A. Lakshmi Muddana
Sandhya Vinayakam

Python

for Data
Science

M
Ane Books
Put. Ltd.

Python for Data Science

A. Lakshmi Muddana - Sandhya Vinayakam

Python for Data Science

An

ine Books @ Springer

A. Lakshmi Muddana
Department of Computer Science
and Engineering

Gandhi Institute of Technology
and Management (GITAM)
Hyderabad, India

Sandhya Vinayakam

Department of Computer Science
and Engineering

Gandhi Institute of Technology
and Management (GITAM)
Hyderabad, India

ISBN 978-3-031-52472-1 ISBN 978-3-031-52473-8 (eBook)
https://doi.org/10.1007/978-3-031-52473-8

Jointly published with Ane Books Pvt. Ltd.

In addition to this printed edition, there is a local printed edition of this work available via Ane Books in
South Asia (India, Pakistan, Sri Lanka, Bangladesh, Nepal and Bhutan) and Africa (all countries in the
African subcontinent).

ISBN of the Co-Publisher’s edition: 978-93-94883-30-7

© The Author(s) 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publishers, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-52473-8

We dedicate the book to our parents for their
inspiration and support

Shantha RatmaKumari and Venkateswarlu
Mallika and Vinayakam

Preface

Python is a general-purpose programming language that is used to solve a variety
of problems in different domains. It is widely used in Artificial Intelligence, Data
Science, Web Development, Internet of Things, etc. Python uses English-like syntax,
easy to read and write code. Its vast library support, improved productivity, strong
community base, portability, and availability as a free and open source make it very
popular among all types of users.

The book covers basic and advanced concepts. The basic concepts like its unique
features, data types, operators, and developing simple programs using selection and
loop statements. As functions are the core of any programming, a detailed illustra-
tion of defining and invoking functions, recursive functions, and lambda functions
is covered. Built-in data structures of Python are popularly used in data science
and model building. Strings, Lists, Tuples, Sets, and Dictionary data structures are
discussed in detail with example programming problems.

File handling is an important task when handling large data. Data access and
manipulation from standard file formats such as CSV, Excel, and JSON files are
included in the book. Python is widely used in data analytics and model building. Data
manipulations using Pandas and Data visualizations using Matplotlib and Seaborn
packages are illustrated with examples and case studies. Regular expressions being
an important concept in Natural Language Processing, text manipulation functions
are discussed, and a case study is presented with public text data. SQLite3 libraries
are discussed for creating and manipulating data in the database.

Advanced concepts of building Machine Learning and Deep Learning models and
multi-tasking concepts are explained with examples and case studies. The machine
learning chapter discusses concepts of supervised and unsupervised learning and
model evaluation algorithms using the SciKit-Learn package. The case studies are
presented for different learning algorithms using built-in and public datasets. Deep
Learning is a sub-field of Machine Learning that mimics the human brain. Concepts
of artificial neural networks for both structured and unstructured data are discussed
in detail using the Keras library for deep learning. Case studies are presented for stan-
dard neural networks, convolutional neural networks, and recurrent neural networks
using Keras libraries,

vii

viii Preface

The book also includes a chapter on multi-threading and multi-processing in
Python for improving execution time and effective utilization of system resources.

Every chapter includes illustrations with examples, worked-out problems,
multiple-choice questions for knowledge testing, and exercise problems for prac-
tice. Case studies are presented on advanced concepts. The book is supported by a
solution manual for multiple-choice questions and exercise problems. The aim and
scope of the book are to provide the required knowledge and skill in coding and data
analysis. The book serves as the basis for data analysis and model building using
Python packages. The reader requires basic maths and logical thinking and no other
prerequisites.

The book is intended to serve as a textbook for the Problem Solving and
Data Science courses of Engineering, Science, and Commerce programs at the
undergraduate and postgraduate levels.

The key features of the book include:

Basic and advanced programming concepts.

Data manipulation and analysis using Pandas, data visualization, and manipulating
text using regular expressions.

File handling and database creation and manipulation concepts.

Machine Learning and Deep Learning models and multi-tasking.

Concepts explained with illustrations and examples.

Case study for an in-depth understanding of concepts on advanced topics using
public datasets.

e Review questions and exercise problems at the end of chapters.

Hyderabad, India A. Lakshmi Muddana
Sandhya Vinayakam

Acknowledgments

We are grateful to Dr. N. Siva Prasad, Retd. Professor IIT Madras, for the motivation
in initiating this project. We sincerely acknowledge his constant guidance and support
in completing the book. We express our gratitude to Dr. Ghanta Subba Rao, Former
Chairman A.P. Skill Development Corporation, for his suggestions and feedback in
structuring and writing the book.

We sincerely thank our institution authorities, family members, friends, and
colleagues for their direct and indirect support.

Contents

1 BasicPython 1
.1 Introductionoo i, 1
1.2 Variables i 3
1.3 DataTypescooiiiiiiiiiiii i 4
1.4 OPerators ...ttt e 8

1.4.1 Arithmetic Operatorscoovuuuieennn.. 8
1.4.2 Relational Operatorscovveiuuennnn.. 11
1.43 Logical Operatorsc.uuiueeeeuinnneeennnn. 11
1.4.4 Bitwise Operatorsuueeeeiunneeeennnnn.. 12
1.4.5 Assignment Operatorsc.euuiieeeennnn... 14
1.4.6 Identity Operatorsoeeeiuuannaeannn. 15
1.47 Membership Operatorsoovuvinn.. 16
1.4.8 Operators Precedence and Associativity 16
1.5 Type CONVEISIONS ..ttt ettt et 17
1.6 Statementsceounnine et 20
1.6.1 Assignment Statementooiiii.... 21
1.6.2 Input Statementc.coouiuiiiinnnnnnnnnn.. 22
1.6.3 Output Statementcoeeeiirnneeennnnnn.. 24
1.6.4 Conditional Statementccouuuua.. 25
1.6.5 Loop Statementsc.cooiiuiiininininnnnnnn.. 28
1.7 Random Numbers, 32
EXeICISES ..ottt 33
Review QUESHONSt e e 33

2 Functions 39
2.1 Introductioniii 39
2.2 Propertiesof Functions 41
2.3 Parameters’ Mappingoiiiiiiiiiiiiiii... 43
2.4 Parameter Passing Mechanisms 45
2.5 Recursive Functions i il 46

xi

Xii

Contents
2.6 LambdaFunctions i .. 48
EXEICISES .« vttt et 49
Review QUeStionsiiiiiiiiiiii i, 50
SIS . ..o 53
3.1 Create String Objectscovviiiiiin i, 53
3.2 Accessing String Objectsouiuiine it 56
3.3 Operations on Strings i i, 58
34 Methodson Strings i, 60
3.5 TIterating Through String Objects 64
3.6 Type Conversionsooiiiiiiiiiiiiiiiiiiaa.. 65
EXEICISES ..ottt 66
Review QUESHONSot e e e 67
Built-in Data Structures: Lists 69
4.1 Create List Objects ...ttt 70
4.2 Indexingand SLicingoiiiiiiniiiiiii .. 72
43 Nested Lists ... 73
44 Methods on List Objects 75
4.5 Functions on List Objectsiiiiiiiiiiinn... 84
4.6 ListObjectsinfor Loops 87
4.7 List Comprehensionscoiiiiiiiiiiiiiiia... 88
EXEICISES .. ooiiiii i 89
Review QUESHONSttt e i e 89
Built-in Data Structure: Tuple 93
5.1 Create Tuple Objectscooiiiiuiiiiiiiiiaan 94
52 Indexingand Slicing i il 97
5.3 Nested Tuples ...t 98
54 OperationsonTuples 98
5.5 Functionson Tuples, 100
5.6 Methods on Tuple Objects, 105
57 Type Conversionsoouiiiiiiiiiiiiiinaiannn... 106
5.8 Tterating Tuple Objects, 109
5.9 Unpacking ...ttt 110
5.10 Enumerationsuuuieetiiine i 111
S01 ZIPPING oot 111
EX@ICISES ..ottt 112
Review QUESHONSot e e 113
Built-in Data Structure: Sets 115
6.1 Create SetObjects il 115
6.2 Properties of Sets i 117
6.3 Membership Testing i i, 118
6.4 Functions on Set Objectsoouiiiiiiiinnneennnn... 119
6.5 Methods on Set Objectsc.ccoiiiiiiiiiinnennn... 120

6.6 Operationson Sets i i, 124

Contents xiii

6.7 Type CONVEISIONSttt 129
6.8 SetComprehensions i i i, 130
6.9 Frozen Setsoiiiii 131
EXEICISES ..ottt 133
Review QUESHONSot e e 133
7 Built-in Data Structure: Dictionary 137
7.1 Create Dictionary Objects 137
7.2 Properties of Dictionary Objects, 139
7.3 Accessingthe Elements 140
7.4 Operations on Dictionary Objects 141
7.5 Tterating Dictionary Objectsovvviiiinneeennnnn... 145
7.6 Dictionary Comprehension oL 146
7T Type CONVETSIONS .. evtttee ettt et 147
EXeICISES ..ottt 150
Review QUESHONSot e e 150
8 Files ... 153
8.1 Introductionoiiiiiiii i 153
8.2 FileHandlinguui e, 153
8.2.1 OpeningtheFile 154

822 ClosingtheFile 155

8.2.3 Writing Datainto Files 155

8.2.4 Get File Pointer Position 158

8.2.5 ReadingDatafromFiles 158

8.2.6 Changing the File Pointer Position 159

827 Readand Writeto Files 160

8.3 Working with Files and Directories 162
8.4 Case Study: FileHandling, 164
EXEICISES o oottt et 168
Review QUESHONS e 168
9 Data Manipulations with Pandas 171
9.1 Introduction il i 171
9.2 Dataframes i 171
9.2.1 Create Dataframes i, 172

9.2.2 Attributes of a Dataframe 173

023 AddColumnsiiiiiiii 175

9.24 AccessingData i 176

9.25 AddingRows 179

9.2.6 Deleting Columns, 182

9.2.7 Renaming Column Names and Row Labels 183

9.2.8 Methods on Dataframes 184

9.2.9 Functionson Columnsccouuuuuunnnnnn. 185

9.2.10 Operators on Dataframes 186

Xiv

10

11

12

13

Contents

9.3 Dataframesand Files il 187
9.4 User-Defined Modules i, 190
9.5 Case Study: Data Manipulation and Analysis 193
EXEICISES ..ottt 198
Review QUESHONSot e e 199
SQLite3 ... 201
10.1 SQL Commandscoiiuiiiiieiieeiineinannnnnn 202
10.1.1 Data Definition Language (DDL) 202

10.1.2 Data Manipulation Language (DML) 204

10.1.3 Data Query Language (DQL) 205

10.1.4 Examplesooouuiiiiiii i 205

10.2 Case Study: Database Creation and Operations 210
BXerCiSeS .ottt 214
Review QUESHIONSttt et 215
Regular Expressions i 217
11.1 Meta Characters and Special Sequences 217
11.2 Functions on Regular Expressions 219
11.3 Case Study: Regular Expressions 223
EXOICISES ottt ettt 226
Review QUESHONSt e e 226
Data Visualizations i 229
12.1 Matplotlib ... 229
12,2 Seabornt 230
12.3 General Functions in Plotting 230
12.4 Basic Graphsand Plotsiiiiiiiiin... 231
12,5 Subplots ..t 246
12.6 Case Study: Data Visualizationsc.ccouun... 248
EXOICISES ottt ettt 252
Review QUESHIONSttt 253
Python for Machine Learning 255
13.1 Dataloadingooiuuiiiiiiiii i, 256
13.2 Data Preparation and Preprocessing 258
13.2.1 DataCleaninguuuuummieannnnaaanannn. 258

13.2.2 Data Transformationscovuunn... 263

13.2.3 Splitting the Datasetcooiiiiiiiaan... 267

13.3 Case Study: Preprocessing on the Titanic Dataset 268
13.4 Supervised Learning, 273
13.4.1 Regressionc..uuuuiiiiiiiiinnaaaann.. 273

13.4.2 Classificationccoiiiiiiiiineennnnnn... 280

13.5 Model Selectiono i 290
13.5.1 Hyperparameter Tuningccovveeeen... 291

1352 CaseStudycooiiiiii 293

Contents

XV
13.6 Ensemble Methods L. 295
13.6.1 Basic Ensembling Techniques 296
13.6.2 Advanced Ensembling Techniques 296
13.6.3 CaseStudyounnn 300
13.7 Unsupervised Learningo i i .. 303
13.7.1 Unsupervised Learning Techniques 303
13.7.2 Clustering Methods 305
1373 CaseStudy ... 309
14 Python for Deep Learning 321
14.1 Introductionol 321
142 Dataloadingcoiiuiiiiiiiii i, 322
14.2.1 In-built Datasetsciiiiiiiiiiinnnn... 322
14.2.2 LoadingcsvDataseto, 323
14.3 Image Data Loading and Preparation 323
14.4 Text Data Loading and Preparation 328
14.5 Model Building i 335
14.5.1 Activation Functions 336
14.5.2 Neural Network Layers 336
14.5.3 Methodsonthe Model 340
14.5.4 Model Compilationcoviiiiiiian... 340
1455 Model Trainingcoouiineiiiiinneennnnn. 341
14.5.6 Model Evaluationcciiiiiinnna.. 341
14.5.77 Model Prediction oo, 341
14.6 Autoencoder 342
147 Case StUdIesvviiii i e 342
14.7.1 Regression Model on Boston Housing Dataset 342

14.7.2 Deep Neural Network for Breast Cancer
Classification i .. 346
14.7.3 Image Classification Model 350
14.7.4 Text Data Classificationoo.... 354
15 Python for Multi-tasking 361
15.1 Introduction il 361
15.2 Multi-threading i il 362
15.2.1 Threads Synchronization 366
15.3 Multi-processingueeeeiiuiuiieennieeeennnns 369
15.3.1 Interprocess Communication 371
15.3.2 Process Poolcc i 375
EXEICISES ..ottt 377
Review QUESHONSot e e 377
Appendix A: Solutions to Review Questions 379
Appendix B: Python Installation 385
Index 389

About the Authors

A. Lakshmi Muddana received a Ph.D. in Computer Science and Engineering from
Osmania University, Hyderabad. She is currently a professor in the Department of
Computer Science and Engineering at GITAM Deemed to be University, Hyderabad,
India. She has been in academics, teaching undergraduate and postgraduate students
and guiding research scholars in the areas of Deep Learning and Security.

Sandhya Vinayakam received a Ph.D. in Computer Science and Engineering from
Osmania University, Hyderabad. She is currently in the Department of Computer
Science and Engineering at GITAM Deemed to be University, Hyderabad, India.
She has been in academics and doing research in the areas of Image Processing and
Deep Learning.

xvii

Chapter 1 ®)
Basic Python e

1.1 Introduction

Python is a simple and easy-to-learn high-level programming language suitable for
first-time programmers or experienced with other programming languages. Python
was created by Guido Van Rossum and released in 1991, which is a successor to the
ABC programming language. Its simple syntax makes the program more readable,
easy to understand, and debug the code.

Python’s popularity is due to its powerful features and applicability in data science
and artificial intelligence. It offers basic built-in data structures like lists, dictionaries,
sets, tuples, and strings for elegant data organization and manipulation. Unlike other
programming languages like C, C++, and Java, Python does not require variables
to be declared. It is a dynamically typed language where data types of variables
can change dynamically during the program execution. The language has a rich set
of standard library functions and community-contributed modules for application
development. All these features make Python programs shorter and attractive for
rapid application development.

Python is an interpreted language that does not require a compilation step. This
makes testing, debugging, and prototyping process faster. Being an interpreted lan-
guage, programs run slower than C++ and Java but take less time for program devel-
opment.

Python’s modules and packages encourage modularity and code reusability. The
language is extensively used in data science, machine learning, web and API devel-
opment, etc. It can be connected to database systems, can read and write into files,
and can also handle big data. Python runs on different operating systems and plat-
forms like Windows, Mac, Linux, and Raspberry Pi. Python is under an open-source
license that makes it freely usable and distributable.

Python is amultiparadigm programming language that supports structured, object-
oriented, and functional programming. Indentation is based on white spaces to define
the scope of statements, loops, functions, and classes, unlike other programming
languages like C++ and Java that use curl braces.

© The Author(s) 2024 1
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8 1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1
https://doi.org/10.1007/978-3-031-52473-8_1

2 1 Basic Python

Sample Python code
print("This is Python code")
x=10
print("x is a variable with value ", x)

Output

This is Python code
X is a variable with value 10

Comments in Python

Comments in the program provide readability to the code. Python supports the fol-
lowing formats for comments:

(i) Single line comments: Comments start with # followed by text. It can be spec-
ified on a separate line or in the code line.

Example

This is a single-line comment

print("This is Python code") # code line comment

Following statement assign Value 10 to the variable X
x=10

print() function display the data

print("x is a variable with value ", x)

(i) Multiline comments: Comments can run into multiple lines. Multiline com-
ments are enclosed in triple single quotes or triple double quotes.

Using triple double quotes

Example
This is
Multiline comment
in Python

x=10
print(x)

Output
10

1.2 Variables 3

Using triple single quotes

Example
This is
Multiline comment
in Python

x =10

print(x)
Output

10

1.2 Variables

Variable is the name of the memory location that can store a value. The value can be
numeric or text or Boolean type.

Example

variable x
x=10

With the above code, the value 10 is stored in the variable named Xx.

How to Name a Variable?
A variable name is a sequence of characters with the following rules:

Name can contain alphabets, digits, and underscore (_).

The first character cannot be a digit.

Name cannot be a Python keyword.

Name is case sensitive (variable name Total is different from variable fotal).
By convention, variable names are in all lowercase with underscore separating
words. For example, max_value.

Python Keywords are reserved words used for specific purposes and cannot be used
for general purposes by the user. The following table shows the keywords used in
Python (Table 1.1).

Table 1.1 Python keywords

Basic Python

and as assert async await break class
continue def del else elif except False
finally for from global if import in

is lambda None nonlocal not or pass
raise return True try while with yield

Variable names are case sensitive.
Example

count=10 # count is variable with value 10
Count=20 # Count is variable with value 20
print(count,Count)

Output

Print output (drag lower right corner to resize)

10 20

Frames Objects

Global frame

count 10
Count 20

In the above example, count and Count are two different variables and allocated

memory separately as shown in the above figure.

1.3 Data Types

A variable can hold different types of data. Python supports the following basic data

types (Fig. 1.1).

(1) Numerical data types can hold integer value represented as int or real value

represented as float or complex values represented as complex.

(i) Boolean data type is represented as bool.
(iii) Text data type is represented as str(string).

Python Feature 1: Variables are Not Declared

Unlike other high-level programming languages, Python variables are not declared.
The data type of a variable is determined by the value it holds. The data type of the

variable can be determined using the #ype() function.

1.3 Data Types 5

Basic Data Types

m

Fig. 1.1 Data types

Example

x=10.5 # Here x is a float variable as it is having decimal value
print(x) # display x value
print(type(x)) # display data type of x

Output

10.5
<class ’float’ >

Python Feature 2: Python is an object-oriented language. It implements data types
as classes like class int, class float, class bool, etc.

(i) Integer data as class int
Example
i=10 #iis ainteger variable
print(type(i)) # display data type of i
Output
<class ’int’>
(ii) Real values as class float
Example
pi=3.14 #piis afloat variable
print(type(pi)) # display data type of pi
Output
<class "float’ >

(iii) Complex values as class complex. Python uses j to indicate the imaginary
part.

@iv)

)

1 Basic Python

Example

c=10+35j # Here 10 is real part & 5 imaginary part
print(type(c)) # Display data type of the variable ¢
print(c) # Display value of ¢

Output

<class ’complex’ >
(10+5j)

Boolean data as class bool. Boolean variables can have either True or False
values.

Example

bl = True
b2 = False
print(type(bl), bl)
print(type(b2), b2)

Output

<class ’bool’> True
<class ’bool’ > False

Text data as class str. A string is a sequence of characters enclosed in single
or double quotes.

Example

sl = "Hello everyone" # text enclosed in double quotes
s2 = ’Good morning’ # text enclosed in single quotes
print(type(s1), type(s2))

print(s1)

print(s2)

Output

<class ’str’> <class ’str’>
Hello everyone
Good morning

Python supports user-defined classes. Instances of that class can be created
called as objects.

Example

user defined class
class circle:
def __init__(self, r):
self.radius =r

1.3 Data Types 7

def area(self):
return self.radius * self.radius * 3.14
cl =circle(5) # c1 is object of the class circle

print(type(cl))
Output

<class’__main__.circle’>

Python Feature 3: Python is a dynamically typed language, i.e., the data type of the
variable can change during program execution.

Example

num = 2.89 # here the variable num is float data type
print(type(num), num)
num= False =~ # now num variable is boolean data type
print(type(num), num)

Output

<class "float’ > 2.89
<class ’bool’ > False

Python Feature 4: Python is an interpreted language where the code is executed
line by line and there is no compilation step. When there is an error in the code, the
execution stops at that line and error is reported.

Example

a=10

print(’ Value of ais ’, a)
s="Valueofa="+a
print(s)

Output
Value of ais 10

TypeError ~ Traceback (most recent call last)
<ipython-input-9-cd4eele21723> in <module>()

1 a=10

2 print(’ Value of a is ’, a)
—>3s="Valueofa="+a

4 print(s)

TypeError: can only concatenate str (not "int") to str

As error occurred at line 3, execution stops and error is reported. But the previous
statements are executed as you can see the value of the variable, @, in the display.

8 1 Basic Python

1.4 Operators

Operators perform operations on the operand values. Python supports the following
categories of operators (Fig. 1.2).

Arithmetic, Relational, Logical, Assignment, Identity, Bitwise, and Membership
operators.

Some operators require two operands called binary operators.
E.g.: +, —, &&, < etc.
Whereas some operators take only one operand, called unary operators.

E.g.: unary minus —, ! etc.

1.4.1 Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations like addition, sub-
traction, multiplication, division, modulus, and exponentiation. Symbols for these
operations are

+, = EE L
(a) The addition operator, +, is used with both numeric values and strings.
(i) Addition on numeric values

Example
X,y =10,20.6
print(x+y)

Output
30.6

(i) + operator on strings acts as a concatenation operation. The operation returns
a new string by appending the second operand to the first operand. Both the
operand values are not changed.

Example

sl, s2 = "Hello", " good morning"
83 =sl+s2
print(s3)

Output

Hello good morning

1.4 Operators

uijou’u)

diysiaquiapy

>>'<<’ v I8

asimig

sijou’s|

Auap)

=/ =%'=>"=<"=, "=

==

Juawusdissy

siojesadQ

|eaidon

|euone|ay

sio1edQ 71 81

BWyiuy

10 1 Basic Python

(b) ** operator performs exponentiation operation.
Example

a,b=5,3
print(a**b)

Output
125

(c) Python supports two division operators/, // for real and integer division, respec-
tively.

Example
x,y=20,3
print(x / y) # / for real division

print(x // y) # // for integer division
Output

6.666666666666667
6

(d) % operator returns remainder after division.
Example

x,y=20,3
print(x % y)

Output
2

When the operands of % operator are negative, sign of the output is sign of
divisor and output is determined as follows:

opl % op2 = opl - floor(op1 / op2) * op2

Example
-10 % 3 = (-10) - (floor(-3.33) * 3)
=-10- (-4 *3)
=-10+12=2
Example
10 % -3 = (10) - (floor(-3.33) *-3)
=10 - (-4 *-3)

=10-12=-2

1.4 Operators 11

1.4.2 Relational Operators

Relational operators compare the values of the operands. Hence these operators are
also called comparison operators. The symbols are

<, <=, >, >=, ==, ':

These operators form conditional expression and the result of the operation is a
Boolean value—True or False.

Example

print("10 < 20 is °,10< 20)
print(’-50 > 20 is ’, -50 > 20)
print(’10 <=201is ’,10 <= 20)
print(’-50>= 20 is ’, -50 >=20)
print(’20 == 20 is °,20 == 20)
print(’10 !=20is ’,10 != 20)

Output

10 < 20 is True
-50 > 20 is False
10 <=201is True
-50>= 20 is False
20 ==201i1s True
10 !'=20is True

1.4.3 Logical Operators

Logical operators combine conditional expressions to form compound conditions.
The operators are and, or, not. The operations result in True or False as per the
following truth table (Table 1.2).

Table 1.2 Truth table for logical operations

Operandl Operand2 Operandl and Operandl or Not
Operand2 Operand2 Operandl
True True True True False
True False False True False
False True False True True
False False False False True

12 1 Basic Python

Example

p=True

g=False

printCpand qis ’,pand q) # logical and operation
printCp or qis ’, p or q) # Logical or operation
print(’not p is ’,not p) # logical not operation

Output

p and q is False
por qis True
not p is False

1.4.4 Bitwise Operators

Numbers are represented as a sequence of bits in the computer memory. Bitwise
operators perform operations on the individual bits of the operands.

(i) Shift operators: These operators perform operations on individual bits of the
operands by shifting the bits to the left or right by specified number of times.
When the bits are shifted left, the least significant bits are filled with zeros.
Similarly, when the bits are shifted right, the most significant bits are filled with
Zeros.

For each left shift operation, the value of the operand is doubled as the bits are
moved to higher significant positions. Similarly, for each right shift operation, the
value of the operand is halved as the bits are moved to less significant positions
(Fig. 1.3).

Example
print(" Left shift 10 by one position: ", 10 << 1)
print(" Right shift 50 by one position: ",50 >> 1)
Output

Left shift 10 by one position: 20
Right shift 50 by one position: 25

(i1) Bitwise logical operator symbols are (Table 1.3)

& for and operation

| for or operation

A for exclusive or operation

~ for not(compliment) operation

13

1.4 Operators

vi=

(4%

=

€=

9

X

X

X

X

X

T 0 0
-

0 0 0

0 0 0

(sawn z Aq Biys Y1 X)z>>X

0 0 0
0 0 0
0 0 0

(sewn z Aq 1ys Y81y X)z<<X

0

suoneredo yIys €1 “Sq

350 s

319 Jueayiudis 3sow pue uonisod
JuedyiuBis 3seaj ayy ul papasul si
0 g T Ag Ylys ya| 210w auQ
"150] S1 31q Jueayiudis ysow pue
uoijisod jueayiuBis ysea) ayy ul
papasul st 0 3 TAG Piys Yyal

Aseuig ui 9=x

"150] s1 31q Juedyiudis

1se3] pue uonisod juesyiudis
1SOLW Ay} ul papasul si

0 ‘UqT Ag yys ydiy aio0w auQ
'150] S}

319 Juedyudis 3sea| pue uonisod
JuesyiuBis 350w ayy ul papasul
st 0 9T Ag Yys By

Areurg ui 9=x

14 1 Basic Python

Table 1.3 Truth table for bitwise operations

Operandl Operand2 Operand] & Operandl | Operandl »
Operand2 Operand2 Operand2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0
Example

x=2 # 2 is internally represented as 0010

y=4 # 4 is represented as 0100

printCx &y :’,x &y) # bitwise and operation
printCx ly:’xly) # bitwise or operation
printCx Ay :’,xy) #bitwise exclusive or
print(’~x : ’,~X) # inverting bits

Output

x&y:0
xly:6
x"y:6
~x:-3

1.4.5 Assignment Operators

These operators assign a value of right operand to the left operand. The left operand
should be a variable as the value is to be stored in the memory.

(i) Simple assignment:

variable = expression
First, the expression is evaluated and then the result is assigned to the variable.

Example

radius=5 # assign constant to variable
area = 3.14 * radius * radius # assign value of expression
print(’Area : ’, area)

Output
Area: 78.5

1.4 Operators 15

(ii) Compound assignment: Assignment operator, =, can be combined with binary
arithmetic and bitwise operators. It performs two operations—first the operation
specified and then the assignment.

Ex. x += 20 is shorthand notation to x = x+ 20
Here, first addition is performed and then the result is assigned to variable x.

Example

x =10

X +=20 # Addition and assignment

print(’ Value of x after adding 20 : °,x)

x//=3 # Integer division and assignment

print(’ Value of x after integer division by 3 : ’,x)

X &=2 # Bitwise & operation and assignment
print(’ Value of x after bitwise & with 2 : ’,x)
x<<=1 # Left Shift and assignment

print(’ Value of x after left shift by one position : ’, x)

Output

Value of x after adding 20 : 30

Value of x after integer division by 3 : 10
Value of x after bitwise & with 2 : 2

Value of x after left shift by one position : 4

1.4.6 Identity Operators

Check whether operands are the same objects.

The operators are: is, is not.

object]l is object?
object] ismnot object2

The operation returns True or False.
Example

print(’Data type of 10.5 is float :’, type(10.5) is float)
x,pi=10.5,3.14
print(’ Whether x & pi are same objects :’, X is pi)

y=Xx
print(Whether x & y are same objects :’, X is y)
z=10.5

print(Whether x & z are same objects :°, X is z)
print(Whether x & z are not same objects :’, x is not z)

16 1 Basic Python

Output

Data type of 10.5 is float : True

Whether x & pi are same objects : False
Whether x & y are same objects : True
Whether x & z are same objects : False
Whether x & z are not same objects : True

1.4.7 Membership Operators

in, not in operators are called membership operators. It checks if a value exists in
iterable objects like string, list, tuple, set, dictionary.

value in object_name
value mnotin object_name

The operation returns True or False.
Example

line = "Programming with Python’

print(’ is "Python " in’,’"’, line,’" : >, Python’ in line)
odd_num = [11, 21, 33, -9]

print(’is 33 in odd_num : ’, 33 in odd_num)

colors = {’Blue’,”White’,’Red’,’ Yello’,’Pink’ }

print(’is "White" not in ’,colors,” : °, "White’ not in colors)

Output

is "Python " in " Programming with Python " : True
is 33 in odd_num : True
is "White" not in {’Red’, ’Yello’, ’Pink’, "White’, ’Blue’} : False

1.4.8 Operators Precedence and Associativity

Expression is a combination of constants, variables combined with operators. When
multiple operators are present in the expression, the order in which operations are
performed is based on precedence and associativity of operators.

Precedence is the priority of operators in performing the operations. When more
than one operator is present in the expression, with the same precedence, operations
are performed as per associativity rule. Following is the precedence of operators in
descending order (Table 1.4).

1.5 Type Conversions

Table 1.4 Operators precedence and associativity

17

Operator

Associativity

O

Left-to-right

ok

Right-to-left

unary +, unary - , ~

Right-to-left

* 1,1, %

Left-to-right

Left-to-right

Left-to-right

Left-to-right

Left-to-right

is, is not

Left-to-right

in, not in

Left-to-right

&

Left-to-right

A

Left-to-right

Left-to-right

Right-to-left

&&

Left-to-right

Left-to-right

— _ = — /= — — _ A = —
= 4=, =, *=, /=, ll=, %=, &=, "=, =, << =,
>>=

Right-to-left

Comma

Left-to-right

1.5 Type Conversions

The value of a variable or an expression can be converted to another data type. Type
conversion converts the data type of the value but not the data type of the variable.

data_type(expression)

data_type to which the value of expression to be converted.

(i) Convert float to int: Decimal part gets truncated.

Example

x=20.9

print(’Data type of x : °, type(x))
print(’Converted value : ’, int(x))

display data type of x
convert x value to integer

data type of x remains unchanged
print(’Data type & value of x: ’,type(x),X)

(i)

(iii)

(iv)

Output

Data type of x : <class "float’ >
Converted value : 20
Data type & value of x: <class "float’> 20.9

Example: Convert float to int and assign to an integer variable

x=10.89

convert the value of x to integer and assign to variable y
y=int(x)

print(’Data types of x & y : ’, type(x), type(y))

print(Valuesof x and y : ’, x , y)

Output

Data types of x & y : <class ’float’> <class ’int’ >
Values of x and y : 10.89 10

Convert int to float: Zero is added as decimal part.
Example

x=10

y=float(x) # convert int value to float
print(’Data type of x & y : ’, type(x), type(y))
print(’ Values of x and y : ’, X,y)

Output

Data type of x & y : <class ’int’> <class ’float’>
Values of xandy : 10 10.0

1 Basic Python

Convert float to complex: Float value becomes the real part and the imaginary

part is 0.
Example

x=10.5

y = complex(x) # convert float value to complex number
print(’Data type of x & y : ’, type(x), type(y))

print(’ Values of x and y : ’, X,y)

Output

Data type of x & y: <class ’float’> <class ’complex’ >
Values of x and y: 10.5 (10.5+0j)

Converting complex to float or int generates the following error since there
are two values in the complex data type, i.e., real and imaginary parts.

1.5 Type Conversions 19

Example
c=10-5j
f = float(c)
Output

TypeError Traceback (most recent call last)

<ipython-input-15-260457d2093e> in <module>()
1 c=10-5j

—-> 2 f =float(c)

TypeError: can’t convert complex to float

(v) Convert string to float or int: String with only digits is allowed. Error is gen-
erated, if the string contains characters other than digits.

Example

s="123" # here string contains only digits
1 =int(s)

print(type(s), type(i))

print(s,i)

Output
<class ’str’> <class ’int’ >
123 123

Example

s="123a" # string contains non-digits
1 =int(s)

print(type(s), type(i))

print(s,i)

Output

ValueError Traceback (most recent call last)
<ipython-input-17-ac180ec5ce25> in <module>()

1s="123a" # string contains non-digits
—-> 21 =int(s)

3 print(type(s), type(i))

4 print(s,i)

ValueError: invalid literal for int() with base 10: *123a’

(vi) Convert Numeric to string: Every digit and decimal point becomes a character
of the string in the same sequence.

20 1 Basic Python

Example

a=10.88

s=str(a) # numeric to string

print(’Data types of a & s : ’, type(a), type(s))
print(’ Values of a & s : ’, a,8)

Output

Data types of a & s: <class "float’> <class ’str’ >
Values of a & s: 10.88 10.88

(vii) Convert to a Boolean: Any non-zero numeric value is True and zero value is
False. Similarly, any non-empty string is True and an empty string is False.

Example

X,y,z=20.78,"", 0

print(’Non-zero numeric value to boolean : ’, bool(x))
print(’ Empty string to boolean : ’,bool(y))
print(’Zero complex value to boolean : ’, bool(z))

Output

Non-zero numeric value to boolean : True
Empty string to boolean : False
Zero complex value to boolean : False

1.6 Statements

Python program consists of statements that perform actions on the data, like assigning
value to a variable, making decisions based on the condition, repeating the statements,
etc. New line character marks the end of the statement. When a statement runs into
multiple lines, use the line continuation character \ after each line.

Example

statement continuation
colors = {’Red’, *Green’,\
"Blue’, "Purple’,\
"Pink’ }
print(colors)

1.6 Statements 21

Output
{’Red’, *Green’, 'Pink’, ’Blue’, "Purple’ }
Python supports the following statements.

Assignment statement
Input Statement
Output Statement
Conditional statement
Loop statements
Control statements

1.6.1 Assignment Statement

Assignment statement is to assign a value to a variable or variables. The value will
be stored in the memory location allocated to the variable.

= is the assignment operator

variable_name = expression

First, the expression on the right-hand side of assignment operator (=) is evaluated
and then the result is assigned to the left-hand side variable_name.

Example

pi=3.14 # assigns constant value 3.14 to the variable pi
radius =5 # assigns constant value 5 to the variable radius
assigns value of RHS expression to variable area

area = pi * radius * radius

print(area)

Output
78.5

(i) Python supports multiple assignments in a single statement.
Example
X,y ,z=10,5.97, True
print(type(x),x)

print(type(y).y)
print(type(z),z)

22 1 Basic Python

Output

<class ’int’> 10
<class "float’> 5.97
<class ’bool’> True

(ii) Same value can be assigned to multiple variables in a single statement.
Example
sum = count = average = 0
All the three variables are assigned the same value 0
print(sum, count,average)

Output
000

1.6.2 Input Statement

Input statement is to assign a value to the variable during the execution of the code
using predefined input() function.

variable_name = input(" prompt ")

prompt is the message displayed to the user when the statement is executed and waits
until the user enters the value into the box provided.

Example

g Num = input("Enter a value")

«ss Enter a value|)

The value entered by the user has to be assigned to a variable otherwise the value is
lost.

num = input("Enter a value : ")

print(’Data type & value of num : ’, type(num), num)

1.6 Statements 23

Output

Enter a value : 10
Data type & value of num: <class ’str’> 10

The value entered at the keyboard is taken as a string. It is up to the user to convert
the value into the required data type.

Example

num_str = input("Enter a value")
num_int = int(num_str)
print(type(num_str), type(num_int))
print(num_str, num_int)

Output

Enter a valuel23
<class ’str’> <class ’int’ >
123 123

Difference between assignment statement & input function:

Input() function Assignment statement

input() function prompts the user to give a Same value is assigned to the variable, on every
value whenever it is executed. So the user has execution of the assignment statement.

an option to change the value on every

execution.

Multiple values can be accepted in a single input() function using a split() function
on the input. The delimiter to be used for the split is provided as an argument to
split(), in quotes. The default delimiter is space.

Example

Enter multiple values separated by spaces

numl, num?2, num3 = input("Enter three values separated by space : ").split()
print(type(numl),num1)

print(type(num2),num?2)

print(type(num3),num3)

Output

Enter values separated by space : 10 20 30
<class ’str’> 10
<class ’str’> 20
<class ’str’> 30

Any delimiter can be specified in the split() function.

24 1 Basic Python

Example

numl, num?2, num3 = input("Enter 3 values separated by comma : ").split(’,")
print(type(numl),numl)
print(type(num2),num?2)
print(type(num3),num3)

Output

Enter values separated by comma : 10,20,30
<class ’str’> 10
<class ’str’> 20
<class ’str’> 30

1.6.3 Output Statement

Output statement displays the values on the user monitor/screen, using the print()
function.

print(expressions, sep=None, end= None)

expressions: Expressions values to be displayed on the monitor.

In case of multiple expressions, separate them by commas.
The value of each expression is converted to a string before display.

sep: Separator to be used between multiple values in the display.
Default is space.
end: How to terminate the output. Default in new line \n
Example
num=>5

To display the string followed by value of variable
print("value of num =", num) # displays multiple values
Output

value of num =5

(1) Single print() function can be used to display in multiple lines using new line
escape sequence \n in quotes.

Example

numl , num2 =50, 100
print(" numl =", numl , "\n num2 =", num2)

1.6 Statements 25

Output
numl =50
num?2 = 100

(ii) To display the output of multiple print() functions in the same line, specify end
parameter value as space.

Example

end parameter in the print() function keeps the cursor on the same line
print("Python ",end="")
print("Programming")
Output
Python Programming
(iii) Display multiple values separated by specified S€p argument value.

Example

Display multiple values separated by comma
breadth, height =5, 7

area = 1/2 * breadth * height

print(breadth, height, area, sep=",")

Output
5,7,17.5

1.6.4 Conditional Statement

In general, statements of the program are executed in sequence called sequential
execution. But sometimes, program needs to skip certain statements based on the
condition, called conditional statements.

if is Python’s conditional statement.

if condition:

Statements I
[else: -
Statements]]‘ else part

If part

The part that is enclosed in square brackets is optional.

26

Statements: one or more Python statements.
if statements can be used in different formats.
(i) Simple if statement: Only if part exists and no else part
Example
x = int(input(’ Enter a number *))
if x > 0: # x > 0 is condition
print(x, ’ is positive’) # if part
Output

Enter a number 25
25 is positive

(ii) if-else statement: Both if part and else part are present.
Example

a, b = input(’Enter two values separated by space *).split()
a, b =int(a), int(b)
ifa>b:

print(’Bigger value : ’, a) # if part with only one statement

else:

1

Basic Python

print(’Bigger value : ’, b) # else part with only one statement

Output

Enter two values separated by space 20 56
Bigger value: 56

if part and else part can have multiple statements.
Example

a, b = input(’Enter two values separated by space’).split()
a, b =int(a), int(b)
ifa > b: # if part has multiple statements
print(’Bigger is : ’, end=")
print(a)
else: # else part has single statement
print("Biggeris : ", b)

Output

Enter two values separated by space-16 54
Bigger is: 54

(iii) Nested if: An If statement can have an if statement inside its if part or else

part called as nested if .

1.6 Statements 27

Example

num = int(input("Enter a number "))

if num > 0 :
print(num , " is positive")

else :
if num < 0: # if-else statement in else part

print(num , " is negative")

else :

print("Number is zero")

Output

Enter a number -20
-20 is negative

(iv) if-elif statement: else and if can be combined into elif.
Example

num = int(input("Enter a number "))

if num > 0 :
print(num , " is positive")
elif num < 0 : # else and if are combined
print(num , " is negative")
else :

print("Number is zero")

Output

Enter a number -20
-20 is negative

(v) short hand if- else: if and else can be written in a single line when if part
and else part have a single statement.

Example

a, b = input("Enter two values separated by space").split()
a,b=int(a), int(b)
big=aifa>belseb # single line if-else
print("Bigger is ", big)

Output

Enter two values separated by space-10 -35
Bigger is -10

Note: if statement cannot be empty.

if a>b:

28 1 Basic Python

Output

File "<ipython-input-11-e9e6693e9174>", line 1
if a>b:

A

SyntaxError: unexpected EOF while parsing
To avoid the error, use pass statement.

if a>b:
pass

Example
a = int(input("Enter a value "))
ifa==0:
pass

else :
print(a, ’ is non-zero’)

Output

Enter a value 20
20 is non-zero

1.6.5 Loop Statements

A loop statement repeats a block of statements until the specified condition is satisfied
or a certain number of times. Python supports two types of loop statements.

(1) while loop,
@ii) for loop.

(i) while loop: Block of statements enclosed in the loop are repeatedly executed
as long as the condition is True. Once the loop condition becomes False, the
control goes to the next statement after the loop. Statements that form the body
of the loop are determined by indentation.

while condition :
Statement 1 '
Statement 2 _ Loop Body

Statement n

1.6 Statements 29

Example: Display odd numbers up to 20.

i=1

while i<=20: #loop is executed as long as condition is true
print(i, end="") # this statement is in the loop
i+=2 # this statement is in the loop

following statement is outside the loop
print("\nThis statement is outside the while loop")

Output

1357911131517 19
This statement is outside the while loop

Note: Statements in the loop are determined based on the indentation.

In the above example, the variable i is called loop control variable that forms
a condition for the loop, i.e., the value of i determines the number of times the
loop is executed. This variable has to be initialized prior to the loop statement to
avoid generating an error. The condition has to be updated in the body of the loop
to avoid infinite looping. If the condition is false initially, the body is executed
Zero times.

Example

while j<=20: # loop is executed as long as condition is true
print(j, end="") # this statement is in the loop
j+=2 # this statement is in the loop

following statement is outside the loop

print("\nThis statement is outside the while loop")

Output

NameError Traceback (most recent call last)
<ipython-input-8-d48965829e48> in <module>()
—-> 1 while j<=20:
loop is executed as long as condition is true
2 print(j, end="") # this statement is in the loop
3j+=2 #this statement is in the loop
4 print("\nThis statement is outside the while loop")
this is outside the loop
NameError: name ’j’ is not defined

Control Statements break and continue statements are used in association
with loop statements. These are called control statements as they control the loop
execution.

break statement is to exit from the current loop statement.

continue statement is to bypass the current iteration of the loop and continue
with the next iteration.

30

1 Basic Python

Unlike other programming languages, Python supports a While-else statement.

while condition :
Statement 1
Statement — Loop body
Statement n
else :
Statements

The else part of the while loop is executed when the loop is terminated normally,
i.e., when no break is encountered in the loop.
Example: Check if a given number is prime.
num = int(input("Enter number : "))
i=2
while(i<=num//2):
if num % i ==0:
print(num, " is not prime")
break
i+=1
else:
print(num, " is prime")

Output
Enter number : 23
23 is prime
Note: Similar to if statement, while statement with an empty block of statements
generates an error irrespective of the condition being true or false.
Example
a,b=10,5
while a>b:
Output

File "<ipython-input-15-00192042912f>", line 2

while a>b :
A

SyntaxError: unexpected EOF while parsing
The above error can be avoided using a pass statement in the loop.
a,b=10,5

while a<b :
Pass

1.6 Statements 31

Range Function
range() function of Python generates a sequence of integer values based on the
parameters specified.

range(start, end, step)
The sequence begins with start value and continues up to the end (not including
the end) value with an increment of step value.

e Start value is optional. When not specified, the default value is 0.
e The step value is also optional. When not specified, the default value is 1.

The range() function is usually used in the for loop.
(i) for loop

The for loop iterates over a sequence object. The number of iterations is deter-
mined by the number of items in the sequence object.

Sor loop_control variablein sequence_object :
Statement |
Statement 2
....... " Loop Body
Statement n

[efse

Statements]

sequence_object can be any iterable object like range(), list, tuple, dictionary,
sets, strings. Values of the sequence_object are assigned to the
loop_control_variable in sequence, on each iteration.

Example 1: Display numbers from 0 to 4.
foriinrange(5): # default start value is 0 and step value is 1
print(i, end="")
Output
01234
Note: 5 is not displayed as end value is not inclusive.
Example 2: Display integers between -5 and 4.
for i in range(-5,5): # default step value is 1
print(i, end="")
Output
-5-4-3-2-101234

32

1 Basic Python

Note: 5 is not displayed as end value is not inclusive.
Example 3: Display items of a list.
for item in [’Red’,Green’,’Blue’,’Black’,” White’]:
print(item, end="")
Output
Red Green Blue Black White

Note: Python supports for-else statements. else part is executed on normal exit
from the loop.

Example

for i in range(-10, -20, -2):
print(i, end="")
else:
print("\nThis is else part of the for loop")

Output

-10-12-14-16 -18
This is else part of the for loop

1.7 Random Numbers

A random integer can be generated using the following function.

randrange(start, end, step)

It generates a single random integer based on the parameters specified. In order to
use this function, first import random module.

import random

Note: start, end, step parameters have the same meaning as in the range() function.

Example 1: Generate a random number between 0 and 4.

import random

any one random number in the sequence 0,1,2,3,4
rl = random.randrange(5)

print(rl)

Output

3

Review Questions 33

Example 2: Generate a random number between 5 and 19 with a step of 3.

random number in the sequence 5,8,11,14,17
r3 = random.randrange(5,20,3)
print(r3)
Output
17

Example 3: Generate a random number between -5 and -14 with a step of -3.

random number in the sequence -5,-8,-11,-14
r3 = random.randrange(-5,-15,-3)
print(r3)

Output
-14

Exercises

—

. Create a menu that provides options for performing the arithmetic operations.
2. Take the age of a person from the user and display whether the person is a child
(age < 12) or teenager (age < 18) or adult (age < 50) or a senior citizen (age
>=50).
3. Given the day of a week as an integer, display the name of the day. Assume
Sunday is 0.
4. Display the sum of digits of the given number.
5. Display the last digit and first digit of the given number.
6. Accept numbers from the user until 0 is input. Find the sum of the numbers. Use
a while loop.
7. Take marks of N students from the user and display the Pass percentage. Assume
50 is the pass mark.
8. Given the volume of water in gallons, convert it into liters.
9. Find the acceleration of an object, given time and velocity.
10. Given the memory size in bytes, convert into mega bytes and giga bytes.

Review Questions

(1) What is the output of the following code?

X =20.56
X = "Welcome Python"
print(X)

34

2)

3)

4)

S

(6)

(a) 20.56

(b) Reports an error

(c) Welcome Python

(d) 20.56 Welcome Python

What is the output of the following code?

pi=3.14
print(Pi)

(a) NameError: name “Pi” is not defined
(b) 3.14

(c) Piis areserved word

(d) Need to import math module to use pi

What is the output of the following code?

S =bool("Hello ")
A =Dbool(0)
print(S and A)

(a) True
(b) Hello
(c) False
(d) Reports an error

What is the output of the following code?

x =50
print(x << 2)

(a) 12.5
(b) 100
(c) 200
) 25

What is the output of the following code?
print(200 >> 3)

(a) 100
(b) 50
(c) 400
) 25

What is the output of the following code?

x=10
y=15
print(x & y)

1

Basic Python

Review Questions 35

)

®)

€))

(a) True
(b) 10
© 5
(d) 25

What is the output of the following code ?

A,B=30,12
print(A//B)

(a) 2.5

(b) 2

(c) Invalid operator
(d 2.0

What is the output of the following code?

X=-25
print(bool(X))

(a) True

(b) False

(c) -2.5

(d) Reports an error

What is the output of the following code?
print(-10 % 3)

(a) -1

(d) 1

(c) 2
(d) -2

(10) What is the output of the following code?

print(10 % -3)

(a) -1
() 1
(c) 2
(d) -2

(11) What is the output of the following code?

product = 1

for i in range(5):
product *=1i

print(product)

(@) 0

36 1 Basic Python

(b) 120
(c) Reports an error
(@ 13

(12) How many times is the word Python displayed?

for i in range(5):
for j in range(1,5):
print("Python ", end="")

@) 5
(b) 25
©) 10
) 20

(13) How many times is the loop repeated?

A=10

while A:
print(A)
A-=2

(@ 5
(b) 6
(c) Infinitely
(d) 10

(14) What is the output of the following code?

S=0

while S :
print("Hello")

else:
print("Bye")

(a) Hello

(b) Bye

(c) Reports an error
d o

(15) What is the output of the following code?

import random
x = random.randrange(-5,1)
print(x)

(a) -2
(b) 0
(¢) -5
(d) Any of the above

Review Questions 37

(16) ————specifies a code block in Python.

(a) Parenthesis
(b) Begin-End
(¢c) Indentation
(d) Quotes

(17) Which of the following is invalid loop statement in Python?

(a) for

(b) while
(c) for-else
(d) do while

(18) What is the output of the following?

a,b,c=5,True,0

ifaandborc:
print("Yes")

else:
print("No")

(a) Yes

(b) No

(c) Reports an Error
(d) True

(19) What is the output of the following?
if -3:
print("True")
else:
print("False")

(a) True

(b) No

(c) Reports an Error
(d) False

(20) What is the output of the following code?

cl = 10+5j
c2=5
print(cl+c2)

(a) Reports an error
(b) 15+45j

(c) 15j+5

(d) 10 +10;j

Chapter 2 ®)
Functions Check for

2.1 Introduction

When the given problem is large or complex, it is easy to find the solution by splitting
the larger problem into smaller subproblems. This approach will result in a simple
and clean solution to the bigger problems. In programming languages, subproblems
are implemented as functions in C, methods in C++/Java, procedures in Pascal, and
subroutines in Fortran. In a similar fashion, subproblems in Python are implemented
using functions.

Functions provide the following benefits:

e Modularity: Divides the larger program into smaller units called functions. Such
decomposition makes the code easy to manage, debug, and improves the read-
ability of the code.

e Reusability: Same function can be used multiple times with different input val-
ues.

e Reduce the duplication of code.

e Shareability: Functions can be shared and used by others.

For example:
To find the value of N¢,, given N and R.
The problem can be solved in the following way:

1. Write a function to find the factorial for a given number N.
2. Use this factorial function, 3 times with the values N, R, N-R to calculate N¢,.

Implementing functions require the following two steps:

(i) Define the function.
(i) Call/invoke the function.

© The Author(s) 2024 39
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2
https://doi.org/10.1007/978-3-031-52473-8_2

40

®

(ii)

2 Functions

Function definition

def function_name(parameters):
Statement | E
Statement 2 {

; — Function body

Statement n

[retum]

def'is akeyword. The statements that constitute the function is called the function
body. Input values to the function are provided through parameters that are
optional. When multiple parameters are specified, they are separated by commas.
These parameters are also known as formal parameters. The values computed
in the function body may be passed back to the caller using a refurn statement,
which is optional. Execution of the refurn statement terminates the function
execution, and control is passed back to the caller.

Function call/Function invoke

Invoking the function executes the function body with the parameters passed
in the function call. These parameters are also known as arguments or actual
parameters.

function_name(arguments)
Example: Take the user’s name using the input function and greet him.

Function definition

def display(name):
print("Hello ", end=" ")
print(name)

Function call
S = input("What is your name: ") # take user name
display(S) # function call

Output

What is your name: Arjun
Hello Arjun

Function body may include a return statement. Values specified in the refurn
statement are passed back to the calling point.

2.2 Properties of Functions 41

Example: Function to calculate factorial of a number.

def factorial(num): # num is parameter to the function
product = 1
for i in range(1,num+1):
product *=1i
following function returns the value of product to the caller
return product

Function call

print(factorial(5))

Output
120

Note: Function call is equivalent to the value returned. Hence, the function call
is used in print() to display the returned value. In the above example num is the
formal parameter and 5 is the actual parameter.

2.2 Properties of Functions

Property 1: Actual parameters can be constants, variables, or expressions.
Example

x = int(input("Enter a number : "))
print(factorial(x)) # here actual parameter is a variable
print(factorial(x + 3)) # here actual parameter is an expression

Output

Enter a number: 3
6
720

The main advantage of functions is reusability, i.e., a function can be called or
invoked any number of times with different argument values.

Example: Find the value of N¢,

n = int(input("Enter the value of n : "))

r = int(input("Enter the value of r : "))

following statement calls the function 3 times
ncr = factorial(n) / (factorial(r) * factorial(n - r))
print("ncr =", ncr)

42 2 Functions

Output

Enter the value of n: 5
Enter the value of r: 3
ncr = 10.0

In the above example, the function factorial() is called three times.

Property 2: A function can have multiple parameters. Return value can be a constant,
variable, or expression.

Example: Function to calculate N¢,

def ncr(n,r): # multiple parameters n, r
following return statement specifies an expression
return factorial(n) / (factorial(r) * factorial(n-r))

Function call

print(ncr(n,r))

Output

10.0
Property 3: Function parameters are optional and return statements are also optional.
Example

Function with no parameters and no return value
def circle(): # No formal parameter

radius = float(input("Enter radius : "))

area = 3.14 * radius * radius

circum =2 * 3,14 * radius

print(area, circum)

Function call

circle()

Output

Enter radius : 7
153.86, 43.96

Property 4: Function can have multiple return statements.
Example

Function with multiple return statements
def grade(marks):
if marks>=90 :
return "Grade A"
elif marks >= 80 :

2.3 Parameters’ Mapping 43

return "Grade B"
elif marks>=70 :

return "Grade C"
elif marks>= 60 :

return "Grade D"
else :

return "Grade E"

Function call
print(grade(65))
print(grade(89))
print(grade(40))

Output

Grade D
Grade B
Grade E

Note: Function execution terminates on execution of any one of the return statements.

Property 5: A function can return multiple values. These values are returned as a
tuple.

Example: Display area and circumference of a circle given radius.

Function with multiple return values

def circle(radius): # one formal parameter
area = 3.14 * radius * radius
circum = 2 * 3.14 * radius
return area, circum # 2 return values

Function call

circle(7)

Output
(153.86, 43.96)

2.3 Parameters’ Mapping

Mapping the actual parameters to the formal parameters can be done in three ways.

(i) Positional parameters: Actual and formal parameters are mapped by their posi-
tions.

Example: Find Simple Interest given Principal, Term, and Rate of Interest.

44 2 Functions

def simple_interest(P, T,R):
SI=®P*T*R)/100
return SI

Function call

simple_interest(2000, 3, 25)

Output
1500.0

In the above function call, actual parameter 2000 corresponds to P, 3 corresponds
to T, and 25 corresponds to R.

(i) Keyword parameters: Mapping is done by specifying a formal parameter name
in the function call. Hence, actual parameters can appear in any order and need
not follow the positions. Parameter names are called keywords and hence the
name keyword parameters.

Function call

Actual parameter values are assigned using parameter names
print(simple_interest(T = 4, R = 25, P=2000))

Output
2000.0

(iii) Default parameters: Default values can be assigned to the parameters in the
function definition, called default parameters. Such parameters values need not
be specified in the function call. If not specified, the default value given in the
function definition is assumed. If the actual parameter is specified, the specified
value is considered, ignoring the default value.

Example: Find Simple Interest given Principal, Term, and Rate of Interest.

Default values of Tis 1 & R is 10.
def simple_interest(P, T=1,R=10):
SI=(P *T*R)/100
return SI

Function calls

print(simple_interest(2000)) # T & R have their default values
print(simple_interest(2000,2)) # R has default value 10

here all the three parameters take specified values
print(simple_interest(2000,2, 20))

2.4 Parameter Passing Mechanisms 45

Output

200.0
400.0
800.0

Default parameters can be specified starting from last to the beginning. Non-
default parameters cannot be placed in between the default parameters.

Example: Find Simple Interest given Principal, Term, and Rate of Interest.

Default values of Tis 1 & R is 10.
def simple_interest(P=100,T,R=10):
SI=®P*T*R)/100
return SI

Error

File "<ipython-input-30-e0alf38elebl <", line 2
def simple_interest(P=100,T,R=10):
N

SyntaxError: non-default argument followsdefault argument

2.4 Parameter Passing Mechanisms

Actual parameter values are passed to the formal parameters in two ways. (i) pass-
by-value and (ii) pass-by-reference.

(i) Pass-by value: When parameters are passed by value, the value of the actual
parameter is copied into the formal parameter variable. Hence, changes made
to them inside the function body are not reflected back in the caller. Immutable
objects like strings, tuples are passed by value.

Example: Update the parameter in the function.

def pass_value(x):
x ="Hello " + x # x is modified here
print("Inside the function definition : ", x)

Function call

s = input("Enter string : ") # before function call
pass_value(s) # Function call
print("After function call : ", s)

Output

Enter string: Arjun
Inside the function definition: Hello Arjun
After function call: Arjun

46

2 Functions

(ii) Pass_by reference: When parameters are passed by reference, formal and actual

parameters become aliases and refer to the same memory location. Hence,
changes made to the formal parameters inside the function are reflected back
in the caller. Mutable objects like lists, sets, and dictionaries are passed by refer-
ence. Examples will be given when discussing mutable objects in the subsequent
chapters.

2.5 Recursive Functions

Factorial of N is defined as

Method 1: Iterative method

N!=N*(N-1) * (N-2) * ... % |

Method 2: Recursive method

Factorial can also be defined as

N!'=N * (N-1)!

Here factorial is defined in terms of itself, called recursive definition.

®

(i)

Following is the Python function using Iterative method.

def factorial(N):
product = 1
for i in range(1,N+1):
product *=1i
return product

The above function uses a loop to find the factorial, called the iterative method.
Following is the Python function using Recursive method.

def factorial(N):
if N==0: # terminating condition
return 1
else:
return N * factorial(N-1) # function calling itself

The above function is called a recursive function as it has a call to itself.

