be created

for the Moon because it is needed in the animation loop. The creation of the moon object

takes place in line 12.

The angular velocity w=1.0 does not correspond to reality (line 13). We set this value

arbitrarily to better understand the motion of the moon.

The while loop (lines 16 to 21) implements the animation. In line 20, for each time t the

moon.pos property is assigned the x-y coordinates determined in lines 18 and 19.

Rotation of a Body on a Circular Trajectory

VPython also provides a simple method to animate circular motion. The following

method animates the motion of a circular trajectory:

body .rotate(angle=w*dt,axis=vec(0,1,0),origin=vec(0,0,0))

The angle property must be assigned the angle w*dt. The rotational motion comes

about by computing a new angle for each time (dt) from the angular velocity w, which is

assumed to be constant. The axis vector axis specifies the axis of rotation, and the ori-
gin property specifies the center of rotation.

Listing 7.15 animates the rotation of a cube. The commented-out lines are for testing

purposes.

01 #15_rotation1.py
02 from vpython import *
03 scene.width=scene.height=600
04 scene.background=color.white
05 scene.center=vec(0,0,0)
06 r=1.
07 col=color.green
08 scene.range=1.5*r
09 red = box(pos=vec(0,0,0),axis=vec(0,1,0),size=vec(r,r,r),color=col)
10 #red =ring(pos=vec(0,0,0),axis=vec(0,0,1),radius=r,thickness=r/5.)
11 #red=ellipsoid(pos=vec(0,0,0),axis=vec(1,0,0),size=vec(2.0*r,r,r))
12 #red = arrow(pos=vec(0,0,0), axis=vec(r,0,0), color=col)
13 dt = 0.05
14 w=0.5 #angular velocity
380

7.3 Bodies in Motion
15 while True:
16 rate(25)
17 red.rotate(angle=w*dt,axis=vec(0,1,0),origin=vec(0,0,0))

Listing 7.15 A Rotating Cube

Output

A snapshot of the resulting animation of a rotating cube is shown in Figure 7.15.

Figure 7.15 Animation of a Rotating Cube

Analysis

In line 09, the box() method creates the red object with edge length r.

In line 17, the following method makes the cube rotate around the y-axis:

rotate(angle=w*dt,axis=vec(0,1,0),origin=vec(0,0,0))

By changing the angular velocity w in line 14, you can change the rotation frequency.

The center of rotation is located at the origin (zero).

Exercise

Test the program with different angular velocities. Also try different axes of rotation.

Test the program with the bodies commented out.

Rotation of Multiple Bodies

Within an animation loop, multiple bodies can also be moved on a circular trajectory

with different angular velocities. Listing 7.16 shows how to animate the rotational

motions of the inner planets Mercury, Venus, and the Earth around the Sun and display

the result, as shown in Figure 7.16. The relative distances between the planets do not

correspond to reality, and all the planets rotate around the z-axis.
381

7 3D Graphics and Animations Using VPython
01 #16_rotation2.py
02 from vpython import *
03 scene.width=scene.height=600
04 scene.background=color.white
05 R=5.0 #radius of the sun
06 r=10.0 #Sun-Mercury distance
07 sphere(pos=vec(0,0,0),axis=vec(1,0,0),radius=R,color=color.yellow)
08 mercury=sphere(pos=vec(r,0,0),axis=vec(1,0,0),
radius=0.2*R,color=color.red)
09 venus=sphere(pos=vec(2*r,0,0),axis=vec(1,0,0),
radius=0.3*R,color=color.green)
10 earth=sphere(pos=vec(3*r,0,0),axis=vec(1,0,0),
radius=0.5*R,texture=textures.earth)
11 dt = 0.05
12 w1=0.3
13 w2=0.2
14 w3=0.1 #angular velocity
15 while True:
16 rate(25)
17 mercury.rotate(angle=w1*dt,axis=vec(0,0,1),origin=vec(0,0,0))
18 venus.rotate(angle=w2*dt,axis=vec(0,0,1),origin=vec(0,0,0))
19 earth.rotate(angle=w3*dt,axis=vec(0,0,1),origin=vec(0,0,0))

Listing 7.16 Animation of the Planetary Motions in the Solar System

Output

Figure 7.16 Animation of the Planetary Motions in the Solar System

Analysis

Lines 05 and 06 define the radius of the Sun R and the distance between Mercury and

the Sun r. The radii of the planets are defined as fractions of the solar radius, and their

distances are defined as a multiple of r.

The planetary objects, mercury, venus, and earth are generated in lines 08 to 10.

Lines 12 to 14 define the angular velocities of the planetary objects. The greater the dis-

tance between a planet and the Sun, the smaller its angular velocity must be.
382

7.3 Bodies in Motion
Within the while loop (lines 15 to 19), the rotate() method is applied to the planetary

objects mercury, venus, and earth. The axis=vec(0,0,1) vector specifies that the planets

rotate around the z-axis.

Exercise

Test the program with different angular velocities and distances.

Let the planets rotate around the y-axis.

7.3.6 Random Motion

In Brownian motion, small particles, such as pollen grains, move randomly and jerkily

in different directions in a fluid. These movements are caused by the thermal motion of

the liquid molecules that are in the vicinity of a particle. Such random movements can

be animated in VPython by generating random numbers for the x-y coordinates using

the random() function. This function generates random numbers between 0 and 1.

The x-y coordinates are recomputed with each loop pass:

The angle α is generated with a random number generator just like the angle . The

first angle has a value between 0 and π, and the second angle has a value between 0 and

2π. The sin α function calculates the distances of the particles from the origin of the

coordinate system. The cosφ and sinφ functions compute the randomly distributed

x-y coordinates.

Listing 7.17 shows how to animate the random, two-dimensional motion of a sphere.

The trajectories of the sphere are displayed as thin blue lines using the attach_
trail(object, ...) method.

01 #17_random.py
02 from vpython import *
03 a=10.
04 r=a/20.
05 scene.background=color.white
06 scene.width=scene.height=600
07 scene.center=vector(0,0,0)
08 scene.range=a
09 part = sphere(radius=r,color=color.red)
10 part.pos=vector(0,0,0)
11 attach_trail(part,radius=0.05,color=color.blue)
12 i=0
13 while i<10:
14 sleep(0.8)
383

7 3D Graphics and Animations Using VPython
15 alpha = pi*random()
16 phi = 2.0*pi*random()
17 x = a*sin(alpha)*cos(phi)
18 y = a*sin(alpha)*sin(phi)
19 part.pos=vector(x,y,0)
20 i=i+1

Listing 7.17 Animation of Random Motions

Output

A snapshot of the resulting animation of a randomly moving sphere is shown in Figure

7.17.

Figure 7.17 Random Motions

Analysis

In line 09, the sphere() method creates the part object. In line 10, the part.pos=vector

(0,0,0) property places the initial position of the part sphere in the origin of the coor-

dinate system. The attach_trail(part, ...) method in line 11 causes the trajectory

curves to be traced as blue lines with radius=0.05. The animation is executed ten times

within the while loop (lines 13 to 20). In line 14, the sleep(0.8) function ensures that the

loop pass gets interrupted for 0.8 seconds.

In line 15, the random() function generates random numbers between 0 and π for com-

puting the randomly distributed distances of the sphere from the coordinate origin.

The random numbers generated in line 16 lie in the interval from 0 to 2π. In lines 17 and

18, the randomly distributed x-y coordinates are computed.
384

7.4 Animation of Oscillations
Exercise

Test the program with different interruption times.

Test the program with different radii for the motion lines (line 11).

7.4 Animation of Oscillations

A pendulum deflected from its rest position performs oscillations. These pendulum

motions can be animated just as well as any other motion. When animating a pendu-

lum in motion, you must first set up the differential equation system that describes the

motion of the pendulum. This differential equation system is then solved within the

animation loop using a simple summation algorithm. Based on the solution of the dif-

ferential equation system, the x-y positions of the pendulum can then be calculated.

7.4.1 Simple Pendulum

The motion of an ideal simple pendulum (mathematical pendulum) can be described

by the following differential equation:

Next, we’ll use the following substitution:

Thus, you’ll obtain a differential equation system with two first-order differential equa-

tions:

Since accuracy is not absolutely essential for animations but instead the efficiency of

the algorithm is most important, a convenient way to solve this differential equation

system is using the Euler method.

Listing 7.18 animates the motion of a simple pendulum. The differential equation sys-

tem is solved within the animation loop using the sum algorithm of the Euler method.

The pendulum consists of a cylinder object (cylinder), which represents the thread, and

a sphere object (sphere), which represents the mass.

01 #18_pendulum.py
02 from vpython import *
03 y0=-5. #shift on the y-axis
385

7 3D Graphics and Animations Using VPython
04 b=5. #width of the ceiling
05 l=8. #length of the pendulum
06 phi=45. #deflection
07 r=0.5 #radius of the sphere
08 scene.width=600
09 scene.height=600
10 scene.center =vector(0,y0,0)
11 scene.range=1.5*b
12 scene.background = color.white
13 box(size=vector(b,b/20.,b/2.),color=color.gray(0.8)) #ceiling
14 rod=cylinder(axis=vector(0,l,0),radius=0.05)
15 mass = sphere(radius=r,color=color.red)
16 mass.pos=vector(0,rod.pos.y,0)
17 g=9.81 #gravitational acceleration
18 w02=g/l #square of the angular frequency
19 phi=radians(phi)
20 w=0. #initial angular velocity
21 dt=0.02
22 while True:
23 rate(100)
24 phi=phi+w*dt
25 w=w-w02*sin(phi)*dt
26 x= l*sin(phi)
27 y=-l*cos(phi)
28 rod.axis=vector(x,y,0)
29 mass.pos =vector(x,y,0)

Listing 7.18 Simple Pendulum

Output

A snapshot of the resulting animation of a mathematical pendulum is shown in Figure

7.18.

Figure 7.18 Animation of a Pendulum Motion
386

7.4 Animation of Oscillations
Analysis

Line 06 defines the deflection angle phi. The differential equation system of the pendu-

lum motion (lines 24 and 25) is solved within the animation loop (lines 22 to 29) using

the sum algorithm phi=phi+w*dt and w=w-w02*sin(phi)*dt. Lines 26 and 27 calculate the

x and y coordinates of the current sphere position. In lines 28 and 29, the positions of

the rod and of the sphere are updated.

Exercise

Test the program with different deflection angles.

Test the program with different pendulum lengths.

7.4.2 Spring Pendulum

The pendulum motion of a spring pendulum can be described by the following differ-

ential equation:

Using the substitution

the following differential equation system is obtained:

Listing 7.19 animates oscillations of a spring-mass system. The mass is represented by a

spherical object.

01 #19_spring_pendulum.py
02 from vpython import *
03 y0=-5. #shift on the y-acis
04 b=8. #width of the ceiling
05 l=0.8*y0 #length of the spring
06 r=1.2 #radius of the mass
07 c=1.1 #spring constant
08 m=1.5 #mass of the sphere
09 scene.width=600
10 scene.height=600
11 scene.center =vector(0,y0,0)
12 scene.background = color.white
13 box(pos=vector(0,b/40.,0),size=vector(b,b/20.,b/2.),
387

7 3D Graphics and Animations Using VPython
color=color.gray(0.8)) #ceiling
14 spring=helix(axis=vector(0,l,0),radius=0.6,color=color.yellow)
15 spring.thickness=0.2
16 spring.coils=8
17 mass=sphere(pos=spring.pos,radius=r,color=color.red)
18 w02=c/m #square of the angular frequency
19 y=-0.6*l #deflection
20 v=0. #initial velocity
21 dt=0.02
22 while True:
23 rate(100)
24 y=y+v*dt
25 v=v-w02*y*dt
26 spring.axis=vector(0,y+l,0)
27 mass.pos =vector(0,y+l-r,0)

Listing 7.19 Spring-Mass Oscillator

Output

A snapshot of the resulting animation of a spring pendulum is shown in Figure 7.19.

Figure 7.19 Animation of a Spring Pendulum

Analysis

Lines 03 and 11 cause the shift of the coordinate origin by 5 units of length upwards. In

lines 05 to 08, the data of the spring-mass oscillator is defined.

In line 14, the helix() method creates the spring object spring. The properties of the

spring object are complemented in lines 15 and 16. In line 17, the sphere() method cre-

ates the sphere object mass.
388

7.5 Event Processing
The deflection (initial value) is set to 60% of the spring length l (line 19).

Within the infinite loop (lines 22 to 27), the differential equation system (lines 24 and

25) is solved using the Euler method.

The positions of the end of the spring and the center of the sphere are updated in lines

26 and 27.

Exercise

Test the program with different masses.

Test the program with different spring constants.

7.5 Event Processing

For event processing, VPython also provides controls such as command buttons (but-
ton), radio buttons (radio), multiple selection options (checkbox and menu), and sliders

(slider).

For each event, a function must be defined to perform the relevant action. Events are

always implemented according to the following schema:

control(bind=function, ...)

The control identifier can be the name of a control, such as a button, slider, checkbox, or

radio button. To enable the controlelement method to trigger an event, a custom func-

tion must be passed to it as a parameter. This function is assigned to the bind property.

The parentheses of the custom function must be omitted. All other parameters depend

on the type of control. Listing 7.20 shows how to use the slider() method to change the

rotational frequency of a voltage pointer. The checkbox() method enables the activa-

tion of a power pointer that rotates with double frequency. The button() method can be

used to pause and restart the animation.

01 #20_event-processing.py
02 from vpython import *
03 scene.title="<h2>Rotating voltage and power pointer</h2>"
04 scene.width=scene.height=600
05 scene.background=color.white
06
07 runs = True
08 col=color.yellow
09
10 def start(b):
11 global runs
12 runs = not runs
389

7 3D Graphics and Animations Using VPython
13 if runs: b.text = "Pause"
14 else: b.text = "Start"
15
16 def omega(s):
17 txtA.text = "{:1.2f}".format(s.value)
18
19 def visibleP(b):
20 if b.checked:
21 p.visible = True
22 else:
23 p.visible = False
24
25 u_s=2.
26 p_s=1.5
27 d=0.025
28 scene.range = 1.2*u_s
29 u=arrow(pos=vec(0,0,0),axis=vec(0,u_s,0),color=color.blue)
30 p=arrow(pos=vec(0,0,0),axis=vec(p_s,0,0),color=col)
31 p.visible=False
32 u.shaftwidth=d
33 p.shaftwidth=d
34 button(text="Pause",pos=scene.title_anchor,bind=start)
35 scene.append_to_caption("\n\n")
36 scene.caption="\n Change frequency:\n\n"
37 sldF=slider(min=0,max=6.28,value=1,length=300,bind=omega,right=4)
38 txtA=wtext(text="{:1.2f}".format(sldF.value))
39 scene.append_to_caption(" rad/s\n\n")
40 checkbox(bind=visibleP, text="Show power pointer\n\n")
41 dt=0.01
42 w=1.
43 while True:
44 rate(1/dt)
45 if runs:
46 w=sldF.value
47 u.rotate(angle=w*dt,axis=vec(0,0,1))
48 p.rotate(angle=2.0*w*dt,axis=vec(0,0,1))

Listing 7.20 Event Processing

Output

A snapshot of the resulting rotating pointers animation is shown in Figure 7.20.
390

7.5 Event Processing
Figure 7.20 Event Processing

Analysis

If the value of the global runs variable (lines 07 and 11) is True, the animation is executed

within the while loop (lines 43 to 48). If you want to pause the animation, you must click

the Pause button. Then, the label of the button changes to Start. In this case, the

button() method from line 34 calls the custom start(b) function from lines 10 to 14.

The command button is placed above the scene in the upper-left corner. The start(b)
function is called via bind=start. The parentheses of the function definition and the

function argument b must be omitted.

In line 37, the slider() method calls the custom bind=omega function from lines 16 and

17. The set values are stored in the sldF object and displayed in the txtA text field in line

38. In line 46, the change of the rotation frequency is performed using the w=sldF.value
assignment.
391

7 3D Graphics and Animations Using VPython
The checkbox(bind=visible,...) method in line 40 calls the custom function visi-
ble(b) from lines 19 to 23. If you activate the checkbox control, the power pointer will be

switched on.

Exercise

Test the program with all settings.

Comment out line 11. Restart the program and click the Pause button. Analyze the error

message.

7.6 Project Task: Animation of a Coupled Spring Pendulum

In this task, we need to animate the oscillations of a coupled spring pendulum consist-

ing of two spring-mass systems with spring constants c1 and c2 and masses m1 and m2

in VPython. The spring-mass system oscillates in the direction of the y-axis. Damping

should be neglected for the time being.

This solution consists of three steps:

1. Set up the differential equation system:

2. Convert this equation system into a first-order differential equation system using

the following substitutions:

and

Thus, you obtain the following first-order differential equation system:
392

7.6 Project Task: Animation of a Coupled Spring Pendulum
3. Set up the solution algorithm for the differential equation system using the Euler

method:

y1=y1+v1*dt
v1=v1-(c1+c2)/m1*y1*dt + c2/m1*y2*dt
y2=y2+v2*dt
v2=v2-c2/m2*(y2-y1)*dt

This algorithm must then be inserted within the animation loop. Listing 7.21 shows the

implementation.

01 #21_double_spring_pendulum.py
02 from vpython import *
03 y0=-5. #shift on the y-axis
04 b=10. #width of the ceiling
05 r=1.2 #radius of the mass
06 l=0.9*y0
07 c1=1. #spring constant
08 m1=1. #mass of the sphere
09 c2=1.
10 m2=1.
11 scene.width=600
12 scene.height=800
13 scene.center =vector(0,2*y0,0)
14 scene.background = color.white
15 box(pos=vector(0,b/40.,0),size=vector(b,b/20.,b/2.),
color=color.gray(0.8)) #ceiling
16 spring1 = helix(pos=vector(0,0,0),axis=vector(0,l,0),
17 color=color.yellow,radius=0.5*r,thickness=0.2,coils=10)
18 mass1 = sphere(pos=spring1.feder1.pos,radius=r, color=color.red)
19 spring2 = helix(pos=vector(0,l,0),axis=vector(0,l,0),
20 color=color.green,radius=0.5*r,thickness=0.2,coils=10)
21 mass2 = sphere(pos=vector(0,2*l,0),radius=r, color=color.blue)
22 y1=-0.6*l #deflection
23 y2=0
24 v1=v2=0 #initial velocity
25 lk=l-r
26 dt=0.02
27 while True:
28 rate(50)
29 y1=y1 + v1*dt
30 v1=v1-(c1+c2)/m1*y1*dt+c2/m1*y2*dt #-0.05*v1*dt
31 y2=y2 + v2*dt
32 v2=v2-c2/m2*(y2-y1)*dt #-0.05*v2*dt
393

7 3D Graphics and Animations Using VPython
33 spring1.axis=vector(0,y1+l,0)
34 mass1.pos =vector(0,y1+lk,0)
35 spring2.axis=vector(0,y1+y2+l,0)
36 spring2.pos.y =mass1.pos.y
37 mass2.pos =spring2.pos+vector(0,y1+y2+lk,0)

Listing 7.21 Coupled Spring Pendulum

Output

A snapshot of the resulting animation of a coupled spring pendulum is shown in Figure

7.21.

Figure 7.21 Coupled Spring Pendulum

Analysis

In lines 07 to 10, the masses and spring constants of the two coupled springs can be

changed.

In lines 16 to 21, the sphere() and helix() methods create the spring and mass objects.

In lines 29 to 32, the differential equation system is solved using the Euler method.

The axis property of spring1 and spring2 causes the two springs to deflect only in the

direction of the y-axis (lines 33 and 35).

In line 36, the spring2.pos.y property is assigned the current position of mass1.

Line 37 causes mass2 to be positioned at the end of spring2.
394

7.7 Project Task: Animation of Two Coupled Simple Pendulums
Exercise

Test the program with different masses.

Test the program with different spring constants.

In certain constellations, the spring-mass system reacts unstably.

Test the program with different damping values by removing the comments in lines 30

and 32.

7.7 Project Task: Animation of Two Coupled Simple Pendulums

For this next task, we need to animate a pendulum system that consists of two simple

mathematical pendulums, whose masses m are connected via a spring (spring con-

stant c), as shown in Figure 7.22. First, you must set up the differential equation system

of the spring-mass system again:

Then, you’ll use the following substitutions:

and

Thus, you’ll obtain the following first-order differential equation system:

Using the abbreviations

and
395

7 3D Graphics and Animations Using VPython
you develop the algorithm according to the Euler method from the first-order differen-

tial equation system:

phi1=phi1+w1*dt
w1=w1-w02*phi1*dt+k*(phi2-phi1)*dt #-0.05*w1*dt
phi2=phi2+w2*dt
w2=w2-w02*phi1*dt-k*(phi2-phi1)*dt

This algorithm is inserted into the animation loop of the program. Listing 7.22 shows

the implementation.

01 #22_double_pendulum.py
02 from vpython import *
03 phi1=radians(-5.)
04 phi2=radians(5.)
05 b=12. #width of the ceiling
06 y0=-b/2.#shift on the y-axis
07 a=b/2. #distance between the pendulums
08 l=0.9*b #length of the pendulums
09 r=b/15. #radius of the spheres
10 m=10. #mass of the spheres
11 c=4.5 #spring constant
12 scene.width=600
13 scene.height=600
14 scene.center=vector(0,y0,0)
15 scene.range=0.8*b
16 scene.background = color.white
17 box(size=vector(b,b/20.,b/4.),color=color.gray(0.8)) #ceiling
18 rod1=cylinder(axis=vector(0,l,0),radius=0.05)
19 rod1.pos=vector(-a/2.,0,0)
20 rod2=cylinder(axis=vector(0,l,0),radius=0.05)
21 rod2.pos=vector(a/2.,0,0)
22 mass1 = sphere(radius=r,color=color.red)
23 mass2 = sphere(radius=r,color=color.blue)
24 spring=helix(axis=vector(a,0,0),radius=0.4)
25 spring.thickness=0.1
26 spring.coils=10
27 g=9.81 #gravitational acceleration
28 w02=g/l #pendulum frequency
29 k=c/m #spring frequency
30 w1=w2=0 #angular velocity
31 dt=0.02
32 while True:
33 rate(100)
34 phi1=phi1+w1*dt
396

7.7 Project Task: Animation of Two Coupled Simple Pendulums
35 w1=w1-w02*phi1*dt+k*(phi2-phi1)*dt #-0.05*w1*dt
36 phi2=phi2+w2*dt
37 w2=w2-w02*phi1*dt-k*(phi2-phi1)*dt #-0.05*w2*dt
38 x1= l*sin(phi1)
39 y1=-l*cos(phi1)
40 x2= l*sin(phi2)
41 y2=-l*cos(phi2)
42 rod1.axis=vector(x1,y1,0)
43 mass1.pos =vector(x1-a/2.,y1,0)
44 rod2.axis=vector(x2,y2,0)
45 mass2.pos =vector(x2+a/2.,y2,0)
46 spring.pos=mass1.pos+vector(r,0,0)
47 spring.axis.x=x2-x1+a-2*r
48 spring.axis.y=y2-y1

Listing 7.22 Coupled Simple Pendulums

Output

A snapshot of the resulting animation of a simple coupled pendulum is shown in

Figure 7.22.

Figure 7.22 Coupled Simple Pendulums

Analysis

In lines 03 and 04, you can change the deflection angles phi1 and phi2 of both pendu-

lums.
397

7 3D Graphics and Animations Using VPython
Lines 10 and 11 define the masses of the pendulums and the spring constant of the cou-

pling spring.

The differential equation system is solved in lines 34 to 37. The damping values are

commented out. They can be removed for testing purposes.

In lines 38 to 41, the current x-y coordinates are calculated from the deflection angles

phi1 and phi2.

In lines 42 to 48, the current positions are assigned to each pendulum and the coupling

spring.

Exercise

Test the program with different masses.

Test the program with different spring constants.

With certain settings, the double pendulum reacts unstably.

Test the program with different damping values by removing the comments in lines 35

and 37.

7.8 Tasks

1. Four spheres are supposed to touch each other in space. Write a VPython program to

represent this.

2. A graph consists of four nodes and has the shape of a parallelogram. All nodes are

connected to each other. The nodes are to be simulated as points. Write a VPython

program to represent this.

3. A cylinder oriented in the direction of the x-axis penetrates another cylinder ori-

ented in the direction of the y-axis. Write a VPython program to represent this.

4. Write a VPython program that creates an octahedron.

5. Write a VPython program that animates the motions of the Moon and the Earth

around the Sun. To simplify things, assume that the planets move along circular

orbits.
398

Chapter 8

Computing with Complex Numbers

This chapter describes how you can compute alternating current (AC)

networks, frequency responses and locus curves using complex calculus.

Complex numbers extend the real number range into the range of imaginary numbers.

A complex number consists of a real part a and an imaginary part b:

Complex numbers can be represented in the complex number plane, also called the

Gaussian number plane, as shown in Figure 8.1.

Figure 8.1 Complex Numbers

Complex numbers can be added, subtracted, divided, and multiplied directly in the

Python console. You can enter complex numbers together with the mathematical

operators into the console and then perform arithmetic operations by pressing

(Return). The integration of a module is not required for basic mathematical opera-

tions, such as the following:

>>> z1=1+2j
>>> z2=3+4j
>>> z1+z2
(4+6j)
>>> z1-z2
(-2-2j)

Re(z)

Im(z)

a

b
|z|
399

8 Computing with Complex Numbers
>>> z1/z2
(0.44+0.08j)
>>> z1*z2
(-5+10j)

You can also perform other mathematical operations defined for complex numbers,

for instance, exponentiation, root calculation, logarithmizing, and so on.

