

Python
for

Developers
Learn to Develop Efficient
Programs using Python

 by
Mohit Raj

ii 

FIRST EDITION 2020
Copyright © BPB Publications, India
ISBN: 978-81-94401-872

All Rights Reserved. No part of this publication may be reproduced or distributed in
any form or by any means or stored in a database or retrieval system, without the prior
written permission of the publisher with the exception to the program listings which may
be entered, stored and executed in a computer system, but they can not be reproduced
by the means of publication.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s &
publisher’s knowledge. The author has made every effort to ensure the accuracy of
these publications, but cannot be held responsible for any loss or damage arising from
any information in this book.

All trademarks referred to in the book are acknowledged as properties of their
respective owners.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj,
New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

  iii

Dedicated to
My Mother and Father

iv 

About the Author

Mohit Raj is a Python programmer with a keen interest in the
field of information security. He has completed his Bachelor’s
degree (B.tech)in Computer Science from Kurukshetra
University, Kurukshetra, and a Master’s in Engineering (2012)
in Computer Science from Thapar University, Patiala. He is a
CEH, ECSA from EC-Council USA. He has worked in IBM,
Teramatrix (Startup), and Sapient. He has been pursuing a

Ph.D. degree in Blockchain from Thapar Institute of Engineering & Technology
under Dr. Maninder Singh for two years. Mohit has published several articles
in national and international magazines. He is the author of Python Penetration
Testing Essentials, Python: Penetration Testing for Developers, and Learn Python
in 7 days. Apart from studies, he has a green belt in Karate-do. He is a gym lover
and a passionate learner of the Vedic astrology.

His blog link: https://learningpie.club/

LinkedIn Profile: https://www.linkedin.com/in/mohit-990a852a/

  v

About the Reviewers

u	Bhaskar Das worked for 10 years with IBM. He has experience of different
technologies and tools. He has worked with Java and Python. Now he is
working as a freelancer. He has authored “Learn Python in 7 days”. He has
also authored several technical articles.

u	Afsana Atar is an accomplished test engineer with over 10 years of extensive
experience in software testing. She extends her thought leadership to teams in
a variety of domains from digital advertising, education & healthcare to the
financial sector in banking, insurance & trading. She has worked for various
organizations including Google, IBM, Principal Financial Group and The
Children’s Hospital of Philadelphia. Currently, she works for “Susquehanna
International Group” a financial trading firm. She is a Certified Scrum Master
(CSM), an Agile scrum practitioner and part of the scrum alliance community.
She has managed and worked on projects worth over one million dollars in
various capacities as Quality Assurance Engineer to QA Manager. She believes
in sharing her experiences with the testing community to help foster greater
learning & innovation.

vi 

Acknowledgement

First of all, I am grateful to the Almighty for helping me complete this book. I
would like to thank my mother for her love and encouraging support and my
father for raising me in a house with desktops and laptops. A big thanks to the
CEO of BPB publication Manish Jain for giving me the opportunity to write this
book.

I would also like to thank everyone who has contributed to the publication of
this book, including the publisher, especially the technical reviewers and also the
editor Priyanka. Last but not least, I’m grateful to my i7 Dell laptops, without
which it would not have been possible to write this book. Finally, I thank Guido
Van Rossum, the creator of Python.

  vii

Preface

The primary goal of this book is to provide information and skills that are necessary
to be a core Python developer. The book begins with basics and goes beyond basics.
After reading this book, you’ll be able todevelop cool Python applications. Over
the 20 chapters in this book, you will learn the following:

Chapter 1 introduces the installation of Python and shows how to write and
execute the first program. This chapter gives the knowledge of basic syntax such
astriple quotes, escape sequence, and formatted output.

Chapter 2 discusses the different types of operators offered by Python.

Chapter 3 elaborates on the control statement, uses of the for and while loop, and
then how to control aloop with the help of break and continue statements.

Chapter 4 discusses the string,the first data structure of Python, features ofstring,
string methods and the functions can be applied on the string.

Chapter 5 gives you the knowledge of two main containers of Python: list and
tuple. This chapter mentions the function and method of list and tuple in a step-
by-step manner.

Chapter 6 describes another important data structure dictionary. The dictionary
contains its own index of values; the index is called as key. The chapter also gives
you the details of the dictionary’s methods.

Chapter 7 talks about the creation and execution of a function and the removal of
aredundancy using the function. The chapter then focuses on the local and global
variables.

Chapter 8 focuses on organizing the code and creation of modules and packages.

Chapter 9 teaches how to handle an error and make our own customize exceptions.

Chapter 10 describes the reading and writing of a file. The chapter also mention
the pickle and JSON files.

Chapter 11 describes a special type of contain called collections which offers
counter, named tuple, defaultdict, ordereddict, and deque.

viii 

Chapter 12 teaches how to create a random number with the help of random
modules. The chapter also describes some built-in functions such as filter, map,
and reduce, which gives greater flexibility to create code.

Chapter 13 introduces the time-related activities and explains how to generate
time of different time zones.

Chapter 14 describes the regular expression, which helps to find the desired
pattern from the text.

Chapter 15 mentions the os modules that help in running the OS command and
howthe os modules help in creating a directory and checking access of a file.

Chapter 16 gives you a detailed description of class and object. This chapter will
teach you about instance variable, class variable, method, class method, static
method, and so on.

Chapter 17 focuses on parallel programming with the help of threads. The
threading module has been used to create the threads.

Chapter 18 describes the significance of queue and types of queue and how a
queue can help to communicate two threads.

Chapter 19 mentions the real parallel programming through multiprocessing. The
chapter also focuses on the subprocess that could replace the os module.

Chapter 20 describes the modules such as argparse, logging, config parser, and
PDB, which helps creating and debugging the code efficiently.

  ix

Downloading the code
bundle and coloured images:

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/f483c

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience
to our subscribers. Our readers are our mirrors, and we use their inputs to reflect
and improve upon human errors if any, occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

x 

Table of Contents

 1. Introduction to Python ... 1
 Structure .. 1
 Objective .. 1
 What is Python? ... 2
 Reasons to choose Python .. 2
 Multi-purpose ... 2
 Vast library and module support .. 3
 Readability .. 3
 Object-Oriented .. 3
 Platform independent .. 3
 Python is dynamically typed and strongly typed ... 3
 Python installation ... 4
 Installation of Python 3.x in Windows 10 .. 4
 Installation of Python in Linux ... 6
 Basic Python syntax ... 9
 Print statement .. 9
 Saving the program .. 10
 Triple quotes ... 10
 Python Back Slash \ ...11
 Escape sequence of string ..11
 Python formatted output.. 12
 Conclusion .. 12
 Questions ... 13

 2. Python Operators ... 15
 Structure .. 15
 Objective .. 15
 Variables .. 15
 Assignment statement ... 16
 Multiple assignment .. 16
 Numeric data types ... 17

  xi

 Integer numbers ... 18
 Floating-point numbers .. 18
 Python character sets ... 18
 Conversion functions .. 19
 Operators ... 20
 Arithmetic operators ... 20
 Type conversions .. 21
 Comparison operators ... 22
 Assignment operators ... 23
 Bitwise operators .. 24
 Logical operators .. 25
 Membership operators .. 26
 Identity Operators .. 27
 Operator precedence ... 28
 Advance part .. 29
 Conclusion .. 30
 Questions ... 30

 3. Control Statement and Loop ... 31
 Structure .. 31
 Objective .. 32
 Conditional statement ... 32
 If and if-else statements .. 32
 if statement .. 33
 Tabs or Spaces? .. 34
 if-else statement .. 34
 if-elif-else structure .. 35
 Range() ... 37
 Loops.. 39
 For loop... 39
 Printing number 0 to 9 ... 40
 Printing the numbers in horizontal fashion ... 40
 For loop with string .. 41
 Exercise 1 .. 42

xii 

 Exercise 2 .. 43
 while loop .. 43
 Break statement .. 45
 Break statement with the while loop .. 46
 Continue statement .. 47
 else statement ... 48
 pass statement .. 49
 Conclusion .. 50
 Questions ... 50

 4. Strings .. 51
 Structure .. 51
 Objective .. 51
 Indexing using subscript operator .. 53
 Slicing for substrings ... 54
 String methods ... 56
 count() .. 56
 find() ... 57
 Justify methods ... 57
 ljust() ... 57
 rjust() .. 58
 center() .. 59
 zfill() .. 59
 Case methods .. 60
 lower() ... 60
 upper() ... 60
 capitalize() ... 61
 swapcase() ... 61
 Strip methods ... 61
 replace() .. 62
 Split methods .. 63
 Partition methods ... 64
 Join method... 65
 String Boolean methods ... 65
 startswith().. 65

https://avxlive.icu/

https://avxlive.icu/

  xiii

 endswith() ... 66
 isdigit() .. 67
 isalpha() ... 67
 isalnum() ... 68
 isspace() ... 68
 format() ... 68
 String functions .. 69
 Max().. 69
 min() ... 70
 Conclusion .. 70
 Question .. 70

 5. Tuple and List ... 73
 Structure .. 73
 Objective .. 74
 Tuple .. 74
 Creating tuple .. 74
 Empty tuple... 74
 Creating tuple with the items .. 75
 Indexing tuple .. 75
 Slicing of tuple ... 76
 Tuple methods .. 78
 index() .. 79
 Tuple functions ... 79
 len() .. 79
 max() .. 79
 Min() .. 80
 Operations of Tuples.. 80
 Addition of tuples ... 80
 Multiplication of tuple ... 80
 In operator .. 81
 for loop with tuple ... 81
 Unpacking of tuple .. 82
 List .. 83
 Creating a list ... 83

xiv 

 Empty list .. 83
 List with the elements ... 83
 List operations .. 84
 Accessing item of a list ... 84
 Updating list .. 84
 Deleting list item.. 85
 Addition of the lists .. 85
 Multiplication of List ... 86
 in operator .. 86
 List with for loop .. 86
 List functions .. 87
 len() .. 87
 max() .. 87
 List methods ... 89
 Insert methods .. 89
 append().. 89
 insert() .. 91
 Deletion ... 91
 remove() .. 91
 pop() ... 92
 count() .. 93
 index() .. 93
 Copy() ... 94
 Sort() .. 95
 reverse() .. 98
 List comprehensions .. 99
 Exercise .. 100
 Conclusion .. 100
 Questions ... 101

 6. Dictionary and Sets ... 103
 Structure .. 103
 Objective .. 103
 Dictionary .. 104

  xv

 Creating a dictionary ... 104
 Features of dictionary ... 104
 Operations on dictionary ... 104
 Accessing the values of dictionary .. 105
 Deleting item from dictionary... 105
 Updating and adding in the dictionary .. 106
 Adding item to dictionary ... 106
 Dictionary functions .. 107
 len(dict) ... 107
 Max(dict) .. 107
 Dictionary methods .. 107
 copy() ... 108
 get() ... 108
 setdefault() .. 109
 items() ..110
 keys() ..111
 values() ...111
 update() ..113
 Exercise ...114
 Set ..115
 With item ..115
 Without items ..115
 add() ..116
 remove() ...116
 Conclusion ...117
 Questions ..117

 7. Function ..119
 Structure ...119
 Objective .. 120
 What is function? ... 120
 Defining a Python function .. 120
 Function with positional arguments ... 121
 Function with the arguments and return value 122
 Function with default argument .. 123

xvi 

 Function with variable-length arguments .. 124
 Function with keyworded arguments .. 125
 Argument pass by reference or value ... 126
 Scope .. 127
 Types of scope ... 127
 Local scope ... 128
 Enclosing scope ... 128
 Global scope ... 128
 Built-in scope .. 128
 Memory management ... 129
 Scope of variables ... 129
 Conclusion .. 133
 Questions ... 133

 8. Module ... 135
 Structure .. 135
 Objective .. 136
 Module ... 136
 The import statement .. 136
 The from statement .. 137
 Locating Python modules ... 140
 Compiled Python files ... 142
 dir() .. 142
 The __name__ statement ... 143
 Python package .. 145
 Importing the modules from different path .. 147
 Conclusion .. 148
 Questions ... 148

 9. Exception Handling ... 149
 Structure .. 149
 Objective .. 149
 Exception ... 150
 Try statement with an except clause ... 150

  xvii

 Multiple exception block... 151
 else in exception ... 152
 finally statement ... 153
 Program find its exception type ... 154
 Raising an exception .. 155
 Advance section ... 157
 User-defined exceptions ... 157
 Exercise .. 161
 Conclusion .. 162
 Questions ... 162

 10. File Handling .. 163
 Structure .. 163
 Objective .. 164
 Text files ... 164
 Reading text from a file ... 164
 Writing text to a file ... 167
 The with statement .. 172
 Pickle .. 174
 Reading data from file and unpickling ... 175
 JSON with Python .. 176
 Exercise .. 178
 Conclusion .. 180
 Questions ... 180

 11. Collections .. 181
 Structure .. 181
 Objective .. 182
 Counter .. 182
 Counter methods .. 183
 update() ... 183
 Counter operations ... 185
 Addition .. 185
 Subtraction .. 186

xviii 

 Union .. 186
 Intersection ... 187
 Deque 187
 Deque populating ... 188
 deque consuming .. 189
 deque rotating... 190
 Namedtuple .. 191
 The default dictionary ... 193
 Function as default_factory ... 193
 int as default factory .. 194
 list as default_factory ... 195
 The ordered dictionary .. 195
 Sorted of dictionary based upon key ... 196
 Sort the dictionary based upon values ... 197
 Conclusion .. 198
 Question .. 198

 12. Random Modules and Built-in Function .. 199
 Structure .. 199
 Objective .. 200
 The random module .. 200
 Random functions for integers ... 200
 randint() .. 200
 randrange() ... 201
 Random functions for sequence ... 202
 Choice(rnlist) .. 202
 shuffle() ... 203
 Sample() .. 203
 Random functions for floats ... 204
 random().. 204
 Uniform(start, end) ... 204
 Exercise .. 204
 The Tombola game .. 205
 The OTP generator .. 205
 Python special functions ... 206

  xix

 Lambda ... 206
 filter() ... 207
 map() .. 208
 reduce() ... 209
 isinstance() ... 210
 eval() ..211
 repr() .. 212
 Conclusion .. 213
 Questions ... 214

 13. Time .. 215
 Structure .. 215
 Objective .. 216
 The time module .. 216
 Current Epoch time .. 216
 Current time ... 217
 Creating time difference ... 219
 Conversion of human-readable date to epoch time 219
 time.sleep(second) .. 220
 The datetime module... 221
 datetime.datetime.now() ... 221
 datetime.timedelta class ... 221
 Dealing with Timezone with the pytz module 222
 The calendar module ... 226
 Printing a full month ... 227
 Printing a year ... 228
 Curious case of 1752 .. 229
 Checking the leap year .. 231
 Conclusion .. 232
 Questions ... 232

 14. Regular Expression .. 233
 Structure .. 233
 Objective .. 234

xx 

 Regular expression ... 234
 Regular expression functions ... 234
 match() ... 234
 search() ... 235
 sub() ... 236
 findall() ... 236
 re.compile(pattern) ... 237
 Special characters ... 238
 . (dot) .. 238
 ^ (Caret) ... 239
 $ (dollor) ... 239
 * (star) .. 240
 + (plus) ... 240
 ? .. 241
 {m} .. 242
 {m,n} ... 242
 [] ... 243
 [^] ... 244
 \w .. 245
 Exercise ... 245
 Conclusion .. 246
 Questions .. 247

 15. Operating System Interfaces ... 249
 Structure .. 249
 Objective .. 249
 Getting the OS name .. 250
 os.environ ... 251
 Directory and file accessing functions .. 252
 os.access() ... 252
 os.rename(old, new) ... 253
 os.stat() ... 254
 Directory functions .. 254
 os.getcwd() .. 254

  xxi

 os.chdir() ... 255
 File and folder listing ... 256
 os.listdir(path) .. 257
 os.walk() ... 257
 Executing OS command .. 259
 os.popen() ... 259
 os.system() .. 261
 Exercise 1 ... 261
 Exercise 2 ... 263
 Conclusion .. 264
 Questions ... 264

 16. Class and Objects .. 265
 Structure .. 265
 Objective .. 266
 Class ... 266
 Object ... 267
 Instance variable .. 268
 The __init__ method or constructor .. 269
 Regular method .. 270
 Class variable .. 274
 Class inheritance .. 278
 Multilevel inheritance .. 286
 Multiple inheritance .. 288
 Operator overloading .. 292
 Class method .. 299
 Static method .. 302
 Private method and private variable .. 303
 Decorator @property @setter and @deleter .. 305
 Callable objects ... 308
 Conclusion .. 309
 Questions ... 310

xxii 

 17. Threads ...311
 Structure ...311
 Objective .. 312
 Thread 312
 Thread creation using class .. 312
 Thread creation using function .. 313
 Important threading methods .. 313
 The join method ... 315
 The join method with time ... 318
 The Daemon thread ... 320
 Lock .. 322
 Problem 1 ... 323
 Problem 2 ... 325
 Lock versus Rlock ... 327
 GIL .. 327
 Where to use multithreading? .. 330
 What is internal delay? .. 330
 How many threads? ... 332
 Conclusion .. 338
 Questions ... 339

 18. Queue ... 341
 Structure .. 341
 Objective .. 341
 Queue ... 342
 FIFO queue .. 342
 LIFO queue .. 344
 Priority queue .. 345
 Queue with threads ... 345
 Conclusion .. 352
 Questions ... 352

 19. Multiprocessing and Subprocess ... 353
 Structure .. 353
 Objective .. 354

  xxiii

 Python multi-processing ... 354
 The Process class .. 354
 Killing a Process.. 357
 The Daemon process ... 358
 The communication between the processes ... 358
 Shared memory ... 360
 Value ... 360
 Array ... 362
 The Manager class .. 364
 Exchanging object through the communication channel 365
 Pipe.. 367
 Subprocess ... 367
 Difference between subprocess and multi-processing 368
 The call() function .. 368
 Popen() ... 371
 Conclusion .. 372
 Questions ... 372

 20. Useful Modules .. 373
 Structure .. 373
 Objective .. 374
 Configparser ... 374
 Loggers .. 377
 Argparse .. 382
 The positional argument .. 383
 Positional arguments with Help message and Type 383
 The Argparse optional argument ... 384
 nargs ... 385
 Subparser ... 387
 Debugging ... 389
 Setting a breakpoint ... 393
 Conclusion .. 395
 Questions ... 395

When it comes to rapid development, one language that always comes to mind
is the Python programming language. Sometimes, people come up with great

ideas, but they are unable to implement it, due to the complexity of the languages
learned in the academics. Python has gained a lot of market attention recently. I
always say, programming in Python is like programming at the speed of thinking.
Python syntaxes are like English syntaxes. According to the IEEE spectrum ranking
of 2017 and 2018, Python got the first rank, although different languages have
different needs and different domains of interest. But the IEEE spectrum chose
Python, which rules the roost. Their selection criteria is described on their website:
https://spectrum.ieee.org/static/ieee-top-programming-languages-2018-methods.

Structure
 • What is Python
 • Python installation
 • Basic Python syntax

Objective
With this chapter, you will start your journey to Python programming. You will
learn how to install the Python software on Windows, as well as on Linux. After that,

Chapter 1
Introduction to

Python

2  Python for Developers

you will write your first program. You will learn the significance of triple quotes and
the escape sequence. At the end of the chapter, you will see the formatted output.

What is Python?
Python is a general-purpose, high-level language that is used to solve modern-day,
computer problems. These days, people have a misconception about Python. They
think python is data analytics and machine learning language. However, Python is
actually a general-purpose, programming language. Guido van Rossum invented
the Python programming language in the early 1990s.

Where is Python Language used?
The better question to ask would be, what is Python NOT used for. Please see below
the demanding fields, where Python is being used.
 • Data science
 • Machine learning
 • Web application development
 • Network monitoring
 • Game development
 • Natural language processing
 • IoT

Top companies using Python:
The following companies are using Python in their projects:
 • Google
 • Facebook
 • Instagram
 • Spotify
 • Quora
 • Netflix
 • Dropbox
 • Reddit

Reasons to choose Python
There are many reasons you should use Python.

Multi-purpose
Python is a multipurpose language. The developers are using python Data Analytics,

Introduction to Python  3

Machine Learning, AI, Web Application, Network Monitoring, ETL scripts, Hacking,
and much more.

Vast library and module support
Python comes with a huge community support. There are different libraries and
modules that are available in Python for two different purposes as shown in the
following table:

Field Library, Module, Framework
Data analytics Numpy, scipy, scikit learn
Deep learning Pytorch, TensorFlow
Network Hacking Scrapy
Web scrapping Scrapy
Natural language programming NLTK
Web application Django, Flask
Multiprocessing Celery

Table 1.1

Readability
Python code is easy to read and understandable. It does not contain big syntax,
like Java. Python uses indentation to manage the blocks of code, so indentation is
the indispensable part of python programming. With indentation, the code becomes
easy to read. Python’s syntax is human readable and concise. As a novice, this will
help you pick up the fundamentals quickly, with less mental strain, and level up to
advanced topics faster.

Object-Oriented
Python has the power of object-oriented programming (OOPS), although you
can write the program without defining any class. Whereas it is mandatory to use
OOPS in Java, Python offers object-oriented programming as an option, if you are
comfortable with OOPS, then choose it, else it can be avoided.

Platform independent
Python codes are platform-independent; it is a matter of copy and paste.

Python is dynamically typed and strongly typed
In dynamically typed, the data-type of a variable is interpreted at run time. In
Python, there is no need to define the data-type like int, float, and such others. the
following example shall provide more clarification about a variable:

4  Python for Developers

>>> a = 10

>>> type(a)

<class ‘int’>

>>> b = 10.9

>>> type(b)

<class ‘float’>

>>>

In strongly typed, the type of variable does not change at run time. If a = 10, then it
remains 10 throughout the execution, until we reassign the variable.

Python installation
Python comes up with two versions, Python 2.x and Python 3.x. The following are
the general steps to install Python, although we will discuss the installation steps in
detail as well:
 1. Download Windows Python installer from the official website of Python

https://www.python.org/download/. Run the Python installer; the
installation is straightforward.

 2. Accept the default configuration.
 3. Once you are done with installing Python, you have it on your computer in

the C:/python folder. If you are a Linux lover, then the good news is that
Linux CentOS 6 version has come up with version 2.6. However, you can
install Python 3.x.

You can install both versions in Windows as well as in Linux.

Installation of Python 3.x in Windows 10
To begin with, download the suitable, executable file according to your computer
configuration from https://www.python.org/downloads/windows/.

Introduction to Python  5

After downloading the file, run the file, the installation is straightforward, but take
care at the step as shown in the Figure 1.1.

Figure 1.1

Give the customized path of your choice, as shown in Figure 1.1. Once you give
the path, the installation is done. If you have Python 2.7 in your PC, then go to the
installation path of Python 3 and make Python.exe as Python3.exe. By doing this,
you can use both the versions of Python at the same time. After the installation of
Python, add the Python path to the environment variable, as shown in the Figure 1.2.
Figure 1.2 showcases the steps involved in setting the path of the Python interpreter:

Figure 1.2

6  Python for Developers

After setting the environment variable, you may have to restart the computer. After
restarting, open the command prompt. See Figure 1.3:

Figure 1.3

The installation of Python in Windows is an easy task.

Installation of Python in Linux
Generally, Python comes with Linux. If python is not pre-installed, then you can
download the Python compressed tar file from the official website of Python. Once
you download the tar file, you have to extract it.

The command to extract the tar file is as mentioned below:
tar -xvzf Python-3.7.X.tgz

After the execution of the command, browse the directory python-3.7.X and type
the following command:
./configure

The command may need sudo permission.

After the successful run of the preceding command, use the following command:
make

Then type the following command:
make install

If Python is already installed and you want a different version, then you can use the
virtual environment to install the Python of your choice.

Let us see how to install using the virtual environment If you are a normal user, then
use sudo with commands, as showcased below:
$ apt-get install virtualenv

Introduction to Python  7

The installation process is being displayed in Figure 1.4:

Figure 1.4

After installation, write the following command:
$ virtualenv <project-name>

The command makes a virtual environment called book, as shown in Figure 1.5:

Figure 1.5

Check the content of the virtual environment, the content should be as shown in
Figure 1.6:

Figure 1.6

8  Python for Developers

Then browse the project directory, as showcased below.

From the official website (https://www.python.org/downloads/release/python-373/),
download the Gzipped source tarball file, and put the file in the virtual environment
directory book:

Figure 1.7

Use the following command to extract the tar-zip file.
tar -xvzf Python-3.7.3.tgz

After running the command, a directory Python-3.7.3 will be created, as shown in
the following screenshot:

Figure 1.8

Use the following command to activate the virtual environment:
source bin/activate

Once the virtual environment activated, run the following command one-by-one.

Browse the Python-3.7.3 directory using the cd command:
./configure

After the successful run of the preceding command, use the following command:
Make

Then the following command:
make install

By doing this, you can install Python in Windows as well as in Linux.

Introduction to Python  9

Basic Python syntax
In this section, we will learn a few basic things like saving a program, printing
statements and the escape sequence of a string. After installation, open the command
prompt and type python. You will get the Python shell, as showcased in the following
screenshot:

Figure 1.9

Print statement
In Python 3, we use print as function, as shown in the following syntax.

>>> print (“Hello World”)

Hello World

>>>

>>> print (‘Hello World’)

Hello World

>>>

So Hello World is a string, and we shall learn about string, in detail in the string
chapter. For now, anything that is in single quotes or double quotes is called a string.

If you start with single-quotes, then you must end with single quotes. The
same holds true for double-quotes.

See the following example:

>>> print (‘Python’s world’)

 File “<stdin>”, line 1

 print (‘Python’s world’)

 ^

SyntaxError: invalid syntax

In the preceding statement, the single quotes are used three times; the single middle
quote is a part of the English syntax, not programming syntax. However, the
interpreter takes it as a programming syntax. So, you can use double quotes here:

>>> print (“Python’s world”)

10  Python for Developers

Saving the program
To write the program, you can choose any text editor that can recognize the python
syntaxes. There are some lightweight editors are available such as sublime version 3
and notepad++. PyCharm is very efficient for python development.

Save the below mentioned lines in the notepad++ or in any editor:
print (“Hello World”)

Use a meaningful name with a.py extension to save the file.

Run the program as showcased in following screenshot:

Figure 1.10

Browse the directory that contains your program, then use the command python
<program name>.

Triple quotes
Whatever you type in triple quotes, the interpreter will print it as is.

Let us see the following example:
print (‘’’

,:*’’*;

*;’,%.’;

__)(__ ...

‘’’)

The output is showcased in the following screenshot:

Figure 1.11

Introduction to Python  11

You can use double quotes or single quotes to form triple quotes. If you don’t use
print the statement, then the interpreter takes it as a comment.

Python Back Slash \
The Python backslash \ is used for the continuation of the string. You can stretch a
single statement across multiple lines. Have a look at the following example:
print (“What you thin \

you become”)

The output is showcased in the following screenshot:

Figure 1.12

Do not use spaces after \.

Escape sequence of string
Escape Sequences allow you to put special characters such as the tab, the new line,
and the backspace (delete key) into your strings. The following table showcases the
escape sequence character and description.

Escape Sequence Meaning
\b Backspace
\a Sound system bell
\n Newline
\t Horizontal tab
\\ The \ character
\’ Single quotation mark
\” Double quotation mark

Table 1.2

Let us learn using an example:
print (‘\a’)

print (‘\t\tPython’)

print (‘i know , you are \’magnificent\’ ‘)

12  Python for Developers

The output is showcased in the following screenshot:

Figure 1.13

The preceding example showcases how to use the single quote as a programming
syntax as well as the English language.

Python formatted output
Python allows you to set a formatted output. If you have done some coding in C
language, then you must be familiar with %d, %f, %s. To represent int, float and
string %d, %f and %s are used respectively.

See the following program.
print (“Name Marks Age”)

print (“%s %14.2f %11d” % (“Mohit”, 80.67, 27))

print (“%s %12.2f %11d” %(“Bhaskar” ,76.907, 27))

print (“%s %3.2f %11d” %(“Nitin Shelke”, 56.983, 25))

If I use %11d, it means 11 Spaces, if I use, %12.2f, it means 12 spaces and .2 means
precision. The decimal part of the number or the precision is set to 2. Let us format
new output:

Figure 1.14

We are getting what we expected. The formatted string, sometimes, becomes very
useful - like for making SQL queries, message for logger, and so on.

Conclusion
With this chapter, you have started your journey to become a developer. You have
learned the Python properties, installation steps for Windows as well for Linux. The

Introduction to Python  13

Python shell can be used to run and test the statements. Our focus will be on Python
3. In the basic syntax section, you have learned about the print statement, saving
a program, escape sequence, and formatted outputs. In the next chapter, you will
learn the variables, assignment statement and different types of Python operators.

Questions
 1. What is the extension to save the python program?

 2. What the main versions of Python?

 3. What is the use of triple quotes?

Chapter 2
Python Operators

Knowledge is power. Knowledge comes from information and information comes
from the usable data. In today's modern world, everyone is dealing with data in

some form or the other. In the digital world, we store a lot of data in the computer
memory and perform operations. In programming, we use variables to store data.
With the help of the assignment statement, the variable stores data. Python offers
different types of operators to perform the operation on the stored data.

Structure
 ● Variables
 ● Assignment statement
 ● Operators
 ● Advance part

Objective
In this chapter, you will learn how to declare a variable in Python programming,
what are Python operators and how to use them.

Variables
Variable means linking of the data to a name. Data is stored in the memory, and
according to the data-type, the interpreter reserves the memory space. The variable

16  Python for Developers

represents that memory location. With the help of a variable, we can easily access the
data. We can say that a variable refers to the memory location that contains the data.

Below are the rules to define a variable:
 ● A keyword cannot be used as a variable. "if," "def," and "for", and such

others are the reserved keywords. They cannot be used as variables.
 ● A variable can contain letters (upper case or lower case), numbers, underscore.
 ● Python is case sensitive, and hence, variables are also case sensitive.
 ● A variable cannot start with a number.
 ● A variable is assigned to data by using the assignment operator.

Examples for variables are as follows:

>>> A7 = 10

>>> 7A = 10

 File "<stdin>", line 1

 7A = 10

 ^

SyntaxError: invalid syntax

>>> _10 = 90

>>> _10

90

>>>

The “7A” is not a valid variable.

Assignment statement
Now we all understood the concept of variable. With the help of the assignment
statement, we can bind a variable to a value or data. You can also reassign a variable
to a different value. Refer to the following example:
<variable name>= < data>Example

inr = 10000 # An integer assignment

distanc = 10.0 # A floating point

name = "mohit: # A string

Multiple assignment
Python allows you to assign a single value to several variables simultaneously.

Python Operators  17

For example:
>>> x = y = z = 10

>>> x

10

>>> y

10

>>> z

10

>>>

By using one statement, x = y = z = 10, we have assigned value 10 to the variables x,
y, and z.

Numeric data types
Python allows programmers to use various types of numbers. An integer and
floating-point numbers are the two types used in python programming.

See the following figure to understand about integer numbers and floating point
numbers (real numbers):

Figure 2.1

18  Python for Developers

Integer numbers
From Figure 2.1 we can conclude that the integers include 0, all the positive whole
numbers, and all the whole negative numbers. The Python interpreter first examines
the expression on the right side of the assignment operator and then connects the
value with its variable name; it is called defining or initializing the variable.

Floating-point numbers
Python uses floating-point numbers to represent real numbers. Python offers a
maximum of 17 digits of decimal precision. As we increase the number before the
decimal, the precision value gets decreased. See the following examples:

Figure 2.2

It is possible to write python floating-point numbers using either scientific notation,
or decimal notation. Scientific notation is often useful for mentioning a considerable
amount, as showcased in the following screenshot:

Figure 2.3

We generally use decimal notation in programming.

Python character sets
Python characters look like string, and the following figure shows the mapping of
the character set:

Python Operators  19

Figure 2.4

The preceding figure showcases the mapping of the first 128 ASCII codes to the
character values. Every value, such as letters, special characters associated with its
ASCII value and the ASCII value, is a two-digit number.

The figure contains rows and columns. The column's digit represents the first digit
of the ASCII code. The row's digit denotes the second digit. The obtained ASCII
value of "M" is 77.

Conversion functions
Python offers two built-in functions ord() and chr() for the interconversion of the
ASCII value to the character:
 ● The ord() function converts a character to an ASCII value.
 ● The chr() function converts the ASCII value to the corresponding character

as showcased in the following screenshot:

Figure 2.5

20  Python for Developers

In the next section, we will see the operators that Python supports.

Operators
The Python language supports the following types of operators.
 ● Arithmetic operators.
 ● Comparison operators
 ● Assignment operators
 ● Bitwise operators
 ● Logical operators
 ● Membership operators
 ● Identity operators

Before jumping to the details of all the operators, let us clarify what are the operator
and operands in an expression, See the following expression:
4+ 6 = 10

The input 4 and 6 are the operands and + is the operator.

Arithmetic operators
Arithmetic expressions comprise of operands and operators.

The following table describes the operator's symbol with their description:

Operator Description
** Exponent - Performs exponential (power) calculation on operators
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

// Floor division: Floor division means that after performing the
division it returns the lower integer value as the result.

Table 2.1

The division in Python 3.x always returns a float type.

The following screenshot showcases the example of a floor division. It returns the
lower integer value of the division result:

Python Operators  21

Figure 2.6

It is now clear that the floor division always returns the integer or float without the
precision numbers.

Type conversions
Type conversion function facilitates the programmer to change the data type of the
operand. See the following examples:

>>> a

10

>>> str(a)

'10'

>>> c = 12.565

>>> int(c)

12

>>> str1 = "90"

>>> int(str1)

90

>>>

22  Python for Developers

For more clarification see the following screenshot:

Figure 2.7

In Figure 2.7, 12.565 converts into 12. If you want to convert 10 into str use str().
To convert a string to an integer, use int().

Comparison operators
Python supports different types of comparison operators. Comparison operators
return a Boolean value, True or False:

Operator Description
== The operator returns True if the right-side operand and the left-side operand

are equal.
< The "Less than" operator returns True if the right-side operand is less than

the left-side operand.
> The "Greater than" operator returns True if the right-side operand is greater

than the left-side operand.
<= The "Less than or equal to " operator returns True if the right-side operand is

less than or equal to the left-side operand.
>= The "Greater than or equal to" operator returns True if the right-side operand

is greater than or equal to the left-side operand.
!= The "Not equal to" operator returns True if the right-side operand is not

equal to the left-side operand.

Table 2.2

Let us consider the following example:
>>> A = 20

>>> B = 30

>>> A < B

Python Operators  23

True

>>>

>>> A > B

False

>>> A == B

False

>>> A != B

True

>>>

Numbers are compared according to their arithmetic priority. Strings are compared
in alphabetical order using the numeric equivalents.

Assignment operators
We saw the declaration of assignment. Let us now see some assignment operator
versions, mixed with arithmetic operators.

Operator Description
= a=b , b is assigned to a

+= a+=b is equal to a=a+b
-= a-=b is equal to a=a-b
= a=b is equal to a=a*b
/= a/=b is equal to a=a/b
= a=b is equal to a=a**b

Table 2.3

Let us see some examples of assignment statements that will help you understand
how to use them:

>>> A = 20

>>> B = 3

>>> A+=B

>>> A

23

>>> A-=B

>>> A

24  Python for Developers

20

>>> B

3

>>>

New programmers often make mistakes while writing the x+=y. If you are not sure
about the syntax, use a simple one, like x= x+y.

Bitwise operators
In Python programming, you can also perform binary bitwise operations.

The following table describes the symbols of the operators with their description.

Operator Description
| Bitwise OR operation
& Bitwise AND operation
~ Binary one's Complement
^ Bitwise XOR operation

<< Binary Left shift operator, the left-hand operand bit is shifted
to the left by the number on the right

>> Binary Right shift operator, The right-hand operand bit is
shifted to the right by the number on the right

Table 2.4

The following example will showcase how to use bitwise “And” operator.
>>> a = 242

>>> b = 12

>>> a|b

254

>>>

See the following figure for better understanding:

Figure 2.8

Python Operators  25

In the preceding figure, the “OR” operation has been performed on every bit.

The truth table of OR and AND operators has been explained in the following figure:

Figure 2.9

Logical operators
Python offers "or", "and", and "not" as logical operators. These operators are beneficial
for conditional statements:

Operator Description
And If both the sides, right and left, are True, then the AND operator returns True.
Or If any side is True, then the OR operator returns True.

Not The "not" operator inverts the outcome of the condition. If a condition in the
not operator returns true, then the "not" operator makes it False, vice versa.

Table 2.5

See the following example to learn about the use of logical operators:
>>> 6>10 and 20>12
False
>>> 6>10 or 20>12
True
>>>
>>> 5>1
True
>>> not 5>1
False

26  Python for Developers

>>> not 1>5

True

>>>

Let us discuss the different cases, the expression x < y < = z is equal to x<y and y<=z.
In this situation, the "and" operator is used, the expression x and y is assessed only
once, and y<=z would be not assessed if x < y is found false:

>>> 6>10>12

False

>>> 6>10

False

>>> 6>10>mohit

False

>>>

>>> 6<10>mohit

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'mohit' is not defined

>>>

The interpreter examines the second expression only if the first one is true.

Membership operators
To put it simply, the membership operator checks whether the given item exists
in the sequence or not. Python offers “in” and “not in” operators to examine the
membership of the operands in the given sequence.

The following table described the operators in detail:

Operator Description
in If the specified operand is found in the sequence, then the "in" operator

returns True, otherwise, it returns False.
not in If the specified operand is not found in the sequence, then the "not in"

operator returns True, otherwise, it returns False.

Table 2.6

Let’s see the following example:
>>> str1 = "Greatwisdom"
>>> "m" in str1
True

Python Operators  27

>>> "m" not in str1

False

>>> "x" in str1

False

>>>

The character ‘m’ is the member of the string “Greatwisdom” and that is why it
returned True. The character “x” is not a member of the str1 and that is why it
returned False.

Identity Operators
The identity operators determine whether the given operands point to the same
memory address.

The following table describes the two identity operators, "is" and "is not", in detail.

Operator Description
Is If two variables refer to the same memory location, then the "is" operator

returns True, otherwise, it returns False.
is not If two variables refer to the same memory location, then the "is not"

operator returns False, otherwise, it returns True.

Table 2.7

In the following example, the assigned values may be the same, but memory location
is different. The operator returns True if the memory location is the same:

>>> X= 10

>>> Y = 10

>>> X is Y

True

>>> X is not Y

False

>>> id(X)

140715372274608

>>> id(Y)

140715372274608

>>>

>>> list1 = [9,4,1]

>>> list2 = [9,4,1]

>>> list1 is list2

28  Python for Developers

False

>>>

>>> id(list1)

2472095605448

>>> id(list2)

2472096098824

>>>

The id() function returns the memory address (location) of an object. It is like
memory addresses in C language.

Operator precedence
The following table shows that the highest priority is at the top and lowest priority
is at the bottom. All the operators that have the same precedence, their expression is
evaluated from left to right, except for comparisons and exponentiation. Comparisons
can be chained arbitrarily:

Operator Description
() Parentheses
A[i],A[i1:i2],fun(arg...),k.attribute Sequence Subscription, slicing, function call,

attribute reference
** Exponentiation
-a, +a, ~a Negative, Positive, bitwise NOT
/, *, % Division, Multiplication, remainder
+, - Addition and subtraction
<<, >> Shifts
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
is, is not , in, not in, <, <=, >, >=, !=, == Comparisons, membership , identity tests
not x Boolean NOT
And Boolean AND
Or Boolean OR
if-else Conditional expression
Lambda Lambda expression

Table 2.8

Python Operators  29

Advance part
In this section, we will learn some advance things.
See the following example:
>>> a = 10
>>> id(a)
140704055780272
>>> b = 10
>>> id(b)
140704055780272
>>>

When you assign b = 10, the interpreter checks the memory to see whether we have
10 or not. If yes, then the interpreter assigns 10 to the variable b.

Let us see some interesting things:
>>> b = b +10
>>> b
20
>>> id(b)
140704055780592
>>> b = b -10
>>> b
10
>>> id(b)
140704055780272
>>>

When we added 10 to b, the b points to 20 at a different memory address. When we
subtract 10 from b, consequently, b points to 10 again at the same memory address.