In the recursive function definition, there should be a condition to stop call-
ing itself. Such a condition is called a terminating condition. If the recursive
function does not contain a terminating condition, the function will be infinitely
calling itself and control will not come out of the function.

2.5 Recursive Functions

Function call using Method 2:

X = int(input("Enter a positive integer : "))

factorial(X)
Output
Enter a positive integer : 5
120
Print output (drag lower nght corner to resaze) Prrt nlpt (drag e r'?'_' corme to resw)
-
Frames Objects Frames Objects
Global freme _ function
Factorial(n) Glatal frome [
Factorial Factorial(n)
Factorial
Facterisl
NS Factorlal
NS
Factorisl
N 4 Foctorisal
N 4
Factorisl
N 3 Factorial
N3
Factorisl
2 Factorial
Factorial s Aﬂel‘ ﬁl’ﬂ l'eml‘l
Ratien
LA valow 2

Pt ol (i lomar gt Cirver 0 retcte) - s " -
Enter positive integer : §

F obj
rames jects Frames Objects
Glebal frame furction
" Factorlal(N) Global frame function
factorial(N)
factorial
Facterlal X |5
NS
ik factorial
N4 NS
1
Facteris foctorial
N3
N 4
Return | return i
- After second pewn ,, Alfter third return

value |©

47

48 2 Functions

Enter positive integer : §

Frames Objects
AT Qbjects
Global frame functio
factorial Tectoral i) Global frame
/ I

X |5 Factorial @

factorial
Miis Final output

After fourth return P

120

value

Advantages of recursive function:

e The recursive function is simple to write.
e It requires less code.

Disadvantages of recursive functions:

e During the recursive call, incomplete operation values have to be stored until
the terminating condition is reached. It uses a stack data structure to store/push
these values. Hence additional memory is required for the stack.

e Once the terminating condition is reached, the values stored on the stack have to
be retrieved/popped to complete the operations. Storing and retrieving operations
on the stack takes extra time. Hence recursive functions take more execution time
compared to iterative functions.

2.6 Lambda Functions

Lambda functions are tiny functions that can have only one statement or expression
as its body. The function has no name and hence also called an anonymous function.

Function definition
variable = lambda formal_parameters: expression

lambda is a keyword.
expression may include formal_parameters. The value of the expression is assigned
to the variable.

Function call

variable(actual_parameters)

Example: Find the area of a circle given radius.

Lambda function with radius as parameter
circle_area = lambda radius : 3.14 * radius * radius

Exercises 49

Function call

circle_area(7) # Call to lambda function

Output
153.86
Lambda function can have zero or more parameters.
Example: Find Euclidean distance given two points.
Lambda function with multiple parameters
dist = lambda x1, y1, x2, y2 : math.sqrt((x2-x1)**2 + (y2-y1)*#*2)
Function call

dist(2,2,5,5) # call to Lambda function

Output
4.242640687119285

Example: Find a logarithmic value of 10.
Lambda function with zero parameters
x = lambda : math.log(10)

Function call

x() # Call to lambda function with no parameters

Output
2.302585092994046

Exercises

Write a Program, Using Functions, for the Following

Display a multiplication table of a given number.
Generate prime numbers in the specified range.
Display Fibonacci numbers up to the given number.
Find LCM of two given numbers.

Find HCF of the given two numbers.

Display the reverse of a given number.

Check if the given number is perfect.

Find sum of the series 1/ 1! +2/2!+3 /3! + ...

PN B LD =

50

Write Recursive Functions, for the Following

Find the sum of the first N natural numbers.
Find the sum of the digits of a number.

Find GCD of two given numbers.

Find the nth Fibonacci number.

Check if the given number is prime.

Given the decimal number convert it to binary.

A e

Write Lambda Functions for the Following

Find the sigmoid value for a given x value.

Check if given number is divisible by 7 and 5.

Find the slope of a given line.

Convert the temperature from Celsius to Fahrenheit.
Find compound interest.

Find the area of a right-angle triangle.

Find the sum of the numbers in a given range.

Nk L =

Review Questions

(1) What is the output of the following code?

def test_fun(a, b=5, c=10):
return a+b+c
print(test_fun(20, 1))

(a) 35
(b) 15
(c) 31
(d) Error is generated

(2) What is the output of the following code?

def test_fun(x=4,y):
print(x+y)
test_fun(-3)

(a) 1
(b) -1
(c) 7
(d) Error is generated

Display multiples of 3 between two specified numbers.

2 Functions

Review Questions 51

(3) What is the output of the following code?

f=lambdaa,b:a%b
print(f(10, 3))

(@) 1

() 3

(c) 3.33

(d) Error is generated

(4) What is the output of the following code?

def test_fun(radius):
print(radius, end="")
print(3.14*radius*radius, end="")
print(test_fun(10))

(a) 10314.0

(b) 10 314.0 None
(c) 103.14

(d) Error is generated

(5) What is the output of the following code?

def rec_fun(n):
if n<=5:
return
else :
return n * (n-1)
print(rec_fun(4))

(a) None

(b) 24

(c) Get into infinite loop
(d) Error is generated

(6) Which of the following statements is not true with the functions?

(a) Function body should have at least one return statement
(b) Function can return multiple values

(c) Function body cannot be empty

(d) Function can have multiple parameters

(7) What is the output of the following code?

def test_fun(t1, t2):

tl +=12

return t1
test_fun((1,2,3), (4,5,6,7))

52 2 Functions

(@) (1,2,3)

) (1,2,3,4,5,6,7)
(c) 4,5,6,7)

(d) Error is generated

(8) What is the output of the following code?

def test_fun(a,b):
returna - b
print(test_fun(b=10, a=-5))

(a) -15

(b) 5

(c) 15

(d) Error is generated

(9) What is the minimum number of arguments to be provided in function call?

def test_fun(a, b, c= 10):
return a*b*c

(a) 0
(b) 1
(c) 2
(d 3

(10) What type of object is returned by the following function?

def test_fun(a, b):
return a+b, a*b
test_fun(10,20)

(a) Two integer values
(b) List

(c) Tuple

(d) Set

Chapter 3)
Strings cne

Characters are the symbols used in writing the code. As computers can only store
and process binary data, these characters are converted into a binary form called
encoding. Binary data is again converted back to character form to present it to the
user, called decoding. ASCII and Unicode are the popular encoding methods.

A string is a sequence of characters enclosed in single or double quotes. It is
a sequence data type where individual characters can be accessed using its index.
Python does not support character data type. A single character in quotes is also
treated as a string of length one. A String object is immutable, i.e., once created, it
cannot be modified. However, it can be assigned to another string variable.

String objects are used in Natural Language Processing, Search Engines, Chatbots,
Information Retrieval Systems, etc.

3.1 Create String Objects

A string object is a sequence of characters of the character set. The character set
includes alphabets, digits, operators, delimiters, special characters, etc.

(i) Create an empty string object
An empty string object can be created in two ways:

(a) Using empty quotes (single or double).
(b) Using string class, str.

© The Author(s) 2024 53
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3
https://doi.org/10.1007/978-3-031-52473-8_3

54 3 Strings

Example

create empty string using single quotes
sl=""

print("Data type of sl : ", type(s1))
print("String s1 : ", s1)

create empty string using str class

s2 = str()

print("Data type of s2 : ", type(s2))
print("String s2 : ", s2)

Output

Print output (drag lower right corner to resize)

Data type of sl : <class 'str'>
String s1 :

Data type of s2 : <class 'str'>
String s2

Frames Objects

Global frame

sl L "
52 L "

(i) Create a non-empty string object
A non-empty string object can be created by enclosing the sequence of charac-
ters in single or double quotes which can then be assigned to a variable.

Example

string enclosed in double quotes
sl = "Hello World"

string enclosed in single quotes
s2 = "Hello World’

print("Data type of s1 : ", type(s1))
print("String is : ", s1)

print("Data type of s2 : ", type(s2))
print("String is : ",s2)

3.1 Create String Objects

Output

Print output (drag lower right corner to resize)

Data type of s1 : <class 'str'>
String is : Hello World
Data type of s2 : <class 'str'>
String is : Hello World

Frames Objects

Global frame

sl "Hello World"
s2 "Hello World"

(iii) Create multiline strings

55

If a string runs into multiple lines, it is to be enclosed in triple quotes (single or

double).

Example

Multiline string
s = ’Python supports
multiline strings
enclosed in triple
quotes
either single or double quotes

EER]

print(s)
Output

Python supports

multiline strings

enclosed in triple quotes
either single or double quotes

Escape Sequences in String

When the string is enclosed in single quotes, if the string itself contains single quotes

as one of its characters, it is to be preceded by escape character backslash \.

56 3 Strings

If the string is enclosed in single quotes and the string itself contains double
quotes, the escape character is not required.
The same rule is applicable when the string is enclosed in double quotes.

Example

Double quoted text in single quotes string

s = 'Python is "Object oriented" language’
print(s)

Single quoted text in double quotes string

s = "Python is "Object oriented’ language"
print(s)

Same type of quotes require escape character
s = "Python is \"Object oriented\" language"
print(s)

Output

Python is "Object oriented" language
Python is *Object oriented’ language
Python is "Object oriented" language

len() function on strings returns the number of characters in the string, including
spaces.

len(string_object)

Example

len() function
sl = Hello How are you?’
print("Number of characters in s1 : ", len(s1))

Output

Number of characters in s1 : 18

3.2 Accessing String Objects

String object being a sequence data type, its characters can be accessed using the
index. The index is also called a subscript.

3.2 Accessing String Objects 57

m 0 1 2 3 4 5 6 7 8 9
m 10 9 8 e 6 5 4 3 2 1

Fig. 3.1 Indexing string

(1) Indexing
Individual characters of a string are accessed using the index called indexing.
The index ranges from zero to (length-1). The negative index can also be used
that refers to the characters from the back of the string. The index of the last
character is —1, last but one character is —2, and so on.

string_object[index]
Index values for the string “Hello Hai!” is as shown in Fig.3.1.

Example

Indexing

sl = Hello How are you?’

Access first character

print("First character is : ", s1[0])

Access last character

print("Last character is : ", s1[-1])

Access third character from last
print("Third character from lastis : ", s1[-3])

Output

First character is : H
Last character is : ?
Third character from last is : o

(ii) Slicing
A substring of a string can be extracted by specifying the start index, stop index,

and step value. This operation is called slicing. The stop index is not inclusive,
i.e., the character at the stop index is not included in the substring.

string_object[start:stop:step]
The default value of stop is the end of the string.

58 3 Strings

The default value of start is the beginning of the string.
The default value of step is 1.

Example

Slicing

strl = "Hello How are you?’

print("First three characters : ", str1[:3])
print("Last three characters : ", str1[-3:])
print("Characters from index 2 to 7 : ", str1[2:8])
print("Alternate characters : ", strl[: :2])
print("String in reverse order : ", strl[: : -1])

Output

First three characters : Hel

Last three characters : ou?

Characters from index 2 to 7 : 1lo Ho
Alternate characters : HloHwaeyu

String in reverse order : ?uoy era woH olleH

Note 1: Indexing or slicing will not modify the original string.
print("Characters of string: ", s1)

Output
Characters of string: Hello How are you?

Note 2: Specifying an index that is out of range generates an error.
print(str1[20])

Output

IndexError Traceback (most recent call last)
< ipython-input-10-c9c04a693aa6> in <module>()
—> 1 print(str1[20])

IndexError: string index out of range

3.3 Operations on Strings

String objects are immutable, i.e., once created, the object cannot be changed or
modified. Hence operations like addition, deletion, and modification of elements are
not permitted on strings. However, deletion of the entire string is possible, which
will be discussed in subsequent sections.

3.3 Operations on Strings 59

Example

change a character
sl = Hello How are you?’

sl[3]="L
Output
TypeError Traceback (most recent call last)

<ipython-input-19-b8ded2f6¢70b> in <module>()
1 S1 ="Hello How are you?’
—>2S81[3]="1L

TypeError: ’str’ object does not support item assignment.

(i) String concatenation
Combines two or more strings. It can be done in multiple ways.

(a) Using + operator
Returns a new string by concatenating the string operands.
(b) Using join(string_list) method.
It requires string arguments to be specified as a list.
Returns a new string by concatenating the strings in the string_list.

Example

string concatenation

sl =’Python’
s2 =’ Programming’
s3="1s fun’

print(’ Concatenation using + operator : *,s1 + s2 + s3)
concatenation using join() method
print(’ Concatenation using join method : ’, * ’join([s1, s2, s3]))

Output

Concatenation using + operator : Python Programming is fun
Concatenation using join method : Python Programming is fun

(i) Repetition operator *
Concatenates multiple copies of the same string.

string_object * number_repetitions
Returns a new string object.

Example

strl = Hello’
print(str1*3)

60 3 Strings

Output
Hello Hello Hello

(iii)) Membership Testing
in operator checks whether a substring is present in the given string.
sub_string in string_object
Returns True or False.

Example

Membership testing using in operator
s="Python programming is simple’
print(’programming’ in s)

Output

True

3.4 Methods on Strings

Python provides a number of methods on string objects to perform different opera-
tions. Commonly used methods are

(i) string_object.lower()

Returns a new string with all the characters converted to lowercase.
(i) string_object.upper()

Returns a new string with all the characters converted to uppercase.
(iii) string_object.capitalize()

Returns a new string with only the first character capitalized.
(iv) string_object.title()

Returns a new string by capitalizing the first character in each word.
(v) string_object.casefold()

Ignore the case while comparing the strings.

Example

strl = "programming with python"

print("Capitalize all the characters : ", strl.upper())
print("Capitalize only first character : ", strl.capitalize())
print("Capitalize first character of each word : ", strl.title())

3.4 Methods on Strings 61

Output

Capitalize all the characters : PROGRAMMING WITH PYTHON
Capitalize only first character : Programming with python
Capitalize first character of each word : Programming With Python

(vi) string_object.isdigit()
Returns True if the string contains only digits and False otherwise.
(vii) string_object.isalpha()
Return True if the string contains only alphabets and False otherwise.
(viii) string_object.isalnum()
Returns True if the string contains alphabets or digits and False otherwise.

Example

strl ="123"

print(’whether strl contains only digits ?: ’, strl.isdigit())

print(’ Are all characters of strl alphabets?: ’, strl.isalpha())
str2="12A"

print(’ All characters of str2 alphabets or digits?:’, str2.isalnum()))

Output

whether strl contains only digits ?: True
Are all characters of strl alphabets?: False
All characters of str2 alphabets or digits?: True

(ix) string_object.split(delimiter)
Splits the string into substrings, using the specified delimiter.
The default delimiter is space.
Returns list of substrings.

Example

sl = "programming is fun"

print("List of substrings separated by space: ", s1.split())
s2 = "python: C++: Java"

print("List of substrings separated by colon: ", s2.split(’:’))
$3 = "ram@gmail.com"

print("List of substrings separated by @: ", s3.split(’ @’))

Output

List of substrings separated by space: [’programming’, ’is’, *fun’]
List of substrings separated by colon: [’python’, > C++’,’ Java’]
List of substrings separated by @: ['ram’, ’gmail.com’]

62

)

(xi)

(xii)

3 Strings

strip() method removes leading and trailing spaces in the string.
string_object.strip()

Example

Remove leading and trailing spaces
sl =" Hello , How are you? "
print(s1.strip())

Output
Hello, How are you?

string_object.replace(argl,arg2)
Returns a new string by replacing argl with arg2 in the string_object.
But the original string will not change as string objects are immutable.

Example

Replace the characters

s = "Good Morning"

print("Replacing o with # : ", s.replace(Co’,#’))

print("Replacing with a substring : ", s.replace(’Morning’,Evening’))
print("String after replace : ",s)

Output

Replacing o with # : G##d M#rning
Replacing with a substring : Good Evening
String after replace : Good Morning

string_object.startswith(prefix) , string_object.endswith(suffix)
Returns Boolean value based on whether the string_object starts or ends with
the specified prefix or suffix string.

Example

s1 =’Hi, I am Good’
print(’ Whether the string starts with Hi: ’, s1.startswith("Hi’))
print(’ Whether the string ends with dot: °, s1.endswith(’.”))

Output

Whether the string starts with Hi: True
Whether the string ends with dot: False

3.4 Methods on Strings 63

(xiii)

(xiv)

(xv)

string_object.count(sub_string,start,end)

Returns the frequency of sub_string in the string_object.

Search begins at the start index and stops at the end-1 index.

start & end arguments are optional. Default value for start is 0 and end is last
index.

Example

s = "Hi, How are you? How do you do’

print(’Count of "How" in the string: ’,s.count(’How’))

print(’Count of "How" after 10th index: ’, s.count("How’,10))

print(’ Count of "How" between 10 & 15th index:’,s.count("How’,10,15))

Output

Count of "How" in the string: 2
Count of "How" after 10th index: 1
Count of "How" between 10 & 15th index: 0

string_object.find(sub_string)
Returns the lowest index at which sub_string is present in the
string_object. Returns -1 if not present.

Example

s = "Hi, How are you? How do you do’
print(’First occurrence of "How" in the string: ’, s.find("How’))
print(’First occurrence of "how" in the string: ’, s.find("how’))

Output

First occurrence of "How" in the string: 4
First occurrence of "how" in the string: -1

string_object.format(argl,arg2, ..)

string_object contains text along with placeholders specified as { }
argl,arg2...are the arguments whose values are inserted into the
placeholders.

Returns formatted string object.

Mapping of the arguments to placeholders can be done as follows:

(a) Positional formatting: Arguments and placeholders are mapped by their
positions.

(b) Index-based formatting: The placeholder contains the index of the argu-
ment. The corresponding value of the argument is inserted at the place-
holder.

64 3 Strings

(c) Keyword formatting: Argument names are called keywords. These key-
words are specified inside the placeholder where the corresponding value
is replaced.

Example

name = input(’Enter your name : ’)

mail_id = input(’Enter mail Id : *)

x =Dear { }, received your mail id { }’.format(name,mail_id)
print(’Positional formatting :’,x)

y =’Dear {1},received your mail id {0} .format(mail_id, name)
print(’Index based formatting:’,y)

z =’Dear {nm},received your mail id {m}’.format(m=mail_id, nm=name)
print(’ Keyword formatting:’,z)

Output

Enter your name: Arjun

Enter mail Id: arjun@gmail.com

Positional formatting : Dear Arjun, received your mail id arjun @ gmail.com
Index based formatting: Dear Arjun, received your mail id arjun@ gmail.com
Keyword formatting: Dear Arjun, received your mail id arjun @gmail.com

Numeric values can be formatted by specifying data type and precision. The value
is rounded to a specified number of decimal places.

Example
item =’ Apple’
price = 55.98

print(’price of { } is {:.1f} *.format(item, price))

Output
price of Apple is 56.0

3.5 Iterating Through String Objects

As the string object is a sequence data type, elements can be iterated using a for loop.

Example

Iterating through string

s = ’Python programming is simple’
print(’ Accessing each character : *)
foriins:

3.6 Type Conversions 65

print(i, end="")
print(’\ Accessing each word :)
for i in s.split():

print(’ ’,i,)

Output

Accessing each character :
Pythonprogrammingissimple
Accessing each word :

Python

programming

is

simple

3.6 Type Conversions

String objects can be converted to other data types.

new_data_type(String_object)

(i) String objects can be converted into list, tuple, set objects. Each character of
the string is treated as an element in the new object.

Example

sl = "Python"

print("String to List: ", list(s1))
print("String to Tuple: ", tuple(s1))
print("String to set: ", set(s1))

Output
String to List: ['P’,’y’, ’t’, ’h’, ’0’, ’n’]
String to Tuple: (P, ’y’,’t’, ’h’,’0’, 'n’)
String to set: {"P’,’0’,’y’, ’'n’, ’t’, ’h’}
(ii) String objects can be converted to a Boolean data type. Any non-empty string
is True and an empty string is False.

Example

String to boolean

sl = Python’

s2="

print(’ Non-empty string to boolean : °, bool(s1))
print(’ Empty string to boolean : ’, bool(s2))

66

3 Strings

Output

Non-empty string to boolean: True
Empty string to boolean: False

(iii) String objects can be converted to int, float, or complex data types provided the

characters are permitted in the corresponding data type.

Example

string to numeric data types

sl ="123"

i=int(sl)

print("Data type and value of i : ", type(i), 1)
s2="3.14"

f = float(s2)

print("Data type and value of f : ", type(f), f)
s3 ="3-5j"

¢ = complex(s3)

print("Data type and value of ¢ : ", type(c), ¢)

Output

Data type and value of i: <class ’int’> 123
Data type and value of f: <class *float’> 3.14
Data type and value of c: <class complex’> (3-5j)

Exercises

—_—

SO E DD =

Write a function to count the number of words and lines in a multiline string.
Write a function to count the number of vowels in the string.

Write a function to count the number of articles in the string.

Write a function to check if a string is a palindrome.

Write a function that returns the string in reverse order.

Find the number of Gmail IDs in a multiline string.

Find the frequency of each vowel in the string.

Accept N names from the user and display the capitalized name.

Write a function to create a string by replacing digits with # character.

Write a function that returns the number of digits in the string.

Review Questions 67

Review Questions

(1) What is the output of the following code?
print(’Python is {1} object-oriented {0} .format(’language’, an’))

(a) Python is an object-oriented language
(b) Python is object-oriented language
(c) Python is language

(d) Error is generated

(2) What is the output of the following code?
print(’Python is high-level {0} and object-oriented {0}’.
format(’language’,’an’))

(a) Python is high-level and object-oriented language

(b) Python is high-level and an object-oriented language

(c) Python is high-level language and object-oriented language
(d) Error is generated

(3) What is the output of the following code?
print({1} % {2} = {0} .format(20%7, 20, 7))

(a) 20

(b) 7

() 20%7=6

(d) Error is generated

(4) What is the output of the following code?
’Language’.replace(’g’,G’)

(a) LanGuage
(b) LanguaGe
(c) lanGuaGe
(d) LanGuaGe

(5) What is the output of the following code?
"Python is simple, Python is easy’.find(’Python’)

(a) 6
(®) 0
(c) 19
(d) 24
(6) What is the output of the following code?
print(len(’Python is simple’))

(a) 3
() 14

68 3 Strings

(c) 16
d) 17

(7) Extracting a substring from a given string is known as

(a) Indexing
(b) Slicing
(c) Splitting
(d) Formatting

(8) Which of the following methods returns a list of substrings of a given string?

(a) split()
(b) replace()
(c) strip()
(d) find()
(9) Which of the following is a string concatenation operator?

(a) **
(b) *
(c) +
@/

(10) Which of the following is false?

(a) String objects are mutable

(b) An empty string can be created using str()

(c) Multiline strings are created using triple quotes

(d) A backslash is used as an escape sequence for strings

Chapter 4 ®)
Built-in Data Structures: Lists Geda

A data structure is a collection of organized data stored in computer memory and the
operations permitted on the data. These operations help in writing efficient programs
by providing fast access to the data. Python provides built-in data structures as well
as constructs to create user-defined data structures. Python provides class construct
to define user-defined data structures.

Python built-in data structures include lists, tuples, dictionaries, sets, and strings.
These basic data structures cover most of the real-world data structures for data
manipulations.

The basic built-in data structures differ in the following ways:

(i) whether the object can be changed after creating it, called mutability.
(i) whether the elements of the object can be accessed based on their position in the
object, called sequence object.

List

A list is a built-in data structure in Python. List object is a collection of ordered ele-
ments. Python provides a number of library functions and methods for manipulating
the list object. The elements can be of the same or heterogeneous data types. The
list object is mutable, i.e., elements can be added, deleted, or modified. It is like
a dynamically sized array in other programming languages like C++ and Java. List
objects are widely used in data science.

List elements are enclosed in square brackets [] and separated by
commas.

© The Author(s) 2024 69
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4
https://doi.org/10.1007/978-3-031-52473-8_4

70 4 Built-in Data Structures: Lists

Example

List of integers separated by ,
even_num= [2,4,8,10]
print(even_num)

Output

[2, 4,8, 10]

4.1 Create List Objects

(1) An empty list can be created in two ways:

(a) using pair of square brackets,
(b) using constructor of list class.

Example

Create an empty list

11 =] # using pair of square brackets
print("Creating empty List using square brackets : ", 11)
12 =1ist() # using constructor of list class
print("Creating empty List using constructor : ", 12)

Output
Print output (drag lower right corner to resize)
Creating empty List using square brackets : []
Creating empty List using constructor : []
F
Frames Objects
Global frame P ompty list
in g > empty list
2 «

(i) Non-empty list object: Non-empty list object is created by enclosing the ele-
ments in square brackets. Elements are separated by commas.

4.1 Create List Objects 71

List elements can be of any data type like integer, float, Boolean, complex,
strings, lists, tuples, dictionaries, sets, efc., or a mix of different data types.

Example: List of complex numbers
complex_list = [10+2j, -7j, 20-5j]
print(complex_list)

Output
[(10+2j), (-0-7j), (20-5))]

Example: List of strings
strings_list = ["Ram", "Laxman", "Bharat"]
print(strings_list)

Output
[’Ram’, ’Laxman’, ’Bharat’]

List elements need not be of the same data type. It can be a combination of
different data types.

Example

List elements with different data types
mixed_list = [10, True, 10+4j, "Arjun", 3.14]
print(mixed_list)

Output
[10, True, (10+4j), ’Arjun’, 3.14]

Built-in library function, len() determines the number of elements or length of
the list.

len(list_object)
Example
len() function
print("Length of strings list : ", len(strings_list))

print("Length of Complex numbers list : ", len(complex_list))
print("Length of Mixed list : ", len(mixed_list))

Output

Length of strings list : 3
Length of Complex numbers list : 3
Length of Mixed list : 5

72

4 Built-in Data Structures: Lists

4.2 Indexing and Slicing

®

Indexing: A listis a sequence object, i.e., elements in the list are ordered. Hence
elements are accessed using index or subscript. Indices range from 0 to (Ilength-

1).
Example

odd_num =[1,3,5,7,9,11,13,15]
print("List elements are : ", odd_num)

Output: List elements are : [1, 3,5,7,9, 11, 13, 15]

List elements are: (1, 3, 5, 7, 9, 11, 13, 15]

p
Frames Objects

Global frame st

odd_rum ¢ |y 3|5 |7 9|11 13|15

Example

Accessing first element of the list

print("First element of the list : ",odd_num[0])
Accessing third element of the list
print("Third element of the list : ",odd_num[2])

Output

First element of the list : 1
Third element of the list : 5

List elements can also be accessed from the back using a negative index. Index
value —1 refers to the last element, —2 refers to the last but one element, and so on.

Example

Accessing elements using negative index
print("Last element of the list: ", odd_num[-1])
print("Third element from back of the list: ", odd_num[-3])

4.3 Nested Lists 73

Output

Last element of the list: 15
Third element from back of the list: 11

(i1) Slicing is extracting a sub-sequence of a list.

list_name[start:stop:step]

start & step values are optional. The default start value is 0 and the default szep
value is 1. stop index not inclusive.

Example

slicing

odd_num =[1,3,5,7,9,11,13,15]

print("List elements are : ", odd_num)

print("First five elements : ", odd_num[0:5])

omitting start index assumes index 0

print("First five elements : ", odd_num[:5])

omitting stop index assumes end of list
print("From 5th element onwards : ", odd_num[5:])
using step size

print("Alternative elements up to fifth :", odd_num[0:5:2])
using negative index

print("Last five elements : ", odd_num[-5:])

Output

List elements are : [1, 3,5,7,9, 11, 13, 15]
First five elements : [1, 3, 5, 7, 9]

First five elements : [1, 3, 5, 7, 9]

From 5th element onwards : [11, 13, 15]
Alternative elements up to fifth : [1, 5, 9]
Last five elements : [7,9, 11, 13, 15]

Note: stop index is not inclusive.

4.3 Nested Lists

An element of a list can be another list object called a nested List. It is also known
as a list of lists.

74

Example

4 Built-in Data Structures: Lists

List of Lists — nested lists
nested_list = [[1,2,3], "Arjun", [True, False]]

print(nested_list)

print("Number of elements in the list : ", len(nested_list))

Output

Frames

Global frame

nested_list

In the above example, the list has only three elements—the first element is a list of

P

B

right corner to resize)

({1, 2, 3), "Arjun', [True, False))
Nusber of elesents

in the list : 3
Objects

.--"'_A_lr_j;n' . 11213

True False

integers, the second is a string, and the third element is a list of Booleans.

Indexing and slicing of nested lists Indexing/slicing of nested list objects requires
two subscripts—first subscript for the outer list and the second subscript for the inner

list.

Example

Indexing and slicing of nested list

print("Third element is : ", nested_list[2])

Third member of first element

print("Third member of first element is : ", nested_list[0][2])
last two elements of the list

print("Elements other than first are : ", nested_list[1:])

Output

Third element is: [True, False]
Third member of first element is : 3
Elements other than first are : [’ Arjun’, [True, False]]

4.4 Methods on List Objects 75

4.4 Methods on List Objects

List objects are mutable, i.e., elements can be inserted, deleted, or modified.

(i) Insertion: Element can be inserted at any position of a list. This operation can
be done using different methods.

(a) append(): Insert an element as the last element of the list.

list_object.append(element)
(b) insert(): Insert an element at the specified index position.

list_object.insert(index, element)

Example

Appending element

colors = ["Red", "Green"]

print("List elements are : ", colors)

append an element

colors.append("Blue")

print("List elements after appending : ", colors)

Inserting as first element

colors.insert(0,"White")

print("List elements after inserting at the beginning, : ", colors)

Output

List elements are : [’'Red’, ’Green’]

List elements after appending : ['Red’, Green’, *Blue’]

List elements after inserting at the beginning, : ["White’, 'Red’,
’Green’, "Blue’]

Note: append() and insert() methods can add only one element to the list.
(c) extend() method can append one or more elements to the list.

4 Built-in Data Structures: Lists

list_object.extend(list_of elements)

Example

Extend the list with one or more elements
pandavas = [" Dharmaraj", "Bheem", "Arjun"]
print("Pandavas before extending : ", pandavas)
pandavas.extend(["Nakul", "Sahadev"])
print("Pandavas after extending : ", pandavas)

Output

Pandavas before extending : ([° Oharmaraj’, "Bheem’, ‘Arjun’)

Pandavas after extending : [’ Oharmaraj’, "Bheem’, 'Arjun’, ‘Nakul', “Sahadev')

.
Frames Objects
Global frame
— —~—
pandavas *

" Dharmaraj” | "Bheema™ | "Arjun™ | “Nakul® .'Sahmov'
Difference between append() and extend()

append() method adds only one element at the end of the list. When the
element to be appended is a list object, it is added as a single element at the

end. Whereas for extend() method, elements of the list are added one by one
at the end.

Example

Append takes the list as single element and add at the end
pandavas = [" Dharmaraj", "Bheem", "Arjun"]
print("Pandavas before appending : ", pandavas)
pandavas.append(["Nakul", "Sahadev"])

print("Pandavas after appending : ", pandavas)

4.4 Methods on List Objects 71

Output

pandavas bafore appending : (' Dharmaraj®, ‘Bhess’, ‘Arjun’)
pandavas after appending : (' Dharmaraj’, 'Bheem’, ‘Arjun’, ['Nakul®, 'Sahadev']}]

Frames Objects
Global frame
- »
pandavas * Dharmaraj" | “Bheea™ | “"Arjun" | ¢

5\

|
"Nakul® | “Sahadev”

(d) List concatenation: A list can be appended to another list using the +
operator called concatenation.

list_objectl + list_object2

Returns a new list after appending each element of [list_object2 to
list_objectl.
list_objectl and list_object2 are not modified.

Example

List concatenation

pandavas = [" Dharmaraj", "Bheem", "Arjun"]
12 = ["Nakul", "Sahadev"]

print("Concatenation: " , pandavas + 12)
print("pandavas after concatenation: ", pandavas)
print("12 after concatenation: ", 12)

Output

Concatenation: [* Dharmaraj’, ’Bheem’, ’Arjun’, ’Nakul’, ’Sahadev’]
pandavas after concatenation: [Dharmaraj’, ’Bheem’, *Arjun’]
12 after concatenation: [’"Nakul’, ’Sahadev’]

Note: Neither of the lists gets modified after concatenation. To update the
list, use assignment.

Example

To update the list, reassign after concatenation
pandavas = pandavas + 12
print("After concatenation and reassignment : ", pandavas)

78 4 Built-in Data Structures: Lists

Output

After concatenation and reassignment : [Dharmaraj’, 'Bheem’,
’Arjun’, ’Nakul’, ’Sahadev’]

(ii) Deletion: Elements of alist object can be deleted. Python provides the following
methods to delete elements of a list object.

(a) remove() method deletes the first occurrence of the specified element from
the list. It returns the modified list.

list_object.remove(element)

Example

Delete a specified element from the list
even_num= [2,4,6,8,4,10]

print("List before deletion :", even_num)
even_num.remove(4)

print("List after deletion :", even_num)

Output

List before deletion: [2, 4, 6, 8, 4, 10]
List after deletion: [2, 6, 8, 4, 10]

If the specified element is not in the list, an error is generated.

Example

Error if specified element is not in the list
print("List elements are : ", even_num)
even_num.remove(20)

Output

List elements are : [2, 6, 8, 4, 10]

ValueError Traceback (most recent call last)

< ipython-input-33-7f04c5e03f0d > in <module>()
1 # Error if specified element is not in the list
2 print("List elements are : ", even_num)

—-> 3 even_num.remove(20)

ValueError: list.remove(x): x not in list

4.4 Methods on List Objects 79

(b) pop() method removes the element at the specified index. The deleted ele-
ment is returned by the method.

list_object.pop(index)
index is optional. If not specified, last element is deleted.

Example

even_num= [2,4,6,8,4,10]

print(’ Deleted element : °, even_num.pop())

print("List elements after popping last element : ", even_num)
even_num.pop(2)

print("List elements after popping element at index 2 : ", even_num)

Output

Deleted element: 10
List elements after popping last element : [2, 4, 6, 8, 4]
List elements after popping element at index 2 : [2, 4, 8, 4]

(c) del: deletes the element at the specified index. This is same as pop() with
index as argument but does not return the deleted element.

del list_object| index |
Example

even_num = [2,4,6,8,10,12]

print("List elements before deletion : ", even_num)

del even_num|3]

print("After deletion at 3rd index using del : ", even_num)
even_num.pop(3)

print("After deletion at 3rd index using pop : ", even_num)

Output

List elements before deletion : [2, 4, 6, 8, 10, 12]
After deletion at 3rd index using del : [2, 4, 6, 10, 12]
After deletion at 3rd index using pop : [2, 4, 6, 12]

del can also be used to delete a sub-sequence of a list.

80 4 Built-in Data Structures: Lists

del list_object| start:stop |

stop index is not inclusive

Example
even_num = [2,4,6,8,10,12]
print("List elements before deletion : ", even_num)
del even_num[1:3] # stop index not included
print("List elements after deletion : ", even_num)

Output

Print outp '\I!!-‘.": lower right corner to .'!“~.Zl'i.

List elements before deletion : (2, 4, 6, 8, 10, 12]
List elements after deletion : [2, 8, 10, 12)

Frames Objects

Global frame list

even_num ./J__—__‘L 2 8 10 12

(d) clear() method removes all the elements of the list, but the list object exists

list_object.clear()

Example

Delete all elements in the list

rating = [4,3,5,2,1,4,5,1,2,5]
print("List elements are : ", rating)
rating.clear()

print("List after clear method :", rating)

4.4 Methods on List Objects 81

Output
Print output (drag lower right corner to resize)

List elements are : (4, 3, 5, 2, 1, 4, 5, 1, 2, 5]
List after clear method : []

Frames Objects

Global frame/,——y empty list
rating

(iii) Modifying list object: Value of an element, at the specified index, can be
modified by reassigning a new value.

list_object[index]=new_value
Example
even_num = [2,4,6,8,10,12]
print("List elements before modifying : ", even_num)

even_num[4] =20
print("List after modifying element at 4th index : ", even_num)

Output

List elements before modifying : [2, 4, 6, 8, 10, 12]
List after modifying element at 4th index : [2, 4, 6, 8, 20, 12]

(iv) count() method returns the number of times an element occurs in the list.
Returns zero if the element is not in the list.

list_object.count(element)

Example

Frequency of element in the list

rating = [4,3,5,2,1,4,5,1,2,5]
print("Frequency of 5 : ", rating.count(5))
print("Frequency of 1 : ", rating.count(1))
print("Frequency of 10 : ", rating.count(10))

82 4 Built-in Data Structures: Lists

Output

Frequency of 5 : 3
Frequency of 1 : 2
Frequency of 10 : 0

(v) sort() method orders the list elements in either ascending or descending order.

list_object.sort(reverse)

Default value of the reverse parameter is False, which sorts the elements in
ascending order. When reverse is set to True, elements will be sorted in descend-
ing order.

list_object gets modified in the sorted order.

Example

Sorting list elements

num = [10,-4,0,5,100,-39]

print("List before sorting :", num)

num.sort()

print("List after sorting in ascending order: ", num)
num.sort(reverse=True)

print("List after sorting in descending order: ", num)

Output

List before sorting : [10, -4, 0, 5, 100, -39]
List after sorting in ascending order: [-39, -4, 0, 5, 10, 100]
List after sorting in descending order: [100, 10, 5, 0, -4, -39]

(vi) reverse() method reverses the order of list elements.

list_object.reverse()
list_object gets modified with elements in the reverse order.

Example

Reverse list elements

num = [10,-4,0,5,100,-39]

print("List elements are :", num)
num.reverse()

print("List elements after reverse() : ", num)

4.4 Methods on List Objects 83

Output

List elements are : [10, -4, 0, 5, 100, -39]
List elements after reverse() : [-39, 100, 5, 0, -4, 10]

(vii) copy() method creates a copy of the list object that can then be assigned to a
new list object.

list_object.copy()

Example

copy method

num = [10,-4,0,5,100,-39]

print("Elements of num : ", num)

num_copy = num.copy()

print("Elements of num_copy : ", num_copy)

Output

Print output (drag lower right corner to resize)

Elements of num : [10, -4, 0, S, 109, -39)
Elements of num_copy : (10, -4, @, 5, 100, -39)

Frames Objects
Global frame
—_— 1 2 } |
num ¢ 10 -4|0/|5 100 -39
num_copy u\ EE— .
4

10 -4 | 0| 5| 100 -39

The copy() operation is a shallow copy, i.e., if the original list is modified, the
copy will not be affected and vice versa.

Example

Shalow copy

num = [10,-4,0,5,100,-39]

num_copy = num.copy()

num.append(25)

num_copy.append(500)

print("num list after appending 25 to num : ", num)
print("num_copy after appending 500 to num_copy: ", num_copy)

84 4 Built-in Data Structures: Lists

Output

Print output (drag lower right corner to resize)

num list after appending 25 to num : [10, -4, @, 5, 100, -39, 25]
num_copy after appending 500 to nua_copy: (1@, -4, @, 5, 1@@, -39, 500)

Frames Objects
Global frame t
0 2 L
num « >

4.5 Functions on List Objects

(i) Python provides the following summary statistical functions on list objects.

sum(list_object) returns sum of list elements
max(list_object) returns maximum element of the list
min(list_object) returns minimum element of the list

Example

11 =[10,0,-5,37,-20]

print("List elements : ", 11)

print("Sum of list element : ", sum(11))
print("Maximum of list elements : ", max(11))
print("Minimum of list elements : ", min(11))

Output

List elements : [10, 0, -5, 37, -20]
Sum of list element : 22
Maximum of list elements : 37
Minimum of list elements : -20

(ii) Enumerations: The enumeration operation associates each element of the iter-
able object with an integer value. The initial value of the integer can be specified
as an argument.

4.5 Functions on List Objects 85

(iii)

enumerate(iterable_object, start=0)

start: Initial integer value. Default value is 0
Returns an enumerated object which can be used in for loop or convert into a
list, tuple, dictionary, set.

Example: Assign integer value to days of the week-days object.
week_days=["Monday’,’ Tuesday’, Wednesday’,’ Thursday’, Friday’]
enum_week_days = enumerate(week_days,1)
print(’Data type of enumerate object: ’, type(enum_week_days))

following statement use enumerate object in for loop
for ele in enum_week_days :
print(ele, end="")

Output

Data type of enumerate object: <class ’enumerate’ >
(1, ’Monday’) (2, "Tuesday’) (3, "Wednesday’) (4, *Thursday’)
(5, Friday’)

Example: Convert enumerate object to list

spring = ["March’,’ April’, May’]

spring_enum = enumerate(spring, start=3)

following statement converts enumerate object to list
print(list(spring_enum))

Output

[(3, "March’), (4, April’), (5, "May’)]

zip(): This function associates corresponding values of the arguments to create
a single iterable zip object.

zip(iterable_objects)

iterable_objects: The number of iterable_objects can be two or more.
Returns a zip object where each element is a tuple of corresponding elements
of the iterable_objects. It can then be converted to a list, tuple, set, dictionary,
etc.

86

(iv)

)

4 Built-in Data Structures: Lists

Example

performance = [’Outstanding’,’Good’,’ Average’, ’Poor’]
grades =[O’ A’)B’F’]

perf_zip = zip(performance, grades)

print(’Data type of perf_zip : ’, type(perf_zip))
print(list(perf_zip))

Output

Data type of perf_zip : <class ’zip’>
[COutstanding’, ’0O’), CGood’, ’A’), (" Average’, 'B’), CPoor’, 'F’)]

map() applies the specified function on each element of the iterable object.

map(function, iterable_object)
Returns map object, which is iterable. It can then be converted to a list.

Example

Ist=[2,4,6,8]

map_Ist = map(lambda x : x**3, Ist)
print(’Original object : ’, Ist)

print(’ Mapped object : °, list(map_lst))

Output

Original object : [2, 4, 6, 8]
Mapped object : [8, 64, 216, 512]

reduce() function is to reduce the iterable object elements into a single value.
First, the specified function is applied on the first two elements that return a
result. Then the function is repeated on the result of the previous step and the
next element in the sequence. This is repeated until the last element of the list.
The final result is returned.

reduce(function, iterable_object)

reduce() function is available in the functools module of Python. This module
has to be imported before using the function.

Example: Find the product of elements of the list object.

4.6 List Objects in for Loops 87

(vi)

4.6

from functools import reduce

Ist =[1,2,3,4,5]

red_lst = reduce(lambda X, y : x*y , Ist)
print(red_Ist)

Output
120
any() & all()

any() function returns True if any of the elements in the list object is True.
Returns False otherwise.

all() function returns True if every element in the list object is True. Returns
False otherwise

any(list_object)
all(list_object)

Note: Any non-zero numeric value is True and zero is False. A non-empty
object is True and an empty object is False.

Example

Istl =[3.14,”, 0]

if any of list element is True- 3.14 is True
print(any(Ist1))

Ist2 = [3.14, "Python’, 0]

if all of the list element are True- O is False
print(all(Ist2))

Output

True
False

List Objects in for Loops

Each element of a list object can be accessed in sequence, using for loops.

88 4 Built-in Data Structures: Lists

Example

11 =[10,0,-5,37,-20]
Accessing list elements using for loop
print("List elements are :", end="")
for element in 11 :
print(element, end="")

Output

List elements are : 10 0 -5 37 -20

4.7 List Comprehensions

List comprehensions provide a simple, compact, and fast way of generating new list
objects, using an existing iterable object like a list, string, etc. It uses for loops inside
square brackets to generate the elements.

Example 1:

List comprehension : Generating odd numbers from 10 to 20
odds = [element for element in range(10, 20) if element%2==1]
print("Data type of odds: ", type(odds))
print("List elements are : ",odds)

Output
Data type of odds: <class ’list’>
List elements are: [11, 13, 15, 17, 19]

Example 2: Generating list using nested loops

List comprehension using nested loops
I1 =[1i+jforiinrange(1,5) forjin [10,20,30]]
print("List elements: ", 11)

Output
List elements: [11, 21, 31, 12, 22, 32, 13, 23, 33, 14, 24, 34]

Example 3: Generating nested lists

List comprehensions to generate nested lists
nest_lIst = [[i for i in range(1,j+1)] for j in range(1,6)]
print("Nested list using list comprehension: \n ",nest_lIst)

Review Questions 89

Output

Nested list using list comprehension:
(11, {1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]

Exercises

®©

10.

. Write a user-defined function to display the sum of elements of a list using for

loop.

Display the square and cube of integers from 1 to 10 using list comprehension.
Display odd elements of a given list using list comprehension.

Write a function to check if the number is prime. Create a list of prime numbers
up to 50 using the prime function and list comprehension.

. Write a user-defined function to display the number of complex numbers in a

list.

. Given a list of Boolean values, find the number of True and number of False

values.

Given a list of student grades, count the number of students in each grade.
Given a list of integers, remove the negative values.

Given a list of real values, round each value to one decimal place, using list
comprehensions.

Given the marks of students in the class, find the class average. Use reduce()
function.

Review Questions

(1) Which of the following is not true about the lists?

(a) mutable

(b) sequence object

(c) element values can be modified

(d) elements cannot be accessed using the index

(2) Which of the following functions is not for adding elements to lists?

(a) add()
(b) extend()
(c) append()
(d) insert()

90

(3) What is the output of the following code?

4

~

(&)

(6)

(7

data =[10,9,8,7,6,5]
del data[:4]
print(data)

(a) [10,9,8,7,6,5]
(b) [10,9,8,7]
(c) [5]

(d) [6.5]

What is the output of the following code?

data =[’Blue’,Red’, Green’,’ Gray’]
print(max(data))

(a) Blue
(b) Red
(c) Gray
(d) Error reported

What is the output of the following code?

data =[1,3,[1,2],7]
print(data[2])

(a) 3
(b) 1,2
(©) [1,2]
@ 2

What is the output of the following code?

data =[1,3,7]
x =[10,20]
print(data+x)

(@ [1,3,7, 10, 20]
(b) [1,3,7,[10, 20]]
(c) [1,3,7]

(d) [10, 20]

Code to extract last element of the following list is
data =[1,3,[1,2],7]

(a) data[-1]

(b) data[-0]

(c) data[0]
(d) None of these

4 Built-in Data Structures: Lists

Review Questions

(8) What is the output of the following code?

€))

(10)

data=[1,7,-5,0, 25, 6]
data.reverse()
print(data)

(a) [6,25,0,-5,7,1]
(b) [-5,0,1,6,7,25]

(c) [7,1,0,-5, 6, 25]
(d) [25,7,6,1,0,-5]

What is the output of the following code?

data = list(range(1,10,3))
print(data[-2])

(a) 8
(® 9
© 7
(d) 4

What is the output of the following code?

data=[3,2,5,6]
data.insert(2,8)
print(data)

91

Chapter 5

Built-in Data Structure: Tuple

®

Check for
updates

Tuple is one of the built-in data structures in Python. A tuple object is an ordered
sequence of elements of the same or heterogeneous data types. As the elements are
ordered, elements are accessed using the index, which is similar to a list. But tuple
object is immutable, i.e., once the object is created, it cannot be changed by addition,

deletion, or modification operations.

Tuple elements are enclosed in a pair of parentheses and separated by commas.

Comparing a Tuple and a List

Tuple

List

Tuple is a sequence type object,
i.e., elements are accessed using the
index

List is also a sequence type object where
elements are accessed using the index

Elements can be of the same or het-
erogeneous data types. Tuples usu-
ally contain elements of heteroge-
neous data types

Elements can be of the same or heteroge-
neous data types. Lists usually contain ele-
ments of homogeneous data types

Elements are enclosed in pair of
parentheses ()

Elements are enclosed in pair of square
brackets []

Tuple objects are immutable, i.e.,
once created, the object cannot be
modified

List objects are mutable, i.e., elements can
be added, deleted, or modified

Accessing elements is faster due to
its static nature

Accessing elements is comparatively slow

Tuples have limited built-in func-
tions as insertion, deletion, or mod-
ifications are not possible

Lists have many built-in functions to per-
form various operations

© The Author(s) 2024

A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5
https://doi.org/10.1007/978-3-031-52473-8_5

94 5 Built-in Data Structure: Tuple

5.1 Create Tuple Objects

(i) Empty tuple can be created in two ways:

(a) Using empty pair of parentheses.
(b) By creating an object of the tuple class.

Example

Create empty tuple using pair of parenthesis
th=0

print(“Data type of t1 : ”,type(tl))
print(“Elements of t1 : ”, t1)

Create empty tuple using tuple class constructor
t2= tuple()

print(“Data type of t2 : " type(t2))
print(“Elements of t2: ”, t2)

Output

Print output (drag lower right corner to resize)

Data type of t1l : <class 'tuple'>
Elements of t1 : ()
Data type of t2 : <class 'tuple'>

4
Frames Objects

Global frame empty tuple
t1
t2

(ii) Create a non-empty tuple object Tuple objects can have multiple elements
of the same or different data types enclosed in parentheses and separated by
commas. Duplicate elements are permitted.

Example

Create tuple of complex numbers
tuple_complex = (1+2j, 3-8j, 2.5+6j)
print(“Elements are : ”,tuple_complex)

5.1 Create Tuple Objects 95
Output

Print output (drag lower right corner to resize)
Elements are : ((1+2j), (3-8j), (2.5+63))

Frames Objects

Global frame complex instance

tuple_complex

complex instance

complex instance

(2.5+6j)

Tuple elements can be of heterogeneous data types.
Example

Create tuple of heterogeneous data types
tuple_mixed = (10, 3.14, True, 10-4j, “Arjun”)
print(“Tuple elements are : ”, tuple_mixed)

Output
Print output (drag lower nght corner to resize)

Tuple elements are : (10, 3.14, True, (10-4j), ‘Arjun’)

4
Frames Objects
Global frame complex instance
Tuple_mixed L (10-4§)
tuple
0 1 2 31 4
10 | 3.14 | True “Arjun®

96 5 Built-in Data Structure: Tuple

In the above example, the tuple object has constants, a Boolean value, a complex
number, and a string.

(a) When a variable is assigned multiple values separated by commas, the variable
is treated as a tuple.
Example
tl = 8.5, “A Grade”

print(“Data type : ”, type(tl))
print(“Elements are : ”, t1)

Output

Print output (drag lower rnight corner to resize)

Data type : <class 'tuple'>
Elements are : (8.5, 'A Grade')

Frames Objects

Global frame tuple

| 0 1
T3 8.5 “A Grade”

(b) When a variable is assigned a single value followed by a comma, it is also treated
as a tuple.

Example
t= 20,

print(“Data type : ”, type(T2))
print(“Elements are : ”, T2)

Output
Print output (drag lower nght corner to resize)

Data type : <class ‘tuple'>
Elements are : (20,)

Frames Objects
Global frame tuple
T2 B .

20

5.2 Indexing and Slicing 97
Note: Tuple objects are immutable: Once the object is created it cannot be changed
by adding, deleting, or modifying the elements.
Example
tuple_mixed = (10, 3.14, True, 10-4j, “Arjun”)
print(“Elements are : ”, tuple_mixed)
tuple_mixed[2] = 100
Output
Elements are : (10, 3.14, True, (10-4j), ‘Arjun’)

TypeError Traceback (most recent call last)
<ipython-input-1-679ecf3267ca> in <module>()
1 tuple_mixed = (10, 3.14, True, 10-4j, “Arjun”)
2 print(“Elements are : ”, tuple_mixed)
—-> 3 tuple_mixed[2] = 100

TypeError: ‘tuple’ object does not support item assignment

5.2 Indexing and Slicing

A tuple is a sequence data type, i.e., elements are ordered. Hence, the elements can
be accessed using index/subscript. Indexing and slicing of tuple objects are similar
to that of lists objects. The index ranges from O to length-1.

Example

Indexing & Slicing

tuple_mixed = (10, 3.14, True, 10-4j, “Arjun”)
print(“Elements are : ”, tuple_mixed)

print(“First element is : ”, tuple_mixed[0])

print(“Second element from last is : ”, tuple_mixed[-2])
print(“Last three elements are : ”, tuple_mixed[-3:])
print(“Second to fourth elements are : ”, tuple_mixed[1:4])

Output

Elements are : (10, 3.14, True, (10-4j), ‘Arjun’)
First element is : 10

Second element from last is : (10-4j)

Last three elements are : (True, (10-4j), ‘Arjun’)
Second to fourth elements are : (3.14, True, (10-4j))

98

5.3

5 Built-in Data Structure: Tuple

Nested Tuples

Elements of a tuple object can be another tuple object, known as a nested tuple.
Indexing and slicing of nested tuple objects require two indices, the first index for
the outer tuple object and the second index for the inner tuple object.

Example

Nested tuple

tuple_nested = (1,(8.5, “Grade A”), 2, (6,4, “Grade B”))
print(“Elements are : ”, tuple_nested)

Indexing & Slicing

print(“Last element is : ”, tuple_nested[-1])

print(“‘Second element first value is : ”, tuple_nested[1][0])

Output

5.4

Elements are : (1, (8.5, 'Grade A'), 2, (6, 4, 'Grade B'))

Last element is : (6, 4, 'Grade B')
Second element first value is : 8.5 -

Frames Objects

Global frame tuple

tuple_nested /4 .3 5 I"Gr-ade A"

6 | 4 | "Grade B"

tuple

Operations on Tuples

Following operations can be applied on tuple objects.

(i) Concatenation: Binary operator +, creates a new tuple by concatenating the

elements of the right operand tuple to the elements of the left operand tuple.
Neither of the operand tuples gets modified (tuples are immutable).

5.4 Operations on Tuples 99

Example

tl = (5,10,15,20,25)

t2 = (50,55)

t3 =t1+t2

print(‘Concatenation of tuples : ’, t3)

Qutput

»J

Elements of t1 (0, 1)
Elements of t2 (0, 1, 0, 1, 0, 1)
Elements of t3 (0, 1, 0, 1, 0, 1, 0, 1, @, 1)

Frames Objects
Global frame
- o
tz .""--._ -y

t3 \
=y - 4
01110]11%2]190]1

\

(i) Multiplication: Binary operator, *, returns a new tuple by repeating the operand
tuple elements by specified number of times. Number of repetitions can be
specified either as left or as right operand to *.

Example

Create tuples using repetitions

tl =(0,1)
t2=tl *3
t3=5*t¢l

print(“Elements of t1 ”, t1)
print(“Elements of t2 ”, t2)
print(“Elements of t3 7, t3)

100 5 Built-in Data Structure: Tuple

Output

Elements of t1 (0, 1)
Elemeants of t2 (0, 1, @, 1, 0, 1)
Elements of t3 (0, 1, 0, 1,90, 1,90, 1,0,1)

Frames Objects
Global frame
tilee™ 1ol
2
t3 \ :
4

(iii) Membership operator: The in operator checks if an element is a member of
the tuple. It returns a Boolean value.
Example

pandavas = (‘Dharmaraj’, ‘Bheem’, ‘Arjun’, ‘Nakul’, ‘Sahadev’)
print(‘Nakul’ in pandavas)
print(‘Karna’ in pandavas)

QOutput

True
False

5.5 Functions on Tuples

Tuple objects being immutable, limited number of library functions are provided for
the commonly used operations.

(i) len(tuple_object)
returns a number of elements in the tuple_object.

5.5 Functions on Tuples 101

(i) sum(tuple_object)
returns sum of elements of the tuple_object. It requires the tuple elements to
be of numeric data types (int, float, complex).

(i) min(tuple_object)
returns the minimum element of the fuple_object. Tuple elements must be
integer, float, string data types.

(iv) max(tuple_object)
returns maximum elements of the fuple_object. Tuple elements must be integer,
float, string data types.

Example

Functions on Tuples

tuple_int = (10, 0,-5,29,56,-100)

tuple_num = (3.14, 0, 50, -10.5)

tuple_complex = (1+2j, 3-8j, 2.5+6j)

tuple_strings = (“Bheem”, “Nakul”, “Arjun”)

print(“Length of tuple_strings : ”, len(tuple_strings))
print(“Minimum element in tuple_int : ”, min(tuple_int))
print(“Maximum element in tuple_num : ”’, max(tuple_num))
print(“Maximum element in tuple_strings:”, max(tuple_strings))
print(“Sum of tuple_num elements : ”*, sum(tuple_num))
print(“Sum of tuple_complex elements :”, sum(tuple_complex))

Output

Length of tuple_strings : 3

Minimum element in tuple_int : -100
Maximum element in tuple_num : 50
Maximum element in tuple_strings: Nakul
Sum of tuple_num elements : 42.64

Sum of tuple_complex elements : (6.5+0j)

(v) Sorting: Elements of a tuple object can be sorted in ascending or
descending order.

sorted(tuple_object, reverse)

reverse argument value can be True or False. The default value is False. If set to True,
the elements are sorted in descending order.

tuple_object passed as an argument does not get modified. The function returns the
sorted tuple which can then be assigned to another tuple object.

102 5 Built-in Data Structure: Tuple

Example

tuple_num = (3.14, 0, 50, -10.5)

print(“Tuple elements : ”, tuple_num)

print(“Elements in sorted order : ”, sorted(tuple_num))
print(“Elements in descending sorted order : ”,
sorted(tuple_num, reverse=True))

Original list does not change

print(“Tuple elements after sorting : ”, tuple_num)

Output

Tuple elements : (3.14, @, 50, -10.5)
Elements in sorted order : [-10.5, 9, 3.18, 5@)
Elements in descending sorted order : [5@, 3.14, @, -10.5)

Tuple elements after sorting : (3.14, @, 50, -10.5)
P
Frames Objects
Global frame
tuplenum ¢ | 344 0 so | -10.8

To have an argument tuple_object in sorted order, assign it to the same variable after
applying the function.

Example

tuple_num = sorted(tuple_num)

print(“Elements after sorting and reassigning : ”, tuple_num)
Output

Elements after sorting and reassigning : [-10.5, 0, 3.14, 50]

Note: Comparison operations are not supported for complex and
Boolean values. Hence, tuple objects having complex or Boolean values cannot
be sorted.

(vi) Reversing order of tuple elements: The order of elements can be reversed
using the reversed() function.

reversed(tuple_object)

5.5 Functions on Tuples 103

Returns a reversed object, which can then be converted to a tuple.
tuple_object does not get modified (fuples are immutable).