8.1 Mathematical Operations

Listing 8.1 shows how selected mathematical operations on two complex numbers z1 =

5 – j12 and z2 = 3 + j4 must be implemented using the NumPy module.

01 #01_operations.py
02 import numpy as np
03 n=3
04 z1=5-12j
05 z2=complex(3,4)
06 z2conj=np.conjugate(z2)
07 rez2=np.real(z2)
08 imz2=np.imag(z2)
09 absolutevalue=np.abs(z2)
10 angle=np.angle(z2)
11 s=z1+z2
12 d=z1-z2
13 p=z1*z2
14 q=z1/z2
15 pot=z2**n
16 w=np.sqrt(z2)
17 lg=np.log(z2)
18 hs=np.sinh(z2)
19 #Outputs
20 print("Complex number z1:",z1)
21 print("Complex number z2:",z2)
22 print("Conjugated z2:",z2conj)
23 print("Real part z2:",rez2)
24 print("Imaginary part z2:",imz2)
25 print("Absolute value of z2:",absolutevalue)
26 print("Angle of z2:",np.angle(z2,deg=True),"°")
27 print("Sum of z1+z2:",s)
28 print("Difference z1-z2:",d)
29 print("Product z1*z2:",p)
30 print("Quotient z1/z2:",q)
31 print("%1d.Power"%n,"of z2:",pot)
400

8.1 Mathematical Operations
32 print("Square root of z2:",w)
33 print("Logarithm z2:",lg)
34 print("sinh z2:",hs)
35 print("Type of z1:",type(z1))
36 print("Type of z2:",type(z2))

Listing 8.1 Basic Mathematical Operations with Complex Numbers

Output

Complex number z1: (5-12j)
Complex number z2: (3+4j)
Conjugated z2: (3-4j)
Real part z2: 3.0
Imaginary part z2: 4.0
Absolute value of z2: 5.0
Angle of z2: 53.13010235415598°
Sum of z1+z2: (8-8j)
Difference z1-z2: (2-16j)
Product z1*z2: (63-16j)
Quotient z1/z2: (-1.32-2.24j)
Cube of z2: (-117+44j)
Root of z2: (2+1j)
Logarithm z2: (1.6094379124341003+0.9272952180016122j)
sinh z2: (-6.5481200409110025-7.619231720321411j)
Type of z1: <class 'complex'>
Type of z2: <class 'complex'>

Analysis

Complex numbers can be defined with z1=5-12j (line 04) or with complex(3,4) (line 05).

The NumPy function np.conjugate(z2) generates the conjugate complex number

z2conj from the complex number z2 (line 06).

The real part and the imaginary part of the complex number z2 can be calculated using

the np.real(z2) and np.imag(z2) functions (lines 07 and 08).

To determine the absolute value and the angle of z2, you must apply the np.abs(z2) and

np.angle(z2) functions (lines 09 and 10).

Lines 11 to 14 perform some basic mathematical operations on z1 and z2.

Line 15 calculates the cube of z2, and line 16 calculates its root.

Lines 17 and 18 compute the natural logarithm and the sine hyperbolic of z2.

The output of the results for the mathematical operations on the complex numbers z1
and z2 occurs in lines 20 to 34.
401

8 Computing with Complex Numbers
8.2 Euler’s Formula

Euler’s formula describes the projections of a complex number z with the magnitude

r = |z| and the angle on the real and imaginary axes of the Gaussian number plane. The

following equation applies:

Listing 8.2 compares whether the following calculations provide the same values:

z1=r*np.exp(1j*phi)
z2=r*np.cos(phi)+1j*r*np.sin(phi)

01 #02_euler.py
02 import numpy as np
03 r=10
04 phi=np.radians(30)
05 z1=r*np.exp(1j*phi)
06 z2=r*np.cos(phi)+1j*r*np.sin(phi)
07 #Outputs
08 print("z1:",z1)
09 print("z2:",z2)
10 print("Magnitude z1:",np.abs(z1))
11 print("Magnitude z2:",np.abs(z2))
12 print("Type of z1:",type(z1))
13 print("Type of z2:",type(z2))

Listing 8.2 Implementation of Euler’s Formula

Output

z1: (8.660254037844387+4.999999999999999j)
z2: (8.660254037844387+4.999999999999999j)
Magnitude z1: 10.0
Magnitude z2: 10.0
Type of z1: <class 'numpy.complex128'>
Type of z2: <class 'numpy.complex128'>

Analysis

Line 03 specifies the magnitude r of the complex numbers z1 and z2. In line 04, the

np.radians(30) function converts the angle of 30° into the radian. In line 05, the expo-

nential function np.exp(1j*phi) is passed the imaginary part of a complex number (the

angle!) as an argument. The real and imaginary parts of the angle, multiplied by the

amount r, are stored in the z1 variable. Note that the imaginary unit j must always be

preceded by a 1.
402

8.3 Calculating with Complex Resistors
In line 06, the term of the right hand side of Euler’s formula is assigned to the z2 vari-

able.

As expected, the outputs of lines 08 and 09 prove that the results computed in lines 05

and 06 match.

In lines 10 and 11, the NumPy function np.abs() calculates the amounts of the complex

numbers z1 and z2. Both results are identical.

8.2.1 Symbolic Method

Euler’s formula entails an important consequence for the computation of AC networks.

Due to , voltages and currents can be represented as pointers rotating with an

angular velocity of .

The following equation then applies to the voltage pointer:

For the current pointer, the following equation applies:

The phase shift between voltage and current, which is usually always present, has not

yet been taken into account.

If you apply the rules of complex calculus, you can compute AC networks with sinusoi-

dal feed as if they were DC networks. In the literature, this method is also referred to as

the symbolic method.

Based on this method, total voltages and currents are calculated by adding up the real

and imaginary parts of the individual partial voltages and currents separately in each

case according to the rules of complex calculus. The multiplication and division of

complex resistors must also be performed according to the calculation rules of the

complex calculus. You can use the symbolic method only if all voltages and currents of

the network are sinusoidal.

8.3 Calculating with Complex Resistors

Of course, Ohm’s law also applies to AC networks:

When dividing the voltage pointer by the current pointer, the frequency is reduced.

Thus, pointers of complex resistors do not rotate. In any AC network, only ohmic, in-

ductive, and capacitive resistances occur. For a given angular frequency 𝜔, the follow-

ing applies with regard to the total resistance:
403

8 Computing with Complex Numbers
The inductive and the capacitive parts can be combined to an imaginary part X:

The real part R is formed by all ohmic resistances. If the inductive component predom-

inates, the imaginary part of the complex resistance has a positive sign. The current

lags behind the voltage. If the capacitive part predominates, the imaginary part of the

complex resistance has a negative sign. The current rushes ahead of the voltage. If the

imaginary part disappears, the network behaves like an ohmic resistor.

Complex currents

and complex powers

can be computed using Python by declaring the AC resistors as complex variables. For

a series circuit of an ohmic resistor of R = 10 Ω and an inductive reactance XL = 5 Ω, the

impedance is declared as a complex variable: Z=complex(10,5). Alternatively, you can

write Z=10+5j.

Based on the example T-circuit shown in Figure 8.2, I will demonstrate how the com-

plex calculus is carried out in real-life situations.

Figure 8.2 T-Circuit with Complex Resistors

From this T-circuit, you can read the equivalent resistance :

The three impedances of the T-circuit can be reduced to a single complex resistor

using the equivalent voltage source method. The original T-circuit then consists only of

Z4Z2

Z3Z1

U1 U2

0

1

404

8.3 Calculating with Complex Resistors
a series circuit of the equivalent resistance, which can be interpreted as the internal

resistance of the voltage source, and the complex load resistance .

In this way, the calculation of the current and the complex output voltage as well as the

complex output power is considerably simplified.

Listing 8.3 computes the output voltage, current, and output power of the T-circuit.

01 #03_t_circuit.py
02 import numpy as np
03 U1=230
04 Z1=1+2j
05 Z2=10-12j
06 Z3=1+2j
07 Z4=10-10j
08 Zi=Z1*Z2/(Z1+Z2)+Z3
09 I2=U1/(Zi+Z4)
10 U2=Z4*I2
11 P2=U2*I2
12 print("Internal resistance:",np.round(Zi,decimals=2), "ohms")
13 print("Output current: ",np.round(I2,decimals=2), "A")
14 print("Output voltage:",np.round(U2,decimals=2), "V")
15 print("Output power:",np.round(P2,decimals=2), "W")

Listing 8.3 T-Circuit

Output

Internal resistance: (2.33+3.94j) ohms
Output current: (15.02+7.39j) A
Output voltage: (224.07-76.35j) V
Output power: (3929.73+508.34j) W

Analysis

The input voltage U1 is defined as int in line 03. In lines 04 to 07, the AC resistors Z1 to

Z4 are defined. The AC resistors have the complex data type because their imaginary

parts have been marked by a j.
405

8 Computing with Complex Numbers
Line 08 computes the equivalent resistance Zi of the T-circuit as a complex resistance

because the variables Z1 to Z4 on the right-hand side of the assignment were defined as

complex magnitudes.

Line 09 computes the current I2 flowing through the load resistor Z4.

In lines 10 and 11, the output voltage U2 and the power consumption P2 of the load resis-

tor are calculated.

The output of the results is performed in lines 12 to 15. The sign of the imaginary part of

the output power P2 is positive, which means that inductive reactive power is “imple-

mented” in the complex load resistor Z4. Because it is reactive power, the inductive por-

tion of Z4 absorbs the amount of 508.34W in one half-period and feeds it back into the

grid in the second half-period.

8.4 Function Plots with Complex Magnitudes

You can also use Python to represent frequency responses for complex resistances.

However, one prerequisite is that you must divide the complex magnitudes into their

real and imaginary parts. Let’s use the example of a series resonant circuit and a two-

port network, which is constructed from two inductors—a resistor and a capacitor—to

illustrate how to implement function plots of frequency responses and locus curves.

8.4.1 Complex Frequency Response of a Series Resonant Circuit

Figure 8.3 shows the circuit of a series resonant circuit. For this circuit, the real and

imaginary parts of the current are represented as a function of the angular frequency.

Figure 8.3 Series Resonant Circuit

The complex resistance of the series resonant circuit consists of the real part R and the

two imaginary parts jω𝐿 and 1/jω𝐶 with the following equation:

LR
C

U

406

8.4 Function Plots with Complex Magnitudes
To compute the complex frequency response of the current I(jω), the voltage must be

divided by the complex resistance, with the following equation:

Listing 8.4 computes the frequency response of the complex current flowing through

the series resonant circuit and plots its real and imaginary parts as a function of the

angular frequency.

01 #04_series_resonant_circuit.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 U=230 #int!
05 R=10 #int!
06 C=1e-6
07 L=1e-2
08 w=2.0*np.pi*np.linspace(0.01,3e3,1000)
09 Z=R+1j*w*L+1.0/(1j*w*C)
10 I=U/Z
11 fig, ax=plt.subplots(figsize=(8,6))
12 ax.plot(w,np.real(I),lw=2,color="red",label="Real part")
13 ax.plot(w,np.imag(I),lw=2,color="green",label="Imaginary part")
14 ax.set(xlabel="ω rad/s",ylabel=" I in A ")
15 ax.legend(loc="best")
16 ax.grid(True)
17 plt.show()

Listing 8.4 Frequency Response of the Current Waveform of a Series Resonant Circuit

Output

The resulting output is the current waveform of the real and the imaginary parts repre-

sented as a curve, as shown in Figure 8.4.

Analysis

Lines 04 to 07 provide the data. Line 08 creates a NumPy array for the angular fre-

quency w.

Line 09 contains the formula for the impedance of the series resonant circuit. In line 10,

the current I is calculated. A number of the int type is divided by a number of the com-
plex type. The result is a number of the complex type.

In lines 12 and 13, the Matplotlib method plot() prepares the function plot for display-

ing the real and imaginary parts. In line 17, the function plot is displayed on the screen

via plt.show().
407

8 Computing with Complex Numbers
Figure 8.4 Current Waveform of Real and Imaginary Parts

8.4.2 Locus Curves

Locus curves represent the course of a complex resistance (impedance) or the course of

a complex conductance (admittance) in the complex number plane as a function of the

angular frequency. For each discrete value of an angular frequency, the real and imagi-

nary parts must be computed from the impedance or admittance. These values are

drawn into the complex number plane as points. If you connect these points, you

obtain the locus curve.

For the two-port network shown in Figure 8.5, we need to compute the locus curve of

the complex resistance and represent this curve graphically as a function plot.

Figure 8.5 Two-Port Network

L1

L2

R

C

408

8.4 Function Plots with Complex Magnitudes
From the circuit, you can directly read the complex resistance in the following way:

To manually draw the locus curve of this impedance, you must split the complex term

into its real and imaginary parts, which would be quite tedious.

Listing 8.5 carries out this task using the NumPy functions np.real(Z) and np.imag(Z).

01 #05_locus_curve.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 R=20
05 C=1e-6
06 L1=5e-2
07 L2=1e-2
08 wp=10e3 #angular frequency at point p
09 #complex resistance
10 def Z(w):
11 return 1j*w*L1+(R+1j*w*L2)*(1/(1j*w*C))/(R+1j*w*L2+1/(1j*w*C))
12
13 w=2.0*np.pi*np.linspace(0.01,3e3,500)
14 Zp=Z(wp)
15 fig, ax = plt.subplots(figsize=(8,6))
16 ax.plot(np.real(Z(w)),np.imag(Z(w)),lw=2)
17 ax.plot(np.real(Zp),np.imag(Zp),"o",c="red")
18 ax.set(title="Locus curve",xlabel="Real part in Ω", ylabel=
"Imaginary part in Ω")
19 ax.grid(True)
20 plt.show()

Listing 8.5 Locus Curve

Output

Figure 8.6 shows the output in a function plot.

Analysis

In lines 04 to 07, you can define the values for the components. In line 08, you can

enter a selected location of the angular frequency wp, which will be shown in the locus

curve in connection with line 14 Zp=Z(wp) and line 17 as a red point in the function plot.

At the angular frequency of 10⋅103 s-1, the real part of the two-port network has a value

of 500Ω, and the imaginary part has a value of 400Ω. Thus, Z = 500Ω + j400Ω.

Line 10 defines the function for the impedance of the two-port network.
409

8 Computing with Complex Numbers
Figure 8.6 Locus Curve for a Two-Port Network

In line 13, a NumPy array for the range of the angular frequency w is created.

In line 16, the display of the locus curve is prepared and displayed on the screen in line

20 by using plt.show().

8.5 Project Task: Electric Power Transmission System

Let’s say, for a 50 Hz three-phase line, the line-to-line voltage (e.g., 380 kV) and the

power P2 at the end of the line are given. Now, we need to determine the input voltage

U1 and the current I1 at the sending end.

These input variables depend on the transmission characteristics of the line and the

line length. Figure 8.7 shows the schematic representation of an electrical line.

Figure 8.7 Schematic Representation of an Electrical Line

U2U1
410

8.5 Project Task: Electric Power Transmission System
Four electrical constants, called primary line constants, completely determine the

transmission characteristics of a line. These constants include the resistance coating R',

the inductance coating L', the dielectric coating G', and the capacitance coating C'. The

magnitudes refer to 1km of line length.

The following data is given:

� Line length: l = 400km

� Line-to-line voltage at line end: U2 = 380kV

� Active power at line end: P2 = 360MW

� Power factor:

� Primary line constants:

– R' = 31mΩ/km

– L' = 0.8mH/km

– G' = 0.02µS/km

– C' = 14.3nF/km

8.5.1 Task

a) The input voltage U1, the input current I1, the input power S1, and the efficiency of the

line should be computed using a Python program.

b) Using a T-equivalent circuit diagram of the line, the results from a) must also be

checked using a Python program.

Solution to A

1. Determine the phase voltage U2 and the line-to-line current I2 at the end of the line:

Set up the formulas for the propagation constant y and the characteristic impedance

 . Based on the primary line constants, the propagation constant and the charac-

teristic impedance can be determined.

2. Set up the formulas for computing the input voltage and the input current .
411

8 Computing with Complex Numbers
At the sending end, the following applies to the voltage and current:

3. Implement the equations as Python source code.

The line data is implemented as assignments, as is usually the case. For the line equa-

tions, we can use the NumPy functions np.sinh() and np.cosh().

Listing 8.6 computes the complex voltage , the complex current , the complex

input power , and the efficiency of the line.

01 #06_line1.py
02 import numpy as np
03 P2a=360e6 #power at line end
04 U2a=380e3 #line-to-line voltage at line end
05 l=400 #line length
06 f=50 #frequency
07 phi=0 #phase shift
08 R=31e-3 #resistance coating
09 L=0.8e-3 #inductance coating
10 G=0.02e-6 #dielectric coating
11 C=14.3e-9 #capacitance coating
12 #Computations
13 w=2*np.pi*f
14 U2=U2a/np.sqrt(3)
15 I2=P2a/(np.sqrt(3)*U2a*np.cos(phi))
16 Zw=np.sqrt((R+1j*w*L)/(G+1j*w*C))
17 g=np.sqrt((R+1j*w*L)*(G+1j*w*C))
18 U1= np.cosh(g*l)*U2 + Zw*np.sinh(g*l)*I2
19 I1=np.sinh(g*l)/Zw*U2 + np.cosh(g*l)*I2
20 S1=3*U1*np.conjugate(I1)/1e6
21 eta=1e-4*P2a/np.real(S1)
22 #Output
23 print("Characteristic impedance: %5.2f\u03A9, %5.1f°" \
24 %(np.abs(Zw),np.angle(Zw,deg=True)))
25 print("Input voltage: %5.2f V, %5.1f°"\
26 %(np.abs(U1),np.angle(U1,deg=True)))
27 print("Input current : %5.2f A, %5.1f°"\
28 %(np.abs(I1),np.angle(I1,deg=True)))
29 print("Input power: %5.0f MW %5.0f Mvar"\
30 %(np.real(S1),np.imag(S1)))
31 print("Efficiency \u03B7 = %5.0f percent" %(eta))

Listing 8.6 Input Variables of a Three-Phase Line
412

8.5 Project Task: Electric Power Transmission System
Output

Characteristic impedance: 237.42Ω, -3.4°
Input voltage: 213673.23 V, 15.1°
Input current : 632.10 A, 37.9°
Input power: 374 MW -157 Mvar
Efficiency η = 96 percent

Analysis

Lines 03 to 11 define the data of the line according to the specifications.

In lines 16 and 17, the characteristic impedance Zw and the propagation constant g are

calculated, in lines 18 and 19 the input voltage U1 and the input current I1 of the power

transmission system with the line equations.

Line 20 calculates the apparent power S1 at the input of the line. From the real part of

S1, the efficiency eta of the line can then be calculated in line 21.

The outputs are made in lines 23 through 31. The NumPy function np.angle(Zw,deg=
True) calculates the phase shift angle and converts the angle from radians to degrees.

The results exactly match the data from the technical literature.

8.5.2 Equivalent Circuit Diagram of a Three-Phase Power Line

The equivalent circuit describes only the transmission behavior of a phase in the three-

phase line.

Solution to B

You can determine the complex resistances and for the T-equivalent circuit of a

line, shown in Figure 8.2, using the characteristic impedance, the hyperbolic tangent,

and the propagation constant:

The complex resistance can be computed using the hyperbolic sine:

You can determine the load resistance from the output voltage and the output

current :

The voltage at the resistor is composed of the voltage drop at the resistor and

the voltage drop at the load resistor :
413

8 Computing with Complex Numbers
The index 1.0 represents the two nodes to which the resistor is connected. The volt-

age enables you to determine the current , which flows through the resistor :

The input current represents the sum of and :

For the input voltage, we obtain:

You only need to enter these equations as Python source code into the editor of the

development environment. Listing 8.7 shows the implementation.

01 #07_line2.py
02 import numpy as np
03 P2a=360e6 #power at line end
04 U2a=380e3 #line-to-line voltage at line end
05 l=400 #line length
06 f=50 #frequency
07 phi=0 #phase shift
08 R=31e-3 #resistance coating
09 L=0.8e-3 #inductance coating
10 G=0.02e-6 #dielectric coating
11 C=14.3e-9 #capacitance coating
12 #Computations
13 w=2*np.pi*f
14 U2=U2a/np.sqrt(3)
15 I2=P2a/(np.sqrt(3)*U2a*np.cos(phi))
16 Zw=np.sqrt((R+1j*w*L)/(G+1j*w*C))
17 g=np.sqrt((R+1j*w*L)*(G+1j*w*C))
18 Z1=Zw*np.tanh(0.5*g*l)
19 Z2=Zw/np.sinh(g*l)
20 Z3=Z1
21 Z4=U2/I2
22 U10=(Z3+Z4)*I2
23 I10=U10/Z2
24 I1=I10+I2
25 U1=Z1*I1+U10
26 #Output
27 print("Z1= %3.2f \u03A9 %3.2fj \u03A9"\
28 %(np.real(Z1),np.imag(Z1)))
29 print("Z2= %3.2f \u03A9 %3.2fj \u03A9"\
30 %(np.real(Z2),np.imag(Z2)))
31 print("Z3= %3.2f \u03A9 %3.2fj \u03A9"\
414

8.6 Tasks
32 %(np.real(Z3),np.imag(Z3)))
33 print("Output current %5.3f A" %(I2))
34 print("Input voltage: %5.2f V, %5.1f°"\
35 %(np.abs(U1),np.angle(U1,deg=True)))
36 print("Input current : %5.2f A, %5.1f°"\
37 %(np.abs(I1),np.angle(I1,deg=True)))

Listing 8.7 Calculation with Equivalent Circuit

Output

Z1= 6.40 Ω 51.02j Ω
Z2= 0.32 Ω -573.58j Ω
Z3= 6.40 Ω 51.02j Ω
Output current 546.963 A
Input voltage: 213673.23 V, 15.1°
Input current : 632.10 A, 37.9°

Analysis

The values for the longitudinal members Z1 and Z3, as well as the transverse member

Z2, are calculated in lines 18 and 19.

Lines 21 to 25 calculate step by step the input voltage U1 and the input current I1, start-

ing from the end of the equivalent circuit.

The outputs are made in lines 27 through 37. The results from lines 34 and 36 are consis-

tent with the results from Listing 8.6.

8.6 Tasks

1. Calculate the square root of using the Python console.

2. Write a program to convert complex resistors connected as a star into a delta circuit.

3. For a parallel resonant circuit, the frequency response must be represented

as real and imaginary parts. Write a program that solves this task.

4. Write a program for plotting the locus curve of a characteristic impedance (see Task

5 for data).

5. Let’s say we have a telephone cable with the primary line constants:

– R' = 60Ω/km

– L' = 0.6mH/km

– G' = 1µS/km

– C' = 50nF/km
415

8 Computing with Complex Numbers
Now, calculate the voltage U2 and the current I2 at the end of the line at a frequency of

 = 1 kHz. The input voltage is U1 = 10V, and the input current has a value of I1 = 10 mA.

For these line equations, the following applies:
416

Chapter 9

Statistical Computations

In this chapter, you’ll learn how to calculate and analyze important sta-

tistical characteristics from normally distributed random numbers using

NumPy and SciPy. I’ll show you how to use a simulation program to

graphically represent the means and standard deviations of samples in

a two-track quality control chart.

Statistical analyses are responses to the ever-increasing complexity of society and

technology. Complexity unsettles and awakens the (unfulfillable) desire to know the

future. The quantitative description of the actual state of affairs forms the basis for

decisions in politics and management. Empirical social research aims to identify social

trends and risks. Election research tries to predict the outcome of an election, and epi-

demiology tries to assess the course and dangers of an epidemic. Statistics almost

always venture a glimpse into the future, even if they seem to observe and describe

only the conditions of the present. Because we cannot capture the full extent of a pop-

ulation’s dataset, we take samples, analyze them, and provide interpretive guidance for

future planning.

Important key figures include the mean values and the scatter values of a statistical

characteristic. Python provides a wide range of options for statistical computations

with its statistics, numpy, and scipy modules. The statistics module is part of the

standard Python package. The numpy and scipy modules must be installed subse-

quently. Table 9.1 contains an overview of selected statistical functions.

Terminology Python NumPy SciPy

Median median(a) median(a)

Modal value mode(a) mode(a)

Arithmetic

mean value

mean(a) mean(a)

Harmonic

mean value

harmonic_mean(a) hmean(a)

Geometric

mean value

geometric_mean(a) gmean(a)

Table 9.1 The Statistical Methods of Python, NumPy, and SciPy
417

9 Statistical Computations
The data to be analyzed is stored in an array a. Above all, the SciPy submodule stats,

with its overwhelming number of statistical functions, is a powerful tool for extensive

statistical analyses. In this chapter, I’ll focus on the treatment of important statistical

mean values, the standard deviation, and the regression analysis of normally distrib-

uted physical measurements. The dimensions of a workpiece (such as the gear shaft

shown in Figure 9.1) are supposed to represent these measurement values. Since no real

measurement values are available, they are generated using a random number genera-

tor, stored in a file, and read from the file for statistical analysis. The results of the sta-

tistical analysis are then visualized by histograms and quality control charts.

In mechanical engineering, the process quality of a manufacturing process must be

permanently monitored to ensure the quality required by the customer. For this pur-

pose, a random sample of usually five workpieces is taken every hour from running

production. Software then analyzes the samples using statistical tools. The process

quality can be thus assessed based on the profile of the mean values and standard devi-

ations from the individual samples.

