LEARNING MADE EASY

N/ 3rd Edition

Python* for
Data Science

dummies

A Wiley Brand

John Paul Mueller
Luca Massaron

Coauthors of Artificial Intelligence For
Dummies

[~ "~ Y

060

Python for
Data Science

3rd Edition

by John Paul Mueller and Luca Massaron

dummies
A Wiley Brand

Python® for Data Science For Dummies®, 3rd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies . com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Python is a registered trademark of Python Software Foundation Corporation. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2023946155

ISBN 978-1-394-21314-6 (pbk); ISBN 978-1-394-21308-5 (ebk); ISBN ePDF 978-1-394-21309-2 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

Introduction.................. 1
Part 1: Getting Started with Data Science and Python... ... 7
cHAPTER 1: Discovering the Match between Data Science and Python............ 9
cHAPTER 22 Introducing Python's Capabilitiesand Wonders.................... 21
cHAPTER 3: Setting Up Python for Data Science.......... 33
cHapTER 4: Working with Google Colab........ ... oo i i 49
Part 2: Getting Your Hands Dirty withData.................. 71
cHApTER 5: Working with Jupyter Notebook.o oL 73
cHapTER6: WorkingwithRealData. ... 83
CHAPTER7: ProcessingYourData...........cooiiiiiiiiinniiiiiiinnnnn. 105
cHAPTER 8: ReshapingData..........oouiiiiiiiii e 131
cHAPTER 9: Putting What You Know into Action.............ot 143
Part 3: Visualizing Information................................ 157
cHAPTER 10: Getting a Crash Course in Matplotlib oiiis. 159
cHAPTER 11: Visualizingthe Data 177
Part4:WranglingData.. 199
cHAPTER 12: Stretching Python's Capabilities. o it 201
cHAPTER 13: Exploring Data Analysis 223
CHAPTER 14: Reducing Dimensionality............. .o 251
CHAPTER 15: CIUSTEIING . . . e e 273
cHAPTER 16: Detecting OutliersinData. ... e 291
Part 5: LearningfromData..................................... 305
cHAPTER 17: Exploring Four Simple and Effective Algorithms................... 307
cHAPTER 18: Performing Cross-Validation, Selection, and Optimization.......... 327
CHAPTER 19: Increasing Complexity with Linear and Nonlinear Tricks. 351
cHAPTER 20: Understanding the Power of theMany., 391
Part6:ThePartofTens... 413
cHAPTER 21: Ten Essential Data Resources. ..o, 415
cHAPTER 22: Ten Data Challenges You Should Take, 421

Table of Contents

INTRODUCTION ... 1
AbOULt ThiS BOOK. . ..o e 2
Foolish ASSUMPLioNS. . ..ottt 3
lconsUsedinThisBoOKt e 4
Beyond the BoOK.t e 4
Whereto GofromHereo i 5

PART 1: GETTING STARTED WITH DATA SCIENCE

CHAPTER 1:

AND PYTHON 7
Discovering the Match between Data
Scienceand Python 9
Understanding Pythonasalanguage...............cooiiiiaaen, 10
Viewing Python's various uses as a general-purpose language .. .10
Interpreting Python. i 11
Compiling Pythono 12
Defining Data SCieNCe.ot e e e 12
Considering the emergence of datascience................... 12
Outlining the core competencies of a data scientist 13
Linking data science, bigdata, and Al. 14
Creating the Data Science Pipeline.............o i, 15
Understanding Python's Role in Data Science. 16
Considering the shifting profile of data scientists 16
Working with a multipurpose, simple, and efficient language17
LearningtoUse Python Fasto, 17
Loading data. .. oo vt e 18
Trainingamodel ... e 18
Viewing aresult . ..o i e 19

CHAPTER 2:

Introducing Python’s Capabilities and Wonders ... 21

Working with Python. 22
Contributingtodatascience ..., 22
Getting a taste of thelanguage............ ..., 23
Understanding the need for indentation...................... 24
Working with Jupyter Notebook and Google Colab 24

Performing Rapid Prototyping and Experimentation 24

Considering Speed of Executioncovviiiniiin .. 26

Visualizing POWer.t e 27

Using the Python Ecosystem for Data Science 28
Accessing scientific tools using SCiPyooooiii i, 29
Performing fundamental scientific computing using NumPy. 29

Table of Contents A"/

vi

CHAPTER 3:

CHAPTER 4:

Performing data analysis usingpandas....................... 29

Implementing machine learning using Scikit-learn 30
Going for deep learning with Keras and TensorFlow. 30
Performing analysis efficiently using XGBoost 31
Plotting the data using Matplotlib. 31
Creating graphs with NetworkX.o, 31
Setting Up Python for Data Science 33
Workingwith Anacondat 34
Using Jupyter Notebook 34
Accessing the Anaconda Prompt., 35
Installing Anaconda on Windows iiinean, 36
Installing Anaconda on LinUX.coovveiin i 39
Installing Anacondaon Mac OS Xo, 40
Downloading the Datasets and Example Code. 42
Using Jupyter Notebook 42
Defining the code repository. ..., 43
Understanding the datasets used in thisbook................. 47
Working with Google Colab............................ 49
Defining Google Colabo 50
Understanding what Google Colabdoes...................... 50
Considering the online coding difference 51
Using local runtime support ...t 53
Working with Notebooks i 53
Creatinganew notebook. ..., 54
Opening existing notebooks oo, 54
Saving NOtebOoOKS ... v i e 56
Downloading notebookscoviiiiiii i e 59
Performing Common Tasks.ttt 59
Creatingcodecellsot i e 60
Creatingtextcellsot i i 62
Creating specialcells. i 63
Editing cells. ... i 64
MoVing Cells ..t e 64
Using Hardware Accelerationcooviiiiiiniin i, 64
Executingthe Codeot i e 65
Viewing Your NotebooKt i i 66
Displaying the table of contents i 66
Getting notebook information............ o i 66
Checking code executionoviiiiiiiin i, 67
Sharing Your Notebooko 67
Getting Help . . oo e 68

Python for Data Science For Dummies

PART 2: GETTING YOUR HANDS DIRTY WITH DATA 71

cuarrers: Working with Jupyter Notebook...................... 73
Using Jupyter Notebook . ..ot 74
Workingwith styles. i 74
Getting Pythonhelp 75
Using magic functions.t 76
Discovering objects.v it e 77
Restartingthekernel...... i, 79
Restoring a checkpoint........ ..o, 79
Performing Multimedia and Graphic Integration.................. 79
Embedding plots and otherimages 80
Loading examples from onlinesites.ooi.... 80
Obtaining online graphics and multimedia.................... 80
ciarrere: Working withRealData................................ 83
Uploading, Streaming, and SamplingData 84
Uploading small amounts of data into memory................ 84
Streaming large amounts of dataintomemory................ 86
Generating variationsonimagedata......................... 86
Sampling data in differentwayso 88
Accessing Data in Structured Flat-File Form 89
Reading fromatextfile, 90
Reading CSV delimited format.coiiiiiinn. .. 90
Reading Excel and other Microsoft Officefiles................. 93
Sending Data in Unstructured FileForm 94
Managing Data from Relational Databases. 97
Interacting with Data from NoSQL Databases 99
Accessing DatafromtheWeb it 100
cuarrer7: ProcessingYourData............................ 105
Juggling between NumPy andpandas.......................... 106
Knowingwhentouse NumPy, 106
Knowingwhentousepandas............covviiivinnennn... 107
ValidatingYourData.ooivein i 108
Figuring outwhat'sinyourdatat 108
Removing duplicates.coo i i 110
Creatingadatamapanddataplan 110
Manipulating Categorical Variables 113
Creating categorical variables i 114
Renaminglevels. 115
Combininglevels. i 116
Dealing with DatesinYourData..........c.oovviiiiinneennnnn. 117
Formatting date and timevalues 118
Using the right time transformation. 118

Table of Contents vii

viii

CHAPTER 8:

CHAPTER 9:

Dealing with MissingDataooiiiineiiiniiiineeenn. 119

Finding the missingdata ..., 120
Encoding missingness. ...t 120
Imputing missingdata 121
Slicing and Dicing: Filtering and SelectingData 123
SHCING FOWS. .« ettt e 123
SHCINg COIUMINS Lot e e e 124
DICINg. ettt e 124
Concatenating and Transforming............ ..o i, 125
Adding new casesandvariables............ o i 126
Removingdata.ooviiiin i i i e 127
Sortingand shuffling. i i i 128
Aggregating Dataat Any Level....... ..., 129
ReshapingData... 131
Using the Bag of Words Model to TokenizeData................. 132
Understanding the bag of words model 132
Sequencing text items withn-grams 134
Implementing TF-IDF transformations. 136
Working with Graph Data. ...t 138
Understanding the adjacency matrix........................ 138
Using NetworkX basics.......covvininiin it 139
Putting What You Know into Action 143
Contextualizing ProblemsandData............... ..., 144
Evaluating a data science problem............. 145
Researching solutions. ...t 147
Formulating a hypothesis. ... i 148
Preparingyourdataoouiiiiii 149
Considering the Art of Feature Creation 149
Defining feature creation ... 149
Combiningvariables oo 150
Understanding binning and discretization 151
Usingindicatorvariables i, 151
Transforming distributions o i i, 152
Performing Operations on Arrays.covviiviiin i eenn.. 153
Using vectorizationve i i e e e 153
Performing simple arithmetic on vectors and matrices 154
Performing matrix vector multiplication 154
Performing matrix multiplication 155

Python for Data Science For Dummies

PART 3: VISUALIZING INFORMATION 157

cuarter 10: Getting a Crash Course in Matplotlib 159
Startingwitha Graph i 160
Definingtheplot ... 160
Drawing multiple linesandplots., 161
Saving yourworktodisk. o i i 162
Setting the Axis, Ticks,and Grids., 163
Getting the axes. . ..ottt e 163
Formattingthe axes ...t 164
AddiNg grids . . oot e 165
Defining the Line Appearance.c.ovivviiinneninneennn. 167
Working with linestyles oo i i 167
USING COIOTS vttt e e e 168
Adding markers. 169
Using Labels, Annotations, and Legends........................ 171
Addinglabels 172
Annotatingthechart........... ... i 173
Creatingalegend.t 174
CHAPTER 11: Visualizing theData................................... 177
Choosingthe Right Graph i 178
Creating comparisons with barcharts....................... 178
Showing distributions using histograms 179
Depicting groups using boxplots. o i 181
Seeing data patterns using scatterplots. 182
Creating Advanced Scatterplotscov ... 183
DepiCting BroUPS . . v vttt e 184
Showing correlations ...t 184
Plotting Time Series. ... oot e e e 186
Representing timeonaxesoiuiiniininennnnenn. 186
Plotting trendsovertime ...t iinenn.n. 188
Plotting Geographical Dataccoiviiiinneiiiineenn. 190
Using an environment in Notebook 191
Using Cartopy to plot geographicdata. 192
Avoiding outdated libraries: The Basemap Toolkit............. 194
Visualizing Graphs. 195
Developing undirected graphs i 195
Developing directed graphs. ... 197

Table of Contents ix

PART 4: WRANGLING DATA ..., 199

cuarrer 12: Stretching Python’s Capabilities..................... 201
Playing with Scikit-learn i 202
Understanding classes in Scikit-learn. 202
Defining applications for data science....................... 203
Using Transformative Functions............. ..o, 207
Chaining estimatorsot it 208
Transforming targetsovvv i 209
Composing featuresvvv e 209
Handling heterogeneousdata............. ...t 210
Considering Timing and Performanceoou... 212
Benchmarkingwithtimeit o .. 213
Working with the memory profiler.......................... 217
Running in Parallel on MultipleCores 220
Performing multicore parallelism........................... 220
Demonstrating multiprocessing, 221
cuarrer 13: EXploring Data Analysis 223
The EDAAPProach. e i 224
Defining Descriptive Statistics for NumericData 225
Measuring centraltendencycooiiiiiiini... 227
Measuring variance and rangeovvuivineennennnnn. 228
Working with percentiles i i 228
Defining measuresof normality 229
Counting for Categorical Data..........covvviiineeinneennn. 231
Understanding frequencies.ccovvviiiiinnennn.. 232
Creating contingency tables. oo, 233
Creating Applied Visualization for EDA.ooon. 234
Inspecting boxplots.ot 234
Performing t-tests after boxplots 236
Observing parallel coordinates.covviiiiineenn. 238
Graphing distributions i 238
Plotting scatterplotsouiiine i 240
Understanding Correlationcooiviiiiinneiinneennn. 241
Using covariance and correlation..................oo .t 242
Using nonparametric correlation 244
Considering chi-squarefortables................. 245
Working with Cramér'sVt 246
Modifying Data Distributions. i i i 246
Using different statistical distributions 247
Creating a Z-score standardization............... ..o oun. 247
Transforming other notable distributions.................... 248

X Python for Data Science For Dummies

cuaerer 14: Reducing Dimensionality........................... .. 251

Understanding SVDottt 252
Looking for dimensionality reduction 253
Using SVD to measure the invisible 255

Performing Factor Analysisand PCA, 256
Considering the psychometricmodel........................ 257
Looking for hiddenfactors. ..., 257
Using components, notfactors.............ccoviviii... 258
Achieving dimensionality reduction 259
Squeezing information witht-SNE 259

Understanding Some Applications. ..., 261
Recognizing faceswith PCA i, 262
Extracting topicswith NMF. o i 266
Recommending moviesttt 268

CHAPTER 15: CIustering .. 273

Clusteringwith K-means. i 274
Understanding centroid-based algorithms 275
Creating an example withimagedata....................... 277
Looking for optimal solutions oo, 278
Clusteringbigdatacooiiiiiii i 281

Performing Hierarchical Clustering 283
Using a hierarchical cluster solution. 284
Visualizing aggregative clustering solutions 285

Discovering New GroupswithDBScan.o... 287

cuaerer 16 Detecting OutliersinData............................ 291

Considering Outlier Detection.cooviiiiineiiinneeen. 292
Finding more things thatcangowrong...................... 293
Understanding anomalies and noveldata.................... 294

Examining a Simple Univariate Method. 295
Leveraging on the Gaussian distribution..................... 297
Remediating outliers. o i 298

Developing a Multivariate Approach 300
Using principal componentanalysis.ooouna.. 300
Using cluster analysis for spotting outliers 302
Automating detection with Isolation Forests. 303

Table of Contents xi

PART 5: LEARNING FROMDATA. ..., 305
cuarer 17: EXploring Four Simple and Effective

Algorithms.. 307
Guessing the Number: Linear Regression....................... 307
Defining the family of linear models 308
Using morevariables i 309
Understanding limitations and problems 312
Moving to Logistic Regression., 313
Applying logisticregression. 313
Considering the case when there are moreclasses. 315
Making Things as Simple as Naive Bayes........................ 317
Finding out that Naive Bayesisn'tsonaive................... 318
Predicting text classifications.ot 320
Learning Lazily with Nearest Neighbors 322
Predicting after observing neighbors........................ 323
Choosing your k parameterwiselyc.oivviin... 324

cuaerer 13: Performing Cross-Validation, Selection,

and Optimization....................................... 327
Pondering the Problem of Fittinga Model....................... 328
Understanding bias and variance.................... ... 329
Defining a strategy for pickingmodels....................... 330
Dividing between training and testsets...................... 333
Cross-Validating.t 336
Using cross-validationon kfolds. oot 337
Sampling stratifications for complexdata.................... 338
Selecting Variables Like aProo, 341
Selecting by univariate measures.......... ..., 341
Employing forward and backward selection.................. 343
Pumping Up Your Hyperparametersc.c.ooiienneenn.. 344
Implementingagridsearch........... ... o i, 345
Trying arandomizedsearch i, 348
cwaeter 10: INCreasing Complexity with Linear and
Nonlinear Tricks ..., 351
Using Nonlinear Transformations., 352
Doing variable transformationso.... 353
Creating interactions between variables 354
Regularizing LinearModels oo 357
Relying on Ridge regression (L2), 358
Usingthe Lasso (L1) . ..vvvne e i 359
Leveraging regularization.......... ..ot 360
Combining L1 & L2: Elasticnet. ..., 361

Xii Python for Data Science For Dummies

Fighting with Big Data Chunk by Chunk......................... 361

Determining when thereistoomuchdata................... 362
Implementing Stochastic Gradient Descent 362
Understanding Support Vector Machines 365
Relying on a computational method 366
Fixing many new parameterscooiiiiiininn... 368
Classifyingwith SVC. oo e 371
GoiNg NONINEAriS @asY .. vvvn vttt e 376
Performing regressionwithSVR........... 378
Creating a stochastic solutionwithSVM 380
Playing with Neural Networkso, 385
Understanding neural networks.coiiviin ... 385
Classifying and regressing withneurons..................... 386
cuaerer 20. Understanding the Power of the Many............. 391
Starting with a Plain DecisionTree. ..., 392
Understanding a decisiontreeccoiiiiiinn.n. 392
Creating classificationtrees......... ..., 395
Creating regressiontrees.o, 397
Getting Lostina Random Forest. ..., 399
Making machine learning accessible, 399
Working with a Random Forest classifier..................... 402
Working with a Random Forestregressor.................... 404
Optimizinga Random Forest. ..., 404
Boosting Predictions.t e 406
Knowing that many weak predictorswin..................... 406
Setting a gradient boosting classifier 407
Running a gradient boosting regressor 408
Using GBM hyperparameterscooiiiiineiinennnnn. 409
USINg XGBOOST . ..ottt e 410
PART 6: THEPARTOFTENS...................... . 413
cuarrer21: T€N Essential Data Resources 415
Discovering the News with Reddit ont. 416
Getting a Good Start with KDnuggets., 416
Locating Free Learning ResourceswithQuora................... 416
Gaining Insights with Oracle’s Al & Data Science Blog............. 417
Accessing the Huge List of Resources on Data Science Central. 417
Discovering New Beginner Data Science Methodologies at Data
SCENCE 10T, ottt e 418
Obtaining the Most Authoritative Sources at Udacity 418
Receiving Help with Advanced Topics at Conductrics 419
Obtaining the Facts of Open Source Data Science from
Springboard 420
Zeroing In on Developer Resources with Jonathan Bower 420

Table of Contents xiii

Xiv

cuaeer 222 T@N Data Challenges You Should Take.............. 421

Removing Personally Identifiable Information................... 422
Creating a Secure Data Environment.covvienn... 423
Working with a Multiple-Data-Source Problem. 423
Honing Your Overfit Strategiesooviiiinn i, 424
Trudging Through the MovieLens Dataset 425
Locating the Correct Data Source.vvveinneninnneennn. 425
Working with Handwritten Information......................... 426
Working with Pictures. e 427
Indentifying DataLineageouuiuineiiiinneennnnn. 428
Interacting witha Huge Grapho i it 429
.. 431

Python for Data Science For Dummies

Introduction

he growth of the internet has been phenomenal. According to Internet

World Stats (https://www.internetworldstats.com/emarketing.htm),

69 percent of the world is now connected in some way to the internet,
including developing countries. North America has the highest penetration rate
93.4 percent, which means you now have access to nearly everyone just by
knowing how to manipulate data. Data science turns this huge amount of data into
capabilities that you use absolutely every day to perform an amazing array of
tasks or to obtain services from someone else.

You’ve probably used data science in ways that you never expected. For example,
when you used your favorite search engine this morning to look for something, it
made suggestions on alternative search terms. Those terms are supplied by data
science. When you went to the doctor last week and discovered that the lump you
found wasn’t cancer, the doctor likely made the prognosis with the help of data
science.

In fact, you may work with data science every day and not even know it. Even
though many of the purposes of data science elude attention, you have probably
become more aware of the data you generate, and with that awareness comes a
desire for control over aspects of your life, such as when and where to shop, or
whether to have someone perform the task for you. In addition to all its other
uses, data science enables you to add that level of control that you, like many
people, are looking for today.

Python for Data Science For Dummies, 3rd Edition not only gets you started using
data science to perform a wealth of practical tasks but also helps you realize just
how many places data science is used. By knowing how to answer data science
problems and where to employ data science, you gain a significant advantage
over everyone else, increasing your chances at promotion or that new job you
really want.

Introduction 1

https://www.internetworldstats.com/emarketing.htm

About This Book

2

The main purpose of Python for Data Science For Dummies, 3rd Edition, is to take the
scare factor out of data science by showing you that data science is not only really
interesting but also quite doable using Python. You may assume that you need to
be a computer science genius to perform the complex tasks normally associated
with data science, but that’s far from the truth. Python comes with a host of useful
libraries that do all the heavy lifting for you in the background. You don’t even
realize how much is going on, and you don’t need to care. All you really need to
know is that you want to perform specific tasks, and Python makes these tasks
quite accessible.

Part of the emphasis of this book is on using the right tools. You start with either
Jupyter Notebook (on desktop systems) or Google Colab (on the web) — two tools
that take the sting out of working with Python. The code you place in Jupyter
Notebook or Google Colab is presentation quality, and you can mix a number of
presentation elements right there in your document. It’s not really like using a
traditional development environment at all.

You also discover some interesting techniques in this book. For example, you can
create plots of all your data science experiments using Matplotlib, and this book
gives you all the details for doing that. This book also spends considerable time
showing you available resources (such as packages) and how you can use Scikit-
learn to perform some very interesting calculations. Many people would like to
know how to perform handwriting recognition, and if you’re one of them, you can
use this book to get a leg up on the process.

Of course, you may still be worried about the whole programming environment
issue, and this book doesn’t leave you in the dark there, either. At the beginning,
you find complete methods you need to get started with data science using Jupyter
Notebook or Google Colab. The emphasis is on getting you up and running as
quickly as possible, and to make examples straightforward and simple so that the
code doesn’t become a stumbling block to learning.

This third edition of the book provides you with updated examples using Python
3.x so that you’re using the most modern version of Python while reading. In
addition, you find a stronger emphasis on making examples simpler, but also
making the environment more inclusive by adding material on deep learning.
More important, this edition of the book contains updated datasets that better
demonstrate how data science works today. This edition of the book also touches
on modern concerns, such as removing personally identifiable information and
enhancing data security. Consequently, you get a lot more out of this edition of the
book as a result of the input provided by thousands of readers before you.

Python for Data Science For Dummies

To make absorbing the concepts even easier, this book uses the following
conventions:

¥ Text that you're meant to type just as it appears in the book is in bold. The
exception is when you're working through a list of steps: Because each step is
bold, the text to type is not bold.

3 When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if you see
“Type Your Name and press Enter,” you need to replace Your Name with your
actual name.

3 Web addresses and programming code appear in monofont. If you're reading
a digital version of this book on a device connected to the internet, note that
you can click the web address to visit that website, like this:http://www.
dummies.com.

3 When you need to type command sequences, you see them separated by a
special arrow, like this: File ©> New File. In this example, you go to the File
menu first and then select the New File entry on that menu.

Foolish Assumptions

You may find it difficult to believe that we’ve assumed anything about you — after
all, we haven’t even met you yet! Although most assumptions are indeed foolish,
we made these assumptions to provide a starting point for the book.

You need to be familiar with the platform you want to use because the book doesn’t
offer any guidance in this regard. (Chapter 3 does, however, provide Anaconda
installation instructions, which supports Jupyter Notebook, and Chapter 4 gets
you started with Google Colab.) To provide you with maximum information about
Python concerning how it applies to data science, this book doesn’t discuss any
platform-specific issues. You really do need to know how to install applications,
use applications, and generally work with your chosen platform before you begin
working with this book.

You must know how to work with Python. This edition of the book no longer con-
tains a Python primer because you can find a wealth of tutorials online (see
https://www.w3schools.com/python/ and https://www.tutorialspoint.com/
python/ as examples).

This book isn’t a math primer. Yes, you do encounter some complex math, but the
emphasis is on helping you use Python and data science to perform analysis tasks

Introduction 3

http://www.dummies.com
http://www.dummies.com
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/
https://www.tutorialspoint.com/python/

rather than teaching math theory. Chapters 1 and 2 give you a better understand-
ing of precisely what you need to know to use this book successfully.

This book also assumes that you can access items on the internet. Sprinkled
throughout are numerous references to online material that will enhance your
learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book

As you read this book, you come across icons in the margins, and here’s what
those icons mean:

Tips are nice because they help you save time or perform some task without a lot
@ of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try in order to get the maximum benefit from Python or

TIP in performing data science-related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you
& should avoid doing anything that’s marked with a Warning icon. Otherwise, you
may find that your application fails to work as expected, or you get incorrect
warning answers from seemingly bulletproof equations, or (in the worst-case scenario)
you lose data.

Whenever you see this icon, think advanced tip or technique. You may find that
e you don’t need these tidbits of useful information, or they could contain the solu-
\J tion you need to get a program running. Skip these bits of information whenever
TecHnicaL you like.
STUFF
If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
morsel of information that you must know to work with Python or to perform data
rememeer Science-related tasks successfully.

Beyond the Book

This book isn’t the end of your Python or data science experience — it’s really just
the beginning. We provide online content to make this book more flexible and bet-
ter able to meet your needs. That way, as we receive email from you, we can

4 Python for Data Science For Dummies

address questions and tell you how updates to either Python or its associated add-
ons affect book content. In fact, you gain access to all these cool additions:

3 Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don't you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python, IPython,
IPython Notebook, and data science that not every other person knows. You
can find the cheat sheet by going to www . dummies . com and entering Python
for Data Science For Dummies, 3rd Edition in the search field. The cheat sheet
contains neat information such as the most common programming mistakes,
styles for creating plot lines, and common magic functions to use in
Jupyter Notebook.

3 Updates: Sometimes changes happen. For example, we may not have seen
an upcoming change when we looked into our crystal ball during the writing
of this book. In the past, this possibility simply meant that the book became
outdated and less useful, but you can now find updates to the book by
searching this book’s title at www . dummies . com.

In addition to these updates, check out the blog posts with answers to reader
questions and demonstrations of useful book-related techniques athttp://
blog. johnmuellerbooks.com/.

3 Companion files: Hey! Who really wants to type all the code in the book and
reconstruct all those plots manually? Most readers would prefer to spend
their time actually working with Python, performing data science tasks, and
seeing the interesting things they can do, rather than typing. Fortunately for
you, the examples used in the book are available for download, so all you
need to do is read the book to learn Python for Data Science For Dummies
usage techniques. You can find these files at www . dummies . com/go/
pythonfordatasciencefd3e. You can also find the source code on author
John's website athttp: //www. johnmuel lerbooks .com/source—code/.

Where to Go from Here

It’s time to start your Python for Data Science For Dummies adventure! If you’re
completely new to Python and its use for data science tasks, you should start with
Chapter 1 and progress through the book at a pace that allows you to absorb as
much of the material as possible.

Introduction 5

http://www.dummies.com
http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com/go/pythonfordatasciencefd3e
http://www.dummies.com/go/pythonfordatasciencefd3e
http://www.johnmuellerbooks.com/source-code/

6

If you’re a novice who’s in an absolute rush to use Python with data science as
quickly as possible, you can skip to Chapter 3 (desktop users) or Chapter 4 (web
browser users) with the understanding that you may find some topics a bit con-
fusing later. More advanced readers can skip to Chapter 5 to gain an understand-
ing of the tools used in this book.

Readers who have some exposure to Python and know how to use their develop-
ment environment can save reading time by moving directly to Chapter 6. You can
always go back to earlier chapters as necessary when you have questions.
However, you should understand how each technique works before moving to the
next one. Every technique, coding example, and procedure has important lessons
for you, and you could miss vital content if you start skipping too much
information.

Python for Data Science For Dummies

Getting Started
with Data Science
and Python

IN THIS PART ...

Understanding the connection between Python and
data science

Getting an overview of Python capabilities
Defining a Python setup for data science

Using Google Colab for data science tasks

IN THIS CHAPTER

» Discovering the wonders of data
science

» Exploring how data science works

» Creating the connection between
Python and data science

» Getting started with Python

Chapter 1

Discovering the Match
between Data Science
and Python

©

REMEMBER

ata science may seem like one of those technologies that you’d never use,

but you’d be wrong. Yes, data science involves the use of advanced math

techniques, statistics, and big data. However, data science also involves
helping you make smart decisions, creating suggestions for options based on pre-
vious choices, and making robots see objects. In fact, people use data science in so
many different ways that you almost can’t look anywhere or do anything without
feeling the effects of data science on your life. In short, data science is the person
behind the partition in the experience of the wonderment of technology. Without
data science, much of what you accept as typical and expected today wouldn’t
even be possible. This is the reason that being a data scientist is one of the most
interesting jobs of the 21st century.

To make data science doable by someone who’s less than a math genius, you need
tools. You could use any of a number of tools to perform data science tasks, but
Python is uniquely suited to making it easier to work with data science. For one
thing, Python provides an incredible number of math-related libraries that help
you perform tasks with a less-than-perfect understanding of precisely what is

CHAPTER 1 Discovering the Match between Data Science and Python 9

going on. However, Python goes further by supporting multiple coding styles
(programming paradigms) and doing other things to make your job easier. There-
fore, yes, you could use other languages to write data science applications, but
Python reduces your workload, so it’s a natural choice for those who really don’t
want to work hard, but rather to work smart.

This chapter gets you started with Python. Even though this book isn’t designed
to provide you with a complete Python tutorial, exploring some basic Python
issues will reduce the time needed for you to get up to speed. (If you do need a
good starting tutorial, please get Beginning Programming with Python For Dummies,
3rd Edition, by John Mueller (Wiley)). You’ll find that the book provides pointers
to tutorials and other aids as needed to fill in any gaps that you may have in your
Python education.

Understanding Python as a Language

10

This book uses Python as a programming language because it’s especially well-
suited to data science needs and also supports performing general programming
tasks. Common wisdom says that Python is interpreted, but as described in the
blog post at http://blog.johnmuellerbooks.com/2023/04/10/compiling-
python/, Python can act as a compiled language as well. This book uses Jupyter
Notebook because the environment works well for learning, but you need to know
that Python provides a lot more than you see in this book. With this fact in mind,
the following sections provide a brief view of Python as a language.

Viewing Python’s various uses as a
general-purpose language

Python isn’t a language just for use in data science; it’s a general-purpose lan-
guage with many uses beyond what you need to perform data science tasks.
Python is important because after you have built a model, you may need to build
a user interface and other structural elements around it. The model may simply be
one part of a much larger application, all of which you can build using Python.
Here are some tasks that developers commonly use Python to perform beyond
data science needs:

¥ Web development
¥ General-purpose programming:

Performing Create, Read, Update, and Delete (CRUD) operations on any
sort of file

PART 1 Getting Started with Data Science and Python

http://blog.johnmuellerbooks.com/2023/04/10/compiling-python/
http://blog.johnmuellerbooks.com/2023/04/10/compiling-python/

Creating graphical user interfaces (GUIs)
Developing application programming interfaces (APl)s

¥ Game development (something you can read about athttps://realpython.
com/tutorials/gamedev/)

¥ Automation and scripting
¥ Software testing and prototyping

¥ Language development (Cobra, CoffeeScript, and Go all use a language syntax
similar to Python)

¥ Marketing and Search Engine Optimization (SEO)
3 Common tasks associated with standard applications:
Tracking financial transactions of all sorts
Interacting with various types of messaging strategies
Creating various kinds of lists based on environmental or other inputs

Automating tasks like filling out forms

The list could be much longer, but this gives you an idea of just how capable
Python actually is. The view you see of Python in this book is limited to experi-
menting with and learning about data science, but don’t let this view limit what
you actually use Python to do in the future. Python is currently used as a general-
purpose programming language in companies like the following:

Amazon Dropbox Facebook
Google IBM Instagram
Intel JP Morgan Chase NASA
Netflix PayPal Pinterest
Reddit Spotify Stripe
Uber YouTube

Interpreting Python

You see Python used in this book in an interpreted mode. There are a lot of
reasons to take this approach, but the essential reason is that it allows the use
of literate programming techniques (https://notebook.community/sfomel/
ipython/LiterateProgramming), which greatly enhance learning and significantly
reduce the learning curve. The main advantages of using Python in an interpreted

CHAPTER 1 Discovering the Match between Data Science and Python 11

https://realpython.com/tutorials/gamedev/
https://realpython.com/tutorials/gamedev/
https://notebook.community/sfomel/ipython/LiterateProgramming
https://notebook.community/sfomel/ipython/LiterateProgramming

mode are that you receive instant feedback, and fixing errors is significantly eas-
ier. When combined with a notebook environment, using Python in an interpreted
mode also makes it easier to create presentations and reports, as well as to create
graphics that present outcomes of various analyses.

Compiling Python

Outside this book, you may find that compiling your Python application is impor-
tant because doing so can help increase overall application speed. In addition,
compiling your code can reduce the potential for others stealing your code and
make your applications both more secure and reliable. You do need access to third-
party products to compile your code, but you’ll find plenty of available products
discussed at https://www.softwaretestinghelp.com/python-compiler/.

Defining Data Science

12

REMEMBER

At one point, the world viewed anyone working with statistics as a sort of accoun-
tant or perhaps a mad scientist. Many people consider statistics and analysis of
data boring. However, data science is one of those occupations in which the more
you learn, the more you want to learn. Answering one question often spawns more
questions that are even more interesting than the one you just answered. How-
ever, the thing that makes data science so interesting is that you see it everywhere
and used in an almost infinite number of ways. The following sections provide
more details on why data science is such an amazing field of study.

Considering the emergence of data science

Data science is a relatively new term. William S. Cleveland coined the term in 2001
as part of a paper entitled “Data Science: An Action Plan for Expanding the Tech-
nical Areas of the Field of Statistics.” It wasn’t until a year later that the Interna-
tional Council for Science actually recognized data science and created a committee
for it. Columbia University got into the act in 2003 by beginning publication of the
Journal of Data Science.

However, the mathematical basis behind data science is centuries old because data
science is essentially a method of viewing and analyzing statistics and probability.
The first essential use of statistics as a term comes in 1749, but statistics are cer-
tainly much older than that. People have used statistics to recognize patterns for
thousands of years. For example, the historian Thucydides (in his History of the

PART 1 Getting Started with Data Science and Python

https://www.softwaretestinghelp.com/python-compiler/

Peloponnesian War) describes how the Athenians calculated the height of the wall
of Plataea in fifth century BC by counting bricks in an unplastered section of the
wall. Because the count needed to be accurate, the Athenians took the average of
the count by several solders.

The process of quantifying and understanding statistics is relatively new, but the
science itself is quite old. An early attempt to begin documenting the importance
of statistics appears in the ninth century when Al-Kindi wrote Manuscript on Deci-
phering Cryptographic Messages. In this paper, Al-Kindi describes how to use a
combination of statistics and frequency analysis to decipher encrypted messages.
Even in the beginning, statistics saw use in practical application of science to
tasks that seemed virtually impossible to complete. Data science continues this
process, and to some people it may actually seem like magic.

Outlining the core competencies
of a data scientist

As is true of anyone performing most complex trades today, the data scientist
requires knowledge of a broad range of skills to perform the required tasks. In
fact, so many different skills are required that data scientists often work in teams.
Someone who is good at gathering data may team up with an analyst and someone
gifted in presenting information. It would be hard to find a single person with all
the required skills. With this in mind, the following list describes areas in which a
data scientist could excel (with more competencies being better):

3 Data capture: It doesn't matter what sort of math skills you have if you can't
obtain data to analyze in the first place. The act of capturing data begins by
managing a data source using database management skills. However, raw data
isn't particularly useful in many situations — you must also understand the data
domain so that you can look at the data and begin formulating the sorts of
questions to ask. Finally, you must have data-modeling skills so that you
understand how the data is connected and whether the data is structured.

3 Analysis: After you have data to work with and understand the complexities
of that data, you can begin to perform an analysis on it. You perform some
analysis using basic statistical tool skills, much like those that just about
everyone learns in college. However, the use of specialized math tricks and
algorithms can make patterns in the data more obvious or help you draw
conclusions that you can't draw by reviewing the data alone.

CHAPTER 1 Discovering the Match between Data Science and Python 13

14

©

REMEMBER

3 Presentation: Most people don't understand numbers well. They can't see
the patterns that the data scientist sees. It's important to provide a graphical
presentation of these patterns to help others visualize what the numbers
mean and how to apply them in a meaningful way. More important, the
presentation must tell a specific story so that the impact of the data isn't lost.

Linking data science, big data, and Al

Interestingly enough, the act of moving data around so that someone can perform
analysis on it is a specialty called Extract, Transformation, and Loading (ETL).
The ETL specialist uses programming languages such as Python to extract the
data from a number of sources. Corporations tend not to keep data in one easily
accessed location, so finding the data required to perform analysis takes time.
After the ETL specialist finds the data, a programming language or other tool
transforms it into a common format for analysis purposes. The loading process
takes many forms, but this book relies on Python to perform the task. In a large,
real-world operation, you may find yourself using tools such as Informatica, MS
SSIS, or Teradata to perform the task.

Data science isn’t necessarily a means to an end; it may instead be a step along the
way. As a data scientist works through various datasets and finds interesting
facts, these facts may act as input for other sorts of analysis and AI applications.
For example, consider that your shopping habits often suggest what books you
may like or where you may like to go for a vacation. Shopping or other habits can
also help others understand other, sometimes less benign, activities as well.
Machine Learning For Dummies, 2nd Edition and Artificial Intelligence For Dummies,
2nd Edition, both by John Mueller and Luca Massaron (Wiley) help you under-
stand these other uses of data science. For now, consider the fact that what you
learn in this book can have a definite effect on a career path that will go many
other places.

EXTRACT, LOAD, AND TRANSFORM (ELT)

You may come across a new way of working with data called ELT, which is a variation of
ETL. The article “Extract, Load, Transform (ELT)" (https: //www.techtarget.com/
searchdatamanagement/definition/Extract-Load-Transform—ELT), describes
the difference between the two. This different approach is often used for nonrelational
and unstructured data. The overall goal is to simplify the data gathering and manage-
ment process, possibly allowing the use of a single tool even for large datasets.
However, this approach also has significant drawbacks. The ELT approach isn't covered
in this book, but it does pay to know that it exists.

PART 1 Getting Started with Data Science and Python

https://www.techtarget.com/searchdatamanagement/definition/Extract-Load-Transform-ELT
https://www.techtarget.com/searchdatamanagement/definition/Extract-Load-Transform-ELT

Creating the Data Science Pipeline

Data science is partly art and partly engineering. Recognizing patterns in data,
considering what questions to ask, and determining which algorithms work best
are all part of the art side of data science. However, to make the art part of data
science realizable, the engineering part relies on a specific process to achieve spe-
cific goals. This process is the data science pipeline, which requires the data sci-
entist to follow particular steps in the preparation, analysis, and presentation of
the data. The following list helps you understand the data science pipeline better
so that you can understand how the book employs it during the presentation of
examples:

»

»

»

»

»

Preparing the data: The data that you access from various sources doesn't
come in an easily packaged form, ready for analysis. The raw data not only
may vary substantially in format but also need you to transform it to make all
the data sources cohesive and amenable to analysis.

Performing exploratory data analysis: The math behind data analysis relies
on engineering principles in that the results are provable and consistent.
However, data science provides access to a wealth of statistical methods and
algorithms that help you discover patterns in the data. A single approach
doesn't ordinarily do the trick. You typically use an iterative process to rework
the data from a number of perspectives. The use of trial and error is part of
the data science art.

Learning from data: As you iterate through various statistical analysis
methods and apply algorithms to detect patterns, you begin learning from the
data. The data may not tell the story that you originally thought it would, or it
may have many stories to tell. Discovery is part of being a data scientist. If you
have preconceived ideas of what the data contains, you won't find the
information it actually does contain.

Visualizing: Visualization means seeing the patterns in the data and then
being able to react to those patterns. It also means being able to see when
data is not part of the pattern. Think of yourself as a data sculptor, removing
the data that lies outside the patterns (the outliers) so that others can see the
masterpiece of information beneath.

Obtaining insights and data products: The data scientist may seem to
simply be looking for unique methods of viewing data. However, the process
doesn't end until you have a clear understanding of what the data means. The
insights you obtain from manipulating and analyzing the data help you to
perform real-world tasks. For example, you can use the results of an analysis
to make a business decision.

CHAPTER 1 Discovering the Match between Data Science and Python

15

Understanding Python’s Role
in Data Science

16

Given the right data sources, analysis requirements, and presentation needs, you
can use Python for every part of the data science pipeline. In fact, that’s precisely
what you do in this book. Every example uses Python to help you understand
another part of the data science equation. Of all the languages you could choose
for performing data science tasks, Python is the most flexible and capable because
it supports so many third-party libraries devoted to the task. The following sec-
tions help you better understand why Python is such a good choice for many (if
not most) data science needs.

Considering the shifting profile
of data scientists

Some people view the data scientist as an unapproachable nerd who performs
miracles on data with math. The data scientist is the person behind the curtain in
an Oz-like experience. However, this perspective is changing. In many respects,
the world now views the data scientist as either an adjunct to a developer or as a
new type of developer. The ascendance of applications of all sorts that can learn is
the essence of this change. For an application to learn, it has to be able to manip-
ulate large databases and discover new patterns in them. In addition, the applica-
tion must be able to create new data based on the old data — making an informed
prediction of sorts. The new kinds of applications affect people in ways that would
have seemed like science fiction just a few years ago. Of course, the most notice-
able of these applications define the behaviors of robots that will interact far more
closely with people tomorrow than they do today.

From a business perspective, the necessity of fusing data science and application
development is obvious: Businesses must perform various sorts of analysis on the
huge databases it has collected — to make sense of the information and use it to
predict the future. In truth, however, the far greater impact of the melding of
these two branches of science — data science and application development — will
be felt in terms of creating altogether new kinds of applications, some of which
aren’t even possibly to imagine with clarity today. For example, new applications
could help students learn with greater precision by analyzing their learning trends
and creating new instructional methods that work for that particular student. This
combination of sciences may also solve a host of medical problems that seem
impossible to solve today — not only in keeping disease at bay, but also by solving
problems, such as how to create truly usable prosthetic devices that look and act
like the real thing.

PART 1 Getting Started with Data Science and Python

Working with a multipurpose, simple,
and efficient language

Many different ways are available for accomplishing data science tasks. This book
covers only one of the myriad methods at your disposal. However, Python repre-
sents one of the few single-stop solutions that you can use to solve complex data
science problems. Instead of having to use a number of tools to perform a task,
you can simply use a single language, Python, to get the job done. The Python dif-
ference is the large number scientific and math libraries created for it by third
parties. Plugging in these libraries greatly extends Python and allows it to easily
perform tasks that other languages could perform, but with great difficulty.

reusable code. The most important thing to consider with Python is that it sup-

Python’s libraries are its main selling point; however, Python offers more than
ports four different coding styles:

TIP

¥ Functional: Treats every statement as a mathematical equation and avoids
any form of state or mutable data. The main advantage of this approach is
having no side effects to consider. In addition, this coding style lends itself
better than the others to parallel processing because there is no state to
consider. Many developers prefer this coding style for recursion and for
lambda calculus.

¥ Imperative: Performs computations as a direct change to program state. This
style is especially useful when manipulating data structures and produces
elegant, but simple, code.

3 Object-oriented: Relies on data fields that are treated as objects and manipu-
lated only through prescribed methods. Python doesn't fully support this coding
form because it can't implement features such as data hiding. However, this is a
useful coding style for complex applications because it supports encapsulation
and polymorphism. This coding style also favors code reuse.

¥ Procedural: Treats tasks as step-by-step iterations where common tasks are
placed in functions that are called as needed. This coding style favors
iteration, sequencing, selection, and modularization.

Learning to Use Python Fast

It’s time to try using Python to see the data science pipeline in action. The follow-
ing sections provide a brief overview of the process you explore in detail in the rest
of the book. You won’t actually perform the tasks in the following sections. In fact,

CHAPTER 1 Discovering the Match between Data Science and Python 17

18

©

REMEMBER

TIP

you don’t install Python until Chapter 3, so for now, just follow along in the text.
This book uses a specific version of Python and an IDE called Jupyter Notebook, so
please wait until Chapter 3 to install these features (or skip ahead, if you insist,
and install them now). (You can also use Google Colab with the source code in the
book, as described in Chapter 4.) Don’t worry about understanding every aspect of
the process at this point. The purpose of these sections is to help you gain an
understanding of the flow of using Python to perform data science tasks. Many of
the details may seem difficult to understand at this point, but the rest of the book
will help you understand them.

The examples in this book rely on a web-based application named Jupyter Note-
book. The screenshots you see in this and other chapters reflect how Jupyter Note-
book looks in Chrome on a Windows 10/11 system. The view you see will contain
the same data, but the actual interface may differ a little depending on platform
(such as using a notebook instead of a desktop system), operating system, and
browser. Don’t worry if you see some slight differences between your display and
the screenshots in the book.

You don’t have to type the source code for this chapter in by hand. In fact, it’s a
lot easier if you use the downloadable source (see the Introduction for details on
downloading the source code). The source code for this chapter appears in the
P4DS4D3_01_Quick_Overview. ipynb source code file

Loading data

Before you can do anything, you need to load some data. The book shows you all
sorts of methods for performing this task. In this case, Figure 1-1 shows how to
load a dataset called California Housing that contains housing prices and
other facts about houses in California. It was obtained from StatLib repository
(see https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html for
details). The code places the entire dataset in the housing variable and then places
parts of that data in variables named X and y. Think of variables as you would
storage boxes. The variables are important because they make it possible to work
with the data. The output shows that the dataset contains 20,640 entries with
eight features each. The second output shows the name of each of the features.

Training a model

Now that you have some data to work with, you can do something with it. All sorts
of algorithms are built into Python. Figure 1-2 shows a linear regression model.
Again, don’t worry precisely how this works; later chapters discuss linear regres-
sion in detail. The important thing to note in Figure 1-2 is that Python lets you
perform the linear regression using just two statements and to place the result in
a variable named hypothesis.

PART 1 Getting Started with Data Science and Python

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

FIGURE 1-1:
Loading data into
variables so that
you can
manipulate it.

FIGURE 1-2:

Using the variable
content to train a
linear regression

model.

FIGURE 1-3:
Outputting a
result as a
response to the
model.

Q

TIP

Learning to Use Python Fast

Loading data

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()

X, ¥ = housing.data,housing.target

print("The size of the data set is {}".format(X.shape))

print(“"The names of the data columns are {}", housing.feature_names)

The size of the data set is (28648, 8)
The names of the data columns are {} ['MedInc', 'Househge’,
"Population’, 'AveOccup’, 'lLatitude’, 'Longitude’]

"hveRooms*, "AveBed
rms’,

Training a model

In [2]: from sklearn.linear_model import LinearRegression
hypothesis = LinearRegression()
hypothesis . fit(X,y)

Out[2]: LinearRegression()

Viewing a result

Performing any sort of analysis doesn’t pay unless you obtain some benefit from
it in the form of a result. This book shows all sorts of ways to view output, but
Figure 1-3 starts with something simple. In this case, you see the coefficient out-
put from the linear regression analysis. Notice that there is one coefficient for
each of the dataset features.

Viewing a result

In [3]: print{hypothesis.coef_)

[4.36693293e-81 9.43577883e-83 -1.87322841e-01 6.45065694e-01
-3.97638942e-06 -3.786542652-03 -4,21314378e-01 -4.34513755e-081]

One of the reasons that this book uses Jupyter Notebook is that the product helps
you to create nicely formatted output as part of creating the application. Look
again at Figure 1-3, and you see a report that you could simply print and offer to
a colleague. The output isn’t suitable for many people, but those experienced with
Python and data science will find it quite usable and informative.

CHAPTER 1 Discovering the Match between Data Science and Python 19

IN THIS CHAPTER

» Getting a quick start with Python

» Considering Python's special features

» Defining and exploring the power of
Python for the data scientist

Chapter 2

Introducing Python’s
Capabilities and
Wonders

11 computers run on just one kind of language — machine code. However,

unless you want to learn how to talk like a computer in 0s and 1s, machine

code isn’t particularly useful. You’d never want to try to define data sci-
ence problems using machine code. It would take an entire lifetime (if not longer)
just to define one problem. Higher-level languages make it possible to write a lot
of code that humans can understand quite quickly. The tools used with these lan-
guages make it possible to translate the human-readable code into machine code
that the machine understands. Therefore, the choice of languages depends on the
human need, not the machine need. With this in mind, this chapter introduces you
to the capabilities that Python provides that make it a practical choice for the data
scientist. After all, you want to know why this book uses Python and not another
language, such as Java or C++. These other languages are perfectly good choices
for some tasks, but they’re not as suited to meet data science needs.

The chapter begins with some simple Python examples to give you a taste for the
language. As part of exploring Python in this chapter, you discover all sorts of
interesting features that Python provides. Python gives you access to a host of
libraries that are especially suited to meet the needs of the data scientist. In fact,

CHAPTER 2 Introducing Python’s Capabilities and Wonders 21

©

REMEMBER

you use a number of these libraries throughout the book as you work through the
coding examples. Knowing about these libraries in advance will help you under-
stand the programming examples and why the book shows how to perform tasks
in a certain way.

Even though this chapter shows examples of working with Python, you don’t
really begin using Python in earnest until Chapter 6. This chapter offers an over-
view so that you can better understand what Python can do. Chapter 3 shows how
to install the particular version of Python used for this book. Chapters 4 and 5 are
about tools you can use, with Chapter 4 emphasizing Google Colab, an alternative
environment for coding. In short, if you don’t quite understand an example in this
chapter, don’t worry: You get plenty of additional information in later chapters.

Working with Python

22

TIP

This book doesn’t provide you with a full Python tutorial. (However, you can get a
great start with Beginning Programming with Python For Dummies, 3rd Edition, by
John Paul Mueller (Wiley)). For now, it’s helpful to get a brief overview of what
Python looks like and how you interact with it, as in the following sections.

You don’t have to type the source code for this chapter manually; using the down-
loadable source a lot easier (see the Introduction for details on downloading the
source code). The source code for this chapter appears in the P4DS4D3_02_Using_
Python.ipynb file.

Contributing to data science

Because this is a book about data science, you’re probably wondering how Python
contributes to better data science and what the word better actually means in this
case. Knowing that a lot of organizations use Python doesn’t help you because it
doesn’t really say much about how they use Python, and if you want to match your
choice of language to your particular need, understanding how other organiza-
tions use Python becomes important.

One such example appears at https://www.datasciencegraduateprograms.
com/python/. In this case, the article talks about Forecastwatch.com (https://
forecastwatch.com/), which actually does watch the weather and try to make
predictions better. Every day, Forecastwatch.com compares 36,000 forecasts
with the weather that people actually experience and then uses the results to cre-
ate better forecasts. Trying to aggregate and make sense of the weather data for
800 U.S. cities is daunting, so Forecastwatch.com needed a language that could

PART 1 Getting Started with Data Science and Python

https://www.datasciencegraduateprograms.com/python/
https://www.datasciencegraduateprograms.com/python/
http://Forecastwatch.com
https://forecastwatch.com/
https://forecastwatch.com/
http://Forecastwatch.com
http://Forecastwatch.com

do these tasks with the least amount of fuss. Here are the reasons Forecast.com
chose Python:

3 Library support: Python provides support for a large number of libraries,
more than any one organization will ever need. According to https: //www.
python.org/about/success/ forecastwatch/, Forecastwatch.com found
the regular expression, thread, object serialization, and gzip data compression
libraries especially useful.

3 Parallel processing: Each of the forecasts is processed as a separate thread
so that the system can work through them quickly. The thread data includes
the web page URL that contains the required forecast, along with category
information, such as city name.

3 Data access: This huge amount of data can't all exist in memory, so
Forecast .com relies on a MySQL database accessed through the MySQLdb
(https://sourceforge.net/projects/mysql-python/) library, which is
one of the few libraries that hasn't moved on to Python 3.x yet. However, the
associated website promises the required support soon. In the meantime, if
you need to use MySQL with Python 3.x, then using mysqlclient (https://
pypi.org/project/mysqglclient/) will be a good replacement because it
adds Python 3.x support to MySQLdb.

¥ Data display: Originally, the PHP scripting language produced the
Forecastwatch.com output. However, by using Quixote (https://www.
mems—exchange .org/software/quixote/), which is a display framework,
Forecastwatch.com was able to move everything to Python. (An update of
this framework is DurusWorks, at https://www.mems—exchange.org/
software/DurusWorks/.)

Getting a taste of the language

Python is designed to provide clear language statements but to do so in an incred-
ibly small space. A single line of Python code may perform tasks that another
language usually takes several lines to perform. For example, if you want to dis-
play something on-screen, you simply tell Python to print it, like this:

print("Hello There!")

The point is that you can simply tell Python to output text, an object, or anything
else using a simple statement. You don’t really need too much in the way of
advanced programming skills. When you want to end your session using a com-
mand line environment such as IDLE, you simply type quit() and press Enter.
This book relies on a much better environment, Jupyter Notebook (or Google Colab

CHAPTER 2 Introducing Python’s Capabilities and Wonders 23

http://Forecast.com
https://www.python.org/about/success/forecastwatch/
https://www.python.org/about/success/forecastwatch/
http://Forecastwatch.com
http://Forecast.com
https://sourceforge.net/projects/mysql-python/
https://pypi.org/project/mysqlclient/
https://pypi.org/project/mysqlclient/
http://Forecastwatch.com
https://www.mems-exchange.org/software/quixote/
https://www.mems-exchange.org/software/quixote/
http://Forecastwatch.com
https://www.mems-exchange.org/software/DurusWorks/
https://www.mems-exchange.org/software/DurusWorks/

WARNING

as an alternative), which really does make your code look as though it came from
someone’s notebook.

Understanding the need for indentation

Python relies on indentation to create various language features, such as condi-
tional statements. One of the most common errors that developers encounter is
not providing the proper indentation for code. You see this principle in action later
in the book, but for now, always be sure to pay attention to indentation as you
work through the book examples. For example, here is an i f statement (a condi-
tional that says that if something meets the condition, perform the code that fol-
lows) with proper indentation.

if1 < 2:
print("1 is less than 2")

The print statement must appear indented below the conditional statement. Oth-
erwise, the condition won’t work as expected, and you may see an error mes-
sage, too.

Working with Jupyter Notebook
and Google Colab

The vast majority of this book relies on Jupyter Notebook (with code also tested
using Google Colab), which is part of the Anaconda installation you create in
Chapter 3. Jupyter Notebook is used in Chapter 1 and again later in the book. The
presentation for Google Colab is similar to, but not precisely the same as, Jupyter
Notebook, and you see Google Colab in detail in Chapter 4. The purpose behind
using an Integrated Development Environment (IDE) such as Jupyter Notebook
and Google Colab is that they help you create correct code and perform some tasks,
such as indentation, automatically. An IDE can also give your code a nicer appear-
ance and give you a means for making report-like output with graphics and other
noncode features.

Performing Rapid Prototyping
and Experimentation

24

Python is all about creating applications quickly and then experimenting with
them to see how things work. The act of creating an application design in code
without necessarily filling in all the details is prototyping. Python uses less code

PART 1 Getting Started with Data Science and Python

OLAOD,
TECHNICAL
STUFF

than other languages to perform tasks, so prototyping goes faster. The fact that
many of the actions you need to perform are already defined as part of libraries
that you load into memory makes things go faster still.

Data science doesn’t rely on static solutions. You may have to try multiple solu-
tions to find the particular solution that works best. This is where experimentation
comes into play. After you create a prototype, you use it to experiment with vari-
ous algorithms to determine which algorithm works best in a particular situation.
The algorithm you use varies depending on the answers you see and the data you
use, so there are too many variables to consider for any sort of canned solution.

The prototyping and experimentation process occurs in several phases. As you go
through the book, you discover that these phases have distinct uses and appear in
a particular order. The following list shows the phases in the order in which you
normally perform them.

1. Building a data pipeline. To work with the data, you must create a pipeline to
it. It's possible to load some data into memory. However, after the dataset gets
to a certain size, you need to start working with it on disk or by using other
means to interact with it. The technique you use for gaining access to the data
is important because it impacts how fast you get a result.

2. Performing the required shaping. The shape of the data — the way in which
it appears and its characteristics (such as data type), is important in performing
analysis. To perform an apples-to-apples comparison, like data has to be
shaped the same. However, just shaping the data the same isn't enough.

The shape has to be correct for the algorithms you employ to analyze it. Later
chapters (starting with Chapter 7) help you understand the need to shape data
in various ways.

3. Analyzing the data. When analyzing data, you seldom employ a single
algorithm and call it good enough. You can't know which algorithm will
produce the most useful results at the outset. To find the best result from
your dataset, you experiment on it using several algorithms. This practice is
emphasized in the later chapters of the book when you start performing
serious data analysis.

4, Presenting a result. A picture is worth a thousand words, or so they say.
However, you need the picture to say the correct words or your message gets
lost. Using the MATLAB-like plotting functionality provided by the Matplotlib
library, you can create multiple presentations of the same data, each of which
describes the data graphically in different ways. (MATLAB, found at https://
www . mathworks . com/products/matlab.html, is a widely used mathematical
modeling program; see MATLAB For Dummies, 2nd Edition, by John Paul Mueller
and Jim Sizemore [Wiley] for more details.) To ensure that your meaning really
isn't lost, you must experiment with various presentation methods and
determine which one works best.

CHAPTER 2 Introducing Python’s Capabilities and Wonders 25

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

Considering Speed of Execution

Computers are known for their prowess in crunching numbers. Even so, analysis
takes considerable processing power. The datasets are so large that you can bog
down even an incredibly powerful system. In general, the following factors
control the speed of execution for your data science application:

¥ Dataset size: Data science relies on huge datasets in many cases. Yes, you
can make a robot see objects using a modest dataset size, but when it comes
to making business decisions, larger is better in most situations. The applica-
tion type determines the size of your dataset in part, but dataset size also
relies on the size of the source data. Underestimating the effect of dataset
size is deadly in data science applications, especially those that need to
operate in real time (such as self-driving cars).

¥ Loading technique: The method you use to load data for analysis is critical,
and you should always use the fastest means at your disposal, even if it
means upgrading your hardware to do so. Working with data in memory is
always faster than working with data stored on disk. Accessing local data is
always faster than accessing it across a network. Performing data science
tasks that rely on internet access through web services is probably the slowest
method of all. Chapter 6 helps you understand loading techniques in more
detail. You also see the effects of loading technique later in the book.

3 Coding style: Some people will likely try to tell you that Python's program-
ming paradigms make writing a slow application nearly impossible. They're
wrong. Anyone can create a slow application using any language by employing
coding techniques that don’t make the best use of programming language
functionality. To create fast data science applications, you must use best-of-
method coding techniques. The techniques demonstrated in this book are a
great starting point.

3 Machine capability: Running data science applications on a memory-
constrained system with a slower processor is an extremely painful process
akin to sitting in the dentist's chair for a root canal without Novocain. The
system you use needs to have the best hardware you can afford. Given that
data science applications are both processor and disk bound, you can't really
cut corners in any area and expect great results.

3 Analysis algorithm: The algorithm you use determines the kind of result you
obtain and controls execution speed. Many of the chapters in the latter parts
of this book demonstrate multiple methods to achieve a goal using different
algorithms. However, you must still experiment to find the best algorithm for
your particular dataset.

26 PART 1 Getting Started with Data Science and Python

speed and reliability, because both factors are critical to data science applications.
Even though database applications tend to emphasize the need for speed and reli-

rememser ability to some extent, the combination of huge dataset access (disk-bound issues)
and data analysis (processor-bound issues) in data science applications makes the
need to make good choices even more critical.

@ A number of the chapters in this book emphasize performance, most notably

Visualizing Power

Python makes it possible to explore the data science environment without resort-
ing to using a debugger or debugging code, as would be needed in many other
languages. The print()function and dir() function let you examine any object
interactively. In short, you can load something up and play with it for a while to
see just how the developer put it together. Playing with the data, visualizing what
it means to you personally, can often help you gain new insights and create new
ideas. Judging by many online conversations, playing with the data is the part of
data science that its practitioners find the most fun.

To get an idea of how the print() and dir() functions work, you can try the fol-
lowing code that appears in the downloadable source:

from sklearn.utils import Bunch
items = dir(Bunch)
for item in items:
if 'key' in item:
print(item)

Don’t worry if you don’t understand this code, you’ll discover more about it later.
Beginning with Chapter 4, you start to play with code more, and the various sec-
tions give you more details. You can also obtain the book Beginning Programming
with Python For Dummies, 3rd Edition, by John Paul Mueller (Wiley) if you want a
more detailed tutorial. Just follow along with the concept of playing with data for
now. You see the following output when you run this code:

fromkeys
keys

Scikit-learn datasets appear within bunches (a bunch is a kind of data structure).
When you import a dataset, that dataset will have certain functions that you can
use with it that are determined by the code used to define the data structure — a
bunch. This code shows which functions deal with keys — the data identifiers for
the values (one or more columns of information) in the dataset. Each row in the

CHAPTER 2 Introducing Python’s Capabilities and Wonders 27

dataset has a unique key, even if the values in that row repeat another row in the
dataset. You can use these functions to perform useful work with the dataset as
part of building your application.

Before you can work with a dataset, you must provide access to it in the local envi-
ronment. The following code shows the import process and demonstrates how
you can use the keys() function to display a list of keys that you can use to access
data within the dataset.

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
print(housing.keys())

The output from this code shows that you can access a variety of information
about the dataset:

dict_keys(['data', 'target',6 'frame', 'target_names',
' feature_names', 'DESCR'])

You don’t have to know what all these names mean for now, but feature_names
tells you about the data columns used in the dataset. When you have a list of keys
you can use, you can access individual data items. For example, the following code
shows a list of all the feature names contained in the California Housing dataset.
Python really does make it possible to know quite a lot about a dataset before you
have to work with it in depth.

print(housing. feature_names)
In this case, you see the following column names for the data:

['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms',
'Population', 'AveOccup', 'Latitude', 'Longitude']

Using the Python Ecosystem
for Data Science

You have already seen the need to load libraries in order to perform data science
tasks in Python. The following sections provide an overview of the libraries you
use for the data science examples in this book. Various book examples show the
libraries at work.

28 PART 1 Getting Started with Data Science and Python

Accessing scientific tools using SciPy

The SciPy stack (http://www.scipy.org/) contains a host of other libraries that
you can also download separately. These libraries provide support for mathemat-
ics, science, and engineering. When you obtain SciPy, you get a set of libraries
designed to work together to create applications of various sorts. These librar-
ies are

3 NumPy
¥ SciPy

¥ Matplotlib
» Jupyter
¥ Sympy
¥ pandas

The SciPy library itself focuses on numerical routines, such as routines for numer-
ical integration and optimization. SciPy is a general-purpose library that provides
functionality for multiple problem domains. It also provides support for domain-
specific libraries, such as Scikit-learn, Scikit-image, and statsmodels.

Performing fundamental scientific
computing using NumPy

The NumPy library (http://www.numpy.org/) provides the means for performing
n-dimensional array manipulation, which is critical for data science work. The
California Housing dataset used in the examples in Chapters 1 and 2 is an example
of an n-dimensional array, and you couldn’t easily access it without NumPy func-
tions that include support for linear algebra, Fourier transform, and random-
number generation (see the listing of functions at http://docs.scipy.org/doc/
numpy/reference/routines.html).

Performing data analysis using pandas

The pandas library (http://pandas.pydata.org/) provides support for data
structures and data analysis tools. The library is optimized to perform data sci-
ence tasks especially fast and efficiently. The basic principle behind pandas is to
provide data analysis and modeling support for Python that is similar to other
languages, such as R.

CHAPTER 2 Introducing Python’s Capabilities and Wonders 29

http://www.scipy.org/
http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/routines.html
http://docs.scipy.org/doc/numpy/reference/routines.html
http://pandas.pydata.org/

30

Implementing machine learning

using Scikit-learn

The Scikit-learn library (http://scikit-learn.org/stable/) is one of a number
of Scikit libraries that build on the capabilities provided by NumPy and SciPy to
allow Python developers to perform domain-specific tasks. In this case, the library

focuses on data mining and data analysis. It provides access to the following sorts
of functionality:

¥ Classification

¥ Regression

¥ Clustering

¥ Dimensionality reduction
¥ Model selection

¥ Preprocessing

A number of these functions appear as chapter headings in the book. As a result,
you can assume that Scikit-learn is the most important library for the book (even
though it relies on other libraries to perform its work).

Going for deep learning with Keras
and TensorFlow

Keras (https://keras.io/) is an application programming interface (API) that is
used to train deep learning models. An API often specifies a model for doing some-
thing, but it doesn’t provide an implementation. Consequently, you need an
implementation of Keras to perform useful work, which is where the machine
learning platform TensorFlow (https://www.tensorflow.org/) comes into play
because Keras runs on top of it.

When working with an API, you’re looking for ways to simplify things. Keras
makes things easy by offering the following features:

¥ A consistent interface: The Keras interface is optimized for common use
cases with an emphasis on actionable feedback for fixing user errors.

3 A building-block approach: Using a black-box approach makes it easy to
create models by connecting configurable building blocks together with only
a few restrictions on how you can connect them.

PART 1 Getting Started with Data Science and Python

http://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/

3 Extendability: You can easily add custom building blocks to express new
ideas for research that include new layers, loss functions, and models.

3 Parallel processing: To run applications fast today, you need good parallel
processing support. Keras runs on both CPUs and GPUs. It will also make use
of multiple CPUs, when available.

3 Direct Python support: You don't have to do anything special to make the
TensorFlow implementation of Keras work with Python, which can be a major
stumbling block when working with other sorts of APIs.

Performing analysis efficiently using
XGBoost

You use XGBoost (https://xgboost.readthedocs.io/en/stable/), which
stands for extreme gradient boosting, to perform data analysis in an efficient,
flexible, and portable manner. This library makes it easier to perform analysis
using gradient boosting, which is explained in Chapter 20. Chapter 20 also shows
how to work with XGBoost to get the most benefit from the analysis process. You
can use this library to solve regression, classification, and ranking problems.
XGBoost has proven its capabilities by helping individuals and teams win virtually
every Kaggle structured-data competition. In addition, XGBoost supports Python,
R, Java, Scala, Julia, Perl, and other languages.

Plotting the data using Matplotlib

The Matplotlib library (http://matplotlib.org/) gives you a MATLAB-like
interface for creating data presentations of the analysis you perform. The library
is currently limited to 2-D output, but it still provides you with the means to
express graphically the data patterns you see in the data you analyze. Without this
library, you couldn’t create output that people outside the data science community
could easily understand. Chapter 10 offers a great introduction to Matplotlib.

Creating graphs with NetworkX

To properly study the relationships between complex data in a networked system
(such as that used by your GPS setup to discover routes through city streets), you
need a library to create, manipulate, and study the structure of network data in
various ways. In addition, the library must provide the means to output the

CHAPTER 2 Introducing Python’s Capabilities and Wonders 31

https://xgboost.readthedocs.io/en/stable/
http://matplotlib.org/

resulting analysis in a form that humans understand, such as graphical data.
NetworkX (https://networkx.github.io/) enables you to perform this sort of
analysis. The advantage of NetworkX is that nodes can be anything (including
images) and edges can hold arbitrary data. These features allow you to perform a
much broader range of analysis with NetworkX than using custom code would
(and such code would be time consuming to create).

32 PART 1 Getting Started with Data Science and Python

https://networkx.github.io/

IN THIS CHAPTER

» Using Anaconda to work with Python

» Creating an Anaconda installation on
Linux, Mac OS, and Windows

» Getting and installing the datasets
and example code

Chapter 3

Setting Up Python
for Data Science

REMEMBER

efore you can do too much with Python or use it to solve data science prob-

lems, you need a workable installation. In addition, you need access to the

datasets and code used for this book. Downloading the sample code and
installing it on your system is the best way to absorb more understanding from
the book. This chapter helps you get your system set up so that you can easily fol-
low the examples in the remainder of the book.

This book relies on Jupyter Notebook version 6.5.2 supplied with the Anaconda 3
environment (version 2023.03) that supports the Python version 3.10.9 to create
the coding examples. For the examples to work, you must use Python 3.10.9 and
the packages present in Anaconda 3 version 2023.03 (listed as conda version
23.1.0). Older versions of both Python and its packages tend to lack needed fea-
tures, and newer versions tend to produce breaking changes. If you use some
other version of Python, the examples likely won’t work as intended. As an alter-
native to working with Jupyter Notebook on a desktop system, you can also work
on Google Colab on your mobile device, as described in Chapter 4.

Using the downloadable source doesn’t prevent you from typing the examples on
your own, following them using a debugger, expanding them, or working with the
code in all sorts of ways. The downloadable source is there to help you get a good
start with your data science and Python learning experience. After you see how the
code works when it’s correctly typed and configured, you can try to create the
examples on your own. If you make a mistake, you can compare what you’ve typed

CHAPTER 3 Setting Up Python for Data Science 33

with the downloadable source and discover precisely where the error exists. You
can find the downloadable source for this chapter in the P4DS4D3_03_Sample.
ipynb and P4DS4D3_03_Dataset_Load.ipynb files. (The Introduction tells you
where to download the source code for this book.)

Working with Anaconda

34

Anaconda is actually a collection of tools, as described at https://docs.
anaconda.com/free/navigator/overview/. Jupyter Notebook is just one of those
tools, and it’s the one used most often in this book. However, it’s also helpful to
know about the other tools that Anaconda provides because they can help you cre-
ate Python applications faster and also work with some other languages. The fol-
lowing sections describe the two Anaconda tools that are used in this book.

Using Jupyter Notebook

Jupyter Notebook is an Integrated Development Environment (IDE) that promotes
the concept of literate programming as originally defined by Donald Knuth
(https://guides.nyu.edu/datascience/literate-prog). The idea behind lit-
erate programming is to make learning as easy as possible as well as provide a
means of presenting code that can include graphics and explanatory text. Such an
environment works incredibly well in a book because you can both easily experi-
ment and obtain detailed information as you work through the source code.

This chapter doesn’t focus much on Jupyter Notebook usage because it’s similar to
working with Google Colab, which Chapter 4 explains fully. Even though there are
slight differences in commands and appearance between the two, the products are
essentially the same.

However, you do want to check your versions of Anaconda, Jupyter Notebook, and
Python before going too far in the book, and you can use the following code to
check them. You also find this code in the P4DS4D3_03_Sample. ipynb file of the
downloadable source:

import sys
print('Python Version:\n', sys.version)

import os
result = os.popen('conda —-version').read()
print('\nAnaconda Version:\n', result)

PART 1 Getting Started with Data Science and Python

https://docs.anaconda.com/free/navigator/overview/
https://docs.anaconda.com/free/navigator/overview/
https://guides.nyu.edu/datascience/literate-prog

REMEMBER

REMEMBER

result = os.popen('conda list notebook$').read()
print('\nJupyter Notebook Version:\n', result)

This code essentially opens command prompts, executes commands, and returns
with the configuration information. Don’t worry about how it precisely works for
now; the goal is to discover which versions of products you have installed on your
system. The outputs show you the versions you have installed. The source code for
this book was tested (and mostly written) using these version numbers:

Python Version:
3.10.9 | packaged by Anaconda, Inc. |

Anaconda Version:
conda 23.1.0

Jupyter Notebook Version:

packages in environment at C:\Users\John\anaconda3:
#

Name Version ...

notebook 6.5.2

Accessing the Anaconda Prompt

You use the Anaconda Prompt to perform many command-line tasks related to
working with Jupyter Notebook. For example, you can use it to discover the ver-
sion numbers of products and libraries you have installed, as in the previous sec-
tion does. The Anaconda Prompt also provides access to the conda utility, which is
used to perform various configuration tasks, such as installing libraries and cre-
ating environments so that you can test your code in multiple ways. In short, the
Anaconda Prompt provides a gateway to allowing maximum flexibility with your
Python programming environment, which is a significant advantage over using
Google Colab (where it’s a take-it-or-leave-it proposition).