Example

Reverse tuple elements

tuple_int = (10, 0,-5,29,56,-100)

print(“Tuple elements : ”, tuple_int)

tuple_reverse = reversed(tuple_int)

print(“After reversed() function : ”, tuple_reverse)
print(“convert reversed object to tuple: ”, tuple(tuple_reverse))
original tuple does not change

print(“Elements of original tuple -> tuple_int :”, tuple_int)

QOutput

Tuple elements : (10, 0, -5, 29, 56, -100)

After reversed() function : <reversed object at 0x7f0373554690>
convert reversed object to tuple : (-100, 56, 29, -5, 0, 10)
Elements of original tuple -> tuple_int : (10, 0, -5, 29, 56, -100)

(vii) any()

any(tuple_object)

The function returns true if any one of its elements is true. It is false otherwise. Any
non-empty object is true. Empty objects like the empty string, O numeric value are
false.

Example

tl = (10, 0, False, “Hello”)

t2 = (0, False,)

print(“Any one of the element of t1 is True : 7, any(tl))
print(“Any one of the element of t2 is True : ”, any(t2))

104 5 Built-in Data Structure: Tuple

Priett cutput (drag lower right corner ¢

one of the element of tl is True : True
one the element of t2 is True : False

Frames Objects

Global frame

——.__'b 1 b
UL 10 | O | False “Hello"

(viii) all()

all(ruple_object)

Returns true if all the tuple elements are true. It is false otherwise.
Example

tl = (10, 3-2j, True, “Hello”)

t2 = (0, 3-2j, True, “Hello”) # First element O is False
print(“Whether all the elements of t1 are True : 7, all(t1))
print(“Whether all the elements of t2 are True : 7, all(t2))

QOutput

Whether all the elements of t1 are True : True
Whether all the elements of t2 are True : False

5.6 Methods on Tuple Objects 105

5.6 Methods on Tuple Objects

Tuple being an immutable object, very few methods are applicable.

(i) count()

tuple_object.count(element)

Returns the number of times the element occurred in the fuple_object. Return
zero if the element is not in the tuple.

Example

rating = (4,3,5,2,1,4,5,1,2,5)

print(“Frequency of 5 rating : ”, rating.count(5))
print(“Frequency of 1 rating : ”, rating.count(1))
print(“Frequency of 0 rating : ”, rating.count(0))

Output

Frequency of 5 rating : 3
Frequency of 1 rating : 2
Frequency of 0 rating : 0

(ii) index(): Finds the index of the first occurrence of the specified element in the
given range of indices of a tuple object.

tuple_object.index(element, start, end)

element: The element to be searched for

start: Index from where to start the search. It is optional and the default value
is 0.

end: Index till where the search is to be performed. end value not inclusive. It
is optional and the default value is the length of the tuple. If end is specified, start
should also be specified.

Returns index of the first occurrence of the element. If not found, it throws an
error.

106 5 Built-in Data Structure: Tuple

Example

rating = (4,3,5,2,1,4,5,1,2,5)

print(“First occurrence of 5 : , rating.index(5))

print(“First occurrence of 4 from index 2 : ”, rating.index(4,2))

print(“First occurrence of 2 between the index 0 and 3 : 7, rating.index(2, 0,3))

Qutput

First occurrence of 5 : 2
First occurrence of 4 from index 2 : 5

ValueError Traceback (most recent call last)
<ipython-input-17-92452159b955> in <module> ()

2 print(“First occurrence of 5 : ”, rating.index(5))

3 print(“First occurrence of 4 from index 2 : ”,
rating.index(4,2))
—-> 4 print(“First occurrence of 2 between the index O and 3 : 7,
rating.index(2, 0,3))

ValueError: tuple.index(x): x not in tuple

5.7 Type Conversions

Iterable objects like lists, strings, can be converted into tuple objects using tuple()
function.

(i) List to Tuple: Each element of the list becomes an element of the tuple in the
same order.

tuple(list_object)

Example

List to Tuple

rating_list = [4,3,5,2,1,4,5,1,2,5]

rating_tuple = tuple(rating_list)

print(“Object Data types are : ”, type(rating_list),
type(rating_tuple))

print(rating_tuple)

5.7 Type Conversions 107

Output

Object Data types are : <class ‘list’> <class “tuple™>
(4, 9,5, 2,1,4,5,1,2,8)

Frames Objects

Global frame lest
atog it [|4 |3|s|2|alels|al2]s

rating_tuple -\ -

413151 2]1]4]|85]|1]2)|°§

(i) Tuple to List: Each element of the tuple becomes an element of the list in the
same order.

list(tuple_object)

Example

Tuple to List

grades_tuple = (9.4, 6.7, 8, 5.6, 7.2)

grades_list = list(grades_tuple)

print(“Object Data types are : ”, type(grades_tuple),
type(grades_list))

print(“Elements of grades_list : ”, grades_list)

Output

Object Data types are : <class ‘tuple’> <class ‘list’>
Elements of grades_list : [9.4, 6.7, 8, 5.6, 7.2]

(iii) String to Tuple: Each character of the string becomes an element of the tuple
in the same sequence.

tuple(string_object)

108 5 Built-in Data Structure: Tuple

Example
String to tuple
s1 = “Hello World”
tl = tuple(sl)
print(“Object Data types are : ”, type(s1), type(tl))
print(“Elements of Tuple : ”, t1)

Output

Object Data types are : <class “str'> <class “tuple’>
Elements of Tuple : ('W', 'e¢*, °1°, °*1°, "0', * *, "W°, "0', °r*, 1%, '¢°)

Frames Objects
Global frame
» - »
s1 “Hello World . e P e A A T e R R O S TR P
t1 L

(iv) Tuple to String: Elements of the tuple can be concatenated using join() method
to form a string.

“”.join(tuple_object)
Example

Tuple to String

tl =P, y’, ‘t’, ‘h’, ‘0’, ‘n’)

t2= (“Hello”, “Arjun”, “Awesome!”)

s1 = join(tl) # elements of the tuple are joined without space
s2=“”_join(t2) # elements of the tuple are joined with space
print(“Tuple t1 converted to string : ”,s1)

print(“Tuple t2 converted to string : ”,s2)

Output

Tuple t1 converted to string : Python
Tuple t2 converted to string : Hello Arjun Awesome!

(v) Tuple to Boolean

bool(tuple_object)

The function returns true if the tuple_object is non-empty and false otherwise.

5.8 Tterating Tuple Objects

Example

Tuple into boolean

th=0

t2=(10,3.14,0)

Empty object is False

bl =Dbool(tl)

print(“Value of bl : ”,bl)

Non-empty object is True
b2 = bool(t2)

print(“Value of b2 : ”,b2)

Output

Value of bl :
Value of b2 :

Frames

Global frame
tl
2
bl False
b2 True

>

109

wer tight e 1o resine)

False

True
F
Objects
— > ity Tanle
tupie
— - ;
10 | 3.14 | O

Note: Tuple objects can also be converted into other objects like sets that will be

discussed in subsequent chapters.

5.8 Iterating Tuple Objects

Each element of the tuple object can be accessed in for loops using in operator.

Example

Using in operator

tl = (10, 3-2j, True, “Hello™)

for element in t1:
print(type(element))

110 5 Built-in Data Structure: Tuple

Output

<class ‘int’ >
<class ‘complex’ >
<class ‘bool’ >
<class ‘str’>

5.9 Unpacking

Tuple elements can be assigned to individual variables by unpacking the tuple object.
This is done by assigning tuple objects to multiple variables. Number of variables
on the left-hand side of the assignment operator should be same as the number of
elements in the tuple.

Example
unpacking tuple elements
t1= (8.5, ‘A%)
cgp, grade =tl

print(“CGP : 7, cgp)
print(“Grade : ”, grade)

Output

CGP:8.5
Grade : A

Example
tl= (8.5, ‘A’, ‘Arjun’)
cgp, grade =tl
print(“CGP : ”, cgp)
print(“Grade : ”, grade)

Qutput

ValueError Traceback (most recent call last)
<ipython-input-3-01a4010845a9> in <module>()
1t1= (8.5, ‘A’, ‘Arjun’)
—->2cgp, grade = tl
3 print(“CGP : ”, cgp)
4 print(“Grade : ”, grade)

ValueError: too many values to unpack (expected 2)

Note: In the above example the tuple object has three elements but only two variables
are provided in unpacking.

5.11 Zipping 111

5.10 Enumerations

Enumeration operation on tuple objects is the same as on the list objects. It creates
a tuple of (element, index) pairs for each element of the tuple. Index starts from
start_index and is incremented for each subsequent element. It returns an enumerated
object which can then be converted to a tuple using type conversions.

enumerate(tuple_object, start_index)
start_index is optional and default value is 0.
Example

Enumerations

days=(‘Tuesday’, “‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)
t = enumerate(days,2)

print(“Data type of t : 7, type(t))

print(“After Converting Enumerated to tuple : \n”, tuple(t))

Output

Data type of t : < class ‘enumerate’ >

After Converting Enumerated to tuple :

((2, “Tuesday’), (3, ‘Wednesday’), (4, ‘Thursday’), (5, ‘Friday’), (6,
‘Saturday’))

5.11 Zipping

zip(tuple_objectl, tuple_object?2)

Creates a new tuple by pairing the corresponding elements of the argument tuple
objects. It returns a zip object which can then be converted to a tuple.

Example

Zip two tuples

cgp=(5,6,7,8,9)

grades=(‘D’, ‘C’, ‘B’, ‘A’, ‘O’)

result= zip(cgp,grades)

print(“Data type of Result : ”, type(result))

print(“After converting Zip object to tuple : ”,tuple(result))

112 5 Built-in Data Structure: Tuple

Output
Data type of Result : «<class "zip*>
After converting Zip object to tuple : ((5, "0'), (6, °C'), (7, "8'), (8, 'A"), (9, "0"))
4
Frames Objects
Global frame
© il o :
o s|le[7]|8]|9
grades *—__

result o \\\

. “,

'\\ o= =c= =g -a" 0"

Exercises

.°°

10.

Create a tuple object by taking input from the user.

Accept the name of the weekday from the user and display the number of the
day in the week. Exit when an invalid day name is given as input. Assume 0 for
Sunday.

Given two tuple objects, create a new tuple object by adding the corresponding
values of the input tuples.

Generate a new tuple by removing duplicate elements of the input tuple.

Take input containing CGP of students, separated by space. Write a user-defined
function to count the number of students who got more than 7 CGP. Use tuple
object.

Take input containing grades of students, separated by space. Display count of
each grade.

Take four subject marks of each of N students and create a tuple containing the
total marks of each student.

Given a tuple object, check if it is a nested tuple.

Write a function to check if all the elements of the input tuple are of the same
data type.

Display the data types of the elements of a tuple.

Review Questions 113

Review Questions

(1) Which of the following is not a tuple?

(a) (3.14,)
(b) (5,3.14)
(c) (10, [L,2])
(d) 3.14

(2) What is the output of the following code?

t=(4,5,6,7,8)
print(t[2:-1])

(a) (6,7)
(b) (4,5)
() (7,8)

(d) Generates error

(3) What is the output of the following code?

t = (3, ‘Python’, (1,2,4), True)
print(len(t))

(a) 7
(b) 4
©) 5

(d) Generates error

(4) What is the output of the following code?

t = (3, ‘Python’, (1,2,4), True)
print(t[1][-1])

(a) True
(b) n

(©) (1,24
d 4

(5) What is the output of the following code?
print(list(tuple(‘Hello’)))
(a) (‘H?, 4e77 ‘1,’ ‘1,’ 407)
(b) [6H” ‘e” 617’ ‘17’ 605]
(c) [‘Hello’]
(d) (‘Hello’)

114 5 Built-in Data Structure: Tuple

(6) What is the output of the following code?

t = tuple(‘Welcome Python’)
print(t.count(‘0’))

(a) 2
) 0
(©) 1

(d) Generates error

(7) What is the output of the following code?
sorted(tuple(‘python’))

(a) [*hnopty’]
(b) (‘h’, 4n” ‘0,, ‘p7, ‘t’, gya)
(¢) [‘hnopty’]
(d) [‘h7’ 4n7’ 40” Gp’, ‘t,, Ay’]
(8) What is the output of the following code?

a,b=(2, (5,10))
print(b * a)

(a) (5, 10, 5, 10)
(b) 30

©) (5,5, 10, 10)
(d) (15,15)

(9) What is the output of the following code?

t = (3, ‘Python’, (1,2,4), True)
print(max(t))

(a) 4

(b) True

©y

(d) Error is generated

(10) What is the output of the following code?

t=(10, -5, 3.14, True)
print(sum(t))

(a) 8.14

(b) 9.14

() 5

(d) Error is generated

Chapter 6 ®)
Built-in Data Structure: Sets Geda

Set is a Python built-in data structure that is similar to mathematical sets. A set is a
collection of items and the items are unordered. The items are also called as elements.
Elements in the set are unique, meaning that sets have no duplicate elements. Ele-
ments may be of different data types, but must be of immutable types like constant,
string, tuple, etc. Set objects are generally used when duplicates are to be removed
from lists and tuples. Similar to lists, tuples, strings, etc., set objects are also iterable
with a for loop. Membership testing of an element in the set object is better optimized
compared to list objects.
The set elements are enclosed in curly braces { } and separated by commas.

6.1 Create Set Objects

(i) Empty set is created using the constructor of the set class.

Example

Create an empty set

sl = set()

print(“Data type of s1 : ”, type(s1))
print(“Elements of s1 : ”,s1)

© The Author(s) 2024 115
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6
https://doi.org/10.1007/978-3-031-52473-8_6

116 6 Built-in Data Structure: Sets

Output
Data type of 31 : «<class “set’>
Elements of 31 : set()
-
Frames Objects
Global frame >
s1

Unlike other data structures like lists, tuples, an empty set cannot be created using
the empty brackets { }, since the same brackets are also used for dictionary objects.

Example

#empty { } creates an empty Dictionary object but not set object
s2={}

print(“Data type of s2 : 7, type(s2))

print(“Elements of s2 : ,s2)

Output

Data type of s2 : <class ‘dict’>
Elements of s2 : { }

(ii) Create a non-empty set by enclosing the elements in { }. If any duplicate ele-
ments are specified, they automatically get removed.

Example

s1={2,5,3,70,6,0,1,2,6,3} # 10 elements
print(type(s1))

Duplicates will be removed

print(“Number of elements in the set : 7, len(s1))
print(“Set elements are : ”,s1) # duplicates are removed

6.2 Properties of Sets 117

Output
Pr t out 14 .".!I! We r :.l' or
<class 'set'>
Number of elements in the set : 7
4
Frames Objects

Global frame

sl | — 01 2
N
3 5 70

6.2 Properties of Sets

(1) No duplicate elements: Set does not contain duplicate elements. If specified,
they are automatically removed. In the above example, elements 2, 3, 6 are
repeated twice which are removed. Hence, the number of elements is 7 instead
of 10.

(i) Set elements can only be immutable objects like constants, strings, tuples but
not mutable objects like lists, sets, dictionaries.

Example

set elements can not be mutable objects
s2 = {3.14, “Apple”, True, [“A Grade”, “B Grade™] }
print(“Elements of set : ”, s2)

Output

TypeError ~ Traceback (most recent call last)
< ipython-input-3-58782a8688a9 > in < module >()

1 # Sets can not have mutable elements like Lists, Dictionaries, Sets
—-> 252 ={3.14, “Apple”, True, [“A Grade”, “B Grade™] }

3 print(“Elements of set : ”, s2)

TypeError: unhashable type: ‘list’

In the above example, an error is generated as one of the elements is a list object
which is mutable.

(iii) Set elements are unordered: There is no order among the set elements. Hence,
elements cannot be accessed using an index.

118 6 Built-in Data Structure: Sets
(iv) A single set object can have a combination of different immutable objects.

Example

set elements are of mixed data types
sl = { 3.14, “Apple”, True, 10+5j, (“A Grade”, “B Grade”) }
print(“Elements of set : ”, s1)

Output
Elements of set : {(True, 3.14, "Apple’, ("A Grade', "B Grade'), (10+53))
r
Frames Objects
Global frame
sl '\\ A =2 Grade™ | "B Grade"
\
A (10+5))

N True 3.14 “Apple” o

L]

In the above example,

e The set object has different data types like a constant, Boolean value, string, tuple,
and a complex number.

e The order in which elements are specified in the assignment is different from what
is stored in the object, as the set elements are unordered.

6.3 Membership Testing

As the set elements are unordered, the elements of a set cannot be accessed using
the index. But elements can be accessed using in operator.

Example

round off the grades

grades = {7.5, 8.0, 6.4, 9.6, 5.3}

for element in grades:
print(round(element,0), end=""")

6.4 Functions on Set Objects 119

Output
5.06.08.08.010.0

in operator checks, if an element is in the set. It returns True if the element is in the
set and False otherwise.

element in set_object
Example

Membership testing results in True or False

colors = { “Red”, “Green”, “Blue”, “Yellow”}

x = “Green”

print(“Whether Black is member of the set : ’, “Black” in colors)
print(“Whether Green is member of the set : , x in colors)

Qutput

Whether Black is member of the set : False
Whether Green is member of the set : True

6.4 Functions on Set Objects

Python provides number of predefined functions on set objects. Following are the
aggregation functions on sets.

(i) len(ser_object) returns number of elements in the set.
(i) max(ser_object) returns maximum elements in the set.
(iii) min(ser_object) returns minimum elements in the set.
(iv) sum(set_object) returns sum of all the elements in the set.

Example

grades = {7.5, 8.0, 6.4,9.6,5.3,7.5}

print(‘Data type of grades object : °, type(grades))
print(“‘Set elements are : ”,grades)

print(‘Number of elements in the set : ’, len(grades))
print(‘Maximum element in the set : °, max(grades))
print(‘Minimum element in the set : °, min(grades))
print(‘Sum of set elements : °, sum(grades))

120 6 Built-in Data Structure: Sets

Output

Data type of grades object : <class ‘set’ >
Set elements are: {5.3, 6.4, 7.5, 8.0, 9.6}
Number of elements in the set : 5
Maximum element in the set : 9.6
Minimum element in the set : 5.3

Sum of set elements : 36.8

Note: sum() function can be applied to a set having only numeric elements. min(),
max() functions can be applied on sets with only numeric elements or sets with only
string elements.

6.5 Methods on Set Objects

Set objects are mutable. New elements can be added or existing elements can be
deleted but the value of an element cannot be modified. Following are the methods
to add elements or delete elements from the set.

(i) Addition: Add elements to the set.

(a) add() method adds the specified element to the set object.
set_object.add(element)

element to be added
The method returns the modified set_object.

Example

add an element

odd_num = { 21,15,7, 19}

print(“Set elements are : ”, odd_num)
odd_num.add(11)

odd_num.add(50)

print(“Set elements after adding 11,50: ”, odd_num)

Output

Set elements are : {7, 15, 19, 21}
Set elements after adding 11,50: {7, 11, 15, 19, 50, 21}

(b) update() method adds multiple elements to the set object

set_object.update(object)

object can be a list, tuple, set, dictionary, string.
Returns updated set_object.

6.5 Methods on Set Objects 121

Example

add multiple elements to the set

odd_num = { 21,15}

print(“Set elements are : 7, odd_num)
odd_num.update({15,23}) # update using set object
print(“Set elements after updating with set object : ”’, odd_num)
odd_num.update([27,29]) # update using list object
print(“Set elements after updating with list object : ”, odd_num)

Output

Set elements are : {21, 15}
Set elements after updating with set object : {23, 21, 15}
Set elements after updating with list object : {15, 21, 23, 27, 29}

(ii) Deletion: Delete elements from the set.

(a) remove() method deletes the specified element from the set.

set_object.remove(element)

Returns the modified set_object.
Raises an error if the element does not exist in the set.

Example

remove method on sets

odd_num = { 21,15,9,7,19}

print(“Set elements are : ”,0dd_num)
odd_num.remove(21)

print(“Set elements after removing 21 : ”, odd_num)
odd_num.remove(50) # error if element is not in the set

Output

Set elements are : {7, 9, 15, 19, 21}
Set elements after removing 21 : {7, 9, 15, 19}

KeyError Traceback (most recent call last)
<ipython-input-7-4b474c41d6f9> in <module>()

4 Odd_num.remove(21)

5 print(“Set elements after removing 21 : ”, Odd_num)
—-> 6 Odd_num.remove(50)

7
KeyError: 50

122 6 Built-in Data Structure: Sets

(b) discard() method is similar to the remove() method which deletes the specified
element. But the difference is, no error is generated if the element does not exist
in the set.

set_object.discard(element)

Returns the modified set_object.
Example

discard method on sets

odd_num = { 21, 15,9, 7, 19}

print(“Set elements are : ”,0dd_num)
odd_num.discard(21)

print(“Set elements after removing 21 : ”, odd_num)
odd_num.discard(50) # generates no error
print(“Set elements after discard 50 : ,odd_num)

Output

Set elements are : {7, 9, 15,19, 21}
Set elements after removing 21 : {7, 9, 15, 19}
Set elements after discard 50 : {7, 9, 15, 19}

(c) pop() method deletes an arbitrary element from the set. It returns the deleted
element and the set_object is also updated. It raises an error if the set is empty.

set_object.pop()

Example

pop method on sets

odd_num = { 15, 21, 19}

print(“Set elements are : ”,0dd_num)
print(“Deleted element is : ”, odd_num.pop())
print(“Set elements after pop : ’, odd_num)
print(“Deleted element is : ’, odd_num.pop())
print(“Deleted element is : , odd_num.pop())
print(“‘Set elements after pop : 7, odd_num)
odd_num.pop() # error if empty set

Output

Set elements are : {19, 21, 15}
Deleted element is : 19

Set elements after pop : {21, 15}
Deleted element is : 21

6.5 Methods on Set Objects 123

Deleted element is : 15
Set elements after pop : set()

KeyError Traceback (most recent call last)
<ipython-input-2-96b802048700> in <module>()
7 print(“Deleted element is : , odd_num.pop())
8 print(“Set elements after pop : ”, odd_num)
—-> 9 odd_num.pop() # error if empty set

KeyError: ‘pop from an empty set’

(d) To delete multiple elements from the set.

set_object.difference_update(elements_to_be_deleted)

Returns the modified set_object.
No error is generated if elements do not exist in the set.

Example

Delete multiple values

Odd_num = {21,15,17, 13,9, 7, 19}

print(“Set elements are : ”, Odd_num)
0Odd_num.difference_update({13, 21})

print(“Set elements after deleting 13 & 21 : ”, Odd_num)

Output

Set elements are : {7, 9, 13, 15,17, 19, 21}
Set elements after deleting 13 & 21 : {7, 9, 15, 17, 19}

(e) clear() method deletes all elements of the set, but the set object exists.

set_object.clear()

Example

clear method on sets

odd_num = {21, 15, 17, 13,9, 7, 19}

print(“Set elements are : ”,0dd_num)

odd_num.clear() # all elements are deleted
print(“Set elements after clear operation : ”, odd_num)

Output

Set elements are : {7, 9, 13, 15,17, 19, 21}
Set elements after clear operation : set()

Note: There is no way of changing the value of a particular element, i.e., the value
of an element cannot be modified.

124 6 Built-in Data Structure: Sets
6.6 Operations on Sets

Set operations like union, intersection, difference, etc. can be applied to set objects
using predefined methods or using the operators. These operations are similar to

mathematical set operations.
Consider the below set objects for the set operations:

left op=1{3,5,7,9, 12, 15}
right_op= {21, 15, 12, 18}

(1) Union operation returns a new set object that contains elements of both the
operand sets. This can be done using the union() method or the | (pipe symbol)
operator. The operand sets do not get modified after the operation.

Example

Set Union

print(“Union operation using union() method : ”, left_op.union(right_op))
print(“Union operation using | operator : , left_op Iright_op)
print(“Elements of left_op after the operation : ”, left_op)
print(“Elements of right_op after the operation : ”, right_op)

QOutput

Union operation using union() method : {3, 5, 7,9, 12, 15, 18, 21}
Union operation using | operator : {3, 5,7, 9, 12, 15, 18, 21}
Elements of left_op after the operation : {3, 5, 7,9, 12, 15}
Elements of right_op after the operation : {18, 12, 21, 15}

(i1) Intersection operation returns a new set object containing elements that are
common to both the operand sets. This can be done using the intersection()
method or & operator. The operands do not get modified after the operation.

Example

Set intersection

print(“Using intersection()

method:” left_op.intersection(right_op))

print(“Using & operator : 7 left_op & right_op)
print(“Elements of left_op after the operation: , left_op)
print(“Elements of right_op after the operation: ”, right_op)

Output

Using intersection() method: {12, 15}

Using & operator : {12, 15}

Elements of left_op after the operation: {3, 5,7, 9, 12, 15}
Elements of right_op after the operation: {18, 12, 21, 15}

6.6 Operations on Sets 125

(iii) intersection_update() method updates the left operand set with the elements
that are common to both the operand sets. Return value is None.

Example

Set intersection update

print(“Intersection_updatereturns:”,
left_op.intersection_update(right_op))

Left operand set gets modified

print(“Elements of left_op :”,left_op)

Right operand set not modified

print(“Elements of right_op :”,right_op)

Output

Intersection_update returns: None
Elements of left_op : {12, 15}
Elements of right_op : {18, 12, 21, 15}

(iv) Difference operation returns a new set object containing the elements that are
in the left operand set but not in the right operand set. Neither of the operand
sets is modified.

This can be done using difference() method or — operator.
Example

Set difference

left_ op=1{3,5,7,9, 12, 15}

right_op ={ 21, 15, 12, 18}

print(“Using difference() method : ”,
left_op.difference(right_op))

print(“Using - operator :”,left_op - right_op)
operand sets are not modified
print(“Elements of left_op : 7, left_op)
print(“Elements of right_op : ”, right_op)

Output

Using difference() method : {9, 3, 5, 7}

Using - operator : {9, 3, 5, 7}

Elements of left_op: {3,5,7,9, 12, 15}
Elements of right_op : {18, 12, 21, 15}

(v) difference_update() method updates the left operand set with the elements that
are in the left operand but not in the right operand set. Return value is None.

126 6 Built-in Data Structure: Sets

Example

Set difference update

left op=1{3,5,7,9,12, 15}

right_op ={ 21, 15, 12, 18}
print(“Using difference_update(): ”,
left_op.difference_update(right_op))

Left operand set modified
print(“Elements of left_op : 7, left_op)

Right operand set not modified
print(“Elements of right_op : ”, right_op)

Output

Using difference_update(): None
Elements of left_op : {3,5,7,9}
Elements of right_op : {18, 12, 21, 15}

(vi) symmetric_difference() returns a new set with elements that are in either the
left operand set or right operand set but not both. Neither of the operand sets is
modified.

Example

Symmetric difference

left op={1,3,5,7,9, 12, 15}
right_op ={ 21, 15, 12, 18}
print(“Symmetric Difference : ”,
left_op.symmetric_difference(right_op))
Left operand set not modified
print(“Elements of left_op :”,left_op)

Right operand set not modified
print(“Elements of right_op :”, right_op)

Output

Symmetric Difference : {1, 3,5, 7,9, 18, 21}
Elements of left_op: {1,3,5,7,9, 12, 15}
Elements of right_op : {18, 12, 21, 15}

(vii) symmetric_difference_update() The left operand set is updated with the ele-
ments that are either in the left operand set or in the right operand set but not
in both. Return value is None.

Example

Symmetric difference update
left op={1,3,5,7,9,12, 15}
right op = { 21, 15, 12, 18}

6.6 Operations on Sets 127

print(‘Return value :

> left_op.symmetric_difference_update(right_op))
Left operand set is modified

print(“Elements of left_op :”, left_op)

Right operand set is not modified
print(“Elements of right_op :”, right_op)

Output

Return value : None
Elements of left_op : {1, 3,5,7,9, 18, 21}
Elements of right_op : {18, 12, 21, 15}

In the above example, the common elements 12 and 15 are deleted from the left
operand, but the right operand is unchanged.

(viii) copy() method creates a shallow copy of the set object. Original and copy
objects are unaffected by adding or deleting elements to either of the objects.

Example

colors = { “Red”, “Green”, “Blue”, “Yellow”’}
colors_new = colors.copy() # make copy of colors
colors.add(‘Pink’)

colors_new.remove(‘Green’)

print(‘colors :’,colors)

print(‘colors_new :’,colors_new)

QOutput

colors : {‘Pink’, ‘Yellow’, ‘Blue’, ‘Red’, ‘Green’}
colors_new : { ‘Red’, “Yellow’, ‘Blue’ }

(ix) Set comparisons: Relational operators check, if the sets are the same or one is
a subset or a superset of the other. The operation results in True or False.

operandl relational_operator operand2

== whether both the operand sets have the same elements

!= whether both the operand sets do not have the same elements
< whether operandl is a proper subset of operand?2

<= whether operandl is a subset of operand2

> whether operand] is a proper superset of operand2

>= whether operand] is a superset of operand?2

128 6 Built-in Data Structure: Sets

Example

Set comparisons using relational operators

colors = { “Red”, “Green”, “Blue”, “Yellow”}

rgb = {“Blue’’, “Red”, “Green”}

print(“rgb is proper subset of colors: ”, rgb<colors)
print(“rgb is subset of colors: ”, rgb<=colors)
print(“colors is proper superset of rgb: ”, colors>rgb)
print(“colors is superset of rgb: ”’, colors>=rgb)
print(“whether both the sets are same: ”, rgb==colors)
print(“whether both the sets are not same: ”, rgb!=colors)

Output

rgb is proper subset of colors: True

rgb is subset of colors: True

colors is proper superset of rgb: True
colors is superset of rgb: True

whether both the sets are same: False
whether both the sets are not same: True

(x) subset and superset: Python provides issubset() and issuperset()
methods to check if one set is a subset or superset of the other set.

(a) set_objectl.issubset(set_object2)
Returns True if all the elements of set_object! are present in
set_object2 and False otherwise.
This operation is the same as the relational operator <=.
(b) set_objectl.issuperset(set_object2)
Returns True if all the -elements of sef_object2 are present in
set_objectl and False otherwise.
This operation is the same as the relational operator >=.

Example

Subset & superset

colors = { “Red”, “Green”, “Blue”, “Yellow”}

rgb = {“Blue”, “Red”, “Green”}

print(“Check for subset using <= operator : ”’, rgb<=colors)
print(“Check for subset using issubset() method :

” rgb.issubset(colors))

print(“‘Check for superset using >= operator: ”,
colors.issuperset(rgb))

print(“Check for superset using issuperset() method: ”,
colors>=rgb)

6.7 Type Conversions

Output

Check for subset using <= operator : True

Check for subset using issubset() method : True
Check for superset using >= operator: True

Check for superset using issuperset() method: True

(xi) isdisjoint() method checks if two sets have no common elements.

Example
op1={10,20,30}

0p2={40,50,60}
0p3={20,10,30}

print(“Are the sets opl & op2 disjoint : ”, op1.isdisjoint(op2))
print(“Are the sets opl & op3 disjoint : , opl.isdisjoint(op3))

Output

Are the sets opl & op2 disjoint : True
Are the sets opl & op3 disjoint : False

6.7 Type Conversions

129

Iterable objects like lists, tuples, dictionaries, and strings can be converted into a set

object. Duplicate elements are removed in the resultant set.
Example

Type conversions

Ist =[2,5,3,70,6,0,1,2,6,3]

stl = set(Ist)

print(“List to Set : ”, st1) # Duplicates are removed
str]l = “Hello World”

st2 = set(strl)

print(“String to Set : 7, st2) # Duplicates are removed

tp=(8.5,7.4,4.3,6.2,4.3,8.5)

st3 = set(tp)

print(“Tuple to Set : ”, st3) # Duplicates are removed
grades = {‘O’: 90, ‘A’:80,‘B’:70}

print(“Dict Keys are formed into set : ”,set(grades))

print(“Dict values are formed into set”,set(grades.values()))
print(“Dict items are formed into set : ”,set(grades.items()))

130 6 Built-in Data Structure: Sets

Output

Listto Set: {0, 1, 2, 3, 5, 70, 6}

String to Set : {‘I’, “W’, ‘r’, <7, ‘d’, ‘e’, ‘o’, ‘H’}

Tuple to Set : {8.5,4.3,6.2,7.4}

Dict Keys are formed into set : {‘B’, ‘A’, ‘O’ }

Dict values are formed into set {80, 90, 70}

Dict items are formed into set : {(‘B’, 70), (‘O’, 90), (‘A’, 80)}

6.8 Set Comprehensions

Similar to list, tuple, and dictionary comprehensions, set comprehensions also pro-
vide a simple and concise way of creating set objects. It uses for loop in the curly
braces { } to generate elements of the set.

Example: Create a set having squares of numbers from 5 to 10.
st = {i*i for i in range(5,11)}
print(“Set elements : ”, st)
Output
Set elements : {64, 36, 100, 81, 49, 25}
Example: Create a set with square roots of list elements, rounded to 2 decimal places.
import math
st = { round(math.sqrt(i),2) for i in [10, 20,30,40,50]}
print(“Set elements : 7, st)
Output
Set elements : {3.16,4.47, 5.48, 6.32, 7.07}
Example: Generate set object using nested for loop.
st ={ i+j for i in range(1,6) for j in [10,20,30,40,50] if (i+j) % 3 ==0 }
print(“‘Set elements : ”,st)
Output
Set elements : {33, 42, 12, 45, 15, 51, 21, 54, 24}

6.9 Frozen Sets 131

6.9 Frozen Sets

Set objects are mutable. But it can be made immutable using the frozenset() function.

frozenset(iterable_object)

Iterable_object can be a set, tuple, dictionary, list etc.
Returns a frozen set object initialized with the elements of iterable_object.
If iterable_object is not specified, empty frozen set is returned.

(i) Create a frozen set object

Example

create frozen set from list, dictionary

Ist =[1,3,5,7]

frozen_lst = frozenset(lst)

print(‘Frozen set from list : °, type(frozen_lIst), frozen_Ist)
dct = {‘A’:*Good’, ‘B’:‘Average’, ‘C’:‘Satisfactory’ }
frozen_dct = frozenset(dct)

print(‘Frozen set from dictionary : ’,type(frozen_dct),
frozen_dct)

Output
Frozen set from 1ist : <class “frozenset'> frozenset({1, 3, 5, 7})
Frozen set from dictionary : <class 'frozenset'> frozenset({'B’, 'A°, 'C'})
4
Frames Objects
Global frase
st "1]3|s]?

frozen_lst o

det q\ __‘;

frozen_dct 0\ . frozenset({1, 3,5, 7}) |
\ N dood
\ A= - -
\. 8" “Average”
"C" "sSatisfactory”

frozenset({'s’, ‘A", 'C'})

As shown in the above code, when a dictionary object is used to initialize the frozen
set object, dictionary keys become elements of the frozen set.

132 6 Built-in Data Structure: Sets
(i) The frozen set object is immutable.

Example

frozen set object is immutable
frozen_set.add(9)

Output

AttributeError Traceback (most recent call last)

<ipython-input-7-5392b2f37111> in <module> ()
1 # frozen set object is immutable

—-> 2 frozen_set.add(9)

AttributeError: ‘frozenset’ object has no attribute ‘add’

The above code generates an error when add operation is applied.

(iii) Frozen sets are generally used as keys for dictionaries or elements of a normal
set object.

Example

frozen set elements are added to set object

Ist =[1,3,5,7]

frozen_lst = frozenset(lst)

st={10,20,30} # set object

adding elements of frozen set to mutable set object
st.update(frozen_lst)

print(‘Elements of st : ’, st)

Output
Elements of st : {1, 3, 20, 5, 7, 10, 30}

(iv) Operations on frozensets: All the operations on normal set objects that do not
modify the operand set object are applicable to frozen set objects also. Union,
intersection, difference, symmetric_difference, copy, issubset, issuperset, and
isdisjoint are all applicable to frozen sets also. But set update operations like add,
update, remove, pop, delete, difference_update, symmetric_difference_update,
intersection_update, etc. are not applicable on frozen sets.

Review Questions 133

Exercises

1. Write a set comprehension to generate a set with multiples of 10

between 100 and 200.
2. Generate a set of prime numbers less than 100 using set comprehension.
3. Given a string, find the vowels present in the string.

4. Create a frozen set of names consisting of more than five characters. Accept the

names from the user. Use set comprehension.

5. Given a list of colors by the user, write a function that returns a frozen set of

RGB colors.

6. Given a list of student name and programming language known by the student,

create a set of students who knows Java programming language.

7. Take two strings from the user and find a number of distinct characters in the

strings.
8. Generate a set of real values from a given input set. Use list comprehension.
9. Find second and third highest elements of a set.
10. Display set elements in ascending order.

Review Questions

Consider the following sets and answer questions below.
sl ={ ‘Red’,‘Green’, ‘Blue’, ‘Black’}
s2 = { (‘White’,‘Black’) }

(1) What is the output of the following?

print (s11s2)

(a) {‘White’, ‘Black’, ‘Red’, ‘Blue’, ‘Green’ }
(b) {(‘White’, ‘Black’), ‘Red’, ‘Blue’, ‘Green’, ‘Black’}
(c) [‘White’, ‘Black’ , ‘Red’, ‘Blue’, ‘Green’]
(d) (“‘White’, ‘Black’ , ‘Red’, ‘Blue’, ‘Green’)

(2) What is the output of the following?

print(s1[:2])

(a) Black
(b) Green
(c) Blue
(d) Error is generated

134

(3) What is the output of the following?

print(s2-s1)

(a) {‘Red’, ‘Green’, ‘Blue’}
) {1}

(¢) {(‘White’, ‘Black’)}
(d) {*White’ }

(4) What is the output of the following?

x = (sl | s2) x.remove(‘Black’) print(x)

(a) None

(b) {‘Red’, ‘Green’, ‘Blue’, (‘White’, ‘Black’) }
(¢) { ‘Red’, ‘Green’, ‘Blue’, ‘White’ }

(d) {‘Red’, ‘Green’, ‘Blue’, (‘White’) }

(5) What is the output of the following?
print(s1 & s2)

(a) { ‘Black’ }

(b) set()
(c) None
(d) {(“White’, ‘Black’) }

(6) What is the output of the following?
print(tuple(s1))
(a) (‘Red’, ‘Blue’, ‘Black’, ‘Green’)
(b) ((‘Red’, ‘Blue’,)’)
(¢) (‘Red’, ‘Blue’, ‘Green’)
(d) ((‘Red’, ‘Blue’, ‘Black’, ‘Green’))
(7) Which of the following is not true about sets?

(a) Sets elements are mutable objects
(b) Sets are unordered
(c) Sets do not allow duplicates

6 Built-in Data Structure: Sets

(d) Set elements can be combination of different types of immutable objects

(8) Which of the following method is used to insert elements into a set?

(a) discard()
(b) remove()
(c) update()
(d) pop()

Review Questions 135

(9) Which of the following operators are used to check if two sets are the same or
subset of one another?

(a) Arithmetic
(b) Relational
(c) Membership
(d) None

(10) Which of the following set is invalid?

(a) {‘Python’, 0, (‘Red’, 1, 2)}
(b) {‘Python’, True, 1 }

(© {1}

(d) set()

Chapter 7 ®)
Built-in Data Structure: Dictionary oo

Dictionary is one of the Pythons’ built-in data structures. A dictionary is a collection
of data stored as key—value pairs, enclosed in curly brackets. Key, value are separated
by colon and key—value pairs are separated by commas. Unlike other built-in data
structures where each element is a single value, a dictionary element is a pair of key
and value. The dictionary object maps a set of unique keys to a set of values. Hence, a
dictionary is also referred to as an associative array in other programming languages.
Initially, the dictionary object was an unordered collection but from Python version
3.7 onwards, it is an ordered collection of key—value items, i.e., the object maintains
the insertion order. The dictionary object is mutable with no duplicate keys.

7.1 Create Dictionary Objects

(i) Create an empty dictionary object: Empty object can be created in two ways:

(a) Using a pair of curly brackets.
(b) Using constructor of the dictionary class.

Example

Create empty Dictionary

detl ={ }

print("Data type of dctl : ", type(dctl))
print("Elements of dctl : ", dctl)

det2 = dict()

print("Data type of dct2 : ", type(dct2))
print("Elements of dct2 : ", dct2)

© The Author(s) 2024 137
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7
https://doi.org/10.1007/978-3-031-52473-8_7

138 7 Built-in Data Structure: Dictionary

Output
Print output (drag lower right corner to resize)

Data type of dctl : <class 'dict'>
Elements of dctl : {}
Data type of dct2 : <class 'dict'>
Elements of dct2 : {}

Frames Objects

Global fPamt////,,ﬂr—)wumnvduT
deti /—>empty dict
dct2

(ii) Create a non-empty dictionary object: Key and value are separated by a
colon. The key: value pairs are separated by commas and enclosed in curly
brackets { }.

Example
dct = {"Name": "Arjun", "Age": 25, "Gender":"Male"}

print("Elements are : ", dct)

Output

Print output (drag lower right corner to resize)

Elements are : {'Neme": "Arjun’, “Age’: 25, “Gender': ‘Male')

Frames Objects
Global frame dict
dct o __\ “Nama®™ “Arjun”
“Age™ 25

“Gender”™ “Male”

In the above example,

keys are Name, Age, Gender.
Values are Arjun, 25, Male.

7.2 Properties of Dictionary Objects 139

len() function on dictionary object gives number of elements, i.e., key:value
pairs in the object.

len(dict_object)
Example

len() : number of key, value pairs
print("Number of elements in the dictionary : ", len(dct))
QOutput

Number of elements in the dictionary : 3

7.2 Properties of Dictionary Objects

(i) Keys of a dictionary object should be unique. If duplicate keys are specified,
only one key exists and the latest value is associated with the key.

Example
dct = {"Name": "Arjun", "Age": 25, "Gender":"Male", "Name’ : ’Bheem’ }
print(dct)
Output
{’Name’: 'Bheem’, *Age’: 25, ’Gender’: "Male’ }
(i1) Dictionary objects are mutable—Kkey : value pairs can be added or deleted
from a dictionary object. Examples are provided in Sect.7.4.

(iii) Keys must be immutable objects like constants, strings, tuples, etc., whereas
values can be mutable or immutable objects.

days = {("Saturday","Sunday"): "Weekend" , 90: "A Grade", "B Grade" :
7}

In the above example, keys are

("Saturday","Sunday") is a tuple
90 is a constant
"B Grade" is a string

140 7 Built-in Data Structure: Dictionary

7.3 Accessing the Elements

(i) Values associated with keys, of a dictionary object, can be accessed in two
ways

(a) dict_object[key]
(b) dict_object.get(key)
Example

dct = {"Name": "Arjun", "Age": 25, "Gender":"Male" }
print("Using key as index : ", dct[’Age’])
print("Using get() method : ", dct.get(’Age’))

Output

Using key as index : 25
Using get() method : 25

(i) Following methods access elements of a dictionary object:

(a) dict_object keys() returns the keys
(b) dict_object.values() returns the values
(c) dict_object.items() returns key : value pairs.

Note: The key:value pairs are called items of the dictionary object.
Example

dct = {"Family":"Pandavas", "Name":"Arjun", "Siblings" : 4}
print("Keys : ",dct.keys())

print("Values : ", dct.values())

print("Key-Value pairs: ", dct.items())

Output

Keys : dict_keys([’Family’, "Name’, ’Siblings’])

Values : dict_values([’Pandavas’, ’Arjun’, 4])

Key-Value pairs: dict_items([("Family’, ’Pandavas’), ('Name’, ’Arjun’),
(’Siblings’, 4)])

7.4 Operations on Dictionary Objects 141

7.4 Operations on Dictionary Objects

Dictionary objects are mutable, i.e., elements can be added, deleted, or modified.

(i) Add an element to the dictionary by specifying the key in [] and assigning a
value.

Example

add an element

dct = {"Family":"Pandavas", "Name":"Arjun","Siblings" : 4 }
dct[’Guru’] = "Dronacharya”

print("After addition : ", dct)

Output

After addition : { Family’: ’Pandavas’, ’Name’: ’Arjun’, ’Siblings’: 4,
’Guru’: ’Dronacharya’ }

(i) Modify the value of the given key using the assignment.
Example

Modify the value of given key

dct = {"Family":"Pandavas", "Name":"Arjun","Siblings" : 4 }
det[’Siblings’] =5

print("After modification are: ", dct)

Output

After modification: {’Family’: Pandavas’, "Name’: ’Arjun’,
’Siblings’: 5}

(iii) Delete a specified key—value pair. This can be done in multiple ways:

(a) del dict_object[key]
Returns dict_object after deleting specified key—value pair.
(b) dict_object.pop(key)
Returns the value corresponding to the deleted key:value pair and dict_object
is modified.
(c) dict_object.popitem()
Deletes the last key:value pair,
Returns deleted key:value pair as a tuple and the dict_object is modified.
(d) dict_object.clear()
Deletes all the items of the dictionary but the object exists.
Returns empty dict_object.

142 7 Built-in Data Structure: Dictionary

Example

dct= {"Family":"Pandavas", "Name":"Arjun", "Skill": "Shooter", "Siblings" :
4}

Delete using del

del dct[’Skill’]

print("After deletion using del : ", dct)

Delete using pop()

print(’ Value corresponding to deleted key using pop : *,dct.pop(’ Siblings’))
print("After deletion using pop : ", dct)

Delete last element using popitem()

print(’ Value corresponding to deleted key using popitem(): *,dct.popitem())
print("After deleting last element using popitem : ",dct)

Delete all the elements

dct.clear()

print("After clear() operation : ",dct)

Output

>

After deletion using del : {’Family’: ’Pandavas’, ’Name’: ’Arjun’, ’Siblings’:
4}

Value corresponding to deleted key using pop : 4

After deletion using pop : {’Family’: "Pandavas’, ’Name’: ’Arjun’}

Value corresponding to deleted key using popitem(): ("Name’, ’Arjun’)
After deleting last element using popitem : {’Family’: ’Pandavas’}

After clear() operation : { }

@iv) del dict_object
deletes the entire object from memory and the object does not exist anymore.
Example

dct_new = {1:"One", 2:"Two", 3:"Three"}
Remove object

del dct_new

print("After del : ",dct_new)

QOutput

NameError Traceback (most recent call last)
<ipython-input-24-a2faf664f778 > in <module>()
2 # Remove object
3 del dct_new
—-> 4 print("After del operation : ",dct_new)

NameError: name ’dct_new’ is not defined

7.4 Operations on Dictionary Objects 143

(v) copy dictionary object to another dictionary object

dict_object.copy()

Returns a dictionary that can be assigned to an object. The operation is a
shallow copy, i.e., updates made to the original object will not be reflected in
the copy and vice versa.

Example

Copy operation

dect = {"Name":"Arjun", "Skill": "Shooter"}
dct_dup = dct.copy()

print("Elements of dct : ", dct)

print("Elements of dct_dup : ", dct_dup)
dct.popitem()

print("dct after deleting last item from dct : ", dct)
print("dct_dup after deletion from dct : ", dct_dup)
dct_dup.pop("Name")

print("dct_dup after deleting Name from dct_dup : ", det_dup)
print("dct after deletion from dct_dup : ", dct)

Output

Elements of dct : {’"Name’: ’Arjun’, *Skill’: *Shooter’ }

Elements of dct_dup : {"Name’: *Arjun’, ’Skill’: *Shooter’ }

dct after deleting last item from dct : {"Name’: ’Arjun’}

dct_dup after deletion from dct : {’"Name’: ’Arjun’, ’Skill’: ’Shooter’ }
dct_dup after deleting Name from dct_dup : {’Skill’: *Shooter’ }

dct after deletion from dct_dup : {’'Name’: ’Arjun’}

(vi) Update a dictionary object with items of another dictionary object.

dict_objectl.update(dict_object2)

Items of dict_object2 are added to dict_objectl.
dict_object2 does not change but dict_objectl gets updated.

Example

Update operation

capitals = {"USA":"Washington"}

asia = {"India": "Delhi"}
capitals.update(asia)

print("capitals after update() : ", capitals)
print("asia after update() : ", asia)

144 7 Built-in Data Structure: Dictionary

Output

capitals after update() : {"USA’: "Washington’, ’India’: *Delhi’ }
asia after update() : {’India’: "Delhi’ }

(vii) Dictionary object can be created by specifying only keys using
fromkeys() method.

dict.fromkeys(key_list, default_value)

key_list : list of keys
default_value : Same value is assigned to all the keys.

It is optional. If not specified, it is None.

Default values can be changed later, by updating the object.
Returns a dictionary which can then be assigned to a variable.

Example

Create dictionary using keys

k =["Name", "RNo", "Mail Id"]

dct = dict.fromkeys(k)

print("Data type of dct : ", type(dct))
print("Elements of dct : ", dct)

Output

Print output (drag lower right corner to resize)

Data type of dct : <class 'dict'>
Elements of dct : {'Name': None, 'RNo': None, 'Mail Id': None}

4
Frames Objects
Global frame list _
k '/_—_‘N) ”"Name“ ;"RNO" 2"Mai1 Id"
det : ;

dict

“Name" None
" RNO" None

"Mail Id" None

7.5 Tterating Dictionary Objects

Example

marks = ["DBMS", "Python", "OS"]
dct = dict.fromkeys(marks, 40)
print("Data type of dct : ", type(dct))
print("Elements of dct : ", dct)

QOutput

Print output (drag lower right corner to resize

Data type of dct : <class 'dict'>

Elements of dct : {'DBMS': 48, 'Python': 4@, '0S':

Frames Objects
Global frame list
./_'_‘\“)- :
[oarks “DBMS" | “Python" | "0S"
dct ' :
dict
“DBMS" 40
"Python" 40
"0s" 40

In the above example, 40 is assigned as the default value for all the keys.

7.5 Iterating Dictionary Objects

40}

145

Each item of a dictionary can be accessed using i operator in the for loops. It can

be done in the following ways:

(i) To access only keys of the dictionary object, use dict_object name in for loop.

Example

capitals = {"India": "Delhi", "USA":"Washington", "Japan":"Tokyo",

"China":"Beijing"}

Access only keys of the dictionary

for element in capitals:
print(element, end =")

146 7 Built-in Data Structure: Dictionary

Output
India USA Japan China
(ii) To access only values of the dictionary, use dict_object.values() in the loop.
Example

capitals = {"India": "Delhi", "USA":"Washington", "Japan":"Tokyo",
"China":"Beijing"}
Access only values of the dictionary
for element in capitals.values():
print(element, end="")

Output
Delhi Washington Tokyo Beijing
(iii) To access key—value pairs of the dictionary, use dict_object.items() in the loop.
Example
capitals = {"India": "Delhi", "USA":"Washington", "Japan":"Tokyo",
"China":"Beijing"}
Access key,value pairs of the dictionary

for element in capitals.items():
print(element)

Output
(’India’, *Delhi’)
(CUSA’, ’Washington’)
(’Japan’, *Tokyo’)
(’China’, "Beijing’)

7.6 Dictionary Comprehension

Comprehension is a concise way of creating a dictionary object, by enclosing for
loop in curl brackets. It can include conditions to select the required elements.

Example

odd_squares = {i: i**2 for i in range(5,10) if i%2==1}
print("Data type : ", type(odd_squares))
print("Elements are : ", odd_squares)

7.7 Type Conversions 147

Output

Data type : <class ’dict’ >

Elements are : {5: 25, 7:49, 9: 81}
Example: Create dictionary using zip object.

country = [’India’, USA’, Japan’]

capital = ['New Delhi’,” Washington’, Tokyo’]

con_cap = {element[0]: element[1] for element in zip(country,capital) }
print(type(con_cap))

print(con_cap)

Output

<class ’dict’>
{’India’: "New Delhi’, "USA’: "Washington’, *Japan’: *Tokyo’ }

7.7 Type Conversions

Dictionary objects can be converted to other data types like lists, tuples, sets, etc.,
using the constructor of that class.

data_type(dict_object)

(i) Dictionary to list object: When a dictionary name is specified, the keys of the
dictionary form a list.

Example

dictionary to list

capitals = {"India": "Delhi", "USA":"Washington", "Japan":"Tokyo"}
print("Data type of capitals : ", type(capitals))

Ist = list(capitals)

print("Elements of list : ", Ist)

Output

Data type of capitals : <class ’dict’ >
Elements of list : ['India’, "USA’, *Japan’]

148

(ii)

(iii)

(iv)

7 Built-in Data Structure: Dictionary

Create a list of values of the dictionary object.
Example

Form list of dictionary values

Ist = list(capitals.values())
print("Data type of Ist : ", type(lst))
print("Elements of Ist : ", 1st)

Output

Data type of Ist : <class ’list’ >
Elements of Ist : ['Delhi’, >Washington’, *Tokyo’]

Create a list of key—value pairs of the dictionary object.
Example

Form list of key-values of dictionary
Ist = list(capitals.items())

print("Data type of Ist : ", type(lst))
print("Elements of Ist : ", Ist)

Output

Data type of Ist : <class ’list’>
Elements of Ist : [(’India’, ’Delhi’), CUSA’, *Washington’), (’Japan’,
"Tokyo’)]

zip object to a dictionary. zip() function maps corresponding elements of
two objects and returns an iterator. The iterator can then be converted into a
dictionary or a tuple or a list.

Example

cgp =[10,9,8]

grades = ("O","A+","A")

Performance = zip(cgp, grades)

print("Data type of performance : ", type(Performance))
Converting zip object into dictionary

performance = dict(performance)

print("Data type of performance : ", type(performance))
print("Elements of Performance : ", performance)

7.7 Type Conversions 149

Output
Print output (drag lower right corner to resize)
Data type of performance : <class 'zip'>
Data type of performance : <class 'dict'>
Elements of Performance : {10: '0', 9: 'A+', 8: 'A'}
4
Frames Objects
Global frame list
~— o] <
<gp 10 |'9']| 8
grades o B

performance \ tuple

9 "A+"
8 "A"

(v) Similarly, keys, values, items of a dictionary object can also be converted
to a tuple or a set.

Example

capitals = {"India": "Delhi", "USA":"Washington", "Japan":"Tokyo"}
print("Data type of capitals : ", type(capitals))

Dictionary keys to tuple

tpl = tuple(capitals)

print("Elements of the tuple : ", tpl)

Dictionary items to set

st = set(capitals.items())

print("Elements of set st : ", st)

Output

Data type of capitals : <class ’dict’>

Elements of the tuple : ("India’, "USA’, *Japan®)

Elements of set st : { CUSA’, "Washington’), ('India’, ’Delhi’), ('Japan’,
"Tokyo’)}

150

7 Built-in Data Structure: Dictionary

Exercises

—

10.

Write a function that displays the keys of a dictionary object that are strings.
Write a function that displays the dictionary items that have a list as a value.
Create a dictionary with five subject marks of a student and then add an item
with total marks.

Take names of N students from the user. Create a dictionary with a name as the
key and the number of vowels in the name as its value.

Create a dictionary of names and CGPs of N students taken from the user. Write
a function that displays the names of students who secured more than 7 CGP.
Take names of N students from the user. Create a dictionary with a name as
the key and the length of the name as the value. Write a function that returns a
dictionary after deleting items having names with more than 5 characters.
Write a function that deletes the dictionary items with string as its value.
Create a dictionary of five courses and the number of students enrolled. Write a
function that returns the dictionary after deleting the courses with less than 20
enrollments.

Accept lists of phone numbers, primary names, and secondary names of N stu-
dents from the user. Write a function that returns a dictionary of phone numbers
and names. Names are formed by concatenating primary and secondary names.
Write a function that takes two dictionary objects and returns a new object that
includes the items of both. If the keys are the same, the corresponding value is
a tuple of values of both the input dictionaries.

Review Questions

ey

2

What is the output of the following code?
months = {"Dec’: 12, ’Jan’:1,’Jun’:6}
print(months[0])

(a) Dec

(b) 12

(c) Jan

(d) Error is generated
What is the output of the following code?

months = {"Dec’: 12, ’Jan’:1,’Jun’:6}
print(’Mar’ in months)

(a) False

® 0

(c) True

(d) Error is generated

Review Questions 151

(3) What is the output of the following code?

dl = {’"Name’: ’Karna’, ’Phone’: 9999}
d2 =dl.copy()

d2[’Mother’] = ’Kunthi’

print(d1)

(a) {"Name’: ’Karna’, ’Phone’: 9999, ’Mother’: ’Kunthi’ }
(b) {’Name’: ’Karna’, ’Phone’: 9999}

(c) {"Phone’: 9999, 'Name’: ’Karna’, ’Mother’: *Kunthi’ }
(d) Error is generated

(4) What is the output of the following code?
months = {’Dec’: 31, *Jan’:31,’Jun’:30, "Mar’: 31}
months.popitem()
print(months)

(a) {’Jan’: 31, ’Jun’: 30, ’Mar’: 31}
(b) {"Dec’: 31, ’Jan’: 31, ’Jun’: 30}
(c) {’Jan’: 31, ’Jun’: 30, 'Mar’: 31}
(d) {"Dec’: 31, ’Jan’: 31, 'Mar’: 31}

(5) What is the data type of the variable, d, in the following code?
d = {(ele, ele+1) for ele in [5,10,15]}

(a) tuple

(b) dictionary
(c) list

(d) set

(6) What is the output of the following code?
d = {’Country’ : ’India’, *Capital’: ’New Delhi’, ’Currency’:’Rs’, *Capital’:

’Delhi’ }
print(d.get(’ Capital’))

(a) New Delhi

(b) Delhi

©) 2

(d) Error is generated

(7) What is the output of the following code?

prices = {’Banana’: 50, Apple’: 70, ’Orange’: 65 }
prices_new = {’Apple’: 80, *Grapes’:90}
prices.update(prices_new)

print(prices)

(a) {’Banana’: 50, ’Apple’: 70, ’Orange’: 65 }

152 7 Built-in Data Structure: Dictionary

(b) {’Banana’: 50, ’Apple’: 70, ’Orange’: 65, *Grapes’: 90}
(c) {"Apple’: 80, *Grapes’:90}
(d) {’Banana’: 50, ’Apple’: 80, *Orange’: 65, *Grapes’: 90}

(8) What is the output of the following code?

dl = { ’Banana’: 50, ’Apple’: 70, ’Orange’: 65 }
d2 = { ’Orange’: 75, ’Grapes’: 100 }
print(d1 + d2)

(a) {’Banana’: 50, ’Apple’: 70, ’Orange’: 140 }

(b) {"Banana’: 50, ’Apple’: 70, Orange’: 75, *Grapes’: 100 }
(c) {’Banana’: 50, ’Apple’: 70, ’Orange’: 140, *Grapes’: 100 }
(d) Error is generated

(9) What is the output of the following code?

fruits = { "Banana’: 50, ’Apple’: 70 , *Orange’: 65 }
print(len(fruits))

(@) 6
d) 3
(c) 23
(d) Error is generated

(10) What is the output of the following code?

fruits = { ’Banana’: 50, *Apple’: 70, *Orange’: 65 }
print(set(fruits))

(a) {°Banana’,’Apple’, ’Orange’}

(b) {50,70,63}

(c) {’Banana’: 50, Apple’: 70, ’Orange’: 65 }
(d) { Apple’: 70, ’Banana’: 50, ’Orange’: 65 }

Chapter 8)
Files %f:je;aliefgr

8.1 Introduction

Standard input and output functions accept user data from the console and display
the data to the console. These values are stored in the variables of the program and
are lost when the program terminates. When data to be taken from the console is
large or when the data is to be saved even after the program terminates, it has to be
stored in a permanent and non-volatile memory like secondary storage. The data is
stored as a file on the secondary storage devices. A file is a container that stores the
related information on secondary storage devices like hard disk, CD, pen drive, etc.
Python supports reading from or writing data into files, called file handling. Python
provides a number of library functions for performing different file operations like
reading, writing, appending, etc.
Python supports two types of files.