Figure 9.1 Gear Shaft

Figure 9.1 shows a technical drawing of a gear shaft with the required dimensions. Basi-

cally, all dimensions given in the drawing can be the subject of statistical analysis. How-

ever, we assume that the measurement values are approximately normally distributed,

which in real life is almost always the case. Each technical drawing provides all relevant

values for statistical analysis, such as the following values:

� Length and width dimensions

� Diameter of the shaft

� Roughness depths

� Hardness according to the Rockwell scale (HRC)

Standard deviation stdev(a) std(a) tstd(a)

Skew skew(a)

Terminology Python NumPy SciPy

Table 9.1 The Statistical Methods of Python, NumPy, and SciPy (Cont.)
418

9.1 Generating, Saving, and Reading Measurement Values
For other production processes, the following values may also be relevant:

� Filling quantities of certain foods or substances

� Coating thicknesses

� Resistance values of ohmic resistors

� Capacitance values of capacitors

� Coil inductance values

The basic idea behind statistical process control (SPC) is to infer the process quality of

the entire manufacturing process based on the statistical analysis of a relatively small

number (sample) of workpieces. Corrective action can thus be taken in the process,

before further rejects are produced.

9.1 Generating, Saving, and Reading Measurement Values

Since no measurement values from a real manufacturing process are available, a ran-

dom number generator must generate them. Python’s NumPy module provides the

random.normal() function for this purpose. The measurement values are thus simu-

lated by software.

9.1.1 Generating Measurement Values

The NumPy module provides an efficient function for the simulation of normally dis-

tributed numbers. The general syntax for generating n normally distributed random

numbers is the following:

values=np.random.normal(setpoint,standarddeviation,size=n)

This statement creates a one-dimensional array of n normally distributed random

numbers with the mean setpoint value and the standard deviation standarddeviation.

The random numbers generated in this way are stored in the values variable. Using the

[] operator, you can access the individual elements of the array. Listing 9.1 shows the

implementation for generating ten normally distributed random numbers.

01 #01_generate.py
02 import numpy as np
03 n=10
04 setpoint=50
05 s=1
06 values=np.random.normal(setpoint,s,size=n)
07 rvalues=np.around(values,decimals=2)
08 print("Normally distributed values:")
09 print(values)
419

9 Statistical Computations
10 print("Rounded values:")
11 print(rvalues)
12 print("Type of values:",type(values))

Listing 9.1 Generating Normally Distributed Random Numbers

Output

Normally distributed values:
[48.8918586 50.38567219 49.46935897 51.13788815 49.80800167 47.74986333
51.54947603 50.14987419 49.50516999 49.43358825]
Rounded values:
[48.89 50.39 49.47 51.14 49.81 47.75 51.55 50.15 49.51 49.43]
Type of values: <class 'numpy.ndarray'>

Analysis

Line 02 imports the numpy module. As usual, the np identifier is assigned as an alias. Line

03 specifies the number of random numbers to be generated. We arbitrarily specified

the number 50 as the setpoint of a measured variable (line 04). The dispersion measure

of the standard deviation s has a reference value of 1 (line 05), which has also been spec-

ified arbitrarily. Line 06 generates ten normally distributed random numbers using the

np.random.normal(setvalue,s,size=10) NumPy function and assigns these numbers to

the values variable. In line 07, the decimal numbers are rounded to 2-digit precision

using the np.arrond(values,decimals=2) NumPy function.

Lines 09 and 11 output the random numbers. Line 12 specifies the type of variable val-

ues with <class 'numpy.ndarray'>. The ndarray data structure is typical of NumPy: In

this case, this array object represents a one-dimensional, homogeneous array with ele-

ments that have fixed sizes.

9.1.2 Converting a Measurement Series into a Table

In real-life situations, the measurement values are often stored sequentially as a series

in a file during the manufacturing process. For the statistical analysis, however, you

often need a table with n rows and m columns. You can use the reshape() NumPy func-

tion to convert a one-dimensional array into a two-dimensional array. Listing 9.2

shows how to implement such a reshaping.

01 #02_reshape.py
02 import numpy as np
03 rows=5
04 columns=10
05 n=columns*rows
06 setpoint=10
07 s=1
420

9.1 Generating, Saving, and Reading Measurement Values
08 values=np.random.normal(setpoint,s,size=n)
09 rvalues=np.around(values,decimals=2)
10 svalues=np.sort(rvalues)
11 table=np.reshape(svalues,(rows,columns),order='F')
12 print("Measurement values:\n",svalues)
13 print("Table:\n", table)
14 print("Minimum value:", np.amin(rvalues))
15 print("Maximum value:", np.amax(rvalues))

Listing 9.2 Converting a Measurement Series into a Table

Output

Measurement values:
[8.23 8.5 8.73 8.83 8.93 8.98 9.13 9.2 9.3 9.52 9.52 9.6 9.63 9.71
9.72 9.74 9.82 9.86 9.87 9.91 9.91 9.92 9.94 9.98 10.03 10.04 10.05
10.05 10.2 10.36 10.46 10.55 10.57 10.72 10.74 10.75 10.76 10.78 10.83 10.86
10.96 11.01 11.11 11.18 11.21 11.26 11.35 11.49 12.27 12.49]
Table:
[[8.23 8.98 9.52 9.74 9.91 10.04 10.46 10.75 10.96 11.26]
[8.5 9.13 9.6 9.82 9.92 10.05 10.55 10.76 11.01 11.35]
[8.73 9.2 9.63 9.86 9.94 10.05 10.57 10.78 11.11 11.49]
[8.83 9.3 9.71 9.87 9.98 10.2 10.72 10.83 11.18 12.27]
[8.93 9.52 9.72 9.91 10.03 10.36 10.74 10.86 11.21 12.49]]
Minimum value: 8.23
Maximum value: 12.49

Analysis

The program generates 50 normally distributed random numbers (line 08). Line 10

sorts the numbers to improve the verification of the reshaping. In real-life applications,

for example, in process monitoring via quality control charts, the real measurement

data must not be sorted, of course. The statistical analysis of the individual table col-

umns would provide a completely false picture of the manufacturing process.

In line 11, the reshape() NumPy function converts the one-dimensional array into a

table with five rows and ten columns. The svalues array is passed as the first parameter.

The second parameter contains the number of rows and columns as tuples. The third

parameter (order='F') determines how the table columns are formed from a section of

a row. “F” means that the numbers are read or written in the Fortran-like index order,

with the first index changing first and the last index changing last. The first column is

formed from the first five numbers in the series. The next five numbers are used to

form the second column of the measurement series, and so on.

In line 12, the sorted numbers are output as a one-dimensional array. Line 13 outputs

these numbers as a table with five rows and ten columns.
421

9 Statistical Computations
9.1.3 Writing Measurement Values to a File

In reality, the measurement values determined in the manufacturing process are avail-

able as persistently stored data on hard disks. This data is used by SPC programs, so that

corrective action can be taken in the process if necessary. For the analysis program to

simulate process monitoring in a realistic way, the numbers generated by the random

number generator must also be stored on the hard disk. For this purpose, the save-
text(param1,param2,param3) NumPy function is used. Listing 9.3 stores the random

numbers persistently on a hard disk.

01 #03_write.py
02 import numpy as np
03 n=50
04 setpoint=50
05 s=1
06 values=np.random.normal(setpoint,s,size=n)
07 rvalues=np.around(values,decimals=2)
08 np.savetxt("data.txt", values,fmt="%4.2f")
09 print("Normally distributed values:")
10 print(rvalues)
11 print("Type of values:",type(values))

Listing 9.3 Writing Data to a File

Output

Normally distributed values:
[51.33 49.76 50.17 49.4 49.4 47.78 49.9 47.99 50.35 48.83 50.22 48.79 48.7
50.48 50.65 49.87 49.7 50.42 49.34 49.51 50.17 51.3 50.17 50.14 49.44 49.3
48.27 49.99 50.4 49.13 50.03 51.08 50.03 51.72 49.42 49.9 49.43 49.03 49.91
50.43 50.35 49.48 49.25 50.48 49.17 49.68 52.23 50.44 49.73 50.9]
Type of values: <class 'numpy.ndarray'>

Analysis

In line 08, the random numbers generated in line 06 are saved to the hard disk using

the np.savetxt("data.txt",values,fmt="%4.2f") NumPy function. The first parameter

is the freely selectable file name with the txt file extension. The numbers are therefore

stored in text format. They can be displayed and also edited with any text editor. The

second parameter is the values variable, in which the 50 elements of the array (filled

with random numbers) are stored. The third parameter specifies that the numbers

should be stored with two decimal places. For control purposes, line 10 outputs the

rounded values.
422

9.2 Frequency Distribution
9.1.4 Reading Measurement Values from a File

To make the simulated measurement values available for statistical analysis, they must

be read from the file in which they were previously stored. Listing 9.4 reads all numbers

from the data.txt file using the loadtext() NumPy function.

01 #04_read.py
02 import numpy as np
03 values = np.loadtxt("data.txt")
04 n=len(values)
05 print("Loaded values:")
06 print(values)
07 print("Number of values:",n)
08 print("Type of values:",type(values))

Listing 9.4 Reading Data from a File

Output

Loaded values:
[51.33 49.76 50.17 49.4 49.4 47.78 49.9 47.99 50.35 48.83 50.22 48.79 48.7
50.48 50.65 49.87 49.7 50.42 49.34 49.51 50.17 51.3 50.17 50.14 49.44 49.3
48.27 49.99 50.4 49.13 50.03 51.08 50.03 51.72 49.42 49.9 49.43 49.03 49.91
50.43 50.35 49.48 49.25 50.48 49.17 49.68 52.23 50.44 49.73 50.9]
Number of values: 50
Type of values: <class 'numpy.ndarray'>

Analysis

In line 03, the random numbers are read from the data.txt file and stored in the values
variable. The np.loadtxt("data.txt") function expects only one parameter, namely,

the name of the file from which the data is to be read. For control purposes, line 06 out-

puts the simulated measurement series. A comparison with the output from Listing 9.4

shows that the values from both programs match as expected.

9.2 Frequency Distribution

A frequency distribution provides information about how the measured values in a

measurement series are distributed between the smallest value and the largest value.

Thus, process quality can be roughly estimated from the shape of the distribution: Is

the mean value close to the nominal value, do the measured values scatter strongly, or

are they unevenly distributed? Frequency distributions can be determined using fre-

quency tables (tally sheets) or visualized graphically by means of histograms.
423

9 Statistical Computations
9.2.1 Frequency Tables

You can use a frequency table to determine how often a measurement value occurs

within a certain interval. This interval is referred to as class interval w. To determine the

class interval, the number of classes k must first be determined. Actually, the number

of classes is freely selectable. In real life, however, accepted convention is to calculate k

from the square root of an n number of samples:

The result for k is rounded up to whole numbers.

The class interval w is calculated from the quotient of the span R

and the number of classes:

A frequency table is created using the following NumPy function:

H,I=np.histogram(array, bins=k)

Listing 9.5 shows how to implement a frequency table by using the NumPy module.

01 #05_tally_sheet.py
02 import numpy as np
03 values=np.loadtxt("data.txt")
04 n=len(values)
05 k=int(np.sqrt(n)+0.5)
06 minimum=np.amin(values)
07 maximum=np.amax(values)
08 R=round(maximum-minimum,2)
09 w=round(R/k,2)
10 svalues=np.sort(values)
11 H,I=np.histogram(values, bins=k)
12 h=100*H/n
13 print("Measurement values:\n",svalues)
14 print("Minimum value:", minimum)
15 print("Maximum value:", maximum)
16 print("Span:",R)
17 print("Number of classes:", k)
18 print("Class interval:", w)
19 print("Ranges:", np.around(I,decimals=2))
20 print("Absolute frequency:", H)
21 print("Relative frequency:", h,"%")
22 print("Number of measurement values:", sum(H))

Listing 9.5 Frequency Table
424

9.2 Frequency Distribution
Output

Measurement values:
[47.78 47.99 48.27 48.7 48.79 48.83 49.03 49.13 49.17 49.25 49.3 49.34 49.4
49.4 49.42 49.43 49.44 49.48 49.51 49.68 49.7 49.73 49.76 49.87 49.9 49.9
49.91 49.99 50.03 50.03 50.14 50.17 50.17 50.17 50.22 50.35 50.35 50.4 50.42
50.43 50.44 50.48 50.48 50.65 50.9 51.08 51.3 51.33 51.72 52.23]
Minimum value: 47.78
Maximum value: 52.23
Span: 4.45
Number of classes: 7
Class interval: 0.64
Ranges: [47.78 48.42 49.05 49.69 50.32 50.96 51.59 52.23]
Absolute frequency: [3 4 13 15 10 3 2]
Relative frequency: [6. 8. 26. 30. 20. 6. 4.] %
Number of measurement values: 50

Analysis

The program loads the measurement values from the data.txt file (line 03), determines

the length of the values array (line 04), and computes the number of classes k (line 05).

The minimum and maximum are determined using NumPy functions np.amin(values)
(line 06) and np.amax(values) (line 07), respectively. From the span R (line 08) and the

number of classes k, the program computes the class interval w (line 09).

In line 11, the np.histogramm(param1, param2) NumPy function computes the absolute

frequency H and the intervals I of the individual classes and assigns them to the H,I
variables as tuples. This function expects two parameters: The values array is passed as

the first parameter; the second parameter bins=k expects the number of classes.

Line 20 provides the absolute frequency, and line 21 gives the relative frequency. For

control purposes, the sum of the absolute frequencies is output in line 22.

9.2.2 Histograms

Histograms visualize frequency tables as bar charts. The class interval corresponds to

the width of a rectangle and the absolute frequency corresponds to the height of a rect-

angle. The number of rectangles corresponds to the number of classes. To display his-

tograms, the matplotlib.pyplot module must first be imported. The hist(param1,

param2,param3,param4,...) method displays a histogram as a bar chart. Listing 9.6

shows how to visualize the frequency table created earlier in Listing 9.5.

01 #06_histogram.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 values = np.loadtxt("data.txt")
425

9 Statistical Computations
05 n=len(values)
06 k=int(np.sqrt(n)+0.5)
07 fig, ax=plt.subplots()
08 ax.hist(values,bins=k,edgecolor="b",color="w")
09 ax.set(xlabel="Measurement values",ylabel="Absolute frequency")
10 plt.show()

Listing 9.6 Histogram

Output

The resulting histogram output from running the program is shown in Figure 9.2.

Figure 9.2 Histogram

Analysis

For the display of the histogram via the hist(values,bins=k,edgecolor="b",color="w")
method, only four parameters are used (line 08). The first parameter is the values array.

The second parameter (bins=k) specifies the number of classes. The third parameter

(edgecolor="b") sets the border color of the bars to blue. The fourth parameter (color=
"w") specifies that white is the background color of the rectangles.

Line 09 defines the axis label. Line 10 is necessary so that the graphic is also output on

the screen.

9.3 Location Parameters

In statistics, a location parameter is a measure that describes the clustering of values

near a central value. Statistics uses the arithmetic, harmonic, and geometric mean val-

ues as well as the median and mode as location parameters.
426

9.3 Location Parameters
9.3.1 Arithmetic Mean

The arithmetic mean of a measurement series is the sum of the individual sample val-

ues divided by the number of these values. The following equation therefore applies:

Both Python and the NumPy module have statistical functions that compute the arith-

metic mean. Listing 9.7 calculates means using a custom function named mean(), the

Python function statistics.mean(), and the NumPy function numpy.mean(). This pro-

gram also compares the individual runtimes of these functions to find the most effec-

tive method.

01 #07_mean_value.py
02 import numpy as np
03 import statistics as st
04 import time as t
05 n=100000
06 setpoint=50
07 s=1
08
09 def mean(values):
10 n=len(values)
11 sum=0
12 for i in range(n):
13 sum=sum+values[i]
14 return sum/n
15
16 #values=[1,2,3,4,5,6]
17 values=np.random.normal(setpoint,s,size=n)
18 t1=t.time()
19 m1=mean(values)
20 t2=t.time()
21 m2=st.mean(values)
22 t3=t.time()
23 m3=np.mean(values)
24 t4=t.time()
25 print("\t\tArithmetic mean","Time",sep=3*("\t"))
26 print("Custom version:",m1,t2-t1,sep=("\t"))
27 print("Python version:",m2,t3-t2,sep=("\t"))
28 print("NumPy version:",m3,t4-t3,sep=("\t"))

Listing 9.7 Runtimes for Calculating Arithmetic Mean Values
427

9 Statistical Computations
Output

Arithmetic mean Time
Custom version: 50.00002592181933 0.019836902618408203
Python version: 50.00002592181897 0.15338611602783203
NumPy version: 50.00002592181897 0.00013494491577148438

Analysis

The Python modules statistics and time are imported in lines 03 and 04. Line 05 spec-

ifies a particularly high number of n=100000 random numbers so that meaningful run-

times can also be determined.

The mean() function in lines 09 to 14 computes the sum of all numbers and returns the

arithmetic mean sum/n.

The time measurement is performed for each function call according to the same

schema: Before a function is called, the system time t1 is determined. After returning

the value for the arithmetic mean, the current system time is stored in the t2 variable.

The runtime is then determined from the difference of t2-t1.

An interesting thing to note is that the custom mean() function is about 7.5 times faster

than the Python function st.mean(). However, the custom function also provides a

somewhat less accurate value. The NumPy function np.mean() is about 1,100 times

faster than the Python function st.mean(). Thus, for future programs, we recommend

using the NumPy function.

9.3.2 Mode, Median, Harmonic Mean, and Geometric Mean

The mode or modal value indicates which value of a measurement series occurs most

frequently. The mode corresponds to the maximum of a frequency distribution.

The median (or central value) indicates the mean value of a sorted measurement series

if the number of measurement values is odd. If the number of measurement values is

even, the median is formed from the mean value of the two central measurement val-

ues.

To calculate the harmonic mean, the reciprocals of the individual measurement values

must first be added up. The reciprocal value is then formed from this sum and then

multiplied by the number of measurement values, as in the following:

To calculate the geometric mean, all the individual measurement values of a sample

must be multiplied with each other. Then, the nth root is taken from this product:
428

9.3 Location Parameters
Listing 9.8 calculates all four location values using NumPy and SciPy functions. The

measurement values are read from the data.txt file.

01 #08_location_parameters.py
02 import numpy as np
03 import scipy.stats as sta
04 values=np.loadtxt("data.txt")
05 mw=np.mean(values)
06 md=np.median(values)
07 mode=sta.mode(values)
08 hm=sta.hmean(values)
09 gm=sta.gmean(values)
10 print(np.sort(values))
11 print("Mode:",mode)
12 print("Arithmetic mean:",mw)
13 print("Median: ",md)
14 print("Harmonic mean: ",hm)
15 print("Geometric mean: ",gm)

Listing 9.8 Mode, Median, and Mean Values

Output

[47.78 47.99 48.27 48.7 48.79 48.83 49.03 49.13 49.17 49.25 49.3 49.34 49.4
49.4 49.42 49.43 49.44 49.48 49.51 49.68 49.7 49.73 49.76 49.87 49.9 49.9
49.91 49.99 50.03 50.03 50.14 50.17 50.17 50.17 50.22 50.35 50.35 50.4 50.42
50.43 50.44 50.48 50.48 50.65 50.9 51.08 51.3 51.33 51.72 52.23]
Mode: ModeResult(mode=array([50.17]), count=array([3]))
Arithmetic mean: 49.8718
Median: 49.9
Harmonic mean: 49.85678962270494
Geometric mean: 49.864292035952936

Analysis

Line 03 imports the statistics module scipy.stats from SciPy. You can use the sta alias

to access the statistics functions of this module. The arithmetic mean and the median

are calculated using the NumPy functions np.mean() and np.median() in lines 05 and 06.

The mode, harmonic mean, and geometric mean are computed using the SciPy func-

tions sta.mode(), sta.hmean(), and sta.gmean() in lines 07 to 09. The return value of the

sta.mode() function contains a tuple of two values. The first value indicates the mode;

the second value indicates how often the mode occurs (line 11).
429

9 Statistical Computations
9.4 Dispersion Parameters

Dispersion parameters describe the distance of individual measurement values from

their mean value. To ensure process quality, the dispersion of the population and indi-

vidual samples should be as low as possible. Statistics uses two measures to quantify

dispersion: the span and the standard deviation.

The span R is simply calculated from the difference between the largest and the small-

est measurement value of a series of measurements, as in the following:

While this measure is easy to calculate, for more detailed statistical studies, this

approach is not recommended because it is quite sensitive to outliers.

More precisely, the standard deviation describes the dispersion of the measurement

values around a mean value. This value is calculated by taking the difference between

each individual measurement value and the arithmetic mean of the measurement

series. This difference is squared to give negative differences a positive sign and then

totaled. The totaled squares of the differences must then be divided by n − 1. The result

obtained in this way is referred to as variance. If you calculate the square root of the

variance, you obtain the standard deviation, as shown in the following equation:

Listing 9.9 computes the standard deviation from 100,000 normally distributed ran-

dom numbers using the three functions: a custom function named stdaw(), Python’s

statistics.std() function, and the NumPy function numpy.std(). To determine the

most powerful function, the runtimes of these three functions are compared with each

other.

01 #09_stdaw.py
02 import numpy as np
03 import statistics as st
04 import time as t
05 n=100000
06 setpoint=100
07 s=2
08 def stdaw(values):
09 n=len(values)
10 sum=0
11 for i in range(n):
12 sum=sum+values[i]
13 mean=sum/n
14 sum_rq=0
430

9.4 Dispersion Parameters
15 for i in range(n):
16 sum_rq=sum_rq+(values[i]-mean)**2
17 v=sum_rq/(n-1) #variance
18 return np.sqrt(v)
19
20 #values=[1,2,3,4,5,6]
21 values=np.random.normal(setpoint,s,size=n)
22 t1=t.time()
23 s1=stdaw(values)
24 t2=t.time()
25 s2=st.stdev(values)
26 t3=t.time()
27 s3=np.std(values,ddof=1)
28 t4=t.time()
29 print("\t\t Standard deviation","Time",sep=2*("\t"))
30 print("Custom version :",s1,t2-t1)
31 print("Python version :",s2,t3-t2)
32 print("NumPy version :",s3,t4-t3)

Listing 9.9 Computing the Standard Deviation

Output

Standard deviation Time
Custom version: 1.9953201231531883 0.07551097869873047
Python version: 1.9953201231531907 0.4775989055633545
NumPy version : 1.9953201231531905 0.0005953311920166016

Analysis

The custom function staw() consistently implements the algorithm (lines 08 to 18). In

line 17, the variance is calculated. To ensure that the staw() function also returns the

standard deviation, the square root of the variance must be determined, which hap-

pens in line 18.

The commented-out line 20 is supposed to provide test values. All three functions out-

put the expected value of s = 1.8708.

The additional ddof=1 parameter of the std() NumPy function in line 27 ensures that

the total of the squares from the differences (values[i]-mean) is not divided by n, as

given by default, but by n – 1. The ddof acronym stands for Delta Degrees of Freedom.

Surprisingly, the custom staw() function is about six times faster than Python’s

stdev() function. As expected, the NumPy version (np.std()) is much faster than the

other two versions, about 800 times faster than the Python version.
431

9 Statistical Computations
Usage Example: Checking the Machine Capability

Before a complete series of workpieces can be manufactured, we need to check whether

the machine delivers the desired process quality at all through a machine capability

study. The term machine capability is understood by quality management to refer to

the ability of a machine to produce defect-free workpieces under consistent condi-

tions. For this purpose, the arithmetic mean and the standard deviation must be deter-

mined from a sample of at least 50 measurement values. Only if the manufacturing

variation is within 99.73% of all workpieces (equivalent to 6s) and the required toler-

ance is greater than or equal to ten times the standard deviation (equivalent to 10s) is

the machine capability criterion met. From these criteria, that the manufacturing scat-

ter must be and that the required tolerance must be , the machine capabil-

ity index can be defined in the following way:

The machine capability index Cm describes only the influence of the dispersion of mea-

surement values on the manufacturing process. The distance of the sample mean from

the tolerance center is not taken into account. This criterion, that is, the distance of the

mean value to the tolerance center, is described by the machine capability characteris-

tic value Cmk in the following equation:

The critical distance is the smallest distance of the arithmetic mean value of the

measurement series to the tolerance limit. The tolerance limit can be near the lower

limit or near the upper limit of the measured values, depending on the location of .

Based on this requirement, it always follows that the machine capability index Cmk

must be smaller than the machine capability index Cm.

Listing 9.10 computes the machine capability index and the machine capability charac-

teristic value from a sample of 50 measurement values. The simulated measurement

values are again read from the data.txt file using the np.loadtext() NumPy function.

The tolerance limits are specified, and the arithmetic mean and the standard deviation

are calculated by the program from the measurement series of the sample. By varying

the tolerance limits, you can simulate whether the machine meets the process quality

requirements.

01 #10_mcapability.py
02 import numpy as np
03 setpoint=50
04 To=5
05 Tu=-5
06 T=To-Tu
07 values = np.loadtxt("data.txt")
432

9.4 Dispersion Parameters
08 m=np.mean(values)
09 s=np.std(values,ddof=1)
10 Cm=T/(6*s)
11 UCL=setpoint+To #Upper control limit
12 LCL=setpoint+Tu #Lower control limit
13 delta_o=UCL-m
14 delta_u=m-LCL
15 if delta_o > delta_u:
16 delta_k=delta_u
17 else:
18 delta_k=delta_o
19 Cmk=delta_k/(3*s)
20 print("Mean:",m)
21 print("Standard deviation:",s)
22 print("Machine capability index: ",Cm)
23 print("Machine capability characteristic value:",Cmk)

Listing 9.10 Checking the Machine Capability

Output

Mean: 49.8718
Standard deviation: 0.8745510568402549
Machine capability index: 1.905739697677936
Machine capability characteristic value: 1.8568765318294738

Analysis

The machine capability index and the machine capability characteristic value are

greater than 1.67. The machine is therefore able to maintain the required process qual-

ity. However, this check passes due to the high tolerances of ± 10% (lines 04 and 05). If

the tolerances were reduced, then it would become apparent that the machine cannot

maintain the required process quality.