Let us see the series of action again:

>>> a = 257
>>> id(b)
140704055780272
>>> b = 257
>>> id(b)
2506386851728

>>>

30  Python for Developers

When the interpreter sees that the value is higher than 256, it assigns the value at a
different address. Let us see the comparison operator again.

See the following example:

Figure 2.10

In Python 3.7, you can compare different data types. Let us check the Python 2.7:

Figure 2.11

Though Python 2.7 is answering, logically that does not make any sense. So be
careful while writing the code. Always check the datatype of the object before doing
any operation.

Conclusion
In this chapter, you have learned about the assignment statement and the different
types of operators of Python. In the beginning, it is difficult to remember all the
operators, but as we continue practicing and solving the exercises, it will not be
challenging to memorize the operators. In the beginning, you can skip the advance
part. Once you complete all the core Python parts, you can learn the advance part.
In the next chapter, you will learn about conditional statements, loops and control
statements.

Questions
 1. What is the operator to describe the power of the operands?
 2. What is the difference between "is" and "="?
 3. Find the answer of expression 9/10*9 in Python 3.x and Python 2.x

Chapter 3
Control

Statement and
Loop

We always keep making a lot of plans for our lives, such as if I do this, then I
will become a developer. If I prepare for the exam, then I will succeed. If I

learn Python, then I will be able to do projects. There are so many examples where
we act based on a specific condition. Sometimes we are also prepared with a plan
B, for example, if I crack the interview, then I will take up the job, else I will start a
business. The same thing happens in programming; the action of logic depends on
the condition. To apply the conditional statement in programming, we use the ‘if,
else’ structure. To repeat a step multiple times, we use loops. In this chapter, we will
learn about the conditional statements and loops that Python supports.

Structure
 ● Conditional statement
 ● Range
 ● For loop
 ● While loop
 ● Break statement
 ● Continue statement
 ● Pass statement

32  Python for Developers

Objective
This chapter will help you learn about the decision-making statements. By using
loops, you will learn how to perform repetitive tasks. Through break, continue and
pass statement, you will get better control over the loops.

Conditional statement
We use control statements when there is an anticipation of a condition in the logic.
The control statements allow a programmer to choose a specific path among all
paths. Figure 3.1 showcases a basic example of the control statement. If a>b is true,
then it takes “YES” path, else it will take the “NO” path:

Figure 3.1

If and if-else statements
The if-else statement allows us to take the decision based on the condition, as
showcased in Figure 3.2:

Figure 3.2

Control Statements and Loop  33

In Figure 3.2, based on the True and False, the algorithm chooses the path.

if statement
Through if statement, a program can branch to a section of code or skip it.

Let us see the example:
print ("Welcome Avengers")

AV= input("Who is the strongest Avenger \t")

if AV=="Thor":

 print ("..............................")

 print ("Welcome Thor ")

The output is showcased in the following screenshot:

Figure 3.3

The preceding example shows branching; if you write the right password, you will
enter in the ‘if’ statement, as showcased in Figure 3.3. The branching diagram is
showcased in Figure 3.4:

Figure 3.4

34  Python for Developers

If you type the wrong password, then it would skip the ‘if’ statement. You may have
observed that the lines after the 'if' statement, print "....." and print "Welcome Thor",
are indented. When you indent the line, it becomes a block. This block is executed
if the input string satisfies the ‘if’ condition. To make a block, ":" is used at the end
of the ‘if’ statement. All indented lines that are written after ":", make a block, as
showcased in the Figure 3.5:

Figure 3.5

Tabs or Spaces?
This depends on personal style. You may apply whatever you want to but be
consistent. If you are going to use a two spaces indentation, then abide with this
throughout the program. Don't mix spaces and tabs. Although you can use both, but
this can lead to a a lot of issues later.

if-else statement
It is also called a two-way choice, as it allows the program to choose between two
alternative courses of action.

Following is the syntax of the if-else statement.
 if condition :

 sequence of statements-1

 else:

 sequence of statements-2

Let us understand through the following example:

print ("Welcome Avengers")

AV= input("Who is the strongest Avenger \t")

if AV=="Thor":

 print ("..............................")

 print ("Welcome Thor ")

Control Statements and Loop  35

else :

 print ("Access Denied")

The output is showcased in the following screenshot:

Figure 3.6

If the user provides “Thor”, then the “if” block gets executed. If a user offers a
value other than “Thor”, then the “else” block gets executed and a message “Access
Denied” is printed.

if-elif-else structure
Occasionally, there are several test cases in a program that comprise of more than
two alternative courses of action. In multi-way if statements the program examines
each condition until one decides to true or all decide to false. When a condition
evaluates to True, the corresponding action of the condition takes place. If no
condition satisfies or computes to true, then the respective else trailing action will
be conducted.

The multiway if declaration syntax is showcased below:

if condition-1:

 sequence of statements-1

elif condition-n:

 sequence of statements-n

else:

 default sequence of statements

Let's consider a grading system as an example. The following table shows grade A,
grade B, grade C, grade D ranging from 1 to 100:

36  Python for Developers

Letter Marks Range
A All grades above 89
B All grades above 79 and below 90
C All grades above 69 and below 80
D All grades below 70

Table 3.1

See the implementation of this in the following program:

num =int(input("Enter the number: "))

if num > 89:

 letter = 'A'

elif num > 79:

 letter = 'B'

elif num > 69:

 letter = 'C'

else :

 letter = 'D'

print ("The Grade is " , letter)

The output is showcased in the following screenshot:

Figure 3.7

Control Statements and Loop  37

The following figure showcases the sequence of actions. The number 90 evaluated
True in the first if condition. Similarly, 82 and 70 evaluated True at their appropriate
condition:

Figure 3.8

Range()
The range() function populates its range list whenever it is employing such as for
loop.

See the following syntax of range():
range(start-value, end-value, difference between the values)

Let us understand it using examples:
C:\Users\Mohit>python3

Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:57:15) [MSC v.1915 64
bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

>>> range(1,30,1)

range(1, 30)

>>>

We can use the list function to receive the values from the range:
>>> list(range(1,30,1))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]

38  Python for Developers

>>>

>>> list(range(1,30,3))

[1, 4, 7, 10, 13, 16, 19, 22, 25, 28]

>>>

>>> list(range(0,30,3))

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

>>>

>>> list(range(0,30))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]

>>>

>>> list(range(30))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]

>>>

>>> list(range(-1,30))

[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

>>> list(range(-1,30,-2))

[]

>>>

The range() function does not consume the memory.

Let us see the examples of it:

Figure 3.9

Control Statements and Loop  39

The sys.getsizeof() shows the memory utilized by the passing argument. The
above example concludes that r1 and r2 contain different arguments, but the sizr
of the memory used is the same. If you are using Python 2.7, then always remember
the following diagram:

Figure 3.10

The range() and xrange() of python 2 are similar to list(range()) and range()
of Python 3.

Loops
Sometimes you may experience a scenario where you need to execute a block of code
multiple times. Programming languages provide control statements with repetition
statements, called loops, which repeat an action.

There are two types of loops:

Definite loop: In this type, the action is repeated a predefined number of times.
 ● Indefinite loop: In this type, the action is repeated until the program

determines that it needs to stop.

For loop
In this section, we will learn about the for loop. Suppose that you want to repeat
some course of action a definite number of times; in that case, we use for loop.

Please see below the syntax of for loop:
for <variable> in range(<an integer expression >):

 <statement-1 >

 <statement-n >

The above syntax is a fundamental type of syntax. The syntax may vary when we
use list, tuple, dictionary string, and so on. The first line of the code in the for loop
is called the loop header. An integer expression specifies the number of repetitions
of the loop. The colon (:) ends the loop header. After the header for loop, the body

40  Python for Developers

consists of the statements in the remaining lines of code. Always remember, the
for loop body must be indented. The statements in the for loop body are executed
sequentially on each pass through the loop. Let us understand the working of the
for loop using examples.

Printing number 0 to 9
for each in range(10):

 print (each)

In the preceding example, each is a variable.

The output is showcased in the following screenshot:

Figure 3.11

For each iteration, the for loop demands the next number from the range() function,
the range() function calculates the next value and supplies it to the “each” variable

Printing the numbers in horizontal fashion
See the following code:

for each in range(10):

 print (each, end = " ") # python 3.7

 # print each, # python 2.7

In the preceding code, the “#” makes a line as a comment. In Python 3.x, we need to
use syntax end=” ” in the print() function. In Python 2.x, we have to use “,” at the
end of the syntax.

Control Statements and Loop  41

Output:

Figure 3.12

Let us see the next example. We are printing a statement multiple times:
for each in range(10):

 print ("Hello") # python 3.7

print ("Done")

The output is shown in the following screenshot:

Figure 3.13

In the above example, the statement print ("Hello") comes under the for loop, but
the statement print ("Done") is not indented, hence the interpreter executed it only
once.

For loop with string
Let us see the use of the for loop with string:

str1 = "Python programming"

for each in str1:

 print (each)

42  Python for Developers

The output is showcased in the following screenshot:

Figure 3.14

String supplies each character to the “each” variable for every iteration. We will
see the use of the “for” loop with list, tuple, and dictionary, in the corresponding
chapters.

Let us work on some exercises.

Exercise 1
Obtain the sum of first 10 numbers.

See the following code:
sum = 0

for each in range(1,11):

 sum = sum+each

print ("total number is ", sum)

The output is showcased in the following screenshot:

Figure 3.15

Control Statements and Loop  43

The Sum of the numbers 1 to 10 is 55. The variable sum is initialized to 0. We use
range(1,11) because the last value in the range() is not included, which means
that if we use 11, then it goes up to 10.

Exercise 2
Calculate the frequency of the letter in the given string:
str1 = "Python programming by mohit"

i = 0

arg1 = input("Enter the char to be checked ")

for each in str1:

 if each==arg1:

 i = i+1

print ("Occurrence of %s is %d"%(arg1, i))

The output is showcased in the following screenshot:

Figure 3.16

The program is straightforward. It gets each character from the given string and
matches it against the entered character. If it matches, then increment the variable i
with one.

while loop
Sometimes it is uncertain to determine, in how many iterations can a program
complete its task. The loop ultimately ends its job, but only when a condition changes.
In some situations, you use an infinite loop and inside the loop, some condition
determines when to terminate the loop. This process is called conditional iteration.

Please see below the syntax of the while loop:

44  Python for Developers

while <condition>:

 <sequence of statements>

There needs to be at least one statement in the loop body, which updates the variable
that affects the condition that leads to the termination of the while loop. “Sentry”
variable or “loop control” variable control the while loop. Let us discuss the first
example:
name = input("Enter your name ")

while name!="point break":

 print ("Wrong password")

 name = input("Enter the password again ")

print ("Welcome Thor")

The output is showcased in the following screenshot:

Figure 3.17

If you have seen the movie “Thor Ragnarok”, then you might remember the “Thor”
gives a voice password to quinjet’s computer. We have used the same thing here
with the help of the “while” loop. But here we used a text password, and not a voice
password. For the while loop, we have used a condition - if the input variable name,
is not equal to point break, the condition becomes True. Here name is called the
control variable, asking for the password. When you enter the wrong password, the
program continues to ask for the right password until you type the correct number.
So, this is the power of the “while” loop - unless you enter right number program,
it will never end.

Let us calculate the of the first 10 numbers:

sum1 = 0

n = int(input("Enter the number "))

i=1

sum2 = 0

while i<=n :

Control Statements and Loop  45

 sum2 = sum2+i

 print (sum2)

 i = i+1

print ("Total sum is ", sum2)

The output is showcased in the following screenshot:

Figure 3.18

Both, the for and while codes produce the same result. But the while loop code
segment is noticeably more complex, containing extra statements. The i is the loop
control variable. It must be explicitly initialized before the loop header. Although,
the use of the Python while loop results in more labour for the programmer, you will
soon see the problems for which the Python “while” loop is the only solution.

Break statement
Sometimes, depending on the situation, we want to terminate the loop in the middle
of the iteration. The break statement allows us to break the loop at any point of the
iteration.

Exercise:
Find the sum of the first n number, but if the sum is greater than 100, then stop the
iteration.

Code:
sum = 0

num = int(input("Enter the number "))

for each in range(1,num):

 sum = sum+each

46  Python for Developers

 if sum > 100:

 break

print ("total number is ", sum)

In the preceding code, it is clear that if the sum becomes greater than 100, then the
interpreter executes the break statement and the break statement terminates the loop.

The output is showcased in the following screenshot:

Figure 3.19

The output shows that the maximum value of the sum is 105.

Break statement with the while loop
Let us use the “true while” loop and find the sum of the number given at the run
time.
Please see below the code:
sum1 = 0

while True:

 n = int(input("Enter the number to add :or press 0 to exit "))

 sum1 = sum1 + n

 print ("sum1: ", sum1)

 if n ==0:

 break

print ("Total is ", sum1)

In the preceding code, we have used the while True statement. Thus implies that
there is no condition check, we have explicitly fixed the True. Consequently, the

Control Statements and Loop  47

interpreter has to enter the while loop. If the entered number is not equal to 0, then
the number is added to the variable sum1. But, if the entered number is 0, then
interpreter executes the break statement, which breaks the loop immediately.

The output is showcased in the following screenshot:

Figure 3.20

In the case of nested loops (one loop contains another loop), the break statement
only terminates the loop which contained it.

Continue statement
The “continue” statement is used to skip the current iteration. With the continue
statement, the loop does not terminate, but continues with the next iteration.

Consider a list containing some integers, and we want to perform some calculations
on those numbers.

Please see the below code:

list1 = [1,2,3,0,4,5,0]

for i in list1:

 c = 10/i*100

 print ("Percentage is ", c)

48  Python for Developers

The output is showcased in the following screenshot:

Figure 3.21

In the preceding output, we are getting an error due to the zero division error. We
can avoid these errors with the help of the continue statement.

See the following modified code:

list1 = [1,2,3,0,4,5,0]

for i in list1:

 if i == 0:

 continue

 c = 10/i*100

 print ("Percentage is ", c)

The output is showcased in the following screenshot:

Figure 3.22

The continue statement is used to skip that particular iteration.

else statement
The “else” in the loop is considered as a no break statement. If we use the “else”
block after the loop, then the interpreter executes the else block only if it encounters
no a break statement. See the following example:

Control Statements and Loop  49

for each in [1,2,3,4]:

 print (each)

 if each == 5:

 break

else :

 print ("All done")

See the output in the following figure

Figure 3.23

You can see that since the interpreter has encountered the no break statement, the
else block has been executed. If we change the statement “each==3”, then the else
block would not be executed. See the following output:

Figure 3.24

pass statement
Consider a scenario where you want to reserve a loop for future use. You don't want
to write anything in the loop, but the loop cannot have an empty body. So, we use
the pass statement to construct a body that does nothing.

50  Python for Developers

Please see the following syntax of pass:

Example 1:

def load_balancing():

 pass

Example 2

for each in [12,3]:

 pass

In the above examples, the pass statement acts as a body and does nothing.

Conclusion
In this chapter, you have learned conditional statements that help in taking decisions.
In Python, for taking decisions, we use the if-else and elif statement. The loop
facilitates the program to repeat an action multiple times. The for loop has been used
as a definite loop, and the while loop is often used as an indefinite loop. The for and
while loop have their own significance. The break and continue statements give
more over the program. In the next chapter we will learn about the string data type.
in that we shall learn the properties of string, methods and functions of string.

Questions
 1. What is the difference between a “continue” and a “break” statement?
 2. What is the return type of the range()?
 3. From the following statement, which one will consume more memory:

range(10) or range(20)?

The string plays a vital role in programming. In Python, string is a data type.
With the help of a string, you can store a character, a word, a sentence, or a

complete text. Python offers several methods and functions for string operations.
In programming as well as in day-to-day life, we use strings daily; for example, the
name of an employee, the name of a newspaper, the address of any place, and so on.
There are numerous examples of strings.

Structure
 ● String
 ● Indexing using the Subscript operator
 ● Slicing
 ● String methods
 ● String functions

Objective
In this chapter, we will learn about the string, its properties, indexing, slicing method,
and the functions that can be applied on the string.

Chapter 4
Strings

52  Python for Developers

String

A string is a sequence of zero or more characters. Let us see the example of a string:

>>> a = ""

>>> type(a)

<class 'str'>

>>> a = "abc"

>>> type(a)

<class 'str'>

>>> a = "123"

>>> type(a)

<class 'str'>

>>>

From the preceding example, we can conclude that whatever is inside the quotes,
becomes a string. The string is an immutable data structure. Although we can access
the internal data elements, we cannot modify the string.

Python sequences fall into one of the two categories - mutable or immutable.

Mutable means changeable. The mutable sequence is the one that can be changed.
Immutable means unchangeable. Python strings are immutable sequences, which
means that they can't change. So, for example, the string "INDIA" will always be the
string "INDIA".

Let us see the immutability in the following examples:
>>> str1 = "INDIA"

>>> type(str1)

<class 'str'>

>>>

>>> id(str1)

1957360731448

We can reassign the variable str1, but cannot change the value at the address
1957360731448:
>>> import ctypes

>>> ctypes.cast(1957360731448, ctypes.py_object).value

'INDIA'

>>>

Strings  53

>>> str1 = "Game"

>>> id(str1)

1957360734024

>>> ctypes.cast(1957360731448, ctypes.py_object).value

<cparam 'P' (000001C7BBCA8538)>

>>> ctypes.cast(1957360731448, ctypes.py_object).value

After a few seconds, the ctypes.cast(1957360731448, ctypes.py_object).value
would show the error, because the data is not present at the address 1957360731448.

In order to find the length of Python string, function len(string) is used. See the
following example:

Figure 4.1

Indexing using subscript operator
Sometimes a user needs to examine one string character at a specified place without
analysing them all. This is possible by using the subscript operator. A subscript
operator's syntax and examples are provided below:
<given string>[<index>]

The given string indicates that you want to examine, the index is an integer that
indicates the position of a particular character, as showcased in the following example.

54  Python for Developers

In the following cases, the subscript operator is used to access the characters in the
string "Great Wisdom":

Figure 4.2

Now we have understood the subscript operator. The string, "Great Wisdom", is
12 characters long. The syntax str1[0] represents the character 'G', str1[-
1] represents the last character of the string, and str1[-12] represents the first
character of the string. The str1[12] generates an error, "out of range" as can be
seen in the following figure:

Figure 4.3

Slicing for substrings
The extracted portions of the string are called substrings. A lot of times, you need
some part of the string, such as the first two characters of the string. The subscript
operator uses a process called slicing. In slicing, the colon (:) is used. An integer
value will appear on either side of the colon.

Please see below the syntax:
Given string[start : End: Step]

Strings  55

 ● Given string: The string that you want to examine.
 ● Start: The starting index of the string.
 ● End: The last index of the string.
 ● Step: the difference between each character.

See the following example:

Figure 4.4

You can use the negative indexing, mixing of a positive and negative index. In
slicing, the interpreter does not give any error if the index is greater than the length
of a string.

For more clarification, see the following figure:

Figure 4.5

56  Python for Developers

If we use a negative step, then string will be traversed from the right to the left. See
the following examples.
>>> str1 = "Great Wisdom"

>>> str1[0:10]

'Great Wisd'

>>> str1[0:10:-1]

''

>>> str1[10:0:-1]

'odsiW taer'

>>> str1[:0:-1]

'modsiW taer'

>>> str1[::-1]

'modsiW taerG'

>>>

In the preceding examples, you can see that if we use a negative step, then the “start”
must be greater than the “end”. The syntax str1[::-1] prints the reverse of the
string

String methods
Now we will learn about the Python string methods. In order to see all the string
methods, use dir(str object) as showcased in Figure 4.6:

Figure 4.6

There are so many methods that are associated with the string; we will study most
of them.

count()
Please see the following syntax:
str.count(substr , start , end)

Strings  57

The method str.count(substr , start , end) returns the number of occurrences
of the string substr in the string str. By using the parameters start and end, you
can give a slice of the string str:
>>> str1 = "python programming"

>>> str1.count('p')

2

>>> str1.count('p',0,6)

1

>>>

find()
Please see the following syntax:
str.find(given_str, beg=0 end=len(string))

The find() method is used to find out the index of the given_str in string str. The
find method only finds the index of the first occurrence of given_str from the left
side.

For example:

>>> str1 = "The mind is everything. What you think you become"

>>> str1.find("you")

29

If you want to find from the right side, then use the method rfind:

>>> str1.rfind("you")

39

>>>

Justify methods
Python offers four methods for string justification. Let us see the methods one-by-
one.

ljust()
Syntax:

str.ljust(given_length, fillchar)

58  Python for Developers

The ljust method is used to justify the string str from the left side. The total length
of the string is defined in the first parameter of method given_length. The fillchar
character is used to fill the remaining space in the string. (default is space). The
remaining space only exists if the given_length is greater than the length of the
string str:
>>> "intel".ljust(10, "$")

'intel$$$$$'

>>>

>>> "intel".ljust(10)

'intel '

>>>

>>> "intel".ljust(5)

'intel'

>>>

>>> "intel".ljust(10,"#$")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: The fill character must be exactly one character long

>>>

>>> "intel".ljust(10,"")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: The fill character must be exactly one character long

>>>

From the preceding example, it is clear that you cannot use the null string as fillchar.

rjust()
Please see the below syntax:
str.rjust(width[, fillchar])

The rjust is the brother of ljust, used to justify from the right side.

>>> "python".rjust(10,"#")

'####python'

>>>

Strings  59

center()
Please see the following syntax:
str.center(width[, fillchar])

The method center() makes the str centred, by taking the width parameter into
account. Padding is specified by the fillchar parameter. The default filler is a space.

>>> "python".center(10,"#")

'##python##'

>>>

zfill()
Please see the following syntax:

str.zfill(width)

This method is the special case of rjust. This method pads the string on the left with
zeros to fill the width:

>>> "01".zfill(10)

'0000000001'

>>> "03132".zfill(10)

'0000003132'

>>>

The zfill method can be used to make a binary, fixed-length number.

Let us see one exercise of the ljust method.

In the following code, ljust is used to print the statement elegantly:

name = ["Mohit", "Ravender", "Bhaskar Narayan Das"]

print ("Name\t\t ", "Age","marks")

for each in name:

 print (each.ljust(19), 30, 89.56)

60  Python for Developers

The output is showcased in the following screenshot:

Figure 4.7

Case methods
We will now discuss the method that deals with the cases.

lower()
Please see the below syntax:
str.lower()

The method lower() returns the string in lower case. The following example
showcases the rest:
>>> "ABCabc".lower()

'abcabc'

>>> "ABC112&*".lower()

'abc112&*'

>>>

upper()
Please see the below syntax:
str.upper()

The method upper() returns a copy of the string, in which all the case-based
characters have been converted to upper case:
>>> "abc".upper()

'ABC'

>>> "abc123".upper()

'ABC123'

>>>

Strings  61

capitalize()
This function capitalizes the first letter of the string:
>>> "what we think we become".capitalize()

'What we think we become'

>>>

title()

Please see the below syntax:
str.title()

The method title() returns a copy of the string, in which the first characters of all
the words of the string are capitalized:
>>> "what we think we become".title()

'What We Think We Become'

>>>

swapcase()
Please see the below syntax:
str.swapcase()

The method swapcase() returns a copy of the string, in which all the cased based
characters swap their cases:
>>> "abc123ABC".swapcase()

'ABC123abc'

>>>

Strip methods
Sometimes, we want to remove some unwanted character or sub-string from the
given string. To remove it, we have three methods. Let’s see them one-by-one:

Please see the below syntax:
Str1.rstrip(“characters to be removed”)

The lstrip method removes the characters from the right-hand side.

See the following example:
>>> str1 = "hello"

>>> str1.lstrip("h")

62  Python for Developers

'ello'

>>> str1.lstrip("he")

'llo'

>>> str1.lstrip("eh")

'llo'

You can see that whether we use “eh”, or “he”, the result is the same.
>>> str1.lstrip("ehl")

'o'

>>>

From the preceding example, we can easily conclude that it checks all the characters
one-by-one:
>>> str1.lstrip("ek")

'hello'

>>> str1.lstrip("hk")

'ello'

>>> str1.lstrip("kh")

'ello'

>>>

Now we can easily say that the interpreter is checking the “h” character first. If you
want to remove something from the right-hand side, you can use rstrip() method.
Similarly, if you want to remove the characters from both the sides in one go, you
can use the strip method.

If you want to remove or replace characters from the string, you can use the replace
method.

replace()
Please see the below syntax:

str.replace(old, new,max)

The replace() method returns the string, in which the occurrences of the string
specified by the ‘old’ parameter have been replaced with the string specified by the
‘new' parameter new. The ‘max' parameter defines how many occurrences have been
replaced. If max is not specified, then all occurrences will be replaced.

For example:

Strings  63

>>> str1 = "time is great and time is money"

>>> str1.replace("is", "was")

'time was great and time was money'

>>> str1.replace("is", "was",1)

'time was great and time is money'

>>>

Split methods
Sometimes we want just a specific part of the string. Although we can use slicing
for that, sometimes slicing does not fit the requirement. See the following example:
>>> date = '2018-12-31'

Let’s say, we want the day of the month:
>>> date[8:]

'31'

We are getting the desired result, but for the following example, the above expression
will not work:
>>> date = '2018-2-31'

>>> date[8:]

'1'

>>>

So, we will use the split method to achieve the same thing.
Please see below the syntax of split:
Str1.split(delimiter, max)

The split method is used to split the string, based on the delimiter. The split
method returns a list of split sub-strings. The max argument is an integer, which
signifies how many splits are to be performed. Let us see a different example for the
split.

Let us split based on "-":
>>> date1 = "2018-9-2"

>>> date1.split("-")

['2018', '9', '2']

>>> date1.split("-",1)

['2018', '9-2']

>>>

64  Python for Developers

Let us consider a different example. Suppose that, we have an IP address - for
example "192.168.0.1", and we want to print extract "192.168.0":

Let us write the piece of code:
>>> ip1 = "192.168.10.1"

>>> str1 = ip1.split(".")

>>> str1

['192', '168', '10', '1']

>>>

>>> str1[0]+"."+str1[1]+"."+str1[2]

'192.168.10'

>>>

We can accomplish the same task using the rsplit method.
>>> ip1.rsplit(".",1)[0]

'192.168.10'

>>>

Partition methods
The following methods are used to make partitions of the string.
 ● Str.partition(“separator”):

The partition method returns a tuple containing three things - before
separator, separator and after separator. If the string str contains more
than one occurrence of a separator, then the first occurrence will be used:

>>> str1 = "what we think we become"

>>> str1.partition("we")

('what ', 'we', ' think we become')

>>>

 ● Str.rpartition(“separator”):
The rpartition is the right brother of partition method. If the string str
contains more than one occurrence of separator, then the last occurrence will
be used:
>>> str1.rpartition("we")

('what we think ', 'we', ' become')

>>>

Strings  65

Join method
The join method makes a string by joining the items of a sequence.
lease see the below syntax:
str.join(seq)
 ● seq: It contains the sequence of the separated strings.
 ● str: It is the string that is used to replace the separator of the sequence.

The join() method returns a string, which is the concatenation of the given sequence
and the string, as showcased in the following example:

>>> str1 = "-"

>>> seq = ["Hello","Jarvis", "!"]

>>> str1.join(seq)

'Hello-Jarvis-!'

>>> "".join(seq)

'HelloJarvis!'

>>> " ".join(seq)

'Hello Jarvis !'

>>>

String Boolean methods
The Boolean method returns True or False:

startswith()
Please see the following syntax:
str.startswith(str1, beg=0,end=len(string));

The startswith() method returns true, if a string str starts with the string
specified by the str1 parameter. The “beg” and “end” parameters are used to slice
the string str:

>>> str1 = "Time is money"

>>> str1.startswith("Ti")

True

>>> str1.startswith("is")

False

66  Python for Developers

>>> str1.startswith("is",5,8)

True

>>>

endswith()
This method returns True if the string ends with the specified substring, otherwise,
it returns False.

Please see the following syntax:
str.endswith(suffix[, start[, end]])

Please see the following example to understand the use of start and end, to generate
a slice of string str.
>>> str1 = "it is not easy to play another man's game"

>>> str1.endswith("is")

False

>>> str1.endswith("is",2,5)

True

>>> str1.endswith("game")

True

>>>

islower()

Please see the following syntax:

str.islower()

The islower() method returns true if the string contains only lower cased
character(s), else it will return false. See the following examples:
>>> str1 = "Hellojarvis"

>>> str1.islower()

False

>>> str1 = "hellojarvis"

>>> str1.islower()

True

>>> str1 = "hellojarvis "

>>> str1.islower()

True

Strings  67

>>> str1 = "hellojarvis!"

>>>

>>> str1.islower()

True

>>>

The method only concerns with the upper and lower case, not with the special
symbols.

Similarly, we can use isupper() and istitle().

isdigit()
Please see the following syntax:
str.isdigit()

The isdigit() method returns true if the string contains only digit(s), otherwise it
returns false. See the following example:
>>> "123".isdigit()

True

>>> "123 ".isdigit()

False

>>> "123!@".isdigit()

False

>>>

isalpha()
Please see the following syntax:

str.isalpha()

The isalpha() method returns true if the Python string contains only alphabetic
character(s), otherwise it returns false:

>>> "ABCxy".isalpha()

True

>>> "ABCxy12".isalpha()

False

>>>

68  Python for Developers

isalnum()
Please see the following syntax:
str.isalnum()

The isalnum() method is used to determine whether the string consists of
alphanumeric characters, otherwise it returns false:

>>> "ABCxy12".isalnum()

True

>>> "ABCxy12!@".isalnum()

False

>>> "ABCxy".isalnum()

True

>>>

isspace()
Please see the following syntax:
str.isspace()

The isspace() method returns true if the Python string contains only white space(s).
See the following examples:
>>> " ".isspace()

True

>>> "".isspace()

False

>>> "sda ".isspace()

False

>>>

format()
The format() method is used to format the string in a better way. The method
allows multiple substitutes and configuration of values. This method allows us to
concatenate items through positional formatting within a sequence. The method
uses the { } curly brackets as a place holder. The place holder in the format method
can take positional as well as key worded parameters. Let us see the examples:
>>> Str1 = "Student {name} got {marks}"

>>> Str1

Strings  69

'Student {name} got {marks}'

>>> Str1.format(name= "Mohit", marks= 90)

'Student Mohit got 90'

Let us see how we can make SQL query

>>> "Select * from {table} where id = {num}".format(table= "student", num=3)

'Select * from student where id = 3'

>>>

You can also use positional parameters.

>>> "Select * from {0} where id = {1}".format("student", 3)

'Select * from student where id = 3'

>>>You can also leave the curly brackets blank.

>>> "Select * from {} where id = {}".format("student", 3)

'Select * from student where id = 3'

>>>

The format method is similar to the f-string. In order to make an f-string, we put
“f” as a prefix. F-strings provide a straightforward and convenient way to integrate
python expressions into the layout of string literals. See the following example.

>>> table = "student"

>>> num = 4

>>> q = f"Select * from {table} where id = {num}"

>>> q

'Select * from student where id = 4'

>>>

String functions
There are some functions that can be applied on strings.

Max()
The max() method returns the max character from the string str according to the
ASCII value. In the first print statement, y is the maxed character, because the ASCII
code of y is 121. In the second print statement s is the maxed character, since the
ASCII code of s is 115:

>>> str1 = "Time is money"

70  Python for Developers

>>> max(str1)

'y'

>>> str1 = "Time is moneY"

>>> max(str1)

's'

>>>

min()
Please see the following syntax:
min(str)

The min() method returns the min character from string str according to the ASCII
value:
>>> str1 = "Time is moneY"

>>> min(str1)

' '

>>> str1 = "hello!@"

>>> min(str1)

'!'

>>>

Conclusion
In this chapter, we have learned about the string. The string is a very important data-
type of programming. We have seen the string methods, which are defined in the
string class, only meant for the string. There are some functions that can be applied
on the string or other data-types. All the methods return a new string the original
string remains the same due to the immutability of string. The string method can
be known by using the dir() function. In the next chapter, you will learn about the
tuple and list sequence.

Question
 1. See the series of commands and give the answer

>>> name = "Hello Jarvis"

>>> name.upper()

'HELLO JARVIS'

Strings  71

>>> name
Answer:
Hello Jarvis

 2. Write the code snippet

 ip = "192.168.0.1"

<code>

Output: ['192.168.0', '1']

 Answer: ip.rsplit(".",1)

 3. See the following code snippet:

 >>> name = "Hello Jarvis"

 >>> name[-3:-9]

Chapter 5
Tuple and List

In today’s world data is everything. A person or an organization having huge data
can become the king. In programming, to store data of different data types, we

need containers. In Python, tuple and list act as container s that can store data
without any limitation (depending on the RAM). In this chapter, we will learn about
the tuple and list.

Structure
 ● Tuple
 ● Indexing of tuple
 ● Slicing of tuple
 ● Tuple methods
 ● Tuple function
 ● List
 ● List operation
 ● List functions
 ● List methods
 ● List comprehension

74  Python for Developers

Objective
In this chapter, we will learn about the tuple and the list data structure. Both are
containers. We will learn about both individually. First, we will learn about tuple,
creation of tuple, indexing of tuple, slicing of tuple, method, and the function that
can be applied on a tuple. After tuple, we will learn about the list. The indexing and
slicing of the list and tuple are the same. The list contains more methods than a tuple.
In the end, we will learn about list comprehension.

Tuple
Tuples are a type of sequence, like strings. But unlike strings, tuples can contain
elements of any kind, which means that you can have a tuple that can store
name, number, and score, and so on. A tuple is like a container, which can contain
heterogeneous elements. Tuples are the immutable sequence; it means once we have
defined the tuple, we don't have methods to update it.

Creating tuple
In this section, you will learn how to create a Python tuple.

Empty tuple
Tuple = ()

The empty tuple is written as two parentheses containing nothing.

Please the following example of the “If” condition with an empty tuple:
t1 = ()

if t1:

 print ("Something in Tuple")

else :

 print ("Tuple is empty")

The output is showcased in the following screenshot:

Figure 5.1

Tuple and List  75

Creating tuple with the items
Create a tuple, fill the items in the tuple separated by commas. See the following
examples:
tup1 = ('Python ', 'PHP', 1900, 799)

tup2 = (1,7,9,5)

If you don’t use parentheses, the interpreter will still take the items in a tuple.

For Example:
>>> tup2 = 1,3,4,8,"a"

>>> tup2

(1, 3, 4, 8, 'a')

>>> type(tup2)

<class 'tuple'>

>>>

Indexing tuple
You can specify a position number in the bracket, to access a particular element. Let
us check this through an example:

>>> tup1 = ('Thor', 'Cap-America','Iron-man','Hulk','Spider-man')

>>> tup1

('Thor', 'Cap-America', 'Iron-man', 'Hulk', 'Spider-man')

>>> tup1[0]

'Thor'

>>> tup1[4]

'Spider-man'

>>> tup1[5]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: tuple index out of range

If the given index value is not present, then interpreter raises the “IndexError”:

>>> tup1[-1]

'Spider-man'

76  Python for Developers

>>> tup1[-4]

'Cap-America'

>>> tup1[-5]

'Thor'

>>> tup1[-6]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: tuple index out of range

>>>

Negative indexing also works. To obtain the first item of the tuple, we use index 0,
for the last item, we use index -1.

The following figure shows the indexing of the tuple:

Figure 5.2

Slicing of tuple
You can assign a beginning and the end position. The result is a tuple containing
every element between those positions. The following figure illustrates the pictorial
representation of slicing:

Figure 5.3

Tuple and List  77

>>> tup1

('Thor', 'Cap-America', 'Iron-man', 'Hulk', 'Spider-man')

>>> tup1[2:5]

('Iron-man', 'Hulk', 'Spider-man')

>>>

>>> tup1[0:5]

('Thor', 'Cap-America', 'Iron-man', 'Hulk', 'Spider-man')

>>>

We can give a negative slicing too:
>>> tup1[-4:-2]

('Cap-America', 'Iron-man')

>>>

>>> tup1[-4:4]

We can give a combination of positive and negative index too:
('Cap-America', 'Iron-man', 'Hulk')

>>>

>>> tup1[1:]

('Cap-America', 'Iron-man', 'Hulk', 'Spider-man')

If we want to obtain items from a specific index to the last index, we can leave the
last index blank:
>>> tup1[:3]

('Thor', 'Cap-America', 'Iron-man')

>>>

>>> tup1[1:10]

('Cap-America', 'Iron-man', 'Hulk', 'Spider-man')

>>>

In slicing, the interpreter does not throw any error if the index gets out of range:

>>> tup1[20:10]

()

>>>

>>> tup1[0:5:2]

78  Python for Developers

('Thor', 'Iron-man', 'Spider-man')

>>>

The third integer represents the steps or difference between two consecutive items.

A tuple is the immutable data structure; we cannot delete the element from the tuple,
although but we can delete the entire tuple:
>>> del tup1

>>> tup1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'tup1' is not defined

>>>

 Note: Indexing and slicing of tuple and list are the same.

Tuple methods
The following methods are associated with the tuple class:
count()

Please see the following syntax:
tuple.count(given item)

The count method is used to count the total occurrence of a given item:
>>> tup1 = (90,56,34,23,1,2,3,4,1,3,4,1)

>>> tup1.count(1)

3

>>> tup1.count(2)

1

>>> tup1.count(11)

0

>>>

If the given item is not present, then the frequency is 0.

If you want to obtain the index of a particular item, then use a method called index.

Tuple and List  79

index()
Please see the following syntax:
Tuple.index(given item)

The index method returns the index of the given item:
>>> tup1

(90, 56, 34, 23, 1, 2, 3, 4, 1, 3, 4, 1)

>>> tup1.index(90)

0

>>> tup1.index(1)

4

The method returns the index of the first occurrence:
>>> tup1.index(91)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: tuple.index(x): x not in tuple

>>>

If the item is not present, then the index() method gives an error.

Tuple functions
There are some functions that can be applied to the tuple.

len()
The len() function gives the length of the tuple, which means that it returns the
total number of items present in a tuple:
>>> tup1 = ("iron-man", "vision","Thor", "hulk")

>>> len(tup1)

4

max()
The max(tuple) function gives the element of tuple with maximum value:
>>> tup1 = (1,2,3,4)

80  Python for Developers

>>> len(tup1)

4

>>>

Min()
The min(tuple) function gives the element of tuple with minimum value:
>>> min(tup1)

1

>>>

Note: In Python 3, we cannot perform max and min operations if the tuple
contains the items of different data-types.

Operations of Tuples
In this section, you will see the use of the operators in tuple.

Addition of tuples
With the help of the + operator, we can add two tuples:
>>> tup = (1,2)

>>> tup2 = (3,4)

>>> tup + tup2

(1, 2, 3, 4)

Multiplication of tuple
We can multiply a tuple with an integer:
>>> tup*2

(1, 2, 1, 2)

Tuple and List  81

The multiplication with an integer does not create new items; it just creates new
references. See it in more detail, in the following screenshot:

Figure 5.4

In the preceding screenshot, the tuple tup2 contains the reverences of the objects,
multiple times (memory address).

In operator
We can use the in operator to check the existence of an item:
>>> tup1 = (1,5,3,"a")

>>> 1 in tup1

True

>>> "x" in tup1

False

>>> "x" not in tup1

True

>>>

The not in can also be used to check the non-existence of the item.

for loop with tuple
Let us see how to use the “for” loop with tuple:

tup1 = ("a", 1,3,5,5.6)

82  Python for Developers

for each in tup1:

 print (each)

The output is showcased in the following screenshot:

Figure 5.5

To understand the working of the preceding code, see the following figure:

Figure 5.6

For each iteration, the item of the tuple gets assigned to the ‘each’ variable.

Unpacking of tuple
You can also unpack the tuple items to the corresponding variables.
Let us understand this with an example:
>>> tup1 = (9,5,8)
>>> a,b,c = tup1
>>> a
9
>>> b
5
>>> c
8
>>>

Tuple and List  83

The tuple tup1 contains three items. In the second statement, the items of tuple
assign to the corresponding variables a, b, and c.