The Anaconda Prompt is available in several places. The easiest way to locate it is
in Anaconda Navigator. You can also access it on Windows using the Start=
Anaconda Prompt (Anaconda3) command.

When you open the Anaconda Prompt, you see a window that looks much like any
other command window except that the prompt will say something like “(base)
C:\Users\John>.” The (base) part of the prompt is important because it tells you
which environment you’re using. The (base) environment is the default and is the
one you use most in the book.

CHAPTER 3 Setting Up Python for Data Science 35

WINDOWS 10 DIFFERENCES

You may see slight differences in the Start menu organization if you're using Windows
10. For example, to access an Anaconda prompt, you may see the entry as Start=>
Anaconda 3= Anaconda Prompt. These slight differences won't affect your ability to
work with Anaconda Navigator in Windows 10.

Installing Anaconda on Windows

Anaconda comes with a graphical installation application for Windows, so getting
a good install means using a wizard, much as you would for any other installation.
Of course, you need a copy of the installation file before you begin. The best place
to find a particular version of Anaconda is at the Anaconda archive, at https://
repo.anaconda.com/archive/. The following procedure should work fine on any
Windows system, whether you use the 32-bit or the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2023.
03-1-Windows-x86_64.exe. The download is currently more than 786 MB,
SO you may not want to try it using the free connection at your favorite coffee
shop. The version number is embedded as part of the filename. In this case,
the filename refers to version 2023.03, which is the version used for this book.
If you use some other version, you may experience problems with the source
code and need to make adjustments when working with it.

2. Double-click the installation file.

(You may see an Open File - Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see
an Anaconda 3 Setup dialog box. The exact dialog box you see depends on
which version of the Anaconda installation program you download. If you have
a 64-bit operating system, it's always best to use the 64-bit version of Anaconda
so that you obtain the best possible performance. This first dialog box tells you
when you have the 64-bit version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4. clickl Agree if you agree to the licensing agreement.

You're asked what sort of installation type to perform, as shown in Figure 3-1. In
most cases, you want to install the product just for yourself. The exception is if you
have multiple people using your system and they all need access to Anaconda.

36 PART 1 Getting Started with Data Science and Python

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/

FIGURE 3-1:
Tell the wizard
how to install
Anaconda on
your system.

FIGURE 3-2:
Specify an
installation
location.

2 Anaconda3 2023.07-1 (64-bit) Setup — x

Select Installation Type

:D ANACONDA. Please select the type of installation you would like to perform for
Anaconda3 2023.07-1 (64-bit).

Install for:

© Just Me (recommended)

() All Users (requires admin privieges)

Cancel

5. choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-2.
The book assumes that you use the default location. If you choose some other
location, you may have to modify some procedures later in the book to work
with your setup.

) Anaconda3 2023.07-1 (64-bit) Setup — x
. Choose Install Location
':'D AN ACONDA Choose the folder in which to install Anaconda3 2023.07-1
(64-bit).

Setup will install Anaconda3 2023.07-1 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder, Click Next to continue.

Destination Folder

C:\UsersYjohn\anaconda3 Browse...

Space required: 4.9 GB
Space available: 548.3 GB

CHAPTER 3 Setting Up Python for Data Science

37

38

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-3. These options
are selected by default and there isn't a good reason to change them in
most cases.

2 Anaconda3 2023.07-1 (64-bit) Setup - X

N Advanced Installation Options
J AN ACO NDA Customize how Anaconda3 integrates with Windows

B Create start menu shortcuts (supported packages only).
(") Add Anaconda3 to my PATH environment variable
NOT recommended. This can lead to conflicts with other applications. Instead, use
the Commmand Prompt and Powershell menus added to the Windows Start Menu.
8 Register Anaconda3 as my default Python 3,11
Recommended. Allows other programs, such as VSCode, PyCharm, etc. to
automatically detect Anaconda3 as the primary Python 3.11 on the system,
|| Clear the package cache upon completion
Recommended. Recovers some disk space without harming functionality.

FIGURE 3-3:
Configure the
advanced
installation <gak | Wnstal | cancel
options.
The Add Anaconda to My PATH Environment Variable option is cleared by
@ default, and you should leave it cleared. Adding it to the PATH environment
variable does offer the ability to locate the Anaconda files when using a standard
TP command prompt, but if you have multiple versions of Anaconda installed, only

the first version you installed is accessible. Opening an Anaconda Prompt
instead is far better so that you gain access to the version you expect.

7. Change the advanced installation options (if necessary) and then click
Install.

You see an Installing dialog box with a progress bar. The installation process
can take a few minutes, so get yourself a cup of coffee and read the comics for
a while. When the installation process is over, you see a Next button enabled.

8. Click Next.
The wizard tells you that the installation is complete.
9. ClickFinish.

You're ready to begin using Anaconda.

PART 1 Getting Started with Data Science and Python

A WORD ABOUT THE SCREENSHOTS

As you work your way through the book, you'll use an IDE of your choice to open the
Python and Jupyter Notebook files containing the book’s source code. Every screenshot
in this book that contains IDE-specific information relies on Anaconda because Anaconda
runs on all the platforms supported by the book. The use of Anaconda doesn't imply that
it's the best IDE or that the authors are making any sort of recommendation for it; it sim-
ply works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment, Jupyter
Notebook, is precisely the same across all three platforms, and you won't even see any
significant difference in the presentation. The differences you do see are minor, and
you should ignore them as you work through the book. With this in mind, the book
does rely heavily on Windows screenshots. When working on a Linux or Mac OS X, you
should expect to see some differences in presentation, but these differences shouldn't
reduce your ability to work with the examples.

Installing Anaconda on Linux

You use the command line to install Anaconda on Linux — there is no graphical
installation option. Before you can perform the install, you must download a copy
of the Linux software from the Anaconda site at https://repo.anaconda.com/
archive/. On most Linux systems, you can type curl https://repo.anaconda.
com/archive/Anaconda3-2023.03-Linux-x86_64.sh --output Anaconda3-
2023.03-Linux-x86_ 64.sh and press Enter in the terminal window to get your
copy. The following procedure should work fine on any Linux system, whether
you use the 32-bit or the 64-bit version of Anaconda.

1. Open a copy of Terminal.
You see the Terminal window appear.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2023.03-1-
Linux—x86_64.sh. The version number is embedded as part of the filename. In
this case, the filename refers to version 2023.03, which is the version used for
this book. If you use some other version, you may experience problems with the
source code and need to make adjustments when working with it.

3. Type bash Anaconda3-2023.03-1-Linux-x86_64.sh and press Enter.

An installation wizard starts that asks you to accept the licensing terms for
using Anaconda. Note that this isn't a GUI installation; it's text-based.

CHAPTER 3 Setting Up Python for Data Science 39

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh

4. Readthe licensing agreement and accept the terms using the method
required for your version of Linux, which normally consists of typing yes
and pressing Enter.

The wizard asks you to provide an installation location for Anaconda. The book
assumes that you use the default location of /nome/<user names /anaconda3.
If you choose some other location, you may have to modify some procedures
later in the book to work with your setup.

5. Provide an installation location (if necessary) and press Enter
(or click Next).

You see the application extraction process begin. After the extraction is
complete, you see a series of installation messages.

6. Type yes and press Enter to initialize Anaconda 3 by running the conda
init command.

You see a series of setup messages as conda performs the required initializa-
tion tasks.

7. Close the terminal window and open a new one before you try to work
with Anaconda 3.

When you reopen the terminal, the prompt will change to (base)
<username>@<machine names :~$ unless you specify that you don't want
conda starting during the startup process.

To keep conda from automatically starting each time you log in, type conda

@ config --set auto_activate_base false and press Enter at the conda prompt.
If you're accessing Jupyter Notebook on a Linux server from a remote browser,
TIP follow the instructions at https: //docs . anaconda.com/ free/anaconda/

jupyter—notebooks/remote-jupyter—-notebook/.

Installing Anaconda on Mac OS X

The Mac OS X installation comes only in one form: 64-bit. Before you can perform
the install, you must download a copy of the Mac OS X software from the
Anaconda site at https://repo.anaconda.com/archive/. The following steps
help you install Anaconda 64-bit on a Mac system.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2023.03-
1-Mac0SX-x86_64 . pkg. The version number is embedded as part of the

40 PART 1 Getting Started with Data Science and Python

https://docs.anaconda.com/free/anaconda/jupyter-notebooks/remote-jupyter-notebook/
https://docs.anaconda.com/free/anaconda/jupyter-notebooks/remote-jupyter-notebook/
https://repo.anaconda.com/archive/

A

WARNING

filename. In this case, the filename refers to version 2023.03, which is the
version used for this book. If you use some other version, you may experience
problems with the source code and need to make adjustments when working
with it.

Double-click the installation file.
You see an introduction dialog box.
Click Continue.

The wizard asks whether you want to review the Read Me materials. You can
read these materials later. For now, you can safely skip the information.

Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

Click | Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The destina-
tion controls whether the installation is for an individual user or a group.

You may see an error message stating that you can't install Anaconda on the
system. The error message occurs because of a bug in the installer and has
nothing to do with your system. To get rid of the error message, choose the
Install Only for Me option. You can't install Anaconda for a group of users on a
Mac system.

Click Continue.

The installer displays a dialog box containing options for changing the installa-
tion type. Click Change Install Location if you want to modify where Anaconda
is installed on your system (the book assumes that you use the default path of
~/anaconda). Click Customize if you want to modify how the installer works.
For example, you can choose not to add Anaconda to your PATH statement.
However, the book assumes that you have chosen the default install options
and there isn't a good reason to change them unless you have another copy of
Python 2.7 installed somewhere else.

Click Install.

You see the installation begin. A progress bar tells you how the installation
process is progressing. When the installation is complete, you see a completion
dialog box.

Click Continue.

You're ready to begin using Anaconda.

CHAPTER 3 Setting Up Python for Data Science

41

Downloading the Datasets
and Example Code

42

This book is about using Python to perform data science tasks. Of course, you
could spend all your time creating the example code from scratch, debugging it,
and only then discovering how it relates to data science, or you can take the easy
way and download the prewritten code so that you can get right to work. Likewise,
creating datasets large enough for data science purposes would take quite a while.
Fortunately, you can access standardized, precreated datasets quite easily using
features provided in some of the data science libraries. The following sections help
you download and use the example code and datasets so that you can save time
and get right to work with data science-specific tasks.

Using Jupyter Notebook

To make working with the relatively complex code in this book easier, you use
Jupyter Notebook or Google Colab (see Chapter 4). This interface makes it easy to
create Python notebook files that can contain any number of examples, each
of which can run individually. The program runs in your browser, so which
platform you use for development doesn’t matter; as long as it has a browser, you
should be OK.

Starting Jupyter Notebook

Most platforms provide an icon to access Jupyter Notebook. All you need to do is
open this icon to access Jupyter Notebook. For example, on a Windows system,
you choose Start= Jupyter Notebook (Anaconda 3) (or Start=> Anaconda3= Jupyter
Notebook on a Windows 10 system). The precise appearance on your system
depends on the browser you use and the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can nor-
mally type jupyter notebook and press Enter while in one of the conda environ-
ments. To access a conda environment, open an Anaconda Prompt or type conda
activate and press Enter at the terminal prompt.

Stopping the Jupyter Notebook server

No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Notebook. This window contains a server that makes the
application work. After you close the browser window when a session is complete,
select the server window and press Ctrl+C or Ctrl+Break to stop the server. Type y

PART 1 Getting Started with Data Science and Python

FIGURE 3-4:
Create a folder to
use to hold the
book’s code.

and press Enter if asked to do so. To exit the conda environment, type conda deac-
tivate and press Enter.

Defining the code repository

The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You can
modify it, run individual examples within the folder, add new examples, and
simply interact with your code in a natural manner. The following sections get
you started with Notebook so that you can see how this whole repository
concept works.

Defining a new folder

You use folders to hold your code files for a particular project. The project for
this book is P4DS4D3 (which stands for Python for Data Science For Dummies,
3rd Edition). The following steps help you create a new folder for this book.

1 . Choose New<->Folder.

Notebook creates a new folder for you. The name of the folder can vary, but
for Windows users, it's simply listed as Untitled Folder. You may have to scroll
down the list of available folders to find the folder in question.

N

Place a check in the box next to Untitled Folder.
3. Cclick Rename at the top of the page.

You see the Rename Directory dialog box, shown in Figure 3-4.

Rename directory

Enter a new directory name:

PADSAD

Cince‘

4, Type P4DS4D3 and press Enter.

Notebook renames the folder for you.

CHAPTER 3 Setting Up Python for Data Science 43

Creating a new notebook

Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell. You can put other sorts of things in the file folder, too,
but you see how these things work as the book progresses. Use these steps to cre-
ate a new notebook.

1. click the P4DS4D3 entry on the Home page.

You see the contents of the project folder for this book, which will be blank if
you're performing this exercise from scratch.

2. Choose New<> Python 3 (ipykernel).

You see a new tab open in the browser with the new notebook. Notice that the
notebook contains a cell and that Notebook has highlighted the cell so that you
can begin typing code in it. The title of the notebook is Untitled right now.
That's not a particularly helpful title, so you need to change it.

3. Click Untitled on the page.
Notebook asks whether you want to use a new name.
4, Type P4DS4D3_03_Sample and press Enter.

The new name tells you that this is a file for Python for Data Science For
Dummies, 3rd Edition, Chapter 3, Sample.ipynb. Using this naming convention
will let you easily differentiate these files from other files in your repository.

Adding notebook content

Of course, the Sample notebook doesn’t contain anything just yet. This book fol-
lows a convention of putting the source code files together that makes them easy
to use. The following steps tell you about this convention:

1. choose Markdown from the drop-down list that currently contains the
word Code.

A Markdown cell contains documentation text. You can put anythingin a
Markdown cell because Notebook won't interpret it. By using Markdown cells,
you can easily document precisely what you mean when writing code.

2. Type # Downloading the Datasets and Example Code and click Run (the
button with the right-pointing arrow on the toolbar).

The hash mark (#) creates a heading. A single # creates a first-level heading.
The text that follows contains that actual heading information. Clicking Run
turns the formatted text into a heading. Notice that Notebook automatically
creates a new cell for you to use.

44, PART 1 Getting Started with Data Science and Python

FIGURE 3-5:
Notebook uses
cells to store
your code.

3.

Choose Markdown, type ## Defining the code repository, and click Run.

Notebook creates a second-level heading, which looks smaller than a first-level
heading.

Choose Markdown, type ### Adding notebook content, and click Run.

Notebook creates a third-level heading. Your headings now match the
hierarchy that starts with the first-level heading for this section. Using this
approach helps you to easily locate a particular piece of code in the download-
able source. As always, Notebook creates a new cell for you, and the cell type
automatically changes to Code, so you're ready to type some code for this
example.

Type print('Python is really cool!) and click Run.

Notice that the code is color coded so that you can tell the difference between
a function (print) and its associated data (' Python is really cool!').
You see the combined output of the various markdown and coding steps in
Figure 3-5. The output is part of the same cell as the code. However, Notebook
visually separates the output from the code so that you can tell them apart.
Notebook automatically creates a new cell for you.

In [1]: print('Python is really cool!l')

Downloading the Datasets and
Example Code

Defining the code repository

Adding notebook content

Python is really cool!

When you finish working with a notebook, shutting it down is important. To close
a notebook, choose File=> Close and Halt. You return to the P4DS4D3 page, where

you can see the notebook you just created added to the list.

Exporting a notebook

It isn’t much fun to create notebooks and keep them all to yourself. At some point,
you want to share them with other people. To perform this task, you must export
your notebook from the repository to a file. You can then send the file to someone

else who will import it into their repository.

CHAPTER 3 Setting Up Python for Data Science

46

The previous section shows how to create a notebook named P4DS4D3_03__
Sample. You can open this notebook by clicking its entry in the repository list. The
file reopens so that you can see your code again. To export this code, choose
File=> Download As= Notebook (.ipynb). What you see next depends on your
browser, but you generally see some sort of dialog box for saving the notebook as
a file. Use the same method for saving the Notebook file as you use for any other
file you save using your browser.

Removing a notebook

Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files you don’t
need, you can remove these unwanted notebooks from the list. Notice the check
box next to the P4ADS4D3_03_Sample.ipynb entry. Use these steps to remove the
file:

1 . Select the check box next to the P4ADS4D3_03_Sample.ipynb entry.
2. Click the Delete (trashcan) icon.
You see a Delete notebook warning message.

3. Click Delete.

Notebook removes the notebook file from the list.

Importing a notebook

To use the source code from this book, you must import the downloaded files into
your repository. The source code comes in an archive file that you extract to a
location on your hard drive. The archive contains a list of . ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for
details on downloading the source code). The following steps tell how to import
these files into your repository:

1. click Upload on the Notebook P4DS4D3 page.

What you see depends on your browser. In most cases, you see some type of
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files you want to import into
Notebook.

PART 1 Getting Started with Data Science and Python

3.

Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list. The file isn't part of the repository
yet — you've simply selected it for upload.

Click Upload.

Notebook places the file in the repository so that you can begin using it.

Understanding the datasets
used in this book

This book uses a number of datasets, all of which appear in the Scikit-learn
library. These datasets demonstrate various ways in which you can interact with
data, and you use them in the examples to perform a variety of tasks. The follow-
ing list provides a quick overview of the functions used to import each of the
datasets into your Python code:

»

»

»

»

»

fetch_openml (): An open repository for machine learning data and experi-
ments. Anyone can upload open datasets to allow access to them.

fetch_california_housing(): Regression analysis with the California
housing dataset.

https://archive.ics.uci.edu/ml/machine-learning-databases/
statlog/german/: Analysis with the German Credit dataset described at
https://archive.ics.uci.edu/ml/datasets/statlog+(german+
credit+data).

https://raw.githubusercontent.com/allisonhorst/palmerpenguins/
main/inst/extdata/penguins.csv: Analysis with the Palmer Penguins
dataset described athttps://allisonhorst.github.io/palmerpenguins/
articles/intro.html.

http://files.grouplens.org/datasets/movielens/ml-1m.zip
Analysis with the MovieLens dataset described athttps://grouplens.org/
datasets/movielens/.

The technique for loading each of these datasets is similar across examples (some
of them require extra code provided with the book). The following example shows

CHAPTER 3 Setting Up Python for Data Science 47

https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://raw.githubusercontent.com/allisonhorst/palmerpenguins/main/inst/extdata/penguins.csv
https://raw.githubusercontent.com/allisonhorst/palmerpenguins/main/inst/extdata/penguins.csv
https://allisonhorst.github.io/palmerpenguins/articles/intro.html
https://allisonhorst.github.io/palmerpenguins/articles/intro.html
http://files.grouplens.org/datasets/movielens/ml-1m.zip
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

how to load the California Housing dataset. You can find the code in the
P4DS4D3_03_Dataset_Load. ipynb notebook.

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
print(housing.data.shape)

To see how the code works, click Run Cell. The output from the print call is
(20640, 8).You can see the output shown in Figure 3-6. (Be patient; the dataset
load can require a few seconds to complete.)

Downloading the Datasets and
Example Code

Understanding the datasets used in this

book
FIGURE 3-6: In [1]: from sklearn.datasets import fetch_california_housing
The housing housing = fetch_california_housing()
object contains print(housing.data.shape)
the loaded
(20649, 8)
dataset.

48 PART 1 Getting Started with Data Science and Python

IN THIS CHAPTER

» Understanding Google Colab

» Accessing Google and Colab
» Performing essential Colab tasks

» Obtaining additional information

Chapter 4

Working with Google
Colab

olaboratory (https://colab.research.google.com/notebooks/welcome.

ipynb), or Colab for short, is a free Google cloud-based service that repli-

cates Jupyter Notebook in the cloud. You don’t have to install anything on
your system to use it. In most respects, you use Colab as you would a desktop
installation of Jupyter Notebook (often shortened to Notebook with an uppercase
N throughout the book). This chapter explores Colab and discusses techniques for
working with notebooks using either Jupyter Notebook or Colab.

book, the book’s example source code may or may not work precisely as described
in the text when you use Colab. Also when using Colab, you may not see the results

rememser as presented in this book because of the differences in hardware between plat-
forms. The introductory sections of this chapter go into more detail about Colab
and help you understand what you can expect from it. To use Colab, you must have
a free Google account and then access Colab using your account. Otherwise, most
of the Colab features won’t work.

@ Because you may not be using the same versions of products that appear in this

As with Notebook, you can use Colab to perform specific tasks in a cell-oriented
paradigm. The next sections of the chapter go through a range of task-related
topics that start with the use of notebooks. If you’ve used Notebook in previous
chapters, you notice a strong resemblance between Notebook and Colab. Of course,

CHAPTER 4 Working with Google Colab 49

https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb

you also want to perform other sorts of tasks, such as creating various cell types
and using them to create notebooks that look like those you create with Notebook.

Finally, this chapter can’t address every aspect of Colab, so the final section of the
chapter serves as a handy resource for locating the most reliable information
about Colab.

Defining Google Colab

50

Google Colab is the cloud version of Notebook. In fact, the Welcome page makes
this fact apparent. It even uses IPython (the previous name for Jupyter) Notebook
(.ipynb) files for the site. That’s right: You’re viewing a Notebook right there in
your browser. Even though the two applications are similar and they both use
.ipynb files, they do have some differences that you need to know about. The fol-
lowing sections help you understand the Colab differences.

Understanding what Google Colab does

You can use Colab to perform many tasks, but for the purpose of this book, you use
it to write and run code, create its associated documentation, and display graph-
ics, just as you do with Notebook. The techniques you use are similar, in fact, to
using Notebook, but later in the chapter, you find out the small differences
between the two. Even so, the downloadable source for this book will run without
much effort on your part.

Notebook is a localized application in that you use local resources with it. You could
potentially use other sources, but doing so could prove inconvenient or impossible
in some cases. For example, according to https://help.github.com/articles/
working-with-jupyter—-notebook-files-on-github/, your Notebook files will
appear as static HTML pages when you use a GitHub repository (https://docs.
github.com/en/get-started/quickstart/create-a-repo). In fact, some fea-
tures won’t work at all. Colab enables you to fully interact with your notebook files
using GitHub as a repository. In fact, Colab supports a number of online storage
options, so you can regard Colab as your online partner in creating Python code.

The other reason that you really need to know about Colab is that you can use it
with your alternative device. During the writing process, some of the example
code was tested on an Android-based tablet (an ASUS ZenPad 3S 10). The target
tablet has Chrome installed and executes the code well enough to follow the
examples. All this said, you likely won’t want to try to write code using a tablet of
that size — the text was incredibly small, for one thing, and the lack of a keyboard
could be a problem, too. The point is that you don’t absolutely have to have a

PART 1 Getting Started with Data Science and Python

https://help.github.com/articles/working-with-jupyter-notebook-files-on-github/
https://help.github.com/articles/working-with-jupyter-notebook-files-on-github/
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/get-started/quickstart/create-a-repo

©

REMEMBER

Windows, Linux, or OS X system to try the code, but the alternatives may not pro-
vide quite the performance you expect.

Google Colab generally doesn’t work with browsers other than Chrome or Firefox.
In most cases, you see an error message and no other display if you try to start
Colab in a browser that it doesn’t support. Your copy of Firefox may also need
some configuration to work properly (see the “Using local runtime support” sec-
tion, later in this chapter, for details). The amount of configuration that you per-
form depends on which Colab features you choose to use. Many examples work
fine in Firefox without any modification.

Considering the online coding difference

For the most part, you use Colab just as you would Notebook. However, some fea-
tures work differently. For example, to execute the code within a cell, you select
that cell and click the Run button (right-facing arrow) for that cell. The current
cell remains selected, which means that you must actually initiate the selection of
the next cell as a separate action. A block next to the output lets you clear just that
output without affecting any other cell. Hovering the mouse over the block tells
you when someone executed the content. On the right side of the cell, you see a
vertical ellipsis that you can click to see a menu of options for that cell. The result
is the same as when using Notebook, but the process for achieving the result is
different.

SOME FIREFOX ODDITIES

Even with online help, you may still find that your copy of Firefox displays a
SecurityError: The operation is insecure. error message. The initial error
dialog box will point to some unrelated issue, such as cookies, but you see this error
message when you click Details. Simply dismissing the dialog box by clicking OK will
make Colab appear to be working because it displays your code, but you won't see
results from running the code.

As a first step to fixing this problem, make sure that your copy of Firefox is current;
older versions won't provide the required support. After you've updated your copy,
setting the network . websocket . al lowInsecureFromHTTPS preference using
About :Config to True should resolve the problem, but sometimes it doesn't. In this
case, verify that Firefox actually does allow third-party cookies by selecting Always for
the Accept Third Party Cookies and Site Data option and selecting Remember History
in the History section on the Privacy & Security tab of the Options dialog box. Restart
Firefox after each change and then try Colab again. If none of these fixes works, you
must use Chrome to work with Colab on your system.

CHAPTER 4 Working with Google Colab 51

52

©

REMEMBER

TIP

The actual process for working with the code also differs from Notebook. Yes, you
still type the code as you always have and the resulting code executes without
problem in Colab. The difference is in the way you can manage the code. You can
upload code from your local drive as desired and then save it to a Google Drive or
GitHub. The code becomes accessible from any device at this point by accessing
those same sources. All you need to do is load Colab to access it.

If you use Chrome when working with Colab and choose to sync your copy of
Chrome among various devices, all your code becomes available on any device you
choose to work with. Syncing transfers your choices to all your devices as long as
those devices are also set to synchronize their settings. Consequently, you can
write code on your desktop, test it on your tablet, and then review it on your smart
phone. It’s all the same code, all the same repository, and the same Chrome setup,
just a different device.

What you may find, however, is that all this flexibility comes at the price of speed
and ergonomics. In reviewing the various options, a local copy of Notebook gen-
erally executes the code in this book faster than a copy of Colab using any of the
available configurations (even when working with a local copy of the . ipynb file).
So, you trade speed for flexibility when working with Colab. In addition, viewing
the source code on a tablet is hard; viewing it on a smart phone is nearly impos-
sible. If you make the text large enough to see, you can’t see enough of the code to
make any sort of reasonable editing possible. At best, you could review the code
one line at a time to determine how it works.

Using Notebook has other benefits, too. For example, when working with Colab,
you have options to download your source files only as . ipynb or .py files. Colab
doesn’t include all the other download options, including (but not limited to)
HTML, LaTeX, and PDF. Consequently, your options for creating presentations
from the online content are also limited to some extent. In short, using Colab and
Notebook provides different coding experiences to some degree. They’re not
mutually exclusive, however, because they share file formats. Theoretically,
switching between the two as needed is possible.

One thing to consider when using Notebook and Colab is that the two products use
most of the same terminology and many of the same features, but they’re not
completely the same. The methods used to perform tasks differ, and some of the
terminology does as well. For example, a Markdown cell in Notebook is a Text cell
in Colab. The “Performing Common Tasks” section of this chapter tells you about
other differences you need to consider.

PART 1 Getting Started with Data Science and Python

Using local runtime support

The only time you really need local runtime support is when you want to work
within a team environment and you need the speed or resource access advantage
offered by a local runtime. When using the local runtime support, Colab connects
to a local copy of Notebook, so you have to have Notebook installed on your local
system. Using a local runtime normally produces better speed than you obtain
when relying on the cloud. In addition, a local runtime enables you to access files
on your machine. A local runtime also gives you control over the version of Note-
book used to execute code. You can read more about local runtime support at
https://research.google.com/colaboratory/local-runtimes.html.

You need to consider several issues when determining the need for local runtime
& support. The most obvious is that you need a local runtime, which means that this
option won’t work with your laptop or tablet unless your laptop has Windows,
warning Linux, or OS X and the appropriate version of Notebook installed. Your laptop or
tablet will also need an appropriate browser; Internet Explorer is almost guaran-

teed to cause problems, assuming that it works at all.

The most important consideration when using a local runtime, however, is that
your machine is now open to possible infection from Notebook code. You need to
trust the party supplying the code. The local runtime option doesn’t open your
machine to others that you share code with, however; they must either use their
own local runtimes or rely on the cloud to execute code.

When working with Colab on using local runtime support and Firefox, you must
@ perform some special setups. Make sure to read the Browser Specific Setups sec-
tion on the Local Runtimes page to ensure that you have Firefox configured cor-
TIP rectly. Always verify your setup. Firefox may appear to work correctly with Colab.
However, a configuration issue arises when you perform tasks with it, and Colab
shows error messages that say the code didn’t execute (or something else that

isn’t particularly helpful).

Working with Notebooks

As with Jupyter Notebook, the notebook forms the basis of interactions with Colab.
In fact, Colab is built on notebooks, as previously mentioned. When you place the
mouse on certain parts of the Welcome page at https://colab.research.
google.com/notebooks/welcome. ipynb, you see opportunities for interacting
with the page by adding either code or text entries (which you can use for notes as
needed). These entries are active, so you can interact with them. You can also
move cells around and copy the resulting material to your Google Drive. Of course,

CHAPTER 4 Working with Google Colab 53

https://research.google.com/colaboratory/local-runtimes.html
https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb

FIGURE 4-1:
Create a new
Python 3

Notebook using

54

the same
techniques as
normal.

while interacting with the Welcome page is both unexpected and fun, the real
purpose of this chapter is to demonstrate how to interact with Colab notebooks.
The following sections describe how to perform basic notebook-related tasks with
Colab.

Creating a new notebook

To create a new notebook, choose File=> New Notebook. You see a new Python 3
notebook like the one shown in Figure 4-1. The new notebook looks similar to, but
not precisely the same as, those found in Notebook. However, all the same func-
tionality exists.

v - O X
CO Untitled1.ipynb - Colaboratory x -+

C () @& ntips//colabresearch.googlecom/dr.. @ & v © ®» O 0 :

£ Untitledl.ipynb 8 comment % Share £ 0

File Edit View Insert Runtime Tools Help All chanc
— + Code + Text Connect ~ -~
SE-E XN

T 0l

{x}

O

'3

=

>

The notebook shown in Figure 4-1 lets you change the filename by clicking on it,
just as you do when working in Notebook. Some features work differently but pro-
vide the same results. For example, to run the code in a particular cell, you click
the right-pointing arrow on the left side of that cell. In contrast to Notebook, the
cell focus doesn’t change to the next cell, so you must choose the next cell directly
or by clicking the Next Cell or Previous Cell buttons on the toolbar.

Opening existing notebooks

You can open existing notebooks found in local storage, on Google Drive, or on
GitHub. You can also open any of the Colab examples or upload files from sources

PART 1 Getting Started with Data Science and Python

FIGURE 4-2:
Use this dialog
box to open
existing
notebooks.

TIP

that you can access, such as a network drive on your system. In all cases, you
begin by choosing Filec>Open Notebook. You see the dialog box shown in
Figure 4-2.

Examples Recent Google Drive GitHub Upload

Filter notebooks =

Title Last opened Firstopened - (5
& Untitled1.ipynb 12:01PM 12:01PM R 7
0O Welcome To Colaboratory 11:59 AM Aug 27,2018 A
& Untitled0.ipynb April 16 April 16 n 2
™ Walrama Ta Cnlaharatar harrh 7 hdaw 2 2021 ra e

Cancel

The default view shows all the files you opened recently, regardless of location.
The files appear in alphabetical order. You can filter the number of items dis-
played by typing a string into the Filter Notebooks field. Across the top are other
options for opening notebooks.

Even if you’re not logged in, you can still access the Colab example projects. These
projects help you understand Colab but won’t allow you to do anything with your
own projects. Even so, you can still experiment with Colab without logging into
Google first. The following sections discuss these options in more detail.

Using Google Drive for existing notebooks

Google Drive is the default location for many operations in Colab, and you can
always choose it as a destination. When working with Drive, you see a list of files.
To open a particular file, you click its link in the dialog box. The file opens in the
current tab of your browser.

Using GitHub for existing notebooks

When working with GitHub, you initially need to provide the location of the source
code online. Make sure to select Include Private Repos if you want to work with
your private projects in addition to the public ones.

CHAPTER 4 Working with Google Colab 55

56

REMEMBER

TIP

After you make the connection to GitHub, you see two lists: repositories, which
are containers for code related to a particular project; and branches, a particular
implementation of the code. Selecting a repository and branch displays a list of
notebook files that you can load into Colab. Simply click the required link and it
loads as if you were using a Google Drive.

Using local storage for existing notebooks

If you want to use the downloadable source for this book, or any local source for
that matter, you select the Upload tab of the dialog box. In the center is a single
button, Choose File. Clicking this button opens the File Open dialog box for your
browser. You locate the file you want to upload, just as you normally would for
opening any file.

Selecting a file and clicking Open uploads the file to Google Drive. If you make
changes to the file, those changes appear on Google Drive, not on your local drive.
Depending on your browser, you usually see a new window open with the code
loaded. However, you could also simply see a success message, in which case you
must now open the file using the same technique as you would when using Google
Drive. In some cases, your browser asks whether you want to leave the current
page. You should tell the browser to do so.

The File=> Upload Notebook command also uploads a file to Google Drive. In fact,
uploading a notebook works like uploading any other kind of file, and you see the
same dialog box. If you want to upload other kinds of files, using the File> Upload
Notebook command is likely faster.

Saving notebooks

Colab provides a significant number of options for saving your notebook. How-
ever, none of these options works with your local drive. After you upload content
from your local drive to Google Drive or GitHub, Colab manages the content in the
cloud and not on your local drive. To save updates to your local drive, you must
download the file using the techniques found in the “Downloading notebooks”
section, later in this chapter. The following sections review the cloud-based
options for saving notebooks.

Using Drive to save notebooks

The default location for storing your data is Google Drive (https://drive.
google.com/). When you choose File=> Save, the content you create goes to the
root directory of your Google Drive. If you want to save the content to a different
folder, you need to select that folder in Google Drive.

PART 1 Getting Started with Data Science and Python

https://drive.google.com/
https://drive.google.com/

REMEMBER

FIGURE 4-3:
Colab maintains a
history of the

revisions for your

project.

Colab tracks the versions of your project as you perform saves. However, as these
revisions age, Colab removes the older versions. To save a version that won’t age,
you use the File=> Save and Pin Revision command. To see the revisions for your
project, choose Filew> Revision History. You see the output shown in Figure 4-3.
Notice that the first entry is pinned. You can also pin entries by checking the entry
in the History list. The revision history also shows you the modification date, who
made the revision, and the size of the resulting file.

€O P4D54D3_01_Quick_Overviewip, X =+

& C {) & hitps//colabresearch.googlecom/drive/1Ht0.. @ & & & 0O ° :

Revision history

[] rawsource [] Inline diff Show output

] only show named versions

Mon May 01 2023 14:
Text cell <MXa7CT|

%% [markdown]

Mon May 01 2023 14:
Text cell <MXa7CTi
%% [markdown]

Pinned version

@ @
1 # Learning to Use 1 # Learning to Use v @ @ May1,2023 2.40PM
John Mueller
Text cell <qE3wj6! Text cell <qE3wj6!
%% [markdown] # %% [markdown] May 1, 2027 ~nnnes .
1 ## Loading data 1 ## Loading data O O 1
John Muell - Name this version
Code cell <RhQLND! Code cell <RhQLN]!
%% [code] # %% [code] 00 May 1,202 Openin Colab :
from sklearn.data: from sklearn.data: John Muell

housing = fetch_ci
X, y = housing.da

housing = fetch_ci
X, ¥ = housing.da

Restore revision

BowoR R
Bowor e

nrint"The cizaln Arint("The sizalnr

Close

Click the vertical ellipsis (three dots) next to an entry to see the additional options
shown in Figure 4-3. You can name the revision, open it in Colab, or restore the
current code to the selected revision. Naming a revision makes it easier to find,
and you can use this technique for revisions that have special significance.

You can also save a copy of your project by choosing File=> Save a Copy In Drive.
The copy receives the word Copy as part of its name. Of course, you can rename it
later. Colab stores the copy in the current Google Drive folder.

Using GitHub to save notebooks

GitHub provides an alternative to Google Drive for saving content. It offers an
organized method of sharing code for the purpose of discussion, review, and dis-
tribution. You can find GitHub at https://github.com/.

CHAPTER 4 Working with Google Colab 57

https://github.com/

58

FIGURE 4-4:
Using GitHub
means storing
your datain a
repository.

TIP

To save a file to GitHub, choose File>Save a Copy in GitHub. If you aren’t
already signed into GitHub, Colab displays a window that requests your sign-in
information. After you sign in, you see a dialog box similar to the one shown in
Figure 4-4.

Copy to GitHub

Repository: (£ Branch: [4
JohnPaulMueller/A4D2E v main v

File path

P4DS4D3_01_Quick_Overview.ipynb

Commit message

Created using Colaboratory

Include a link to Colaboratory

Cancel OK

The best way to work with GitHub is to create the repository on your GitHub
account first, and then access it from Colab. This approach lets you do things like
create the Readme.md file, set public or private access, invite others to view the
code, and set up any required security. You can go to your repositories by clicking
the button next to Repository, shown in Figure 4-4.

Using GitHub gists to save notebooks

You use GitHub gists as a means of sharing single files or other resources with
other people. Some people use them for full projects as well, but the idea is that
you have a concept that you want to share — something that isn’t quite fully
formed and doesn’t represent a usable application. You can read more about gists
at https://help.github.com/articles/about-gists/.

As with GitHub’s public and private repositories, gists come in both public and
secret (private) form. You can access both public and secret gists from Colab, but
Colab automatically keeps your files secret. To save your current project as a gist,
you choose Filer>Save a Copy as a GitHub Gist. Unlike GitHub, you don’t need to
create a repository or do anything fancy in this case. The file saves as a gist with-
out any extra effort. The resulting entry always contains an Open in Colab button
link, as shown in Figure 4-5.

PART 1 Getting Started with Data Science and Python

https://help.github.com/articles/about-gists/

FIGURE 4-5:
Use gists to store
individual files or
other resources.

v 4 PADSAD3 01_Qui X | © o pdds4d3 01 qui X O JohnPaulluellsr X =+

& C {} & https//gist.github.com/JohnPaulMueller © # © % 0O ° :

JohnPaulMueller / p4ds4d3_01_quick_overview.ipynb | Secret

3_01_Qui

E] file % 0forks J0comments Y 0stars

k_Overview.ipynb

I Open in Colab

Learning to Use Python Fast

Loading data

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()

X, y = housing.data,housing.target

print(“The size of the data set is {}".format(X.shape))

print(“The names of the data columns are {}", housing.feature names)

Downloading notebooks

Colab supports two methods for downloading notebooks to your local drive:
.ipynb files (using File> Download .ipynb) and .py files (using File> Download
.py). In both cases, the file appears in the default download directory for your
browser; Colab doesn’t offer a method for downloading the file to a specific
directory.

Performing Common Tasks

Most tasks in Colab work similar to their Notebook counterparts. For example, you
can create code cells just as you do in Notebook. Markdown cells come in three
forms: text, heading, and table of contents. They work somewhat differently from
the markdown cells found in Notebook, but the idea is the same. You can also edit
and move cells, just as you do with Notebook. One important difference is that you
can’t change a cell type. A cell that you create as a header can’t suddenly trans-
form into a code cell. The following sections provide a brief overview of the vari-
ous features.

CHAPTER 4 Working with Google Colab 59

Creating code cells

The first cell that Colab creates for you is a code cell. The code you create in Colab
uses all the same features that you find in Notebook. However, off to the side of
the cell, you see a menu of extras that you can use with Colab that aren’t present
in Notebook. You can access some of these options by clicking the vertical ellipsis,
shown at the rightmost end of the toolbar menu at the side of the cell in

Figure 4-6.
Move Cell Down Extras Toolbar
Move Cell Up Delete Cell
- ; . W = O X
€O P4DS4D3_01_Quick_Overviewip, X =+
&« C {} & htips//colabresearch.googlecom/drive/1Ht0.. @ |12 (%] © & O ‘)
. — i
(& P4DS4D3_01_Quick Overview.ipynb B comment| 2% shae @ ‘,
File Edit View Insert Runtime Tools Help All changes saved
— +Code + Text F;Tsrlj — T ™
Q .
~ Learning to Use Python Fast
{x}
O - Loading data
+ Lo B g H0E
il ° from sklearn.datasets import fetch_california_housing
9 housing = fetch_california housing()
¢ X, y = housing.data, housing.target
print("The size of the data set is {}".format(X.shape))
= print("The names of the data columns are {}", housing.feature names)
[>_] The size of the data set is (20848, 3)
The names of the data columns are {} ['MedInc'. 'Housefse'. 'AveRooms'.| "AfeBedrm{'. 'Poouli
« 3z completed at 240PM ® X
FIGURE 4-6: Copy Link to Cell Mirror Cell
Colab code cells .
: in Tab
contain a few Add a Comment
extras not found

in Notebook.

60

Open Editor Settings

You use the options shown in Figure 4-6 to augment your Colab code experience.
The following list (shown in order of appearance in Figure 4-6) provides a short
description of these features:

3 Move Cell Up: Moves the selected cell up in the hierarchy of cells by
one position.

PART 1 Getting Started with Data Science and Python

FIGURE 4-7:

Use the Editor tab
of the Settings
dialog box to
modify the
behavior of the
editor.

3 Move Cell Down: Moves the selected cell down in the hierarchy of cells by

one position.

3 Copy Link to Cell: Places a link to the selected cell on the Clipboard. You can

use this link to access a specific cell within the notebook. You can embed this
link anywhere on a web page or within a notebook to allow someone to
access that specific cell. The person still sees the entire notebook but doesn't
have to search for the cell you want to discuss.

¥ Add a Comment: Creates a comment balloon to the right of the cell. This is

not the same as a code comment, which exists in line with the code but affects
the entire cell. You can edit, delete, or resolve comments. A resolved comment
is one that has received attention and is no longer applicable.

3 Open Editor Settings: Displays the dialog box shown in Figure 4-7 that you

can use to modify Colab’s behavior.

Settings
. Editor key bindings
Site default
Editor Font size
14 px
Colab Pro
Font family used when rendering code
. monospace
GitHub
Indentation width in spaces
Miscellaneous 2
Vertical ruler column
80

Automatically trigger code completions

D Show line numbers

[] show indentation guides

D Enable code folding in the editor

Automatically close brackets and quotes in code cells
Enter key accepts suggestions

D Font ligatures

Code diagnostics
Syntax checking

Cancel Save

3 Mirror Cell in Tab: Creates a mirror view of the selected tab in a side window

for more detailed editing.

3 Delete Cell: Removes the cell from the notebook.

CHAPTER 4 Working with Google Colab

61

¥ Ellipsis Entries: Click the vertical ellipsis to see these entries:
Select Cell: Selects all the text in the cell.

Copy Cell: Copies the selected content in the current cell and places it on
the Clipboard.

Cut Cell: Removes the selected content from the current cell and places it
on the Clipboard.

Clear Output: Removes the output from the cell. You must run the code
again to regenerate the output.

View Output Fullscreen: Displays the output (not the entire cell or any
other part of the notebook) in full-screen mode on the host device. This
option is useful when displaying a significant amount of content or when a
detailed view of graphics helps explain a topic. Press Esc to exit full-screen
mode.

Add a Form: Inserts a form into the cell to the right of the code. You use
forms to provide a graphical input for parameters. Forms don't appear in
Notebook, but because of how you create them, they won't prevent you
from running the code in Notebook. You can read more about forms at
https://colab.research.google.com/notebooks/forms. ipynb.

Code cells also tell you about the code and its execution. The little run icon next to
the output displays information about the execution when you hover your mouse
over it, as shown in Figure 4-8. Clicking the output icon below it clears the output.
You must run the code again to regenerate the output.

Creating text cells

Text cells work much like Markup cells in Notebook. However, Figure 4-9 shows
that you receive additional help in formatting the text using a graphical interface.
The markup is the same, but you have the option of allowing the GUI to help you
create the markup. For example, in this case, to create the # sign for a heading,
you click the double T icon that appears first in the list. Clicking the double T icon
again would increase the header level. To the right, you see how the text will
appear in the notebook.

Notice the menu to the right of the text cell. This menu contains many of the same
options that a code cell does. For example, you can create a list of links to help
people access specific parts of your notebook through an index. Unlike Notebook,
you can’t execute text cells to resolve the markup they contain.

62 PART 1 Getting Started with Data Science and Python

https://colab.research.google.com/notebooks/forms.ipynb

FIGURE 4-8:
Colab code cells
contain a few
extras not found
in Notebook.

FIGURE 4-9:

Use the GUI to
make formatting
your text easier.

€0 P4D54D3_01_Quick_Overviewip, X

<« C {) & hitps//colabresearch.googlecom/drive/1Ht0.. @ & & & 0O ° :
¢ & PADS4D3_01_Quick_Overview.ipynb ¢ & comment 2% Shae €3 o
File Edit View Insert Runtime Tools Help All changes saved
— + Code + Text v T::aMk = ~
Q -
~ Learning to Use Python Fast
{x}
B+ Loading data
e B R dE
;’ o from sklearn.datasets import fetch_california_housing
Run cell (Ctri+Enter) u:.a_housing()
cell executed since last change FiNg-target
Hata set is {}".format(X.shape))
executed by John Mueller data columns are {}", housing.feature_names)
<> 2:40 PM (37 minutes ago)
[executed in 3.757s F is (20848, 8)
= TIE Tames oT Tne data columns are {} ['MedInc', 'HouseAge®, 'AveRooms’, "AveBedrms’, “Populi
m 14 »
~ 3s completed at 2:40PM ® X
m
&« c 0O @ httpsy//colab.research.googlecom/drive/1Ht0.. @ & % © #» O o :
cO & PADS4D3_01_Quick Overview.ipynb B comment &% shere 3 o
File Edit View Insert Runtime Tools Help All changes saved
RAM
= + Code + Text Voo ’
veo Bg XEd
QA T B I ¢ o M IE = E - ¥ @ O
{x} # Learning to Use Python Fast E)
i Learning to Use Python Fast
] i
~ 3s completed at 2:40PM ® X

Creating special cells

The special cells that Colab provides are variations of the text cell. These special
cells, which you access using the Insert menu option, make creating the required
cells faster. Of these additions, section headers are the most interesting. When you
choose Insert= Section Header Cell, you see a new cell created below the currently
selected cell that has the appropriate header level 1 entry in it. You can increase
the heading level by clicking the double T icon. The GUI looks the same as the one
in Figure 4-9, so you have all the standard formatting features for your text.

CHAPTER 4 Working with Google Colab 63

Editing cells

Both Colab and Notebook have Edit and View menus that contain the options you
expect, such as the ability to cut, copy, and paste cells. The two products have
some interesting differences. For example, Notebook allows you to split and merge
cells. Colab contains an option to show or hide the code as a toggle. These differ-
ences give the products slightly different flavors but don’t really change your
ability to use them to create and modify Python code.

Moving cells

The same technique you use for moving cells in Notebook also works with Colab.
The only difference is that Colab relies exclusively on toolbar buttons, while Note-
book also has cell movement options on the Edit menu.

Using Hardware Acceleration

TIP

FIGURE 4-10:
Hardware
acceleration
speeds code
execution.

Your Colab code executes on a Google server. All your computing device does is
host a browser that displays the code and its results. Consequently, any special
hardware on your computing device is ignored unless you choose to execute code
locally.

Fortunately, you do have another option when working with Colab. Choose
Edit=> Notebook Settings to display the Notebook Settings dialog box shown in
Figure 4-10. This dialog box gives you a way to add GPU and TPU execution for
your code. The article at https://research.google.com/colaboratory/faq.
htmls#gpu-availability provides additional details on how this feature works.
The availability of a GPU isn’t an invitation to run large computations using Colab.
The research site article tells you about the limitations of the Colab hardware
acceleration (including that it may not be available when you need it).

Notebook settings

Hardware accelerator
None v @

(] omit code cell output when saving this notebook

Cancel Save

64 PART 1 Getting Started with Data Science and Python

https://research.google.com/colaboratory/faq.html#gpu-availability
https://research.google.com/colaboratory/faq.html#gpu-availability

The Notebook Settings dialog box also lets you choose whether to include cell out-
put when saving the notebook. Given that you store your notebook in the cloud in
most cases and that loading large files into your browser can be time consuming,
this feature enables you to restart a session more quickly. Of course, the trade-off
is that you must now regenerate all the outputs you need.

Executing the Code

TIP

For your notebook to be useful, you need to run it at some point. Previous sections
have mentioned the right-pointing arrow that appears in the current cell. Clicking
it runs just the current cell. Of course, you have other options than clicking the
right-pointing arrow, and all these options appear on the Runtime menu. The fol-
lowing list summarizes these options:

3 Running the current cell: Besides clicking the right-pointing arrow, you can
also choose Runtime=>Run the Focused Cell to execute the code in the
current cell.

3 Running other cells: Colab provides options on the Runtime menu for
executing the code in the next cells, the previous cells, or a selection of cells.
Simply choose the option that matches the cell or set of cells you want to
execute.

3 Running all the cells: In some cases, you want to execute all the code in a
notebook. In this case, choose Runtimer>Run All. Execution starts at the top
of the notebook, in the first cell containing code, and continues to the last cell
that contains code in the notebook. You can stop execution at any time by
choosing Runtime=> Interrupt Execution.

Choosing Runtime~> Manage Sessions displays a dialog box containing a list of all
the sessions that are currently executing for your account on Colab. You can use
this dialog box to determine when the code in that notebook last executed and how
much memory the notebook consumes. Click Terminate to end execution for a
particular notebook. Click Close to close the dialog box and return to your current
notebook.

Use the Runtime > Restart Runtime command to restart your runtime after work-

ing with the code for a while. Doing so resets everything so that you can verify that
your code works as intended after making a lot of changes.

CHAPTER 4 Working with Google Colab 65

Viewing Your Notebook

FIGURE 4-11:
Use the table of
contents to
navigate your
notebook.

A notebook has a Table of Contents icon in its right margin. Clicking this icon
displays a pane containing tabs that show various kinds of information about your
notebook. You can also choose specific pieces of information to see from the View
menu. To close this pane, click the X in the upper-right corner of the pane. The
following sections describe each of these pieces of information.

Displaying the table of contents

Choose Viewr> Table of Contents to see a table of contents for your notebook, as
shown in Figure 4-11. Clicking any of the entries takes you to that section of the
notebook.

- . . h — O X
€O P4D54D3_01_Quick Overview.ip, X =+

<« C (Y @ nhttps//colabresearch.googlecom/drive/1Ht0.. @ & Y © #» 0O e H

(& PADSAD3_01_Quick_Overview.ipynb B comment 2% share f% o
File Edit View Insert Runtime Tools Help All changes saved
RAM
:= Table of contents O X * Code Text v sk -
Q, Learning to Use Python Fast
Loading data ~ Learning to Use Python Fast

Training a model

Viewing a result .
= ~ Loading data
Section
[$3
= | ° from sklearn.datasets import fetch_california_housing
N housing = fetch_california housing()

)] X, y = housing.data,housing.target

+ 3z completed at 2:40PM ® x

At the bottom of the pane is a + Section button. Click this button to create a new
header cell below the currently selected cell.

Getting notebook information

When you choose View=> Notebook Info, you see a dialog box open as shown in
Figure 4-12. This dialog box contains the notebook size, settings, and owner.

66 PART 1 Getting Started with Data Science and Python

FIGURE 4-12:

The notebook
information
includes both size
and settings.

Notebook info

Owners: John@JohnMuellerBooks.com
Notebook size: 0.00MB
Private outputs are disabled. Code cell execution output will be saved.

Open notebook settings Close

The Notebook Info tab also includes a link to Open Notebook Settings (see
Figure 4-10) in which you can choose whether the notebook relies on hardware
acceleration, as described in the “Using Hardware Acceleration” section, earlier in
this chapter.

Checking code execution

Colab keeps track of your code as you execute it. Choose View= Executed Code
History to display the Executed Code tab in the pane at the right of the window.
Note that the number associated with the entries in the Executed Code tab may not
match the numbers associated with the associated cells. In addition, each unique
execution of code receives a separate number.

Sharing Your Notebook

You can share your Colab notebooks in a number of ways. For example, you can
save them to GitHub or GitHub gists. However, the two most direct methods are
the following:

¥ Create a share message and send it to the recipient.

3 Obtain a link to the code and send the link to the recipient.

In both cases, you click the Share button in the upper right of the Colab window.
The Share dialog box opens (see Figure 4-13).

CHAPTER 4 Working with Google Colab 67

FIGURE 4-13:

Send a message
or obtain a link to

share your
notebook.

Share @ =
"P4DS4D3_01 Quick Overview.ipynb"

‘ Add people and groups

People with access

John Mueller (you)

John@JohnMuellerBooks.com

General access

& Restricted -

Only people with access can open with the link

(e Copy link) @

When you enter one or more names in the People field, an additional field opens
in which to add a sharing message. You can type a message and click Send to send
the link immediately. If you click Advanced (when available) instead, you see
another dialog box, where you can define how to share the notebook.

At the bottom of the Share dialog box, you see the Copy Link button. Clicking Copy
Link places the URL on the Clipboard for your device, and you can paste it into
messages or other forms of communication with others.

Getting Help

68

The most obvious place to obtain help with Colab is from the Colab Help menu.
This menu contains all the usual entries for accessing frequently asked questions
(FAQs) pages. The menu doesn’t have a link to general help, but you can find gen-
eral help at https://colab.research.google.com/notebooks/welcome.ipynb
(which requires you to log into the Colab site). The menu also provides options for
submitting a bug and sending feedback.

PART 1 Getting Started with Data Science and Python

https://colab.research.google.com/notebooks/welcome.ipynb

FIGURE 4-14:

Use code
snippets to write
your applications
more quickly.

One of the more intriguing Help menu entries is Search Code Snippets. This option
opens the pane shown in Figure 4-14, in which you can search for example code
that could meet your needs with a little modification. Clicking the Insert button
inserts the code at the current cursor location in the cell that has focus. Each of the
entries also shows an example of the code.

€0 P4D54D3_01_Quick_Overviewip, X

& > C)} & htips//colabresearch.googlecom/drive/1Ht0... @ & % © # 0O ° H
& PADS4D3_01_Quick_Overview.ipynb
(LN Gricl Py 8 comment 2% Share £t o
File Edit View Insert Runtime Tools Help All changes saved
RAM _
= + Code + Text v ik T A~
Code snippets X ans
a .
~ Learning to Use Python Fast - :
= Filter code snippets
{x}
. Adding form fields +
B+ Loading data
Camera Capture +
— | Cross-output communication +
.;/ o from sklearn.datasets import fetch_california_housing
] housing = fetch_california_housing() Adding form fields Insert
X, y = housing.data,housing.target
print("The size of the data set is {}".format(X.shape) Forms example
< print("The names of the data columns are {}", housing. Forms support multiple types of fields with
type checking including sliders, date
= The size of the data set is (20648, 8) pickers, input fields, dropdown menus, and
The names of the data columns are {} ['MedInc', 'House dropdown menus that allow input.
| .
#f@ititle Example form fields
~ 0s completed at 3:41PM ® X

CHAPTER 4 Working with Google Colab 69

Getting Your
Hands Dirty
with Data

IN THIS PART ...

Setting up your data science toolbox
Performing essential data interactions
Taming data for use in data science
Bending data to your will

Putting everything together

IN THIS CHAPTER

» Working with Jupyter Notebook

» Interacting with multimedia and
graphics

Chapter 5
Working with Jupyter
Notebook

REMEMBER

p to this point, the book spends a lot of time working with Python to

perform data science tasks without actually engaging the tools provided by

Anaconda much. Yes, a good deal of what you do involves typing in code
and seeing what happens. However, if you don’t actually know how to use your
tools well, you miss opportunities to perform tasks easier and faster. Automation
is an essential part of performing data science tasks in Python.

This chapter is about working with Jupyter Notebook. Earlier chapters give you
some experience with this tool, but those chapters don’t explore Jupyter Notebook
in any detail, and you need to know it a lot better for upcoming chapters. The
skills you develop in this chapter will help you perform tasks in later chapters
with greater speed and far less effort.

The chapter also looks at tasks you can perform with your newfound skills. You
develop even more skills as the book progresses, but these tasks help put your new
skills into perspective and appreciate how you can use them to make working with
Python even easier.

You don’t have to manually type the source code for this chapter. In fact, it’s a lot
easier if you use the downloadable source. The source code for this chapter appears
in the P4DS4D3_05_Understanding the Tools.ipynb source code file. (See the
Introduction for details on where to locate this file.)

CHAPTER 5 Working with Jupyter Notebook 73

Using Jupyter Notebook

FIGURE 5-1:
Notebook makes
adding styles to
your work easy.

The Jupyter Notebook Integrated Development Environment (IDE) is part of the
Anaconda suite of tools. The following sections help you understand some of the
interesting things that Jupyter Notebook (simply called Notebook) can help you do.

Working with styles

Here’s one of the ways in which Notebook excels over just about any other IDE
that you’ll ever use: It helps you to create nice-looking output. Rather than have
a screen full of a whole bunch of plain-old code, you can use Notebook to create
sections and add styles so that the output is nicely formatted. What you can end
up with is a good-looking report that just happens to contain executable code. The
reason for this improved output is the use of styles.

When you type code into Notebook, you place the code in a cell. Each section of
code that you create goes into a separate cell. When you need to create a new cell,
you click Insert Cell Below (the button with a plus sign) on the toolbar. Likewise,
when you decide that you no longer need a cell, you select it and then click Cut Cell
(the button with a scissors) to place the deleted cell on the Clipboard, or choose
Edit= Delete Cells to remove it completely.

The default style for a cell is Code. However, when you click the down arrow next
to the Code entry, you see a listing of styles, as shown in Figure 5-1.

Markdown v
Code

Raw NBConvert
Heading

The various styles shown help you format content in various ways. The Markdown
style is most definitely used to separate varies entries. To try it for yourself, choose
Markdown from the drop-down list, type the heading for this main chapter sec-
tion, # Using Jupyter Notebook, in the first cell; next, click Run. The content
changes to a heading. The single hash (#) tells Notebook that this is a first-level
heading. Notice that clicking Run automatically adds a new cell and places the
cursor in it. To add a second-level heading, choose Markdown from the drop-
down list, type ## Working with styles, and click Run. Figure 5-2 shows that the
two entries are indeed headings and that the second entry is smaller than the first.

74 PART 2 Getting Your Hands Dirty with Data

FIGURE 5-2:
Adding headings
makes separating
content in your
notebooks easy.

- . ~ — [m] X
P4DS4D3_05_Understanding_the X +

C Y @ nttpy//localhost:8888/notebooks/Anaconda%20Projects/PADSAD3/PADSAD3 05.. @ 1 ¥ © #& O 0 H

’ 'Jupyter P4DS4D3 05 Understanding the TooIS Gutesavea) a Logout
File Edit View Insert Cell Kernel Widgets Help Not Trusted ‘ Python 3 (ipykermel) O
B+ = @ B 4+ ¥ prRun B C MW Makdown v

Using Jupyter Notebook

Working with styles

The Markdown style also lets you add HTML content. This markdown content can
contain anything a web page contains with regard to standard HTML tags. Another
way to create a first-level heading is to define the cell type as Markdown, type
<h1>Using Jupyter Notebook</h1>, and then click Run. In general, you use HTML
to provide documentation and links to outside material. Relying on HTML tags
makes it possible to include things like lists or even pictures. In short, you can
actually include an HTML document fragment as part of your notebook, which
makes Notebook much more than a simple means of writing down code.

The use of the Raw NBConvert formatting option is outside the scope of this book.
However, it provides you with the means for including information that shouldn’t
be modified by the notebook converter (NBConvert). You can output notebooks in
a variety of formats, and NBConvert performs this task for you. You can read about
this feature at https://nbconvert.readthedocs.io/en/latest/. The goal of the
Raw NBConvert style is to allow you to include special content, such as Lamport
TeX (LaTeX) content. The LaTeX document system isn’t tied to a particular
editor — it’s simply a means of encoding scientific documents.

Getting Python help

Notebook provides you with the resources to get the commonly required help you
need. To obtain help, select one of the entries on the Help menu, shown in
Figure 5-3.

As shown in Figure 5-3, you not only get help with Notebook and the markdown
used to create entries for a Markdown cell, but you also get a complete Python
reference and references to the most common libraries that developers use. When
you choose an entry, a new web page opens containing the help information you
require.

CHAPTER 5 Working with Jupyter Notebook 75

https://nbconvert.readthedocs.io/en/latest/

FIGURE 5-3:

The Help menu

76

contains a
selection of
common help
topics.

Q

TIP

TIP

User Interface Tour
Keyboard Shortcuts [H]
Edit Keyboard Shortcuts

Notebook Help =
Markdown =
Python Reference =
IPython Reference =
NumPy Reference =
SciPy Reference =

Matplotlib Reference &'

SymPy Reference =
pandas Reference =
About

If you need additional help working with the Notepad interface, choose Help=> User
Interface Tour. Use the right and left arrows to move between helpful balloons
showing the various Notepad features. When you’re finished with your review,
press Esc to exit the tour.

Using magic functions

Amazingly, you really can get magic on your computer! Jupyter provides a special
feature called magic functions. The functions let you perform all sorts of amazing
tasks with your Jupyter console. The following sections provide an overview of the
magic functions. Some of them are used later in the book as well. However, it pays
to spend some time checking out these functions for yourself.

Obtaining the magic functions list

The best way to start working with magic functions is to obtain a list of them by
typing %quickref and pressing Enter. You see a help (pager) window similar to
the one shown in Figure 5-4. The listing can be a little confusing to read, so make
sure to take your time with it.

When you’ve finished reviewing the material, click the X in the pager window that
appears in the lower half of Figure 5-4. To the left of the X is another button that
lets you open the pager window in its own tab in the browser for easier reading.

PART 2 Getting Your Hands Dirty with Data

FIGURE 5-4:

Take your time
going through the
magic function
help, which

has a lot of
information.

REMEMBER

= ™ = [m] X
P4DS4D2_05_Understanding_the X +

&« C {t @ htip://localhost:8888/notebooks/Anaconda%20Projects/P4DS4D3/P4.. @ 12 &+ © #» 0O o H
— Jupyter P4DS4D3_05_Understanding_the_Tools tautesaved) e Logout
File Edit View Insert Cell Kernel Widgets Help Not Trusted | Pytnon 3 (ipykemel) O

B + 3 @& B 4 ¥+ PRun B C P Makdown v =

Using magic functions

Obtaining the magic functions list

In [1]: %quickref

IPython -- An enhanced Interactive Python - Quick Reference Card

obj?, obj?? : Get help, or more help for object (also works as
?obj, ?20bj).

?foo.*abc* : List names in 'foo' containing 'abc’ in them.

%magic : Informatiecn about IPython's ‘magic’ % functions

Magic functions are prefixed by % or %%, and typically take their arguments
without parentheses, quotes or even commas for convenience. Line magics take a
single ¥ and cell magics are prefixed with two %%.

Evamnla magicr £unrtdinn rallss

Working with magic functions

Most magic functions start with either a single percent sign (%) or two percent
signs (%%). Those with a single percent sign work at the command-line level,
and the ones with two percent signs work at the cell level. You generally use magic
functions with a single percent sign.

Most of the magic functions display status information when you use them by
themselves. For example, when you type %cd and click Run, you see the current
directory. To change directories, you type %cd plus the new directory location on
your system.

Discovering objects

Python is all about objects. In fact, you can’t do anything in Python without work-
ing with some sort of object. With this in mind, it’s a good idea to know how to
discover precisely what object you’re working with and what features it provides.
The following sections help you discover the Python objects you use as you code.

Getting object help

You can request information about specific objects using the object name and a
question mark (?). For example, if you want to know more about a 1ist object

CHAPTER 5 Working with Jupyter Notebook 77

78

named mylist, simply type mylist? and click Run. You see a pager window show-
ing the mylist type, content in string form, length, and a document string pro-
viding a quick overview of mylist.

When you need detailed help about mylist, you type help(mylist) and click Run
instead. You see the same help provided as when requesting information about the
Python 1ist. However, you receive the information that’s appropriate to the par-
ticular object you need help with, rather than having to first discover the object
type and then request information for that type. In addition, this information
appears as part of the cell output, rather than in a separate pager window, which
can make referencing the help information easier later.

Obtaining object specifics

The dir() function is often overlooked, but it’s an essential way to learn about
object specifics. To see a list of properties and methods associated with any object,
use dir(<object name>). For example, if you create a list called mylist and want
to know what sorts of things you can do with it, type dir(mylist) and click Run.
The cell displays a list of methods and properties that are specific tomylist.

Using extended Python object help

Using a single question mark causes Python to clip long content. If you want to
obtain the full content for an object, you need to use the double question mark
(??). For example, type mylist?? and click Run to see any clipped details (although
there may not be any additional details). Whenever possible, Python provides you
with the full source code for the object (assuming that the source code is
available).

You can also use magic functions with objects. These functions simplify the help
output and provide only the information you need, as shown here:

¥ %pdoc: Displays the docstring for the object
¥ Ypdef: Shows how to call the object (assuming that the object is callable)

¥ Ypsource: Displays the source code for the object (assuming that the source
is available)

¥ “pfile: Outputs the name of the file that contains the source code for the
object

¥ “pinfo: Displays detailed information about the object (often more than is
provided by help alone)

¥ “pinfo2: Displays extra detailed information about the object (when
available)

PART 2 Getting Your Hands Dirty with Data

Restarting the kernel

Every time you perform a task in your notebook, you create variables, import
modules, and perform a wealth of other tasks that modify the environment. At
some point, you can’t really be sure that something is working as it should. To
overcome this problem, you save your document by clicking Save and Checkpoint
(the button containing a floppy disk symbol), and then click Restart Kernel (the
button with an open circle with an arrow at one end). You can then run your code
again to ensure that it does work as you thought it would.

Sometimes an error also causes the kernel to crash. Your document starts acting
oddly, updates slowly, or shows other signs of corruption. Again, the answer is to
restart the kernel to ensure that you have a clean environment and that the kernel
is running as it should.

attention to the warning because you could lose temporary changes during a ker-

Whenever you click Restart Kernel, you see a warning message. Make sure to pay
nel restart. Always save your document before you restart the kernel.

WARNING

Restoring a checkpoint

At some point, you may find that you made a mistake. Notebook is notably miss-
ing an Undo button: You won’t find one anywhere. Instead, you create checkpoints
each time you finish a task. Creating checkpoints when your document is stable
and working properly helps you recover faster from mistakes.

To restore your setup to the condition contained in a checkpoint, choose
& FilewRevert to Checkpoint. You see a listing of available checkpoints. Simply
select the one you want to use. When you select the checkpoint, you see a warning

warning message. When you click Revert, any old information is gone and the information
found in the checkpoint becomes the current information.

Performing Multimedia and
Graphic Integration

Pictures say a lot of things that words can’t say (or at least they do it with far less
effort). Notebook is both a coding platform and a presentation platform. You may
be surprised at just what you can do with it. The following sections provide a brief
overview of some of the more interesting features.

CHAPTER 5 Working with Jupyter Notebook 79

80

(= =)
T
TECHNICAL
STUFF

Embedding plots and other images

At some point, you might have spotted a notebook with multimedia or graphics
embedded into it and wondered why you didn’t see the same effects in your own
files. In fact, all the graphics examples in the book appear as part of the code.
Fortunately, you can perform some more magic by using the %matplotlib magic
function. The possible values for this function are: 'gtk', 'gtk3', 'inline’,
'nbagg', 'osx', 'qt', 'qt4', 'qt5', 'tk', and 'wx', each of which defines a dif-
ferent plotting backend (the code used to actually render the plot) used to present
information onscreen.

When you run %matplotlib inline, any plots you create appear as part of the
document. That’s how Figure 8-1 (see the section about using NetworkX basics in
Chapter 8) shows the plot that it creates immediately below the affected code.

Note that, according to https://stackoverflow.com/questions/65934740/is-
matplotlib-inline-still-needed, there are situations in which you no longer
need to run %matplotlib inline with newer versions of Python and its associ-
ated libraries. However, the documentation at https://pypi.org/project/
matplotlib-inline/ still includes this feature and states outright that third-
party libraries may continue to need it, so the book will continue to use %mat
plotlib inline to ensure that the examples work as intended.

Loading examples from online sites

Because some examples you see online can be hard to understand unless you have
them loaded on your own system, you should also keep the %10ad magic function
in mind. All you need is the URL of an example you want to see on your system.
For example, try %1oad https://matplotlib.org/_downloads/pyplot_text.py.
When you click Run Cell, Notebook loads the example directly in the cell and com-
ments the %1oad call out. You can then run the example and see the output from
it on your own system.

Obtaining online graphics and multimedia

A lot of the functionality required to perform special multimedia and graphics
processing appears within Jupyter.display. By importing a required class, you
can perform tasks such as embedding images into your notebook. Here’s an exam-
ple of embedding one of the pictures from the author’s blog into the notebook for
this chapter:

from urllib.request import Request, urlopen
from IPython import display

PART 2 Getting Your Hands Dirty with Data

https://stackoverflow.com/questions/65934740/is-matplotlib-inline-still-needed
https://stackoverflow.com/questions/65934740/is-matplotlib-inline-still-needed
https://pypi.org/project/matplotlib-inline/
https://pypi.org/project/matplotlib-inline/
https://matplotlib.org/_downloads/pyplot_text.py

FIGURE 5-5:
Embedding
images can dress
up your notebook
presentation.

req = Request('http://blog. johnmuellerbooks.com/' +
'wp—content/uploads/2015/04/Layer-Hens. jpg',
headers={'User-Agent': 'XYZ/3.0'})
image = urlopen(req, timeout=10).read()

display.Image(image)

The code begins by importing the required resources. It then makes a request for
the file from the website. Notice the inclusion of the headers property. If you
don’t include this property, the call will fail with an error message. The call to
urlopen() actually retrieves the image, which is then displayed using display.
Image(). The output you see from this example appears in Figure 5-5.

Obtaining online graphics and multimedia

In [9]: from urllib.request import Request, urlopen
from IPython impert display

req = Request(http://blog.johnmuellerbooks.com/" +
'wp-content/uploads/2@15/@4/Layer-Hens.jpg’,
headers={'User-Agent': 'XYZ/3.8'})
image = urlopen{req, timeout=18).read()

display.Image(image)

Qut[9]:

When working with embedded images on a regular basis, you might want to set
the form in which the images are embedded. For example, you may prefer to
embed them as PDFs. To perform this task, you use code similar to this:

from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')

CHAPTER 5 Working with Jupyter Notebook 81

82

LD,
TECHNICAL
STUFF

You have access to a wide number of formats when working with a notebook. The
commonly supported formats are 'png', 'retina’, 'jpeg', 'svg', and 'pdf"'.