In line 10, the machine capability index Cm is calculated from the tolerance (line 06) and

the standard deviation (line 09). The program calculates the machine capability param-

eter Cmk in lines 11 to 19. For this purpose, the upper limit value UCL (line 11) and the lower

limit value LCL (line 12) must be determined. The delta_o (line 13) and delta_u (line 14)

deviations are needed to compute the smallest distance from the arithmetic mean

delta_k. This computation step is performed in lines 15 to 18 by an if-else query. The

machine capability parameter is then calculated in line 19.

The output of the machine parameters is performed in lines 22 and 23. The arithmetic

mean and the standard deviation are output in lines 20 and 21 to show the relationship

between the statistical parameters and machine parameters: The greater the standard
433

9 Statistical Computations
deviation and the greater the distance of the setpoint from the arithmetic mean of the

measurement values, the worse the machine capability will be rated.

9.5 Normal Distribution

If we were to considerably increase the number of measurements, perhaps even theo-

retically to infinity, the frequency distribution of a histogram would approach the den-

sity function of the normal distribution (also called the Gaussian distribution). The

density function g(x) is an e-function with parameters and :

The parameter is referred to as the expected value. This value coincides with the arith-

metic mean, the mode, and the median when the number of measurement values of a

normally distributed measurement series approaches infinity. The parameter is

referred to as the variance. The square root of the variance corresponds to the standard

deviation of a measurement series with a very large number of measurement values.

9.5.1 Graphical Representation of the Density Function

If we use for the mean and for the standard deviation, then we speak of a

standard normal distribution. Listing 9.11 represents the density of the standard normal

distribution within the limits from to .

01 #11_gauss.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 #density function
05 def g(x,sigma,my):
06 y=np.exp(-0.5*(x-my)**2/sigma**2)/(sigma*np.sqrt(2*np.pi))
07 return y
08
09 s=1
10 m=0
11 x = np.arange(m-3*s, m+3*s, 0.01);
12 y = g(x,s,m)
13 fig, ax=plt.subplots()
14 ax.plot(x, y)
15 ax.plot(-1, g(-s,s,m),"ro")
16 ax.plot(1, g(s,s,m),"ro")
17 ax.set(xlabel="x",ylabel="g(x)")
18 plt.show()

Listing 9.11 Density of the Standard Normal Distribution
434

9.5 Normal Distribution
Output

Figure 9.3 shows the output density of a standard normal distribution as a curve.

Figure 9.3 Standard Normal Distribution

Analysis

In lines 05 to 07, the function of the normal distribution is defined. The g(x,sigma,my)
function must be passed the standard deviation and the arithmetic mean as argu-

ments.

Lines 09 and 10 contain the standard deviation s=1 and the mean m=0. These parameters

specify that a normalized density function is represented.

Line 11 creates an array with the initial value m-3*s and the final value m+3*s. The third

parameter of the arange() NumPy function sets the increment to 0.01.

In line 12, the density function is called with the x, s, and m parameters. The function val-

ues are assigned to the y variable. This variable is also an array in which all function val-

ues of the g(x,s,m) function have been stored.

9.5.2 Probability Distribution

In real life, often, you need to know the probability that a certain dimension of a work-

piece from a series occurs within a given range within a normal distribution. For this

purpose, the area under the Gaussian curve must be determined within the selected

limits using a numerical integration method.

With its quad() function, the scipy.integrate module provides a powerful method for

numerical integration. The name quad comes from the integration method of the

QUADPACK Fortran library.
435

9 Statistical Computations
Listing 9.12 calculates the probabilities within the bounds , , and . The

and parameters specify that the program represents a standard normal distribu-

tion.

01 #12_probability.py
02 import numpy as np
03 from scipy.integrate import quad
04 def f(x,sigma,my):
05 y=np.exp(-0.5*(x-my)**2/sigma**2)/(sigma*np.sqrt(2*np.pi))
06 return y
07
08 s=1
09 m=0
10 w1=quad(f, -s, s,args=(s,m))
11 w2=quad(f,-2*s,2*s,args=(s,m))
12 w3=quad(f,-3*s,3*s,args=(s,m))
13 wp1,wp2,wp3=100*w1[0],100*w2[0],100*w3[0]
14 print("Expected value between -\u03C3 and +\u03C3: %2.2f%%"%wp1)
15 print("Expected value between -2\u03C3 and +2\u03C3: %2.2f%%"%wp2)
16 print("Expected value between -3\u03C3 and +3\u03C3: %2.2f%%"%wp3)

Listing 9.12 Probability Ranges

Output

Expected value between -σ and +σ: 68.27%
Expected value between -2σ and +2σ: 95.45%
Expected value between -3σ and +3σ: 99.73%

Analysis

The statement in line 03 imports the scipy module with the integrate package and the

quad() function. This function, which is called in lines 10 to 12, expects three parame-

ters. The name of the function is passed as the first parameter without parentheses. The

second and third parameters set the lower and upper integration limits. The third

parameter consists of a tuple (args=(s,m)) with the function parameters of the normal

distribution, namely, standard deviation s and mean m.

The quad() SciPy function returns two values as a tuple. The first value is the computed

area of the numerical integration. The second return value specifies an error estimate.

Since only the first return value is of interest in our case, only this values w1[0], w2[0],

and w3[0] are assigned to the wp1, wp2, and wp3 variables, respectively, in line 13. The

computed areas are multiplied by a factor of 100 so that the output of the probabilities

is represented in percentages.
436

9.6 Skew
The output in lines 14 to 16 uses the Unicode character U+03C3 for the formula character

of the standard deviation. The 99.73% expected value between and is of partic-

ular interest: This range specifies the limits of process quality. The determined mea-

surement values should fall within in this interval; conversely, this value also means

that only 0.27% scrap is allowed.

9.6 Skew

For SPC, you must know whether a measurement series is normally distributed, more

or less. This criterion can be checked with the statistical measure of skewness. Skew is a

statistical measure between −1 and +1 that describes whether and how strongly a fre-

quency distribution is skewed to the right or to the left. If the frequency distribution is

skewed to the right, it is called right skewed. The dimension number S is then negative.

If the frequency distribution is skewed to the left, it is called left skewed. The dimension

number S is then positive. The smaller S is, the more symmetrical the frequency distri-

bution is. For the normal distribution, S = 0. Karl Pearson (1895–1980) gave a simple rule

of thumb to describe the deviation of a frequency distribution from symmetry:

If the median turns out to be smaller than the mean , then S is positive, and the dis-

tribution is left skewed. If the median is larger than the mean , then S is negative, and

the distribution is right skewed.

For the left-skewed distribution, the following often holds true: mode < median < mean.

The reverse is true for the right-skewed distribution: mean < median < mode.

However, these rules of thumb do not always determine the correct value of the skew.

The stats package from the scipy module calculates the correct value of skew using the

stats.skew(array) function.

Listing 9.13 computes the approximate value and the exact value of skewness from 50

random numbers.

01 #13_skew.py
02 import numpy as np
03 from scipy import stats
04 n=50
05 setpoint=50
06 s=2
07 values=np.random.normal(setpoint,s,size=n)
08 rvalues=np.around(values,decimals=2)
09 mode=stats.mode(rvalues, axis=None)
10 mw=np.mean(rvalues)
437

9 Statistical Computations
11 md=np.median(rvalues)
12 stabw=np.std(rvalues,ddof=1)
13 S1=(mw-md)/stabw
14 S2=stats.skew(rvalues)
15 print(np.sort(rvalues))
16 print("Mode: ",mode)
17 print("Mean: ",mw)
18 print("Median: ",md)
19 print("Standard deviation:",stabw)
20 print("Skew (approximation):",S1)
21 print("Skew (exact): ",S2)
22 if S2<0:
23 print("right-skewed")
24 else:
25 print("left-skewed")

Listing 9.13 Computation of the Skew

Output

[45.41 46.2 46.39 46.5 47.14 47.24 47.25 47.38 47.59 47.73 48.04 48.21 48.3
48.33 48.56 48.76 49.31 49.4 49.45 49.73 49.75 49.78 49.89 49.91 49.93 49.95
49.98 50.05 50.15 50.17 50.34 50.42 50.43 50.74 50.89 50.94 51.02 51.09 51.14
51.32 51.58 51.92 51.97 52.17 52.19 52.37 52.64 53.34 53.63 54.01]
Mode: ModeResult(mode=array([45.41]), count=array([1]))
Mean: 49.81260000000001
Median: 49.94
Standard deviation: 2.0127043539294416
Skew (approximation): -0.06329792040806283
Skew (exact): -0.09607672698739309
right-skewed

Analysis

Note that different values for skewness are output after each program start because the

program also generates different random numbers in each case. In line 13, the S1 skew

is calculated according to the simple Pearson formula. The exact calculation of the S2
skew is performed in line 14 using SciPy function stats.skew(rvalues). By starting the

program multiple times, you can determine that the calculation according to Pearson

does not always match the result of the stats.skew() SciPy function. In lines 22 to 25,

the sign of the S2 skew is analyzed. If S2<0, right-skewed is output, and if S2>0, left-
skewed is output.
438

9.7 Regression Analysis
9.7 Regression Analysis

A regression analysis is a statistical analysis method that examines the relationships

between two variables: a dependent variable Y (also called the outcome variable) and an

independent variable X (also called the influencing variable). Regression analyses are

always used when correlations need to be described or predicted in terms of quantities.

Mathematically, the influence of X on Y is symbolized by an arrow:

X → Y

I want to use a simple example to describe the regression analysis method: In a storage

room for synthetic fibers, there is a certain relative humidity. Over a period of 15 days,

the relative humidity of the room (X) and the moisture content of the synthetic fiber

(Y) are measured once a day. A regression analysis will be used to investigate whether

there is a correlation between these two variables and, if so, how strong this correlation

is. In Table 9.2, the measurement values are documented.

In the simplest case, a linear relationship exists between the X and Y values, which can

be described by a linear function with the slope m and the intercept a of the function

line with the y axis:

y = mx +a

The m and a parameters are also referred to as regression parameters. The strength of

the correlation between X and Y of the two measurement series is determined by the

correlation coefficient r.

9.7.1 Computing the Regression Parameters

The correlation coefficient r is defined as the quotient of the covariance sxy of two mea-

surement series and the product of the standard deviations, sxsy:

The slope of the regression line is the quotient of the covariance and the square of the

standard deviation of the x-values:

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X 46 53 29 61 36 39 47 49 52 38 55 32 57 54 44

Y 12 15 7 17 10 11 11 12 14 9 16 8 18 14 12

Table 9.2 Measurement Values for the Relative Humidity X and Moisture Content of

Material Y in Percent
439

9 Statistical Computations
The slope can also be calculated using the correlation coefficient:

The intercept of the regression line is computed from the difference of the mean

value of all y-values and the product of the slope m with the mean value of all x-

values:

All regression parameters can be computed directly using the following SciPy function:

m,a,r,p,e = stats.linregress(X,Y)

The return values p and e of the tuple are not needed for computing the regression

parameters.

Listing 9.14 calculates the slope m, the y-axis intercept a of the regression line and the

correlation coefficient r for the measurement values listed in Table 9.2. To show the dif-

ferent options of Python, the parameters are calculated and compared by using the

corresponding NumPy and SciPy functions.

01 #14_correlation.py
02 import numpy as np
03 from scipy import stats
04 X=np.array([46,53,29,61,36,39,47,49,52,38,55,32,57,54,44])
05 Y=np.array([12,15,7,17,10,11,11,12,14,9,16,8,18,14,12])
06 xm=np.mean(X)
07 ym=np.mean(Y)
08 sx=np.std(X,ddof=1)
09 sy=np.std(Y,ddof=1)
10 sxy=np.cov(X,Y)
11 r1=sxy/(sx*sy)
12 r2=np.corrcoef(X,Y)
13 m1=sxy[0,1]/sx**2
14 m2=r2[0,1]*sy/sx
15 a1=ym-m2*xm
16 m3, a2, r3, p, e = stats.linregress(X,Y)
17 print("NumPy1 slope:",m1)
18 print("NumPy2 slope:",m2)
19 print("SciPy slope:",m3)
20 print("Intersection with the y-axis:",a1)
21 print("Intersection with the y-axis:",a2)
22 print("Def. correlation coefficient:",r1[0,1])
23 print("NumPy correlation coefficient:",r2[0,1])
440

9.7 Regression Analysis
24 print("SciPy correlation coefficient:",r3)
25 print("Estimated error:",e)

Listing 9.14 Computing the Regression Parameters

Output

NumPy1 slope: 0.32320356181404014
NumPy2 slope: 0.3232035618140402
SciPy slope: 0.3232035618140402
Intersection with the y-axis: -2.5104576516877213
Intersection with the y-axis: -2.5104576516877213
Def correlation coefficient: 0.9546538498757964
NumPy correlation coefficient: 0.9546538498757965
SciPy correlation coefficient: 0.9546538498757965
Estimated error: 0.027955268902524828

Analysis

Lines 04 and 05 contain the measurement values for the relative humidity X and the

moisture content of the material Y. The program computes the regression parameters

from these measurement values and uses the correlation coefficient to check whether

a correlation exists between the influencing variable X and the outcome variable Y and

to determine how strong this correlation is.

Line 10 computes the covariance sxy using the np.cov(X,Y) NumPy function. This func-

tion returns a 2 × 2 matrix. The value for sxy is either in the first row, second column, of

the matrix or in the second row, first column, of the matrix. The correlation coefficient

r1 is then calculated with sxy in line 11.

A simpler way to calculate the correlation coefficient is to directly use NumPy function

np.corrcoef(X,Y) (line 12). This function also returns a 2 × 2 matrix. The value for r2 is

either in the first row, second column, of the matrix or in the second row, first column

of the matrix.

Line 13 calculates the slope m1 from the covariance sxy[0,1] and the square of the stan-

dard deviation sx from the X measurement values. The slope m2 is calculated in line 14

using the correlation coefficient r2(0,1) and the standard deviations sx and sy.

In line 15, the y-axis intercept a1 is calculated from the mean values of the X and Y values

using the conventional method. Instead of the slope m2, the slope m1 could have been

used as well.

The most effective method to calculate all three parameters with only one statement is

shown in line 16. The slope m3, the y-axis intercept a2, and the correlation coefficient r3
are returned as tuples by the SciPy function stats.linregress(X,Y).
441

9 Statistical Computations
The print() function outputs the regression parameters in lines 17 to 25. All computa-

tion methods provide the same results. The slope is about 0.32, and the y-axis intercept

has a value of about −2.51. Thus, the regression line adheres to the following equation:

The correlation coefficient of r = 0.95465 is close to 1. Thus, a strong correlation exists

between the relative humidity (X) and the moisture content of the material (Y).

9.7.2 Representing the Scatter Plot and the Regression Line

When the discrete yi values of the Y measurement series and the discrete xi values of

the X measurement series are plotted in an x-y coordinate system, this plot is referred

to as a scatter plot. Listing 9.15 shows how to implement such a scatter plot with the val-

ues listed in Table 9.2 and the corresponding regression line.

01 #15_regeression_line.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 from scipy import stats
05 X=np.array([46,53,29,61,36,39,47,49,52,38,55,32,57,54,44])
06 Y=np.array([12,15,7,17,10,11,11,12,14,9,16,8,18,14,12])
07 m, a, r, p, e = stats.linregress(X,Y)
08 fig, ax=plt.subplots()
09 ax.plot(X, Y,'rx')
10 ax.plot(X, m*X+a)
11 ax.set_xlabel("Relative humidity in %")
12 ax.set_ylabel("Moisture content of the material")
13 plt.show()

Listing 9.15 Scatter Plot with Regression Line

Output

Figure 9.4 shows the output regression line after the calculation performed in Listing

9.15.

Analysis

The program determines the y-axis intercept a and the slope m in line 07 using the

stats.linregress(X,Y) SciPy function. Line 09 plots the discrete xi and yi values as red

crosses using the plot(X, Y, 'rx') method. The ax.plot(X, m*X+a) statement in line 10

causes the plot of the regression line. The crosses of the scatter plot clearly show that a

strong correlation exists between the relative humidity and the moisture content of

the material.
442

9.8 Project Task: Simulation of a Quality Control Chart
Figure 9.4 Regression Line

9.8 Project Task: Simulation of a Quality Control Chart

Quality control charts are used in manufacturing engineering to monitor process qual-

ity. The basic idea is to intervene in the process before rejects are produced. For this

purpose, a random sample of n = 5 workpieces is taken from the running production

every hour. Measuring machines record the quality-relevant variables and store the

measured data in a file. Computer programs then calculate the arithmetic mean and

standard deviation of the individual samples from these measurement results and dis-

play these quantities as a polyline in two graphic windows in each case. The upper

graphic window represents the course of the mean value and the window below it rep-

resents the course of the standard deviation from the five measurement values. For

both graphs, the program still needs to calculate upper and lower action limits. These

intervention limits are calculated from the mean values of the means and the mean

values of the standard deviations of all samples.

The following equation applies to the upper control limit of the mean value chart:

The following equation applies to the lower control limit of the mean value chart:

The following equation applies to the upper control limit of the standard deviation

chart:
443

9 Statistical Computations
The values of factors A3 and B4 can be found in relevant tables. Thus, for a sample of

n = 5, we find for A3 = 1.152 and for B4 = 1.669.

The required process quality is not met if the following conditions are true:

� The lower or upper intervention limit is exceeded.

� Seven consecutive values are above or below the centerline (run).

� Seven consecutive values in an interval are ascending or descending (trend).

� More than 90% of the values lie within the middle third of the intervention limits

(middle third).

Listing 9.16 computes the arithmetic mean, standard deviation, and intervention limits

for each sample from ten samples with five measurement values each. The measure-

ment data is read sequentially from a file and converted into a table with five rows and

ten columns using NumPy function reshape().

01 #16_qrt_table.py
02 import numpy as np
03 rows=5
04 columns=10
05 A3=1.152
06 B4=1.669
07 values = np.loadtxt("data.txt")
08 n=len(values)
09 table=np.reshape(values,(rows,columns),order='F')
10 mw=[]
11 staw=[]
12 for i in range(columns):
13 sum1=0
14 sum2=0
15 for j in range(rows):
16 sum1=sum1+table[j,i]
17 mean=sum1/rows
18 for j in range(rows):
19 sum2=sum2+(mean-table[j,i])**2
20 standardabw=np.sqrt(sum2/(rows-1))
21 mw.append(round(mean,2))
22 staw.append(round(standardabw,3))
23 mmw=np.mean(mw)
24 mws=np.mean(staw)
25 UCLm=mmw + A3*mws #Upper control limit
26 LCLm=mmw - A3*mws #Lower control limit
27 UCLs=B4*mws
28 print("Table of measurement values:\n",table)
29 print("Mean value of the samples:")
444

9.8 Project Task: Simulation of a Quality Control Chart
30 print(mw)
31 print("Standard deviation of the samples:")
32 print(staw)
33 print("Mean value chart")
34 print("Upper intervention limit:",UCLm)
35 print("Lower intervention limit:",LCLm)
36 print("Standard deviation chart")
37 print("Upper intervention limit:",UCLs)

Listing 9.16 Computing Intervention Limits

Output

Table of measurement values:
[[51.33 47.78 50.22 49.87 50.17 49.3 50.03 49.9 50.35 49.68]
[49.76 49.9 48.79 49.7 51.3 48.27 51.08 49.43 49.48 52.23]
[50.17 47.99 48.7 50.42 50.17 49.99 50.03 49.03 49.25 50.44]
[49.4 50.35 50.48 49.34 50.14 50.4 51.72 49.91 50.48 49.73]
[49.4 48.83 50.65 49.51 49.44 49.13 49.42 50.43 49.17 50.9]]

Mean value of the samples
[50.01, 48.97, 49.77, 49.77, 50.24, 49.42, 50.46, 49.74, 49.75, 50.6]
Standard deviation of the samples:
[0.802, 1.136, 0.947, 0.415, 0.668, 0.823, 0.925, 0.532, 0.623, 1.046]
Mean value chart
Upper intervention limit : 50.785038400000005
Lower intervention limit: 48.960961600000005
Standard deviation chart
Upper intervention limit: 1.3213473000000002

Analysis

In lines 10 and 11, two empty mw[] and staw[] lists are defined for the means and stan-

dard deviations of the ten samples. These lists are passed as parameters to the

np.mean() NumPy function in lines 23 and 24.

The mw means and standard deviations staw of each sample are calculated in lines 15 to

22. The sum algorithms and the nested loop construct used in this case are elaborate

and, as will be shown in the next example, actually unnecessary because they do not

exhaust the capabilities of Python.

The statements in lines 25 to 27 compute the upper and lower intervention limits

according to the specifications with factors A3 and B4. For samples with n = 5, the calcu-

lation of the lower intervention limits for the standard deviation is omitted.
445

9 Statistical Computations
The outputs are created in lines 28 through 37. The table of the 50 measurement values

is displayed so that you can check whether the program correctly calculates the statis-

tical characteristics of the individual samples. Each column of the table can be assigned

the corresponding value for the mean and standard deviation.

Checking process quality on the basis of numerical values is too cumbersome in oper-

ational practice. For this reason, the courses of the mean values and standard devia-

tions of the individual samples are visualized graphically as polylines. Listing 9.17

shows how such a graphic program can be implemented with the resources of Python

(slicing).

01 #17_qrt_graphics.py
02 import numpy as np
03 import matplotlib.pyplot as plt
04 rows=5
05 columns=10
06 A3=1.152
07 B4=1.669
08 values = np.loadtxt("data.txt")
09 n=len(values)
10 table=np.reshape(values,(rows,columns),order='F')
11 h=np.linspace(1,columns,columns)
12 mw=[]
13 staw=[]
14 for i in range(columns):
15 mw.append(round(np.mean(table[0:rows,i]),2))
16 staw.append(round(np.std(table[0:rows,i],ddof=1),3))
17 mmw=np.mean(mw)
18 mws=np.mean(staw)
19 UCLm=mmw+A3*mws #Upper control limit
20 LCLm=mmw-A3*mws #Lower control limit
21 UCLs=B4*mws
22 x=[1,columns]
23 y1=[UCLm,UCLm]
24 y2=[mmw,mmw]
25 y3=[LCLm,LCLm]
26 y4=[UCLs,UCLs]
27 fig, ax = plt.subplots(2, 1)
28 ax[0].set_title("Mean value chart")
29 ax[0].plot(x,y1,'r-')
30 ax[0].plot(x,y2,'g-')
31 ax[0].plot(x,y3,'r-')
32 ax[0].plot(h,mw,'bx-')
33 ax[0].set_ylabel("Mean")
34 ax[1].set_title("Standard deviation chart")
446

9.8 Project Task: Simulation of a Quality Control Chart
35 ax[1].plot(x,y4,'r-')
36 ax[1].plot(h,staw,'gx-')
37 ax[1].set_xlabel("Samples")
38 ax[1].set_ylabel("s")
39 fig.tight_layout()
40 plt.show()

Listing 9.17 Graphical Representation of a Two-Lane Quality Control Chart

Output

Figure 9.5 shows a graphical representation of the two-lane control chart output by the

program.

Figure 9.5 Two-Lane Quality Control Chart

Analysis

In lines 14 to 16, the program computes the mean mw and standard deviation staw of a

sample within a for loop with column index i. The for loop iterates all table columns

from 1 to 10. This improvement over the first version is achieved by what’s called slicing

with the slicing operator [index1: index2]. Both statistical characteristic values are

computed for each column from the beginning of the row (index 0) to the end of the

row (index 4). Thus, slicing does not require a for loop.

Lines 23, 25 and 26 define the y-coordinates of the intervention limits. The mean value

of all 50 measurement values is determined by the y-coordinate in line 24.
447

9 Statistical Computations
In line 27, a graphical window for two subplots is created using the subplots(2,1)
method. The first parameter sets the number of subplots, and the second parameter

sets the number of columns. Thus, the standard deviation chart is drawn directly below

the mean chart. The subplots() method creates the fig and ax objects. ax[0] and ax[1]
can be used to access the methods of the Matplotlib module. The 0 index sets the prop-

erties of the first subplot, while index 1 sets the properties of the second subplot.

For further work on this program, a useful next step might be to assign normally dis-

tributed random numbers to the values variable in line 08 by using the random.nor-
mal() NumPy function. Thus, with each new program start, you can simulate whether

an overrun of intervention limits has occurred in a trend, a run, or a middle third.

9.9 Tasks

1. Write a program to calculate the harmonic mean and compare the runtime with the

runtime of SciPy function stats.hmean(array).

2. Write a program to compute the geometric mean and compare the runtime with the

runtime of SciPy function stats.gmean(array).

3. The following formula is supposed to be used to compute the standard deviation:

Write an appropriate program and compare the runtime with Python function

stdev(array), the NumPy function numpy.std(array,ddof=1), and the SciPy function

stats.tstd(array).

4. Write a program that computes the absolute and relative probability of how often a

given measure might occur in the limits from a to b in a normally distributed series

of measurements with n workpieces. The population n of all measurement values

and the standard deviation of a series are given.