But if you use fewer number of variables than the number of tuple items, then the
interpreter raises an error:
>>> a,b = tup1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: too many values to unpack (expected 2)

>>>

If you use a greater number of variables than the number of tuple items, then the
interpreter will raise an error again:
>>> a,b,c,d = tup1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: not enough values to unpack (expected 4, got 3)

>>>

Similarly, the tuple operation can also be applied on the list. In the next section, we
will learn about the list.

List
A list is also a container, like a tuple, which can store miscellaneous items. Unlike
tuple, the list is a mutable data structure. We have list methods that can change the
list.

Creating a list
In this section, we will learn about all the ways to create a list.

Empty list
list1 = []

The empty list is created by writing two square brackets containing nothing.

List with the elements
To create a list, fill the items in the square brackets, separated by commas.
For example, marvel’s heroes:
A = ['Tony', 'Steve', 'Thor', 'Bruce']

84  Python for Developers

List operations
As the list is a mutable sequence so you can add, delete, access, and update elements
from the list.

Accessing item of a list
To obtain a list item, use the list name or identifier with an index in square brackets.
The following is a simple example:

>>> A = ["Captain", "IRON-Man", "Thor", "HULK"]

>>> A[0]

'Captain'

>>> A[1]

'IRON-Man'

>>> A[2]

'Thor'

>>> A[3]

'HULK'

>>> A[4]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> A[2:3]

['Thor']

>>>

If the index is not there, then the interpreter gives an error. You can also obtain a slice
of the list by providing the indices of the list.

Updating list
The list is a mutable data structure; we can update the existing item of the list with
the help of the index:

>>> A

['Captain', 'IRON-Man', 'Thor', 'HULK']

>>> A[0] = "Captain America"

Tuple and List  85

>>> A

['Captain America', 'IRON-Man', 'Thor', 'HULK']

>>>

The above example shows that Captain is changed to Captain-America.

In the preceding example the item “Captain” is changed to “Captain-America”.

Deleting list item
With the help of del and list index, we can delete any item by specifying its index.

Let us discuss in the next example:
>>> A

['Captain America', 'IRON-Man', 'Thor', 'HULK']

>>> del A[3]

>>> A

['Captain America', 'IRON-Man', 'Thor']

>>> del A

>>> A

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'A' is not defined

>>>

To delete more than one item, you can provide indices. See the following example:
>>> A = ['Captain America', 'IRON-Man', 'Thor', 'HULK']

>>> del A[2:4]

>>> A

['Captain America', 'IRON-Man']

>>>

Addition of the lists
Two lists can be added using the + operator:

>>> A = ['Captain', 'IRON-Man', 'Thor', 'HULK']

>>>

>>> A2 = ["C-Marvel", "Vision"]

86  Python for Developers

>>> A + A2

['Captain', 'IRON-Man', 'Thor', 'HULK', 'C-Marvel', 'Vision']

>>>

Multiplication of List
Similarly, you can use the multiplication operator * to multiply the list. See the
following example:
>>> A2

['C-Marvel', 'Vision']

>>> A2*2

['C-Marvel', 'Vision', 'C-Marvel', 'Vision']

>>>

in operator
With the help of the in operator, we can check the membership of an item:
>>> A

['Captain', 'IRON-Man', 'Thor', 'HULK']

>>>

>>> "Thor" in A

True

>>> "HULK" not in A

False

>>>

>>> "Vision" in A

False

>>>

List with for loop
The working of the for loop with the tuple and the list is the same. The for loop can
fetch the list’s item one-by-one. See the following example:
>>> list1 = [0,4,5,2,56,3,4]

>>> for i in list1:

... print (i)

...

Tuple and List  87

0

4

5

2

56

3

4

>>>

For each for loop iteration, every item of the list is assigned to the variable i. Thus,
we iterate over the list.

List functions
In this section, we will discuss the built-in python functions, which can be applied
on the list.

len()
The len() function returns the length of the list:
>>> A

['Captain', 'IRON-Man', 'Thor', 'HULK']

>>> len(A)

4

>>>

max()
The max() function returns the items from the list with the maximum value. Let us
discuss it with an example:
>>> list1 = [0,5,3,2,1]

>>> max(list1)

5

>>> list2 = ["aaa", "aa", "aab", "aaz"]

>>> max(list2)

'aaz'

>>>

88  Python for Developers

For the string items, the interpreter checks the first character of each string. If the
first character is the same then check the second, third and so on, until the character
with the maximum ASCII value is found:
>>> list3 = ["ab", "b", 1,2]

>>> max(list3)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: '>' not supported between instances of 'int' and 'str'

>>>

In Python 3, the mixed data type is not allowed, although the mixed type is permitted
in Python 2.

In Python 3, the comparison operator does not compare the items of different data
types. In Python 2, you can compare the string with an integer, but in Python 3, it
does not allow for it. See the following examples:

Figure 5.7

Similarly, we can use the min() function:
>>> list1

[0, 5, 3, 2, 1]

>>> min(list1)

0

>>> list2

['aaa', 'aa', 'aab', 'aaz']

Tuple and List  89

>>> min(list2)

'aa'

>>>

List methods
There are several methods, which are offered by list.

To check all the methods of list, use the dir function:
>>> dir([])

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__
dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__
mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__',
'__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count',
'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

>>>

Insert methods
We will see the method used to insert the items in the list.

If you want to add the items at the end of the list, then use the append method.

append()
The syntax of the append method is list.append().

This method adds an item at the end of the existing list:
>>> list1 = [7,8,6,3,2]
>>> list1
[7, 8, 6, 3, 2]
>>> list1.append(90)
>>> list1
[7, 8, 6, 3, 2, 90]
>>> list1.append(23)
>>> list1
[7, 8, 6, 3, 2, 90, 23]
>>> Avengers = ["Thor", "Captain"]

90  Python for Developers

>>> Avengers
['Thor', 'Captain']
>>> Avengers.append("IRON-MAN")
>>> Avengers
['Thor', 'Captain', 'IRON-MAN']
>>>
>>>

In this way, an item can be added at the end by using the append method.

If you want to add a complete sequence at the end, then use the extend() method.

See the following syntax of extend method:
list1.extend(sequence)

The list1 is the primary list. The sequence must be an iterable object like tuple, list,
string, and so on. The extend() method extends the primary list by appending all
the items of the sequence.
>>> list1 = [1,2,3]

>>> tup1 = (7,8)

>>> list1.extend(tup1)

>>> list1

[1, 2, 3, 7, 8]

>>>

>>> Av = ["captain", 'HULK', "IRON-MAN"]

>>> Av2 = ["IRON-MAN", "Black Widow"]

>>> Av.extend(Av2)

>>> Av

['captain', 'HULK', 'IRON-MAN', 'IRON-MAN', 'Black Widow']

>>>

You can see the difference between append and extend. The append method always
considers the argument as a single item and the extend method considers the
argument as a sequence. See the following example for more clarity:
>>> list1 = ["a", "b"]

>>> list1.extend("Mohit")

>>> list1

['a', 'b', 'M', 'o', 'h', 'i', 't']

>>>

Tuple and List  91

>>> list1.extend(45)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'int' object is not iterable

>>>

If you want to add an item at a desired place, then use the insert method.

insert()
See the following syntax of the insert method:
list.insert(index_number, item)

The index_number is the position where the given item has to be inserted. The second
argument is the item, that to be inserted into the list. See the following examples:

>>> infinity_gems = ["Space","Mind","Reality", "Soul","Power"]

>>> infinity_gems.insert(3,"Time")

>>> infinity_gems

['Space', 'Mind', 'Reality', 'Time', 'Soul', 'Power']

>>>

So in the preceding example, if I forgot to put Time stone, and I want to keep Time
stone after Reality, in this situation, I used insert(), and pass 3 as the index_
number and Time as the item.

Deletion
In this section, we will see the methods used in the deletion of an item from a list.

If you want to remove the item, but don’t know the index of the item to be removed,
then you can use the remove method.

remove()
See the following syntax of the remove method:
list.remove(item)

The remove() method is used to remove the item from the list. In the remove
method, we need to specify the item name.

For example:

92  Python for Developers

>>> A = ['captain', 'iron-man', 'thor', 'hulk', "Thanos"]

>>> A.remove("Thanos")

>>> A

['captain', 'iron-man', 'thor', 'hulk']

>>>

In the preceding example, Thanos is removed by the remove() method:

>>> list1 = [1,2,3,4,1,1]

>>> list1.remove(1)

>>> list1

[2, 3, 4, 1, 1]

>>>

The remove() method only removes the first occurrence from the list.

The remove method does not return the removed item, but the pop method does. Let
us see the pop method.

pop()
See the following syntax of the pop method:
list.pop(index)

The pop() method not only deletes the item, but also returns the deleted item from
the list.

We need to specify the index of the item to be removed:

>>> infinity_gems

['Space', 'Mind', 'Reality', 'Time', 'Soul', 'Power']

>>> infinity_gems.pop(1)

'Mind'

>>>

You can see that the pop() method removed the item, which was at the specified
index.

If you don’t provide the index number, then the pop() method removes the last
item:

Tuple and List  93

>>> infinity_gems

['Space', 'Reality', 'Time', 'Soul', 'Power']

>>> infinity_gems.pop()

'Power'

>>> infinity_gems

['Space', 'Reality', 'Time', 'Soul']

>>> infinity_gems.pop()

'Soul'

>>> infinity_gems

['Space', 'Reality', 'Time']

>>>

The next method, count, returns the occurrence of the given item.

count()
See the following syntax of the count method:

list.count(item)

The count() method returns the frequency of the specified item in the list. Let's
check the following example:

>>> list1 = [1,2,3,6,9,3,2,1,2,4,5]

>>> list1.count(1)

2

>>> list1.count(2)

3

>>> list1.count(7)

0

>>>

If the item is not present, then the count() method returns 0.

If you want to know the index of an item in the list, then the index method allows
you to do so.

index()
See the following syntax of the index method:

94  Python for Developers

list.index(item)

The index method is used to find the index of a given item. If the given item has
occurred two times, then the method finds the index of the first occurrence.

Let's check the following example:

>>> list1

[1, 2, 3, 6, 9, 3, 2, 1, 2, 4, 5]

>>> list1.index(1)

0

>>> list1.index(3)

2

>>>

Copy()
Please see the following syntax:
list1.copy()

The copy method is used to make a copy of the list:
>>> A = ["iron-man", "Thor"]

>>> A1 = A.copy()

>>> A1

['iron-man', 'Thor']

>>> id(A)

2665188319944

>>> id(A1)

2665190345416

>>>

>>> A1.append("Hulk")

>>> A

['iron-man', 'Thor']

>>> A1

['iron-man', 'Thor', 'Hulk']

>>>

The different address shows that A1 was the copy of A.

Tuple and List  95

There is one more different technique to create a copy of the list:
>>> A1

['iron-man', 'Thor', 'Hulk']

>>> id(A1)

2665190345416

>>> A2 = A1[:]

>>> id(A2)

2665190151240

>>>

 Note: The above technique would not work on the tuple.

In the next method, we will see how to sort the items of the list. With the help of a
few examples, we will see the benefits of the sort method.

Sort()
Please see the following syntax:
list.sort(key=None, reverse=False)

The sort() method sorts the items of the list. The Python sort is stable and in-place.
In a stable sort, the order of the elements that compare equal will be preserved and
in an in-place sort, the sorting does not take extra memory.

In Python 3, the sort only works on homogeneous items.

Let us see the first case.:
>>> list1 = [1,2,0,1,5,2,7,2]

>>> list1.sort()

>>> list1

[0, 1, 1, 2, 2, 2, 5, 7]

>>>

For reverse order, use the keyword argument “reverse = True” or “reverse = 1”:
>>> list2 = ['azz','az','azy']

>>> list2.sort()

>>> list2

['az', 'azy', 'azz']

>>>

96  Python for Developers

The strings are compared based on their ASCII value.

Special case:

Example 1:

Consider a list of tuples and sort the list according to the second element of the tuple:
list1 = [("a",30),("b",20),("c",10),("d",40),("e",45)]

Let use the “key” keyword

list1 = [(10,"a"),(20,"d"),(5,"b"),(10,"c"),(4,"e")]

def fun1(x):

 return x[1]

list1.sort(key = fun1)

print (list1)

The output is showcased in the following screenshot:

Figure 5.8

Every item of the list is passed to the function fun1. The argument x takes the tuple
at each iteration.

The fun1 function returns the second element of the tuple, and based on the second
element, the sort method sorts the list.

Example 2:
Consider a list of tuples, and the tuple contains integers, sort the list based on the
sum of the elements of the tuple:
list1 = [(10,20),(4,5,8),(7,8),(45,1,4),(2,3)]

def fun1(x):

 c = sum(x)

 return c

list1.sort(key=fun1)

print (list1)

Tuple and List  97

The output is showcased in the following screenshot:

Figure 5.9

Example 3:

The next problem is to sort the IP address based on the last octet.

We generally take an IP address as a string:
list_ip = ["192.168.1.100","192.168.1.2","192.168.1.09","192.168.1.99","
192.168.1.10"]

def fun1(ip):

 c=ip.rsplit(".",1)[-1]

 return int(c)

list_ip.sort(key = fun1)

print (list_ip)

The output is showcased in the following sreenshot:

Figure 5.10

The syntax ip.rsplit(".",1)[-1] returns the last octet of the IP address. Based on
the last octet integer, the sort method sorts the list.

Example 4:
Consider a case, a list that contains all integers, the sort is being performed in the
ascending order, but you want to put all the zeros at the right side:

list1 = [30,40,0,41,31,50,0,23,0,6,0,12,14,15,19,3,2,1,0,7]

98  Python for Developers

max1 = max(list1)+1

def fun1(x):

 if x ==0:

 return max1

 else :

 return x

list1.sort(key=fun1)

print (list1)

The output is showcased in the following screenshot:

Figure 5.11

In the preceding example, the element zero has been sorted based on the max value
of the list.

Sometimes, we need to reverse the list. The reverse method facilitates us to reverse
the list.

reverse()
See the following syntax of the reverse method:
list.reverse()

The reverse() method reverses the items of the list:
>>> list1 = [1,3,4,"a","b"]

>>> list1.reverse()

>>> list1

['b', 'a', 4, 3, 1]

>>>

Tuple and List  99

List comprehensions
The list comprehension is a concise way to create lists. In list comprehension, we
write one-line codes to make a list with the for loop.

Consider a simple example, that list contains the square of numbers:
squ = []

for x in range(1,6):

 squ.append(x**2)

print (squ)

You can do the same thing by Python list comprehensions:
>>> [x*2 for x in range(1,6)]

[2, 4, 6, 8, 10]

>>>

Let us consider one more example, find the even numbers.

Let us see a simple program:
list_even = []

for each in range(1,51):

 c = each%2

 if c ==0:

 list_even.append(each)

print (list_even)

The same thing can be achieved with the Python list comprehensions:
>>> print ([each for each in range(1,51) if each%2==0])

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50]

>>>

Exercise:
list1 = ["2019-6-20","2019-4-4","2019-6-23","2019-6-21","2019-7-20"]

In the preceding list, obtain the day from the dates.

100  Python for Developers

Exercise
 1. Merge two sorted lists with following condition.
 (a) The final list must be sorted.
 (b) Only one loop can be used.

 Solution:
merge two sorted lists

list1 = [1,3,7,10,14,20,25,28,100,104]

list2 = [4,8,11,23,26,90,93]

list3 = []

len_list1 = len(list1)

len_list2 = len(list2)

i = j =0

while i<len_list1 and j<len_list2: #8<10 ,7<7

 if list1[i] < list2[j] :

 list3.append(list1[i])

 i=i+1

 else :

 list3.append(list2[j])

 j= j+1

if j==len_list2:

 list3.extend(list1[i:])

else :

 list3.extend(list2[j:])

print (list3)

Conclusion
You have seen the tuple and the list data structure. Both play an important role in
development. The tuple is an immutable data structure, which does not contain a
method to update the item.

Once you have defined the tuple, it is the same throughout the program, and you
can delete the tuple. The list can be updated. The list can do all the operations that a
tuple can do. You can also unpack, slice a list. The indexing is the same for tuple and
list. The list contains the method to add, update, and delete. In the next chapter, you
will learn the dictionary data structure.

Tuple and List  101

Questions
 1. What is the advantage of tuple over a list?

Answer: A tuple is an immutable object, which cannot be changed, and tuple
takes less memory then the list. See the following explanation:
>>> list1 = [1,2]

>>> tupl = (1,2)

>>>

>>> import sys

>>> sys.getsizeof(list1)

80

>>> sys.getsizeof(tupl)

64

>>>

 2. Multiplication of list.
>>> list1 = [[]]

>>> list2 = list1*3

>>> list2

[[], [], []]

>>> list2[0].append(2)

>>> list2

?

Answer: The result is [[2], [2], [2]].
When we multiply a list, the returned list does not make new items in the
memory, it just creates more references.

For example:

>>> id(list1[0])

1774366026248

>>>

>>> id(list2[0])

1774366026248

>>> id(list2[1])

1774366026248

102  Python for Developers

>>> id(list2[2])

1774366026248

>>>

 See the following diagram for more clarity.

Figure 5.12

 The figure shows that the index value 0,1,2 represents the same items in the
memory.

 3. Consider a tup= (1,2,[]), so, can we do that tup[2].append(80)?
 Answer: Yes, because immutability is not magic. It exists because we don’t

have a method to update the tuple. Here we are updating the list inside the
tuple.

In the last chapter Tuple and List, we have seen that we need the index to access any
item. The index is always an integer, consecutive and starts with 0. Let’s consider

that you want to create your index where a string, float, and integer can be used. The
dictionary allows you to create such an index. A dictionary allows you to map the
different objects. In reality, a dictionary is like a collection of words and its meaning.
Similarly, a Python dictionary offers you the collections of key and its value. We will
learn about the dictionary methods and functions, and different operations that can
be applied to the dictionary.

Structure
 ● Dictionary
 ● Operations of dictionary
 ● Dictionary function
 ● Dictionary methods
 ● Set

Objective
In this chapter, we will learn about the dictionary and set. We will learn how to
create a dictionary, features of the dictionary, operations, and methods. Like list,

Chapter 6
Dictionary and

Sets

104  Python for Developers

the dictionary is also a mutable data structure. In the end, we will see the set and its
uses.

Dictionary
A dictionay is a data structure, which contains key and value pairs. A dictionary is
written as a sequence of the key/value or item pairs separated by commas.

Let us see a few examples:
port = {20: "FTP", 23: "Telnet”, 53: "DNS", 80: "HTTP" }

Dict1 = {"AP": "Access Point", "IP": "Internet Protocol"}

Creating a dictionary
Let us see the syntax that creates a dictionary:
Dictionary_name = { key : value }

The key and value pair is referred to as an item; key and value are separated by a
colon (:). The Each item is separated by a comma (,), the whole thing is enclosed
in curly braces ({ }). An empty Python dictionary can be created by just two curly
braces {}.

Features of dictionary
The following are the features of the dictionary:
 ● The key of the dictionary cannot be changed.
 ● Keys are unique.
 ● A string, int, float, and tuple can act as a key, provided the tuple

does not contain any list.
 ● The value of the key can be changed.
 ● A value can be anything - for example list, tuple, and so on.
 ● Ordering is not significant; the order in which you have entered the items in

the dictionary, may not get the details in the same order.

The data structure, which is a hashable type (all immutable), can be used as a key. A
list is an unhashable type. The dictionary stores the value by taking the hash of the
key. The average lookup time for a value using the key, is O(1).

Operations on dictionary
In this section, you will learn about the different types of operations on the dictionary.

Dictionary and Sets  105

Accessing the values of dictionary
The dictionary contains pairs of keys and values. You will learn how to obtain the
value using its key from the dictionary.

The following are the examples of accessing the value, by using the key:
>>> port1 = {23: "Telnet", 20: "FTP", 80: "http", 53 : "DNS"}

>>> port1[23]

'Telnet'

>>> port1[20]

'FTP'

>>> port1[21]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 21

>>>

The key works like an index. The preceding example shows that, to access the
dictionary elements we need to use the square brackets along with the key. If a key
is not present, then the KeyError occurs.

Deleting item from dictionary
With the help of a key, we can delete an item. See the following syntax that showcases
how to delete an item.
 ● del dict[key]:

You can delete a single item of the dictionary, as well as the entire dictionary.
See the following command line code of deleting an item:
>>> del port1[20]

>>>

>>> port1

{23: 'Telnet', 80: 'http', 53: 'DNS'}

>>> del port1

>>> port1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'port1' is not defined

 >>>

106  Python for Developers

You can see the error because the dictionary named port1 exists after the command
del port1.

Updating and adding in the dictionary
The updating and adding an item in the dictionary is straight forward. See the
following syntax:
dict[key] = new_value

You can update and add an item in the dictionary. To update, we need to specify the
value's key in the square bracket and assign a new value. If the key is not present,
then the key-value pair would be added.

Let us see an example of updating the value:
>>> port = {22: "SSH", 23: "SMTP" , 53: "DNS", 80: "HTTP" }

>>> port

{22: 'SSH', 23: 'SMTP', 53: 'DNS', 80: 'HTTP'}

>>> port[23]= "Telnet"

>>> port

{22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP'}

>>>

You cannot set more than one value to one key. If you do, this last assigned value is
considered as the real value.

Adding item to dictionary
Let us see the addition of an item in the dictionary. The syntax would remain the
same:
dict[new_key] = value

In the dictionary, adding an item is very easy. Specify the key in [] as showcased in
the following examples:
>>> port1 = {23: "Telnet", 20: "FTP", 80: "http", 53 : "DNS"}
>>> port1[22] = "SSH"
>>> port1
{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS', 22: 'SSH'}
>>> port1[23]= "Apache"
>>> port1
{23: 'Apache', 20: 'FTP', 80: 'http', 53: 'DNS', 22: 'SSH'}
>>>

Dictionary and Sets  107

One rule that applies here, is that the key cannot be duplicated.

Dictionary functions
In this section, you will learn about some dictionary functions. Let us see the
functions one-by-one.

len(dict)
The len() function gives the total number of item(s) in the dictionary.

See the following example:

>>> dict1 = {22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

>>> len(dict1)

5

>>>

Max(dict)
The max function works on the keys of dictionary. The max() function returns the
key with the maximum value.

See the following example:

>>> dict1 = {22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

>>> max(dict1)

443

Similary, the min() function returns the key with the minimum value.

Dictionary methods
Here we will discuss the dictionary methods. If you want to know the methods
associated with the dictionary class, then use the dir function as showcased below:

>>> dir({})

['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__
getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__
iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__',
'__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get',
'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']

>>>

108  Python for Developers

Let us see the methods one-by-one.

copy()
See the following syntax of the copy() method:
Dict.copy()

The copy() method allows you to make a copy of the existing dictionary:
>>> port1 = {23: "Telnet", 20: "FTP", 80: "http", 53 : "DNS"}

>>> port2 = port1.copy()

>>> id(port1)

2354409948288

>>> id(port2)

2354414650568

>>>

>>> port2

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS'}

>>>

>>> port1[443] = "HTTPS"

>>> port1

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS', 443: 'HTTPS'}

>>> port2

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS'}

>>>

The port2 is the copy of port1.

If you access the value with the help of a subscript operator and if the key is not
found, then the interpreter gives an error. To prevent the error, we use the get()
method.

get()
See the following syntax of the get() method:
dict.get(key, default=None)

The get() method is used to get the value of the given key, if the key is not found
the default value or message would return:

>>> port1

Dictionary and Sets  109

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS', 443: 'HTTPS'}

>>> port1.get(23)

'Telnet'

>>> port1.get(24)

>>> port1.get(24,"Value not found")

'Value not found'

>>> port1.get(53,"Value not found")

'DNS'

When a key is found, it prints its value. But when the key is not found; it prints the
set the message "Value not found".

setdefault()
This method is similar to the get() method, but it adds the default value to the
dictionary.

See the following syntax of the setdefault() method:
Dict.setdefault()

Let us understand by looking at examples:
>>> port1

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS', 443: 'HTTPS'}

>>>

>>> port1.setdefault(23)

'Telnet'

>>> port1.setdefault(24)

>>> port1

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS', 443: 'HTTPS', 24: None}

>>> port1.setdefault(25,"unknown")

'unknown'

>>> port1

{23: 'Telnet', 20: 'FTP', 80: 'http', 53: 'DNS', 443: 'HTTPS', 24: None,
25: 'unknown'}

>>>

You can see that for new keys, the default value has been added to the dictionary.

110  Python for Developers

items()
The items() method returns the iterator, which contains the dict's (key, value) tuple
pairs.

See the following syntax of the items() method:
dict.items()

Let us understand by looking at examples:
>>> dict1

{22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

>>> dict1.items()

dict_items([(22, 'SSH'), (23, 'Telnet'), (53, 'DNS'), (80, 'HTTP'), (443,
'HTTPS')])

Let us see how to use the “for” loop with dictionary:
dict1 = {22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

for each in dict1.items():

 print (each)

The output is showcased in the following screenshot:

Figure 6.1

As you can see that we are getting the tuples. Let’s unpack the tuple in the code.

Now, let’s see the new code:
dict1 = {22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

for k,v in dict1.items():

 print (k,v)

Dictionary and Sets  111

The output is showcased in the following screenshot:

Figure 6.2

In this way, we can iterate over a dictionary.

keys()
The keys() method returns all keys of the dictionary.

See the following syntax of the keys() method:
dict.keys()

Let us see a couple of examples to understand the keys() method:
>>> dict1

{22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

>>>

>>> dict1.keys()

dict_keys([22, 23, 53, 80, 443])

>>>

values()
The values() method returns all values of the dictionary.

See the following syntax of the values() method.

dict.value()

Let us see some examples to understand the values() method:

>>> dict1

{22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

>>> dict1.values()

112  Python for Developers

dict_values(['SSH', 'Telnet', 'DNS', 'HTTP', 'HTTPS'])

>>>

The items(), keys() and values() methods do not generate a list. It looks like
the methods return a list. They return an iterator, which does not consume memory.

Let us see an example:
>>> dict1 = {20:"FTP"}

>>> import sys

>>> sys.getsizeof(dict1.items())

48

>>> dict1 = {20:"FTP",22 : "SSH"}

>>> sys.getsizeof(dict1.items())

48

>>> dict1 = {20:"FTP",22 : "SSH", 23: "Telent", 80: "HTTP"}

>>> sys.getsizeof(dict1.items())

48

>>>

The sys.getsizeof() method is used to obtain the size of an object in bytes. You
can see that we are increasing the items in the dictionary, but the size remains the
same.

You want to generate the list use the following syntax:
>>> dict1 = {20:"FTP"}

>>> import sys

>>> list_item = list(dict1.items())

>>> sys.getsizeof(list_item)

96

>>> dict1 = {20:"FTP",22 : "SSH"}

>>> list_item = list(dict1.items())

>>> sys.getsizeof(list_item)

104

>>> dict1 = {20:"FTP",22 : "SSH", 23: "Telent", 80: "HTTP"}

>>> list_item = list(dict1.items())

>>> sys.getsizeof(list_item)

120

Dictionary and Sets  113

As you can see that the size of variable list_item is increasing, as the dictionary’s
size increases.

The question is when to use list(dict1.items()) and dict1.items().

Let us run a program:

dict1 = {22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

for k,v in dict1.items():

 if k==23:

 del dict1[23]

 print (k,v)

The output is showcase in the following screenshot:

Figure 6.3

You can see the error. The dict1.items() does not consume memory and returns
the next value on the fly. This means that dict1.items() calculates the next value
and presents it to the ‘for’ loop. If you change the dictionary in the middle of the
iteration, then dict1.items() gives error. If you want to perform the operation
while iterating, then use list(dict1.items()).

update()
Let’s consider that you want to add one dictionary to another, you can take advantage
of the update() method.

See the following syntax of the update() method:

dict.update(dict2)

dict2: This is the dictionary to be added.

114  Python for Developers

Let us see some examples to understand the update method:

>>> dict1

{22: 'SSH', 23: 'Telnet', 53: 'DNS', 80: 'HTTP', 443: 'HTTPS'}

>>> dict2 = {3306: "DNS", 110 :"POP3"}

>>>

In the preceding example, port is updated with the new port1. In this way, you can
add one dictionary to another dictionary.

If both the dictionaries contain the same key, then the corresponding of the key in
dict1 will be replaced by the value of the identical key of dict2.

Exercise
In this section, we will complete the exercise for more a better understanding of the
dictionary.

Create one dictionary by using two lists:
list1 = [1,2,3,4,5]

list2 = ['a','b','c','d','e']

len1 = max(len(list1),len(list2))

dict1 ={}

for i in range(len1):

 dict1[list1[i]]= list2[i]

print (dict1)

Let us check the output in the following screenshot:

Figure 6.4

Let us accomplish the same thing in one line. First with the zip function:

>>> dict(zip(list1,list2))

{1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}

Dictionary and Sets  115

Then without the zip function.

>>> dict([(list1[i],list2[i]) for i in range(len(list1))])

{1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}

>>>

Set
In this section, we will learn about the sets. The set is like a dictionary, which contains
only keys, not values. A set is an unordered and unindexed collection.

Let’s see the declaration of a set with items or without items.

With item
To declare a set, we use curly braces.

For example:
>>> s1 = {1,2,"m"}

>>> s1

{1, 2, 'm'}

>>> type(s1)

<class 'set'>

>>>

Without items
Here we don’t use curly braces. If we do, then the interpreter takes it as a dictionary.

For example:
>>> S2= set()

>>> type(S2)

<class 'set'>

>>>

Let us see the methods of sets.

>>> dir(s1)

['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__
doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',
'__hash__', '__iand__', '__init__', '__init_subclass__', '__ior__', '__
isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__', '__ne__',
'__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', '__

116  Python for Developers

repr__', '__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__',
'__str__', '__sub__', '__subclasshook__', '__xor__', 'add', 'clear',
'copy', 'difference', 'difference_update', 'discard', 'intersection',
'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 'pop',
'remove', 'symmetric_difference', 'symmetric_difference_update', 'union',
'update']

Now, let’s explore the methods of the set.

add()
To add an item to a set:

>>> s1

{1, 2, 'm'}

>>> s1.add("k")

>>> s1

{'k', 1, 2, 'm'}

>>>

remove()
To remove the item from the set:
>>> s1.remove(2)

>>> s1

{'k', 1, 'm'}

>>>

You can try the rest of the methods of the set. The primary use of the set is to remove
duplicating items. Let us see an example:
>>> list1 = [1,2,3,4,2,1,2,4]

>>> s3 = set(list1)

>>> s3

{1, 2, 3, 4}

>>>

In the preceding example, each element of the list behaves like the key of the set. The
keys are always unique and that is why duplicate items are removed.

Dictionary and Sets  117

Conclusion
In this chapter you have learned about the dictionary, and that the dictionary
contains key, value pairs. The key works like an index.

The dictionary is a mutable data structure. The key of a dictionary cannot be changed,
values can be changed. With the help of the dictionary method, we can change add,
update and delete the items from the dictionary. To remove duplicate items we use
set. The set is like a dictionary, which contains only keys and not values. In the next
chapter, will learn about functions.

Questions
 1. Can we use tuple as a key of a dictionary?

 2. What is the return value of dict1.items() in Python 3.

Chapter 7
Function

You might have seen an architecture of an organization such as a school or a
college. The organization is divided into small departments like finance,

account, and so on. Each department is responsible for certain a input and output.
For example, the finance department deals with the input and output of finance. If a
person has a query related to finance, then the person calls the finance department
and not the others. Let’s consider that there is no department and the organization
handles all the queries, then the situation may be chaotic. People with a query will
be confused about where to inquire. Similarly, to manage a big program, we divide
the program into a small function, which performs a specific task.

Structure
 ● What is a function
 ● Defining a Python function
 ● Function with positional arguments
 ● Function with the argument and return value
 ● Function with default argument
 ● Function with variable-length arguments
 ● Function with keyworded arguments
 ● Argument pass by reference or value

120  Python for Developers

 ● Scope
 ● Memory management
 ● Scope of variables

Objective
In this chapter, you will learn about the user-defined function, what is a function,
the significance of making a function, different types of passing arguments of a
function. After the function, different types of scope will be discussed. The memory
management section presented the concept of storing the variables and value in the
memory. In the end, you will learn about the scope of a variable and a global variable.

What is function?
So far, we have seen the Python built-in functions like range(), input, and len(),
and many more. In this chapter, we will learn about the user-defined function. The
function is used to reduce redundancy. Like a big organization is divided into small
departments, we will divide a big code into small functions, which will do a specific
task. We always try to make a generalized function so that the function can be used
multiple times. As we go further, you will get to know the advantages of function.

Defining a Python function
The rules to define a function are as follows:
 ● Use the def keyword followed by the function name with parentheses ()
 ● Any arguments to the function must be placed within these parentheses
 ● The code block must start with a :
 ● The code with the function must be indented

See the following syntax to define a function:
def function_name(arguments):

 code

 return value

With the help of following syntax, we can call the above function:
function_name()

Calling a Python function is like calling the built-in function. To call the function, use
the name of the function followed by a set of parentheses. A function can be called
with the same or different arguments. You can also execute a function by calling it
from another function. So, it can be said that function reduces the size of the code, as
well as reduce redundancy. Let us see a function that just prints a statement:

Function  121

def hello():

 print ("Hello World")

hello()

The Figure 7.1 showcases the output:

Figure 7.1

Function with positional arguments
As you have seen, a built-in function, like the len() function, you pass the sequence,
and the function returns its length. You can also provide arguments to the function
as showcased below:
def fun1(a,b):

 c = a+b

 print (a)

 print ("Result is ",c)

fun1(10,20)

Figure 7.2 is showcases the output of the program:

Figure 7.2

In the preceding program, two arguments have been passed by calling the Python
function. The result c has been calculated. You can also provide an argument like
a key & word form, which allows you to place them out of the order because the
Python interpreter can use the keywords provided to match the values with the
parameters:

def fun1(a,b):

 c = a+b

122  Python for Developers

 print (a)

 print ("Result is ",c)

fun1(b=10,a=20)

The output of preceding program is showcased in Figure 7.3:

Figure 7.3

Let us consider a case where an argument is not given, then what happens? The next
example, showcased in Figure 7.4, will provide clarity:

Figure 7.4

The error says that while calling, two arguments have been missed.

Function with the arguments and return
value
A function with a return value is like a small department, where some material goes
in, and newly processed material comes out.

Function  123

Let us discuss this in the next example:
def fun1(a,b):
 c = a+b
 return c

result = 20 +fun1(1,12)

print (result)

The output is showcased in the following screenshot:

Figure 7.5

As the function returns c, which is an integer, that is the value of the function.

Function with default argument
We can also define the default argument. We can set the default value in the default
argument. If we don't specify the argument while calling, then the function takes the
default value. See the following example:
def fun1(name,skill, age=30):

 print (name,"\t", skill, age)

print ("Name \t skill age")

fun1("Mohit","python", 32)

fun1("Bhaskar", "java")

See the Figure 7.6 for the output:

Figure 7.6

124  Python for Developers

Make sure that the default argument always comes after the positional arguments.

 The value of the default argument is set when we define the function.

If two default arguments are present, and you want to pass a value to the second
default argument, then you can especially pass the value to the desired argument as
showcased in the following the program.

def fun1(name,mark=60, age=30):

 print (name,"\t", mark, age)

print ("Name \t skill age")

fun1("Bhaskar", age=32)

In the preceding program, we are passing a value to the age argument, not to the
mark argument. The mark argument takes the default argument.

Function with variable-length arguments
With the help of a variable-length argument, we can give a different number of
arguments.

See the following example:
def addition(a,*args):

 print (type(args))

 c = a+sum(args)

 return c

print (addition(10))

print (addition(10,50,12,20,40))

print (addition(10,20))

The output is showcased in the following screenshot:

Figure 7.7

Function  125

From the output we can conclude that the first argument is handled by argument a,
and *args handles the rest of the arguments. The args takes the arguments as tuple.

Function with keyworded arguments
Let us consider a situation, where you want to pass the argument as the key=value
format. See the following example:
def fun1(**kwargs):

 print (type(kwargs))

 print (kwargs)

fun1(name= "XYZ", age = 30, skill= "Quantum")

See the following Figure 7.8 for the output:

Figure 7.8

The kwargs uses the dictionary to take the keyworded arguments.

Let us look at one program, which contains all types of arguments:
def fun1(arg, age=30, *args, **kwargs):

 print (arg, age)

 print (sum(args))

 print (kwargs)

 print ("**************************")

fun1("Mohit", 31,1,2,3,4,5, skill= "Python", emp= 1234)

fun1("ravender",skill= "Python", emp= 1234)

126  Python for Developers

The output is showcased in the following screenshot:

Figure 7.9

The preceding example shows the order of the arguments.
The order of the arguments: Positional 6 default6 Variable length 6 Keyworded.
If we change the order of arguments, it can cause an error.

Argument pass by reference or value
Call by reference means passing the address of a variable, where the actual value is
stored. All the arguments in the Python language are passed by reference. The called
function uses the value stored in the given address. Any changes to it, will affect the
source variable.

For example:
def fun1(list1):

 print ("Inside list", list1)

 print ("Inside address", id(list1))

 list1.append(45)

 print ("inside after appending ", list1)

list2 = [10,80,90]

fun1(list2)

print ("Address outside", id(list2))

print ("After calling ", list2)

See Figure 7.10 for the output of the preceding program:

Function  127

Figure 7.10

The list extends inside the function, but the change is also reflected in the calling
function.

Scope
Scope refers to a part of the program where a collection of identifiers are visible. The
scope is just the range in which a variable can be modified or change.

The identifier must be defined using id = ...

In the previous chapters, we have examined variables, assignment operators. But
now we have to explore a little more.

For instance,
k = 9

You would say k equals to 9, but it would be careless to say that. The meaning of
the preceding expression is that k is a reference that points to an object that contains
9 inside it. In simple words, references have names, and objects are indicated to by
references.

Types of scope
There are four of types of scope:
 ● Local scope
 ● Enclosing scope
 ● Global scope
 ● Built-in scope

128  Python for Developers

Let us understand by looking at an example. See the following Figure 7.11:

Figure 7.11

In the preceding figure, you can see three colored regions. They are white, green, and
yellow. Let us learn all the scopes.

Local scope
Let us consider that the interpreter is executing the enc() function at line number
5. At that moment, the yellow region is a local scope for the function, enc(). The
variable c is defined in the local scope. When the interpreter was at line number 3,
the green region was the local scope for the fun1().

Enclosing scope
When the interpreter is at line number 5, at that moment the green region is the
enclosing scope for the enc() function. If any variable is not found in the local
scope, then the interpreter checks the enclosing scope. The list1 variable is at the
enclosing scope for the enc() function.

Global scope
For the fun1() and enc() functions, the white region acts as a global scope when
the interpreter is executing the enc()function, then it examines the value of the
variable a. The interpreter first checks the local scope, then the enclosing scope. If
the variable is not found, then the interpreter checks the global scope. The variable
a is defined in the global scope.

Built-in scope
If anything is not found in the local, enclosing, and global scope, then the interpreter
checks the built-in scope. The global scope is limited to the program of the file. The
range() function is defined in the built-in scope of the program.

Function  129

Memory management
The interpreter stores the variable and data inside the RAM of the computer. The
interpreter divides the RAM into two parts - runtime stack and heap. The runtime
stack is the stack of the Activation Records. The Activation Record is a "portion of
the memory", which contains all the information that is mandatory to keep a track
of a "function call”. When a function is called, the interpreter pushes the activation
record of the function onto the run-time stack. When a function returns something,
its corresponding activation record is popped from the run-time stack. The runtime
stack stores the variables and the heap stores the values of the variables. The run-time
stack stores only (variables) references pointed to corresponding values (objects) in
the heap, as showcased in the following figure:

Figure 7.12

The Figure 7.12 showcases the execution of the line number 5 of the program illustrated
in the Figure 7.11. When the interpreter executes the line number 3, the activation
record of the fun1 function is pushed to the top of the run-time stack.

When we use c=10, the assignment operator binds the variable c to the memory
address, which contains 10. When we use the statement del c, the interpreter deletes
only the binding and not the value 10. If any variable is not referring the value, then
the garbage collector removes the value 10 from the heap memory.

Scope of variables
You have seen the scope, and the variables defined in the different scopes. In this
section, we will learn the scope of variables in more detail. According to scope, there
are two types of variables:

130  Python for Developers

 ● Local variables
 ● Global variables

The local variable is defined inside the function. Local variables are only accessible
within their local scope.