Note, you may or may not see a warning message when running certain code in
this book. That’s because Python relies on a huge number of libraries that are all
updated on different schedules, so that if you’re using a copy of Python that’s one
minor version different from the product used in this book, you can see these
messages. The blog post at https://blog. johnmuellerbooks.com/2023/05/08/
warning-messages-in-jupyter-notebook-example-code/ tells you a lot more
about these messages and what to do with them. Warning messages are just that,
warnings — they don’t keep the downloadable source from running and are gen-
erally nothing to worry about.

The IPython display system is nothing short of amazing, and this section hasn’t
even begun to scratch the surface for you. For example, you can import a YouTube
video and place it directly into your notebook as part of your presentation if you
want. You can see quite a few more of the display features demonstrated at
http://nbviewer. jupyter.org/github/ipython/ipython/blob/1.x/examples/
notebooks/Part%205%20-%20Rich%20Display#20System. ipynb.

PART 2 Getting Your Hands Dirty with Data

https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb

IN THIS CHAPTER

» Manipulating data streams

» Working with flat and unstructured
files

» Interacting with relational databases
» Using NoSQL as a data source

» Interacting with web-based data

Chapter 6
Working with Real Data

ata science applications require data by definition. It would be nice if you

could simply go to a data store somewhere, purchase the data you need in

an easy-open package, and then write an application to access that data.
However, data is messy. It appears in all sorts of places, in many different forms,
and you can interpret it in many different ways. Every organization has a different
method of viewing data and stores it in a different manner as well. Even when the
data management system used by one company is the same as the data manage-
ment system used by another company, the chances are slim that the data will
appear in the same format or even use the same data types. In short, before you
can do any data science work, you must discover how to access the data in all its
myriad forms. Real data requires a lot of work to use, and fortunately, Python is
up to the task of manipulating it as needed.

This chapter helps you understand the techniques required to access data in a
number of forms and locations. For example, memory streams represent a form of
data storage that your computer supports natively; flat files exist on your hard
drive; relational databases commonly appear on networks (although smaller rela-
tional databases, such as those found in Access, could appear on your hard drive
as well); and web-based data usually appears on the internet. You won’t visit
every form of data storage available (such as that stored on a point-of-sale, or
POS, system). An entire book on the topic probably wouldn’t suffice to cover the
topic of data formats in any detail. However, the techniques in this chapter dem-
onstrate how to access data in the formats you most commonly encounter when
working with real-world data.

CHAPTER 6 Working with Real Data 83

TIP

WARNING

The Scikit-learn library includes a number of toy datasets (small datasets meant
for you to play with). These datasets are complex enough to perform a number of
tasks, such as experimenting with Python to perform data science tasks. Because
this data is readily available and it’s a bad idea to make the examples too compli-
cated to understand, this book relies on toy datasets as input for many of the
examples. Still, the demonstrated techniques work equally well on real-world data.

You don’t have to type the source code for this chapter, and in fact, using the
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_06_Dataset_
Load. ipynb file.

The Colors.txt, Titanic.csv, Values.xls, Colorblk. jpg, and XMLData.xml
files that come with the downloadable source code must appear in the same folder
(directory) as your Notebook files. Otherwise, the examples in the following sec-
tions fail with an input/output (I0) error. The file location varies according to the
platform you’re using. For example, on a Windows system, you find the notebooks
stored in the C: \Users\Username\P4DS4D3 folder, where Username is your login
name. (The book assumes that you’ve used the prescribed folder location of
P4DS4D3, as described in the “Defining the code repository” section of Chapter 3.)
To make the examples work, simply copy the four files from the downloadable
source folder into your Notebook folder.

Uploading, Streaming, and Sampling Data

84

©

REMEMBER

Storing data in local computer memory represents the fastest and most reliable
means to access it. The data could reside anywhere. However, you don’t actually
interact with the data in its storage location. You load the data into memory from
the storage location and then interact with it in memory. This is the technique the
book uses to access all the toy datasets found in the Scikit-learn library, so you see
this technique used relatively often in the book.

Data scientists call the columns in a database features or variables. The rows are
cases. Each row represents a collection of variables that you can analyze.

Uploading small amounts
of data into memory

The most convenient method that you can use to work with data is to load it
directly into memory. This technique shows up a couple of times earlier in the
book but uses the toy dataset from the Scikit-learn library. This section uses the

PART 2 Getting Your Hands Dirty with Data

A

WARNING

Colors.txt file, which contains the following color names and numeric
equivalents:

Color Value Color Value
Red 1 Orange 2
Yellow 3 Green 4
Blue 5 Purple 6
Black 7 White 8

The example also relies on native Python functionality to get the task done. When
you load a file (of any type), the entire dataset is available at all times and the
loading process is quite short. Here is an example of how this technique works.

with open("Colors.txt", 'r') as open_file:
print('Colors.txt content:\n' + open_file.read())

The example begins by using the open() method to obtain a file object. The
open() function accepts the filename and an access mode. In this case, the access
mode is read (r). It then uses the read() method of the file object to read all the
data in the file. If you were to specify a size argument as part of read(), such as
read(15), Python would read only the number of characters that you specify or
stop when it reaches the End Of File (EOF). When you run this example, you see the
following output:

Colors.txt content:
Color Value

Red 1
Orange 2
Yellow 8
Green 4
Blue 5
Purple 6
Black T
White 8

The entire dataset is loaded from the library into free memory. Of course, the
loading process will fail if your system lacks sufficient memory to hold the data-
set. When this problem occurs, you need to consider other techniques for working
with the dataset, such as streaming it or sampling it. In short, before you use this
technique, you must ensure that the dataset will actually fit in memory. You won’t
normally experience any problems when working with the toy datasets in the
Scikit-learn library.

CHAPTER 6 Working with Real Data 85

86

Streaming large amounts of data into
memory

Some datasets will be so large that you won’t be able to fit them entirely in mem-
ory at one time. In addition, you may find that some datasets load slowly because
they reside on a remote site. Streaming solves both issues by enabling you to work
with the data a little at a time. You download individual pieces so that you can
work with just part of the data as you receive it, rather than waiting for the entire
dataset to download. Here’s an example of how you can stream data using Python:

with open("Colors.txt", 'r') as open_file:
for observation in open_file:
print('Reading Data: ' + observation , end="")

This example relies on the Colors.txt file, which contains a header and then a
number of records that associate a color name with a value. The open_file file
object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves to the next
record. Each record appears one at a time in observation. The code outputs the
value in observation using a print statement. You should receive this output:

Reading Data: Color Value
Reading Data: Red 1
Reading Data: Orange 2
Reading Data: Yellow 3
Reading Data: Green 4
Reading Data: Blue 5
Reading Data: Purple 6
Reading Data: Black T
Reading Data: White 8

Python streams each record from the source. This means that you must perform a
read for each record you want.

Generating variations on image data

Sometimes you need to import and analyze image data. The source and type of the
image does make a difference. A number of examples of working with images
appear throughout the book, but a good starting point is to simply read a local
image in, obtain statistics about that image, and display the image onscreen, as
shown in the following code:

PART 2 Getting Your Hands Dirty with Data

FIGURE 6-1:
The test image
is 100 pixels
high and

100 pixels long.

import matplotlib.image as img
import matplotlib.pyplot as plt
#matplotlib inline

image = img.imread("Colorblk.jpg")
print(image.shape)
print(image.size)
plt.imshow(image)

plt.show()

The example begins by importing two matplotlib libraries, image and pyplot.
The image library reads the image into memory, and the pyplot library displays it
onscreen.

After the code reads the file, it begins by displaying the image shape property —
the number of horizontal pixels, vertical pixels, and pixel depth (the number of
bits used to represent colors). Figure 6-1 shows that the image is 100 x 100 x 3
channels (one for each color component: red, green, and blue). The image size
property is the combination of these three elements, or 30,000 bytes.

(100, 100, 3)
30000

The next step is to load the image for plotting by using imshow(). The final call,
plt.show(), displays the image onscreen, as shown in Figure 6-1. This technique
represents just one of a number of methods for interacting with images using
Python so that you can analyze them in some manner.

CHAPTER 6 Working with Real Data 87

88

TIP

Sampling data in different ways

Data streaming obtains all the records from a data source. You may find that you
don’t need all the records. In that case, you can save time and resources by simply
sampling the data (retrieving records a set number of records apart, such as every
fifth record) or by making random samples. The following code shows how to
retrieve every other record in the Colors.txt file:

n=2
with open("Colors.txt", 'r') as open_file:
for j, observation in enumerate(open_file):
if j % n==0:
print('Reading Line: ' + str(j) +
' Content: ' + observation , end="")

The basic idea of sampling is the same as streaming. However, in this case, the
application uses enumerate() to retrieve a row number. When j % n == 0, the
row is one that you want to keep and the application outputs the information. In
this case, you see the following output:

Reading Line: @ Content: Color Value
Reading Line: 2 Content: Orange 2
Reading Line: 4 Content: Green 4
Reading Line: 6 Content: Purple 6
Reading Line: 8 Content: White 8

The value of n is important in determining which records appear as part of the
dataset. Try changing n to 3. The output will change to sample just the header
(Line: @) and rows 3 and 6.

You can perform random sampling as well. All you need to do is randomize the
selector, like this:

from random import random
sample_size = 0.25
with open("Colors.txt", 'r') as open_file:
for j, observation in enumerate(open_file):
if random()<=sample_size:
print('Reading Line: ' + str(j) +
' Content: ' + observation, end="")

To make this form of selection work, you must import the random class. The
random() method outputs a value between 0 and 1. However, Python randomizes
the output so that you don’t know what value you receive (assuming you receive
any at all). The sample_size variable contains a number between 0 and 1 to deter-
mine the sample size. For example, @.25 selects 25 percent of the items in the file.

PART 2 Getting Your Hands Dirty with Data

The output will still appear in numeric order. For example, you won’t see Green
come before Orange. However, the items selected are random, and you won’t
always get precisely the same number of return values. Here is an example of what
you may see as output (although your output will likely vary):

Reading Line: 1 Content: Red 1
Reading Line: 4 Content: Green 4
Reading Line: 8 Content: White 8

Accessing Data in Structured Flat-File Form

©

REMEMBER

In many cases, the data you need to work with won’t appear within a library, such
as the toy datasets in the Scikit-learn library. Real-world data usually appears in
a file of some type, and a flat file presents the easiest kind of file to work with. In
a flat file, the data appears as a simple list of entries that you can read one at a
time, if desired, into memory. Depending on the requirements for your project,
you can read all or part of the file.

A problem with using native Python techniques is that the input isn’t intelligent.
For example, when a file contains a header, Python simply reads it as yet more
data to process, rather than as a header. You can’t easily select a particular column
of data. The pandas library used in the sections that follow makes it much easier
to read and understand flat-file data. Classes and methods in the pandas library
interpret (parse) the flat-file data to make it easier to manipulate.

The least formatted and therefore easiest-to-read flat-file format is the text file.
However, a text file also treats all data as strings, so you often have to convert
numeric data into other forms. A comma-separated value (CSV) file provides more
formatting and more information, but it requires a little more effort to read. At the
high end of flat-file formatting are custom data formats, such as an Excel file,
which contains extensive formatting and could include multiple datasets in a
single file.

The following sections describe these three levels of flat-file dataset and show
how to use them. These sections assume that the file structures the data in some
way. For example, the CSV file uses commas to separate data fields. A text file
might rely on tabs to separate data fields. An Excel file uses a complex method to
separate data fields and to provide a wealth of information about each field. You
can work with unstructured data as well, but working with structured data is
much easier because you know where each field begins and ends.

CHAPTER 6 Working with Real Data 89

90

Reading from a text file

Text files can use a variety of storage formats. However, a common format is to
have a header line that documents the purpose of each field, followed by another
line for each record in the file. The file separates the fields using tabs. Refer to the
“Streaming large amounts of data into memory” section, earlier in this chapter,
for an example of the Colors. txt file used for the example in this section.

Native Python provides a wide variety of methods you can use to read such a file.
However, it’s far easier to let someone else do the work. In this case, you can use
the pandas library to perform the task. Within the pandas library, you find a set of
parsers, or code used to read individual bits of data and determine the purpose of
each bit according to the format of the entire file. Using the correct parser is
essential if you want to make sense of file content. In this case, you use the read_
table() method to accomplish the task, as shown in the following code:

import pandas as pd
color_table = pd.io.parsers.read_table("Colors.txt")
print(color_table)

The code imports the pandas library, uses the read_table() method to read
Colors.txt into a variable named color_table, and then displays the resulting
memory data onscreen using the print function. Here’s the output you can expect
to see from this example.

Color Value
Red

Orange
Yellow
Green
Blue

Purple
Black
White

=N O Ok N
N O O & W N =

Notice that the parser correctly interprets the first row as consisting of field names.
It numbers the records from o through 7. Using read_table() method arguments,
you can adjust how the parser interprets the input file, but the default settings
usually work best. You can read more about the read_table() arguments at
https://pandas.pydata.org/docs/reference/api/pandas.read_table.html.

Reading CSV delimited format

A CSV file provides more formatting than a simple text file. In fact, CSV files can
become quite complicated. There is a standard that defines the format of CSV files,

PART 2 Getting Your Hands Dirty with Data

https://pandas.pydata.org/docs/reference/api/pandas.read_table.html

FIGURE 6-2:

The raw format of
a CSVfile is still
text and quite
readable.

and you can see it at https://tools.ietf.org/html/rfc4180. The CSV file used

for this example is quite simple:

¥ A header defines each of the fields

¥ Fields are separated by commas

¥ Records are separated by linefeeds

¥ Strings are enclosed in double quotes

¥ Integers and real numbers appear without double quotes

Figure 6-2 shows the raw format for the Titanic.csv file used for this example. You
can see the raw format using any text editor.

"1" "st" "survived","female” 29,00

"2" "1st","survived","male",0.916700006,1,2
"3""st","died","female",2,1,2

"4" "1st" "died","male",30,1,2
"5""1st","died","female”,25,1,2
"6","1st","survived","male",48,0,0

"7 "st” "survived"”,"female” 63,1,0
"8","1st","died","male",39,0,0

"g" st "survived","female”,53,2,0
"10","1st","died","male",71,0,0
11" "1st","died","male" 47,1,0
"12" "1st" "survived" "female” 18,1
"13","1st""survived","female”, 24,0
"14" "st" "survived","female" 26,0
"15" "1st" "survived" "male" 80,0,0

0
0
0

s

"I titanic.csv - Notepad == ==
File Edit Format View Help
" npclass” "survived”,"sex”"age","sibsp” "parch” i

Applications such as Excel can import and format CSV files so that they become
easier to read. Figure 6-3 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use features such
as data sorting, you could select header columns to obtain the desired result. For-
tunately, pandas also makes it possible to work with the CSV file as formatted
data, as shown in the following example:

import pandas as pd

titanic = pd.io.parsers.read_csv("Titanic.csv")

X = titanic[['age']]
print(X)

CHAPTER 6 Working with Real Data o1

https://tools.ietf.org/html/rfc4180

FI=A= N | B9 B3 (4 | 44 2b (77 | ttanicesv - Mi. o = 52
E Hon | Inse Page Forn| Dat: Revi| Viev Dewe| Loac| Nua Tear| @2 9 o @ &
Al - I v
A B C D E F G H—
-~
i pclass survived sex age sibsp parch —
2 1 1st survived female 29 0 0 B
3 2 1st survived male 0.9167 1 2
4 3 1st died female 2 1 2
FIGURE 6-3: 5 4 1st died male 30 1 2
Use an 6 5 1st died female 25 1 2
application such 7 6 1st survived male 43 0 0 3
as Excel to create W on| Gtanic f mKIN 3 1~ [
a formatted CSV Ready | 23 [EBEE 100 (<) [} (+
presentation.

Notice that the parser of choice this time is read_csv(), which understands CSV
files and provides you with new options for working with it. (You can read more
about this parser at https://pandas.pydata.org/docs/reference/api/
pandas.read_csv.html.) Selecting a specific field is quite easy — you just supply
the field name as shown. The output from this example looks like this (some
values omitted for the sake of space):

age
29.0000
0.9167
2.0000
30.0000
25.0000

B W N,

1304 14 .5000
1305 9999 .0000
1306 26.5000
1307 27 .0000
1308 29.0000
[1309 rows x 1 columns]

Of course, a human-readable output like this one is nice when working through

@ an example, but you may also need the output as a list. To create the output as a

list, you simply change the third line of code to read X = titanic[['age']].

TIP values. Notice the addition of the values property. The output changes to some-
thing like this (some values omitted for the sake of space):

[[29.]
[©.91670001]
[2.]

92 PART 2 Getting Your Hands Dirty with Data

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

FIGURE 6-4:

An Excel file is
highly formatted
and might
contain
information of
various types.

Reading Excel and other
Microsoft Office files

Excel and other Microsoft Office applications provide highly formatted content.
You can specify every aspect of the information these files contain. The Values.
x1s file used for this example provides a listing of sine, cosine, and tangent values
for a random list of angles. You can see this file in Figure 6-4.

@S 9- . O3 (@] 44 20, [T |- Valuesxls [Co. = = 2
E Hon | Inse Page¢ Forn| Dat: Revi Viev Dewe Loac MNua Tear| %2 9 = Bp 2
G19 - I v
A B c D E =
1 Angle (Degrees) Sine Cosine Tangent t
2 40.29472 0.646719 0.762728 0.847903
3 216.71810 -0.597878 -0.801587 0.745868
4 105.17861 0.965114 -0.261829 -3.686049
5 97.38824 0.991658 -0.128592 -7.711971
6 120.87683 0.858272 -0.5131%4 -1.672413
7 316.08650 -0.693572 0.720388 -0.962775
8 317.88761 -0.670587 0.741831 -0.903962
9 60.82377 0.873124 0.487497 1.791034
10 34.41988 0.565253 0.824917 0.685224
11 97 /1788 n 998791 -N N49161 .20 21545 _
W 4 » v | Sheetl ~Sheet? ~Sheet3 ~#3 = [I]4 I »[]
Ready | 20 |ER|E@ [100% (=) {} +

When you work with Excel or other Microsoft Office products, you begin to experi-
ence some complexity. For example, an Excel file can contain more than one
worksheet, so you need to tell pandas which worksheet to process. In fact, you can
choose to process multiple worksheets, if desired. When working with other Office
products, you have to be specific about what to process. Just telling pandas to
process something isn’t good enough. Here’s an example of working with the
Values.xls file.

import pandas as pd

xls = pd.ExcelFile("Values.x1s")

trig_values = xls.parse('Sheetl', index_col=None,
na_values=['NA'])

print(trig_values)

CHAPTER 6 Working with Real Data 03

S
S5
TECHNICAL
STUFF

TIP

Note that you may have to install the x1rd library to read the .x1s file. The down-
loadable source contains a special line, !pip install xlrd, to perform this task.

The code begins by importing the pandas library as normal. It then creates a
pointer to the Excel file using the ExcelFile() constructor. This pointer, x1s, lets
you access a worksheet, define an index column, and specify how to present empty
values. The index column is the one that the worksheet uses to index the records.
Using a value of None means that pandas should generate an index for you. The
parse() method obtains the values you request. You can read more about the
Excel parser options at https://pandas.pydata.org/docs/reference/api/
pandas.ExcelFile.parse.html.

You don’t absolutely have to use the two-step process of obtaining a file pointer
and then parsing the content. You can also perform the task using a single step
like this: trig_values = pd.read_excel("Values.xls", 'Sheetl1', index_
col=None, na_values=['NA']). Because Excel files are more complex, using the
two-step process is often more convenient and efficient because you don’t have to
reopen the file for each read of the data.

Sending Data in Unstructured File Form

94

Unstructured data files consist of a series of bits. The file doesn’t separate the bits
from each other in any way. You can’t simply look into the file and see any struc-
ture because there isn’t any to see. Unstructured file formats rely on the file user
to know how to interpret the data. For example, each pixel of a picture file could
consist of three 32-bit fields. Knowing that each field is 32-bits is up to you.
A header at the beginning of the file may provide clues about interpreting the file,
but even so, it’s up to you to know how to interact with the file.

The example in this section shows how to work with a picture as an unstructured
file. The example image is a public domain offering from https://commons.
wikimedia.org/wiki/Main_Page. To work with images, you need to access the
Scikit-image library (https://scikit-image.org/), which is a free-of-charge
collection of algorithms used for image processing. You can find a tutorial for this
library at http://scipy-lectures.org/packages/scikit-image/. The first task
is to be able to display the image onscreen using the following code. (This code can
require a little time to run. The image is ready when the busy indicator disappears
from the Notebook tab.)

from skimage.io import imread
from skimage.transform import resize

PART 2 Getting Your Hands Dirty with Data

https://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.parse.html
https://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.parse.html
https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
https://scikit-image.org/
http://scipy-lectures.org/packages/scikit-image/

FIGURE 6-5:

The image
appears onscreen
after you render
and show it.

from matplotlib import pyplot as plt
import matplotlib.cm as cm

example_file = ("https://upload.wikimedia.org/" +
"wikipedia/commons/7/7d/Dog_face.png")

image = imread(example_file, as_gray=True)

plt.imshow(image, cmap=cm.gray)

plt.show()

The code begins by importing a number of libraries. It then creates a string that
points to the example file online and places it in example_file. This string is part
of the imread() method call, along with as_gray, which is set to True. The as_
gray argument tells Python to turn any color images into gray scale. Any images
that are already in gray scale remain that way.

Now that you have an image loaded, it’s time to render it (make it ready to display
onscreen). The imshow() function performs the rendering and uses a grayscale
color map. The show() function actually displays image for you, as shown in
Figure 6-5.

You now have an image in memory, and you may want to find out more about it.
When you run the following code, you discover the image type and size:

print("data type: %s, shape: %s" %
(type(image), image.shape))

CHAPTER 6 Working with Real Data 95

96

FIGURE 6-6:
Cropping the
image makes

it smaller.

The output from this call tells you that the image type is a numpy.ndarray and
that the image size is 90 pixels by 90 pixels. The image is actually an array of
pixels that you can manipulate in various ways. For example, if you want to crop
the image, you can use the following code to manipulate the image array:

image2 = image([5:70,0:70]
plt.imshow(image2, cmap=cm.gray)
plt.show()

The numpy . ndarray in image?2 is smaller than the one in image. However, you may
find that Notebook compensates by making the output appear larger (even though
it’s actually smaller, as shown by the markings). Figure 6-6 shows typical results.
The purpose of cropping the image is to make it a specific size. Both images must
be the same size for you to analyze them. Cropping is one way to ensure that the
images are the correct size for analysis.

Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis:

image3 = resize(image2, (3@, 30), mode='symmetric')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" %

(type(image3), image3.shape))

The output from the print () function tells you that the image is now 30 pixels by
30 pixels in size. You can compare it to any image with the same dimensions.

PART 2 Getting Your Hands Dirty with Data

After you have all the images the right size, you need to flatten them. A dataset
row is always a single dimension, not two dimensions. The image is currently an
array of 30 pixels by 30 pixels, so you can’t make it part of a dataset. The following
code flattens image3 so that it becomes an array of 900 elements that is stored in
image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
(type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a dataset
and then use the dataset for analysis purposes. The size is 900 elements, as
anticipated.

Managing Data from Relational Databases

REMEMBER

Databases come in all sorts of forms. For example, AskSam (http://asksam.
en.softonic.com/) is a kind of free-form textual database. However, the vast
majority of data used by organizations rely on relational databases because these
databases provide the means for structuring massive amounts of complex data in
an organized manner that makes the data easy to manipulate. The goal of a data-
base manager is to make data easy to manipulate. The focus of most data storage
is to make data easy to retrieve.

Relational databases accomplish both the manipulation and data retrieval objec-
tives with relative ease. However, because data storage needs come in all shapes
and sizes for a wide range of computing platforms, there are many different rela-
tional database products. In fact, for the data scientist, the proliferation of differ-
ent Database Management Systems (DBMSs) using various data layouts is one of
the main problems you encounter with creating a comprehensive dataset for
analysis.

The one common denominator between many relational databases is that they all
rely on a form of the same language to perform data manipulation, which makes
the data scientist’s job easier. The Structured Query Language (SQL) (pronounced
“sequel”) lets you perform all sorts of management tasks in a relational database,
retrieve data as needed, and even shape it in a particular way so that performing
additional shaping is unnecessary.

CHAPTER 6 Working with Real Data Q7

http://asksam.en.softonic.com/
http://asksam.en.softonic.com/

Creating a connection to a database can be a complex undertaking. For one thing,
you need to know how to connect to that particular database. However, you can
divide the process into smaller pieces. The first step is to gain access to the data-
base engine. You use two lines of code similar to the following code (but the code
presented here is not meant to execute and perform a task):

from sglalchemy import create_engine
engine = create_engine('sqlite:///:memory: ')

After you have access to an engine, you can use the engine to perform tasks spe-
cific to that DBMS. The output of a read method is always a DataFrame object that
contains the requested data. To write data, you must create a DataFrame object or
use an existing DataFrame object. You normally use these methods to perform
most tasks:

¥ read_sql_table(): Reads data from a SQL table to a DataFrame object

¥ read_sql_query(): Reads data from a database using a SQL query to a
DataFrame object

¥ read_sql(): Reads data from either a SQL table or query to a DataFrame
object

¥ DataFrame.to_sql(): Writes the content of a DataFrame object to the
specified tables in the database

The sqlalchemy library provides support for a broad range of SQL databases. The
following list contains just a few of them:

¥ SQlite

» MysQL

¥ PostgreSQL

¥ SQL Server

¥ Other relational databases, such as those you can connect to using Open
Database Connectivity (ODBC)

You can discover more about working with databases at https://docs.
sqlalchemy.org/en/latest/core/engines.html. The techniques that you dis-
cover in this book using the toy databases also work with relational databases.

98 PART 2 Getting Your Hands Dirty with Data

https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.sqlalchemy.org/en/latest/core/engines.html

Interacting with Data from
NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a wealth of
databases of all sorts that don’t have to rely on SQL. These Not only SQL (NoSQL)
databases are used in large data storage scenarios in which the relational model
can become overly complex or can break down in other ways. The databases gen-
erally don’t use the relational model. Of course, you find fewer of these DBMSes
used in the corporate environment because they require special handling and
training. Still, some common DBMSes are used because they provide special func-
tionality or meet unique requirements. The process is essentially the same for
using NoSQL databases as it is for relational databases:

1. Import required database engine functionality.
2. Create adatabase engine.

3. Make any required queries using the database engine and the functionality
supported by the DBMS.

The details vary quite a bit, and you need to know which library to use with your
particular database product. For example, when working with MongoDB (https://
www . mongodb.org/), you must obtain a copy of the PyMongo library (https://
pypi.org/project/pymongo/) and use the MongoClient class to create the
required engine. The MongoDB engine relies heavily on the find() function to
locate data. Following is a pseudo-code example of a MongoDB session. (You
won’t be able to execute this code in Notebook; it’s shown only as an example.)

import pymongo

import pandas as pd

from pymongo import Connection

connection = Connection()

db = connection.database_name

input_data = db.collection_name

data = pd.DataFrame(list(input_data.find()))

CHAPTER 6 Working with Real Data 99

https://www.mongodb.org/
https://www.mongodb.org/
https://pypi.org/project/pymongo/
https://pypi.org/project/pymongo/

Accessing Data from the Web

It would be incredibly difficult (perhaps impossible) to find an organization today
that doesn’t rely on some sort of web-based data. Most organizations use web
services of some type. A web service is a kind of web application that provides a
means to ask questions and receive answers. Web services usually host a number
of input types. In fact, a particular web service may host entire groups of query
inputs.

Another type of query system is the microservice. Unlike the web service,
microservices have a specific focus and provide only one specific query input and
output. Using microservices has specific benefits that are outside the scope of this
book to address, but essentially they work like tiny web services, so that’s how
this book addresses them.

One of the most beneficial data access techniques to know when working with web
data is accessing XML. All sorts of content types rely on XML, even some web
pages. Working with web services and microservices means working with XML (in
most cases). With this in mind, the example in this section works with XML data
found in the XMLData.xm! file, shown in Figure 6-7. In this case, the file is simple
and uses only a couple of levels. XML is hierarchical and can become quite a few
levels deep.

APlIs AND OTHER WEB ENTITIES

A data scientist may have a reason to rely on various web Application Programming
Interfaces (APIs) to access and manipulate data. In fact, the focus of an analysis might
be the API itself. This book doesn't discuss APIs in any detail because each APl is unique,
and APIs operate outside the normal scope of what a data scientist might do. For exam-
ple, you might use a product such as jQuery (https://jquery.com/) to access data
and manipulate it in various ways when working with a web application. However, the
techniques for doing so are more along the lines of writing an application than employ-
ing a data science technique.

It's important to realize that APIs can be data sources and that you may need to use one
to achieve some data input or data-shaping goals. In fact, you find many data entities
that resemble APIs but don't appear in this book. Windows developers can create
Component Object Model (COM) applications that output data onto the web that you
could possibly use for analysis purposes. In fact, the number of potential sources is
nearly endless. This book focuses on the sources that you use most often and in the
most conventional manner. Keeping your eyes open for other possibilities, though,

is always a good idea.

100 PART 2 Getting Your Hands Dirty with Data

https://jquery.com/

FIGURE 6-7:
XMLis a
hierarchical
format that can
become quite
complex.

"7 XMLData.xml - Notepad (===
File Edit Format View Help

<MyDatasst>
<Record>
<Number>1</Number>
<String>First</String>
<Boolean>True</Boolean>
</Record>
<Record>
<Number>2</Number>
<8tring>»Second</String>
<Boolean>False</Boolean>
</Record>
<Record>
<Number>3</Number>
<String>Third</sString>
<Boolean>True</Boolean>
</Record>
<Record>
<Number>4</Number>
<8tring>»Fourth</String>
<Boolean»False</Boolean>
</Record>
</MyDatasest>

The technique for working with XML, even simple XML, can be a bit harder than

anything else you’ve worked with so far. Here’s the code for this example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String',
'Boolean'))

for i in range(9,4):

obj = root.getchildren()[i].getchildren()

row = dict(zip(['Number', 'String', 'Boolean'],
[obj[@] .text, obj[1].text,
obj[2].text]))

row_s = pd.Series(row)

row_s.name = 1

row_s = row_s.to_frame().transpose()

df = pd.concat([df, row_s])

print(df)

CHAPTER 6 Working with Real Data

101

http://row_s.name

102

The example begins by importing libraries and parsing the data file using the
objectify.parse() method. Every XML document must contain a root node,
which is <MyDataset>, as shown here:

<MyDataset>

<Record>
<Number>1 </Number>
<String>First</String>
<Boolean>True</Boolean>

</Record>

<Record>
<Number>2</Number>
<String>Second</String>
<Boolean>False</Boolean>

</Record>

<Record>
<Number>3</Number>
<String>Third</String>
<Boolean>True</Boolean>

</Record>

<Record>
<Number>4</Number>
<String>Fourth</String>
<Boolean>False</Boolean>

</Record>

</MyDataset>

The root node encapsulates the rest of the content, and every node under it is a
child. To do anything practical with the document, you must obtain access to the
root node using the getroot () method.

The next step is to create an empty DataFrame object that contains the correct
column names for each record entry: Number, String, and Boolean. As with all
other pandas data handling, XML data handling relies on a DataFrame. The for
loop fills the DataFrame with the four records from the XML file (each in a
<Record> node).

The process looks complex but follows a logical order. The obj variable contains
all the children for one <Record> node. These children are loaded into a dictionary
object in which the keys are Number, String, and Boolean to match the DataFrame
columns.

PART 2 Getting Your Hands Dirty with Data

At this point, row is converted to a Series, row_s. A numeric name value is added
to row_s, which is then converted to a DataFrame using the to_frame() function.
If you looked at row_s at this point, you’d see that it has the wrong orientation, so
a call to transpose() aligns it with DataFrame df.

There is now a DataFrame object that contains the row data. It then concatenates
the row to df using the pd.concat() function. To see that everything worked as
expected, the code prints the result, which looks like this:

Number String Boolean
1 First True
2 Second False
3 Third True
4 Fourth False

W N -~

USING THE JSON ALTERNATIVE

You shouldn’t get the idea that all data you work with on the web is in XML format. You
may need to consider other popular alternatives as part of your development plans.
One of the most popular today is JavaScript Object Notation (JSON) (https: //www.
json.org/json—en.html). JSON proponents state that JSON takes less space, is faster
to use, and is easier to work with than XML (see https: //www.w3schools.com/ js/
js_json_xml . asp for details). Consequently, you may find that your next project relies
on JSON data, rather than XML, when dealing with certain web services and
microservices.

If your data formatting choices consisted of just XML and JSON, you might feel that
interacting with data is quite manageable. However, a lot of other people have ideas of
how to format data so that you can parse it quickly and easily. In addition, developers
now have a stronger emphasis on understanding the data stream, so some formatting
technigues emphasize human readability. You can read about some of these other
alternatives athttps://slashdot.org/software/p/XML/alternatives. One of
the more important of these alternatives is Yet Another Markup Language or YAML Ain't
Markup Language (YAML), depending on whom you talk to and which resources you
use (https://yaml.org/spec/1.2.2/), but be prepared to do your homework when
working through the particulars of any new projects.

CHAPTER 6 Working with Real Data 103

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/js/js_json_xml.asp
https://slashdot.org/software/p/XML/alternatives
https://yaml.org/spec/1.2.2/

IN THIS CHAPTER

» Working with NumPy and pandas

» Working with symbolic variables
» Considering the effect of dates
» Fixing missing data

» Slicing, combining, and modifying
data elements

Chapter 7
Processing Your Data

he characteristics, content, type, and other elements that define your data

in its entirety forms the data shape. The shape of your data determines the

kinds of tasks you can perform with it. In order to make your data amenable
to certain types of analysis, you must shape it into a different form. Think of the
data as clay and you as the potter, because that’s the sort of relationship you have
with it. Instead of using your hands to shape the data, you rely on functions and
algorithms to perform the task. This chapter helps you understand the tools you
have available to shape data and the ramifications of shaping it.

lines of rearranging the data so that you can work with it in an easier manner. It’s
akin to rearranging the contents of a shelf in your home so that you can see the
TIP shelf contents more easily.

‘ Note that shaping data doesn’t mean changing its value. Think more along the

Also in this chapter, you consider the problems associated with shaping. For
example, you need to know what to do when data is missing from a dataset. It’s
important to shape the data correctly to avoid ending up with an analysis that
simply doesn’t make sense. Likewise, some data types, such as dates, can present
problems. Again, you need to tread carefully to ensure that you get the desired
result so that the dataset becomes more useful and amenable to analysis of vari-
ous sorts.

CHAPTER 7 Processing Your Data 105

©

REMEMBER

WARNING

The goal of some types of data shaping is to create a larger dataset. In many cases,
the data you need to perform an analysis doesn’t appear in a single database or in
a particular form. You need to shape the data and then combine it so that you have
a single dataset in a known format before you can begin the analysis. Combining
data successfully can be an art form because data often defies simple analysis or
quick fixes.

You don’t have to type the source code for this chapter; using the downloadable
source is a lot easier. The source code for this chapter appears in the P4DS4D3_07_
Getting_Your_Data_in_Shape.ipynb file. See the Introduction for the location of
this file.

Make sure that the XMLData2.xml file that comes with the downloadable source
code appears in the same folder (directory) as your Notebook files. Otherwise, the
examples in the following sections fail with an input/output (I/O) error. The file
location varies according to the platform you’re using. For example, on a Windows
system, you find the notebooks stored in the C: \Users\Username \P4DS4D3 folder,
where Username is your login name. (The book assumes that you’ve used the pre-
scribed folder location of P4DS4D3, as described in the “Defining the code repos-
itory” section of Chapter 3.) To make the examples work, simply copy the file
from the downloadable source folder into your Notebook folder. See the Introduc-
tion for instructions on downloading the source code.

Juggling between NumPy and pandas

106

There is no question that you need NumPy at all times. The pandas library is actu-
ally built on top of NumPy. However, you do need to make a choice between
NumPy and pandas when performing tasks. You need the low-level functionality
of NumPy to perform some tasks, but pandas makes things so much easier that
you want to use it as often as possible. The following sections describe when to
use each library in more detail.

Knowing when to use NumPy

Developers built pandas on top of NumPy. As a result, every task you perform
using pandas also goes through NumPy. To obtain the benefits of pandas, you pay
a performance penalty in most cases (see https://towardsdatascience.com/
speed-testing-pandas-vs-numpy-ffbf80070ee7). Given that computer hard-
ware can make up for a lot of performance differences today, the speed issue may
not be a concern at times, but when speed is essential, NumPy is always the better
choice.

PART 2 Getting Your Hands Dirty with Data

https://towardsdatascience.com/speed-testing-pandas-vs-numpy-ffbf80070ee7
https://towardsdatascience.com/speed-testing-pandas-vs-numpy-ffbf80070ee7

Knowing when to use pandas

You use pandas to make writing code easier and faster. Because pandas does a lot
of the work for you, you could make a case for saying that using pandas also
reduces the potential for coding errors. The essential consideration, though, is
that the pandas library provides rich time-series functionality, data alignment,
NA-friendly statistics, and groupby(), merge(), and join() methods. Normally,
you need to code these features when using NumPy, which means you keep rein-
venting the wheel.

As the book progresses, you discover just how useful pandas can be performing
such tasks as binning (a data preprocessing technique designed to reduce the effect
of observational errors) and working with a dataframe (a two-dimensional labeled
data structure with columns that can potentially contain different data types) so
that you can calculate statistics on it. For example, in Chapter 9, you discover how
to perform both discretization and binning. Chapter 13 shows actual binning exam-
ples, such as obtaining a frequency for each categorical variable of a dataset. In fact,
many of the examples in Chapter 13 don’t work without binning. In other words,
don’t worry too much right now about knowing precisely what binning is or why
you need to use it — examples later in the book discuss the topic in detail. All you
really need to know is that pandas does make your work considerably easier.

IT'S ALL IN THE PREPARATION

This book may seem to spend a lot of time massaging data and little time in actually
analyzing it. However, the majority of a data scientist's time is actually spent preparing
data because the data is seldom in any order to actually perform analysis. To prepare
data for use, a data scientist must

® Getthe data

® Aggregate the data

® Create data subsets

® Clean the data

® Develop a single dataset by merging various datasets together

Fortunately, you don't need to die of boredom while wading your way through these
various tasks. Using Python and the various libraries it provides makes the task a lot
simpler, faster, and more efficient, which is the point of spending all of the time on
seemingly mundane topics in these early chapters. The better you know how to use

Python to speed your way through these repetitive tasks, the sooner you begin having
fun performing various sorts of analysis on the data.

CHAPTER 7 Processing Your Data 107

Validating Your Data

108

REMEMBER

When it comes to data, no one really knows what a large database contains. Yes,
everyone has seen bits and pieces of it, but when you consider the size of some
databases, viewing it all would be physically impossible. Because you don’t know
what’s in there, you can’t be sure that your analysis will actually work as desired
and provide valid results. In short, you must validate your data before you use it
to ensure that the data is at least close to what you expect it to be. This means
performing tasks such as removing duplicate records before you use the data for
any sort of analysis (duplicates would unfairly weight the results).

However, you do need to consider what validation actually does for you. It doesn’t
tell you that the data is correct or that there won’t be values outside the expected
range. In fact, later chapters help you understand the techniques for handling
these sorts of issues. What validation does is ensure that you can perform an
analysis of the data and reasonably expect that analysis to succeed. Later, you
need to perform additional massaging of the data to obtain the sort of results that
you need in order to perform the task you set out to perform in the first place.

Figuring out what's in your data

Figuring out what your data contains is important because checking data by hand
is sometimes simply impossible due to the number of observations and variables.
In addition, hand verifying the content is time consuming, error prone, and, most
important, really boring. Finding duplicates is important because you end up

¥ Spending more computational time to process duplicates, which slows your
algorithms down.

¥ Obtaining false results because duplicates implicitly overweight the results.
Because some entries appear more than once, the algorithm considers these
entries more important.

As a data scientist, you want your data to enthrall you, so it’s time to get it to talk
to you — not literally, of course, but through the wonders of pandas, as shown in
the following example:

from 1xml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

PART 2 Getting Your Hands Dirty with Data

for i in range(9,4):
obj = root.getchildren()[i].getchildren()
row = dict(zip(['Number', 'String', 'Boolean'],
[obj[@] .text, obj[1].text,
obj[2] .text]))
row_s = pd.Series(row)
row_s.name = i

row_s = row_s.to_frame().transpose()
df = pd.concat([df, row_s])

search = pd.DataFrame.duplicated(df)
print(df)
print(f"\n{search[search == True]}")

This example shows how to find duplicate rows. It relies on a modified version of
the XMLData.xm1 file, XMLData2.xml, which contains a simple repeated row in it.
A real data file contains thousands (or more) of records and possibly hundreds of
repeats, but this simple example does the job. The example begins by reading the
data file into memory using the same technique you explored in Chapter 6. It then
places the data into a DataFrame.

At this point, your data is corrupted because it contains a duplicate row. However,
you can get rid of the duplicated row by searching for it. The first task is to create
a search object containing a list of duplicated rows by calling pd.DataFrame.
duplicated(). The duplicated rows contain a True next to their row number.

Of course, now you have an unordered list of rows that are and aren’t duplicated.
The easiest way to determine which rows are duplicated is to create an index in
which you use search == True as the expression. Following is the output you see
from this example. Notice that row 3 is duplicated in the DataFrame output and
that row 3 is also called out in the search results:

Number String Boolean

0 1 First True
1 2 Second False
2 8 Third True
& 3 Third True
& True

dtype: bool

CHAPTER 7 Processing Your Data 109

Removing duplicates

To get a clean dataset, you want to remove the duplicates from it. Fortunately, you
don’t have to write any weird code to get the job done — pandas does it for you,
as shown in the following example:

from 1lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=("'Number', 'String', 'Boolean'))
for i in range(9,4):
obj = root.getchildren()[i].getchildren()
row = dict(zip(['Number', 'String', 'Boolean'],
[obj[@] .text, obj[1].text,
obj[2] .text]))
row_s = pd.Series(row)
row_s.name = i
row_s = row_s.to_frame().transpose()
df = pd.concat([df, row_s])

print(df.drop_duplicates())
As with the previous example, you begin by creating a DataFrame that contains
the duplicate record. To remove the errant record, all you need to do is call drop_

duplicates(). Here’s the result you get.

Number String Boolean

(%] 1 First True
1 2 Second False
2 3 Third True

Creating a data map and data plan

You need to know about your dataset — that is, how it looks statistically. A data
map is an overview of the dataset. You use it to spot potential problems in your
data, such as

¥ Redundant variables

¥ Possible errors

110 PART 2 Getting Your Hands Dirty with Data

¥ Missing values

¥ Variable transformations

Checking for these problems goes into a data plan, which is a list of tasks you have
to perform to ensure the integrity of your data. The following example shows a
data map, A, with two datasets, B and C:

import pandas as pd
pd.set_option('display.width', 55)

df = pd.DataFrame({'A': [0,0,0,0,0,1,1],
'B': [1,2,8,5,4,2,5],
'c': [5,8,4,1,1,2,3]})

a_group_desc = df.groupby('A').describe()
print(a_group_desc)

In this case, the data map uses 0s for the first series and 1s for the second series.
The groupby () function places the datasets, B and C, into groups. To determine
whether the data map is viable, you obtain statistics using describe(). What you
end up with is a dataset B with two series 0 and 1 and a dataset C also with two
series 0 and 1, as shown in the following output.

B \
count mean std min 25% 50% T5% max
A
© 5.0 3.0 1.581139 1.0 2.00 3.0 4.00 5.0
1 2.0 3.5 2.121320 2.0 2.75 3.5 4.25 5.0

©
count mean std min 25% 50% T5% max
A
© 5.0 2.8 1.788854 1.0 1.00 3.0 4.00 5.0
1 2.0 2.5 0.707107 2.0 2.25 2.5 2.75 3.0

These statistics tell you about the two dataset series. The breakup of the two data-

sets using specific cases is the data plan. As you can see, the statistics tell you that
this data plan may not be viable because some statistics are relatively far apart.

CHAPTER 7 Processing Your Data 111

112

TIP

The default output from describe() shows the data unstacked (printed horizon-
tally). Unfortunately, the unstacked data can print out with an unfortunate break,
making it very hard to read. To keep this from happening, you set the width you
want to use for the data by calling pd.set_option('display.width', 55). You
can set a number of pandas options this way by using the information found at
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
set_option.html.

Although the unstacked data is relatively easy to read and compare, you may pre-
fer a more compact presentation. In this case, you can stack the data using the
following code:

stacked = a_group_desc.stack()
print(stacked)

Using stack() creates a new presentation. Here’s the output shown in a compact
form:

B (©

A
@ count 5.000000 5.000000
mean 3.000000 2.800000
std 1.581139 1.788854
min 1.000000 1 .000000
25% 2.000000 1 .000000
507% 3.000000 3.000000
5% 4.000000 4.000000
max 5.000000 ©5.000000

. Similar values for 1

Of course, you may not want all the data that describe() provides. Perhaps you
really just want to see the number of items in each series and their mean. Here’s
how you reduce the size of the information output:

print(a_group_desc.loc[:,(slice(None),['count','mean']),])

Using loc lets you obtain specific columns. Here’s the final output from the exam-
ple showing just the information you absolutely need to make a decision:

B ©
count mean count mean
A
© 50 3.0 50 2.8
1 2.0 3.5 2.0 2.5

PART 2 Getting Your Hands Dirty with Data

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html

Manipulating Categorical Variables

In data science, a categorical variable is one that has a specific value from a limited
selection of values. The number of values is usually fixed. Many developers will
know categorical variables by the moniker enumerations. Each of the potential val-
ues that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a variable
expressing the color of an object, such as a car, and that the user can select blue,
red, or green. To express the car’s color in a way that computers can represent and
effectively compute, an application assigns each color a numeric value, so blue is
1, red is 2, and green is 3. Normally when you print each color, you see the value
rather than the color.

If you use pandas.DataFrame (https://pandas.pydata.org/pandas—docs/dev/
reference/api/pandas.DataFrame.html), you can still see the symbolic value
(blue, red, and green), even though the computer stores it as a numeric value.
Sometimes you need to rename and combine these named values to create new
symbols. Symbolic variables are just a convenient way of representing and storing
qualitative data.

CHECKING YOUR VERSION OF PANDAS

The categorical variable examples in this section depend on your having a minimum
version of pandas 1.5.0 installed on your system. However, your version of Anaconda
may have a previous pandas version installed instead. Use the following code to check
your version of pandas:

import pandas as pd

print(pd.__version__)
You see the version number of pandas you have installed. Another way to check the
version is to open the Anaconda Prompt, type pip show pandas, and press Enter. If you
have an older version, open the Anaconda Prompt, type pip install pandas --upgrade,
and press Enter. The update process will occur automatically, along with a check
of associated packages. When working with Windows, you may need to open the
Anaconda Prompt using the Administrator option (right click the Anaconda Prompt
entry in the Start menu and choose Run as Administrator from the context menu).

CHAPTER 7 Processing Your Data 113

https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html

114

When using categorical variables for machine learning, it’s important to consider
the algorithm used to manipulate the variables. Some algorithms, such as trees
and ensembles of three, can work directly with the numeric variables behind the
symbols. Other algorithms, such as linear and logistic regression and SVM, require
that you encode the categorical values into binary variables. For example, if you
have three levels for a color variable (blue, red, and green), you have to create
three binary variables:

3 One for blue (1 when the value is blue, 0 when it is not)
¥ One for red (1 when the value is red, 0 when it is not)

¥ One for green (1 when the value is green, 0 when it is not)

Creating categorical variables

Categorical variables have a specific number of values, which makes them incred-
ibly valuable in performing a number of data science tasks. For example, imagine
trying to find values that are out of range in a huge dataset. In this example, you
see one method for creating a categorical variable and then using it to check
whether some data falls within the specified limits:

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],
dtype="'category')

car_data = pd.Series(
pd.Categorical(
['Yellow', 'Green', 'Red', 'Blue', 'Purple'],
categories=car_colors, ordered=False))

find_entries = pd.isnull(car_data)

print(car_colors)
print(f"\n{car_data}")
print(f"\n{find_entries|[find_entries == True]}")

The example begins by creating a categorical variable, car_colors. The variable
contains the values Blue, Red, and Green as colors that are acceptable for a car.
Notice that you must specify a dtype property value of category.

The next step is to create another series. This one uses a list of actual car colors,
named car_data, as input. Not all the car colors match the predefined acceptable

PART 2 Getting Your Hands Dirty with Data

values. When this problem occurs, pandas outputs Not a Number (NaN) instead of
the car color.

Of course, you could search the list manually for the nonconforming cars, but the
easiest method is to have pandas do the work for you. In this case, you ask pandas
which entries are null using isnull() and place them in find_entries. You can
then output just those entries that are actually null. Here’s the output you see
from the example:

(%} Blue
1 Red
2 Green

dtype: category
Categories (3, object): ['Blue', 'Green', 'Red']

(%} NaN
1 Green
2 Red
& Blue
4 NaN

dtype: category
Categories (3, object): ['Blue', 'Green', 'Red']

(%] True
4 True
dtype: bool

Looking at the list of car_data outputs, you can see that entries 0 and 4 equal NaN.
The output from find_entries verifies this fact for you. If this were a large data-
set, you could quickly locate and correct errant entries in the dataset before per-
forming an analysis on it.

Renaming levels

There are times when the naming of the categories you use is inconvenient or
otherwise wrong for a particular need. Fortunately, you can rename the categories
as needed using the technique shown in the following example.

import pandas as pd
car_colors = pd.Series(['Blue', 'Red', 'Green'],
dtype="'category")

car_data = pd.Series(
pd.Categorical(

CHAPTER 7 Processing Your Data 115

['Blue', 'Green', 'Red', 'Blue', 'Red'],
categories=car_colors, ordered=False))

car_data = car_data.cat.rename_categories(
["Purple", "Yellow", "Mauve"])

print(car_data)

All you really need to do is set the cat property to a new value, as shown. Here is
the output from this example:

0 Purple

1 Yellow

2 Mauve

& Purple

4 Mauve

dtype: category

Categories (3, object): ['Purple', 'Yellow', 'Mauve']

Combining levels

A particular categorical level may be too small to offer significant data for analy-
sis. Perhaps there are only a few of the values, which may not be enough to create
a statistical difference. In this case, combining several small categories may offer
better analysis results. The following example shows how to combine categories:

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],
dtype="'category')
car_data = pd.Series(
pd.Categorical(
['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],
categories=car_colors, ordered=False))

car_data = car_data.cat.set_categories(

["Blue", "Red", "Green", "Blue_Red"])
print(car_data.loc[car_data.isin(['Red'])])
car_data.loc[car_data.isin(['Red'])] = 'Blue_Red'
car_data.loc[car_data.isin(['Blue'])] = 'Blue_Red'

car_data = car_data.cat.set_categories(

["Green", "Blue_Red"])
print(f"\n{car_data}")

116 PART 2 Getting Your Hands Dirty with Data

What this example shows you is that there is only one Blue item and only two Red
items, but there are three Green items, which places Green in the majority. Com-
bining Blue and Red together is a two-step process. First, you add the Blue_Red
category to car_data. Then you change the Red and Blue entries to Blue_Red,
which creates the combined category. As a final step, you can remove the unneeded
categories.

However, before you can change the Red entries to Blue_Red entries, you must
find them. This is where a combination of calls to isin(), which locates the Red
entries, and loc[], which obtains their index, provides precisely what you need.
The first print() statement shows the result of using this combination. Here’s
the output from this example.

2 Red

4 Red

dtype: category

Categories (4, object): ['Blue', 'Red', 'Green', 'Blue_Red']

Blue_Red
Green
Blue_Red
Green
Blue_Red
Green
dtype: category
Categories (2, object): ['Green', 'Blue_Red']

a s WwN =

Notice that there are now three Blue_Red entries and three Green entries. The
Blue and Red categories are no longer in use. The result is that the levels are now
combined as expected.

Dealing with Dates in Your Data

Dates can present problems in data. For one thing, dates are stored as numeric
values. However, the precise value of the number depends on the representation
for the particular platform and could even depend on the users’ preferences. For
example, Excel users can choose to start dates in 1900 or 1904 (https://support.
microsoft.com/en-us/help/214330/differences-between-the-1900-and-
the-1904-date-system-in-excel). The numeric encoding for each is different,
so the same date can have two numeric values depending on the starting date.

CHAPTER 7 Processing Your Data 117

https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel

18

In addition to problems of representation, you also need to consider how to work
with time values. Creating a time value format that represents a value the user can
understand is hard. For example, you may need to use Greenwich Mean Time
(GMT) in some situations but a local time zone in others. Transforming between
various times is also problematic. With this in mind, the following sections pro-
vide you with details on dealing with time issues.

Formatting date and time values

Obtaining the correct date and time representation can make performing analysis
a lot easier. For example, you often have to change the representation to obtain a
correct sorting of values. Python provides two common methods of formatting
date and time. The first technique is to call str(), which simply turns a datetime
value into a string without any formatting. The strftime() function requires
more work because you must define how you want the datetime value to appear
after conversion. When using strftime(), you must provide a string containing
special directives that define the formatting. You can find a listing of these direc-
tives at https://strftime.org/.

Now that you have some idea of how time and date conversions work, it’s time to
see an example. The following example creates a datetime object and then con-
verts it into a string using two different approaches:

import datetime as dt
now = dt.datetime.now()

print(str(now))
print(now.strftime('%a, %d %B %Y'))

In this case, you can see that using str() is the easiest approach. However, as
shown by the following output, it may not provide the output you need. Using
strftime() is infinitely more flexible, even though the output from str() is
storable.

2023-05-20 10:29:47.290505
Sat, 20 May 2023

Using the right time transformation

Time zones and differences in local time can cause all sorts of problems when
performing analysis. For that matter, some types of calculations simply require a

PART 2 Getting Your Hands Dirty with Data

https://strftime.org/

time shift in order to get the right results. No matter what the reason, you may
need to transform one time into another time at some point. The following exam-
ples show some techniques you can employ to perform the task:

import datetime as dt

now = dt.datetime.now()
timevalue = now + dt.timedelta(hours=2)

print(now.strftime('%H:%M:%S"'))
print(timevalue.strftime('%H:%M:%S"))
print(timevalue — now)

The timedelta() function makes the time transformation straightforward. You
can use any of these parameter names with timedelta() to change a time and
date value: days, seconds, microseconds, milliseconds, minutes, hours, and
weeks.

You can also manipulate time by performing addition or subtraction on time val-
ues. You can even subtract two time values to determine the difference between
them. Here’s the output from this example (note that the output shows the effect
of Daylight Saving Time, or DST):

10:34:40
12:34:40
2:00:00

Note that now is the local time, timevalue is two time zones different from this
one, and there is a two-hour difference between the two times. You can perform
all sorts of transformations using these techniques to ensure that your analysis
always shows precisely the time-oriented values you need.

Dealing with Missing Data

Sometimes the data you receive is missing information in specific fields. For
example, a customer record may be missing an age. If enough records are missing
entries, any analysis you perform will be skewed and the results of the analysis
weighted in an unpredictable manner. Having a strategy for dealing with missing
data is important. The following sections give you some ideas on how to work
through these issues and produce better results.

CHAPTER 7 Processing Your Data 119

Finding the missing data

Finding missing data in your dataset is essential to avoid getting incorrect results
from your analysis. The following code shows how you can obtain a listing of
missing values without too much effort:

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print(s.isnull())
print(f"\n{s[s.isnull()]}")

A dataset can represent missing data in several ways. In this example, you see
missing data represented as np.NaN (NumPy Not a Number) and the Python None
value.

Use the isnull() method to detect the missing values. The output shows True
when the value is missing. By adding an index into the dataset, you obtain just the
entries that are missing. The example shows the following output:

(%] False
1 False
2 False
& True
4 False
5 False
6 True
dtype: bool
& NaN

6 NaN

dtype: float64

Encoding missingness

After you figure out that your dataset is missing information, you need to consider
what to do about it. The three possibilities are to ignore the issue, fill in the miss-
ing items, or remove (drop) the missing entries from the dataset. Ignoring the
problem could lead to all sorts of problems for your analysis, so it’s the option you
use least often. The following example shows one technique for filling in missing
data or dropping the errant entries from the dataset:

120 PART 2 Getting Your Hands Dirty with Data

o
T
TECHNICAL
STUFF

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print(s.fillna(int(s.mean())))
print(£"\n{s.dropna()}")

The two methods of interest are fillna(), which fills in the missing entries, and
dropna(), which drops the missing entries. When using fillna(), you must pro-
vide a value to use for the missing data. This example uses the mean of all the
values, but you could choose a number of other approaches. Here’s the output
from this example:

O Ol W N -
WO 0 W WwN =~
O OO0 0O O O

dtype: float64

a s N =~
O O W N =~
0O 0 0

dtype: float64

Working with a series is straightforward because the dataset is so simple. When
working with a DataFrame, however, the problem becomes significantly more
complicated. You still have the option of dropping the entire row. When a column
is sparsely populated, you may drop the column instead. Filling in the data also
becomes more complex because you must consider the dataset as a whole, in
addition to the needs of the individual feature.

Imputing missing data

The previous section hints at the process of imputing missing data (ascribing
characteristics based on how the data is used). The technique you use depends on
the sort of data you’re working with. For example, when working with a tree
ensemble (you can find discussions of trees in the “Performing Hierarchical
Clustering” section of Chapter 15 and the “Starting with a Plain Decision Tree”
section of Chapter 20), you may simply replace missing values with a —1 and rely

CHAPTER 7 Processing Your Data 121

122

on the imputer (a transformer algorithm used to complete missing values) to
define the best possible value for the missing data. The following example shows
a technique you can use to impute missing data values:

import pandas as pd
import numpy as np
from sklearn.impute import Simplelmputer

s = pd.DataFrame([1, 2, 3, np.nan, 5, 6, np.nan])

imp = Simplelmputer(missing_values=np.nan,
add_indicator=True,
strategy="'mean")

imp.fit(s)
X = imp.transform(s)
print(x)

In this example, s is missing some values. The code creates an Imputer to replace
these missing values. The missing_values parameter defines what to look for,
which is np.nan. The add_indicator parameter creates a new binary feature that
will mark the imputed values, which is incredibly useful for many machine learn-
ing models to show both the original values and the manipulated ones. Finally, the
strategy parameter defines how to replace the missing values. (You can discover
more about the Imputer parameters at https://scikit-learn.org/stable/
modules/generated/sklearn.impute.SimpleImputer.html.)

¥ mean: Replaces the values by using the mean
¥ median: Replaces the values by using the median

¥ most_frequent: Replaces the values by using the most frequent value

Before you can impute anything, you must provide statistics for the Imputer to
use by calling fit(). The code then calls transform() on s to fill in the missing
values. Here’s the result of the process with the missing values filled in and the
additional binary indicator:

([1. @.]
(2. 0.]
(8. 0.]
[3.4 1.]
(5. 0.]
(6. 0.]
(3.4 1.]]

PART 2 Getting Your Hands Dirty with Data

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html

Slicing and Dicing: Filtering
and Selecting Data

You may not need to work with all the data in a dataset. In fact, looking at just one
particular column may be beneficial, such as age, or a set of rows with a signifi-
cant amount of information. You perform two steps to obtain just the data you
need to perform a particular task:

1. Filter rows to create a subset of the data that meets the criterion you select
(such as all the people between the ages of 5 and 10).

2. Select data columns that contain the data you need to analyze. For example,
you probably don't need the individuals’ names unless you want to perform
some analysis based on name.

The act of slicing and dicing data, gives you a subset of the data suitable for analy-
sis. The following sections describe various ways to obtain specific pieces of data
to meet particular needs.

Slicing rows

Slicing can occur in multiple ways when working with data, but the technique of
interest in this section is to slice data from a row of 2-D or 3-D data. A 2-D array
may contain temperatures (x axis) over a specific time frame (y axis). Slicing a
row would mean seeing the temperatures at a specific time. In some cases, you
may associate rows with cases in a dataset.

A 3-D array may include an axis for place (x axis), product (y axis), and time
(z axis) so that you can see sales for items over time. Perhaps you want to
track whether sales of an item are increasing, and specifically where they are
increasing. Slicing a row would mean seeing all the sales for one specific product
for all locations at any time. The following example demonstrates how to perform
this task:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],1,
[[11,12,13], [14,15,16], [47,18,19],],
[[21,22,23], [24,25,26], [27,28,29]]])
x[1]

CHAPTER 7 Processing Your Data 123

124

©

REMEMBER

In this case, the example builds a 3-D array. It then slices row 1 of that array to
produce the following output:

array([[11, 12, 13],
[14, 15, 16],
[17, 18, 19]])

Slicing columns

Using the examples from the previous section, slicing columns would obtain data
at a 90-degree angle from rows. In other words, when working with the 2-D
array, you would want to see the times at which specific temperatures occurred.
Likewise, you may want to see the sales of all products for a specific location at
any time when working with the 3-D array. In some cases, you may associate
columns with features in a dataset. The following example demonstrates how to
perform this task using the same array as in the previous section:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
[[11,12,13], [14,15,16], [17,18,19],],
[[21,22,23], [24,25,26], [27,28,29]]])
x[:,1]

Note that the indexing now occurs at two levels. The first index refers to the row.
Using the colon (:) for the row means to use all the rows. The second index refers
to a column. In this case, the output will contain column 1. Here’s the output
you see:

array([[4, 5, 6],
[14, 15, 16],
[24, 25, 26]])

This is a 3-D array. Therefore, each of the columns contains all the z axis ele-
ments. What you see is every row — 0 through 2 for column 1 with every z axis
element o through 2 for that column.

Dicing
The act of dicing a dataset means to perform both row and column slicing such

that you end up with a data wedge. For example, when working with the 3-D
array, you may want to see the sales of a specific product in a specific location at

PART 2 Getting Your Hands Dirty with Data

any time. The following example demonstrates how to perform this task using the
same array as in the previous two sections:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
[[11,12,13], [14,15,16], [417,18,19],],
[[21,22,23], [24,25,26], [27,28,29]]1])

print(x[1,1])

print(x[:,1,1])

print(x[1,:,1])

print(f"\n{x[1:2, 1:2]}")

This example dices the array in four different ways. First, you get row 1, column 1.
Of course, what you may actually want is column 1, z axis 1. If that’s not quite
right, you could always request row 1, z axis 1 instead. Then again, you may want
rows 1 and 2 of columns 1 and 2. Here’s the output of all four requests:

[14 15 16]
[515 25]
[12 15 18]

[[[14 15 16]]]

Concatenating and Transforming

Data used for data science purposes seldom comes in a neat package. You may
need to work with multiple databases in various locations — each of which has its
own data format. It’s impossible to perform analysis on such disparate sources of
information with any accuracy. To make the data useful, you must create a single
dataset (by concatenating, or combining, the data from various sources).

Part of the process is to ensure that each field you create for the combined dataset
has the same characteristics. For example, an age field in one database may appear
as a string, but another database could use an integer for the same field. For the
fields to work together, they must appear as the same type of information.

The following sections help you understand the process involved in concatenating
and transforming data from various sources to create a single dataset. After you
have a single dataset from these sources, you can begin to perform tasks such as
analysis on the data. Of course, the trick is to create a single dataset that truly
represents the data in all those disparate datasets.

CHAPTER 7 Processing Your Data 125

126

Adding new cases and variables

You often find a need to combine datasets in various ways or even to add new
information for the sake of analysis purposes. The result is a combined dataset
that includes either new cases or variables. The following example shows tech-
niques for performing both tasks:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],
'B': [1,2,3],
'c': [5,8,4]})

df1 = pd.DataFrame({'A': [4],
'‘B': [4],
'C [4]))

df = pd.concat([df, df1])
df = df.reset_index(drop=True)
print(df)

df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print(f"\n{df}")

df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})

df = pd.DataFrame. join(df, df2)
print(f"\n{df}")

The easiest way to add more data to an existing DataFrame is to rely on the
concat () method. In this case, the three cases found in df are added to the single
case found in df1. To ensure that the data is appended as anticipated, the columns
in df and df1 must match. When you append two DataFrame objects in this
manner, the new DataFrame contains the old index values. Use the reset_index()
method to create a new index to make accessing cases easier.

You can also add another case to an existing DataFrame by creating the new case
directly. Any time you add a new entry at a position that is one greater than the
last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In this
case, you rely on join() to perform the task. The resulting DataFrame will match
cases with the same index value, so indexing is important. In addition, unless you
want blank values, the number of cases in both DataFrame objects must match.
Here’s the output from this example:

PART 2 Getting Your Hands Dirty with Data

A B C
© 2 1 5
1 3 2 3
2 1 3 4
3 4 4 4

A B C
© 2 1 5
1 3 2 8
2 1 3 4
3 4 4 4
4 5 5 5

A B C D
© 2 1 5 1
1 3 2 3 2
2 1 3 4 3
3 4 4 4 4
4 5 5 5 5

Removing data

At some point, you may need to remove cases or variables from a dataset because
they aren’t required for your analysis. In both cases, you rely on the drop()
method to perform the task. The difference in removing cases or variables is in
how you describe what to remove, as shown in the following example:

import pandas as pd
df = pd.DataFrame({'A': [2,3,1],

'B': [1/2/3]/
'c': [5,8,4]})

df = df.drop(df.index[[1]])
print(df)

df = df.drop(columns=['B'])
print(f"\n{df}")

The example begins by removing a case from df. Notice how the code relies on an
index to describe what to remove. You can remove just one case (as shown), ranges
of cases, or individual cases separated by commas. The main concern is to ensure
that you have the correct index numbers for the cases you want to remove.

CHAPTER 7 Processing Your Data 127

Removing a column is different. This example shows how to remove a column
using a column name. Here’s the output from this example:

A B C
@ 2 1 5
2 1 3 4
A C
@ 2 5
2 1 4

Sorting and shuffling

Sorting and shuffling are two ends of the same goal — to manage data order. In
the first case, you put the data into order, while in the second, you remove any
systematic patterning from the order. In general, you don’t sort datasets for the
purpose of analysis because doing so can cause you to get incorrect results. How-
ever, you may want to sort data for presentation purposes. The following example
shows both sorting and shuffling:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [2,1,2,3,3,5,4],
'B': [1/2/3/5/41215]/
'C': [5/3/4/1/11213]})

df = df.sort_values(by=['A', 'B'], ascending=[True, True])
df = df.reset_index(drop=True)
print(df)

index = df.index.tolist()
np.random.shuffle(index)

df = df.loc[df.index[index]]
df = df.reset_index(drop=True)
print(f"\n{df}")

It turns out that sorting the data is a bit easier than shuffling it. To sort the data,
you use the sort_values() method and define which columns to use for indexing
purposes. You can also determine whether the sort order is in ascending or
descending order. Make sure to always call reset_index() when you’re done so
that the index appears in order for analysis or other purposes.

128 PART 2 Getting Your Hands Dirty with Data

To shuffle the data, you first acquire the current index using df. index.tolist()
and place it in index. A call to random.shuffle() creates a new order for the
index. You then apply the new order to df using loc[]. As always, you call reset_
index() to finalize the new order. Here’s the output from this example (but note
that the second output may not match your output because it has been shuffled):

A B C
@ 1 2 3
1 2 1 5
2 2 3 4
3 3 4 1
4 3 5 1
5 4 5 3
6 5 2 2

A B C
@ 4 5 3
1 1 2 3
2 3 5 1
3 2 3 4
4 5 2 2
5 3 4 1
6 2 1 5

Aggregating Data at Any Level

Aggregation is the process of combining or grouping data together into a set, bag,
or list. The data may or may not be alike. However, in most cases, an aggregation
function combines several rows together statistically using algorithms such as
average, count, maximum, median, minimum, mode, or sum. There are several
reasons to aggregate data:

¥ Make it easier to analyze

3 Reduce the ability of anyone to deduce the data of an individual from the
dataset for privacy or other reasons

¥ Create a combined data element from one data source that matches a
combined data element in another source

CHAPTER 7 Processing Your Data 129

The most important use of data aggregation is to promote anonymity in order to
meet legal or other concerns. Sometimes even data that should be anonymous
turns out to provide identification of an individual using the proper analysis tech-
niques. Here’s an example that shows how to perform aggregation tasks:

import pandas as pd

df = pd.DataFrame({'Map': [0,90,0,1,1,2,2],
'Values': [1,2,3,5,4,2,5]})

df['S'] = df.groupby('Map')['Values'].transform(np.sum)
df['M'] = df.groupby('Map')['Values'].transform(np.mean)
df['V'] = df.groupby('Map')['Values'].transform(np.var)
print(df)

In this case, you have two initial features for this DataFrame. The values in Map
define which elements in Values belong together. For example, when calculating
a sum for Map index 0, you use the Values 1,2, and 3.

To perform the aggregation, you must first call groupby() to group the Map
values. You then index into Values and rely on transform() to create the aggre-
gated data using one of several algorithms found in NumPy, such as np.sum. Here
are the results of this calculation:

Map Values
(%}

oGNP
NN R RO O
OO W N e

—4 N0 © O OO Wn
W WA RN NN
ao o000 =
P N S I I S Y
oo oo o0 <

130 PART 2 Getting Your Hands Dirty with Data

IN THIS CHAPTER

» Understanding the bag of
words model

» Working with n-grams for sequencing
your data items

» Implementing Term Frequency times
Inverse Document Frequency (TF-IDF)
transformations

» Manipulating graph data

Chapter S
Reshaping Data

©

REMEMBER

©

REMEMBER

he previous chapter, Chapter 7, demonstrates techniques for working with

data as an entity — as something you work with in Python. But data doesn’t

exist in a vacuum. It doesn’t just suddenly appear within Python for
absolutely no reason at all. As demonstrated in Chapter 6, you load the data;
however, loading may not be enough — you may have to reshape the data as part
of loading it. That’s the purpose of this chapter. You discover how to work with a
variety of container types in a way that enables you to load data from a number of
complex container types.

As you progress through the book, you discover that data takes all kinds of forms
and shapes. As far as the computer is concerned, data consists of 0s and 1s.
Humans give the data meaning by formatting, storing, and interpreting it in a
certain way. The same group of 0s and 1s could be a number, date, or text, depend-
ing on the interpretation. The data container provides clues as to how to interpret
the data, which is why this chapter is so important to you as a data scientist using
Python to discover data patterns. You find that you can discover patterns in places
where you may have thought patterns couldn’t exist.

You don’t have to type the source code for this chapter manually; using the
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_08_Shaping_
Data.ipynb file.

CHAPTER 8 Reshaping Data 131

Using the Bag of Words Model
to Tokenize Data

132

The goal of most data imports is to perform some type of analysis. Before you can
perform analysis on textual data, you must tokenize (break into linguistic pieces)
every word within the dataset. The act of tokenizing the words creates a bag of
words. You can then use the bag of words to train classifiers, a special kind of algo-
rithm used to break words down into categories. The following sections provide
additional insights into the bag of words model and show you how to work with it.
You also discover how to perform various kinds of data-shaping tasks after you
have a bag of words to use.