5. The skew of a frequency distribution can also be computed using the following for-

mula:

Write a program that determines whether a frequency distribution is left skewed or

right skewed. Compare the result with the scipy.stats.skew(a) function.
448

Chapter 10

Boolean Algebra

In this chapter, you’ll learn how to create truth tables using Python and

how to simplify logical functions by using the SymPy module.

When George Boole formulated the algebra named after him in 1854, no one yet

thought of the importance this subfield called discrete mathematics and how it would

impact the entire evolution of technology. Boolean algebra forms the theoretical foun-

dation of all modern automation and computer systems. In Boolean algebra, variables

have only two states: 0 (false) and 1 (true). Only three logical operations are applicable

to these variables: the logical AND operation (conjunction), the logical OR operation

(disjunction), and the negation.

The representation of functions y = 𝑓(x) known from analysis is also applicable to Bool-

ean algebra:

Since the independent variables may only take the states 0 or 1, the depen-

dent variables also have only these two states. This functional dependence

can be illustrated by a technical system (blackbox) with inputs x and outputs y, as

shown in Figure 10.1.

Figure 10.1 A General Representation of a Digital System

Boolean algebra helps you design and develop digital circuits and controls. In the

development process, truth tables are first created to represent the function of the con-

trol task. Logic functions are then derived from these truth tables and simplified using

Boolean algebra. The logic functions obtained in this way then form the basis for pro-

gramming programmable logic controllers (PLCs) or for implementing electronic cir-

cuits, for example with transistor-transistor logic (TTL) integrated circuits (ICs) as

hardware.

x1

x2

xⁿ

y1

y2

yⁿ

Digital
System
449

10 Boolean Algebra
Python provides a powerful tool for simplifying logic functions: the simplify_logic()
method from the SymPy module.

10.1 Logical Operations

In digital technology only these three different logical operations occur: the AND oper-

ation (conjunction), the OR operation (disjunction), and the negation. Using these three

basic logical operations, you can implement all digital circuits and controls. Table 10.1

contains the keywords for the basic logical operations.

10.1.1 Conjunction

Figure 10.2 Circuit Symbol of the AND Operation

Three variants are common for the notation of the AND operation:

In Python, the AND operation is implemented using the and keyword or the & operator

(bitwise AND). In your Python development environment, enter the source code pro-

vided in Listing 10.1 and run the program.

01 #01_and.py
02 print("x1\tx2\ty")
03 for x1 in False,True:
04 for x2 in False,True:

Operation Python

Keyword

AND and

OR or

NEGATION not

Table 10.1 Keywords for Basic Logical Operations

or or

x1

x2

y&
450

10.1 Logical Operations
05 y=x1 and x2
06 #y=x1 & x2
07 print(x1,x2,y,sep='\t')

Listing 10.1 Program for the Truth Table of an AND Operation

As expected, you’ll obtain the following truth table of the AND operation:

x1 x2 y
False False False
False True False
True False False
True True True

For the program to output a table with all four possible combinations of the input vari-

ables, a double-nested for loop is implemented in lines 03 and 04. The commented-out

line 06 contains the & operator for the bitwise AND operation. Both variants provide

the same result. In line 07, the sep='\t' parameter inserts a tab between all outputs.

10.1.2 Disjunction

Figure 10.3 Circuit Symbol of the OR Operation

Three variants are common for the notation of the OR operation:

In Python, the OR operation is implemented using the or keyword or the | operator

(bitwise OR). In your Python development environment, enter the source code pro-

vided in Listing 10.2 and run the program.

01 #02_or.py
02 print("x1\tx2\ty")
03 for x1 in False,True:
04 for x2 in False,True:
05 y=x1 or x2

or or

x1

x2

y≥ 1
451

10 Boolean Algebra
06 #y=x1 | x2
07 print(x1,x2,y,sep='\t')

Listing 10.2 Program for the Truth Table of an OR Operation

As expected, you’ll obtain the following truth table of the OR operation:

x1 x2 y
False False False
False True True
True False True
True True True

In lines 05 or 06, the OR operation is implemented. The commented-out line 06

returns the same result as line 05 with the | operator (bitwise OR).

10.1.3 Negation

I now want to describe negation through examples using the NAND and NOR func-

tions. The NAND function allows you to negate the output of the AND circuit. The NOR

function allows you to negate the output of the OR circuit. The negation is symbolized

either with an overbar (¯) or the negation sign (¬). In the circuit symbols for the NAND

and NOR circuits, the negation is symbolized by a small circle at the output.

Figure 10.4 Circuit Symbol of the NAND Operation

Figure 10.5 Circuit Symbol of the NOR Operation

Logic function for a NAND operation:

Logic function for a NOR operation:

x1

x2

y&

x1

x2

y≥ 1
452

10.2 Laws of Boolean Algebra
In Python, the negation can be implemented using the not keyword or the ~ operator

(a tilde, for bitwise negation). Let’s examine both functions using the Python program

provided in Listing 10.3.

01 #03_negation.py
02 print("x1\tx2\tNAND\tNOR")
03 for x1 in False,True:
04 for x2 in False,True:
05 y1=not (x1 and x2)
06 y2=not (x1 or x2)
07 print(x1,x2,y1,y2,sep='\t')

Listing 10.3 Negated AND and OR Function

The program provided in Listing 10.3 outputs the following truth table of negated AND

and OR functions:

x1 x2 NAND NOR
False False True True
False True True False
True False True False
True True False False

The negated AND function is False if both input variables have the value True. The

negated OR function is True if both input variables have the value False.

10.2 Laws of Boolean Algebra

The variables of logic functions are linked conjunctively or disjunctively by logical

operations. During the synthesis of digital circuits, often, the determined logic func-

tions contain more terms than would be necessary for the required function of the

control. Boolean algebra, also called switching algebra in the language of technicians,

provides rules to simplify or transform logical functions. Let’s now examine some of

these rules directly using the Python shell.

10.2.1 Simple Postulates

We’ll examine only a few postulates as examples. Enter the following statements into

your Python shell:

>>> 0 and 1
0
>>> 0 & 1
0

453

10 Boolean Algebra
>>> 0 or 1
1
>>> 0 | 1
1

Apparently, the following rule applies: If a 0 is conjunctively linked to a 1, then the

result is a 0. If, on the other hand, a 0 is disjunctively combined with a 1, then the result

is a 1. These relationships can be vividly described with a series circuit and a parallel cir-

cuit consisting of two switches. Current can never flow through a series connection of

one open and one closed contact. In a parallel circuit consisting of one open and one

closed contact, current always flows.

10.2.2 De Morgan’s Laws

Using De Morgan’s laws, a NAND function can be transformed into a NOR function with

negated inputs with the following equation:

Similarly, a NOR function can be transformed into a NAND function with negated

inputs with the following equation:

The program provided Listing 10.4 illustrates the validity of this law.

01 #04_demorgan.py
02 print("x1\tx2\ty1\ty2\ty3\ty4")
03 for x1 in False, True:
04 for x2 in False, True:
05 y1=not(x1 and x2)
06 y2=not x1 or not x2
07 y3=not(x1 or x2)
08 y4=not x1 and not x2
09 print(x1,x2,y1,y2,y3,y4,sep='\t')

Listing 10.4 Proof of De Morgan's Law

Output

x1 x2 y1 y2 y3 y4
False False True True True True
False True True True False False
True False True True False False
True True False False False False
454

10.2 Laws of Boolean Algebra
The table of the program output confirms that the values of the third column (y1)

match the values of the fourth column (y2). The same applies to the fifth and sixth col-

umns (y3=y4).

10.2.3 Distributive Law

Using the two forms of the distributive law, a digital circuit with three gates with three

inputs can be reduced to a circuit with two gates. This simplification is performed by

factoring out equal variables, for instance, in the following way.

Both forms of the distributive law can now be proven using a Python program. Enter

the source code provided in Listing 10.5 into your development environment and start

the program.

01 #05_distributive.py
02 print("x1 \t x2 \t y1 \t y2 \t y3 \t y4")
03 for x1 in False, True:
04 for x2 in False, True:
05 for x3 in False, True:
06 y1=(x1 and x2) or (x1 and x3)
07 y2=x1 and (x2 or x3)
08 y3=(x1 or x2) and (x1 or x3)
09 y4=x1 or (x2 and x3)
10 print(x1,x2,y1,y2,y3,y4,sep='\t')

Listing 10.5 Proof of the Distributive Law

Output

x1 x2 y1 y2 y3 y4
False False False False False False
False False False False False False
False True False False False False
False True False False True True
True False False False True True
True False True True True True
True True True True True True
True True True True True True

The truth table confirms both forms of the distributive law. In lines 03 to 05, a triple-

nested for loop is implemented so that all eight possible combinations of input states

can be captured.
455

10 Boolean Algebra
10.3 Circuit Synthesis

The synthesis of digital circuits occurs in five steps:

1. Clearing a description of the task

2. Setting the input and output variables

3. Entering states of the outputs into the truth table

4. Setting up the logic functions according to the OR normal form or according to the

AND normal form

5. Simplifying the logic functions

The simplification of logic functions is usually quite complex and prone to errors. For

this reason, you should rely on software-based support for the development process.

Python provides developers with a powerful tool for simplifying complex logic func-

tions: the simplify_logic(y) method from the SymPy module. Through three exam-

ples, I will now demonstrate how to use this tool.

10.3.1 Simplifying Logic Functions by Factoring Out

Enter the following statements into your Python shell:

>>> x1=0
>>> x1 or not x1
True
>>> x1=1
>>> x1 or not x1
1

Obviously, regardless of the value of the variable x1, the following rule applies: x1 or not
x1 = 1. This law can be illustrated by connecting two switches in parallel. Regardless of

whether a switch has the state 0 or 1, the circuit is always closed.

The following example of four input variables x1 … x4 and one output variable y illus-

trates how a logic function can be simplified. The input variables are conjunctively

linked in the following ways:

All four logic functions of this example are linked disjunctively in the following way:
456

10.3 Circuit Synthesis
By factoring out x1 and x2, we can obtain the following simplified logic function:

Listing 10.6 shows the results.

01 #06_simplify1.py
02 from sympy.logic import simplify_logic
03 from sympy import symbols
04 x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
05 y1 = (x1 & x2 & ~x3 & ~x4)
06 y2 = (~x1 & x2 & ~x3 & ~x4)
07 y3 = (x1 & ~x2 & ~x3 & ~x4)
08 y4 = (~x1 & ~x2 & ~x3 & ~x4)
09 y = y1 | y2 | y3 | y4
10 V = simplify_logic(y)
11 print("y = ",V)

Listing 10.6 Simplification of Four Logic Functions with Four Variables Each

Output

y = ~x3 & ~x4

In line 02, Python’s sympy.logic module is using the simplify_logic method to simplify

logic functions. In line 03, the sympy module is imported with the symbols class for the

symbolic processing of the logical operations. The statement in line 04 specifies the

names of the logical input variables.

The lines 05 to 08 contain the logic functions y1 to y4. Note that all variables must be

linked via the binary operator & (bitwise AND). All negations require the unary operator ~
(a tilde, for bitwise negation). In line 0909, these four functions are linked disjunctively

using the | operator (bitwise OR). The implementation of logic functions is not bound

to a special form. You can implement logic functions as Python source code in conjunc-

tive form, in the disjunctive normal form, or in any other valid form.

The simplify_logic(y) method in line 10 simplifies the logic function from line 09. The

simplified function is then output in line 11. The result matches the theoretically deter-

mined value.

10.3.2 Simplification Using the Disjunctive Normal Form

When simplifying using the OR normal form, also called the disjunctive normal form

(DNF), a logic function is written for each minterm (all outputs with y = 1).
457

10 Boolean Algebra
The truth table provided in Table 10.2 contains ten minterms. For the first and the sec-

ond lines, the minterms are provided. The other eight minterms can be written accord-

ing to the same schema:

No. 0:

No. 1:

and so on.

However, when you design a digital circuit, writing down the minterms is not neces-

sary. Instead, can use a Karnaugh map (K-map) instead. You can then enter all circuit

states of the output variables with y = 1 directly into the K-map shown in Table 10.3.

No. x1 x2 x3 x4 y

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 0 1 1 1 0

8 1 0 0 0 1

9 1 0 0 1 0

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 0

13 1 1 0 1 0

14 1 1 1 0 1

15 1 1 1 1 1

Table 10.2 Truth Table for a Digital Circuit with Four Inputs
458

10.3 Circuit Synthesis
All connected rectangular blocks of two, four, and eight with y = 1 can be combined into

simplified terms. Based on the K-map in Table 10.3, you can then obtain the following

simplified logic function:

Listing 10.7 simplifies the minterms of the truth table from Table 10.2.

01 #07_simplify2.py
02 from sympy.logic import simplify_logic
03 from sympy import symbols
04 x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
05 y1 = (~x1 & ~x2 & ~x3 & ~x4)
06 y2 = (~x1 & ~x2 & ~x3 & x4)
07 y3 = (~x1 & ~x2 & x3 & ~x4)
08 y4 = (~x1 & ~x2 & x3 & x4)
09 y5 = (~x1 & x2 & ~x3 & ~x4)
10 y6 = (x1 & ~x2 & ~x3 & ~x4)
11 y7 = (x1 & ~x2 & x3 & ~x4)
12 y8 = (x1 & ~x2 & x3 & x4)
13 y9 = (x1 & x2 & x3 & ~x4)
14 y10 =(x1 & x2 & x3 & x4)
15 y=y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 |y9 | y10
16 V=simplify_logic(y)
17 print("y = ",V)

Listing 10.7 Simplification for Ten Minterms

The output of the program from Listing 10.7 confirms the result obtained using the K-

map from Table 10.3:

y = (x1 & x3) | (~x1 & ~x2) | (~x2 & ~x4) | (~x1 & ~x3 & ~x4)

x1 ¬x1

x2

1 x4

1 1
¬x4

¬x2

1 1 1 1

1 1 1 x4

x3 ¬x3 x3

Table 10.3 K-Map for Four Variables
459

10 Boolean Algebra
10.3.3 Simplification Using the Conjunctive Normal Form

When simplifying using the conjunctive normal form (CNF), a logic function is written

for each maxterm (all outputs with y = 0).

The truth table in Table 10.2 contains six maxterms. The input variables are disjunc-

tively linked in the following ways:

The output variables are conjunctively linked in the follow way:

The logic functions can be directly copied from the truth table in Table 10.2 into the

Python source code, as shown in Listing 10.8.

01 #08_simplify3.py
02 from sympy.logic import simplify_logic
03 from sympy import symbols
04 x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
05 y1 = (x1 | ~x2 | x3 | ~x4)
06 y2 = (x1 | ~x2 | ~x3 | x4)
07 y3 = (x1 | ~x2 | ~x3 | ~x4)
08 y4 = (~x1 | x2 | x3 | ~x4)
09 y5 = (~x1 | ~x2 | x3 | x4)
10 y6 = (~x1 | ~x2 | x3 | ~x4)
11 y=y1 & y2 & y3 & y4 & y5 & y6
12 V=simplify_logic(y)
13 print("y = ",V)

Listing 10.8 Simplification for Six Maxterms

Output

y = (x1 & x3) | (~x1 & ~x2) | (~x2 & ~x4) | (~x1 & ~x3 & ~x4)

The output from Listing 10.8 matches the result of the program from Listing 10.7.

10.4 Project Task: Seven-Segment Coding

In simple displays, for example, in pocket calculators or digital watches, numbers are

represented by displays with seven segments, as shown in Figure 10.6.
460

10.4 Project Task: Seven-Segment Coding
Figure 10.6 Seven-Segment Display

By using a logic function for each segment, we can control the segments in such a way

that the desired number is always displayed.

The design of our digital circuit should have the four inputs A, B, C, and D (binary-coded

decimal [BCD] code) and the seven outputs a through g. The circuit must control the

seven segments so that the numbers from 0 to 9 are shown correctly in the display. For

the representation of zero, for example, current must flow in all segments except g.

Table 10.4 defines in detail how the segments should be controlled.

Inputs Outputs

T D C B A a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 0 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

10 1 0 1 0 x x x x x x x

11 1 0 1 1 x x x x x x x

12 1 1 0 0 x x x x x x x

13 1 1 0 1 x x x x x x x

14 1 1 1 0 x x x x x x x

15 1 1 1 1 x x x x x x x

Table 10.4 Truth Table for Seven-Segment Coding
461

10 Boolean Algebra
Only the lines from 0 to 9 are needed to display the ten digits. The fields that are not

required have been marked with an x. These fields are referred to as don’t-care terms.

Since it does not matter whether they take the logical state 0 or 1, they can be counted

as logical 1 for the OR normal form or as logical 0 for the AND normal form, which sim-

plifies the logic functions even further.

Experienced digital technicians can immediately recognize the solution for segment c,

for example, from the conjunctive normal form:

You do not need to consider input D because it can be either 0 or 1, so whether it is pres-

ent does not matter.

You can transfer the logic functions for the segments a to g directly from the truth table

as disjunctive or conjunctive normal form into the source code of the program. The

don’t-care terms (in lines 10 through 15 in Table 10.4) are not included in Listing 10.9.

01 #09_seven_segment.py
02 from sympy.logic import simplify_logic
03 from sympy import symbols
04 D, C, B, A = symbols('D C B A')
05 a=(D|C|B|~A) & (D|~C|B|A) & (D|~C|~B|A)
06 b=(D|~C|B|~A)&(D|~C|~B|A)
07 c=(D|C|~B|A)
08 d=(D|C|B|~A) & (D|~C|B|A) & (D|~C|~B|~A)
09 e=(~D&~C&~B&~A)|(~D&~C&B&~A)|(~D&C&B&~A)|(D&~C&~B&~A)
10 f=(D|C|B|~A) & (D|C|~B|A) & (D|C|~B|~A) & (D|~C|~B|~A)
11 g=(D|C|B|A) & (D|C|B|~A) & (D|~C|~B|~A)
12 print("a = ",simplify_logic(a))
13 print("b = ",simplify_logic(b))
14 print("c = ",simplify_logic(c))
15 print("d = ",simplify_logic(d))
16 print("e = ",simplify_logic(e))
17 print("f = ",simplify_logic(f))
18 print("g = ",simplify_logic(g))

Listing 10.9 Simplification for Seven-Segment Coding

Output

a = D | (A & C) | (B & ~C) | (~A & ~C)
b = D | ~C | (A & B) | (~A & ~B)
c = A | C | D | ~B
d = D | (B & ~A) | (B & ~C) | (~A & ~C) | (A & C & ~B)
e = ~A & (B | ~C) & (~B | ~D)
462

10.5 Tasks
f = D | (C & ~A) | (C & ~B) | (~A & ~B)
g = D | (B & ~A) | (B & ~C) | (C & ~B)

Analysis

Lines 05 to 11 contain the logic functions of segments a through g. The functions are

implemented as either min or max terms. The result for segment c=A|C|D|~B (line 07)

was expected because nothing at all could be simplified. Individual logic functions

could be simplified even further by considering don’t-care terms (see task number 6).

10.5 Tasks

1. Justify the following:

a) 2 | 2 = 2

b) 3 | 4 = 7

c) 3 & 8 = 0

d) 2 & 2 = 2

e) ~3 = –4

2. Write a program that outputs the truth table of an alternating circuit (antivalence

function).

3. Write a program that outputs the truth table for the functions

 and .

4. Write a program that simplifies the function

.

5. For a system with three motors, a warning (indicator light or horn) should be issued

if the sum of the powers is greater than or equal to 4kW. The rated power of the

motors is P1 = 1kW, P2 = 2kW und P3 = 3kW. Develop a logic function for the controller

and write a program for simplifying the logic function.

6. The logic functions of segment c need to be simplified considering don’t-care terms.

Write an appropriate Python program.

7. Write a program that checks the results of a seven-segment display.
463

Chapter 11

Interactive Programming
Using Tkinter

In this chapter, you’ll learn how to create user interfaces using Python’s

Tkinter module. The project task demonstrates the simulation of a

control loop with a PID controller.

One disadvantage of console applications is how they severely limit interactions with

the user. The Python console provides only the input and print methods for input and

output but no other interactive controls. In addition, mathematical functions cannot

be represented graphically.

To compensate for this shortcoming, several other graphical user interfaces (GUIs) for

Python exist besides Tkinter, such as pyGTK, wxPython, or PyQt. Because of the some-

times pretty high programming effort and the high required resources, I won’t go into

these modules in more detail.

The name of the Tkinter module is an abbreviation of “Tk-interface.” Tk is a cross-plat-

form toolkit for programming GUI. This toolkit provides all the classes for implement-

ing the controls (widgets), such as labels (Label), single-line text fields (Entry) and

command buttons (Button). Tkinter is already part of Python, so it does not need to be

installed like many other modules.

The particular advantage of Tkinter is that you can write functional prototypes for

engineering applications with a GUI with little programming effort. Because Tkinter

programs require few resources, they also run on Raspberry Pis.

Tkinter programs are developed in five steps:

1. Importing the Tkinter module

2. Creating an object for the main window of the user interface

3. Creating objects for the controls (widgets)

4. Arranging the controls (widgets) in the user interface

5. Implementing an event query

In all the following programs, prefixes represent the controls we use. This approach

makes the source code more clear and easier to read. Based on the prefixes, the controls

we use can be identified more quickly in source code analysis.

Table 11.1 contains an overview of the most important controls and their prefixes.
465

11 Interactive Programming Using Tkinter
For a description of the Tkinter module, including an overview of all classes and meth-

ods, enter the following statements in the Python shell:

>>> import tkinter
>>> help(tkinter)

Most of the following sample programs refer to the project task described in Section

11.6. The project is divided into individual subtasks, each of which determines self-con-

tained partial solutions: implementing inputs and outputs for numerical calculations,

designing user interfaces, graphical representations of functions, querying mouse

coordinates to determine function values, and the developing and processing of algo-

rithms for the numerical solutions of the differential equations of the controller.

11.1 Interactions with Command Buttons, Textboxes, and Labels

A minimal version of an interactive program consists of label (Label), textboxes (Entry),

and command buttons (Button). The textboxes are needed to enter numerical values

for calculations.

The input is always performed using strings. These strings must be converted into

floats by the program. A label has two functions: They can be used either to label the

text fields (inputs) or to output the results. In the second case, the program must con-

vert the floats of the result into strings. The task of command buttons consists of per-

forming specific actions. Once you have entered the values into the text fields,

computing operations must be performed (Start button) or the program is supposed to

be terminated (Exit button).

Control (Widgets) Description Prefix

Label Label field and output of text (string) lbl

Entry Single-line textbox for entering text (string) txt

Button Command button for triggering events (e.g., a mouse click) cmd

Frame Area for positioning controls frm

Scale Slider sld

Canvas Drawing area for displaying lines, circles, etc. can

Radiobutton Single selection opt

Checkbutton Multiple selection chk

Table 11.1 Essential Controls and Their Prefixes
466

11.1 Interactions with Command Buttons, Textboxes, and Labels
11.1.1 Labels

You can create a label by using the constructor of the Label class:

lblE=Label(window, text="Result output"...)

You must pass at least two arguments to the constructor of the Label class. The first

parameter is the object of the main window, window. The second parameter is the text
property, which determines the text that will be displayed on the user interface. The

remaining parameters are optional. By calling the Label constructor, you can display

the lblE object.

The first sample program demonstrates how to use Tkinter to implement a window for

simple text output. In your Python development environment, enter the source code

provided in Listing 11.1.

01 #01_gui_window.py
02 import tkinter as tk
03 window=tk.Tk()
04 lblResult=tk.Label(window,text="Result output",font=("Arial 24"))
05 lblResult.pack()
06 window.mainloop()

Listing 11.1 Window with Text Output

When you start the program, the window shown in Figure 11.1 should appear on the

screen.

Figure 11.1 Text Output Window

Analysis

In line 02, the tkinter module is imported, and the tk alias is set. This alias enables you

to access all methods of the classes of Tk().

In line 03, an object of the Tk class named window is created. In the further course of the

program, this object is needed as a parameter for other controls.

In line 04, an object named lblResult of the Label class is created. This object is useful

to prefix all the names of the label fields. Here and in all sample programs that follow,

the lbl prefix is used for all label fields. This convention makes reading Tkinter source

code much easier when applied to other controls as well (see Table 11.1). The lblResult
variable can also be used to output the result of a computer operation if required. Three

parameters are passed to the Label() constructor (method of the same name of the
467

11 Interactive Programming Using Tkinter
Label class): The first parameter is the name of the window window created as an object

in line 03. This parameter determines in which window the lblResult label will be dis-

played. The second parameter (text) is passed the label’s caption as a string. The third

parameter sets the font type and size of the output.

The pack() method in line 05 is needed to display and arrange controls in the main win-

dow. If no parameters are passed to this method, then all the controls are arranged one

below the other in the order in which they are listed, line by line.

The mainloop() method in line 06 is an infinite loop that is responsible for retrieving all

user activities (events), processing them, and executing the requested actions, such as

function calls or exiting the program.

All methods are always accessed using the dot operator according to the convention

ObjectName.Method(param1, param2, ...).

11.1.2 Textboxes and Command Buttons

You can create a single-line text field (Entry) using the constructor of the Entry class:

txtE=Entry(window, width=5,justify="right")

The first parameter (window) is again the object of the main window. The second param-

eter sets the width of the text box, and the third parameter sets the alignment of the

text. After calling the constructor the txtE object is created.

You can create a command button via the constructor of the Button class:

cmdB=Button(window, text="Compute", command=function)

Again, the first parameter is the object of the main window, window. The second param-

eter sets the label of the command button. To the third parameter (command) must be

assigned the name of the function function, which is to be executed when you click the

command button. You must omit the usual parentheses in a function call.