(i) Text file—It is a sequence of lines where each line is a sequence of characters.
Lines are delimited by a special character called newline (\n).

(i) Binary files—It is a sequence of bytes which can only be interpreted by appro-
priate application or machine.

Examples of binary files include command files, executable files, compressed files,
audio files, video files, etc. This chapter discusses the handling of text files.

8.2 File Handling

File handling requires the following sequence of steps:

e Opening the file.
e Performing operations like read, write, etc.
e Closing the file.

© The Author(s) 2024 153
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8
https://doi.org/10.1007/978-3-031-52473-8_8

154 8 Files

8.2.1 Opening the File

A file has to be opened before performing any operation on the file like reading,
writing, etc.

open() is a Python built-in function to open the file. The function returns a file
object, also called file handle or file descriptor. For all the subsequent file operations,
this file object is to be used and not the file name provided in the open() function.

open(file_path, mode)
file_path argument specifies the name and location of the file on the secondary storage
device. File_path can be specified in two ways.
(i) relative path—file location is specified starting from the current directory.
(i) absolute path—file location is specified starting from the root directory.

mode argument specifies whether the file is used for reading, writing, or for both
read and write operations. Different values for mode parameter are

r opens the file for reading

Error is generated if the file does not exist

This is the default mode

w opens the file for writing

If the file exists, the contents are erased and the writing starts from
the beginning of the file

In case the file does not exist, a new file is created and the data
is added

a opens the file for adding data at the end of the existing file

In case the file does not exist, a new file is created and data

is added
X creates a file
Error is generated if the file already exists
r+ open the file for both reading and writing operations

The file pointer is positioned at the beginning of the file
Error is generated in case the file does not exist

w+ open the file for both reading and writing operations
The file pointer is positioned at the beginning of the file
If the file does not exist, a new file is created

If the file already exists, the file contents are erased

a+ open the file for both reading and writing operations
The file pointer is positioned at the end of the file

If the file does not exist, a new file is created

If the file already exists, the file is appended with new content
treats the file as a text file. This is the default file type

b treats the file as binary

-

8.2 File Handling 155

Example
fp = open(’/content/sample_data/olympics.txt’)

In the above example, fp is the file object. As the mode argument is not specified,
default values are assumed, i.e., read operation, and text file formats are assumed.

8.2.2 Closing the File

Once we are done with accessing the file, it needs to be closed. Close operation
releases the resources tied up with the file like freeing the memory utilized by the
file.

file_object.close()
Example
fp.close()

Once the file is closed, no more read/write operations are permitted. To perform
read/write operations, the file needs to be opened again in the appropriate mode.

Even though Python provides garbage collector to cleanup the unused objects, it
is a good practice to close the files once done with the file operations.

An opened file is associated with a file pointer at which reading or writing takes
place which can then be repositioned as required.

8.2.3 Writing Data into Files

Python provides the following functions to write data into files:

(i) write()

file_object.write(string)

string value is written to the file referenced by the file_object. If the file already
exists, the file is truncated and new contents are written. In case the file does
not exist, a new file is created.

156

Example 1: Write into a non-existing file.

from os.path import exists

print("Does the file exists :",exists(’sample.txt’))

write into new file

fd= open(’sample.txt’,’ w’)

fd.write(’Python is a high-level programming language\n’)
fd.write(’Programming with python is fun\n’)
fd.write(’Python is an interpreted language\n”)

fd.close()

Output

Does the file exists : False

8 Files

To display the contents of the file, use the read() function. An explanation on

read() function will be given in the subsequent section.
Example

from os.path import exists

print("Does the file exists :",exists(’sample.txt’))
read the file contents

fd= open(’sample.txt’,’r’)

print(’File contents : \n’, fd.read())

fd.close()

Output

Does the file exists : True

File contents :

Python is a high-level programming language
Programming with Python is fun

Python is an interpreted language

Example 2: Write into the existing file.

from os.path import exists

print("Does the file exists :",exists(’sample.txt’))

write into existing file

fd= open(’sample.txt’,’ w’)

fd.write(’Python is an object-oriented language\n’)
fd.close()

open the file in read mode

fd= open(’sample.txt’,’r’)

print(’File contents : \n’, fd.read())

fd.close()

8.2 File Handling 157

(i)

(iii)

Output

Does the file exists : True
File contents :
Python is an object-oriented language

Note: New data overwrites existing file contents.
writelines()

file_object.writelines(string_list)
It is similar to the write() function, except that the argument is a list of strings.
Example

from os.path import exists

print("Does the file exists :",exists(’sample.txt’))

fd= open(’sample.txt’,’w’)

fd.writelines([’Python is a high-level programming
language\n’,’Programming with python is fun\n’])

fd.close()

open the file in read mode

fd= open(’sample.txt’,’r’)

print(’File contents : \n’, fd.read())

fd.close()

Output

Does the file exists : True

File contents :

Python is a high-level programming language
Programming with python is fun

append the file

This is also a write operation. When the file is opened in append (a) mode, the
file handle is positioned at the end of the file. All subsequent write operations
like write(), writelines() functions, add the data at the end of the file in case the
file exists. If the file does not exist, a new file is created and the data is written
into the file.

Example

from os.path import exists

print("Does the file exists :",exists(’sample.txt’))
open the file in read mode

fd= open(’sample.txt’,’r’)

print(’Existing file contents : \n’, fd.read())

158 8 Files

fd.close()

open file in append mode

fd= open(’sample.txt’,’a’)

fd.write(’One line appened\n”)

fd.writelines([’Second line appened\n’, Third line appened\n’])
fd.close()

open the file in read mode

fd= open(’sample.txt’,’r’)

print(’File contents after append : \n’, fd.read())

fd.close()

Output

Does the file exists : True

Existing file contents :

Python is a high-level programming language
Programming with python is fun

File contents after append :

Python is a high-level programming language
Programming with python is fun

One line appened

Second line appened

Third line appened

8.2.4 Get File Pointer Position

Every opened file is associated with a pointer that points to the position in the file
where reading or writing takes place, called a file pointer. The tell() function returns
the file pointer position

file_object.tell()

8.2.5 Reading Data from Files

The contents of a file can be accessed using the following functions. The functions
return the number of bytes read from the file. Following are the functions to read
from file

(i) file_object.read()
Reads data from the current file pointer position till the end of the file. Returns
the number of bytes read.

8.2 File Handling 159

(ii) file_object.read(size)

Returns the specified number of characters from current file pointer position.
(iii) file_object.readline()

Returns the current line from file pointer position

Example

fd = open(’sample.txt’,’r’)

print(When a file is opened in read mode, the file pointer is at :
> fd.tell())

print(’5 Characters from current file pointer position :
> fd.read(5))

print(’Now the file pointer is at : ’fd.tell())

print(’Characters in the current line from the current file pointer
\n\n’,fd.readline())

print(’Now the file pointer is at : ’,fd.tell())

print(’Data from current file pointer position till end of
file:\n\n’,fd.read())

fd.close()

Output

When a file is opened in read mode, the file pointer is at : 0
5 Characters from current file pointer position : Pytho
Now the file pointer is at : 5

Characters in the current line from the current file pointer :

n is a high-level programming language

Now the file pointer is at : 44

Data from current file pointer position till end of file:
Programming with Python is fun

One line appened

Second line appened

Third line appened

8.2.6 Changing the File Pointer Position

seek() function changes the position of the file pointer.

file_object.seek(offset, whence)

offset indicates how much to move from current position
whence is a reference point for the offset with the following values

160 8 Files

0 indicates the beginning of the file
1 indicates the current file pointer position
2 indicates the end of the file
The default value is 0.
Returns new file pointer location

Note: For text files, whence value cannot be 1 or 2 except when offset is 0.
Example

fd = open(’sample.txt’,’r’)

print(’File pointer is at : °, fd.tell())

fd.seek(5) # change file pointer to position 5

print(’Data from 5th character till end of line:\n’,fd.readline())
print(’Now the file pointer is at : ’, fd.tell())

fd.seek(0,2) # change file pointer to end of file

print(’ The file pointer is at *, fd.tell(), after moving to end of the file ’)
fd.close()

Output

File pointer is at : 0
Data from 5th character till end of line:
n is a high-level programming language

Now the file pointer is at : 44
The file pointer is at 131 after moving to end of the file

8.2.7 Read and Write to Files

Both read and write operations can be performed on an open file using r+, w+, and
a+ modes.

In r+ and w+ modes, initially, the file pointer is at the beginning of the file,
whereas the file pointer is at the end of the file when opened in a+ mode.

r+ mode generates an error if the file does not exist, whereas a new file is created
in w+ and a+ modes.

Example 1: Perform read and write using w-+

fd = open(’/content/sample_new.txt’,’ w+’)

print(’File pointer is at ’, fd.tell(), > when opened with w+ *)

fd.write("No variable declarations in Python\nPython is a
dynamically typed language\n")

print("After the write operation, the file pointer is at :",fd.tell())

fd.seek(0,0) # position file pointer to beginning of file

print("First line of the file is : \n ",fd.readline()) # read first line

fd.close()

8.2 File Handling 161

Output

File pointer is at 0 when opened with w+

After the write operation, the file pointer is at : 74
First line of the file is :

No variable declarations in Python

Example 2: Perform read and write using r+

fd = open(’/content/sample_new.txt’,’r+’)

print(’File pointer is at °, fd.tell(), > when opened with r+)
print("File contents : \n",fd.read())

print(’File pointer is at’,fd.tell(), > after read operation’)
fd.write("New line\n")

print("File pointer after write : ",fd.tell())

fd.seek(0,0) # position the file pointer to beginning of file
print("File contents : \n",fd.read())

fd.close()

Output

File pointer is at 0 when opened with r+
File contents :

No variable declarations in Python
Python is a dynamically typed language

File pointer is at 74 after read operation
File pointer after write : 83

File contents :

No variable declarations in Python
Python is a dynamically typed language
New line

Example 3: Perform read and append using a+

fd = open(’/content/sample_new.txt’,’a+")

print(’File pointer is at ’, fd.tell(), > when opened with a+)

print("read() function does not return any data when file pointer is at
the end of file : \n",fd.read())

print(’File pointer is at’,fd.tell(), > after read operation’)

fd.write("One more line added\n")

print("File pointer after write : ",fd.tell())

fd.seek(0,0) # position the file pointer to beginning of file

print("File contents : \n",fd.read())

fd.close()

162 8 Files

Output

File pointer is at 83 when opened with a+

read() function does not return any data when file pointer is at the end of file :
File pointer is at 83 after read operation

File pointer after write : 103

File contents :

No variable declarations in Python

Python is a dynamically typed language

New line

One more line added

8.3 Working with Files and Directories

Files are stored on secondary storage devices like a hard disk. To manage large
number of files, hierarchical organization is one of the approaches to store and handle
the files. Files are grouped into directories. A directory is also called a folder. Each
directory contains files and subdirectories in it. Python provides an 0§ module to
work with directories and files. This module provides an interface between Python
and the operating system.

Following are the functions of 0§ module to work with files and directories.

First 0§ module has to be imported to use the functions
import os

Get the current working directory
os.getcwd()

Change the directory
os.chdir(’directory_path’)

Display files and subdirectories of a directory
os.listdir(’directory_path’)

Create a new directory
os.mkdir(’path’)

Check if the path specified as argument is a directory or a file. It returns True or
False

os.path.isdir(’path’)
os.path.isfile("path’)

8.3 Working with Files and Directories 163

Remove a directory. The directory must be empty to remove it.
os.rmdir(’path’)

Rename a file
os.rename(’old_filename’, 'new_file_name”)

Delete a file
os.remove(’path’)

Get the size of directory or file in terms of bytes
os.path.getsize(’path’)

Get access/modified time of a file

os.path.getatime(’file_path’))
os.path.getmtime(’file_path’))

These functions return the number of seconds passed since 1 January 1970. To con-
vert that value into date and time format, use fromtimestamp() function of datetime
module.

Example

import datetime

t = os.path.getatime(’/content/sample_data/sample.txt’)

dt = datetime.datetime.fromtimestamp(t)

print("Date time :",dt)

print("Date :",dt.date())

print("Time : ",dt.time())

print("Years:",dt.year," Months:",dt.month, " Days:",dt.day)
print("Hours:",dt.hour,"Minutes:",dt.minute, " Seconds:",dt.second)

Output

Date time : 2022-05-02 09:18:01.447931
Date : 2022-05-02

Time : 09:18:01.447931

Years: 2022 Months: 5 Days: 2
Hours: 9 Minutes: 18 Seconds: 1

164 8 Files
8.4 Case Study: File Handling

Consider the following files containing student data.
details.csv: The file contains student details like Roll No., Name, and Mail_id.

First_sem.csv, Second_sem.csv, Third_sem.csv: Each file contains Roll No. and
grade points obtained by the students in the corresponding semester.
Following file operations and data analysis are performed.

(1) Move to the directory containing these files.

import os
os.chdir(’/content/sample_data/Marks’)
print(os.getcwd())

Output
/content/sample_data/Marks
(i) List the files in the current folder.

os.listdir(os.getcwd())

Output
[’Third_sem.csv’, ’First_sem.csv’, ’details.csv’, *Second_sem.csv’]
(iii) Display column names and the number of lines in each of the four files.

for f in os.listdir(os.getcwd()):
fp = open(f,’r’)
cols = fp.readline()
print(’File Name : °,f)
print(C Column Names : ’, cols, end="")
lines=fp.readlines()
print(’ Number of lines : ’,len(lines))
fp.close()

Output

File Name : Third_sem.csv
Column Names : Rno,sem3_gp
Number of lines : 33
File Name : First_sem.csv
Column Names : Rno,sem1_gp
Number of lines : 33
File Name : details.csv
Column Names : Rno,Name,Mail_id
Number of lines : 33

8.4 Case Study: File Handling 165

File Name : Second_sem.csv
Column Names : Rno,sem2_gp
Number of lines : 33

(iv) Create a new file, perform.csv, with the columns of the four files- rno, name,
seml1_gp, sem2_gp, sem3_gp.

fp=open(’/content/sample_data/perform.csv’,’w’)
fpd= open(’/content/sample_data/Marks/details.csv’,r’)
fpl= open(’/content/sample_data/Marks/First_sem.csv’,’r’)
fp2= open(’/content/sample_data/Marks/Second_sem.csv’,’r’)
fp3= open(’/content/sample_data/Marks/Third_sem.csv’,’r”)
while True:
details= fpd.readline()
if details =="":
break
use strip() function to remove newlines
rno = details.split(’,)[1].strip()
one= fpl.readline().strip()
two = fp2.readline().split(’,”)[1].strip()
three = fp3.readline().split(’,)[1].strip()
line=(rno,one, two,three)
create record by concatenating the required data from the files
line =", .join(line)
line=line+’\n’
fp.write(line)
fp.close()
fpd.close()
fpl.close()
fp2.close()
fp3.close()

(v) From the perform.csv file, extract those students who got more than 9 grade
points in all three semesters.

fp=open(’/content/sample_data/perform.csv’,’r’)
next(fp)
while True:
line=fp.readline()
if line=="":
break
(name,rno, gpl,gp2,gp3) = line.split(’,’)
if float(gp1)>9 and float(gp2)>9 and float(gp3)>9 :
print(name, gpl, gp2,gp3)
fp.close()

166 8 Files

Output

Kaila Kavya 9.43 9.2 9.33
Chittimalla Aravind 9.14 9.11 9.6

(vi) Extract the students who got 0 grade point in any of the three semesters.

fp=open(’/content/sample_data/perform.csv’,’r’)
next(fp)
while True:
line=fp.readline()
if line==":
break
(name,rno, gpl,gp2,gp3) = line.split(’,’)
if float(gp1)==0 or float(gp2)==0 or float(gp3)==0 :
print(name, gpl, gp2,gp3)
fp.close()

Output

Vadde Shirisha 8.35 8.14 0
Rishi Kanth Reddy 8.46 7.82 0
Nallama Veena Anusha 7 0 0
Rakesh Daddali 7.43 0 7.7

(vii) Find the average grade point of all three semesters and display the students
whose average is below 5.

with open(’/content/sample_data/perform.csv’,’r’) as fp:
next(fp)
while True:
line=fp.readline()
if line==""
break
(name,rno, gpl,gp2,gp3) = line.split(’,’)
avg = round((float(gp1)+float(gp2)+float(gp3))/3,2)
if avg<5:
print(name, avg)

Output
Nallama Veena Anusha 2.33

(viii) Find the top scorers of each semester and append them to perform .csv file.

fp=open(’/content/sample_data/perform.csv’,’r+)
fp.readline()

highl=high2=high3=0

while True:

8.4 Case Study: File Handling 167

line=fp.readline()
if line=="":
break
(name,rno, gpl,gp2,gp3) = line.split(’,’)
#print(line)
gpl = float(gpl)
gp2=float(gp2)
gp3=float(gp3)
if gpl>highl:
highl=gpl
namel= name
if gp2>high?2:
high2=gp2
name2=name
if gp3>high3:
high3=gp3
name3=name
print(’First sem highest : ’,namel, high1)
line1="First sem highest : *+namel+’ ’+ str(high1)+’\n’
print(’Second sem highest : *,name2, high2)
line2="Second sem highest : +name2+’ ’+str(high2)+’\n’
print(’ Third sem highest : ’,name3, high3)
line3="Third sem highest : *+name3+’ ’+ str(high3)+’\n’
print(fp.tell())
fp.writelines([linel, line2, line3])
fp.close()

Output

First sem highest : Vijay Paul Reddy Nakkala 9.68
Second sem highest : Kaila Kavya 9.2

Third sem highest : Chittimalla Aravind 9.6

1491

(ix) Display the last three lines of the perform.csv file, which is the top scorers.

fp = open(’/content/sample_data/perform.csv’,’r’
extract all the lines
lines=fp.readlines()
take last three lines
last3_lines = lines[-3:]
display last 3 lines
for i in range(3):
print(last3_lines[i])
fp.close()

168

8 Files

Output

First sem highest : Vijay Paul Reddy Nakkala 9.68
Second sem highest : Kaila Kavya 9.2
Third sem highest : Chittimalla Aravind 9.6

Exercises

—

COXNNRE LN

—_

Take the name, phone number, and mail ID of ten of your friends from the
console and store them in a file named friends.txt in the current directory.

Add 5 more friends’ data to the above file.

Count the number of words in the above file.

Create a file named primes.txt having prime numbers below 100.

Find the sum of the numbers in primes.txt file.

Write 5 to 10 multiplication tables into a file.

Find the number of vowels in a file.

Find the frequency of the given word in a file.

Write fruit names and the corresponding prices in a file.

Read numbers from a text file and create a new file with divisors of each number
in a separate line.

Review Questions

ey

2

3)

Access modes to perform both read and write operations in existing file is

(a) r+

(b) r+ and w+
(c) w+ and a+
(d) r+ and a+

seek() function to move the file pointer to the beginning of the file is

(a) seek(0)

(b) seek(0,2)

(c) seek(0,1)

(d) None of the above

File pointer is atc..cccueuuee. when the file is opened in write mode.

(a) Beginning of the file
(b) End of the file

(c) Current position

(d) Random position

Review Questions

(4) Which of the following is an absolute file path?

(a) c:\usr\sample.txt

(b) sample.txt

(c) data\sample.txt

(d) mydata\data\sample.txt

169

(5) Which of the following reads first five characters of the file when the file is

opened in append mode.

(a) read(5)
(b) seek(0) ; read(5)
(c) read(5); seek(0,0)
(d) read()

(6) Which of the following functions write data into a file?

(a) write()

(b) writeline()

(c) writelines()

(d) both a and c options

(7) Which of the following is an invalid mode to open a file?
(a) w
(b) a+
(c) aw
(d) w+
(8) Which of the following is a binary file?

(a) .exe
(b) .doc
(c) .pdf
(d) .txt

(9) Which of the following is not a correct open statement to read from a file?

(a) open(’sample.txt’,’r’)

(b) open(’sample.txt’, w+’)
(c) open(’sample.txt’,’w’)
(d) open(’sample.txt’,’a+’)

(10) Function that returns current file pointer position.

(a) seek()
(b) tell()

(c) read()
(d) write()

Chapter 9 ®)
Data Manipulations with Pandas oo

9.1 Introduction

Pandas is a widely used Python package for data manipulations and analysis. It is built
on top of the NumPy module. NumPy is used to work with multidimensional arrays
more efficiently. Pandas is a handy tool for data analysis tasks like cleaning, handling
missing data, data normalization, data visualizations, and loading and saving data.
Pandas objects deal with tabular data. Columns are called attributes having a name.
Rows also have names called row indices or row labels. Pandas package provides
library functions and methods for basic and advanced operations on the tabular data.

Pandas provide two powerful data structures for creating and manipulating data.

(i) Series is a data object with one column.
(ii) Dataframe is a two-dimensional data object with one or more columns. Columns
can be of heterogeneous data types.

This chapter focuses on dataframes, as it is widely used in data science.

9.2 Dataframes

First, the package needs to be imported before working on a dataframe object.
import pandas as pd
To know the version of the pandas package, use

Pandas version
pd.__version__

© The Author(s) 2024 171
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9
https://doi.org/10.1007/978-3-031-52473-8_9

172 9 Data Manipulations with Pandas

9.2.1 Create Dataframes

Dataframes can be created using the DataFrame() function of Pandas.

pandas.DataFrame(data, index, columns, dtype, copy)
data: Specified as list, dictionary, numpy array, series object, another dataframe
object etc.

index: List of row labels. It is optional. If not specified,
the labels are integers ranging from 0O to (number_of_rows-1).
columns: List of column names. It is optional. If not specified,
they are integers ranging from O to (number_of_cols-1).
dtype: List of data types of each column.
(i) Create an empty dataframe
Example

import pandas as pd
df = pd.DataFrame()
print(type(df))
print(df)

Output

<class ’pandas.core.frame.DataFrame’ >
Empty DataFrame

Columns: []

Index: []

(ii) Create a dataframe from a list object. Each sublist in the list will form a row of
the dataframe.

Example

Dataframe from a list with column names

students = [[’Python’,87],[’Maths’,75], [’English’,91]]

df = pd.DataFrame(students, columns=[’Subject’,’ Marks’])
print(df)

Output
Subject Marks
0 Python 87

1 Maths 75
2 English 91

Note: Since row labels are not specified, the default labels are 0, 1, 2.

9.2 Dataframes 173

(iii) Create a dataframe from a dictionary.
Example

Create dataframe from dictionary with row labels

students = { "Rno": [10,25,33,46], "Names": ['Ram", "Arjun",
"Krishna","Laxman"]}

df = pd.DataFrame(students, index =[’a’,’b’,’d’,’s’])
print("Dataframe is : \n")

print(df)

print(’No. of rows : ’, len(df))

Output: Dataframe is:

Rno Names
a 10 Ram
b 25 Arjun
d 33 Krishna
s 46 Laxman
No. of rows: 4

In the above example,

Rno, Names are column names
a,b,d,s are the row indices/row names/row labels.

Note: len(data_frame) returns the number of rows in the dataframe.

9.2.2 Attributes of a Dataframe

An attribute is the property or characteristic of an object. Each object may have a
number of attributes. For example, a table object has attributes like height, width,
length, color etc. Similarly, a dataframe object has the following attributes.

data_frame.attribute_name

(1) data_frame.shape
Returns the number of rows and number of columns of the data_frame.
(i) data_frame.ndim
Returns number of dimensions in the dataframe.
(iii) data_frame.size
Returns an integer indicating the number of elements in the dataframe.
(iv) data_frame.columns
Returns column names of the data_frame.
(v) data_frame.index
Returns the row labels of the dataframe as a range.

174 9 Data Manipulations with Pandas

Example

print(’ Shape of the dataframe : ’, df.shape)
print(’ Number of dimensions : ’, df.ndim)
print(’Size of the dataframe : ’, df.size)
print(’Column names : °, df.columns)
print(’Row Labels : °, df.index)

Output

Shape of the dataframe : (4, 2)

Number of dimensions : 2

Size of the dataframe : 8

Column names : Index([’Rno’, "Names’], dtype="object’)
Row Labels : Index([’a’, ’b’, ’d’, ’s’], dtype="object’)

Note: By default, row labels range from 0 to 4 (stop index 4 is not inclusive) with a
step of 1. But in the above example, the row labels are [’a’, ’b’, ’d’, ’s’], as specified
while creating the dataframe.

(vi) data_frame.dtypes
Returns the data type of each column.

Example
print(’Data types of the columns :\n’, df.dtypes)
Output

Data types of the columns:
Rno int64

Names object

dtype: object

(vii) data_frame.values
Return values of the data frame as a two-dimensional numpy array.

Example
print(’ Dataframe values as Numpy array :\n’,df.values)
Output

Dataframe values as Numpy array:
[[10 ’Ram’]

[25 ’Arjun’]

[33 ’Krishna’]

[46 ’Laxman’]]

9.2 Dataframes 175

9.2.3 Add Columns

Following are the methods of adding new columns to an existing dataframe.

(i) Appending a column

data_frame[’new_col’] = col_values
Example

Add Quality column as last one
df["Quality"] = ["Governance", "Archery", "Flute","Trust"]
print(’Dataframe after adding a column : \n’,df)

Output

Dataframe after adding a column:

Rno Names Quality
10 Ram Governance
25 Arjun Archery
33 Krishna Flute
46 Laxman Trust

» QAo

(ii)) Add new column at specified position using insert method

data_frame.insert (index, col_name, values)
Example

df.insert(2, "Cgp", [7.4,6.9,8.2,7.12])
print(’ Dataframe after inserting column :\n’,df)

Output

Dataframe after inserting column:

Rno Names Cgp Quality

10 Ram 7.40 Governance
25 Arjun 6.90 Archery

33 Krishna 8.20 Flute

46 Laxman 7.12 Trust

» oo

Note: "Cgp" column is inserted at column index 2.

176 9 Data Manipulations with Pandas

9.2.4 Accessing Data

Data from specified rows and columns can be accessed, using the following methods.

(i) Access specific columns

(a) Access data of a single column

data_frame[’column_name’]

Returns entire column as series object.
Example

Access single column
print(df["Quality"])
print(type(df["Quality"]))

Output

a Governance

b Archery

d Flute

s Trust

Name: Quality, dtype: object <class ’pandas.core.series.Series’ >

(b) To access data from multiple columns, specify the column names as a list.

data_framel[[column_list]]

Returns a dataframe object containing specific columns data.
Example

Access multiple columns data
print(df[["Names","Quality"]])

Output

Names Quality
Ram Governance
Arjun Archery
Krishna Flute
Laxman Trust

v oo

(i) Reset row indices to default values starting from 0.

data_frame.reset_index(inplace, drop)

By default, the current row index is added as a new column. To avoid that, set the
values for inplace and drop arguments fo True.

9.2 Dataframes 177

Example

df.reset_index(inplace=True,drop=True)
print(df)
Output

Rno Names Cgp Quality

10 Ram 7.40 Governance
25 Arjun 6.90 Archery
Krishna 8.20 Flute

46 Laxman 7.12 Trust

W= o
|98}
W

(iii) Access rows

(a) Access first N rows

data_frame.head(N)

(b) Access last N rows

data_frame.tail(N)

Note: Default value of N is 5
Example

Access first 3 rows

print(’First 3 rows :\n’,df.head(3))
Access last 3 rows

print(’Last 3 rows :\n’,df.tail(3))

Output

First 3 rows:

Rno Names Cgp Quality

0 10 Ram 7.4 Governance
1 25 Arjun 6.9 Archery
2 33 Krishna 8.2 Flute

Last 3 rows:

Rno Names Cgp Quality
25 Arjun 6.90 Archery
2 33 Krishna 8.20 Flute
3 46 Laxman 7.12 Trust

—

178 9 Data Manipulations with Pandas

(iv) Access rows by specifying row index range

data_frame[start:stop]
Example

print(’Rows with index 2 and 3 :\n’,df[2:4])

Access all the rows upto index 3(not including 3)
print(’Rows upto index 3 :\n’,df[:3])

all the rows from index 2

print(’Rows from index 2 onwards :\n’, df[2:])

Output

Rows with index 2 and 3:
Rno Names Cgp Quality
2 33 Krishna 8.20 Flute
3 46 Laxman 7.12 Trust
Rows upto index 3:
Rno Names Cgp Quality
0 10 Ram 7.4 Governance
1 25 Arjun 6.9 Archery
2 33 Krishna 8.2 Flute
Rows from index 2 onwards:
Rno Names Cgp Quality
2 33 Krishna 8.20 Flute
3 46 Laxman 7.12 Trust

(v) Access rows by specifying list of row indices

data_frame.iloc[[indices_list] |
Example

print(’Row at index 2 followed by row at index
1:\n’df.iloc[[2,1]])

Output

Row at index 2 followed by row at index 1:

Rno Names Cgp Quality
2 33 Krishna 8.2 Flute
1 25 Arjun 6.9 Archery

(vi) Access data of specific rows and columns

data_frame[col_names][row_start:row_stop]

9.2 Dataframes 179

Example

Access first 3 rows of Quality column
print(’First 3 rows of Quality and Names columns: \n’,df[[’Quality’,
’Names’]][:3])

Output

First 3 rows of Quality and Names columns:

Quality Names
0 Governance Ram
1 Archery Arjun
2 Flute Krishna

(vii) The specific rows and columns data can also be accessed using the following
loc() method.

data_frame.loc[row_start:row_stop, [col_names] |

row_stop is inclusive.

Example
df.loc[:3, ['Quality’,’Names’]]
Output
Quality Names
0 Governance Ram
1 Archery Arjun
2 Flute Krishna
3 Trust Laxman

9.2.5 Adding Rows

One or more rows can be added or existing rows can be modified, using the following
methods.

(1) Add rows at the end of the dataframe object
data_frame.append(object, ignore_index)

object: Dictionary/Series/data_frame, containing the rows to be appended.
ignore_index: Ignores the source object indices when set to True.
Returns a dataframe after appending the rows.

180

Example

pandavas=pd.DataFrame({’Rno’:[1,2,3],

9 Data Manipulations with Pandas

’Names’:[’Dharma’,’Bheem’,’ Arjun’], ’Cgp’:[8.5, 8.2, 9.2]})

kouravas=pd.DataFrame({’Rno’:[1,2],

’Names’:[’Duryodhan’,’Dussasan’], ’Cgp’:[6.8, 6.1]})

pandavas=pandavas.append({'Rno’:6,

’Names’:’Karna’,’Cgp’:8.99}, ignore_index = True)
print(’Pandavas after appending one row :\n’, pandavas)
pandavas = pandavas.append(kouravas, ignore_index=True)
print(’Pandavas after appending with another dataframe :\n’,

pandavas)

Output

Pandavas after appending one row:

Pandavas after appending with another dataframe:

Rno Names Cgp
0 1 Dharma 8.50
1 2 Bheem 8.20
2 3 Arjun 9.20
3 6 Karna 8.99

Rno Names Cegp
0 1 Dharma 8.50
1 2 Bheem 8.20
2 3 Arjun 9.20
3 6 Karna 8.99
4 1 Duryodhan 6.80
5 2 Dussasan 6.10

(1) iloc() method replaces the row at the specified index if the row index exists.
Generates an error if the row index does not exist. The row index must be an

integer.

data_frame.iloc[row_index | = values_list

(iii) loc() method replaces the row at the specified index. Unlike iloc() method, no
error is generated if the row index does not exist. Row labels can be an integer
or non-integer.

data_frame.loc[row_label | = values_list

Example

iloc and loc

pandavas=pd.DataFrame({’Rno’:[1,2,3],

9.2 Dataframes 181

’Names’:[’Dharma’,’Bheem’,’ Arjun’], *Cgp’:[8.5, 8.2, 9.2]})
pandavas.iloc[1] = [40, Nakul’, 7.3]
print(’Pandavas after iloc :\n’,pandavas)
pandavas.loc[3] = [5, Sahadev’, 7.4]
print(’Pandavas after loc :\n’,pandavas)

Output

Pandavas after iloc:

Rno Names Cgp
0 1 Dharma 8.5
1 40 Nakul 7.3
2 3 Arjun 9.2

Pandavas after loc:

Rno Names Cgp
1 Dharma 8.5
40 Nakul 7.3
3 Arjun 9.2
5 Sahadev 7.4

W= O

(iv) Concatenating dataframes

Two or more dataframe objects can be concatenated to generate a new dataframe
object.

pandas.concat(dataframes_list, ignore_index, axis)

dataframes_list: Rows of the data frame objects in the list are concatenated
axis - 0 to perform vertical concatenation, 1 for horizontal concatenation
ignore_index: ignores the source dataframes indices when set to True
Returns a new dataframe after concatenation.

Example

concatenating dataframes

pandavas = pd.DataFrame({ ’Rno’: [1,2],
’Names’:[’Dharma’,’Bheem’], ’Quality’:[’Honesty’,’ Strength’]})

kouravas=pd.DataFrame({ ’Rno’:[1,2],
’Names’:[’Duryodhan’,’ Dussasan’],
’Quality’:[’ Arrogance’, Antagonist’] })

print(’ Vertical
concatenation:\n’,pd.concat([pandavas,kouravas],
ignore_index=True, axis=0))

print(’Horizontal
concatenation:\n’,pd.concat([pandavas,kouravas],
ignore_index=True, axis=1))

182 9 Data Manipulations with Pandas

Output

Vertical concatenation:

Rno Names Quality
0 1 Dharma Honesty
1 2 Bheem Strength
2 1 Duryodhan Arrogance
3 2 Dussasan ~ Antagonist

Horizontal concatenation:

0 1 2 3 4 5
0 1 Dharma Honesty 1 Duryodhan Arrogance
1 2 Bheem Strength 2 Dussasan Antagonist

9.2.6 Deleting Columns

One or more columns of a dataframe can be deleted using the following methods.
(1) pop() method deletes the specified column
data_frame.pop(’col_name’)

data_frame gets modified
Returns the deleted column values
Example

pandavas = pd.DataFrame({ 'Rno’: [1,2],
’Names’:[’Dharma’,’Bheem’], *Quality’:[’Honesty’,’ Strength’]})

print(’pop() method returns deleted column values :\n’,
pandavas.pop(’Rno’))

print(’Pandavas after delete :\n ’,pandavas)

Output

pop() method returns deleted column values:
0 1

1 2

Name: Rno, dtype: int64

Pandavas after delete:

Names Quality
0 Dharma Honesty
1 Bheem Strength

9.2 Dataframes

(i) drop() deletes one or more columns or rows of a dataframe.

data_frame.drop(col_row_names, axis, inplace)

col_row_names: List of columns or row labels to be deleted.
axis - specifies the axis, 1 for columns and O for rows.

inplace - if set to true, operation is done in the data_frame itself.
Returns the modified data_frame.

Example: Deleting columns

pandavas = pd.DataFrame({ Rno’: [1,2],

’Names’:[’Dharma’,’ Bheem’], ’Quality’:["Honesty’, Strength’]})
pandavas.drop([*Quality’ |, axis=1, inplace=Ture)
print(’Pandavas after delete :\n ’,pandavas)

Output

Pandavas after delete:

Rno Names

0 1 Dharma
1 2 Bheem
Example: Deleting rows

pandavas=pd.DataFrame({ ’Rno’:[1,2,3],

’Names’:[’Dharma’,’Bheem’,’ Arjun’]})
pandavas.drop([0,2], axis=0, inplace=True)
print(’Pandavas after deleting rows :\n ’,pandavas)
Qutput

Pandavas after deleting rows:

Rno Names
0o 2 Bheem

9.2.7 Renaming Column Names and Row Labels

Column names or row labels can be renamed using the following methods.
data_frame.rename(dict_obj, axis, inplace)

dict_obj - dictionary of old and new names as key-value pairs
axis - 0 for rows and 1 for columns
inplace - if set to true, operation is done in the data_frame itself

184 9 Data Manipulations with Pandas

Example

pandavas = pd.DataFrame({’Rno’: [1,2], 'Names’:[’'Dharma’,’Bheem’],
’Quality’:[’Honesty’,’ Strength’]})

print(’Column names : ’, pandavas.columns)

print’Row Labels: ’, pandavas.index)

pandavas.rename({'Rno’: Position’}, axis=1, inplace=True)

pandavas.rename({1: 'row2’}, axis=0,inplace=True)

print(’ After changing column and row label :\n’, pandavas)

Output

Column names : Index([’Rno’, "Names’, ’Quality’], dtype="object’)
Row Labels: RangeIndex(start=0, stop=2, step=1)
After changing column and row label:

Position Names Quality
0 1 Dharma Honesty
row2 2 Bheem Strength

9.2.8 Methods on Dataframes

The following methods give information and summary statistics of the dataframe
object.

(1) data_frame.info()

Displays information about the dataframe like rows labels, column names, and their
data types, number of non-null values in each column, memory used by the dataframe
etc.

Example

pandavas=pd.DataFrame({’Names’:[’Dharma’,’Bheem’,’ Arjun’],
"Cgp’:[8.5, 8.2, 9.2], ’Quality’:[’Honesty’,” Strength’,
"Wisdom’]})
print(pandavas.info())

Output

<class ’pandas.core.frame.DataFrame’ >
Rangelndex: 3 entries, 0 to 2
Data columns (total 3 columns):

9.2 Dataframes 185

Column Non-Null Count Dtype
0 Names 3 non-null object
1 Cgp 3 non-null float64
2 Quality 3 non-null object

dtypes: float64(1), object(2)
memory usage: 200.0+ bytes
None

(i) describe()

Displays statistical information about the dataframe like mean, min, max, count and
quartile values of numerical columns.

data_frame.describe(percentile = None, include = None,
exclude = None)

percentile: whether to return percentiles
include: List of data types to be included in the result.
Default is None. If None, it describes only numerical columns.
exclude: List of data types to be excluded in the result.
Default is None.
Example

print(pandavas.describe())
Output

Cgp
count 3.000000
mean 8.633333
std 0.513160
min 8.200000
25% 8.350000
50% 8.500000
75% 8.850000
max 9.200000

9.2.9 Functions on Columns

Following are the aggregation functions on one or more columns of a
dataframe like min, max, sum, mean. standard deviation, variance etc.

186 9 Data Manipulations with Pandas

Example

pandavas=pd.DataFrame({’Names’:[’Dharma’,’Bheem’,’ Arjun’],
"Cgp’:[8.5,8.2, 9.2], *Quality’:[’Honesty’,’ Strength’, *Wisdom’]})
print("Max values of Cgp & Quality :
\n’,pandavas[[’Cgp’,’ Quality’]].max())
print(’Min values of Cgp & Quality :
\n’,pandavas[[’Cgp’,’ Quality’]].min())
print(’Sum of Cgp : ’,pandavas[’Cgp’].sum())print(’ Average of Cgp :
” round(pandavas[’Cgp’].mean(),2))
print(’Standard Deviation of Cgp : ’,round(pandavas[’Cgp’].std(),2))
print(’ Variance of Cgp : ’,round(pandavas[’Cgp’].var(),2))

Output

Max values of Cgp & Quality :
Cgp 9.2
Quality Wisdom
dtype: object
Min values of Cgp & Quality :
Cgp 8.2
Quality Honesty
dtype: object
Sum of Cgp : 25.9
Average of Cgp : 8.63
Standard Deviation of Cgp : 0.51
Variance of Cgp : 0.26

9.2.10 Operators on Dataframes

Vectorization - Arithmetic and relational operators can be applied to the entire
columns of the dataframe called vectorization.

(a)
data_frame[col_x | operator data_frame[col_y]

operator: is applied on corresponding values of the operand vectors.
Returns a resultant vector.

(b)
data_frame[col_x | operator constant

constant is applied on every value of the operand vector col_x.
Returns a resultant vector.

9.3 Dataframes and Files 187

Example: Arithmetic operations

marks= pd.DataFrame({ "Maths’:[87,65,92,56], 'Python’:[76,83,69,88],
"English’:[88,90,79,77] })

marks[’Maths’] = marks[’Maths’] +3

marks[’Total’] = marks[’Maths’] + marks[’Python’] + marks[’English’]

print(’Result of Arithmetic operations :\n’, marks)

Output

Result of Arithmetic operations:

Maths Python English Total

0 90 76 88 254
1 68 83 90 241
2 95 69 79 243
3 59 88 71 224

Example: Relational operation

print(marks[marks[’Python’]>marks[’Maths’]])

Output
Maths Python English Total
1 68 83 90 241
3 59 88 77 224

9.3 Dataframes and Files

Data can be loaded from a file into a dataframe and vice versa. Common file formats
supported are CSV (Comma Separated Values), Excel, and JSON.

(i) Functions to load data from a file into a dataframe are

(a) data_frame = pandas.read_csv(’file_path’,names,header=None, usecols, nrows,
index_col, skiprows, dtypes)

188 9 Data Manipulations with Pandas

file_path: Location of the file

names: New column names

header: ‘Which row of the dataframe is to be treated None - no header in the file
as the header. Default is header=0.

usecols: List of columns to be loaded into the data_frame

nrows: Number of rows, from the beginning of the file,

to load into data_frame
index_col: ~ Column of the file to be used as row index
to data_frame
skiprows: ~ Number of rows to skip from the beginning
of the file
dtypes: Change data types of columns. Specify as dictionary

(b) pandas.read_excel(file_path’, sheet_name, names,header=None, usecols,
nrows, index_col, skiprows, dtypes)

sheet_name: List of sheets to be used. It can be specified either
as an index or sheet name.
All other arguments have the same meaning as in the read_csv() function.

(c) pandas.read_json(’file_path’)
(i1) Similarly, functions to save data of a dataframe into a file are

(a) data_frame.to_csv(’file_path’, columns, header, index, index_label)

file_path: File into which data_frame is to be saved
columns: List of columns to include in the file
header: True - column names to be included

in the output
False - column names are not included
in the output.
First row of data is treated as a header.
index: True / False — Skip index column in the output
index_label: Name of row index column

(b) data_frame.to_excel(file_path’, sheet_name, header, columns, index,
index_label)

(¢) data_frame.to_json(file_path’)

Note: When reading from CSV / Excel files, one additional Unnamed column is
created. This can be avoided by reading that as an index column with the following
argument.

index_col=[0]

9.3 Dataframes and Files

Example 1:

from operator import index
import pandas as pd
import numpy as np
data = pd.read_csv(’/content/sample_data/Housing.csv’, header=0,
nrows=5,usecols=["Price’,’ Area’,’BedRooms’],
names= ['Price’, Area’, 'BedRooms’],dtype={’Area’: np.int32})
print(’ Dataframe created from CSV file :\n’, data)
print(’Data types of columns :\n’, data.dtypes)
dataframe into Excel file
data.to_excel(’sample.xlIsx’, index_label="Row Label’)
read from Excel file
df_new=pd.read_excel(’sample.xIsx’,index_col=[0],header=0)
print(’ Dataframe created from Excel file :\n’,df_new)

Output
Dataframe created from CSV file :

Price Area BedRooms
13300000 7420
12250000 8960
12250000 9960
12215000 7500
11410000 7420

A~ LW = O
S bW s B

Data types of columns:

Price int64
Area int32
BedRooms int64

dtype: object
Dataframe created from Excel file:

Row Label Price Area BedRooms

0 13300000 7420 4

1 12250000 8960 4

2 12250000 9960 3

3 12215000 7500 4

4 11410000 7420 4
Example 2:

pandavas=pd.DataFrame({’Names’:[’Dharma’,’ Bheem’,’ Arjun’],

’Quality’:["Honesty’,’ Strength’, >"Wisdom’]})
pandavas.to_json(’sample.json’) # dataframe into JSON file
df = pd.read_json(’sample.json’) # read from JSON file

189

190 9 Data Manipulations with Pandas

print(’ Dataframe created from JSON file : \n’,df)
Output
Dataframe created from JSON file :
Names Quality
0 Dharma Honesty

1 Bheem Strength
2 Arjun Wisdom

9.4 User-Defined Modules

A Python module is a file that contains a Python script of related function definitions
and data. Modules provide reusability of code and partition the namespace. Python
modules can be of the following types

(i) Built-in modules are precoded modules that are built into the Python installation
package. For example, datetime, math, random etc.
(ii) User-defined modules are the modules defined by the users.

Create user-defined modules: Write the function definitions and data in a file using
any text editor and save the file with .py suffix. The modules need to be imported to
use the functions and data defined in the file. Once the module is imported, it becomes
a variable name. Hence, the module names cannot be reserved words. Functions and
data defined in the module become attributes of the module.

Example: areas.py file in Mymodules directory

pi=3.14
def cir_area(radius):
return pi*radius*radius
def tri_area(base, height):
return 0.5*base*height
def rect_area(breadth, length):
return breadth*height

(iii)) Using modules: Once the modules are created, the functions and variables
defined in the module can be used by importing them into the scripts. We can
import specific or all the functions and data of the module. Following are the
different ways of importing modules.

(1) import module_name

This does not import the individual functions. To use the function, qualify the function
name with the module name.

9.4 User-Defined Modules 191

Example

import math
print(math.sqrt(5))

Output
2.236

(2) import with renaming

import module_name as alias_name
Example

import math as m
print(m.sqrt(5))

Output
2.236

(3) import only specific functions

from module_name import fun_namel, fun_name?2. ..
Example

from math import sqrt, pow
print(pow(3,5))

Output
243.0

(4) import all functions of the module

from module_name import *
Example

from Mymodules.areas import *
print(cir_area(5))
print(tri_area(5,6)

Output

78.5
15.0

(iv) List the functions and data of a module

First import the module, then

dir(module_name)

192 9 Data Manipulations with Pandas

Example
dir(Mymodules.areas)
Output

)

cached__’,’ doc__’,’_ file_ ’,’_ loader_’,
’,’__spec__’, cir_area’, 'pi’, ‘rect_area’,

s bl

[’__builtins

__name__’, __package
’square_area’, 'tri_area’]

—

—

To see the descriptions and functions details of a module.
help('Mymodules.areas’)
Output

Help on module Mymodules.areas in Mymodules:
NAME
Mymodules.areas
FUNCTIONS
cir_area(radius)
rect_area(breadth, length)
square_area(side)
tri_area(base, height)
DATA
pi=3.14
FILE
C:\users\laksh\mymodules\areas.py

List the built-in modules
help(’modules’)
(v) Module Search
Python interpreter searches for the specified module in the following sequence

e Current directory from which the program executes
e If not found in the current directory, it searches in the list of directories specified
in the PYTHONPATH environment variable

If not found in PYTHONPATH, it searches in the list of directories configured
during Python installation

(vi) Reloading modules

If the module is already imported and the module is updated later, to use the newer
version, reload the module using

import importlib

importlib.reload(module_name)

9.5 Case Study: Data Manipulation and Analysis 193

Update the areas.py file by adding one more function for calculating the area of
square.

def square_area(side):
return side*side

Example

import importlib
importlib.reload(Mymodules.areas)
from Mymodules.areas import *
print(square_area(5))
print(pi)

Output

25
3.14

9.5 Case Study: Data Manipulation and Analysis

The mobile dataset contains sales data of mobiles of different companies. The data
includes different features of the mobile, like RAM, internal memory, dual sim,
and the price range of the mobile. The objective is to find the relationship between
different features of the mobile and its selling price. In this case study, we will use
this dataset to do data manipulation using the pandas library.

(i) Load the dataset into a dataframe.

import pandas as pd

df = pd.read_csv(’/content/sample_data/mobile_data.csv’)
print(’Dataset shape : °, df.shape)

print(’No. of rows :’,df.shape[0], * \nNo. of columns :’,df.shape[1])
print(’Column Names:\n’,df.columns)

Output

Dataset shape : (2000, 21)

No. of rows : 2000

No. of columns : 21

Column Names:

Index([’battery_power’, *blue’, clock_speed’, ’dual_sim’, ’fc’,
*four_g’,int_memory’, 'm_dep’, 'mobile_wt’, 'n_cores’, 'pc’, 'px_height’,
‘px_width’, 'ram’, ’sc_h’, ’sc_w’, "talk_time’, ’three_g’,’touch_screen’, *wifi’,
’price_range’],dtype="object’)

(i) Check the datatypes of the attributes/columns.
df.dtypes

194 9 Data Manipulations with Pandas

Output
battery_power int64
blue int64
clock_speed float64
dual_sim int64
fc int64
four_g int64
int_memory int64
m_dep float64
mobile_wt int64
n_cores int64
pc int64

px_height int64
px_width int64

ram int64
sc_h int64
SC_W int64
talk_time int64
three_g int64
touch_screen int64
wifi int64

price_range int64
dtype: object

Even though the data types are integer & float, some attributes are not continuous.
Attributes with few unique values can be considered categorical.

(iii) Let us find the attributes with less than six unique values. These can be consid-
ered categorical.

import numpy as np
cat_cols =[]
print(’ Columns with less than six unique values:”)
for col in df.columns:
n = len(np.unique(dffcol]))
if n<=5:
print(’ ’,col,n)
cat_cols.append(col)

Output

Columns with less than six unique values:
blue 2
dual_sim 2
four_g 2
three_g 2
touch_screen 2

9.5 Case Study: Data Manipulation and Analysis 195
wifi 2
price_range 4

(iv) The above attributes are binary except, price_ range. Let us take only those
binary attributes.

Remove price_range from cat_cols
idx = cat_cols.index(’price_range’)
cat_cols.pop(idx)

print(’Binary attributes:\n’,cat_cols)

Output

Binary attributes:
[’blue’, *dual_sim’, *four_g’, "three_g’, "touch_screen’, *wifi’]

(v) Let us check the values of these binary attributes.
print(’Binary attributes values:\n’,df[cat_cols].head())

Output

Binary attributes values:

blue dual_sim four_ three_g touch_screen wifi
0 0 0 0 0 0 1
1 1 1 1 1 1 0
2 1 1 1 1 1 0
3 1 0 0 1 0 0
4 1 0 1 1 1 0

(vi) It shows that the binary values are numeric 0/1 . Let us convert these binary
numeric values 0/1 to No/Yes.

for col in cat_cols:
df[col] = df[col].map(0:’No’, 1:’Yes’)
print(’ After conversion :\n’,df[cat_cols].head())

Output

After conversion :

blue dual_sim four_g three_g touch_screen wifi

0 No No No No No Yes
1 Yes Yes Yes Yes Yes No
2 Yes Yes Yes Yes Yes No
3 Yes No No Yes No No
4 Yes No Yes Yes Yes No

196 9 Data Manipulations with Pandas

(vii) After the conversion, the data types of binary attributes are changed to object
type.
print(’Data types of binary attributes:\n’,df[cat_cols].dtypes)

Output

Data types of binary attributes:

blue object
dual_sim object
four_g object
three_g object
touch_screen object
wifi object

dtype: object

(viii) Let us count the unique values in each binary attribute.

for col in cat_cols:
print(’ Column Name :’,col)
print(df[col].value_counts())

Output
No 1010
Yes 990
Name: blue, dtype: int64
Yes 1019
No 981
Name: dual_sim, dtype: int64
Yes 1043
No 957
Name: four_g, dtype: int64
Yes 1523
No 477
Name: three_g, dtype: int64
Yes 1006
No 99%4
Name: touch_screen, dtype: int64
Yes 1014
No 986

Name: wifi, dtype: int64
Note: value_counts() function returns a series object, which is an integer datatype.

(ix) Let us find the minimum and maximum values of non-binary attributes and
create a new dataframe with these values.

9.5 Case Study: Data Manipulation and Analysis 197

cols = df.columns

non_cat_cols= [col for col in cols if col not in cat_cols]

Create a dataframe to contain min & max values
min_max_df = pd.DataFrame()

min_max_df[’Min Value’] = df[non_cat_cols].apply(np.min)
min_max_df[’Max Value’] = df[non_cat_cols].apply(np.max)
min_max_df.index=non_cat_cols

print(min_max_df)

Output
Min Value Max Value

battery_power 501.0 1998.0
clock_speed 0.5 3.0
fc 0.0 19.0
int_memory 2.0 64.0
m_dep 0.1 1.0
mobile_wt 80.0 200.0
n_cores 1.0 8.0
pc 0.0 20.0
px_height 0.0 1960.0
px_width 500.0 1998.0
ram 256.0 3998.0
sc_h 5.0 19.0
SC_W 0.0 18.0
talk_time 2.0 20.0
price_range 0.0 3.0

(x) px_width and px_height attributes can be combined into a single attribute, say
resolution. First, let us change the data type of these attributes to string. This
conversion is done so that the values in the resolution column are in a standard
format.

change the datatypes to string

df[’px_height’]=df[px_height’].astype(str)
df[’px_width’]=df[’px_width’].astype(str)

print(’ After changing the data types:\n’,df[[’px_height’, px_width’]].dtypes)

Output

After changing the data types:
px_height object
px_width object
dtype: object

(xi) Create anew column called resolution and drop px_width & px_height columns.

198 9 Data Manipulations with Pandas

df[’resolution’]= df[’px_width’]+ x *+df["px_height’]
remove 'px_width’,px_height’ columns
df.drop([’px_width’,’px_height’], axis=1, inplace=True)
print(’Display first five values of "resolution” column
\n’,df[['resolution’]].head())

Output

Display first five values of "resolution" column

resolution
0 756x20
1 1988 x 905
2 1716 x 1263
3 1786 x 1216
4 1212 x 1208

Exercises

1. Read data from CSV file into a dataframe and perform the following operations

(a) Create a dataframe with all float columns only
(b) Find the mean and standard deviation of each column

2. Create a dataframe of fruits with the columns as Name, Unit price, and Quantity
by taking the input from the user. Perform the following operations

(a) Add the amount’ column by multiplying Unit price with Quantity.
(b) Write the data frame into a JSON file named, Fruits.

3. Read data from excel file containing RNo, Name, and marks in three subjects:
Python, Java & Maths, of 10 students. Perform the following operations

(a) Add total marks column with a total of Python, Java, and Maths marks.
(b) Create a CSV file with only those students whose total is more than 200 marks.

4. Create a dataframe with the name and mail Id by taking values from the user.
Create two file

(a) Gmails.csv - rows with gmail IDs
(b) Others.csv - remaining rows.

5. Afile contains marks in Python, and Java of 10 students. The second file contains
Maths, and English marks of the same students. Perform the following operations

(a) Create a dataframe containing all four subject marks
(b) Add a total column with a total of all four subject marks
(c) Create a file where total marks are more than average.

Review Questions 199
Review Questions

Consider the following data frame named, df, for questions 1 to 5.

Product Price

0 Laptop 1200
1 Printer 150
2 Tablet 300
3 Desk 450
4 Chair 200

(1) What is the output of

df.size

(@ 5
(b) 4
(c) 10
(d) 6

(2) What is the output of

len(df[df[’Price’]>400])
(@) 1
(b) 2
(c) 3
(d) Generates Error

(3) What is the output of

df[’Product’].max()

(a) Tablet
(b) Desk
(¢) Chair
(d) Printer

(4) What is the output of

df.loc[2] = ['Desktop’, 1300]
print(df.shape)

(a) (5,2)
(b) (4.2)
(c) (6.2)
(d) (5.3)

200 9 Data Manipulations with Pandas

(5) What is the output of

print(len(df.columns))

(a) 3
(b) 2
© 5
(d) 4

(6) Which of the following is not true about the dataframes

(a) Dataframe can have one column

(b) Dataframe can be empty

(¢) Rows of a dataframe have labels

(d) Row labels of dataframe can be only integers

(7) Which of the following method is used to delete a column of a dataframe

(@) del()
(b) delete()
(¢) pop()
(d) remove()

(8) Method to display first five rows of a table

(a) head()
(b) head(5)
(c) first(5)
(d) Botha&b

(9) Method to write data from dataframe into CSV file

(a) df.read_csv()
(b) pd.read_csv()
(c) df.to_csv()
(d) pd.to_csv()

(10) Which of the following is not an attribute of a dataframe

(a) Size
(b) len()
(¢) ndim
(d) dtypes

Chapter 10)
SQLite3 ot

To manage large volumes of data, it has to be stored in an organized and structured
fashion so that it is easy to access and manipulate the data. A database management
system (DBMS) is a software system for storing, retrieving, and manipulating data
in the database. Different types of DBMS are Relational databases, Hierarchical
databases, Network databases, etc. Relational database management systems orga-
nize data in the form of tables. Each table consists of columns representing attributes
(property) and rows representing values of the attributes. Popular relational database
systems are Oracle, MySQL, PostgreSQL, IBM DB2, SQLite, etc. SQL is a struc-
tured query language used to store, retrieve, and manipulate data stored in relational
databases.

Sqlite3 is a file-based relational database management system where data is stored
in a flat-file. It is simple to create and use the database. Though it is not a full-featured
database, it offers a large set of standard SQL commands and is ideal for beginners.
Python provides a Sqlite3 module that implements SQL-based database management
systems.