Understanding the bag of words model

As mentioned in the introduction, in order to perform textual analysis of various
sorts, you need to first tokenize the words and create a bag of words from them.
The bag of words uses numbers to represent words, word frequencies, and word
locations that you can manipulate mathematically to see patterns in the way that
the words are structured and used. The bag of words model ignores grammar and
even word order, instead focusing on simplifying the text so that you can easily
analyze it.

GETTING THE 20 NEWSGROUPS DATASET

The examples in the sections that follow rely on the 20 Newsgroups dataset (http://
gwone . com/~ jason/2@Newsgroups/) that's part of the Scikit-learn installation. The
host site provides some additional information about the dataset, but essentially it's a
good dataset to use to demonstrate various kinds of text analysis.

You don't have to do anything special to work with the dataset because Scikit-learn
already knows about it. However, when you run the first example, you see the message
“WARNING:sklearn.datasets.twenty_newsgroups: Downloading dataset fromhttp: //
people.csail.mit.edu/ jrennie/20Newsgroups/20news-bydate.tar.gz
(14MB).” All this message tells you is that you need to wait for the data download to
complete. There is nothing wrong with your system. Look at the left side of the code cell
in IPython Notebook and you see the familiar In [*]: entry. When this entry changes to
show a number, the download is complete. The message doesn't go away until the next
time you run the cell.

PART 2 Getting Your Hands Dirty with Data

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

REMEMBER

The creation of a bag of words revolves around Natural Language Processing
(NLP) and Information Retrieval (IR). Before you perform this sort of processing,
you normally remove any special characters (such as HTML formatting from a
web source), remove the stop words (nonmeaningful words, such as “to”), and
possibly perform stemming (reduce words to their root form) as well. For the pur-
pose of this example, you use the 20 Newsgroups dataset directly. Here’s an
example of how you can obtain textual input and create a bag of words from it:

from sklearn.datasets import fetch_20@newsgroups
from sklearn. feature_extraction.text import x*

categories = ['comp.graphics', 'misc.forsale',
'rec.autos', 'sci.space']
twenty_train = fetch_20newsgroups(subset="'train',
categories=categories,
shuffle=True,
random_state=42)

count_vect = CountVectorizer()
X_train_counts = count_vect. fit_transform(
twenty_train.data)

print("BOW shape:", X_train_counts.shape)
caltech_idx = count_vect.vocabulary_ ['caltech']
print('"Caltech": %i' % X_train_counts[Q, caltech_idx])

A number of the examples you see online are unclear as to where the list of
categories they use come from. Helpfully, the host site at http://qwone.
com/~jason/20Newsgroups/ lists the categories you can use. The category list
doesn’t come from a magic hat somewhere, but many examples online simply
don’t bother to document some information sources. Always refer to the host site
when you have questions about issues such as dataset categories.

The call to fetch_20newsgroups() loads the dataset into memory. You see the
resulting training object, twenty_train, described as a bunch. At this point, you
have an object that contains a listing of categories and associated data, but the
application hasn’t tokenized the data, and the algorithm used to work with the
data isn’t trained.

Now that you have a bunch of data to use, you can begin creating a bag of
words with it. The first step is to create a matrix of token counts using the Count
Vectorizer() object, count_vect. The bag of words process begins by assigning
an integer value (an index of a sort) to each unique word in the training set. In
addition, each document receives an integer value. The next step is to count every
occurrence of these words in each document and create a list of document and

CHAPTER 8 Reshaping Data 133

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

count pairs so that you know which words appear and how often in each
document.

Naturally, some words from the master list aren’t used in some documents,
thereby creating a high-dimensional sparse dataset. The scipy.sparse matrix is a
data structure that lets you store only the nonzero elements of the list in order to
save memory. When the code makes the call to count_vect. fit_transform(), it
places the resulting bag of words into X_train_counts. You can see the resulting
number of entries by accessing the shape property and the counts for the word
"Caltech" in the first document:

BOW shape: (2356, 34750Q)
"Caltech": 3

Sequencing text items with n-grams

An n-gram is a continuous sequence of items in the text you want to analyze. The
items are phonemes, syllables, letters, words, or base pairs. The n in n-gram
refers to a size. An n-gram that has a size of one, for example, is a unigram. The
example in this section uses a size of three, making a trigram. You use n-grams in
a probabilistic manner to perform tasks such as predicting the next sequence in a
series, which wouldn’t seem very useful until you start thinking about applica-
tions such as search engines that try to predict the word you want to type based
on the previous letters you’ve supplied. However, the technique has all sorts of
applications, such as in DNA sequencing and data compression. The following
example shows how to create n-grams from the 20 Newsgroups dataset:

from sklearn.datasets import fetch_20@newsgroups
from sklearn.feature_extraction.text import x

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset="'train',
categories=categories,
remove=('headers',
'footers',
'quotes'),
shuffle=True,
random_state=42)

count_chars = CountVectorizer(analyzer='char_wb',

ngram_range=(3,3),
max_features=10)

134 PART 2 Getting Your Hands Dirty with Data

count_chars. fit(twenty_train['data'])

count_words = CountVectorizer(analyzer='word"',
ngram_range=(2,2),
max_features=10,
stop_words='english')

count_words. fit(twenty_train['data'])
X = count_chars.transform(twenty_train.data)

print(count_chars.get_feature_names_out())
print(X[1].todense())
print(count_words.get_feature_names_out())

The beginning code is the same as in the previous section, “Understanding the
bag of words model.” You still begin by fetching the dataset and placing it into a
bunch. However, in this case, the vectorization process takes on new meaning.
The arguments process the data in a special way.

In this case, the first parameter, analyzer, determines how the application cre-
ates the n-grams. You can choose words (word), characters (char), or characters
within word boundaries (char_wb). The second parameter, ngram_range, requires
two inputs in the form of a tuple (the storing of multiple data items in a single
variable): The first argument determines the minimum n-gram size, and the sec-
ond determines the maximum n-gram size. The third parameter, max_features,
determines how many features the vectorizer returns. In the second vectorizer
call, the stop_words argument removes the terms contained in the English pickle,
which is a method of serializing an object in Python so that you can store it on
disk, as explained at https://docs.python.org/3/library/pickle.html). At
this point, the application fits the data to the transformation algorithm.

The example provides three outputs. The first shows the top ten trigrams for
characters from the document. The second is the n-gram for the first document.
It shows the frequency of the top ten trigrams. The third is the top ten trigrams
for words. Here’s the output from this example:

["an', " in', " of', ' th', ' to', 'he ', 'ing', 'ion',
'nd ', 'the']

[[0@025142205]]

["anonymous ftp', 'commercial space', 'gamma ray',

'nasa gov', 'national space', 'remote sensing',

'sci space', 'space shuttle', 'space station',

'washington dc']

CHAPTER 8 Reshaping Data 135

https://docs.python.org/3/library/pickle.html

136

©

REMEMBER

Implementing TF-IDF transformations

The Term Frequency times Inverse Document Frequency (TF-IDF) transformation is a
technique used to help compensate for words found relatively often in different
documents, which makes it hard to distinguish between the documents because
the words are too common (stop words are a good example). What this transfor-
mation is really telling you is the importance of a particular word to the unique-
ness of a document. The greater the frequency of a word in a document, the more
important it is to that document. However, the measurement is offset by the doc-
ument size — the total number of words the document contains — and by how
often the word appears in other documents.

Even if a word appears many times inside a document, that frequency doesn’t
imply that the word is important for understanding the document itself; in many
documents, you find stop words with the same frequency as the words that relate
to the document’s general topics. For example, if you analyze documents with sci-
ence fiction—related discussions (such as in the 20 Newsgroups dataset), you may
find that many of them deal with UFOs; therefore, the acronym UFO can’t repre-
sent a distinction between different documents. Moreover, longer documents
contain more words than shorter ones, and repeated words are easily found when
the text is abundant.

In fact, a word found a few times in a single document (or possibly a few others)
could prove quite distinctive and helpful in determining the document type. If
you’re working with documents discussing sci fi and automobile sales, the acro-
nym UFO can be distinctive because it easily separates the two topic types in your
documents.

Search engines often need to weight words in a document in a way that helps
determine when the word is important in the text. You use words with the higher
weight to index the document so that when you search for those words, the search
engine will retrieve that document. This is the reason that the TD-IDF transfor-
mation is used quite often in search engine applications.

Getting into more details, the TF part of the TF-IDF equation determines how fre-
quently the term appears in the document, and the IDF part of the equation deter-
mines the term’s importance because it represents the inverse of the frequency of
that word among all the documents. A large IDF implies a seldom-found word and
that the TF-IDF weight will also be larger. A small IDF means that the word is
common, and that will result in a small TF-IDF weight. You can see some actual
calculations of this particular measure at https://tfidf.com/. Here’s an exam-
ple of how to calculate TF-IDF using Python:

from sklearn.datasets import fetch_20newsgroups
from sklearn. feature_extraction.text import x*

PART 2 Getting Your Hands Dirty with Data

https://tfidf.com/

categories = ['comp.graphics', 'misc.forsale',
'rec.autos', 'sci.space']
twenty_train = fetch_20newsgroups(subset="'train',
categories=categories,
shuffle=True,
random_state=42)

count_vect = CountVectorizer()
X_train_counts = count_vect. fit_transform(
twenty_train.data)

tfidf = TfidfTransformer().fit(X_train_counts)
X_train_tfidf = tfidf.transform(X_train_counts)

caltech_idx = count_vect.vocabulary_ ['caltech']
print('"Caltech" scored in a BOW:')

print('count: %0.3f' % X_train_counts[@, caltech_idx])
print('TF-IDF: %@.3f' % X_train_tfidf[0, caltech_idx])

This example begins much the same as the other examples in this section have, by
fetching the 20 Newsgroups dataset. It then creates a word bag, much like the
example in the “Understanding the bag of words model” section, earlier in this
chapter. However, now you see something you can do with the word bag.

In this case, the code calls upon TfidfTransformer() to convert the raw news-
group documents into a matrix of TF-IDF features. The use_idf controls the use
of inverse-document-frequency reweighting, which it turned on in this case. The
vectorized data is fitted to the transformation algorithm. The next step, calling
tfidf.transform(), performs the actual transformation process. Here’s the
result you get from this example:

"Caltech" scored in a BOW:
count: 3.000
TF-IDF: ©.123

Notice how the word Caltech now has a lower value in the first document compared
to the example in the previous paragraph, where the counting of occurrences for
the same word in the same document scored a value of 3. To understand how
counting occurrences relates to TF-IDF, compute the average word count and
average TF-IDF:

import numpy as np

count = np.mean(X_train_counts[X_train_counts>Q@])
tfif = np.mean(X_train_tfidf[X_train_tfidf>Q])

CHAPTER 8 Reshaping Data 137

©

REMEMBER

print('mean count: %@.3f' % np.mean(count))
print('mean TF-IDF: %0.3f' % np.mean(tfif))

The results demonstrate that no matter how you count occurrences of Caltech in
the first document or use its TF-IDF, the value is always double the average word,
revealing that it is a keyword for modeling the text:

mean count: 1.698
mean TF-IDF: 0.064

TF-IDF helps you to locate the most important word or n-grams and exclude the
least important one or ones. It is also very helpful as an input for linear models,
because they work better with TF-IDF scores than word counts. At this point, you
normally train a classifier and perform various sorts of analysis. Don’t worry
about this next part of the process just yet. Starting with Chapters 12 and 15, you
get introduced to classifiers. In Chapter 17, you begin working with classifiers in
earnest.

Working with Graph Data

138

Imagine data points that are connected to other data points, such as how one web
page is connected to another web page through hyperlinks. Each of these data
points is a node. The nodes connect to each other using links (also called edges).
Not every node links to every other node, so the node connections become impor-
tant. By analyzing the nodes and their links, you can perform all sorts of interest-
ing tasks in data science, such as defining the best way to get from work to your
home using streets and highways. The following sections describe how graphs
work and how to perform basic tasks with them.

Understanding the adjacency matrix

An adjacency matrix represents the connections between nodes of a graph. When a
connection exists between one node and another, the matrix indicates it as a value
greater than 0. The precise representation of connections in the matrix depends
on whether the graph is directed (where the direction of the connection matters)
or undirected.

A problem with many online examples is that the authors keep them simple for
explanation purposes. However, real-world graphs are often immense and defy

PART 2 Getting Your Hands Dirty with Data

easy analysis simply through visualization. Just think about the number of nodes
that even a small city would have when considering street intersections (with the
links being the streets themselves). Many other graphs are far larger, and simply
looking at them will never reveal any interesting patterns. Data scientists call the
problem in presenting any complex graph using an adjacency matrix a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For
example, you may choose to sort the data according to properties other than the
actual connections. A graph of street connections may include the date the street
was last paved with the data, enabling you to look for patterns that direct someone
based on the streets that are in the best repair. In short, making the graph
data useful becomes a matter of manipulating the organization of that data in
specific ways.

Using NetworkX basics

Working with graphs could become difficult if you had to write all the code from
scratch. Fortunately, the NetworkX package for Python makes it easy to create,
manipulate, and study the structure, dynamics, and functions of complex
networks (or graphs). Even though this book covers only graphs, you can use the
package to work with digraphs and multigraphs as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs (explained
in the previous section, “Understanding the adjacency matrix”). The use of simple
calls hides much of the complexity of working with graphs and adjacency matrices
from view. The following example shows how to create a basic adjacency matrix
from one of the NetworkX-supplied graphs:

import networkx as nx

G = nx.cycle_graph(10)

A = nx.adjacency_matrix(G)
print(A.todense())

Note that you may see a FutureWarning when running this code (see the blog
post at https://blog. johnmuellerbooks.com/2023/05/08/warning—-messages—
in-jupyter—-notebook-example-code/ for details). The example begins by
importing the required package. It then creates a graph using the cycle_graph()
template. The graph contains ten nodes. Calling ad jacency_matrix() creates the

CHAPTER 8 Reshaping Data 139

https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/

TIP

FIGURE 8-1:
Plotting the
original graph.

adjacency matrix from the graph. The final step is to print the output as a matrix,
as shown here:

[[01 0000000 1]
(101000000 0]
010100000 0]
001010000 0]
000101000 0]
000010100 0]
000001010 0]
000000101 0]
000000010 1]
[1000000010]]

You don’t have to build your own graph from scratch for testing purposes. The
NetworkX site documents a number of standard graph types that you can use, all
of which are available within IPython. The list appears at https://networkx.
github.io/documentation/latest/reference/generators.html.

It’s interesting to see how the graph looks after you generate it. The following
code displays the graph for you. Figure 8-1 shows the result of the plot.

import matplotlib.pyplot as plt
%matplotlib inline
nx.draw_networkx(G)

plt.show()

140 PART 2 Getting Your Hands Dirty with Data

https://networkx.github.io/documentation/latest/reference/generators.html
https://networkx.github.io/documentation/latest/reference/generators.html

The plot shows that you can add an edge between nodes 1 and 5. Here’s the code
needed to perform this task using the add_edge() function. Figure 8-2 shows the

result. (The plot you see will likely vary in appearance from the one in Figure 8-2,
but the connections and nodes will be the same.)

G.add_edge(1,5)
nx.draw_networkx(G)
plt.show()

FIGURE 8-2:
Plotting the
graph addition.

CHAPTER 8 Reshaping Data 141

IN THIS CHAPTER

» Putting data science problems and
data into perspective

» Defining and using feature creation
to your benefit

» Working with arrays

Chapter 9

Putting What You
Know into Action

©

REMEMBER

revious chapters have all been preparatory in nature. You have discovered

how to perform essential data science tasks using Python. In addition, you

spent time working with the various tools that Python provides to make
data science tasks easier. All this information is essential, but it doesn’t help you
see the big picture — where all the pieces go. This chapter shows you how to
employ the techniques you discovered in previous chapters to solve real data sci-
ence problems.

This chapter isn’t the end of the journey — it’s the beginning. Think of previous
chapters in the same way as you think about packing your bags, making reserva-
tions, and creating an itinerary before you go on a trip. This chapter is the trip to
the airport, during which you start to see everything come together.

The chapter begins by looking at the aspects you normally have to consider when
trying to solve a data science problem. You can’t just jump in and start perform-
ing an analysis; you must understand the problem first, as well as consider the
resources (in the form of data, algorithms, computational resources) to solve it.
Putting the problem into a context, a setting of a sort, helps you understand the
problem and define how the data relates to that problem. The context is essential
because, like language, context alters the meaning of both the problem and its
associated data. For example, when you say, “I have a red rose” to your

CHAPTER 9 Putting What You Know into Action 143

REMEMBER

significant other, the meaning behind the sentence has one connotation. If you
say the same sentence to a fellow gardener, the connotation is different. The red
rose is a sort of data, and the person you’re speaking to is the context. There is no
meaning to saying, “I have a red rose” unless you know the context in which the
statement is made. Likewise, data has no meaning; it doesn’t answer any question
until you know the context in which the data is used. Saying “I have data”
expresses the question, “What does the data mean?”

In the end, you’ll need one or more datasets. Two-dimensional datatables (data-
sets) consist of cases (the rows) and features (the columns). You can also refer to
features as variables when using a statistical terminology. The features you decide
to use for any given dataset determine the kinds of analysis you can perform, the
ways in which you can manipulate the data, and ultimately the sorts of results
you obtain. Determining what sorts of features you can create from source data
and how you must transform the data to ensure that it works for the analysis you
want to perform is an essential part of developing a data science solution.

After you get a picture of what your problem is, the resources you have to solve it,
and the inputs you need to work with to solve it, you’re ready to perform some
actual work. The last section of this chapter shows you how to perform simple
tasks efficiently. You can usually perform tasks using more than one methodol-
ogy, but when working with big data, the fastest routes are better. By working
with arrays and matrices to perform specific tasks, you’ll notice that certain
operations can take a long time unless you leverage some computational tricks.
Using computational tricks is one of the most basic forms of manipulation you
perform, but knowing about them from the beginning is essential. Applying these
techniques paves the road to later chapters when you start to look at the magic
that data science can truly accomplish in helping you see more in the data you
have than is nominally apparent.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions).
The source code for this chapter appears in the P4DS4D3_09_Operations_On_
Arrays_and_Matrices.ipynb file.

Contextualizing Problems and Data

144

Putting your problem in the correct context is an essential part of developing a
data science solution for any given problem and associated data. Data science is
definitively applied science, and abstract manual approaches may not work all
that well on your specific situation. Running a Hadoop cluster or building a deep
neural network may sound cool in front of fellow colleagues, and make you feel

PART 2 Getting Your Hands Dirty with Data

REMEMBER

as though you’re doing great data science projects, but they may not provide what
you need to solve your problem. Putting the problem in the correct context isn’t
just a matter of deliberating on whether to use a certain algorithm or transform
the data in a certain way — it’s the art of critically examining the problem and
available resources and creating an environment in which to solve the problem
and obtain a desired solution.

The key point here is the desired solution, in that you could come up with solu-
tions that aren’t desirable because they don’t tell you what you need to know —
or, when they do tell you what you need to know, they waste too much time and
resources. The following sections provide an overview of the process you follow
to contextualize both problems and data.

Evaluating a data science problem

When working through a data science problem, you need to start by considering
your goal and the resources you have available for achieving that goal. The
resources are data, computational resources such as available memory, CPUs, and
disk space. In the real world, no one will hand you ready-made data and tell you
to perform a particular analysis on it. Most of the time, you have to face completely
new problems, and you have to build your solution from scratch. During your first
evaluation of a data science problem, you need to consider the following:

¥ The data available in terms of accessibility, quantity, and quality. You
must also consider the data in terms of possible biases that could influence
or even distort its characteristics and content. Data never contains absolute
truths, only relative truths that offer you a more or less useful view of a
problem (see the “Considering the five mistruths in data” sidebar for details).
Always be aware of the truthfulness of data and apply critical reasoning as
part of your analysis of it.

3 The methods you can feasibly use to analyze the dataset. Consider
whether the methods are simple or complex. You must also decide how well
you know a particular methodology. Start by using simple approaches, and
never fall in love with any particular technique. There are neither free lunches
nor Holy Grails in data science.

3 The questions you want to answer by performing your analysis and how
you can quantitatively measure whether you achieved a satisfactory
answer to them. “If you can’ not measure it, you can not improve it,” as Lord
Kelvin stated (see https://zapatopi .net/kelvin/quotes/). If you can
measure performance, you can determine the impact of your work and even
make a monetary estimation. Stakeholders will be delighted to know that
you've figured out what to do and what benefits your data science project
will bring about.

CHAPTER 9 Putting What You Know into Action 145

https://zapatopi.net/kelvin/quotes/

146

PART 2

CONSIDERING THE FIVE MISTRUTHS
IN DATA

Humans are used to seeing data for what it is in many cases: an opinion. In fact, in some
cases, people skew data to the point where it becomes useless, a mistruth. A computer
can't tell the difference between truthful and untruthful data; all it sees is data.
Consequently, as you perform analysis with data, you must consider the truth value of
that data as part of your analysis. The best you can hope to achieve is to see the errant
data as outliers and then filter it out, but that technique doesn’t necessarily solve the
problem because a human would still use the data and attempt to determine a truth
based on the mistruths it contains. Here are the five mistruths you commonly find in
data (using a car accident reporting process as an illustration):

® Commission: Mistruths of commission are those that reflect an outright attempt to
substitute truthful information for untruthful information. For example, when filling
out an accident report, someone could state that the sun momentarily blinded
them, making it impossible to see someone they hit. In reality, perhaps the person
was distracted by something else or wasn't actually thinking about driving (possibly
considering a nice dinner). If no one can disprove this theory, the person might get
by with a lesser charge. However, the point is that the data would also be
contaminated.

® Omission: Mistruths of omission occur when a person tells the truth in every stated
fact but leaves out an important fact that would change the perception of an inci-
dent as a whole. Thinking again about the accident report, say that someone strikes
a deer, causing significant damage to their car. The driver truthfully says that the
road was wet; it was near twilight so the light wasn't as good as it could be; was a
little late in pressing on the brake; and the deer simply ran out from a thicket at the
side of the road. The conclusion would be that the incident is simply an accident.
However, the person has left out an important fact. The driver was texting at the
time. If law enforcement knew about the texting, it would change the reason for the
accident to inattentive driving. The driver might be fined and the insurance adjuster
would use a different reason when entering the incident into the database.

® Perspective: Mistruths of perspective occur when multiple parties view an incident
from multiple vantage points. For example, in considering an accident involving a
struck pedestrian, the person driving the car, the person getting hit by the car, and
a bystander who witnessed the event would all have different perspectives. An offi-
cer taking reports from each person would understandably get different facts from
each one, even assuming that each person tells the truth as each knows it. In fact,
experience shows that this is almost always the case, and what the officer submits
as a report is the middle ground of what each of those involved state, augmented

by personal experience. In other words, the report will be close to the truth, but not
completely true. When dealing with perspective, it's important to consider vantage
point. The driver of the car can see the dashboard and knows the car’s condition

at the time of the accident. This is information that the other two parties lack.
Likewise, the person getting hit by the car has the best vantage point for seeing the
driver's facial expression (intent). The bystander might be in the best position to see
whether the driver made an attempt to stop, and assess issues such as whether the
driver tried to swerve. Each party will have to make a report based on seen data
without the benefit of hidden data.

® Bias: Mistruths of bias occur when someone is able to see the truth, but personal
concerns or beliefs distort or obscure that vision. For example, when thinking about
an accident, a driver might focus attention so completely on the middle of the road
that the deer at the edge of the road becomes virtually invisible. Consequently, the
driver has no time to react when the deer suddenly decides to bolt out into the
middle of the road in an effort to cross. A problem with bias is that it can be incredi-
bly hard to categorize. For example, a driver who fails to see the deer can have a
genuine accident, meaning that the deer was hidden from view by shrubbery.
However, the driver might also be guilty of inattentive driving because of incorrect
focus. The driver might also experience a momentary distraction. In short, the fact
that the driver didn't see the deer isn't the question; instead, it's a matter of why the
driver didn't see the deer. In many cases, confirming the source of bias becomes
important when creating an algorithm designed to avoid a bias source.

® Frame of reference: Of the five mistruths, frame of reference need not actually be
the result of any sort of error, but one of understanding. A frame-of-reference
mistruth occurs when one party describes something, such as an event like an
accident, and the second party’s lack of experience with the event makes the details
muddled or completely misunderstood. Comedy routines abound that rely on
frame-of-reference errors. One famous example is from Abbott and Costello,
Who's On First?, as shown athttps: //www.youtube .com/watch?v=kTcRRaXV-
fg. Getting one person to understand what a second person is saying can be
impossible when the first person lacks experiential knowledge — the frame of
reference.

Researching solutions

Data science is a complex system of knowledge at the intersection of computer
science, math, statistics, and business. Very few people can know everything
about it, and, if someone has already faced the same problem or dilemmas as you
face, reinventing the wheel makes little sense. Now that you have contextualized

CHAPTER 9 Putting What You Know into Action 147

https://www.youtube.com/watch?v=kTcRRaXV-fg
https://www.youtube.com/watch?v=kTcRRaXV-fg

148

©

REMEMBER

your project, you know what you’re looking for and you can search for it in dif-
ferent ways.

3 Check the Python documentation. You might be able to find examples that
suggest a possible solution. NumPy (https://docs.scipy.org/doc/numpy/
user/), SciPy (https://docs.scipy.org/doc/), pandas (http: //pandas.
pydata.org/pandas—docs/version/2.0.2/), and especially Scikit-learn
(https://scikit-learn.org/stable/user_guide.html) have detailed
in-line and online documentation with plenty of data science-related
examples.

3 Seek out online articles and blogs that hint at how other practitioners
solved similar problems. Q&A websites such as Quora (https://www.
quora.com/), Stack Overflow (https://stackover flow.com/), and Cross
Validated (https://stats.stackexchange.com/) can provide you with
plenty of answers to similar problems.

3 Consult academic papers. For example, you can query your problem on
Google Scholar athttps://scholar.google. it/ or Microsoft Academic at
https://www.microsoft.com/en-us/research/project/academic/. You
can find a series of scientific papers that can tell you about preparing the data,
or they can detail the kind of algorithms that work better for a particular
problem.

It may seem trivial, but the solutions you create have to reflect the problem you’re
trying to solve. As you research solutions, you may find that some of them seem
promising at first, but then you can’t successfully apply them to your case because
something in their context is different. For instance, your dataset may be incom-
plete or may not provide enough input to solve the problem. In addition, the
analysis model you select may not actually provide the answer you need or the
answer might prove inaccurate. As you work through the problem, don’t be afraid
to perform your research multiple times as you discover, test, and evaluate pos-
sible solutions that you could apply given the resources available and your actual
constraints.

Formulating a hypothesis

At some point, you have everything you think you need to solve the problem. Of
course, it’s a mistake to assume now that the solutions you create can actually
solve the problem. You have a hypothesis, rather than a solution, because you
have to demonstrate the efficacy of the potential solution in a scientific way. In
order to form and test a hypothesis, you must train a model using a training
dataset and then test it using an entirely different dataset. Later chapters in the
book spend a great deal of time helping you through the process of training and

PART 2 Getting Your Hands Dirty with Data

https://docs.scipy.org/doc/numpy/user/
https://docs.scipy.org/doc/numpy/user/
https://docs.scipy.org/doc/
http://pandas.pydata.org/pandas-docs/version/2.0.2/
http://pandas.pydata.org/pandas-docs/version/2.0.2/
https://scikit-learn.org/stable/user_guide.html
https://www.quora.com/
https://www.quora.com/
https://stackoverflow.com/
https://stats.stackexchange.com/
https://scholar.google.it/
https://www.microsoft.com/en-us/research/project/academic/

testing the algorithms used to perform analysis, so don’t worry too much if you
don’t understand this aspect of the process right now.

Preparing your data

After you have some idea of the problem and its solution, you know the inputs
required to make the algorithm work. Unfortunately, your data probably appears
in multiple forms, you get it from multiple sources, and some data is missing
entirely. Moreover, the developers of the features that existing data sources pro-
vide may have devised them for different purposes (such as accounting or mar-
keting) than yours and you have to transform them so that you can use your
algorithm at its fullest power. To make the algorithm work, you must prepare the
data. This means checking for missing data, creating new features as needed, and
possibly manipulating the dataset to get it into a form that your algorithm can
actually use to make a prediction.

Considering the Art of Feature Creation

Features have to do with the columns in your dataset. Of course, you need to
determine what those columns should contain. They might not end up looking
precisely like the data in the original data source. The original data source may
present the data in a form that leads to inaccurate analysis or even prevent you
from getting a desired outcome because it’s not completely suited to your algo-
rithm or your objectives. For example, the data may contain too much informa-
tion redundancy inside multiple variables, which is a problem called multivariate
correlation. The task of making the columns work in the best manner for data
analysis purposes is feature creation (also called feature engineering). The follow-
ing sections help you understand feature creation and why it’s important. (Future
chapters provide all sorts of examples of how you actually employ feature cre-
ation to perform analysis.)

Defining feature creation

Feature creation may seem a bit like magic or weird science to some people, but it
really does have a firm basis in math. The task is to take existing data and trans-
form it into something that you can work with to perform an analysis. For exam-
ple, numeric data could appear as strings in the original data source. To perform
an analysis, you must convert the string data to numeric values in many cases.
The immediate goal of feature creation is to achieve better performance from the
algorithms used to accomplish the analysis than you can when using the original
data.

CHAPTER 9 Putting What You Know into Action 149

150

REMEMBER

In many cases, the transformation is less than straightforward. You may have to
combine values in some way or perform math operations on them. The informa-
tion you can access may appear in all sorts of forms, and the transformation
process lets you work with the data in new ways so that you can see patterns in
it. For example, consider this popular Kaggle competition: https://www.kaggle.
com/competitions/predict-student-per formance-from-game-play. The goal
is to use all sorts of statistics to predict student performance during game-based
learning in real-time. Imagine trying to derive disparate measures from various
game sources that interact with students in different ways, and you can begin to
grasp the need to create features in a dataset.

As you might imagine, feature creation truly is an art form, and everyone has an
opinion on precisely how to perform it. This book provides you with some good
basic information on feature creation as well as a number of examples, but it
leaves advanced techniques to experimentation and trial. As Pedro Domingos,
professor at the University of Washington, Seattle, stated in his data science
paper, “A Few Useful Things to Know about Machine Learning” (see https://
homes . cs.washington.edu/~pedrod/papers/cacmi2.pdf), feature engineering
is “easily the most important factor” in determining the success or failure of a
machine-learning project, and nothing can really replace the “smarts you put
into feature engineering.”

Combining variables

Data often comes in a form that doesn’t work at all for an algorithm. Consider a
simple real-life situation in which you need to determine whether one person can
lift a board at a lumber yard. You receive two datatables. The first contains the
height, width, thickness, and wood types of boards. The second contains a list
of wood types and the amount they weigh per board foot (a piece of wood 12" x
12" x 1"). Not every wood type comes in every size, and some shipments come
unmarked, so you don’t actually know what type of wood you’re working with.
The goal is to create a prediction so that the company knows how many people to
send to work with the shipments.

In this case, you create a two-dimensional dataset by combining variables. The
resulting dataset contains only two features. The first feature contains just the
length of the boards. It’s reasonable to expect a single person to carry a board
that is up to ten feet long, but you want two people carrying a board ten feet or
longer. The second feature is the weight of the board. A board that is 10 feet long,
12 inches wide, and 2 inches thick contains 20 board feet. If the board is made of
ponderosa pine (with a board foot rating, BFR, of 2.67), the overall weight of the
board is 53.4 pounds, and one person could probably lift it. However, when the
board is made of hickory (with a BFR of 4.25), the overall weight is now
85 pounds. Unless you have the Hulk working for you, you really do need two

PART 2 Getting Your Hands Dirty with Data

https://www.kaggle.com/competitions/predict-student-performance-from-game-play
https://www.kaggle.com/competitions/predict-student-performance-from-game-play
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

people lifting that board, even though the board is short enough for one
person to lift.

Getting the first feature for your dataset is easy. All you need is the lengths of
each of the boards that you stock. However, the second feature requires that you
combine variables from both tables:

Length (feet) x Width (feet) x Thickness (inches) x BFR

The resulting dataset will contain the weight for each length of each kind of wood
you stock. Having this information means that you can create a model that pre-
dicts whether a particular task will require one, two, or even three people to
perform.

Understanding binning and discretization

To perform some types of analysis, you need to break numeric values into classes.
For example, you might have a dataset that includes entries for people from ages
0 to 80. To derive statistics that work in this case (such as running the Naive
Bayes algorithm), you might want to view the variable as a series of levels in ten-
year increments. The process of dividing the dataset into these ten-year incre-
ments is binning. Each bin is a numeric category that you can use.

Binning may improve the accuracy of predictive models by reducing noise or by
helping model nonlinearity. In addition, it allows easy identification of outliers
(values outside the expected range) and invalid or missing values of numerical
variables.

Binning works exclusively with single numeric features. Discretization is a more
complex process, in which you place combinations of values from different fea-
tures in a bucket — limiting the number of states in any given bucket. In contrast
to binning, discretization works with both numeric and string values. It’s a more
generalized method of creating categories. For example, you can obtain a dis-
cretization as a byproduct of cluster analysis.

Using indicator variables

Indicator variables are features that can take on a value of 0 or 1. Another name for
indicator variables is dummy variables. No matter what you call them, these vari-
ables serve an important purpose in making data easier to work with. For exam-
ple, if you want to create a dataset in which individuals under 25 are treated one
way and individuals 25 and over are treated another, you could replace the age
feature with an indicator variable that contains a 0 when the individual is under
25 or a 1 when the individual is 25 and older.

CHAPTER 9 Putting What You Know into Action 151

152

TECHNICAL
STUFF

AN

WARNING

Using an indicator variable lets you perform analysis faster and categorize cases
with greater accuracy than you can without this variable. The indicator variable
removes shades of gray from the dataset. Someone is either under 25 or 25 and
older — there is no middle ground. Because the data is simplified, the algorithm
can perform its task faster, and you have less ambiguity to contend with.

The practice of using indicator variables can also assist in meeting data-cleaning
requirements now enforced by many countries. Saying that someone is 25 years
old is personally identifiable; saying that they’re in group 1 is less so. So, using
indicator variables can help you meet legal requirements as well.

Transforming distributions

A distribution is an arrangement of the values of a variable that shows the fre-
quency at which various values occur. After you know how the values are distrib-
uted, you can begin to understand the data better. All sorts of distributions exist
(see a gallery of distributions at https://www.itl.nist.gov/div898/handbook/
eda/section3/edal66.htm), and most algorithms can easily deal with them.
However, you must match the algorithm to the distribution.

Pay particular attention to uniform and skewed distributions. They are quite dif-
ficult to deal with for different reasons. The bell-shaped curve, the normal dis-
tribution, is always your friend. When you see a distribution shaped differently
from a bell distribution, you should think about performing a transformation.

When working with distributions, you might find that the distribution of values
is skewed in some way and that, because of the skewed values, any algorithm
applied to the set of values produces output that simply won’t match your expec-
tations. Transforming a distribution means to apply some sort of function to the
values in order to achieve specific objectives, such as fixing the data skew, so that
the output of your algorithm is closer to what you expected. In addition, trans-
formation helps make the distribution friendlier, such as when you transform a
dataset to appear as a normal distribution. Transformations that you should
always try on your numeric features are

¥ Logarithmnp.log(x) and exponential np.exp(x)
¥ Inverse1/x, square rootnp.sqrt(x), and cube root xx*(1.0/3.0)

¥ Polynomial transformations such as xxx2, x+*3, and so on

PART 2 Getting Your Hands Dirty with Data

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm

Performing Operations on Arrays

A basic form of data manipulation is to place the data in an array or matrix and
then use standard math-based techniques to modify its form. Using this approach
puts the data in a convenient form to perform other operations done at the level
of every single observation, such as in iterations, because they can leverage your
computer architecture and some highly optimized numerical linear algebra rou-
tines present in CPUs. These routines are callable from every operating system.
The larger the data and the computations, the more time you can save. In addi-
tion, using these techniques also spares you from writing long and complex
Python code. The following sections describe how to work with arrays for data
science purposes.

Using vectorization

Your computer provides you with powerful routine calculations, and you can use
them when your data is in the right format. NumPy’s ndarray is a multidimen-
sional data-storage structure that you can use as a dimensional datatable. In fact,
you can use it as a cube or even a hypercube when there are more than three
dimensions.

Using ndarray makes computations easy and fast. The following example creates
a dataset of three observations with seven features for each observation. In this
case, the example obtains the maximum value for each observation and subtracts
it from the minimum value to obtain the range of values for each observation.

import numpy as np
dataset = np.array([[2, 4, 6, 8, 3, 2

[7, 5, 3, 1, 6, 8, @],

1, 38, 2, 1, @, @, 8]])
print(np.max(dataset, axis=1) - np.min(dataset, axis=1))

The print statement obtains the maximum value from each observation using
np.max() and then subtracts it from the minimum value using np.min(). The
maximum values for the observations are [8 8 8]. The minimum values for the

observations are [2 @ 0]. As a result, you get the following output:

[6 8 8]

CHAPTER 9 Putting What You Know into Action 153

154

Performing simple arithmetic
on vectors and matrices

Most operations and functions from NumPy that you apply to arrays leverage
vectorization, so they’re fast and efficient — much more efficient than any other
solution or handmade code. Even the simplest operations such as additions or
divisions can take advantage of vectorization.

For instance, many times, the form of the data in your dataset won’t quite match
the form you need. A list of numbers could represent percentages as whole num-
bers when you really need them as fractional values. In this case, you can usually
perform some type of simple math to solve the problem, as shown here:

import numpy as np

a = np.array([15.0, 20.0, 22.0, 75.0, 40.0, 35.0])
a = ax.01

print(a)

The example creates an array, fills it with whole number percentages, and then
uses 0.01 as a multiplier to create fractional percentages. You can then multiply
these fractional values against other numbers to determine how the percentage
affects that number. The output from this example is

[0.15 0.2 ©0.22 .75 0.4 0.35]

Performing matrix vector multiplication

The most efficient vectorization operations are matrix manipulations in which
you add and multiply multiple values against other multiple values. NumPy
makes performing multiplication of a vector by a matrix easy, which is handy if
you have to estimate a value for each observation as a weighted summation of the
features. Here’s an example of this technique:

import numpy as np
a = np.array([2, 4, 6, 8])
b = np.array([[1, 2, 3, 4],

[2, 8, 4, 5],

(3, 4, 5, 6],

(4, 5, 6, 7]])
c = np.dot(a, b)

print(c)

PART 2 Getting Your Hands Dirty with Data

Notice that the array formatted as a vector must appear before the array format-
ted as a matrix in the multiplication or you get an error. The example outputs
these values:

(60 80 100 120]

To obtain the values shown, you multiply every value in the array against the
matching column in the matrix; that is, you multiply the first value in the array
against the first column, first row of the matrix. For example, the first value in
the outputis 2 ¥ 1+ 4 * 2 + 6 * 3 + 8 * 4, which equals 60.

Performing matrix multiplication

You can also multiply one matrix against another. In this case, the output is the
result of multiplying rows in the first matrix against columns in the second
matrix. Here is an example of how you multiply one NumPy matrix against
another:

import numpy as np
a = np.array([[2, 4, 6, 8],
(1, 8, 5, 711)

b = np.array ([[1, 2],
[2, 3],
[3, 4],
(4, 5]11)
¢ = np.dot(a, b)
print(c)

In this case, you end up with a 2-x-2 matrix as output. Here are the values you
should see when you run the application:

[[60 80]
[50 66]]

Each row in the first matrix is multiplied by each column of the second matrix.
For example, to get the value 50 shown in row 2, column 1 of the output, you
match up the values in row two of matrix a with column 1 of matrix b, like this:
1*¥1+43*%2+5%34+7%4.

CHAPTER 9 Putting What You Know into Action 155

Visualizing
Information

IN THIS PART ...

Creating basic graphs and charts
Choosing the right graph or chart for the task
Putting time in a bottle with time series data

Making the world you own with geographical plots

IN THIS CHAPTER

» Creating a basic graph

» Adding measurement lines to your
graph

» Dressing your graph up with styles
and color

» Documenting your graph with labels,
annotations, and legends

Chapter 10

Getting a Crash Course
in Matplotlib

TIP

ost people visualize information better when they see it in graphic,

versus textual, format. Graphics help people see relationships and make

comparisons with greater ease. Even if you can deal with the abstraction
of textual data with ease, performing data analysis is all about communication.
Unless you can communicate your ideas to other people, the act of obtaining,
shaping, and analyzing the data has little value beyond your own personal needs.
Fortunately, Python makes the task of converting your textual data into graphics
relatively easy using Matplotlib, which is actually a simulation of the MATLAB
application. You can see a comparison of the two at https://pyzo.org/python_
vs_matlab.html. (If you don’t know how to use MATLAB, see MATLAB For
Dummies, by John Paul Mueller [Wiley]), if you’d like to learn.)

If you already know how to use MATLAB, moving over to Matplotlib is relatively
easy because they both use the same sort of state machine to perform tasks, and
they have a similar method of defining graphic elements. A number of people
feel that Matplotlib is superior to MATLAB because you can do things like
perform tasks using less code when working with Matplotlib than when using
MATLAB (see https://phillipmfeldman.org/Python/Advantages_of_Python_
Over_Matlab.html). Others have noted that the transition from MATLAB to
Matplotlib is relatively straightforward (see https://realpython.com/matlab-
vs-python/). However, what matters most is what you think. You may find that

CHAPTER 10 Getting a Crash Course in Matplotlib 159

https://pyzo.org/python_vs_matlab.html
https://pyzo.org/python_vs_matlab.html
https://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
https://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
https://realpython.com/matlab-vs-python/
https://realpython.com/matlab-vs-python/

©

REMEMBER

you like to experiment with data using MATLAB and then create applications
based on your findings using Python with Matplotlib. It’s a matter of personal
taste rather than a question of which one is correct.

This chapter focuses on getting you up to speed quickly with Matplotlib. You do
use Matplotlib quite a few times later in the book, so this short overview of how it
works is important, even if you already know how to work with MATLAB. That
said, the MATLAB experience will be incredibly helpful as you progress through
the chapter, and you may find that you can simply skim through some sections.
Make sure to keep this chapter in mind as you start working with Matplotlib in
more detail later in the book.

You don’t have to type the source code for this chapter manually; in fact, using the
downloadable source code is a lot easier. The source code for this chapter appears
in the P4DS4D3_10_Getting_a_Crash_Course_in_MatPlotLib.ipynb file (see the
Introduction for where to find this code).

Starting with a Graph

160

A graph or chart is simply a visual representation of numeric data. Matplotlib makes
a large number of graph and chart types available to you. Of course, you can choose
any of the common graph and graph types such as bar charts, line graphs, or pie
charts. As with MATLAB, you can also access a huge number of statistical plot types,
such as boxplots, error bar charts, and histograms. You can see a gallery of the var-
ious graph types that Matplotlib supports at https://matplotlib.org/gallery.
html. Remember, though, that you can combine graphic elements in an almost
infinite number of ways to create your own presentation of data no matter how com-
plex that data may be. The following sections describe how to create a basic graph,
but you have access to a lot more functionality than these sections tell you about.

Defining the plot

Plots show graphically what you’ve defined numerically. To define a plot, you
need some values, the matplotlib.pyplot module, and an idea of what you want
to display, as shown in the following code:

import matplotlib.pyplot as plt
#matplotlib inline

values = [1, 5, 8, 9, 2, @, 3, 10, 4, 7]
plt.plot(range(1,11), values)
plt.show()

PART 3 Visualizing Information

https://matplotlib.org/gallery.html
https://matplotlib.org/gallery.html

FIGURE 10-1:
Creating a basic
plot that shows

just one line.

S
S5
TECHNICAL
STUFF

In this case, the code tells the plt.plot() function to create a plot using x-axis
values between 1 and 11 and y-axis values as they appear in the values variable.
Calling plot.show() displays the plot in a separate dialog box, as shown in
Figure 10-1. Notice that the output is a line graph. Chapter 11 shows you how to
create other chart and graph types.

104

The %matplotlib inline magic function (see the “Embedding plots and other
images” section of Chapter 5) has become optional in newer versions of Python.
However, including it is still a good idea, especially if you share your code with
other people.

Drawing multiple lines and plots

You encounter many situations in which you must use multiple plot lines, such as
when comparing two sets of values. To create such plots using Matplotlib, you
simply call p1t.plot() multiple times — once for each plot line, as shown in the
following example:

import matplotlib.pyplot as plt
%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values)

CHAPTER 10 Getting a Crash Course in Matplotlib 161

plt.plot(range(1,11), values2)
plt.show()

When you run this example, you see two plot lines, as shown in Figure 10-2. Even
though you can’t see it in the printed book, the line graphs are different colors
(chosen for you by the library) so that you can tell them apart.

10 4
S -
| /

4 -

2 -
FIGURE 10-2:

Defining a plot oA
that contains

multiple lines. 2 4 6 8 10

Saving your work to disk

Jupyter Notebook makes it easy to include your graphs within the notebooks you
create, enabling you to define reports that everyone can easily understand. When
you need to save a copy of your work to disk for later reference or to use it as
part of a larger report, you save the graphic programmatically using the
plt.savefig() function, as shown in the following code:

import matplotlib.pyplot as plt
%matplotlib auto

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.plot(range(1,11), values)

plt.ioff()

plt.savefig('MySamplePlot.png', format='png')

In this case, you must provide a minimum of two inputs. The first input is the

filename. You may optionally include a path for saving the file. The second input is
the file format. In this case, the example saves the file in Portable Network Graphic

162 PART 3 Visualizing Information

©

REMEMBER

(PNG) format, but you have other options: Portable Document Format (PDF), Post-
script (PS), Encapsulated Postscript (EPS), and Scalable Vector Graphics (SVG).

Note the presence of the %matplotlib auto magic in this case. Using this call
removes the inline display of the graph. You do have options for other Matplotlib
backends, depending on which version of Python and Matplotlib you use. For
example, some developers prefer the notebook backend to the inline backend
because it provides additional functionality. However, to use the notebook back-
end, you must also restart the kernel, and you may not always see what you expect.
To see the backend list, use the #matplotlib -1 magic. In addition, calling p1t.
ioff() turns plot interaction off.

Setting the Axis, Ticks, and Grids

OLAOD,
TECHNICAL
STUFF

It’s hard to know what the data actually means unless you provide a unit of mea-
sure or at least some means of performing comparisons. The use of axes, ticks,
and grids makes it possible to illustrate graphically the relative size of data ele-
ments so that the viewer gains an appreciation of comparative measure. You won’t
use these features with every graphic, and you may employ the features differ-
ently based on viewer needs, but it’s important to know that these features exist
and how you can use them to help document your data within the graphic
environment.

The following examples use the Zmatplotlib notebook magic so that you can see
the difference between it and the %matplotlib inline magic. The two inline
displays rely on a different graphic engine. Consequently, you must choose
Kernel=> Restart to restart the kernel before you run any of the examples in the
sections that follow.

Getting the axes

The axes define the x and y plane of the graphic. The x axis runs horizontally, and
the y axis runs vertically. In many cases, you can allow Matplotlib to perform any
required formatting for you. However, sometimes you need to obtain access to the
axes and format them manually. The following code shows how to obtain access
to the axes for a plot:

import matplotlib.pyplot as plt
#matplotlib notebook

values = [0, 5, 8, 9, 2, @, 3, 10, 4, 7]
ax = plt.axes()

CHAPTER 10 Getting a Crash Course in Matplotlib 163

164

©

REMEMBER

plt.plot(range(1,11), values)
plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them
directly is to make writing the code simpler and more efficient. In this case, you
simply turn on the default axes by calling p1t.axes(); then you place a handle to
the axes in ax. A handle is a sort of pointer to the axes. Think of it as you would a
frying pan. You wouldn’t lift the frying pan directly but would instead use its han-
dle when picking it up.

Formatting the axes

Simply displaying the axes won’t be enough in many cases. Instead, you may want
to change the way Matplotlib displays them. For example, you may not want the
highest value to reach to the top of the graph. The following example shows just a
small number of tasks you can perform after you have access to the axes:

import matplotlib.pyplot as plt
#matplotlib notebook
plt.figure()

values = [@, 5, 8, 9, 2, 0, 3, 10, 4, T]

ax = plt.axes()

ax.set_xlim([@Q, 11])

ax.set_ylim([-1, 11])

ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([@, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
plt.plot(range(1,11), values)

plt.show()

In this case, the set_x1im() and set_ylim() calls change the axes limits — the
minimum and maximum coordinate values of each axis. The set_xticks() and
set_yticks() calls change the ticks used to display data. The ways in which you
can change a graph using these calls can become quite detailed. For example, you
can choose to change individual tick labels if you want.

Notice also the call to plt.figure(). If you don’t make this call, the code will
modify the first plot (figure) from the previous section (Figure 10-2), rather than
create a new figure. In fact, what it will actually do is add to that previous figure,
so what you end up with is a mess that no one can figure out! Figure 10-3 shows
the output from this example. Notice how the changes affect how the line graph
displays.

PART 3 Visualizing Information

Figure 2 n‘
10 A
94
g
74
6 4
5 4
4
34
25
14
04
FIGURE 10-3:
Specifying how 1 2 3 2 5 6 7 8 9 10
the axes should
appea:/it:\,\fz: & € 3 4 O Left button pans, Right button zooms x/y fixes axis, CTRL fixe/; aspect

As you can see by viewing the differences between Figures 10-1, 10-2, and 10-3,
,@, the %matlplotlib notebook magi‘c produces a significantly different.display. The
controls at the bottom of the display let you pan and zoom the display, move
TECHNICAL Detween views you’ve created, and download the figure to disk when working with
STUFF Jupyter Notebook (they may not work at all in Google Colab). The button to the
right of the Figure 2 heading in Figure 10-3 lets you stop interacting with the
graph after you’ve finished working with it. Any changes you’ve made to the pres-
entation of the graph remain afterward so that anyone looking at your notebook
will see the graph in the manner you intended for them to see it. The ability to

interact with the graph ends when you display another graph.

Adding grids

Grid lines enable you to see the precise value of each element of a graph. You can
more quickly determine both the x and y coordinates, which allow you to perform
comparisons of individual points with greater ease. Of course, grids also add noise
(added information) and make seeing the actual flow of data harder. The point is
that you can use grids to good effect to create particular effects. The following
code shows how to add a grid to the graph in the previous section:

import matplotlib.pyplot as plt
%matplotlib notebook

CHAPTER 10 Getting a Crash Course in Matplotlib 165

FIGURE 10-4:
Adding grids
makes the values
easier to read.

plt.figure()

values = [@, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
ax.set_xlim([Q, 11]
ax.set_ylim([-1, 11
ax.set_xticks([1, 2
ax.set_yticks([0Q, 1
ax.grid()
plt.plot(range(1,11), values)
plt.show()

)
D
,3,4,5, 6,7, 8, 9, 10])

2,8 4,5, 6,17 8, 9, 10])

7 7 7 7

All you really need to do to add a grid to your plot is call the grid() function. As
with many other Matplotlib functions, you can add parameters to create the grid
precisely as you want to see it. For example, you can choose whether to add the x
grid lines, y grid lines, or both. The output from this example appears in
Figure 10-4. In this case, the figure shows the notebook backend with interaction
turned off.

Figure 3 n

166 PART 3 Visualizing Information

Defining the Line Appearance

Just drawing lines on a page won’t do much for you if you need to help the viewer
understand the importance of your data. In most cases, you need to use different
line styles to ensure that the viewer can tell one data grouping from another.
However, to emphasize the importance or value of a particular data grouping, you
need to employ color. The use of color communicates all sorts of ideas to the
viewer. For example, green often denotes that something is safe, and red com-
municates danger. The following sections help you understand how to work with
line style and color to communicate ideas and concepts to the viewer without
using any text.

Working with line styles

Line styles help differentiate graphs by drawing the lines in various ways. Using a
unique presentation for each line helps you distinguish each line so that you can
call it out (even when the printout is in shades of gray). You could also call out a
particular line graph by using a different line style for it (and using the same style
for the other lines). Table 10-1 shows the various Matplotlib line styles.

The line style appears as a third argument to the plot() function call. You simply
provide the desired string for the line type, as shown in the following example.

import matplotlib.pyplot as plt
#matplotlib inline

values = [1, 5, 8, 9, 2, @, 3, 10, 4, T]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

plt.plot(range(1,11), values, '—-')
plt.plot(range(1,11), values2, ':')
plt.show()

MAKING GRAPHICS ACCESSIBLE

Avoiding assumptions about someone’s ability to see your graphic presentation is
essential. For example, someone who is color blind may not be able to tell that one
line is green and the other red. Likewise, someone with low vision may not be able to
distinguish between a dashed line and one that combines dashes and dots. Using
multiple methods to distinguish each line helps ensure that everyone can see your
data in a manner that is comfortable to each person.

CHAPTER 10 Getting a Crash Course in Matplotlib 167

168

TABLE 10-1

FIGURE 10-5:
Line styles help
differentiate
between plots.

Matplotlib Line Styles

Character

Line Style

Solid line

Dashed line

Dash-dot line

Dotted line

In this case, the first line graph uses a dashed line style, while the second line
graph uses a dotted line style. (Note that you must restart the kernel again to
switch from the %matplotlib notebook to the #matplotlib inline style.) You

can see the results of the changes in Figure 10-5.

101

Using colors

PART 3 Visualizing Information

Color is another way in which to differentiate line graphs. Of course, this method
has certain problems. The most significant problem occurs when someone makes
a black-and-white copy of your colored graph — hiding the color differences as
shades of gray. Another problem is that someone with color blindness may not be
able to tell one line from the other. All this said, color does make for a brighter,
eye-grabbing presentation. Table 10-2 shows the colors that Matplotlib supports.

TABLE 10-2

Matplotlib Colors

Character Color

b’ Blue

‘g Green
v Red

(o Cyan
m’ Magenta
' Yellow
k' Black
W White

As with line styles, the color appears in a string as the third argument to the
plot() function call. In this case, the viewer sees two lines — one in red and the
other in magenta. The data points are the same as those used for Figure 10-2, just
with different colors. If you’re reading the printed version of the book, Figure 10-2
appears in shades of gray instead of color, as does this new presentation.

import matplotlib.pyplot as plt
%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values, 'r')
plt.plot(range(1,11), values2, 'm')
plt.show()

Adding markers

Markers add a special symbol to each data point in a line graph. Unlike line style
and color, markers tend to be a little less susceptible to accessibility and printing
issues. Even when the specific marker isn’t clear, people can usually differentiate
one marker from the other. Table 10-3 shows the list of markers that Matplotlib
provides.

CHAPTER 10 Getting a Crash Course in Matplotlib 169

TABLE 10-3 Matplotlib Markers

" Point

) Pixel

‘o’ Circle

3% Triangle 1 down
N Triangle 1 up
< Triangle 1 left
> Triangle 1 right
1 Triangle 2 down
2! Triangle 2 up
'3 Triangle 2 left
4 Triangle 2 right
's' Square

o’ Pentagon

" Star

'h’ Hexagon style 1
H Hexagon style 2
"+ Plus

X' X

‘D’ Diamond

d’ Thin diamond
" Vertical line

Horizontal line

As with line style and color, you add markers as the third argument to a plot()
call. In the following example, you see the effects of combining line style with a
marker to provide a unique line-graph presentation.

import matplotlib.pyplot as plt
%matplotlib inline

170 PART 3 Visualizing Information

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values,

IO__I)
plt.plot(range(1,11), values2, 'v:')
plt.show()

Notice how the combination of line style and marker makes each line stand out in

Figure 10-6. Even when printed in black and white, you can easily differentiate
techniques.

one line from the other, which is why you usually want to combine presentation

10 4)
r‘\
I
/, [
” \ I \
- \
” \ !
81 » \ [
! \ ,' \
! 1
i \] \ |
7 1] L] 7
/ \ I . ’
6 1 ’ \ ! \ 7
! \] \ '
4 \ [\ I
. \ ; \
\ i \ 4
/ \ 1 LI
44 .r! \ . ‘
f i)
i i I
’ \ .!.
' \
! \ ;f
- '
2 y o /
! . 4
‘ \ /
[
FIGURE 10-6: N
A
Markers help to oA '
emphasize . ‘ y ’
individual values. 2 4 6

10

Using Labels, Annotations, and Legends

To fully document your graph, you usually have to resort to labels, annotations,
and legends. Each of these elements has a different purpose, as follows:

¥ Label: Provides positive identification of a particular data element or group-
ing. The purpose is to make it easy for the viewer to know the name or kind of
data illustrated.

CHAPTER 10 Getting a Crash Course in Matplotlib 171

172

¥ Annotation: Augments the information the viewer can immediately see
about the data with notes, sources, or other useful information. In contrast to
a label, the purpose of annotation is to help extend the viewer's knowledge of
the data rather than simply identify it.

¥ Legend: Presents a listing of the data groups within the graph and often
provides cues (such as line type or color) to make identification of the data
group easier. For example, all the red points may belong to group A, and all
the blue points may belong to group B.

The following sections help you understand the purpose and usage of various doc-
umentation aids provided with Matplotlib. These documentation aids help you
create an environment in which the viewer is certain of the source, purpose, and
usage of data elements. Some graphs work just fine without any documentation
aids, but in other cases, you may find that you need to use all three in order to
communicate with your viewer fully.

Adding labels

Labels help people understand the significance of each axis of any graph you cre-
ate. Without labels, the values portrayed don’t have any significance. In addition
to a moniker, such as rainfall, you can also add units of measure, such as inches
or centimeters, so that your audience knows how to interpret the data shown. The
following example shows how to add labels to your graph:

import matplotlib.pyplot as plt
%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.xlabel('Entries')
plt.ylabel('Values"')
plt.plot(range(1,11), values)

plt.show()

The call to xlabel() documents the x axis of your graph, while the call the
ylabel() documents the y axis of your graph. Figure 10-7 shows the output of this
example.

PART 3 Visualizing Information

FIGURE 10-7:
Use labels to
identify the axes.

10 1

Values

2 4 1] 8 10
Entries

Annotating the chart

You use annotation to draw special attention to points of interest on a graph. For
example, you may want to point out that a specific data point is outside the usual
range expected for a particular dataset. The following example shows how to add
annotation to a graph:

import matplotlib.pyplot as plt
%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.annotate(xy=[1,1], text='First Entry')
plt.plot(range(1,11), values)

plt.show()

The call to annotate() provides the labeling you need. You must provide a loca-
tion for the annotation by using the xy parameter, as well as provide text to place
at the location by using the text parameter. The annotate() function also pro-
vides other parameters that you can use to create special formatting or placement
onscreen. Figure 10-8 shows the output from this example.

CHAPTER 10 Getting a Crash Course in Matplotlib 173

FIGURE 10-8:

Annotation can

identify points of

174

interest.

104

irst Entry

Creating a legend

A legend documents the individual elements of a plot. Each line is presented in a
table that contains a label for it so that people can differentiate between each line.
For example, one line may represent sales for one year and another line may rep-
resent sales during the next year, so you include an entry in the legend for each
line that is labeled with the years. The following example shows how to add a
legend to your plot.

import matplotlib.pyplot as plt
%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
linel = plt.plot(range(1,11), values)
line2 = plt.plot(range(1,11), values2)
plt.legend(['First', 'Second'], loc=4)
plt.show()

The call to 1egend() occurs after you create the plots, not before, as with some of
the other functions described in this chapter. The call contains a list of the labels
you want to use in the order of the plots you generate. So, 'First' is associated
with 1ine1, and 'Second' is associated with 1ine2.

PART 3 Visualizing Information

TIP

FIGURE 10-9:
Use legends

to identify
individual lines.

The default location for the legend is the upper-right corner of the plot, which
proved inconvenient for this particular example. Adding the loc parameter lets
you place the legend in a different location. See the legend() function documen-
tation at https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.
pyplot. figlegend for additional legend locations. Figure 10-9 shows the output
from this example.

10 4

CHAPTER 10 Getting a Crash Course in Matplotlib 175

https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.figlegend
https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.figlegend

IN THIS CHAPTER

» Selecting the right graph for the job

» Working with advanced scatterplots

» Exploring time-related and
geographical data

» Creating graphs

Chapter 11
Visualizing the Data

REMEMBER

hapter 10 helps you understand the mechanics of working with Matplotlib,

which is an important first step toward using it. This chapter takes the next

step in helping you use Matplotlib to perform useful work. The main goal of
this chapter is to help you visualize your data in various ways. Creating a graphic
presentation of your data is essential if you want to help other people understand
what you’re trying to say. Even though you can see what the numbers mean in
your mind, other people will likely need graphics to see what point you’re trying
to make by manipulating data in various ways.

The chapter starts by looking at some basic graph types that Matplotlib supports.
You don’t find the full list of graphs and plots listed in this chapter — it could take
an entire book to explore them all in detail. However, you do find the most
common types.

In the remainder of the chapter, you begin exploring specific sorts of plotting as it
relates to data science. Of course, no book on data science would be complete
without exploring scatterplots, which are used to help people see patterns in
seemingly unrelated data points. Because much of the data that you work with
today is time related or geographic in nature, the chapter devotes two special
sections to these topics. You also get to work with both directed and undirected
graphs, which is fine for social media analysis.

You don’t have to type the source code for this chapter; in fact, using the down-
loadable source is a lot easier. The source code for this chapter appears in the
P4DS4D3_11_Visualizing_the_Data.ipynb (see the Introduction for details on
how to find that source file).

CHAPTER 11 Visualizing the Data 177

Choosing the Right Graph

178

The kind of graph you choose determines how people view the associated data, so
choosing the right graph from the outset is important. For example, when you
want people to form opinions on how data elements compare through the use of
precise counts, you use a bar chart. The idea is to choose a graph that naturally
leads people to draw the conclusion that you need them to draw about the data
that you’ve carefully massaged from various data sources. (You also have the
option of using line graphs — a technique demonstrated in Chapter 10.) The fol-
lowing sections describe the various graph types and provide you with basic
examples of how to use them.

Creating comparisons with bar charts

Bar charts make comparing values easy. The wide bars and segregated measure-
ments emphasize the differences between values, rather than the flow of one
value to another as a line graph would do. Fortunately, you have all sorts of meth-
ods at your disposal for emphasizing specific values and performing other tricks.
The following example shows just some of the things you can do with a vertical
bar chart:

import matplotlib.pyplot as plt
#matplotlib inline

values = [5, 8, 9, 10, 4, 7]

widths = [0.7, ©.8, 0.7, 0.7, 0.7, 0.7]

colors = ['b', 'r', 'b', 'b', 'b', 'b']

plt.bar(range(@, 6), values, width=widths,
color=colors, align='center')

plt.show()

To create even a basic bar chart, you must provide a series of x coordinates and the
heights of the bars. The example uses the range() function to create the x coor-
dinates, and values contains the heights.

Of course, you may want more than a basic bar chart, and Matplotlib provides a
number of ways to get the job done. In this case, the example uses the width
parameter to control the width of each bar, emphasizing the second bar by making
it slightly larger. The larger width would show up even in a black-and-white
printout. It also uses the color parameter to change the color of the target bar to
red (the rest are blue).

PART 3 Visualizing Information

FIGURE 11-1:

Bar charts make
it easier to
perform
comparisons.

Q

TIP

As with other chart types, the bar chart provides some special features that you
can use to make your presentation stand out. The example uses the align param-
eter to center the data on the x coordinate (the standard position is to the left).
You can also use other parameters, such as hatch, to enhance the visual appear-
ance of your bar chart. Figure 11-1 shows the output of this example.

10 4

This chapter helps you get started using Matplotlib to create a variety of chart and
graph types. Of course, more examples are better, so you can also find some more
advanced examples on the Matplotlib site at https://matplotlib.org/stable/
gallery/index.html. Some of the examples, such as those that demonstrate ani-
mation techniques, become quite advanced, but with practice you can use any of
them to improve your own charts and graphs.

Showing distributions using histograms

Histograms categorize data by breaking it into bins, where each bin contains a
subset of the data range. A histogram then displays the number of items in each
bin so that you can see the distribution of data and the progression of data from
bin to bin. In most cases, you see a curve of some type, such as a bell curve. The
following example shows how to create a histogram with randomized data:

import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

CHAPTER 11 Visualizing the Data 179

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html

180

FIGURE 11-2:
Histograms
let you see
distributions
of numbers.

X = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(-50, 50), histtype='stepfilled',
align='mid', color='g', label='Test Data')

plt.legend()

plt.title('Step Filled Histogram')

plt.show()

In this case, the input values are a series of random numbers. The distribution of
these numbers should show a type of bell curve. As a minimum, you must provide
a series of values, x in this case, to plot. The second argument contains the num-
ber of bins to use when creating the data intervals. The default value is 10. Using
the range parameter helps you focus the histogram on the relevant data and
exclude any outliers.

You can create multiple histogram types. The default setting creates a bar chart.
You can also create a stacked bar chart, stepped graph, or filled stepped graph (the
type shown in the example). In addition, it’s possible to control the orientation of
the output, with vertical as the default.

As with most other charts and graphs in this chapter, you can add special features
to the output. For example, the align parameter determines the alignment of
each bar along the baseline. Use the color parameter to control the colors of the
bars. The l1abel parameter doesn’t actually appear unless you also create a legend
(as shown in this example). Figure 11-2 shows typical output from this example.

Step Filled Histogram

Il Test Data

800

700

600 +

500 A

400 -

300 ~

200 A

100

PART 3 Visualizing Information

REMEMBER

Random data varies call by call. Every time you run the example, you see slightly
different results because the random-generation process differs.

Depicting groups using boxplots

Boxplots provide a means of depicting groups of numbers through their quartiles
(three points dividing a group into four equal parts). A boxplot may also have
lines, called whiskers, indicating data outside the upper and lower quartiles. The
spacing shown within a boxplot helps indicate the skew and dispersion of the
data. The following example shows how to create a boxplot with randomized data:

import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline

spread = 100 * np.random.rand(100)

center = np.ones(50) * 50

flier_high = 100 x np.random.rand(10) + 100

flier_low = -100 * np.random.rand(10)

data = np.concatenate((spread, center,
flier_high, flier_low))

plt.boxplot(data, sym='gx', widths=.75, notch=True)
plt.show()

To create a usable dataset, you need to combine several different number-
generation techniques, as shown at the beginning of the example. Here’s how
these techniques work:

¥ spread: Contains a set of random numbers between 0 and 100
¥ center: Provides 50 values directly in the center of the range of 50
¥ flier_high: Simulates outliers between 100 and 200

¥ flier_low: Simulates outliers between 0 and -100

The code combines all these values into a single dataset using concatenate().
Being randomly generated with specific characteristics (such as a large number of
points in the middle), the output will show specific characteristics but will work
fine for the example.

The call to boxplot() requires only data as input. All other parameters have

default settings. In this case, the code sets the presentation of outliers to green Xs
by setting the sym parameter. You use widths to modify the size of the box (made

CHAPTER 11 Visualizing the Data 181

extra-large in this case to make the box easier to see). Finally, you can create a
square box or a box with a notch using the notch parameter (which normally
defaults to False). Figure 11-3 shows typical output from this example.

200 A ¥
X

150 4
%
X
100 A X

50 - ? <

0 —
x
X
—50 1 ¥

FIGURE 11-3:

x
Use boxplots to ~100 4 %
present groups of .
numbers. 1

The box shows the three data points as the box, with the red line in the middle
being the median. The two black horizontal lines connected to the box by whiskers
show the upper and lower limits (for four quartiles). The outliers appear above
and below the upper and lower limit lines as green Xs.

Seeing data patterns using scatterplots

Scatterplots show clusters of data rather than trends (as with line graphs) or dis-
crete values (as with bar charts). The purpose of a scatterplot is to help you see
multidimensional data patterns. The following example shows how to create a
scatterplot using randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

x1 = 5 % np.random.rand(40)
x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)
X = np.concatenate((x1, x2, x3))

182 PART 3 Visualizing Information

yl = 5 % np.random.rand(40)
y2 = 5 % np.random.rand(40) + 25
y3 = 25 x np.random.rand(20)
y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='"', c='m')

plt.show()

The example begins by generating random x and y coordinates. For each x coor-
dinate, you must have a corresponding y coordinate. It’s possible to create a scat-
terplot using just the x and y coordinates.

You can dress up a scatterplot in a number of ways. In this case, the s parameter
determines the size of each data point. The marker parameter determines the data
point shape. You use the ¢ parameter to define the colors for all the data points, or
you can define a separate color for individual data points. Figure 11-4 shows the
output from this example.

30 1
251
201
A A A
A
a A A
A A A
104 A
FIGURE 11-4: A
Use scatterplots | A A A
to show groups AM
of data points
and‘the|r 0 A
associated . : r ’ : . .
patterns. 0 5 10 15 20 25 30

Creating Advanced Scatterplots

Scatterplots are especially important for data science because they can show data
patterns that aren’t obvious when viewed in other ways. You can see data group-
ings with relative ease and help the viewer understand when data belongs to a
particular group. You can also show overlaps between groups and even demon-
strate when certain data is outside the expected range. Showing these various

CHAPTER 11 Visualizing the Data 183

184

kinds of relationships in the data is an advanced technique that you need to know
in order to make the best use of Matplotlib. The following sections demonstrate
how to perform these advanced techniques on the scatterplot you created earlier
in the chapter.

Depicting groups

Color is the third axis when working with a scatterplot. Using color lets you high-
light groups so that others can see them with greater ease. The following example
shows how you can use color to show groups within a scatterplot:

import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline

x1 = 5 % np.random.rand(50)
x2 = 5 % np.random.rand(50) + 25
x3 = 30 * np.random.rand(25)
X = np.concatenate((x1, x2, x3))

y1l = 5 % np.random.rand(50)
y2 = 5 % np.random.rand(50) + 25
y3 = 30 * np.random.rand(25)
y = np.concatenate((y1, y2, y3))

color_array = ['b']
plt.scatter(x, y, s=
plt.show()

* 50 + ['g'] x50 + ['r'] x 25
[50], marker='D', c=color_array)

The example works essentially the same as the scatterplot example in the previ-
ous section, except that this example uses an array for the colors. Unfortunately,
if you’re seeing this in the printed book, the differences between the shades of
gray in Figure 11-5 will be hard to see. However, the first group is blue, followed
by green for the second group. Any outliers appear in red.

Showing correlations

In some cases, you need to know the general direction that your data is taking
when looking at a scatterplot. Even if you create a clear depiction of the groups,
the actual direction that the data is taking as a whole may not be clear. In this
case, you add a trendline to the output. Here’s an example of adding a trendline to
a scatterplot that includes groups whose data points aren’t as clearly separated as
in the scatterplot shown previously in Figure 11-5:

PART 3 Visualizing Information

FIGURE 11-5:
Color arrays can
make the
scatterplot
groups stand
out better.