11.2 The Layout Manager of Tkinter

Layout managers support the application developer in arranging the controls in the

user interface (window). For arranging and designing user interfaces, the following

design criteria are suggested in the literature:

� Proportions

Windows should have an aspect ratio from 1:1 to 2:1 (the ratio of width to height),

which improves the user orientation. The window shown in Figure 11.2 meets this

requirement.
468

11.2 The Layout Manager of Tkinter
� Balance

A window is divided by a vertical line in the center. The information density (num-

ber of controls) should be approximately equally distributed on both sides, left and

right. The window shown in Figure 11.2 does not meet this requirement because the

information has not been spread across two columns. The label fields should be on

the left, and the text fields should be on the right.

� Symmetry

A window is divided by a horizontal line in the middle. The horizontally opposed

controls should be of the same type. The labels and the corresponding text fields

should therefore each be arranged in one line. A new line must be set up for each

new input. On the left-hand side of the window, above and below the horizontal line,

there are the labels. On the right-hand side of the window, above and below the hor-

izontal line, there are the text fields. The window shown in Figure 11.2 does not meet

this requirement because the labels have not been placed in front of the text fields

on one level. However, the requirement for symmetry cannot always be met in real

life.

� Sequence

The user’s perception should be guided sequentially through the window. Unneces-

sary jumps should be avoided. Because the user first looks at the upper left-hand

area, the most important information should also be at the top left.

� Simplicity

Different fonts or colors should be used with restraint. Each window should be

designed to be as simple as possible.

� Minimizing virtual lines

Users unconsciously form virtual lines when viewing user interfaces. In other words,

if the controls were not placed vertically at the same distance from the window

frame, as shown in Figure 11.2, then the user will find the window design awkward:

The harmony of the user’s observation will be disturbed.

Tkinter’s layout manager provides the following methods: pack(), frame(), place(), and

grid(). The frame method allows you to divide the user interface into separate areas

(frames). The layout manager then inserts the controls into the desired frame. The

place method allows you to place the individual controls anywhere in the user inter-

face (window) by specifying their x-y coordinates. The coordinate origin is located in

the upper-left corner of the window. Since the frame and place methods do not provide

satisfactory results, and at a relatively high cost, I won’t discuss them further. The sam-

ple programs for these two methods can be found in the download area of https://

www.rheinwerk-computing.com/5852/ or https://drsteinkamp.de.

The pack method is particularly well suited for testing a prototype. If this prototype

meets all technical requirements, its design can be optimized using the grid layout

manager.
469

https://www.rheinwerk-computing.com/5852/
https://www.rheinwerk-computing.com/5852/
https://drsteinkamp.de

11 Interactive Programming Using Tkinter
11.2.1 The pack Method

The following program shows how to implement the computation of the moment of

inertia J of a solid steel cylinder with density 𝜌 = 7.85kg/dm3, length l, and diameter d

using the pack method.

The moment of inertia of a solid cylinder is calculated in the following way:

The formula shows that the program requires two single-line text fields (Entry) for the

input of the cylinder length l and the cylinder diameter d as well as one label each for

the labeling of the text fields and the result output. You can use the following example

as a pattern for the calculation of any complex formula. You only need to add the nec-

essary text fields for the inputs and adjust the function according to the calculation

rule.

To keep the source code as simple and clear as possible, this example deliberately

avoids an appealing and functional design. In your development environment, enter

the source code provided in Listing 11.2 and start the program.

01 #02_gui_pack.py
02 import tkinter as tk
03 #calculation of the moment of inertia
04 def moment_of_inertia():
05 pi=3.14159
06 rho=7.85 #kg/dm^3
07 d = float(txtDiameter.get())#dm
08 l = float(txtLength.get()) #dm
09 try:
10 J = rho*l*pi*d**4/32
11 J = ('{0:6.2f}'.format(1e-2*J)) #kgm^2
12 lblResult["text"] = "J=" + str(J) + " kgm^2"
13 except:
14 lblResult["text"]= "Enter numbers"
15 #graphics area
16 main = tk.Tk()
17 main.minsize(400,200)
18 main.title("Moment of inertia of a cylinder")
19 #create label
20 lblDiameter=tk.Label(main, text="Enter diameter in dm")
21 lblLength=tk.Label(main, text="Enter length in dm")
22 lblResult = tk.Label(main,text="")
23 #create text fields
24 txtDiameter=tk.Entry(main, width=5,justify="right")
470

11.2 The Layout Manager of Tkinter
25 txtDiameter.insert(5, "0.8")
26 txtLength = tk.Entry(main,width=5, justify="right")
27 txtLength.insert(5,"10")
28 #create command buttons
29 cmdCompute=tk.Button(main, text="Compute", command=moment_of_inertia)
30 cmdExit=tk.Button(main, text="Exit", command=main.destroy)
31 #insert controls
32 lblDiameter.pack()
33 txtDiameter.pack()
34 lblLength.pack()
35 txtLength.pack()
36 cmdCompute.pack()
37 lblResult.pack()
38 cmdExit.pack()
39 main.mainloop()

Listing 11.2 Program with Label Fields, Text Fields, and Command Buttons

After starting the program, the user interface appears on the desktop roughly as shown

in Figure 11.2.

The actual appearance of the window depends on the operating system used (i.e.,

macOS, Linux, or Windows).

Figure 11.2 Computing the Moment of Inertia

Analysis

From line 04, the moment_of_inertia() function is defined. The get() method reads the

strings from the txtDiameter and txtLength text fields, converts them to floats, and

assigns them to the d and l variables. An exception handling process ensures that input

errors (when letters instead of numbers are entered) will be caught (lines 09 to 14).

In line 17, the minimum window size of 400 pixels width and 200 pixels height is set.

Thus, the aspect ratio is 2:1.
471

11 Interactive Programming Using Tkinter
In line 24, the txtDiameter object is created by calling the Entry() constructor of the

Entry class. Three parameters are passed to the constructor: the name of the main win-

dow, the width of the text field, and the alignment of the string (right aligned in this

case).

The insert(param1, param2) method is used to read the content of the text field and

store it in the txtDiameter object (line 25). The first parameter sets the length of the

string. The second parameter contains default values.

In lines 29 and 30, the constructors of the Button(param1, param2, param3) class are

called. The name of the main window is passed as the first parameter. The second

parameter specifies the label of the command button. The third parameter (command=
function name) is used to call and run a function. Note that the function call omits the

parentheses. The command=main.destroy method call terminates the program.

The pack() method does not yet contain any parameters. The controls are displayed

line by line and centered in the order of the pack statements.

If you insert the side="left" parameter in the pack method, the layout manager will

place the controls in one row from left to right.

The layout of the program is visually unappealing and dysfunctional for now. Using the

grid method, you can design a user-friendly interface with little effort.

11.2.2 The grid Method

The grid() method can be used to insert all controls into the cells of a table. This

method is passed at least two parameters: the row number (row) and the column num-

ber (column). The count starts with zero for the first row and the first column.

In real life, proven advantages come with designing user interfaces using tables, as

shown in Table 11.2.

Add the source code provided Listing 11.3 to our example from Listing 11.2 and start the

program.

lblDiameter txtDiameter

lblLength txtLength

lblMoment of inertia lblResult

cmdCompute cmdExit

Table 11.2 Designing the User Interface
472

11.2 The Layout Manager of Tkinter
01 #03_gui_grid.py
02 import tkinter as tk
03 #function for moment of inertia
04 def moment_of_inertia():
05 pi=3.14159
06 rho=7.85 #kg/dm^3
07 d = float(txtDiameter.get()) #dm
08 l = float(txtLength.get()) #dm
09 try:
10 J = rho*l*pi*d**4/32
11 J = ('{0:6.2f}'.format(1e-2*J)) #kgm^2
12 lblResult["text"] = str(J) + " kgm^2"
13 except:
14 lblResult["text"]= "Enter numbers"
15 #graphics area
16 main = tk.Tk()
17 main.minsize(400,115)
18 main.title("Moment of inertia of a cylinder")
19 lblDiameter=tk.Label(main, text="Enter diameter in dm")
20 lblLength=tk.Label(main, text="Enter length in dm")
21 lblMoment_of_inertia = tk.Label(main,text="Moment of inertia")
22 lblResult = tk.Label(main,text="")
23 txtDiameter=tk.Entry(main, justify="right")
24 txtDiameter.insert(2,"0.8")
25 txtLength = tk.Entry(main, justify="right")
26 txtLength.insert(2,"10")
27 cmdCompute=tk.Button(main, text="Compute",command=moment_of_inertia)
28 cmdExit=tk.Button(main, text="Exit",command=main.destroy)
29 lblDiameter.grid(row=0,column=0,sticky="w")
30 txtDiameter.grid(row=0,column=1,sticky="e")
31 lblLength.grid(row=1,column=0,sticky="w")
32 txtLength.grid(row=1,column=1,sticky="e")
33 lblMoment_of_inertia.grid(row=2,column=0,sticky="w")
34 lblResult.grid(row=2,column=1,sticky="e")
35 cmdCompute.grid(row=3,column=0)
36 cmdExit.grid(row=3,column=1)
37 main.mainloop()

Listing 11.3 Arranging Controls Using the Grid Method

The user interface created using the grid method is shown in Figure 11.3.
473

11 Interactive Programming Using Tkinter
Figure 11.3 User Interface Created Using the Grid Method

Analysis

The label fields are located in the left column (column=0), just like the Compute com-

mand button. The text fields for the inputs are located in the right column (column=1),

just like the Exit command button. The label fields are left aligned (sticky=w), whereas

the text fields and the result output are right aligned (sticky=e). Since the grid method

of the command buttons does not contain any other properties, they are centered in

the cells.

Listing 11.3 shows that the grid layout meets all design criteria for user interfaces with

relatively little effort. The following sample programs show further layout options for

the grid method.

11.2.3 Summary

Let’s briefly summarize what we’ve learned so far: The constructors of the Label and

Entry classes require the name of the main window or the name of the frame as the first

parameter. Other parameters determine the text of the labels and the appearance of

the controls, for instance:

lblName = Label(window, properties)
txtName = Entry(windows, properties)

For better identification, the names of the controls are given unique prefixes (e.g., lbl...,

txt..., cmd..., etc.).

The Insert() method of the Entry class requires the string length of the variable as the

first parameter. It makes sense to specify a realistic default value as the second param-

eter in the following way:

txtName.Insert(stringlength, defaultvalue)

The constructor of command buttons expects a third parameter for the function call, in

the following way:

cmdName = Button(window, label, command=function)
474

11.3 Selection with Radio Button
The minimum size of a window can be set using the following statement:

window.minsize(width, height)

Tkinter’s layout manager uses the grid method to specify the arrangement of all con-

trols as a table grid:

objName.grid(row,column)

All methods of the Tk() class are accessed using the dot operator (.), as in objName.

Method().

11.3 Selection with Radio Button

A radio button, also referred to as an option button, is a control that allows only one

option out of a number of options to be selected. This control can be created using the

following method:

Radiobutton(main,text="Sphere",variable=select,value="sp")

The first parameter (main) refers to the window in which the radio button is to be

inserted. The second parameter sets the label. The third parameter (variable) must be

assigned a global variable that manages and summarizes the options of the selection.

The fourth parameter activates the selected option. Listing 11.4 shows how the moment

of inertia is calculated for the three bodies (point mass, solid cylinder, and sphere), after

the user makes a selection with radio buttons.

01 #04_radiobutton.py
02 import tkinter as tk
03
04 def compute():
05 m=1 #Mass in kg
06 r=0.5 #Radius in m
07 Jp = m*r**2 #Point mass
08 Jz = 0.5*m*r**2 #Solid cylinder
09 Jk = 2./5.*m*r**2 #Sphere
10 if select.get()=="pm":
11 lblResult["text"]=str(Jp)+" kgm^2"
12 elif select.get()=="sc":
13 lblResult["text"]=str(Jz)+" kgm^2"
14 elif select.get()=="sp":
15 lblResult["text"]=str(Jk)+" kgm^2"
16 #graphics area
17 main = tk.Tk()
475

11 Interactive Programming Using Tkinter
18 main.minsize(580,100)
19 main.title("Selection with radio button")
20 select=tk.StringVar()
21 select.set("sc")
22 #create controls
23 optPm=tk.Radiobutton(main,text="Point mass",variable=select,value="pm")
24 optSc=tk.Radiobutton(main,text="Solid cylinder",variable=select,value="sc")
25 optSp=tk.Radiobutton(main,text="Sphere",variable=select,value="sp")
26 lblJ=tk.Label(main, text="J=")
27 lblResult = tk.Label(main,text="")
28 cmdStart = tk.Button(main, text="Compute",command=compute)
29 cmdExit=tk.Button(main,text="Exit",command=main.destroy)
30 #display controls
31 optPm.pack(side="left")
32 optSc.pack(side="left")
33 optSp.pack(side="left")
34 cmdStart.pack(side="left")
35 cmdExit.pack(side="left")
36 lblJ.pack(side="left")
37 lblResult.pack(side="left")
38 main.mainloop()

Listing 11.4 Selection with Radio Buttons

Output

Figure 11.4 shows how selection with radio buttons is enabled and displayed in the user

interface when executing the program provided in Listing 11.4.

Figure 11.4 Selection with Radio Buttons

Analysis

In line 20, the global select variable is created as a copy of the StringVar class. In line 21,

this variable is initialized using select.set("sc"). The sc designator is supposed to

stand for “solid cylinder.” So, the preselection is on the Solid cylinder option.

In lines 23 to 25, the Radiobutton() method creates the three objects optPm, optSc, and

optSp. By assigning the common select variable to the value property in all three meth-

ods, all three radio buttons are combined into one unit.
476

11.4 Slider
In lines 10 to 15, the selection is implemented using the select.get()=="pm" method.

The value of the string variable select determines which moment of inertia is sup-

posed to be computed. Note that the case query requires a double equal sign.

In lines 31 to 33, the pack(side="left") method causes all radio buttons to be arranged

in a row from left to right.

11.4 Slider

The slider control enables you to use the mouse pointer to continuously adjust values

for variables. The Scale(main, parmeterlist) method creates a slider object.

Listing 11.5 calculates the moment of inertia for a solid steel cylinder with a length of 1

meter (m) for cylinder diameters from 50 to 200 millimeters (mm).

01 #05_slider.py
02 import tkinter as tk
03 main=tk.Tk()
04 #moment of inertia
05 def moment_of_inertia(self):
06 pi=3.14159
07 rho=7.85 #Density of steel kg/dm^3
08 l=10 #Length of the cylinder in dm
09 d=sldD.get() #Diameter in mm
10 d=1e-2*d #Conversion to dm
11 J = rho*l*pi*d**4/32 #in kgdm^2
12 J=('{0:5.3f}'.format(1e-2*J)) #Conversion to m
13 lblD["text"] = "J=" + str(J) + " kgm^2"
14 #generate slider object
15 sldD=tk.Scale(main, width=20, length=400,
16 from_= 50, to= 200, #range in mm
17 orient='horizontal',
18 resolution=1, #resolution in mm
19 tickinterval=25,
20 label="d in mm",
21 command=moment_of_inertia, #function call
22 font=("Arial 14"))
23 #graphics area
24 main.minsize(500,110)
25 main.title("Moment of inertia of a cylinder")
26 lblD=tk.Label(main,text="J=",font=("Arial 14"))
27 sldD.set(80) #set initial value
28 lblD.pack()
477

11 Interactive Programming Using Tkinter
29 sldD.pack()
30 main.mainloop()

Listing 11.5 Computations Using the Slider Control

Output

Figure 11.5 Computing the Moment of Inertia Using a Slider

Analysis

In line 09, the get() method determines the current value of the diameter set by the

slider.

In line 15, the slider object, sldD, is created for the cylinder diameter. In line 21, the

moment_of_inertia function is called. Note that you must omit the parentheses. In line

27, you can set an initial value for the cylinder diameter using the sldD.set(80) state-

ment.

11.5 The Canvas Drawing Area

The Canvas class reserves an area of a window in which objects such as lines, rectangles,

and circles can be displayed.

The constructor of the Canvas class provides a surface with a width of xmax and a height

of ymax:

Canvas(width=xmax, height=ymax, bg='white')

The bg property sets the background color of the drawing area.

11.5.1 Representing Lines

The following method creates lines in the drawing area:

create_line(x1,y1,x2,y2,fill='black',width=3)

For the representation of a line, two coordinates must be specified: top left x1,y1 and

bottom right x2,y2. The fill and width properties set the color and width of the line.
478

11.5 The Canvas Drawing Area
Listing 11.6 draws two lines: a horizontal black line in the center of the drawing area and

a blue line running from top left to bottom right.

01 #06_canvas_line.py
02 import tkinter as tk
03 main = tk.Tk()
04 xmax,ymax=500,500
05 canZ = tk.Canvas(width=xmax, height=ymax, bg='white')
06 canZ.create_line(0,ymax/2,xmax, ymax/2, fill='black', width=3)
07 canZ.create_line(0,0,xmax, ymax, fill='blue', width=3)
08 canZ.pack()
09 main.mainloop()

Listing 11.6 Two Lines in the Canvas Drawing Area

Output

Figure 11.6 shows how the lines are displayed in the user interface.

Figure 11.6 Representation of Lines in the Canvas Drawing Area

Analysis

In line 04, the width and the height of the drawing area (canvas) are set to 500 pixels

each.

In line 05, the Canvas() constructor of the Canvas class creates the canZ object. This

object is needed to access the methods of the Canvas class.
479

11 Interactive Programming Using Tkinter
In line 06, the create_line() method draws a black horizontal line in the center of the

drawing area. In line 07, the create_line() method draws a blue line from the top-left

corner to the bottom-right corner of the drawing area. The lines have a width of 3 pix-

els.

In line 08, the pack() method ensures that the two lines are displayed in the canZ draw-

ing area.

11.5.2 Function Plots

The

create_line(x,-sy*f(sx*x)+ym,(x+1),-sy*f(sx*(x+1))+ym,...)

method represents a mathematical function—y = 𝑓(x)—in the canvas drawing area as

lines with a “length” of 1 pixel. In this case, sx and sy are scaling factors that adjust the

display range of the drawing area function on the x and y axes. For the scaling factors,

the following applies:

For example, if a sinusoidal function y = sin(x) with the amplitude of 8 is to be repre-

sented in a drawing area with 500×500 pixels on the x-axis in the range from 0 to 10

and the y-axis from −10 to +10, then the values for the arguments of the x-axis must be

multiplied by the factor 10/500 = 0.02 and the function values for the y-axis must be

multiplied by the factor 20/8 = 2.5. Listing 11.7 represents a sinusoidal function with the

amplitude 8 for a value range from 0 to 10.

01 #07_scaling.py
02 import math as m
03 import tkinter as tk
04 main = tk.Tk()
05 xmax, ymax = 500, 500
06 x1,x2 = 0, 10
07 y1,y2 =-10, 10
08 ym=ymax/2
09 sx=(x2-x1)/xmax
10 sy=ymax/(y2-y1)
11 canZ = tk.Canvas(width=xmax, height=ymax, bg='white')
12 canZ.create_line(0,ym,xmax,ym,fill='black',width=2)
13
14 def f(x):
15 return 8*m.sin(x)
16
480

11.5 The Canvas Drawing Area
17 def draw():
18 dx=1
19 x=0
20 while x<=xmax:
21 canZ.create_line(x,-sy*f(sx*x)+ym,(x+1),\
22 -sy*f(sx*(x+1))+ym,fill='blue',width=2)
23 x=x+dx
24
25 cmdStart=tk.Button(main, text="Draw", command=draw)
26 canZ.pack()
27 cmdStart.pack()
28 main.mainloop()

Listing 11.7 Plotting a Sine Curve

Output

Figure 11.7 shows the sine curve defined in Listing 11.7 inside the canvas.

Figure 11.7 Scaling the Drawing Area

Analysis

The drawing area has a size of 500×500 pixels (line 05). The scaling factors sx and sy are

computed in lines 09 and 10.
481

11 Interactive Programming Using Tkinter
In lines 14 and 15, the mathematical function f(x)=8*m.sin(x) is defined. For further

testing purposes, you can also enter other functions here.

The draw() function defined in lines 17 to 23 is called by the Button() constructor of the

Button class in line 25.

In lines 21 and 22, the create_line() method draws the sine function as a blue polyline

with a width of 2 pixels.

11.5.3 Querying Mouse Coordinates

If you want to read the function value y at position x, you can query the coordinates

using the mouse pointer.

In a custom function, such as coordinate(event), the current event parameter x,y =
event.x, event.y is assigned to a tuple (x,y). The bind("<Motion>", coordinate) method

determines the current position of the mouse pointer. Listing 11.8 shows how to deter-

mine the function values 𝑓(x) of a sine function at position x using the mouse pointer.

01 #08_mouse_coordinates.py
02 import tkinter as tk
03 import math as m
04 main = tk.Tk()
05 xmax, ymax = 500, 500
06 x1,x2 = 0, 10
07 y1,y2 =-10, 10
08 ym=ymax/2
09 sx=(x2-x1)/xmax
10 sy=ymax/(y2-y1)
11 canZ = tk.Canvas(width=xmax, height=ymax, bg='white')
12 canZ.create_line(0,ym,xmax,ym,fill='black',width=2)
13
14 def f(x):
15 return 8*m.sin(x)
16
17 def coordinate(e):
18 x, y = e.x, e.y
19 x, y = sx*x, (0.5*ymax-y)/sy
20 x, y = ('{0:4.1f}'.format(x)), ('{0:4.1f}'.format(y))
21 lblCoordinate["text"]=' x: '+str(x)+' y: '+str(y)
22
23 def draw():
24 dx=1
25 x=0
26 while x<=xmax:
27 canZ.create_line(x,-sy*f(sx*x)+ym,(x+1),\
482

11.5 The Canvas Drawing Area
28 -sy*f(sx*(x+1))+ym,fill='blue',width=2)
29 x=x+dx
30
31 lblCoordinate=tk.Label(main, text="")
32 cmdStart=tk.Button(main, text="Draw", command=draw)
33 canZ.pack()
34 cmdStart.pack(side="left")
35 lblCoordinate.pack(side="left")
36 canZ.bind("<Motion>", coordinate)
37 main.mainloop()

Listing 11.8 Querying Mouse Coordinates

Output

How the query of coordinates via mouse pointer is displayed to the user is shown in

Figure 11.8.

Figure 11.8 Querying the Position of the Mouse Pointer Coordinates

Analysis

In lines 17 to 21, the coordinate(e) function is defined. In line 36, this function is called

by the bind() method. The x, y = e.x, e.y assignment of the current mouse position is

performed in line 18. The position of the mouse pointer still needs to be scaled (line 19).
483

11 Interactive Programming Using Tkinter
The coordinates of the mouse pointer are converted to a string in line 21 and assigned

to the lblCoordinate label. The current mouse position is displayed with the lblCoordi-
nate label in line 31.

11.6 Project Task: Rotational Frequency Control of an Externally
Excited DC Motor

This program is supposed to simulate controlling the rotational frequency of an exter-

nally excited DC motor. The data of the process and the PID controller is given.

The planning of the program starts with the design of the user interface, as shown in

Figure 11.9.

Figure 11.9 Designing the User Interface

The canvas is located in the upper area. Below the canvas, the data of the process must

be entered in the left-hand column: armature resistance (R), armature inductance (L),

rated torque (Mn), rated armature current (Ia), and the moment of inertia (J). The mid-

dle column is for the gain (Kp), reset time (Tn), and derivative time (Tv) parameters. The

command buttons are located in the right-hand column. Except for symmetry, almost

all of the criteria we’ve listed, according to which a user interface should be designed,

are fulfilled.

In the next step, you’ll analyze the active circuit diagram of a standardized control loop,

as shown in Figure 11.10.
484

11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
Figure 11.10 Active Circuit Diagram of a Control Loop

In this diagram, w represents the reference variable, e the control error, u the manipu-

lated variable, z the disturbance variable, and y the controlled variable. For the algo-

rithm of the control loop simulation, you only need to add the equations for the PID

controller and the process into a loop. The loop is run until the transient state is com-

pleted.

In the third and last step, you must set up the differential equations for the process.

This task can be achieved with the help of a substitute circuit of the externally excited

DC motor, as shown in Figure 11.11.

Figure 11.11 Substitute Circuit for an Externally Excited DC Motor

The differential equation system must be developed from the substitute circuit in the

following way:

Controller Process
ew u y

z

-y

Cdyn

i(t)

U2U1

R

UR UL

L

485

11 Interactive Programming Using Tkinter
Based on this system of equations, the Euler algorithm can be developed:

i = i + (U1-R*i-u2)*dt/L
u2 = u2 + i*dt/C

The dynamic capacity is set using the following equation:

Listing 11.9 is used to simulate the step response of the process.