Working with SQLite database requires the following steps:

(1) Import sqlite3 module.

import sqlite3
(2) Establish connection to the database by opening the database file using connect
method.

connection_obj = sqlite3.connect(‘database_name’)

© The Author(s) 2024 201
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10
https://doi.org/10.1007/978-3-031-52473-8_10

202 10 SQLite3

3

“

10

Co

The method takes the database name as the parameter and returns the connection
object. In case the database name does not exist, a new database file is created.
Create a cursor object on the connection object. The cursor object acts as an
interface between the SQLite database and SQL query.

cursor_object = connection_obj.cursor()
SQL queries are executed using the execute method on the cursor object or
connection object.

cursor_object.execute(sql_query)
connection_object.execute(sql_query)

sql_query is specified as string
Returns the query result as a set of records.
The result set can be accessed using the following fetch methods:

fetchall()—Returns all the remaining records of the result set.
fetchone()—Returns the current record of the result set.
Sfetchmany(size)—Returns the next size number of records of the result set.

Note: When the execute method is called on a connection object, an intermediate
cursor object is created to execute the query.

.1 SQL Commands

mmands to interact with SQLite3 databases are similar to standard SQL com-

mands. The commands can be categorized into

10

.1.1 Data Definition Language (DDL)

Relational database consists of a set of tables. Each table is defined by columns
representing the attributes and records/rows containing values of the attributes.

tab
col

(i

DDL commands include creating a new table, altering the structure of existing
les by adding/deleting columns, deleting tables, renaming tables and renaming
umn names, etc.

) Create a new table

CREATE TABLE table_name (coll datatype, col2 datatype. . .)

10.1 SQL Commands 203

coll, col2...: Names of the columns.
Names are case insensitive
datatype: Data type of the values in the column.

The supported data types are integer, real, text, blob, NULL.
Optional parameters are

default: Default value for each row of the column.

NOT NULL indicating that the value of the column
cannot be null.

PRIMARY KEY of the table. The values should be
unique/distinct.

(ii) Alter structure of an existing table
a. Add a new column to the table

ALTER TABLE table_name ADD COLUMN col_name datatype
[DEFAULT value PRIMARY KEY NOT NULL]

b. Remove a column

ALTER TABLE table_name DROP COLUMN col_name
c. Rename table name

ALTER TABLE table_name RENAME TO new_table_name
d. Rename column(after sqlite version 3.25)

ALTER TABLE table_name RENAME COLUMN col_name TO
new_col_name

(iii) Delete the existing table from the database
DROP TABLE [IF EXISTS] database_name.table_name

Generates an error if the table does not exist.

IF EXISTS is optional. When specified in the command, no error is generated
even if the table does not exist.

Only one table can be deleted using the command. To remove multiple tables,
use multiple drop commands.

204 10 SQLite3

10.1.2 Data Manipulation Language (DML)

Data manipulation commands include inserting, deleting, or modifying records/rows
of the table.

(i) Insert rows into a table
a. Insert single row as per columns order in the table
INSERT INTO table_name VALUES (column_values)
b. Insert multiple rows as per columns order in the table.

INSERT INTO table_name VALUES (column_values),
(column_values), (column_values). . .

c. Insert rows as per column list order specified in the command.

INSERT INTO tablel_name (col_list) VALUES (values_list)

(ii) Update or modify a record of a table
a. Update a single column that satisfies the condition.
UPDATE table_name SET coll=new_value WHERE condition
b. Update multiple columns that satisfies the condition.

UPDATE table_name SET coll=new_value, col2= new_value . ..
WHERE condition

(iii) Delete records of a table
a. Delete one or more rows satisfying the condition
DELETE FROM table_name WHERE condition
b. Delete all rows

DELETE FROM table_name

All rows are deleted but the table structure exists.

10.1 SQL Commands 205

10.1.3 Data Query Language (DQL)

select statement retrieves records from one or more tables.

SELECT column_names FROM table_names WHERE condition
ORDER BY col_name ASC/DESC, col_name ASC/DESC. ..
GROUP BY col_names

column_names: Columns in the result set.
table_names: Table names separated by commas.
Records are drawn from multiple tables using
join operation.
condition: selects those rows that satisfy the condition

Sorts the result set as per columns specified in ORDER BY clause in ascending
(ASC) or descending (DESC) order.

Records are grouped based on each distinct value of the column specified in the
GROUP BY clause. Aggregate functions like min(), max(), avg(), sum(), count(),
etc. are applied on each group resulting in a value.

10.1.4 Examples

con = sqlite3.connect(‘course.db’)
cur = con.cursor()

(i) Create a new table named student

cur.execute(‘CREATE TABLE student(Rno INTEGER NOT
NULL, Name TEXT DEFAULT “XYZ”)’)
cur.execute(‘CREATE TABLE marks(Rno INTEGER NOT NULL,
Python INTEGER DEFAULT 0,
Maths INTEGER DEFAULT 0)’)

Output
sqlite3.Cursor object at 0x00000299AEADD 140>
(ii) Set of tables of the database can be obtained using
print(cursor.execute(“select name from sqlite_master where
type=‘table”’).fetchall())
Output

[(‘student’,), (‘marks’,)]

206 10 SQLite3

(iii) Table description specifies column number, column names, data types, whether
value can be NULL, default value, and whether the column defines the primary
key. The following query gives the table description:

cur.execute(“pragma table_info(student)”).fetchall()

Output

[(0, ‘Rno’, INTEGER’, 1, None, 0),
(1, ‘Name’, ‘TEXT’, 0, “XYZ"’, 0)]

(iv) Inserting rows into the table

insert single row

cur.execute(‘INSERT INTO student VALUES(1, “Dharma”)’)

insert multiple rows

cur.execute(‘INSERT INTO student VALUES(1, “Dharma”),
(2, “Bheem™)’)

insert single column value, the other column takes default

value

cur.execute(‘INSERT INTO student (Rno) VALUES(3),(4)")

(v) Retrieving record from the table using select query

result = cur.execute(‘SELECT * FROM student’)
print(‘First record : ’,result.fetchone())
print(‘Next two records : ’,result.fetchmany(2))
print(‘Remaining records ’,result.fetchall())

Output

First record : (1, ‘Dharma’)
Next two record : [(1, ‘Dharma’), (2, ‘Bheem’)]
Remaining records : [(3, ‘XYZ’), (4, ‘XYZ’)]

(vi) Adding new column named phone

cur.execute(“ALTER TABLE student ADD COLUMN phone
INTEGER DEFAULT 1234”)

print(‘Table description after adding new column- phone : *)

print(cur.execute(“pragma table_info(student)”).fetchall())

print(‘Records of the table :’)

print(cur.execute(“‘select * from student”).fetchall())

Output

Table description after adding new column- phone :
[(0, ‘Rno’, ‘INTEGER’, 1, None, 0), (1, ‘Name’, ‘TEXT’, 0,
“XYZ, 0), (2, ‘phone’, INTEGER’, 0, ‘1234°, 0)]

10.1 SQL Commands 207

Records of the table:
(1, ‘Dharma’, 1234), (1, ‘Dharma’, 1234), (2, ‘Bheem’, 1234),
(3, ‘XYZ’, 1234), (4, XYZ’, 1234)]

(vii) Rename column phone to Mobile

cur.execute(‘ALTER TABLE student RENAME COLUMN phone
TO Mobile’)
print(cur.execute(‘PRAGMA table_info(student)’).fetchall())

Output

(0, ‘Rno’, ‘INTEGER’, 1, None, 0), (1, ‘Name’, ‘TEXT’, 0,
“XYZ”, 0), (2, ‘Mobile’, INTEGER’, 0, 1234’, 0)]

(viii) Delete the records satisfying the condition

delete rows from table

cur.execute(‘DELETE FROM student WHERE Name="“Dharma”’)
print(“Records after deleting Dharma :)

print(cur.execute(“select * from student”).fetchall())

Output

Records after deleting Dharma :
(2, ‘Bheem’, 1234), (3, ‘XYZ’, 1234), (4, ‘XYZ’, 1234)]

Note: If where clause is not specified, all the records are deleted.
(ix) Update values of Name column

nml, nm2 = input(‘Enter names of Rno 3 & 4 separated by
space’).split()

cur.execute(‘UPDATE student SET Name= ?
WHERE Rno==?", (nml,3))

cur.execute(‘UPDATE student SET Name= ?
WHERE Rno==?", (nm2,4))

print(‘Records after update :\n’,cur.execute(‘SELECT *
FROM student’).fetchall())

Output

Enter names of Rno 3 & 4 separated by space Nakul Sahadev
Records after update :
[(2, ‘Bheem’, 1234), (3, ‘Nakul’, 1234), (4, ‘Sahadev’, 1234)]

208 10 SQLite3

(x) Delete column

cur.execute(‘ALTER TABLE student DROP COLUMN mobile’)

print(‘After deleting mobile column : \n’,cur.execute(‘PRAGMA
table_info(student)’).fetchall())

print(‘Sorting records by Name :\n’)

cur.execute(‘SELECT * FROM student ORDER BY Name
DESC’).fetchall()

Output

After deleting mobile column :

[(0, ‘Rno’, ‘INTEGER’, 1, None, 0), (1, ‘Name’, ‘TEXT", 0,
‘66XYZ”?’O)]

Sorting records by Name :

(4, ‘Sahadev’), (3, ‘Nakul’), (2, ‘Bheem’)]

(xi) Change table name to students_info

cur.execute(‘ALTER TABLE student RENAME TO
students_info’)

print(‘List of tables in the database:\n”)

cur.execute(‘SELECT name FROM sqlite_master’).fetchall()

Output

List of tables in the database:
[(‘students_info’,), (‘marks’,)]

(xii) Delete table from database

cur.execute(‘DROP TABLE students_info’)
print(“List of tables in the database:)
cur.execute(‘SELECT name FROM sqlite_master’).fetchall()

Output

List of tables in the database:
[(‘marks’,)]

(xiii) Aggregate functions

cur.execute(‘CREATE TABLE performance(Rno INTEGER,
Family TEXT, Marks INTEGER)’)
take data from file into dataframe

10.1 SQL Commands 209

df1= pd.read_csv(‘/content/sample_data/performance.csv’)
records formed from dataframe
records = dfl.itertuples(index=False, name=None)
result = list(records)
insert many records
cur.executemany(‘insert into performance values(?,?,?)’, result)
cur.execute(‘select * from performance’).fetchall()
cur.execute(‘select round(avg(Marks),2) , sum(Marks),
Family from performance group by Family’).fetchall()

Output

[(5, ‘pandavas’, 85),

(1, ‘pandavas’, 78),

(3, ‘pandavas’, 91),

(2, ‘pandavas’, 82),

(4, ‘pandavas’, 79),

(6, ‘kouravas’, 93),

(8, ‘kouravas’, 67),

(7, ‘kouravas’, 69)]

[(76.33, 229, ‘kouravas’), (83.0, 415, ‘pandavas’)]

(xiv) Accessing records from multiple tables

df1 = pd.read_csv(‘/content/sample_data/sampl.csv’)

dfl.to_sql(‘samp1’, con, index=False)

df2= pd.read_csv(‘/content/sample_data/samp2.csv’)

df2.to_sql(‘samp?2’, con, index=False)

print(cur.execute(‘select * from samp1’).fetchall())

print(cur.execute(‘select * from samp2’).fetchall())

join on Rno and extract Name from sampl & Marks from

samp2

print(cur.execute(‘select samp1.Name, samp2.Marks from
samp] inner join samp2 on
sampl.Rno=samp2.Rno’).fetchall())

Output

[(1, ‘Ram’), (2, ‘Bheem’), (3, ‘Shyam’), (4, ‘“Tom’)]
[(3,78), (2, 87), (1, 98), (4, 76)]
[(‘Ram’, 98), (‘Bheem’, 87), (‘Shyam’, 78), (‘Tom’, 76)]

(xv) To obtain the number of rows inserted, deleted, or modified since the connec-
tion was open, use the following method:

con.total_changes()

210 10 SQLite3

Output: 9
(xvi) The transactions should be committed. Otherwise, the changes are not saved
in the database and not visible to other database connections.

con.commit()
(xvii) Once done with the operations on the database, close the connection using

con.close()

10.2 Case Study: Database Creation and Operations

Consider the following files containing information about the students.

details.csv: The file contains student details like Roll No., Name, and Mail_id of
students.

seml.csv, sem2.csv, sem3.csv: Each file contains Roll No. and grade points obtained
by the student in the corresponding semester.

Create a database of tables, one table for each file. Apply the following sqlite3
functions, like creating a new table by joining the existing tables and data analysis
queries, etc.

(i) Read the contents of each file into a dataframe.

import pandas as pd

df details =
pd.read_csv(‘/content/sample_data/Marks/details.csv’)

df seml =
pd.read_csv(‘/content/sample_data/Marks/sem1.csv’)

df sem2 =
pd.read_csv(‘/content/sample_data/Marks/sem2.csv’)

df_sem3 =
pd.read_csv(‘/content/sample_data/Marks/sem3.csv’)

(i) Open the database and create a cursor to execute the queries.

#import the module

import sqlite3

con = sqlite3.connect(‘performance.db’)
cur = con.cursor()

New database with name, performance.db, is created, if it does not exist.

10.2 Case Study: Database Creation and Operations 211

(iii) Display the tables of the database.

print(cur.execute(“‘select name from sqlite_master where
type="‘table’””).fetchall())

Output
[]

As a new database is created, it contains no tables.
(iv) Create tables from the data frames.

df_details.to_sql(‘details’, con, index=False)
df_seml.to_sql(‘sem1’, con, index=False)
df_sem?2.to_sql(‘sem?2’, con, index=False)
df_sem3.to_sql(‘sem3’, con, index=False)

(v) After creating the tables, display the tables in the database.

print(cur.execute(‘‘select name from sqlite_master where
type=‘table”’).fetchall())

Output
[(‘details’,), (‘sem1’,), (‘sem2’,), (‘sem3’,)]
(vi) Display table descriptions.

print(‘Description of the table- details:”)
print(cur.execute(“pragma table_info(details)”).fetchall())
print(‘Description of the table- sem1:”)
print(cur.execute(“pragma table_info(sem1)”).fetchall())
print(‘Description of the table- sem?2:”)
print(cur.execute(“‘pragma table_info(sem?2)”).fetchall())
print(‘Description of the table- sem3:”)
print(cur.execute(“pragma table_info(sem3)”).fetchall())

Output

Description of the table- details:
[(0,'Rno’, INTEGER’, 0, None,0),(1, ‘Name’, “TEXT’,0, None,0),
(2, ‘Mail_id’, “TEXT’, 0, None, 0)]
Description of the table- seml:
[(0, ‘Rno’, INTEGER’, 0, None, 0),
(1,'sem1_gp’, ‘REAL’, 0, None, 0)]
Description of the table- sem?2:
[(0,'Rno’, INTEGER’,0, None, 0),
(1, ‘sem2_gp’, ‘REAL’,0, None, 0)]
Description of the table- sem3:
[(0,'Rno’, INTEGER’, 0, None, 0),
(1, ‘sem3_gp’, ‘REAL’, 0, None, 0)]

212 10 SQLite3

(vii) Create a new table, marks, by joining the four tables on the Rno column.

cur.execute(‘CREATE TABLE marks AS select a.Rno,a.Name,
b.Seml_gp, c.Sem2_gp, d.Sem3_gp from details a INNER JOIN
seml b on a.Rno=b.Rno INNER JOIN sem?2 ¢ on a.Rno=c.Rno
INNER JOIN sem3 d on a.Rno=d.Rno’)

Output
<sqlite3.Cursor at 0x7f55a6a59ce0>

(viii) Display the tables of the database after creating the marks table.

print(“Tables of the database’)
print(cur.execute(‘‘select name from sqlite_master where
type="‘table””).fetchall())

Output

Tables of the database
[(‘details’,), (‘sem1’,), (‘sem?2’,), (‘sem3’,), (‘marks’,)]

(ix) Fetch first record of the marks table.

cur.execute(‘select * from marks’).fetchone()

Output
(222010401002, ‘Boyapalli Sreenath Reddy’, 8.59, 8.66, 8.77)
(x) Extract and display the toppers of each semester.

sem|_topper = cur.execute(‘select Name, max(Sem1_gp)
from marks’).fetchall()

print(‘Sem1 Topper : ’,sem]1_topper)

sem?2_topper = cur.execute(‘select Name, max(Sem?2_gp)
from marks’).fetchall()

print(‘Sem2 Topper : °,sem?2_topper)

sem3_topper = cur.execute(‘select Name, max(Sem3_gp)
from marks’).fetchall()

print(‘Sem3 Topper : °,sem3_topper)

Output

Sem1 Topper : [(‘Vijay Paul Reddy Nakkala’, 9.68)]
Sem?2 Topper : [(‘Kaila Kavya’, 9.2)]
Sem3 Topper : [(‘Chittimalla Aravind’, 9.6)]

10.2 Case Study: Database Creation and Operations 213

(xi) Extractthe students who scored more than 9 grade points in all three semesters.

all_above9 = cur.execute(‘select Rno, Name, Sem1_gp, Sem2_gp,
Sem3_gp from marks where (Sem1_gp>=9 and Sem2_gp>=9
and Sem3_gp>=9)’).fetchall()
print(‘Students who scored more 9 grade point in all
three semesters:’)
for student in all_above9:
print(‘ ’,student)

Output

Students who scored more 9 grade point in all three semesters:
(222010401004, ‘Kaila Kavya’, 9.43, 9.2, 9.33)
(222010401031, “Chittimalla Aravind’, 9.14, 9.11, 9.6)

(xii) Extract students who got zero grade points in any of the semesters.

gp_0 = cur.execute(‘select * from marks where (Sem1_gp=0
or Sem?2_gp=0 or Sem3_gp=0)’).fetchall()
print(‘Students who scored 0 grade point in any of the
3 semesters:’)
for student in gp_0:

print(‘ ’, student)

Output

Students who scored 0 grade point in any of the 3 semesters:
(222010401030, ‘Vadde Shirisha’, 8.35, 8.14, 0.0)
(222010401032, ‘Rishi Kanth Reddy’, 8.46, 7.82, 0.0)
(222010401037, ‘Nallama Veena Anusha’, 7.0, 0.0, 0.0)
(222010401047, ‘Rakesh Daddali’, 7.43, 0.0, 7.7

(xiii) Create a new column, Average_gp, in the marks table containing an average
of three-semester grade points.

(a) Calculate the average grade point for the three semesters.

avg_gp = cur.execute(‘select Rno,
round((Sem1_gp+Sem2_gp + Sem3_gp)/3,2)
from marks ’).fetchall()

(b) Add the new column.

cur.execute(‘ALTER TABLE marks ADD COLUMN
Average_gp REAL).fetchall()
cur.execute(“pragma table_info(marks)”).fetchall()

214 10 SQLite3

Output

[(0, ‘Rno’, ‘INT’, 0, None, 0),
(1, ‘Name’, ‘TEXT’, 0, None, 0),
(2, ‘seml_gp’, ‘REAL’, 0, None, 0),
(3, ‘sem2_gp’, ‘REAL’, 0, None, 0),
(4, ‘sem3_gp’, ‘REAL’, 0, None, 0),
(5, ‘Average_gp’, ‘REAL’, 0, None, 0)]

(c) Update the column with the calculated average grade point.

for val in avg_gp:
cur.execute(‘UPDATE marks SET Average_gp=? where
Rno=?",[val[1],val[0]])

(d) Display the first three records after updating the Average_gp
column.

results = cur.execute(‘select * from marks’).fetchmany(3)
for record in results:
print(record)

Output

(222010401002, ‘Boyapalli Sreenath Reddy’, 8.59, 8.66,
8.77, 8.67)

(222010401003, ‘Adnan Yacoob Mohammed’, 7.84, 7.93,
7.98,7.92)

(222010401004, ‘Kaila Kavya’, 9.43, 9.2, 9.33, 9.32)

Exercises

1. Create a database named branch with the following tables:

Student table with Rno, Name, e_mail
Marks table with Rno, Python_marks, Maths_marks (max 100)

2. Perform the following operations:

Insert 10 rows in Student table by taking values from the user.

Insert 10 rows in Marks table from the .CSYV file.

Add a column Total that sum up Python and maths marks.

Display the students whose total is more than 150 out of 200.

Find the student with highest total and display his name and e_mail.

Add a grace mark of 5 to the students who scored less than 50 in each subject.

SNl

Review Questions 215

Review Questions

ey

(@)

3

“)

®)

(6)

(7

sqlite3is a c.cevvennennnene based database management system.

(a) File

(b) Object

(c) Relational object
(d) Hierarchical

.................. method is used to create a database in sqlite3.

(a) Create()
(b) Connect()
(¢) Open()
(d) execute()

Identify the correct statement about importing sqlite3 module.

(a) import sqlite3
(b) import Sqlite

(c) import SQLite3
(d) import SQLITE3

.................. object acts as an interface between sqlite3 database and SQL query.

(a) Execute
(b) Cursor
(c) Connect
(d) Sqlite

............... method of sqlite3 is used to access the result of a SQL query.

(a) fetchall()
(b) select()
(c) fetch()
(d) get()

Find out a DDL command from the following.

(a) INSERT
(b) UPDATE
(c) ALTER

(d) SET

Identify the correct syntax of connecting databases in sqlite3.

(a) sqlite.connect()

(b) sqlite.connect.‘database’
(c) sqlite3.connect(‘database’)
(d) sqlite(‘database’)

216 10 SQLite3

(8) Thecccevveveeennen command is used to alter the structure of an existing table.

(a) CREATE
(b) DELETE
(c) UPDATE
(d) ALTER

(9) To retrieve one or more records from database table statement is
used.

(a) RETRIEVE
(b) EXECUTE
(c) SELECT
(d) RUN

(G 10) statement is used to change a column value based on condition.

(a) SELECT
(b) UPDATE
(c) ALTER
(d) DROP

Chapter 11 ®)
Regular Expressions e

Regular expression is a sequence of characters that defines a search pattern in the
given text. These are used in pattern matching, pattern finding, and replacing in the
given text. Regular expressions may contain meta characters and special sequences
that have special meaning in defining a pattern. Regular expressions are commonly
used in natural language processing tasks like data validations, data filtering and
cleaning, web scraping, etc.

Python provides re module to work with regular expressions. The re module
provides the following functions:

(i) search()
(ii) sub()
(iii) subn()
(iv) findall()
(v) split()

First, import the re module to use the functions
import re

In addition to the characters, regular expressions may include meta characters and
special sequences to define the pattern.

11.1 Meta Characters and Special Sequences

(i) e matches any single character except new line (\n) in that position

e.g., .ock matches lock, mock, rock, sock. . .
(i) * matches zero or more occurrences of the character preceding it

e.g., a*z matches z, az, aaz, aaaz. ..

© The Author(s) 2024 217
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11
https://doi.org/10.1007/978-3-031-52473-8_11

218 11 Regular Expressions

(iii)) + matches one or more occurrences of the character preceding it

e.g., a+z matches az, aaz, aaaz. ..
(iv) ? matches zero or one occurrences of character preceding it

e.g., a?z matches z, az
(v) {n} to repeat the left character n times

e.g., a{2}z matches aaz
(vi) {nl1,n2} to repeat the character left to it- at least n1 times and atmost n2 times

e.g., a{3,5}z matches aaaz, aaaaz, aaaaaz
(vii) [] matches any characters specified in square brackets. Set of characters
can be specified either as individual characters or as a range.

e.g., [crmpb]Jat matches cat, rat, mat, pat, bat

[b-h]at matches any character from b to h
bat, cat, dat, eat, fat, gat, hat
(viii) " can be used inside [] to match characters other than those specified.
(ix) \d Matches any single decimal digit. It is same as [0-9].

e.g., 9\d matches 90,91,92,...99
(x) \D Matches any single character other than the decimal digit. It is same as
[*0-9].
(xi) \s Matches any single white space like space, tab, carriage return, form feed,
new line character.
(xii) \S Matches any single non-white space character.

e.g., A\s\d matches A followed by any white space followed by a digit.
(xiii) \w Matches any single alphanumeric characters, i.e., alphabets, digits, and
underscore.

e.g., A\w matches A followed by any alphabet or digit or underscore
(xiv) \W Matches any non-alphanumeric character.
(xv) $ Checks if the string ends with the pattern preceding dollar symbol.
(xvi) * Checks if the string starts with the pattern following caret symbol.

Example

greet = “Python is a high level language”
print(re.search(‘language$’, greet))
print(re.search(“*Python’, greet))

Output

<re.Match object; span=(23, 31), match="‘language’ >
<re.Match object; span=(0, 6), match="‘Python’ >

11.2 Functions on Regular Expressions 219

(xvii)] The operator matches either of the operands.
Example
fruits = “Banana Rs40, Apples $10, Oranges Rs55 Mango $11”
print(re.findall(“Rs\d+\$\d+",fruits))
QOutput
[‘Rs40’, ‘$10°, ‘Rs55°, ‘$11°]

(xviii) () Group the patterns by enclosing each pattern in ().
(xix) \ Isanescape character. The character followed by \ has no special meaning.

Special sequences

(1) \A Returns a match if the sequence following it is, at the beginning of the
string.
(i) \Z Returns a match if the sequence preceding it, is at the end of the string.
(iii)) \B Returns a match if the sequence following it, is at the end of the word.

11.2 Functions on Regular Expressions

re module of Python provides the following functions to work with regular expres-
sions.

(i) split() function splits the input string wherever the pattern occurs in the string.

re.split(pattern, input_string, max_split)

pattern Regular expression that defines the separator
for the split.

input_string Input string to be split.

max_split Maximum number of splits that can occur.

It is optional and default is all possible splits.
Returns list of substrings.

220

—

1 Regular Expressions

Example

make two splits by space

feature = “Python is a dynamically typed language”
words = re.split(‘\s’,feature,2)

print(“Two splits by space :\n”, words)

split by pattern

fruits = “Banana 40Rs.Apples 65Rs.Oranges 55”
print(“Split by a pattern : 7, re.split(“Rs.”, fruits))

Output

Two splits by space :
[‘Python’, ‘is’, ‘a dynamically typed language’]
Split by a pattern : [‘Banana 40°, ‘Apples 65°, ‘Oranges 55°]

(i) Pattern Substitution: Searches for pattern matching in the input string and
substitutes with a new string. This can be done with the following two functions:

(a) sub() function substitutes the matched pattern with new string

re.sub(pattern, new_substring, input_string)

pattern Regular expression to be matched.

input_string Input string to be searched.

new_substring String to be substituted for the
matched occurrences.

In case the match is found, it returns a new string after substitution. Otherwise
the original input string is returned.

(b) subn() function is the same as sub() except that it returns a tuple containing
a new string and number of substitutions done.

Example

fruits = “Banana Rs.40 Apples Rs.65 Oranges Rs.55”

fruits_new = re.sub(‘Rs.’, ‘$’,fruits)

print(“Result of sub() : ”, fruits_new)

print(“Result of sub()— only first two matches
:\n”,re.sub(‘Rs.’, ‘$’,fruits,2))

print(“Result of subn()— substitute digits
:\n”,re.subn(‘\d’, ‘?’, fruits))

print(“Result of subn()— substitute non-alphanumeric: \n”,
re.subn(‘\W’, ‘?’, fruits))

print(‘Input string is unchanged :\n’, fruits)

11.2 Functions on Regular Expressions 221

Output

Result of sub(): Banana $40 Apples $65 Oranges $55
Result of sub()- only first two matches :

Banana $40 Apples $65 Oranges Rs.55
Result of subn()— substitute digits :

(‘Banana Rs.?? Apples Rs.?? Oranges Rs.?77’, 6)
Result of subn()— substitute non-alphanumeric:

(‘Banana?Rs?407?Apples?Rs?65?70ranges?Rs?55°, 9)
Input string is unchanged :

Banana Rs.40 Apples Rs.65 Oranges Rs.55

(iii) search() function searches for the pattern in the input string.

search(pattern, input_string)

In case the pattern is found, it returns the match object containing

span - First match index range
match - The first matched pattern

Otherwise None is returned.
Example

in_str = ‘Banna Rs.40 Apples Rs.65 Oranges Rs.055 Total 160’
print(“‘es” at end of the word: \n’,re.search(*\Bes’, in_str))
print(““‘Ba” at beginning of the string :\n’,re.search(‘\ABa’, in_str))
res = re.search(‘(\d\d).+(\w{5}\s)’, in_str)

print(‘Grouping patterns : *,res.groups())

print(‘Matched pattern :’, res.group(0))

print(‘First group :’,res.group(1),‘\t Second Group :’, res.group(2))

Output

“es” at end of the word:

<re.Match object; span=(16, 18), match="‘es’ >
“Ba” at beginning of the string :

<re.Match object; span=(0, 2), match="Ba’>
Grouping patterns : (‘40’, ‘Total *)
Matched pattern : 40 Apples Rs.65 Oranges Rs.055 Total
First group : 40 Second Group : Total

222 11 Regular Expressions

Example

features = “Is Python object oriented language? Does it require
variable declarations?.”

print(“Match result : ,re.search(‘\s[a-zA-Z]+\?\s’, features))

print(“Word starting with lowercase
vowel:” re.search(‘\s[aeiou][a-z]+ features))

print(“‘script’ in the string : ”,re.search(*“‘script”, features))

res = re.search(‘“*[A-Z].*\.$”, features)

print(“Does the string starts with uppercase and ends with dot :
”, res!=None)

Output

Match result : <re.Match object; span=(25, 36),
match="language? *>

Word starting with small vowel: <re.Match object; span=(9, 16),
match=" object’ >

‘script’ in the string : None

Does the string starts with uppercase and ends with dot : True

(iv) findall() function finds all the occurrences of the pattern.

findall(pattern, input_string)

Finds all the pattern matches in the input_string. In case the pattern is found,
it returns a list of all occurrences of the pattern and None otherwise.

Example

in_str = ‘Banna Rs.40 Apples Rs.65 Oranges Rs.055 Total 160’
print(re.findall(*\d+\s’, in_str))

print(re.findall(‘Rs.\d?\s’, in_str))

print(re.findall(‘Rs.\d*\s’, in_str))

print(re.findall(‘Rs.\d+ | \d+’, in_str))

Output
[40°, ‘65, ‘055, “160’]
(]

[‘Rs.40’, ‘Rs.65’, ‘Rs.0557]
[‘Rs.40’, ‘Rs.65’, ‘Rs.055’, ‘160°]

11.3 Case Study: Regular Expressions 223

Example

result = “Arjun scored 90 marks in Python 85 marks in Maths”
print(“Marks obtained:”, re.findall(“\d+ marks ’result))
print(“‘Five letter words:”, re.findall(‘\s[a-zA-Z]{5}\s’, result))
print(“2 to 6 letter Words starting with uppercase : ™)
print(re.findall(‘\s[A-Z][a-z]2,6\s’ ,result))

Output

Marks obtained: [‘90 marks’, ‘85 marks’]

Five letter words : [‘Arjun’, ‘marks’, ‘marks’, ‘Maths’]
2 to 6 letter Words starting with uppercase :

[‘Arjun’, ‘Python’, ‘Maths’]

11.3 Case Study: Regular Expressions

Perform data analysis on a text file containing information about the Olympic games.
(i) Read the contents of the file.

fp = open(‘/content/sample_data/Olympics_new.txt’,‘r’)
text = fp.read()

(i1) Import the module for handling regular expressions and count the number of
times Olympic appeared in the text.
import re
olympic_count = re.findall(‘\s[oO]lympic[s]*\s’,text)
print(‘No. of times Olympic or Olympics appeared :
> len(olympic_count))

Output
No. of times Olympic or Olympics appeared : 38
(iii) Substitute ‘olympic’ or ‘olympics’ with ‘Olympic Games’.

subn() function returns a tuple containing the new text after substitution and
the number of times the substitution was done.

result = re.subn(‘\s[oO]lympic[s]*\s’, ‘Olympic Games’, text)
print(“Type of value returned : °,type(result))
print(‘No. of times substituted: ’,result[1])

224 11 Regular Expressions

Output

Type of value returned : <class ‘tuple’ >
No. of times substituted: 38

(iv) Find the number of words with at least three characters and at least ten occur-
rences.

words of atleast 3 more characters
words = re.findall(‘\s[\w\d][\w\d][\w\d]+[\s\.\n]’text)
print(‘No. of words with atleast 3 letters : ’, len(words))
words_set = set(words)
print(‘No. of unique words with atleast 3 letters :
> len(words_set))

print(‘words with more than 10 frequency :)
for word in words_set:

freq= words.count(word)

if freq>10:

print(‘ ’,word, freq)

Output

No. of words with atleast 3 letters: 1019
No. of unique words with atleast 3 letters: 526
words with more than 10 frequency:

The 21

and 47

Greek 11

Games 15

Olympic 21

was 15

the 124

were 17

that 13

for 11

(v) Find the abbreviations with at least two characters long.
caps = re.findall(‘\s[A-Z][A-Z]+\s’ text)
print(‘Abbreviations: ’,set(caps))

Output
Abbreviations: {‘ CE’, ‘I10C’, ‘BCE’}

(vi) Countthe number of paragraphs, number of sentences, and number of sentences
ending with ! mark.

11.3 Case Study: Regular Expressions 225

paras = re.findall(‘[\w\d\s]+\.\n’ text)

print(‘No. of paragraphs : ’,len(paras))

sentenses = re.findall(‘[\w\d\s]+\.’,text)

print(‘No. of sentenses : ’,len(sentenses))

exclam = re.findall(‘[\w\d\s]+!’,text)

print(‘No. of sentenses ending with ! mark : ’,len(exclam))

Output

No. of paragraphs : 25
No. of sentenses : 107
No. of sentenses ending with ! mark : 1

(vii) Count the number of punctuations and articles present.

punc = re.findall(‘[,.:;]’,text)
print(‘No. of punctuations : °,len(punc))
articles = re.findall(“\s[aA]\sl\s[Aa]n\s/\s[Tt]he\s’ text)
print(‘No. of articles : ’, len(articles))
Output

No. of punctuations : 268
No. of articles : 255

(viii) Count the number of numeric values present and display the first five of them.

numbers = re.findall(‘\s\d+\w+\s’,text)
print(‘No. of Numbers : ’,len(numbers))
print(‘First five numbers : ’, numbers[:5])

Output

No. of Numbers : 34
First five numbers : [‘19th’, ‘1970s’, ‘1980s’, ‘32°, ‘1924°]

(ix) Find the throw games present.
throws = re.findall(“\w+\s[tT Jhrow[s]*’ text)
print(throws)
Output
[‘javelin throw’, ‘discus throw’]

(x) Find the number of occurrences of text enclosed in parenthesis and display the
first three of them.

brackets = re.findall(‘\ ([a-zA-Z0-9\s]+\)’,text)
print(‘No. of times text enclosed in () : ’,len(brackets))
print(‘First three: ’,brackets[:3])

226

11 Regular Expressions

Output

No. of times text enclosed in () : 13
First three: [‘(soccer)’, ‘(210 yards)’, ‘(from Greek pankration)’]

Exercises

10.

. Take a paragraph from any Wikipedia webpage. Write a function that returns:

(a) number of words, (b) number of articles (a, an, the).

Write a function that replaces comma, semicolon, dot, and space with a colon.
Write a function that returns a string with words of length less than five in the
input string.

Write a function that returns a list of two digit numbers in the input string.
Write a function that finds the words ending with a vowel, in the input string.
Write a function that returns a string after replacing 1 with True and O with False,
in the input string.

Write a function that returns number of special characters ($, %, ?, #, !) in the
input string.

Write a function that returns a string after capitalizing the first character of each
word, in the input string.

Read the text from a file. Count the number of numeric values present in the
text.

Take text from a Wikipedia webpage and count the number of unique words.

Review Questions

(1

2

What is the output of the following code?

in_str = “Welcome to Python’
print(re.subn(‘[aeiou]’, “*’,in_str))

(a) (‘W¥lc*m* t* Pyth*n’, 5)
(b) “WHlc*m* t* Pyth*n’

(¢) (‘W*lc*m* t* Pyth*n’)
@ 5

What is the output of the following code?
in_str= ‘Is it ver 3.77’
print(re.sub(‘\W’, “*’,in_str))

(a) (‘Is*it*ver*3*7*’ 5)
(c) Is*it*ver*3*7*
(d) (‘** sk skskek *.*?’, 9)

Review Questions 227

3

“4)

®)

(6)

)

®)

What is the output of the following code?

in_str = ‘Python is an interpreted language’
print(re.split(‘\s’, in_str,2))

(a) [‘Python’, ‘is’, ‘an’, ‘interpretted’, ‘language’]
(b) [‘Python’, ‘is’, ‘an interpretted language’]

(c) [‘Python’, ‘is an interpretted language’]

(d) Error is generated

What is the output of the following code?

in_str= ‘Python version 3.7’
print(re.split(‘[0-5]’,in_str))
(a) [‘Python version’, ‘]
(b) [‘Python version’, *.’]
(c) [‘Python version’, “.”,*’]
(d) [‘Python version ’, *.7°]

Which of the following is False about meta characters?

(a) “*” means zero or more occurrences

(b) “?” means zero or one occurrence

(c) “-” means one or more occurrences

(d) [] matches any characters in the given range

Which symbol is used to match other than the specified characters in the range

[1?

(@ "
() $
(¢) *
@ +

What is the output of the following code?

in_str = ‘Banna Rs.40 Apples Rs.65 Oranges Rs.055 total 160’
print(re.findall(*\s\w{5}\s’, in_str))

(a) 1

(b) [* Banna’, ‘total’]
(©) 2

(d) [‘total’]

What is the output of the following code?

in_str="python- No variable declarations in python’
print(re.search(‘python$’, in_str))

(a) <re.Match object; span=(36, 42), match=‘python’ >
(b) <re.Match object; span=(0, 6), match="‘python’ >

228

—

1 Regular Expressions

(c) <re.Match object; span=(1, 6), match="python’>
(d) <re.Match object; span=(35, 42), match="‘python’ >

(9) Which of the following functions return the match object?

(@) split()
(b) Sub()
(c) search()
(d) findall()

(10) What is the output of the following code?

in_str= ‘Python is simple, obj-oriented language’
print(re.findall(‘Age’, in_str))

(a) None
® []
© 0

(d) [‘age’]

Chapter 12 ®)
Data Visualizations Geda

Visualizations present the data in the form of graphs and charts. It reveals the patterns,
trends, and correlations that might not be observed otherwise. Data visualization is
an important step in data analytics to visualize complex data relationships that help
in data-driven decisions.

Python provides multiple packages for data visualizations. Popular packages are

matplotlib
seaborn

ggplot
plotly

Matplotlib and seaborn are widely used visualization libraries, as the
graphs can be produced easily and quickly.

12.1 Matplotlib

Matplotlib is the visualization library for two-dimensional plots and charts. John
Hunter introduced it in 2002. It provides lots of features to produce elegant graphs.
The Pyplot module of matplotlib provides an interface for graphs. It offers low-level
libraries with an interface similar to MATLAB. It can be used in Python, [Python,
and Jupyter notebooks.

First, install the package using

pip install matplotlib
Then, import the package before using the library functions.
import matplotlib.pyplot as plt

In the above plt is the shortcut name for maptplotlib.pyplot.

© The Author(s) 2024 229
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12
https://doi.org/10.1007/978-3-031-52473-8_12

230 12 Data Visualizations

12.2 Seaborn

Seaborn is a Python data visualization library developed on top of matplotlib. It
provides high-level interfaces for building statistical graphs with default matplotlib
parameters like styles and color palettes to make the plots attractive and informative.
It is a dataset-oriented library and integrated with data frames and numPy arrays.

Both matplotlib and seaborn offer a number of library functions for basic graphs
like scatter, line, bar, box plot, efc.. The type of plot to choose depends on the type
of data, target audience, context, and the question we are trying to answer.

First, import the seaborn module to start using its library functions

import seaborn as sns.

12.3 General Functions in Plotting

(1) Graph title
plt.title(label, loc =’center’ fontdict=None)

label: Actual title text
loc: Alignment of the label in the graph. The value can be center
(default), left, right.
fontdict: Dictionary that controls the appearance of the label font
like color, size, style, etc.

(i) Label for the x-axis

plt.xlabel(label_text)

(iii) Label for the y-axis
plt.ylabel(label_text)

(iv) Display grid lines in the graph
plt.grid()

(v) Display the plots
plt.show()

(vi) Display tick locations and labels for x-axis and y-axis

plt.xticks(ticks=None, labels=None)
plt.yticks(ticks=None, labels=None)

ticks: List of tick locations
labels: List of labels at tick locations
(vii) Set the limits for x-axis and y-axis values

plt.xlim(left_value , right_value)
plt.ylim(bottom_value , top_value)

12.4 Basic Graphs and Plots 231

(viii) Describe the elements of the graph.

plt.legend(loc=None)

loc: where to place the legend like upper left, upper right, center,
lower left, lower right efc.. Default is *best’.

12.4 Basic Graphs and Plots

Following are the widely used basic graphs and plots provided by matplotlib and

seaborn.

(i) Scatter plot exhibits the relationship between a dependent and an independent
variable. It shows the correlation between the two variables, which may be a
positive relation, negative relation, or no correlation at all. It is also useful in
identifying the outliers in the dataset. This plot is used to see the correlation,
before building the regression model. The scatter plot displays one dot for each

data point.

(a) Scatter plot using matplotlib

plt.scatter(x,y, size =None, color=None, marker=None, alpha=None)

X, y:

color or c:

marker:

size:

alpha:

Example

Array of values for x & y-axis

Both the arrays should be of the same size

Color of the data points. The argument can be specified
as a single value, in which case each data point takes
the same color or array of colors for each data point
The color array should be of the same size as the
x and y array sizes

Specity the shape of each data point

Different markers are dot (default), circle (o), star (¥),
plus (+), etc.

The size of each data point

The argument value can be a single or array of sizes

Transparency of each data point

The value ranges from O (transparent) to 1 (opaque).

import pandas as pd
load the dataset into dataframe- data
data = pd.read_csv(’/content/sample_data/Housing.csv’)

x = data[’area’]

y = data[price’]

232 12 Data Visualizations

plt.scatter(x, y, c = green’, marker="0’, s=30)

plt.title(’Area vs Price of house’, fontdict={ ’color’: *blue’,
’size’:20, ’style’: italic’ })

plt.xlabel(’ Area of the House”) # name to x-axis

plt.ylabel(’Price of the house’) # name to y-axis

plt.show() # to display the graph

Output

1e7 Area vs Price of house

Price of the house
=3 = =] = =
N o o = N

o
N

2000 4000 6000 €000 10000 12000 14000 16000
Area of the House

(b) Regression plot using seaborn
The plot is a combination of scatter plot and fitting the regression line.

seaborn.regplot(x=None, y=None, data, scatter=True,
fit_reg=True)

data: Dataframe

X, y: Columns of the dataframe

scatter: Boolean value indicating whether to draw a scatter
plot or not. Default is True

fit_reg: Boolean value indicating whether to fit a regression
line or not. Default is True

Example

import pandas as pd

data = pd.read_csv(’/content/sample_data/Housing.csv’)
sns.regplot(x="area’, y="price’, data=data)

plt.title(’ Area vs Price of house’)

plt.show()

12.4 Basic Graphs and Plots 233

Output

1e7 Area vs Price of house

2000 4000 6000 8000 10000 12000 14000 16000
area

Note: In the above seaborn plot, even though x-axis and y-axis labels are not
specified, they are taken as column names, i.e., area and price.

(i1) Line graph draws line by connecting the data points. The graph represents the
trends, patterns, and fluctuations in the values of continuous variables over time.
It helps in making projections beyond the given data.

(a) Using matplotlib

plt.plot(x,y,color=None,linewidth=None,marker=None,
linestyle=None,markersize=None,markerfacecolor=None,
markeredgecolor=None)

Xy Array of values for x & y-axis

color or c: Line color

linestyle or Is: solid(-), dotted(.), dashed(-), dashed-dotted(-.)

linewidth or lw: Float value representing the width of the line

marker or m: Data point marker like a circle(o), cross(x), star(*), plus(+)

markersize or ms: Size of the data point
markerfacecolor: Color for the marker
markeredgecolor: Edge color for the marker.

234

Example

plt.show()
Output
Squares of x
80 /*
70
60 /{
] = /*
5 40
¥, x
m 1 P 4
10 e
0 { Y= P —_k
0 2 a 6 8

x = list(range(10))
yl=[1*foriinx]
plt.plot(x,y1,c="red’,linewidth=5linestyle="—",marker="*’,

12 Data Visualizations

markersize=20,markerfacecolor="green’,markeredgecolor="orange’)

plt.title(’Squares of x”)

plt.xlabel(’ X-axis’)

plt.ylabel(’Squares’)

plt.grid() # shows grid lines for X, y values

X-axis

Multiple line graphs can be displayed in the same plot

Example

x = list(range(10))

yl =[1*iforiinXx]

y2 =[1**3 foriin x]

Line graph of Square values

plt.plot(x, y1, label="Square’, 1s="dashed’, marker="x")

Second Line graph of Cube values

plt.plot(x, y2, label="Cube’, marker =’0’)

plt.title(’ Multiple line graphs: X vs Square and
Cube values’)

Legend labels for each line graph

plt.legend()

plt.show()

12.4 Basic Graphs and Plots

Output

700 1
600 1
500 1
400 1
300 4
200 1

100 1

Multiple line graphs: X vs Square and Cube values

=»= Square I;.
—o— Cube
/‘/
J/
,./.
4
e _--*———x-""
1 ll—c———q-'—-"-‘li—-—,e-—-n———«

(b) Using seaborn

seaborn.lineplot(x, y, data)

data: Dataframe
x, y: Columns of the dataframe

Example

import pandas as pd

x = list(range(10))

yl =[1i*iforiinx]

y2 =[i**3 foriin x]

df=pd.DataFrame(’X’ : x, ’Y1’: y1,°Y2’ : y2)

Draw line graph

sns.lineplot(x="X",y="Y 1’ ,data=dflinestyle="-",
markersize=2,marker="*")

sns.lineplot(x="X",y="Y?2’ data=df, linewidth=5,marker="+")

plt.legend([’Squares’,’Cubes’])
plt.ylabel(’Squares & Cubes of X”)
plt.show()

235

236 12 Data Visualizations

700 = Squares j
me=m Cubes
600 1

Output

%soo- p
§400~ %
2 .
3 300 f
100 1 ~ e
i, aaiialiial
0 2 H 6 8

X

(iii) Histogram shows how the values of a continuous variable are distributed. Data
is divided into discrete consecutive intervals. Each interval is called a bin. The
bin is represented by a bar and the graph consists of a sequence of bars. The
number of values in each interval determines the height of the bar. The width
of the bars can be specified as an argument to the function.

(a) Using matplotlib

plt.hist(x, bins=None, edgecolor=None, orientation=None) x: Array of
values of a continuous variable

bins: Number of bins in the range of x.min() to x.max()

orientation: whether the bars are oriented vertically (default)

or horizontally

edgecolor: Color of bin edges

Example

import pandas as pd

titanic=pd.read_csv(’/content/sample_data/
Titanic_train.csv’)

age = titanic[’Age’].fillna(titanic[’ Age’].mean())

Specify bin edges

bin_edges= [0,10,20,30,40,50,60,70,80]

plt.hist(age,bins=bin_edges,color="orange’,
edgecolor="black’, width=10)

plt.title(’ Distribution of passengers Age’)

plt.xlabel(’Passengers Age’)

plt.ylabel(’Count of values in each bin’)

X-axis values

plt.xticks(bin_edges)

plt.show()

12.4 Basic Graphs and Plots 237

Output
Distribution of passengers Age
400 1
350 1
s
0
= 300
3
e 250 1
o
3 200 1
o
=
s 150 4
t
3 100
v
50 _l_l
0 ¥

0 10 20 30 40 50 &0 70 80
Passengers Age

Note: In the above example, the variable, bin_edges, represents the interval ranges,
i.e., the first bin is [0, 10) where 10 is not inclusive, [10, 20), [20,30), and so on. But
in the last bin, [70, 80], the last value 80 is also inclusive.

(b) Using Seaborn
sns.histplot(x, bins, fill, binwidth, kde, alpha)
Following are the most used arguments

x: List of numeric values
bins: Integer that specifies the number of bins
or vector of values that specify bin edges
fill: whether to fill the histogram bins
binwidth: Width of bins as integer
kde: when set to true, displays the distribution as curve
alpha: opacity of bars. The value ranges from O to 1.

Example

import pandas as pd

titanic = pd.read_csv(’/content/sample_data/Titanic.csv’)

age = titanic[’ Age’].fillna(titanic[’ Age’].mean())

bin_edges= [0,10,20,30,40,50,60,70,80]

sns.histplot(x=age,bins=bin_edges,fill = True,
color="orange’, binwidth=8, kde = True, alpha=0.7)

plt.show()

238 12 Data Visualizations

Output

0 . - . - : | : I —
0 10 20 30 40 50 60 70
Age

T

80

(iv) Pie chart is a circular graph representing the proportions of different compo-
nents in the given whole. Each proportion or piece of the pie chart is called a
wedge. Each wedge indicates a parts-of-whole relationship. Each value of the
component is specified as the percentage and sum of all segments totaling to
100%. Pie charts are preferable when there are few components in the data. It
is widely used in business applications to show the contribution of each item in
the data.

(a) Using matplotlib

plt.pie(x,colors=None,explode=None,
labels=None,autopct=None,shadow=False)

x: Array of values

colors: List of colors for each wedge

explode: List of values representing how far the wedge is
from the center

labels: ~ Array of labels for each wedge

autopct: Label of the wedges indicating the proportion
of the wedge as the percentage

shadow: Boolean value indicating whether to add shadow
to the pie chart

Example

results = [10, 15, 18, 8, 5]
grades=["O’;A’ B’ C’)F’]

expl = [0, 0, 0, 0, 0.2]

cols = ["green’, yellow’, "purple’, ’orange’, 'red’]
plt.figure(figsize=(5,5))

12.4 Basic Graphs and Plots 239
plt.pie(results, autopct="%1.1f%%’, explode=expl,
colors=cols, shadow=True, labels=grades)

plt.show()

Output

(b) Seaborn does not have built-in library function for the pie chart. Use pie()
function of matplotlib and make use of seaborn color palette for wedges.

Example

results = [10, 15, 18, 8, 5]

grades =["O’;A’’B’C’F’]

To highlight the weg

expl = [0, 0, 0, 0, 0.2]

cols= sns.color_palette(’bright’)

plt.pie(results, autopct="%1.1f%%’, explode=expl,
colors=cols, labels=grades)

plt.title(’ Distribution of grades among 60 students
of a class’)

plt.show()

240 12 Data Visualizations

Output

(v) Bar chart represents the relationship between categorical and corresponding
numeric values. One axis represents the category and the other represents the
numeric value. Each category is represented by a rectangular bar. The height of
bars is proportional to corresponding numeric values. Same chart can also be
used to compare two or more values in the same category. This graph is preferable
and effective when data contains few categories. Bars can be laid either vertically
or horizontally.

(a) Using matplotlib
plt.bar(x, height, width, align, color, edgecolor; linewidth)

x: List of x-axis values or categories

height: Height of bar indicating y-axis values

width: Bars width

align: Alignment of bars to x coordinates. Default is center.
color: Color of bar faces

edgecolor: Color of bar edges

Example

maths = [10, 15, 18, 8, 5]

grades=["0O’;A’ B’ C’)F’]

plt.bar(x=grades, height=maths, linewidth=5,
edgecolor="red’)

plt.xlabel(’Grades’)

plt.ylabel(’No. of students in each grade’)

plt.title(’ Students Grades in Maths’)

plt.show()

12.4 Basic Graphs and Plots

Output
Students Grades in Maths

w ~ 58 K G S
o w o w o w

No. of students in each grade

=)
w

0.0 -

0 A B
Grades

Multiple bar graphs in the same chart.

Example

idx1 = list(range(len(grades)))

idx2 = [i+0.2 for i in idx1]

python =[15, 13, 19, 10,3]

maths =[10, 15, 18, 8, 5]

grades =["O’A’)B’)C’F’]

plt.bar(grades, maths, width=0.2, label="Maths’)
plt.bar(idx2, python, width=0.2, label="Python’)
plt.title(’ Students Grades in Maths & Python’)
plt.xlabel(’Grades’)

plt.ylabel(’Number of students in each grade’)

plt.legend()
plt.xticks(grades)
plt.show()
Output
Students Grades in Maths & Python
BN Maths
== Python

E & =
w o wv

o~
o w

Number of students in each grade

N
w

: i I I '

Graue-s

o
o

241

242 12 Data Visualizations

(b) Using seaborn
sns.barplot(x, y, data, palette)

x, y: Values along x and y axis
data: Data frame
palette: Color variations

Example

maths =[10, 15, 18, 8, 5]
grades=["0O’;A’ B’ C’)F’]

g = sns.barplot(x = grades, y=maths, palette="pastel’)
g.set_title(’ Students Grades in Maths”)
g.set_ylabel(’No. of Students’)
g.set_xlabel(’Grades’)

plt.show()

Output

Students Grades in Maths

17.5

15.0

10.0

15

No. of Students

5.0

25

00 - - - r -
0 A B C F
Grades

(vi) Box Plot is used to visualize data distribution based on five number summaries
namely, minimum, first quartile, median, third quartile, and maximum values
in the data. It is also called the whisker plot. It is a rectangular plot with lines
extending from bottom to top. The box in the graph extends from quartilel (Q1)
to quartile3 (Q3) with a line indicating quartile2 (Q2) or median. It also shows
the outliers.

plt.box(data, notch=None, vert=None, patch_artist=None) data: List of
values.

vert: Whether to display the plot vertically or not.

notch: Whether a clear indication of median required.

patch_artist: Whether to fill the quartiles.

12.4 Basic Graphs and Plots 243

Example

import pandas as pd

titanic = pd.read_csv(’/content/sample_data/Titanic_train.csv’)

Drop rows with null values

titanic = titanic.dropna()

plt.boxplot(titanic[’ Age’],vert=True, notch=True,
patch_artist=True)

plt.xlabel(’ Age’)

plt.ylabel("Frequency distribution of Age’)

plt.title(’Summary statistics of Age’)

plt.show()

Output

Summary statistics of Age

3

Frequency distribution of Age
8 8 & 8 8 3

=
(=]

o
|
[

Using seaborn
sns.boxplot(x, y, data)

data: Dataframe
x: Column of the dataframe on x-axis
y: Column of the dataframe on y-axis

Example

import pandas as pd

titanic = pd.read_csv(’/content/sample_data/Titanic.csv’)
Drop rows with null values

titanic = titanic.dropna()

sns.set(style="whitegrid’)

g=sns.boxplot(x = ’Sex’, y = *Age’, data=titanic)
g.set_title(’ Distribution of Age across Male and Female’)
plt.show()

244 12 Data Visualizations

Output

Distribution of Age across Male and Female

female male

(vii) Heatmap of seaborn

Heatmap is a two-dimensional graphical representation of values in the matrix. The
values are represented using different shades of color based on the magnitude of the
value. Darker shades indicate higher data values.

seaborn.heatmap(data, annot, fmt, cmap, cbar)

data: Two-dimensional array of data

annot: Boolean value. When set to True data values are written in
the cells of the heat map. The default value is False

fmt: String format to be used to specify the number of decimal
places for the values. Default is two decimal places

cmap: Map data values to color space

cbar: Boolean value indicating whether to draw a color bar
in the graph. Default value is True.

Example

import pandas as pd

df = pd.read_csv(’/content/sample_data/Housing.csv’)
df_new = df[[’area’, price’, stories’]]

correlation among the attributes

cr = df_new.corr()

sns.heatmap(data= cr, annot=True, fmt="0.3f", cmap="Blues’)
plt.show()

12.4 Basic Graphs and Plots 245

Output

-10
o
p
C - 08
i - 06
-]
=1

-04
Wi
U
E - 0.2

area price stones

(viii) Facetgrid

Facetgrid maps multiple axes into grid cells that show the distribution of a variable and
relationship between multiple variables. It takes dataframe as input and categorical
columns as row and column arguments to the functions. Data is split into subsets
based on the categorical values. Each graph in the grid is the visualization of a subset
of data.

seaborn.facetgrid(data, row, col, hue)

data: Dataframe
row, col: Define subsets of dataframe based on categorical values.
hue: Different categories are plotted with different colors

Example

import pandas as pd

df = pd.read_csv(’/content/sample_data/Titanic.csv’)

gr = sns.FacetGrid(df, row="Pclass’, col="Sex’, hue="Sex")
gr.map(plt.hist, ’Age’, bins=20)

246 12 Data Visualizations

Output
Pclass = 1 | Sex = male Pclass = 1 | Sex = female

150

125

100

15

50

25

:

0.0 -
Pclass = 2 | Sex = male Pclass = 2 | Sex = female
15.0
s
10.0
5
50
25

%

0.0

Pclass = 3 | Sex = male Pclass = 3 | Sex = female

12.5 Subplots

Multiple plots can be drawn in one canvas, creating a grid of plots. Each plot is called
a subplot.

figure_object, axis_objects = plt.subplot(nrows, ncols, sharex, sharey)

12.5 Subplots

nrows, ncols: Integers indicating the number of rows and columns
in the grid. Default value is 1
sharex, sharey: Controls sharing of x-axis or y-axis among the subplots
True or "all’ :- share x-axis/y-axis for all subplots
False :- each subplot x-axis/y-axis is independent
row’ :- x-axis/y-axis is shared along the row of subplots
“col’ :- x-axis/y-axis is shared along the column
of subplots.

Returns tuple containing figure_object and array of axis_objects.
We can set properties of each subplot like title, xlabel, ylabel using
set_title(), set_xlabel(), set_ylabel()
Set the title for the entire figure using
figure_object.suptitle(text)
Unused grid cell in the figure can be made empty using

axis_object.axis(off’)

Example

results = [10, 15, 18, 8, 5]

grades =["O’A’’B’C’F’]

fig, ax = plt.subplots(2,2, figsize=(8,8))
fig.suptitle("Demo of subplots")

Draw bar graph
ax[0,0].bar(grades,results)
ax[0,0].set_title("this is bar chart")
ax[0,0].set_xlabel(’ Grades’)
ax[0,0].set_ylabel(’No. of Students’)

x = list(range(10))

yl =[1*iforiinXx]

Draw line graph

ax[1,1].plot(x, y1, color="red’, Iw = 2.0, Is = ’solid’, marker = "0’,
markersize = 10)

ax[1,1].set_title("X vs square of X")

ax[1,1].set_xlabel(’ X values’)

ax[1,1].set_ylabel(’Square of X”)

Hiding the subplot at 0,1 index
ax[0,1].axis(’off”)
plt.show()

247

248 12 Data Visualizations

Output

Demo of subplots

this-Is Dar'chims
175

150
125
100
75
50
: m
o0
o A B (= F

Grades

No. of Students

X vs square of X
10

os

o6

Square of X

o5 B¥BEL58 3B

o4

o2

oo 0z 04 06 o8 10 o 2 4 6 8

12.6 Case Study: Data Visualizations

Perform data visualizations on the mobile dataset consisting of 21 attributes and
2000 instances. The attributes include continuous and categorical data types. Library
functions of Matplotlib and Seaborn modules are used to draw the graphs.