30 ®
*
25 L
¢ s
20 'S P .
. L 2
15 °
g ¢ ¢
10{ ®
* &
*
54 * ¢ 'S
L X 4
Dq
0 5 10 15 20 25 30

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as plb
%matplotlib inline

x1 = 15 * np.random.rand(50)

x2 = 15 * np.random.rand(50) + 15
x3 = 30 * np.random.rand(25)

X = np.concatenate((x1, x2, x3))

y1l = 15 x np.random.rand(50)

y2 = 15 x np.random.rand(50) + 15
y3 = 30 * np.random.rand(25)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25
plt.scatter(x, y, s=[9@], marker='x', c=color_array)
z = np.polyfit(x, y, 1)

p = np.poly1d(z)

plb.plot(x, p(x), 'm-")

plt.show()

The code for creating the scatterplot is essentially the same as in the example in
the “Depicting groups” section, earlier in the chapter, but the plot doesn’t
define the groups as clearly. Adding a trendline means calling the NumPy
polyfit() function with the data, which returns a vector of coefficients, p, that
minimizes the least-squares error. (Least-square regression is a method for

CHAPTER 11 Visualizing the Data 185

FIGURE 11-6:
Scatterplot

trendlines can
show you the

general data
direction.

finding a line that summarizes the relationship between two variables, x and y
in this case, at least within the domain of the explanatory variable x. The third
polyfit() parameter expresses the degree of the polynomial fit.)

The vector output of polyfit() is used as input to poly1d(), which calculates the
actual y axis data points. The call to plot() creates the trendline on the scatter-
plot. You can see a typical result of this example in Figure 11-6.

30 A

25 A

20 1

151

10 4

54

Plotting Time Series

186

Nothing is truly static. When you view most data, you see an instant of time — a
snapshot of how the data appeared at one particular moment. Of course, such
views are both common and useful. However, sometimes you need to view data as
it moves through time — to see it as it changes. Only by viewing the data as it
changes can you expect to understand the underlying forces that shape it. The fol-
lowing sections describe how to work with data on a time-related basis.

Representing time on axes

Many times, you need to present data over time. The data could come in many
forms, but generally you have some type of time tick (one unit of time), followed
by one or more features that describe what happens during that particular tick.
The following example shows a simple set of days and sales on those days for a
particular item in whole (integer) amounts.

PART 3 Visualizing Information

import pandas as pd

import matplotlib.pyplot as plt
import datetime as dt
%matplotlib inline

start_date = dt.datetime(2023, 7, 29)
end_date = dt.datetime(2023, 8, T)
daterange = pd.date_range(start_date, end_date)
sales = (np.random.rand(
len(daterange)) * 50).astype(int)
df = pd.DataFrame(sales, index=daterange,
columns=['Sales'])
print(df)

The example begins by specifying the start_date and end_date, then using them
to create daterange, the range of dates used for the output. It then creates a series
of random values to use as data points and places them in sales. The number
of values must match the length for daterange and normally you’d rely on actual
data. The next step is to create a DataFrame to hold the information using
daterange as an index and the values in sales as the data. So, what you end up
with is a table of dates and associated values similar to this (the data values you
see will vary):

Sales
2023-07-29 14
2023-07-30 47
2023-07-31 17
2023-08-01 4
2023-08-02 38
2023-08-03 18
2023-08-04 o
2023-08-05 25
2023-08-06 9
2023-08-07 2

Now that you have some properly formatted data to use, it’s time to create a plot.
The following code shows a typical method of plotting data in the DataFrame for-
mat shown previously:

df.loc['Jul 30 2023':'Aug 05 2023'].plot()
plt.ylim(@, 50)

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')
plt.title('Plotting Time')

plt.show()

CHAPTER 11 Visualizing the Data 187

FIGURE 11-7:

Use line graphs to
show the flow of
data over time.

Using df . loc accesses rows and columns in a DataFrame using labels, which are
dates in string format in this case. So, the resulting plot won’t show all of the data
in df, it will instead show just the data from 'Jul 30 2023' to 'Aug 05 2023'.
The call to plot() creates a line graph containing the requested data. The rest
of the code provides various formatting and labeling features for the plot, which
is then displayed using p1t.show(). Figure 11-7 shows the result.

Plotting Time

50
—— Sales
40 A
v 30
=
P
v
©
9 204
10 1
0 T
30 31 01 02 03 04 05
Aug
2023

Sales Date

Plotting trends over time

As with any other data presentation, sometimes you really can’t see what direc-
tion the data is headed in without help. The following example starts with the plot
from the previous section and adds a trendline to it:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import datetime as dt
%matplotlib inline

start_date = dt.datetime(2023, 7, 29)

end_date = dt.datetime(2023, 8, T)

daterange = pd.date_range(start_date, end_date)
sales = (np.random.rand(

188 PART 3 Visualizing Information

REMEMBER

len(daterange)) * 50).astype(int)
df = pd.DataFrame(sales, index=daterange,
columns=['Sales'])

lr_coef = np.polyfit(range(@, len(df)), df['Sales'], 1)
lr_func = np.poly1d(1lr_coef)

trend = lr_func(range(@, len(df)))

df['trend'] = trend

df.loc['Jul 30 2023':'Aug @5 2023'].plot()

plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time")
plt.legend(['Sales', 'Trend'])
plt.show()

The “Showing correlations” section, earlier in this chapter, shows how most
people add a trendline to their graph. In fact, this is the approach that you often
see used online. You'll also notice that a lot of people have trouble using this
approach in some situations. This example takes a slightly different approach by
adding the trendline directly to the DataFrame. If you print df after the call to
df['trend'] = trend, you see trendline data similar to the values shown here:

Sales trend
2023-07-29 41 28.181818
2023-07-30 6 26.896970
2023-07-31 14 25.612121
2023-08-01 29 24.327273
2023-08-02 46 23.042424
2023-08-03 14 21.757576
2023-08-04 33 20.472727
2023-08-05 6 19.187879
2023-08-06 28 17.903030
2023-08-07 7 16.618182

Using this approach makes it ultimately easier to plot the data. You call plot()
only once and avoid relying on the matplotlib.pylab function shown in the
example in the “Showing correlations” section.

When you plot the initial data, the call to plot() automatically generates a legend
for you. Matplotlib doesn’t automatically add the trendline, so you must also cre-
ate a new legend for the plot. Figure 11-8 shows typical output from this example
using randomly generated data.

CHAPTER 11 Visualizing the Data 189

Plotting Time

a5 4 —— Sales
Trend
40
35 1
v 30 A
=
g
v 25
‘™
[}
201
15
10 1
FIGURE 11-8:
Add a trendline to 5 4
show the average 30 31 0'1 02 03 08 05
direction of Aug
change in a chart 2023
or graph. Sales Date

Plotting Geographical Data

Knowing where data comes from or how it applies to a specific place can be impor-
tant. For example, if you want to know where food shortages have occurred and
plan how to deal with them, you need to match the data you have to geographical
locations. The same holds true for predicting where future sales will occur. You
may find that you need to use existing data to determine where to put new stores.
Otherwise, you could put a store in a location that won’t receive much in the way
of sales, and the effort will lose money rather than make it. The following sections
describe how to work with Cartopy (https://pypi.org/project/Cartopy/) to
interact with geographical data.

it or else conda will complain that some files are in use. To shut the Notebook
environment down, close and halt the kernel for any Notebook files you have open

warning and then click Quit in the Jupyter page or press Ctrl+C in the Notebook terminal
window. Wait a few seconds to give the files time to close properly before you
attempt to do anything.

‘ You must shut the Notebook environment down before you make any changes to

If you’re working with Google Colab, you can skip the process of creating an envi-

) ronment described in the “Using an environment in Notebook” section that fol-

\J lows. All you need to do is add a cell at the beginning of the downloadable source

tecunicar that contains a single line: !pip install Cartopy and run it every time you want

STUFF to use Cartopy. Although this means having to reinstall Cartopy before every use,
it does simplify the initial setup somewhat.

190 PART 3 Visualizing Information

https://pypi.org/project/Cartopy/

Using an environment in Notebook

Some of the packages you install have a tendency to also change your Notebook
environment by installing other packages that may not work well with your base-
line setup. Consequently, you see problems with code that functioned earlier. Nor-
mally, these problems consist mostly of warning messages, such as deprecation
warnings as discussed in the “Avoiding outdated libraries: The Basemap Toolkit”
section, later in this chapter. The “Warning Messages in Jupyter Notebook Example
Code” blog post at http://blog. johnmuellerbooks.com/2023/05/08/warning—
messages—in-jupyter—-notebook-example-code/ also provides helpful informa-
tion about the potential for warning messages in Jupyter Notebooks.

In some cases, however, the changed packages can also tweak the output you
obtain from code. Perhaps a newer package uses an updated algorithm or interacts
with the code differently. When you have a package, such as Cartopy, that makes
changes to the overall baseline configuration and you want to maintain your cur-
rent configuration, you need to set up an environment for it. An environment
keeps your baseline configuration intact but also allows the new package to create
the environment it needs to execute properly. The following steps help you create
the Cartopy environment used for this chapter:

1. open an Anaconda Prompt.

Notice that the prompt shows the location of your folder on your system, but
that it's preceded by (base). The (base) indicator tells you that you're in your
baseline environment — the one you want to preserve.

2. Type conda create -n Cartopy python=3.10 anaconda=2023.03 and
press Enter.

This action creates a new Cartopy environment. This new environment will use
Python 3.10 and Anaconda 2023.03-1. You get precisely the same baseline as
you've been using so far.

3. Type y and press Enter when asked if you want to proceed.

The installation process begins. This process can take a while to complete,
especially when the software needs to download packages from online, so you
need to be patient.

4, Type conda activate Cartopy and press Enter.

You have now changed over to the Cartopy environment. Notice that the
prompt no longer says (base); it says (Cartopy) instead.

5. Type conda install -c conda-forge cartopy and press Enter to install your
copy of Cartopy.

6. Type y and press Enter when asked if you want to proceed.

The installation process begins.

CHAPTER 11 Visualizing the Data 191

http://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
http://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/

192

REMEMBER

7. (Optional) After the installation, make sure you're in your Notebooks
directory using a command such as cd \Users\John\Anaconda Projects
(for Windows developers).

8. Type Jupyter Notebook and press Enter.

You see Notebook start, but it uses the Cartopy environment, rather than the
(base) environment. This copy of Notebook works precisely the same as any
other copy of Notebook that you've used. The only difference is the environ-
ment in which it operates.

This same technique works for any special package that you want to install. You
should reserve it for packages that you don’t intend to use every day. For example,
this book uses Cartopy for just one example, so creating an environment for it is
appropriate.

After you have finished using the Cartopy environment, press Ctrl+C to stop the
server, type conda deactivate at the prompt, and press Enter. You see the prompt
change back to (base).

Using Cartopy to plot geographic data

Now that you have a good installation of Cartopy, you can do something with it.
To start with, you need to import all the required packages:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

import cartopy.crs as ccrs

import cartopy

from cartopy.mpl.gridliner import \
LONGITUDE_FORMATTER, LATITUDE_FORMATTER

%matplotlib inline

These various packages let you download the map, format it, and add points of
interest to it. The following example shows how to draw a map and place pointers
to specific locations on it:

austin = (-97.75, 30.25)
hawaii = (-157.8, 21.3)
washington = (-77.01, 38.90)
chicago = (-87.68, 41.83)
losangeles = (-118.25, 34.05)

ax = plt.axes(projection=ccrs.Mercator(
central_longitude=-110))

PART 3 Visualizing Information

ax.coastlines()
ax.set_extent([-60, -160, 50, 10],
crs=ccrs.PlateCarree())

ax.add_feature(cartopy.feature.OCEAN, zorder=0,
facecolor="aqua')

ax.add_feature(cartopy.feature.LAND, zorder=0,
edgecolor="'black', facecolor='lightgray')

ax.add_feature(cartopy. feature.LAKES, zorder=0,
edgecolor="'black', facecolor='lightblue")

ax.add_feature(cartopy. feature.BORDERS, zorder=0,
edgecolor="gray')

y = list(zip(*[austin, hawaii, washington,
chicago, losangeles]))

gl = ax.gridlines(
crs=ccrs.PlateCarree(), draw_labels=True,
linewidth=2, color='gray', alpha=0.5,
linestyle='—-")

gl .xlabels_top = False

gl.left_labels = False

gl.xlocator = mticker.FixedlLocator(list(x))

gl.ylocator = mticker.FixedlLocator(list(y))

gl .xformatter LONGITUDE _FORMATTER

gl .yformatter = LATITUDE_FORMATTER

ax.plot(x, y, 'ro', markersize=6,
transform=ccrs.Geodetic())

plt.title("Mercator Projection")
plt.show()

The example begins by defining the longitude and latitude for various cities.
It then creates the basic map. The projection parameter defines the basic
map appearance. You can find a listing of projection types at https://scitools.
org.uk/cartopy/docs/v@.15/crs/projections.html. The central_longitude
parameter defines where the map is centered. To see the coastlines of the various
countries, you use the coastlines() method. This example doesn’t look at the
whole world, so it uses the set_extent() method to crop the map to size.

The example uses the add_feature() to add features to the basic map. You can
color the features in various ways to provide a distinctive look for your map. The
features are documented more fully at https://scitools.org.uk/cartopy/
docs/v0@.14/matplotlib/feature_inter face.html.

CHAPTER 11 Visualizing the Data 193

https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html
https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html

FIGURE 11-9:
Maps can
illustrate data in
ways other
graphics can't.

In this case, the example creates x and y coordinates using the previously stored
longitude and latitude values. As part of displaying the coordinates, the map also
creates gridlines to show their longitude and latitude with the gridlines()
method. The resulting object, g1, allows you to modify the grid characteristics.
The documentation at https://scitools.org.uk/cartopy/docs/v@.13/matplot
lib/gridliner.html tells you more about working with gridlines.

The code then plots these locations on the map in a contrasting color so

that you can easily see them. The final step is to display the map, as shown in
Figure 11-9.

Mercator Projection

41.83°N
38.9°N
34.05°N
30.25°N
..b 21.3°N
157.8*W 118.25°wW 97.75°W 77.01°*W

Avoiding outdated libraries:
The Basemap Toolkit

The previous edition of this book used Basemap to provide geographic presentation
support because it was one of the better products available at the time. However, in
reading the message thread at https://github.com/matplotlib/basemap/
issues/267, you find that Basemap isn’t going to be maintained for a number of
reasons, so this edition of the book has moved to Cartopy, a decision based partly
on the suggestion of the Basemap creator. Unfortunately, this situation happens
way too often with Python developers, and it can present problems if you’re work-
ing in a production environment under significant deadlines. It isn’t that Basemap
or any of these other packages are ill-conceived or that the code owners simply
don’t care; it’s the fact that maintaining any package is a lot of work. With these
realities in mind, here are some useful tips for avoiding outdated libraries:

¥ Wait until the package has been around for a while before you use itin a
production environment.

¥ Ensure that the package has broad community support.

194 PART 3 Visualizing Information

https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/gridliner.html
https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/gridliner.html
https://github.com/matplotlib/basemap/issues/267
https://github.com/matplotlib/basemap/issues/267

¥ Look for packages that are created by groups rather than just a few
individuals.

¥ Try to verify that the package creator will stay around to support the package
in the long run.

¥ Monitor new releases and updates to determine the sorts of features and bug
fixes that the code owner is providing.

¥ Check to see whether the code owner is responsive to user queries about
upgrades, product features, bugs, and usage requirements.

Visualizing Graphs

©

REMEMBER

A graph (in the network sense of the word) is a depiction of data showing the con-
nections between data points (called nodes) using lines (called edges). The purpose
is to show that some data points relate to other data points, but not all the data
points that appear on the graph. Think about a map of a subway system. Each of
the stations connects to other stations, but no single station connects to all the
stations in the subway system. Graphs are a popular data science topic because of
their use in social media analysis. When performing social media analysis, you
depict and analyze networks of relationships, such as friends or business connec-
tions, from social hubs such as Facebook, Google+, Twitter, or LinkedIn.

The two common depictions of graphs are undirected, where the graph simply
shows lines between data elements, and directed, where arrows added to the line
show that data flows in a particular direction. For example, consider a depiction of
a water system. The water would flow in just one direction in most cases, so you
could use a directed graph to depict not only the connections between sources and
targets for the water but also to show water direction by using arrows. The follow-
ing sections help you understand the two types of graphs better and show you how
to create them.

Developing undirected graphs

As previously stated, an undirected graph simply shows connections between
nodes. The output doesn’t provide a direction from one node to the next. For
example, when establishing connectivity between web pages, no direction is
implied. The following example shows how to create an undirected graph:

import networkx as nx

import matplotlib.pyplot as plt
#matplotlib inline

CHAPTER 11 Visualizing the Data 195

196

REMEMBER

nx .Graph()

nx.Graph()

.add_node(1)
.add_nodes_from([2, 3])
.add_nodes_from(range(4, 7))
.add_node(7)
.add_nodes_from(H)

QT Q Q@ QT Q

.add_edge(1, 2)

.add_edge(1, 1)

.add_edges_from([(2,3), (3,6), (4,6), (5,6)])
.add_edges_from([(4,7), (5,7), (6,7)])
.add_edges_from(H.edges())

QT Q Q@

nx .draw_networkx(G, node_color="'yellow')
plt.show()

In contrast to the canned example found in the “Using NetworkX basics” section
of Chapter 8, this example builds the graph using a number of different tech-
niques. It begins by importing the Networkx package you use in Chapter 8. To
create a new undirected graph, the code calls the Graph() constructor, which can
take a number of input arguments to use as attributes. However, you can build a
perfectly usable graph without using attributes, which is what this example does.

The easiest way to add a node is to call add_node() with a node number. You can
also add a list, dictionary, or range() of nodes using add_nodes_from(). In fact,
you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have to
use numbers for your nodes. A node can use a single letter, a string, or even a date.
Nodes do have some restrictions. For example, you can’t create a node using a
Boolean value.

Nodes don’t have any connectivity at the outset. You must define connections
(edges) between them. To add a single edge, you call add_edge() with the num-
bers of the nodes that you want to add. As with nodes, you can use add_edges_
from() to create more than one edge using a list, dictionary, or another graph as
input. Figure 11-10 shows the output from this example. (Your output may differ
slightly but should have the same connections.)

PART 3 Visualizing Information

=

/
/

FIGURE 11-10:
Undirected
graphs connect
nodes to form
patterns.

>
/

Developing directed graphs

You use directed graphs when you need to show a direction, say from a start point
to an end point. When you get a map that shows you how to get from one specific
point to another, the starting node and ending node are marked as such, and the
lines between these nodes (and all the intermediate nodes) show direction.

the viewer gains additional information in different ways. For example, you can
create custom labels, use specific colors for certain nodes, or rely on color to help

TIP people see the meaning behind your graphs. You can also change edge line weight
and use other techniques to mark a specific path between nodes as the better one
to choose. The following example shows many (but not nearly all) the ways in
which you can dress up a directed graph and make it more interesting:

‘ Your graphs need not be boring. You can dress them up in all sorts of ways so that

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

G = nx.DiGraph()

G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 9))

G.add_edge(1, 2)
G.add_edges_from([(1,4), (4,5), (2,3), (3,6),
(5,6), (6,7), (7,8)])

7

colors= [|r|’ lg|, Ig', 'g', 'g', m ml, Irl]

CHAPTER 11 Visualizing the Data 197

REMEMBER

FIGURE 11-11:
Use directed
graphs to
show direction
between nodes.

labels = {1:'Start', 2:'2"', 3:'3"', 4:'4",
5:'5', 6:'6', T7:'7', 8:'End'}
sizes = [800, 300, 300, 300, 300, 600, 300, 800]

nx .draw_networkx(
G, node_color=colors, node_shape='D",
labels=labels, node_size=sizes, font_color='w')
plt.show()

The example begins by creating a directional graph using the DiGraph() construc-
tor. You should note that the NetworkX package also supports MultiGraph() and
MultiDiGraph() graph types. You can see alisting of all the graph typesathttps://
networkx.org/documentation/stable/reference/classes/index.html.

Adding nodes is much like working with an undirected graph. You can add single
nodes using add_node() and multiple nodes using add_nodes_from(). The order
of nodes in the call is important. The flow from one node to another is from left to
right in the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too. You can
use add_edge() to add a single edge or add_edges_from() to add multiple edges
at one time. However, the order of the node numbers is important. The flow goes
from the left node to the right node in each pair.

This example adds special node colors, labels, shape (only one shape is used), and
sizes to the output. You still call on draw_networkx() to perform the task.
However, adding the parameters shown changes the appearance of the graph.
Figure 11-11 shows the output from this example.

198 PART 3 Visualizing Information

https://networkx.org/documentation/stable/reference/classes/index.html
https://networkx.org/documentation/stable/reference/classes/index.html

Wrangling Data

IN THIS PART ...

Making Python do more for data science
Analyzing your data

Compressing data to make it more efficient
Looking for data organization

Determining when data doesn't belong

IN THIS CHAPTER

» Understanding how Scikit-learn
works with classes

» Using Scikit-learn’s transformative
functions

» Testing performance and memory
consumption

» Saving time using multicore
computations

Chapter 12

Stretching Python's
Capabilities

f you’ve gone through the previous chapters, by this point you’ve dealt with all

the basic data loading and manipulation methods offered by Python. Now it’s

time to begin utilizing some more advanced instruments for data transforma-
tion and pipelining in machine learning. The final step of most data science proj-
ects is to build a data tool able to automatically transform, predict, and recommend
directly from your data.

Before taking that final step, you still have to process your data by enforcing
transformations that are even more radical. That’s the data wrangling or data
munging part, where sophisticated transformations are followed by visual and
statistical explorations, and then, eventually, by further transformations, if your
explorations have pointed out something interesting to pursue.

From here onward, you use the Scikit-learn package more (which means knowing
more about it — the full documentation appears at https://scikit-learn.org/
stable/documentation.html). The Scikit-learn package offers a single reposi-
tory containing almost all the tools that you need to be a data scientist and for
your data science project to be successful. In this chapter, you discover important

CHAPTER 12 Stretching Python's Capabilities 201

https://scikit-learn.org/stable/documentation.html
https://scikit-learn.org/stable/documentation.html

©

REMEMBER

characteristics of Scikit-learn, how it is structured in modules, classes, and func-
tions, and some advanced Python time savers for improving performance with
highly time-consuming data and computational operations.

You don’t have to type the source code for this chapter in by hand; in fact, using
the downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_12_Stretching_
Pythons_Capabilities. ipynb file.

Playing with Scikit-learn

202

Sometimes the best way to discover how to use something is to spend time playing
with it. The more complex a tool, the more important play becomes. Given the
complex math tasks you perform using Scikit-learn, playing becomes especially
important. The following sections use the idea of playing with Scikit-learn to help
you discover important concepts in using Scikit-learn to perform amazing feats of
data science work.

Understanding classes in Scikit-learn

Understanding how classes work is an important prerequisite for being able to use
the Scikit-learn package appropriately. Scikit-learn is the package for machine
learning and data science experimentation favored by most data scientists. It con-
tains a wide range of well-established learning algorithms, error functions, and
testing procedures.

At its core, Scikit-learn features some base classes on which all the algorithms
are built. Apart from BaseEstimator, the class from which all other classes
inherit, there are four class types covering all the basic machine-learning
functionalities:

¥ Classifying (ClassifierMixin)
¥ Regressing (RegressorMixin)
¥ Grouping by clusters (ClusterMixin)
¥ Transforming data (TransformerMixin)
Even though each base class has specific methods and attributes, the core func-

tionalities for data processing and machine learning are guaranteed by one or
more series of methods and attributes called interfaces. The interfaces provide a

PART 4 Wrangling Data

TIP

uniform Application Programming Interface (API) to enforce similarity of meth-
ods and attributes between all the different algorithms present in the package.
There are four Scikit-learn object-based interfaces:

¥ estimator: For fitting parameters by learning them from data according to
the algorithm

¥ predictor: For generating predictions from the fitted parameters
¥ transformer: For transforming data, implementing the fitted parameters

¥ model: For reporting goodness of fit or other score measures

The package groups the algorithms built on base classes and one or more object
interfaces into modules, each module displaying a specialization in a particular
type of machine-learning solution. For example, the 1inear_model module is for
linear modeling, and metrics is for score and loss measure.

To find a specific algorithm in Scikit-learn, you must first find the module con-
taining the same kind of algorithm that interests you, and then select it from the
list of contents of the module. The algorithm is typically a class whose methods
and attributes are already known because they’re common to other algorithms in
Scikit-learn.

Getting accustomed to the Scikit-learn class approach may take some time. How-
ever, the API is the same for all the tools available in the package, so learning one
class necessarily tells you about all the other classes. The best approach is to learn
one class completely and then apply what you know to other classes.

Defining applications for data science

Figuring out ways to use data science to obtain constructive results is important.
For example, you can apply the estimator interface to a

¥ Classification problem: Guessing that a new observation is from a
certain group

3 Regression problem: Guessing the value of a new observation

It works with the method fit(X, y) whereX is the bidimensional array of predic-
tors (the set of observations to learn) and y is the target outcome (another array,
unidimensional).

When you apply fit() to the data, the information in X is related to y, so that
when you have some new information with the same characteristics of X, it’s

CHAPTER 12 Stretching Python's Capabilities 203

204

Q

TIP

possible to guess y correctly. In the process, some parameters are estimated inter-
nally by the fit() method. These are the model weights, which the model learned
from data. In addition, hyperparameters are other parameters that affect how the
model learns its weights. They aren’t directly derived from data but are decided by
you, using trial and error, when you instantiate the learner.

Instantiation involves assigning a Scikit-learn class to a Python variable. In addi-
tion to hyperparameters, you can also fix other working parameters, such as
requiring normalization or setting a seed (which is normally a random value) to
reproduce the same results for each call, given the same input data.

Here is an example with linear regression, a very basic and common machine
learning algorithm. You upload some data to use this example from the examples
that Scikit-learn provides. The California dataset, for instance, contains predictor
variables that the example code can match against house prices, which helps build
a predictor that can calculate the value of a house in an area, given its character-
istics and location in the state of California:

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing

def load_california_housing_data():
dataset = fetch_california_housing()
X = pd.DataFrame(data=dataset.data,
columns=dataset . feature_names)
y = pd.Series(data=dataset.target, name="target")
return X, y

X, vy = load_california_housing_data()
print(f"X:{X.shape} y:{y.shape}")

The returned dimensions for the X and y variables are
X: (20640, 8) y:(20640,)

The output specifies that both arrays have the same number of rows and that X has
8 features. The shape() method performs array analysis and reports the arrays’
dimensions.

The number of X rows must equal those in y. You also ensure that X and y corre-
spond, because learning from data happens when the algorithm matches the rows
of X with the corresponding element of y. If you randomize the two arrays, no
learning is possible.

PART 4 Wrangling Data

REMEMBER

REMEMBER

The characteristics of X, expressed as X’s columns, are called variables (a more sta-
tistical term) or features (a term more related to machine learning).

The transform class in Scikit-learn applies transformations derived from the fit-
ting phase to other data arrays. All preprocessing algorithms do have a transfor-
mation method. For example, StandardScaler(), from the Scikit-learn
preprocessing module, can transform values using the statistical normalization,
that is, subtracting the mean and dividing by the standard deviation, after learn-
ing the transformation parameters from an example array using the fit()
method:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaler. fit(X)
scaled_X = scaler.transform(X)

After importing the LinearRegression class, you can instantiate a variable called
linear_regression and fit it to the scaled X array and to the y target. After fit-
ting, you inspect the internal weights, known as coefficients, to ensure that the
model has learned from the data:

from sklearn.linear_model import LinearRegression

linear_regression = LinearRegression()
linear_regression.fit(scaled X, y)
print(linear_regression.coef_.round(5))

After executing fit(), the code prints the coefficients of the linear regression
model:

[0.82962 0.11875 -0.26553 ©.3057 -0.0045 -0.03933
-0.89989 -0.87054]

After fitting, the linear_regression model holds the learned parameters, and
you visualize them using the coef_() method, which is typical of all the linear
models (where the model output is a summation of variables weighted by coeffi-
cients). You can also call this fitting activity training (as in, training a machine
learning algorithm).

A hypothesis is a way to describe a learning algorithm trained with data. The

hypothesis defines a possible representation of y given X that you test for validity.
Therefore, it’s a hypothesis in both scientific and machine learning language.

CHAPTER 12 Stretching Python's Capabilities = 205

206

TIP

Apart from the estimator class, the predictor and the model object classes are also
important. The predictor class, which predicts the probability of a certain result,
obtains the result of new observations using the predict() and predict_proba()
methods, as in this script:

values = [[1.21315, 32., 3.31767135, 1.07731985, 898.,
2.1424809, 37.82, -122.27]]

obs = pd.DataFrame(values, columns=X.columns)

scaled_obs = scaler.transform(obs)

pred = linear_regression.predict(scaled_obs)

value = pred[Q] x 100_000

print(f"Estimated median house value: {value:.2f} USD")
The single observation is thus converted into a prediction:

Estimated median house value: 141088.56 USD

Make sure that new observations have the same feature number and in the same
order as in the training X; otherwise, the prediction will be incorrect.

Each class from Scikit-learn has some specific methods and some common ones,
such as fit(), transform(), and predict(). Even if the method is a common
one, however, it may have extra parameters. In order to know what methods are
available and the parameters they require, please consult the online documenta-
tion of each algorithm or ask for help on the Python console:

help(LinearRegression)

For instance, LinearRegression has the score() method that provides informa-
tion about the quality of the regression, as shown here:

linear_regression.score(scaled_X, y)
The quality is expressed as a float number:

0.606232685199805
In this case, score() returns the coefficient of determination R? of the prediction.
R? is a measure ranging from o to 1, comparing our predictor to a simple mean.

Higher values show that the predictor is working well. Different learning algo-
rithms may use different scoring functions.

PART 4 Wrangling Data

Using Transformative Functions

In Scikit-learn, transformative functions are a kind of data processing step that
you use to manipulate and transform data. You typically use these functions as
part of a machine learning pipeline to apply specific operations on the data before
feeding it into a machine learning model for training or prediction. All these func-
tions are mentioned in the reference page https://scikit-learn.org/stable/
modules/preprocessing.html. Here are some of the most important transform-
ers or types of transformers to remember:

¥ StandardScaler() (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.StandardScaler.html): Used for
standardizing numerical features by scaling them to have zero mean and unit
variance, which can be important for many machine learning algorithms.

¥ MinMaxScaler() (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler .html): Scales
numerical features to a specific range (usually between 0 and1), making them
suitable for algorithms that are sensitive to the scale of the input features.

¥ OneHotEncoder() (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.OneHotEncoder . html): Used for
encoding categorical features into a binary vector representation, making
them suitable for algorithms that cannot handle categorical data directly.

¥ OrdinalEncoder () (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.OrdinalEncoder . html): Used for
encoding categorical features with integer labels, which can be useful for
algorithms that can handle integer-encoded categorical data.

¥ Simplelmputer() (https://scikit-learn.org/stable/modules/
generated/sklearn. impute.SimpleImputer.html): Used for handling
missing values in the data by filling them with appropriate values, such as
mean, median, or most frequent values.

¥ PolynomialFeatures() (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.PolynomialFeatures.html): Used
for generating polynomial features from the original features, which can be
helpful for capturing nonlinear relationships in the data.

¥ Feature selection: Scikit-learn provides various techniques for feature
selection, explained in detail in Chapter 18, which can be used to select the
most important features from the original feature set.

¥ Text processing tools: Scikit-learn provides various tools for text processing,
such as CountVectorizer() and TfidfVectorizer(), which can be used
for converting text data into numerical representations suitable for machine
learning.

CHAPTER 12 Stretching Python's Capabilities 207

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

208

Because all data problems present differences in features and data characteristics,
you need a customized approach when you process them — that is, particular
combinations of the Scikit-learn transformative functions applied to different
portions of your data. The following sections explore additional Scikit-learn
classes that can help you effectively combine and apply these transformative
functions for optimal outcomes.

Chaining estimators

You can use transformative functions as stand-alone functions, but they neces-
sarily function in sequence and in association with machine learning algorithms.
For this reason, it’s extremely useful to chain together different transformative
functions and predictive models into a Pipeline(). A pipeline is a useful tool in
Scikit-learn for chaining multiple data processing steps together, such as feature
selection, normalization, and classification, into one sequence. A pipeline offers
several benefits:

¥ Fitting and predicting on your data with just one call, making it easy to
apply a series of processing steps in a single line of code.

3 Performing optimizations of all the estimators in the pipeline simultane-
ously, simplifying the hyperparameter tuning process.

3 Preventing statistics leaking from your test data into your trained model
during cross-validation. This leaking is prevented because the same samples
are used to train both the transformers and predictors, ensuring consistency
in data processing.

It’s important to note that all estimators in a pipeline, except the last one, must
be transformers, meaning they must have a transform method. The last estimator
can be of any type, such as a transformer, classifier, or other model.

Creating a Scikit-learn pipeline requires first defining the steps and then plugging
them into the pipeline. Defining each single step requires you to create a tuple or
a list containing the step’s name and the Scikit-learn class you want executed.
Providing the step’s name is important because it helps you later when you want
to access each single step and its parameters. After you have plugged all the steps
into the pipeline, you use the pipeline as you would any other Scikit-learn class:

¥ Fitit on training data and then use it to perform a transformation if there is no
predictor inside.

¥ Perform a prediction if it closes with a machine learning model.

You can find all the details of the command at https://scikit-learn.org/
stable/modules/generated/sklearn.pipeline.Pipeline.html.

PART 4 Wrangling Data

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Transforming targets

Transformation sometimes includes the target in addition to the features. Because
the distribution of target values can present multiple modes or become skewed to
the right or to the left, you may find that first transforming the target, and then
fitting the model, and finally inverse-transforming its predictions bring better
predictive results. The purpose of transformations is to increase the symmetry
and normality of the target distribution, which is not a requirement or recom-
mendation for machine learning models, but rather a factual observation because
those models have been known to perform better with transformations.

In Scikit-learn, a transformative function is a kind of data processing step that you
use to manipulate and transform data. Transformative functions are usually loga-
rithmic. A transformative function relies on the exponential function as its
inverse, particularly for skewed targets. It uses the square root transformation
(and its inverse, squaring) when the target variable is moderately skewed, has a
positive skewness, and you want to reduce the influence of outliers.

Before fitting a regression model, the TransformedTargetRegressor() method
modifies the targets (y). Afterward, the predictions are restored to their original
space using an inverse transform. To perform this transformation, the function
that wraps Scikit-learn’s regressor models into a single entity requires two argu-
ments: the regressor utilized for prediction, and the transformer that is applied to
the target variable.

Composing features

A Scikit-learn pipeline operates on all the data, piping it into sequential transfor-
mations, but not all transformations are suitable for all the features of your data-
set. For this reason, you use ColumnTransformer(), which is a pipeline that
operates only on a selection of the features, and FeatureUnion(), which com-
bines the work of multiple ColumnTransformer objects into a single dataset.

The ColumnTrans former () has three main input parameters:

¥ Transformers: Accepts a list of tuples, where each tuple consists of a name
for the transformer, the corresponding preprocessing transformer (such as
StandardScaler or SimplelImputer), and the list of columns to which the
transformer should be applied.

¥ Remainder: Specifies how to handle the columns that were not selected for
transformation. The default value is "drop", which means that these columns
will be ignored.

CHAPTER 12 Stretching Python's Capabilities 209

210

REMEMBER

¥ FeatureUnion: Takes a list of transformers as input and concatenates the
output of each transformer horizontally. Each transformer extracts a set of
features from the input data and returns them as a NumPy array. The output
of all the transformers is concatenated horizontally to form a single NumPy
array that represents the full set of features for each input sample.

Handling heterogeneous data

The section on transformative functions in Scikit-learn concludes with an exam-
ple showing you how to approach heterogeneous data, which is typical of real-
world data, using the previously illustrated tools. The example starts by loading
the California Housing dataset, which contains features such as median house
value, median income, housing age, and various other factors that can be used to
predict housing prices in different regions of California.

from sklearn.compose \

import ColumnTransformer, make_column_selector
from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn.preprocessing \

import StandardScaler, KBinsDiscretizer
from sklearn.linear_model import LinearRegression

X, v = load_california_housing_data()

By distinguishing the different types of features present in the dataset, the code
can proceed to process them separately. In particular, it distinguishes between
numeric features, which are standardized, and latitude and longitude geographi-
cal coordinates, which are discretized from continuous values into discrete bins.
By discretizing the geographical coordinates, it’s possible to enable a series of
analyses to identify regions with similar geographic characteristics, such as areas
with similar climate, terrain, or land-use patterns.

Discretization refers to the process of converting continuous data into discrete or
categorical data. In the context of data analysis, discretization involves dividing a
continuous variable, which has a range of possible values, into a set of discrete
intervals or bins.

You can achieve distinct transformations on the numeric features and the geo-
graphical coordinates by means of two different ColumnTransformer()
operations:

num_cols = ['MedInc', 'HouseAge', 'AveRooms',
"AveBedrms', 'Population', 'AveOccup']

PART 4 Wrangling Data

cords = ['Latitude', 'Longitude']

num_transformer = ColumnTransformer ([
("scaler", StandardScaler(), num_cols)],
remainder="drop")

cords_transformer = ColumnTransformer([
("discretizer",
KBinsDiscretizer(n_bins=20, encode="onehot-dense"),
cords)])

At this point, you combine the two feature transformation steps into a single
transformer:

preprocessor = FeatureUnion(
transformer_list=[("num_transformer",
num_transformer),
("cords_transformer",

cords_transformer)])

You can test how it works by fitting and transforming the data and checking its
resulting shape:

preprocessor . fit_transform(X).shape
You should see an output of:
(20640, 46)

After checking that everything works properly as expected, you enclose the data
transformer in a predictive pipeline using a linear regression model in this case:

predictive_pipeline = Pipeline([
("preprocessor", preprocessor),

("model", LinearRegression())])

You’re finally ready to use the set-up predictive pipeline to train on data and
check how it fitted the data in terms of score:

predictive_pipeline.fit(X, y)
predictive_pipeline.score(X, y)

CHAPTER 12 Stretching Python's Capabilities 211

You get the score of the R> measure after training. The obtained R? score indicates
how much better the model is in predictive performance when compared to a
baseline such as the statistical mean, on a scale from 0 to 1. This score allows you
to assess the effectiveness of your model and provides valuable insights for fur-
ther analysis and optimization:

0.6667462444130221

You can apply the same approach to handle various data types in your datasets.
Begin by categorizing the data into different types, such as numerical, categorical,
and text data. Next, create a ColumnTransformer object for each type, which
allows you to apply specific transformations to each type of data separately.
Finally, bring all the transformed data together using a FeatureUnion class, which
merges the outputs from multiple transformers into a single feature space.

By following this methodology, you can easily handle diverse data types in your
datasets. This approach provides flexibility and scalability, allowing you to apply
different preprocessing techniques to different types of data. For instance, you
can apply scaling or normalization to numerical data, one-hot encoding or label
encoding to categorical data, and conversion of text data into a bag of words. You
can also include additional transformers or custom functions as needed to suit
your specific data preprocessing requirements.

Considering Timing and Performance

212

As the book introduces more and more complex themes, you may start to wonder
how all this processing influences application speed. The increased processing
requirements affect both running time and available memory.

Managing the best use of machine resources is indeed an art, the art of optimiza-
tion, and it requires time to master. However, you can start immediately becom-
ing proficient in it by doing some accurate speed measurement and realizing what
your problems really are if your code seems to run too slowly. Profiling the time
that performing a data transformation on your data requires, or measuring how
much memory adding more data takes, can help you to spot the bottlenecks in
your code and start looking for alternative solutions.

As described in Chapter 5, Jupyter Notebook or Google Colab are the perfect envi-
ronments for experimenting, tweaking, and improving your code. Working on
blocks of code, recording the results and outputs, and writing additional notes and
comments will help your data science solutions take shape in a controlled and
reproducible way.

PART 4 Wrangling Data

Benchmarking with timeit

In Chapter 8, you find out to work with CountVectorizer() to convert text into a
bag of words that can be used as input to various machine learning algorithms for
text classification, clustering, or other natural language processing tasks. This
text processing class transforms text into a matrix of token counts. It performs
the following operations under the hood:

¥ Tokenization: Breaks the text into individual tokens (words, characters,
or n-grams)

3 Lowercase and accent stripping: Converts all the tokens into lowercase and
removes accents for text standardization

3 Stopwords removal: Filters out common words, such as “the,” “and,” “a,” and
“an,” which don't add much value to the analysis

3 Count Vectorization: Converts the text into a matrix of token counts, where
each row represents a document and each column represents a token, with
the values being the number of times the token appears in that document

Each of these operations takes time and memory to run and you may be concerned
with application performance when the number of texts to process is large. It’s
important to measure performance before creating a machine learning solution.
Jupyter offers an easy, out-of-the-box solution, to measure speed using these
line magics:

¥ “%timeit: Calculates the best performance time for an instruction

¥ %%timeit: Calculates the best time performance for all the instructions in a
cell, apart from the one placed on the same cell line as the cell magic (which
could therefore be an initialization instruction)

Both magic commands report the best performance in r trials repeated for n loops.
When you add the -r and -n parameters, the notebook chooses the number auto-
matically in order to provide a fast answer. Here is an example of determining the
time required to assign a list 10xx6 ordinal values by using list comprehension:

%timeit 1 = [k for k in range(10*x6)]

The reported timing will look like this (the actual times will vary according to your
system’s capabilities):

76 ms
(mean

798 1 per loop

+
+ std. dev. of 7 runs, 1@ loops each)

CHAPTER 12 Stretching Python's Capabilities 213

The result for the list comprehension can be tested by incrementing both the
sample performance and repetitions of the test:

%timeit -n 20 -r 5 1 = [k for k in range(10%%6)]
After a while, the timing similar to this one is reported:

T6 ms
(mean

+ 1.06 ms per loop

+ std. dev. of 5 runs, 20 loops each)

As a comparison, you can check the time required to assign the values in a for
loop. Because the for loop requires an entire cell, the example uses the cell magic,
%%timeit, call. Notice that the first line that assigns the value of 10**6 to a vari-
able is not considered in the performance.

%%timeit

1 = list()

for k in range(10x*6):
1.append(k)

The resulting timing will look like this:

123 ms £ 279 us per loop
(mean * std. dev. of 7 runs, 1@ loops each)

The results show that list comprehension is about 40 percent faster than using a
for loop. You can then perform a similar test using the text encoding
CountVectorizer():

import sklearn. feature_extraction.text as txt
count_vectorizer = txt.CountVectorizer(
binary=True, max_features=20)
texts = ["Python for data science",
"Python for machine learning",

"Artificial intelligence in Python"]

count_vectorizer. fit(texts)
vectorized = count_vectorizer.transform(texts)

After performing initial loading of the class and instantiating it, you can test the
solution:

%timeit count_vectorizer.fit(texts)

214 PART 4 Wrangling Data

Here is the timing for fitting the word encoder based on the CountVectorizer():

314 us £ 9.15 ps per loop
(mean * std. dev. of 7 runs, 1000 loops each)

You now run the test on the transformation phase:
%timeit vectorized = count_vectorizer.transform(texts)

You obtain the following much better timing (us [microseconds] are smaller than
ms [milliseconds]):

1.05 ps per loop
std. dev. of 7 runs, 10000 loops each)

93 s *
(mean
The transformation operation is faster than the fit operation because, in the fit
phase, the function has to scan through the text, recording and counting the word
occurrences in the internal data structures. In the transformation phase, the
operations to be done are simpler because the text is just split, and each word is
recognized and transformed into a binary feature.

Jupyter Notebook is always the best environment to benchmark the speed of your
data science solution code. However, if you’d like to track performance on the
command line or in a script running from an IDE, you can import the timeit class
and use the timeit() function for tracking performance of the command by pro-
viding the input parameter as a string. The timeit() function returns a float
number that represents the total number of seconds it took to execute an opera-
tion. If you are running multiple operations, divide the returned total seconds by
the number of operations to obtain the time it took for a single operation.

The input that timeit() expects is a string that contains the command to be
executed. If your command needs variables, classes, or functions that aren’t avail-
able in the base Python (such as the Scikit-learn classes), you can provide them as
a second input parameter by using the setup parameter. You formulate a string in
which Python imports all the necessary objects from the main environment, as
shown in the following example:

import timeit

cumulative_time = timeit.timeit(
"vectorized = count_vectorizer.transform(texts)",
setup="from __main__ import count_vectorizer, texts",
number=10000)

print(cumulative_time / 10000.0)

CHAPTER 12 Stretching Python’s Capabilities 215

216

The output from this example will look like this and tell you the time for
each loop:

0.00010361055000003035

USING THE PREFERRED INSTALLER
PROGRAM (PIP)

Python provides a huge number of packages that you can install. Many of these pack-
ages come as separate, downloadable modules. Some of them have an executable suit-
able for a platform such as Windows, which means you can easily install the package.
However, many other packages rely on pip, the preferred installer program, which is a
feature that you can access directly from the command line.

To use pip, you open the command line prompt. If you need to install a package from
scratch, such as NumPy, you type pip install numpy, and the software will download
the package as well as all the related packages that it needs to work, and will install
everything. You can even install a specific version by typing, for example, pip install -U
numpy==1.24.2, or simply update the package to its most recent version if is already
installed: pip install -U numpy.

If you installed Anaconda, you can use conda instead of pip, which is even more efficient
when installing because it sets all the other packages to the right version for your newly
installed Python package (which implies that it can install, upgrade or even downgrade
existing packages on your system). Using conda for installing a new package is achieved
from the Anaconda Prompt, as well, by entering conda install numpy. The software
analyzes your system, reports the changes, and then asks whether it should proceed.
Press y if you want to proceed with the installation. You also use conda to update
existing packages (enter conda update numpy) or the entire system (enter conda
update --all).

This book uses Jupyter Notebook and Google Colab, actually based on the Jupyter
Notebook open source, as its environment. Installing and upgrading while using
Jupyter Notebook is a bit more complicated. Jake VanderPlas from the University of
Washington wrote a very informative post about this issue, which you can find at
https://jakevdp.github.io/blog/2017/12/05/installing—python-packages—
from-jupyter/. The article proposes a few ways to handle package installation and
upgrading while using the Jupyter Notebook interface. At the beginning, until you gain
confidence and experience, the best option is to install and update your system first
and then run Jupyter Notebook, making the installation much easier and smoother.

PART 4 Wrangling Data

https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/

Working with the memory profiler

As you’ve seen when testing your application code for performance (speed) char-
acteristics, you can obtain analogous information about memory usage. Keeping
track of memory consumption could tell you about possible problems in the way
data is processed or transmitted to the learning algorithms. The memory_profiler
package implements the required functionality. This package is not provided as a
default Python package and it requires installation. Use the following command to
install the package directly from a cell within Jupyter Notebook, as explained by
Jake VanderPlas’s post described in the “Using the preferred installer program
(pip)” sidebar:

import sys
1 {sys.executable} -m pip install memory_profiler

Use the following command for each Jupyter Notebook session you want to
monitor:

%load_ext memory_profiler

After performing these tasks, you can easily track how much memory a command
consumes:

vectorized = count_vectorizer.transform(texts)
%memit dense_hashing = vectorized.toarray()

The output is in mebibyte (MiB), a International Electrotechnical Commission
(IEC) unit of measure specifically for memory (see https://digilent.com/blog/
mib-vs-mb-whats-the-di fference/ for details). The reported peak memory and
increment tell you about memory usage (the numbers you see may vary due to
system differences):

peak memory: 268.60 MiB, increment: 0.01 MiB
Obtaining a complete overview of memory consumption is possible by saving a

notebook cell to disk and then profiling it using the line magic %mprun on an
externally imported function. (The line magic works only by operating with

CHAPTER 12 Stretching Python's Capabilities 217

https://digilent.com/blog/mib-vs-mb-whats-the-difference/
https://digilent.com/blog/mib-vs-mb-whats-the-difference/

external Python scripts.) Profiling produces a detailed report, command by com-
mand, as shown in the following example:

%s%xwritefile example_code.py
import sklearn. feature_extraction.text as txt

def comparison_test(text):
count_vectorizer = txt.CountVectorizer(
binary=True, max_features=20)
count_vectorizer.fit(text)
vectorized = count_vectorizer.transform(text)
return vectorized.toarray()

The previous code writes a python script on your work directory where your test
is wrapped into a Python function. As a next step, you import the function from
the script and evaluate its memory usage using the %mprun line magic:
from example_code import comparison_test
texts = ["Python for data science",
"Python for machine learning",
"Artificial intelligence in Python"]

%mprun —f comparison_test comparison_test(texts)

You will get an output similar to that shown in Figure 12-1 (the output appears in
a separate window at the bottom of the notebook display by default):

Filename: C:\Users\John\Anaconda Projects\P4D54D3\example code.py
Line # Mem usage Increment Occurrences Line Contents
FIGURE 12-1: SR — — —
The output from 4 157.3 MiB 157.3 MiB 1 def comparison_test(text):
the memory test 5 157.3 .-\%B 0.6 .-\}B 2 countfvectnr'lzer' = txt.CountVectorizer(
& 157.3 MiB 0.0 MiB 1 binary=True, max_features=28)
L3 Mi .0 Mi count_vectorizer.fit(text
shows memory 7 157.3 MiB 8.0 MiB 1 i Fit(
usage for each 8 157.3 MiB 2.0 MiB 1 vectorized = count_vectorizer.transform{text)
line of code 9 157.3 MiB 0.8 MiB 1 return vectorized.toarray()

The resulting report details the memory usage from every line in the function,
pointing out the major increments in memory usage.

218 PART 4 Wrangling Data

REDUCING MEMORY USAGE
AND COMPUTING FAST

You use NumPy arrays or pandas DataFrames when working with data. However,
even if they appear as different data structures: one focuses on storing data as a matrix
and the other on handling complex datasets stored in different ways — DataFrames
rely on NumPy arrays. Understanding how arrays work and are used by pandas
allows you to reduce memory usage and achieve faster computations.

NumPy arrays are a tool for handling data by using contiguous memory blocks to
store the values. Because the data appears in the same area of computer memory,
Python can retrieve the data faster and slice it more easily. It's the same principle as disk
fragmentation: If your data is scattered on disk, it occupies more space and requires
more handling time.

Depending on your needs, you can order array data by rows (the default choice of both
NumPy and the C/C++ programming language) or columns. Computer memory stores
cells one after the other in a line. Consequently, you can record your array row after
row, allowing fast processing by rows, or column by column, allowing faster processing
by columns. All these details, though hidden from your eyes, are crucial because they
render working with NumPy arrays fast and efficient for data science (which uses
numeric matrices and often computes information by rows). This is why all Scikit-learn
algorithms expect a NumPy array as an input, and why NumPy arrays have a fixed
data type (they can be only of the same type as the data sequence; they can't vary).

pandas DataFrames are just well-arranged collections of NumPy arrays. Your
variables in DataFrame, depending on the type, are compacted in an array. For
instance, all your integer variables are together in an IntBlock, all your float data in
aFloatBlock, and the rest in an Ob jectBlock. This means that when you want to
operate on a single variable, you are actually operating on all the variables. Consequently,
if you have an operation to apply, it's better to apply it to all variables of the same type
simultaneously. In addition, this also means that working with string variables is incredi-
bly expensive in terms of memory and computations. Even if you store something as
simple as a short series of color names in a variable, it will require the use of a complete
string (at least 50 bytes) and handling it will be quite cumbersome using the NumPy
engine. As suggested in Chapter 7, you can transform your string data in categorical
variables; by doing so, behind the scenes, strings are transformed into numbers. In this
way, you greatly reduce the memory usage and increase the speed you experience
when manipulating the data.

CHAPTER 12 219

Running in Parallel on Multiple Cores

220

©

REMEMBER

Most computers today are multicore (bearing two or more processors in a single
package), with some having multiple physical CPUs. One of the most important
limitations of Python is that it uses a single core by default (it was created in a
time when single cores were the norm).

Data science projects require quite a lot of computations. In particular, a part of
the scientific aspect of data science relies on repeated tests and experiments on
different data matrices. Don’t forget that working with huge data quantities means
that most time-consuming transformations repeat observation after observation
(for example, identical and not related operations on different parts of a matrix).

Using more CPU cores accelerates a computation by a factor that almost matches
the number of cores. For example, having four cores would mean working at best
four times faster. You don’t receive a full fourfold increase because there is over-
head when starting a parallel process — new running Python instances have to be
set up with the right in-memory information and launched; consequently, the
improvement will be less than potentially achievable but still significant. Knowing
how to use more than one CPU is therefore an advanced but incredibly useful skill
for increasing the number of analyses completed and for speeding up your opera-
tions both when setting up and when using your data products.

Multiprocessing works by replicating the same code and memory content in var-
ious new Python instances (the workers), calculating the result for each of them,
and returning the pooled results to the main original console. If your original
instance already occupies much of the available RAM memory, it won’t be possible
to create new instances, and your machine may run out of memory.

Performing multicore parallelism

To perform multicore parallelism with Python, you integrate the Scikit-learn
package with the joblib package for time-consuming operations, such as replicat-
ing models for validating results or for looking for the best hyperparameters. In
particular, Scikit-learn allows multiprocessing when

¥ Cross-validating: Testing the results of a machine-learning hypothesis using
different training and testing data (discussed in Chapter 18)

¥ Grid-searching: Systematically changing the hyperparameters of a machine-
learning hypothesis and testing the consequent results (also discussed in
Chapter 18)

3 Multilabel prediction: Running an algorithm multiple times against multiple
targets when there are many different target outcomes to predict at the same

PART 4 Wrangling Data

AN

WARNING

time (discussed in Chapter 17 in various sections, including “Considering the
case when there are more classes”)

3 Ensemble machine-learning methods: Modeling a large host of classifiers,
each one independent from the other, such as when using RandomForest-
based modeling (discussed in Chapter 20)

You don’t have to do anything special to take advantage of parallel computations —
you can activate parallelism by setting the n_jobs parameter to a number of cores
more than 1 or by setting the value to -1, which means you want to use all the
available CPU instances.

If you aren’t running your code from the console or from a notebook in Jupyter
Notebook, it is extremely important that you separate code that will execute in
parallel from any package import or global variable assignment in your script by
using theif __name__=='__main__': command at the beginning of any code that
executes multicore parallelism. The i f statement checks whether the program is
directly run or is called by an already-running Python console, avoiding any con-
fusion or error by the multiparallel process (such as recursively calling the
parallelism).

Demonstrating multiprocessing

It’s a good idea to use a notebook when you run a demonstration of how multipro-
cessing can really save you time during data science projects. Using Jupyter Note-
book offers the advantage of using the %timeit magic command for timing
execution. You start by loading a multiclass dataset, a complex machine learning
algorithm (the Support Vector Classifier, or SVC, a topic explained in all the details
in Chapter 19), and a cross-validation procedure for estimating reliable resulting
scores from all the procedures. You find details about all these tools later in the
book. The most important thing to know is that the procedures become quite large
because the SVC is required to produce 7 models, which it repeats 20 times each
using cross-validation, for a total of 140 generated models.

from sklearn.datasets import load_digits
digits = load_digits()

X, y = digits.data, digits.target
from sklearn.svm import SVC

from sklearn.model_selection import cross_val_score

After loading the digits data, representing images of handwritten digits from o to
9, test the timing of a cross-validation on 20 folds using a single core. Here is the

CHAPTER 12 Stretching Python's Capabilities 221

222

code (even though the command may appear on several lines in the book, you use
a single line in your code):

%timeit single_core = cross_val_score(\
SVC(), X, y, cv=20, n_jobs=1)

As a result, you get the recorded average running time for a single core similar
to this:

1.56 s £ 11.7 ms per loop
(mean £ std. dev. of 7 runs, 1 loop each)

After this test, you need to activate the multicore parallelism and time the results
using the following command (even though the command may appear on several
lines in the book, you use a single line in your code):

%timeit multi_core = cross_val_score(\
SVC(),X, y, cv=20, n_jobs=-1)

Running on multiple cores allows for a much better average time:

692 ms = 28.5 ms per loop
(mean * std. dev. of 7 runs, 1 loop each)

Running on all the available cores may render your computer unusable for any
other task. In Scikit-learn, setting n_jobs to -2 refers to using all available CPUs
except one to parallelize the execution of a particular task. Leaving one CPU reserved
for system processes avoids overloading the CPU, leading to slower processing
times and preventing you from using your computer for other, non-intensive tasks.

%timeit multi_core = cross_val_score(\
SVC(), X, y, cv=20, n_jobs=-2)

As expected, because you are leaving one CPU out of the game, the average time
worsens a little bit, but in exchange you have a usable computer, especially if the
training or testing takes a long time:

744 ms + 8.4 ms per loop
(mean £ std. dev. of 7 runs, 1 loop each)

The example machine demonstrates a positive advantage using multicore pro-
cessing, despite using a small dataset where Python spends most of the time
starting consoles and running a part of the code in each one. This overhead, a few
seconds, is still significant given that the total execution extends for a handful of
seconds. Just imagine what would happen if you worked with larger sets of data —
your execution time could be easily cut by two or three times.

PART 4 Wrangling Data

IN THIS CHAPTER

» Understanding the Exploratory Data
Analysis (EDA) philosophy

» Describing numeric and categorical
distributions

» Estimating correlation and
association

» Testing mean differences in groups

» Visualizing distributions,
relationships, and groups

Chapter 13
Exploring Data Analysis

ata science relies on complex algorithms for building predictions and spot-

ting important signals in data, and each algorithm presents different

strong and weak points. In short, you select a range of algorithms, you
have them run on the data, you optimize their parameters as much as you can, and
finally you decide which one will best help you build your data product or generate
insight into your problem. However, even if some of these tools seem like black or
even magic boxes, no matter how powerful the machine learning algorithms you
use are, you won’t obtain good results if your data has something wrong in it. It is
all a matter of GIGO. GIGO stands for “Garbage In/Garbage Out.” It has been a
well-known adage in statistics (and computer science) for a long time.

In this chapter, you discover the philosophy of Exploratory Data Analysis (EDA),
which means finding out how to

¥ Describe your variables
¥ Estimate correlations and associations

¥ Visualize value distributions, relationships between variables, and groups

The goal of EDA is to clean and transform data for optimal learning by machine
learning algorithms. EDA is a general approach to exploring datasets by means of

CHAPTER 13 Exploring Data Analysis 223

©

REMEMBER

simple summary statistics and graphic visualizations to gain a deeper under-
standing of data. EDA helps you become more effective in the subsequent data
analysis and modeling. In this chapter, you discover all the necessary and indis-
pensable basic descriptions of the data and see how those descriptions can help
you decide how to proceed using the most appropriate data transformation and
solutions.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier. The source code for this chapter appears in the
P4DS4D3_13_Exploring_Data_Analysis.ipynb file. (See the Introduction for
details on where to locate this file.)

The EDA Approach

224,

EDA was developed at Bell Labs by John Tukey, a mathematician and statistician
who wanted to promote more questions and actions on data based on the data
itself (the exploratory motif) in contrast to the dominant confirmatory approach
of the time. A confirmatory approach relies on the use of a theory or procedure —
the data is just there for testing and application. EDA emerged at the end of the
70s, long before the big data flood appeared. Tukey could already see that certain
activities, such as testing and modeling, were easy to make automatic. In one of
his famous writings, Tukey said:

“The only way humans can do BETTER than computers is to take a chance of
doing WORSE than them.”

The statement emphasizes that there are areas where human intuition, creativity,
and contextual understanding can provide an edge over computers, a statement
truly ahead of its time that remains relevant in today’s era of Al. The statement
also explains why, as a data scientist, your role and tools aren’t limited to auto-
matic learning algorithms but also to manual and creative exploratory tasks. Com-
puters are unbeatable at optimizing, but humans are strong at discovery by taking
unexpected routes and trying unlikely but in the end very effective solutions.

If you’ve been through the examples in the previous chapters, you have already
worked on quite a bit of data, but using EDA is a bit different because it checks
beyond the basic assumptions about data workability, which actually comprises
the Initial Data Analysis (IDA). Up to now, the book has shown how to

¥ Complete observations or mark missing cases by appropriate features

¥ Transform text or categorical variables

PART 4 Wrangling Data

¥ Create new features based on domain knowledge of the data problem

¥ Have at hand a numeric dataset where rows are observations and columns
are variables

EDA goes further than IDA. It’s moved by a different attitude: going beyond basic
assumptions. With EDA, you

¥ Describe of your data

¥ Closely explore data distributions

¥ Understand the relations between variables
¥ Notice unusual or unexpected situations

¥ Place the data into groups

3 Notice unexpected patterns within groups

¥ Take note of group differences

variable distribution in your dataset. Variable distribution is the list of values you
find in that variable compared to their frequency, that is, how often they occur.

rememper Being able to determine variable distribution tells you a lot about how a variable
could behave when fed into a machine learning algorithm and, thus, help you take
appropriate steps to have it perform well in your project.

@ You will read a lot in the following pages about how EDA can help you learn about

Defining Descriptive Statistics
for Numeric Data

The first actions that you can take with the data are to produce some synthetic
measures to determine what is going on with it. You acquire knowledge of mea-
sures such as maximum and minimum values, and you define which intervals are
the best places to start.

During your exploration, you use a simple but useful dataset, the Palmer Penguins
dataset. This dataset was collected in the Palmer Archipelago, Antarctica, by
Dr. Kristen Gorman and the Palmer Station Long-Term Ecological Research
(LTER) program. It contains detailed information about three different species of
penguins: Adélie, Gentoo, and Chinstrap. It includes various measurements such

CHAPTER 13 Exploring Data Analysis 225

REMEMBER

Q

TIP

as the penguins’ bill length, bill depth, body mass, flipper length, and several
other attributes. You can load it by using the following code, which will select a
few variables:

import numpy as np
import pandas as pd

def load_palmer_penguins(no_missing=True):
url = "https://raw.githubusercontent.com/"
url += "allisonhorst/palmerpenguins/main/"
url += "inst/extdata/penguins.csv"
numeric_features = [
"bill_length_mm", "bill_depth_mm",
"flipper_length_mm", "body_mass_g"]
target = ["species"]
data = pd.read_csv(url)
if no_missing:
data = data.dropna()
return data[numeric_features + target]

penguins = load_palmer_penguins(no_missing=True)

Having loaded the Palmer Penguins dataset into a pandas DataFrame, as a last
preparatory activity before starting data exploration, you can check your pandas
and NumPy versions:

print(f"Your pandas version is: {pd.__version__}")
print(f"Your NumPy version is {np.__version__}")

NumPy, Scikit-learn, and especially pandas are packages under constant develop-
ment, so before you start working with EDA, it’s a good idea to check the product
version numbers. Using an older or newer version could cause your output to dif-
fer from that shown in the book, or cause some commands to fail. For this edition
of the book, use pandas version 1.3.5 and NumPy version 1.21.6 (see Chapter 3 for
an explanation of how to set up your desktop system for use with Anaconda).

This chapter presents a series of pandas and NumPy commands that help you
explore the structure of data. Even though applying single explorative commands
grants you more freedom in your analysis, it’s nice to know that you can obtain
most of these statistics using the describe() method applied to your pandas
DataFrame: such as, print(penguins.describe()), when you’re in a hurry in
your data science project.

226 PART 4 Wrangling Data

Measuring central tendency

Mean and median are the first measures to calculate for numeric variables when
starting EDA. They can provide you with an estimate when the variables are cen-
tered and somehow symmetric.

Using pandas, you can quickly compute both means and medians. Here is the
command for getting the mean from the penguins DataFrame:

print(penguins.mean(numeric_only=True))

Here is the resulting output for the mean statistic:

bill_length_mm 43.992793
bill_depth_mm 17.164865
flipper_length_mm 200 .966967
body_mass_g 4207 .057057

dtype: float64
Similarly, here is the command that will output the median:
print(penguins.median(numeric_only=True))

You then obtain the median estimates for all the variables:

bill_length_mm 44 .5
bill_depth_mm 17.3
flipper_length_mm 197.0
body_mass_g 4050.0

dtype: float64

The median provides the central position in the series of values. When creating a
variable, it is a measure less influenced by anomalous cases or by an asymmetric
distribution of values around the mean. What you should notice here is that the
means are not centered (no variable is zero mean) and that the median of body
mass is different from the mean, requiring further inspection.

When checking for central tendency measures, you should:

¥ Verify whether means are zero
3 Check whether they are different from each other

3 Notice whether the median is different from the mean

CHAPTER 13 Exploring Data Analysis 227

228

Measuring variance and range

As a next step, you should check the variance by using its square root, the stan-
dard deviation. The standard deviation is as informative as the variance, but com-
paring to the mean is easier because it’s expressed in the same unit of measure.
The standard deviation is a good indicator of whether a mean is a suitable indica-
tor of the variable distribution because it tells you how the values of a variable
distribute around the mean. The higher the standard deviation, the farther you
can expect some values to appear from the mean.

print(penguins.std(numeric_only=True))

The printed output for each variable:

bill_length_mm 5.468668
bill_depth_mm 1.969235
flipper_length_mm 14.015765
body_mass_g 805 .215802

dtype: float64
In addition, you also check the range, which is the difference between the maxi-
mum and minimum value for each quantitative variable, and it is quite informa-

tive about the difference in scale among variables:

print(penguins.max(numeric_only=True)
— penguins.min(numeric_only=True))

Here you can find the output of the preceding command:

bill_length_mm 27.5
bill_depth_mm 8.4
flipper_length_mm 59.0
body_mass_g 3600.0

dtype: float64

Note the standard deviation and the range in relation to the mean and median. A
standard deviation or range that’s too high with respect to the measures of cen-
trality (mean and median) may point to a possible problem, with extremely unu-
sual values affecting the calculation or an unexpected distribution of values
around the mean.

Working with percentiles

Because the median is the value in the central position of your distribution of val-
ues, you may need to consider other notable positions. Apart from the minimum

PART 4 Wrangling Data

©

REMEMBER

and maximum, the position at 25 percent of your values (the lower quartile) and
the position at 75 percent (the upper quartile) are useful for determining the data
distribution, and they are the basis of an illustrative graph called a boxplot, which
is one of the topics discussed in this chapter.

print(penguins.select_dtypes(np.number).
quantile([Q, .25, .50,.75,1]))

You can see the output as a matrix — a comparison that uses quartiles for rows
and the different dataset variables as columns. So, the 25-percent quartile for
bill_length_mm is 32.1, which means that 25 percent of the dataset values for
this measure are less than 32.1.

bill_length_mm bill_depth_mm flipper_length_mm. ..

0.00 32.1 13.1 172.0. ..
Q.25 39.5 15.6 190.0. ..
0.50 44.5 17.3 197.0. ..
Q.75 48.6 18.7 213.0. ..
1.00 59.6 21.5 231.0...

The difference between the first quartile (25th percentile) and the third quartile
(75th percentile) constitutes the interquartile range (IQR), which is a measure of
the spread in the central portion of the variable. You don’t need to calculate it, but
you will find it in the boxplot because it helps to determine the plausible limits of
the core of your distribution. What lies after the “whiskers” of the boxplot, which
are typically located at 1.5 times the IQR beyond the first and third quartiles, are
considered cases that can potentially affect the results of your analysis in a nega-
tive way. Such cases are called outliers — and they’re the topic of Chapter 16.

Defining measures of normality

The last indicative measures of how the numeric variables used for these exam-
ples are structured are skewness and kurtosis:

¥ Skewness defines the asymmetry of data with respect to the mean. If the skew
is negative, the left tail is too long and the mass of the observations are on the
right side of the distribution. If it is positive, it is exactly the opposite.

¥ Kurtosis shows whether the data distribution, especially the peak and the tails,
are of the right shape. If the kurtosis is above zero, the distribution has a
marked peak. If it is below zero, the distribution is too flat instead.

Although reading the numbers can help you determine the shape of the data, tak-
ing notice of such measures presents a formal test to select the variables that may

CHAPTER 13 Exploring Data Analysis 229

230

REMEMBER

TIP

need some adjustment or transformation in order to become more similar to the
Gaussian distribution. Remember that you also visualize the data later, so this is a
first step in a longer process.

The normal, or Gaussian, distribution is the most useful distribution in statistics
thanks to its frequent recurrence and particular mathematical properties. It’s
essentially the foundation of many statistical tests and models, with some of
them, such as the linear regression, widely used in data science. In a Gaussian
distribution, mean and median have the same values, the values are symmetri-
cally distributed around the mean (it has the shape of a bell), and its standard
deviation points out the distance from the mean where the distribution curve
changes from being concave to convex (it is called the inflection point). All these
characteristics make the Gaussian distribution a special distribution, and they can
be leveraged for statistical computations.

You seldom encounter a Gaussian distribution in your data. Even if the Gaussian
distribution is important for its statistical properties, in reality you’ll have to han-
dle completely different distributions, hence the need for EDA and measures such
as skewness and kurtosis.

As an example, a previous example in this chapter shows that the bill_length_
mm feature presents differences between the mean and the median (see “Measur-
ing variance and range,” earlier in this chapter). In this section, you test the same
example for skewness and kurtosis to determine whether the variable requires
intervention.

When performing the skewness and kurtosis tests, you determine whether the
p-value is less than or equal 0.05. If so, you have to reject normality (your variable
distributed as a Gaussian distribution), which implies that you could obtain better
results if you try to transform the variable into a normal one. The following code
shows how to perform the required test:

from scipy.stats import skew, skewtest

variable = penguins["body_mass_g"]

s = skew(variable)

zscore, pvalue = skewtest(variable)

print(f"Skewness {s:.3f} z-score " \
f"{zscore:.3f} p-value {pvalue:.3f}")

Here are the skewness scores you get:

Skewness 0.470 z-score 3.414 p-value 0.001

PART 4 Wrangling Data

You can perform another test for kurtosis, as shown in the following code:

from scipy.stats import kurtosis, kurtosistest

variable = penguins["body_mass_g"]

k = kurtosis(variable)

zscore, pvalue = kurtosistest(variable)

print(f"Kurtosis {k:.3f} z-score {zscore:.3f} " \
f"p-value {pvalue:.3f}")

Here are the kurtosis scores you obtain:
Kurtosis -0.740 z-score -4.337 p-value 0.000

The test results tell you that the data is kind of flat and that it has a longer tail to
the right, but not enough to make it unusable (see “The Complete Guide to Skew-
ness and Kurtosis” at https://www.simplilearn.com/tutorials/statistics—
tutorial/skewness-and-kurtosis if you aren’t familiar with how this all works).
The real problem is that the curve is not bell shaped, so you should investigate the
matter further.

It’s a good practice to test all variables for skewness and kurtosis automatically.
@ You should then proceed to inspect those whose values are the highest visually.
Non-normality of a distribution may also conceal different issues, such as outliers

TIP to groups that you can perceive only by a graphical visualization.

Counting for Categorical Data

The Palmer Penguin dataset is made of four metric variables and a qualitative
target outcome. Just as you use means and variance as descriptive measures for
metric variables, so do frequencies strictly relate to qualitative ones.