The global variable is defined outside the Python function. Global variables are
accessible throughout the program. See the following program:
def fun():
 print ("Inside the function", K)
K= 20
fun()
print ("Outside K",K)

See the following screenshot for the output:

Figure 7.13

Variable K is a global variable. Its value remains the same outside the function and
inside the function. But what if you reassign it inside the function? Let us discuss
this with an example:
def fun():
 K = 10
 print ("Inside the function", K)
K= 20
fun()
print ("Outside K",K)

See the following screenshot for the output:

Figure 7.14

Function  131

If you reassign a global variable inside the function, it does not reflect outside the
Python function.

If a local variable is accessed outside the function let us discuss this in the next
example:
def fun():

 K = 10

 print ("Inside the function", K)

fun()

print ("Outside K",K)

See the following screenshot for the output:

Figure 7.15

If you access a local variable from outside the function, it gives an error. Let us
consider a situation where you feel that the change inside the function should reflect
outside the Python function.

Let us try to change the global variable inside a function:
def fun():
 K = K+30
 print ("Inside the function", K)
fun()
K =20
print ("Outside K",K)

132  Python for Developers

A local variable, K, is being created using the global variable K. Let us see the output
in the following screenshot:

Figure 7.16

If you are using an assignment operator, then the variable K is taken as a local
variable, that is why the error occurred. Let us consider a tough situation, where
you want to change the global variable inside the function.

In this situation, you would explicitly define the global keyword, as showcased in
the following example:
def fun():

 global K

 K = K+30

 print ("Inside the function", K)

K =20

fun()

print ("Outside K",K)

The output is showcased in the following screenshot:

Figure 7.17

In the preceding example, after calling, the function value of K changed because
inside the function, K is defined as a global variable. The statement global K tells
Python that K is a global variable. Python stops searching the local namespace for
the variable.

Function  133

Conclusion
In this chapter, we have learned about the function, to organize a big program and
reduce the redundancy we use functions. In this chapter, we have learned about the
definition of function, passing arguments, return value, and calling the function.
Python passes the argument by using the references. You have learned the different
types of scopes. In the end, you have seen the local and global variables. In the next
chapter, we will learn about modules and packages.

Questions
 1. What would be the output of the following program?

def fun1(val, list_new=[]):
 list_new.append(val)
 return list_new
list1 = fun1(10)
list2 = fun1(123)
list3 = fun1('a')
print ("list1 = %s" % list1)
print ("list2 = %s" % list2)
print ("list3 = %s" % list3)

 2. What would be the output of the following program?
def fun1(val, list_new=[]):
 list_new.append(val)
 return list_new
list1 = fun1(10)
list2 = fun1(123,[])
list3 = fun1('a')
print ("list1 = %s" % list1)
print ("list2 = %s" % list2)
print ("list3 = %s" % list3)

 3. What is the return type of a variable-length argument?

 4. If a function does not contain anything in the return statement, then what is
the return value of the function?

Chapter 8
Module

In the previous chapter, you have seen the functions, which are used to remove to
the redundancy of code. But if the function is present on the different file, then we

can import the file as a module and use the function.

Let us consider a situation where we develop a project. It is not easy to write
everything in one file. The project is divided into a team of developers. After getting
the task, each developer writes the code. For example, a developer named "Alice"
writes the database related stuff. The second developer, named Mohit, writes the
data extraction related stuff. If developer Mohit needs the database code written
by Alice, then Mohit will use Alice’s code by importing it as a module. Of course, a
module must be written in such a way that other people can use it. When we have
a lot of files in one folder, we can make that folder as a package. A package is the
collection of modules and the __init__.py file.

Structure
 ● Module
 ● The import statement
 ● Locating Python modules
 ● Compiled Python files
 ● Python package

136  Python for Developers

Objective
In this chapter, you will learn about the modules and packages. Modules help in
organizing the project. You will learn how to import a module and the different
types of statements to import modules, how a module is located by the interpreter.
You will study how to make packages using the __init__.py file.

Module
A module consists of a Python source file. A Python module can comprise of functions,
classes, and statements. Generally, any python program can act as a module. But
when we actually make modules to organize the project, we certainly follow some
rules. We will learn the rules as we proceed in the chapter.

Let us take a look at an example:
def sum1(x,y):
 z = x+y
 return z

def mul1(n,m):
 p = n*m
 return p

Save the preceding code as module1.py, consider it as a module.

The import statement
The import has the following syntax:
import module1, module2, module

The import statement should be at the beginning of the code. The import keyword is
followed by one or more Python module, separated by commas. When the interpreter
sees the import statement, it imports the module, if available. For example, let’s see
how to import the module “module1.py”:
import module1
a =10
b =90
print (module1.sum1(a,b))

The interpreter executes module body immediately. A module is loaded only once.
To access the attribute of the module, use the module object as a prefix. In the
preceding example, module1 is the module name, and sum1() is a function defined
in the module. See the output in Figure 8.1:

Module  137

Figure 8.1

The module1 name seems lengthy; you can shorten the name using the “as”
keyword, as showcased in the following example:
import module1 as m1
a =10
b =90
print (m1.sum1(a,b))

See the output in the following screenshot:

Figure 8.2

The from statement
The from statement allows you to import specific attributes from a module into the
current program. The syntax of from import statement is written below.

from module_name import name1, name2

Let us understand this with the help of an example:

from module1 import sum1

a =10

b =90

print (sum1(a,b))

In the preceding code, we did not use the module name with the sum1() function.

138  Python for Developers

Let us consider that if two modules contain a function with the same name, but the
functionality is different.

Let’s see the module2.py module:
def sum1(k,l):
 t = k-l
 return t

Now, we are importing both the modules with the from statement. The example
code is showcased below:
from module1 import sum1
from module2 import sum1
a =10
b =90
print (sum1(a,b))

See the output in the following screenshot:

Figure 8.3

The sum1 of module1 is overwritten by the sum1 of module2. We are getting the
output from the sum1() function defined in the module2. Let us consider that we
change the sequence of the statements. Let us see the following code:
from module2 import sum1
from module1 import sum1
a =10
b =90
print (sum1(a,b))

See the following screenshot for the output:

Figure 8.4

Module  139

Now we get a different output. We are getting the output from the sum1() function
defined in the module1. So always pay attention to the order of importing the
modules.

You can import all names from a module, using the following statement.
from module_name import *

But you can restrict the access to specific functions or variables. See the following
example, consider the module2.py as showcased below.
__all__ = ["sum1",'a']

a = 10

b = 20

def sum1(a,b):

 c = a+b

 return c

def mul1(a,b):

 c = a*b

 return c

def sub(a,b):

 c = a-b

 return c

The “__all__ “ is a magic variable, which refers to a list that contains the items
to be available for the others. By specifying __all__ we can put the restriction on
module’s function or variables. Let us see the following testcases.
>>> from module2 import *

>>> sum1(10,20)

30

>>> a

10

>>> b

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

>>> mul1(10,20)

140  Python for Developers

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'mul1' is not defined

>>>

You can see that only the items present in the “__all__” list are allowed to be used.

Locating Python modules
You now understand the idea of the module. There are some built-in modules
like JSON, pickle, and some are user-made for their project. How does the Python
interpreter finds the built-in module, as well as user-made modules? After
encountering the import statement, the interpreter searches the module in the
following sequences:
 ● The current directory, which contains the running script
 ● PYTHONPATH
 ● The installation-dependent default

The interpreter first sees the current directory of the running script. If the module is
not found in the current directory, then interpreter checks the PYTHONPATH.

Let us see the PYTHONPATH example.

In Windows, PYTHONPATH can be assigned permanently or temporarily. You can
permanently add in the system variable or the user variable. You can temporarily
add in the command prompt. Let us suppose that we made a program mod1.py, it
contains the following statement:
import module1 as m1
print (m1.sum1(10,9))

The module1 is located at K:\Book_projects\Python_for_developrs\
modules\m.

When we try to execute the code, we see the error showcased in the following
screenshot:

Figure 8.5

Module  141

This is because the Python interpreter does not know the path of module1. Let us set
the path of the module.

Use the following command to set the PYTHONPATH:
set PYTHONPATH=K:\Book_projects\Python_for_developrs\modules\m

See the following screenshot:

Figure 8.6

The PYTHONPATH is working.

The installation-dependent is default.

If you want to know the installation-dependent path, you can check the sys.path
variable in the sys module. See the following screenshot:

Figure 8.7

The sys.path returns a list of paths.

Let us suppose that you are importing a built-in module and you don’t know the
path, with the help of “ __path__” you can find the module path. In the following
code, we are obtaining the path of the json module:

>>> import json

>>> json.__path__

['C:\\ProgramData\\Anaconda3\\lib\\json']

>>>

142  Python for Developers

Compiled Python files
If a file called module1.pyc exists in the directory where module1.py is found (as
shown in the following screenshot), then it is assumed to contain an already-"byte-
compiled" version of the module1 module. Usually, you do not need to do anything
to create the module1.pyc file. Whenever module1.py is successfully compiled, an
attempt is made to write the compiled version to module1.pyc. It is not an error
if this attempt fails. If, for any reason, the file is not composed entirely, then the
resulting module1.pyc file will be recognized as invalid and thus will be ignored
later. The content of the module1.pyc file is platform-independent so that machines
of different architectures can share a Python module directory.

In Python 3, compiled files are created under the directory __pycache__:

Figure 8.8

dir()
The built-in function dir() is used to find out the content of modules. It returns a
list, which contains functions, variables, class, and so on; whatever defined in the
module. An example of dir() is showcased below:
import module1

print (dir(module1))

The output is showcased in the following screenshot:

Figure 8.9

Module  143

You can see the output returns a list, which contains the mul1 and sum1 function.

The __name__ statement
Consider a Let us suppose that we make a program for our use. The program
contains two functions, and you call the function within file. Let us see the program:
def sum1(a,b):
 c = a+b
 return c

def mul1(a,b):
 c = a*b
 return c
print (sum1(10,30))

Let us see the output in the following screenshot:

Figure 8.10

We are getting the desired output. Now let us suppose that another person uses our
program as module. Let us see the following example:
import myprogram as mg

print (mg.sum1(100,200))

Let us see the output in the following screenshot:

Figure 8.11

144  Python for Developers

We are getting our expected result, but we are also getting the result of the function
call that is defined in the module. If we remove the function call from the module,
then the owner of the module will not get the result. To tackle this situation, we use
the __name__ keyword. Let’s see the significance of the __name__ keyword. Let us
add the __name__ keyword in the module, as showcased below:
def sum1(a,b):

 c = a+b

 return c

def mul1(a,b):

 c = a*b

 return c

print (__name__)

print (sum1(10,30))

Let us see the output:

Figure 8.12

We are getting the value of __name__, that is __main__. The __main__ is a string
here. Let us run the test1.py code again, and check the output. See the output in
the following screenshot:

Figure 8.13

We are getting the value of __name__ as myprogram, which is the name of the
importing module. So when we run the module, the __name__ keyword returns the
__main__ string. If the module is imported by the other program, then the __name__
keyword returns the name of the module. With the help of the following line, we can
avoid the undesireable result.

If __name__ == “__main__”.

Let us see the full code of the module:

Module  145

def sum1(a,b):

 c = a+b

 return c

def mul1(a,b):

 c = a*b

 return c

if __name__ == "__main__":

 print (sum1(10,30))

Let us check the output of the module run and the test1.py code. See the following
screenshot:

Figure 8.14

We do not get an undesirable result now.

Python package
Let us consider that, in a project, there is a need for database interaction. The
developer "A" writes the code, db_mysql.py, to handle the MySQL with Python.
After a day, the project needs MongoDB database interaction. The second developer
“B”, writes his/her own file, db_mongo.py, instead of writing db_mysql.py. After
a few days, the project requires to use a Redis database. The developer "C" writes a
new file, db_redis.py, to interact with Redis.

Now the project has three database files. Instead of combining all the files, we can
make a package, which acts as a module.

A package is a Python module that contains other Python modules. Generally, a
Python package is a directory, which includes modules and a file __init__.py. Due
to __init__.py file, the directory behaves like a module. The __init__.py gets
executed when the package is imported.

Let us discuss this with an example

146  Python for Developers

Let us consider the two python files available in the K:\Book_projects\Python_
for_developrs\modules\My_pack directory. The files have the following lines of
source code:
def IBM():

 print ("We make IT Happen")

Similarly, we have another file that has a different function:
def INTEL():

 print ("Sponsors of Tomorrow")

Now, make an empty __init__.py file in the same directory.

Outside the directory, create a new program, to import the package, as showcased
below:
from My_pack import ibm

from My_pack.intel import INTEL

ibm.IBM()

INTEL()

We used two different approaches to import the modules of packages; you can use
any one.

To make all of your functions available when you've imported My_pack, you need to
put explicit import statements in the __init__.py, as follows:
from .ibm import IBM

Now make file2.py, which will use these packages:
from My_pack import IBM

IBM()

Run the above program. The following screenshot showcases the output:

Figure 8.15

You can see that there is no need to import the module. It seems like the functions
have directly linked with the package.

Module  147

Importing the modules from different path
Let us consider your modules are not present in the current directory, the built-in
path, and the PYTHONPATH. To import the module from a different path, we have two
approaches:
 ● Adding the path to sys.path
 ● Using the importlib library

Let us understand the scenario.

The module1.py module is present at the following address:
K:\Book_projects\Python_for_developrs\modules\m2

A program, mod1.py, present at K:\Book_projects\Python_for_developrs\
modules, tries to use the module1.py module. As the interpreter could not find the
module1, it gives the error “No module named”, as showcased in the following
screenshot:

Figure 8.16

As expected, we are getting an error. We know that sys.path returns a list of the
installation paths.

Use the following code to add your new path to the sys.path:
import sys
sys.path.append("K:\\Book_projects\\Python_for_developrs\\modules\\m2")

import module1 as m1

print (m1.sum1(10,9))

The output is showcased in the following screenshot:

Figure 8.17

148  Python for Developers

Let us see how to use “importlib” to load the module.

See the following code. The code is only for Python 3.5 or a higher version:
from importlib.machinery import SourceFileLoader

m1 = SourceFileLoader("mohit", 'K:\\Book_projects\\Python_for_developrs\\
modules\\m2\\module1.py').load_module()

print (m1)

print (type(m1))

print (m1.sum1(1,2))

See the following screenshot for the output:

Figure 8.18

The SourceFileLoader function loaded the module and assigned to the m1 variable.
Now, the m1 variable acts as the module1 module. The syntax of SourceFileLoader
is machinery.SourceFileLoader(name, pathname). The name can be any string,
and the pathname is the full path of the module, as showcased in the preceding
example.

Conclusion
In this chapter, we have learned about organizing the big program. In the module
section, we learned that the module is a file. It may be self-executed or executed
by another file, by importing as a module. The module removes redundancy. After
modules, we have learned about packages. A package is a directory, which contains
modules and the __init__.py file. Sometimes, different programmers want to
work on different files instead of a single file. In that case, we make packages. In the
next chapter, we will learn about exception handling.

Questions
 1. How does a Python interpreter locate a module?
 2. Why do we make packages?
 3. What is the return value of __name__ when we execute the module?
 4. How to find the path of a module?

Chapter 9
Exception
Handling

You may have seen that, sometimes, just adding one line in the existing code
causes execution fails. Due to that, the whole program suffers. In order to avoid

errors, it is always advisable to handle the exception in your code.

Structure
 ● Exception
 ● Try statement with an except clause
 ● Multiple exception block
 ● Else in exception
 ● finally statement
 ● Program find its exception type
 ● Raising an exception
 ● Advance section

Objective
In this chapter, we will learn about how to handle the exception, what are the
different statements associated with exceptional handling. We will also learn about

150  Python for Developers

how errors can be avoided, by using exception handling. At the end of the chapter,
we will learn how to make our own exception.

Exception
When the interpreter encounters an error, it stops the running program and shows
an error message, detailing the exception.

Let us see an elementary example:
>>> n = int(input("Enter a number "))

Enter a number ok

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'ok'

>>>

You can intercept and manage exceptions by using the exceptional handling features
of Python. Exception handling prevents the program from ending abruptly. You can
have your program exit gracefully, instead of crashing awkwardly.

Try statement with an except clause
To handle the exception, the try and except blocks are used. A single try statement
can have multiple except statements. Due to multiple exceptions, the program can
throw an exception in the appropriate section. See the following example:
try:

 num = int(input("Enter the number "))

 res = 50/num

 print (res)

except:

 print ("Something is wrong")

Exception Handling  151

See the output in the following screenshot:

Figure 9.1

No error has been exhibited this time. When we pass a string, the text, "Something
is wrong", will be exhibited. When we provided 0, which is int, we still got the
error. When we gave the int, except 0, we did not get the error.

Multiple exception block
In order to handle different type of exceptions, we can use the multiple exception
block. If any exception occurs, then the corresponding exception block handles the
exception.

Let us discuss our first example:

try:

 num1 = int(input("Enter the number "))

 c = 50/num1

 print (c)

except ValueError :

 print ("Use integer only ")

except ZeroDivisionError:

 print ("Don't use Zero")

except :

 print ("Unknown Error")

152  Python for Developers

We executed the code three times, as showcased in the following screenshot:

Figure 9.2

In the preceding example, you can understand that the interpreter throws an error
in the corresponding exception block. If the corresponding exception block is not
found, then the default exception block is used, if present.

else in exception
Let us consider that we want to run a piece of code. If the code in the try block gets
executed successfully, then you can use the else block. The interpreter executes the
else block if there is no error in the try block. Let’s see the following example:
try:

 num1 = int(input("Enter the number "))

 c = 50/num1

 print (c)

except ValueError :

 print ("Use integer only ")

except ZeroDivisionError:

 print ("Don't use Zero")

except :

 print ("Unknown Error")

else :

 c = c +60

 print (c)

Exception Handling  153

We have run the code three times, as showcased in the following figure. In the first
execution, the try block got executed successfully. Consequently, the interpreter
executed the else block. In the second and the third run, the interpreter throws the
exception in the corresponding block, hence the else block was not executed:

Figure 9.3

finally statement
Whatever code you write in the finally block, the interpreter always executes the
code of the finally block. The finally block does not depend on the execution of the
try or except block.

Let us discuss our first example:

try:

 a = int(input("Enter the value :"))

 c = 30/a

except:

 print ("Unknown error")

else:

 c= c +a

 print (c)

finally:

 print ("Program exit")

154  Python for Developers

See the output in the following screenshot:

Figure 9.4

From the output, you can understand that the finally block will be run, whether
an error is handled or not. Let us consider a scenario, where we have opened the
database connection in the try block and closed the connection at the end of the try
block. If any error occurs in the “try” block, then the database connection will not
be closed and will remain open. In this situation, we place the closing syntax in the
“finally” block. If the “try” statement reaches a break, continue or return statement,
the “finally” clause will execute just prior to the break, continue or return statement’s
execution.

Program find its exception type
Writing all types of exceptions in a program is not possible. There are a lot of
exception types, and it is a very tedious and mundane task to write all types of
exception. See the following example:

try:

 num1 = int(input("Enter a number "))

 c = 50/num1

 print (c)

except Exception as e :

 print (e, type(e))

The preceding code presented an excellent technique to find its exception type. It
catches the exception as “e” and type(e) displays its exception type.

Exception Handling  155

See the output in the following screenshot:

Figure 9.5

From the output, you can see that the code itself is telling the exception type.

Raising an exception
You can use the raise statement to explicitly trigger exceptions. Their general form
is simple.

The following syntax could be used with raise:
raise <instance> # Raise instance of class

raise <class> # Make and raise instance of class

raise # Reraise the most recent exception

In the preceding examples, you have seen that entering a zero or a string causes
errors. Let us consider a situation, where a user enters the number 2, logically
there is no error, but the business logic says that if somebody enters 2, it should be
considered an exception. See the following code, illustrating the business logic:

Val = int(input(“Enter the number “))

try:

 if val ==2:

 raise IOError

 c = 50/val

except IOError:

156  Python for Developers

 print (“an exception is raised”)

except Exception as e :

 print (e)

else:

 print (“value is not 2”,c)

If you enter a value equal to 2, then the if block will raise the exception by using the
raise keyword. The except block will handle that exception.

The code is executed three times, as showcased in the following screenshot:

Figure 9.6

In the preceding example, if val == 2, then the exception, IOError, is raised. (2 may
be an unlucky number for a user). And this exception is caught by the except block.

If you type raise in the Python shell, then:

Figure 9.7

Exception Handling  157

Advance section
In this section, we will cover the user-defined exceptions.

User-defined exceptions
Python also enables you to generate exceptions by establishing a new exception
class. Exceptions should typically be obtained either directly, or indirectly, from the
Exception class. See the following code:
class MyException (Exception):
 def __init__(self):
 pass
 def __str__(self):
 return "2 is not allowed"
try :
 a = int(input("Enter the value "))
 if a ==2:
 raise MyException
 c = 10/a
 print (c)
except MyException as e :
 print (e)
except Exception as e:
 print (e)

In the preceding example, a subclass, MyException, is made by deriving the
Exception class. In this example, the default __init__() of Exception has been
overridden. In the __str__ method, a customized fixed message has been returned.
In the try block, an exception, MyException, has been raised.

The except block caught the exception and displayed the message returned by the
__str__ method. Let us see the output in the following screenshot:

Figure 9.8

158  Python for Developers

In the preceding example, the message is fixed. If you want to change the customized
message with every new and try block, see the following example:
class MyException (Exception):
 def __init__(self,h):
 self.h = h
 def __str__(self):
 return "Not valid "+self.h

try :
 a = int(input("Enter the value "))
 if a ==2:
 raise MyException("Don't use 2")
 elif a == 13:
 raise MyException("Don't use 13")
 c = 10/a
 print (c)

except Exception as e:
 print (e)

In the preceding example, integer 2 and 13 are included in the exception list. In the
try block, the messages, “Don’t use 13” and “Don’t use 2”, have been passed
to the MyException class. The MyException class returns the modified message, as
showcased in the output.

See the execution in the following screenshot:

Figure 9.9

Exception Handling  159

Now add following line at the end of the code:
print (MyException.__mro__)

See the output, after adding the preceding line:

Figure 9.10

In the preceding example, you can see the class order. The base class of the exception
class is BaseException. To check all the types of exception and hierarchy, check the
following link:
https://docs.python.org/3/library/exceptions.html#Exception

So far, we have learned about the try and exception statements. Let us suppose
that we run a code of 100 lines, with exception handling. After getting an error, it
may be challenging to find out, which line causing the error. Let us see the following
example:
num1 = int(input("Enter the number "))

c = 10/num1

a = c+10

print (a)

Let us run the code and try to produce the error. See the output in the following
screenshot:

Figure 9.11

The program stops abruptly. Let us use the exception handling:

try:

160  Python for Developers

 num1 = int(input("Enter the number "))

 c = 10/num1

 a = c+10

 print (a)

except Exception as e :

 print (e)

See the following output:

Figure 9.12

Now the program is handling the exception. However, we are still not getting the
line that is causing the error. The previous example was showing the error in line 2.
See the following example, which handles the exception, as well as, shows the error
line:
import traceback

try:

 num1 = int(input("Enter the number "))

 c = 10/num1

 a = c+10

 print (a)

except Exception as e :

 print (e, type(e))

 print (traceback.print_tb(e.__traceback__))

 #print (traceback.format_tb(e.__traceback__))

print ("finish")

The traceback returns the error details with the line number that is causing the error.

Exception Handling  161

See the following output:

Figure 9.13

The figure clearly shows that the code is catching the exception, as well as, showing
the real error.

Exercise
Use exception handling in the following program:
list1 = [1,2,0,3,4,9,0]

for each in list1:

 result = 90/each

 print (result)

Answer:
list1 = [1,2,0,3,4,9,0]

for each in list1:

 try:

 result = 90/each

 print (result)

162  Python for Developers

 except Exception as e:

 print (e)

Conclusion
In this chapter, you have learned about exception handling. In exception handling,
we handle the error. Sometimes a small error halts the execution. To control the
error, we use the “try" and “except” blocks. In the except block, we can handle
the exceptions based on its type. The “except” Exception as “e “can handle any
exception. The try statement can be used with “else” and “finally”. The else is used
when the try block gets executed successfully. The interpreter always executes
the finally block, whether the error has occurred or not. In the advance part, we
learned how to make our own exceptions. In the next chapter, you will learn about
file handling.

Questions
 1. Write the output of following program:

list1 = [0]

for each in list1:

 try:

 if each == 0:

 continue

 finally:

 print ("I am inevitable ")

 2. Write any five types of exceptions.

Chapter 10
File

Handling

We usually store data in a text file. The text files are convenient to use as they are
platform-independent; almost every operating system recognizes text files.

The text files are straightforward to read and write. A text file can act as both, an
input and output, for a program. There is a particular format, which is used to store
the complex data structures like list and dictionary. In this chapter, we will use pickle
and JSON to store complex data structures. The stored data can be considered as a
local database and retrieved again.

Structure
 ● Text files

 ● Reading text from a file

 ● Writing text to a file

 ● With statement

 ● Pickle

 ● JSON with Python

164  Python for Developers

Objective
In this chapter, you will learn how to read and write a text file. You will learn about
reading and writing the data, line-by-line. After the text file, the pickle and JSON
files will be discussed. We will see the advantages of these files over text files.

Text files
We have seen examples of programs that have taken the input data from the users
at the keyboard. With Python, it is easy to read strings from plain text files. You can
store data in a text file. As you already know, text files are platform-independent.

Reading text from a file
The Python built-in function open(), is used to open the file. The open() function
creates a file object, which is used to read and write a file.

See the following syntax of the open() function:
file object = open(file_name, access_mode)

The first argument, file_name, represents the file name that you want to access.

The second argument, access_mode, determines in which mode the file has to be
opened - that is, read, write, append, and so on.

The Access_mode for reading is 'r’.

We created a file on our system using a text editor. Showcased below are the contents
of the file:

Figure 10.1

We saved the file with the name simple1.txt, and put it in the same directory for
easy access.

File Handling  165

See the following program:
file_read = open("sample1.txt", "r")

print (file_read.read())

file_read.close()

Let us see the output first, then we will discuss the code:

Figure 10.2

The file_read is an object, and the read() method has been used to read the entire
content of the file. The last line, file_read.close(), closed the file.

You can read the characters from the file by supplying an integer argument to the
read() method.

Let us discuss this in next example:
file_read = open("sample1.txt", "r")

print(file_read.read(9))

print (file_read.read(10))

file_read.close()

See the following screenshot for the output:

Figure 10.3

The second-line, file_input.read(9), reads the first nine characters. The third line
reads the next ten characters.

166  Python for Developers

To read line-by-line, use the readline() method. Let us discuss this in the next
example.
file_r = open("sample1.txt", "r")

print (file_r.readline())

print (file_r.readline(15))

print (file_r.readline(7))

file_r.close()

Let us see the output in the following screenshot:

Figure 10.4

If you specify the count integer in the readline() method, then it reads character
by character, similar to the read(count) method.

What happens if we use the readlines() function.

Let us discuss this in the next example:
file_r = open("sample1.txt", "r")

print (file_r.readlines())

file_r.close()

See the following screenshot:

Figure 10.5

File Handling  167

It returns a list of lines.

For reading lines from a file, you can loop over the file object. This is memory
efficient, fast, and leads to a simple code:
file_r = open("sample1.txt", "r")

for line in file_r:

 print (line)

file_r.close()

Let us see the output in the following screenshot:

Figure 10.6

If file is small, you can use the read() method. If file is very large, then you can use
the loop over file object methodology to read. If you want to know the current position
of the pointer, then you can use the tell() method. The tell() method returns the
integer that points to the current position.

Writing text to a file
In this section, we will discuss writing a file with Python. This time we will use the
write mode “w”, in the open() function.

We will use the write() function.

168  Python for Developers

Let us discuss our example:
file_w = open("pfd.txt", "w")

file_w.write("Welcome everyone\n")

file_w.write("Python Programming \n")

file_w.write("Nice to use ")

file_w.close()

The output is showcased in the following screenshot:

Figure 10.7

The file_write.py program has created a new file, pdf.txt. It has also written
three lines to the file, as showcased in the preceding screenshot.

You can write all three lines in a single function like this:
file_w.write("Welcome everyone\n Python Programming \n Nice to use ").

Next, we create the same file using the writelines() function. This method writes
a list of strings to a file. In this, we create a list of strings to be written:
list1 = ['Welcome everyone\n', 'Python Programming \n',

'Nice to use',]

file_w = open("pfd2.txt", "w")

file_w.writelines(list1)

file_w.close()

File Handling  169

The output is showcased in the following screenshot:

Figure 10.8

Here is a list of the different modes for opening a file:

Modes Description
r Opens a file for reading only. This is the default mode. This mode places the

pointer in the beginning of the file.
rb Opens a file for reading only in a binary format. This mode places the pointer

in the beginning of the file.
r+ Opens a file for reading and writing. This mode places the pointer in the

beginning of the file.
rb+ Opens a file for reading and writing only in the binary format. This mode places

the pointer in the beginning of the file.
w Opens a file for writing only. Creates the file, if it doesn't exist. If the file exists,

then overwrites the file.
wb Opens a file for writing only in the binary mode. Creates the file, if it doesn't

exist. If the file exists, overwrites the file.
w+ Opens a file for reading and writing. Creates the file, if doesn't exist. If the file

doesn't exist, overwrites the file.
wb+ Opens a file for reading and writing in binary mode. Creates the file if it doesn't

exist. If the file exists, overwrites the file.
a Opens a file for the appending mode. If the file doesn't exist, it creates a new

file. If the file already exists, the pointer is placed at the end of the file.
ab Opens a file for appending in binary mode. If the file doesn't exist, it creates

a new file. If the file already exists, the pointer is placed at the end of the file.
a+ Opens a file for appending and reading. If the file doesn't exist, it creates a new

file. If the file already exists, the pointer is placed at the end of the file.
ab+ Opens a file for appending and reading in binary mode. If the file doesn't exist,

it creates a new file. If the file already exists, the pointer is placed at the end of
the file.

Table 10.1

170  Python for Developers

The w mode creates a new file and writes again, but we want to update the file. Let
us discuss the a+ mode:
file_w = open("pfd.txt", "a+")

file_w.write("Good for beginners \n")

file_w.write("Got number rank 1 in IEEE ranking\n")

file_w.close()

See the following screenshot:

Figure 10.9

You have seen that in the a+ mode, the file got appended. You have seen the examples
of reading and writing. Actually, file_object is like a pointer. When we use the
read() method, the pointer starts from the first position, reads the entire file and
goes to end of the file. Let us understand this through an example:
file_read = open("sample1.txt", "r")

print (file_read.read())

print (file_read.read())

file_read.close()

File Handling  171

In the preceding code, the read method has been used two times. In the first glance,
we can say that the text should be written two times. Let us see the output in the
following screenshot:

Figure 10.10

The preceding screenshot shows that we are getting the desired text only once. The
second time, using the read() method gave nothing, because when the interpreter
called the read() method the second time, the pointer was at the end position of the
file. With the help of the seek() method, you can place the pointer at the beginning
of the file. See the following code:
file_read = open("sample1.txt", "r")

print (file_read.read())

file_read.seek(0,0)

print (file_read.read())

file_read.close()

172  Python for Developers

Let us see the output in the following screenshot:

Figure 10.11

To place the pointer at the beginning of the file, we use seek(0,0, and to place the
pointer at the end of the file, we use the seek(0,1) method.

The with statement
With the help of the with statement, you can read and write the files. The with
statement also takes care of exception handling. Let us see the program:
with open("sample1.txt", "r") as f_r:

 print (f_r.read())

File Handling  173

See the code’s output in the following screenshot:

Figure 10.12

You can see that we have not used the close statement. with also takes care of closing
the file. Similarly, let us see the code for writing a file:

with open("sample3.txt", "w") as f_w:

 f_w.write("what we think we become\n")

 f_w.write("Hackers are here where are you ")

The following screenshot is showcasing the output:

Figure 10.13

You can see how easy it is to read and write the file using the with statement. In the
next section, we will learn about pickle.

174  Python for Developers

Pickle
Text files are convenient because you can read, write, and append them with any text
editor. However, they are limited to storing a series of characters. Sometimes, you
may want to save more complex information, like the list, the dictionary.

Here we will use Python pickle. Python pickle is used for storing more complex data
like a list or a dictionary. Let us discuss this with the help of an example:
import pickle

name = ["Mohit", "Sahil", "Ravender"]

skill = ["Python", "Face recog", "Data Science"]

file_w = open("sample.raj", 'wb')

pickle.dump(name, file_w)

pickle.dump(skill, file_w)

file_w.close()

The program seems a little complex. Let us discuss it line-by-line:
import pickle

The pickle module allows you to pickle and store more complex data in the file:
name = ["Mohit", "Sahil", "Ravender"]

skill = ["Python", "Face recog", "Data Science"]

These are the two lists that have to be stored:
file_w = open("sample.raj", 'wb')

Create a file object in the “write” mode, as we have learned in the previous File
chapter:
pickle.dump(name, file_w)

pickle.dump(skill, file_w)

We want to store two lists, name and skill, in the sample.raj file using the pickle.
dump() function. The function requires two arguments – first, the data to pickle, and
second, the file to store it.
file_w.close()

Finally, the program closes the file.

So, this code pickles the list referred to by name, and writes the whole thing as one
object to the sample.raj file. Next, the program pickles the list referred to by skill
and writes the entire thing as one object to the file.

File Handling  175

Reading data from file and unpickling
In this section, we will see how to retrieve and unpickle the two lists with the
pickle.load() function. The function takes one argument as a file, from which it
has to load the next pickled object:
import pickle

file_r = open("sample.raj", 'rb')

list1 = pickle.load(file_r)

print (list1)

list1 = pickle.load(file_r)

print (list1)

file_r.close()

See the following screenshot:

Figure 10.14

The program reads the first pickled object in the file, unpickles it to produce the
list ["Mohit", "Sahil", "Ravender"] and assigns the list to name. Next, the
program reads the next pickled object from the file and unpickles it to produce the
list ["Python", "Face recog", "Data Science"] and assigns the list to a variable
skill. You can pickle number, string, list, tuple, and dictionary.

Now we can say that pickle stores and retrieves the list sequentially. You cannot
access keys randomly. But with the help of the dictionary, we can access the lists
randomly. Let us see the next program:

import pickle

name = ["Mohit", "Sahil", "Ravender"]

skill = ["Python", "Face recog", "Data Science"]

dict1 = {}

176  Python for Developers

dict1['name'] = name

dict1['skill'] = skill

file_w = open("sample1.raj", 'wb')

pickle.dump(dict1, file_w)

file_w.close()

After running the program, a file named sample1.raj will be created. Let us read
the file, with the help of the following program:
import pickle

file_r = open("sample1.raj", 'rb')

data = pickle.load(file_r)

print (type(data))

print (data.get('skill'))

print (data.get('name'))

Let us run and see the output in the following screenshot:

Figure 10.15

In the preceding program, the pickle.load(file_r) statement returns a dictionary,
which contains two keys: name and skill. Now we can access the lists, which act as
the values of the dictionary data, with the help of keys. You have seen that the pickle
files are beneficial for storing the data.

Let’s consider a situation where you stored a data in the hard disk, using the pickle
format and that data has to be used by a different programming language. In that
case, the pickle file would not work, because only Python can understand the pickle
syntax. For a case like this, we need a format that can be recognized by another
programming language. To solve that problem, we use the JSON format.

JSON with Python
JSON (JavaScript Object Notation) is a very common format for creating web APIs.

File Handling  177

Let us see how to store a dictionary in a JSON file:
import json

name = ["Mohit", "Sahil", "Ravender"]

skill = ["Python", "Face recog", "Data Science"]

dict1 = {}

dict1['name'] = name

dict1['skill'] = skill

fw = open("mydata.json", "w")

json.dump(dict1,fw, indent=2)

fw.close()

The syntax is very similar to the previous pickle programs. JSON format can be read
easily.

See the following screenshot:

Figure 10.16

Reading the JSON file using Python program:
import json

f = open("mydata.json", "r")

data = f.read()

jsondata = json.loads(data)

print (jsondata)

print (jsondata.get('skill'))

f.close()

178  Python for Developers

Output is showcased in the following screenshot:

Figure 10.17

To read the JSON file, we open the file, read the data, and put the data in the json.
loads() method. The method returns the dictionary. On the returned dictionary,
you can apply the dictionary operations.

Exercise
 1. Find the frequency of a particular word, irrespective of the case.
 2. Find the duplicate line in the file.

Answer 1:
Solution 1.
If file size is small.

file_r = open("sample1.txt", 'r')

text = file_r.read().lower()

str1 = input("Enter the string to be checked ")

occ= text.count(str1)

print ("The %s occured %d times"%(str1, occ))

See the following screenshot for the output:

Figure 10.18

File Handling  179

If file size is huge:
file_r = open("sample1.txt", 'r')

i =0

str1 = input("Enter the string to be checked ")

for line in file_r:

 n=line.lower().count(str1)

 i = i+n

print ("The %s occurred %d times"%(str1, i))

The output is showcased in the following screenshot:

Figure 10.19

Answer 2:

We purposely created two duplicate records, as showcased in the following figure:

Figure 10.20

180  Python for Developers

See the following program:
file_r = open("sample1.txt", "r")

list1 = []

i = 1

for line in file_r:

 line = line.strip()

 line = line.strip("\n")

 if line in list1:

 print ("Duplicate Record--> ", line, "\nat ",i)

 else :

 list1.append(line)

 i = i+1

file_r.close()

See the output in following screenshot:

Figure 10.21

Conclusion
In this chapter, you have learned about storing and reading data from a text file.
The text file stores the data in the string format. The read() method is mainly used
to read the text file and the write() method is used to write the text file. You learned
that pickle files are used to store the complex data structures like list, dictionary, and
tuple. The JSON file can be read and written in different programming languages.
In the next chapter, you will learn about the collections module, which contains a
special type of containers.

Questions
 1. For writing purpose, what is the difference between the “w” and “a” mode?
 2. What is the optimized way to print a text file the line-by-line?
 3. What are the advantages of a pickle file over a text file?
 4. What are the benefits of a JSON file over a pickle file?

Chapter 11
Collections

So far, you have learnt the built-in data structure of Python such as list, tuple,
and dictionary. The collections module includes the implementations of several

data structures and offers the particular type of data structures such as Counter,
Namedtuple, the Setdefault dictionary, deque, and the ordered dictionary. We
know a dictionary is an unordered collection of key-value pairs. If we want to
retain the order of items, then we can use the orderedDict dictionary of collections
module. Similarly, Deque offers a double-ended list, on which we can perform
addition and deletion at both ends. Gradually, you will learn the advantages of the
collection module.

Structure
 ● Counter
 ● Deque
 ● Namedtuple
 ● The default dictionary
 ● The ordered dictionary

182  Python for Developers

Objective
In this chapter, you will learn the collections modules. We will learn the different
classes offered by the collections module. The collections module offers several data
structures; however, in this chapter, we will learn the five data structure and they
are Counter, Namedtuple, the Setdefault dictionary, deque, and the ordered
dictionary.

Counter
A Counter is a container, and it tracks the frequency of the items. The counter takes
a sequence as an argument and returns the frequency of each item of the sequence.
Let’s learn by examples.

See the following example:
>>> from collections import Counter

>>> co = Counter("what we think we become")

>>> co

Counter({' ': 4, 'e': 4, 'w': 3, 'h': 2, 't': 2, 'a': 1, 'i': 1, 'n': 1,
'k': 1, 'b': 1, 'c': 1, 'o': 1, 'm': 1})

>>>

In the preceding example, Counter() is a class and co is the object of the Counter()
class. When we pass a string argument to the Counter() class, it returns a dictionary
like data structure (key and value); the key represents the letter of string, and value
represents the frequency.

Let’s take an example of a list:
>>> co1 = Counter([1,2,3,4,54,5,6,1,2,2,3,4,5])

>>> co1

Counter({2: 3, 1: 2, 3: 2, 4: 2, 5: 2, 54: 1, 6: 1})

>>>

You saw the Counter co1 object returned the dictionary-like data structure which
contains items of the list with their frequency.

Let’s see another example:
>>> Counter("INDIA")
Counter({'I': 2, 'N': 1, 'D': 1, 'A': 1})
>>> Counter(["INDIA"])
Counter({'INDIA': 1})
>>>

Collections  183

The preceding example shows two different examples of Counter. When you only
pass one string, the occurrences of the string's letter will be returned. If the list
contains a string, it will be treated as a single word by Counter.