(i) Load the dataset into a dataframe.

import pandas as pd

df = pd.read_csv(’/content/sample_data/mobile_data.csv’)
print(’ Dataset shape : °,df.shape)

print(’Columns : ’,df.columns)

Output

Dataset shape : (2000, 21)
Columns : Index ([battery_power’, *blue’, "clock_speed’, ’dual_sim’, *fc’,
“four_g’,int_memory’, "'m_dep’, *'mobile_wt’, *n_cores’, "pc’,
'px_height’,’px_width’, 'ram’, ’sc_h’, ’sc_w’, “talk_time’,
’three_g’, touch_screen’, *wifi’, *price_range’],

dtype="object’)

12.6 Case Study: Data Visualizations 249

(i) Import the visualization libraries—matplotlib and seaborn.

import matplotlib.pyplot as plt
import seaborn as sb

(iii) Visualize the correlation between pixel_width and pixel_height using a scatter
plot of matplotlib. pyplot.

plt.scatter(x=df[’px_width’], y=df[’px_height’])
plt.xlabel(’Pixel Width’)

plt.ylabel(’Pixel Height’)

plt.title("Pixel Width Vs Pixel Height’)
plt.show()

Output

Pixel Width Vs Pixel Height

2000
1750 1
1500 4
1250 1
1000 1

750 1

Pixel Height

500 1
250 1

BC.!O &50].U;.'JO 12.00 1460 16'00 18;)0 ZEIIGO
Pixel Width
The plot shows a positive correlation between px_width & px_height.

(iv) Count the number of records for each value of the n_cores attribute using
countplot() function of seaborn.

sb.countplot(df[’n_cores’])
plt.title(’ Count of records for each value of n_cores’)
plt.show()

250 12 Data Visualizations

Output

Count of records for each value of n_cores

1 2 3 4
n_cores

5 6 7 8
(v) Letus draw a grid of histogram plots on battery_power over different values of
dual_sim & touch_screen.

fg = sb.FacetGrid(df, row="dual_sim’, col="touch_screen’)
fg.map(sb.histplot, ’battery_power’)
plt.show()

Output

dual_sim = 0 | touch_screen = 0 dual_sim = 0 | touch_screen = 1

Count
o 6 8 8 & 8 8

dual_sim = 1 | touch_screen = dual_sim = 1 | touch_screen = 1

H

1000 2000 SOO 1000 1500 2000
battery waer battery_power

Count
0538888

12.6 Case Study: Data Visualizations 251

(vi) Let us check the correlation among price_range, battery_power, n_cores, ram
attributes using corr() function on dataframe. Then visualize the correlation
using the heatmap() function of seaborn.

cols= [’battery_power’,’n_cores’, ram’, ’price_range’ |
cm = dffcols].corr()

print(cm)
sb.heatmap(cm)
plt.show()
Output
battery_power n_cores ram price_range
battery_power 1.000000 —0.029727 —0.000653 0.200723
n_cores —0.029727 1.000000 0.004868 0.004399
ram —0.000653 0.004868 1.000000 0.917046
price_range 0.200723 0.004399 0.917046 1.000000
-10
battery_power -
-08
n_cores 06
-0.4
ram
-0.2
price_range
-00

battery_power N _cores ram price_range

The visualization shows a high positive correlation between ram and price_range.

(vii) Visualize the proportion of instances on each value of n_cores using a pie chart
of matplotlib.

cores= df[’n_cores’].value_counts()

lab = cores.index

plt.pie(cores.values, autopct="%1.1f%%’ labels=lab)
plt.title Number of Cores’)

plt.show()

252 12 Data Visualizations

Output
Number of Cores

7

8

1

5

(viii) Plot the data distribution summary on four_g and price_range
attributes using boxplot() of seaborn.

sb.boxplot(x="four_g’, y="price_range’, data=df)
plt.show()

Output

price_range
= = ~ ~ w
= w (=] w o

(=1
w

o
(=]

four_g

Exercises

1. Take a public dataset, identify dependent and independent variables, and draw an
attractive scatter plot by taking appropriate arguments.

2. Take COVID-19 data of total confirmed and deceased cases of the top five coun-
tries. Draw pie charts (one for confirmed and one for deceased) and highlight
the country with maximum cases. Give appropriate title and percentage in the
wedges.

Review Questions 253

3. Take a public dataset containing both categorical and continuous variables. Draw
a facetgrid chart.

4. Take a public dataset and draw box plot, line graph, pie chart, and bar graph in
the same canvas using subplots. Give appropriate title and labels for each graph.

5. Take COVID-19 data of total confirmed and deceased cases of the top ten coun-
tries. Draw a bar graph of confirmed and deceased cases in the same chart. Use
appropriate arguments to make the graph attractive.

Review Questions

(1) What is the default location for legend in a given plot?

(a) Upper left
(b) Upper right
(c) Center

(d) best

(2) The built-in function for generating a scatter plot using matplotlib is

(a) regplot()
(b) reg()

(c) scatter()
(d) scatterplot()

(3) The ——— argument of the hist() function represents the number of bars for
given data x.

(a) bins()
(b) x.min()
(c) x.max()
(d) bars()

(4) The middle horizontal line in a box plot represents

(a) Quartile 1
(b) Quartile 2
(c) Quartile 3
(d) Mean

(5) The ——— attribute of heatmap() represents the data values to be written
in each cell.

(a) cmap
(b) annot
(c) cbar
(d) fmt

254 12 Data Visualizations

(6) Which plot among the following represents the relationship between dependent
variable and independent variable?

(a) Bar

(b) Scatter
(c) Line

(d) MultiLine

(7) What does the is explode argument in a Pie Chart mean?

(a) Proportions of Different Component
(b) Color of Wedge

(c) Distance of wedge from the center
(d) Size of Wedge

(8) Which of the following graphs is used to visualize changes in data over time?

(a) Line
(b) Pie
(c) Histogram
(d) Box

(9) Which of the following is false about Searborn built-in functions?

(a) Seaborn has built-in pie chart()

(b) Seaborn has lineplot()

(c) Seaborn is built on top of Matplotlib
(d) Seaborn has histplot()

(10) The histplot() built-in function in seaborn has an argument kde that accepts
value to display distribution as curve.

(a) Integer
(b) Float
(c) Boolean
(d) String

Chapter 13 ®)
Python for Machine Learning i

Introduction

Machine learning is a sub-field of artificial intelligence capable of giving intelligent
solutions to real-world problems. It is data-driven technology that enables computers
to learn from data with little programming. A mathematical model is built through
the process of training on the data by finding hidden patterns and extracting useful
information. This model can then be used for predictions on the new data.

Machine learning solutions are used in every field to solve complex problems.
Popular applications include autonomous vehicles, intelligent home solutions, pre-
cision agriculture, personalized treatment, machine translation, speech recognition,
product recommendations, mail filtering, etc.

Machine learning methods can be broadly classified into:

e Supervised learning uses labeled data that contains example inputs and the desired
output. The learning process builds a model that finds the relationship between
the inputs and the output.

e Unsupervised learning learns without any supervision. It uses unlabeled data that
contains only inputs and no output variable. It is used to find structures, patterns,
and groups in the data.

e Semi-supervised learning is a combination of supervised and unsupervised learn-
ing approaches. A vast portion of real-world data is unlabeled. Labeling data is
expensive as it requires human expertise and is time-consuming. Semi-supervised
learning addresses the challenges of supervised learning by using partially labeled
data. Initially, the model is trained on the available labeled data and then iteratively
apply it on the unlabeled data.

e Reinforcement learning is a feedback-based learning system. The learning agent
interacts with a dynamic environment to take action and learn by trial and error.
Agent gets a reward for the right action and punishment for the wrong action. The
agent strives to maximize the rewards to complete the task. Popular applications
are self-driving cars, chatbots, gaming, robotics, etc.

© The Author(s) 2024 255
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13
https://doi.org/10.1007/978-3-031-52473-8_13

256 13 Python for Machine Learning

The machine learning process involves the following significant steps:

Data loading.

Data preprocessing and preparation.

Training the model.

Measure the model performance. Repeat training with different hyperparameter
values if the performance is below the desired level.

5. Make predictions on the new data.

S

Sklearn is an open-source Python library for Machine Learning. It provides several
library functions for supervised and unsupervised algorithms, ensemble methods,
preprocessing, cross-validation, hyperparameter tuning, etc. It also contains in-built
datasets that help beginners understand the learning algorithms and build basic mod-
els. The focus of sklearn is on the model building but not on data loading, data
manipulations, and data visualization. For these tasks, better tools are available,
like pandas, numpy, and matplotlib. Sklearn integrates well with numpy arrays for
vectorization, pandas for data manipulation, and matplotlib for visualizations.

13.1 Data Loading

(1) Loading in-built datasets: sklearn package provides a few clean datasets to build
the models.

e load_bostan: Contains information about different features and prices of
houses in Boston. It is used for regression problems.

e load_breast_cancer: Binary classification dataset to predict the tumor as
benign or malignant.

e load_wine: Multi-class classification dataset to classify the wine based on
different parameters for wine.

e load_iris: Multi-variate flower dataset for multi-class classification.

e load_diabetes: Contains diabetic patients’ information used to predict the
disease progression in the patients. Used for regression task.

e load_digits: Multi-class classification image dataset to classify the handwrit-
ten digits.

These datasets are available in sklearn.datasets module.
Example:
To load the dataset

dataset = load_boston()

13.1 Data Loading 257

Returns a dictionary with the following objects:

data—Feature matrix as NumPy array.
target—Target variable as NumPy array.
feature_names—Names of feature columns.
target_names—Target labels.
DESCR—Brief description of the dataset.

Example

from sklearn.datasets import load_wine

data = load_wine()

print(’Objects of data : °, data.keys())

X = data.data

print(’Feature data : first row \n’, x[:1])
print(’Feature names:\n’,data.feature_names)
y = data.target

print(’First four target values :\n’, y[:4])
print(’ Target Names: ’, data.target_names)
#print(’ Dataset description’, data. DESCR)

Output

Objects of data: dict_keys([’data’, ’target’, 'frame’,

“target_names’, 'DESCR’, *feature_names’])

Feature data : first row

[[1.423e+01 1.710e+00 2.430e+00 1.560e+01 1.270e+02
2.800e+00 3.060e+00 2.800e-01 2.290e+00 5.640e+00
1.040e+00 3.920e+00 1.065¢+03]]

Feature names :

["alcohol’, *malic_acid’, "ash’, "alcalinity_of_ash’, *'magnesium’,
’total_phenols’, *flavanoids’, "nonflavanoid_phenols’,
’proanthocyanins’, ’color_intensity’, "hue’,
’0d280/0d315_of_diluted_wines’, "proline’]

First four target values:

[0000]

Target Names: ['class_0’ ’class_1" "class_2’]

(ii) Loading other datasets: Datasets are commonly available in csv, txt, xlIsx, and
json formats. The Pandas package of Python provides the following library
functions to read data from the file into a dataframe, which can then be processed
efficiently.

(i) pandas.read_csv()

(ii) pandas.read_table()
(iii) pandas.read_excel()
(iv) pandas.read_json()

258 13 Python for Machine Learning

Note: Detailed description of these functions is discussed in Chap. 9 on
Pandas.

13.2 Data Preparation and Preprocessing

Real-world data come from many sources. It often contains noise, missing values,
and unusual values. Also, data may not be in a format that can be used directly by
machine learning algorithms. Hence, data must be processed before feeding to the
learning algorithm called preprocessing. Data preprocessing includes the following
processes:

a. Datacleaning by identifying and handling missing values and removing duplicate
and extreme values.

b. Normalizing the data to bring the values to similar scales.

c. Transforming the data into a format suitable for the learning algorithms.

Preprocessing is a crucial step in machine learning, as clean and formatted data
improves model performance, resulting in more accurate data interpretations and
predictions.

13.2.1 Data Cleaning

The data cleaning step includes identifying and handling the missing values, remov-
ing duplicates and outliers.

A. Identifying missing values
Missing values are identified by NaN, Null? or the cell being empty. Most learning
algorithms like SVM and LDA generate errors if the dataset contains missing
values. Whereas algorithms like KNN, decision tree can be applied even when
some values are missing. Consider the following .csv file with missing values.

Rno Name Marks Pass
1[Arjun 876 Yes
2|Ram 765
3|Shyam ? No
4|Bheem 563 Yes
5 653 NA
6|Ravan na

13.2 Data Preparation and Preprocessing 259

Pandas represent missing values, also called null values, as NaN. It can detect
blanks, NA, and replace them with NaN automatically when the data is loaded
into the dataframe.

Example

import pandas as pd
df = pd.read_csv("/content/sample_data/Marks sample.csv")
print(df)

Output
Rno Name Marks Pass

0 1 Arjun 876 Yes

1 2 Ram 765 | NaN

2 3 Shyam ? No

3 4 Bheem 563

4 S 653 -
5 6 Ravan- na

But special symbols like na, ?, n/a, n.a cannot be detected automatically. Such
values can be put in a list and pass it to the na_values parameter of the read_csv()
function when loading the file into a dataframe. Such values are replaced with
NaN by pandas.

Example

data_frame = pd.read_csv("/content/sample_data/Marks
sample.csv", na_values = ["?’,’na’])
print(df)

260 13 Python for Machine Learning

Output
Rno Name Marks Pass
0 1 Anfun 8760 Yes
1 2 Ram 7650 NaN
2 3 Shyam No
3 4 Bheem 5630 Yes

< 5 NaN 6530 NaN

5 6 Ravan NaN

Now ?, na are also replaced with NaN.
Pandas provide the following functions to identify the missing values:

(i) data_frame.isnull()

Returns a dataframe of Boolean values with True for NaN values and False
otherwise.

(1) data_frame.notnull()
Returns a dataframe of Boolean values with True for not NaN values and
False otherwise.

(iii) data_frame.info()
Returns information about the dataframe, including the number of non-null
values for each column.

B. Handling missing values
Missing values can be handled as follows:

e Ignore the missing values: But some algorithms do not process the data with
missing values.

e Remove the rows/columns having missing values.

o Fill the missing values with some meaningful data.

The extent of the missingness influences the strategy to be used.

(i) Removing missing observations
The row or column of the dataframe having the missing values is deleted.
This strategy is appropriate when many values are missing in a row or
column. But this is not advisable as it reduces the dataset size and may
result in losing important information.
Pandas provide dropna() library function to delete rows/columns with miss-
ing values.

13.2 Data Preparation and Preprocessing 261

data_frame.dropna(axis, how, thresh, inplace)

axis: 0 indicates row & 1 indicates column.
how: string, with the following values
any - drop rows/columns if one or more values
are missing.
all - drop rows/columns when all the values are
missing.
thresh: ~ Threshold that specifies the proportion
of null values required to remove the row/column.
inplace: Changes are reflected in the same dataframe.

(i) Imputation or filling in the missing values
Compute the missing values from the available data in the dataset. Sensible
values may be inferred in the following ways:

e Replace the missing value with a meaningful, constant value in that
domain.

e Replace with a value from any other randomly selected record.

e Use statistical methods like mean, median, and mode.

e Use another predictive model like regression to estimate the value.

Pandas provide the following functions for filling in the missing values.

@

data_frame.fillna(value, method, axis, inplace)

value used to fill in missing values.
method used for filling. The method can be
[fill/pad—ill with the previous valid
value in that column.
bfill—fill with the next valid value in that
column.
Any computed value like constant, mean,
median, or mode of the column.
The default is None.
axis & inplace parameters have the same meaning as
in dropna() function.

262 13 Python for Machine Learning

o

data_frame.replace(to_replace, value, inplace)

to_replace: Value to be replaced
value: Substitute value

inplace parameter has same meaning as in dropna() function.

This function is a more generic form of fillna().

©

data_frame.interpolate(method, axis, inplace)

method: string, Interpolation technique to be used.
Values are linear; time, index, and pad.
The default is linear.

axis & inplace parameters have the same
meaning as in dropna() function.

Sklearn provides the Imputer() library function to fill in missing values.

from sklearn.impute import SimpleImputer

SimpleImputer(missing_values, strategy, fill_value)

missing_values: The placeholders for the missing values.
Values are numpy.nan, pandas.NA, None.
strategy: string, the method used for imputation.
Values are
mean (default) - Replace with column mean.
Applicable to numerical data.
median - Replace with median along each
column. Applicable to numerical data.
most_frequent - Replace with the most
frequent value along each column.
Applicable to both string and numeric data.
constant - Replace with fill_value.
Applicable to both string and numeric data.
fill_value: string or numeric, Relevant only when the
strategy is constant. Default is 0 for numeric
data and missing_value’ for strings.

13.2 Data Preparation and Preprocessing 263
13.2.2 Data Transformations

Data should be transformed into a form suitable for the learning algorithms. Follow-
ing are the data transformation techniques:

(i) Dimensionality reduction is a preprocessing step that reduces the number of
dimensions of the feature matrix. It reduces the data representation to a lesser
volume but still has similar analytics quality.

Sklearn provides PCA algorithm to perform dimensionality reduction.

from sklearn.decomposition import PCA

PCA(n_components)

n_components: Number of principal components to keep.

(ii) Feature scaling: Real-world datasets contain feature values of varying ranges
and units. Hence the feature matrix must be scaled to bring the feature values
to similar ranges.

SKlearn has the following library functions for feature scaling.

o MinMaxScaler: Transforms each feature by scaling to the specified range.
e StandardScaler: Transforms each feature by bringing the mean value to zero
and variance to 1.

from sklearn.preprocessing import MinMaxScaler,
StandardScaler

MinMaxScaler(feature_range, copy)

feature_range: Tuple that specifies minimum & maximum values.
Default is (0,1).

copy: Boolean, If False, avoid creating a copy and do
in-place scaling.

264 13 Python for Machine Learning

StandardScaler(with_mean, with_std)

with_mean: Boolean, if True, centers the data before scaling.

with_std: Boolean, if True, scales the data to unit variance.

copy: Boolean, If False, avoid creating a copy and do
in-place scaling

(iii) Encoding categorical data: Machine learning algorithms require the data to be
numeric. Categorical features must be transformed into numeric values before
training the model.

Common techniques to convert categorical variables are

e Using map() function on the pandas dataframe.

data_frame[col] = data_frame[col].map(dict_value_mapping)

Example

df[’sex’]= df[’sex’].map({ 'male’: 1, female’ : 2})

e Label Encoder: Encode target labels with numeric values between O and
n_classes-1. It is applied to the target variable but not to features.

from sklearn.preprocessing import LabelEncoder

LabelEncoder()

e get_dummies() transforms categorical variables into dummy or indicator
variables. A new column is created for each categorical value. The name of
the new column is the column name appended by categorical value.

pandas.get_dummies(data, prefix, prefix_sep, columns,
sparse, dtype)

13.2 Data Preparation and Preprocessing 265

data: Data to be transformed.

prefix: String, to append to column names.
Default is None.

prefix_sep: String, the separator between prefix and column
name. Default is underscore.

columns: Columns of the dataframe to be transformed.

sparse: Boolean, if True, dummy encoded columns are
backed by SparseArray else by Numpy Array.

dtype: Data type of new columns. Only a single data type

is allowed. Default is numpy.uint8.

Returns a dataframe of dummy coded data.

e One-hot encoding—Transforms categorical variables into a binary vector.
It creates a new column for each unique value of the categorical variable.
1 if the value is present and O otherwise. If the unique values are high, the
encoding will result in a dataset with a large number of columns leading to
a high-dimensional dataset.

from sklearn.preprocessing import OneHotEncoding

OneHotEncoding(n_values,dtype,sparse,categorical_features
)

n_values: Number of values per feature.
auto - value range is determined from the data.
int - max value for all features.
array - max value per feature.
dtype: Desired data type of output. Default is numpy. float.
sparse: Boolean, return sparse matrix if set to True
otherwise, return numpy array

categorical_features: ~What features are treated as categorical?
all(Default) - All features are treated
as categorical.
An array of indices of categorical features.
mask - Array of n_features with
Boolean values.

Example: Apply the encoding methods on a dataframe.
e Create dataframe

import pandas as pd

data={’Rno’:[1,2,3,4,5],
’Gender’:[’Male’,’Female’,’Female’,’Male’, Female’],
*Grade”:[’A’B’ A CA'])

df = pd.DataFrame(data)

print(df)

266 13 Python for Machine Learning

Output

Rno Gender Grade

0 1 Male A
1 2 Female B
2 3 Female A
3 4 Male C
4 5 Female A

e Apply label encoder on the ’Grade’ column.
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df[’Grade’] = le.fit_transform(df[’Grade’])

print(df)
QOutput

Rno Gender Grade

0 1 Male 0
1 2 Female 1
2 3 Female 0
3 4 Male 2
4 5 Female 0

e Apply get_dummies() method on categorical columns.
df_dum = pd.get_dummies(df,
columns=[’Gender’,’Grade’])
print(df_dum)

QOutput

Rno Gender Gender Grade Grade Grade

_Female _Male _A _B _C
0 1 0 1 1 0 0
1 2 1 0 0 1 0
2 3 1 0 1 0 0
3 4 0 1 0 0 1
4 5 1 0 1 0 0

13.2 Data Preparation and Preprocessing 267

e Apply one-hot encoder on categorical columns.

import numpy as np

from sklearn.preprocessing import OneHotEncoder

cols= [’Gender’,’Grade’]

names = np.append(df[’Gender’].unique(),
df[’Grade’].unique())

ohe = OneHotEncoder(sparse=False)

ohe_df=pd.DataFrame(ohe.fit_transform(df[cols]),
dtype=int, columns=vals)

new_df = df join(ohe_df)

new_df.drop(cols, axis=1, inplace=True)

print(new_df)

QOutput
Rno Male Female A B C
0 1 0 1 1 0 O
1 2 1 0 0 1 0
2 3 1 0 1 0 0
3 4 0 1 0 0 1
4 5 1 0 1 0 0

13.2.3 Splitting the Dataset

Before training the model, the dataset is split into train and test sets. The train dataset

is used to train the model, and the test dataset evaluates the model’s performance.

Typical split ratios are 70:30 and 80:20. This is a hyperparameter that can be tuned.
Sklearn provides the following library function for the dataset split.

from sklearn.model_selection import train_test_split

train_test_split(x, y, test_size, random_state)

268 13 Python for Machine Learning

X, y: Feature matrix & Target vector.

test_size: Proportion of test set size.

random_state: Integer, The seed value for the random generator so that
the split is consistent over multiple runs.

The function returns four subsets:

train & test subsets of x.
train & test subsets of y.

13.3 Case Study: Preprocessing on the Titanic Dataset

The Titanic dataset contains information about the passengers who traveled on the
RMS Titanic, which sank after colliding with an iceberg that resulted in many deaths.
This dataset can best be used to demonstrate many preprocessing methods.

e Load Dataset

import pandas as pd

titanic = pd.read_csv(’/content/sample_data/titanic.csv’)
print(’ Shape of Dataset :’ titanic.shape)

print(’Columns :\n’,titanic.columns)

Output

Shape of Dataset : (1310, 14)

Columns: Index([’pclass’, ’survived’, 'name’, ’sex’, *age’, ’sibsp’,
‘parch’, “ticket’,fare’, *cabin’, ’embarked’, ’boat’, ’body’,
home.dest’],dtype="object’)

e Identify and handle missing values

(1) Identify the missing values

print(’Null values :\n’,titanic.isnull().sum())

13.3 Case Study: Preprocessing on the Titanic Dataset 269

Output

Null values:

pclass 1
survived 1
name 1
sex 1
age 264
sibsp 1
parch 1
ticket 1
fare 2
cabin 1015
embarked 3
boat 824
body 1189

home.dest 565

dtype: int64
(i) Find rows with all null values.

print(’Indices of rows with all null values:’,
titanic[titanic.isnull().all(axis=1)].index)

Output

Indices of rows with all null values: Int64Index([1309],
dtype="int64")

Note: Row number 1309 has all null values.
(iii)) Drop the row with all null values.

titanic.dropna(axis=0, how="all’, inplace=True)
print(’Shape after deleting row with all null values:
> titanic.shape)

Output
Shape after deleting row with all null values: (1309, 14)

(iv) As there are columns with many null values, delete those columns with more
than 30% null values.

delete the columns with less than 70% non-null values
titanic.dropna(axis=1,thresh = int(len(titanic)*0.7),
inplace=True)
print(’Dataset shape : ’, titanic.shape)
print(’Columns :\n’,titanic.columns)

270 13 Python for Machine Learning

Output

Dataset shape : (1309, 10)
Columns:
Index([’pclass’, ’survived’, name’, ’sex’, "age’, ’sibsp’,
"parch’, “ticket’, fare’, ’embarked’], dtype="object’

The columns, boat, body, home.dest, cabin, are deleted as they have more
than 30% null values. Now let us display the null values of all the columns.

print(’Null values after deleting some rows and columns :\n’,
titanic.isnull().sum())

Output

Null values after deleting some rows and columns:

pclass 0
survived 0
name 0
sex 0
age 263
sibsp 0
parch 0
ticket 0
fare 1
embarked 2

dtype: int64

(v) Filling the null values
Age and fare columns are continuous data types. Let us fill the null values
with the corresponding column mean.

titanic[’age’].fillna(value=titanic[’age’].mean(), inplace=True)
titanic[fare’].fillna(value=titanic[’fare’].mean(), inplace=True)
print(’Null values:\n’,titanic.isnull().sum())

Output

Null values:

13.3 Case Study: Preprocessing on the Titanic Dataset 271

pclass 0
survived 0
name 0
sex 0
age 0
sibsp 0
parch 0
ticket 0
fare 0
embarked 2

dtype: int64
Embarked column is a categorical data type. Let us see its categorical values.

print(’ Unique values of embarked_column:’,
titanic[’embarked’].unique())

Output
Unique values of embarked_column : ['S’ °C’ nan *Q’]
Let us fill the null values with its most frequent value (mode).

titanic[’embarked’].fillna(value=titanic[’embarked’].
mode().iloc[0], inplace=True)

print(’ Total Null values in the dataset:\n’,
titanic.isnull().sum().sum())

Output

Total Null values in the dataset: O

e Data transformations: Encoding the categorical features
Let us first find the categorical columns with at most 5 unique values.

cat_cols =[]
for col in titanic.columns:
num_vals = len(titanic[col].unique())
if num_vals<=5:
cat_cols.append(col)
print(’ Categorical columns :’,cat_cols)

Output
Categorical columns : ['pclass’, ’survived’, sex’, ’embarked’]

e Let us find the unique values of each categorical column

272

13 Python for Machine Learning
print(’sex column values :’ titanic[’sex’].unique())
print(’embarked column values :’,titanic[’embarked’].unique())
Output

sex column values : ['female’ *male’]
embarked column values : [’S’ ’C’ ’Q’]

This is a nominal feature of type string. Apply get_dummies method of pandas
for data transformation.

sex_embarked__du = pd.get_dummies(titanic[[’sex’,’embarked’]])
print(Dummy columns:\n’,sex_embarked__dum.head())

Output

Dummy columns:

sex_ sex_ embarked_C embarked_Q embarked_S
female male
0 1 0 0 0 1
1 0 1 0 0 1
2 1 0 0 0 1
3 0 1 0 0 1
4 1 0 0 0 1

Now that dummy columns are created for sex and embarked, let us add the
dummy columns to the Titanic dataframe and drop the sex and embarked columns

titanic = pd.concat([titanic,sex_embarked__dum)], axis=1)
titanic = titanic.drop([’embarked’,’sex’], axis=1)
print(’Columns :\n’,titanic.columns)

Output

Columns :
Index([’pclass’, ’survived’, 'name’, ’age’, ’sibsp’, ’parch’, ’ticket’,
*fare’,’sex_female’, ’sex_male’, ’embarked_C’, ’embarked_Q’,
’embarked_S’],dtype="object’)

Let us take the other two categorical columns, pclass and survived and apply
OneHotEncoder.

print(titanic[’survived’].unique())
print(titanic[’pclass’].unique())

13.4 Supervised Learning 273

Output

[1.0.]
[1.2.3.]

from sklearn.preprocessing import OneHotEncoder

cat_cols = ["pclass’,’survived’]

ohe = OneHotEncoder(sparse=False)
oh_cols = ohe.fit_transform(titanic[cat_cols])
print(oh_cols)

QOutput

array([[1.,0.,0.,0., L],
[1.,0.,0.0.,1.],
[1.,0.,0,1,0.1],

13.4 Supervised Learning

13.4.1 Regression

Regression is a machine learning technique to find the relationship between the
dependent variable and one or more independent variables. The dependent variable
is called the target, which is a continuous data type. It is usually represented by vy.
Independent variables are called features. Feature values are represented as a matrix
called a feature matrix. It is usually represented by X.

Regression is used as a predictive model to forecast the values of the target variable
given the feature matrix. It explains the correlation between the target and the features.

Typical regression applications are predicting house prices, stock values, customer
trends in e-commerce, forecasting sales of products, etc.

The regression model is a function between X and y.

y=f(X)

Yy = wo+ wix; + wxy + -+ WyXN

274 13 Python for Machine Learning

where xi, x2, ..., xy are the N features or independent variables. w;, w, ..., and
wy are coefficients or weights of the features in fitting the regression function. wy
is the intercept term.

Building a regression model involves the following steps:

(i) Training the model on the train dataset. This step determines the regression
function coefficients.
(i) Evaluate the model performance using the test dataset.

13.4.1.1 Model Evaluation Metrics

The following evaluation metrics are commonly used for linear regression.

e R’—Square of the correlation coefficient. It is the proportion of variance of the
dependent variable (y) that can be explained by independent variables (X). The
value is between 0 and 1.

0 indicates that y cannot be explained by X
1 indicates that y can be perfectly explained by X

A higher value indicates a better fit of the model.

e MSE (Mean Squared Error)—It is the average of error squares. Error is the

difference between the actual and predicted values of y. It measures how far the
predicted values are from the true values of the target variable. The lower the
value, the better the fit. Zero value indicates a perfect fit.
Challenges of this metric are: (i) This value can be very big as the errors are
squared. (ii) High error values are made even larger. (iii) The value is not on the
same scale as the data. (iv) It is sensitive to outliers. (v) It is hard to interpret
whether the model performs well based on this value.

e MSLE (Mean squared log error) is a variation of mean squared error. It is the
mean squared error of log-transformed predicted and log-transformed true val-
ues. Itadds 1 to actual and predicted values before applying log to avoid logarithm
on zero values. This metric cannot be used if the predicted or true values are
negative.

o MAE (Mean Absolute Error)—Average of the absolute difference between actual
and predicted values of y. The closer the value to 0, the better the model is. Zero
value indicates a perfect fit.

Sklearn provides LinearRegression() library function to build a regression model.
This function is available in the linear_model module.

from sklearn.linear_model import LinearRegression

LinearRegression(fit_intercept, normalize, copy_X, n_jobs, positive)

13.4 Supervised Learning 275

Commonly used parameters are

fit_intercept: boolean, Whether to calculate the intercept value for the
function. If set to False, no intercept is used for
calculations. Default is True.

normalize: boolean, If true, feature matrix X is normalized before
training by subtracting the mean and dividing
by the L2 norm.
Ignored when fit_intercept is set to false.
copy_X: boolean, If true, X is copied otherwise, X is overwritten.
Default is true.
n_jobs: integer, Number of jobs used in the computation.
positive: boolean, When set to true, it forces the coefficients to be

positive. Default is false.

13.4.1.2 Case Study

Regression model on Housing dataset to predict the price of the house given its
features.

e Load the dataset

import pandas as pd

data = pd.read_csv(’/content/sample_data/
kc_house_data.csv’)

print(’ Dataset Shape : ’,data.shape)

print(’Columns : \’,data.columns)

Output

Dataset Shape : (21613, 21)

Columns : Index([’id’, ’date’, ’price’, ’bedrooms’, ’bathrooms’,
’sqft_living’,’sqft_lot’, *floors’, *waterfront’, "view’,
’condition’, grade’, ’sqft_above’, ’sqft_basement’,
’yr_built’, "yr_renovated’, ’zipcode’,’lat’, ’long’,
’sqft_living15°, *sqft_lot15°], dtype="object’)

e Data Preprocessing
(i) Asthe ’id’ feature is irrelevant, remove it using the drop() function.

data.drop(’id’,axis=1, inplace=True)
print(’ Number of Columns after removing id column:\n’,
len(data.columns))

Output

13 Python for Machine Learning

Number of Columns after removing id column: 20

data.info()

Output

(ii) Identify the Null values using info() method on the dataframe.

<class ’pandas.core.frame.DataFrame’ >

Rangelndex: 21613 entries, 0 to 21612

Data columns (total 20 columns):

Column Non-null count Dtype
0 date 21613 non-null object
1 price 21613 non-null float64
2 bedrooms 21613 non-null int64

3 bathrooms 21613 non-null float64
4 sqft_living 21613 non-null int64

5 sqft_lot 21613 non-null int64

6 floors 21613 non-null float64
7 waterfront 21613 non-null int64

8 view 21613 non-null int64
9 condition 21613 non-null int64
10 grade 21613 non-null int64
11 sqft_above 21611 non-null float64
12 sqft_basement 21613 non-null int64
13 yr_built 21613 non-null int64
14 yr_renovated 21613 non-null int64
15 zipcode 21613 non-null int64
16 lat 21613 non-null float64
17 long 21613 non-null float64
18 sqft_livingl5 21613 non-null int64
19 sqft_lotl5 21613 non-null int64

dtypes: float64(6), int64(13), object(1)

memory usage: 3.3+ MB

values using dropna() function.

data.dropna(axis=0, inplace=True)
print(’ Dataset dimensions after dropping null values: ’,
data.shape)

(iii)) There are two null values in the sgft_above feature. Drop the rows with null

13.4 Supervised Learning 277

Output
Dataset dimensions after dropping null values: (21611, 20)

(iv) Visualize the data: Draw a scatter plot between sqft_living and price using
scatter() function of matplotlib.pyplot.

import matplotlib.pyplot as plt

plt.xlabel(’ Squarefoot Living’)
plt.ylabel(’Price of the House’)
plt.title(’Sqft_living vs Price’)
plt.scatter(data[’sqft_living’],data[price’])

plt.show()
Output
1e6 Sqft_living vs Price
89 B
7 L
6 -

Price of the House
o

0 2000 4000 6000 8000 10000 12000 14000
Squarefoot Living

(v) Let us remove the outliers

get the idices of the outliers

idx = data[data[’sqft_living’]>10000].index

print(’Indices of outliers : ’,idx)

data = data.drop(idx)

print(’ Dataset dimensions after removing outliers: ’,
data.shape)

Output

Indices of outliers : Int64Index([3914, 7252, 12777],
dtype="int64")
Dataset dimensions after removing outliers: (21608, 20)

278 13 Python for Machine Learning

(vi) Visualize the data after removing outliers.
1e6 Sqft_living vs Price : After removing outliers

7 °
6 4
L]

$°1
2 L]
o
T 4
LY
r -]
a3 o
b
& 24

1 <4

0 <4

0 2000 4000 6000 8000 10000

Squarefoot Living
(vii) Find the contributing features by determining the correlation matrix and
selecting those features whose correlation is more than 0.4. Also, remove
"price’ from the feature set as it is the target variable.

temp = data.corr()[price’]
features= temp[temp>0.4].index
features= features.drop(’price’)
print(features)

Output

Index([’bathrooms’, ’sqft_living’, ’grade’, ’sqft_above’,
’sqft_living15’], dtype="object’)

(viii) Prepare feature matrix x, and target vector, y.

x = data[features]
y = data[price’]

(ix) Find the ranges of feature values.

print(’Min and Max values of features:\n’)
for feat in features:
print(feat,’: ’, min(x[feat]),” ’, max(x[feat]))
Output

Min and Max values of features:

bathrooms: 0.0 7.75
sqft_living: 290 9890
grade: 1 13

sqft_above: 290.0 8860.0
sqft_livingl5: 399 6210

13.4 Supervised Learning 279

(x) As feature ranges are different, normalize the data.

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

x_scaled = scaler.fit_transform(x)

now x_scaled is a numpy array

print(’ After Normalization :\n’, x_scaled[:4])

Output

After Normalization :

[[0.12903226 0.09270833 0.5 0.10385064
0.16193426]

[0.29032258 0.2375 0.5 0.21936989 0.22216486]

[0.12903226 0.05 0.4 1666667 0.05600933
0.3994149]

[0.38709677 0.17395833 0.5 0.08868145
0.165376011]]

e Split the dataset into a train set and a test set.

from sklearn.model_selection import train_test_split

X_train,x_test, y_train, y_test= train_test_split(x_scaled,y,
test_size=0.3, random_state=40)

print(’Dimensions of Train and Test sets : *,x_train.shape,
x_test.shape, y_train.shape, y_test.shape)

Output

Dimensions of Train and Test sets : (15125, 5) (6483, 5)
(15125,) (6483,)

e Build the Regression model

from sklearn.linear_model import LinearRegression
Ir=LinearRegression()

Ir.fit(x_train, y_train)

y_preds = Ir.predict(x_test)

e Evaluate the model

from sklearn.metrics import r2_score, mean_squared_error,
mean_absolute_error, mean_squared_log_error

printCR2 : *,r2_score(y_test,y_preds))

printCMAE : °, mean_absolute_error(y_test,y_preds))

printCMSE : ’ ;mean_squared_error(y_test,y_preds))

280 13 Python for Machine Learning

Output

R2: 0.547363994385045
MAE: 163352.7986832477
MSE: 68809985836.71199

mean_squared_log_errorisnot applied because the predicted values are negative
as shown below.

print(y_preds[y_preds<0])

Output

[—113573.68269179 —81638.31689536 —248.67633989
—179101.70244725 —36561.40819972 —6628.10284697
—6703.89769234 —215772.83445319 —11539.90843627
—14269.87426284 —116717.06425597]
—97674.12542794]

e Display model parameters: Intercept and feature coefficients.

print(’Intercept : ’, Ir.intercept_)
print(’Coefficients : ’,Ir.coef_)

QOutput

Intercept: -488880.066750332
Coefficients: [-238201.92580502 2114513.48240623
1377740.92680231 —723748.61008129 217984.4423223]

13.4.2 Classification

Classification is a supervised learning technique that categorizes data points into
different classes or categories. The dataset contains features and the target variable.
The target variable is of categorical data type. The classification model determines
the decision boundary that separates the data points into different classes. The model
is then used to predict the class label for the given new data point.

Following are the use cases of classification:

e Classifying the emails into spam and non-spam.

Categorizing news articles into education, political, business, sports, etc.
Classifying images into objects of different categories.

Sentiment classification, where the reviews are classified into positive, negative,
and neutral.

Speech recognition, etc.

13.4 Supervised Learning 281

Based on the number of classes, the classification task is categorized into

(i) Binary classification categorizes the data points into two classes.
(i1) Multi-class classification: The number of classes is more than two.
(ii1) Multi-label classification: A given data point can be assigned to more than one
class.

13.4.2.1 Evaluation Metrics

Commonly used performance metrics for classification model are

e Accuracy score: This shows the fraction of correct predictions out of the total
number of predictions.

e Confusion matrix/Error matrix: A two-dimensional matrix of N x N, where N is
the number of classes. It represents the performance of the classification model
that compares the actual and predicted labels. Columns represent actual labels
and rows represent predicted labels. Diagonal values represent the number of
correctly classified data points, and others are the misclassifications.

e Classification Report: Measures the quality of the prediction model using the
number of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN).

The classification report shows precision, recall, and F1 score, for each class
based on TP, TN, FP, and FN values.

Precision: Ratio of true positives to total positives predicted.

Recall: Ratio of true positives to the total number of

positive samples.

F1 score: Precision and recall are combined into a single metric
which is their harmonic mean. Increasing precision
value results in a reduction of recall value. A high
value for the F1 score indicates similar values
for precision and recall.

These performance metrics are available in metrics module of sklearn.

from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report

282 13 Python for Machine Learning
13.4.2.2 Classification Algorithms

Widely used classification algorithms are

1. Logistic regression is a basic classification method similar to linear regression but
applied to classification tasks. It uses the logit function to output a binary value. It
works well when the relationship between features and target is not too complex.

from sklearn.linear_model import LogisticRegression

LogisticRegression(solver, fit_intercept, C, tol, penalty,
multi_class,max_iter, random_state)

solver: string, Algorithm used in optimizing the cost
function. Different solvers are liblinear, Ibfgs,
newton_cg, sag, and saga
liblinear—fast for small datasets. Uses one vs rest
method to solve multi-class problems.
Ibfgs—Used for multi-class problems and handles L2
penalty. Not fast for large datasets.
newton_cg—is slow for large datasets as it computes
second derivatives. It is a good choice for
small datasets. It also handles the L1 penalty.
sag - suitable for large datasets.
saga - An extension of sag that allows L1
regularization. It works faster than sag and
is suitable for large datasets.
fit_intercept: boolean, Indicates whether a constant is to be added
to the decision function.
C: float, It is the inverse of regularization strength.
Default is 1.0.
The smaller the value stronger the regularization.
Commonly used values are [0.001, 0.01, 0.1, 1, 10,

100, 1000].
tol: float, Represents the tolerance for stopping criteria.
penalty: string, Specifies the type of regularization.

Values are 11, 12 (default), elasticnet, and None.
multi_class: string, for handling multi-classes. The values are
ovr, multinomial, auto.

13.4 Supervised Learning 283

max_iter: integer, The maximum number of iterations the
solver uses during model fitting.

random_state: integer, It is a seed of the pseudo-random number
generator used while shuffling the data.

2. Decision Tree is a tree structure where internal nodes represent features, edges
represent decision rules, and leaf nodes represent outcomes or labels. The tree
structure is built during the training process. To predict the class of a new data
point, the tree is parsed from the root till the leaf node that gives the class label.
A decision tree can be used for both classification and regression problems but is
preferred for classification. It can take features of both numerical and categorical
data types.

The model is simple to understand and interpret. It requires minimal data cleaning
and no need to scale the data. But the model training is time-consuming, and a
higher depth tree makes the problem more complex, which may lead to overfitting.

from sklearn.tree import DecisionTreeClassifier

DecisionTreeClassifier(criterion, max_depth, splitter,
min_samples_split, min_samples_leaf, max_features,
max_leaf nodes, random_state)

Commonly used parameters are

criterion: Measures the quality of the node split. Values

are Gini, entropy, and log_loss. Default is gini.
max_depth: integer, the maximum depth of the tree.
splitter: string, used to split at each node.

Values are best, random

min_samples_split: integer, Indicates the minimum number of
samples required in each split. Default is 2.

min_samples_leaf: integer, Minimum number of samples required
in each leaf node. Default is 1.

max_features: float, Number of features to consider for the best
split. Values are int, auto, sqrt, and log2.
Default is none.

max_leaf _nodes: The tree will grow up to the maximum number
of leaf nodes in the best-first fashion.

random_state parameter has same meaning as in LogisticRegression() function.

3. K-Nearest Neighbors (KNN) is a distance-based algorithm that classifies the new
data point based on the majority class of its K-nearest neighbors. It uses Euclidean
distance to determine the neighbors. It is an instance-based learning algorithm
that does not require a training phase. It can be used for both regression and
classification problems.

284 13 Python for Machine Learning

The algorithm is simple, easy to understand and implement. Data scaling is
required as Euclidean distance is used. The algorithm is slow as the dataset grows
and unsuitable for high-dimensional datasets. Also, it requires large memory as
the entire dataset is used for prediction.

from sklearn.neighbors import KNeighborsClassifier

KneighborsClassifier(n_neighbors, algorithm, metric, p, n)

Commonly used parameters are

n_neighbors integer, k value in KNN is the number of neighbors.
Default is 5.

algorithm to compute nearest neighbors. Values are ball_tree,
kd_tree, brute, and auto. The "auto’ will decide the
most appropriate algorithm based on the data
passed to the fit method.

metric used to compute the distance between the data points.
Values are cosine, Euclidean, Manhattan, etc.
Default is *minkowski’.

p integer value for Minkowski metric. Default is 2,
which is Euclidean distance.
n integer to parallelize the processing on multiprocessors.

4. Support Vector Machine (SVM): A popular machine learning algorithm that can

be used for classification and regression but is primarily used for classification
tasks. The model determines the hyperplane in n-dimensional space that separates
different classes. The data points closest to the hyperplane are called support
vectors. The algorithm aims at maximizing the margin between the hyperplane
and support vectors to classify the data points distinctly.
SVM classifies non-linearly separable data points using a kernel trick. A ker-
nel converts a non-linear problem into a linear problem by transforming low-
dimensional input space into high-dimensional space. Popular kennel functions
are linear, polynomial, rbf (radial basis function).

from sklearn.svm import SVC

SVC(C, kernel, degree, gamma, tolerance, verbose,max_iter)

13.4 Supervised Learning 285

C: float, Inverse of regularization strength. Smaller values specify
stronger regularization. The default is 1.0.

kernel: string, Values are linear, poly, rbf, sigmoid. The default is rbf.

degree: integer, Degree of the polynomial kernel function. Other kernels
ignore this. The default is 3.

gamma: kernel coefficient for rbf, poly and sigmoid. Values are scale, auto,

or float. The default is scale.

tolerance: float, the threshold value for stopping the iterations of the solver.
Default is 1e-3.

verbose: boolean, enables output during training.

max_iter: integer, a limit on the number of iterations of the solver. Default
is —1 indicating no limit.

5. Naive Bayes is a probabilistic classifier based on the Bayes theorem. A simple
and effective algorithm for building models quickly. It can work on continuous
and discrete data. It is particularly used for large datasets like text data. Naive
Bayes is based on the assumption that all the features are independent and con-
tribute equally to the outcome. But the real-world features are dependent, and this
assumption hinders the model performance.

from sklearn.naive_bayes import GaussianNB

13.4.2.3 Case Study

Apply different classification algorithms on the glass dataset with six classes defined
based on oxide content.

e Loading the Dataset
import pandas as pd
data = pd.read_csv(’/content/sample_data/glass.csv’)

print(’Shape of Dataset: °,data.shape)
print(’Columns : \n’, data.columns)

Output

Shape of Dataset: (214, 10)
Columns :
Index([’RI’, 'Na’, ’"Mg’, ’Al’, ’Si’, ’K’, ’Ca’, 'Ba’, "Fe’, "Type’],
dtype="object’)
e Data Preprocessing
(i) Check the null values

print(’ Total number of null values : ’,
data.isnull().sum().sum())

286 13 Python for Machine Learning

Output
Total number of null values : 0
(i1) Divide the dataset into feature matrix & target vector
x = data.drop(’ Type’,axis=1)
y = data[Type’]
print(x.shape, y.shape)
Output
(214,9) (214,)
(iii) Display the first five rows of the feature matrix to check the range of values.

from tabulate import tabulate
print(tabulate(x.head(), headers = ’keys’, tablefmt = psql’))

Output
RI Na Mg Al Si K Ca Ba Fe
0 1.52101 13.64 4.49 1.1 71.78 0.06 8.75 0 0
1 1.51761 13.89 3.6 1.36 72.73 0.48 7.83 0 0
2 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0
3 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0
4 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0

(iv) Normalization: Feature matrix is normalized as values are in different ranges

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(x)

(v) Split the dataset into train and test sets.

from sklearn.model_selection import train_test_split

Xtrain, xtest, ytrain, ytest = train_test_split(x_scaled, y,
test_size=0.2, random_state=40)

print(xtrain.shape, xtest.shape, ytrain.shape, ytest.shape)

Output
(171,9) (43,9) (171,) (43,)

Build the model using different classification algorithms.

1. Build a Logistic Regression model and its performance with the Confusion matrix.

13.4 Supervised Learning 287

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix

Ir = LogisticRegression(random_state=2, solver="saga’)

Ir.fit(xtrain, ytrain)

Ir_ypred = Ir.predict(xtest)

print(’ Counts of each lebel in ytest: \n’,ytest.value_counts())

print(’\n Confusion Matrix :\n’,
confusion_matrix(ytest,Ir_ypred))

Output

Counts of each lebel in ytest:
2 17

1 13

7 4

3 4

5 3

6 2

Name: Type, dtype: int64
Confusion Matrix:

[[1030000]
[1070000]
[220000]
[030000]
[020000]
[010003]]

Out of 13 samples of label 1, only 10 are correctly predicted and remaining are
predicted as class 2.

Out of 17 in class 2, 7 are correctly predicted and the remaining 10 are predicted
as class 1.

None of the data points of class 3, 5, 6 are correctly predicted.

Out of 4 data points in class 7, only 3 are correctly predicted, and the other one
is predicted as class 2.

2. K-Nearest Neighbors model: KNN model for different values of K and accuracy
tabulated below.

from sklearn.neighbors import KneighborsClassifier
from sklearn.metrics import accuracy_score
acc=[]
for n in range(3,10,2):
knn = KNeighborsClassifier(n_neighbors=n)

288 13 Python for Machine Learning

knn.fit(xtrain, ytrain)
ypred = knn.predict(xtest)
acc.append(accuracy_score(ytest,ypred)*100)
accuracy = pd.DataFrame({’No. Neighbors’: range(3,10,2),
’Accuracy’: acc})
printC KNN Accuracy for different values of K:\n’, accuracy)

Output
KNN Accuracy for different values of K:

No. Neighbors Accuracy

0 3 67.441860
1 5 62.790698
2 7 62.790698
3 9 62.790698

3. Decision Tree classifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import classification_report

dt = DecisionTreeClassifier(max_depth=2, random_state=0)

dt.fit(xtrain, ytrain)

ypred= dt.predict(xtest)

print(’Classification Report of Decision Tree \n’,
classification_report(ytest,ypred))

Output

Classification Report of Decision Tree

Precision Recall F1 score Support

1 0.55 0.85 0.67 13
2 0.60 0.71 0.65 17
3 0.00 0.00 0.00 4
5 0.00 0.00 0.00 3
6 0.00 0.00 0.00 2
7 1.00 0.75 0.86 4
accuracy 0.60 43
macro avg 0.36 0.38 0.36 43
weighted avg 0.50 0.60 0.54 43

Let us visualize the tree.

13.4 Supervised Learning

from sklearn import tree

convert numeric labels into strings

cn = str(y.unique())

fn= x.columns

print(’Class Labels : ’,cn)

print(’Feature Names : °, fn)

_=tree.plot_tree(dt, class_names= cn,
feature_names=fn, filled=True)

Output
Class Labels : [123 56 7]
Feature Names : Index([’RI’, Na’, 'Mg’, *Al’, ’Si’, ’K’, "Ca’,
’Ba’, ’Fe’], dtype="object’)

an-Ol. L]

Vll‘-' l'.n!ﬂ---\-‘l T.2

/N

n-blw gri=0.3T0 g =%
rampley = 32 namplen = 3
\ﬂl“"[” 2& DA!?I] valse = [4.32.3 8.5.0) vale =[2. 1.0, 1.0. 8]
clasy = | clasa =1 clasa =1

4. Support Vector Machine (SVM) with different kernels

from sklearn.svm import SVC
kern=["rbf’, *poly’, ’linear’, ’sigmoid’]
acc=[]
for k in kern:
svm = SVC(kernel = k)
svm.fit(xtrain, ytrain)
ypred = svm.predict(xtest)
acc.append(accuracy_score(ytest,ypred)*100)
accuracy = pd.DataFrame(acc,columns=["Accuracy’],
index=kern)
print(’ SVM model accuracy for different kernel values \n’,
accuracy)

290 13 Python for Machine Learning

Output

SVM model accuracy for different kernel values

Accuracy
rbf 67.441860
poly 65.116279
linear 48.837209
sigmoid 44.186047

5. Naive Bayes Classifier

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

nb = GaussianNB()

nb.fit(xtrain, ytrain)

ypred= nb.predict(xtest)

print(’ Accuracy Score of Naive Bayes: ’,
accuracy_score(ytest,ypred)*100)

Output
Accuracy Score of Naive Bayes: 48.837209302325576

13.5 Model Selection

Model parameters are the weights learned from the data during the model’s training
process. These parameters map the feature variables to the target variable. Parameters
are initialized with Os or some random values before starting the training process. As
the training progresses, these values are updated using optimization algorithms like
gradient descent, Adam, RMSProp, etc. At the end of the training process, the updated
parameter values constitute the model. These values are used to make predictions.

Examples of model parameters are coefficients of the linear regression function,
the values that constitute hyperplane in classification, cluster centroids in clustering,
etc.

Hyperparameters are the values used to control the training process. These values
are set before the training begins. They are external to the model and do not change
during training. The choice of hyperparameter values affects the model parameters

13.5 Model Selection 291

determined by the training process. Choosing the best values is very important in
building good models.

Examples of hyperparameters are the regularization parameter, optimization algo-
rithm in model training, learning rate, kernel, etc.

13.5.1 Hpyperparameter Tuning

The process of choosing the best hyperparameter values is called hyperparameter
tuning. Hyperparameter tuning can be done in two ways:

1. Manual tuning: Hyperparameters values are set to some recommended values
and then searched through a range of values by trial and error. This process is
tedious and time-consuming. This approach is not practical when there are many
hyperparameters. To get default values used by the model.

model_name.get_params()
2. Automated tuning: It uses an algorithm to search for optimal values. Sklearn
provides the following algorithms for automated tuning.

(a) Grid search: Creates a grid of discrete values for the hyperparameters. The

model is trained on each possible combination of the values and evaluated.
The values for which the model performs best are the best hyperparameter
values. This approach is an exhaustive sampling of hyperparameter space.
As the model is trained on all possible combinations of values, it requires
more computational power and is time-consuming.
Limitations of this approach are: (i) Search is on the values specified in
the hyperparameter grid. But, other hyperparameter combinations may fur-
ther improve the performance. (ii) Performing an exhaustive search is time-
consuming.

from sklearn.model_selection import GridSearchCV

GridSearchCV(estimator, param_grid, scoring. cv, n_jobs, refit,
return_train_score, verbose)

292

(b)

13 Python for Machine Learning

estimator: Estimator object for which hyperparameters
are determined.

param_grid: A dictionary of hyperparameter names and
their values.

scoring: Evaluation metrics used in model
evaluation.

cv: Number of folds used in cross-validation.
Default is 5.

n_jobs: Number of processes created to execute the
job. Default is None

refit: boolean, whether to refit the estimator on

the best hyperparameter values on the
whole dataset.
return_train_score: Returns the training score of different
hyperparameter settings. This helps in
determining the overfit or underfit.
verbose: Gives detailed output while training.

To get the best hyperparameters values and corresponding accuracy, apply
the fit method on the grid search object and access the values from the result
as follows.

results = gsfit(x_train, y_train)
results.best_params_
results.best_score_

Randomized search takes random combinations from grid space to train and
evaluate the model. This is repeated for the specified number of iterations.
Statistical distributions can also be specified for each hyperparameter from
which values are randomly sampled.

As it is not an exhaustive search, there is no guarantee of the best result
but it is very effective in practice. Computational time is significantly less
compared to grid search. This approach is appropriate when the number of
hyperparameters is more.

from sklearn.model_selection import
RandomizedSearchCV

RandamizedSearchCV(estimator, n_iter, param_grid,
scoring, cv, refit, return_train_score, verbose)

n_iter: integer, Number of parameter settings that are sampled.
Default 10.

13.5 Model Selection 293

Other parameters like estimator, param_grid, scoring. cv, refit,
return_train_score, and verbose are the same as in the
GridSearch() function.

13.5.2 Case Study

Apply hyperparameter tuning techniques on Pima Indian Diabetes dataset. The
dataset consists of patients’ diagnostic measurements, and the outcome of whether
the patient is diabetic. A predictive model is built with the best hyperparameter values
after tuning.

e Load the dataset

import pandas as pd

data = pd.read_csv(’/content/sample_data/pima_indian_
diabetis.csv’)

print(’ Dataset shape :’,data.shape)

print(’ Columns :\n’,data.columns)

Output

Dataset shape : (768, 9)

Columns: Index([’Pregnancies’, *’Glucose’, ’BloodPressure’,
’SkinThickness’, Insulin’, " BMI’, ’DiabetesPedigreeFunction’,
’Age’, ’Outcome’],dtype="object’)

e Identify the total number of null values in the dataset

print(’ Total number of null values: ’,data.isnull().sum().sum())

Output
Total number of null values: 0

e Prepare feature matrix and target vector.

x = data.drop(’Outcome’, axis=1)

y = data[’Outcome’]

print(’Shape of x :’,x.shape, > Shape of y :’,y.shape)
Output

Shape of x : (768, 8)
Shape of y : (768,)

e Count number of observations in each label

294 13 Python for Machine Learning

import numpy as np
print(’ Count of Labels :\n’,y.value_counts())

Output

Count of Labels :

0 500

1 268

Name: Outcome, dtype: int64

e Normalize the feature matrix

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(x)

e Split the dataset into train set and test set

from sklearn.model_selection import train_test_split

xtrain, xtest, ytrain, ytest = train_test_split(x_scaled,y,test_size=0.2,
random_state=1)

print(xtrain.shape, xtest.shape, ytrain.shape, ytest.shape)

Output
(614, 8) (154, 8) (614,) (154,)
Hyperparameter tuning

(i) Grid search for SVM

hyper_param_grid={"kernel’:[’rbf’,’ linear’, poly’], degree’:
[3.,4,5],°C’ : [0.1, 1,10,100], ’gamma’:[0.1,0.01, 0.001]}
from sklearn.svm import SVC

% %otime

from sklearn.model_selection import GridSearchCV

grid = GridSearchCV (estimator= SVC(), param_grid=
hyper_param_grid, verbose=1)

print("Grid Search : \n")

grid.fit(xtrain, ytrain)

print(’Best hyperparameter values:\n’,grid.best_params_)

print("Best Score : ’,grid.best_score_ * 100)

Output
Grid Search :

Fitting 5 folds for each of 108 candidates, totaling 540 fits

13.6 Ensemble Methods 295

Best hyperparameter values:
{’C’: 10, *degree’: 3, ’gamma’: 0.1, "kernel’: "rbf’}
Best Score : 77.52499000399841
CPU times: user 6.09 s, sys: 6.3 ms, total: 6.1 s
Wall time: 6.1 s

(i) Randomized grid search

90 Potime

from sklearn.model_selection import RandomizedSearchCV

grid = RandomizedSearchCV (estimator= SVC(), param_
distributions= hyper_param_grid, n_iter=5, verbose = 1)

print("Randomized Search : \n")

grid.fit(xtrain, ytrain)

print(’ Best Hyperparameter values:\n’,grid.best_params_)

print(’Best Score : ’,grid.best_score_ * 100)

Output

Randomized Search :

Fitting 5 folds for each of 5 candidates, totaling 25 fits
Best Hyperparameter values:

{’kernel’: "poly’, ’gamma’: 0.1, *degree’: 3, ’C’: 100}
Best Score : 77.35972277755565
CPU times: user 363 ms, sys: 1.98 ms, total: 365 ms
Wall time: 366 ms

Randomized grid search achieves almost the same score as grid search with only 5
hyperparameter settings instead of 108 taken by grid search.