Because the dataset is made up of metric measurements (depth and lengths in
millimeters; mass in grams), you must render it qualitative by dividing it into bins
according to specific intervals. The pandas package features two useful functions,
cut() and qcut(), that can transform a metric variable into a qualitative one:

¥ cut() expects a series of edge values used to cut the measurements or an
integer number of groups used to cut the variables into equal-width bins

¥ gecut() expects a series of percentiles used to cut the variable

CHAPTER 13 Exploring Data Analysis 231

https://www.simplilearn.com/tutorials/statistics-tutorial/skewness-and-kurtosis
https://www.simplilearn.com/tutorials/statistics-tutorial/skewness-and-kurtosis

232

You can obtain a new categorical DataFrame using the following command, which
concatenates a binning (see the “Understanding binning and discretization” sec-
tion of Chapter 9 for details) for each variable:

pcts = [@, .25, .5, .75, 1]
penguins_binned = pd.concat(
[pd.qgcut(penguins.iloc[:,Q], pcts, precision=1),
pd.qgcut(penguins.iloc[:,1], pcts, precision=1),
pd.qgcut(penguins.iloc[:,2], pcts, precision=1),
pd.qcut(penguins.iloc[:,3], pcts, precision=1)],
join='outer', axis = 1)

This example relies on binning (as explained in the “Understanding binning and

@ discretization” section of Chapter 9). However, it could also help to explore when

the variable is above or below a singular hurdle value, usually the mean or the

TIP median. In this case, you set pd.qgcut to the 0.5 percentile or pd.cut to the mean
value of the variable.

Binning transforms numerical variables into categorical ones. This transforma-

tion can improve your understanding of data and the machine learning phase that

follows by reducing the noise (outliers) or nonlinearity of the transformed variable.
REMEMBER

Understanding frequencies

You can obtain a frequency for each categorical variable of the dataset, both for the
predictive variable and for the outcome, by using the following code:

print(penguins["species"].value_counts())

The resulting frequencies show that each group is of a similar size:

Adelie 146
Gentoo 119
Chinstrap 68

You can try also computing frequencies for the binned body_mass_g that you
obtained from the previous paragraph:

print(penguins_binned['body_mass_g'].value_counts())
In this case, binning produces different groups:

(2699.9, 3550.0] 86
(3550.0, 4050.0] 86

PART 4 Wrangling Data

(4775.0, 6300.0] 83
(4050.0, 4775.0] 78

The value_counts() provide the range of each bin for 'body_mass_g' in this case
and the frequencies, such as 86 for the top range of (2699.9, 3550.0], for each
bin. The following example provides you with some basic frequency information,
such as the number of unique values in each variable and the mode of the fre-
quency (top and freq rows in the output). The next section of the chapter gives
you additional details about where these value come from using a crosstab
presentation.

print(penguins_binned.describe())
Here is the binning description:

bill_length_mm bill_depth_mm flipper_length_mm. ..

count 383 383 SN
unique 4 4 4. ..
top (32.0, 39.5] (13.0, 15.6] (171.9, 190.0] ...
freq 86 85 95. ..

Frequencies can signal a number of interesting characteristics of qualitative
features:

¥ The mode of the frequency distribution that is the most frequent category

¥ The other most frequent categories, especially when they are comparable
with the mode (bimodal distribution) or if there is a large difference
between them

¥ The distribution of frequencies among categories, if rapidly decreasing or
equally distributed

¥ Rare categories

Creating contingency tables

By matching different categorical frequency distributions, you can display the
relationship between qualitative variables. The pandas.crosstab() function can
match variables or groups of variables, helping to locate possible data structures
or relationships.

In the following example, you check how the outcome variable is related to body
mass and observe how certain species and body classes seldom appear together.

CHAPTER 13 Exploring Data Analysis 233

A contingency

FIGURE 13-1:

table based on

groups and
binning.

Figure 13-1 shows the various penguin types along the left side of the output, fol-
lowed by the output as related to body mass.

print(pd.crosstab(penguins["species"],
penguins_binned|['body_mass_g']))

body_mass_g (2699.9, 3550.0] (3550.0, 4050.0] (4050.0, 4775.0] (4775.0, 6300.0]
species
Adelie 64 50 32 0
Chinstrap 22 35 10 1
Gentoo 0 1 36 82

Creating Applied Visualization for EDA

234

Up to now, the chapter has explored variables by looking at each one separately.
Technically, if you’ve followed along with the examples, you have created a
univariate (that is, you’ve paid attention to stand-alone variations of the data
only) description of the data. The data is rich in information because it offers a
perspective that goes beyond the single variable, presenting more variables with
their reciprocal variations. The way to use more of the data is to create a bivariate
(seeing how couples of variables relate to each other) exploration. This is also the
basis for complex data analysis based on a multivariate (simultaneously consider-
ing all the existent relations between variables) approach.

If the univariate approach inspected a limited number of descriptive statistics,
then matching different variables or groups of variables increases the number of
possibilities. Such exploration overloads the data scientist with different tests and
bivariate analysis. Using visualization is a rapid way to limit test and analysis to
only interesting traces and hints. Visualizations, using a few informative graph-
ics, can convey the variety of statistical characteristics of the variables and their
reciprocal relationships with greater ease.

Inspecting boxplots

Boxplots provide a way to represent distributions and their extreme ranges, sig-
naling whether some observations are too far from the core of the data — a prob-
lematic situation for some learning algorithms. The following code shows how to
create a basic boxplot using the Palmer Penguins dataset after having selected

PART 4 Wrangling Data

FIGURE 13-2:

A boxplot
comparing all the
standardized
variables

only the numeric variables, thanks to the select_dtypes() method, and having
standardized them with the StandardScaler from Scikit-learn (https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.Standard
Scaler.html) in order to have comparable units between variables:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

numeric_features = penguins.select_dtypes(
include=["'number'])

penguins_std = pd.DataFrame(
scaler. fit_transform(numeric_features),
columns=numeric_features.columns)

boxplots = penguins_std.boxplot(fontsize=9)

In Figure 13-2, you see the structure of each variable’s distribution at its core,
represented by the 25° and 75° percentile (the sides of the box) and the median (at
the center of the box). The lines, the so-called whiskers, represent 1.5 times the
IQR from the box sides (or by the distance to the most extreme value, if within 1.5
times the IQR). The boxplot marks every observation outside the whisker (deemed
an unusual value) by a sign.

-2

T T T T
bill_length_mm bil_depth_mm flipper_length_mm body_mass_g

Boxplots are also extremely useful for visually checking group differences. Note in
Figure 13-3 how a boxplot can hint that the Gentoo penguin group have on average

CHAPTER 13 Exploring Data Analysis 235

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

different body mass, with only partially overlapping values at the fringes of the
other two penguin groups.

%matplotlib inline

import matplotlib.pyplot as plt

boxplots = penguins.boxplot(column="'body_mass_g',
by="species", fontsize=10)

plt.show()
Boxplot grouped by species
body _mass_g
6000
5500
5000
—_ o]
4500 - ==
4000 -
3500
3000 ——
FIGURE 13-3: - o
A boxplot of body I . |
mass arranged by Adelie Chinstrap Gentoo
penguin groups. species

Performing t-tests after boxplots

After you have spotted a possible group difference relative to a variable, a t-test
(you use a t-test in situations in which the sampled population has an exact nor-
mal distribution) or a one-way Analysis Of Variance (ANOVA) can provide you
with a statistical verification of the significance of the difference between the
groups’ means.

The t-test compares two groups at a time, and it requires that you check whether
the groups have similar variance.

from scipy.stats import ttest_ind

group@ = penguins['species'] == 'Adelie’
groupl = penguins['species'] == 'Chinstrap'’

236 PART 4 Wrangling Data

group2 = penguins|['species'] == 'Gentoo'
variable = penguins['body_mass_g']

print(f"varl {variable[group@].var():.3f} " \
f"var2 {variable[groupi].var():03f}")

If you compare the variances in body mass of the Adélie group to the Chinstrap
group, they appear quite different:

varl 210332.428 var2 147713.454785

In this case, you set the equal _var parameter to False because their variances are
not the same:

variable = penguins|['body_mass_g']

t, pvalue = ttest_ind(variable[group@], variable[groupi],
axis=0, equal_var=False)

print(f"t statistic {t:.3f} p-value {pvalue:.3f}")

The resulting t statistic and its p-values are
t statistic -0.448 p-value 0.655

You interpret the pvalue as the probability that the calculated t statistic differ-
ence is just due to chance. Usually, when it is below 0.05, you can confirm that the
groups’ means are significantly different. In our example, with a pvalue of 0.655,
which is greater than the typical significance level of 0.05, we do not have suffi-
cient evidence to conclude that the observed difference is statistically significant.

You can simultaneously check more than two groups using the one-way ANOVA
test. In this case, the pvalue has an interpretation similar to the t-test:

from scipy.stats import f_oneway

variable = penguins['body_mass_g']

f, pvalue = f_oneway(variable[groupQ],
variable[group1],
variable[group2])

print(f"One-way ANOVA F-value {f:.3f} p-value "

f"{pvalue:.3f}")

The result from the ANOVA test implies that at least one group is different from
the others:

One-way ANOVA F-value 341.895 p-value 0.000

CHAPTER 13 Exploring Data Analysis 237

FIGURE 13-4:
Parallel
coordinates
anticipate

whether groups

238

are easily
separable.

Observing parallel coordinates

Parallel coordinates can help spot which groups in the outcome variable you could
easily separate from the other. It is a truly multivariate plot, because at a glance it
represents all your data at the same time. The following example shows how to
use parallel coordinates:

from pandas.plotting import parallel_coordinates

penguins_std["species"] = penguins|["species"].values
pll = parallel_coordinates(penguins_std, "species")

As shown in Figure 13-4, on the abscissa axis you find all the quantitative vari-
ables aligned. On the ordinate, you find all the observations, carefully represented
as parallel lines, each one of a different color given its ownership to a different

group.

Adelie
—— Gentoo |
—— Chinstrap 4

-2

f T i i
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

If the parallel lines of each group stream together along the visualization in a sep-
arate part of the graph far from other groups, the group is easily separable. The
visualization also provides the means to assert the capability of certain features to
separate the groups.

Graphing distributions

You usually render the information that boxplot and descriptive statistics provide
into a curve or a histogram, which shows an overview of the complete distribution
of values. The output shown in Figure 13-5 represents all the distributions in the
dataset. Different variable scales and shapes are immediately visible, such as the
fact that penguins’ flipper-length feature displays two peaks.

PART 4 Wrangling Data

FIGURE 13-5:
Flipper length
distribution and
density.

FIGURE 13-6:
Histograms can
detail better
distributions.

densityplot = (penguins["flipper_length_mm"]
.plot(kind="density"))

0.030 A

0.025 A

0.020 A

0.015 A

Density

0.010 A

0.005

0.000 A

140 160 180 200 220 240 260
Histograms present another, more detailed, view over distributions:

single_distribution = (penguins["flipper_length_mm"]
.plot(kind="hist", bins=30))

Figure 13- 6 shows the histogram of flipper length. It reveals a gap in the distribu-
tion that could be a promising discovery if you can relate it to a certain group.

(Hint: Look at the Gentoo group.)

35 1

Frequency

170 180 190 200 210 220 230

CHAPTER 13 Exploring Data Analysis 239

Plotting scatterplots

In scatterplots, the two compared variables provide the coordinates for plotting
the observations as points on a plane. The result is usually a cloud of points. When
the cloud is elongated and resembles a line, you can deduce that the variables are
correlated. The following example demonstrates this principle:
palette = {'Adelie': 'red', 'Gentoo': 'yellow',
'Chinstrap': 'blue'}
colors = [palette[c] for ¢ in penguins['species']]
simple_scatterplot = penguins.plot(
kind='scatter', x='bill_length_mm',
y='bill_depth_mm', c=colors)

This simple scatterplot, represented in Figure 13-7, compares length and depth of
bills. The scatterplot highlights different groups using different colors. The elon-
gated shape described by the points hints at a strong correlation between the two
observed variables, and the division of the cloud into groups suggests a possible

separability of the groups.

FIGURE 13-7:

A scatterplot
reveals how two
variables relate to
each other.

[s o °* *
s P . e °
204 Soo .: . .o.. S -
o.‘..... L L sef o
AT ARSI ([}
c o "?\.‘. o o Se ° .f.
g 181 ."03:.:'.&‘ ° ..‘ ..' “ee'® ®
% AN T S
3 00, o T 0 %o ...
5 15 4 . .‘o ®
14
3I5 4I0 4I5 5I0 5I5 6I0

bill_length_mm

240

Because the number of variables isn’t too large, you can also generate all the scat-
terplots automatically from the combination of the variables. This representation
is a matrix of scatterplots. The following example demonstrates how to create one:

from pandas.plotting import scatter_matrix

palette = palette = {'Adelie': 'red', 'Gentoo': 'yellow',

PART 4 Wrangling Data

FIGURE 13-8:
A matrix of
scatterplots
displays more
information at
one time.

'"Chinstrap':'blue'}
colors = [palette[c] for ¢ in penguins|['species']]
matrix_of_scatterplots = scatter_matrix(
penguins, figsize=(6, 6),
color=colors, diagonal='kde')

In Figure 13-8, you can see the resulting visualization for the Palmer Penguins
dataset. The diagonal representing the density estimation can be replaced by a
histogram using the parameter diagonal="hist"'.

@
[=]

£ . . .

£ S, . obtds vege Ve
' 50 Lo ity :ﬁ:‘! : “E
) oy, « topky Pfw,.
c S tan, . $IRS Ly
@ - -t ¥ S .
5o ve Sl U i
= - : -

E 200 m9 .0 g, P, Y,
| a2 % o e

= i e '_: . ¢

Si1s0 1

Z

E

£

| 220

pper_length
g
55
L]
o,
g 5
ri!‘g

180 . o0, ° T Che
S
o 6000 o
w
@ 5000 4) . R ;o8
EI 25 ::‘"'. M. o H
z 4000 ﬂ"l .‘_:”. .. '@_ 12k ol
¥ L=l N . .
=] s 'y
8 3000 1.0 . R =
T

T T T
n
o

0 4

=] o =1 n

000

= =] ﬂ ™~ = [=1 8
bill_length_mm biII_depth_mmﬂi';)per |gngth mm bod; . ;‘n

Understanding Correlation

Just as the relationship between variables is graphically representable, it is also
measurable by a statistical estimate. When working with numeric variables, the
estimate is a correlation, and the Pearson’s correlation is the most famous. The
Pearson’s correlation is the foundation for complex linear estimation models.
When you work with categorical variables, the estimate is an association, and the
chi-square statistic is the most frequently used tool for measuring association
between features.

CHAPTER 13 Exploring Data Analysis 241

242

Using covariance and correlation

Covariance is the first measure of the relationship of two variables. It determines
whether both variables have a coincident behavior with respect to their mean. If
the single values of two variables are usually above or below their respective aver-
ages, the two variables have a positive association. It means that they tend to
agree, and you can figure out the behavior of one of the two by looking at the
other. In such a case, their covariance will be a positive number, and the higher
the number, the higher the agreement.

If, instead, one variable is usually above and the other variable usually below their
respective averages, the two variables are negatively associated. Even though the
two disagree, it’s an interesting situation for making predictions, because by
observing the state of one of them, you can figure out the likely state of the other
(albeit they’re opposite). In this case, their covariance will be a negative number.

A third state is that the two variables don’t systematically agree or disagree with
each other. In this case, the covariance will tend to be zero, a sign that the vari-
ables don’t share much and have independent behaviors.

Ideally, when you have a numeric target variable, you want the target variable to
have a high positive or negative covariance with the predictive variables. Having a
high positive or negative covariance among the predictive variables is a sign of
information redundancy. Information redundancy signals that the variables point to
the same data — that is, the variables are telling us the same thing in slightly dif-
ferent ways.

Computing a covariance matrix is straightforward using pandas. You can imme-
diately apply it to the DataFrame of the Palmer Penguins dataset as shown here:

penguins.select_dtypes(np.number).cov()

The matrix in Figure 13-9 shows variables present on both rows and columns.
By observing different row and column combinations, you can determine the
value of covariance between the variables chosen. After observing these results,
you can immediately understand that little relationship exists between bill length
and bill depth, meaning that they’re different informative values. However, there
could be a special relationship between body mass and flipper length, but the
example doesn’t tell what this relationship is because the measure is not easily
interpretable.

PART 4 Wrangling Data

FIGURE 13-9:

A covariance
matrix of the
Palmer Penguins
dataset.

FIGURE 13-10:

A correlation
matrix of the
Palmer Penguins
dataset.

REMEMBER

Q

TIP

bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
bill_length_mm 29.906333 -2.462091 50.058195 2595.623304
bill_depth_mm -2.462091 3.877888 -15.947248 -748.456122
flipper_length_mm 50.058195 -15.947248 196.441677 9852.191649
body_mass_g 2595623304 -748.456122 9852.191649 648372.487699

The scale of the variables you observe influences covariance, so you should use a
different, but standard, measure. The solution is to use correlation, which is the
covariance estimation after having standardized the variables. Here is an example
of obtaining a correlation using a simple pandas method:

penguins.select_dtypes(np.number).corr()

You can examine the resulting correlation matrix in Figure 13-10:

bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
bill_length_mm 1.000000 -0.228626 0.653096 0.589451
bill_depth_mm -0.228626 1.000000 -0.577792 -0.472016
flipper_length_mm 0.653096 -0.577792 1.000000 0.872979
body_mass_g 0.589451 -0.472016 0.872979 1.000000

Now that’s even more interesting, because correlation values are bound between
values of —1 and +1, so the relationship between body mass and flipper length is
positive and, with a 0.87, it is very near to the maximum possible.

You can compute covariance and correlation matrices also by means of NumPy
commands, as shown here:

import numpy as np

covariance_matrix = np.cov(penguins.iloc([:,:4], rowvar=0)
correlation_matrix = np.corrcoef(penguins.iloc[:, :4],
rowvar=0)

In statistics, this kind of correlation is a Pearson correlation, and its coefficient is a
Pearson’sr.

Another nice trick is to square the correlation. By squaring it, you lose the sign of
the relationship. The new number tells you the percentage of the information
shared by two variables. In this example, a correlation of 0.76 implies that
76 percent of the information is shared between the two variables. You can obtain

CHAPTER 13 Exploring Data Analysis 243

a squared correlation matrix using this command: penguins.select_dtypes(np.
number) .corr ()xx2.

Something important to remember is that covariance and correlation are based on
06“ means, sp they tepd to 'represen.t relationships that you can exp‘ress. using linear
formulations. Variables in real-life datasets usually don’t have nice linear formu-
tecunicaL lations. Instead they are highly nonlinear, with curves and bends. You can rely on
STUFF mathematical transformations to make the relationships linear between variables
anyway. A good rule to remember is to use correlations only to assert relationships

between variables, not to exclude them.

Using nonparametric correlation

Correlations can work fine when your variables are numeric and their relationship
is strictly linear. Sometimes, your feature could be ordinal (a numeric variable but
with orderings) or you may suspect some nonlinearity due to non-normal distri-
butions in your data. A possible solution is to test the doubtful correlations with a
nonparametric correlation, such as a Spearman rank-order correlation (which
means that it has fewer requirements in terms of distribution of considered vari-
ables). A Spearman correlation transforms your numeric values into rankings and
then correlates the rankings, thus minimizing the influence of any nonlinear
relationship between the two variables under scrutiny. The resulting correlation,
commonly denoted as rho, is to be interpreted in the same way as a Pearson’s
correlation.

As an example, you verify the relationship between bill length and bill depth
whose Pearson correlation was quite weak:

from scipy.stats import spearmanr
from scipy.stats import pearsonr

a = penguins['bill_length_mm']

b = penguins['bill_depth_mm']

rho_coef, rho_p = spearmanr(a, b)

r_coef, r_p = pearsonr(a, b)

print(f"Pearson r {r_coef:.3f}
f"Spearman rho {rho_coef:.3f}")

n

Here is the resulting comparison:

Pearson r -0.229 | Spearman rho -0.214

24/, PART 4 Wrangling Data

REMEMBER

Q

TIP

In this case, the code confirms the weak association between the two variables
using the nonparametric test because the outputs are fairly close to 0 (see “Con-
duct and Interpret a Spearman Rank Correlation” at https://www.statistics
solutions.com/free-resources/directory-of-statistical-analyses/
spearman-rank-correlation/ for a more detailed discussion of this topic).

Considering chi-square for tables

You can apply another nonparametric test for relationship when working with
cross-tables. This test is applicable to both categorical and numeric data (after it
has been discretized into bins). The chi-square statistic tells you when the table
distribution of two variables is statistically comparable to a table in which the two
variables are hypothesized as not related to each other (the so-called indepen-
dence hypothesis). Here is an example of how you use this technique to figure out
whether the bill length associates with the penguin species:

from scipy.stats import chi2_contingency

table = pd.crosstab(penguins|"species"],
penguins_binned["bill_length_mm"])

chi2, p, dof, expected = chi2_contingency(table.values)

print(f"Chi-square {chi2:.2f} p-value {p:.3f}")

The resulting chi-square statistic is
Chi-square 264.02 p-value 0.000

As seen before, the p-value is the chance that the chi-square difference is just by
chance. The high chi-square value and the significant p-value are signaling that
the bill_length_mm variable can be effectively used for distinguishing between
penguins groups.

The larger the chi-square value, the greater the probability that two variables are
related, yet, the chi-square measure value depends on how many cells the table
has. Do not use the chi-square measure to compare different chi-square tests
unless you know that the tables in comparison are of the same shape.

The chi-square is particularly interesting for assessing the relationships between
binned numeric variables, even in the presence of strong nonlinearity that can
fool Person’s r. Contrary to correlation measures, it can inform you of a possible
association, but it won’t provide clear details of its direction or absolute
magnitude.

CHAPTER 13 Exploring Data Analysis 245

https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/spearman-rank-correlation/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/spearman-rank-correlation/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/spearman-rank-correlation/

Working with Cramér’'s V

Testing whether an association exists between categorical features and between
numeric and categoricals can provide useful information, but it would be more
actionable if you could quantify such an association, as you can between numeric
features with Pearson correlation and nonparametric rank-order measures. A
solution is to use Cramér’s V, a measure that translates chi-square statistics into a
measure of association ranging from -1 to 1, just like the Pearson correlation.

To calculate Cramér’s V, you first need to calculate the chi-square statistic between
the two categorical variables, which you can do by using the SciPy function chi2_
contingency(), as shown in the “Considering chi-square for tables” section of
the chapter. After you have the chi-square statistic, you can calculate Cramér’s V
using the following formula:

V = sqrt(chi_square / (n * min(k-1, r-1)))

where n is the total number of observations, k is the number of rows in the con-
tingency table, and r is the number of columns. The min() function ensures that
the calculation does not exceed the maximum possible value of V, which is 1. Here
you can find everything translated into code:

n = len(penguins)
k, r = table.shape

V = np.sqgrt(chi2 / (n * min(k-1, r-1)))
print(f"Cramer's V {V:.2f}")

Here is the estimated association between species and the bill length:

Cramer's V 0.63

Modifying Data Distributions

246

As a by-product of data exploration, in an EDA phase you can do the following:

3 Obtain new feature creation from the combination of different but
related variables

¥ Spot hidden groups or strange values lurking in your data

¥ Try some useful modifications of your data distributions by binning (or other
discretizations such as binary variables)

PART 4 Wrangling Data

©

REMEMBER

When performing EDA, you need to consider the importance of data transforma-
tion in preparation for the learning phase, which also means using certain math-
ematical formulas. Most machine learning algorithms work best when the
Pearson’s correlation is maximized between the variables you have to predict and
the variable you use to predict them. The following sections present an overview
of the most common procedures used during EDA in order to enhance the rela-
tionship between variables. The data transformation you choose depends on the
actual distribution of your data, therefore it’s not something you decide before-
hand; rather, you discover it by EDA and multiple testing. In addition, these sec-
tions highlight the need to match the transformation process to the mathematical
formula you use.

Using different statistical distributions

During data science practice, you’ll meet with a wide range of different
distributions — with some of them named by probabilistic theory, others not.
For some distributions, the assumption that they should behave as a normal
distribution may hold, but for others, it may not, and that could be a problem
depending on what algorithms you use for the learning process. As a general rule,
if your model is a linear regression or part of the linear model family because it
boils down to a summation of coefficients, then both variable standardization and
distribution transformation should be considered.

Apart from the linear models, many other machine learning algorithms are actu-
ally indifferent to the distribution of the variables you use. However, transforming
the variables in your dataset to render their distribution more Gaussian-like could
result in positive effects.

Creating a Z-score standardization

In your EDA process, you may have realized that your variables have different
scales and are heterogeneous in their distributions. As a consequence of your
analysis, you need to transform the variables in a way that makes them easily
comparable:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

bill_depth_mm = scaler.fit_transform(
penguins[['bill_depth_mm']])

CHAPTER 13 Exploring Data Analysis 247

248

REMEMBER

Some algorithms will work in unexpected ways if you don’t rescale your
variables using standardization. As a rule of thumb, pay attention to any linear
models, cluster analysis, and any algorithm that claims to be based on statistical
measures.

Transforming other notable distributions

When you check variables with high skewness and kurtosis for their correlation,
the results may disappoint you. As you find out in the “Defining measures of nor-
mality” section, earlier in this chapter, using a nonparametric measure of corre-
lation, such as Spearman’s, may tell you more about two variables than Pearson’s
r may tell you. In this case, you should transform your insight into a new, trans-
formed feature. Scikit-learn offers the QuantileTransformer that can convert
any distribution into a uniform or a normal distribution. Here’s how it works on
bill depth, a variable with a non-normal distribution:

from sklearn.preprocessing import QuantileTransformer

uniform = QuantileTransformer(
n_quantiles=30, output_distribution="uniform")
bill_depth_mm = uniform.fit_transform(
penguins[['bill_depth_mm']])
plt.hist(bill_depth_mm, bins=30);

In Figure 13-11 you can see how the QuantileTransformer has distributed the
values in a shape that resembles a uniform distribution. (Although the result is
not perfect, it is still impressive.) It’s possible to use it to transform the same
variable into a normally distributed one as well:

normal = QuantileTransformer (
n_quantiles=30, output_distribution="normal")
bill_depth_mm = normal.fit_transform(
penguins[['bill_depth_mm']])
plt.hist(bill_depth_mm, bins=30);

In Figure 13-12 you can see the results. It’s important to keep in mind that such
transformations are useful if they increase their association with the target of
your machine learning model and if, by transforming the distribution, you don’t
harm how the variable interacts with the others.

PART 4 Wrangling Data

17.5 4
15.0 4
12.5 1
10.0 4

7.5 1

FIGURE 13-11: 5.0 A
The distribution

of bill depth 2.5 A
transformed into

a uniform 0.0 4
distribution.

50 A

40 1

30 A

201

FIGURE 13-12:
The distribution 10
of bill depth
transformed into
anormal 0-
distribution. -4

CHAPTER 13 Exploring Data Analysis 249

IN THIS CHAPTER

» Discovering the magic of singular
value decomposition

» Understanding the difference
between factors and components

» Automatically retrieving and
matching images and text

» Building a movie recommender
system

Chapter 14
Reducing Dimensionali

ig data is defined as an extensive collection of data that is so massive that

traditional processing techniques struggle to handle it effectively. The

manipulation of big data differentiates statistical problems, which are
based on small samples, from data science problems. You typically use traditional
statistical techniques on small problems and data science techniques on big
problems.

Data may be viewed as big because it consists of many examples, and this is the
first kind of big that spontaneously comes to mind. Analyzing a database of
millions of customers and interacting with them all simultaneously is really
challenging, but that isn’t the only possible perspective of big data. Another view
of big data is data dimensionality, which refers to how many aspects of the cases
an application tracks. Data with high dimensionality may offer many features
(variables) — often hundreds or thousands of them. And that may turn into a real
problem. Even if you’re observing only a few cases for a short time, dealing with
too many features can make most analysis intractable.

The complexity of working with so many dimensions drives the necessity for
various data techniques to filter the information — keeping the data that seems to
solve the problem better. The filter reduces dimensionality by removing redun-
dant information in high-dimension datasets. The focus in this chapter is on
reducing data dimensions when the data has too many repetitions of the same

CHAPTER 14 Reducing Dimensionality 251

REMEMBER

information. You can view this reduction as a kind of information compression,
which is similar to compressing files on a hard disk in order to save space.

You don’t have to type the source code for this chapter manually; using the
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_14_Reducing_
Dimensionality.ipynb file.

Understanding SVD

252

The core of data reduction magic lies in an operation of linear algebra called
Singular Value Decomposition (SVD). SVD is a mathematical method that takes
data as input in the form of a single matrix and gives back three resulting matrices
that, multiplied together, return the original input matrix. (You can find a short
introduction to SVD at https://machinelearningmastery.com/singular-
value-decomposition-for-machine-learning/.) The formula of SVD is

M=U*s*Vh
Here is a short explanation of the letters used in the equation:

9 U: Contains all the information about the rows (observations)
¥ Vh: Contains all the information about the columns (features)

3 s: Records the SVD process (a type of log record)

Creating three matrices out of one seems counterproductive when the goal is to
reduce data dimensions. When using SVD, you seem to be generating more data,
not reducing it. However, SVD conceals the magic in the process, because as it
builds these new matrices, it separates the information regarding the rows from
the columns of the original matrix. As a result, it compresses all the valuable
information into the first columns of the new matrices.

The resulting matrix s shows how the compression happened. The sum of all the
values in s tells you how much information was previously stored in your original
matrix, and each value in s reports how much data has accumulated in each
respective column of U and Vh.

To understand how this all works, you need to look at individual values. For
instance, if the sum of s is 100 and the first value of s is 99, that means that
99 percent of the information is now stored in the first column of U. Therefore,
you can happily discard all the remaining columns after the first column without

PART 4 Wrangling Data

https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/
https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/

losing any important information for your data science knowledge-discovery
process.

Looking for dimensionality reduction

It’s time to see how Python can help you reduce data complexity. The following
example demonstrates a method for reducing your big data. You can use this
technique in many other interesting applications, too.

import numpy as np
A = np.array([[1, 8, 4], [2, 8, 5], [1, 2, 8], [5, 4, 6]])
print(A)

The code prints matrix A, which appears in the following examples:

-

[

N
O W O

]
]
]
]

o =
BN W W

[
[
[
[]

Matrix, A contains the data you want to reduce. A is made of four observations
containing three features each. Using the module 1inalg from NumPy, you can
access the svd function that exactly splits your original matrix into three vari-
ables: U, s, and Vh.

U, s, Vh = np.linalg.svd(A, full_matrices=False)
print(np.shape(U), np.shape(s), np.shape(Vh))
print(s)

The output enumerates the shapes of U, s, and Vh, respectively, and prints the
content of the s variable:

(4, 8) (8,) (8, 3)
[12.26362747 2.11085464 ©.38436189]

Matrix U, representing the rows, has four row values. Matrix Vh is a square matrix,
and its three rows represent the original columns. Matrix s is a diagonal matrix.
A diagonal matrix contains zeros in every element but its diagonal. The length of
its diagonal is exactly that of the three original columns. Inside s, you find that
most of the values are in the first elements, indicating that the first column is
what holds the most information (about 83 percent), the second has some values
(about 14 percent), and the third contains the residual values. To obtain these
percentages, you add the three values together to obtain 14.758844 and then
use that number to divide the individual columns. For example, 12.26362747 /
14.758844 is 0.8309341483655495 or about 83 percent.

CHAPTER 14 Reducing Dimensionality 253

254

TIP

You can check whether the SVD keeps its promises by viewing the example output.
The example reconstructs the original matrix using the dot NumPy function to
multiply U, s (diagonal), and Vh. The dot function performs matrix multiplication,
which is a multiplication procedure slightly different from the arithmetic one.
Here is an example of a full matrix reconstruction:

print(np.dot(np.dot(U, np.diag(s)), Vh))
The code prints the reconstructed original matrix A:

(-]
-]
-]
-]

BN W W
O W O

O =~ N =

[
[
[
[]

The reconstruction is perfect, but clearly you need to keep the same number of
components in the resulting matrix U as variables as appeared in the original
dataset. No dimensionality reduction really happened, you just restructured data
in a way that makes the new variables uncorrelated (and this is useful for cluster-
ing algorithms, as you discover in Chapter 15).

When working with SVD, you usually care about the resulting matrix U, the matrix
representing the rows, because it’s a replacement of your initial dataset.

Now it’s time to play with the results a little and obtain some real reduction. For
example, you might want to see what happens when you exclude the third column
from matrix U, the less important of the three. The following example shows what
happens when you cut the last column from all three matrices.

print(np.round(np.dot(np.dot(U[:,:2], np.diag(s[:2])),
Vh[:2,:]1),1))

The code prints the reconstruction of the original matrix using the first two
components:

[

g~ N &
N
w

The output is almost perfect. It means that you could drop the last component and
use U as a reasonable substitute for the original dataset. There are a few decimal
points of difference. To take the example further, the following code removes both
the second and third columns from matrix U:

PART 4 Wrangling Data

TIP

print(np.round(np.dot(np.dot(U[:,:1], np.diag(s[:1])),
Vh[:1,:]),1))
Here is the reconstruction of the original matrix using a single component:
[1 2.5 3.7]
6 3.1 4.6]

.6 1.8 2.8]
.7 4.3 6.5]]

[2.
[2.
[1
[3

Now there are more errors. Some elements of the matrix are missing more than a
few decimal points. However, you can see that most of the numeric information is
intact, and you could safely use matrix U in place of your initial data. Just imagine
the potential of using such a technique on a larger matrix, one with hundreds of
columns that you can first transform into a U matrix and then safely drop most of
the columns.

One of the difficult issues to consider is determining how many columns to keep.
Creating a cumulated sum of the diagonal matrix s (using the NumPy cumsum
function is perfect for this task) is useful for keeping track of how information is
expressed, and by how many columns. As a general rule, you should consider
solutions maintaining from 70 to 99 percent of the original information; however,
that’s not a strict rule — it really depends on how important it is for you to be able
to reconstruct the original dataset.

Using SVD to measure the invisible

A property of SVD is to compress the original data at such a level and in such a
smart way that, in certain situations, the technique can really create new mean-
ingful and useful features, not just compressed variables. Therefore, you could
have used the three columns of the U matrix in the previous example as new
features.

If your data contains hints and clues about a hidden cause or motif, an SVD can put
them together and offer you proper answers and insights. That is especially true
when your data is made up of interesting pieces of information like the ones in the
following list:

3 Text in documents hint at ideas and meaningful categories. Just as you
can make up your mind about treated themes by reading blogs and news-
groups, so also can SVD help you deduce a meaningful classification of groups
of documents or the specific topics being written about in each of them.

CHAPTER 14 Reducing Dimensionality =~ 255

3 Reviews of specific movies or books hint at your personal preferences
and at larger product categories. So if you say that you loved the original
Star Trek series collection on a rating site, it becomes easy to determine what
you like in terms of other films, consumer products, or even personality types.

An example of a method based on SVD is Latent Semantic Indexing (LSI), which has
been successfully used to associate documents and words on the basis of the idea
that words, though different, tend to have the same meaning when placed in sim-
ilar contexts. This type of analysis suggests not only synonymous words but also
higher grouping concepts. For example, an LSI analysis on some sample sports
news may group together baseball teams of the Major League Baseball (MLB)
teams based solely on the co-occurrence of team names in similar articles, with-
out any previous knowledge of what a baseball team or the MLB are.

Performing Factor Analysis and PCA

256

SVD operates directly on the numeric values in data, but you can also express data
as a relationship between variables. Each feature has a certain variation. You can
calculate the variability as the variance measure around the mean. The more the
variance, the more the information contained inside the variable. In addition, if
you place the variable into a set, you can compare the variance of two variables to
determine whether they correlate, which is a measure of how strongly they have
similar values.

Checking all the possible correlations of a variable with the others in the set, you
can discover that you may have two types of variance:

¥ Unique variance: Some variance is unique to the variable under examina-
tion. It cannot be associated to what happens to any other variable.

¥ Shared variance: Some variance is shared with one or more other variables,
creating redundancy in the data. Redundancy implies that you can find the
same information, with slightly different values, in various features and across
many observations.

Of course, the next step is to determine the reason for shared variance. Trying to
answer such a question, as well as determining how to deal with unique and
shared variances, led to the creation of factor analysis and principal component
analysis (commonly referred to as PCA).

PART 4 Wrangling Data

Considering the psychometric model

Long before many machine learning algorithms were thought up, psychometrics,
the discipline in psychology that is concerned with psychological measurement,
tried to find a statistical solution to effectively measure dimensions in personality.
Our personality, as with other aspects of ourselves, is not directly measurable. For
example, it isn’t possible to measure precisely how much a person is introverted
or intelligent. Questionnaires and psychological tests only hint at these values.

Psychologists knew of SVD and tried to apply it to the problem. Shared variance
attracted their attention: If some variables are almost the same, they should have
the same root cause, they thought. Psychologists created factor analysis to perform
this task and instead of applying SVD directly to data, they applied it to a newly
created matrix tracking the common variance, in the hope of condensing all the
information and recovering new useful features called factors.

Looking for hidden factors

A good way to show how to use factor analysis is to start with the Palmer Penguins
dataset used in Chapter 13:

import pandas as pd
from sklearn.preprocessing import StandardScaler

def load_palmer_penguins():
url = "https://raw.githubusercontent.com/allisonhorst/" \
"palmerpenguins/main/inst/extdata/penguins.csv"

numeric_features = ["bill_length_mm", "bill_depth_mm",
"flipper_length_mm", "body_mass_g"]

data = pd.read_csv(url).dropna()

target = data.species.replace({'Adelie':1, 'Gentoo':2,

'Chinstrap':3})
data[numeric_features] = StandardScaler().\
.fit_transform(data[numeric_features])
return data[numeric_features], target

X, vy = load_palmer_penguins()

After the code uploads the data, it can proceed with the process of recombining it
into factors:

from sklearn.decomposition import FactorAnalysis
factor = FactorAnalysis(n_components=4).fit(X)

CHAPTER 14 Reducing Dimensionality 257

258

TIP

In the above code snippet, the FactorAnalysis class is initialized with a request
to look for four factors. The data is then fitted. You can explore the results by
observing the components_ attribute, which returns an array containing measures
of the relationship between the newly created factors, placed in rows, and the
original features, placed in columns:

print(pd.DataFrame(factor.components_, columns=X.columns).T)
In the output, you find how the factors produced by the code, indicated in the

columns, relate to the original variables depicted on the rows. You can interpret
the numbers as being correlations:

0 1 2 3
bill_length_mm 0.665834 ©.179744 -0.0 0.0
bill_depth_mm -0.561658 0.236985 ©.0 -0.0
flipper_length_mm ©.874881 -0.009841 0.0 -0.0
body_mass_g 0.840450 0©.010157 0.0 0.0

At the intersection of each factor and feature, a positive number indicates that a
positive correlation exists between the two; a negative number points out that they
diverge and that one is contrary to the other. In the test on the Palmer Penguins
dataset, for example, the resulting factors should be a maximum of 2, not 4,
because only two factors have significant connections with the original features.
You can use these two factors as new variables in your project because they reflect
an unseen but important feature that the previously available data only hinted at.

You have to test different values of n_components because you can’t know how
many factors exist in the data. If the algorithm is required for more factors than
exist, it will generate factors with low or zero values in the components_ array.

Using components, not factors

If an SVD could be successfully applied to the common variance, you might won-
der why you can’t apply it to all the variances. Using a slightly modified starting
matrix, all the relationships in the data could be reduced and compressed in a
similar way to how SVD does it. The results of this process, which are quite similar
to SVD, are called principal components analysis (PCA). The newly created features
are named components. In contrast to factors, components aren’t described as the
root cause of the data structure but are just restructured data, so you can view
them as a big, smart summation of selected variables.

For data science applications, PCA and SVD are quite similar. However, PCA isn’t
affected by the scale of the original features (because it works on correlation mea-
sures that are all bound between —1 and +1 values) and PCA focuses on rebuilding
the relationship between the variables, thus offering different results from SVD.

PART 4 Wrangling Data

Achieving dimensionality reduction

The procedure to obtain a PCA is quite similar to the factor analysis. The differ-
ence is that you don’t specify the number of components to extract. When you
declare n_components as “mle”, you are using the maximum likelihood estima-
tion (MLE) method to guess the right number of dimensions. MLE figures out a
plausible guess by using statistics and probability. It looks at the data or informa-
tion you have and tries to find the values that are most likely to have produced
that data. The following example shows how to perform this task:

from sklearn.decomposition import PCA

pca = PCA(n_components="mle").fit(X)

print('Explained variance by each component:',
pca.explained_variance_ratio_.round(5),"\n")

print(pd.DataFrame(pca.components_, columns=X.columns).T)

In the output, you can observe how the initial variance of the dataset distributes
across the components (for instance, here the first component accounts for
68.6 percent of the variance initially present in the dataset) and the resulting
PCA matrix of components, where each component (displayed in the rows) relates
to each original variable (placed on the columns):

Explained variance by each component: [0.68634 0.19453 0.09216]

0 1 2
bill_length_mm 0.453753 0.600195 0.642495
bill_depth_mm -0.399047 0.796170 -0.425800
flipper_length_mm ©.576825 0.005788 -0.236095
body_mass_g 0.549675 0.076464 -0.591737

In this decomposition of the Palmer Penguins dataset, the vector array provided
by explained_variance_ratio_ indicates that most of the information is con-
centrated into the first component (68.6 percent). You saw this same sort of result
after the factor analysis. In this case it’s possible to reduce the entire dataset to
three components, providing a reduction of noise and redundant information
from the original dataset.

Squeezing information with t-SNE

Because SVD and PCA reduce data complexity, you can use the reduced dimensions
for visualization. However, often PCA scatter plots aren’t helpful for visualization
because you need more plots to see how examples relate to each other. Therefore,
scientists created algorithms for nonlinear dimensionality reduction (also called
manifold learning), such as t-SNE, to visualize relations in complex datasets of
hundreds of variables using simple bidimensional scatter plots.

CHAPTER 14 Reducing Dimensionality =~ 259

260

The t-SNE algorithm starts by randomly projecting the data into the indicated
number of dimensions (usually two for a bidimensional representation) as points.
Then, in a series of iterations, the algorithm tries to push points that refer to sim-
ilar examples in the dataset (similarity is calculated using probability) together
and push points that are too different from each other apart. After a few itera-
tions, similar points should arrange themselves in clusters separated from the
other points. This arrangement helps represent data as a plot, and you inspect it
to gain insight about the data and its meaning.

This example uses the handwritten number dataset in Scikit-learn. The dataset
contains the grayscale images of handwritten numbers represented as an 8-x-8
matrix of values ranging from zero to one. (They are shades, where zero is pure
black, and one is white.)

from sklearn.datasets import load_digits
digits = load_digits()

X = digits.data

y = digits.target

After loading the dataset, you run the t-SNE algorithm to squeeze the data:

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2,
learning_rate="auto",
init="random",
random_state=0,
perplexity=50,
early_exaggeration=25,
n_iter=300)

Tx = tsne.fit_transform(X)

This example sets the initial perplexity, early_exaggeration and n_iter
parameters, which contribute to the quality of the ending representation. You can
try different values of these parameters and obtain slightly different solutions.
When the dataset is reduced, you can plot it and place the original number label to
the area of the plot where most of the similar examples are, as follows:

#matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.xticks([], [])

plt.yticks([], [])
for target in np.unique(y):

PART 4 Wrangling Data

selection = y==target

X1, X2 = Tx[selection, @], Tx[selection, 1]
cl, c2 = np.median(X1), np.median(X2)
plt.plot(X1, X2, 'o', ms=5)

plt.text(cl, c2, target, fontsize=18)

In Figure 14-1 you see the resulting plot, which reveals how some handwritten
numbers such as zero, six, or four are easily distinguishable from others, whereas
numbers such as three and nine (or five and eight) could be more easily
misinterpreted.

e ‘> -,
ﬁﬂg} 1 ~
f,d

h..

The resulting

projection of the
handwritten data
by the t-SNE

algorithm.

According to the article “How to t-SNE Effectively” (source: https://distill.
pub/2016/misread-tsne/), it is crucial to use the t-SNE technique appropriately.
This is because it’s easy to mistakenly perceive clusters and patterns in data where
they may not actually exist. However, despite these potential pitfalls, our experi-
ence suggests that, when you’re trying to figure how your data works, t-SNE can
provide more insightful results compared to other methods like PCA or SVD.

Understanding Some Applications

Understanding the algorithms that compose the family of SVD-derived data
decomposition techniques is complex because of their mathematical complexity
and numerous variants (such as Factor, PCA, and SVD). A few examples will help

CHAPTER 14 Reducing Dimensionality 261

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/

262

you understand the best ways to employ these powerful data science tools. In the
following paragraphs, you work with algorithms you likely seen in action when

¥ Performing a search of images on a search engine or publishing an image on
a social network

¥ Automatically labeling blog posts or questions to Q&A websites

¥ Receiving purchase recommendations on e-commerce websites

Recognizing faces with PCA

The following example shows how to use facial images to explain how social net-
works tag images with the appropriate label or name.

from sklearn.datasets import fetch_olivetti_faces

dataset = fetch_olivetti_faces(shuffle=True,
random_state=101)

train_faces = dataset.data[:350, :]

test_faces = dataset.data[350:, :]

train_answers = dataset.target|:350]

test_answers = dataset.target[350:]

The example begins by importing the Olivetti faces dataset, a set of images readily
available from Scikit-learn. For this experiment, the code divides the set of labeled
images into a training and a test set. You need to pretend that you know the labels
of the training set but don’t know anything about the test set. As a result, you
want to associate images from the test set to the most similar image from the
training set.

The Olivetti dataset consists of 400 photos taken of 40 people (so there are 10
photos of each person). Even though the photos represent the same person, each
photo is taken at different times during the day, with different light and facial
expressions or details (for example, with glasses and without). The images are 64
x 64 pixels, so unfolding the pixels into features creates a dataset made of 400
cases and 4,096 variables. You can obtain additional dataset information using:
print(dataset.DESCR), as shown in the downloadable source code. For addi-
tional information about the dataset, refer to AT&T Laboratories Cambridge web
pages: https://cam-orl.co.uk/facedatabase.html. The following code snippet
transforms and reduces the images using a PCA algorithm from Scikit-learn:

from sklearn.decomposition import PCA
n_components = 25

PART 4 Wrangling Data

https://cam-orl.co.uk/facedatabase.html

Rpca = PCA(svd_solver='randomized',
n_components=n_components,
whiten=True)

Rpca. fit(train_faces)

print(f"Explained variance by {n_components}")

print(f"components: ",

f"{np.sum(Rpca.explained_variance_ratio_):0.3f}")
compressed_train_faces = Rpca.transform(train_faces)
compressed_test_faces = Rpca.transform(test_faces)

When executed, the run outputs the proportion of variance retained by the first 25
components of the resulting PCA:

Explained variance by 25 components: 0.794.

The svd_solver='randomized' setting indicates that a randomized algorithm is
used to perform the calculations in PCA. This works better when the dataset is
large (many rows and variables). The decomposition creates 25 new variables
(n_components parameter) and whitening (whiten=True), thus removing some
constant noise (created by textual and photo granularity) from images. The result-
ing decomposition uses 25 components, which is about 80 percent of information
held in 4,096 features.

#matplotlib inline
import matplotlib.pyplot as plt

photo = 17

print(f"The represented person is subject "
f"{test_answers[photo]}")

plt.subplot(1, 2, 1)

plt.axis('off")

plt.title(f"Unknown photo {photo} in test set")

plt.imshow(test_faces[photo].reshape(64, 64),

cmap=plt.cm.gray, interpolation="nearest")
plt.show()

Figure 14-2 represents subject number 34, whose photo number 17 has been cho-
sen as the test set.

CHAPTER 14 Reducing Dimensionality 263

FIGURE 14-2:

The example
application would
like to find
similar photos.

Unknown photo 17 in test set

After test set decomposition, the example takes the data relative only to photo 17
and subtracts it from the decomposition of the training set. Now the training set
is made of differences with respect to the example photo. The code squares them
(to remove negative values) and sums them by row, which results in a series of
summed errors. The most similar photos are the ones with the least-squared
errors, the ones whose differences are the least.

mask = compressed_test_faces|[photo,]
squared_errors = np.sum((compressed_train_faces
— mask)*x2, axis=1)
minimum_error_face = np.argmin(squared_errors)
most_resembling = list(np.where(squared_errors < 20)[Q])
print(f"Best resembling subject in training set: "
f"{train_answers[minimum_error_face]}")

The preceding code returns the code number of the best resembling person in the
dataset, which effectively corresponds with the code of the subject chosen from
the test set:

Best resembling subject in training set: 34

You check the work done by the code by displaying photo 17 from the test set next
to the top three images from the training set that best resemble it (as shown in
Figure 14-3):

%matplotlib inline

import matplotlib.pyplot as plt

plt.subplot(2, 2, 1)

plt.axis('off"')

plt.title(f'Unknown face {photo} in test set')
plt.imshow(test_faces[photo].reshape(64, 64),

264 PART 4 Wrangling Data

FIGURE 14-3:

The output shows
the results that
resemble the
test image.

cmap=plt.cm.gray,
interpolation="'nearest')
for k,m in enumerate(most_resembling[:3]):
plt.subplot(2, 2, 2+k)
plt.title(f'Match in train set no. {m}')
plt.axis('off"')
plt.imshow(train_faces[m].reshape(64, 64),
cmap=plt.cm.gray,
interpolation="nearest"')
plt.show()

Unknown face 17 in test set Match in train set no. 170

Even though the most similar photo from the training data it is just a differently
scaled version of the one in the test set, the other two photos are displaying a dif-
ferent pose of the same person present in the test photo 17. This example using
PCA, starting from an example image, accurately finds other photos of the very
same person from a set of images.

CHAPTER 14 Reducing Dimensionality 265

266

Extracting topics with NMF

Textual data is another field of application for the family of data reduction algo-
rithms. The idea that prompted such application is that if a group of people talks
or writes about something, they tend to use words from a limited set because they
refer or relate to the same topic; they share some meaning or are part of the same
group. Consequently, if you have a collection of texts and don’t know what topics
the text references, you can reverse the previous reasoning — you can simply look
for groups of words that tend to associate, so the group newly formed by dimen-
sionality reduction hints at the topics you’d like to know about.

This is a perfect application for the SVD family, because by reducing the number
of columns, the features (in a document, the words are the features) will gather in
dimensions, and you can discover the topics by checking high-scoring words. SVD
and PCA provide features to relate both positively and negatively with the newly
created dimensions. So a resulting topic may be expressed by the presence of a
word (high positive value) or by the absence of it (high negative value), making
interpretation both tricky and counterintuitive for humans. Luckily, Scikit-learn
includes the Non-Negative Matrix Factorization (NMF) decomposition class,
which allows an original feature to relate only positively with the resulting
dimensions.

This example begins by loading the 20newsgroups dataset, selecting only the
posts regarding objects for sale and automatically removing headers, footers, and
quotes. (Note that this code can require a long time to run depending on the capa-
bilities of your system and the speed of your network connection.)

from sklearn.datasets import fetch_20newsgroups
dataset = fetch_20@newsgroups(
shuffle=True,
categories = ['misc.forsale'],
remove=("headers', 'footers', 'quotes'),
random_state=101)
print(f'Posts: {len(dataset.data)}')

The code loads the dataset and prints the number of posts it contains:
Posts: 585
The TfidVectorizer class is imported and set up to remove stop words (common

words such as “the” or “and”) and keep only distinctive words, producing a
matrix whose columns point to distinct words.

PART 4 Wrangling Data

REMEMBER

from sklearn. feature_extraction.text import \
TfidfVectorizer
from sklearn.decomposition import NMF

vectorizer = TfidfVectorizer(max_df=0.95, min_df=2,
stop_words='english')
tfidf = vectorizer.fit_transform(dataset.data)

n_topics = 5

nmf = NMF(n_components=n_topics,
init="nndsvda",
random_state=101) . fit(tAdf)

Term frequency-inverse document frequency (Tf-idf) is a simple calculation based on
the frequency of a word in document. It’s weighted by word rarity in the available
documents. Weighting words is an effective way to rule out words that can’t help
you to classify or to identify the document when processing text. For example, you
can eliminate common parts of speech or other common words.

As with other algorithms from the sklearn.decomposition module, the
n_components parameter indicates the number of desired components. If you’d
like to look for more topics, you use a higher number. As the required number of
topics increases, the reconstruction_err_ method reports lower error rates. It’s
up to you to decide when to stop given the trade-off between more time spent on
computations and more topics.

The last part of the script outputs the resulting five topics. By reading the printed
words, you can decide on the meaning of the extracted topics, thanks to product
characteristics (for instance, the words drive, hard, card, and floppy refer to com-
puters) or the exact product (for instance, comics, car, stereo, games).

feature_names = vectorizer.get_feature_names_out()

n_top_words = 15

for topic_idx, topic in enumerate(nmf.components_):
print(f'Topic #{topic_idx+l}:', end="\t")
topics = topic.argsort()[:-n_top_words - 1:-1]
print(' '.join([feature_names[i] for i in topics]))

The topics appear in order, accompanied by their most representative keywords.
You can explore the resulting model by looking into the attribute components_
from the trained NMF model. It consists of a NumPy ndarray holding positive val-
ues for words connected to the topic. By using the argsort method, you can get
the indexes of the top associations, whose high values indicate that they are the

CHAPTER 14 Reducing Dimensionality 267

268

most representative words. This code extracts the indexes of the top representa-
tive words for the topic 1:

print(nmf.components_[@, :].argsort()[:-n_top_words-1:-1])
The output is a list of indexes, each one corresponding to a word:

[1075 1459 632 2463 T40 888 2476 2415 2987 10 2305
1 3349 923 2680]

Decoding the words’ indexes creates readable strings by calling them from
the array derived from the get_feature_names method applied to the Tfidf
Vectorizer that was previously fitted. In the following snippet, you see how to
extract the word related to the 2463 index, the top explicative word of the topic 1:

word_index = 2463
print(vectorizer.get_feature_names_out()[word_index])

Here’s the word related to the 2463 index:

Of fer

Recommending movies

Other interesting applications for data reduction are systems that generate rec-
ommendations for things you may like to buy or know more about. You likely see
recommenders in action on most e-commerce websites after logging-in and vis-
iting some product pages. As you browse, you rate items or put them in your elec-
tronic basket. Based on these actions and those of other customers, you see other
buying opportunities (this method is collaborative filtering).

You can implement collaborative recommendations based on simple means or
frequencies calculated on other customers’ set of purchased items or on ratings
using SVD. This approach helps you reliably generate recommendations even in
the case of products the vendor seldom sells or that are quite new to users. For this
example, you use a well-known database created by the MovieLens website, col-
lected from its users’ ratings of a movie they liked or disliked. The following code
snippet will download all the necessary data for you directly from the MovieLens
database:

PART 4 Wrangling Data

import urllib.request
import zipfile

def get_movielens():
url = ("http://files.grouplens.org/datasets"
"/movielens/ml-1m.zip")
filename = 'ml-1m.zip'
urllib.request.urlretrieve(url, filename)
params = {"sep":"::", "engine":"python",
"encoding":"latin-1"}

with zipfile.ZipFile('ml-im.zip', 'r') as zip_file:
with zip_file.open('ml-1m/users.dat') as file:
users = pd.read_csv(

file,

names=['user_id', 'gender', 'age',
'occupation', 'zip'],

*xparams)

with zip_file.open('ml-im/ratings.dat') as file:
ratings = pd.read_csv(
file,
names=['user_id', 'movie_id', 'rating',
"timestamp'],
*xparams)
with zip_file.open('ml-1m/movies.dat') as file:
movies = pd.read_csv(
file,
names=['movie_id', 'title',6 'genres'],
*xparams)
return pd.merge(pd.merge(ratings, users), movies)

movielens = get_movielens()
Using pandas will help create a datatable containing information in rows about
users and in columns about movie titles. A movie index will keep track of what
movie each column represents:

ratings_mtx_df = movielens.pivot_table(values='rating',

index='user_id', columns='title', fill_value=0)
movie_index = ratings_mtx_df.columns

CHAPTER 14 Reducing Dimensionality 269

270

The following code reduces the dimensionality of the ratings datatable using
TruncatedSVD with fifteen components and stores the transformed data in a new
matrix, R:

from sklearn.decomposition import TruncatedSVD
recom = TruncatedSVD(n_components=15, random_state=101)
R = recom. fit_transform(ratings_mtx_df.values.T)

The TruncatedSVD class easily reduces the datatable to fifteen components. This
class offers a more scalable algorithm than SciPy’s linalg.svd used in earlier
examples. TruncatedSVD computes result matrices of exactly the shape you decide
by the n_components parameter (the full resulting matrices are not calculated),
resulting in a faster output and less memory usage.

By calculating the Vh matrix, you can reduce the ratings of different but similar
users (each user’s scores are expressed by row) into compressed dimensions that
reconstruct general tastes and preferences. Also, because you’re interested in the
Vh matrix (the columns/movies reduction) but the algorithm provides you with
only the U matrix (the decomposition based on rows), you need to input the trans-
position of the datatable (using transposition means that the columns become
rows and you obtain TruncatedSVD output, which is the Vh matrix). You now look
for a specific movie:

movie = 'Star Wars: Episode V \

— The Empire Strikes Back (1980)'
movie_idx = list(movie_index).index(movie)
print(f"movie index: {movie_idx}")
print(R[movie_idx])

The output points out the index of a Star Wars episode and its SVD coordinates:

movie index: 3154
[184.72254552 -17.77612872 47.33450866 51.4664494
47.92058216
17.65033116 14.3574635 -12.82219207 17.51347857
5.46888807
T.5430805 -0.57117869 -30.74032355 2.4088565
-22.50368497]

Using the movie label, you can find out what column the movie is in (column
index 3154 in this case) and print the values of the ten components. This sequence
provides the movie profile. You now try getting all the movies with scores similar
to the target movie and highly correlated with it. A good strategy is to calculate a
correlation matrix of all movies, get the slice related to your movie, and find out

PART 4 Wrangling Data

REMEMBER

inside it what are the most related (characterized by high positive correlation —
say at least 0.98) movie titles using indexing as shown in the following code:

import numpy as np

correlation_matrix = np.corrcoef(R)

P = correlation_matrix[movie_idx]
print(list(movie_index[(P > ©.95) & (P < 1.0)]))

The code will return names of films most similar to your movie; they are intended
as suggestions based on a preference for that film.

['Raiders of the Lost Ark (1981)',

'Star Wars: Episode IV — A New Hope (41977)',

'Star Wars: Episode VI — Return of the Jedi (1983)',
'Terminator, The (1984)']

Star Wars fans would like quite a few titles, such as Star Wars Episodes IV and VI (of
course). In addition, fans might like Raiders of the Lost Ark, because of the actor
Harrison Ford, the main character in all these films.

SVD will always find the best way to relate a row or column in your data, discover-

ing complex interactions or relations you didn’t imagine before. You don’t need to
imagine anything in advance; it’s fully a data-driven approach.

CHAPTER 14 Reducing Dimensionality 271

IN THIS CHAPTER

» Exploring the potentialities of
unsupervised clustering

» Making K-means work with small and
big data

» Trying DBScan as an alternative
option

Chapter 15
Clustering

ne of the basic abilities that humans have exercised since primitive times

is to divide the known world into separate classes, with individual objects

sharing common features deemed important by the classifier. Starting
with primitive cave dwellers classifying the natural world they lived in, distin-
guishing plants and animals useful or dangerous for their survival, in modern
times, marketing departments classify consumers into target segments and then
act with proper marketing plans.

Dealing with big data streams today requires the same classificatory ability of our
ancestors, but on a different scale. To leverage the information in data requires
specialized algorithms capable of performing two tasks: learning to assign exam-
ples to predefined classes (the supervised approach) and identifying new and
interesting classes that we weren’t aware of (unsupervised learning).

A data-driven approach to classification based on unsupervised learning, called
clustering, is presented in the first part of this chapter, and it will prove to be of
great help in achieving success for your data project when you need to provide
new insights from scratch and lack labeled data or want to create new labels for it.
The second part of the chapter presents specific algorithms for clustering, such as
K-means, agglomerative clustering, and DBScan.

Even though your main routine as a data scientist will be to put into practice your
predictive skills, you’ll also have to provide useful insight into possible novel
information present in your data. For example, you’ll often need to locate new
features in order to strengthen the predictive power of your models, find an easy

CHAPTER 15 Clustering 273

©

REMEMBER

way to make complex comparisons inside the data, and discover communities in
social networks.

Clustering techniques, as a set of unsupervised classification methods, can create
meaningful classes by directly processing your data, without any previous knowl-
edge or hypothesis about the groups that may be present. If all supervised algo-
rithms need labeled examples (class labels), unsupervised ones can figure out by
themselves what the most appropriate labels could be.

You don’t have to type the source code for this chapter manually; in fact, using the
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_15_Clustering.
ipynb file.

Clustering with K-means

274

TIP

There are a few kinds of clustering techniques, and you can distinguish between
them by using the following guidelines:

¥ Assigning every example to a unique group (partitioning) or to multiple ones
(fuzzy clustering)

¥ Determining the heuristic — that is, the rule of thumb — that they use to
figure out whether an example is part of a group

¥ Specifying how they quantify the difference between observations, that is, the
so-called distance measure

Clustering can help you to summarize huge quantities of data. It’s an effective
technique for presenting data to a nontechnical audience and for feeding a super-
vised algorithm with group variables, thus providing the algorithm with concen-
trated, significant information.

Most of the time you use partition-clustering techniques (a data point can be part of
only one group, so the groups don’t overlap; their membership is distinct) and
among partitioning methods, you use K-means the most. In addition, this chapter
mentions other useful methods that are based on agglomerative methods and data
density.

Agglomerative methods set data into clusters based on a distance measure. Data
density approaches take advantage of the idea that groups are very dense and con-
tinuous, so if you notice a decrease in density when exploring a part of a group of
points, it could mean that you arrived at one of its borders.

PART 4 Wrangling Data

TIP

©

REMEMBER

Because you normally don’t know what you’re looking for, different methods can
provide you with different solutions and points of view on the data. The secret of
a successful clustering is to try as many of the recipes as possible, compare the
results, and try to find a reason to consider certain observations as part of one
group rather than another.

The first clustering technique described in this chapter is K-means, which is an
iterative algorithm that has become very popular in machine learning because of
its simplicity, speed, and scalability to a large number of data points. The K-means
algorithm relies on the idea that there are a specific number of data groups, called
clusters. Each data group is scattered around a central point with which they share
some key characteristics.

You can actually imagine the central point of a cluster, called a centroid, as a sun.
The data points distribute around the centroid like planets. As star systems are
separated by the void of space, clusters are also expected to clearly separate from
each other, so as groups of points, they are both internally homogeneous and dif-
ferent from each other.

The K-means algorithm expects to find clusters in your data. Therefore, it will
find them even when none exist. It’s important to check inside the groups to
determine whether the group is a true gold nugget.

Given such assumptions, all you have to do is to specify the number of groups you
expect (you can use a guess or try a number of possible desirable solutions), and
the K-means algorithm will look for them, using a heuristic to discover the posi-
tion of the central points.

The cluster centroids should be evident by their different characteristics and posi-
tions from each other. Even if you start by randomly guessing where they could
be, in the end, after a few corrections, you always find them by using the many
data points that gravitate around them.

Understanding centroid-based algorithms

The procedure for finding the centroids using an algorithm is straightforward.
During this time, the algorithm does the following:
1. SsetsaKnumber of clusters as an objective.

2. Picks K centroids from the data points or chooses them so that they are placed
in the data in very distant positions from each other.

3. Forms the initial clusters: assigns all the points to their nearest centroid based
on the Euclidean distance.

CHAPTER 15 Clustering 275

276

4, Recomputes new centroids based on the points assigned to their cluster.

5. Reassigns the points to the centroids and reiterate computing the centroids
until you notice that your solution doesn't change anymore.

6. Recalculates the centroids as an average of all the points present in the group.
All the data points are reassigned to the groups based on the distance from
the new centroids.

The iterative process of assigning cases to the most plausible centroid and then
averaging the assigned ones to find a new centroid will slowly shift the centroid
position toward the areas where most data points gravitate. The result is that you
end up with the true centroid position.

The procedure has only two weak points that you need to consider. First, you
choose the initial centroids randomly, which means that you could start from a
bad starting point. As a result, the iterative process will stop at some unlikely
solution — for example, having a centroid in the middle of two groups. To ensure
that your solution is the most probable, you have to try the algorithm a few times
and track the results. The more often you try, the more likely you are to confirm
the right solution. The Python Scikit-learn implementation of K-means will do
that for you, so you just have to decide how many times you intend to try. (The
trade-off is that more iterations produce better results, but each iteration con-
sumes valuable time.)

The second weak point is due to the distance that K-means uses, the Euclidean
distance, which is the distance between two points in Euclidean space (a concept
that you likely studied at school using a two-dimensional plane). In a K-means
application, each data point is a vector of features, so when comparing the dis-
tance of two points, you do the following:

1. createalist containing the differences of the elements in the two prints.

2. Square all the elements of the difference vector.

3. Calculate the square root of the summed elements.

You can try a simple example in Python. Pretend that you have two points, A and
B, and they have three numeric features. If A and B are the data representation of

two persons, their distinguishing features could be measured in height (cm),
weight (kg), and age (years), as shown in the following code:

import numpy as np
A = np.array([165, 55, 70])
B = np.array([185, 60, 30])

PART 4 Wrangling Data

The following example shows how to calculate the differences between the three
elements, square all the resulting elements, and determine the square root of the
summed squared values:

D= (A - B)

D = Dxx2

D = np.sqrt(np.sum(D))
print(D)

You will get the value 45 as a result, which is the Euclidean distance between
A and B.

In the end, the Euclidean distance is really just the square root of a big sum. When
the variables making up the difference vector are significantly different in scale
from each other (in this example, the height could have been expressed in meters
and the weight in milligrams), you end up with a distance dominated by the ele-
ments with the largest scale. It is very important to rescale the variables so that
they use a similar scale before applying the K-means algorithm. You can use a
fixed range or a statistical normalization with zero mean and unit variance to
achieve this goal.

Another problem that may arise is due to correlation between variables, causing
redundancy of information. If two variables are highly correlated, that means that
a part of their information content is repeated. Replication implies counting the
same information more than once in the summation used to calculate the dis-
tance. If you’re not aware of the correlation issue, some variables will dominate
your distance measure calculation — a situation that may lead to not finding the
useful clusters that you want. The solution is to remove the correlation thanks to
a dimensionality reduction algorithm such as Principal Component Analysis
(PCA), as described in Chapter 14. It’s up to you to remember to evaluate scale and
correlation before employing K-means and other clustering techniques using the
Euclidean distance measure.

Creating an example with image data

An example with image data demonstrates how to apply the tool and how to get
insight from clusters. An ideal example is clustering the handwritten digits data-
set provided by the Scikit-learn package. Hand-written numbers are naturally
different from each other — they possess variability in that there are several ways
to write certain numbers. Of course, we all have different writing styles, so each

CHAPTER 15 Clustering 277

278

person’s numbers naturally differ slightly. The following code shows how to
import the image data.

from sklearn.datasets import load_digits
from sklearn.preprocessing import StandardScaler

digits = load_digits()

scaler = StandardScaler()

X = scaler.fit_transform(digits.data)
ground_truth = digits.target

The example begins by importing the digits dataset from Scikit-learn and assign-
ing the data to a variable. It then stores the labels in another variable for later
verification. The original 64 variables are pixel values, which are comparable in
terms of value range. In this example, you actually don’t need to apply any PCA,
but the example transforms the values using the StandardScaler, which sub-
tracts the mean and divides by the standard deviation. Using this transformation
emphasizes the importance of the relative variations in pixel intensity, rather
than their absolute values. In this way, common patterns across the same hand-
written numbers should be more evident.

After importing the KMeans class, the code defines its main parameters:

¥ n_clusters is the K number of centroids to find.

¥ n_init is the number of times to try the K-means with different starting
centroids. The code needs to test the procedure a sufficient number of times,
such as 10, as shown here:

from sklearn.cluster import KMeans
clustering = KMeans(n_clusters=10,
n_init=1@, random_state=1)

clustering. fit(X)

After creating the parameters, the clustering class is ready for use. You can apply
the fit() method to the X dataset, which computes the clusters from the dataset.

Looking for optimal solutions

As mentioned in the previous section, the example is clustering ten different
numbers. It’s time to start checking the solution with K = 10 first. The following
code compares the previous clustering result to the ground truth — the true
labels — to determine whether there is any correspondence:

PART 4 Wrangling Data

FIGURE 15-1:
Cross-tabulation
of ground truth
and K-means
clusters.

TIP

import numpy as np
import pandas as pd
ms = np.column_stack((ground_truth,clustering.labels_))
df = pd.DataFrame(ms,
columns = ['Ground truth', 'Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
margins=True)

Converting the solution, given by the labels variable internal to the clustering
class, into a pandas DataFrame allows it to apply a cross-tabulation and compare
the original labels with the labels derived from clustering. You can observe the
results in Figure 15-1. Because rows represent ground truth, you can look for
numbers whose majority of observations are split among different clusters. These
observations are the handwritten examples that are more difficult to figure out by
K-means.

Clusters 0 1 2 3 4 5 6 7 8 9 All
Ground truth

0 1 0 0 0 0 0 0 0 176 1 178
1 0 59 0 27 0 1 0 95 0 0 182
2 0 5 100 46 4 1 0 21 0 0 177
3 0 0 13 1 154 1 0 14 0 0 183
4 158 6 0 0 0 2 8 7 0 0 181
5 1 0 16 0 30 131 0 2 0 2 182
6 0 1 0 0 0 0 1 1 178 181
7 1 2 6 0 1 18 151 0 0 179
8 0 14 7 0 55 6 0 88 0 4 174
9 0 19 0 0 144 5 3 9 0 0 180
All 161 106 142 74 387 148 29 388 177 185 1797

Notice how numbers such as six or zero are concentrated into a single major clus-
ter, whereas others, such as one and eight, tend to be misunderstood by the algo-
rithm and assigned to different clusters. From such a discovery, you can deduce
that certain handwritten numbers are easy to guess, while others aren’t.

Cross-tabulation has been particularly useful in this example because you can
compare the clustering result to the ground truth. However, in many clustering
applications, you won’t have any ground truth to compare with. In such cases,
representing the variables’ values using the cluster centroids you found is partic-
ularly useful. You can use descriptive statistics to perform this task by applying
the mean or the median, as described in Chapter 13, on each cluster and compar-
ing the different descriptive stats between clusters.

CHAPTER 15 Clustering 279

280

Another observation you can make is that even though there are just ten numbers
in this example, there are more types of handwritten forms of each, hence the
necessity of finding more clusters. Of course, the problem is to determine just how
many clusters you need.

You use inertia to measure the viability of a cluster. Inertia is the sum of all the
differences between every cluster member and its centroid. If the examples in the
group are similar to the centroid, the difference is small and so is the inertia. Iner-
tia as an individual measure reveals little. Moreover, when comparing inertia from
different clusters in general, you notice that the more groups you have, the less
the inertia. You want to compare the inertia of a cluster solution with the previous
cluster solution. This comparison provides you with the rate of change, a more
interpretable measure. To obtain the inertia rate of change in Python, you will
have to create a loop. Try progressive cluster solutions inside the loop, recording
their values. Here is a script for the handwritten digit example:

import numpy as np
inertia = list()
for k in range(1,21):
clustering = KMeans(n_clusters=k,
n_init=10@, random_state=1)
clustering. fit(X)
inertia.append(clustering.inertia_)
delta_inertia = np.diff(inertia) x -1

You use the inertia variable inside the clustering class after fitting the cluster-
ing. The inertia variable is a list containing the rate of change of inertia between a
solution and the previous one. Here is some code that prints a line graph of the
rate of change, as depicted by Figure 15-2.