Counter methods
In this section, we will see some important methods offered by the Counter class.
If we want to pass arguments like tuple, list, and so on, to the Counter object after
creation, then we can use the update() method.

update()
An empty or non-empty Counter can be updated by the update() method.

The following is the syntax of the update() method:
Co.update(sequence)

In the preceding syntax, the Co is the object of the Counter() class and sequence
refers to a tuple, list, string, and so on.

Let’s explore some examples of the update() method:

>>> from collections import Counter
>>> co1 = Counter("Intel")
>>> co1
Counter({'I': 1, 'n': 1, 't': 1, 'e': 1, 'l': 1})
>>> co1.update('dell')
>>> co1
Counter({'l': 3, 'e': 2, 'I': 1, 'n': 1, 't': 1, 'd': 1})

You can see the frequency letters of the string "Intel" have been updated by the new
string 'dell'.

In the following example, the existing Counter object is updated by the dictionary:
>>> co1.update({'e':2,'d':3})

>>> co1

Counter({'e': 4, 'd': 4, 'l': 3, 'I': 1, 'n': 1, 't': 1})

>>> co

Counter({'p': 3, 'z': 2, 'y': 1, 't': 1, 'h': 1, 'o': 1, 'n': 1})

With the help of the subscript operator, you can obtain the frequency of a particular
key as shown in the following example:

>>> co1['e']

184  Python for Developers

4

>>> co1['x']

0

>>>

The Counter does not raise KeyError for unknown items. If the item is not present,
the counter returns 0.

Consider a problem of the real world to calculate the frequency of letters from a text
file. A text example is shown in the following figure:

Figure 11.1

The following code calculates the frequency of each letter:

from collections import Counter

co = Counter()

file_r = open("sample1.txt")

text = file_r.read()

co.update(text)

file_r.close()

print (co)

print ("*************")

print (co.most_common(5))

The output is shown in the following screenshot:

Figure 11.2

Collections  185

The preceding program displays the frequency of all letters. However, you can
choose the first five letters of higher frequency. To select the top frequency letter, you
can use most_common().

The counter object contains several methods; we can check all the method as shown
in the following screenshot:

Figure 11.3

Almost all the methods are similar to dictionary methods.

Counter operations
In the Counter, you can apply sets operation such as addition, subtraction, union,
and intersection.

Consider we have two different Counter objects, as shown in the following examples:
>>> co1 = Counter("hacker")

>>> co1

Counter({'h': 1, 'a': 1, 'c': 1, 'k': 1, 'e': 1, 'r': 1})

>>> co2 = Counter("developer")

>>> co2

Counter({'e': 3, 'd': 1, 'v': 1, 'l': 1, 'o': 1, 'p': 1, 'r': 1})

>>>

Addition
Let’s add two counters. See the following example of addition of two counters:

>>> co1 + co2

Counter({'e': 4, 'r': 2, 'h': 1, 'a': 1, 'c': 1, 'k': 1, 'd': 1, 'v': 1,

186  Python for Developers

'l': 1, 'o': 1, 'p': 1})

>>>

The result shows that the frequency of common member has been added. The
following Venn diagram illustrates the preceding result. The blue region is our
answer:

Figure 11.4

Subtraction
The frequency of common members has been subtracted from Counter co1. The
following example shows the result of subtraction:
>>> co1 - co2

Counter({'h': 1, 'a': 1, 'c': 1, 'k': 1})

The following Venn diagram illustrates the preceding result. The blue region is our
answer:

Figure 11.5

Union
In the union, we add the members of Counter co1 and co2. The common members
have been not added. See the following example:

>>> co1 | co2

.

.

.

Collections  187

Counter({'e': 3, 'h': 1, 'a': 1, 'c': 1, 'k': 1, 'r': 1, 'd': 1, 'v': 1,
'l': 1, 'o': 1, 'p': 1})

>>>

The following Venn diagram illustrates the preceding result. The blue region is our
answer:

Figure 11.6

Intersection
The intersection returns the common member of co1 and co2. See the following
example:

>>> co1 & co2

Counter({'e': 1, 'r': 1})

>>>

The following Venn diagram illustrates the preceding result. The blue region is our
answer:

Figure 11.7

Deque
A double ended queue allows a use to add and remove an item at the both ends. In
instances where we need faster result, append and pop activities from both sides of

188  Python for Developers

the container. Deque is preferred over list because it takes O(1) operation for appends
and pops on either side. Deque is the enhanced version of the list.

Let’s discuss Deque operations and methods one by one. Deque supports some list
operations.

See the following example:
from collections import deque

de = deque("MOHIT")

print ("The number of items are :",len(de))

print ("Deque is ", de)

print ("First item ",de[0])

print ("Last item",de[-1])

As Deque is also a sequence, we can use the subscript operator with that. See the
output in the following screenshot:

Figure 11.8

The len() function returns the length of the deque. You can see the right and left
end of deque in the preceding screenshot.

Deque populating
Let’s discuss more operations of Deque. As we said earlier, double-ended queue
means you can add an item from either side.

Let's add more items to the deque:

from collections import deque

de = deque("MOHIT")

de.append("python")

print (de)

de.appendleft("Intel")

print (de)

Collections  189

de.extend("DELL")

print (de)

de.extendleft("DELL")

print (de)

The output in the following screenshot clearly shows the code effect. The
extendleft() method iterates over its input and performs the equivalent of an
appendleft() method for each item. The end result is that the deque contains the
input sequence in the reverse order:

Figure 11.9

deque consuming
Like adding, the deque can be consumed from both ends or either end. With the help
of pop and popleft(), the deque can be consumed.

Let's discuss our next example:
from collections import deque
de = deque("Python")
print (de)
print ("poped from right ",de.pop())
print (de)
print ("Poped from left ", de.popleft())
print (de)

See the output in the following screenshot:

Figure 11.10

190  Python for Developers

deque rotating
The deque allows you to rotate items on either side. Right rotation or clockwise is
taken as positive rotation. Use rotate(n) for right rotation up to n number. For left
rotation, use rotate(-n):
from collections import deque
de = deque([1,2,3,4,5])
print (de)
de.rotate(2)
print (de)
de.rotate(-2)
print (de)

See the following screenshot for the output:

Figure 11.11

From the output, you can deduce that in the right rotation, items are shifted to the
right direction. In the left rotation, things are shifted to the left direction.

There are some more methods that you can try:
>>> from collections import deque

>>> dir(deque)

['__add__', '__bool__', '__class__', '__contains__', '__copy__', '__
delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__
iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__
le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__',
'__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append',
'appendleft', 'clear', 'copy', 'count', 'extend', 'extendleft', 'index',
'insert', 'maxlen', 'pop', 'popleft', 'remove', 'reverse', 'rotate']

>>>

We did most of the methods in the list chapter.

Collections  191

Namedtuple
Now, we have seen several data types. But if you want to produce your datatype, the
namedtuple of collection module allows you to create your data type. If you want to
create a new type of data, you might want to ask some questions: what is the name
of the new data type, what are the new data type fields, and so on. Let's discuss the
namedtuple syntax:

collections.namedtuple(typename, field_names verbose=False, rename=False])

typename defines the name of the new datatype.

The field_names parameter can be a sequence of strings like ['x', 'y'] or a string
in which values are white space or "," separated.

If verbose=False, then the class definition would not be printed. It’s a good idea to
let it remain false.

If rename=False, then invalid field_names automatically get replaced with
positional names; for example 'for, age, empid' is converted to '_0, age, empid'
because ‘for’ is a keyword.

Let’s discuss our first example:
from collections import namedtuple
employee = namedtuple("IBM", "Name age emp",)
record1 = employee("MOHIT", 32, 121322)
print (employee)
print (record1)
print (record1.Name)
print (record1.age)
print (type(record1))

See the following screenshot for the output:

Figure 11.12

192  Python for Developers

Now you know how to access namedtuple values. Namedtuple is a beautiful thing;
we are getting properties of tuple and dictionary in the namedtuple. Namedtuple
are the immutable like tuples. You can access each element from its field name.

In the next example, you will see how to add list values into namedtuple and how
to make a dictionary from namedtuple:

from collections import namedtuple

employee = namedtuple("Intel", "Name age emp",)

list1 = ["Mohit", 32, 121322]

record1 = employee._make(list1)

print (employee)

print (record1)

print (record1.Name)

print (record1.age)

print (record1._asdict())

With the help of the _make() method, a list can be added to namedtuple provided
the list contains the same number of items as defined in namedtuple. The _asdict()
method returns the OrderedDict form of namedtuple. In the forthcoming section,
we will see the OrderedDict.

See the output in the following screenshot:

Figure 11.13

You have seen that by using the _make() method you can add the list into a
namedtuple and by using _asdict, you can create a dictionary of namedtuple.

Like tuple, the namedtuple are also immutable. But you can use the _replace
method with reassignment to replace the value from namedtuple. See the following
example:
from collections import namedtuple

employee = namedtuple("Intel", "Name age emp",)

record1 = employee("Mohit", 28, 121322)

Collections  193

print (record1)

print (record1._replace(age=32))

print (record1)

record1 = record1._replace(age=32)

print (record1)

The following screenshot shows the output:

Figure 11.14

The preceding results show that the reassignment worked well.

The default dictionary
So far, we have seen the regular dictionary. Now, we will learn the default dictionary.
The working of the default dictionary is the same as a regular dictionary. The default
dictionary uses a callable function called default_factory. The functionality of
default_factory will be seen in the following examples.

Function as default_factory
Let’s take a function as default_factory. See the following code:
from collections import defaultdict

def fun1():

 return "cricket"

d1 = defaultdict(fun1)

d1["Bhaskar"] = "Football"

d1["Ankur"] = "Badminton"

print (d1)

print (d1["Bhaskar"])

print (d1["Ankur"])

194  Python for Developers

print (d1["Mohit"])

print (d1)

See the output in the following screenshot:

Figure 11.15

The default_factory is a function that is defined earlier. So what is the default
value of the dictionary d1? By using d1["Bhaskar"]="Football", we have defined
a value "Football" on the "bhaskar" key. If a key is new (not found in dictionary d1),
then defaultdict does not give an error, and it will return the default value that is
returned by the default_factory function fun1. So, for the new key "Mohit", the
default value is "Cricket".

int as default factory
Let’s use int as default_factory. The default value of int is 0. In the following
example, we will calculate the frequency of a letter of a string:

from collections import defaultdict

d1 = defaultdict(int)

print (d1)

print (d1["X"])

print (d1['Y'])

str1 = "mohitpythonprogrammer"

for i in str1:

 d1[i]=d1[i]+1

print (d1)

See the following screenshot for output:

Figure 11.16

Collections  195

So d1["X"] and d1["Y"] are 0. The preceding program calculated the frequency of
characters of the string. You know the default value is 0. We incremented it by 1 and
in this way, the frequency gets calculated.

list as default_factory
Consider a real problem; you have a list of tuples pair shown as follows:
list_state = [('A', "a1"), ('A', 'a2'),('B','b'),('B','b2'),('C', 'c')]

The preceding list is the pair of (state, city). So, our aim is to make the state as key
and district a list of values. See the following code:
from collections import defaultdict
list_state = [('A', "a1"), ('A', 'a2'),('B','b'),('B','b2'),('C', 'c')]
d1 = defaultdict(list)
print (d1["Mohit"])
print (d1)
for k,v in list_state:
 print (k,v)
print (d1)

Let’s check the output in the following screenshot:

Figure 11.17

The default value is a Python list here. The first value of tuple is fixed as key and the
second value is being appended.

The ordered dictionary
The regular dictionary does not remember the order in which the items have been
entered. The order does not matter in the regular dictionary because the values are
accessed using the keys. OrderedDict is a dictionary that remembers the order in
which its contents are added.

196  Python for Developers

See the following syntax of the ordered dictionary:
d1 = collections.OrderedDict()

d1 is ordered dictionary here.

Let us see a simple example and for loop iteration on the OrderedDict:
from collections import OrderedDict

d1 = OrderedDict()

print (d1)

d1["D"] = "Dell"

d1["I"] = "IBM"

d1['S'] = 'Sapient'

d1["M"] = "MOHIT"

d1["T"] = "INTEL"

print (d1)

for k,v in d1.items():

 print (k,v)

The result is shown in the following screenshot:

Figure 11.18

Consider you have a regular dictionary, and you want to sort the items based on key
or value and want to retain the sorted order, then we will have to use the ordered
dictionary.

Sorted of dictionary based upon key
As we know, the regular dictionary may not maintain the order as they have entered.
The sorted function only works on the list or tuple. First, we will convert the given
regular dictionary to a list, then we will apply the sorted function; the sorted
function then sorts the list. The sorted list then will be saved to OrderedDict again.

Collections  197

See the following code:

from collections import OrderedDict

d1 = {}

print (d1)

d1[1] = "k"

d1[3] = "b"

d1[2] = "d"

d1[10] = "a"

d1[10] = "c"

list1 = sorted(d1.items())

d2 = OrderedDict(list1)

print (d2)

See the following output:

Figure 11.19

By default, the dictionary is sorted according to the key.

Sort the dictionary based upon values
Let’s write code to sort the dictionary according to the values. See the following
code:

from collections import OrderedDict

d1 = {}

print (d1)

d1[1] = "k"

d1[3] = "b"

d1[2] = "d"

d1[5] = "a"

198  Python for Developers

d1[10] = "c"

list1 = sorted(d1.items(),key= lambda tup : tup[1])

d2 = OrderedDict(list1)

print (d2)

The preceding lambda function changes the key to its value. Because d1.items()
returns the (key, value) pair. The lambda function makes key = value; thus, the
dictionary will be sorted by its value and stored in the ordered dictionary. See the
output in the following screenshot:

Figure 11.20

The lambda function will be explained in the Chapter 12, Random Modules and Built-in
Function chapter.

Conclusion
In this chapter, you have learnt about collections modules that offered the special
types of data structure. These data structures are like an enhanced version of a built-
in data structure such as deque, which has the ability to append and extend from
both the ends. The OrderedDict retains the order in which the items have been
inserted. You have learnt that namedtuple facilitates you to create your own data
type. The data type offers the power of tuple and dictionary simultaneously. The
default dictionary offers the way to keep duplicate keys. You have learnt that the
Counter is used to calculate the frequency of items of the sequence. This would
be helpful in the field of text analytics. In the next chapter, we will learn about the
random module and some built-in function of Python programming.

Question
 1. Calculate the frequency of words of a text file.

 2. Calculate the frequency of vowels in a given string.

 3. If we don’t use the default factory in defaultdict, then what would happen?

"The OTP has been sent. Generate the password,” you must have received such
kind of messages. Have you ever wondered how the system generates random OTP
or passwords? The Python offers a module called random, which facilitates you to
create random numbers. The Radom module allows you to create random integers,
float, and random items from the list. Python also offers some built-in function which
gives you a greater control on programming. For example, the filter function filters
the sequence based on the condition provided by the programmer. The map function
creates a new sequence object of mapped values in a given sequence. The reduce
function reduces the sequence based on the given condition and returns a single
value. There are more examples that you will learn in this chapter.

Structure
 ● The random module
 o Random functions for integers
 o Random functions for sequence
 o Random functions for floats

 ● Python special functions
 o Lambda
 o filter

Chapter 12
Random

Modules and
Built-in Function

200  Python for Developers

 o map
 o reduce
 o isinstance
 o eval
 o repr

Objective
In this chapter, you will learn the significance of the random module which helps a
programmer to create a random number. You will learn about some built-in functions
such as map, filter, lambda, eval, and isinstance. These functions provide
greater flexibility to a programmer.

The random module
The random module allows you to generate random numbers. The random number
helps in many ways. There are many different applications that use random numbers
such as password generator and random samples. In this chapter, we will learn the
random modules that will help us build the applications.

Random functions for integers
In this section, we will learn the function that deals with integers.

randint()
The function randint() generates the random number between the start and end
range, including start and end. See the following syntax of the randint() function:
random.randint(start, end)

Let us understand the randint() with help of examples:
>>> import random

>>> random.randint(5,15)

7

>>> random.randint(5,20)

9

>>> random.randint(5,15)

10

>>>

Random Modules and Built-in Function  201

The preceding randint() is returning an integer within the range. Let’s see what
happens when we don’t give the range:

>>> random.randint(5)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: randint() missing 1 required positional argument: 'b'

>>>

If integer start and end are not defined, then an error will be raised.

randrange()
It returns the random number selected from a range (Start, stop, step). The
default value of start is 0 and the default value of step is 1. If we introduce the step
integer, then it returns the value according to the following condition:
Start+step*n<= stop

The n can be any integer.

See the following syntax of randrange():
random.randrange(start, stop ,step)

The default value of start and step are 0 and 1, respectively:

>>> random.randrange(10)

7

>>> random.randrange(10)

0

We are getting random values between 0 to 10:

>>> random.randrange(10,30)

23

>>> random.randrange(10,30)

15

>>> random.randrange(10,30)

17

Now, we are getting values between 10 and 30.

Let’s introduce the third-argument step:

202  Python for Developers

>>> random.randrange(10,30,2)

12

>>> random.randrange(10,30,2)

26

>>> random.randrange(10,30,5)

25

>>> random.randrange(11,30,5)

11

>>> random.randrange(11,30,5)

11

>>> random.randrange(10,30,5)

15

>>> random.randrange(10,30,5)

15

>>> random.randrange(10,30,5)

25

>>> random.randrange(11,30,5)

16

>>>

You can see, we are getting the results according to the following condition:
Start+step*n<= stop

Random functions for sequence
In this section, we’ll discuss the function related to a sequence.

Choice(rnlist)
The choice() function returns the random value from the sequence.

See the following syntax:
random.choice(rnlist)

Here the random value would be generated from the rnlist list.

>>> random.choice((1,2,3))

2

>>> random.choice('abdbc')

Random Modules and Built-in Function  203

'b'

>>>

>>> random.choice([3,4,5])

4

>>> random.choice({1:"a",2:"b"})

'a'

You can also use a tuple and string.

shuffle()
The shuffle function shuffles the items in the list.

See the following syntax of the shuffle() function:
random.shuffle(list1)

list1 is the list provided by the user.

Let's discuss the example.

>>> list1 = [14,12,56,90]

>>> import random

>>> list1 = [14,12,56,90]

>>> random.shuffle(list1)

>>> list1

[56, 90, 14, 12]

 Note: The shuffle function changes the original list.

Sample()
The sample() function is used to obtain a sample from the sequence (string, list,
tuple).

See the following syntax of the sample() function:
random.sample(sequence, length)

A sequence can be a string, list, or tuple.

The length specifies the length of the sample to be obtained.

Consider you have a list of the heights of children from different schools and you
want to pick a sample that must be unbiased. In this situation, we will use the
sample() function shown as follows:

204  Python for Developers

>>> import random

>>> class_5th = [3,4,3,4,3,4,3.5,5.1,5.3,4,5,4.2,4.9,5,5.5,4,5.4,4,4.5,4
.6,4.7,5.5,4.6,5.6,4,5]

>>> sample1 = random.sample(class_5th, 5)

>>> print (sample1)

[4.9, 5.5, 5.3, 4.6, 5]

>>>

Random functions for floats
In this section, we’ll see the random functions for floats.

random()
This function returns the float value between 0 and 1. See the following examples:

>>> import random

>>> random.random()

0.3532376202318188

>>> random.random()

0.7606196756783162

>>>

Uniform(start, end)
This function returns a float value between start and end ranges.

See the following examples for more understanding:

>>> random.uniform(3,10)

7.766192509269688

>>> random.uniform(3,10)

6.331910461269013

>>> random.uniform(3,10)

7.629416621046077

>>>

Exercise
In this section, we will see some practical use of random modules.

Random Modules and Built-in Function  205

The Tombola game
In this exercise, we will create a random number generator with the following
condition:
 ● The number must be int
 ● Ranges from 1 to 100
 ● Non-repeatable

See the following code:

import random

list1 = list(range(1,101))

random.shuffle(list1)

for each in list1:

 print (each)

 input("Press enter to get next value ")

See the output in the following screenshot:

Figure 12.1

The preceding program is working fine.

The OTP generator
In this exercise, we will generate a random OTP number. See the following conditions:
 ● The OTP must contain the numbers and letters
 ● The OTP length should be 6

206  Python for Developers

See the following code:

import random

def password_gen():

 str1 = "1234567890"

 str2 = "abcdefghijklmonpqrstwxyz"

 list1 = random.sample(str1,3)

 list2 = random.sample(str2,3)

 list1.extend(list2)

 random.shuffle(list1)

 otp = "".join(list1)

 return otp

print (password_gen())

Check the output in the following screenshot:

Figure 12.2

Python special functions
In this section, we will discuss some built-in functions of Python, which may be very
helpful for making a program.

Lambda
The lambda function does not have the def statement. Its anonymous functions can
be used for small tasks. Let’s examine the syntax and see an example:
lambda arg1 ,arg2,...argn : expression

Random Modules and Built-in Function  207

The arg1, arg2 are the arguments and the expression returns value after calculation.

Let’s discuss the examples of the lambda function:
l = lambda x : x**2

print (l(9))

In the preceding piece of code, the square of the given number is calculated:
l = lambda a,b : a+b

print (l(3,5))

In the preceding piece of code, the addition of two numbers has been performed.

See both the output in the following screenshot:

Figure 12.3

The lambda can take any number of arguments and returns only one expression.

filter()
The filter() function is an easy way to create a filtered list. See the following syntax
of the filter function.
filter(function1, list1)

The list1 is an iterable here; the filter function filters the list1 based on true or
false return by the function1. If function1 returns true, it means interpreter
retains the list1 items:

list1 = [1,2,4,5,6,7,8]

def fun1(x):

 t = x%2

 if t==0:

 return True

 else :

 return False

208  Python for Developers

res=filter(fun1,list1)

print (list(res))

See the output of the following code in the following screenshot:

Figure 12.4

The return value of a filter function in Python 3 is kind of an iterator type object.
You can convert the returned value into list using the list() function.

You can also write same code with the help of the lambda function. Check out the
following code:

list1 = [1,2,4,5,6,7,8]

list2 = filter(lambda x: x%2==0, list1)

print (list(list2))

map()
The map() function is used to map the value. It retuned a new iterator object that
contains mapped value after applying the given function to each item of a given
sequence (iterable).

See the following syntax of the map() function:
map(function1, iterable)

Each item from the iterable (maybe list, tuple) transfer to the function function1
and the function map() returns an iterator (can be converted to list) with mapped
values. Let’s see the example to map Celsius to Fahrenheit:

list1 = [0,10,37, 38, 45]

def fun1(temp_c):

 f = 9/5*temp_c+32

 f = round(f,2)

Random Modules and Built-in Function  209

 return f

resp = map(fun1, list1)

print (resp)

print (list(resp))

See the following output:

Figure 12.5

Like filter, the map function also returns an iterator kind of object. Like filter, we
can use the lambda function in the map() also. See the following code:

list1 = [0, 10, 37, 40 ,45]

a=map(lambda temp1:9.0/5*temp1+32, list1)

print (list(a))

reduce()
The reduce() function accepts a sequence and reduces it based on the function
specified as an argument. See the following syntax:

reduce(fun1, list1)

In the preceding function, fun1 is the function, and based on the output of the
function fun1, the list1 sequence gets reduced:

from functools import reduce

list1 = [136,12,37, 8, 45]

def fun1(x,y):

 c = x-y

 return c

resp = reduce(fun1, list1)

print (resp)

210  Python for Developers

See the output of the following code:

Figure 12.6

The reduce function reduces the list [136,12,37, 8, 45] as shown in the following
figure:

Figure 12.7

I hope you get the sense of the reduce function.

isinstance()
Consider a situation where you have a list of heterogeneous values, and you want to
perform the calculation on the integer value:

list1 = [12,3,4.7,5,6,'2', 'a', 'b', 5.6 ,6, 7]

bw = 20

for each in list1:

 try :

 kpi = each/bw*100

 print (kpi)

 except Exception as e :

 print (e)

The preceding program is working fine, but logically, the try block also allows
the float values. However, we want to calculate only integer values. We need some
condition checking system. The isinstance() function takes two arguments, first

Random Modules and Built-in Function  211

is an object and second is a class. If an object is the instance of the given class, then
isinstance() returns True, False otherwise:
list1 = [12,3,4.7,5,6,'2', 'a', 'b', 5.6 ,6, 7]

bw = 20

for each in list1:

 try :

 if isinstance(each, int):

 kpi = each/bw*100

 print (kpi)

 except Exception as e :

 print (e)

See the output in the following screenshot:

Figure 12.8

It is always advisable to check the type of object before doing any calculation on the
object.

eval()
The eval() function evaluates the expression passed as an argument. Let’s see the
syntax, then we will discuss it with the help of examples:
eval(expression)

In the preceding syntax, the expression must be in the string form.

Let’s see some examples:
>>> exp = "12+10*2"

>>> exp

'12+10*2'

>>> eval(exp)

32

212  Python for Developers

In the preceding example, the exp is a string; the eval function removes the quotes
and calculates the result. Let’s discuss a new case:
>>> a = 10

>>> eval("a")

10

>>> eval("b")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<string>", line 1, in <module>

NameError: name 'b' is not defined

>>>

In the preceding example, a is a variable and eval() takes the string a as an argument.
The eval() function removes the quotes (“) and evaluates it. Consider you have a
list, but the list is in a string form shown as follows:
>>> list1 = [1,2,3]

>>> list1 = str(list1)

>>> type(list1)

<class 'str'>

>>> list1

'[1, 2, 3]'

>>>

The list1 looks like a list, but it is a string. To convert that into the list again, we can
use the eval function:
>>> list1 = eval(list1)

>>> list1

[1, 2, 3]

>>> type(list1)

<class 'list'>

>>>

Now, you can see, the list1 is a list, not a string.

repr()
The str() and repr() both return a string object. The goal of the repr() function
returns the official string representation of a passing object. The goal of the repr()

Random Modules and Built-in Function  213

function is to go unambiguous and display the passing object, mainly used for
debugging purpose, whereas str() displays a representation of the passing object.
Let’s understand this through the following example:

>>> str1 = "Mohit"

>>> str(str1)

'Mohit'

>>> repr(str1)

"'Mohit'"

>>>

In the preceding example, the str() function is taking a string object as an argument,
which returns the same thing, whereas the repr() function puts the quotes and
displays the object as it is. Let’s take a sample datetime module:

>>> import datetime

>>> print (str(datetime.datetime.now()))

2019-09-14 22:08:58.605730

>>>

The str() function returns a readable form of the object. See the following example
of repr() function.

>>> print (repr(datetime.datetime.now()))

datetime.datetime(2019, 9, 14, 22, 9, 5, 941337)

>>>

But the repr() function returns the object as it is.

I hope you got the sense of the repr() function.

Conclusion
In this chapter, you have learned the random module. The random module contains
a variety of functions which can be applied on int, float, string, list, and tuple. The
purpose of the random module is to generate a random value without any biasing.
The random module allows us to build much application such as OTP, password
generator, and ludo game. You have also learned the special types of function that
gives the programmer great control and helps to speed up the programming. The
filter function filters the value based on a given condition; similarly, map function
returns the object that contains mapped values. The reduce function reduces the
given sequence based on the condition specified in the given function. The eval
function evaluates the expression. Sometimes, we got the list in the form of a string.
The eval function helps to convert that string into the list again.

214  Python for Developers

Questions
 1. What are the return type of filter and map functions?

 2. How to do shuffling using a sample function?

 3. How to get random numbers between 1 and 100?

 4. How to use lambda with filter and map functions?

We often get scenarios where we deal with time-based events. For example,
when we talk about the performance of code, we consider the time elapsed

to execute the code. Sometimes, we deal with dates such as current date previous
date, for example, how many records have been entered in the past five days. In
order to deal with these type of situation, we use the time module in Python. Python
offers several modules to deal with time-related things. In this chapter, we’ll learn to
handle the time-related situations.

Structure
 ● The time module
 o Current Epoch time
 o Current time
 o Conversion of epoch to human readable format
 o Creating time difference
 o Conversion of Human readable to epoch time
 o time.sleep()
 ● The Datetime module
 ● Dealing with Timezone using the Pytz module
 ● The calendar module

Chapter 13
Time

216  Python for Developers

Objective
In this chapter, you’ll learn the time modules. With the help of the time module,
we’ll produce the current time and epoch time. We’ll learn different types of human-
readable format. We’ll see some handy modules such as datetime to produce the
current time and time differences. In the end, we will learn how to deal with time
zones.

The time module
In this section, we’ll see the time module. The time module helps to create the epoch
time, conversion of epoch to human-readable, and human-readable to epoch. Most
of the functions defined in time modules call the functions of the C library with
the same name. Let’s see what functions are offered by the time module. See the
following command of the interpreter:

>>> import time

>>> dir(time)

['_STRUCT_TM_ITEMS', '__doc__', '__loader__', '__name__', '__package__',
'__spec__', 'altzone', 'asctime', 'clock', 'ctime', 'daylight', 'get_
clock_info', 'gmtime', 'localtime', 'mktime', 'monotonic', 'monotonic_
ns', 'perf_counter', 'perf_counter_ns', 'process_time', 'process_time_
ns', 'sleep', 'strftime', 'strptime', 'struct_time', 'thread_time',
'thread_time_ns', 'time', 'time_ns', 'timezone', 'tzname']

>>>

In the preceding functions, we will use most of them.

Current Epoch time
In Python, the time module offers the time method to produce a current epoch. A big
question here: what is epoch?

The epoch time, also known as Unix timestamp or POSIX time, is the total number
of seconds (int or float) that have elapsed since January 1, 1970 (midnight UTC/
GMT). The Epoch time is a number that is continuously increasing. This epoch is
useful to compare two time units as almost every language supports the epoch time.
In Python, we use the following syntax:
import time; time.time()

For more details on Epoch time, you can check its official website https://www.
epochconverter.com/.

Check out the following syntax to find the current epoch:

Time  217

>>> import time

>>> time.time()

1568564149.7536805

>>>

When I pressed enter after typing time.time(), then it returns the time, in seconds,
have elapsed since 1 Jan 1970 (GMT).

Current time
In order to produce the current time, we use time.ctime(). See the following
syntax:
time.ctime(secs)

The time.ctime() function converts the seconds or epoch to a 24-character string
of the following form: 'Tue May 21 22:53:12 2019'. If no argument is provided,
then time.ctime() returns the current time.

Let’s understand by the following examples:
>>> import time

>>> time.ctime()

'Tue May 21 22:54:00 2019'

>>>

>>> time.ctime(1212121)

'Thu Jan 15 06:12:01 1970'

>>>

Conversion of epoch to a human readable format

Let’s see how to convert a given epoch time to a human-readable format:
 ● First convert the given epoch into nine tuple format or time_struct using

the localtime() function shown as follows:
>>> t = time.time()

>>> t1 = time.localtime(t)

>>> t1

time.struct_time(tm_year=2019, tm_mon=5, tm_mday=21, tm_hour=22,
tm_min=46, tm_sec=42, tm_wday=1, tm_yday=141, tm_isdst=0)

 ● Convert the nine tuple format to a human-readable form. To convert, we
will use time.strftime() function. The time.strftime() takes two
arguments, first is a desired date directive format and second is the time in
the struct_time format or tuple format shown as follows:

218  Python for Developers

>>>

>>> time.strftime("%b %d %Y %H:%M:%S", t1)

'May 21 2019 22:46:42'

I used %b, %y, %Y. These are the directives. Check out the following section for
directives:
 ● %a: Weekday name in an abbreviated form, for example, Mon, Sun, and so on.
 ● %A: Complete weekday name in capital case.
 ● %b: Month name in abbreviation such as Sep and Jan.
 ● %B: Complete month name in capital case.
 ● %C: Century number only, for example, 20, 19.
 ● %d: Day number of the month (01 to 31).
 ● %D: Return the time in the form of /month number/day number/century

number.
 ● %e: Day number of the month (1 to 31).
 ● %y: Year number without the century.
 ● %H: Hour number according to a 24-hour clock (00 to 23).
 ● %I: Hour number based on a 12-hour clock (01 to 12).
 ● %j: Day number of the year (001 to 366).
 ● %m: Month in number (01 to 12).
 ● %M: Minute(s).
 ● %p: According to the provided time, it will return AM or PM.
 ● %r: Same %I:%M:%S %p, for example, '10:49:46 PM'.
 ● %R: Return time in the "%H:%M" format.
 ● %S: Second(s).
 ● %T: Current time, same as %H:%M:%S.
 ● %u: Weekday in number (1 to 7), Sunday=7.
 ● %W: Week number of the year specified in the given time, beginning with the

first Monday of the first week.
 ● %w: Weekday in number (1 to 7), Sunday=0.
 ● %x: Same as %m/%d/%y without the time.
 ● %X: Same as %H:%M:%S.
 ● %y: Year number without a century (range 00 to 99).
 ● %Y: Year number, including the century (2019).
 ● %Z: Time zone name (India Standard Time).
 ● %z: Time zone in plus or minus hours (+0530).

Time  219

If you give abbreviated month names such as Aug and Jan, then the %b directive
would be used.

Creating time difference
Producing the time difference is very easy. Let’s add one hour; an hour contains 3600
seconds, so add 3600 seconds to the current time:

>>> import time

>>> now1 = time.time()

>>> t1 = now1+ 3600

>>> t1

1558463563.593892

>>> time.ctime(t1)

'Wed May 22 00:02:43 2019'

>>>

>>> time.ctime(now1)

'Tue May 21 23:02:43 2019'

>>>

Conversion of human-readable date to epoch
time
In this section, we will convert the human-readable date to epoch time. We’ll use the
time.strptime(date, format) function.

Let’s convert “6-Jan 1987” to epoch UNIX time stamp.

Let’s first convert the date to struct time. See the following code:

>>> import time

>>> t= time.strptime("6-jan 1987",'%d-%b %Y')

>>> t

time.struct_time(tm_year=1987, tm_mon=1, tm_mday=6, tm_hour=0, tm_min=0,
tm_sec=0, tm_wday=1, tm_yday=6, tm_isdst=-1)

Now convert the struct time to epoch time.

>>> time.mktime(t)

536869800.0

Now you can use following method too.

220  Python for Developers

>>> import calendar

>>> calendar.timegm(time.strptime("6-jan 1987",'%d-%b %Y'))

536889600

The mktime and calendar.timegm both are giving different output.

Let us check the difference:

>>> time.ctime(536889600)

'Tue Jan 6 05:30:00 1987'

>>>

>>> time.ctime(536869800)

'Tue Jan 6 00:00:00 1987'

>>>

The calendar.timegm converts the time automatically according to timezone.

If you want to produce some delay in the execution, then you can use time.sleep().

time.sleep(second)
The time.sleep() function suspends the execution of the current process for the
given number of seconds. See the following code and then check the output:

import time

print (time.ctime())

time.sleep(20)

print (time.ctime())

The output is shown in the following screenshot:

Figure 13.1

There are some other modules that are useful and contain handy methods.

Time  221

The datetime module
According to Python docs, “The datetime module supplies classes for manipulating dates
and times in both simple and complex ways”.

So, datetime modules contains several classes. Let’s discuss one by one:
datetime.datetime.today()

The datetime.datetime.today() method returns today’s date. See the following
example:

>>> import datetime

>>> print (datetime.datetime.today())

2019-10-15 22:26:45.244975

>>>

datetime.datetime.now()
The datetime.datetime.now() method returns the current time with date:

>>> print (datetime.datetime.now())

2019-10-15 22:26:50.492970

>>>

The output of datetime.datetime.now() is the same as produced by datetime.
datetime.today(), however, the datetime.datetime.now() method can produce
the time of a different time zone. We will see this feature in the pytz module.

datetime.timedelta class
With the help of the datetime.timedelta class, we can perform addition and
subtraction on datetime to produce a new date.

The class datetime.timedelta accepts keyworded arguments. According to
pydocs, all arguments are by default kept 0. Arguments may be floats, ints, and
longs, in positive or negative form.

Let’s see the syntax of timedelta:

datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0,
minutes=0, hours=0, weeks=0)

Let’s create the time difference:
>>> datetime.timedelta(days=2, hours=2)

datetime.timedelta(days=2, seconds=7200)

222  Python for Developers

You can see how hours are converted to seconds. From the syntax, it is obvious that
all arguments are default arguments with the value 0. The timedelta class only
stores the days, seconds, and microseconds. The passed argument gets converted in
the following way:
 ● A millisecond gets converted to 1000 microseconds
 ● A minute gets converted to 60 seconds
 ● An hour gets converted to 3600 seconds
 ● A week gets converted to 7 days

Let’s create time differences using datetime.timedelta class:

Produce the current time shown as follows:
>>> import datetime

>>> t1=datetime.datetime.now()

>>> print (t1)

2019-05-22 22:58:16.614310

>>>

Create a timedelta of 2 days and 2 hours later and previous as shown here:
>>> d1 = datetime.timedelta(days=2, hours=2)

>>> d2 = datetime.timedelta(days=-2, hours=-2)

>>>

>>> t2 = t1+d1

>>> print (t2)

2019-05-25 00:58:16.614310

>>>

>>> t3 = t1+d2

>>> print (t3)

2019-05-20 20:58:16.614310

>>>

You can easily conclude the time difference between current time, t2, and t3. If you
want to convert time delta into number of seconds. You can take the help d1.total_
seconds(), where d1 is the timedelta.

Dealing with Timezone with the pytz module
The pytz modules is used to create the time of different timezones.

Time  223

Let’s create the current time of India and US. Check out the following series of code:
>>> import datetime

>>> import pytz

>>> print (datetime.datetime.now(pytz.timezone('US/Eastern')))

2019-05-22 13:51:35.448140-04:00

>>>

>>> print (datetime.datetime.now(pytz.timezone('Asia/Kolkata')))

2019-05-22 23:21:59.950024+05:30

>>>

Now, we are using pytz with datetime. In order to obtain the time of particular
time-zone, you must know a string such as ‘Asia/Kolkata’.

Let’s consider you don’t know the string of timezone. We’ll explore the pytz module.
See the following screenshot:

Figure 13.2

The timezone method we have already used:
>>> pytz.country_names
<pytz._CountryNameDict object at 0x000001A4A9D44DA0>

It is dictionary like object:
>>> pytz.country_names.items()
ItemsView(<pytz._CountryNameDict object at 0x000001A4A9D44DA0>)

224  Python for Developers

See the following screenshot for more clarification:

Figure 13.3

In this way, you can obtain the abbreviation with a country name.

Time  225

Now, if you are certain about the abbreviation, then you can check the time zone
using an abbreviation as shown in the following commands:

Figure 13.4

The preceding code shows the timezones of Mexico and US:
>>> import datetime

>>> print (datetime.datetime.now(pytz.timezone("America/Mexico_City")))

2019-05-24 12:00:27.763500-05:00

>>>

In this way, you can get time of any timezone of any country.

Let’s complete one exercise.

Print all the timezones and the current time of US.

See the following code:
import pytz, datetime

print ("MY Time", datetime.datetime.now())

for tz in pytz.country_timezones("US"):

 print (tz.ljust(30) ,datetime.datetime.now(pytz.timezone(tz)))

226  Python for Developers

Let us check out the output in the following screenshot:

Figure 13.5

The calendar module
In this module, we’ll learn the methods offered by the calendar module. With the
help of this module, we can print any month, year, and even detect the leap year.
Let’s use some methods one by one.

Time  227

Printing a full month
To print a full month, we take the help of the month() method. The month() method
takes two arguments: year and month. See the following screenshot:

Figure 13.6

By providing a year and month, we can print any month.

228  Python for Developers

Printing a year
With the help of the calendar() method, we can print a complete year. The
calendar() method just takes one argument, that is, the year. See the following
screenshot:

Figure 13.7

Time  229

Curious case of 1752
In this section, we’ll see the exciting case of 1752. Before jumping to the story, let’s
quickly print the calendar of 1752. See the following screenshot for the 1752 calendar:

Figure 13.8

230  Python for Developers

Now, print the calendar 1752 in Linux as well. See the following screenshot from
Linux:

Figure 13.9

Please check the first day and last of both the calendars. The Python-generated
year is showing, Saturday is first day. The Linux calendar shows Wednesday is the
first day. But the last day (31 Dec) of both the calendars is Sunday. So, where is
the problem? Check the month of September of the Linux-generated calendar. A
total of 11 days are missed out. This is not any Linux error. Currently, we are using
the Gregorian calendar, before September 3, 1752; two calendars were prevalent—
one was Gregorian, and the other was Julian. The Julian calendar was fractionally
too long and the Gregorian calendar was accurate with astronomy calculation. In
1752, in favor of the Gregorians, Britain decided to give up the Julian calendar. Thus,
September 3 immediately got converted to September 14.