01 #09_process.py
02 import tkinter as tk
03 main = tk.Tk()
04 main.title("Second-order process")
05 xmax, ymax = 800, 400
06 canZ = tk.Canvas(width=xmax, height=ymax, bg='white')
07 #label fields
08 lblR=tk.Label(main, text="R")
09 lblL = tk.Label(main, text="L")
10 lblMn=tk.Label(main, text="Mn")
11 lblIa=tk.Label(main, text="Ia")
12 lblJ=tk.Label(main, text="J")
13 lblTmax=tk.Label(main, text="tmax")
14 #text fields
15 txtR=tk.Entry(main, width=5)
16 txtR.insert(5,"1.5")
17 txtL=tk.Entry(main, width=5)
18 txtL.insert(5,"24")
19 txtMn=tk.Entry(main, width=5)
20 txtMn.insert(5,"170")
21 txtIa=tk.Entry(main, width=5)
22 txtIa.insert(5,"40")
23 txtJ=tk.Entry(main, width=5)
24 txtJ.insert(5,"0.22")
25 txtTmax=tk.Entry(main, width=5)
26 txtTmax.insert(5,"300")
27
28 def delete():
29 return canZ.delete("all")
30
31 def process():
32 w = ymax/2
33 U1 = w
486

11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
34 R = float(txtR.get())
35 L = float(txtL.get())
36 J = float(txtJ.get())
37 Ia = float(txtIa.get())
38 Mn = float(txtMn.get())
39 tmax=float(txtTmax.get())
40 C=1e3*J*(Ia/Mn)**2
41 u2=i=t = 0
42 dt = 0.5
43 sx=xmax/tmax
44 u2_t = []
45 canZ.create_line(0, w, xmax, w, fill='green', width=2)
46 while t<=tmax:
47 i = i + (U1-R*i-u2)*dt/L
48 u2 = u2 + i*dt/C
49 t=t+dt
50 u2_t.append(int(sx*t))
51 u2_t.append(int(-u2) + ymax)
52 canZ.create_line(u2_t, fill='blue', width=2)
53 #command buttons
54 cmdStart=tk.Button(main, text="Start", command=process)
55 cmdNew = tk.Button(main, text="New", command=delete)
56 cmdExit=tk.Button(main, text="Exit", command=main.destroy)
57 #arrange controls
58 canZ.pack()
59 lblR.pack(side="left")
60 txtR.pack(side="left")
61 lblL.pack(side="left")
62 txtL.pack(side="left")
63 lblMn.pack(side="left")
64 txtMn.pack(side="left")
65 lblIa.pack(side="left")
66 txtIa.pack(side="left")
67 lblJ.pack(side="left")
68 txtJ.pack(side="left")
69 lblTmax.pack(side="left")
70 txtTmax.pack(side="left")
71 cmdStart.pack(side="left")
72 cmdNew.pack(side="left")
73 cmdExit.pack(side="left")
74 main.mainloop()

Listing 11.9 Simulation of the Process
487

11 Interactive Programming Using Tkinter
Output

Figure 11.12 shows the step response in the user interface.

Figure 11.12 Step Response of the Process

Analysis

First, all label fields are defined (lines 08 to 13), followed by the definition of the text

fields (lines 15 to 26). The delete() function in lines 28 and 29 enables you to delete the

drawing area for new simulations.

In lines 31 to 51, the process() function is defined. The reference variable w in lines 32

and 33 is used to set half of the drawing area. The entries for the process data are made

in lines 34 to 38. The dynamic capacity C is multiplied by the factor 1e3 in line 40. This

operation causes the time axis to be scaled to milliseconds. The initial values u2, i, and

t must be initialized with zero (line 41). The scaling of the t-axis is performed in line 43,

as described earlier. The empty list u2_t (line 44) is needed to store the simulation

result. Within the while loop (lines 46 to 51), the solution of the differential equation

system is performed by using the Euler algorithm. In lines 50 and 51, the time values

and the values of the output voltage u2 are inserted into the empty list, u2_t.

In line 54, the Button method calls the custom function process. When you click the

Start button, the simulation will be executed.

In lines 58 to 73, the pack(side="left") method inserts all controls from left to right in

the main window.

The PID Controller

The step response of a PID controller is computed using the following equations for the

proportional, differential, and integral components:
488

11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
The following algorithm can be set up for these equations:

up = Kp*e #P controller
ui = ui + Kp*e*dt/Tn #PI controller
ud = Kp*Tv*(e-e0)/dt #PD controller
e0=e

In the final line, the last value of the control error e is assigned to the e0 variable, so that

the PD controller can be computed using the difference quotient.

Listing 11.10 simulates either the step response of a P, a PI, or a PID controller.

01 #14_pid_controller.py
02 import tkinter as tk
03 main = tk.Tk()
04 main.title("Step response of P, PI and PID controllers")
05 xmax, ymax = 800,400
06 select=tk.StringVar()
07 select.set("PID")
08 canZ = tk.Canvas(width=xmax, height=ymax, bg='white')
09
10 def delete():
11 return canZ.delete("all")
12
13 def controller():
14 tmax=400
15 Kp=50
16 Tn=50
17 Tv=50
18 e=1
19 t=ui=e0=ur=0
20 dt=2
21 sx=xmax/tmax
22 u2_t = []
23 while t<=tmax:
24 up = Kp*e #P controller
25 ui = ui + Kp*e*dt/Tn #PI controller
26 ud = Kp*Tv*(e-e0)/dt #PD controller
27 e0=e
28 t=t+dt
29 if select.get()=="P": ur=up
489

11 Interactive Programming Using Tkinter
30 elif select.get()=="PI": ur= up+ui
31 elif select.get()=="PID": ur=up+ui+ud
32 u2_t.append(sx*t)
33 u2_t.append(int(-ur) + ymax)
34 canZ.create_line(u2_t, fill='blue', width=2)
35 optP=tk.Radiobutton(main,text="P controller",variable=select,value="P")
36 optPI=tk.Radiobutton(main,text="PI controller",variable=select,value="PI")
37 optPID=tk.Radiobutton(main,text="PID controller",variable=select,value=
"PID")
38 cmdStart = tk.Button(main,text="Run",command=controller)
39 cmdNeu=tk.Button(main,text="New",command=delete)
40 canZ.pack()
41 optP.pack(side="left")
42 optPI.pack(side="left")
43 optPID.pack(side="left")
44 cmdStart.pack(side="left")
45 cmdNeu.pack(side="left")
46 main.mainloop()

Listing 11.10 Simulation of the Controller Types

Output

How the step response of the P, PI, or PID controllers is displayed in the user interface

is shown in Figure 11.13.

Figure 11.13 Step Response of the PID Controller
490

11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
Analysis

In line 06, the string variable select is defined and set to the default value PID in line 07.

In lines 13 to 34, the controller() function is defined. For the control parameters, values

were selected that provide the most meaningful result possible.

The important statements are in lines 24 to 27, where the algorithm described earlier is

implemented. The P controller has the output variable (manipulated variable) up; the PI

controller has the output variable ui; and the PD controller has the output variable ud.

The controller is selected in lines 29 to 31. Note that you must use the equality operator

== in the if-elif query.

Simulation Prototype

For complex programs, a useful step is to first program a prototype without text fields

and command buttons.

Listing 11.11 shows a simple test version for the control circuit simulation.

01 #11_control_circuit1.py
02 import tkinter as tk
03 main = tk.Tk()
04 main.title("PID controller with second-order process")
05 xmax, ymax = 800,400
06 canZ = tk.Canvas(width=xmax, height=ymax, bg='white')
07 U1=100.0
08 R,L=1,25
09 I,M,J = 40,170,1
10 C=1e3*J*(I/M)**2
11 tmax=250
12 Kp=5
13 Tn=50
14 Tv=10
15 t=i=y=ui=e=e0=0.0
16 w=ymax/2
17 dt=0.25
18 sx=xmax/tmax
19 u2_t = []
20 while t<=tmax:
21 e=w-y
22 up = Kp*e
23 ud = Kp*Tv*(e-e0)/dt
24 e0=e
25 ui = ui + Kp*e*dt/Tn
26 U1 = up + ui + ud
27 i = i + (U1-R*i-y)*dt/L
491

11 Interactive Programming Using Tkinter
28 y = y + i*dt/C
29 t=t+dt
30 u2_t.append(sx*t)
31 u2_t.append(-y + ymax)
32 canZ.create_line(u2_t, fill='blue', width=2)
33 canZ.create_line(0, w, xmax, w, fill='red', width=2)
34 canZ.pack()
35 main.mainloop()

Listing 11.11 Simulation Prototype

Output

Figure 11.14 shows the control circuit simulation for the test version.

Figure 11.14 Step Response for the Test Version

Analysis

In line 07, the value of the input voltage U1=100 of the manipulated variable is set. The

value 100 was chosen so that the output is a percentage. A value of 100% indicates that

the rotational frequency has reached exactly its setpoint. The values for the motor data

(lines 08 and 09) were taken from the technical literature.

In line 20, the while loop starts, and it ends in line 31. In line 21, the control error e=w-y
is calculated. Lines 22 to 26 contain the algorithm of the PID controller. Lines 27 and 28

contain the algorithm of the process. The loop is run until the end time tmax of 250ms

set in line 11 is reached.
492

11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
Final Version of the Simulation Program

Listing 11.12 shows the final version with all controls.

01 #12_control_circuit2.py
02 import tkinter as tk
03 main = tk.Tk()
04 main.title("Control circuit with second-order process")
05 xmax, ymax = 800,400
06 xy=0 #global variable
07 U1=100.0 #setpoint
08 w=ymax/2.#reference variable
09 rd=4 #edge
10 main.minsize(xmax,ymax)
11 main.resizable(False,False)
12 canZ = tk.Canvas(width=xmax,height=ymax,bg='white')
13 canZ.grid(row=0,column=0,columnspan=5)
14 def frame():
15 canZ.create_line(0,w,xmax,w,fill='red',width=2)
16 canZ.create_line(rd,rd,xmax,rd,fill="black",width=2)
17 canZ.create_line(rd,ymax,xmax,ymax,fill="black",width=2)
18 canZ.create_line(rd,0,rd,ymax,fill="black",width=2)
19 canZ.create_line(xmax, rd, xmax, ymax,fill="black",width=2)
20
21 def delete():
22 return canZ.delete(xy)
23
24 def coordinate(event):
25 tmax=float(txtTmax.get())
26 x, y = event.x, event.y
27 x, y = tmax*x/xmax-2, U1*(ymax-y)/w
28 x, y = ('{0:4.0f}'.format(x)), ('{0:3.0f}'.format(y))
29 lblKoordinate["text"]="t:"+str(x)+" ms y:"+str(y)+"%"
30
31 def control_circuit():
32 global xy
33 tmax=float(txtTmax.get())
34 Kp = float(txtKp.get())
35 Tn = float(txtTn.get())
36 Tv = float(txtTv.get())
37 R = float(txtR.get())
38 L=float(txtL.get())
39 J = float(txtJ.get())
40 Ia= float(txtIa.get())
41 Mn = float(txtMn.get())
493

11 Interactive Programming Using Tkinter
42 C=1.0e3*J*(Ia/Mn)**2
43 t=y=ui=ud=i=e=e0=0
44 dt=0.05
45 sx=xmax/tmax
46 u2_t = []
47 while t<=tmax:
48 e=w-y
49 up = Kp*e
50 ui = ui + Kp*e*dt/Tn
51 ud = Kp*Tv*(e-e0)/dt
52 e0=e
53 U1 = up + ui + ud
54 i = i + (U1-R*i-y)*dt/L
55 y = y + i*dt/C
56 t=t+dt
57 u2_t.append(sx*t)
58 u2_t.append(-y+ymax)
59 xy=canZ.create_line(u2_t,fill='blue',width=2)
60
61 frame()
62 txtTmax=tk.Entry(main, width=5)
63 txtTmax.insert(5,"250")
64 #armature resistance
65 tk.Label(main,text="R in Ohm").grid(row=1,column=0,sticky="w")
66 txtR=tk.Entry(main, width=5)
67 txtR.insert(5,"1.5")
68 txtR.grid(row=1,column=1,sticky="w")
69 #armature inductance
70 tk.Label(main,text="L in mH").grid(row=2,column=0,sticky="w")
71 txtL=tk.Entry(main, width=5)
72 txtL.insert(5,"24")
73 txtL.grid(row=2,column=1,sticky="w")
74 #rated torque
75 tk.Label(main, text="Mn in Nm").grid(row=3,column=0,sticky="w")
76 txtMn=tk.Entry(main, width=5)
77 txtMn.insert(5,"172")
78 txtMn.grid(row=3,column=1,sticky="w")
79 #rated current
80 tk.Label(main, text="Ia in A").grid(row=4,column=0,sticky="w")
81 txtIa=tk.Entry(main, width=5)
82 txtIa.insert(5,"41")
83 txtIa.grid(row=4,column=1,sticky="w")
494

11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
84 #moment of inertia
85 tk.Label(main, text="J in kgm^2").grid(row=5,column=0,sticky="w")
86 txtJ=tk.Entry(main, width=5)
87 txtJ.insert(5,"1")
88 txtJ.grid(row=5,column=1,sticky="w")
89 #controller gain
90 tk.Label(main, text="Kp").grid(row=1,column=2,sticky="w")
91 txtKp=tk.Entry(main, width=5)
92 txtKp.insert(5,"5")
93 txtKp.grid(row=1,column=3,sticky="w")
94 #reset time
95 tk.Label(main, text="Tn in ms").grid(row=2,column=2,sticky="w")
96 txtTn=tk.Entry(main, width=5)
97 txtTn.insert(5,"50")
98 txtTn.grid(row=2,column=3,sticky="w")
99 #derivative time
100 tk.Label(main, text="Tv in ms").grid(row=3,column=2,sticky="w")
101 txtTv=tk.Entry(main, width=5)
102 txtTv.insert(5,"5")
103 txtTv.grid(row=3,column=3,sticky="w")
104 #coordinates
105 tk.Label(main, text="tmax").grid(row=4,column=2,sticky="w")
106 txtTmax.grid(row=4,column=3,sticky="w")
107 tk.Label(main, text="Coordinate").grid(row=5,column=2,sticky="w")
108 lblKoordinate=tk.Label(main,width=15)
109 lblKoordinate.grid(row=5,column=3,sticky="w")
110 #command buttons
111 tk.Button(main,text="Start",command=control_circuit,
width=7).grid(row=1,column=4)
112 tk.Button(main,text="New",command=delete,
width=7).grid(row=2,column=4)
113 tk.Button(main,text="Exit",command=main.destroy,
width=7).grid(row=3,column=4)
114 canZ.bind('<Motion>', coordinate)
115 main.mainloop()

Listing 11.12 Final Version of the Simulation Program

Output

The output of the final version of the rotation frequency control simulation program is

shown in Figure 11.15.
495

11 Interactive Programming Using Tkinter
Figure 11.15 Simulation of the Rotation Speed Curve (Final Version)

Analysis

In line 06, the global xy variable is defined, and in the control_circuit() function in

line 32, the variable is marked as global. It occurs again in line 59 where it is assigned all

the coordinate data of the simulation. Now, the delete() function in line 22 can delete

all data stored in the xy variable if it is called in line 112 by pressing New. Otherwise, the

program does not contain any other unknown program elements. For a better orienta-

tion, the individual program parts have been commented.

11.7 Tasks

1. Write a Tkinter program that computes the volume, mass, and surface area of a steel

cylinder.

2. Write a Tkinter program that calculates the current I = U/R for a simple circuit. Both

the voltage and the current are each to be changed using a slider.

3. Write a Tkinter program that computes the current and voltage drops in a series cir-

cuit of three resistors. The voltage and the resistances should be changed using a

slider in each case.

4. Write a Tkinter program that simulates a control loop with a third-order process.

5. Complement the simulation program for rotational frequency control in such a way

that you can select the individual controllers P, PI, or PID via a radio button.
496

 Appendix

A.1 Glossary: Basic Applied Computer Science Terminology

Term Description

Algorithm Precise description of how to solve a problem.

Statement Code section that describes a command or operation.

Argument Value that is passed when a function is called. This value is

assigned to the assigned parameters within the function.

Term Combination of variables, operations, and values.

Identifier Name for an object.

Data encapsulation Controlled access from outside.

Data structure Objects for which specified operations are defined; its short

formula is object + operations.

Function A self-contained sequence of statements.

Information hiding principle Under this principle, internal information is hidden.

Interpret Executing a program by translating it line by line.

Class Construction plan for objects; its components are properties +

methods.

Constructor Routines for creating and initializing new objects. All objects

belonging to the class were created by constructors of this

class.

Method A function definition within a class.

Module Several classes that have been grouped into a self-contained

unit.

Object An instance of a class, an abstract data type.

Parameter Name used within the function.

Program Sequence of statements describing a computation operation.

Return value Result of a function.

Keyword Reserved word in a programming language.
497

A Appendix
A.2 Derivatives of Elementary Functions

Syntax Structure of a program.

Variable Name referring to a value (symbolic memory address). A dis-

tinction is made between local variables and global variables.

Inheritance An extended class adopts properties and methods of the base

class (superclass).

Assignment A statement that assigns a value to a variable.

Term Description
498

A.3 Antiderivative of Elementary Functions
A.3 Antiderivative of Elementary Functions

499

A Appendix
A.4 Fourier Series of Important Electrotechnical Voltage
Characteristics

A.5 Correspondence Table of Important Inverse Laplace Transforms

No. Function Fourier Coefficients

1 Rectangle

2

Rectangle

with

pulse width control

 : Pulse width

3 Sawtooth

4
Isosceles

triangle

5
Half-wave

rectification

6
Full-wave

rectification

7
Phase

angle control

 : Phase angle

No. Image Function F(s) Original Function 𝑓 (t)

1

2

500

A.6 Bibliography
A.6 Bibliography

The following contains the bibliography for the original German-language edition of

this book. Where available, English-language resources have been provided:

� Arens, Tilo et al: Mathematik. Berlin, Heidelberg 2015.

� Bartsch, Hans-Jochen: Taschenbuch mathematischer Formeln. Munich, Vienna 1997.

� Beuth, Klaus: Digitaltechnik. Würzburg 2006.

� Czichos, Horst (ed.): Hütte: Die Grundlagen der Ingenieurwissenschaften. Berlin, Hei-

delberg, New York 2000.

� Downey, Allen B.: Think Python. O’Reilly 2012.

� Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektro-

technik 2. Zeitabhängige Vorgänge. Munich 2011.

� Halliday, David; Resnick, Robert; Walker, Jearl: Fundamentals of Physics. Extended

6th Edition. John Wiley & Sons 2001.

� Herter, Eberhard; Lörcher, Wolfgang: Nachrichtentechnik. Übertragung – Vermit-

tlung – Verarbeitung. Munich, Vienna 2004.

� Holbrook, James G.: Laplace Transforms for Electronic Engineers. Pergamon Press Ltd.

1966.

� Höwing, Marika: Einführung in die Elektrotechnik. Bonn 2019.

3

4

5

6

7

8

9

No. Image Function F(s) Original Function 𝑓 (t)
501

A Appendix
� Johansson, Robert: Numerical Python: Scientific Computing and Data Science Appli-

cations with Numpy, SciPy and Matplotlib. New York 2019.

� Klein, Bernd: Einführung in Python. Für Ein- und Umsteiger. Munich 2021.

� Klein, Bernd: Numerisches Python. Arbeiten mit NumPy, Matplotlib und Pandas.

Munich 2019.

� Kofler, Michael: Python. Der Grundkurs. Bonn 2020.

� Kuchling, Horst: Taschenbuch der Physik. Munich 2014.

� Küpfmüller, Karl: Einstieg in die theoretische Elektrotechnik. Berlin, Heidelberg, New

York 1973.

� Natt, Oliver: Physik mit Python. Simulationen, Visualisierungen und Animationen von

Anfang an. Berlin 2020.

� Nerreter, Wolfgang: Grundlagen der Elektrotechnik. Munich 2006.

� Philippsen, Hans-Werner: Einstieg in die Regelungstechnik. Munich 2015.

� Rupprecht, Werner: Netzwerksynthese. Entwurfstheorie linearer passiver und aktiver

Zweipole und Vierpole. Berlin, Heidelberg, New York 1972.

� Rybach, Johannes: Physik für Bachelors. Munich 2008.

� Skolaut, Werner (ed.): Maschinenbau. Ein Lehrbuch für das ganze Bachelor-Studium.

Berlin, Heidelberg 2014.

� Theis, Thomas: Einstieg in Python. Bonn 2019.

� Tietze, Ulrich; Schenk, Christoph; Gamm, Eberhard: Electronic Circuits --- Handbook

for Design and Applications. Springer 2008.

� Tipler, Paul A.; Mosca, Gene: Physics for Scientists and Engineers. With Modern Phys-

ics. Sixth Edition. Freeman and Company 2008.

� Vöth, Stefan: Dynamik schwingungsfähiger Systeme. Von der Modellbildung bis zur

Betriebsfestigkeitsrechnung mit MATLAB/SIMULINK. Wiesbaden 2006.

� Weltner, Klaus: Mathematik für Physiker und Ingenieure. Vols. 1 and 2. Berlin, Heidel-

berg 2013.

� Woyand, Hans-Bernhard: Python für Ingenieure und Naturwissenschaftler. Einführung

in die Programmierung, mathematische Anwendungen und Visualisierungen. Munich

2021.