%matplotlib inline
import matplotlib.pyplot as plt

plt.figure()

x_range = [k for k in range(2, 21)]
plt.xticks(x_range)

plt.plot(x_range, delta_inertia, 'ko-')
plt.xlabel('Number of clusters')
plt.ylabel('Rate of change of inertia')
plt.show()

When examining inertia’s rate of change, look for jumps in the rate itself. If the
rate jumps up, it means that adding a cluster to the previous solution brings much
more benefit than expected; if it jumps down instead, you’re likely forcing a clus-
ter more than necessary. The cluster solution before a jump down may be a good

PART 4 Wrangling Data

FIGURE 15-2:
Rate of change of
inertia for
solutions

up to k=20.

REMEMBER

candidate, according to the principle of parsimony (the jump signals a sophistica-
tion in our analysis, but the right solution is usually the simplest one). In the
example, there are jumps at k=10 and k=17, but k=17 seems to be the most prom-
ising jump down because the previous solution k=16 has a spike up signaling a
cluster solution that fits the data better than expected.

8000 ~

6000 4

4000 A

Rate of change of inertia

2000 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of clusters

The rate of change in inertia will provide you with just a few tips where there
could be good cluster solutions. It is up to you to decide which to pick if you need
to get some extra insight on data. If, instead, clustering is just a step in a complex
data science project, you don’t need to spend much effort in looking for an opti-
mal number of clusters; you just pass a solution featuring enough clusters to the
next machine learning algorithm and let it decide which is best.

Clustering big data

K-means is a way to reduce the complexity of your data by summarizing the many
examples in your dataset. To perform this task, you load the data into your com-
puter’s memory, and that won’t always be feasible, especially if you are working
with big data. Scikit-learn offers an alternative way to apply K-means; the
MiniBatchKMeans is a variant that can progressively cluster separated chunks of
data. In fact, a batch learning procedure usually processes the data part by part.
There are only two differences between the standard K-means function and
MiniBatchKMeans:

¥ You cannot automatically test different starting centroids unless you try
running the analysis again.

CHAPTER 15 Clustering 281

282

¥ The analysis will start when there is a batch made of at least a minimum
number of cases. This value is usually set to 100 (but the more cases there
are, the better the result) by the batch_size parameter.

A simple demonstration on the previous handwritten dataset shows how effective
and easy it is to use the MiniBatchKMeans clustering class. First, the example runs
a test on the K-means algorithm on all the data available and records the inertia
of the solution:

k = 10
clustering = KMeans(n_clusters=k,

n_init=10, random_state=1)
clustering. fit(X)
kmeans_inertia = clustering.inertia_
print(f"K-means inertia: {kmeans_inertia:@.1f}")

Take note that the resulting inertia is 69944.5. The example then tests the same
data and number of clusters by fitting a MiniBatchKMeans clustering by small
separate batches of 100 examples:

from sklearn.cluster import MiniBatchKMeans
batch_clustering = MiniBatchKMeans(n_clusters=k,
random_state=1,
n_init=3)
batch = 100
for row in range(@, len(X), batch):
if row+batch < len(X):
feed = X[row:row+batch, :]
else:
feed = X[row:,:]
batch_clustering.partial_fit(feed)
batch_inertia = batch_clustering.score(X) x -1

print(f"MiniBatchKmeans inertia: {batch_inertia:.1f}")

This script iterates through the indexes of the handwritten dataset, creating
batches of 100 observations each. Using thepartial_fit method, it fits a K-means
clustering on each batch, using the centroids found by the previous call. The algo-
rithm stops when it runs out of data. Using the score method on all the data
available, it then reports its inertia for a ten-clusters solution. Now the reported
inertia is 76426.4. Note that MiniBatchKmeans results in a higher inertia than the
standard algorithm. Though the difference is small, the fitted solution is inferior,
thus you should reserve this approach for those times when you really cannot
work with in-memory datasets.

PART 4 Wrangling Data

ey Windows users of this example may see a warning about a potential memory leak.
7 You can safely ignore this warning for this example but will want to take the

TecunicaL warning’s advice when working through data of your own.
STUFF

Performing Hierarchical Clustering

If the K-means algorithm is concerned with centroids, hierarchical (also known
as agglomerative) clustering tries to link each data point, by a distance measure,
to its nearest neighbor, creating a cluster. Reiterating the algorithm using differ-
ent linkage methods, the algorithm gathers all the available points into a rapidly
diminishing number of clusters, until all the points reunite into a single group in
the end.

The results, if visualized, will closely resemble the biological classifications of liv-
ing beings that you may have studied in school or seen on posters at the local
natural history museum: an upside-down tree whose branches are all converging
into a trunk. Such a figurative tree is a dendrogram, and you see it used in medical
and biological research. Scikit-learn implementation of agglomerative clustering
does not offer the possibility of depicting a dendrogram from your data because
such a visualization technique works fine with only a few cases, whereas you can
expect to work on many examples.

Compared to K-means, agglomerative algorithms are more cumbersome and do
not scale well to large datasets. Agglomerative algorithms are more suitable for
statistical studies (they can be easily found in natural sciences, archeology, and
sometimes psychology and economics). These algorithms do offer the advantage
of creating a complete range of nested cluster solutions, so you just need to pick
the right one for your purpose.

To use agglomerative clustering effectively, you have to know about the different
linkage methods (the heuristics for clustering) and the distance metrics. There are
three linkage methods:

3 Ward: Tends to look for spherical clusters, very cohesive inside and extremely
differentiated from other groups. Another nice characteristic is that the
method tends to find clusters of similar size. It works only with the
Euclidean distance.

3 Complete: Links clusters using their furthest observations, that is, their most
dissimilar data points. Consequently, clusters created using this method tend
to be composed of highly similar observations, making the resulting groups
quite compact.

CHAPTER 15 Clustering 283

284

3 Average: Links clusters using their centroids and ignoring their boundaries.
The method creates larger groups than the complete method. In addition, the
clusters can be of different sizes and shapes, contrary to the Ward method’s
solutions. Consequently, this approach sees successful use in the field of
biological sciences, easily catching natural diversity.

There are also three distance metrics:

3 Euclidean (euclidean or 12): As seen in K-means.

3 Manhattan (manhattan or 11): Similar to Euclidean, but the distance is
calculated by summing the absolute value of the difference between the
dimensions. In a map, if the Euclidean distance is the shortest route between
two points, the Manhattan distance implies moving straight, first along one
axis and then along the other — as a car in the city would, reaching a destina-
tion by driving along city blocks (the distance is also known as city-block
distance, rectilinear distance, and taxicab distance).

3 Cosine (cosine): A good choice when there are too many variables and you
worry that some variable may not be significant (being just noise). Cosine
distance reduces noise by taking the shape of the variables, more than their
values, into account. It tends to associate observations that have the same
maximum and minimum variables, regardless of their effective value.

Using a hierarchical cluster solution

If your dataset doesn’t contain too many observations, it’s worth trying agglom-
erative clustering with all the combinations of linkage and distance and then
comparing the results carefully. In clustering, you rarely already know the right
answers, and agglomerative clustering can provide you with another useful
potential solution. For example, you can recreate the previous analysis with
K-means and handwritten digits, using the ward linkage and the Euclidean dis-
tance as follows (the output appears in Figure 15-3):

from sklearn.cluster import AgglomerativeClustering
hclustering = AgglomerativeClustering(
n_clusters=10, metric='euclidean',

linkage="ward')
hclustering. fit(X)

PART 4 Wrangling Data

FIGURE 15-3:
Cross-tabulation
of ground truth
and Ward
method’s
agglomerative
clusters.

ms = np.column_stack((ground_truth,hclustering.labels_))

df

pd.DataFrame(ms,

columns = ['Ground truth', 'Clusters'])
pd.crosstab(df['Ground truth'],
df['Clusters'], margins=True)

Clusters
Ground truth
0

=y

© 0 N O g b~ W N

=

o O =

ey

168

175

150
15
11

168
38
388

N O O O O ©

27
160

—_

o w O O

195

168

12

135
319

178

o O O O O O O O O

178

6 7 8 9 All

0 0 0 0 178
0 0 4 0 182
0 0 0 0 177
0 0 0 0 183
0 12 163 0 181
1 0 0 0 182
180 O 0 0 181
0 25 0 151 179
0 0 0 0 174
1 3 0 0 180

182 40 167 151 1797

The results, in this case, are certainly better than K-means, although, you may
have noticed that completing the analysis using this approach may take longer
than using K-means. When working with a large number of observations, the
computations for a hierarchical cluster solution may take hours to complete,

making this solution less feasible.

Visualizing aggregative clustering solutions

When you don’t have many examples in your dataset, you can also find agglom-
erative clustering feasible for visualizations. This example uses a small sample of
the handwritten data:

ground_truth[10:20]

CHAPTER 15 Clustering

285

286

Each example within the range of 10 to 19 corresponds to a distinct number, and
you can visualize them using a plot from the Matplotlib package:

%matplotlib inline
import matplotlib.pyplot as plt

for k, img in enumerate(range(10)):
plt.subplot(2, 5, k+1)
plt.imshow(digits.images[10+img],
cmap='"binary',
interpolation="none")
plt.show()

The idea is to cluster them and check how each number aggregates with the others
to determine which numbers are more similar in handwriting. The following code
performs the agglomerative clustering:

hclustering = AgglomerativeClustering(
n_clusters=10, metric='euclidean',
linkage="'ward')

hclustering.fit(X[10:20, :])

After the data is fitted, you can visualize the hierarchical structure of the clusters,
called a dendrogram (explained at the start of “Performing Hierarchical Cluster-
ing”) using a few functions from SciPy as shown in the following code (the results
appear in Figure 15-4):

from scipy.cluster.hierarchy import dendrogram, linkage

linkage_matrix = linkage(hclustering.children_, 'ward')
dendrogram(linkage_matrix)

plt.title('Hierarchical Clustering Dendrogram')
plt.show()

From the plot in Figure 15-4, you can see how numbers like 6 and 8 or 2 and 3 can
be easily misunderstood one for the other and how. Interestingly the clustering
doesn’t catch the similarity between 1 and 7, but that’s probably because they
were dissimilar in the samples used for the demonstration (in this case the 7 had
its distinctive dash).

PART 4 Wrangling Data

Hierarchical Clustering Dendrogram

17.5

15.0

12.5

10.0 -

7.5 1

FIGURE 15-4: >0
A clustering

hierarchical tree 2.5 1
obtained from

agglomerative 0.0

clustering. 6 8 7 4 5 0 1 2 3

Discovering New Groups with DBScan

Both K-means and agglomerative clustering, especially if you are using the Ward
method’s linkage criteria, will produce cohesive groups, similar to bubbles, equally
spread in all directions. Reality can sometimes produce complex and unsettling
results — groups may have strange forms far from the canonical bubble. The
Scikit-learn’s datasets module (see https://scikit-learn.org/stable/
modules/clustering.html for an overview) offers a wide range of mind-teasing
shapes that you can’t successfully crunch using either K-means or agglomerative
clustering: large circles containing smaller ones, interleaved small circles, and
spiraling Swiss roll datasets (named after the sponge cake roll because of how the
data points are arranged).

DBScan is another clustering algorithm based on a smart intuition that can solve
even the most difficult problems. DBScan relies on the idea that clusters are dense,
so to start by exploring the data space in every direction and marking a cluster
boundary when the density decreases should be sufficient. Areas of the data space
with insufficient density of points are just considered empty, and all the points
there are noise or outliers, that is, points characterized by unusual or strange
values.

DBScan is more complex and requires more running time than K-means (but it is
faster than agglomerative clustering). It automatically guesses the number of
clusters and points out strange data that doesn’t easily fit into any class. This dif-
ference in classification approach makes DBScan different from the previous
algorithms that try to force every observation into a class.

CHAPTER 15 Clustering 287

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

288

Replicating the handwritten digit clustering requires just a few lines of
Python code:

from sklearn.cluster import DBSCAN

db = DBSCAN(eps=4.5, min_samples=20)
db. fit(X)
print(f"No. clusters: {len(np.unique(db.labels_))}")

Using DBScan, you won’t have to set a K number of expected clusters; the algo-
rithm will find them by itself. Apparently, the lack of a K number seems to sim-
plify the usage of DBScan; in reality, the algorithm requires you to fix two essential
parameters, eps and min_sample, in order to work properly:

¥ eps: The maximum distance between two observations that allows them to
be part of the same neighborhood

3 min_sample: The minimum number of observations in a neighborhood that
transform them into a core point

The algorithm works by walking around the data and building clusters by linking
observations arranged into neighborhoods. A neighborhood is a small cluster of
data points all within a distance value of eps. If the number of points in the neigh-
borhood is less than the number min_sample, then DBScan doesn’t form the
neighborhood.

No matter what the shape of the cluster, DBScan links all the neighborhoods if
they are near enough (under the distance value of eps). When no more neighbor-
hoods are within reach, DBScan tries to aggregate even single data points to a
group, if they are within eps distance. The data points that aren’t associated with
any group are treated as noisy points (being too peculiar to be part of a group).

Try many values of eps and min_sample. The resulting clusters may also change
@ drastically with respect to the values set into these two parameters. Start with a
low number of min_samples. Using a lower number allows many neighborhoods
TIP to cluster together. The default number 5 is fine. Then try different numbers for
eps, starting from 0.1 upward. Don’t be disappointed if you can’t get a viable

result initially — keep trying different combinations.

Getting back to the example from earlier in this section, after this brief explana-
tion of DBScan details, some data exploration can allow you to observe the results

under the right point of view. First, count the clusters:

from collections import Counter
print(f"No. clusters: {len(np.unique(db.labels_))}")

PART 4 Wrangling Data

print(Counter(db.labels_))

ms
df

np.column_stack((ground_truth, db.labels_))
pd.DataFrame(ms,
columns = ['Ground truth', 'Clusters'])

pd.crosstab(df['Ground truth'],
df['Clusters'], margins=True)

More than half the observations are assigned to the cluster labeled -1, which rep-
resents the noise (noise is defined as examples that are too unusual to group).
Given the number of dimensions (64 variables representing single pixels) in the
data and its high variability (they are handwritten samples), many cases do not
naturally fall together into the same group. Figure 15-5 shows the output from
this example.

No. clusters: 10
Counter({-1: 1032, ©: 172, 1: 157, 4: 111, 3: 95, 5: 99, 7: 64,
6: 35, 2: 21, 8: 20})

Clusters -1 0 1 2 3 4 5 6 7 8 All
Ground truth
0 6 172 0 0 0 Q 0 0 0 0 178
1 73 0 0 20 O 89 0 0 0 0 182
2 175 0 0 0 0 2 0 0 0 0 177
& 94 0 0 0 0 0 89 0 0 0 183
4 126 0 0 0 0 o0 0 35 0 20 181
5 179 0 1 0 0 Q 0 0 2 0 182
6 25 0 156 0 0 0 0 0 0 0 181
7 84 0 0 0 95 0 0 0 0 0 179
FIGURE 15-5: 8 154 0 0 0 20 0 0 0 0 174
Cross-tabulation 9 116 0 0 1 0 0 1 0 62 0 180
of ground truth 1032 172 157 21 95 111 90 35 64 20 1797
and DBScan.
The strength of DBScan is to provide reliable, consistent clusters. DBScan isn’t
forced, as are K-means and agglomerative clustering, to reach a solution with a
I certain number of clusters, even when such a solution does not exist.

CHAPTER 15 Clustering 289

IN THIS CHAPTER

» Understanding what is an outlier

» Distinguishing between extreme
values and novelties

» Using simple statistics for catching
outliers

» Finding out most tricky outliers by
advanced techniques

Chapter 16

Detecting Outliers
in Data

©

REMEMBER

rrors happen when you least expect, and that’s also true in regard to your

data. In addition, data errors are difficult to spot, especially when your data-

set contains many variables of different types and scale. Data errors can take
a number of forms. For example, the values may be systematically missing on
certain variables, erroneous numbers could appear here and there, and the data
could include outliers.

In this chapter, you not only will learn what is an outlier and why it differs from
a novelty value, but you will find techniques to detect and replace those examples
that deviate from the data distribution you want to be represented by your machine
learning models.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions).
The source code for this chapter appears in the P4DS4D3_16_Detecting_
Outliers.ipynb file.

CHAPTER 16 Detecting Outliersin Data 291

Considering Outlier Detection

202

As a general definition, outliers are data that differ significantly (they’re distant)
from other data in a sample. The reason they’re distant is that one or more values
are significantly higher or lower compared to the majority of the values. They
could be deemed outliers because they display an almost unique combination of
values. For instance, if you are analyzing records of students enlisted in a univer-
sity, students who are too young or too old may catch your attention. Students
studying unusual mixes of different subjects would also require scrutiny.

Outliers skew your data distributions and affect all your basic central tendency
statistics. Means are pushed upward or downward, influencing all other descrip-
tive measures. You see outliers generated in all sorts of ways, as a result of every-
thing from sensor and user-input errors to outright fraud. An outlier will always
inflate variance and modify correlations, so you may obtain incorrect assumptions
about your data and the relationships between variables.

This simple example can display the effect (on a small scale) of a single outlier
with respect to more than one thousand regular observations:

import numpy as np

np.random.seed(1)

normal = np.random.normal(loc=0.0, scale=1.0, size=1000)

mean = np.mean(normal)

median = np.median(normal)

variance = np.var(normal)

print(f"Mean: {mean:.3f} Median: {median:.3f} ",
f"Variance: {variance:.3f}")

Using the NumPy random generator, np.random.normal, the example creates the
variable named normal, which contains 1000 observations with most values
between -2 and +2 derived from a standard normal distribution. Basic descriptive
statistics (mean, median, variance) do not show anything unexpected:

Mean: ©.039 Median: ©.041 Variance: ©0.962
Now the code changes a single value by inserting an outlying value:

from scipy.stats import pearsonr

outlying = normal.copy()

outlying[@] = 50.0
mean = np.mean(outlying)

PART 4 Wrangling Data

median = np.median(outlying)

variance = np.var(outlying)

print(f"Mean: {mean:.3f} Median: {median:.3f} ",
f"Variance: {variance:.3f}")

corr_coef, p_value = pearsonr(normal, outlying)

print(f"Pearson's correlation: {corr_coef:.3f} ",
f"p-value: {p_value:.3f}")

You can call this new variable outlying and put an outlier into it (at index 0, you
have a positive value of 50.0). Now you obtain much different descriptive
statistics:

Mean: ©.087 Median: ©.041 Variance: 3.454
Pearsons correlation coefficient: ©0.570 p-value: 0.000

The statistics show that the mean and variance are much higher than before. Only
the median, which relies on position (it tells you the value occupying the middle
position when all the observations are arranged in order) is not affected by the
change.

More significant, the correlation of the original variable and the outlying variable
is quite far from being +1.0 (the correlation value of a variable in respect of itself),
indicating that the measure of linear relationship between the two variables has
been seriously damaged. In a real-world scenario, you might perform this calcu-
lation using one variable that contains expected or statistically average data and a
second variable containing new data.

Finding more things that can go wrong

Outliers do not simply shift key measures in your explorative statistics — they
also change the structure of the relationships between variables in your data.
Outliers can affect machine learning algorithms in two ways:

¥ Algorithms based on coefficients may take the wrong coefficient in order to
minimize their inability to understand the outlying cases. Linear models are a
clear example (they are sums of coefficients), but they are not the only ones.
Outliers can also influence tree-based learners such as Adaboost or Gradient
Boosting Machines.

¥ Because algorithms learn from data samples, outliers may induce the
algorithm to overweight the likelihood of extremely low or high values
given a certain variable configuration.

CHAPTER 16 Detecting Outliers in Data 293

294

REMEMBER

Both situations limit the capacity of a learning algorithm to generalize well to new
data. In other words, they make your learning process overfit to the present
dataset.

There are a few remedies for outliers — some of them require that you modify
your present data and others that you choose a suitable error function for your
machine learning algorithm. (Some algorithms offer you the possibility of choos-
ing a different error function as a parameter when setting up the learning
procedure.)

Most machine learning algorithms can accept different error functions. The error
function is important because it helps the algorithm to learn by understanding
errors and enforcing adjustments in the learning process, but some error func-
tions are extremely sensitive to outliers, while others are quite resistant to them.
For instance, a squared error measure tends to emphasize outliers because errors
deriving from examples with large values are squared, thus becoming even more
prominent.

Understanding anomalies and novel data

Because outliers occur as mistakes or in extremely rare cases, detecting an outlier
is never an easy job; it is, however, an important one for obtaining effective results
from your data science project. In certain fields, detecting anomalies is itself the
purpose of data science: fraud detection in insurance and banking, fault detection
in manufacturing, system monitoring in health and other critical applications,
and event detection in security systems and for early warning.

An important distinction is when you look for existing outliers in data, or when
you check for any new data containing anomalies with respect to existing cases.
Maybe you spent a lot of time cleaning your data or you developed a machine
learning application based on available data, so it would be critical to figure out
whether the new data is similar to the old data and whether the algorithms will
continue working well in classification or prediction.

In such cases, data scientists instead talk of novelty detection, because they need
to know how well the new data resembles the old. Being exceptionally new is con-
sidered an anomaly: Novelty may conceal a significant event or may risk prevent-
ing an algorithm from working properly because machine learning heavily relies
on learning from past examples and it may not generalize to completely novel
cases. When working with new data, you should retrain the algorithm.

Experience teaches that the world is rarely stable. Sometimes novelties do natu-
rally appear because the world is so mutable. Consequently, your data changes
over time in unexpected ways, in both target and predictor variables. This

PART 4 Wrangling Data

phenomenon is called concept drift. The term concept refers to your target and drift
to the source data used to perform a prediction that moves in a slow but uncon-
trollable way, like a boat drifting because of strong tides. When considering a data
science model, you distinguish between different concept drift and novelties
situations:

3 Physical: Face or voice recognition systems, or even climate models, never
really change. Don't expect novelties, but check for outliers that result from
data problems, such as erroneous measurements.

¥ Political and economic: These models sometimes change, especially in the
long run. You have to keep an eye out for long-term effects that start slowly
and then propagate and consolidate, rendering your models ineffective.

3 Social behavior: Social networks and the language you use every day change
over time. Expect novelties to appear and take precautionary steps; otherwise,
your model will suddenly deteriorate and turn unusable.

3 Search engine data, banking, and e-commerce fraud schemes: These
models change quite often. You need to exercise extra care in checking for
the appearance of novelties, telling you to train a new model to maintain
accuracy.

3 Cyber security threats and advertising trends: These models change
continuously. Spotting novelties is the norm, and reusing the same models
over a long time is a hazard.

The world changes, and so does the data that represents it. The presence of nov-

elty, or the occurrence of new and previously unseen patterns or instances in the

data, often indicates the presence of concept drift, and you need to retrain your
rememser Model using the new data.

Examining a Simple Univariate Method

When looking for outliers, a good way to start, no matter how many variables you
have in your data, is to look at every single variable by itself, using both graphical
and statistical inspection. This is the univariate approach, which allows you to
spot an outlier given an incongruous value on a variable. The pandas package can
make spotting outliers quite easy thanks to

¥ Astraightforward describe method that informs you on mean, variance,
quartiles, and extremes of your numeric values for each variable

¥ A system of automatic boxplot visualizations

CHAPTER 16 Detecting Outliers in Data 295

Using both techniques in tandem makes it easy to know when you have outliers
and where to look for them. The diabetes dataset, from the Scikit-learn datasets
module, is a good example to start with.

import pandas as pd
from sklearn.datasets import load_diabetes

def load_diabetes_data():
diabetes = load_diabetes()
X = pd.DataFrame(diabetes.data,
columns=diabetes. feature_names)
y = pd.DataFrame(diabetes.target, columns=['target'])
return X, y

X, y = load_diabetes_data()
After these commands, all the data is contained in the X variable, a NumPy
ndarray. The example then transforms it into a pandas DataFrame and asks for

some descriptive statistics (see the output in Figure 16-1):

pd.options.display.float_format = '{:.2f}"'.format
X.describe()

age sex borni bp s1 52 &3 sd s5 s6
count 442.00 44200 44200 44200 44200 44200 44200 44200 442.00 442.00
mean -0.00 0OD -0OD 0DOOD -DOD 0D.OOD -0OD DOD D00 -DOD
std 005 005 DOS 0.05 008 008 DOG 005 00S 0D.0S
FIGURE16.1: |mn 011 -004 -009 -011 -013 -D12 -010 -008 013 -0.14
Descriptive | 25% -004 -D04 -003 -004 -003 -D0O3 -004 -004 -003 -DO3
statistics forthe | sp% 0.0 -004 -0.01 001 -D0O -DOD -D.01 -000 -DOO -D.OD
Diabetes | ;50 (04 0.05 0.03 0.04 0.03 0.03 0.03 003 003 0.03

DataFrame from
Scikit-learn.

max 011 0.0s 017 013 n.1%s 020 012 n1e 013 014

You can spot the problematic variables by looking at the extremities of the distri-
bution (the maximum value of a variable). For example, you must consider
whether the minimum and maximum values lie respectively far from the 25th and
75th percentile. As shown in the output, many variables have suspiciously large
maximum values. A boxplot analysis will clarify the situation. The following com-
mand creates the boxplot of all variables shown in Figure 16-2.

296 PART 4 Wrangling Data

FIGURE 16-2:
Boxplots.

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use("seaborn-vo_8-whitegrid")

fig, axes = plt.subplots(nrows=1, ncols=1,

figsize=(10, 5))
features = ["bmi", "bp", "s1", "s2", "s3", "s4", "s5" ,"s6"]
X[features] .boxplot(ax=axes);

0.20 o} &
8
0.15 8 o o g
2 8 8
0.10
0.05
0.00
-0.05 l l i i
-0.10 e
8
-0.15
bmi bp sl s2 s3 s4 s5 s6

Boxplots generated from pandas DataFrame will have whiskers set to plus or
minus 1.5 IQR (interquartile range or the distance between the lower and upper
quartile) with respect to the upper and lower side of the box (the upper and lower
quartiles). This boxplot style is called the Tukey boxplot (from the name of stat-
istician John Tukey, who created and promoted it among statisticians together
with other explanatory data techniques) and it allows a visualization of the pres-
ence of cases outside the whiskers. (All points outside these whiskers are deemed
outliers.)

Leveraging on the Gaussian distribution

Another effective check for outliers in your data is accomplished by leveraging the
normal distribution. Even if your data isn’t normally distributed, standardizing it
will allow you to assume certain probabilities of finding anomalous values. For
instance, 99.7% of values found in a standardized normal distribution should be

CHAPTER 16 Detecting Outliersin Data 297

298

TIP

TIP

inside the range of +3 and -3 standard deviations from the mean, as shown in the
following code.

from sklearn.preprocessing import StandardScaler

Xs = StandardScaler().fit_transform(X[features])
X[features] [(np.abs(Xs)>3).any(1)].index

As a result, you get the indexes indicating the rows in the dataset featuring some
possibly outlying values:

Int64Index([58, 123, 216, 230, 256, 260, 261, 269, 322, 336,
367, 441], dtype='int64')

The Scikit-learn module provides an easy way to standardize your data and to
record all the transformations for later use on different datasets. This means that
all your data, no matter whether it’s for machine learning training or for perfor-
mance test purposes, is standardized in the same way.

The 68-95-99.7 rule says that in a standardized normal distribution, 68 percent
of values are within one standard deviation, 95 percent are within two standard
deviations, and 99.7 percent are within three. When working with skewed data,
the 68-95-99.7 rule may not hold true, and in such an occurrence, you may need
some more conservative estimate, such as Chebyshev’s inequality. Chebyshev’s
inequality relies on a formula that says that for k standard deviations around the
mean, no more cases than a percentage of 1/k"2 should be over the mean. There-
fore, at seven standard deviations around the mean, your probability of finding a
legitimate value is at most two percent, no matter what the distribution is (two
percent is a low probability; your case could be deemed almost certainly an
outlier).

Chebyshev’s inequality is conservative. A high probability of being an outlier cor-
responds to seven or more standard deviations away from the mean. Use it when
it may be costly to deem a value an outlier when it isn’t. For all other applications,
the 68-95-99.7 rule will suffice.

Remediating outliers

Having found some possible univariate outliers, you now have to decide how to
deal with them. If you completely distrust the outlying cases, under the assump-
tion that they were unfortunate errors or mistakes, you could just delete them. (In
Python, you can just deselect them using fancy indexing.) Here is the code for
performing listwise deletion of examples in the data where the feature values devi-
ate by three standard deviations from the mean. After execution, a print statement

PART 4 Wrangling Data

TIP

will indicate that there are now 430 examples remaining, down from the ini-
tial 442.

mean = X[features].mean()

std = X[features].std()

all_valid_mask = (np.abs(X[features] - mean) <=
(3 % std)).all(axis=1)

listwise_del = X[all_valid_mask]

print(listwise_del.shape)

Modifying the values in your data or deciding to exclude certain values is a deci-
sion to make after you understand why there are some outliers in your data. You
can rule out unusual values or cases for which you presume that some error in
measurement has occurred, in recording or previous handling of the data. If
instead you realize that the outlying case is a legitimate, though rare one, the best
approach would be to underweight it (if your learning algorithms use weighting
for the observations) or to increase the size of your data sample.

In this case, deciding to keep the data and having standardized it, you could just
cap the outlying values. In doing so, you can use a slightly more sophisticated
approach called winsorizing. When using winsorizing, the values deemed outliers
are clipped to the value of specific percentiles that act as value limits (usually the
5th percentile for the lower bound, the 95th for the upper):

from scipy.stats.mstats import winsorize

winsorized = X.copy()
winsorized[features] = winsorized [features].apply(
lambda x: winsorize(x, limits=(0.05, ©.05)))

In this way, you create a different hurdle value (a range of acceptable values that
the value must jump to pass) for larger and smaller values — taking into account
any asymmetry in the data distribution. Whatever you decide for capping (by
standard deviation or by winsorizing), your data is now ready for further process-
ing and analysis.

Finally, an alternative, automatic solution is to let Scikit-learn automatically
transform your data and clip outliers by using the RobustScaler, a scaler based
on the IQR (as in the boxplot previously discussed in this chapter):

from sklearn.preprocessing import RobustScaler

robust_rescale = RobustScaler().fit_transform(
X[features])

CHAPTER 16 Detecting Outliers in Data 299

Developing a Multivariate Approach

Working on single variables allows you to spot a large number of outlying obser-
vations. However, outliers do not necessarily display values too far from the norm.
Sometimes outliers are made of unusual combinations of values in more variables.
They are rare, but influential, combinations that can especially trick machine

learning algorithms.

In such cases, the precise inspection of every single variable won’t suffice to rule
out anomalous cases from your dataset. Only a few selected techniques, taking
in consideration more variables at a time, will manage to reveal problems in

your data.

The presented techniques approach the problem from different points of view:

¥ Dimensionality reduction
¥ Density clustering

3 Nonlinear distribution modeling

Using these techniques allows you to compare their results, taking notice of the
recurring signals on particular cases — sometimes already located by the univari-

ate exploration, sometimes as yet unknown.

Using principal component analysis

Principal component analysis (PCA) can completely restructure the data, remov-
ing redundancies and ordering newly obtained components according to the
amount of the original variance that they express. This type of analysis offers a
synthetic and complete view over data distribution, making multivariate outliers

particularly evident.

The first two components, being the most informative in term of variance, can
depict the general distribution of the data if visualized. The output provides a good

hint at possible evident outliers.

The last two components, being the most residual, depict all the information that
could not be otherwise fitted by the PCA() method. They can also provide a sug-

gestion about possible but less evident outliers.
%matplotlib inline

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

300 PART 4 Wrangling Data

FIGURE 16-3:
The first two
and last two
components
from the PCA

from pandas.plotting import scatter_matrix
import pandas as pd
import matplotlib.pyplot as plt

pca = PCA()
pca_mat = pca.fit_transform(scale(X))
first_comps = sum(pca.explained_variance_ratio_[:2] * 100)
last_comps = sum(pca.explained_variance_ratio_[-2:] * 100)
print(f"variance by the first two components: "
f"{first_comps:.1f}%")
print(f"variance by the last two components:
f"{last_comps:.1£f}%")
df_pca = pd.DataFrame(
pca_mat, columns=[f"comp_{j}" for j in range(10)])
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))
first_two = df_pca.plot.scatter(
x="comp_0", y="comp_1", s=50, grid=True,

c="Azure", edgecolors="DarkBlue", ax=axes[0])
last_two = df_pca.plot.scatter(

x="comp_8", y="comp_9", s=50, grid=True,

c="Azure", edgecolors="DarkBlue", ax=axes[1])
plt.show()

Figure 16-3 shows two scatterplots of the first and last components. The output
also reports the variance explained by the first two components (half of the

informative content of the dataset) of the PCA and by the last two ones: @

variance by the first two components : 55.2%
variance by the last two components: ©.9%

comp_9

-4 -2] 2 4 6 -0.50 -0.25 0.00 0.25 0.50 0.75 100

CHAPTER 16 Detecting Outliers in Data

125

301

302

Pay particular attention to the data points along the axis (where the x axis defines
the independent variable and the y axis defines the dependent variable). You can
see a possible threshold to use for separating regular data from suspect data.

Using the two last components, you can locate a few points to investigate using
the threshold of —0.3 for the tenth component and of —1.0 for the ninth. All cases
below these values are possible outliers.

outlying = (pca_mat[:,-1] > 0.3) | (pca_mat[:,-2] > 1.0)
df_pcaloutlying].index

The selection will point out the index of the outlying examples:

Int64Index([23, 58, 110, 169, 254, 322, 323, 353, 371, 394],
dtype='int64"')

Using cluster analysis for spotting outliers

Outliers are isolated points in the space of variables, and DBScan is a clustering
algorithm that links dense data parts together and marks the too-sparse parts.
DBScan is therefore an ideal tool for an automated exploration of your data for
possible outliers to verify.

Here is an example of how you can use DBScan for outlier detection:

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=2.5, min_samples=25)
DB.fit(pca_mat)

from collections import Counter
print(Counter(DB.labels_))
df_pca[DB.labels_==-1].index

The code will output the index of the outlying examples (which is quite long this
time):

Int64Index([15, 23, 29, 35, 78, 117, 123, 141, 161,
169, 230, 248, 251, 261, 276, 321, 322, 323,
336, 349, 352, 353, 367, 376, 394, 405, 422,
441, dtype='int64")

DBSCAN requires two parameters, eps and min_samples. Finding the optimal val-
ues for these parameters often involves multiple iterations, which can make
parameter selection a bit challenging and tricky.

PART 4 Wrangling Data

TIP

TIP

TIP

As hinted in the previous chapter, start with a low value of min_samples and try
growing the values of eps from 0.1 upward. After every trial with modified param-
eters, check the situation by counting the number of observations in the class -1
inside the attribute labels, and stop when the number of outliers seems reason-
able for a visual inspection.

There will always be points on the fringe of the dense parts’ distribution, so it’s
hard to provide you with a threshold for the number of cases that might be clas-
sified in the -1 class. Normally, outliers should not be more than 5 percent of
cases, so use this indication as a generic rule of thumb.

The output from the previous example will report to you how many examples are
in the —1 group, which the algorithm considers not part of the main cluster, and
the list of the cases that are part of it.

It is less automated, but you can also use the K-means clustering algorithm for
outlier detection. You first run a cluster analysis with a reasonable enough num-
ber of clusters. (You can try different solutions if you’re not sure.) Then you look
for clusters featuring just a few examples (or maybe a single one); they are prob-
ably outliers because they appear as small, distinct clusters that are separate from
the large clusters that contain the majority of examples.

Automating detection with
Isolation Forests

Random Forests and Extremely Randomized Trees are powerful machine learning
techniques. They work by dividing your dataset into smaller sets based on certain
variable values to make it easier to predict the classification or regression on each
smaller subset (a divide et impera, or divide and conquer, solution).

IsolationForest is an algorithm that takes advantage of the fact that an outlier
is easier to separate from majority cases based on differences between its values
or combination of values. The algorithm keeps track of how long it takes to sepa-
rate a case from the others and get it into its own subset. The less effort it takes to
separate it, the more likely the case is an outlier. As a measure of such effort,
IsolationForest produces a distance measurement (the shorter the distance, the
more likely the case that it’s an outlier).

When your machine learning algorithms are in production, a trained Isolation

Forest can act as a sanity check because many machine learning algorithms
cannot cope with outlying and novel examples.

CHAPTER 16 Detecting Outliers in Data 303

To set IsolationForest to catch outliers, all you have to decide is the level of
contamination, which is the percentage of cases considered outliers based on the
distance measurement. You decide such a percentage based on your experience
and expectation of data quality. Executing the following script creates a working
IsolationForest:

from sklearn.ensemble import IsolationForest

auto_detection = IsolationForest(max_samples=50,
contamination=0.05,
random_state=0)

auto_detection. fit(pca_mat)

iforest = auto_detection.predict(pca_mat)

df_pca[iforest==-1].index

The output reports the index list of the cases suspected of being outliers:

Int64Index([10, 11, 15, 23, 32, 58, 110, 123, 141,
202, 230, 260, 261, 269, 286, 321, 322, 323,
352, 353, 382, 394, 441], dtype='int64')

In addition, the algorithm is trained to recognize what normal examples in the
dataset should look like. When you provide new cases to the dataset and you eval-
uate them using the trained IsolationForest, you can immediately spot whether
something is wrong with your new data.

IsolationForest is a computationally intensive algorithm. Performing an analy-
sis on a large dataset takes a long time and a lot of memory.

REMEMBER

304 PART 4 Wrangling Data

Learning
from Data

IN THIS PART ...

Starting easily using four simple algorithms
Using cross validation, selection, and optimization
Working with more advanced analysis techniques

Combining the efforts of multiple simple algorithms

IN THIS CHAPTER

» Using linear and logistic regression

» Understanding Bayes' theorem and
using it for naive classification

» Predicting on the basis of cases being
similar with KNN

Chapter 17

Exploring Four Simple
and Effective Algorithms

REMEMBER

n this new part of the book, you start to explore algorithms and tools necessary

for learning from data, meaning a training a model, and being capable of pre-

dicting a numeric estimate (such as house pricing in some areas of California)
or a class (such as the species of penguins that can be found in the Palmer
Archipelago in Antarctica) given any new example that you didn’t have before. In
this chapter, you start with the simplest algorithms and work toward those that
are more complex. The four algorithms in this chapter represent a good starting
point for any data scientist.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions).
The source code for this chapter appears in the P4DS4D3_17_ Exploring_Four_
Simple_and_Effective_Algorithms.ipynb file.

Guessing the Number: Linear Regression

Regression has a long history in statistics, from building simple but effective lin-
ear models of economic, psychological, social, or political data, to hypothesis
testing for understanding group differences, to modeling more complex problems
with ordinal values, binary and multiple classes, count data, and hierarchical

CHAPTER 17 Exploring Four Simple and Effective Algorithms 307

308

relationships. Regression is also a common tool in data science; it’s a Swiss Army
knife of machine learning that you can use for every problem. Stripped of most of
its statistical assumptions, linear regression is perceived by data science practi-
tioners as an easily explainable, yet effective, algorithm for numeric estimations,
and, in its logistic regression version, for classification as well.

Defining the family of linear models

Linear regression is a statistical model that defines the relationship between a
target variable and a set of predictive features. It does so by using a formula of the
following type:

y=bx+a

You can translate this formula into something readable and useful for a wide
range of real-world problems. For instance, if you’re trying to guess your sales
based on historical results and available data about advertising expenditures, the
preceding formula becomes

sales = b * (advertising expenditure) + a

CONSIDERING SIMPLE AND COMPLEX
FORMULATIONS

The concepts of simple and complex in machine learning refer to the mathematical for-
mulation underlying the algorithm’s operations. Some algorithms are simple summa-
tions, while others require complex calculations and data manipulations (and Python
deals with both the simple and complex algorithms for you). Although complex algo-
rithms generally demonstrate higher predictive accuracy, it's not an absolute rule. As a
good practice, test multiple models, starting from the basic ones. You may discover that
a simple solution performs better in many cases. For example, you may want to keep
things simple and use a linear model, which is based on simple summations of data,
instead of a more sophisticated approach. This type of situation is in essence what is
implied by the “no free lunch” theorem: No one approach suits all problems, and even
the most simple solution may hold the key to solving an important problem.

The “no free lunch” theorem by David Wolpert and William Macready states that “any
two optimization algorithms are equivalent when their performance is averaged across
all possible problems.” If the algorithms are equivalent in the abstract, no one algorithm
is superior to the other unless proved in a specific, practical problem. See the discussion
athttp://www.no-free-lunch.org/ for more details about no-free-lunch theorems;
two of them are actually used for machine learning.

PART 5 Learning from Data

http://www.no-free-lunch.org/

TIP

Memories from your high school algebra and geometry tell you that the formula-
tiony = bx + aisaline in a coordinate plane made of an x axis (the abscissa) and
ay axis (the ordinate). Most machine learning mathematics is actually at the high
school level, making them easily understandable and applicable to real-world
problems.

You can demystify the formula by explaining its components: a is the value of the
intercept (the value of y when x is zero) and b is a coefficient that expresses the
slope of the line (the relationship between x and y). If b is positive, y increases and
decreases as x increases and decreases. When b is negative, y behaves in the oppo-
site manner. You can understand b as the unit change in y given a unit change in
x. When the value of b is near zero, the effect of x on y is slight, but if the value of
b is high, either positive or negative, the effect of changes in x on y are great.

Linear regression, therefore, can find the besty = bx + a and represent the rela-
tionship between your target variable, y, with respect to your predictive feature, x.
The values of both a (alpha or intercept) and b (beta coefficient) are determined
based on the data, and they are found using the linear regression algorithm so
that the difference between all the real y target values and all the y values derived
from the linear regression formula are the minimum possible.

You can express this relationship graphically as the sum of the square of all the
vertical distances between all the data points and the regression line. Such a sum
is always the minimum possible when you calculate the regression line correctly
using an estimation called ordinary least squares, which is derived from statistics or
the equivalent machine learning method, named gradient descent. The differences
between the real y values and the regression line (the predicted y values) are
defined as residuals (because they are what are left after a regression: the errors).

Using more variables

When employing a single variable to predict y, the linear regression is considered
simple, whereas when working with multiple variables, it becomes a multiple lin-
ear regression. When you have many variables, their scale isn’t important in pro-
ducing accurate predictions. But a good habit is to statistically standardize your
variables (a procedure discussed in Chapter 13) because their scale can ease the
computations of certain types of regression (as discussed later), and comparing
coefficients in terms of their impact on the target is insightful for data analysis.

The following example is based on the California Housing dataset from Scikit-
learn, and it employs linear regression to predict housing prices in California. The

CHAPTER 17 Exploring Four Simple and Effective Algorithms 309

example also tries to determine which variables influence the result more, so the
example standardizes the predictors.

from sklearn.datasets import fetch_california_housing
import pandas as pd

def load_california_housing_data():
dataset = fetch_california_housing()
X = pd.DataFrame(data=dataset.data,
columns=dataset . feature_names)
y = pd.Series(data=dataset.target, name="target")
return X, y

X, vy = load_california_housing_data()

The regression class in Scikit-learn is part of the 1inear_model module. As dem-
onstrated in Chapter 12, you can set up a pipeline that can scale the variables and
pass them to the model immediately afterward:

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

regression = Pipeline(steps=[
('scaler', StandardScaler()),
('model', LinearRegression())])

regression. fit(X, y)

Now that the algorithm is fitted, you can use the score method to report the R>
measure, which is a measure that ranges from 0 to 1 and points out how using a
particular regression model is better in predicting y than using a simple mean
would be. (The act of fitting creates a line or curve that best matches the data
points provided by the data; you fit the line or curve to the data points in order to
perform various tasks, such as predictions, based on the trends or patterns pro-
duced by the data.) You can also see R? as being the quantity of target information
explained by the model (the same as the squared correlation), so getting near 1
means being able to explain most of the y variable using the model.

Here is the code used to access the score() method, which is used to report the R>
measure:

score = regression.score(X, y)
print(f"{score:.3f}")

310 PART5 Learning from Data

REMEMBER

Here is the resulting R? score:
0.606

In this case, R> on the previously fitted data is about 0.606, a good result for a
simple model. You can interpret the R> score as the percentage of information
present in the target variable that has been explained by the model using the pre-
dictors. A score of 0.606, therefore, means that the model has fit about 60 percent
of the information you wanted to the model and prediction, and that a residual
4,0 percent of it remains unexplained.

Calculating R?, as well as any other predictive performance score, on the same set
of data used for training is considered reasonable only when using linear models
because of their simplicity. However, as a general rule, in data science and machine
learning, it’s always the correct practice to test scores on data that has not been
used for training. More complex algorithms, compared to linear regression, have
the tendency to memorize the data rather than truly learn from it, resulting in a
phenomenon known as overfitting. Overfitting can lead to excessively high scores
that may not accurately reflect the model’s true performance.

To understand what drives the estimates in the multiple regression model, you
have to look at the coefficients_ attribute, which is an array containing the
regression coefficients. The coefficients are the numbers estimated by the linear
regression model to effectively transform the input variables in the formula into
the target y prediction. In the following code snippet, the zip function will gener-
ate an iterable of both variable names and coefficient values, and you can print it
for reporting.

for feature, coefficient in zip(X.columns,
regression['model'].coef_):
print(f"{feature:12}: {coefficient:>7.3f}")

The reported variables and their rounded coefficients (beta coefficient values, or
slopes, as described in the “Defining the family of linear models” section, earlier
in this chapter) are

MedInc : 0.830
HouseAge : 0.119
AveRooms ;. —-0.266
AveBedrms : Q.306
Population : -0.005
AveOccup ;. —0.039
Latitude ;. —0.900
Longitude ;. -0.8T

CHAPTER 17 Exploring Four Simple and Effective Algorithms 311

312

In terms of absolute values, the coefficients that are most noteworthy are MedInc
(median income in an area), Latitude, and Longitude. This emphasis indicates
that, according to the linear regression model, the location of your property in
California and the income level of your neighbors play a significant role in esti-
mating the value of your property.

Understanding limitations and problems

Although linear regression is a simple and effective tool for estimation, it has
limitations that can impact its usefulness in certain cases, depending on the data.
To determine whether these limitations are present, it’s important to use some
method to test its effectiveness. If you don’t apply appropriate data-handling
techniques (such as basic transformations, discussed here, or more advanced
manipulations, as discussed in Chapter 19), you may encounter the following
issues:

¥ Linear regression can model only numeric data as a target. When
modeling classes as response, you need to address the problem using a
logistic regression, discussed in the next section.

¥ If data is missing and you don’t deal with it properly, the model won't
work at all. Therefore, it is crucial to fill in the missing values beforehand by
substituting them with a suitable value, such as the mean of that variable.

¥ As discussed in Chapter 16, outliers are quite disruptive to the machine
learning model. Linear regression tries to minimize the square value of the
residuals, and outliers produce large residuals, forcing the algorithm to focus
more on them than on the majority of regular points.

3 The major limitation of linear regression is that it provides only a
summation of terms, which may not adequately capture the impact of
variables that affect the outcome differently based on their values. This
limitation makes it challenging to represent complex data situations with
linear regression, which is better suited for simpler scenarios where the
relationship between variables is more straightforward. For instance, the
relation between the target and each predictor variable is based on a single
coefficient, and there isn't an automatic way to represent complex relations
like a parabola (there is a unique value of x maximizing y) or exponential
growth. The only way you can manage to model such relations is to use
mathematical transformations of your variables (and sometimes of your
target) or add new variables. Chapter 19 explores both the use of complex
transformations and the addition of new variables.

PART 5 Learning from Data

Moving to Logistic Regression

TIP

Linear regression is well suited for estimating values, but it isn’t the best tool for
predicting the class of an observation. In spite of the statistical theory that advises
against it, you can actually try to classify a binary class by scoring one class as 1
and the other as 0. The results are disappointing most of the time, so the statisti-
cal theory wasn’t wrong!

The fact is that linear regression works on a continuum of numeric estimates.
However, in order to classify correctly, you need a more suitable measure, such as
the probability of class ownership. Thanks to the following formula, you can
transform a linear regression numeric estimate into a probability that is more apt
to describe how a class fits an observation:

probability of a class = exp(r) / (1+exp(r))

r is the regression result (the sum of the variables weighted by the coefficients)
and exp is the exponential function. exp(r) corresponds to Euler’s number e ele-
vated to the power of r. A linear regression using such a formula (also called a link
function) for transforming its results into probabilities is a logistic regression.

Logistic regression is just part of a large number of extensions of the linear
regression model, called the Generalized Linear Models (GLMs). GLMs are statis-
tical models used to analyze data with a response variable that follows a particular
probability distribution. Typical examples are binomial, Poisson, or gamma dis-
tribution. GLMs consist of three main components: a linear predictor; a probabil -
ity distribution; and a link function that connects the linear predictor to the mean
of the response variable. GLMs are widely used in various fields for predicting and
understanding the relationship between variables in a flexible and interpreta-
ble way.

The Scikit-learn package offers a good choice of models that you can use for dif-
ferent problems in the same way as they were a linear regression model. You can
explore the options at https://scikit-learn.org/stable/modules/linear_
model . html#generalized-1linear—-models.

Applying logistic regression

Logistic regression is similar to linear regression, with the only difference being
the target, which should contain integer values indicating the class relative to the
observation. This example uses the Palmer Penguins dataset to demonstrate both
the case of predicting two classes (called a binary prediction, one labeled as 0 and
the other as 1) or multiple classes (a multiclass problem). The Palmer Penguins

CHAPTER 17 Exploring Four Simple and Effective Algorithms 313

https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models
https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models

314

dataset is a widely used and popular dataset in the field of data science and
machine learning. It contains measurements of various physical characteristics of
penguin specimens collected from three different species of penguins: Adélie,
Chinstrap, and Gentoo. The dataset is named after the Palmer Station, a research
station located in Antarctica where the data was collected. You can download it
directly from the internet using the following code:

import pandas as pd

def load_palmer_penguins(only_numeric=True,
no_missing=True,
multiclass=True):
url = "https://raw.githubusercontent.com/"
url += "allisonhorst/palmerpenguins/main/"
url += "inst/extdata/penguins.csv"
numeric_features = ["bill_length_mm",
"bill_depth_mm",
"flipper_length_mm",
"body_mass_g"]
categorical_features = ["island", "sex"]
data = pd.read_csv(url)
if no_missing:
data = data.dropna()
if multiclass:
target = data.species.replace({'Adelie':1,
'Gentoo' : 2,
'Chinstrap':3})
else:
target = data.species.replace({'Adelie':1,
'Gentoo' : 0,
'Chinstrap':0})
if only_numeric:
return data[numeric_features], target
else:
return data[numeric_features +
categorical _features], target

X, y = load_palmer_penguins(only_numeric=True,

no_missing=True,
multiclass=False)

PART 5 Learning from Data

TIP

The following example fits a logistic regression model to determine whether a
penguin is an Adélie or not and leaves the last example of the dataset apart for
testing purposes:

from sklearn.linear_model import LogisticRegression

logistic = Pipeline(steps=[
('scaler', StandardScaler()),
('model', LogisticRegression())])

logistic.fit(X.iloc[:-1], y.iloc[:-1])

excluded_row = X.iloc[[-1]]

pred = logistic.predict(excluded_row)

proba = logistic.predict_proba(excluded_row)

print (f"Predicted class {pred[@]}, real class " +
f*{y.iloc[-1]}")

print (f"with probability {proba[@, @]:.3f}")

The preceding code snippet outputs the following result and probability, correctly
verifying that the last example is not an Adélie penguin:

Predicted class 0, real class @
with probability ©.987

In contrast to linear regression, logistic regression doesn’t just output the result-
ing class (in this case, the class 0 — not an Adélie penguin) but also estimates the
probability of the observation’s being part of the predicted class. Based on the
observation used for prediction, logistic regression estimates a probability of
99 percent of its being from class 0 — a very high probability, but not a perfect
score, therefore leaving a slight margin of uncertainty.

Using probabilities lets you guess the most probable class of an example, but you
can also order the predictions with respect to being part of that class. This is espe-
cially useful for medical purposes; for instance, ranking a prediction in terms of
likelihood with respect to others can reveal which patients are most at risk of get-
ting or already having a disease.

Considering the case when there
are more classes

The previous problem, logistic regression, automatically handles a binary class
problem (it started guessing whether a penguin is an Adélie). Most algorithms

CHAPTER 17 Exploring Four Simple and Effective Algorithms 315

316

provided by Scikit-learn that predict probabilities or a score for class can auto-
matically handle multiclass problems using two different strategies:

3 One versus rest: The algorithm compares every class with all the remaining
classes, building a model for every class. If you have ten classes to guess, you
have ten models. This approach relies on the OneVsRestClassifier class
from Scikit-learn.

3 One versus one: The algorithm compares every class against every individual
remaining class, building a number of models equivalentton * (n-1) / 2,
where n is the number of classes. If you have ten classes, you have 45 models:
10 x (10 - 1) / 2.This approach relies on the OneVsOneClassifier class
from Scikit-learn.

In the case of logistic regression, the default multiclass strategy is the one versus
rest. The example in this section shows how to use both the strategies with the
Palmer Penguins dataset, when the target is a number representing each of the
three species. The following code loads the data in multiclass format and splits a
part of it for testing purposes:

from sklearn.model_selection import train_test_split

X, y = load_palmer_penguins(only_numeric=True,
no_missing=True,
multiclass=True)

X_train, X_test, y_train, y_test = train_test_split(

X, vy, test_size=0.33, random_state=42)

Now it’s time to evaluate the performance of both the one-versus-rest and the
one-versus-one approaches. The following code trains two separate models and
assesses their performance on the holdout dataset:

from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
ovr = OneVsRestClassifier(logistic).fit(X_train, y_train)
ovo = OneVsOneClassifier(logistic).fit(X_train, y_train)
print('One vs rest accuracy: %.3f' % ovr.score(

X_test, y_test))
print('One vs one accuracy: %.3f' % ovo.score(

X_test, y_test))

The performances of the two multiclass strategies are

One vs rest accuracy: 0.973
One vs one accuracy: 0.982

PART 5 Learning from Data

The two multiclass classes, OneVsRestClassifier and OneVsOneClassifier,
operate by incorporating the estimator (in this case, LogisticRegression). After
incorporation, they usually work just like any other learning algorithm in Scikit-
learn. Interestingly, the one-versus-one strategy obtained the highest accuracy
thanks to its paired comparisons.

Making Things as Simple as Naive Bayes

You may wonder why anyone would name an algorithm Naive Bayes. The naive
part comes from its formulation; it makes some extreme simplifications to stan-
dard probability calculations. The reference to Bayes in its name relates to the
Reverend Bayes and his theorem on probability. The Reverend Thomas Bayes
(1701-1761) was an English statistician and a philosopher who formulated his
theorem during the first half of the 18th century. The theorem was never pub-
lished while he was alive. It has deeply revolutionized the theory of probability by
introducing the idea of conditional probability — that is, probability conditioned
by evidence.

Of course, it helps to start from the beginning — probability itself. Probability tells
you the likelihood of an event and is expressed in a numeric form. The probability
of an event is measured in the range from 0 to 1 (from 0 percent to 100 percent) and
it’s empirically derived from counting the number of times the specific event hap-
pened with respect to all the events. When you observe events (for example, when
a feature has a certain characteristic), and you want to estimate the probability
associated with the event, you count the number of times the characteristic appears
in the data and divide that figure by the total number of observations available. The
result is a number ranging from o to 1, which expresses the probability.

When you estimate the probability of an event, you tend to believe that you can
apply the probability in each situation. The term for this belief is a priori because
it constitutes the first estimate of probability with regard to an event (the one that
comes to mind first). For example, if you estimate the probability of an unknown
person’s being a female, you may say, after some counting, that it’s 50 percent,
which is the prior, or the first, probability that you will stick with.

The prior probability can change in the face of evidence, that is, something that can
radically modify your expectations. One possible example to demonstrate Bayes’
theorem could be related to the probability of a person being a student based on
whether they carry a backpack. For instance, assume that in the general popula-
tion, 30 percent of people carry a backpack, while among students, 90 percent
carry a backpack. If you encounter a person who is carrying a backpack, you may
want to estimate from this evidence the probability that the person is a student.

CHAPTER 17 Exploring Four Simple and Effective Algorithms 317

318

TIP

This sounds like a predictive problem for Bayes’ theorem, and in the end, this
situation is really similar to predicting a categorical variable from data: You have
a target variable with different categories, and you have to guess the probability of
each category on the basis of evidence, the data. The Reverend Bayes provided a
useful formula:

P(A|B) = P(B|A)*P(A) / P(B)

The formula looks like statistical jargon and is a bit counterintuitive, so it needs
to be explained in depth. Reading the formula using the previous example as input
makes the meaning behind the formula quite a bit clearer:

3 P(A|B)is the probability of being a student (event A) given that you carry a
backpack (evidence B). This part of the formula defines what you want to
predict. In short, it says to predict y given x, where y is an outcome (student or
not) and x is the evidence (using a backpack).

3 P(B|A)is the probability of carrying a backpack if you are a student. In this
case, you already know that it's 90 percent. In every data problem, you can
obtain this figure easily by simple cross-tabulation of the features against the
target outcome.

3 P(A)is the probability of being a student, a 20 percent chance in the popula-
tion (a priori).

3 P(B)is the probability of carrying a backpack, which is 30 percent (another
a priori).

When reading parts of the formula such as P(A|B), you should read them as fol-
lows: probability of A given B. The | symbol translates as given. A probability
expressed in this way is a conditional probability, because it’s the probability of
A conditioned by the evidence presented by B. In this example, plugging the
numbers into the formula translates into: 90% * 20% / 30% = 60%.

Therefore, getting back to the previous example, even if being a student is a
20 percent probability, just knowing evidence like carrying a backpack takes it up
to 60 percent, which is a more favorable chance for the guess. In similar classifi-
cation problems, gathering multiple pieces of evidence can raise the probability of
making a correct prediction using Bayesian probabilities.

Finding out that Naive Bayes isn’t so naive

Naive Bayes, leveraging the simple Bayes’ rule, takes advantage of all the evidence
available to modify the a priori base probability of your predictions. Because your
data contains so much evidence — that is, it has many features — the algorithm,

PART 5 Learning from Data

REMEMBER

based on a simplified Naive Bayes formula, accumulates all the probabilities to
derive a confident prediction.

As discussed in the “Guessing the number: linear regression” section, earlier in
this chapter, summing variables implies that the model takes them as separate
and unique pieces of information. But this isn’t true in reality, because applica-
tions exist in a world of interconnections, with every piece of information con-
necting to many other pieces. Using one piece of information more than once
means giving more emphasis to that particular piece.

Because you don’t know (or simply ignore) the relationships between each piece
of evidence, you may wonder if it’s correct to just plug all evidence into a Naive
Bayes algorithm. Actually, the simple and naive move of throwing everything that
you know at the formula works well indeed in many occurrences, and many stud-
ies report good performance despite the fact that you make a bold assumption.
Here are some of the ways in which you commonly see Naive Bayes effectively
used:

¥ Building spam detectors (catching all annoying emails in your inbox)

¥ Sentiment analysis (guessing whether a text contains positive or negative
attitudes with respect to a topic, and detecting the mood of the speaker)

¥ Text-processing tasks such as spell correction, or guessing the language used
to write or classify the text into a larger category

Naive Bayes is also popular because it doesn’t need much data to work. In addi-
tion, it can naturally handle multiple classes. With some slight variable modifica-
tions (transforming them into classes), it can also handle numeric variables.
Scikit-learn provides three Naive Bayes classes in the sklearn.naive_bayes
module:

3 MultinomialNB: Assigns probabilities based on the presence of a feature in
the data. It is often used to make predictions on textual data problems, after
having transformed the text into a bag of words, as explained in Chapter 8.

3 BernoulliNB: Assigns a different probability when the feature is present than
when it's absent, which is different from multinomial Naive Bayes. It also
penalizes the absence of a feature. In fact, it treats all features as binary
variables (the Bernoulli distribution is typical of binary problems). It's versatile
for tasks like text classification and fraud detection.

¥ GaussianNB: Defines a version of Naive Bayes that expects a normal distribu-
tion of all the features. Hence, this class is suboptimal for textual data in which
words are sparse (use the multinomial or Bernoulli distributions instead). If
your variables are numeric ones, this version is the best choice.

CHAPTER 17 Exploring Four Simple and Effective Algorithms 319

Predicting text classifications

Naive Bayes is particularly popular for document classification because it doesn’t
need many documents to perform sufficiently well in a problem. In textual prob-
lems, you often have myriads of features involved, one for each word spelled cor-
rectly or incorrectly. Sometimes the text is associated with other nearby words in
n-grams, that is, sequences of consecutive words. Naive Bayes can quickly learn
the patterns from the textual features and provide fast predictions.

This section tests text classifications using the binomial and multinomial Naive
Bayes models offered by Scikit-learn. The examples rely on the 20newsgroups
dataset, which contains a large number of posts from 20 kinds of newsgroups. The
dataset is divided into a training set, for building your textual models, and a test
set, which is composed of posts that temporarily follow the training set. You use
the test set to test the accuracy of your predictions:

import numpy as np
from sklearn.datasets import fetch_20newsgroups
from sklearn. feature_extraction.text \
import CountVectorizer
import sklearn. feature_extraction.text as txt
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.metrics import accuracy_score

newsgroups_train = fetch_20newsgroups(

subset="train', remove=('headers',6 'footers',
'"quotes'))
newsgroups_test = fetch_20newsgroups(
subset="test', remove=('headers', 'footers',
'quotes'))

After loading the two sets into memory, you instantiate the two Naive Bayes mod-
els by setting their alpha values, which are useful for avoiding a zero probability
for rare features (a zero probability would exclude these features from the analy-
sis). You typically use a small value for alpha, as shown in the following code:

bernoulli_nb = BernoulliNB(alpha=0.01)
multinomial_nb = MultinomialNB(alpha=0.01)

multinomial_vectorizer = CountVectorizer (
stop_words='english', binary=False)

binary_vectorizer = CountVectorizer(
stop_words='"english', binary=True)

320 PARTS5 Learning from Data

In this example, CountVectorizer converts a collection of text documents into a
numerical matrix. When used with the parameters stop_words set to 'english’
and binary set to false, CountVectorizer removes common English stop words
(such as g, the, in, and so on) from the text, converts the text to lowercase, and
counts the frequency of occurrence of each word in the text documents.

train_targets = newsgroups_train.target
test_targets = newsgroups_test.target

multinomial_X = np.abs(
multinomial_vectorizer. fit_transform(
newsgroups_train.data))
multinomial_Xt = np.abs(
multinomial_vectorizer.transform(
newsgroups_test.data))
binary_X = binary_vectorizer.fit_transform(
newsgroups_train.data)
binary_Xt = binary_vectorizer.transform(
newsgroups_test.data)

After transforming the text, you can train the two classifiers and test them on the
test set, which is a set of posts that haven’t been involved in the training. The test
measure is accuracy, which is the percentage of right guesses that the algorithm
makes.

multinomial _nb.fit(multinomial_ X, train_targets)
bernoulli_nb.fit(binary_X, train_targets)

for name, model, data in [
('BernoulliNB', bernoulli_nb, binary_Xt),
('MultinomialNB', multinomial_nb, multinomial _Xt)]:
accuracy = accuracy_score(
y_true=test_targets, y_pred=model.predict(data))
print(f"Accuracy for {name}: {accuracy:.3f}")

The reported accuracies for the two Naive Bayes models are

Accuracy for BernoulliNB: ©.567
Accuracy for MultinomialNB: ©.653

You may notice that it won’t take a long time for both models to train and report
their predictions on the test set. Consider that the training set is made up of more
than 11,000 posts containing 300,000 words, and the test set contains about 7,500
other posts.

CHAPTER 17 Exploring Four Simple and Effective Algorithms 321

print(f'training posts: {len(newsgroups_train.data)}')
D = {word: True for post in newsgroups_train.data
for word in post.split(' ')}
print(f'training words: {len(D)}")
print(f'test posts: {len(newsgroups_test.data)}')

Running the code returns all these useful text statistics:
training posts: 11314

training words: 300972
test posts: 7532

Learning Lazily with Nearest Neighbors

322

K-Nearest Neighbors (KNN) is not about building rules from data based on coef-
ficients or probability. KNN works on the basis of similarities. When you have to
predict something like a class, your best approach may be to find the most similar
observations to the one you want to classify or estimate. You can then derive the
answer you need from the similar cases.

Observing how many observations are similar doesn’t imply learning something,
but rather measuring. Because KNN isn’t learning anything, it’s considered lazy,
and you’ll hear it referenced as a lazy learner or an instance-based learner. The
idea is that similar premises usually provide similar results, and it’s important
not to forget to get such low-hanging fruit before trying to climb the tree!

The algorithm is fast during training because it has to memorize only data about
the observations. It actually performs more calculations during predictions.
When there are too many observations, the algorithm can become slow and
memory consuming. You’re best advised not to use it with big data or it may take
almost forever to predict anything! Moreover, this simple and effective algorithm
works better when you have distinct data groups without too many variables
involved because the algorithm is also sensitive to the curse of dimensionality.

The curse of dimensionality happens as the number of variables increases. Consider
a situation in which you’re measuring the distance between observations and, as
the space becomes larger and larger, it becomes difficult to find real neighbors —
a problem for KNN, which sometimes mistakes a far observation for a near one.
Rendering the idea is just like playing chess on a multidimensional chessboard.
When playing on the classic 2-D board, most pieces are near, and you can more

PART 5 Learning from Data

TIP

TIP

easily spot opportunities and menaces for your pawns when you have 32 pieces
and 64 positions. However, when you start playing on a 3-D board, such as those
found in some sci-fi films, your 32 pieces can become lost in 512 possible posi-
tions. Now just imagine playing with a 12-D chessboard. You can easily misunder-
stand what is near and what is far, which is what happens with KNN.

There are ways to enhance KNN’s ability in detecting similarities between obser-
vations by removing redundant information and simplifying the data dimension-
ality using data reduction techniques, as explained in Chapter 14.

Predicting after observing neighbors

For an example showing how to use KNN, you can start with the digit dataset (as
found in Chapters 12, 14, and 15). KNN is particularly useful, just like Naive Bayes,
when you have to predict many classes, or in situations that would require you to
build too many models or rely on a complex model.

import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

digits = load_digits()

X_train, X_test, y_train, y_test = train_test_split(
digits.data, digits.target,
test_size=0.33, random_state=42)

KNN is an algorithm that’s quite sensitive to outliers. Moreover, you have to res-
cale your variables and remove some redundant information. In this example,
rescaling is not necessary because the data represents pixels, which means that
it’s already scaled and constrained in a range of values.

You can avoid the problem with outliers by keeping the neighborhood small —
that is, by not looking too far for similar examples because outliers by definition
lie further apart other observations.

In the following code snippet, you instantiate and train your KNN classifier by
using a neighborhood (n_neighbors of 5 cases):

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=5, p=2)
knn.fit(X_train, y_train)

CHAPTER 17 Exploring Four Simple and Effective Algorithms 323

324

KNN uses a distance measure to determine which observations to consider as pos-
sible neighbors for the target case. You can easily change the predefined distance
using the p parameter:

3 Whenp is 2, use the Euclidean distance (discussed as part of the clustering
topic in Chapter 15).

¥ Whenp is1, use the Manhattan distance metric, which is the absolute
distance between observations. In a 2-D square, when you go from one
corner to the opposite one, the Manhattan distance is the same as walking
the perimeter, whereas Euclidean is like walking on the diagonal. Although the
Manhattan distance isn't the shortest route, it's a more realistic measure than
Euclidean distance, and it's less sensitive to noise and high dimensionality.

The Euclidean distance is the commonly used measure, but sometimes it can give
you worse results, especially when the analysis involves many correlated vari-
ables. The following code shows that the analysis seems fine with it.

print('Accuracy: %.3f' % knn.score(X_test, y_test))
print(f"Prediction: {knn.predict(X_test[-15:,:])}")
print(f"Actual: {y_test[-15:]}")

The code returns the accuracy and a sample of the predictions you can compare
with the actual values in order to spot differences:

Accuracy: ©.993
Prediction: [211 22487588949 0]
Actual : [211224875889 49 0]

Choosing your k parameter wisely

A critical parameter that you have to define in KNN is k. As k (the number of
neighbors checked to determine the classification of a specific query point)
increases, KNN considers more points for its predictions, and the decisions are
less influenced by noisy instances that could exercise an undue influence. Your
decisions are based on an average of more observations, and they become more
solid. When the k value you use is too large, you start considering neighbors that
are too far, sharing less and less with the case you have to predict.

It’s an important trade-off. When the value of k is less, you consider a more
homogeneous pool of neighbors but can more easily make an error by taking the
few similar cases for granted. When the value of k is more, you consider more

PART 5 Learning from Data

TIP

cases at a higher risk of observing neighbors that are too far or that are outliers.
Getting back to the previous example with digit dataset, you can experiment with
changing the k value, as shown in the following code:

for k in [1, 3, 5, 7, 10, 50, 100]:
kNN = KNeighborsClassifier(n_neighbors=k)
kNN. fit(X_train, y_train)
test_score = kNN.score(X_test, y_test)
print(f"k= {k:3} \t accuracy= {test_score:.3f}")

After running this code, you get an overview of what happens when k changes,
and can determine the value of k that best fits the data:

k= 1 accuracy= 0.985
k= 3 accuracy= 0.990
k= 5 accuracy= 0.993
k= 7 accuracy= 0.990
k= 10 accuracy= 0.983
k= 50 accuracy= 0.929
k= 100 accuracy= 0.899

Through experimentation, you find that setting n_neighbors (the parameter rep-
resenting k) to 5 is the optimum choice, resulting in the highest accuracy. Using
just the nearest neighbor (n_neighbors =1) isn’t a bad choice, however, setting
the value above 5 returns decreasing results in the classification task.

As a rule of thumb, when your dataset doesn’t have many observations, set k as a
number near the square root of available observations. However, there is no gen-
eral rule, and trying different k values is always a good way to optimize your KNN
performance. Always start from low values and work toward higher values.

CHAPTER 17 Exploring Four Simple and Effective Algorithms 325

IN THIS CHAPTER

» Learning about overfitting and
underfitting

» Choosing the right metric to monitor
» Cross-validating the results

» Selecting the best features for your
model

» Optimizing hyperparameters

Chapter 18

Performing Cross-
Validation, Selection,
and Optimization

his chapter is about how machine learning algorithms learn, and it explores

some methods for making them learn better. Machine learning algorithms

can indeed learn from data. For instance, the four algorithms presented in
the previous chapter, although not complex, can effectively estimate a class or a
value after being presented with examples associated with outcomes. It is all a
matter of learning by induction, which is the process of extracting general rules
from specific examples. From childhood, humans commonly learn by seeing
examples, deriving some general rules or ideas from them, and then successfully
applying the derived rule to new situations as we grow up. For example, if we see
someone being burned after touching fire, we understand that fire is dangerous,
and we don’t need to touch it ourselves to know that.