Time  231

Checking the leap year
If you want to check whether a specified year is a leap year or not, then we can use
the isleap() method.

See the following examples:

Figure 13.10

You can also check the leap days between a range of years. Check out an example
demonstrated in the following screenshot:

Figure 13.11

In the preceding examples, the method leapdays() returns the total number of
days between the year range. In the range, the last year is not included.

232  Python for Developers

Conclusion
In this chapter, you have learnt how to deal with time-related things. You have
learned epoch time, its significance, and conversion of epoch to a human-readable
format. There are some directives that help to convert epoch to a human-readable
format. ctime() is the built-in function to convert epoch to human-readable format.
The time.sleep() can be used to produce a delay in the execution. The datetime
is a handy module that has cool methods such as display the current time and time
difference. The pytz module allows you to create the time of different zones. The
calendar module helps to produce the calendar of any month or year. In the next
chapter, we’ll learn the regular expression to search the patterns.

Questions
 1. Display the current time and the date two months later.

 2. Display the current time of New Zealand.

 3. Consider a list of date [‘2015-01-24’, “2015-09-23”, “2016-03-21”, “2018-01-
11”].

 4. Get the date which is greater than “2017-01-01”.

 5. Which time module function is used to delay an execution?

 6. Create a small program and find out the time taken by the program.

Sometimes we have to search something using patterns, such as, a file which starts
with “intel” and ends with “.pdf”, a movie starts with “avengers” and ends with

“mp4”. We often encounter such problems. In order to deal with such questions,
we use a regular expression. The regular expression allows us to make a pattern to
search for the desired data. For example, you want to search emails from a web page
and you cannot predict the exact email names to be searched. In this case, we make
a regular expression of the email and fetch all the emails. In this chapter, we will
learn about the regular expression and the special characters that help in forming a
regular expression.

Structure
 ● Regular expression
 ● Regular expression function
 o match()
 o search()
 o sub()

 o findall()

 ● Special characters

Chapter 14
Regular

Expression

234  Python for Developers

Objective
In this chapter, you will learn that the functions belong to the regular expressions.
We will see the different types of functions to find the given regular expression.
After functions, we will learn how to make a regular expression. To make a regular
expression, we will learn about the special characters.

Regular expression
A regular expression is a text or string to identify a search pattern. The Python re-
module provides the regular expression support. See the following examples:
 1. Find the string which contains mohit, must end with pdf
 2. IP address from the text
 3. Email finding from the text

We will discuss regular expression and searching functions one-by-one.

Regular expression functions
In this section, we will learn about the regular expression, which helps in finding the
regular expression patterns. First we will discuss the match() function.

match()
The match() function searches the given pattern from the given string at the
beginning only. If the match is found, then it returns the match object; otherwise it
returns None. See the following syntax:
re.match(pattern, string, flags=0)

The parameters are explained as follows:
 ● pattern: The regular expression to be matched
 ● string: Given a text in which pattern is matched
 ● flags: The flag, we will discuss later with example

Let see the example:
import re

str1 = "Tony: I am Iron-Man"

p = "to"

m = re.match(p,str1,re.I)

print (m)

if m :

Regular Expression  235

 print (m.group())

In the preceding code, re.I means case insensitivity. To find the matched pattern,
we use the group method, as showcased in the preceding code. See the output in the
following screenshot:

Figure 14.1

The next method is search, which searches the pattern throughout the string.

search()
The search() function searches the pattern's first occurrence in the given string.
If the pattern is found, the function returns an object. With the help of the group()
method, the matched pattern can2be retrieved. See the following syntax:
re.search(pattern, string, flags=0)

The pattern is the regular expression, which needs to be searched, and the string is
the text we need to search the pattern from. The flag will be discussed later:
import re
str1 = " SOMETIMES YOU GOTTA RUN BEFORE YOU CAN WALK."
p = "you"
m = re.search(p,str1,re.I)
if m :
 print (m.group())
 print (m.start(), m.end())

In the preceding code, the m.start() finds the starting point of matched pattern
and m.end() exposes the endpoint of the matched pattern. See the output in the
following screenshot:

Figure 14.2

236  Python for Developers

sub()
The sub() method is used to replace the sub-string with a given pattern. See the
following syntax:

 re.sub(pattern, to_be_replaced, string, max=0)

The sub() method replaces the occurrence of the RE pattern in the string with the
to_be_replaced sub-string. The value of the max argument decides how many
replacements need to be done; the default value is 0; it means all the occurrences
will be replaced:

import re

str1 = "SOMETIMES YOU GOTTA RUN BEFORE YOU CAN WALK."

p = "YOU"

m = re.sub(p,"I", str1)

print (m)

m1 = re.sub(p,"I", str1,1)

print (m1)

Let us see the result in the following screenshot:

Figure 14.3

In the first example, all the fields get replaced, and in the second example, only one
field is replaced.

findall()
This is the higher version of the search() function. If you want to find all the occurrences
of the RE pattern in the string, use the findall() function. See the following syntax:

findall(pattern, string,flag=0)

Let us discuss an example:

import re

str1 = "Remember, with great power comes great responsibility"

Regular Expression  237

p = "great"

m = re.findall(p,str1,re.I)

print (m)

In the preceding code, we have used re.I, which is a flag that removes the case
sensitivity:

Figure 14.4

The findall() function returns a list of the matched pattern. If you want to obtain
the position of the pattern, then use finditer(), as showcased as follows:
import re

str1 = "Remember, with great power comes great responsibility"

p = "great"

m = re.finditer(p,str1,re.I)

for each in m:

 print (each.group(), each.start(), each.end())

See the output in the following screenshot:

Figure 14.5

The finditer() returns an iterator that produces instances as returned by the
search() function.

re.compile(pattern)
With the help of compile(), a search pattern can be converted into a pattern object:

238  Python for Developers

prog = re.compile(pattern)

result = prog.match(string)

It is equivalent to the following syntax:
result = re.match(pattern, string)

If we want to use a complex regular expression multiple times, it is a good idea to
use its compiled version, since it is more efficient.

Special characters
In Python, there are special characters that help in forming a regular expression.
Now we will use r in front of a regular expression. Placing r or R before a pattern,
generates, what is referred to as, a raw pattern. The raw pattern does not process the
escape sequences (\n, \b, and so on) and is therefore frequently applied for regular
expression patterns, which often contain several \ characters.

. (dot)
The (“.”) matches any character in the default mode except for a newline. This
matches anyny character, including a newline, if the re. DOTALL flag has been
indicated. Let us discuss this with an example:
import re

str1 = "ab abbb add akkk adbdf abbbbbb a"

p= r'a.b'

m = re.finditer(p,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

See the following screenshot for the output:

Figure 14.6

The meaning of the preceding expression is a<any thing only one time>b, but
anything must be present.

Regular Expression  239

^ (Caret)
The (^) matches the beginning of the given string, and if re.M (Multiline) flag is set,
then it also matches immediately after each new line. See the following examples:
import re

str1 = "ab bbb ab"

p= r'^ab'

m = re.finditer(p,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

Let us see the result in the following screenshot:

Figure 14.7

$ (dollor)
The ($) matches at the end of the given string, or just before the newline at the end
of the string.

Let us consider that you have a list of files, and you want to search the file(s) that
end with txt:
import re

str1 = ["hello.txt", "ab.py", "game.py", "yui.jpg"]

p = r'py$'

for file in str1 :

 m = re.search(p,file)

 if m:

 print (file, m.group(),"-->", m.start()," : ", m.end())

We are getting all the files that end with py, as showcased in the screenshot:

Figure 14.8

240  Python for Developers

* (star)
The * operator is used in RE to match 0 or more repetitions of the preceding RE, as
many repetitions as are possible. The expression ab* will match a, ab, or a followed
by any number of ‘b’s. In the following section you will see the example of *.

+ (plus)
The + operator is used in RE to match 1 or more repetitions of the preceding RE. ab+
will match a followed by any non-zero number of ‘a’s; it will not match just a.

Let us discuss with an example:

import re

str1 = "ab a abb abb a"

p = r'ab*?'

p1 = r'ab+?'

m = re.finditer(p,str1)

m1 = re.finditer(p1,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

print ("*********************\nFor +")

for each in m1:

 print (each.group(),"-->", each.start()," : ", each.end())

Let us see the result in the following screenshot:

Figure 14.9

Regular Expression  241

The preceding figure clearly showcases the difference between * and +. The pattern
of * also accepts the strings that contain only an a.

?
The (?) is used in regular expression to match 0 or 1 repetitions of the preceding RE.
The expression ab? will match either a, or ab. The * and + qualifiers are greedy; they
fit as much text as they can. This action is sometimes not required. If the RE ab* is
matched against 'abbbb', then it will match the entire string and not just ab. Adding
(?) after the qualifier, allows it to perform in a non-greedy or minimal order, since
it matches as few characters as possible. Using *? in the previous expression will
match only ab. Let us discuss with an example:
import re

str1 = "ab a abb abb a"

p = r'ab*?'

p1 = r'ab+?'

m = re.finditer(p,str1)

m1 = re.finditer(p1,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

print ("*********************\nFor +")

for each in m1:

 print (each.group(),"-->", each.start()," : ", each.end())

Let us see the result in the following screenshot:

Figure 14.10

242  Python for Developers

The difference is very clear from the previous result.

{m}
The expression {m} specifies that exactly the m copies of the previous RE should be
matched. For example, a{3} will match exactly three 'a' characters, but not four. In
the next section, you will see the example.

{m,n}
The expression {m,n} matches from m to n repetitions of the preceding RE. For
example, a{4,6} will match from 4 to 6 'a' characters. The following example
provides clarity:

import re

str1 = "ab abbb ac abbbb ak abbbbbb a"

p = r'ab{3}'

p1 = r'ab{3,5}'

m = re.finditer(p,str1)

m1 = re.finditer(p1,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

print ("*********************\nFor {3,5}")

for each in m1:

 print (each.group(),"-->", each.start()," : ", each.end())

Let us see the output in the following screenshot:

Figure 14.11

Regular Expression  243

[]
The expression [] is used to indicate a set of characters.

Characters can be listed individually, for example, [mn] will match m or n.

Character ranges can be stated by providing and separating two characters by a
(-). See the following examples:
 ● [a-z] will match any lowercase ASCII letter
 ● [0-9] will match any number
 ● [0-5][0-9] will match all the two-digit numbers from 00 to 59
 ● [0-9A-Fa-f] will match any hexadecimal digit

Let us consider that we want to match an expression that can contain a or z or -:

import re

str1 = "kbce ratyui akl zio -"

p = r'[a-z]'

m = re.finditer(p,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

Let us see the output in the following screenshot:

Figure 14.12

244  Python for Developers

In the preceding expression, [a-z], the - have been taken as a regular expression,
but we want to literal - not as a special character. In this case use escape \:

Use the following pattern:
p = r'[a\-z]'

See the result in the following screenshot:

Figure 14.13

[^]
If the set's first character is ^, it matches all the characters that are not in the set. For
instance, [^D] matches any character other than ' D ' and [^^] matches any
character other than ' ^'. Let’s consider a string that contains a letter, a number and
special characters, as showcased below:

"ab@#$%^&A*&^%k$345678bn"

We want to remove everything, except letters:
import re

string = "ab@#$%^&A*&^%k$345678bn"

p = r"[^a-zA-Z]"

resp = re.sub(p,"",string)

print (resp)

See the result in the following screenshot:

Figure 14.14

Regular Expression  245

\w
The \w represent the word. A word is defined as a sequence of alphanumeric or
underscore characters. The \w is equivalent to the set [a-zA-Z0-9_]. So, the end
of a word is indicated by a whitespace or a non-alphanumeric, non-underscore
character. \b is defined as the boundary between a \w. For example, r'\bfoo\b'
matches 'foo', 'foo', '(foo)', 'bar foo baz', but not 'foobar' or 'foo3'.

Exercise
In this section, we will perform two exercises. Let us look at each of them, individually:
 1. Find the IP addresses from a string:

import re

str1 = "hello192.168.0.17878sqsa10.0.1.1"

p = r'[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}'

m = re.finditer(p,str1)

for each in m:

 print (each.group(),"-->", each.start()," : ", each.end())

 See the output in the following screenshot:

Figure 14.15

 2. Get the email addresses from a webpage.
 In order to get text from a webpage, we will use the requests module.
 Consider an email address: 34h-u.lk_123@marvel.com.
 An email address contains two essential things, @ and ..
 Let us define the regular expression:

<any letter, number,-,_,.>@<any letter, number,-,_,.>.<any letter>

r"[a-zA-Z0-9_.-]+@[a-zA-Z0-9_.-]+\.[a-zA-Z]+"

 Let us see the code:

 import requests

246  Python for Developers

import re

url = "http://www.thapar.edu/faculties/category/departments/
computer-science-engineering"

r = requests.get(url)

#34h-u.lk_123@marvel.com

p = r"[a-zA-Z0-9_.-]+@[a-zA-Z0-9_.-]+\.[a-zA-Z]+"

string = r.text

resp=re.finditer(p, string)

for each in resp:

 print (each.group())

See the following screenshot for the output:

Figure 14.16

The program is working fine. We cannot say that the email's regular expression is
100% correct, but it works 100% correctly for us.

Conclusion
In this chapter, you have learned about the regular expression - we use a regular
expression when we don’t know the exact string, but know about a certain pattern
of the string. We have seen the different functions to search for the pattern. The
match() function searches the beginning of the string, the search() function
finds the pattern throughout the string, but returns only the first occurrence. The
findall() function returns the list of all the occurrences of the pattern found in the

Regular Expression  247

string. The finditer() function allows to find the index of the beginning and end of
a pattern found in the string. We have learned about the special characters that help
in generating the patterns. In the next chapter, you will learn about interaction with
the operating system. The OS module allows the user to interact with the operating
system. You will learn how to run the OS command with the help of Python.

Questions
 1. What is the difference between the findall and finditer functions?

 2. Consider that you have a python list of names of songs, find all songs that
contain the string “wada” or “waada”.

 3. Consider that you have a python list of names of files, find all the files that
start with “mohit” and ends with “pdf”

 4. What is the meaning of r’[^A-Z]’?

The Python OS module allows us to interact with OS. With the help of the OS
module, you can perform a lot of exciting tasks. The OS module facilitates you to

run any command of OS. You can create a directory, rename a file, and delete a file.
You can also find the properties of a file, like date of creation, modification, and last
accessed. You can also perform a copy, and move a file from one directory to another
directory. In this chapter, you will learn how to use the OS module to create a lot of
interesting things.

Structure
 ● Getting the OS name
 ● Directory and file accessing functions
 o Directory functions
 ● File and folder listing
 ● Executing OS command
 ● Exercises

Objective
In this chapter, we will study how to interact with OS using the Python command.
To communicate with OS, we will have to import the OS Module. We will learn

Chapter 15
Operating System

Interfaces

250  Python for Developers

about the different functions that help to create, delete, and rename the folder and
files. We will learn how to run the OS command using the Python program.

Getting the OS name
In this section, we see the ways to get the OS name. Let us consider that we are going
to run or execute the OS command using the Python program, but we are not sure
about the operating system on which we can run the code. Let us see the different
ways to check the operating system.

sys.platform

platform.system()

os.name

First, we will run the above piece of code on Windows, then on Linux:

Figure 15.1

Let us run the preceding command on Linux:

Figure 15.2

Operating System Interfaces  251

You can use any command of your choice to detect the operating system.

os.environ
The os.environ gives a variety of information. It returns a dictionary of information.
Let us look at the output:

Figure 15.3

252  Python for Developers

Let us check some interesting output of os.environ. See the following screenshot:

Figure 15.4

We can iterate os.environ.items().The preceding screenshot is showing a piece
of information. The os.environ[‘COMPUTERNAME’] returns the machine name. But
these keys may not be the same for Linux.

Directory and file accessing functions
In this section, we will see the OS functions that deal with file and folders.

os.access()
The os.access is used to check different types of authorizations. It is always an
excellent exercise to check the authorization on the file before doing any operations.
See the following syntax:
os.access(path, mode)

The parameters are described as follows:
 ● path: Path means file or directory with its path
 ● mode: Mode means read write and execute

There are four types of modes:
 ● os.F_OK: This mode checks whether the file or folder at the specified path

exists or not
 ● os.R_OK: This mode checks whether the file is authorized to read

Operating System Interfaces  253

 ● os.W_OK: This mode checks whether the file is authorized to write
 ● os.X_OK: This mode checks whether the file is authorized to execute

Figure 15.5

See the preceding screenshot, the game.py file has permission 654, and other users
have only read permission. The user Mohit is running the Python, and creates the
file. That is why, os.W_OK and os.R_OK are showing True.

os.rename(old, new)
os.rename() is used to rename a file. The argument old means the present file
name, and new means a new name. See the examples in the following screenshot:

Figure 15.6

The file iron.png is renamed as tony.png.

254  Python for Developers

os.stat()
If you want to know the details of a file, like the creation time, modification time and
last accessed time, and so on use os.stat(“file_with_path”). See the example in
the following screenshot:

Figure 15.7

Directory functions
There are a couple of functions that deal with the directories.

os.getcwd()
os.getcwd() returns the current working directory. It shows that directory from
where you run the Python interpreter. See the examples in the following screenshot:

Figure 15.8

In the above examples, the Python interpreter was being run from two different
directories, and os.getcwd() returns the same directories.

Operating System Interfaces  255

os.chdir()
In the previous example, you saw that the os.getcwd() returned the current
working directory. However, you can change the current working directory at the
run time too. With the help of os.chdir(), the current directory can be changed.

See the following example:
import os

print ("Current working dir :", os.getcwd())

os.chdir("k:\\")

print ("Current working dir :", os.getcwd())

See the directories in the following screenshot:

Figure 15.9

To check whether a folder exists or not, use os.path.isdir(“foldername”). See
an example in the following screenshot:

Figure 15.10

256  Python for Developers

Let us consider a folder is not present, and we want to make a new folder. With the
help of os.mkdir(“foldername”), we can make a new folder. See the example in
the following screenshot:

Figure 15.11

After the execution of the code, you can see the folder game.

Let’s consider that you want to create a hierarchy of the folder, like hit/qwe/flag. If
you use os.mkdir(), then it returns an error. In order to create a directory hierarchy,
we use os.makedirs(). See the example in the following screenshot:

Figure 15.12

To remove the file, you can use os.remove(file_name). The method does not
remove the directory. To remove the directory, use rmdir(dir_path).

File and folder listing
In this section, we will see how to list all the files and folders in a specific folder.

Operating System Interfaces  257

os.listdir(path)
The listdir() returns a Python list that contains the files and folders present at the
path, specified as an argument. See the examples in the following screenshot:

Figure 15.13

If you are already at the destined path, then use only ., which denotes the current
directory path. If the path is not specified, then it takes . (current directory) as the
path.

os.walk()
We have seen the os.listdir(), which returns the list of files and folder; however,
this os.listdir() does not search the folder and files recursively. If you want to
explore the folder and files recursively, use os.walk.

os.walk() is used to generate the list of directories and files in a top-down or
bottom-up manner. See the following syntax of os.walk():
os.walk(top, topdown=True, onerror=None, followlinks=False)

The top is the top directory given by the user; the top contains the root, sub-
directories, and files. Here, the root is the topmost directory provided by the user.
Sub-directories are the directories contained by the root, files are the files contained
in the root directory and its subdirectories:
 ● if topdown=True: It means that the directory search starts from a top

directory then goes to the next directory. In other words, top to down manner.
 ● if topdown=False: It means that the directory search begins from the last

directory, then goes to the top directory. In other words, bottom to up manner.
 ● error: This can show the error to continue with the walk, or raise the

exception to abort the walk.

258  Python for Developers

 ● follow links: The search follows symlinks, pointed by symlinks if set to
true.

Before discussing the example, let's see the directory structure:

Figure 15.14

The K:\Book_projects\Python_for_developrs\op\exp is the top directory, and
M, Mohit and wisdom are the subdirectories. The rest are the files.

Let us see the program:

import os

for root, dirs,files in os.walk("K:\\Book_projects\\Python_for_developrs\\
op\\exp"):

 print (root)

 print (dirs)

 print (files)

 print ("*"*60)

The code returns a tuple, which contains three things - the top directory, directories
of the top directory and files of the top directory.

Operating System Interfaces  259

See the following output:

Figure 15.15

In the preceding figure, the root, folders, and files are labeled.

Executing OS command
In this section, we will see the different ways to execute the OS commands.

os.popen()
Let’s consider that you don’t know how to perform a specific task in the operating
system through the Python program. You can use the os.popen() to run any OS
command, in that case. See the following syntax:

os.popen(command, mode, bufsize)

260  Python for Developers

os.popen(command) takes a DOS or shell command passed in as a string and returns
a file-like object connected to the command's standard input or output streams.

The second argument is the mode, it can be r (default) or w.

The optional bufsize argument specifies the file's desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means using a buffer of
(approximately) that size (in bytes). A negative buffering means using the system
default:

import os

list_ip= ["127.0.0.1", "facebook.com", "thapar.edu"]

cmd = "ping -n 1 "

for domain in list_ip:

 cmd = cmd + domain

 resp = os.popen(cmd)

 text=resp.read().lower()

 if "ttl" in text:

 print (domain, "is live")

 else :

 print (domain, "is not live")

See the following screenshot for the output:

Figure 15.16

The code checks the ttl string in the output. If ttl is found, then it means the
domain name is live and giving response.

Note: It is not mandatory for all live machines to give a ping reply.

Operating System Interfaces  261

os.system()
Let’s consider that you want to run the command only, and don’t care about the
output; for example, you want to run a specific service, like httpd in the OS, then you
don’t need to use os.popen(). In this case, we use os.system() to run the DOS or
shell command. See the following syntax:

os.system("command")

Let us discuss the ping command, which runs infinitely in the Windows system:

Figure 15.17

In Windows, the ping -t ip_address command is used to send the ping packet
continuously.

If you want to copy or move a file from one folder to another folder, you can take the
help of the shutil module. The shutil.copy(src, dest) and shutil.move(src,
dest) help in copying and moving the src file, correspondingly, to the dest folder.

Exercise 1
In this section, we will perform exercises.
 1. Rename the .jpg file present at the given folder.
 Change the extension .jpg to .png.

262  Python for Developers

Let us see the situation, before making the program:

Figure 15.18

In the preceding screenshot, three files are .jpg files. You can change the extension
manually, this will not take so much time. Let’s consider that if there are more than
100 JPG files, then it will be time-consuming as well as a mundane task. Let us write
the code that will perform the job within a fraction of second:

import os

print (os.getcwd())

os.chdir("K:\\Book_projects\\Python_for_developrs\\op\\test")

print (os.getcwd())

for file in os.listdir("."):

 if file.endswith(".jpg"):

 f_name = file.rsplit(".",1)[0]

 n_name = f_name+"."+"png"

 os.rename(file,n_name)

Let us run the code and check the output. See the following screenshot for the output:

Figure 15.19

Operating System Interfaces  263

As you can see, the file’s name successfully changed.

Exercise 2
Write a program to find out how many svchost.exe processes are being run currently.

Open the Task Manager, there are so many svchost services. See the following
screenshot of Task Manager:

Figure 15.20

In the preceding figure, you can see a lot of processes are being run. The DOS
command, tasklist, shows that all the services are running at that current moment.
Let us use that command in our Python program:
import os

resp=os.popen("tasklist")

print (resp.read().count("svchost.exe"))

264  Python for Developers

See the output in the following screenshot:

Figure 15.21

Conclusion
In this chapter, you have learned about dealing with your operating system. To do
so, we used the os module, which allows us to interact with the OS. With the help of
the OS module you can create directories and files. We can also rename and delete
the files and folders. os.access() helps to check the permissions on the file, os.stat()
returns the metadata about the file, like creation, modification time. The os.listdir()
returns the list of files and folders present at the specified path, but it does not look
recursively. To check recursively, we can use os.walk(). The os.system() and
os.popen() facilitate a user to run any command on the operating system through
Python. The os.popen() returns the output of the command and os.system() just
runs the command without caring about the output. In the next chapter, you learn
about the classes and objects.

Questions
 1. Write a program to find the file in the given folder, which has been modified

recently.

 2. What is the return type of os.listdir() and what does that object contain?

 3. Write a ping program that can run on the Windows as well as on Linux.

Python classes provide all the standard features of Object-Oriented Programming.
Class is like a blueprint, where all the methods are defined. The instance of the

class is called an object. An object is an actual thing that can use all the methods
of the class. Let us consider an analogy of a human class, which has two hands,
feet, and brain, etc. But you, I and all human beings of planet earth are the objects
of human class. Almost all human beings possess the same basic functionality, like
eating, sleeping, and working. These are the methods of the class. In this chapter,
you will learn about the class, object, and method. We will also study the classes of
built-in data structures, like string, tuple, and list.

Structure
 • Class
 • Object
 • __init__ method
 • Instance variable
 • Class variable
 • Inheritance
 • Static method

Chapter 16
Class and

Objects

266  Python for Developers

 • Class method
 • Private variable and methods
 • Decorator @property @setter @deleter
 • Callable objects

Objective
In this chapter, we will study about the class and the object. We will learn about
the instance variable, class variable, regular method, static method, and class
method. We will also understand the importance of making a class by after learning
inheritance and operator overloading. After that, you will learn about the private
method, decorators like property, setter, and getter.

Class
A class is a blueprint or prototype that defines the variables and the methods
(functions) common to all objects of a certain kind.

See the following diagram:

Figure 16.1

In the preceding diagram, class is represented by the dotted line. it possesses the
methods—getfuel(), Drive(), and attributes - speed, and fuel quantity. All
the cars, of different brands, are the objects and possess the same methods and
attributes.

Class and Objects  267

Object
An object is an instance of a class. Software objects are often used to model real-
world objects you find in everyday life. In the Figure 16.1, the brands XYZ, ABC, and
MNO are the objects.

Creating a class in python is very straightforward.

See the following code:

class <class name >(<parent class name>):

<method definition-1>

<method definition-n>

< Variables>

Let us write our first program of class. In this program, we are creating an empty
class:
class Mohit_Org():

pass

In the preceding code, a class, Mohit_org has been created. The class is empty and
the class body just filled with a pass statement. The class is a blueprint for creating
instances. Let us create the instances:

class Mohit_Org():

pass

obj1 = Mohit_Org()

obj2 = Mohit_Org()

print (obj1)

print (obj2)

See the following screenshot of the output:

Figure 16.2

268  Python for Developers

In the preceding screenshot, you can see two different instances.

Instance variable
Instance variable referred data which are unique to instances. The instance variable
is often confusing for beginners. Through the series of the program, you will
understand the significance of the instance variable.

Let us create an instance variable:

class Mohit_Org():

pass

obj1 = Mohit_Org()

obj2 = Mohit_Org()

obj1.First_name = "Mohit"

obj1.Last_name = "Raj"

obj1.Pay = "90000"

obj2.First_name = "Bhaskar"

obj2.Last_name = "Das"

obj2.Pay = "80000"

print ("Full Name ",obj1.First_name+" "+obj1.Last_name)

print ("Full Name ",obj2.First_name+" "+obj2.Last_name)

In the preceding code, obj1.First_name, obj1.Last_name and obj1.Pay are
instance variables, which are unique to the instance obj1. Similarly, obj2.First_
name, obj2.Last_name and obj2.Pay are instance variables of obj2.

See the following screenshot for the code’s output:

Figure 16.3

You can see the repeatable code for both instances. We don't need to set the variable
all the time. To make it automatically, we are going to use the __init__()method.

Class and Objects  269

The __init__ method or constructor
Here the__init__() method works as theconstructor of the class. When a user
instantiates the class, it runs automatically. There is no need to call the __init__
method. Let us see the code and understand with the help of it. Here we are going to
write the full code, const1.py, and then we will follow it line-by-line:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

Self.Full_name = self.First_name+" "+self.Last_name

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1.First_name) # instance variable

print (obj2.First_name)

See the output in the following screenshot:

Figure 16.4

The code seems difficult to understand. Let’s understandit line-by-line. The first line
defines a class, as we already know. A method,__init__(self, First, last,
pay), has been created inside the class then the first argument, self, of __init__()
method, receives the instance of the class automatically. By convention, we call it self.
You can use another name, but that is not a pythonic way, so it is advisable to stick
to the convention. After declaring the variable self, we can specify other arguments
that we want to accept. So, __init__() is going to receive three values -First, Last,
and Pay. Inside the __init__() method, we are declaring an instance variable. So
the self.First_name, self.Last_name, self.Pay and self.Full_name are
instance variables.

270  Python for Developers

The self.First_name = First statement is the same thing as the obj1.First_
name = "Mohit" mentioned in the previous code, instance_variable.py. The
obj1 is the instance of the class, and the variable self is referred to an instance of
the class, which is almost similar.

When we create an instance like obj1 = Mohit_Org("Mohit", "Raj", 90000),
the values ("Mohit", "Raj", 90000) automatically get passed to the__init__
(self, First, last, pay) method. We do not need to pass the value of the self
variable, because the obj1 instance has passed it automatically. It is similar for the
obj2 instance. In the same manner, we can say self.First_name, self.Last_
name, self.Pay and self.Full_name are instance variables, which are unique to
object obj1 and obj2.

If you still have a doubt, persist for the self and instance variable. See the next
section to know about the regular method.

Regular method
The function defined inside the class is called a method. Let us create a regular
method, which generates an email address for users:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

def email(self):

return self.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1.email()) # instance variable

print (obj2.email())

The code is very similar to the previous code. A method, email(), has been added,
which used the self.Full_name instance variable. By using the syntax obj1.make_
email() instance, obj1 calls the method email().

The email() is the regular method. The regular method in the class automatically
takes an instance as the first argument. That is why, by convention, we use self as the
first argument that expects instance.

Class and Objects  271

If you remember in the Python list chapter, we did the same thing using list1.
append(). If you relate list with the class mentioned above, thenlist1 is the instance
and append() is the regular method of the class list. You can also define the list as
showcased below:
List1 = list()

See the output in the following screenshot:

Figure 16.5

Let us explore theself variable in depth. If you still have a doubt, the next example
will clear it:
class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

def email():

return self.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

print (obj1.email()) # instance variable

In the preceding code, the self variable from email has been deleted. For experiment
purpose, only one instance is used.

272  Python for Developers

See the following screenshot for the output:

Figure 16.6

You can see the error, email() takes 0 positional arguments, but 1 was
given. This may be confusing, as no argument has been passed in the obj1.email()
syntax. So what is the email() method expecting? In this case, the obj1 instance is
getting passed automatically. That is why, we use the self argument to the methods
of the class.

For better understanding, see the following code:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

def email(self):

return self.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

print (obj1.email()) # instance variable

print (Mohit_Org.email(obj1))

See the result in the following screenshot:

Figure 16.7

Class and Objects  273

In the preceding code, the self variable has been put in the email (self)
method. In the last line, Mohit_Org.email(obj1) signifies what is happening in
the background.The syntax, obj1.email() and Mohit_Org.email(obj1), are the
same thing.

The syntax Mohit_Org.email(obj1) stats that class.method(instance). In this
syntax, we are passing the instance to the email() method and the self argument
is accepting that instance. So obj1.email() is transformed into Mohit_Org.
email(obj1).

For more clarity, let us do one more amendment:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

print ("In constructor", id(self))

def email(self_new):

print ("In email",id(self_new))

return self_new.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

print (obj1.email()) # instance variable

print ("Outside class", id(obj1))

In the preceding program, we have changed the self variable to self_new and
printed the memory address of the instance at different places:

Figure 16.8

274  Python for Developers

Class variable
Class variables are shareable among all the objects of the class. The class variable
must be the same for all the instances. To understand with an example, let’s assume
that the Mohit_Org gives 30 percent increment based upon Pay:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*1.3

return self.Pay

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1.increment_pay())

print (obj2.increment_pay())

Let us see the output of the class_variable1.py in the following screenshot:

Figure 16.9

In the preceding code, we have added one method, increment_pay(). In the
method, we have hardcoded the value, and it is not a good practice to hardcode any
variable. So, we can make a class variable.

See the following program class_variable2.py:

Class and Objects  275

class Mohit_Org():

inc_factor = 1.3

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*Mohit_Org.inc_factor

return self.Pay

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1.increment_pay())

print (obj2.increment_pay())

See the following screenshot for the result:

Figure 16.10

The program is very similar; a new class variable, inc_factor = 1.3, is declared
and used. A class variable can only be used by a class or an object. In the preceding
program, we have to use the class name. Let us use the class variable with the
object. See the following class_variable3.py code:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

276  Python for Developers

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1.increment_pay())

print (obj2.increment_pay())

See the output in the following screenshot:

Figure 16.11

So, both the outputs are the same, so what is the difference between accessing the
class variable by using object and class? See the following code to understand the
same:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

Class and Objects  277

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

obj1.inc_factor = 1.5

print (obj1.increment_pay())

print (obj2.increment_pay())

print (obj1.__dict__)

print ("***")

print (obj2.__dict__)

print ("***")

print (Mohit_Org.__dict__)

See the output in the following screenshot:

Figure 16.12

In the preceding code, you can see that we are accessing the class variable using
the instance.

The interpreter first checks the instance’s dictionary. If it contains the attribute, then
it uses the attribute from instance’s dictionary. If the instance does not contain the
attribute, then it checks whether the class or its parent class contain that attribute.

278  Python for Developers

The obj1instance first checks if we have theinc_factor in our namespace. Since it
has, the obj1 uses inc_factor 1.5. The obj2 instance checks the same thing, but
obj2 does not have theinc_factor in its namespace.That is why, obj2 takes from
the class namespace. The obj1.__dict__, obj2.__dict__ and Mohit_Org.__
dict__ shows all the attributes of obj1, obj2, and Mohit_Org, respectively. of the
importance of using self.inc_factor is that it gives more ability to change the
value for a single instance.

Class inheritance
In this section, we are going to learn about inheritance. Inheritance allows us to
inherit the method and attribute of the parent class. By using inheritance, the new
child class automatically gets all the methods and attributes of the existing parent
class. The parent class is also regarded as a base class and general class. Similarly, the
child class is also called a derived class and specific class. See the following syntax:

class DerivedClassName(BaseClassName):

<statement-1>

 .

 . .

<statement-N>

See the example in the following diagram:

Figure 16.13

In the preceding diagram, the Mohit_Org is a class, which contains the necessary
information of all the employees. The organization comprises of different types of

Class and Objects  279

employees, like Trainer and Manager. The Trainer class is a specific class, which
includes general attributes and particular attributes. In this scenario, the Trainer
class inherits the necessary details of the employees from the base class (Mohit_
org). With the help of inheritance, we can reuse the code.

See the following example for class_inheritance1.py:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

class Trainer(Mohit_Org):

pass

obj1 = Trainer("Mohit", "Raj", 90000)

obj2 = Trainer("Bhaskar", "Das", 80000)

print (obj1.email())

print (obj2.email())

print (obj1.increment_pay())

print (obj2.increment_pay())

280  Python for Developers

See the following screenshot for the output:

Figure 16.14

In the preceding code, a new class,Trainer, which inherits the base class, has
been defined. The preceding example shows that the child class instance can call
the attributes and the method of the base class.In the above example, instances of
Trainer class call the email() and increment_pay()methods. When we instantiate
the Trainer class, it first looks at the __init__ method of the Trainer class. As the
Trainer class is empty, the interpreter checks the chain of inheritance.

If you want to check the chain of inheritance, you use the help() function:
print (Help(Trainer))

Class and Objects  281

Check the following screenshot for the output:

Figure 16.15

In the preceding snapshot, Method resolution means that if an instance called the
method, the interpreter first checks the Trainer class and then Mohit_Org. Let us
use a complicated example for class_inheritance2.py:

class Mohit_Org():
inc_factor = 1.4
def __init__(self, First, last, pay):

282  Python for Developers

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

class Trainer(Mohit_Org):

def __init__(self,First, last, pay, subject):

Mohit_Org.__init__(self,First, last, pay)

self.subject = subject

def Subject(self):

return self.full_name+" is teaching "+self.subject

obj1 = Trainer("Mohit", "Raj", 90000,"Python")

obj2 = Trainer("Bhaskar", "Das", 80000, "JAVA")

print (obj1.email())

print (obj2.email())

print (obj1.Subject())

print (obj2.Subject())

See the output in the following screenshot:

Figure 16.16

Class and Objects  283

A couple of things are new here. The Trainer class contains its constructor, and a
new method called Subject(). In the previous program, when we made the object,
the object automatically invoked the class's constructor. But the Trainer class does
not contain the constructor, so the object checked the parent class and invoked the
parent class’s constructor. See the following snapshot:

Figure 16.17

But in the class_inheritance2.py program, we declared the constructor of
the Trainer class. So, now when we create the object of the Trainer class, only
the constructor of the Trainer class will be invoked. The constructor of the base
class, Mohit_Org, will not be called. Consequently, the instance variables self.
First_name, self.Last_name and self.Pay would not get initialized. In order
to invoke the base class constructor, we used one statement Mohit_Org.__init__

284  Python for Developers

(self,First, last, pay). The statement invoked the constructor base class,
Mohit_Org, explicitly. See the following figure:

Figure 16.18

In the preceding figure, as you can see, the Trainer class constructor takes five
arguments - self, First, last, pay and subject.The self, First, last and
pay arguments are handled by the base class constructor and the subject argument
is handled by the Trainer class.

We can also use the super() method to inherit the base class.

See the following code:
class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

Class and Objects  285

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

class Trainer(Mohit_Org):

def __init__(self,First, last, pay, subject):

super().__init__(First, last, pay)

self.subject = subject

def Subject(self):

return self.full_name+" is teaching "+self.subject

obj1 = Trainer("Mohit", "Raj", 90000,"Python")

obj2 = Trainer("Bhaskar", "Das", 80000, "JAVA")

print (obj1.email())

print (obj2.email())

print (obj1.Subject())

print (obj2.Subject())

See the results in the following output:

Figure 16.19

What is the benefit of a super method? If you change the base class name then, you
do not need to change the class name for invoking the constructor.

286  Python for Developers

Multilevel inheritance
Python supports the multilevel inheritance. Multilevel means that the child class A
inherits the parent class B, and class B inherits class C:

Figure 16.20

Let us look at an example:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

class Manager(Mohit_Org):

def __init__(self,First, last, pay, dep):

super().__init__(First, last, pay)

self.dep = dep

Class and Objects  287

def Department(self):

return self.full_name+" is manager in "+self.dep

class Assitant_Manager(Manager):

def __init__(self,First, last, pay, dep, sub_dep):

super().__init__(First, last, pay,dep)

self.sub_dep = sub_dep

def Sub_Department(self):

return self.full_name+" is manager in "+self.sub_dep

obj1 = Assitant_Manager("Mohit", "Raj", 90000,"Computer", "Cloud")

print (obj1.email())

print (obj1.Department())

print (obj1.Sub_Department())

print (Assitant_Manager.__mro__)

See the following screenshot for the output:

Figure 16.21

288  Python for Developers

In the preceding example, a total of three class are there.The Assitant_Manager
class inherits the Manager class and the Manager class inherits the Mohit_Org class.
See the following diagram you will get the idea of passing arguments:

Figure 16.22

In the preceding example, the new argument, sub_dep, is handled by the Assitant_
Manager class, while the rest of the argument will be handled by the base class
(Manager class) and the grandparent class (Mohit_Org). The syntax, Assitant_
Manager.__mro__, will display the hierarchy level of the inheritance.

Multiple inheritance
Python supports multiple inheritances too. Multiple inheritance means that one
class inherits the attribute of two independent classes. See the following diagram:

Figure 16.23

Class and Objects  289

Let us see the code for class_inheri_multiple.py:

class A():

def sum1(self,a,b):

c = a+b

return c

class B():

def mul(self,a,b):

c = a*b

return c

class C(B,A):

pass

obj1 = C()

print (obj1.sum1(10,20))

The preceding example is quite simple to understand. If both the base classes contain
the same method, then the object of the child class would invoke the method of class
which comes first in the syntax.