13.6 Ensemble Methods

Ensembling is a process of combining predictions of multiple models. Each model
is called a base model, which is a weak learner. These weak learners are combined to
form stronger learner. This technique helps in improving the model performance and
overcomes bias and variance problems. Ensembling can be used for both regression
and classification tasks.

296 13 Python for Machine Learning

13.6.1 Basic Ensembling Techniques

(i) Max voting: For a given data point, each model’s prediction is considered a
vote. The final prediction is the class that wins the majority votes. This applies
to classification tasks.

Example: Take a datapoint P

Model-1 predicted Class A
Model-2 predicted Class B
Model-3 predicted Class A

The final prediction for the datapoint P is Class A.
(ii) Averaging: The final prediction, for the given datapoint P, is the average of all
the model’s predictions.

Final_prediction = (modell_prediction+model2_
prediction+ - - - + modelN_prediction) / N

(iii) Weighted averaging: Each model prediction is given a weight. A model with
higher predictive power is given more weight. All weights of the models sum
up to 1. The final prediction is a weighted average of all models.

Final_prediction = (prediction_1 * w1 + prediction_2 *
w2 + - - - 4 prediction_N * wN) /N

Averaging and weighted averaging methods are used for regression tasks.

13.6.2 Advanced Ensembling Techniques

In addition to the basic methods, there are advanced ensembling methods. Widely
used advanced ensembling approaches are Bagging, Boosting, and Stacking.

1. Bagging: Subsets of the training data are sampled using the bootstrap sampling
method with replacement. Then each subset is trained independently and in paral-
lel using the same base model, forming weak learners. Predictions of these weak
learners are then combined to form the final prediction. In the case of regression
tasks, the average of all the individual models is taken as the final prediction and
majority voting for classification tasks.

The bagging method is used when weak learners show high variance and low bias.
The decision tree is commonly used as a base model algorithm. As the number
of subsamples increases, the bagging process takes more time.

Random forests is a bagging method that uses a decision tree as the base model.
Instances as well as features are sampled to form subsamples. Decision tree algo-
rithm is applied to each of these subsamples. Predictions of the individual decision

13.6 Ensemble Methods 297

trees are then combined to form the final prediction. Random forests can be used
for both classification and regression tasks.

2. Boosting: The objective of boosting is to convert weak learners to the strong
learner. A sequence of models is developed by correcting the errors made in the
prior model by giving more weightage in the next model. The first model gives all
the data points the same weightage. In the subsequent model, wrongly classified
data points are given more weight, and the weights of correctly classified data
points are reduced. Normalize the weights and repeat the steps until the required
accuracy is reached. Each subsequent model is influenced by the performance
of the previous model. Boosting method is used when weak learners show low
variance and high bias. It aims at decreasing the bias. Popularly used boosting
algorithms are Adaboost, Gradient Boost, XGBoost, etc.

3. Stacking: Train a set of models on the given training dataset. Predictions of these
models form a new train dataset. Another model is trained on this new train dataset
and evaluate this new model on the test data. Sklearn provides the following library
functions for the ensemble algorithms.

®

from sklearn.ensemble import BaggingClassifier

BaggingClassifier(base_estimator, n_estimators, max_samples,
max_features, random_state)

base_estimator: The base model used for fitting on subsets of
the dataset. The default is a decision tree.

n_estimators: Number of base estimators.
max_samples: Number of samples to draw from the dataset.
max_features: Number of features included in each
sample subset.
random_state: Method of the random split. When this value is

the same for models, random selection is
also the same.

(ii)

from sklearn.ensemble import RandomForestClassifier

RandomForestClassifier(n_estimators, criterion, max_features,
max_depth, min_samples_split, min_samples_leaf,
max_leaf _nodes, random_state)

298 13 Python for Machine Learning

n_estimators: Number of decision trees in the
random forest.
criterion: Function used for splitting tree nodes.
max_features: Maximum number of features allowed for
the split in each decision tree.
max_depth: Maximum depth of each decision tree.

min_samples_split: Minimum number of samples required in
leaf node before attempting to split.

min_samples_leaf: =~ Minimum number of samples required in
the leaf node.

max_leaf _nodes: Maximum number of leaf nodes for each
decision tree.
random_state: Specifies random split method. When this

value is the same for different models,
random selection is also the same.

(>iii)
from sklearn.ensemble import AdaBoostClassifier
AdaBoostClassifier(base_estimator, n_estimators,
learning_rate, max_depth, random_state)
base_estimator: Type of base estimator.
n_estimators: Number of base estimators. The default is 10.
learning_rate: Controls the contribution of base estimators
in the final combination.

max_depth: Maximum depth of each estimator.
random_state: Integer that indicates random split.

(iv)

from sklearn.ensemble import GradientBoostingClassifier

GradientBoostingClassifier(min_samples_split,
min_samples_leaf, min_weight_fraction_leaf,
max_depth,max_leaf _nodes, max_features)

13.6 Ensemble Methods 299

min_samples_split: Minimum number of samples
required to split the node.

min_samples_leaf: Minimum samples required in a
leaf node.

min_weight_fraction_leaf: same as above, except that it is
specified as a fraction of total
number of samples.

max_depth: Maximum depth of a tree.

max_leaf nodes: Maximum number of leaf nodes
in a tree.

max_features: Number of features considered

for best split.

(v) import xgboost as xgb

xgb.XGBClassifier(n_estimators, eta, gamma,
min_child_weight, max_depth, max_features)

n_estimators: number of boosting strategies. 100(default).
eta: Same as learning_rate.
gamma: Minimum loss reduction to make a split.

Values are deviance, and exponential
(for 2 classes). Default Loss - log_loss.

min_child_weight: Minimum sum of weights of samples
required in a child.

max_depth: Maximum depth of a tree.

max_features: auto, sqrt, log2. Default None.

(vi)

from sklearn.ensemble import StackingClassifier

StackingClassifier(estimators, final_estimator)

estimators: List of base estimators.
final_estimator: Classifier that combines the base estimators.
Default is logistic regression.

300 13 Python for Machine Learning

13.6.3 Case Study

Apply different ensemble algorithms on Pima Indian Diabetes dataset that contains
features describing patient’s medical indicators and the target indicates whether a
patient is diabetic.

e L oad dataset

import pandas as pd

data = pd.read_csv(’/content/sample_data/pima_
indian_diabetis.csv’)

print(’ Shape of Dataset: °,data.shape)

print(’Columns : \n’, data.columns)

Output

Shape of Dataset: (768, 9)
Columns :
Index([’Pregnancies’, ’Glucose’, BloodPressure’, *SkinThickness’,
"Insulin’, " BMI’, *DiabetesPedigreeFunction’, *Age’,
’Outcome’], dtype="object’)

e Identify the null values

print(’ Total number of null values : ’, data.isnull().sum().sum())

Output
Total number of null values : 0

e Prepare Feature Matrix and Target Vector

x = data.drop(’Outcome’ axis=1)

y = data[’Outcome’]

print(’Dimensions of Feature matrix and Target Vector: ’,
x.shape, y.shape)

Output
Dimensions of Feature matrix and Target Vector: (768, 8) (768,)

e Normalize the feature matrix

Check the value ranges of features

print(’Feature value ranges :\n’)
for col in x.columns:
print(col,” : ’, min(x[col]),’ to ’, max(x[col]))

13.6 Ensemble Methods 301

Output

Feature value ranges :

Pregnancies: 0 to 17

Glucose: 0 to 199

BloodPressure: 0 to 122

SkinThickness: 0 to 99

Insulin: O to 846

BMI: 0.0 to 67.1
DiabetesPedigreeFunction: 0.078 to 2.42
Age: 21 to 81

As feature value ranges are different, let us normalize the feature matrix.

sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_scaled = scaler.fit_transform(x)

e Create train and test datasets using scaled feature matrix

from sklearn.model_selection import train_test_split

Xtrain, xtest, ytrain, ytest = train_test_split(x_scaled, y,
test_size=0.2, random_state=40)

print(’ Dimensions of train & test sets: *,xtrain.shape, xtest.shape,
ytrain.shape, ytest.shape)

Output
Dimensions of train & test sets: (614, 8) (154, 8) (614,) (154,)

e Apply different ensemble methods

1. Bagging ensemble method using support vector machine as the base esti-
mator.

from sklearn.ensemble import BaggingClassifier

from sklearn.svm import SVC

bc_svm=BaggingClassifier(base_estimator=SVC(),
n_estimators=50)

bc_svm.fit(xtrain, ytrain)

print(’ Auuracy Score using Bagging classifier : °,
bc_svm.score(xtest, ytest)*100)

Output

Auuracy Score using Bagging classifier : 75.32467532467533

302 13 Python for Machine Learning

2. Random Forest

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold, cross_val_score
rf = RandomPForestClassifier(n_estimators= 30, max_features=5)
rf.fit(xtrain,ytrain)
print(’ Accuracy Score using Random Forest : °,
rf.score(xtest, ytest)*100)

Output
Accuracy Score using Random Forest : 76.62337662337663
3. Adaboost Algorithm

from sklearn.ensemble import AdaBoostClassifier

ada_boost = AdaBoostClassifier(n_estimators=30)

ada_boost.fit(xtrain,ytrain)

print(’ Accuracy Score using AdaBoost: ’,
ada_boost.score(xtest, ytest)*100)

Output
Accuracy Score using AdaBoost: 72.07792207792207
4. Gradient Boost Algorithm

from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=30)

gbc fit(xtrain,ytrain)

print(’ Accuracy Score using Gradient Boost: ’,
gbc.score(xtest, ytest)*100)

Output
Accuracy Score using Gradient Boost: 75.32467532467533
5. XGBoost Algorithm

import xgboost as xgb

model = xgb.XGBClassifier(n_estimators=30)

model.fit(xtrain,ytrain)

print(’ Accuracy Score using XGBoost: ’,
model.score(xtest, ytest)*100)

Output

Accuracy Score using XGBoost: 78.57142857142857

13.7 Unsupervised Learning 303

6. Stacking Method using Support Vector Machine, Decision Tree, and K-
Nearest Neighbor classifiers.

from sklearn.ensemble import StackingClassifier

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KneighborsClassifier

from sklearn.linear_model import LogisticRegression

Ir = LogisticRegression()

svm = SVC()

dt = DecisionTreeClassifier()

knn = KNeighborsClassifier()

sc = StackingClassifier(estimators=[(’svm’, svm), ('Dec Tree’,dt),
(’knn’,knn)], final_estimator=Ir)

sc.fit(xtrain,ytrain)

print(’ Accuracy Score of Stacking Classifier : °,
sc.score(xtest, ytest)*100)

Output
Accuracy Score of Stacking Classifier : 75.9740259740259

13.7 Unsupervised Learning

Unsupervised learning is a machine learning approach that learns from unlabeled
data. The dataset contains feature values but no target variable. It is mainly used to
uncover the hidden patterns, and groups present in the data. Generally used as a pre-
processing step to understand the data and the relationships in the data. Unsupervised
learning tasks include Clustering, Association, and Dimensionality reduction.

Popular applications of unsupervised learning are product recommendations,
detecting social media groups, data exploration, and fraud detection.

13.7.1 Unsupervised Learning Techniques

1. Dimensionality reduction
Each feature of a dataset is called a dimension. When a dataset has many features,
it is considered a high-dimensional dataset. Building a predictive model on a
high-dimensional dataset faces challenges called the curse of dimensionality. The
challenges are

304 13 Python for Machine Learning

(i) A model built on a high-dimensional dataset becomes more complex and
is likely to overfit. Such models do not generalize well, resulting in less
accurate predictions on new data.

(i) Model building requires more computational time and storage space as the
data has many values.

Dimensionality reduction is a technique that reduces the number of features in
the dataset. This can be done in the following ways:

e Feature selection: Select which features to keep and which features to dis-
card. This can be done using two methods.

(1) Wrapper method fits and evaluates the model with different subsets of
input features and selects the subset with the best model performance.

(ii) Filter method finds the correlation between features and the target vari-
able. Select the more predictive features.

e Feature extraction: Data in high-dimensional space is reduced to lower
dimensional space. New features are obtained from the existing features
by capturing the essential information in the data. Popular algorithms are
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),
and Singular Value Decomposition (SVD).

e Autoencoders is a deep neural network that performs a complex non-linear
function to reduce the dimensions. Whereas PCA performs linear transfor-
mations.

Dimensionality reduction has the following benefits:

(i) Less computational time and storage space.
(i) When dimensions are reduced to 2 or 3, the dataset can be visualized using
graphs.
(iii) Redundant features are removed.

Sklearn provides PCA() library functions to perform dimensionality reduction.
PCA performs a linear transformation on the data to create new features that
capture the most variance in the data. These new features are called principal
components.

from sklearn.decompose import PCA

PCA(n_components)

n_components: Number of principal components to keep or a float value indi-
cating the variance in the data to be retained. If the argument
is not set, all components are retained.

13.7 Unsupervised Learning 305

2. Clustering

Clustering is an unsupervised machine learning technique to group the data points
based on the attribute values present in the data. These groups are called clusters.
The clusters reveal associations present in the data. It helps in exploring and
understanding the data that is useful in other machine learning tasks.

Clustering is similar to classification task, but clustering is an unsupervised
method that does not require labels. Clustering is widely used in social network
analysis, grouping news articles, identifying customer segments, and grouping
patients for personalized treatment.

Clustering can be broadly classified as soft clustering and hard clustering. In hard
clustering, each data point belongs to only one cluster. Whereas, in soft clustering,
a data point may belong to multiple clusters with some probability.

13.7.2 Clustering Methods

Major types of clustering methods are partitioning clustering, density-based cluster-
ing, distribution model-based clustering, hierarchical clustering, and fuzzy cluster-
ing.

1.

Density-based clustering: Data points are grouped by identifying the areas of
high concentration. The threshold value determines how close the point must be
to consider it as a cluster member. This method does not require the user to specify
the number of clusters. Clusters can be of arbitrary shapes, and also ignores the
outliers. This approach is not suitable for high-dimensional space. Some of the
algorithms that fall in this category are DBSCAN, OPTICS.

. Distribution-based clustering: Data points are assigned to a cluster based on

the probability that it belongs to the cluster. Probability is based on the distance
from the point to the cluster center. This approach is suitable when you know the
distribution of the data, e.g., Gaussian mixture model.

. Centroid-based/Partition clustering: This algorithm divides the datapoints into

non-overlapping clusters. Datapoint is assigned to the cluster that has a minimum
squared distance to the cluster centroid. Distance measures are Euclidean, Man-
hattan, and Minkowski. This is a simple and widely used clustering approach
but is suitable when clusters are of spherical shapes. For example, K-means,
K-medoids, and meanshift algorithms.

. Hierarchical-based clustering: A hierarchy of clusters is formed by grouping

similar data points. The tree can be built either using a top-down or bottom-up
approach.

Agglomerative clustering is a bottom-up approach. Initially, each data point is
considered a cluster. Then similar clusters are merged to form next-level clusters.
This process continues until all the data points are merged or the desired number
of clusters are formed.

306 13 Python for Machine Learning

Divisive clustering is a top-down approach. Initially, the entire dataset is consid-
ered as a single cluster. It performs the split recursively until clusters with a single
datapoint are formed or the desired number of clusters is reached.

This method is computationally expensive for huge datasets and is sensitive to
noise and outliers. Hierarchical clustering is typically used for hierarchical data
like company databases, and social network analysis to identify the groups.

Sklearn provides a set of clustering algorithms that use different approaches. These
are available in cluster module of sklearn.

1. K-means, a widely used centroid-based hard clustering method.

from sklearn.cluster import KMeans

Kmeans(n_clusters, init, random_state, max_iter)

n_clusters: integer, Number of clusters to be formed. Default is 8.

init: string, Method to select the initial centroids. Different values
are k-means++, random. Default is k-means++.

random_state: integer, Random seed used to reproduce the exact clusters over
multiple runs. Default is None.

max_iter: integer, Maximum number of iterations of the algorithm for a
single run. The default is 300.

The inertia metric measures the performance of the clustering model. It is the
sum of squared distances from the points to their respective centroids.

2. MiniBatchKMeans: A variation of K-means in which cluster centroids are
updated based on mini-batches of samples. Whereas K-means works on the entire
dataset. This is faster for large datasets and robust to noise.

from sklearn.cluster import MiniBatchKmeans

MiniBatchKMeans(n_clusters, init, max_iter, batch_size, random_state)

batch_size: integer, Number of datapoints in a mini-batch.
Default is 1024.

Other parameters are same as in K-means except for the default value of 100 for
max_iter.

13.7 Unsupervised Learning 307

3. DBSCAN is a density-based algorithm where data points with many nearby neigh-
bors are grouped together. The algorithm does not require the number of clusters
to be specified as a parameter. It can identify outliers as noise and is good at form-
ing arbitrarily shaped and sized clusters. But it cannot detect clusters of varying
density. Finding the distance threshold is a challenging task for high-dimensional
datasets.

from sklearn.cluster import DBSCAN

DBSCAN(eps, min_samples, metric)

eps: float, How close the data points to each other to consider as
part of the cluster. Default value is 0.5.

min_samples: integer, Minimum number of datapoints (threshold) to con-
struct a cluster. Default is 5.

metric: string, Distance measure used. Default is Euclidean.

4. OPTICS: A modified version of DBSCAN that works well when data points have
density drops between clusters.

from sklearn.cluster import OPTICS

OPTICS(eps, min_samples, metric)

eps : float How close the data points to each other to consider as
part of the cluster. Default value is None.
min_samples: integer The minimum number of data points (threshold) to
construct a cluster. Default is 5
metric: string Distance measure used.
Default is minkowski.

5. Affinity Propagation: Datapoints are grouped by passing messages to each other
until cluster representatives are formed. These representatives are called exem-
plars. The algorithm does not require the number of clusters to be specified in
advance.

from sklearn.cluster import AffinityPropagation

308 13 Python for Machine Learning

AffinityPropagation(damping, preference, max_iter)

damping: float, Extend to which current value is maintained
relative to incoming values. The value is between
0.5 & 1.0. Default is 0.5.

preference: float, Controls the number of exemplars used.
Default is None.

max_iter: integer, Maximum number of iterations. Default is 200.

6. Agglomerative clustering is a hierarchical clustering method where data points
are merged into clusters until the desired number of clusters is formed.

from sklearn.cluster import AgglomerativeClustering

AgglomerativeClustering(n_clusters,affinity,compute_full_tree,
linkage,distance_threshold)

n_clusters: int, Number of clusters to be formed.
Default is 2.
affinity: string, Metric used to compute linkage.

Default is Euclidean.
compute_full_tree: Boolean or auto, Stop the construction of the tree
at n_clusters.
linkage: Linkage criteria that determine the distance
between pairs of clusters. Default is ward.
ward minimizes the variance of the clusters
being merged.
average is the average distance of each
observation in the clusters being merged.
complete or maximum is the maximum distance of
all the observations in the clusters being
merged.
single is the minimum distance of all the
observations in the clusters being merged.
distance_threshold: float, Clusters will not be merged if the linkage
distance is more than this value.
Default is None.

7. BIRCH—This algorithm is used for large datasets with limited memory and
CPU cycles. It generates a summary of a large dataset into smaller regions called
clustering feature entries (CF) that retain as much information as possible. These
are then used for clustering instead of the original large dataset.

from sklearn.cluster import Birch

13.7 Unsupervised Learning 309

Birch(n_clusters, threshold, branching_factor)

n_clusters: number of clusters to be formed after the final
clustering step. When set to None, final
clustering is not performed, and intermediate
clusters are returned. Default is 3.

threshold: Maximum number of data points in a sub-cluster
in the leaf node of the CF tree.
branching_factor: integer, Maximum number of CF sub-clusters
in each node. Default is 50.

8. Gaussian Mixture Model: Real-life data is modeled by Gaussian distribution.
So a dataset can be modeled as a mixture of several Gaussian distributions. The
model is built by estimating the Gaussian parameters for each cluster. After the
parameters are estimated, calculate each data point’s probability of belonging to
a cluster.

from sklearn.mixture import GaussianMixture

GaussianMixture(n_components, n_init, random_state)

n_components: integer, Number of clusters.

n_init: integer, Number of times the algorithm is initialized
to decrease the chance of forming bad clusters.

random_state: integer, Random seed used to reproduce the exact
clusters over multiple runs. Default is None.

13.7.3 Case Study

Perform dimensionality reduction and then apply different clustering algorithms on
the Breast Cancer dataset that contains 30 useful features.

e Data loading

import pandas as pd

data = pd.read_csv(’/content/sample_data/Breast_cancer.csv’)
print(data.shape)

print(data.columns)

310 13 Python for Machine Learning

Output

(569, 33)

Index([’id’, *diagnosis’, 'radius_mean’, ’texture_mean’,
’perimeter_mean’, "area_mean’, ‘smoothness_mean’,
’compactness_mean’, ’concavity_mean’,
’concave points_mean’, ’symmetry_mean’,
’fractal_dimension_mean’, ‘radius_se’, ’texture_se’,
’perimeter_se’, area_se’, ’smoothness_se’,
’compactness_se’, “concavity_se’, ’concave points_se’,
symmetry_se’, ’fractal_dimension_se’, ‘radius_worst’,
“texture_worst’, ‘perimeter_worst’, ’area_worst’,
’smoothness_worst’, ’compactness_worst’, ’concavity_worst’,
’concave points_worst’, ’symmetry_worst’,
*fractal_dimension_worst’, ’Unnamed: 32°],

dtype="object’)

e Data preprocessing

(i) Delete non-useful columns like id, Unnamed: 3 and also target column,
diagnosis, as we are using unsupervised learning. This results in dataset
with 30 columns.

x = data.drop([’id’,’Unnamed: 32’, ’diagnosis’], axis=1)
print(x.shape)
Output
(569, 30)
(ii) Check the null values

print(’Null values: \n’,x.isnull().sum().sum())

Output
Null values: 0
(iii) Check the range of values of first five columns
for col in x.columns[:5]:
print(col, min(x[col]), max(x[col]))
Output

radius_mean 6.981 28.11
texture_mean 9.71 39.28
perimeter_mean 43.79 188.5
area_mean 143.5 2501.0
smoothness_mean 0.05263 0.1634

13.7 Unsupervised Learning 311

As the ranges are varying, the dataset need to be normalized.
(iv) Data normalization

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

x_scaled= scaler.fit_transform(x)
print(’Normalized data : \n’,x_scaled[:1])

Output

Normalized data :

[[0.52103744 0.0226581 0.54598853 0.36373277 0.59375282
0.7920373 0.70313964 0.73111332 0.68636364 0.60551811
0.35614702 0.12046941 0.3690336 0.27381126 0.15929565
0.35139844 0.13568182 0.30062512 0.31164518 0.18304244
0.62077552 0.14152452 0.66831017 0.45069799 0.60113584
0.61929156 0.56861022 0.91202749 0.59846245 0.41886396]]

(v) Dimensionality Reduction: Reduce the dimensions to retain 90% variance
using PCA.

from sklearn.decomposition import PCA

pca_var = PCA(0.9)

x_decomposed = pca_var.fit_transform(x_scaled)

n_comp =pca_var.n_components_

print(’No. of principal components : ’,n_comp)

print(’ Variance retained by the Principal Components : \n’,
pca_var.explained_variance_ratio_)

Output

No. of principal components : 6
Variance retained by the Principal Components :
[0.53097689 0.1728349 0.07114442 0.06411259 0.04086072
0.03071494]

For the purpose of visualization, perform dimensionality reduction to have
two principal components.

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

x_decomposed = pca.fit_transform(x_scaled)

print(’ Variance retained by the principal components:’,
pca.explained_variance_ratio_)

create a dataframe with the principal components

x_new = pd.DataFrame(x_decomposed, columns=
['pel”, pe2’])

print(x_new.head())

312 13 Python for Machine Learning

Output

Variance retained by the principal components :
[0.53097689 0.1728349]

pecl pc2
1.387021 0.426895
0.462308 —0.556947
0.954621 —0.109701
1.000816 1.525089
0.626828 —0.302471

~ LW = O

About 70% of the variance is retained by the two components.
(vi) Visualize the data after dimensionality reduction.

import matplotlib.pyplot as plt
plt.tick_params(labelbottom=False, bottom=False)
plt.tick_params(labelleft=False, left=False)
plt.scatter(x_new[pcl’], x_new[’'pc2’])

plt.title(’ Dataset with first two principal components’)
plt.show()

Output

Dataset with first two principal components

13.7 Unsupervised Learning 313

e Clustering algorithms: Apply different clustering algorithms on the decomposed
data.

(i) K-means clustering

Let us first determine the optimal value of k, the number of clusters, using
the Elbow method.

from sklearn.cluster import Kmeans
sum_sq=[]
for i in range(2,9):
km= KMeans(n_clusters=i, init="k-means++’,
random_state=40)
km.fit(X_new)
sum_sq.append(km.inertia_)
plt.plot(range(2,9), sum_sq)
plt.title(’No. of clusters vs Inertia *)
plt.show()

Output

No. of clusters vs Inertia

110 1

100 -

70 1

(3

T T T T T T T

2 3 B 5 6 7 8

As shown in the above figure, inertia drops at six clusters. Now let us perform
K-means clustering with six clusters.

apply k-means clustering for 6 clusters
km = KMeans(n_clusters=6,
init="k-means++’,random_state=40)
clusters = km.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)
print(’Cluster Labels : ’,cluster_labels)

314 13 Python for Machine Learning

Output
Cluster Labels : [0 1 23 4 5]
Visualize the clusters

import numpy as np
markers=["*’,+"">"0",v’ ;"]
print(’No. of clusters’,len(cluster_labels))
plt.titleC KMeans Clustering’)
plt.tick_params(labelbottom=False, bottom=False)
plt.tick_params(labelleft=False, left=False)
for i in cluster_labels:
idx = np.where(clusters==i)
plt.scatter(x_decomposed[idx,0], x_decomposed[idx, 1],
marker=markers[i])

Output

No. of clusters 6
KMeans Clustering

(i) DBSCAN Algorithm: Outliers can be identified using DBSCAN.

from sklearn.cluster import DBSCAN
model=DBSCAN(min_samples=15)
clusters = model.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)
print(’Cluster Labels : ’,cluster_labels)

Output

Cluster Labels : [-1 0]
No. of clusters: 2

13.7 Unsupervised Learning 315

DBSCAN Clustering

(iii) Gaussian Mixtures

from sklearn.mixture import GaussianMixture

model = GaussianMixture(n_components=4, n_init=10,
random_state=40)

clusters = model.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)

print(’Cluster Labels : ’,cluster_labels)

Output
Cluster Labels : [0 1 2 3]
Gaussian Mixtures Clustering

316 13 Python for Machine Learning

(iv) Optics

from sklearn.cluster import OPTICS
model=OPTICS(min_samples=15)

clusters = model.fit_predict(x_decomposed)
cluster_labels= np.unique(clusters)
print(’Cluster Labels: ’,cluster_labels)

Output
Cluster Labels: [-1 01 2]
OPTICS Clustering

(v) BIRCH

from sklearn.cluster import Birch

model = Birch(n_clusters=4, threshold = 0.03)
clusters = model.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)
print(’Cluster Labels: ’,cluster_labels)

Output
Cluster Labels: [0 1 2 3]

13.7 Unsupervised Learning 317

Birch Clustering

8
[
P
"> »
5]
(=}
]
[s)
(vi) Meanshift
from sklearn.cluster import MeanShift
model =MeanShift()
clusters = model.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)
print(’Cluster Labels: ’, cluster_labels)
Output
Cluster Labels: [0 1]
Meanshift Clustering
*
*
+
o
+
+
+
+

318

13 Python for Machine Learning

(vii) Agglomerative clustering

from sklearn.cluster import AgglomerativeClustering
model = AgglomerativeClustering(n_clusters=4)
clusters = model.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)

print(’Cluster Labels: ’,cluster_labels)

Output

Cluster Labels: [0 1 2 3]
Agglomerative Clustering

(viii) Affinity clustering

from sklearn.cluster import AffinityPropagation
model = AffinityPropagation(damping=0.7)
clusters = model.fit_predict(x_decomposed)
cluster_labels = np.unique(clusters)
print(’Cluster Labels: ’,cluster_labels)

Output

Cluster Labels: [012345678910111213 1415161718 19
20 21 22 23 24]

13.7 Unsupervised Learning 319

Affinity Clustering

Chapter 14)
Python for Deep Learning e

14.1 Introduction

Deep learning is a subset of machine learning for developing intelligent applications.
It uses a neural network that simulates the human brain. Artificial neural networks
consist of layers. Each layer contains a number of nodes. Nodes take the previous
layer outputs as inputs and apply a non-linear function to produce the output. Neural
networks are popularly used for building classification models.

Deep learning techniques differ from traditional machine learning methods in the
following ways:

(i) Deep learning networks have complex multilayer structures that mimic the
human brain. The neural network can capture non-linear correlations in the
data for solving complex problems.

(i) Neural networks require large datasets with millions of data points. Hence, it
requires more computing power and training time but produces more accurate
results.

(iii)) Neural networks perform automatic feature extraction by self-learning.

(iv) Deep learning models can analyze structured and unstructured data like images,

videos, and text, which machine learning techniques cannot do easily.

Deep learning techniques are used for building smart applications. Popular use
cases are

e Self-driving cars.

e Personalized healthcare applications like personalized treatment, predicting
upcoming health risks based on the real-time data collected from connected
devices, drug discovery, predictive analytics to identify people for clinical trials,
etc.

e Precision agriculture, including soil and moisture monitoring, crop disease detec-
tion, and crop yield estimation.

© The Author(s) 2024 321
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14
https://doi.org/10.1007/978-3-031-52473-8_14

322 14 Python for Deep Learning

e Identifying trends and patterns in sales, product recommendations, and customer
churn in e-commerce.

e Virtual assistants and chatbots for customer support, enhanced security to prevent
illegal transactions and detecting money laundering in Banking and Finance.

e News aggregation and fake news detection.

Following are the widely used open-source frameworks for building deep learning
models.

TensorFlow is an end-to-end open-source deep learning framework developed by
Google. It uses Python for the front end and optimized C++ to run efficiently. All
computations involve the use of tensors which is a multidimensional array. It is
available on Windows, Linux, macOS, and mobile computing platforms, including
Android and iOS.

Keras is a popular Python library for deep learning, developed by Francois Chollet.
A simple and user-friendly high-level library that runs on top of TensorFlow. It
supports easy and fast experimentation and deployment. Keras works best when
working with small datasets. It is supported by multiple backends. TensorFlow and
Theano are commonly used backend supports that handle low-level computations.

Users require knowledge of Python to work with Keras and TensorFlow. Other deep
learning frameworks are Pytorch, Caffe, Theano, Deeplearning4j, etc.

14.2 Data Loading

Data loading is the first step in the model-building process. Data may be in the form
of numeric, image, or text. It needs to be converted into a form suitable for the deep
learning model. For example, image and text data have to be converted to numeric
before training the model.

14.2.1 In-built Datasets

Many machine learning and deep learning frameworks provide in-built datasets for
experimentation. Keras has a few in-built datasets that are cleaned and vectorized to
build simple deep learning models.

e MNIST is a handwritten digits image dataset with 28 x 28 pixel images of 70000
samples for image classification tasks.

e CIFARIOis a color image dataset of 10 different objects. Each image is 32 x 32
pixels, with 6000 images per class.

e CIFARI00 dataset consists of 32 x 32 different color images of 100 classes with
600 images per class.

14.3 Image Data Loading and Preparation 323

e IMDB is a movie review dataset of 50000 reviews for binary text classification.
e FashionMNIST is a dataset of 28 x 28 Zalando’s article images of 70000 samples
with ten classes.
e Boston housing price regression dataset consisting of 13 attributes of houses
around Boston City.
e Reuters, a classification dataset with 11228 newswires on 46 topics.
Example: Loading mnist dataset

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

The function returns two tuples—one for train data and the other for test data.

14.2.2 Loading csv Dataset

Comma Separated Values (csv) dataset can be loaded into a dataframe and then split
into feature matrix, X, and target vector, y. This x, y can then be passed to the model
for training.

Example

import pandas as pd

data = pd.read_csv(’/content/sample/pima_indian_diabetis.csv’)
x = data.drop(’Outcome’, axis=1)

y = data[’Outcome’]

14.3 Image Data Loading and Preparation

Keras provides the following functions for image data.
(i) Load an image into PIL object

from tensorflow.keras.preprocessing .image import load_img

load_img(path, color_mode,target_size, interpolation)

324 14 Python for Deep Learning

path: Path of the image file.

color_mode: The desired image format. Values are "grayscale", "rgb",
"rgba". Default: "rgb".

target_size: Tuple of (img_height, img_width).
The default is None which is the original size.

interpolation: Method used when target size is different from the loaded
image size. Supported methods are "nearest", "bilinear", and
"bicubic".

The function returns PIL object.
(i) Convert PIL image to NumPy array

from tensorflow.keras.preprocessing.image
import image_to_array

img_to_array(img, data_format, dtype)

img: Input PIL Image instance.

data_format: Image data format as either channels_first or
channels_last. Default is channels_last.

dtype: Data type to use. Default is float32.

The function returns 3D NumPy array.
(iii) Convert NumPy array to image

from tensorflow.keras.preprocessing.image import array_to_img

array_to_img(x, scale, data_format, dtype)

X: Input data in any form that can is converted to numpy
array.
scale: whether to rescale the image so that minimum & maxi-

mum values are 0 & 255. Default is True.
data_format, dtype parameters are the same as in img_to_array()
function.

14.3 Image Data Loading and Preparation 325

(iv) Loading image data from the local directory

To load the image dataset from the directory, store the image files as per the
following directory structure:

e Create folders for train, test, and validation sets.
e Under each folder, create subdirectories for each of the classes.
e Under each class folder, store the corresponding image files.

Supported image formats are jpeg, png, bmp, gif.
Keras provides the following functions:

(a) image_dataset_from_directory () is a preprocessing function of keras to load the
image dataset from the directory structure.

from keras.preprocessing import image_dataset_from_directory

image_dataset_from_directory(directory,labels, label_mode,
class_names, color_mode,batch_size, image_size, shuffle,
seed, validation_split)

directory: Directory where images are located.
labels: Specifies class labels. Values are
inferred - labels are inferred from the directory
structure.

None - No labels are generated.
tuple or list of integer labels.
label_mode: int - labels are encoded as integers.
categorical - labels are encoded as categorical.
binary - labels are encoded as O or 1.
None - no labels.
class_names: List of class names. Must match with subdirectory names.
This is valid
when labels are inferred.

326

color_mode:
batch_size:

image_size:
shuffle:
seed:

validation_split:

14 Python for Deep Learning

Image can be converted to grayscale or rgb.

Number of images in a batch for progressive loading.
Default is 32.

Resize the images after loading from the

directory. Default is (256, 256).

Boolean. True-shuffles the data.

False-sorts the data in alphabetical order.

Random seed value for shuffling and

transformations.

Fraction of data to be used for validation.

Returns an image dataset that yields batches of images from the directory struc-
ture together with labels.

(b) ImageDataGenerator: Image data generator function is an easy way to load the
image data progressively, together with labels. In addition to loading batches of
images, transformations can also be applied on the original images to produce
new images with the same class. This not only increases the dataset size but
also incorporates variations in the dataset so that the model is generalized better.
Transformations like scaling, shifts, rotations, brightness change, etc. can be
done on the fly during training.

from keras.preprocessing import ImageDataGenerator

ImageDataGenerator(rotation_range,height_shift_range,
width_shift_range,horizontal_flip,vertcal_{flip,
brightness_range,zom_range)

rotation_range:

Randomly rotate the image. Value is between O
& 360 degrees. If pixels move out of the image,
they can be filled by specifying fill_mode. Default
is nearest that fills an empty area with the nearest
pixel value.

height_shift_range,
width_shift_range:

int or float,

sometimes the object may not be centered in the
image. It requires shifting of pixels horizontally or
vertically.

The integer value specifies constant. The float value
indicates the percentage of shift.

14.3 Image Data Loading and Preparation 327

horizontal_{flip,
vertcal_flip: Flips the image. It is relevant to the symmetric objects

only.

brightness_range: List of two values that change the image brightness in
the given range. Value <1 darkens the image & value
> 1 brightens the image.

zoom_range: Zoom in or zoom out of the image. List of two values
as lower & upper limit of the range or float value that
is equivalent to [1-zoom_rage, 1+zoom_range].

ImageDataGenerator class is used as follows:

e Create an instance of ImageDataGenerator class

img_gen = ImageDataGenerator(parameters)
The same image data generator object can be used for loading from different
data directories, if the same scaling parameters are used.
e Tostart reading from the directory, create an iterator to progressively load images
using flow_from_directory().

flow_from_directory(directory,target_size,
color_mode,class_mode,batch_size, shuffle)

directory: Directory containing images to be loaded.
target_size: Load the images to a specific size.

Default 256 x 256.
color_mode: ’rgb’ for color images.
class_mode: Type of classification task.

binary for binary classification.

categorical for multi-class classification.
batch_size: ~ Number of images to be extracted per batch.
shuffle: Shuffle the order of images that are extracted.

e Use the iterator in the model fitting and evaluation.

(a) Now, the model can be trained using fit_generator()

model fit_generator(train_iterator,steps_per_epoch,
Validation_data,Validation_steps, epochs,verbose)

328 14 Python for Deep Learning

train_iterator: used for training.
steps_per_epoch: Number of batches of images per epoch for train
data.

validation_data: validation iterator.
validation_steps: ~ Number of batches of images in an epoch of val-
idation data.

epochs: Number of epochs to train the model.
verbose: Verbosity mode. O-silent, 1-progress bar, 2-one
line per Epoch

o

model.evaluate_generator(test_iterator, steps)

test_iterator: used for model evaluation.
steps: Number of batches of images to step through for eval-
uation.

©

model.predict_generator(predict_iterator, steps)

predict_iterator: for prediction.
steps: Number of batches of images to step
through for prediction.

14.4 Text Data Loading and Preparation

Raw text data can not be directly fed to the model for processing. It needs to be
cleaned and converted into numeric vectors before training the model.
Text data requires the following preprocessing steps:

e Tokenization: Split the text corpus into tokens and encode them into integers
using the Tokenizer object and then fitting using fit_texts().

e Sequencing: Represent each document as a sequence of numbers using
texts_to_sequences() method on tokenizer objects after fitting.

14.4 Text Data Loading and Preparation 329

e Padding: Neural networks require inputs of the same size. But documents of
the text corpus may be of varying sizes. Padding is done using pad_sequences()
method to make the sequences to be of same size.

Keras provides the following libraries for text preprocessing:

(i) Loading text data from the local directory: Text files are stored in a directory
with subdirectories containing files for each class. Only .zxt files are supported.

from keras.utils import text_dataset_from_directory

text_dataset_from_directory(main_directory, labels, label_mode)

main_directory: Directory where text files are located

labels: Directory should contain subdirectories for each class if
the value is inferred.
label_mode: String describing the encoding of labels.

The function returns dataset object. If label_mode is None, it returns string
tensors of shape (batch_size) containing the contents. Otherwise, it yields a
tuple (texts, labels).

(ii) Convert text into a list of tokens

text_to_word_sequence() function performs the following operations:

(a) Removes punctuation.
(b) Split the text into tokens based on split criteria.
(c) Converts the tokens into lowercase if the lower is set to True.

from keras.preprocessing.text import text_to_word_sequence

text_to_word_sequence(text, filters, lower;split)

text: Input text corpus

filters: List or sequence of characters for punctuations. Default is
base_filter(). It includes basic punctuations, tab & new line.
"#8%&()*+,- \1;<=>2@[]"_{I}~ \t\n.

lower: Boolean, whether to convert the text into lower case. Default is
True.

split: Criteria for splitting the text into tokens. Default is space. The
function returns list of tokens.

330 14 Python for Deep Learning

Example

from keras.preprocessing.text import text_to_word_sequence
text = "Deep Learning(ML): for developing smart applications?’
tokens = text_to_word_sequence(text)

print(tokens)

Output

['deep’, ’learning’, 'ml’, *for’, ’developing’, ’smart’,
“applications’]

(iii) Encoding tokens into integers/indices

one_hot(text, n, hash_function, filter, lower, split)

text: Input text corpus.
n: Defines hash space to encode the tokens.
hash_function: Default is hash. Any hash function can be specified like md5.

filter, lower, split parameters have the same meaning as in the
text_to_word_sequence() function.

In addition to the operations provided by text_to_word_sequence() function,
this function also maps the tokens to word indices based on the, n, parameter.
Small hash space may generate more collisions.

Example

from keras.preprocessing.text import text_to_word_sequence,
one_hot

text = ’Deep Learning(ML): for developing smart applications?’

tokens = text_to_word_sequence(text)

n = len(tokens)

one_hot = one_hot(text, round(n*1.25))

print(one_hot)

Output
[2,6,1,6,7,7,3]

14.4 Text Data Loading and Preparation 331

(iv) Tokenizer class converts each document of the text corpus into vectors of
integers. First, construct the tokenizer object and then fit it on the text corpus,
which can then be reused by other documents. This method is useful when there
are multiple documents, and the dataset is large.

from Keras.preprocessing.text import tokenizer

tokenizer(nb_words, filters, lower; split)

nb_words: Consider top nb_words of the dataset. Each token is
assigned an index. Word of rank i, gets index i.

filter, lower, split parameters have the same meaning as in the
text_to_word_sequence() function.

Following are the methods of the tokenizer class that can be applied to the
tokenizer object

(a) fit_on_texts(texts)
It creates a vocabulary of input text. This method has to be called before
applying other methods. It returns an object using which more information
may be derived with the following attributes.

(i) word_counts Dictionary of words with their counts
in the input texts.

(ii)) word_docs Number of documents in which the
token appears.

(iii) word_index Unique index assigned to each token

in the vocabulary. These indices
help in the training.

(iv) document_count Number of documents in the
input texts.

Example

from keras.preprocessing.text import Tokenizer

text_corp = ['Python for AI-’, ’ Al mimicks human brain.’]
tokenizer object

tokenizer = Tokenizer()

fit method on the tokenizer
tokenizer.fit_on_texts(text_corp)

attributes

print(’No. of documents :’,tokenizer.document_count)

332 14 Python for Deep Learning

print(" Word indices :\n ’tokenizer.word_index)

print(’Frequency of Words :\n’,tokenizer.word_counts)

print(’No. of documents that contain the word :\n’,
tokenizer.word_docs)

Output

No. of documents : 2

Word indices :

{’ai’: 1, ’python’: 2, *for’: 3, 'mimicks’: 4, Thuman’:
5, ’brain’: 6}

Frequency of Words :

OrderedDict([(’python’, 1), (for’, 1), (Cai’, 2), Cmimicks’, 1),
(Chuman’, 1), Cbrain’, 1)])

No. of documents that contain the word :

defaultdict(<class ’int’>, {"for’: 1, *python’: 1, ’ai’: 2,
’mimicks’: 1, ’brain’: 1, human’: 1})

(b) texts_to_sequences(texts)
Converts tokens of text corpus into sequence of integers. Returns list of
sequences, one per document

Example

from keras.preprocessing.text import Tokenizer

text_corp = ['Python for Al ’, ’ Al mimicks human brain.’]
tokenizer = Tokenizer()

tokenizer.fit_on_texts(text_corp)

seq = tokenizer.texts_to_sequences(text_corp)
print(’Integer sequence for tokens: ’, seq)

Output

Integer sequence for tokens: [[2, 3, 1], [1, 4, 5, 6]]

(c) texts_to_matrix(texts, mode)
Converts texts to NumPy matrix.

Returns NumPy array

14.4 Text Data Loading and Preparation 333

texts: Input text corpus to vectorize.
mode: binary - the presence of each token in the document
count - Number of times the token appears in
the document.

tfidf— TFIDF score that indicates the relevance of word
in the document.

freq—Ratio of each token out of the total number of
tokens in the document.

Example

from keras.preprocessing.text import Tokenizer
text_corp = ["Python for Al ’, ’ Al mimicks human
brain.AI?’]
tokenizer = Tokenizer()
tokenizer.fit_on_texts(text_corp)
print(’ Token indices : ’,tokenizer.word_index)
print(’ Token presence in documents:\n’,
tokenizer.texts_to_matrix(text_corp, mode="binary’))
print(" Token count of each word in documents:\n’,
tokenizer.texts_to_matrix(text_corp, mode="count’))
print(’ TFIDF value of each word in documents:\n’,
tokenizer.texts_to_matrix(text_corp, mode="tfidf"))
print(’Ratio :\n’, tokenizer.texts_to_matrix
(text_corp, mode="freq’))

Output

Token indices : {’ai’: 1, ’python’: 2, *for’: 3, "'mimicks’:
4, ’human’: 5, *brain’: 6}
Token presence in documents:
[[0.1.1.1.0.0.0.]
[0.1.0.0.1. 1. 1.]]
Token count of each word in documents:
[[0.1.1.1.0.0.0.]
[0.2.0.0.1. 1. 1.]]
TFIDF value of each word in documents:
[[0. 0.51082562 0.69314718 0.69314718 0.
0. 0. 1]
[0. 0.86490296 0. 0. 0.69314718
0.69314718 0.69314718]]

334 14 Python for Deep Learning

Ratio :
[[0. 0.33333333 0.33333333 0.33333333 0. 0. O.
1] [0. 04 0. 0. 0.2 0.2]

(d) sequences_to_matrix(sequences, mode)
Convert sequences into NumPy array

Returns numpy array

sequences: List of sequences to vectorize.
mode: same as in texts_to_matrix() method.

Example

from keras.preprocessing.text import Tokenizer
text_corp = ['Python for AI’,
> Al mimicks human brain. AI?’]
tokenizer = Tokenizer()
tokenizer.fit_on_texts(text_corp)
seq = tokenizer.texts_to_sequences(text_corp)
print(’ Tokens into integer sequences :’,seq)
print(’ Sequences into Numpy Matrix:\n’,
tokenizer.sequences_to_matrix(seq, mode="binary’))

Output

Tokens into integer sequences : [[2, 3, 1], [1, 4, 5, 6, 1]]
Sequences into Numpy Matrix:

[[0.1.1.1.0.0.0.]

[0.1.0.0.1. 1. 1.]]

(e) texts_to_sequences_generator(texts)
Generator version of the texts_to_sequences() method.

®

pad_sequences(sequences, maxlen, padding, truncate, value)

Larger sequences are truncated and shorter ones are padded with the specified
value. This makes the model input equal in size.

14.5 Model Building 335

14

sequences : List of sequences to pad.

maxlen: Length of each sequence after padding or truncating.

padding : pre or post. Pad the shorter sequences before or after the
sequence.

truncate : pre or post—Remove larger sequences at the beginning or at the
end.

value: Value used for padding. Default is zero.

.5 Model Building

A neural network consists of an input layer, hidden layers, and an output layer. Each

lay

er is made up of number of computing units called neurons. Deep learning model

is a neural network that is trained to learn the features from the data. It performs

the

learning task like classification, dimensionality reduction, data generation, etc.

These models can be used for both supervised and unsupervised learning.

(a)

(b)

Keras supports two types of models—sequential and functional.

Sequential model is a linear stack of layers where each layer has one input tensor
and one output tensor. Data flows from one layer to the next until it reaches the
final layer. It is a simple and easy-to-use model and most neural networks use a
sequential model.

To create a sequential model

from keras.models import Sequential
model = Sequential()

Layers are added to the model using add() method.

The first layer of the model should specify the input_dim or input_shape argu-
ment. Both arguments are the same except in the representation.

input_dim is an integer indicating the number of input features.

input_shape is a tuple representing the number of features.
Example

input_dim =10 is same as input_shape=(10,)

Functional Model is a more flexible and powerful model than the sequential
model. It creates a more complex model that permits multiple inputs and outputs.
This is used to create graphs of layers, sharing of layers, etc. In this model, define
the layers first and then create the model, compile, fit, and evaluate.

from keras.models import Model
model = Model(inputs, outputs)

336 14 Python for Deep Learning

14.5.1 Activation Functions

Each neuron computes the dot product of the input values with the weights and
bias added. A non-linear activation function is then applied on the dot product that
becomes the output of the neuron. Popular activation functions are relu, leakyrelu,
tanh, sigmoid, softmax.

14.5.2 Neural Network Layers

Keras provides the following types of layers that are meant for different tasks.

(i) Dense layer or fully connected layer: Each neuron of this layer receives input
from all neurons of the previous layer. The output of each neuron is the result
of activation function applied on the dot product of all the input values with
the weights and bias added. This is computationally expensive as the number
of layers grows.

from keras.layers import Dense

Dense(units, activation)

Important parameters are

units: Number of neurons. It represents the number of outputs
of the layer.
activation function.

(i) Convolution layer is used for detecting features in images. It uses filters to
perform convolution operations. The layer summarizes the presence of features
in the images. Layers close to the input layer learn low-level features and layers
close to the output layer learn more abstract features like shapes and objects. It
outputs feature maps. This layer is used in image processing.

Different convolution layers are Conv1D for temporal data, Conv2D for two-
dimensional data.

from keras.layers import Conv2D

Conv2D(filters , kernel_size , strides, padding , activation)

14.5 Model Building 337

Important parameters include

filters: Number of filters in the convolution.
It represents the output dimension.
kernel_size: Dimension of convolution window.
strides: Amount of movement over the image.
padding: Layers of zeros are added to the input image.
Strategies are:
valid - no padding.
same - output should have the same length as input.
activation function

Conv2Dtranspose is the transpose of the convolution operation. Conv2D
applies convolution operation on the input image to detect the features in the
image. Conv2DTranspose applies a deconvolution operation that creates the
features of the image. It is commonly used in the decoder part of the autoen-
coder to reconstruct the original image.

from keras.layers import Conv2DTranspose

Conv2DTranspose(filters , kernel_size , strides, padding)

Parameters are same as in Conv2D().

UpSampling2D is scaling up of the image using the nearest neighbor or bilinear
upsampling. It is used in the generative model.

from keras.layers import UpSampling2D

UpSampling2D(size, data_format, interpolation)

size: Upsampling factor for rows and columns
data_format: String indicating channels_last or channels_first
interpolation method like nearest, area, bilinear, bicubic, Gaussian.

338

(iii)

@iv)

14 Python for Deep Learning

Pooling layer reduces the dimension of feature maps produced by the convo-
lution layer by summarizing the features present in a region of feature maps.
Effectively, it replaces each patch in the input with a single output. The sum-
marization can be in the form of maximum or averaging. Further operations are
applied to these summarized features. It reduces the number of parameters to
be learned by reducing the dimensions of feature maps. The pooling layer is
added after the convolution layer.

Different pooling layers are MaxPoolinglD, MaxPooling2D, AveragePool-
ing1D, AveragePooling2D for one-dimensional and two-dimensional data.

from keras.layers import MaxPooling2D

MaxPooling2D(pool_size, strides, padding)

pool_size: Pooling window size.
strides, padding are the same as in Conv2D.

Recurrent layers: Input consists of both the input data and output of previous
calculations performed by that layer. Different recurrent layers are SimpleRNN,
LSTM, GRU. These layers are used for natural language processing and time
series data analysis.

from keras.layers import SimpleRNN

SimpleRNN ((units,activation, use_bias, kernel_initializer,
recurent_initializer, bias_initializer)

units: Dimensionality of the output space.
activation function. Default is tanh.

use_bias: Whether to use the bias vector.
kernel_initializer: Initializer for the kernel matrix.
recurent_initializer: Initializer for recurrent kernel weights matrix.
bias_initializer: Initializer for the bias vector.

LSTM, GRU networks solve the vanishing gradient problem faced by Sim-
pleRNN.

14.5 Model Building 339

from keras.layers import LSTM, GRU

LSTM(units, activation, use_bias, kernel_initializer,

recurent_initializer, bias_initializer, recurrent_activation)
Syntax

GRU(units, activation, use_bias, kernel_initializer,
recurent_initializer, bias_initializer, recurrent_activation)

recurrent_activation: Activation used in the recurrent step.

All other parameters are same as in SimpleRNN().

(v) Flatten layer converts multidimensional input tensors into a single dimension
tensor. It is used when moving from a convolution layer to a fully connected
layer.

from keras.layers import Flatten
Flatten()

(vi) Dropout layer: A fraction of neurons of the layer are randomly deactivated
during training. It is a regularization technique to prevent model overfitting,
especially for small datasets. This is used between the hidden layers.

from keras.layers import Dropout

Dropout(rate)
rate—Fraction of input units to drop. The value is between 0 and 1.
Adding layers to the neural network

Layers are added to the model using add() method

model.add(layer)

340

14 Python for Deep Learning

14.5.3 Methods on the Model

Keras provides the following methods on the model, to get information about the

model
model.layers() returns the list of layers of the model.
model.summary() returns information about the layers,

and the parameters

model.get_weights() returns the list of all the weights tensors

as NumPy array.

model.get_config() returns model configuration as a dictionary object.

model.outputs() returns list of all output tensors.
model.inputs() returns list of input tensors of the model.
model.to_json () represent the model as JSON string.

14.5.4 Model Compilation

After defining the model architecture, the model has to be compiled before train-
ing. This function configures the learning process by specifying the optimizer, loss
function, evaluation metrics, etc.

model.compile(loss, metrics, optimizer)

loss:

metrics:

optimizer:

function to calculate the errors in the learning process.
For Regression-

mean_squared_error

mean_absolute_error,

mean_squared_logarithmic_error.
For Classification -

binary_crossentropy for binary classification.

categorical_crossentropy for multi-class classification.
to evaluate the model performance. Different metrics

are accuracy, binary_accuracy, categorical_accuracy

adjusts the model weights to optimize the loss function.
Different optimizers are adam, rmsprop, sgd, adagrad, etc.

14.5 Model Building 341

14.5.5 Model Training

model fit(xtrain, ytrain,epochs,batch_size,
validation_data,validation_split, callbacks,verbose)

Xtrain, ytrain: Data as NumPy array used for training

epochs: Number of times the algorithm will go through
the entire dataset.

batch_size: Number of training samples in a batch.

validation_data: Data on which the model loss is evaluated
after each epoch
validation_split: Proportion of data used for validation.
callbacks: Special functions performed during training.
It helps visualize training progress- checkpoints,
debugging the code, generating the logs etc.
verbose: Output of neural network during training process.
0O-silent, 1-progress bar, 2-one line per epoch

14.5.6 Model Evaluation

The model is evaluated on unseen data to test how well the model is generalized. It
estimates the general accuracy of the model. Keras provides evaluate() method

model.evaluate(xtest, ytest, batch_size,steps,verbose)

xtest, ytest: Unseen data on which model is evaluated
steps: Number of steps before completing the evaluation
other parameters are same as in fit() method.

14.5.7 Model Prediction

Once the model is built, it can be used to predict on the given input. The input vector
is passed as a parameter to the function that returns the prediction.

342 14 Python for Deep Learning

model.predict(xtest, batch_size, steps, callbacks, verbose)

xtest: Samples for predictions
other parameters are same as in fit() method.

14.6 Autoencoder

Autoencoder is a neural network used for unsupervised learning. It performs non-
linear transformation of input data into low-dimensional representation. It consists of
three parts—encoder, encoded data, and decoder. The encoder compresses the input
data into an encoded representation and the decoder decompresses the encoded data
to reconstruct the original input. Encoded data is the compressed representation
of the input data. It is typically used for dimensionality reduction. Applications of
autoencoder include

e Dimensionality reduction,

e Image denoising,

e Image generation,

e Image similarity,

e Anomaly detection,

e Missing value imputation, etc.