� Zimmermann, Klaus: Übungsaufgaben Technische Mechanik. Cologne 1994.
502

 The Author

Dr. Veit Steinkamp studied electrical engineering and German

to become a teacher and pass on his knowledge at vocational

schools and technical colleges. He teaches electrical engineer-

ing, application development, and mechanical engineering

technology. He has also taught theoretical electrical engineering

and the fundamentals of electrical engineering.
503

Index

3D plot ... 166

3D space .. 355

A

Acceleration .. 291, 319

AC resistance .. 404

Admittance .. 408

Air column ... 306

Air friction ... 319

Air mass .. 306

Alias ... 47, 91

Alignment .. 358

Analog-to-digital converter 342

and .. 450

AND operation ... 450

Angular frequency .. 319

Angular velocity .. 380

Animation ... 355

Animation loop ... 371

annotate() ... 135

apart() .. 231

arange() .. 91

Arc length ... 302

Argument .. 38, 42

Arithmetic mean ... 427

Array ... 95

Arrow ... 178

arrow() ... 178

ArtistAnimation() ... 202

Assignment .. 32

Assignment operator ... 31

Attribute .. 80

Axes .. 128

Axis scaling ... 138

Axis vector ... 380

B

Bar magnet .. 373

Basic shape .. 356

Beam .. 265

Bearing damage ... 342

Bending line .. 267

Bending moment .. 268

Bernoulli, Jakob ... 156

Black box ... 40, 449

Blitting .. 186

Body object ... 356

Boole, George ... 449

Boolean algebra ... 449

Boolean variable .. 54

Boundary condition .. 268

Branching structure ... 45

BubbleSort .. 61

butter() .. 339

Butterworth filter ... 337

Butterworth lowpass ... 341

Button ... 468

C

cancel() .. 231

Canvas ... 478

Capacitance ... 243

Capacitor .. 243

Capacity limit ... 346

Case query .. 50

Catenary ... 302

Catenary circuit .. 219, 262

Catenary matrix .. 111

Catenary shape .. 111

Central value --> Median 428

Chaotic movements .. 328

Character string ... 33

Charging ... 246

Church, Alonzo ... 78

Circle() ... 176

Circle object .. 176

Circuit states ... 458

Circular motion ... 378

Circular path ... 319

Circular ring .. 168

Circular tranjectory ... 380

Class .. 80

class .. 33, 83

Class diagram .. 81

Class interval .. 424

Class variable ... 83

Coefficient comparison 224

Coil object .. 373

Coloring .. 144

Command button 158, 468

Comment ... 31

Commutative law ... 218

Complexity .. 79
505

Index
Complex numbers ... 399

Euler's formula .. 402

function plots .. 406

mathematical operations 400

Computer algebra system (CAS) 207

Computer animation .. 182

Computer graphics .. 355

Concert pitch .. 335

Conjunction .. 449

Conjunctive normal form 460

Console application ... 465

Constant ... 296

Constructor .. 82, 84

Continued fraction ... 231

Contour line .. 163

Contour plot ... 163

Control .. 158, 465

Control circuit simulation 491

Control error ... 485

Controller ... 485

Control statement ... 36

Control structure ... 45

Coordinate origin ... 356

Coordinate system ... 356

copy ... 84

Corner .. 179

Correlation coefficient .. 439

Count variable ... 56

Coupled spring-mass system 322

Covariance ... 439

Critical rotational speed .. 88

Crossover ... 339

Cross product ... 105

Crystal lattice .. 368

cubic ... 285

Cuboid object ... 361

Curved surface ... 304

Curve sketching ... 239

Cycle ... 190

Cylinder .. 282

Cylinder object ... 359

D

Dahl, Johan-Ole ... 79

Damping ... 252

Damping constant .. 322

Data encapsulation 42, 80, 81

Data structure ... 63

Data type ... 32, 63

Data value ... 72

dblquad() .. 305

DC motor .. 315, 484

Debugger .. 18

Decimal places .. 34

Definite integral ... 295

Deflection ... 265

Deflection angle ... 387

De Morgan's laws ... 454

Density function .. 434

Derivative() .. 286

Design criteria (GUI) ... 468

Design phase ... 30

Development environment 18

dict() .. 74

Dictionary .. 69, 72, 74

diff() .. 238, 254

Difference quotient .. 286

Differential equation 59, 245, 307, 323

first order ... 312

second order ... 315

Digital signal ... 342

Digital technology .. 450

Discharging .. 246

Disjunction .. 449

Dispersion parameters .. 430

Display area ... 358

Distributive law .. 455

Division ... 32

doit() ... 239

Don't-care terms .. 462

Dot operator ... 47, 84, 468

Drag coefficient .. 319

dsolve() .. 246, 253

Dual mass oscillator ... 274

Dyadic product ... 108

Dynamic capacitance ... 315

E

Earth ... 379

Electrical energy .. 301

Electrical line ... 410

elif .. 49

Ellipse ... 379

enumerate .. 120

Equivalent voltage source 404

Error .. 286

Escape sequence .. 36

Euler's formula ... 402

Euler algorithm .. 308

Euler-Cauchy method .. 59

Euler method .. 308, 385

event ... 482
506

Index
Event processing ... 389

Exception handling .. 471

Executable flag .. 31

Expected value ... 434

Exponential growth ... 346

F

Factoring out .. 455

Falk's scheme .. 109

fft ... 329

Figure ... 127

Filter ... 337

float ... 32

Floating point number .. 32

Flow structure ... 31

for ... 56

Force vector ... 104

Formatting ... 35

Fortran ... 76

Fourier transform ... 328

Frequency .. 319

Frequency distribution 423

Frequency domain ... 328

Frequency mixing .. 342

Frequency response ... 407

Frequency table ... 423

Function .. 37

call ... 40, 44

definition .. 40

name .. 40

plot ... 125

return ... 40

Fundamental frequency 328

G

Gas constant ... 191

Gaussian number plane 399

Gear transmission .. 201

grid() ... 472

Gridlines ... 132

Growth rate ... 345

GUI toolkit ... 465

H

Harmonic ... 328

Hearing test ... 335

Helical line ... 166

hist() ... 425

Histogram .. 425

Hot-air engine ... 190

I

id() .. 33

Identity .. 34

if ... 49

ifft() .. 329

Imaginary numbers .. 399

Imaginary part ... 404

Immutability ... 63

Impedance ... 404, 408

Impedance matrix ... 119

Improper integral ... 300

Impulse ... 374

Increment ... 52

Induction law ... 289

Inertia tensor ... 114

Infinite loop ... 36, 371

Inheritance ... 84

Initial condition .. 253

input() .. 35

Input-process-output (IPO) model 29

Instance variable ... 83

int .. 32

Integer .. 32

Integral transform ... 254

integrate ... 293

Integrated Development and Learning

Environment (IDLE) ... 18

Integration limits ... 295

Integrations .. 240

Interaction with the user 465

Intermediate .. 270

Internal resistance ... 405

interp1d ... 285

Interpolation .. 284

Interpreter .. 18

Intervention limit .. 443

K

Kay, Alan ... 79

Key value .. 72

Keywords .. 26

Kleene, Stephen Cole ... 78

KV-map ... 458

L

Label ... 467

Label field .. 467
507

Index
lambda operator ... 78

Laplace transform ... 254

Law of gravitation ... 291

Layout manager .. 468

Left-hand value ... 65

Legend ... 134

Lemniscate .. 156

Level line .. 169

Limit ... 234

Line ... 364

Linear factor .. 213

Linear flow structure .. 29

Linear program ... 30

Linear systems of equations 116

Line end .. 410

Line style .. 137

Line-to-line voltage .. 410

linspace() ... 91

Liquid molecule ... 383

Lisp ... 76

List .. 44, 66

List comprehension .. 71

loadtext() .. 423

Location parameters ... 426

Locus curve .. 408

Logarithmic scale division 141, 338

Logic function .. 449

Logistic growth .. 346

Loop ... 50

Loop body ... 36, 50

Lotka-Volterra system .. 347

Lowpass ... 339

Low-pass filter .. 263

M

Machine capability ... 432

Machine capability index 432

Machine capability study 432

Machine noise .. 342

mainloop() ... 468

Main program ... 37

Maintainability ... 80

Main window .. 468

Manipulated variable .. 485

Mass ... 318

math .. 47

MATLAB ... 17, 125

Matplotlib ... 23, 125

Matrices ... 94

Matrix multiplication 109, 217

Maxima (CAS) ... 207

Maxterm ... 460

McCarthy, John .. 76, 78

Mean value ... 417

Measurement value 420, 422

Mechanical vibration ... 342

Median ... 428

Memory address ... 34, 66

Mesh currents ... 116

meshgrid() .. 163

Method ... 80, 81

minimize .. 283

Minterm .. 457

Modal value --> Mode .. 428

Mode ... 428

Module .. 17

Molar concentration .. 270

Moment of inertia 315, 470

Mortality rate .. 347

Motion sequence ... 186, 372

Multiple Selection ... 47

N

Namespace ... 83

NAND ... 452

Negation ... 449, 452

Node voltage ... 116

Noise ... 333

Nonlinear characteristic curve 328

Nonlinearity .. 320

Nonlinear second-order differential

equation ... 319

NOR ... 452

Normal distribution ... 434

not ... 453

np.inf .. 301

np.vectorize ... 298

numdifftools ... 287

Numerical differentiation 286

Numerical integration .. 293

NumPy .. 22, 91

Nygaard, Kristen .. 79

O

Object ... 33, 80, 82

Object type ... 33

Operators, mathematical 31

Optimization tasks ... 282

optimize .. 280

Option button ... 475

or .. 451
508

Index
Orbital eccentricity .. 379

OR normal form .. 457

OR operation .. 451

Oscilloscope .. 297

Output .. 33, 35

formatting ... 34

P

pack() .. 468

Parabola .. 287

Paraboloid .. 169

Parameter ... 37, 38

current ... 42

formal .. 42

Parameter equations ... 155

Parameter representation 154

Partial fraction ... 228, 229

Partial matrix ... 112

Pascal's triangle .. 60

Path vector .. 104

Pearson, Karl ... 437

Pendulum .. 385

length .. 319

motion .. 385

movement ... 318

Penetration ... 369

Period duration ... 319

Perturbation function ... 247

Phase angle control .. 161

Phase voltage .. 411

Pip .. 21

Pitch ... 335

Planet ... 188

Pleonasm ... 40

plot(x,y) ... 130

Pointer diagram .. 178

Point object ... 363

Polar coordinate system 143

Polygon ... 179

Polygonal line .. 308

Position ... 355, 358

pow .. 88

Power factor .. 411

Predator-prey model ... 345

Prefix ... 465

Primary line constant ... 411

private (variable) .. 81

Problem solution ... 30

Process .. 485

Process monitoring ... 422

Process quality ... 418

Process step .. 193

Product ... 270

Program .. 29

Program design .. 30

Programming style ... 29

Propagation constant ... 411

public (variable) ... 81

pyplot .. 125

Pythagorean numbers .. 71

Python Package Index ... 21

Python shell ... 33

Q

Quality control chart .. 443

quiver() ... 171

Quotation marks ... 33

R

Racket ... 77

Radio button .. 475

Random number .. 419

range() .. 56

rate(frequency) .. 355

Rated torque ... 315

Reactance ... 404

Reactant ... 270

Reaction rate constant 271

Real numbers ... 399

Real part ... 404

Rectangle() ... 174

Rectangle object .. 174

Rectangle sum .. 57, 293

Reference variable .. 485

Regression analysis ... 439

Regression parameters 439

Regula falsi ... 54

Repetitive structure ... 50

reshape() ... 95, 420

Reshaping .. 420

Resistance .. 243

Rest position .. 385

Return .. 40

Reusability ... 80

Right-hand value ... 65

Rod ... 318

Root function .. 47

Rossum, Guido van ... 17

Rotational energy ... 115

Rotational frequency 315, 484

Rotational motion 378, 380
509

Index
round() ... 44

Rounding function .. 88

Runge-Kutta method .. 310

Runtime ... 34, 93

S

Sampling rate ... 335

Sampling theorem ... 328

savetext() .. 422

Scalar product .. 104

Scatter plot .. 442

Scatter value ... 417

scene .. 355

SciPy .. 24, 279

Second area moment 62, 265, 305

Secondary diagonal .. 114

Selection controls ... 158

self .. 83

Semiaxis ... 378

Sending end .. 410

sep='\t' ... 451

Sequence .. 182

Series expansion ... 227

Series resistance .. 111

Series resonant circuit .. 406

Set ... 75

Set operation ... 75

shape ... 95

Shebang ... 31

show() .. 130

signal .. 337

Simplification of logic functions 456

simplify_logic() .. 450

simplify_logic(y) ... 456

Simula .. 79

Simulating an epidemic 349

Single selection ... 46

Skew ... 437

Slicing ... 96

Slider .. 158

Slope ... 287

Slow motion .. 355

Smalltalk .. 79

solve(A,b) .. 117

sosfilt() ... 341

Span .. 430

Sphere .. 318

Sphere object .. 366

spines ... 128

Spring constant ... 322

Spring object ... 388

Spyder .. 20

sqrt() ... 47

Standard deviation ... 430

Standard normal distribution 434

Statement .. 29, 31

indentation ... 36

Statement block .. 46, 50

Statistics .. 417

Step function ... 255

Step response 259, 315, 486

str ... 33

Straight-line equation ... 287

String .. 33

Structure chart .. 30, 46

Structuring option .. 37

Subplots .. 147

Subroutine ... 37

Subroutine technology ... 37

Sum algorithm ... 59, 385

super() .. 85

Surface area ... 242

Swap process ... 65

Switching algebra .. 453

Symbolic method .. 403

SymPy .. 24, 207

Synthesis ... 456

System matrix .. 112

T

Tangential force ... 319

Termination condition ... 50

Tetrahedron ... 364

Text editor .. 18

Text field ... 158, 468

Thermal motion .. 383

Thonny .. 19

Throw ... 377

Throwing parabola .. 155

Tilde .. 453

time ... 93

Time domain ... 328

Tk ... 465

Tkinter ... 465

Torque .. 106

Torque equation .. 268

Torus ... 168

Total harmonic distortion 328

tplquad() .. 306

Trajectory ... 155, 326, 377

Transmission characteristics 411

Transmission function 218, 259
510

Index
Transpose .. 96

Transposing .. 115, 313

Transverse resistance .. 111

Traverse line ... 179

Tree structure ... 212

Triple integral ... 306

Triple product ... 107

Truth table ... 449

Tuple ... 44, 63

type() ... 33

U

Underscore ... 83

Unified Modeling Language (UML) 81

V

Value range .. 32

Value table .. 51, 98

Variable .. 32

Boolean ... 54

declare ... 32

global ... 40

Variance ... 434

Vector ... 101, 171

Vector addition ... 102

Vector field .. 173

Velocity .. 291

Volume ... 303

Volume work .. 191

VPython .. 25, 355

W

Watt, James ... 156

while ... 50

while loop ... 36

Window size ... 471

Working machine ... 315

Working memory .. 34

Z

Zero .. 280

calculating ... 280

zip() ... 69
511

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do recom-
mend it. If you think there is room for improvement, please get in touch with the editor
of the book: meaganw@rheinwerk-publishing.com. We welcome every suggestion for
improvement but, of course, also any praise!

You can also share your reading experience via Twitter, Facebook, or email.

Supplements

If there are supplements available (sample code, exercise materials, lists, and so on), they
will be provided in your online library and on the web catalog page for this book. You can
directly navigate to this page using the following link: http://www.rheinwerk-computing.
com/5852. Should we learn about typos that alter the meaning or content errors, we will
provide a list with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at Rheinwerk Com-
puting, please feel free to contact our reader service: support@rheinwerk-publishing.com.

About Us and Our Program

The website http://www.rheinwerk-computing.com provides detailed and first-hand
information on our current publishing program. Here, you can also easily order all of our
books and e-books. Information on Rheinwerk Publishing Inc. and additional contact options
can also be found at http://www.rheinwerk-computing.com.

i

mailto:mailto:meaganw%40rheinwerk-publishing.com?subject=
http://www.rheinwerk-computing.com/5852
http://www.rheinwerk-computing.com/5852
mailto:support%40rheinwerk-publishing.com?subject=
http://www.rheinwerk-computing.com
http://www.rheinwerk-computing.com

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation rights
are reserved by the author and Rheinwerk Publishing; in particular the right of reproduction
and the right of distribution, be it in printed or electronic form.

© 2024 by Rheinwerk Publishing, Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you may print
the e-book for personal use or copy it as long as you store this copy on a device that is solely
and personally used by yourself. You are not entitled to any other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third parties.
Furthermore, it is not permitted to distribute the e-book on the Internet, in intranets, or
in any other way or make it available to third parties. Any public exhibition, other publica-
tion, or any reproduction of the e-book beyond personal use are expressly prohibited. The
aforementioned does not only apply to the e-book in its entirety but also to parts thereof
(e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark may
not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which person
may use this copy. If you, dear reader, are not this person, you are violating the copyright.
So please refrain from using this e-book and inform us about this violation. A brief email to
info@rheinwerk-publishing.com is sufficient. Thank you!

Trademarks

The common names, trade names, descriptions of goods, and so on used in this publication
may be trademarks without special identification and subject to legal regulations as such.

All products mentioned in this book are registered or unregistered trademarks of their
respective companies.

ii

mailto:info%40rheinwerk-publishing.com?subject=

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs, neither
the publisher nor the author, editor, or translator assume any legal responsibility or any
liability for possible errors and their consequences.

iii

	Cover
	Contents
	1: Introduction
	1.1 Development Environments
	1.1.1 IDLE
	1.1.2 Thonny
	1.1.3 Spyder
	1.1.4 Pip

	1.2 The Modules of Python
	1.2.1 NumPy
	1.2.2 Matplotlib
	1.2.3 SymPy
	1.2.4 SciPy
	1.2.5 VPython

	1.3 The Keywords of Python
	1.4 Your Path through This Book

	2: Program Structures
	2.1 Linear Program Structures
	2.1.1 Linear Programs without Function Calls

	2.2 Functions
	2.2.1 Built-In Functions
	2.2.2 Functions without Parameters and without Return Values
	2.2.3 Functions with Parameters and a Return
	2.2.4 Functions with Multiple Return Values
	2.2.5 Functions Call Other Functions

	2.3 Branching Structures
	2.3.1 Single Selection
	2.3.2 Multiple Selection

	2.4 Repetitive Structures
	2.4.1 The while Loop
	2.4.2 The for Loop

	2.5 Data Structures
	2.5.1 Tuples
	2.5.2 Lists
	2.5.3 Dictionaries
	2.5.4 Sets

	2.6 Functional Program Style
	2.7 Object-Oriented Program Style
	2.7.1 Objects and Classes
	2.7.2 Inheritance

	2.8 Project Task: Dimensions of a Shaft
	2.9 Tasks

	3: Numerical Calculations Using NumPy
	3.1 NumPy Functions
	3.1.1 Creating One-Dimensional Arrays Using arange() and linspace()
	3.1.2 Creating Two-Dimensional Arrays Using array()
	3.1.3 Slicing
	3.1.4 Mathematical NumPy Functions
	3.1.5 Statistical NumPy Functions

	3.2 Vectors
	3.2.1 Addition of Vectors
	3.2.2 Scalar Product
	3.2.3 Cross Product
	3.2.4 Triple Product
	3.2.5 Dyadic Product

	3.3 Matrix Multiplication
	3.3.1 Chain Shape with B Parameters
	3.3.2 Usage Example: Calculating the Energy of a Rotating Rigid Body in Space

	3.4 Linear Systems of Equations
	3.4.1 Systems of Equations with Real Coefficients
	3.4.2 Systems of Equations with Complex Coefficients

	3.5 Project Task: Lightning Protection System
	3.6 Tasks

	4: Function Plots and Animations Using Matplotlib
	4.1 2D Function Plots
	4.1.1 Basic Structure of a Function Plot
	4.1.2 Gridlines
	4.1.3 Labels
	4.1.4 Line Styles
	4.1.5 Designing Axes
	4.1.6 Coloring Areas
	4.1.7 Subplots
	4.1.8 Parameter Representation
	4.1.9 Changing Function Parameters Interactively
	4.1.10 Contour Plots

	4.2 3D Function Plots
	4.2.1 Helical Line
	4.2.2 Circular Ring
	4.2.3 Combining a 3D Plot with a Contour Plot

	4.3 Vectors
	4.3.1 Vector Addition
	4.3.2 Vector Field

	4.4 Displaying Figures, Lines, and Arrows
	4.4.1 Rectangles
	4.4.2 Circles and Lines
	4.4.3 Arrows
	4.4.4 Polygons
	4.4.5 Usage Example: A Metal Rod in a Magnetic Field

	4.5 Animations
	4.5.1 A Simple Animation: Shifting a Sine Function
	4.5.2 Animated Oblique Throw
	4.5.3 Animated Planetary Orbit

	4.6 Project Task: Stirling Cycle
	4.7 Project Task: Animating a Thread Pendulum
	4.8 Project Task: Animating a Transmission
	4.9 Tasks

	5: Symbolic Computation Using SymPy
	5.1 Basic Mathematical Operations
	5.1.1 Addition
	5.1.2 Multiplication of Terms
	5.1.3 Multiplication of Linear Factors
	5.1.4 Division
	5.1.5 Exponentiation
	5.1.6 Usage Example: Analyzing an Electrical Power Transmission System

	5.2 Multiplying Matrixes
	5.2.1 Calculation Rule
	5.2.2 Transmission Function of a Catenary Circuit

	5.3 Equations
	5.3.1 Linear Systems of Equations
	5.3.2 Nonlinear Systems of Equations

	5.4 Simplifications of Terms
	5.5 Series Expansion
	5.6 Partial Fractions
	5.7 Continued Fractions
	5.8 Limits
	5.8.1 Limits of Sequences
	5.8.2 Limits of Functions
	5.8.3 Differential Quotient

	5.9 Differentiation
	5.9.1 Usage Example: Curve Sketching

	5.10 Integrations
	5.10.1 Indefinite Integral
	5.10.2 Definite Integral
	5.10.3 Usage Example: Stored Electrical Energy

	5.11 Differential Equations
	5.11.1 Linear First-Order Differential Equations
	5.11.2 General Solution of a Second-Order Differential Equation
	5.11.3 Special Solution of a Second-Order Differential Equation

	5.12 Laplace Transform
	5.12.1 Solving Differential Equations
	5.12.2 Analyzing Networks with Transmission Functions

	5.13 Project Task: Step Response of a Catenary Circuit
	5.14 Project Task: Bending a Beam That Is Fixed at One End
	5.14.1 Second Moment of Area
	5.14.2 Equation of the Bending Line

	5.15 Project Task: Reaction Kinetics
	5.16 Project Task: Dual Mass Oscillator
	5.17 Tasks

	6: Numerical Computations and Simulations Using SciPy
	6.1 Numerical Computation of Zeros
	6.2 Optimizations
	6.3 Interpolations
	6.4 Numerical Differentiation
	6.4.1 Methods of Numerical Differentiation
	6.4.2 Drawing a Tangent Slope
	6.4.3 Derivative of a Sine Function
	6.4.4 Usage Example: Free Fall

	6.5 Numerical Integration
	6.5.1 Methods of Numerical Integration
	6.5.2 Definite Integral
	6.5.3 Integrating a Constant
	6.5.4 Usage Example: Free Fall
	6.5.5 Improper Integral
	6.5.6 Calculating Arc Lengths
	6.5.7 Volume and Surfaces of Rotating Bodies
	6.5.8 Double Integrals
	6.5.9 Triple Integrals

	6.6 Solving Differential Equations Numerically
	6.6.1 Numerical Solution of Differential Equations
	6.6.2 First-Order Linear Differential Equation
	6.6.3 Second-Order Linear Differential Equation
	6.6.4 Nonlinear Second-Order Differential Equation
	6.6.5 Second-Order Differential Equation System: Coupled Spring-Mass System
	6.6.6 Nonlinear Second-Order Differential Equation System: Double Pendulum

	6.7 Discrete Fourier Transform
	6.7.1 Basic Use of the Fast Fourier Transform Algorithm
	6.7.2 Frequency Spectra of Non-Sinusoidal Periodic Signals
	6.7.3 Reconstructing a Noisy Signal

	6.8 Writing and Reading Sound Files
	6.8.1 Generating and Saving Signals
	6.8.2 Reading and Displaying Signals

	6.9 Signal Processing
	6.9.1 Frequency Response of a Butterworth Lowpass
	6.9.2 Frequency Response of a Crossover
	6.9.3 Filtering Signals

	6.10 Project Task: Simulation of a Rolling Bearing Damage
	6.11 Project Task: Predator-Prey Model
	6.11.1 Exponential Growth
	6.11.2 Logistic Growth
	6.11.3 Predator-Prey Relationship for Exponential Growth
	6.11.4 Predator-Prey Relationship for Logistic Growth

	6.12 Project Task: Simulation of an Epidemic
	6.13 Tasks

	7: 3D Graphics and Animations Using VPython
	7.1 The Coordinate System
	7.2 Basic Shapes, Points, and Lines
	7.2.1 Cylinder
	7.2.2 Cuboid
	7.2.3 Points
	7.2.4 Lines
	7.2.5 Sphere
	7.2.6 Penetration
	7.2.7 Composite Bodies

	7.3 Bodies in Motion
	7.3.1 Vertical Movement
	7.3.2 Horizontal Movement
	7.3.3 Movement in Space
	7.3.4 Composite Motion
	7.3.5 Rotational Motion
	7.3.6 Random Motion

	7.4 Animation of Oscillations
	7.4.1 Simple Pendulum
	7.4.2 Spring Pendulum

	7.5 Event Processing
	7.6 Project Task: Animation of a Coupled Spring Pendulum
	7.7 Project Task: Animation of Two Coupled Simple Pendulums
	7.8 Tasks

	8: Computing with Complex Numbers
	8.1 Mathematical Operations
	8.2 Euler’s Formula
	8.2.1 Symbolic Method

	8.3 Calculating with Complex Resistors
	8.4 Function Plots with Complex Magnitudes
	8.4.1 Complex Frequency Response of a Series Resonant Circuit
	8.4.2 Locus Curves

	8.5 Project Task: Electric Power Transmission System
	8.5.1 Task
	8.5.2 Equivalent Circuit Diagram of a Three-Phase Power Line

	8.6 Tasks

	9: Statistical Computations
	9.1 Generating, Saving, and Reading Measurement Values
	9.1.1 Generating Measurement Values
	9.1.2 Converting a Measurement Series into a Table
	9.1.3 Writing Measurement Values to a File
	9.1.4 Reading Measurement Values from a File

	9.2 Frequency Distribution
	9.2.1 Frequency Tables
	9.2.2 Histograms

	9.3 Location Parameters
	9.3.1 Arithmetic Mean
	9.3.2 Mode, Median, Harmonic Mean, and Geometric Mean

	9.4 Dispersion Parameters
	9.5 Normal Distribution
	9.5.1 Graphical Representation of the Density Function
	9.5.2 Probability Distribution

	9.6 Skew
	9.7 Regression Analysis
	9.7.1 Computing the Regression Parameters
	9.7.2 Representing the Scatter Plot and the Regression Line

	9.8 Project Task: Simulation of a Quality Control Chart
	9.9 Tasks

	10: Boolean Algebra
	10.1 Logical Operations
	10.1.1 Conjunction
	10.1.2 Disjunction
	10.1.3 Negation

	10.2 Laws of Boolean Algebra
	10.2.1 Simple Postulates
	10.2.2 De Morgan’s Laws
	10.2.3 Distributive Law

	10.3 Circuit Synthesis
	10.3.1 Simplifying Logic Functions by Factoring Out
	10.3.2 Simplification Using the Disjunctive Normal Form
	10.3.3 Simplification Using the Conjunctive Normal Form

	10.4 Project Task: Seven-Segment Coding
	10.5 Tasks

	11: Interactive Programming Using Tkinter
	11.1 Interactions with Command Buttons, Textboxes, and Labels
	11.1.1 Labels
	11.1.2 Textboxes and Command Buttons

	11.2 The Layout Manager of Tkinter
	11.2.1 The pack Method
	11.2.2 The grid Method
	11.2.3 Summary

	11.3 Selection with Radio Button
	11.4 Slider
	11.5 The Canvas Drawing Area
	11.5.1 Representing Lines
	11.5.2 Function Plots
	11.5.3 Querying Mouse Coordinates

	11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor
	11.7 Tasks

	Appendix
	A.1 Glossary: Basic Applied Computer Science Terminology
	A.2 Derivatives of Elementary Functions
	A.3 Antiderivative of Elementary Functions
	A.4 Fourier Series of Important Electrotechnical Voltage Characteristics
	A.5 Correspondence Table of Important Inverse Laplace Transforms
	A.6 Bibliography

	The Author
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (coated_FOGRA39_GCR_bas.icc)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Uncoated)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF005b004200610073006900650072007400200061007500660020002200670061006c0069006c0065006f005f00650062006f006f006b005f007600340022005d0020007a00750072002000450072007300740065006c006c0075006e0067002000650069006e00650072002000660069006e0061006c0065006e0020005000440046002d004400610074006500690020006600fc0072002000640065006e00200045002d0042006f006f006b002d0057006f0072006b0066006c006f0077002e0020005a00690065006c0020006900730074002000650073002c00200064006900650020004400610074006500690067007200f600df00650020006d00f60067006c006900630068007300740020006b006c00650069006e0020007a0075002000680061006c00740065006e00200028006400750072006300680020005200470042002d0046006100720062006500200075006e0064002000420069006c0064006b006f006d007000720069006d0069006500720075006e00670029002c0020006400690065002000420069006c0064007100750061006c0069007400e40074002000610062006500720020006700750074002000650072006b0065006e006e0062006100720020007a0075002000680061006c00740065006e002e00200073005200470042002d004600610072006200700072006f00660069006c00200077006900720064002000650069006e00670065006200650074007400650074002e002000480079007000650072006c0069006e006b0073002000770065007200640065006e0020006700670066002e0020006d0069007400670065006e006f006d006d0065006e002e0020004b006f006d007000610074006900620069006c0069007400e400740020006100750066002000500044004600200031002e0036002000650072006800f600680074002e0020004b006f006d007000720069006d0069006500720075006e006700200061007500660020004f0062006a0065006b0074006500620065006e00650020004d006100780069006d0061006c002e0020004100750066006c00f600730075006e0067002000610075006600200034003500300020006400700069002e00200053006500690074002000760035003a0020005300740061006e00640061007200640070006100700069006500720066006f0072006d006100740020006b006f00720072006900670069006500720074002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [450 450]
 /PageSize [595.276 841.890]
>> setpagedevice