See the following example:

class A():

def sum1(self,a,b):

c = a+b

return c

class B():

def sum1(self,a,b):

c = a*b

return c

class C(B,A):

pass

obj1 = C()

print (obj1.sum1(10,20))

290  Python for Developers

See the following output:

Figure 16.24

In the syntax class C(B, A), class B has more priority. Therefore, the object of class C
would use the method of class B.

Let’s look at more complicated examples:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = "Mohit123" # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

class XYZ_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@XYZ_Org.com"

class EMP(XYZ_Org,Mohit_Org):

def __init__(self, first,last, pay, type):

super().__init__(first,last,pay)

self.type = type

Class and Objects  291

obj1 = EMP("Mohit", "Raj", 90000,"Trainer")

print (obj1.email())

See the following screenshot for the output:

Figure 16.25

In the preceding example, class Mohit_Org and XYZ offered the same methods and
attributes, but the super() function would call the base class XYZ, because in the
syntax class, EMP(XYZ_Org, Mohit_Org):,XYZ comes first.

Let us see one more example:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = "Mohit123" # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

class XYZ_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@XYZ_Org.com"

292  Python for Developers

class EMP(XYZ_Org,Mohit_Org):

def __init__(self, first,last, pay, type):

Mohit_Org.__init__(self,first, last,pay)

self.type = type

obj1 = EMP("Mohit", "Raj", 90000,"Trainer")

print (obj1.email())

In the preceding example, theorder of the inheritance is XYZ first and then Mohit_
Org. But the statement.Mohit_Org.__init__(self,first, last,pay), invokes the
constructor of Mohit_Org. So, in this situation, the instance variables of the Mohit_
Org class will be initialized, but the email method of class XYZ will be called.

Check the following screenshot for the output:

Figure 16.26

Operator overloading
In this section, we will learn about the operator overloading with special methods.
Generally, people call them magic methods. We will use these methods in operator
overloading. First, let us understand what operator overloading is. By using a
special method, we will be able to change the built-in behavior of the operator. The
special method is surrounded by a double underscore (__). Some people called it the
dunder method.

Let us take the example of the+ operator.

Take a look at the following example:

>>> 1+8

9

>>> "IBM" + "REDHAT"

'IBMREDHAT'

>>>

Class and Objects  293

You can see the different behavior of the + operator. The integer number is added,
and the strings are concatenated. It depends upon the object that you are using with
the+ operator. The + calls a special method in the background:

>>> (1).__add__(8)

9

>>> int.__add__(1,8)

9

>>> ("IBM").__add__("RedHat")

'IBMRedHat'

>>>

>>> str.__add__("IBM","RedHat")

'IBMRedHat'

>>>

If you use the dir(“string ”) function, then it will show the magic method __add__:

Figure 16.27

Actually, when you add two strings, the + operator calls __add__ method defined
the str class.

Let us try to add two objects of the Mohit_Org class. Look at the following example:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

294  Python for Developers

def email(self_new):

return self_new.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1+ obj2)

See the result of code in the following:

Figure 16.28

The output showcased above, is showing an error - TypeError: unsupported
operand type(s) for +: 'Mohit_Org' and 'Mohit_Org. So, the question here
is, what are we trying to achieve after addition?

As we have not defined the __add__ method. Check the dir() on the object.

Just add the following line:
print (dir(obj1))

Check the output in following screenshot:

Figure 16.29

You can see that there is no __add__ method specified. Consider the requirement,
when we add two objects, and then add their pay:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

Class and Objects  295

self.Last_name = last
self.Pay = pay
self.Full_name = self.First_name+self.Last_name

def email(self_new):
return self_new.Full_name+"@Mohit_Org.com"

def __add__(self,other):
return self.Pay + other.Pay

obj1 = Mohit_Org("Mohit", "Raj", 90000)
obj2 = Mohit_Org("Bhaskar", "Das", 80000)
print (obj1+obj2)

See the result of code in the following screenshot:

Figure 16.30

There is no error, because we have defined the __add__ method. The syntax,obj1+obj2,
calls the __add__ method, like Mohit_Org.__add__(obj1, obj2).

The method Mohit_Org.__add__(obj1, obj2) is passing two objects. Therefore
in the__add__(self, other) method, two arguments have been specified to take
two objects.

Similarly, if we try to compare the two objects, then we need to define our expected
function of the comparison. Let us consider that we want to compare the Pay of the
employees. Look at the following example:

class Mohit_Org():
def __init__(self, First, last, pay):
self.First_name = First # instance variable
self.Last_name = last
self.Pay = pay
self.Full_name = self.First_name+self.Last_name

def email(self_new):
return self_new.Full_name+"@Mohit_Org.com"

296  Python for Developers

def __add__(self,other):

return self.Pay + other.Pay

def __gt__(self, other):

return self.Pay> other.Pay

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1+obj2)

print (obj1> obj2)

See the following screenshot for the output of the preceding code:

Figure 16.31

In the syntax obj1> obj2, the > calls the __gt__ method. In the __gt__ method, we
are comparing the Pay of the employees. If you remember, we have used the len()
function. Actually, we use the len(object) and then the len() function to call the
class.__len__(object). Let us try to print the length of the obj1:

You can import the opeartor_over2 program as a module:

>>> from opeartor_over2 import Mohit_Org, obj1

>>> len(obj1)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: object of type 'Mohit_Org' has no len()

>>>

The precedingerror indicates that there is no functionalitydefined for the len()
function. Let’s add the magic __len__ method. In the __len__ method, we find the
length of the object’s full name.

Look at the new code:

class Mohit_Org():

def __init__(self, First, last, pay):

Class and Objects  297

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

def email(self_new):

return self_new.Full_name+"@Mohit_Org.com"

def __add__(self,other):

return self.Pay + other.Pay

def __gt__(self, other):

return self.Pay> other.Pay

def __len__(self):

return len(self.Full_name)

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

print (obj1+obj2)

print (obj1> obj2)

print (len(obj1))

See the following screenshotfor the output:

Figure 16.32

Let us consider that we want to print the object. See the following code:

>>> from opeartor_over2 import Mohit_Org, obj1

170000

True

8

>>> print (obj1)

298  Python for Developers

<opeartor_over2.Mohit_Org object at 0x00000284F2C30F98>

>>>

If you want to print your customized message, then add the following method in the
preceding code:

def __str__(self):

return "Object related to Mohit_Org"

Rerun the code again, as showcased below:

>>> from opeartor_over2 import Mohit_Org, obj1

170000

True

8

>>> print (obj1)

Object related to Mohit_Org

>>>

See the following table for special methods.
Operator overloading special functions in Python.

Operator Expression Internally
Addition p1 + p2 p1.__add__(p2)

Subtraction p1 - p2 p1.__sub__(p2)

Multiplication p1 * p2 p1.__mul__(p2)

Power p1 ** p2 p1.__pow__(p2)

Division p1 / p2 p1.__truediv__(p2)

Floor Division p1 // p2 p1.__floordiv__(p2)

Remainder (modulo) p1 % p2 p1.__mod__(p2)

Bitwise Left Shift p1 << p2 p1.__lshift__(p2)

Bitwise Right Shift p1 >> p2 p1.__rshift__(p2)

Bitwise AND p1 & p2 p1.__and__(p2)

Bitwise OR p1 | p2 p1.__or__(p2)

Bitwise XOR p1 ^ p2 p1.__xor__(p2)

Bitwise NOT ~p1 p1.__invert__()

Table 16.1

Class and Objects  299

Class method
You have seen the regular methods of a class. The regular method automatically
takes an instance as the first argument, and by convention, we called it self. How
can we pass the class as an argument, so that we can change the class variable in
the method? To change the class variable, we use the class method. The class
method takes the class as the first argument. To turn the regular method into the
class method, we would use a decorator (@classmethod) at the top of the method.
Let us see an example for class_methods.py:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

@classmethod

def inc_change(cls, amt):

cls.inc_factor = amt

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 80000)

obj1.inc_change(1.5)

print (obj1.increment_pay())

print (obj2.increment_pay())

In the preceding example, a new method, inc_change(), has been added. The method
has been converted to the class method by using the decorator - @classmethod.
The class method takes the class as the first argument, so by convention, we use cls
to represent a class. The cls.inc_factor is the class variable here. The line, obj1.

300  Python for Developers

inc_change(1.5), calls the class method. You can also use the syntax, Mohit_
Org.inc_change(1.5,) to call the method.

See the following screenshot for the output:

Figure 16.33

The class method is regarded as an alternative constructor. While making the object,
we passed three values - Mohit, Raj and 90000 as showcased below:

obj1 = Mohit_Org("Mohit", "Raj", 90000)

Let us consider that we get a string,”Mohit Raj 90000”.In this case, you will use
the string's split method to split the string, and then create the object as showcased
below:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

str1 = "Mohit Raj 90000"

a,b,c = str1.split()

Class and Objects  301

obj1 = Mohit_Org(a,b,int(c))

print (obj1.increment_pay())

Check the output of code in the following screenshot:

Figure 16.34

The preceding code is technically correct; however, it does not look mature.

See the following code:

class Mohit_Org():

inc_factor = 1.4

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

self.Pay = self.Pay*self.inc_factor

return self.Pay

@classmethod

def alt_const(cls,str1):

name, last, pay = str1.split()

return cls(name,last,int(pay))

name = "Mohit Raj 90000"

302  Python for Developers

a1 = Mohit_Org.alt_const(name) # Mohit_Org("Mohit",'Raj',pay)

print (a1.email())

In the preceding code, the class method, alt_const(), acts as an alternative
constructor. The line, a1 = Mohit_Org.alt_const(name), calls the class method
atl_const(), which returns the cls(name,last,int(pay)).

The return value is equivalent to Mohit_Org("Mohit",'Raj',pay) and a1 becomes
the object.

Check the output of code in the following screenshot:

Figure 16.35

Static method
The static method does not take an instance or a class as the first argument. The
static methods are just simple function. But we include the static method in the class
because it has some logical connection with the class.

Consider a situation in, when the pay of a person is less than 50000 then increment
would be pay is 1.40, otherwise 1.30. To turn a regular method into a class method,
we would use a decorator (@staticmethod) at the top of the method.

Let us look at the program:

class Mohit_Org():

inc_factor = 1.4

inc_factor1 = 1.5

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.full_name = self.First_name + self.Last_name

def email(self):

Class and Objects  303

return self.full_name+"@Mohit_Org.com"

def increment_pay(self):

if self.decide(self.Pay):

self.Pay = self.Pay*self.inc_factor1

else :

self.Pay = self.Pay*self.inc_factor

return self.Pay

@staticmethod

def decide(pay):

if pay <= 50000:

return True

else :

return False

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj2 = Mohit_Org("Bhaskar", "Das", 50000)

print (obj1.increment_pay())

print (obj2.increment_pay())

See the following screenshot for the output:

Figure 16.36

Private method and private variable
Python does not have real private methods, so two underlines in the beginning,
make a variable and a method private.

304  Python for Developers

Let us see a simple example:

class Mohit_Org:

__amount = 60 # private variable

def __info(self): # private method

print ("I am in Class A")

def hello(self):

print ("Amount is ",Mohit_Org.__amount)

self.__info()

a = Mohit_Org()

a.hello()

a.__info()

You can see the benefit of a private variable. Outside the class, you cannot access
a private method as well as a private variable, but inside the class, you can access
the private variables. In the hello() method, the __amount can be obtained as
showcased in the output (Amount is 60):

Figure 16.37

However, you can access private variables and private method from outside the
class by using the following syntax:
instance._class-name__private-attribute

Add the following line:

a._Mohit_Org__info()

print (a._Mohit_Org__amount)

Class and Objects  305

Check the following screenshot for the output:

Figure 16.38

Decorator @property @setter and @deleter
In this section, we will see how to use the @property decorator. The @property
decorator turns a method into a “getter” for a read-only attribute, with the same
name.

Simply put, if you want to treat the method as an instance variable, then use the @
property decorator. Let us see an example:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

@property

def email(self):

return self.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

print (obj1.email)

In the preceding program, we used obj1.email; however, email() is a method.
With the help of the property decorator, the method behaves like an instance variable,
as showcased in the following screenshot:

Figure 16.39

306  Python for Developers

Let’s try to assign a value to obj1.email, as showcased as follows:
obj1.email = Mohitadmin@Mohit_Org.com

We are getting an error, as can be seen in the following screenshot:

Figure 16.40

We do not want to change the existing code. In order to assign value, we will use the
@setter method.

Take a look at the full code:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

@property

def email(self):

return self.Full_name+"@Mohit_Org.com"

@email.setter

def email(self, value):

self.Full_name = value

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj1.email = "Mohitadmin"

print (obj1.email)

Class and Objects  307

When we set obj1.email = "Mohitadmin", it calls email(self, value) due to
the @email.setter decorator.

See the following screenshotfor the output:

Figure 16.41

If you want to delete the Full_name, you can use the @deleter decorator.

Take a look at the full code:

class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

@property

def email(self):

return self.Full_name+"@Mohit_Org.com"

@email.setter

def email(self, value):

self.Full_name = value

@email.deleter

def email(self):

print ("Delete the name")

self.Full_name= None

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj1.email = "Mohitadmin"

308  Python for Developers

print (obj1.email)

del obj1.email

In the preceding code, the del obj1.email syntax calls the email(self) method
of the@email.deleter.

This is how getter, setter and deleter work in Python.

Callable objects
If you want to check whether any object is callable or not, pass it to a built-in function,
callable. The callable function returns True or False:

>>> callable(tuple)

True

>>> callable(tuple.count)

True

>>> callable(list)

True

>>> callable(str)

True

>>> callable("hello")

False

The question is that whether the object of Mohit_Org is callable or not. Look at the
following example:

>>> from property1 import Mohit_Org

Mohitadmin@Mohit_Org.com

Delete the name:

>>> obj12 = Mohit_Org("m", "r", 90000)

>>> callable(obj12)

False

>>> obj12("hello")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'Mohit_Org' object is not callable

>>>

Class and Objects  309

In order to make an object callable, we need to add the __call__ method.

Look at the following example:
class Mohit_Org():

def __init__(self, First, last, pay):

self.First_name = First # instance variable

self.Last_name = last

self.Pay = pay

self.Full_name = self.First_name+self.Last_name

def __call__(self,first):

self.Full_name = self.First_name+"admin"

def email(self):

return self.Full_name+"@Mohit_Org.com"

obj1 = Mohit_Org("Mohit", "Raj", 90000)

obj1("Mohit")

print (obj1.email())

In the preceding code, we added the __call__ method, which adds admin after the
first name. The obj1(“Mohit”) syntax calls the __call__ method.

See the following screenshot for the output:

Figure 16.42

Conclusion
In this chapter, we have learned about the concept of class and object. An object is a
real entity, and a class defines the properties of the object. The object is the instance
of a class. We learned about the instance variable and class variable. The instance
variable is unique to the instance, and the class variable is shareable among the
objects. The function defined inside the class is called methods. To reuse the code,
we can use inheritance. Python supports multilevel and multiple inheritances. With
the help of magic methods, we can use operator overloading. The instance variable

310  Python for Developers

can be accessed from outside the class; if you want to give access to outside the class,
you can make private variables. In order to change the behavior of class, we use
decorators. To make an object callable, we can use the __call__ method. In the next
chapter, you will learn about the use of multithreading.

Questions
 1. What is the ‘self’ in the class method?

 2. What is the difference between instance variable and class variable?

 3. Can we access the class variables with objects?

 4. What is the importance of private variables?

 5. What is the need to initialize the base class constructor in the child class?

Chapter 17
Threads

So far, we have seen the single thread-based applications. Consider you want to
make an application that takes input from the user or is always ready to take

input from the user or any client. After taking the data, the program processes the
data and gives the result. Now consider a single process or thread-based program
where you provide the input in the while loop and the interpreter process the data
and returns the result. If the interpreter spends more time to process the data, then,
at that time, it would not be ready to take the input from the user. In a multithreading
environment, we dedicate one thread to take input and another thread to process the
data. In this way, taking inputs and processing the data can work parallelly. In this
chapter, you will learn how to develop multithreaded applications.

Structure
 ● Thread creation using class
 ● Thread creation using function
 ● Important threading methods
 ● The join method
 ● Daemon thread
 ● Locks
 ● GIL

312  Python for Developers

Objective
In this chapter, you will start by creating the thread, and then learn the essential
threading methods, such as join() and isalive(). You will also learn about the
significance of the Daemon thread, GIL, and Locks.

Thread
Thread is like a process, but it takes less time and less memory to create as compared
to a process. Multithreading helps create a parallel program. Threads can run on a
single processor.

In some applications, multithreading fits better than multiprocessing. In this chapter,
you will learn about the applications where thread suits better.

In Python, we use the Thread class to create threads. The Thread class is defined
in the multithreading module. There are two ways to produce threads: one by
inheriting the Thread class, and the other is by calling the Thread function.

Thread creation using class
To create a thread using the class function, we can inherit the Thread class defined in
the threading module. Let’s understand it using the following code:

import threading

class mythread(threading.Thread):

 def __init__(self,i):

 threading.Thread.__init__(self)

 self.h =i

 def run(self):

 print "Value send ", self.h

thread1 = mythread(1)

thread1.start()

Following is the details of the functions and methods used in the preceding code:
 ● mythread(1): This is the new mythread class inherits the Python

threading.Thread class.
 ● __init__(self [,args]): This is the constructor of the mythread class

that overrides the constructor of the Thread class.

Threads  313

 ● run(): In this method, you can place your code logic or any different
function or method, which can be called using the run() method.

 ● start(): Here, the Python Interpreter starts a thread by executing the
start() method, which is defined in the Thread class.

 ● The user-created mythread class’ constructor (__init__) overrides the base
class constructor, so the base class constructor (Thread.__init__()) must
be invoked.

Thread creation using function
Creating threads using function appears to be easy. Let’s take a look at the following
code:

import threading

def sum1(a,b):

 c = a+b

 print (c)

th1 = threading.Thread(target=sum1, args=(10,40))

th1.start()

The preceding code is straightforward; after creating a function, it is run by a thread.
The th1 = threading.Thread(target=sum1, args=(10,40)) statement produces
a thread, target=sum1 signifies the function to be called, and args specifies the
Python tuple of the arguments that needs to be passed to the sum1 function.

Important threading methods
Let's look at some critical methods defined in the threading module:
threading.activeCount()

The preceding code line returns the number of active Python threads at time of
execution of threading.activeCount():
threading.enumerate()

The preceding code line returns the list of the total Python threads that are currently
active.

Let’s understand this with the help of the following example:

import time

314  Python for Developers

from threading import Thread,enumerate,activeCount
def sum1(x,y):
 time.sleep(2)
 c = x+y
 print (c)
th1 = Thread(target=sum1, args=(11,20))
th1.start()
th2 = Thread(target=sum1, args=(30,40))
th2.start()
print ("Active threads are ", activeCount())

print ("All Threads : ", enumerate())

Let’s see the following screenshot for the output:

Figure 17.1

Now delete the time.sleep(2) line from preceding code and execute it again.
Have a look at the following screenshot for output, where the code is executed
without sleep time:

Figure 17.2

You can see the difference. The main thread or the main process has run the
threading.activeCount() and threading.enumerate() statements.

Threads  315

So, it’s the main thread that runs the entire program. This time th1 and th2 were
active in the figure when the activeCount() method was executed by the main
thread. When we remove the sleep time and execute the program again, th1 and
th3 may not be active.

The threading.Timer() method is used to set the time. Let’s understand the
following syntax:
threading.Timer(interval, function, args=[], kwargs={})

The preceding syntax means that after a specified interval in seconds, the interpreter
will execute the function with args and kwargs.

The join method
In simple words, the join() method holds the main thread until it completes its
task. Let's look at the following program before addressing the importance of the
join() method:

from threading import Thread

import time

list_th = []

def test(num):

 time.sleep(2)

 list_th.append(num)

th1 = Thread(target=test, args=(1,))

th1.start()

th2 = Thread(target=test, args=(60,))

th2.start()

print ("List1 is : ", list_th)

The two threads are created with arguments in the preceding program. A global
Python list, list1, is appended with the arguments. Let's see its outcome in the
following screenshot:

Figure 17.3

316  Python for Developers

The preceding figure shows the blank list, but the list is supposed to be filled with
values 1 and 60. The main thread executes the print ("List1 is: ", list1_th)
statement. The threads were waiting for one second while the main thread printed
the list before getting it filled.

Hence, the main thread has to be paused until all threads are finished. We will use
the join method to do the same.

Let’s change the code as follows:

from threading import Thread

import time

list_th = []

def test(num):

 time.sleep(2)

 list_th.append(num)

th1 = Thread(target=test, args=(1,))

th1.start()

th2 = Thread(target=test, args=(60,))

th2.start()

th1.join()

th2.join()

print ("List1 is : ", list_th)

Let’s check the preceding code’s output in the following screenshot:

Figure 17.4

In the preceding code, the th1.join() syntax paused the main thread until thread
th1 finishes its task. Similarly, for thread th2, th2.join() paused the main thread.
To attain parallelism, it is necessary to call the join method after the creation of all
threads.

Let’s take a look at more use cases of the join method:

Threads  317

import threading

import time

import datetime

t1 = datetime.datetime.now()

list1 = []

def fun1(a):

 time.sleep(1)

 list1.append(a)

list_thread = []

for each in range(10):

 thread1 = threading.Thread(target=fun1, args=(each,))

 list_thread.append(thread1)

 thread1.start()

for t in list_thread:

 t.join()

print ("List1 is : ", list1)

t2 = datetime.datetime.now()

print ("Time taken", t2-t1)

In the preceding code, we have used the for loop to create ten threads. Each thread
has been appended in the list_thread list. After the creation of all the threads, the
join method is used with the for loop. Let’s see its output in the following screenshot:

Figure 17.5

The program has taken 1 second to execute. As every thread was taking 1 second,
and all the threads had started at the same time, they run in parallel. Consequently,
the total time taken to execute is approximately 1 second. If the join() method of

318  Python for Developers

each thread had been called after the creation of the corresponding thread, then the
time taken to execute the entire program would be more than 10 seconds.

For further understanding, let’s take a look at the following code:

import threading

import time

import datetime

t1 = datetime.datetime.now()

list1 = []

def fun1(a):

 time.sleep(1)

 list1.append(a)

for each in range(10):

 thread1 = threading.Thread(target=fun1, args=(each,))

 thread1.start()

 thread1.join()

print ("List1 is : ", list1)

t2 = datetime.datetime.now()

print ("Time taken", t2-t1)

Now let’s look at the preceding code’s output in the following screenshot:

Figure 17.6

From the preceding screenshot, it is obvious that the time it took is 10 seconds; this
means that no parallelization was accomplished as the join() method of the first
thread was called before the second thread was created, and so on.

The join method with time
In the following program, we used time delay with the join() method:

Threads  319

import time

import threading

def test():

 time.sleep(4)

thread1 = threading.Thread(target=test)

thread1.start()

thread1.join(2)

print (thread1.isAlive())

A couple of things are new here. If child thread is active during the main thread
executing the isAlive() method , then the method returns true; otherwise, it
returns false.

Check the following screenshot for the output:

Figure 17.7

The output shows that at the time of print, the thread statement was not active. Pass
the argument to the join() method, by changing thread1.join() to thread1.
join(2). This means that the join method can only block the main thread for two
seconds.

Let’s take a look at the following screenshot for the output:

Figure 17.8

From the preceding figure, we can see that the thread was still alive as join(2)
continued to block the main thread for two seconds, but it took the thread three
seconds to complete its task.

320  Python for Developers

The Daemon thread
In this section, you will learn about the non-daemon thread and its behavior. When
the main thread exits, it terminates all the running daemon threads. For the non-
daemon thread, until they finish their task, the main thread waits; however, for the
daemon threads, the main thread does not wait.

Let’s take an example of GUI windows, as shown in the following screenshot:

Figure 17.9

In the preceding figure, a calculator can be seen calculating something after getting
an input.

This calculation is performed in the background, and it may take some time. If you
click the close button, then two actions may take place:
 ● After clicking the Close button, the entire GUI Window exits
 ● After clicking the Close button, the GUI windows must wait until the

background calculation gets completed

If the first action happens, then the daemon thread has been used for background
calculation; and if the second action happens, then the non-daemon has been thread
used.

Let's take a look at the following code to understand:

from threading import Thread

import time

def non_d():

 print ("Non daemon enters")

 time.sleep(1)

 print ("Non daemon exits")

Threads  321

 def de():

 print (" daemon enters")

 time.sleep(3)

 print (" daemon exits")

th1 = Thread(target = non_d)

th1.start()

th2 = Thread(target = de)

th2.setDaemon(True)

th2.start()

Check the following screenshot for the output:

Figure 17.10

The th2.setDaemon(True) syntax or the th2.daemon = True syntax can be used
to make the daemon thread.

In the preceding program, the daemon thread was expected to take three seconds to
accomplish its task. As we know, the main thread attempts to exit without taking care
of the daemon thread. Consequently, we did not get the daemon exits statement. In
the next program, the time.sleep(3) statement has been removed from de() and
added in the non_d() function.

Let’s take a look at the following code:
from threading import Thread
import time
def non_d():
 print ("Non daemon enters")
 time.sleep(3)
 print ("Non daemon exits")

def de():

 print (" daemon enters")

322  Python for Developers

 time.sleep(1)

 print (" daemon exits")

th1 = Thread(target = non_d)

th1.start()

th2 = Thread(target = de)

th2.setDaemon(True)

th2.start()

Here’s the output for the preceding code:

Figure 17.11

In the preceding program, the non_d() function was executed by the non-daemon
thread, and it took 3 seconds to execute; thereby, the main thread had to wait for 3
seconds. Meanwhile, the daemon thread had executed the de() function completely.

Note: If a Daemon thread is used with its join method, then the join()
method blocks the main thread until the Daemon thread finished its task.

Lock
In multithreading, lock is basically used for maintaining synchronization. Let’s
consider two threads trying to access a variable, such as a bank balance amount.

Let's suppose the first thread is initiated by withdrawing money from the ATM, and
the second thread is started by a net banking APP. If the second thread accesses the
balance amount before being updated by the first thread, then the balance will be
in an inconsistent state. To prevent such situations, we use the lock mechanism. The
lock can be only in two states – locked or unlocked. If the first thread puts the lock
on the balance amount, then the second thread will have to wait until the first thread
releases the lock.

The lock.acquire() method is used to acquire the lock. When the lock is acquired
in one thread, then the lock.acquire() method blocks the other method until the
lock is released. The lock.release() method is used to release the lock.

Threads  323

Let’s take the following code as an example:

import time

from threading import Thread, Lock

lk = Lock()

list_th = []

def test(num):

 lk.acquire()

 list_th.append(num)

 lk.release()

for i in range(10):

 th1 = Thread(target= test, args=(i,))

 th1.start()

print ("The List is: ",list_th)

See the following screenshot for the preceding code’s output:

Figure 17.12

The lk = Lock() statement is used to make a lock object.

The primary issue with the lock is that it does not identify which thread has acquired
the lock. Due to this behavior, two problems could occur.

Problem 1
Let’s take a look at the following code:

from threading import Lock, Thread

import time

from datetime import datetime

lk = Lock()

324  Python for Developers

t1 = datetime.now()

def second_test(num):

 lk.acquire()

 print (num)

def third_test():

 time.sleep(3)

 lk.release()

 print ("By 3rd Thread ")

th1 = Thread(target = second_test, args=("First_Thread",))

th1.start()

th2 = Thread(target= second_test, args=("Second_Thread",))

th2.start()

th3 = Thread(target= third_test)

th3.start()

th1.join()

th2.join()

th3.join()

t2 = datetime.now()

print ("Total time taken", t2-t1)

In the preceding program, the th1 thread acquires the lock object, the th3 thread
releases it, and the th2 thread is trying to acquire the lock. See the following
screenshot for the output:

Threads  325

Figure 17.13

The preceding figure is showing the flow of execution. The th1 thread acquires a
lock and the th2 thread waits for the lock to be released. The lock is released by the
th3 thread, after which, the th2 thread acquires the lock. The above execution shows
the bug in the locks.

Problem 2
Let’s take a look at the following code:

import threading

lk = threading.Lock()

def first_test(n1):

 print ("In first",n1)

 lk.acquire()

 num =12+n1

 lock.release()

 print (num)

def second_test(n2):

326  Python for Developers

 lock.acquire()
 num = 12+n2
 lk.release()
 print (num)

def start():
 print ("starting")
 lk.acquire()
 first_test(50)
 second_test(60)
 lk.release()

th1 = threading.Thread(target= start)
th1.start()

If you execute the preceding program, there would be a deadlock. In the start()
function, a thread acquires a lock; after acquiring the lock, the first_test() function
is called. The thread sees the lock.acquire() statement as this lock is acquired by
the same thread. But the lock does not identify the thread which has acquired it.

To solve these issues, we use the Reentrant lock (RLock).

Just replace threading.Lock with threading.RLock.

Now take a look at the following syntax:
lock = threading.RLock()

Let’s look at the output of Problem 1 and Problem 2 after replacing the above line.

Output of Problem 1:

Figure 17.14

Threads  327

In the preceding figure, the interpreter is giving an error because, with the Reentrant
lock, it is not possible to release the lock until the thread acquires it.

The following screenshot shows the output of Problem 2:

Figure 17.15

The threading.RLock() statement returns a modified lock called reentrant. The
thread which obtains a reentrant lock must release it. Once a thread acquires a
reentrant lock, it can be acquired again by the same thread without blocking.

Lock versus Rlock
The main difference between Lock and Rlock is that the object of Lock can only be
acquired once; until it is released, it cannot be acquired again. (It can be re-acquired
by any thread after it is released).

On the other side, an RLock’s object can be obtained by the same thread several
times; however, to make it "unlocked," it must be released the same number of times.

Another difference is that an obtained or acquired Lock can be released by any
thread; whereas, an acquired RLock object can only be released by the thread that
acquired it.

GIL
Thread-based parallelism is considered as a convenient fashion of writing parallel
programs. The Python interpreter, however, is not completely thread-safe. A global
lock, described as the Global Interpreter Lock (GIL), is used to assist multithreaded
Python programs.

This indicates that only one thread can execute the given code at one time; after a
short period of time, the Python interpreter automatically switches to the next thread,
or when a thread does something that may take some time. The GIL isn't enough in
your own programs to prevent issues. If more than one threads try to access the
same data for writing purposes, then the data may end up in an inconsistent or
conflicting state.

328  Python for Developers

Let’s take a look at the gil1.py example:

import datetime

def calculate(n):

 t1 = datetime.datetime.now()

 while n > 0:

 n = n-1

 t2 = datetime.datetime.now()

 print ("time taken ", t2-t1)

calculate(100000000)

In the preceding code, the calculate function is being run by the main thread. Let’s
see the time taken by the thread:

Figure 17.16

Based on the preceding output, it can be deduced that the execution time is around
5 seconds.

Let’s see the threaded version of the code:

from threading import Thread

import datetime

def calculate(n):

 while n > 0:

 n = n-1

def calculate1(n):

 while n > 0:

 n = n-1

Threads  329

t1 = datetime.datetime.now()

th1 = Thread(target = calculate, args=(100000000,))

th2 = Thread(target = calculate1, args=(100000000,))

th1.start()

th2.start()

th1.join()

th2.join()

t2=datetime.datetime.now()

print ("Time taken ", t2-t1)

In the preceding code, two threads have been created to run parallelly.

Let’s see its result in the following screenshot:

Figure 17.17

You can see that the script in the preceding figure lasted nearly 9.5 seconds, which
is twice the time of the earlier script. This means that only the main thread acts as
multithreading, as shown in the following figure:

Figure 17.18

330  Python for Developers

We can say from the preceding experiment that multithreading is described as a
processor's capacity to run various threads simultaneously.

In a single-core CPU, it is accomplished using repeated switching between threads;
this is referred to as context switching. The state of a thread is preserved in context
switching, and the state of another thread is resumed or loaded whenever an
interruption occurs (due to I/O or manual setting).

Context changing occurs so often that all threads seem to run parallel to each other
(which is called multitasking).

Where to use multithreading?
The big question is: where to use multithreading? Let’s discuss a mathematical case
to answer this question.
 ● Ta: Total time to execution of program
 ● Ti: Internal delay of program or Input/Output (I/O) Bound
 ● Tt: Time taken by thread or CPU Bound

Tt: Ta - Ti

What is internal delay?
Let’s consider you are sending the ping packet to a machine, as shown in the
following code:

import os

import time

t1 = time.time()

resp=os.popen("ping -n 1 14.139.242.109")

print (resp.read())

t2 =time.time()

t = (t2-t1)*1000

print ("Time take %d in milliseconds"%(t))

Threads  331

Let’s check its output in the following screenshot:

Figure 17.19

In the preceding screenshot, you can see Ti is the round-trip time that depends on
the network bandwidth and the number of gateways or routers in the path.

Let’s take a look the Ta, Ti, and Tt statements from the preceding output here:

First run

Ta = 448

Ti = 393

Tt = 448-393 => 55

332  Python for Developers

Second Run

Ta = 210

Ti = 161

Tt = 210-161 => 49

Third Run

Ta = 171

Ti = 131

Tt = 171-131 => 40

Now you know what total time, internal delay, and time taken by threads.

If Ti (I\O Bound) = 0, then multithreading is not useful.

If Ti is present, then multithreading is useful. As the external conditions produce the
internal delay, the thread uses this time for context switching.

If we need to send ping packets to 100 IP, then multithreading would be useful.

How many threads?
The next big question is, how many big threads can be used?

Let us assume Ti is the same for each task. If we send ping to 100 IPs, we can assume
that the Ti for each ping packet is the same.

Hence, the equation would be:

Ti≥N*Tt

Let’s consider Ti is 100ms and the time taken by the thread is 20ms. You
can create maximum 5 threads.

Let’s run the gil1.py and gil2.py codes with some changes, as shown here:

import datetime

import time

def count(n):

 t1 = datetime.datetime.now()

 while n > 0:

 n = n-1

 time.sleep(.01)

 t2 = datetime.datetime.now()

Threads  333

 print (t2-t1)

count(1000)

In the preceding code, we have added the sleep(.01) time, which acts like an internal
delay.

Let’s take a look at the following screenshot for the output:

Figure 17.20

Now let’s see the multithreaded version of the preceding program:
import datetime

from threading import Thread

import time

def calculate(n):

 while n > 0:

 n = n-1

 time.sleep(.01)

def calculate1(n):

 while n > 0:

 n = n-1

 time.sleep(.01)

t1 = datetime.datetime.now()

thread1 = Thread(target = calculate, args=(1000,))

thread2 = Thread(target = calculate1, args= (1000,))

thread1.start()

thread2.start()

thread1.join()

thread2.join()

t2 = datetime.datetime.now()
print (t2-t1)

334  Python for Developers

Here’s the preceding code’s output:

Figure 17.21

Now, multithreading has been successful. If there were no internal delays, then the
time would have been doubled.

In Python 3.2, a new topic called ThreadPoolExecutor has been introduced; it
provides a simple high-level interface for asynchronously executing input/output
bound tasks. The ThreadPoolExecutor command is not in the threading module;
however, it is present in the concurrent.futures module. Let’s take a look at the
following example:

import datetime

import concurrent.futures

import time

t1 = datetime.datetime.now()

def calculate(n):

 while n > 0:

 n = n-1

 time.sleep(.01)

 return "Done first"

def calculate1(n):

 while n > 0:

 n = n-1

 time.sleep(.01)

 return "Done Second"

with concurrent.futures.ThreadPoolExecutor() as exe:

 f1 = exe.submit(calculate, 1000)

 f2 = exe.submit(calculate1, 1000)

 print (f1.result())

 print (f2.result())

Threads  335

t2 = datetime.datetime.now()

print (t2-t1)

In the preceding code, the submit method schedules the calculate function to be
executed and to return a future object. The f1.result() method grabs the return
value of the corresponding function and the f1.result() method also waits around
until the calculate() function gets completed. The result() method works like
the join() method of the thread. See the following output for an example:

Figure 17.22

You can see the program is taking around 10 seconds. Let’s consider you want to run
the same function 10 times, for which, you will use the list comprehension. Let’s take
a look at the following full code:

import datetime

import concurrent.futures

import time

t1 = datetime.datetime.now()

def calculate(n):

 while n > 0:

 n = n-1

 time.sleep(.01)

 return "Done first"

with concurrent.futures.ThreadPoolExecutor() as exe:

 response = [exe.submit(calculate, 1000) for i in range(10)]

336  Python for Developers

 for each in concurrent.futures.as_completed(response):

 print (each.result())

t2 = datetime.datetime.now()

print (t2-t1)

In the preceding code, the [exe.submit(calculate, 1000) for i in range(10)]
statement runs the submit() method 10 times with the same argument. To get a
result, we use an as_completed() function of the concurrent.futures module.
This will give us an iterator that we can loop over, and yield the result of thread as
complete, as shown in the following output:

Figure 17.23

In preceding output, the total time taken is around 10 seconds. Now, instead of
passing 1000 to the calculate function, let’s pass a different argument to the calculate
function, as shown in the following code:

import datetime

import concurrent.futures

import time

t1 = datetime.datetime.now()

def calculate(n):

 k = n

 while n > 0:

 n = n-1

 time.sleep(.01)

 return "Done first "+str(k)

Threads  337

list1 = [1000,100, 900, 800]

with concurrent.futures.ThreadPoolExecutor() as exe:

 response = [exe.submit(calculate, i) for i in list1]

 for each in concurrent.futures.as_completed(response):

 print (each.result())

t2 = datetime.datetime.now()

print (t2-t1)

In the preceding code, a list of numbers has been passed to the calculate function.
Let’s run the code and analyze its output, as shown here:

Figure 17.24

In the preceding code, the threads are printed in the order they get completed
because we used the concurrent.futures.as_completed() function. We can also
use the map() function to pass each argument to the submit method. Take a look at
the following example with the map() function:

import datetime

import concurrent.futures

import time

t1 = datetime.datetime.now()

def calculate(n):

 k = n

 while n > 0:

 n = n-1

338  Python for Developers

 time.sleep(.01)

 return "Done first "+str(k)

list1 = [1000,100, 900, 800]

with concurrent.futures.ThreadPoolExecutor() as exe:

 response = exe.map(calculate, list1)

 for each in response:

 print (each)

t2 = datetime.datetime.now()

print (t2-t1)

The map() function returns the iterator that can be looped over to get the result.
The iterator in turn returns the result as the thread starts, as shown in the following
screenshot:

Figure 17.25

You can compare the output, now they are giving the result as they started instead
of giving the output as threads completed its task.

Conclusion
In this chapter, you learned about the thread-based program. The threading module
contains the Thread class, which creates the thread. The join method blocks the main
thread until the child thread finishes its task. The Daemon thread allows us to create
applications that could be terminated after closing the main program. The daemon

Threads  339

thread has to exit when the main thread exits. If multiple threads try to access the
same data, then the data may end in an inconsistent state. To maintain consistency,
we use the lock mechanism. At the end of the chapter, you have seen the GIL that
enables the Python interpreter, which is to be managed by only one thread. In the
next chapter, you will learn about queues and queues with thread.

Questions
 1. What is the purpose of the run() method?

 2. What is the meaning of join(5)?

 3. Does lock remember which thread acquires the lock?

 4. Why do we use daemon threads?

 5. What are the cases where we can use multi-threading?

In our day-today lives, we can see the different type of queues, like a customer
waiting for some service. In most of the cases, the customer is attended to, on a

first come, first server basis. At supermarkets, a polite customer might let someone
having only a few items, go first. The queuing policy decides who goes next. In this
chapter, we will learn about the different types of queues offered by Python. Python
queues are very useful in a multithreaded program.

Structure
 • Queue
 o FIFO queue
 o LIFO queue
 o Priority queue
 • Queue with threads

Objective
In this chapter, we will learn about the queue implementation in Python. We will
see FIFO, LIFO, and Priority Queue. After learning this chapter, you will be able to
make efficient multithreaded applications. You will learn the producer-consumer

Chapter 18
Queue

342  Python for Developers

concept. A lot of companies use the producer-consumer concept with queue in their
production. Although they are using third party queues, the basic idea is same.