14.7 Case Studies

14.7.1 Regression Model on Boston Housing Dataset

It is an in-built dataset in Keras that contains 13 attributes of the houses located
around Boston City. A regression model is built to predict the price of the house
based on the feature values.

e Load the in-built dataset

from keras.datasets import boston_housing
(xtrain, ytrain), (xtest, ytest) = boston_housing.load_data()
print(xtrain.shape, xtest.shape, ytrain.shape, ytest.shape)

Output

Downloading data from https://storage.googleapis.com/tensorflow/
tf-keras-datasets/boston_housing.npz

https://storage.googleapis.com/tensorflow/
https://storage.googleapis.com/tensorflow/
https://storage.googleapis.com/tensorflow/
https://storage.googleapis.com/tensorflow/
https://storage.googleapis.com/tensorflow/

14.7 Case Studies 343

57026/57026 []
- 0s Ous/step
(404, 13) (102, 13) (404,) (102,)

e Data exploration

(i) Find the number of features and display sample target values.

print(’Number of features : ’,num_features)
print(’Sample Target values: °, ytrain[:4])

Output

Number of features: 13
Sample Target values: [15.2 42.3 50. 21.1]

(ii) Display sample train and test data

print(’ Train data:\n’,xtrain[0])
print(’ Test data:\n’ xtest[0])

Output

Train data:

[1.23247 0. 8.14 0. 0.538 6.142 91.7 3.9769
4. 307. 21. 3969 18.72]

Test data:

[18.0846 0. 18.1 0. 0.679 6.434 100. 1.8347
24. 666. 20.2 2725 29.05]

(iii) Feature Scaling is done using StandardScaler, as the features are in varying
ranges.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(xtrain)

xtrain_scaled = scaler.transform(xtrain)

xtest_scaled = scaler.transform(xtest)

print(’xtrain scaled:\n’,xtrain_scaled[0],"\n xtest scaled:\n’,
xtest_scaled[0])

Output

xtrain scaled:

[—0.27224633 — 0.48361547 — 0.43576161 — 0.25683275
—0.1652266 — 0.17644260.813061880.1166983
—0.62624905 — 0.595170031.14850044
0.448077130.8252202]

344

xtest scaled:

14 Python for Deep Learning

[1.55369355 — 0.483615471.0283258 — 0.25683275
1.038380670.235458151.11048828 — 0.93976936
1.675885771.56528750.78447637 — 3.48459553

2.25092074]

Note: As the in-built datasets are cleaned and vectorized, not much prepro-

cessing is required.

e Define the model architecture
A sequential model is defined with a stack of dense layers. The input layer
includes the input dimension along with other parameters. The output layer has
only one dense unit without activation function as the model is for the Regression
task. The architecture includes four hidden layers.

num_features = len(xtrain[1])

from keras.models import Sequential

from keras.layers import Dense
reg_model = Sequential()
reg_model.add(Dense(100, input_dim= num_features,

activation="relu’))

reg_model.add(Dense(80, activation="relu’))
reg_model.add(Dense(50, activation="relu’))
reg_model.add(Dense(20, activation="relu’))
reg_model.add(Dense(10, activation="relu’))
reg_model.add(Dense(1))

print(’Model summary:\n’)

reg_model.summary()

Output

Model summary:

Model: "sequential”

Layer (type) Output shape Param #
dense (Dense) (None, 100) 1400
dense_1 (Dense) (None, 80) 8080
dense_2 (Dense) (None, 50) 4050
dense_3 (Dense) (None, 20) 1020
dense_4 (Dense) (None, 10) 210
dense_5 (Dense) (None, 1) 11

Total params: 14,771

Trainable params: 14,771
Non-trainable params: 0

14.7 Case Studies 345

e Compile and fit the model.
Compile the model by specifying the following parameters:

adam optimizer,
mse for loss and metrics

Loss function is used to optimize the model, and metrics is to assess the model
performance. Other loss functions include MeanAbsoluteError, MeanSquared-
LogarithmicError. Typically, regression uses the same function for loss and
metrics. The model is trained for 50 epochs.

reg_model.compile(loss= "mse" , optimizer="adam",
metrics=["mean_squared_error"])

reg_hist = reg_model.fit(xtrain_scaled, ytrain,
epochs=50,batch_size = 64, validation_data=
(xtest_scaled, ytest),shuffle=True, verbose=0)

e Visualize the model performance using a line graph on train and test loss.

import matplotlib.pyplot as plt
plt.plot(range(50),reg_hist.history[’loss’],

label="Train’, marker="*")
plt.plot(range(50),reg_hist.history[’val_loss’], label="Test")
plt.title("Regression Model Performance on Train and Test sets’)
plt.xlabelCEpochs’)
plt.ylabel(’Loss’)
plt.legend()
plt.show()

Output

Regression Model Performance on Train and Test sets

—+— Tain
500 1 Test

400 1

300 1

Loss

200 1

100 A

346 14 Python for Deep Learning

14.7.2 Deep Neural Network for Breast Cancer Classification

Breast cancer dataset contains 30 real-valued features that characterize the breast
mass and the diagnosis indicating malignancy or not. The following code builds a
standard deep neural network to classify whether tumor is malignant or benign.

e Load the dataset

import pandas as pd

data = pd.read_csv(’/content/sample_data/Breast_cancer.csv’)
print(’Shape: ’,data.shape)

print(’Columns:\n’, data.columns)

Output

Shape: (569, 33)
Columns:

Index([’id’, *diagnosis’, ‘radius_mean’, ’texture_mean’,
’perimeter_mean’,’area_mean’, ‘smoothness_mean’,
’compactness_mean’, ’concavity_mean’,

’concave points_mean’, ‘symmetry_mean’,
’fractal_dimension_mean’,’ radius_se’,’texture_se’,
’perimeter_se’, area_se’,’smoothness_se’, ’compactness_se’,
’concavity_se’, concave points_se’, ‘symmetry_se’,
’fractal_dimension_se’, ‘radius_worst’, "texture_worst’,
’perimeter_worst’, *area_worst’, ’smoothness_worst’,
’compactness_worst’, ’concavity_worst’,

’concave points_worst’, ’symmetry_worst’,
*fractal_dimension_worst’, ’Unnamed: 32°], dtype="object’)

e Remove the irrelevant attributes-id, Unnamed: 32

data.drop([’id’,’ Unnamed: 32’], axis=1, inplace=True)
print(data.columns)

Output

Index([’diagnosis’, ‘radius_mean’, ’texture_mean’,
’perimeter_mean’,
’area_mean’, ’smoothness_mean’, ’compactness_mean’
’concavity_mean’,

14.7 Case Studies 347

’concave points_mean’, ’symmetry_mean’,
’fractal_dimension_mean’,

‘radius_se’, "texture_se’, *perimeter_se’, ’area_se’,

’smoothness_se’,’compactness_se’, concavity_se’, ’concave

points_se’, ’symmetry_se’, fractal_dimension_se’,
’radius_worst’, ’texture_worst’, perimeter_worst’,
area_worst’, ’smoothness_worst’,

’compactness_worst’, *concavity_worst’,
’concave points_worst’,

symmetry_worst’, *fractal_dimension_worst’],dtype="object’)

e Create the feature matrix, X, and target vector, y.

x = data.drop(’diagnosis’, axis=1)
y = data[’diagnosis’]
print(’First row of feature matrix :\n’,x[:1])

Output

First row of feature matrix :

radius_mean texture_mean perimeter_mean area_mean
smoothness_mean

0 1799 10.38 122.8 1001.0 0.1184

compactness_mean concavity_mean concave points_mean
symmetry_mean

0 02776 0.3001 0.1471 0.2419

fractal_dimension_mean ... radius_worst texture_worst
perimeter_worst

0 007871 .. 2538 17.33 184.6

area_worst smoothness_worst compactness_worst
concavity_worst

0 2019.0 0.1622 0.6656 0.7119

concave points_worst symmetry_worst
fractal_dimension_worst

0 02654 04601 0.1189

e As the feature value ranges are varying, let us normalize feature matrix

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)

e Display the sample target values

print(’ Sample target values :\n’,y[:5])

348 14 Python for Deep Learning

Output

Sample target values:

0 M

M

M

M

M

Name: diagnosis, dtype: object

BN =

e As target labels are strings, convert into numeric using LabelEncoder.

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

y = le.fit_transform(y)

print(’ Target values after transformation : ’, y[:5])

Output
Target values after transformation: [1 1 11 1]

e Create train and test datasets to feed to the model

from sklearn.model_selection import train_test_split
Xtrain, xtest, ytrain, ytest = train_test_split(x_scaled,

y, test_size=0.2, random_state=40)
print(xtrain.shape, xtest.shape, ytrain.shape, ytest.shape)

QOutput
(455, 30) (114, 30) (455,) (114,)

e Define neural network architecture with dense layers.

from keras.models import Sequential

from keras.layers import Dense, Dropout

model = Sequential()

model.add(Dense(100, input_dim=xtrain.shape[1],
activation= ’relu’))

model.add(Dense(80, activation= "relu’))

model.add(Dropout(0.25))

14.7 Case Studies 349

model.add(Dense(50, activation= ’relu’))
model.add(Dense(30, activation= "relu’))
model.add(Dropout(0.25))
model.add(Dense(10, activation= "relu’))
model.add(Dense(1, activation= "sigmoid’))

e Compile and train the model.

model.compile(optimizer="adam’, loss="binary_crossentropy’,
metrics=["accuracy’])

hist = model.fit(xtrain,ytrain, epochs=10, batch_size=64,
verbose=2 , shuffle=True)

e Draw the train accuracy curve.

import matplotlib.pyplot as plt

plt.plot(range(10), hist.history[’accuracy’], marker="*")
plt.title(’ Train Accuracy ’)

plt.xlabel("Epochs’)

plt.ylabel(" Accuracy’)

plt.show()

QOutput

Train Accuracy

0.95 1

0.90 1

0.85 -

Accuracy

0.80 1

0.75 1

0.70 1

Epochs
e Evaluate the model on test dataset

test_eval = model.evaluate(xtest, ytest, verbose=0)
print(’Loss on test data :* ,round(test_eval[0],4),
"\n Accuracy on test data: ’, round(test_eval[1]*100,2))

350 14 Python for Deep Learning

Output

Loss on test data : 0.1426
Accuracy on test data: 95.61

14.7.3 Image Classification Model

A classification model is built using image dataset containing yoga poses for the
popular five asanas like a goddess, plank, down-dog, tree, and warrior. The following
code builds a predictive model.

#To deal with corrupted images, use the following code
before model fit

from PIL import ImageFile

ImageFile. LOAD_TRUNCATED_IMAGES = True

e Load the Dataset from the directory structure containing images.

from keras.preprocessing.image import ImageDataGenerator

data_gen = ImageDataGenerator()

train_data = data_gen.flow_from_directory
(directory="/content/Yoga_ DATASET/TRAIN’ ,
target_size=(180,180),class_mode="categorical’,
batch_size=32, shuffle=True)

test_data = data_gen.flow_from_directory
(directory="/content/Yoga_DATASET/TEST’ ,
target_size=(180,180), class_mode="categorical’,
batch_size=32, shuffle=True)

Output

Found 1081 images belonging to 5 classes.
Found 470 images belonging to 5 classes.

e Data exploration and Preprocessing

(i) Check the image size and class labels.

print(’Image shape: ’,train_data.image_shape)
print(’Class Indices: ’,train_data.class_indices)

Output

Image shape: (180, 180, 3)
Class Indices: {’downdog’: 0, ’goddess’: 1, "plank’: 2, ’tree’:
3, *warrior2’: 4}

14.7 Case Studies 351

(ii) Display a sample image.

import matplotlib.pyplot as plt

print(’File Names : ’,train_data.filenames[:2])
print(’Display Image’)
plt.imshow(plt.imread(train_data.filepaths[10]))
plt.show()

Output

File Names : [’”downdog/00000128.jpg’,
’downdog/00000129.jpg’]

Display Image
0

200 A

400

800

0 200 400 600 800 1000 1200

e Model building for image Classification
Define a convolutional neural network with two blocks consisting of convolution,
pooling, and dropout layers followed by dense layers.

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten,
Dense, Dropout
model= Sequential()
model.add(Conv2D(32,5, activation =’relu’, input_shape=(180,180,3)))
model.add(Conv2D(32,5, activation =’relu’))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))

352 14 Python for Deep Learning

model.add(Conv2D(64,3, activation =’relu’))
model.add(Conv2D(64,3, activation =’relu’))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))

model.add(Flatten())
model.add(Dense(256,activation =’relu’))
model.add(Dense(128,activation ="relu’))
model.add(Dense(64,activation =’relu’))
model.add(Dense(5,activation =’softmax’))
model.summary()

Output
Model: "sequential_11"

Layer (type) Output shape Param #

conv2d_44 (Conv2D) (None, 176, 176, 32) 2432
conv2d_45 (Conv2D) (None, 172, 172, 32) 25632
max_pooling2d_22

(MaxPooling2D) (None, 86, 86, 32) 0
dropout_29 (Dropout) (None, 86, 86, 32) 0
conv2d_46 (Conv2D) (None, 84, 84, 64) 18496
conv2d_47 (Conv2D) (None, 82, 82, 64) 36928
max_pooling2d_23

(MaxPooling2D) (None, 41, 41, 64) 0
dropout_30 (Dropout) (None, 41, 41, 64) 0
flatten_11 (Flatten) (None, 107584) 0
dense_37 (Dense) (None, 256) 27541760
dense_38 (Dense) (None, 128) 32896
dense_39 (Dense) (None, 64) 8256
dense_40 (Dense) (None, 5) 325

Total params: 27,666,725
Trainable params: 27,666,725
Non-trainable params: 0

14.7 Case Studies 353

e Compile and Fit the Model
rmsprop as the optimizer, accuracy as the performance metric. Loss function is
categorical_crossentropy as it is multi-class classification task. The fif() function
returns accuracy and loss values for both train and validation datasets for each of
the 20 epochs.

model.compile(optimizer="rmsprop’, loss="categorical_
crossentropy’, metrics=["accuracy’])

hist = model.fit(train_data,
validation_data=test_data,epochs=20, verbose=0)

o Visualize the model performance
Visualize the accuracy for train and validation data using line graph.

plt.plot(range(10), hist.history[’accuracy’],
label="Accuracy’, marker="*")

plt.plot(range(10), hist.history[’val_accuracy’],
label="Validation Accuracy’)

plt.title(’ Train vs Validation accuracy’)

plt.xlabel(Epochs’)

plt.ylabel(’ Accuracy’)

plt.legend()

plt.show()

Output

Train vs Validation accuracy

—+— Accuracy
Validation Accuracy

0.9 1

0.8 1

0.7 1

0.6 1

Accuracy

0.5 1

0.4 1

0.3 1

0.2 <

Epochs

354 14 Python for Deep Learning

14.7.4 Text Data Classification

Quora is a platform where people can ask questions to learn from each other. The
question is a text containing one or more lines. The task is to classify whether the
question is sincere or not.

e Load the Train Dataset
The dataset contains question Id, question text, and target.

import pandas as pd

raw_train_data = pd.read_csv(’/content/drive/MyDrive/Python

Book/Chap 13
ML & DL packages/Datasets/Text datasets/lstm_data/
Quora_train.csv’, encoding="latin-1")

print(’Train data shape :*,raw_train_data.shape)

print("Train data columns :’,raw_train_data.columns)

print(’Sample Train data :\n’,raw_train_data
[[’question_text’, ‘target’]].head())

Output

Train data shape : (1306122, 3)

Train data columns : Index([’qid’, *question_text’, "target’],
dtype="object’)

Sample Train data :

question_text target

0 How did Quebec nationalists see their province 0
1 Do you have an adopted dog, how would you enco 0
2 Why does velocity affect time? Does velocity a 0
3 How did Otto von Guericke used the Magdeburgh 0
4 Can I convert montra helicon D to a mountain b 0

e Load the Test Dataset
The dataset contains question ID and question text.

raw_test_data = pd.read_csv(’/content/Text
datasets/Istm_data/Quora_test.csv’, encoding="latin-1")

print(’ Test data shape :’,raw_test_data.shape)

print(’Test data columns : ’,raw_test_data.columns)

print(’Sample Test data :\n’, raw_test_data.head())

14.7 Case Studies 355

Output

Test data shape : (375806, 2)
Test data columns : Index([’qid’, question_text’], dtype="object’)

Sample Test data :

qid question_text

0 0000163e3ea7c7a74cd7 Why do so many women become
so rude and arroga...

1 00002bd4fb5d505b9161 When should I apply for RV
college of engineer...

2 00007756b4a147d2b0b3 What is it really like to be

a nurse practitio...

000086e4b7e1c7146103 Who are entrepreneurs?

4 0000c4c3fbe8785a3090 Is education really making
good people nowadays?

W

e Count for each label

import numpy as np

num_labels = np.unique(raw_train_data[target’],
return_counts=True)

print(’ Target Labels and their counts : ’,num_labels)

Target Labels and their counts: (array([0, 1]),
array([1225312, 80810]))

e Convert text to numeric using fokenizer() function and fit on the text corpus.

tokenization

max_words=10000

from keras.preprocessing.text import Tokenizer
tokens = Tokenizer(num_words = max_words)
tokens.fit_on_texts(raw_train_data.question_text)
print(’No. of documents : °tokens.document_count)
print(’No. of word Indices : ’,len(tokens.word_index))

QOutput

No. of documents: 1306122
No. of word Indices: 222186

e Display sample tokens and their word indices

print(’First review : *,raw_train_data.question_text[0])
print(" Word index of Quebec, province : ’,tokens.word_index
[’quebec’], tokens.word_index[province’])

356 14 Python for Deep Learning

Output

First review: How did Quebec nationalists see their province
as a nation in the 1960s?
Word index of Quebec, province: 6683 6107

e Convert text to sequences after applying fit_on_texts() method on the train data.

xtrain = tokens.texts_to_sequences(raw_train_data.
question_text)

print(’ After converting text to sequence vector : \n’,xtrain[0],
\n’ xtrain[1])

Output

After converting text to sequence vector:
[9, 48, 6683, 7219, 158, 55, 6107, 36, 4, 1206, 6, 1, 8333]
[11, 14, 24,29, 3864, 498, 9, 35, 14, 3672, 37, 5, 3089, 10, 44, 1846]

e As sequence vectors are of varying length, make into fixed length using padding
technique.

max_len = 150

from tensorflow.keras.preprocessing.sequence import
pad_sequences

xtrain_pad = pad_sequences(xtrain, maxlen = max_len)

print(’Length of sequence vector before padding: °,
len(xtrain[0]))

print(’Length of sequence vector after padding: °,
len(xtrain_pad[0]))

QOutput

Length of sequence vector before padding: 13
Length of sequence vector after padding: 150

e Perform sequencing and padding on test data

xtest = tokens.texts_to_sequences(raw_test_data.question_text)
xtest_pad = pad_sequences(xtest, maxlen = max_len)
print(’Length of sequence vector before padding : ’,len(xtest[0]))
print(’Length of sequence vector after padding :

> len(xtest_pad[0]))

Qutput

Length of sequence vector before padding: 21
Length of sequence vector after padding: 150

14.7 Case Studies 357

print(’Shapes of train & test data : ’,xtrain_pad.shape,
xtest_pad.shape)

Qutput
Shapes of train & test data: (1306122, 150) (375806, 150)
e Create list of target labels

labels = list(raw_train_data.target.unique())
print(’ Target labels : ’,labels)

Output
Target labels: [0, 1]
e Model Building

1. LSTM Model
Create a sequential model with Embedding, LSTM, and Dense layers. First layer
is the Embedding layer that represents each token as a vector.

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense

embedding_size=100

model = Sequential()

model.add(Embedding(input_dim = max_words,
input_length= max_len, output_dim =embedding_size))

model.add(LSTM(10, return_sequences=False))

model.add(Dense(1, activation="sigmoid’))

model.summary()

Output

Model: "sequential”

Layer (type) Output shape Param #
embedding (Embedding) (None, 150, 100) 1000000
Istm (LSTM) (None, 10) 4440
dense (Dense) (None, 1) 11

Total params: 1,004,451
Trainable params: 1,004,451
Non-trainable params: 0

print(’Labels : ’,raw_train_data.target.unique())

358 14 Python for Deep Learning

Output
Labels : [0 1]

Itis a binary classification task. Use binary_crossentropy as the loss function and
accuracy as the metric to the compile() function. Then fit the model for 3 epochs.

ytrain = raw_train_data[target’]

model.compile(optimizer="adam’, loss="binary_
crossentropy’, metrics=["accuracy’])

hist = model.fit(xtrain_pad, ytrain, epochs=3,
validation_split=0.25)

Model Prediction

pred = model.predict(xtest_pad)

pred_test_y = (pred>0.35).astype(int)

submited = pd.read_csv(’/content/sample_data/
sample_submission.csv’)

submited[’predicted’] = pd.DataFrame(pred_test_y)

submited.head()
Output

11744/11744 []

- 42s 4ms/step
qid True Value predicted
0 0000163e3ea7c7a74cd7 0 1
1 00002bd4fb5d505b9161 0 0
2 00007756b4a147d2b0b3 0 0
3 000086e4b7elc7146103 0 0
4 0000c4c3fbe8785a3090 0 0
2. GRU Model

Build a sequential model consisting of Embedding layer, GRU layer with 10 units,
and a Dense layer. Then compile and fit the model for 3 epochs.

from keras.models import Sequential

from keras.layers import Embedding, GRU, Dense

embedding_size=32

model = Sequential()

model.add(Embedding(input_dim = max_words,
input_length= max_len, output_dim =embedding_size))

model.add(GRU(10))

model.add(Dense(1, activation="sigmoid’))

model.compile(optimizer="adam’, loss="binary_crossentropy’,
metrics=["accuracy’])

hist_gru = model.fit(xtrain_pad, ytrain, epochs=3,
validation_split=0.25)

14.7 Case Studies 359

3. Simple RNN Model

from keras.models import Sequential

from keras.layers import Embedding, SimpleRNN, Dense

embedding_size= 100

model = Sequential()

model.add(Embedding(input_dim = max_words,

input_length= max_len, output_dim =embedding_size))

model.add(SimpleRNN(10))

model.add(Dense(1, activation="sigmoid’))

model.compile(optimizer="adam’, loss="binary_crossentropy’,
metrics=["accuracy’])

hist_rnn = model.fit(xtrain_pad, ytrain, epochs=3,
validation_split=0.25)

Performance comparison using the three models

performance = pd.DataFrame()

performance[’ Train_accuracy’ |=[hist.history[’accuracy’][-1],
hist_gru.history[’accuracy’][-1]],hist_rnn.history
["accuracy’][-1]]

performance[’ Validation_accuracy’]=hist.history[’val_accuracy’]
[-1],hist_gru.history[’val_accuracy’][-1]],

hist_rnn.history[’val_accuracy’][-1]]

performance.index="LSTM’,’GRU’,RNN"’]

print(performance)
Output
Train_accuracy Validation_accuracy
LSTM 0.9602 0.9556
GRU 0.9591 0.9553

RNN 0.9540 0.9504

Chapter 15 ®)
Python for Multi-tasking i

15.1 Introduction

A process is an instance of a program in execution. In a multi-tasking system, multiple
processes are in execution. Each process can be in any of the following states.

Ready: Just created and ready for execution.

Running: Currently being executed by the processor.

Wait/Block: Waiting for a resource to be assigned or for input/output.
Suspended: The process is moved to secondary memory due to insufficient
resources.

Paused as some other process is scheduled for execution.

e Terminated: The process completed execution.

The operating system has to understand the states of all the processes in the system,
so that system resources are effectively utilized. Information about each process is
maintained in a data structure called PCB (process control block). PCB contains pro-
cess ID, process state, program counter, main memory allocation, and other resources
allocated to the process like input/output devices, disk, etc. In a multi-tasking sys-
tem, multiple tasks or processes are in execution simultaneously. The processor has
to switch between processes/threads to use the system resources effectively.

This is done by saving the current state of the process in the PCB so that the
process can be resumed later. Multi-tasking can be achieved using concurrency and
parallelism.

— Concurrency: Multiple tasks can start, execute, and complete in overlapping time
periods. In the case of a single-core CPU, the system performs a context switch
between tasks to make progress. The processor executes only one task at any point
of time, but it looks as if multiple tasks are being executed.

— Parallelism: Multiple tasks are actually running at the same time. Doing so
requires multiple cores in the CPU or multiple CPUs. In parallel processing,
at least two tasks are executed simultaneously.

© The Author(s) 2024 361
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52473-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15
https://doi.org/10.1007/978-3-031-52473-8_15

362 15 Python for Multi-tasking

Concurrency and parallelism mechanisms effectively utilize system resources and
speed up execution. Multiple tasks can be in execution in the following ways:

e Neither Concurrent nor Parallel: Only one task is in execution at any time. A task
is entirely executed before the next task is initiated. This means that the execution
of tasks is strictly sequential.

e Concurrent but not Parallel: Multiple tasks are in progress, but only one is exe-
cuted by the processor at any instance. The processor switches between tasks to
complete execution.

e Parallel but not Concurrent: A task is broken into sub-tasks, which are run simul-
taneously by multiple CPU cores.

e Concurrent and Parallel: Multiple tasks are in execution simultaneously on mul-
tiple cores of a CPU or multiple CPUs. Each task can also be broken down into
sub-tasks, which are also executed in parallel.

Python provides constructs to achieve concurrency and parallelism using:

1. Multi-threading.
2. Multi-processing.

15.2 Multi-threading

A process can be split into sub-tasks called threads. A thread is a sequence of instruc-
tions that can be executed independently. A process may contain multiple threads that
can be activated and executed parallelly. A thread can be preempted and interrupted
based on demand.

In a single-core CPU system, multi-threading is achieved by scheduling the CPU
to different threads for execution. The processor executes a few lines of threadl and
then switches to thread2 and executes a few lines there, then switches to another
thread, and so on. This continues until all the threads of the process are completed.
Only one CPU goes back and forth between multiple threads by switching among
the threads, called a context switch. During the context switch, the thread’s state
is saved before shifting to another thread so that it can be resumed from the same
point later. The switch between threads is so fast that it appears to the user as if
the CPU executes all the threads simultaneously, called virtual parallelism. Python
implements concurrency using multi-threading.

Multi-threading enables the execution of many sub-tasks of one process simulta-
neously. Each process has a global state that is shared among its threads. This makes
communication among the threads easy and efficient. In addition to the global state,
each thread has its local state.

Multi-threading is a perfect choice if the process is heavy I/O-bound and spends
a lot of time waiting for input/output. For example, accessing data from files, down-
loading from the Internet, sleeping, etc. are I/O-bound jobs. Even though multiple

15.2 Multi-threading 363

threads can be running concurrently in a process, the processor executes only one
thread code at any point in time.

Advantages of Threads

e The use of multi-threading efficiently utilizes resources as threads share resources
and memory.
e Works well for creating responsive applications.

Disadvantages

e There is overhead involved in managing multiple threads, and difficult to keep
track of them.
e It increases the complexity of the program and makes debugging a bit difficult.

Python provides two modules for multi-threading: thread and threading

thread module is deprecated.
threading is a high-level implementation for threads.

Steps in creating threads

e Import threading module.

e Create a threading object by passing the following parameters.
target: The function that forms the thread.
args: Arguments to the target function.

e Activate the thread using the start() function on the thread object.

e Pause main thread execution until the thread completes execution using the join()
method on the thread object.

Methods on thread object

e start(): Starts the thread activity. It should be called only once.
It returns an error if called multiple times.
e run(): Denotes the activity of the thread.
e join(): Blocks execution of other code until the thread gets terminated.

Functions on the thread object

activeCount(): Number of active thread objects.
currentThread(): Returns current thread object.
isDaemon(): True if the thread is a daemon.
isAlive(): True if the thread is active.

Every Python program is a process that has one thread called the main thread. Other
threads can be spawned by creating an object of the threading class.

Example: Create a thread on a simple function and activate it.

364

import threading

import 0s

def funl1():
print(’\n We are in funl’)
print(’Process Id : *,0s.getpid())

15 Python for Multi-tasking

print(’ Thread name : ’,threading.current_thread().name)

print(’Thread Id : ’,threading.get_ident())
print(’End of funl’)

if _name =="_ main_ ’:
print(" We are in main function)

print(’ Thread name : ’,threading.current_thread().name)

print(’Process Id of main : *,0s.getpid())
print(’ Thread Id : ’,threading.get_ident())
tl=threading.Thread(target=funl)
t1.start()

t1.join()

print(’End of main’)

Output

We are in main function
Thread name : MainThread
Process Id of main : 212
Thread Id : 140529785120640

We are in funl

Process Id : 212

Thread name : Thread-11
Thread Id : 140529410037504
End of funl

End of main

Threads speed up the execution of programs, especially when the process is 1/O-

bound job like accessing file data.

Example: There exist two files that contain R.No., Marks obtained in Maths and
R.No., Marks obtained in Python. Define two functions that read marks from each
file and find the highest marks. It is an I/O-bound job as we are accessing files.

import time
def read_filel(file_name):
fd = open(file_name,’r’)
next(fd)
high=0
while True:
line= fd.readline()
if line=="":

15.2 Multi-threading 365

break
r,m = line.split()
m = int(m)
if m>high:
high=m
print(’Highest in Maths : *,high)
fd.close()
time.sleep(0.1)
def read_file2(file_name):
fd = open(file_name,’r’)
next(fd)
high=0
#print(type(high))
while True:
line= fd.readline()
if line==""
break
r,m = line.split()
m = int(m)
if m>high:
high=m
print("Highest in Python : ’,high)
fd.close()
time.sleep(0.1)

Now create the main function that calls the above functions and measure the time
taken to execute the process.

" "

if __name__ =="__main__":
start=time.time()
read_file1(’/content/sample_data/maths.txt’)
read_file2(’/content/sample_data/python.txt’)
end=time.time()
print(’ Time Taken for execution : ’,end-start)

Output

Highest in Maths : 92
Highest in Python : 91
Time Taken for execution : 0.2044222354888916

Now execute the same program using multi-threading. Create two threads, one for
each function, and measure the time taken.

import threading
if __name__ =="__main__":
start=time.time()

366 15 Python for Multi-tasking

t1=threading.Thread(target=read_filel,args=
(’/content/sample_data/maths.txt’,))
t2=threading.Thread(target=read_file2,args=
(’/content/sample_data/python.txt’,))
t1.start()
t2.start()
t1.join()
t2.join()
end=time.time()
print("Time Taken for execution : ’,end-start)

Output

Highest in Maths : 92
Highest in Python : 91
Time Taken for execution : 0.10691332817077637

Note: The time to execute the process using multi-threading (two threads) is almost
half the time taken without multi-threading.

Threads of a process share data of the main thread. When multiple threads access
the shared data simultaneously, the operations by different threads may be inter-
leaved, and the result may not be as expected. A critical section is a fragment of
the process code that accesses or modifies shared data. The operations in the crit-
ical section must be performed as atomic operations. Otherwise, the result of the
operations may not be correct.

Multi-threading applications may face the following problems:

(1) Race conditions occur when two or more processes simultaneously access or
modify the data in the critical section.

(i) Deadlocks occur when different threads or processes try to acquire a resource.
Each thread is holding a resource and waiting for the resource held by the other
thread/process. No one gets a chance as it waits for a resource held by the other
process.

15.2.1 Threads Synchronization

The threading module provides a Lock object for thread synchronization to deal
with race conditions, deadlocks, and other multi-thread-based issues. The thread
that wants to access the shared data has to acquire a lock on the resource before
accessing and releasing the lock once the operations are completed on the shared
data. When the resource’s state is locked, no other process can access that resource
and has to wait until the lock is released.

Lock is to be imported from the threading class.

from threading import Lock

15.2 Multi-threading 367

Example: x is a global list object that the threads of a process can access. Two
threads are created. The first thread appends the values from 0 to 50 with a step of
10, and the second appends the values from 500 to 550 with a step of 10. Execution
of these two threads may be interleaved, and the threads may append the values in
any sequence.

import threading
import time
x=]
def funl1():
global x
for i in range(0,50,10):
print(’funl is updating ’, end="")
x.append(i)
print(x)
time.sleep(0.01)
def fun2():
global x
for i in range(500,550,10):
print(’fun2 is updating ’, end="")

x.append(i)
print(x)
time.sleep(0.01)
if name =="_ main_":

t1 = threading. Thread(target=fun1)
t2 = threading. Thread(target=fun2)
t1.start()

t2.start()

t1.join()

t2.join()

print(’Final list : ’,x)

Output

funl is updating [0
fun2 is updating [0
funl is updating [0, 500, 10]
fun2 is updating [0, 500, 10, 510]
funl is updating [0, 500, 10, 510, 20]
[0
[0
[0
[0

—_

, 500]

fun2 is updating [0, 500, 10, 510, 20, 520]

funl is updating , 500, 10, 510, 20, 520, 30]

fun2 is updating , 500, 10, 510, 20, 520, 30, 530]

funl is updating [0, 500, 10, 510, 20, 520, 30, 530, 40]
fun2 is updating [0, 500, 10, 510, 20, 520, 30, 530, 40, 540]
Final list : [0, 500, 10, 510, 20, 520, 30, 530, 40, 540]

368 15 Python for Multi-tasking

If Lock is used by a thread while accessing the shared object x, the other thread waits
until the lock is released.
This ensures that the values in the list object are in sequence, as shown below.

Example

import threading
import time
x=[]
lock = threading.Lock()
def funl1():
global x
lock.acquire()
for i in range(0,50,10):
print(’funl is updating ’, end="")
x.append(i)
print(x)
time.sleep(0.01)
lock.release()
def fun2():
global x
lock.acquire()
for i in range(500,550,10):
print(’fun2 is updating ’, end="")

x.append(i)
print(x)
time.sleep(0.01)
lock.release()
if __name__ =="__main__":

t1 = threading.Thread(target=fun1)
t2 = threading. Thread(target=fun2)
t1.start()

t2.start()

t1.join()

t2.join()

print(’Final list : ’,x)

Output

funl is updating

[
funl is updating [0, 10]
funl is updating [0, 10, 20]
funl is updating [0, 10, 20, 30]
funl is updating [0, 10, 20, 30, 40]
fun2 is updating [0, 10, 20, 30, 40, 500]
fun2 is updating [0, 10, 20, 30, 40, 500, 510]

15.3 Multi-processing 369

fun2 is updating [0, 10, 20, 30, 40, 500, 510, 520]

fun2 is updating [0, 10, 20, 30, 40, 500, 510, 520, 530]
fun2 is updating [0, 10, 20, 30, 40, 500, 510, 520, 530, 540]
Final list : [0, 10, 20, 30, 40, 500, 510, 520, 530, 540]

15.3 Multi-processing

Computer systems with multiple-core CPUs are becoming common. Hence writing
parallel code improves the system’s performance. Python provides a multi-processing
module to write parallel code. Multiple unrelated processes can run simultaneously
by different cores of the CPU or different CPUs. The operating system schedules
each process separately so that the program gets a larger share of system resources.
As these processes are independent, they do not share resources. Every process gets
its own instance of Python interpreter, processor, memory, and other resources for
completing the task. Different processes cannot share the same global variable, but
each process makes a copy of the global variable if required. Multi-processing is
best if the task is CPU bound and the machine has multi-cores or processors. Multi-
processing is more efficient as processes are run concurrently. Python implements
parallelism using a multi-processing module.

Multi-threading Versus Multi-processing

o In multi-threading, multiple threads belonging to a single process can run simul-
taneously. In contrast, multi-processing runs multiple processes across different
CPU cores or multiple CPUs simultaneously.

e Multi-threading is used to implement concurrency. Whereas multi-processing is
used to implement parallelism.

e In multi-processing, each process gets a new instance of Python interpreter and
hence a different GIL (Global Interpreter Lock). In contrast, GIL can execute
only one thread at any movement. Hence there may not be much performance
improvement in multi-threading.

Python provides a multi-processing module with libraries for implementing multi-
processing, interprocess communication, and data sharing. The multi-processing
module has a Process class for creating new process objects. Following are the
steps in creating processes:

e Create a Process object by passing the following arguments:
target—function to be executed by the process.
args—arguments to the function.
e Start the process using start() method on the process object.
e Wait for the process to be completed using join() method on the process object.

Example: A program has functions to calculate the area of a triangle and the area
of a circle. Let us execute it with a single process and multiple processes and see the
reduction in the time taken for execution.

370 15 Python for Multi-tasking

def triangle(b,h):
print(’ Triangle Process Id : ’, os.getpid(), end="")
print(’ Area : *,0.5¥b*h)
time.sleep(0.1)

def circle(r):
time.sleep(0.1)
print(’Circle Process Id : °, os.getpid(), end="")
print(’ Area : ’,3.14%r*r)

a. Execute the Program Using a Single Process

import time
import os
if _name__==’_ main__":
print(’Main Process 1d : °, os.getpid())
start= time.time()
triangle(5,6)
circle(5)
end = time.time()
print(’ Time taken with single process : ’, end-start)

Output

Main Process Id : 473

Triangle Process Id : 473 Area : 15.0

Circle Process Id : 473 Area : 78.5

Time taken with single process : 0.20311737060546875

b. Execute the Program with Two Processes

import multiprocessing
import time
import 0s
if _name =="__main__’:
print(’Main Process Id : ’, os.getpid())
pl = multiprocessing.Process(target=triangle, args=(5,6))
p2 = multiprocessing.Process(target=circle, args=(5,))
start= time.time()
pl.start()
p2.start()
pl.join()
p2.join()
end = time.time()
print(’ Time taken with two processes : ’, end-start)

15.3 Multi-processing 371

Output

Main Process Id : 473

Triangle Process Id : 2665 Area: 15.0

Circle Process Id : 2666 Area: 78.5

Time taken with two processes : 0.16042232513427734

There is a significant reduction in execution time. As spawning a process takes little
time, the reduction in time is not half.

15.3.1 Interprocess Communication

Processes are independent units, each has its system resources, and multiple processes
are executed in parallel. But still, processes can communicate with one another. In
Python, interprocess communication is achieved using the following classes of multi-
processing module:

Queue

Manager
Shared memory

(i) Queue Class

Queue is a high-level mechanism for sharing data among multiple processes.
Each process can put the data and also access the data from the queue. The queue
is designed to be used with multiple producers (put the data into a queue) and
multiple consumers (take data from the queue). It is a bi-directional data flow
method. This is similar to queue. Queue class which is a FIFO data structure.
Different processes can use get() and put() methods to add or consume the
data in the queue. This data structure includes a lock mechanism to avoid race
conditions, and users need not worry about synchronization.

Example: A program containing two producers and one consumer process.
These processes communicate using queue objects.

from multiprocessing import Process, Queue

import time

def producer1(lst,q):

for ele in Ist:

area=0.5*ele[0]*ele[1]
print(’put by Producerl °, area)
g.put(CProducerl ’,area))
time.sleep(0.01)

def producer2(lIst,q):

372

for ele in Ist:
area= ele[0]*ele[1]
print(’Put by Producer2 ’, area)
q.put(CProducer?2 ’,area))
time.sleep(0.01)

def consumer(q):

time.sleep(0.2)

while not q.empty():
print(’Consumed ’,q.get())
time.sleep(0.01)

if _name_ =="__main__":

Ist=[(2,3),(5,6),(7,8)]

q=Queue()

pl = Process(target=producerl, args=(lst,q))

p2 = Process(target=producer2, args=(Ist,q))

p3 = Process(target=consumer, args=(q,))

pl.start()

p2.start()

p3.start()

pl.join()

p2.join()

p3.join()

Output

put by Producerl 3.0

Put by Producer2 6

put by Producerl 15.0

Put by Producer2 30

put by Producer1 28.0

Put by Producer2 56
Consumed (’Producerl ’, 3.0)
Consumed (’Producer2 ’, 6)
Consumed (’Producerl ’°, 15.0)
Consumed (’Producer2 ’, 30)
Consumed (’Producerl ’°, 28.0)
Consumed (’Producer2 ’, 56)

(ii) Pipe Class

15 Python for Multi-tasking

Pipe is a connection between two processes. It is a low-level mechanism, and
usually, one process sends data into the pipe, and the other process consumes
the data from the pipe. Creating a pipe generates two connection objects rep-
resenting two endpoints. send() and recv() methods are used for sending and
receiving data from the pipe. Pipe is a simpler and more efficient mechanism
to share the data faster between two processes.

15.3 Multi-processing 373

Example: One producer and one consumer communicating using Pipe object.

from multiprocessing import Process, Pipe
import time
def producer(Ist,end):
for ele in Ist:
area=round(3.14*ele*ele,2)
print(’Sending °, area)
end.send(area)
time.sleep(0.01)
def consumer(lIst,end):
while True:
data = end.recv()
if data==0:
break
print('Received ’,data)
time.sleep(0.1)
if name ==" main_":
Ist=[6,8,10,0]
endl, end2 =Pipe()
pl = Process(target=producer, args=(Ist,end1))
p2 = Process(target=consumer, args=(Ist,end2))
pl.start()
p2.start()
pl.join()
p2.join()

Output

Sending 113.04
Received 113.04
Sending 200.96
Sending 314.0
Sending 0.0
Received 200.96
Received 314.0

(iii) Manager Class
When a program starts, the server process is started. A new process is created by
sending a request to the server process. Server process controls the shared data
and allows other processes to manipulate it. The Manager class of the multi-
processing module controls the server process. The manager object creates
shared data and updates it when processes manipulate it. Shared data may
contain objects like dictionaries, lists, Array, Value, Queue, etc.

374 15 Python for Multi-tasking

Example: Three processes communicating using Manager object.

from multiprocessing import Process, Manager
import time
def add_process(pandavas, names):
for name in names:
print(’ Adding ’, name)
pandavas.append(name)
def del_process(pandavas):
time.sleep(0.2)
print(’deleting last element ’, pandavas.pop())
def display_process(pandavas):
time.sleep(0.3)
print(’Displaying shared memory data :’)
for element in pandavas:
print(element)
if __name__ ==’__ _main__’:
manager = Manager()
pandavas = manager.list([’Duryodhan’, "Bheem’])
names=[’Arjun’, ’Nakul’, ’Sahadev’]
pl = Process(target= add_process, args=(pandavas,names))
p2 = Process(target=del_process, args=(pandavas,))
p3 = Process(target=display_process, args=(pandavas,))
pl.start()
p2.start()
p3.start()
pl.join()
p2.join()
p3.join()

Output

Adding Arjun

Adding Nakul

Adding Sahadev

deleting last element Sahadev
Displaying shared memory data :
Duryodhan

Bheem

Arjun

Nakul

(iv) Array and Value Objects
Ctypes is a mechanism for sharing data among processes in a multi-processing
environment. The multi-processing module provides Array and Value classes
that are of ctypes for sharing array and value among the processes.

15.3 Multi-processing 375

Example

from multiprocessing import Process, Array, Value
def power_2(a,v):
for i in range(len(a)):
afi] =2 **i
def sum_arr(a,v):
v.value = sum(a)/len(a)
if _name =="_ main_ ’:
val = Value(’d’,0.0)
arr = Array(’i’, range(5))
pl = Process(target= power_2, args=(arr,val))
p2 = Process(target= sum_arr, args=(arr,val))
pl.start()
p2.start()
pl.join()
p2.join()
print(’ Array elements : ’,arr[:])
print(’ Average of array elements : ’,val.value)

Output

Array elements : [1, 2, 4, 8, 16]
Average of array elements : 6.2

15.3.2 Process Pool

Creating a new process using the Process class increases computational costs if we are
creating and destroying many processes. Instead, we can create and keep processes
ready for use with the help of a process/thread pool.

Process pool is a pool of generic worker processes that are ready to run a task.
This is a more efficient way than creating a thread/process on demand, especially
when a large number of processes/threads are required. Unused processes in the pool
can be made to wait without consuming computational resources.

Python 3.2 has concurrent.futures module that has constructs for creating both
pool of threads and pool of processes. This is an abstraction layer on top of threading
and multi-processing modules. It uses ThreadPoolExecutor and ProcessPoolExecu-
tor to manage process pools and thread pools. Life cycle of process pool

1. Creating an object of ProcessPoolExecutor
Pool = ProcessPoolExecutor(max_workers)

max_workers—the maximum number of processes in the pool. Default is the total
number of CPU cores

376 15 Python for Multi-tasking

2. Submit the task using map() or submit()

map()

Apply the function for each element in the iterable
One process per loop iteration
Returns an iterable that can be used to access the result

submit()

Submits one task per process
Returns future object. Use result() on future object to access the result.

3. Wait for the results using wait(), as_completed().
4. Close the process pool using shutdown() method.

The below example creates a pool of 10 processes for finding the prime numbers
between 2 and 20.

Example

from concurrent.futures import ProcessPoolExecutor
import time
def is_prime(n):
for i in range(2,n):
if n%i==0:
return n,’Not prime’
else:
return n, Prime’
if __name__ ==’__main__":
start=time.time()
pool = ProcessPoolExecutor(max_workers=10)
result = pool.map(is_prime, range(2,20))
end=time.time()
print("Time taken using process pool : °, end-start)
for r in result:
if r[1]=="Prime’:
print(r,end="")
pool.shutdown()

Output

Time taken using process pool : 0.08892011642456055
(2, ’Prime’) (3, ’Prime’) (5, ’Prime’) (7, ’Prime’) (11, *Prime’)
(13, ’Prime’) (17, ’Prime’) (19, "Prime’)

Review Questions 377

Exercises

1. Given a list of decimal numbers, write functions to find binary, octal equivalents.
Write the number, corresponding binary, and octal equivalents into a file. Use
multi-threading, multi-processing, and measure the time.

2. Write a program to find the divisors of elements of a set using a process pool.

3. Write a program to find the number of words and English language articles in a
file using multi-processing.

4. Write a producer function to generate perfect numbers between 1 and 200 and a
consumer function to display them. Use pipe for interprocess communication.

5. Take a global list object. Write two threads, one for inserting odd numbers and the
other for inserting even numbers between 0 and 25. Use thread synchronization.

Review Questions

(1) The module that supports multi-threading in Python

(a) Multi-threading
(b) Threading

(¢) Thread

(d) Threads

(2) Which of the following method forces one thread to wait until another thread
completes?

(a) start()
(b) pause()
(c) join()
(d) close()

(3) Which of the following method is used for interprocess communication using
Pipe?
(a) insert()
(b) send()
(c) append()
(d) put()
(4) Which of the following method is used for interprocess communication using
Queue?

(a) insert()
(b) send()
(c) append()
(d) put()

378 15 Python for Multi-tasking

(5) Which of the following object is used for thread synchronization?

(a) Sync
(b) Lock
(c) Hold
(d) Pause

((C) I is used to execute multiple activities in a single processor.

(a) Multi-processing

(b) Multi-threading

(c) Both multi-processing and multi-threading
(d) None of the above

(7) The method used to pause a thread for certain amount of time.

(a) sleep()
(b) pause()
(c) time()
(d) thread_sleep()

(8) Threading module of Python provides functions to achieve parallelism.
True/False
(9) Which of the following method is not a supported method on Thread object?

(a) start()
(b) run()
(c) join()
(d) getpid()

(10) Each process in the process pool is allocated system resources.
True/False

Appendix A
Solutions to Review Questions

Chapter 1

DO M= = = = e = = = e
SO XTI NPk WND OO

NN R WD =

(c) Welcome Python

(a) NameError: name ’Pi’ is not defined
(c) False

(c) 200

(d) 25

(b) 10

(b)2

(a) True

(©2

(d) -2

. (@0

. (D20

. (@5

. (b) Bye

. (d) Any of the above
. (c) Indentation

. (d) do while

. (a) Yes

. (a) True

. (b) 15+5j

Chapter 2

1.
2.

(c) 31
(d) error is generated

© The Author(s) 2024
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8

379

https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8

(95]
[}
(e

Appendix A: Solutions to Review Questions

(a)1

(b) 10 314.0 None

(a) None

(a) Function body should have at least one return statement
b)(1,2,3,4,5,6,7)

(a)-15

(©2

(c) tuple

SO XN R W

[y

Chapter 3

(a) Python is an object-oriented language

(c) Python is high-level language and object-oriented language
©20%7=6

(d) LanGuaGe

(b)0

(c) 16

(b) Sclicing

(a) split()

(c)+

(a) String objects are mutable.

SO XN R DD~

[y

Chapter 4

(d) elements cannot be accessed using the index
(a) add()

(d) [6,5]

(b) Red

(c) [1,2]

(a)[1, 3,7, 10, 20]

(a) data[-1]

(a) [6, 25,0,-5,7, 1]

(d) 4

) [3,2,8,5,6]

OO E P~

—_

Chapter 5

1. (d)3.14
2. (@) (6,7)

Appendix A: Solutions to Review Questions

(b)4

(b)n

(b) ’H, e, 17, 1, 70’
(@2

@ W70, p, 0,)
(a) (5, 10, 5, 10)

(d) error is generated
(b)9.14

SO XN R W

[y

Chapter 6

(b) { CWhite’, ’Black’), 'Red’, "Blue’, *Green’, 'Black’ }
(d) Error is generated

(¢) {CWhite’, *Black’)}

(b) { 'Red’,’Green’, ’Blue’, (" White’,’Black’) }

(b) set()

(a) CRed’, ’Blue’, ’Black’, *Green’)

(a) Sets elements are Mutable objects

(c) update()

(b) Relational

©{}

SO XN R DD~

[y

Chapter 7

(d) error is generated

(a) False

(b) {’"Name’: ’Karna’, "Phone’: 9999}

(b) {’Dec’: 31, ’Jan’: 31, ’Jun’: 30}

(d) set

(b) Delhi

(d) {"Banana’: 50, *Apple’: 80, ’Orange’: 65, *Grapes’: 90}
(d) Error is generated

®)3

(a) {’Banana’, ’Apple’, ’Orange’ }

OO E P~

—_

Chapter 8

1. (¢) w+ and a+
2. (a) seek(0)

(95]
e}
3]

Appendix A: Solutions to Review Questions

(a) Beginning of the file
(a) c:\usr\sample.txt

(b) seek(0) ; read(5)

(d) both a and c options
(c) aw

(a) .exe

(c) open(’sample.txt’,’w’)
(b) tell()

SO XN R W

[y

Chapter 9

(c) 10

(b)2

(a) Tablet

(a) (5.2)

(b)2

(d) Row labels of dataframe can be only integers
(c) pop()

(d)Botha &b

(c) df.to_csv()

(b) len()

SO XN R DD~

[y

Chapter 10

(a) File

(b) Connect()

(a) import sqlite3

(b) cursor

(a) fetchall()

(c) ALTER

(c) sqlite3.connect(’database’)
(d) ALTER

(c) SELECT

(b) UPDATE

OO E P~

—_

Chapter 11

1. (&) CW*Ic*m* t* Pyth*n’, 5)
2. (c) Is*it*ver*3*7*

Appendix A: Solutions to Review Questions 383

(b) [Python’, ’is’, ’an interpreted language’]

(d) ['Python version ’, *.7’]

(c) ’=" Means one or more Occurrences

(@) "

(d) [’ total ’]

(a) <re.Match object; span=(36, 42), match="python’ >
(c) search()

®[]

SO XN R W

[y

Chapter 12

(d) best

(c) scatter()

(a) bins()

(b) Quartile 2

(b) annot

(b) Scatter

(c) Distance of Wedge from the center
(a) Line

(a) Seaborn has built-in piechart()

(c) Boolean

SO XN R DD~

[y

Chapter 15

(b) threading

(c) join()

(b) send()

(d) put()

(b) Lock

(b) Multithreading
(a) sleep()

False

(d) getpid()

False

OO E P~

—_

Appendix B
Python Installation

I. Python in Google Colaboratory

1. Go to your Google drive and click *+new’ button at the left side
2. Click on "More’ and check if ’Google Colaboratory’ is present in the list
3. If not

a. Go to ’Connect more apps’ in 'More’
b. Type colab in the search box of Google Workspace Marketplace
c. Click on ’Colaboratory’ to add to the apps list

Now Google Colaboratory is added to the apps list in "More’

4. Now click on *+new’ of your google drive then go to "More’ and select *Google
Colaboratory’

5. Click on the ’”CREATE AND SHARE’ button.

Now the notebook opens.
Notebook contains two types of cells: (i) Code cell (ii) Text cell

You can write the Python code in code cells. Execute the code cell by pressing
Shift + Enter or click on Run button of the cell.

Text cells are for documentation purpose.

Code/Text cells can be inserted by choosing *+Code’ , ’+Text’ buttons available
below the notebook menu.

Note: Google Colaboratory requires a gmail account and internet connection.

© The Author(s) 2024 385
A. L. Muddana and S. Vinayakam, Python for Data Science,
https://doi.org/10.1007/978-3-031-52473-8

https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8

386 Appendix B: Python Installation

I1. Python for Windows

1. Go to official website of Python: https://www.python.org

2. Goto downloads and select Windows

3. Choose the installer for your OS and download

4. Run the installer and select the check boxes and click Next, Install

To Verify if Python is installed

1. Open command prompt
2. Type python and press enter
3. If Python is successfully installed, you get the display similar to the following

or "license" for more inforn

>>> is the Python prompt. Now you can type the Python statements and press
enter for execution.

To run the Python script

1. Write a Python script using any text editor like Notepad and save it in a file with
.py extension.

2. Go to the command prompt.

3. Type python file_name.py and press Enter

I11. Python for Ubuntu

Ubuntu comes with Python preinstalled.
To check if Python is installed, type the following in the terminal window
python
You will get the display similar to the following
gltam@gitam-Vostro-3268: ~ B 3:16PM 3%
5 giltanggitan-Vostro-3268:~$ python

Python 2.7.12 (default, Mar 1 2021, 11:38:31)
[GCC 5.4.0 20160609] on linux2

i Typcl"help", “copyright™, "credits® or "license” for more information.

[s)

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org

Appendix B: Python Installation 387

>>> is the Python prompt. Now you can type the Python statements and press enter
for execution.

To run the Python script

1. Write a Python script using any text editor like vi / gedit and save it in a file with
.py extension.

2. Open a terminal window (press Ctrl + Alt + T)

3. Go to the directory where Python script file is present

4. Type python file_name.py at $ prompt and press Enter.

Index

Add
column to dataframe, 175-176
column to table, 203, 206
elements to dictionary, 141
elements to list, 75-77
elements to set, 120
rows to dataframe, 179, 181
rows to table, 204, 206
Algorithms
clustering, 313-319
decision tree, 258, 283, 288, 296, 298, 303
dimensionality reduction, 263, 303, 304,
309, 312, 335, 342
K-means, 306, 313
KNN, 283, 287, 303
linear regression, 273-275, 279, 290
logistic regression, 282, 286
Naive Bayes, 285, 290
SVM, 258, 284, 289, 294
All method
list, 87
tuple, 104-105
Any method
list, 87
tuple, 103
Append
elements to dictionary, 141
elements to list, 75
file, 157-158
rows to dataframe, 179

C
Class

© The Author(s) 2024

bool, complex, float, int, 5

string, user defined, 6
Clear method
dictionary, 141
list, 80
set, 123
Close
connection, 210
file, 155
Comments, 2-3
Comparisons
operators, 11
sets, 127-129
Comprehensions
dictionary, 146
list, 88
set, 130
Concatenation
dataframe, 181
list, 77
string, 59
tuple, 98-99
Copy method
dictionary, 143
list, 83
set, 127
Count method
list, 81
string, 63
tuple, 105
Create
empty dataframe, 172
empty dictionary, 137
empty list, 70
empty set, 115-116

A. L. Muddana and S. Vinayakam, Python for Data Science,

https://doi.org/10.1007/978-3-031-52473-8

389

https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8
https://doi.org/10.1007/978-3-031-52473-8

390

empty string, 53
empty tuple, 94
table, 202, 206

D

Data
cleaning, 258
loading, 268, 285
loading image, 323-325
loading text, 328-329
normalization, 286
normatization, 311
text, 328
transformations, 263, 271

Dataset
in-built, 256, 322
splitting, 267

Data types, 4

Delete
columns from dataframe, 182—-183
columns of table, 203, 208
elements from dictionary, 141-142
elements from list, 78-81
elements from set, 121-123
file, 163
rows of a table, 204
table, 203, 208

Difference
sets, 125
symmetric-difference, 126
symmetric-difference-update, 126

E
Else
elif, 27
for-else, 32
while-else, 30
Enumerations
list, 84-85
tuples, 111
Evaluation metrics
classification, 281
regression, 274

F
Find method
regular expression, 222
string, 63
Frozen sets, 131-132
Functions
call, 4041

definition, 40
lambda, 48—49
recursive, 4648

H
Head, 177
Hyper parameters, 290, 291

I
Immutable
dictionary keys, 139
set elements, 117
string, 53
tuple, 97
Indexing
lists, 72-73
strings, 57
tuples, 97
Index method
dataframe, 173
tuple, 105-106
Insert
column to a dataframe, 175
list, 75
records into table, 204
Intersection, 124
Iterate
dictionary, 145
list, 88
strings, 64
tuples, 109

K

Keys, 139-140

Keyword
formatting, 64
parameters, 43—-45

L
Learning
supervised, 255, 273, 280
unsupervised, 255, 303-305, 342
Legend, 234, 240
Length
dataframe, 173
dictionary, 139
lists, 70-71
sets, 119
strings, 56
tuples, 100
Loops

Index

Index

for, 31
for-else, 32
while, 28
while-else, 30

M
Map function, 86
Max function
dataframe column, 185
lists, 84
sets, 119-120
tuples, 100
Membership
operators, 16
sets, 118-119
string, 60
tuple, 100
Min function
dataframe column, 185
lists, 84
sets, 119-120
tuples, 100
Missing Values
filling, 261-262
identification, 258, 268
removal, 260
Model
compilation, 340
evaluation, 341

evaluation metrics, 274, 281

prediction, 341
selection, 290
Multiline
comments, 2
strings, 55
Multiplication
strings, 60
tuples, 99
Mutable objects
dictionary, 139
lists, 69
sets, 120

N

Nested
if, 26
list, 73-74
tuples, 98

(0]
Open

database, 201
file, 154-155

Operations

P

arithmetic, 8, 10
assignment, 14-15, 21
associativity, 16
binary, 8

bitwise, 12—-14
compound assignment, 15
identity, 15-16
integer division, 10
logical, 11-12
membership, 16
precedence, 16

real division, 10
relational, 11

shift, 12

unary, 8

Parameters

default, 44-45
hyperparameters, 291, 294
keyword, 44

mapping, 43
pass-by-reference, 45
pass-by-value, 45
positional, 43

Pass, 27, 30
Pop method

dataframe, 182
dictionary, 141
list, 79
set, 122

Positional

formatting, 63
parameters, 43

Process

R

creation, 369

Id, 363
multi-processing, 369
process pool, 375

Random, 32
Range, 31
Read

Csv, excel, json file, 187
files, 158-159

Reduce, 86-87
Renaming

391

392

column of a table, 203, 207
columns of dataframe, 183
row labels, 183

Replace
string, 62

Reverse
elements of list, 82
elements of tuple, 102

S
Seaborn, 229-231, 233, 237, 239, 243, 248,
249, 252, 254
Search
grid search, 291, 294-295
module search, 192
randomized search, 292
string, 221
Seek, 159-160
Slicing
lists, 73
string, 57-58
tuples, 97
Sort
list, 82
tuples, 101
Split
dataset, 267
string, 61, 219
Substitution, 220, 221
Sum function
dataframe column, 185
list, 84
set, 119-120
tuple, 100

T
Tail, 178

Index

Text
classification, 354
data, 6, 322
data loading, 328-329
Type conversions
basic type, 17-20
dictionary, 147-148
list, 106-107
set, 129
strings, 65—66
tuple, 106-109

U

Union, 124

Unpacking, 110

Update
dictionary, 143-145
list, 77
records of table, 204, 207
rows of dataframe, 180181
sets, 125-126

A\
Vectorization, 186

W

Write
Csv, excel, json file, 187-190
file, 155-158

Z

Zip method
dictionary, 148
list, 85
tuple, 111