Queue
A queue is a linear data structure with two ends. One end is called head (Front),
and the second end is called the tail (Rear). The item is added from the tail end and
gets eliminated as per the policy to be used. We would see three policies that define
how to pop the items. In queue, we use terms push and pop; pushing an item means
inserting an item, and popping an item means delete and obtain the item.

Python queue is of three types:
 • FIFO (First in First Out)
 • LIFO(Last in First Out)
 • Priority

Let us understand the above-mentioned queues one by one.

FIFO queue
The most straightforward queuing system is called FIFO, and it stands for first-in-
first-out. This is the simplest type of queue. The value we enter in the queue first,
will get first, as showcased in the following diagram:

Figure 18.1

Queue  343

In the preceding figure, the insertion of an item in the queue is illustrated. The
following diagram is showcasing the obtaining as well as the removal of the item:

Figure 18.2

When we obtain the item pointed by the head, then the head of the queue shifts its
place to the next items, as shown in the preceding diagram.

Let us see the FIFO implementation in Python:

import queue

Q1 = queue.Queue() # FIFO

for each in range(5):

Q1.put(each)

while not Q1.empty():

print (Q1.get())

In the preceding code, syntax Q1 = queue.Queue() creates a FIFO queue object.
The queue is the module and Queue is the class. The syntax Q1.put() put the item
in the queue Q1. The Q1.empty() returns True, if the queue is empty. If there is
something in the queue, then Q1.empty() returns False. The syntax Q1.get() is
used to retrieve the item.

344  Python for Developers

Check the output in the following screenshot:

Figure 18.3

Now let us discuss the Python LIFO queue policy.

LIFO queue
LIFO queue uses the last-in, first-out ordering (generally associated with a stack data
structure). The push and pop operations on an item are performed at the same end.

See the following implementation of the LIFO code:

import queue

Q1 = queue.LifoQueue()

for each in range(5):

Q1.put(each)

while not Q1.empty():

print (Q1.get())

Check the following screenshot for the output:

Figure 18.4

In the preceding output, Last entered value come first, like a stack of disks.

Queue  345

Priority queue
Let us see the priority-based queue. In the priority-based queue, we enter a tuple
that contains the item and priority number, lower the number higher the priority.

Let us see the code:
import queue

Q1 = queue.PriorityQueue()

Q1.put((5,"Mohit"))

Q1.put((1,"admin"))

Q1.put((6,"Sahil"))

Q1.put((10,"bhaskar"))

Q1.put((45,"ajay"))

while not Q1.empty():

print (Q1.get()[1])

In the preceding code, we have pushed the tuples. Each tuple contains two items, as
showcased below:
(Priority number, data)

See the following screenshot for the output:

Figure 18.5

As you can see now, we are gettingthe value according to the priority.

Queue with threads
So far, you have seen the thread and the queue. In this section, we will learn how two
or more threads can communicate with the help of a queue.

Let us see the producer and consumer problem. The program is slightly long. We
would see the explanations section by section.

346  Python for Developers

In the following section, the mandatory modules have been imported:

import time

import random

import queue

from threading import Thread

Here, we have defined the queue q1:
q1 = queue.Queue()

The producer1 function, which is run by the thread th2,creates a random number
and puts the number in the queue:

def producer1():

while True:

a = random.randint(1,100)

time.sleep(1)

q1.put(a)

print ("Size ",q1.qsize())

The consumer function, which is run by the thread th2, consumes the data of the
queue:

def consumer():

while True:

print ("GOT ", q1.get())

time.sleep(1)

The two threads,th1 and th2, which execute the producer1 and consumer functions,
respectively.

th1 = Thread(target = producer1)

th1.start()

th2 = Thread(target= consumer)

th2.start()

Queue  347

See the following screenshot for the output:

Figure 18.6

The preceding output shows everything in synchronization. The producer is filling
the queue at the rate of one item per second. The consumer is consuming the queue
at a rate of 1 second. Now, let us change the rate of production and consumption.

Just change one line, time.sleep(.5) in the producer1 function.

Let us see the output in the following screenshot:

Figure 18.7

348  Python for Developers

From the preceding output, it is clear that the size of the queue is being increased
continuously. Now, in such a situation, either optimize the code, or increase the
number of threads to establish the sync. See the following code:

import time

import random

import queue

from threading import Thread

q1 = queue.Queue()

def producer1():

while True:

a = random.randint(1,100)

time.sleep(.5)

q1.put(a)

print ("Size ",q1.qsize())

def consumer():

while True:

print ("GOT ", q1.get())

time.sleep(1)

th1 = Thread(target = producer1)

th1.start()

th2 = Thread(target= consumer)

th2.start()

th3 = Thread(target= consumer)

th3.start()

Queue  349

Check the following screenshot for the output:

Figure 18.8

Now the producer and the consumer are in synchronization.

Let us see one more problem.

import queue

from threading import Thread

import time

q1 = queue.Queue()

def fun1():

while not q1.empty():

print (q1.get())

for each in range(5):

q1.put(each)

th1 = Thread(target = fun1)

th1.start()

350  Python for Developers

The preceding program is verystraightforward. The queue is getting filled by the for
loop, and the thread is consuming the items of the queue.

Check the following screenshot for the output:

Figure 18.9

In the preceding code, the queue is getting filled before the thread begins.

Let us fill the queue after the creation of a thread:

import queue

from threading import Thread

import time

q1 = queue.Queue()

def fun1():

while not q1.empty():

print (q1.get())

th1 = Thread(target = fun1)

th1.start()

for each in range(5):

q1.put(each)

The following screenshot is showcasing the output:

Figure 18.10

Queue  351

We are not getting anything, because the condition, q1.empty(), returns true, a
thread is created before filling the queue. The following are the possible solutions
with problems:
 • If we use the while True loop, then we would get every element, but the

program would not get terminated.
 • If we use the while True loop with the daemon thread, then the main thread

exists before the daemon thread finishes its task.
 • If we use while True loop with daemon thread and join, then the Program

will not get terminated.

We need something that will block the main thread until all the items of the queue
have been popped.

Here we will use join with the queue, not with thread. See the following code:
import queue
from threading import Thread
import time
q1 = queue.Queue()
def fun1():
while True:
print (q1.get())
q1.task_done()
th1 = Thread(target = fun1)
th1.setDaemon(True)
th1.start()

for each in range(5):
q1.put(each)
q1.join()

Check the following screenshot for the output:

Figure 18.11

352  Python for Developers

The join() method blocks until all items in the Python queue have been poppedand
processed. Whenever an item is added to the Python queue, the count of unfinished
tasks goes up. Whenever a consumer thread calls q1.task_done(), the count goes
down. It is indicating that the item was retrieved, and all work on it is complete.
When the count of unfinished tasks drops to zero, join() unblocks.

Conclusion
In this chapter, we have studied the queue. In Python 3, the queue is amodule, and
the queue is the FIFO queue. The FIFO is the default case of a queue. The LIFO
queue is the implementation of a stack. The third type is the priority queue,in which
a tuple with two items (Priority number, data) is pushed. The item, in the form of
a tuple, is retrieved according to the priority number. Threads can take the help
of the queue to communicate with each other, as we have seen in the example of
producer and consumer. At the end of the chapter, we have learned about the join
method and task_done. In the next chapter, we will learn about multiprocessing
and subprocess.

Questions
 1. What is significance of the task_done method?

 2. Which queue policy supports the stack?

Multiprocessing refers to the simultaneous execution of multiple processes on a
distinct CPU or core in a computer system. It is the ability of a system to support

more than one processor within a single computer system. Such multi-processors
often share the machine bus as well as the clock, storage, and peripheral devices.
The multi-processor system's main advantage is to get more jobs done in a shorter
time frame. Such types of devices are used when storing a considerable volume
of data that requires extremely high speed. Compared to single-processor systems,
multi-processing systems can save costs as processors and can share peripherals and
power supplies. In this chapter, you will learn how to create multiprocessing with
Python.

Structure
 • Python multi-processing
 o The Process class
 o The Daemon process
 • The communication between the processes
 o File
 o Shared memory
 o Communication channel

Chapter 19
Multiprocessing

and
Subprocess

354  Python for Developers

 • Subprocess
 o Call
 o popen

Objective
This chapter will help us create parallel programs—where thread fails, we use multi-
processing. You will learn how creation, execution, and communication between the
processes works, and you will understand why communication between processes
is expensive than threads. You will also learn about the subprocess module to replace
os.system and os.popen.

Python multi-processing
The multi-processing of Python is similar to multithreading; Python multi-processing
creates subprocesses in the place of threads. By using subprocess, multi-processing
evades the GIL (Global Interpreter Lock).Additionally, it runs on both Unix and
Windows and can take advantage of multicore processors.

The Process class
The processes are generated by creating an object of the Process class(defined in the
multi-processing module),and they are started by calling the start() method. Let's
gain a deeper understanding of it through examples of how the process class works.
Consider the following code:

from multiprocessing import Process

def call_name(name):

 print ('hello ', name)

if __name__ == '__main__':

 p = Process(target=call_name, args=('mohit',))

 p.start()

Now, check out itsoutput in the following screenshot:

Figure 19.1

Multiprocessing and Subprocess  355

We just created one process in the preceding example. The syntax of multiprocessing
is very similar to multithreading. Let’s create multiple processes using the following
code:

from multiprocessing import Process

def worker(n):

 print ('process:', n)

if __name__ == '__main__':

 for i in range(5):

 p = Process(target=worker, args=(i,))

 p.start()

Now let’s check its output in the following screenshot:

Figure 19.2

In the preceding example, five processes are created.

If you want to know about the current process and the process ID, then use the
current_process class.

Let’s give each process a name and get its process id. In order to get a name and
process id, we will use current_process().

Let’s look at an example:

from multiprocessing import Process, current_process

def worker(n):

print ('process:', n)

print (current_process().name)

print (current_process().pid)

if __name__ == '__main__':

356  Python for Developers

p1 = Process(name ='worker1', target=worker, args=(1,))

p2 = Process(name ='service', target=worker, args=(2,))

p1.start()

p2.start()

Here’s its output:

Figure 19.3

By using current_process(), we are printing the process IDand the process name.

In the multithreading chapter, we saw the use of the join() method. In multi-
processing, the join() method works in the same way. The join method will pause
the main process until the child process completes its task. Let’s look at another
example:

from multiprocessing import Process, current_process

from multiprocessing import Process, current_process

def worker(n):

print ('process:', n)

print (current_process().name)

print (current_process().pid)

if __name__ == '__main__':

p1 = Process(name ='worker1', target=worker, args=(11,))

p2 = Process(name ='service', target=worker, args=(12,))

p1.start()

p2.start()

p1.join()

p2.join()

print ("Task finished")

Multiprocessing and Subprocess  357

Here’s what its output looks like:

Figure 19.4

The join() method blocks the main process. If we don't give an argument to the
join() method then join() waits for an indefinite time. If you specify the time in
seconds to the join method, then the join method pauses the main process for the
specified time.

Killing a Process
In order to kill a process, the terminate() method is used, and in order to check if
a process is live or not, the is_alive() method is used. Let’s look at an example:

from multiprocessing import Process, current_process

import time

def worker1(num):

time.sleep(3)

print (current_process().name)

if __name__ == '__main__':

p1 = Process(name ='worker1', target=worker1, args=(1,))

p1.start()

print ("p1 process After start ", p1.is_alive())

p1.terminate()

time.sleep(1)

print ("p1 process after termination ", p1.is_alive())

print ("Task Done")

358  Python for Developers

Let’s see the output in the following screenshot:

Figure 19.5

As you can see in the preceding screenshot, after the process was completed, the
background machinery was given 1 second to update the object's status to reflect the
termination (you can also use the join() method instead of time.sleep()).

The Daemon process
The concept of the daemon process has already been explained in Chapter 17,
Multithreading. Please refer to the Daemon thread concept to understand the Daemon
process.

The communication between the processes
The Python processes do not share the usual lists and dictionary; however, the list
and dictionary created by the process manager is shared by the processes.

Let’s now look at a process with a regular list:

from multiprocessing import Process, Manager,current_process

list1 = []

def worker(list1, num):

list1.append(num)

print ("list1 by ",current_process().name, list1)

if __name__ == '__main__':

p1 = Process(name ='worker1', target=worker, args=(list1,1))

p2 = Process(name ='service', target=worker, args=(list1,2,))

p1.start()

p2.start()

Multiprocessing and Subprocess  359

p1.join()

p2.join()

print ("list is ", list1)

print ("All finished")

Now let’s check out the output for the preceding code:

Figure 19.6

As you can see, every list is different. The lists used by worker1, service, and
main processes are separate. That’s why each list contains different values. Each
process has its own address space; thus, the processes do not share the variables.
So, the interprocess communication (IPC) will be used to share the data among the
processes. For more clarification, take a look at the following diagram:

Figure 19.7

The question is: how can two processes share the data? They can share the data via
three options, which are:
 • File
 • Shared memory
 • Communication channel

360  Python for Developers

The file option involves the harddisk operation, where one process writes the data to
file and the other process reads the data from the file. Let’s understand the concept
of shared memory and communication channel with the help of the following figure:

Figure 19.8

Shared memory
In the multiprocessing communication,Value, array, and manager are used to share
the state. First,you will learn about Value.

Value
We use Value to store a single number using the following syntax:
Value(typecode_or_type, *args, lock=True)

The Value returns a shared memory object. By default, it returns a synchronized
wrapper for the object, and the object itself can be obtained using the value attribute
of Value, that is, Value.value.

The typecode_or_type argumentdefines the return type of the object, for example,
if we are expecting an integer, then use i, and use d (double) for float.

Take a look at the following table for the details:

Type code C Type Minimum size
in bytes

'b' Signed integer 1
'B' Unsigned integer 1
'u' Unicode character 2

Multiprocessing and Subprocess  361

'h' Signed integer 2
'I' Unsigned integer 2
'l' Signed integer 4
'L' Unsigned integer 4
'q' Signed integer 8
'Q' Unsigned integer 8
'f' Floating point 4
'd' Floating point 8

Table 18.1

The *args argument specifies the size or the initial value.

If the lock is True (default), a new recursive lock object will be generated to
synchronize the value. The purpose of the lock (RLock or Lock) is to synchronize the
access of the object. If the lock is False, then access to the returned object will not be
automatically defended by a lock.

Let’s understand this with the help of the following examples:

import multiprocessing

import time

def shared(v):

v.value = v.value+1

print ("Sum of square ", v.value)

if __name__ =="__main__":

val = multiprocessing.Value('i', 0)

list1 = []

for each in range(5):

p = multiprocessing.Process(target=shared, args=(val,))

p.start()

list1.append(p)

for p in list1:

p.join()

print(“In the end”,val.value)

362  Python for Developers

Let’s take a look at its output as shown in the following screenshot:

Figure 19.9

As you can see, each process is updating the value; the last process and the main
process have the same value, which is 5.

Let’s add a one second delay before printing the print ("Sum of square ", v.value)
line. Add the following line:

print ("Sum of square ", v.value).

time.sleep(1)

Don’t forget to import the time module. Let’s look at the following screenshot to see
the output of the code again:

Figure 19.10

During the waiting time of 1 second, the last process updated the value, and all the
process accessed the same value, which is 5, after the one second delay.

The main process and the child processes are sharing the same state.

Array
We use Array to store multiple numbers, as you can see in the following syntax:

multiprocessing.Array(typecode_or_type, size_or_initializer, *,
lock=True)

Multiprocessing and Subprocess  363

TheArray can take three arguments; let’s discuss them one by one:
 • typecode_or_type: This argument defines the type of elements of the

Array. We use i for integer and d for double.
 • size_or_initializer: We can give an integer ora sequence. If we provide

an integer, then the integer specifies the length of the Array, and all the
elements of the Array will be initialized with 0. If we give any sequence,
then the Array will contain the element of the sequence.

The working of the lock will be the same as we saw in Value.

Let’s take a look at the following example:

import multiprocessing

import time

def shared(a,i):

a[i] = 10+i

print (a[:], type(a))

if __name__ =="__main__":

arr = multiprocessing.Array('d', 5)

print ("In start", arr[:])

list1 = []

for each in range(5):

p = multiprocessing.Process(target=shared, args=(arr,each))

p.start()

list1.append(p)

for p in list1:

p.join()

print("In the end",arr[:])

364  Python for Developers

The arr = multiprocessing.Array('d', 5) statement signifies that all the
elements of the Array will contain double types, and the size of the Array will be 5.
Let’s discuss the output, which is shown in the following screenshot:

Figure 19.11

All the elements of the Array are initialized with 0.0; however, if we had used i
instead of d, then it would be 0. Every process is filling its value one by one. In the
end, the Array has been filled by all the processes. Let’s perform an experiment.
Replace the arr = multiprocessing.Array('d', 5) statement with arr =
multiprocessing.Array('d', range(5)), and then run the program.

The following screenshot shows the result:

Figure 19.12

In the preceding screenshot, you can see that the Array is initialized with the values
specified in the sequence.

The Manager class
Through the Manager class object, the list, dictionary, and queue can be shared. A
Manager class’ object controls a server process that holds Python objects and allows
other processes to manipulate them using proxies.

Take a look at the following program; here, two processes are appending the values
to the list:

Multiprocessing and Subprocess  365

from multiprocessing import Process, Manager,current_process

def worker(list1, num):

list1.append(num)

print ("list1 by ",current_process().name, list1)

if __name__ == '__main__':

mgr = Manager()

list1 = mgr.list()

p1 = Process(name ='worker1', target=worker, args=(list1,1))

p2 = Process(name ='service', target=worker, args=(list1,2,))

p1.start()

p2.start()

p1.join()

p2.join()

print ("list is ", list1)

print ("All finished")

The Python list, list1, has been created by the Manager class object.

Now let’s look at the output in the following screenshot:

Figure 19.13

Exchanging object through the communication
channel
Multiprocessing facilitates two types of interprocess communication channels:
 • Queue: Python multiprocessing uses the queue defined in the multiprocessing

module. This isn't the normal queue; it resides in shared memory. This queue
is similar to the FIFO queue (queue.Queue).

 • Pipe: The pipe() function returns two objects to make connections, which is
duplex in nature.

366  Python for Developers

Let’s explore the queue. The following program represents the producer and
consumer problem:
from multiprocessing import Process, Queue
import time,random
Q1 = Queue()
def produce1():
while True:
num1 = random.randint(1,100)
Q1.put(num1)
time.sleep(1)
print ("size is ", Q1.qsize())

def consumer():
while True:
print (Q1.get())
time.sleep(1)

p1 = Process(target = produce1)
p1.start()

p2 = Process(target = consumer)
p2.start()

Let’s look at the output for the preceding program here:

Figure 19.14

Multiprocessing and Subprocess  367

The above result shows the synchronization of two processes. Now let’s see the
communication with the help of pipe.

Pipe
A two-way communication channel can be created using pipe. The pipe() function
returns two connection objects; each object can send and receive messages by using
send() and recv(), as shown here:

from multiprocessing import Process, Pipe

def shared(conn):

 conn.send(["mohit", 99])

 conn.close()

if __name__ == '__main__':

 parent_conn, child_conn = Pipe()

 p = Process(target=shared, args=(child_conn,))

 p.start()

 p.join()

 print(parent_conn.recv())

In the preceding program, the child process is sending the message and the main
process is receiving the message. The following screenshot shows the output of the
program:

Figure 19.15

Subprocess
The subprocess module allows you to create new processes, connect to their input/
output/error pipes, and obtain their return codes. The subprocess module is
designed to replace several older modules and functions such as os.system,os.
spawn*,os.popen*, andpopen2.*.

368  Python for Developers

Difference between subprocess and
multi-processing
The aim of multi-processing is to run the function or task of the Python program.
Multi-processing allows you to divide the tasks and execute them in parallel;
whereas, subprocess is designed to run the external command.

The call() function
Whenever you run the command in the terminal or the command prompt, it takes
a standard input and displays its output. The call() method is used to run the
external commands; this is the replacement of os.system().

Take a look at the following syntax:
subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False)

Now we will discuss its options with the help of examples.

Let’s see the following example on Windows:

Figure 19.16

If the return code is 0, it means the command was executed successfully.

You can also give the command in the list, as follows:

Figure 19.17

Multiprocessing and Subprocess  369

In Linux, multiple commands in the form of string may give an error, as shown in
the following screenshot:

Figure 19.18

It is better to give the command in the list, as follows:

Figure 19.19

370  Python for Developers

Note: Do not use stdout=PIPE or stderr=PIPE with this method; the child
process will block if it generates enough output to a pipe to fill up the OS
pipe buffer as the pipes are not being read from.

Let’s see another case of Windows, as shown in the following screenshot:

Figure 19.20

The dir command in Windows displays the information of the file and folder present
in the current directory. In the preceding figure, the interpreter is throwing an error.
Because dir is not an external command, it is built-in to shell.

In order to run a built-in shell or command prompt command, we need to shell=
True argument, as shown in the following screenshot:

Figure 19.21

If you want to store the output in a variable, then you can use the check_output()
method, as shown in the following example:

Multiprocessing and Subprocess  371

Figure 19.22

In the preceding figure, you can see that the output is stored in the variable. The next
method is popen().

Popen()
The subprocess.popen is the replacement of os.popen. Let’s discuss the popen()
method with the help of the following example:

Figure 19.23

372  Python for Developers

In the preceding example, Popen is working as os.system(). Now take a look at the
following example:

Figure 19.24

The stdout=subprocess.PIPE argument is a file object that provides output from
the child process. Otherwise, it is None.

The Popen.communicate(input=None) argument reads the data from stdout
and stderr until the end-of-file is reached. Wait for the process to terminate; the
communicate() attribute returns a tuple (stdoutdata, stderrdata).

Conclusion
In this chapter, you learned about multiprocessing, and with its help, we can
create multiple processes. Where multi-threading does not work, we use multi-
processing. The multi-processes create their memory block and don’t share their
stack; therefore, communication between the processes is not an easy task. However,
shared memory and communication channels make it possible. In shared memory,
the Value, Array, and Manager classes are included; and in the communication
channel,the queue and pipe classes are included. At the end of the chapter, you also
saw the subprocesses, which help in execution of OS commands. A lot of subprocess
methods can be used as the replacement of the OS functions. In the next chapter, you
will learn about configparser, argparse, logger, and debugger; these modules
will be very helpful from the industry point of view.

Questions
 1. What is the difference between multithreading and multi-processing?

 2. Which takes less time to create: a thread or a process?

 3. Can we use a queue with multi-processing?

 4. When to use multithreading and multi-processing?

Chapter 20
Useful

Modules

You may have seen the Linux directory structure—the /bin directory contains a lot
of binary executable files and the /etc directory contains a lot of configuration

files. The binary files cannot be updated, but they take some input from its
configuration file placed in the /etc directory. A user can change the configuration
file, which contains some parameter that are used by the binary file. In Python, we can
make this type of functionality with the help of configparser so that we can avoid
hardcoding of the Python program. You may have seen some popular applications
like apache, where they take their parameters like IP address and port number from
a configuration file (httpd.conf or apache.conf) and write their log event in a
specified log file. By viewing the log file, we can file the events, errors, and so on. In
Python, you will learn about the logger to create log files. Some commands like ping,
which can be used with options like ping -n 1 is used to send one ICMP packet,
similarly the ls command, which can be used with a lot of options such as ls -l,
ls -l -t -r. In Python, we can achieve the same thing by using a module called
argparse, which you will learn about in this chapter.

Structure
 ● Configparser
 ● Loggers
 ● Argparse
 ● Debugging

374  Python for Developers

Objective
In this chapter, you will learn the modules, which will be very helpful when starting
a project. You will learn how to avoid hardcoding, how to create efficient log files
to track events, and how to generate command-line arguments. By the end of the
chapter, you will learn how to debug a code.

Configparser
In this section, we will see the configparser module. The configparser module is
used to prevent the program from being hardcoded. In professional code, we don't
hardcode any variable. If you are acquainted with Linux, in the etc' directory, there
are many conf files that are used to configure the executable files. Let’s consider a
scenario where the production environment has five servers, and every server has
the same set of codes. The developer wants to change some parameters in the code.
It will be very tedious to change the parameter in the code of all the servers. To tackle
this problem, we will write all the parameters required by the codes to a conf file. In
the future, if some setting needs changes, then we will deploy a new conf file to all
servers with the new modified setting, as shown in Figure 20.1:

Figure 20.1

Useful Modules  375

Let’s see how we can use configparser.

Let’s consider we want to use the DNS and HTTP server’s IP address and port
numbers in our program. Now, we will look at how we can create the configuration
file and avoid the hardcoding.

First, create a config file named config.ini (you can use any name and extension).
Take a look at the following syntaxes of config file:

[DNS]

Server_ip= 127.0.0.1

Port = 53

[HTTP]

Server_ip= 127.0.0.7

Port = 80

In the preceding config file, we have fixed the different server IPs and ports. By using
[], we have created the sections like DNS and HTTP in the config file. Each section
contains a key with the value type structure, as you can see in the following code:

import configparser

config = configparser.ConfigParser()

config.read("config1.ini")

http_ip = config.get("HTTP", "IP")

print (http_ip)

http_port = config.get("HTTP", "Port")

print (http_port)

dns_ip = config.get("DNS", "IP")

print (dns_ip)

dns_port = config.get("DNS", "Port")

print (dns_port)

By using the config = ConfigParser.ConfigParser() syntax, the config object gets
created. In the config.read("config.ini") syntax, the read method is used to read
the config file. The http_ip = config.get("HTTP", "IP") syntax returns the value
of IP of HTTP server.

376  Python for Developers

Let’s look at the following screenshot for the output:

Figure 20.2

Now that we have an idea of how to parse the config file, let’s consider we don’t
know any section name, and any key and value (even though we can see the config
file, for one moment, let’s consider we don’t know anything).

We will parse the file without knowing any section or keys and values.

Let’s look at the full code as shown here:

import configparser

config = configparser.ConfigParser()

config.read("config.ini")

for section in config.sections():

 print ("For ", section)

 for k,v in (config.items(section)):

 print (k , ": ", v)

The first three lines are the same. The config.section() command returns a list of all
the sections:

>>> config.sections()

['DNS', 'HTTP']

>>>

If we take one section from the list, then config.items() returns the list of tuples with
the key and values:

>>> config.items('DNS')

[('ip', '127.0.0.1'), ('port', '53')]

>>>

Now, let’s see the preceding code’s output in the screenshot shown here:

Useful Modules  377

Figure 20.3

Now that you’ve got an idea of configparser, try to avoid the hard coding and use
the configuration file.

Loggers
The logging module provides a way of tracking events that occur when a specific
code is operating. Logging offers a collection of convenience methods that act as a
level for logging. These levels are debug(), info(), warning(), error() and
critical(). Each level has its priority level; debug() has a low priority level and
critical() has a high priority level.

Although a program can write the output on a text file, opening and closing file
operations is very time consuming. In the case of multithreading, it is a very
complicated task to take the output on the file. Here, we will discuss how you can
make your logger.

Let’s create a Simple Logger with the help of basicConfig, as shown here:

import logging

logging.basicConfig(filename="Mylive.log",filemode="w", level=logging.DEBUG)

logging.debug("A debug message")

logging.info("A Info message")

logging.warning("A warning Here")

logging.error("Ohh Error!")

logging.critical("It is Critical, do something !!!!")

378  Python for Developers

Let’s look at the output of the preceding code:

Figure 20.4

In the preceding screenshot, you can see messages of all levels because the second line
of the program specified level=logging.DEBUG, and we know there are five levels
of logging (in ascending order): DEBUG, INFO, WARNING, ERROR, and CRITICAL,
where Debug is the lowest level. However, if we set level=logging.ERROR, then
we will get all the messages higher than the level of Error. Let’s now see the output
of the code after changing the level.

Let’s run the program with the ERROR level, as shown here:

import logging

logging.basicConfig(filename="Mylive.log",filemode="w", level=logging.ERROR)

logging.debug("A debug message")

logging.info("A Info message")

logging.warning("A warning Here")

logging.error("Ohh Error!")

logging.critical("It is Critical, do something !!!!")

Useful Modules  379

The following screenshot shows the code’s output:

Figure 20.5

You can see the only error and critical message is due to its ascending order. The root
part signifies that this logging message is coming from the root logger or the main
logger. To make it more descriptive, don't use basicConfig. We can make our own
template or format to log the events; the following program shows us how:

import logging

import time

logger = logging.getLogger("MOHIT")

logger.setLevel(logging.INFO)

fh = logging.FileHandler("mohit_live.log")

formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -
%(message)s')

fh.setFormatter(formatter)

logger.addHandler(fh)

Here, we created a logger instance named "MOHIT". The level of the logger is set at
line number 4. The line number 5 specifies the log file name. The line number six,
logging.Formatter(), specifies the format of log file, which you will understand
after viewing the events on the log file.

The logger has been created. Now save the program as logger1.py.

Let’s make another program, prime1.py, which will import logger1.py. The
following program will find the prime number:

import math

import logger1 as lg

380  Python for Developers

try:

 num1 = int(input("Enter the number "))

 loop_number =int(math.sqrt(num1))+1 # 1/2

 flag = 0

 lg.logger.info("Value is %d"%(num1))

except Exception as e :

 lg.logger.error("Error in first and Error is %s"%(e))

try:

 for each in range(2,loop_number):

 #print (each)

 c=num1%each

 lg.logger.info("Result is %d"%(c))

 if c ==0:

 flag = 1

 break

except Exception as e :

 lg.logger.error("Error in second and Error is %s"%(e))

try:

 if flag ==0:

 print ("Number is prime ")

 else :

 print ("Number is not prime")

except Exception as e :

 lg.logger.error("Error in flag and Error is %s"%(e))

We just used two levels that are INFO and ERROR. Let’s generate its output and check
the INFO and ERROR events. See the following screenshot for the output:

Useful Modules  381

Figure 20.6

We set the format as logging.Formatter('%(asctime)s - %(name)s -
%(levelname)s - %(message)s') in the logger1.py program.

Therefore, we got the output in the same format. First, we got the time of event, then
the logger name, level name, and the messages crafted in prime1.py. When there
is no error, an Info message is being printed and if an error occurs, then an error
message is getting printed. The following table describes the formats that you can
use:

%(name)s Logger’s name
%(levelno)s Level number of DEBUG (10), INFO (20), WARNING (30),

ERROR (40), and CRITICAL (50).
%(levelname)s Level name of "DEBUG", "INFO", "WARNING", "ERROR",

"CRITICAL"
%(pathname)s The path from where the source file has been executed.
%(filename)s Name of the source file
%(module)s Module (name portion of the filename)
%(lineno)d The line number of Python source file from where the logging

call was published
%(funcName)s Function name from logging call was published (if the

function is defined)
%(created)f Time in Epoch Unix time when the log event was created
%(asctime)s Human-readable time, when the logging call was recorded
%(msecs)d The millisecond part of the time of the creation
%(relativeCreated)d Time in milliseconds when the logging call was recorded,

relative to the time the logging module was loaded (typically
at application startup time)

382  Python for Developers

%(thread)d The ID of Thread (if available)
%(threadName)s Name of Thread (if available)
%(process)d Id of Process (if available)
%(message)s The logging message crafted by the user

Table 20.1

Argparse
In this section, we will understand how to use the command-line argument. The
argparse module allows writing user-friendly command-line interfaces. It also
automatically generates help and usage messages, and issues errors when users give
the program invalid arguments. There are different types of arguments associated
with argparse.

Let’s start with the basic code to understand it:
import argparse

parser = argparse.ArgumentParser()

parser.parse_args()

The following screenshot displays its output:

Figure 20.7

From the preceding output, we can conclude three things:
 ● With the -h option, the help message is getting printed
 ● With an unknown option, the argument program is giving an error
 ● Without any option, nothing is printed

Let’s study the different types of arguments offered by the argparse module.

Useful Modules  383

The positional argument
When you provide an argument without any option, it is the positional argument.

Let’s look at the following code for better understanding:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("mohit")

arg =parser.parse_args()

print (arg.mohit)

In the preceding program, a couple of things are new – the add argument() method
has been added to accept the command-line argument. In this case, "mohit" is used.

Positional arguments with Help message and Type
Let’s add the help message and the type of argument, which is shown as follows:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("Square", help="Find Square ", type = int)

arg =parser.parse_args()

if arg.Square:

 print (arg.Square**2)

The following screenshot shows its output:

Figure 20.8

384  Python for Developers

The Argparse optional argument
You have seen the positional argument; the following syntax will show you how to
add custom arguments:
ArgumentParser.add_argument(flags or name, action, nargs, const, default,
type, choices, required, help, metavar, dest)

Here’s a description of the above-mentioned options:
 ● flags or name: Either a name or a list of option strings, for example, foo or

-f, --foo
 ● action: If this argument were made at the command line, an action such as

store_const or store_true would be taken
 ● nargs: This is the number of command-line arguments that needs to be

absorbed with name or flags
 ● const: This argument requires a constant value when an action like store_

const is used
 ● default: If the argument is missing from the command line, then the default

value will be taken
 ● type: This is the type to which the command-line argument's value should

be converted, such as int or float
 ● choices: This is a container that is like a list of the permissible values for the

argument
 ● required: If required=True, then the command-line argument must be

present
 ● help: This is a short explanation about the purpose of the argument
 ● metavar: This is a name for the argument in display messages
 ● dest: The dest option of the add_argument() gives a name to the argument

and if not given, it is inferred from the option

When parse_args() is called, optional arguments or the name of the flag will be
identified by the – prefix.

Let’s discuss name or flag with an action, as shown here:
import argparse
list1 = [1,2,1,9,4,5]
parser = argparse.ArgumentParser()
parser.add_argument("-R", help="Print in reverse order", action='store_true')
parser.add_argument("-g", help="A constant number ", action='store_const',const=9.8)
arg =parser.parse_args()
if arg.R:

Useful Modules  385

 print (list1[::-1])

if arg.g:

 print (arg.g)

In the preceding program, store_true stores the Boolean value, True. Similarly,
store_false can be used to store the Boolean value, False. The store_const
command is used to store the constant value. The store_true command is the
particular case of store_const. The following screenshot shows the output:

Figure 20.9

In the preceding figure, you can see that the -R and -g options are the flags. The
presence of the -g and -R flag has made their respective if block executed.

If you want to give a value with options, then we use nargs.

nargs
Let’s see, with the help of the following code, how to supply multiple values with
one argument:
import argparse

parser = argparse.ArgumentParser()

parser.add_argument("-Y", nargs=2, help= "Hours")

parser.add_argument("-N", nargs='?', help= "One argument")

parser.add_argument("-R", nargs='*', help= "Second argument")

parser.add_argument("-S", nargs='+', help= "Third argument")

arg =parser.parse_args()

if arg.Y:

386  Python for Developers

 print (arg.Y)

if arg.N:

 print (arg.N)

if arg.R:

 print (arg.R)

if arg.S:

 print (arg.S)

See the following point and output to understand nargs:
 ● nargs =2 means you will have to give two values with the -Y option.
 ● nargs ='?' means only one argument will be consumed from the command

line if given.
 ● nargs ='*' means that with "*", Option R can accept 0 to many values.
 ● nargs ='+' means that with "+", Option S can accept 1 to many values, or at

least one value must be supplied.

See the output in the following screenshot for more clarification:

Figure 20.10

Useful Modules  387

In the preceding screenshot, you can supply the values with arguments.

Subparser
A subparser means a parser within a parser or a nested parser. Sometimes, we need
options within an option; that’s when we use sub-parser. Let’s look at the following
code and understand it (this piece code is the same as the old code):

import argparse

import sys

import os

parser = argparse.ArgumentParser()

In the following line of code, a sub-parser object has been created. The dest keyword
is normally supplied as the first argument to add_argument(). So, for the sub-parser,
the first argument is command:
subparsers = parser.add_subparsers(help='Making commands',dest='command')

In the following piece of code, a new sub-parser named create has been created. The
-d and -f options have been added:

create_parser = subparsers.add_parser('create', help='Create files or dir')

create_parser.add_argument('-d', nargs =1, help='New directory to create')

create_parser.add_argument('-f', nargs =1, help='create file')

Similarly, a delete sub-parser has been added:
delete_parser = subparsers.add_parser('delete', help='Remove a file or directory')

delete_parser.add_argument('-df', nargs =1, help='Delete directory or file')

The following line is very important as sys.argv[1:] contains all the arguments:
args = parser.parse_args(sys.argv[1:])

The following code is the logic part; if the sub-parser is created, then check the -d
and -f options:
if args.command== "create":

 if args.d:

 os.mkdir(args.d[0])

 elif args.f :

 f=open(args.f[0], "w")

 f.write("hello everyone")

 f.close()

388  Python for Developers

The following lines show the logic of the delete command:

if args.command== "delete":

 if args.df:

 os.remove(args.df[0])

Let’s see the output in the following screenshot:

Figure 20.11

From the above output, you can see that create and delete are the two sub-parsers.
The create -d option creates a directory and create -f creates a file. Check the
following figure for the output.

Figure 20.12

Similarly, you can use the delete option with -df <file or folder>. The delete
option will then delete the file.

Useful Modules  389

Debugging
In this section, we will see how to debug the Python code. You cannot be a good
developer until you don’t know how to debug the code. The Python exception will
tell you which line is causing the problem, but to go deeper, which is, what is the
actual reason for the error, we debug the code. We will take the help of the pdb
debugger. Let’s look at the following code as an example:

def calc():

 a = 10+20

 return a

def fun1():

 try:

 num1 = int(input("Enter the number "))

 c = calc()/num1

 a = c+40

 print (a)

 except Exception as e :

 print (e)

fun1()

Let’s run the code to check the output (the following screenshot displays what it
looks like):

Figure 20.13

390  Python for Developers

With the help of the traceback module, you will get the line number that is causing
the problem. To check it line by line, and to get an output at each line, we will use the
debugger. With the help of the following command, we can use pdb:

Python -m pdb <scrip_name>

Figure 20.14

Useful Modules  391

With the help option, all the offered options would be displayed. To check line by
line, we will press s (step), and to stop after the execution of a function, we will use
n (next). First, we will use the s option:

Figure 20.15

392  Python for Developers

With the help of the list command, we can print the entire code; the a symbol on
the left side of the line indicates the position of the debugger right now. When we
press s, the debugger executes it line by line. See the following screenshot for the
continuation:

Figure 20.16

In the preceding screenshot, you can see that we can check any variable. We have
printed a and c. We get an error that says c is not defined; it means the calculation to
produce c has not been executed. This is the basic technique to find the error.

Useful Modules  393

Let’s use the n option now. When the n option is used, it stops after the execution of
the entire function, as shown in the following screenshot:

Figure 20.17

Setting a breakpoint
Let’s consider a program that contains 300 lines, and an exception module indicating
the error at line 50. It’s very time consuming to go line by line to reach line number

394  Python for Developers

50. In that case, we use a breakpoint to jump directly to the specified line, as shown
in the following example:

Figure 20.18

In the preceding screenshot, we set a breakpoint at line number 7. When the continue
command is issued, the debugger directly jumps to the breakpoint. After that, you
can check it line by line using the s option.

If you have the flexibility to edit the code, then you can write the following line to
use pdb:

import pdb; pdb.set_trace()

Take a look at the following example:
def calc():
 a = 10+20
 return a
def fun1():
 try:
 num1 = int(input("Enter the number "))
 import pdb; pdb.set_trace()
 c = calc()/num1

Useful Modules  395

 a = c+40
 print (a)
 except Exception as e :
 print (e)
fun1()

Running this code will give us the following output:

Figure 20.19

As you can see, the debugger directly jumped to the line where import pdb; pdb.
set_trace() is written

Conclusion
In this chapter, you learned about the modules that are very useful for application
development. With the help of the configparse module, we can avoid hardcoding.
The configuration file allows a user to change the parameter of the executable code
without touching it. The logging module enables a user to track the events, and it
offers five levels of logging. The logging module also provides exciting information
such as time, level name, error message, and line number, and so on. The argparse
module allows writing command-line arguments. It also offers a positional argument,
optional arguments, and sub-parser. The sub-parser refers to a parser within a parser.
At the end, you learned about the Python debugger pdb – you cannot be a good
developer until you don’t know how to debug a code. The pdb facilitates you to
check a code line by line, obtain the output at any line with the help of the s option.

Questions
 1. Which logging level has the highest priority?
 2. How to give the exact three values with the command-line argument?
 3. What is the difference between “s” and “n” in pdb?