Currently, machine learning algorithms can’t fully match human learning abili-

ties. However, the knowledge they acquire can be highly advantageous for some
assignments. To improve the situation, a human detects issues in the machine

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization = 327

©

REMEMBER

learning process and then provides methods for overcoming any issues, which are
the two main focuses of this chapter. Learning by example using machine algo-
rithms has pitfalls. Here are a few issues that might arise:

¥ There aren't enough examples to endorse a rule, no matter what machine
learning algorithm you are using.

¥ The machine learning application is presented with the wrong examples and
consequently cannot define suitable rules.

3 Even when the model sees enough correct examples, it may still struggle to
understand the underlying rules because they are just too complicated for the
model to comprehend.

It’s important to consider these pitfalls as you read through this chapter because
they affect your machine learning experience. The quantity of data, its quality,
and the characteristics of the learning algorithm decide whether a machine learn-
ing application can generalize well to new cases. If anything is wrong with any of
them, the resulting model will suffer serious limits. As a data science practitioner,
you must recognize and learn to avoid these types of pitfalls in your data science
experiments.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions).
The source code for this chapter appears in the P4DS4D3_18_Per forming_Cross_
Validation_Selection_and_Optimization.ipynb file.

Pondering the Problem of Fitting a Model

328

Providing a model with examples is commonly referred to as training or fitting data
to the model. Fitting a model implies learning from data a representation of the
rules that generated the data in the first place. From a mathematical perspective,
fitting a model is analogous to guessing an unknown function of the kind you
faced in high school, such as y=4x/2+2x, just by observing its y results. Therefore,
under the hood, you expect that machine learning algorithms generate math for-
mulations by guessing how reality works based on the examples provided.

Determining the validity of such formulations is typically outside the realm of
data science, and often the most practical approach is to test whether a working
model can be constructed using the data. What is most important is that models
work by producing exact predictions. To summarize, as a data scientist, you
should always strive to approximate the real, unknown functions underlying the

PART 5 Learning from Data

REMEMBER

problems you face using the best information available. The result of your work is
evaluated based on your capacity to predict specific outcomes (the target out-
come) given certain premises (the data) thanks to a useful range of tools (the
machine learning algorithms).

Linear regression is presented as a simple formula (y = bx + a) earlier in Chapter 17.
It can approximate training data well, even if it’s not linear. As with linear regres-
sion, all other machine learning algorithms have an internal formulation them-
selves and some, such as neural networks, even require that you define their
formulation from scratch. The linear regression’s formulation is one of the sim-
plest ones; formulations from other learning algorithms can appear quite complex.
You don’t need to know exactly how they work. You just need to have an idea of
how complex they are, whether they represent a line or a curve, and how they
can respond to outliers or noisy data. When planning to learn from data, you
should address the following problematic aspects based on the formulation you
intend to use:

3 Whether the learning algorithm is the best one to approximate the unknown
function that you imagine behind the data you're using. In order to make such
a decision, you must consider the learning algorithm’s formulation perfor-
mance on the data at hand and compare it with other, alternative formula-
tions from other algorithms.

3 Whether the specific formulation of the learning algorithm is too simple, with
respect to the hidden function, to make an estimate (this is called a bias
problem).

¥ Whether the specific formulation of the learning algorithm is too complex,
with respect to the hidden function to be guessed (leading to the variance
problem).

Not all algorithms are suitable for every data problem. If you don’t have enough
data or the data is full of noisy information, it may be difficult for some formula-
tions to figure out the real function.

Understanding bias and variance

If your chosen learning algorithm can’t learn properly from data and isn’t
performing well, the cause is bias or variance in its estimates:

¥ Bias: Given the simplicity of formulation, your algorithm tends to overesti-
mate or underestimate the real rules behind the data and is systematically
wrong in certain situations. Simple algorithms have high bias; having few
internal parameters, they tend to represent only simple formulations well.

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization = 329

330

¥ Variance: Given the complexity of formulation, your algorithm tends to learn
too much information from the data and detect rules that don't exist, which
causes its predictions to be erratic when faced with new data. You can think of
variance as a problem connected to memorization. Complex algorithms can
memorize data features thanks to the algorithms’ high number of internal
parameters. However, memorization doesn’t imply any understanding about
the rules.

Bias and variance depend on the complexity of the formulation at the core of the
learning algorithm with respect to the complexity of the formulation that is pre-
sumed to have generated the data you are observing. However, when you consider
a specific problem using the available data rules, you end up having either high
bias or variance when

3 You have few observations. Simpler algorithms perform better, no matter
what the unknown function is. Complex algorithms tend to learn too much
from data, and then output inaccurate estimates.

3 You have many observations. Complex algorithms tend to reduce variance.
The reduction occurs because sophisticated data requires complex algorithms
to learn all its nuances. However, this works only if the complex algorithm isn't
too complicated for the data.

3 You have many variables. Provided that you also have many observations,
simpler algorithms tend to find a way to approximate even complex hidden
functions.

Defining a strategy for picking models

When faced with a machine learning problem, you usually know little about the
problem and don’t know whether a particular algorithm will manage it well. Con-
sequently, you don’t really know whether the source of a problem is caused by bias
or variance — although you can usually use the rule of thumb that if an algorithm
is simple, it will have high bias, and if it is complex, it will have high variance.
Even when working with common, well-documented data science applications,
you’ll notice that what works in other situations (as described in academic and
industry papers) often doesn’t operate very well for your own application because
the data is different.

You can summarize this situation using the famous no-free-lunch theorem of the
mathematician David Wolpert: Any two machine learning algorithms are equiva-
lent in performance when tested across all possible problems. Consequently, it
isn’t possible to say that one algorithm is always better than another; it can be
better than another one only when used to solve specific problems. You can view

PART 5 Learning from Data

TABLE 18-1

the concept in another way: For every problem, there is never a fixed recipe! The
best and only strategy is to try everything you can and verify the results using a
controlled scientific experiment. Using this approach ensures that what seems to
work is what really works and, most important, what will keep on working with
new data.

At this point, you must consider a critical, yet underrated, aspect to ensure the suc-
cess of your data project. For a best model and greatest results, it’s essential to
define an evaluation metric that distinguishes a good model from a bad one with
respect to the business or scientific problem that you want to solve. In fact, for some
projects, you may need to avoid seeing negative cases (ones where the evaluation
metric shows a bad model) as if they are positive cases (ones where the evaluation
metric shows a good model); for others, you may want to absolutely spot all the
positive ones; and for still others, all you need to do is order them so that positive
ones come before the negative ones so that you don’t need to check them all.

By picking an algorithm, you automatically also pick an optimization process
ruled by an evaluation metric that reports its performance to the algorithm so that
the algorithm can better adjust its parameters. For instance, when using a linear
regression, the metric is the mean squared error given by the vertical distance of
the observations from the regression line. Therefore, it’s automatic, and you can
more easily accept the algorithm performance provided by such a default evalua-
tion metric.

Apart from accepting the default metric, some algorithms do let you choose a
preferred evaluation function or even allow you to create a custom one. In most
cases, however, when you can’t point out your favorite evaluation function, you
can still influence the existing evaluation metric by appropriately fixing some of
its hyperparameters, thus optimizing the algorithm indirectly for another, differ-
ent, metric.

Scikit-learn offers access to a wide range of measures for both classification and
regression problems. The sklearn.metrics module allows you to call the optimi-
zation procedures using a simple string or by calling an error function from its
modules. Table 18-1 shows the measures commonly used for regression problems.

Regression Evaluation Measures

mean_absolute_error sklearn.metrics.mean_absolute_error
mean_squared_error sklearn.metrics.mean_squared_error
r2 sklearn.metrics.r2_score

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization = 331

TABLE 18-2

The r2 string specifies a statistical measure for linear regression called R> (R
squared). It expresses how the model compares in predictive power with respect
to a simple mean. Machine learning applications seldom use this measure because
it doesn’t explicitly report errors made by the model, although high R? values
imply fewer errors; more viable metrics for regression models are the mean
squared errors and the mean absolute errors.

Squared errors penalize extreme values more, whereas absolute error weights all
the errors the same. So it’s really a matter of considering the trade-off between
reducing the error on extreme observations as much as possible (squared error) or
trying to reduce the error for the majority of the observations (absolute error). The
choice you make depends on the application. When extreme values represent crit-
ical situations for your application, a squared error measure is better. However,
when your concern is to minimize the common and usual observations, as often
happens in forecasting sales problems, you should use a mean absolute error as
the reference. The choices even apply to complex classification problems, as you
can see in Table 18-2.

Classification Evaluation Measures

Callable String Function

accuracy sklearn.metrics.accuracy_score
precision sklearn.metrics.precision_score
recall sklearn.metrics.recall_score

f1 sklearn.metrics.f1_score
roc_auc sklearn.metrics.roc_auc_score

Accuracy is the simplest error measure in classification, counting (as a percent-
age) how many of the predictions are correct. It takes into account whether the
machine learning algorithm has guessed the right class. This measure works with
both binary and multiclass problems. Even though it’s a simple measure, opti-
mizing accuracy may cause problems when an imbalance exists between classes.
For example, it could be a problem when a class is frequent or preponderant, such
as in fraud detection, where most transactions are actually legitimate with respect
to a few criminal transactions. In such situations, machine learning algorithms
optimized for accuracy tend to guess in favor of the preponderant class and be
wrong most of time with the minor classes, which is an undesirable behavior for
an algorithm that you expect to guess all the classes correctly, not just a few
selected ones.

332 PART S5 Learning from Data

Precision and recall, and their conjoint optimization by F1 score, can solve prob-
lems not addressed by accuracy. Precision is about being precise when guessing.
It tracks the percentage of times, when forecasting a class, that a class was right.
For example, you can use precision when diagnosing cancer in patients after eval-
uating data about their exams. Your precision in this case is the percentage of
patients who really have cancer among those diagnosed with cancer. Therefore, if
you have diagnosed ten ill patients and nine are truly ill, your precision is
90 percent.

You face different consequences when you don’t diagnose cancer in a patient who
has it or you do diagnose it in a healthy patient. Precision tells just a part of the
story, because there are patients with cancer that you have diagnosed as healthy,
and that’s a terrible problem. The recall measure tells the second part of the story.
It reports, among an entire class, your percentage of correct guesses. For example,
when reviewing the previous example, the recall metric is the percentage of
patients that you correctly guessed have cancer. If there are 20 patients with can-
cer and you have diagnosed just 9 of them, your recall will be 45 percent, which
isn’t acceptable performance.

When using your model, you can be accurate but still have low recall, or have a
high recall but lose accuracy in the process. Fortunately, precision and recall
can be maximized together using the F1 score, which uses the formulaF1 = 2 %
(precision x recall) / (precision + recall). Using the F1score ensures that
you always get the best precision and recall combined.

Receiver Operating Characteristic Area Under Curve (ROC AUC) is useful when you
want to order your classifications according to their probability of being correct.
Therefore, when optimizing ROC AUC in the previous example, the learning algo-
rithm will first try to order (sort) patients starting from those most likely to have
cancer to those least likely to have cancer. The ROC AUC is higher when the order-
ing is good and low when it is bad. If your model has a high ROC AUC, you need to
check the most likely ill patients. Another example is in a fraud-detection prob-
lem, when you want to order customers according to the risk of them producing a
fraudulent transaction. If your model has a good ROC AUC, you need to check just
the riskiest customers closely.

Dividing between training and test sets

Having explored how to decide among the different error metrics for classification
and regression, the next step in the strategy for choosing the best model is to
experiment and evaluate the solutions by viewing their ability to generalize to
new cases. As an example of correct procedures for experimenting with machine

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 333

334

learning algorithms, begin by loading the California housing dataset used in pre-
vious chapters:

from sklearn.datasets import fetch_california_housing
import pandas as pd

def load_california_housing_data():
dataset = fetch_california_housing()
X = pd.DataFrame(data=dataset.data,
columns=dataset . feature_names)
y = pd.Series(data=dataset.target, name="target")
return X, y

X, vy = load_california_housing_data()
print(X.shape, y.shape)

The goal is to be able to predict the price of a house in a given neighborhood. The
output shows that the dataset contains 20640 observations and 8 features. The
target is a price measure, and because it’s common in house evaluation to look for
how neighboring estates are valued, you decide to use a k-nearest neighbor algo-
rithm (KNN) and to optimize the result using the R squared. The objective is to
ensure that a KNN is a good model for the dataset and to quantify how good it is
(which lets you compare it with alternative models).

from sklearn.neighbors import KNeighborsRegressor

knn_model = KNeighborsRegressor(n_jobs=-1)
knn_model . fit(X, y)

r2 = knn_model .score(X, y)
print(f"R-squared value: {r2:.2f}")

The resulting mean square error generated by the commands is
R-squared value: 0.4T7

After having fitted the model with the data (which is called the training data
because it provides examples to learn from), the score evaluation method, applied
to the same data used for training, reports the data fitting error. An R squared
value of 0.47 tells us that almost half the information in the data can be repre-
sented by the model but it’s calculated directly on the training set, so you can’t be
sure the model will work as well with new data (machine learning algorithms are
both good at learning and at memorizing from examples).

PART 5 Learning from Data

Ideally, you need to perform a test on data that the algorithm has never seen in
order to exclude any memorization. Only in this way can you discover whether
your algorithm will work well when new data arrives. To perform this task, you
wait for new data, make the predictions on it, and then compare the predictions to
reality. However, performing the task this way may take a long time and could
become both risky and expensive, depending on the type of problem you want to
solve using machine learning (for example, some applications such as cancer
detection can be incredibly risky to experiment with because lives are at a stake).

Luckily, you have another way to obtain the same result. To simulate having new
data, you can divide the observations into test and training cases. It’s quite com-
mon in data science to have a test size of 20—30 percent of the available data and
to train the predictive model using the remaining 70-80 percent. Here is an
example of how you can achieve data partitioning in Python:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, vy, test_size=0.20, random_state=0)

print(f"Training set shape: {X_train.shape}")
print(f"Testing set shape: {X_test.shape}")

The code prints the resulting shapes of the training and test sets, with the former
being 80 percent of the initial dataset size and the latter just 20 percent:

Training set shape: (16512, 8)
Testing set shape: (4128, 8)

The example separates training and test X and y variables into distinct variables

using the train_test_split() function. The test_size parameter indicates a

test set made of 20 percent of the available observations. The function always

chooses the test sample randomly. Now you can use the training set for training:
from sklearn.metrics import mean_squared_error

knn_model . fit(X_train, y_train)

preds_train = knn_model .predict(X_train)
preds_test = knn_model .predict(X_test)

test_mse = mean_squared_error(y_true=y_test,

y_pred=preds_test)
print(f"Train mean squared error: {train_mse:.5f}")

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 335

This time, you evaluate the mean squared error instead of the R squared. The out-
put shows the training set’s mean squared error:

Train mean squared error: @.73442
At this point, you use the model to predict on the test set:

test_mse = mean_squared_error(y_true=y_test, y_pred=preds_test)
print(f"Test mean squared error: {test_mse:.5f}")

The code reports a test error of 1.11733, which is higher than what you obtained as
a training error:

Test mean squared error: 1.11733

What a difference, indeed! Somehow, the estimate on the training set was too
optimistic. However, although using the test set, is more realistic in error estima-
tion, it really makes your result depend on a small portion of the data. If you
change that small portion, the test result may also change. That’s a common
problem with machine learning algorithms. You know that each algorithm has a
certain bias or variance in predicting an outcome. The problem is that you can’t
estimate its impact for sure because the training performances are always too
optimistic and misleading, and by using a test set, you may get different results
depending on what sample you use.

Using training data is always unsuitable when evaluating algorithm performance
because the learning algorithm may actually predict the training data better than
any test set. This is especially true when an algorithm has strong memorization
capabilities because of its complexity. In this case, you can expect a lower error
when predicting the training data, which means that you get an overly optimistic
result that doesn’t compare it fairly with other algorithms (which may have a dif-
ferent bias/variance profile), nor are the results useful for this example’s evalua-
tion. By using the test data, you actually reduce the number of training examples
(which may cause the algorithm to perform less well), but in exchange, you get a
more reliable and comparable error estimate, though an uncertain and vari-
able one.

Cross-Validating

336

If test sets provide unstable results because of sampling, the solution is to sys-
tematically sample a certain number of test sets and then average the results. That
gets you more stable results. Averaging multiple observed measures is a statistical
approach, and that’s the basis of cross-validation. The recipe is straightforward:

PART 5 Learning from Data

1. Dpivide your data into folds.

Each fold is a container that holds an even distribution of the cases, usually 10,
but fold sizes of 3, 5, and 20 are viable alternative options.

2. Hold out one fold as a test set and use the others as training sets.
3. Train and record the test set result.

If you have little data, it's better to use a larger number of folds, because the
quantity of data and the use of additional folds positively affects the quality
of training.

4. Pperform Steps 2 and 3 again, using each fold in turn as a test set.

n

Calculate the average and the standard deviation of all the folds’ test
results.

The average is a reliable estimator of the quality of your predictor. The
standard deviation will tell you the predictor reliability (if it is too high, the
cross-validation error could be imprecise). Expect that predictors with high
variance will have a high cross-validation standard deviation.

Even though this technique may appear complicated, Scikit-learn handles it using
the functions in the sklearn.model_selection module.

Using cross-validation on k folds

To run cross-validation, you first have to initialize an iterator. KFold is the itera-
tor that implements k folds cross-validation. There are other iterators available
from the sklearn.model_selection module, mostly derived from the statistical
field, but KFold is the most widely used in data science practice.

KFold requires you to specify the n_splits number (the number of folds to gen-
erate), and indicate whether you want to shuffle the data (by using the shuffle
parameter). As a rule, the higher the expected variance, increasing the number of
splits improves the mean estimate. It’s a good idea to shuffle the data because
ordered data can introduce confusion into the learning processes for some algo-
rithms if the first observations are different from the last ones.

After setting KFold, call the cross_val_score function, which returns an array of
results containing a score (from the scoring function) for each cross-validation
fold. You have to provide cross_val_score with your data (both X and y) as an
input, your estimator (the regression class), and the previously instantiated KFold
iterator (as the cv parameter). In a matter of a few seconds or minutes, depending
on the number of folds and data processed, the function returns the results. You

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization = 337

338

TIP

average these results to obtain a mean estimate, and you can also compute the
standard deviation to check how stable the mean is.

from sklearn.model_selection import cross_val_score, KFold
import numpy as np

cv = KFold(n_splits=10, shuffle=True, random_state=0)

scores = cross_val_score(knn_model, X, y, cv=cv,
scoring='neg_mean_squared_error', n_jobs=-1)

mean_mse = np.mean(np.abs(scores))

std_mse = np.std(scores)

print(f"cv mean squared error: {mean_mse:.5f} std:
{std_mse:.5f}")

Here is the result:
cv mean squared error: 1.10818 std: 0.02739

Cross-validating can work in parallel because no estimate depends on any other
estimate. You can take advantage of the multiple cores present on your computer
by setting the parameter n_jobs=-1 or you can set n_jobs=-2 in order to use all
your CPU cores but one.

Sampling stratifications for complex data

Cross-validation folds are decided by random sampling. Sometimes it may be
necessary to track if and how much of a certain characteristic is present in the
training and test folds to avoid malformed samples. For instance, in the California
housing dataset, latitude and longitude point out different areas in California.
This information is important to understand the value of the house and determine
whether people would like to spend more for it. You can see the effect of geo-
graphical coordinates using the following code:

import matplotlib.pyplot as plt
import pandas as pd

plt.hexbin(X.Longitude, X.Latitude, C=y, gridsize=50,
cmap="'0Oranges ')

cb = plt.colorbar()

cb.set_label('Median House Value')

plt.xlabel('Longitude'); plt.ylabel('Latitude'); plt.show()

PART 5 Learning from Data

The code will plot a heatmap of real estate values through California, represented
in Figure 18-1, highlighting more expensive areas along the cost.

42 1

40 1

36 ‘ F2-

Vs .
34 -ﬁ 1

Latitude
w
[#5]
L
' -
w
Median House Value

-
FIGURE 18-1: 2
Spatial v
distribution of L]
house prices in -124 -122 =120 -118 —-116 -114
California. Longitude

Using cluster analysis, as explained in Chapter 15, you can segment the coordi-
nates into homogeneous areas that you can test for their average housing value:

from sklearn.cluster import KMeans
coordinates = X[["Latitude","Longitude"]]
clustering = KMeans(n_clusters=20, n_init=10,
random_state=0)
clustering. fit(coordinates)
area = clustering.predict(coordinates)
df_area = pd.DataFrame({"area": area, "median_house_value": y})
df_area.boxplot("median_house_value", by="area");

A boxplot, represented in Figure 18-2, reveals how house prices are indeed varied
in California due to the location.

In similar situations, when a characteristic is rare or influential, you can’t be sure
when it’s present in the sample because the folds are created in a random way.
Having too many or too few of a particular characteristic in each fold implies that
the machine learning algorithm may derive incorrect rules.

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 339

340

FIGURE 18-2:
Boxplot of house
prices, grouped
by clusters.

5 1 g o g o

Boxplot grouped by area
median_house value

8

el

T T T

01 2 3 45 6 7 8 9101112131415161?1819
area

+O
o
O

—{ }—amo @00 O 000
canoo
—oF [}——ao 00

The StratifiedKFold class provides a simple way to control the risk of building
malformed samples during cross-validation procedures. It can control the sam-
pling so that certain features, or even certain outcomes (when the target classes
are extremely unbalanced), will always be present in your folds in the right pro-
portion. You just need to point out the variable you want to control by using the y
parameter, as shown in the following code.

from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import mean_squared_error

skf = StratifiedKFold(n_splits=10, shuffle=True,
random_state=0)
scores = list()

for train_index, test_index in skf.split(X, area):
X_train, X_test = X.iloc[train_index], \
X.iloc[test_index]
y_train, y_test = y[train_index], y[test_index]
knn_model . fit(X_train, y_train)
y_pred = knn_model .predict(X_test)
scores . append(mean_squared_error(y_true=y_test,
y_pred=y_pred))

print('%i folds cv mean squared error: %.5f std: %.5f' %
(len(scores),np.mean(np.abs(scores)),
np.std(scores)))

PART 5 Learning from Data

The result from the ten-fold stratified cross-validation is
10 folds cv mean squared error: 1.09899 std: 0.04505

Although the validation error is similar, by controlling the latitude and longitude
variables, you can be more confident that training and validation samples are
more homogeneous.

Selecting Variables Like a Pro

Selecting the right variables can improve the learning process by reducing the
amount of noise (useless information) that can influence the learner’s estimates.
Variable selection, therefore, can effectively reduce the variance of predictions. To
use just the useful variables in training and leave out the redundant ones, you can
use these techniques:

3 Univariate approach: Select the variables most related to the target
outcome.

3 Forward or backward approach: Keep only the variables that you can add or
remove from the learning process without damaging its performance.

The following sections depend on a couple of variables, as shown here (which are
follow-ons of previous sections):

df_area = pd.get_dummies(area, prefix="area"
df_X = pd.concat([X, df_area], axis=1)

The meaning of these variables will become clearer as the following sections
progress; just know that you need to define them to make the code functional
for now.

Selecting by univariate measures

If you decide to select a variable by its level of association with its target, you can
refer to different metrics depending on whether your problem is a regression or
classification. The available metrics for association are

¥ f_regression orr_regression: Used only for numeric targets and based on
linear regression performance.

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 341

342

TIP

¥ f_classif: Used only for categorical targets and based on the Analysis of
Variance (ANOVA) statistical test.

¥ chi2: Performs the chi-square statistic for categorical targets, which is less
sensitive to the nonlinear relationship between the predictive variable and
its target.

When evaluating candidates for a classification problem, f_classif and chi?2
tend to provide the same set of top variables. It’s still a good practice to test the
selections from both the association metrics.

The regression example tests each feature’s predictive power by testing its
correlation with the target. The r_regression command will extract this infor-
mation for each feature all simultaneously:

from sklearn. feature_selection import r_regression

correlations = r_regression(df_X, y)

for n, s in zip(df_X.columns, correlations):
print(f"F-score: {s:+2.3f} for feature {n}")

The code will print each feature accompanied by its target correlation.

Using the correlation as a selection measure (higher absolute values signal more
association of a feature with the target variable) helps you to pick the most impor-
tant variables for your machine learning model, but you should watch out for
these possible problems:

¥ Some variables with high association could also be highly correlated, introduc-
ing duplicated information, which acts as noise in the learning process.

¥ Some variables may be penalized, especially binary ones (variables indicating
a status or characteristic using the value 1 when it is present, 0 when it is not).

Apart from applying a direct selection of the top correlations, Scikit-learn provides
some helper functions. SelectPercentile (https://scikit-learn.org/stable/
modules/generated/sklearn. feature_selection.SelectPercentile.html)
can rank the best variables to make it easier to decide at what percentile to exclude
a feature from participating in the learning process. The class SelectKBest
(https://scikit-learn.org/stable/modules/generated/sklearn. feature_
selection.SelectKBest.html) is analogous in its functionality, but it selects the
top k variables, where k is a number, not a percentile.

PART 5 Learning from Data

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

TIP

The univariate selection process can give you a real advantage when you have a
huge number of variables to select from and the other methods turn computation-
ally infeasible. The best procedure is first to reduce the value of Select
Percentile by half or more of the available variables, and then to proceed using
a more precise method such as a forward or backward greedy selection.

Employing forward and backward selection

Forward and backward feature selection are two common techniques used in
machine learning to select the most relevant features that contribute to the pre-
diction of a target variable. Forward and backward feature selection techniques
choose features based on how they work together, instead of just looking at each
feature individually. In forward feature selection, the algorithm starts with an
empty set of features and iteratively adds one feature at a time that improves the
performance of the model. In contrast, backward feature selection begins with a
full set of features and removes one feature at a time until the model’s perfor-
mance does not improve.

The provided SequentialFeatureSelector (https://scikit-learn.org/
stable/modules/generated/sklearn. feature_selection.Sequential
FeatureSelector.html) by Scikit-learn allows you to set the direction of your
search: forward if you are looking for a minimal set of features; backward if you
want to just remove the non-useful features and have a set that’s as complete as
possible. Here is an example of using forward feature selection with our California
housing data:

from sklearn. feature_selection \
import SequentialFeatureSelector

selector = SequentialFeatureSelector(
estimator=knn_model,
direction="'forward',
cv=3,
scoring="'neg_mean_squared_error',
n_features_to_select=14

selector.fit(df_X, y)
feature_mask = selector.support_
selected = [feature for feature,
support in zip(df_X.columns,
feature_mask) if support]
print(f"Selected features: {selected}")

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 343

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html

Using the forward procedure to select the best features for our model will take
some time, but it helps us find a list of features that work the best for predicting
outcomes:

Selected features: ['MedInc', 'HouseAge', 'AveRooms',

'AveBedrms', 'AveOccup', 'area_@', 'area_3',6 'area_4',
'area_5', 'area_8', 'area_10', ‘'area_14',6 'area_1T7',
'area_19']

The next experiments found in the sections that follow try to improve the model’s
settings using the features chosen in the forward procedure. This is just like what
would happen in a real project.

Pumping Up Your Hyperparameters

344

REMEMBER

As a last example for this chapter, you can see the procedures for searching for the
optimal hyperparameters of a machine learning algorithm to achieve the best
possible predictive performance. Actually, much of the performance of your algo-
rithm has already been decided by

3 The choice of the algorithm: Not every machine learning algorithm is a good
fit for every type of data, and choosing the right one for your data can make
the difference.

3 The selection of the right variables: Predictive performance is increased
dramatically by feature creation (newly created variables are more predictive
than old ones) and feature selection (removing redundancies and noise).

Fine-tuning the correct hyperparameters could provide even better predictive
generalizability and pump up your results, especially in the case of complex algo-
rithms that don’t work well using the out-of-the-box default settings.

Hyperparameters are parameters that you have to decide on yourself, because an
algorithm can’t learn them automatically from data. As with all other aspects of
the learning process that involve a decision by the data scientist, you have to make
your choices carefully after evaluating the cross-validated results.

The Scikit-learn sklearn.model_selection module has a section specializing in
hyperparameters optimization. It contains a few utilities for automating and sim-
plifying the process of searching for the best values of hyperparameters. The code
in the following paragraphs illustrates the correct procedures, starting from
reprising the initial KNN model.

PART 5 Learning from Data

TIP

Grid searching is easy to perform as a parallel task because the results of a tested
combination of hyperparameters are independent from the results of the others.
Using a multicore computer at its full power requires that you change n_jobs
to —1 when instantiating any of the grid-search classes from Scikit-learn.

Implementing a grid search

The best way to verify the optimal hyperparameters for an algorithm is to test
them all and then pick the combination with the highest score. This means, in the
case of complex settings of multiple parameters, that you have to run hundreds, if
not thousands, of slightly differently tuned models. Grid searching is a systematic
search method that combines all the possible combinations of the hyperparame-
ters into individual sets. It’s a time-consuming technique. However, grid search-
ing provides one of the leading ways to optimize a machine learning application
that could have many working combinations, but just a single best one. Hyperpa-
rameters that have many acceptable solutions (called local minima) may trick you
into thinking that you have found the optimal solution when you could actually
improve their performance.

In the example for demonstrating how to implement a grid search effectively on
the California housing dataset, you reprise the previously seen algorithm, the
KNN classifier:

knn_model = KNeighborsRegressor(n_jobs=1)

The KNN classifier has quite a few hyperparameters that you can set for optimal
performance:

3 The number of neighbor points to consider in the estimate
¥ How to weight each of them

¥ What metric to use for finding the neighbors

Using a range of possible values for all the parameters makes it apparent that
you’re going to test a large number of models. Specifically, the total number of
evaluation models in this case is the product of the number of parameters, which
is 8, 2, and 3, resulting in 48:

param_grid = {'n_neighbors': [1, 3, 5, 7, 10, 25, 50, 100],

'weights': ['uniform', 'distance'],
'metric': ['euclidean', 'manhattan',
'cosine']}

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 345

346

To set the instructions for the search, you build a Python dictionary whose keys
are the names of the parameters, and the dictionary’s values are lists of the values
you want to test. For instance, the example shows a list of values for the hyperpa-
rameter n_neighbors, which is used in sequence during the grid search. Before
starting, you also determine the cross-validation score using a vanilla model, a
model with the following default parameters:

from sklearn.model_selection import cross_val_score

score_metric = 'neg_mean_squared_error'
scores = cross_val_score(
knn_model, X=df_X.loc[:, feature_mask], y=y,
cv=10, scoring=score_metric, n_jobs=-1)
baseline_score = np.mean(np.abs(scores))
print(f"Baseline with default parameters: {baseline_score:.3f}")

You take note of the result to determine the increase provided by optimizing the
parameters:

Baseline with default parameters: 0.538

Using the mean squared error metric, the example first tests the baseline, which
consists of the algorithm’s default parameters (also clarified when instantiating
the classifier variable with its class). Now the search locates a better set of
hyperparameters using a tenfold cross-validation:

from sklearn.model_selection import GridSearchCV

search = GridSearchCV(
estimator=knn_model, param_grid=param_grid,
scoring=score_metric, n_jobs=-1, refit=True,
return_train_score=True, cv=10)

search. fit(df_X.loc[:, feature_mask], y)

After being instantiated with the learning algorithm, the search dictionary, the
scoring metric, and the cross-validation folds, the GridSearch class operates with
the fit() method. Optionally, after the grid search ends, it refits the model with
the best found parameter combination (refit=True), allowing it to immediately
start predicting by using the GridSearch class itself. Finally, you print the result-
ing best parameters and the score of the best combination:

print(f"Best parameters: {search.best_params_}")
best_score = abs(search.best_score_)

PART 5 Learning from Data

print(f"CV mean squared error of best parameters:
{best_score:.3f}")

Here are the printed values:

Best parameters: {'metric': 'cosine', 'n_neighbors': 50,
'weights': 'distance'}
CV mean squared error of best parameters: 0.481

When the search is completed, you can inspect the results using the best_params_
and best_score attributes. The best squared error found was 0.481, an improve-
ment over the initial baseline. To better understand how the optimization works
with respect to the number of neighbors used by your algorithm, you can launch
a Scikit-learn class for visualization. The validation_curve method gives you
detailed information about how train and validation behave when used with
different n_neighbors hyperparameters.

from sklearn.model_selection import validation_curve

tuned_model

KNeighborsRegressor (**search.best_params_,
n_jobs=-1)

train, test = validation_curve(tuned_model,
df_X.loc[:, feature_mask], vy,
param_name='n_neighbors', param_range=range(10, 101, 10),
cv=3, scoring=score_metric, n_jobs=-1)

The validation_curve class provides you with two arrays containing the results
arranged with the parameters values on the rows and the cross-validation folds
on the columns:

import matplotlib.pyplot as plt

mean_test = abs(np.mean(test, axis=1))

x_ticks_labels = range(10, 101, 10)

x_ticks_values = range(Q, len(x_ticks_labels))

plt.plot(x_ticks_values, mean_test, 'bD-.',
label="'Cross-validation')

plt.grid()

plt.xlabel('Number of neighbors')

plt.xticks(x_ticks_values, x_ticks_labels)

plt.ylabel('Mean squared error')

plt.legend(loc="upper right', numpoints=1); plt.show()

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 347

FIGURE 18-3:
Validation curves.

TIP

348

Projecting the row means creating a graphic visualization, as shown in Figure 18-3,
which helps you understand what is happening with the learning process.

4 —&- Cross-validation
0.500 4
\
\
\
_ 0.495 4 \
g \
S \
= \
£ 0.490 - i
'3 !
c \
: i
= i v
0.485 ‘* ‘.’/.,-"
_\ ,I'..-—-
0.480 \"-»...._...--0"'

T T
10 20 30 40 50 60 70 80 90 100
Number of neighbors

You can obtain an important piece of information from the visualization. The
mean squared error tends to decline with more neighbors up to 40; then it
starts increasing slowly. As with many hyperparameters in machine learning,
n_neighbors has a sweet spot. This pattern happens frequently, and sometimes
hyperparameters even interact between themselves; only certain combinations
unlock the best score for your model.

It’s part of the data science process to query, test, and query again. Even though
Python and its packages offer you many automated processes in data learning and
discovering, it is up to you to ask the right questions and to check whether the
answers are the best ones by using statistical tests and visualizations.

Trying a randomized search

Grid searching provides an exhaustive examination of data, but it’s also a
time-consuming activity. It’s prone to overfitting the cross-validation folds when
you have few observations in your dataset and you extensively search for an opti-
mization. You have options other than grid searching. As an experimental option,
you also can try HalvingGridSearchCV (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.HalvingGridSearchCV.html).

PART 5 Learning from Data

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html

HalvingGridSearchCV is a hyperparameter optimization technique that uses an
iterative process to search for the best hyperparameters by repeatedly evaluating
subsets of randomly selected hyperparameters. It discards underperforming sub-
sets and continues with the best ones until a set of optimal hyperparameters is
found. Here is our example:

from sklearn.experimental import enable_halving_search_cv
from sklearn.model_selection import HalvingGridSearchCV

search = HalvingGridSearchCV(
estimator=knn_model, param_grid=param_grid,
scoring=score_metric, n_jobs=-1, refit=True,
return_train_score=True, cv=10, factor=2,
max_resources='auto', aggressive_elimination=True,
random_state=42)

search.fit(df_X.loc[:, feature_mask], y)

print(f"Best parameters: {search.best_params_}")

best_score = abs(search.best_score_)

print(f"CV mean squared error of best parameters:
f"{best_score:.3f}")

n

In a fraction of the time, the code returns the very same result from the standard
grid search:

Best parameters: {'metric': 'cosine', 'n_neighbors': 50,
'weights': 'distance'}
CV mean squared error of best parameters: 0.481

Grid searching is like fishing with a large net. But there’s a smarter way. Start
with a large net with loose meshes to find where the “fish” (optimal hyperparam-
eter values) are. Then, use a smaller net with tight meshes to catch the “fish” in
those areas. This is a Scikit-learn experimental feature as of this writing, but we
expect it to become part of the Scikit-learn package in the near future.

Another interesting alternative option is to try a randomized search. In this case,
you define a grid search to test only some of the combinations, picked at random.
Even though it may sound like betting on blind luck, a randomized search is actu-
ally quite useful because it’s efficient — if you pick enough random combinations,
you have a high statistical probability of finding an optimum hyperparameter
combination, without risking overfitting at all. For instance, in the previous
example, the code tested 48 different models using a systematic search, but using
a randomized search, you can reduce the number of tests to just ten tests!

CHAPTER 18 Performing Cross-Validation, Selection, and Optimization 349

Using a randomized search is straightforward. You import the class from the
grid_search module and input the same parameters as the GridSearchCV, adding
an_iter parameter that indicates how many combinations to sample. As a rule of
thumb, you choose from a quarter or a third of the total number of hyperparam-
eter combinations:

from sklearn.model_selection import RandomizedSearchCV

param_grid = {'n_neighbors': range(1, 100),
'weights': ['uniform', 'distance'],
'metric': ['euclidean', 'manhattan', 'cosine'l]}

random_search = RandomizedSearchCV(estimator=knn_model,
param_distributions=param_grid, n_iter=10, cv=10,
scoring=score_metric, refit=True, random_state=0, n_jobs=-1)

random_search. fit(df_X.loc[:, feature_mask], y)

print(f"Best parameters: {random_search.best_params_}")

best_score = abs(random_search.best_score_)

print(f"CV mean squared error of best parameters:
f"{best_score:.3f}")

Having completed the search using the same technique as before, you can exam-
ine the outputted best scores and best hyperparameters:

Best parameters: {'weights': 'distance',
'n_neighbors': 37, 'metric': 'cosine'}
CV mean squared error of best parameters: 0.480

From the reported results, it appears that a random search can actually obtain

even better results compared to a much more CPU-expensive exhaustive grid
search.

350 PART 5 Learning from Data

IN THIS CHAPTER

» Expanding your features using
polynomials

» Regularizing your model
» Learning from big data

» Using support vector machines
and neural network

Chapter 19

Increasing Complexity
with Linear and
Nonlinear Tricks

revious chapters introduce you to some of the simplest, yet effective,

machine learning algorithms, such as linear and logistic regression, Naive

Bayes, and K-Nearest Neighbors (KNN). At this point, you can successfully
complete a regression or classification project in data science. This chapter
explores more complex and powerful machine learning techniques, including the
following: reasoning on how to enhance your data; improving your estimates by
regularization; and learning from big data by breaking it into manageable chunks.

This chapter also introduces you to the support vector machine (SVM), a powerful
family of algorithms for classification and regression. The chapter touches on
neural networks as well. Both SVMs and neural networks can tackle the most dif-
ficult data problems in data science. However, neural networks and tree ensem-
bles have overtaken SVMs as the state-of-the-art predictive tool. Decision trees,
random forests, and other tree-like structures are covered in a progressively more
complex manner in Chapter 20, “Understanding the Power of the Many.” Neural
networks have a long history, but in the last few years, they have improved by
giant leaps to the point of becoming incredible and indispensable tools for

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 351

©

REMEMBER

prediction and generation of images and text. Given the complexity of both regres-
sion and classification using advanced techniques, quite a few pages of this
chapter are devoted to SVM and some to neural networks, but increasing your
understanding of both strategies is definitely worth the time and effort.

You don’t have to type the source code for this chapter manually; using the
downloadable source is a lot easier (see the Introduction for download instructions).
The source code for this chapter appears in theP4DS4D3_19_Increasing_Complexity.
ipynb file. You can also plot some of the complex drawings illustrating SVM algo-
rithms by running the code in the P4DS4D3_19_Representing_SVM_boundaries.
ipynb source file.

Using Nonlinear Transformations

352

Linear models, such as linear and logistic regression, actually sum the values of
your features (after having weighted them by some learned coefficients) and
provide a simple but effective model. In most situations, they offer a good approx-
imation of the complex reality they represent. Even though they’re characterized
by a high bias, using a large number of observations can improve the estimates of
their coefficients and make them more performant when compared to complex
algorithms.

However, they can perform better when solving certain problems if you pre-
analyze the data using the Exploratory Data Analysis (EDA) approach. After per-
forming the analysis, you can transform and enrich the existing features by

¥ Creating new features based on your understanding of the problem. This
operation is called feature engineering.

¥ Linearizing the relationships between features and the target variable using
transformations that increase their correlation and make their cloud of points
in the scatterplot more similar to a line.

¥ Making variables interact by multiplying them so that you can better repre-
sent their conjoint behavior.

¥ Expanding the existing variables using the polynomial expansion in order to
represent relationships more realistically (such as ideal point curves, when
there is a peak in the variable representing a maximum, akin to a parabola).

PART 5 Learning from Data

TIP

Doing variable transformations

An example is the best way to explain the kind of transformations you can suc-
cessfully apply to data to improve a linear model. The example in this section, and
the “Regularizing Linear Models” and “Fighting with Big Data Chunk by Chunk”
sections that follow, relies on the California housing dataset. The problem relies
on regression, and the data originally has seven variables to explain the median
house values for California districts. Here is the code to download the dataset on
your notebook:

from sklearn.datasets import fetch_california_housing
import pandas as pd

def load_california_housing_data():
dataset = fetch_california_housing()
X = pd.DataFrame(data=dataset.data,
columns=dataset. feature_names)
y = pd.Series(data=dataset.target, name="target")
print(dataset.DESCR)
return X, y

X, y = load_california_housing_data()
After downloading the dataset, the code prints a verbose description of the dataset.

You can find out more details about the meaning of the variables present in the
California housing dataset by reading the description returned by the code. It will
explain the meaning of the variables in the dataset and provide some historical
background about the data itself.

To begin with the data transformation process, you can start feature engineering
new variables based on your understanding of the problem. First, you clip any
outlying value among the average number of household members (AveOccup) to a
maximum of 100. Second, you compute new metrics based on the average number
of individuals per room or per bedroom, as well as the same ratios but considering
the overall population. Finally, you calculate the ratio between the number of bed-
rooms and the total number of rooms.

'AveOccup"] = X["AveOccup"].clip(upper=100)

AveOccupRooms'] = X['AveOccup'] / X['AveRooms']

AveOccupBedrms'] = X['AveOccup'] / X['AveBedrms']

'Rooms_capita'] = X['Population'] / X['AveRooms']

Bedrms_capita'] = X['Population'] / X['AveBedrms']

X[
X[
X[
X[
X[
X['Bedrms_pct'] = X['AveBedrms'] / X['AveRooms']

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 353

354

When it comes to improving the performance of your machine learning model,
feature engineering plays a crucial role. This process involves creating new vari-
ables that enhance how the model learns from data. Additionally, you can also
enhance the existing variables by applying certain functions that transform them
into more useful representations.

Logarithmic transformation can help in such situations. However, your values
should range from zero to one (as with percentages) as demonstrated in this
example. In other cases, other useful transformations for your x variable could
include x*x2, x**3, 1/x, 1/x*%2, 1/x%*3, and sqrt (x). The key is to try them and
test the result. As for testing, you can use the following script as an example for
testing a logarithmic transformation on one of the features from the dataset:

import numpy as np
from sklearn.feature_selection import f_regression

single_variable = X["AveOccup"].values.reshape(-1, 1)
F, pval = f_regression(single_variable, y)
print(f'F score for the original feature {F[Q]:.1f}"')

F, pval = f_regression(np.logip(single_variable),y)
print(f'F score for the transformed feature {F[Q]:.1f}")

The code prints the F score, a measure to evaluate how predictive a feature is in
a machine learning problem, both the original and the transformed feature. The
score for the transformed feature is a great improvement over the untrans-
formed one.

F score for the original feature 275.8
F score for the transformed feature 1434.7

The F score is useful for variable selection. You can also use it to assess the use-
fulness of a transformation because both f_regression and f_classif are them-
selves based on linear models, and are therefore sensitive to every effective
transformation used to make variable relationships more linear.

Creating interactions between variables

When performing a weighted summation using all the features, the model
responds independently to changes in each variable, without considering their
interactions with other variables. In statistics, this type of model is referred to as
a main effects model because it considers only the individual effects of each feature,
treating them as standalone elements.

PART 5 Learning from Data

REMEMBER

The Naive Bayes classifier makes a similar assumption for probabilities, and it
also works well with complex text problems.

Even though machine learning works by using approximations and a weighted
sum of a set of variables can produce predictions that work well in most situa-
tions, sometimes you may miss an important part of the picture. You can easily
catch this problem by depicting the variation in your target associated with the
conjoint variation of two or more variables in two simple and straightforward
ways:

¥ Existing domain knowledge of the problem: For instance, in the car market,
having a noisy engine is a nuisance in a family car but considered a plus for
sports cars (car aficionados want to hear that you have an ultra-cool and
expensive car). By knowing a consumer preference, you can model a noise
level variable and a car type variable together to obtain exact predictions
using a predictive analytic model that guesses the car's value based on
its features.

¥ Testing combinations of different variables: By performing group tests,
you can see the effect that certain variables have on your target variable.
Therefore, even without knowing about the relationship between noisy
engines and sports cars, you could have caught a difference in the average
of preference level when analyzing your dataset split by type of cars and
noise level.

The following example shows how to automatically test and detect interactions in
the California housing dataset. You start creating a pipeline that puts together a
StandardScaler and a LinearRegression. In this way, all the features are stan-
dardized, meaning they have zero mean and standard deviation one, before being
processed by the algorithm. Afterward, you compute the mean squared error
(MSE) using a tenfold cross-validation:

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.model_selection import \
cross_val_score, KFold

regression = Pipeline([("scaler", StandardScaler()),
("model",LinearRegression())])

crossvalidation = KFold(n_splits=10, shuffle=True,
random_state=1)

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 355

356

baseline = np.mean(cross_val_score(
regression, X, vy,
scoring="'neg_mean_squared_error',
cv=crossvalidation))

print(f'Baseline MSE: {abs(baseline):.3f}")

After completing the instructions, the code prints the baseline MSE value, which
is calculated using the mean of the cross-validation scores:

Baseline MSE: 0.507

The idea now is to try to add one different interaction term, given by the
multiplication of two existing variables, and check whether the MSE diminishes.
Less MSE means an improvement because it corresponds to the quantity of errors
the model contains. The fewer errors, the better. First, you need to compute the
interactions between features. Polynomial features with degree 2 are created
for the selected features using PolynomialFeatures. The interaction_only
parameter is set to True to include only interaction terms, and include_bias is
set to False to exclude an additional interaction term.

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures((2, 2), interaction_only=True,
include_bias=False)
features = ["MedInc", "HouseAge", "Population",
"AveRooms", "AveBedrms", "AveOccup"]

poly. fit(X[features])

interactions = pd.DataFrame(
poly.transform(X[features]),
columns=poly.get_feature_names_out(features))

After all these instructions are completed, you can check the shape interactions
DataFrame containing the interactions terms:

print(interactions.shape)
The print instructions reports having being created 15 interaction terms.
(20640, 15)
At this point, for each interaction term, you concatenate the existing features with

the interaction term and compute the MSE error again using the same cross-
validation procedure as before:

PART 5 Learning from Data

for col in interactions:
Xt = pd.concat([X, interactions[col]], axis=1)

test = np.mean(cross_val_score(
regression, Xt, vy,
scoring='neg_mean_squared_error',
cv=crossvalidation))
if test > baseline:
print(f"adding interaction {col} improves " +
f"MSE to {abs(test):0.3f}")

If the resulting MSE is better than the baseline, the code prints the interaction
terms and reports the improved score:

adding interaction MedInc HouseAge improves MSE to ©.504
adding interaction MedInc Population improves MSE to 0.500
adding interaction MedInc AveRooms improves MSE to 0.501
adding interaction MedInc AveBedrms improves MSE to ©.506
adding interaction MedInc AveOccup improves MSE to ©.507
adding interaction HouseAge Population improves MSE to 0.506
adding interaction Population AveOccup improves MSE to 0.490

The most effective interactions terms are those that multiply Population with
AveOccup and MedInc with Population, implying that there is a much different
impact on the median house value for California districts depending on the com-
bination of these variables. They certainly would make an important addition to
the model.

Regularizing Linear Models

Instead of looking for specific interactions and selectively adding them to your
model, you could have just computed all the possible interactions and added them
to your model. But there can be a problem with doing that. Linear models have a
high bias, but as you add more features, more interactions, and more transforma-
tions, they start gaining adaptability to the data characteristics and memorizing
power for data noise, thus increasing the variance of their estimates. Trading
higher variance for less bias isn’t always the best choice, but, as mentioned
earlier, sometimes it’s the only way to increase the predictive power of linear
algorithms.

You can introduce L1 and L2 regularization as a way to control the trade-off
between bias and variance in favor of an increased generalization capability of the

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 357

358

REMEMBER

Q

TIP

model. When you introduce one of the regularizations, an additive function that
depends on the complexity of the linear model penalizes the optimized cost func-
tion. In linear regression, the cost function is the squared error of the predictions,
and the cost function is penalized using a summation of the coefficients of the
predictor variables.

If the model is complex but the predictive gain is little, the penalization forces the
optimization procedure to remove the useless variables, or to reduce their impact
on the estimate. The regularization also acts on highly correlated features —
attenuating or excluding their contribution, thus stabilizing the results and
reducing the consequent variance of the estimates:

¥ L1 (also called Lasso): Shrinks some coefficients to zero, making your
coefficients sparse. It performs variable selection.

¥ L2 (also called Ridge): Reduces the coefficients of the most problematic
features, making them smaller, but seldom equal to zero. All coefficients keep
participating in the estimate, but many become small and irrelevant.

You can control the strength of the regularization using a hyperparameter, usually
a coefficient itself, often called alpha. When alpha approaches 1.0, you have stron-
ger regularization and a greater reduction of the coefficients. In some cases, the
coefficients are reduced to zero. Don’t confuse alpha with C, a parameter used by
LogisticRegression and by support vector machines, because C is 1/alpha, so it
can be greater than 1. Smaller C numbers actually correspond to more regulariza-
tion, exactly the opposite of alpha.

Regularization works because it is the sum of the coefficients of the predictor
variables, therefore it’s important that they’re on the same scale or the regular-
ization may find it difficult to converge, and variables with larger absolute coef-
ficient values will greatly influence it, generating an infective regularization. It’s
good practice to standardize the predictor values or bind them to a common min-
max, such as the [-1,+1] range. The following sections demonstrate various
methods of using both L1 and L2 regularization to achieve various effects.

Relying on Ridge regression (L2)

The first example uses the L2 type regularization, reducing the strength of the
coefficients. This example uses all the original features, the features engineered
and interactions built as part of the previous examples. The Ridge class imple-
ments L2 for linear regression. Its usage is simple; it presents just the parameter
alpha to fix. Ridge regression performs better when applied to features that have
been rescaled or standardized. If the features are not rescaled, it can take a longer
time for the regression to converge and reach a solution. To address this issue, the

PART 5 Learning from Data

TIP

example sets up a pipeline that includes the StandardScaler along with our model.
This approach of using a pipeline with feature scaling will be applied to all regu-
larized linear models we present, because they share the same problem.

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge

Xt = pd.concat([X, interactions], axis=1)

ridge = Pipeline([("scaler", StandardScaler()),
("model" ,Ridge())])

search_grid = {'model__alpha': np.logspace(-6, 4, 20)}

search = GridSearchCV(estimator=ridge,
param_grid=search_grid,
scoring='neg_mean_squared_error',
refit=True, cv=crossvalidation)

search. fit(Xt, y)

print(f'Best parameters: {search.best_params_}")

score = abs(search.best_score_)

print(f'CV MSE of best parameters: {score:.3f}')

After searching for the best alpha parameter, the resulting best model is

Best parameters: {'model__alpha': 263.6650898730355}
CV MSE of best parameters: 0.499

A good search space for the alpha value is in the range np. logspace(-6,4,20). Of
course, if the resulting optimum value is on one of the extremities of the tested
range, you need to enlarge the range and retest.

Using the Lasso (L1)

The second example uses the L1 regularization, the Lasso class, whose principal
characteristic is to reduce the effect of less useful coefficients down toward zero.
This action enforces sparsity in the coefficients, with just a few having values
above zero. The class uses the same parameters of the Ridge class that are dem-
onstrated in the previous section.

from sklearn.linear_model import Lasso

from warnings import simplefilter

from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 359

lasso = Pipeline([("scaler", StandardScaler()),
("model" ,Lasso(selection="random'))])

search_grid = {'model__alpha': np.logspace(-6, 4, 20)}

search = GridSearchCV(estimator=1lasso,
param_grid=search_grid,
scoring='neg_mean_squared_error',
refit=True, cv=crossvalidation)

search. fit(Xt, y)

best_alpha = search.best_params_

print(f'Best parameters: {search.best_params_}")

score = abs(search.best_score_)

print(f'CV MSE of best parameters: {score:.3f}")

In setting the Lasso, the code uses a random approach for its optimization
(selection="random"). The resulting mean squared error obtained is lower than
it is using the L2 regularization:

Best parameters: {'model__alpha': 0.004832930238571752}
CV MSE of best parameters: 0.492

Leveraging regularization

Because you can choose the sparse coefficients resulting from a L1 regression as a
feature selection procedure, you can effectively use the Lasso class for selecting
the most important variables. By tuning the alpha parameter, you can select a
greater or lesser number of variables. In this case, the code sets the alpha param-
eter to about 0.005, obtaining a much simplified solution as a result:

selection = np.abs(
search.best_estimator_["model"].coef_) > @
print(Xt.columns[selection].tolist())

The simplified solution is made of a handful of interactions:

['MedInc', 'HouseAge', 'AveRooms', 'AveOccup', 'Latitude',
'Longitude', 'AveOccupRooms', 'AveOccupBedrms',
'Rooms_capita', 'Bedrms_capita', 'Bedrms_pct',

'MedInc HouseAge', 'MedInc Population',
'MedInc AveRooms', 'HouseAge Population',
'HouseAge AveOccup', 'Population AveRooms',
'Population AveOccup']

360 PARTS5 Learning from Data

Combining L1 & L2: Elasticnet

L2 regularization reduces the impact of correlated features, whereas L1 regular-
ization tends to select them. A good strategy is to mix them using a weighted sum
by using the ElasticNet class. You control both L1 and L2 effects by using the
same alpha parameter, but you can decide the L1 effect’s share by using the 11_
ratio parameter. Clearly, if 11_ratio is 0, you have a ridge regression; on the
other hand, when 11_ratio is 1, you have a lasso.

from sklearn.linear_model import ElasticNet

elastic = Pipeline([
("scaler", StandardScaler()),
("model", ElasticNet(selection="'random'))])
search_grid = {'model__alpha': np.logspace(-6, 4, 20),
"model__11_ratio': [0.05, 0.10 ,0.25, 0.5,
0.75, ©.90, 0.95]}
search = GridSearchCV(estimator=elastic,
param_grid=search_grid,
scoring="'neg_mean_squared_error',
refit=True, cv=crossvalidation)
search. fit(Xt, y)
print(f'Best parameters: {search.best_params_}")
score = abs(search.best_score_)
print(f'CV MSE of best parameters: {score:.3f}'")

After a while, you get a result that’s quite similar to L1’s because L1 regularization
is predominant on L2:

Best parameters: {'model__alpha': 0.004832930238571752,

'model__11_ratio': 0.95}
CV MSE of best parameters: 0.493

Fighting with Big Data Chunk by Chunk

Up to this point, the book has dealt with small example databases. Real data, apart
from being messy, can also be quite big — sometimes so big that it can’t fit in
memory, no matter what the memory specifications of your machine are.

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 361

362

WARNING

©

REMEMBER

The Xt and y variables used for the examples in the sections that follow are cre-
ated as part of the example in the “Creating interactions between variables” sec-
tion, earlier in this chapter. If you haven’t worked through that section, the
examples in this section will fail to work properly.

Determining when there is too much data

In a data science project, data can be deemed big when one of these two situations
occur:

¥ It can'tfitin the available computer memory.

¥ Even if the system has enough memory to hold the data, the application can't
elaborate the data using machine learning algorithms in a reasonable amount
of time.

Implementing Stochastic Gradient Descent

When you have too much data, you can use the Stochastic Gradient Descent
Regressor (SGDRegressor) or Stochastic Gradient Descent Classifier (SGDClassi-
fier) as a linear predictor. The only difference with other methods described ear-
lier in the chapter is that they actually optimize their coefficients using only one
observation at a time. It therefore takes more iterations before the code reaches
comparable results using a ridge or lasso regression, but it requires much less
memory and time.

This is because both predictors rely on Stochastic Gradient Descent (SGD)
optimization — a kind of optimization in which the parameter adjustment occurs
after the input of every observation, leading to a longer and a bit more erratic jour-
ney toward minimizing the error function. Of course, optimizing based on single
observations, and not on huge data matrices, can have a tremendously beneficial
impact on the algorithm’s training time and the amount of memory resources.

When using the SGDs, apart from different cost functions that you have to test for
their performance, you can also try using L1, L2, and Elasticnet regularization just
by setting the penalty parameter and the corresponding controlling alpha and
11_ratio parameters. Some of the SGDs are more resistant to outliers, such as
modified_huber for classification or huber for regression.

SGD is sensitive to the scale of variables, and not just because of regularization but
also because of the way it works internally. Consequently, you must always stand-
ardize your features (for instance, by using StandardScaler) or you force them in
the range [0,+1] or [-1,+1] using the MinMaxScaler as done in the example in
this section. Failing to do so will lead to poor results.

PART 5 Learning from Data

TIP

When using SGDs, you’ll always have to deal with chunks of data unless you can
load all the training data into memory. To make the training effective, you should
standardize by having the StandardScaler infer the mean and standard deviation
from the first available data. The mean and standard deviation of the entire dataset
is most likely different, but the transformation by an initial estimate will suffice

to develop a working learning procedure.

from sklearn.linear_model import SGDRegressor

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

scaling = MinMaxScaler(feature_range=(0, 1))
scaled_X = scaling.fit_transform(Xt)

X_tr, X_t, y_tr, y_t = train_test_split(scaled_ X, vy,
test_size=0.20,
random_state=0)

SGD = SGDRegressor(loss='squared_error',

penalty="11",
alpha=0.00001,
max_iter=2000,
learning_rate="adaptive",
random_state=0)

SGD. fit(X_tr, y_tr)

score = mean_squared_error(y_t, SGD.predict(X_t))
print(f'test MSE: {score:.3f}')

The resulting mean squared error after running the SGDRegressor is

CV MSE: ©.494

In the preceding example, you used the fit() method, which requires that you
preload all the training data into memory. You can train the model in successive
steps by using the partial_fit() method instead, which runs a single iteration
on the provided data, then keeps it in memory and adjusts it when receiving new
data. The following example monitors the results obtained by the model during

the iterations:

SGD = SGDRegressor (loss='squared_error',
penalty="11",
alpha=0.00001,

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks

363

learning_rate="adaptive",
random_state=0)

improvements = list()

for z in range(2000):
SGD.partial _fit(X_tr, y_tr)
score = mean_squared_error(y_t, SGD.predict(X_t))
improvements .append(score)

print(f'test MSE: {improvements[-1]:.3f}')

Having kept track of the algorithm’s partial improvements during 2000 iterations
over the same data, you can produce a graph that helps you understand the
improvements shown in the following code. Note that you could have used differ-
ent data at each step.

%matplotlib inline
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 4))
plt.subplot(1,2,1)

range_1 = range(9,50,5)

score_1 = np.abs(improvements[0:100:10])
plt.plot(range_1, score_1,'o—"')
plt.xlabel('Iterations up to 100")
plt.ylabel('Test mean squared error')
plt.subplot(1,2,2)

range_2 = range(100,2000,100)

score_2 = np.abs(improvements[100:2000:100])
plt.plot(range_2, score_2,'o——"')
plt.xlabel('Iterations from 101 to 2000')
plt.show()

As shown in the first of the two panes in Figure 19-1, the algorithm initially starts
with a high error rate, but it manages to reduce it in just a few iterations, usually
5-10. After that, the error rate slowly improves by a smaller amount with each
iteration. In the second pane, you can see that after 1,500 iterations, the error rate
reaches a minimum and starts fluctuating. At that point, you’re starting to overfit
because data already understands the rules, and you’re actually forcing the SGD to
learn more when nothing is left in the data other than noise. Consequently, it
starts learning noise and erratic rules.

364 PARTS Learning from Data

¢ ®
0.58 | |
1 0.4801 |
[[
s 1 1
£ 0564 | '
W
o \ 04784 1
% \ 1
S 0544 i
o 1 |
p \ 04761 ¢
80524 | H
g \ ‘h
e 1
@ \ 0.474 - \
0.50 A L 1Y
~eq. - .,
. ~——g_
FIGURE 15:1: 0.48 - ®-®-e-9 0472 hag 2 SO
A slow descent : | ; : i v
optimizing 0 20 40 60 80

500 1000 1500
squared error. Iterations up to 100

Iterations from 101 to 2000

Unless you’re working with all the data in memory, grid-searching and cross-
@ validating the best number of iterations will be difficult. A good trick is to keep a

chunk of training data to use for validation apart in memory or storage. By check-
ing your performance on that untouched part, you can see when SGD learning

performance starts decreasing. At that point, you can interrupt iterating over the
data (a stopping method known as early stopping).

TIP

Understanding Support Vector Machines

Support vector machines (SVM) are one of the most complex and powerful
machine learning techniques in the data scientist’s toolbox. However, since the
recent success of neural networks, you usually find this topic solely in advanced
manuals. In our opinion, you shouldn’t turn away from this great learning algo-
rithm. The Scikit-learn library offers you a wide and accessible range of SVM-
supervised classes for regression and classification. When evaluating whether you

want to try SVM algorithms as a machine learning solution, consider these main
benefits:

3 Comprehensive family of techniques for binary and multiclass classification,
regression, and novelty detection

¥ Good prediction generator that provides robust handling of overfitting, noisy
data, and outliers

¥ Successful handling of situations that involve many variables

¥ Effective when you have more variables than examples

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks

365

366

©

REMEMBER

¥ Fast, when you're working with up to 10,000 training examples

¥ Detects nonlinearity in your data automatically, so you don't have to apply
complex transformations of your variables

Wow, that sounds great. However, you should also consider a few relevant draw-
backs before you jump into importing the SVM module:

¥ Performs better when applied to binary classification (which was the initial
purpose of SVM), so SVM doesn’'t work as well on other prediction problems

¥ Less effective when you have a lot more variables than examples; you have to
look for other solutions like SGD

¥ Provides you with only a predicted outcome; you can obtain a probability
estimate for each response at the cost of more time-consuming computations

¥ Works satisfactorily out of the box, but if you want the best results, you have
to spend time experimenting in order to tune the many parameters

Relying on a computational method

Vladimir Vapnik and his colleagues invented SVM in the 1990s while working at
AT&T laboratories. SVM gained success thanks to its high performance in many
challenging problems for the machine learning community of the time, especially
when used to help a computer read handwritten input. Today, data scientists fre-
quently apply SVM to an incredible array of problems, from medical diagnosis to
image recognition and textual classification. You’ll likely find SVM quite useful for
your problems, too!

The code for this section is relatively long and complex. It appears in the
P4DS4D4_19_Representing_SVM_boundaries.ipynb file, along with the outputs
described in this section. You should refer to the source code to see how the code
generates the figures in this section.

The idea behind SVM is simple, but the mathematical implementation is quite
complex and requires many computations to work. This section helps you under-
stand the technology behind the technique — knowing how a tool works always
helps you figure out where and how to employ it best. Start considering the prob-
lem of separating two groups of data points. It’s a classic binary classification
problem in which a learning algorithm has to figure out how to separate one class
of instances from the other one using the information provided by the data at
hand. The first pane in Figure 19-2 shows a representation of a similar problem.

PART 5 Learning from Data

FIGURE 19-2:
Dividing two
groups.

1
2 e} e
Eo
o0 o © 00 o ©
o} o
1 o) 1 Mo
0006 olo B i ooO@ olo
B o Tl | b0
Seas |
4] 0 e
o0 ® o ° oo Tl P
:“ L] :“ ® |: S~
-1 py ‘ ® -1 ® ‘ L E
e® 4 [|
1
® o!
2 ® -2 @ |
1
-15 -1.0 -05 0.0 0.5 1.0 15 -15 -1.0 -05 0.0 0.5 10 15

If the two groups are separate from one another, you may solve the problem in
many different ways just by choosing different separating lines. Of course, you
must pay attention to the details and use fine measurements. Even though it may
seem like an easy task, you need to consider what happens when the data changes,
such as when you add more data points later. You may not be able to be sure that
you chose the right separation line.

The second pane in Figure 19-2 shows two possible solutions, but even more can
exist. Both chosen solutions are too near to the existing observations (as shown by
the proximity of the lines to the data points), but there is no reason to think that
new observations will behave precisely like those shown in the figure. SVM mini-
mizes the risk of choosing the wrong line (as you may have done by selecting
solution A or B from Figure 19-3) by choosing the solution characterized by the
largest distance from the bordering points of the two groups. Having so much
space between groups (the maximum possible) should reduce the chance of pick-
ing the wrong solution!

The largest distance between the two groups is the margin. When the margin is
large enough, you can be quite sure that it’ll keep working well, even when you
have to classify previously unseen data. The margin is determined by the points
that are present on the limit of the margin — the support vectors (the support vec-
tor machines algorithm takes its name from them).

You can see an SVM solution in the first pane in Figure 19-3. The figure shows the

margin as a dashed line, the separator as the continuous line, and the support
vectors as the circled data points.

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 367

FIGURE 19-3:

A viable SVM

solution for

the problem of
the two groups

368

and more.

REMEMBER

LD,
TECHNICAL
STUFF

-15 -1.0 -05 0.0 0.5 10 15

Real-world problems don’t always provide neatly separable classes, as in this
example. However, a well-tuned SVM can withstand some ambiguity (some mis-
classified points). An SVM algorithm with the right parameters can really do
miracles.

When working with example data, it’s easier to look for neat solutions so that the
data points can better explain how the algorithm works and you can grasp the core
concepts. With real data, though, you need approximations that work. Therefore,
you rarely see large and clear margins.

Apart from binary classifications on two dimensions, SVM can also work on com-
plex data. You can consider the data as complex when you have more than two
dimensions, or in situations that are similar to the layout depicted in the second
pane in Figure 19-3, when separating the groups by a straight line isn’t possible.

In the presence of many variables, SVM can use a complex separating plane (the
hyperplane). SVM also works well when you can’t separate classes by a straight
line or plane because it can explore nonlinear solutions in multidimensional space
thanks to a computational technique called the kernel trick, a method used to
bridge linearity and nonlinearity. (You can find a full discussion of the kernel trick
at https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f.)

Fixing many new parameters

Although SVM is complex, it’s a great tool. After you find the most suitable SVM
version for your problem, you have to apply it to your data and work a little to
optimize some of the many parameters available and improve your results. Set-
ting up a working SVM predictive model involves these general steps:

PART 5 Learning from Data

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

Choose the SVM class you'll use.

Train your model with the data.

Check your validation error and make it your baseline.
Try different values for the SVM parameters.

Check whether your validation error improves.

owukwnN =

Train your model again using the data with the best parameters.

To choose the right SVM class, you have to think about your problem. For exam-
ple, you could choose a classification (guess a class) or regression (guess a num-
ber). When working with a classification, you must consider whether you need to
classify just two groups (binary classification) or more than two (multiclass clas-
sification). Another important aspect to consider is the quantity of data you have
to process. After taking notes of all your requirements on a list, a quick glance at
Table 19-1 will help you to narrow your choices.

TABLE 19-1 The SVM Module of Learning Algorithms
Class Characteristic Usage Key Parameters
sklearn.svm.SVC Binary and multiclass classification when the C, kernel, degree,
number of examples is less than 10,000 gamma
sklearn.svm.NuSVC Similar to SVC nu, kernel, degree,
gamma

sklearn.svm.

Binary and multiclass classification when the number Penalty, loss, C

LinearSVC of examples is more than 10,000; sparse data

sklearn.svm.SVR Regression problems C, kernel, degree,
gamma, epsilon

sklearn.svm.NuSVR Similar to SVR Nu, C, kernel, degree,
gamma

sklearn.svm. Outliers detection nu, kernel, degree,

OneClassSVM gamma

The first step is to check the number of examples in your data. Having more than
10,000 examples could mean slow and cumbersome computations, but you can
still use SVM to obtain acceptable performance for classification problems by
using sklearn.svm.LinearSVC. When solving a regression problem, you may find
that the LinearSVC isn’t fast enough, in which case you use a stochastic solution
for SVM (as described in the sections that follow).

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 369

370

TIP

The Scikit-learn SVM module wraps two powerful libraries written in C, libsvm
and liblinear. When fitting a model, there is a flow of data between Python and the
two external libraries. A cache smoothes the data exchange operations. However,
if the cache is too small and you have too many data points, the cache becomes a
bottleneck! If you have enough memory, it’s a good idea to set a cache size greater
than the default 200MB (1000MB, if possible) using the SVM class’ cache_size
parameter. Smaller numbers of examples require only that you decide between
classification and regression.

In each case, you’ll have two alternative algorithms. For example, for classifica-
tion, you may use sklearn.svm.SVC or sklearn.svm.NuSVC. The only difference
with the Nu version is the parameters it takes and the use of a slightly different
algorithm. In the end, it gets basically the same results, so you normally choose
the non-Nu version.

After deciding on which algorithm to use, you find that you have a number of
parameters from which to choose, and the C parameter is always among them.
The C parameter indicates how much the algorithm has to adapt to training points.
When C is small, the SVM adapts less to the points and tends to take an average
direction, just using a few of the available points and variables. Larger C values
tend to force the learning process to follow more of the available training points
and to get involved with many variables.

The right C is usually a middle value, and you can find it after a bit of experimen-
tation. If your C is too large, you risk overfitting, a situation in which your SVM
adapts too much to your data and cannot properly handle new problems. If your C
is too small, your prediction will be rougher and imprecise. You'll experience a
situation called underfitting — your model is too simple for the problem you want
to solve.

After deciding the C value to use, the important block of parameters to fix is
kernel, degree, and gamma. All three interconnect and their value depends on the
kernel specification (for instance, the linear kernel doesn’t require degree or
gamma, so you can use any value). The kernel specification determines whether
your SVM model uses a line or a curve in order to guess the class or the point
measure. Linear models are simpler and tend to guess well on new data, but they
sometimes underperform when variables in the data relate to each other in
complex ways. Because you can’t know in advance whether a linear model works
for your problem, it’s good practice to start with a linear kernel, fix its C value,
and use that model and its performance as a baseline for testing nonlinear
solutions afterward.

PART 5 Learning from Data

Classifying with SVC

It’s time to build the first SVM model. Because SVM initially performed so well
with handwritten classification, starting with a similar problem is a great idea.
Using this approach can give you an idea of how powerful this machine learning
technique is. The example uses the digits dataset available from the module data-
sets in the Scikit-learn package. The digits dataset contains a series of 8-x-8-
pixel images of handwritten numbers ranging from o to 9.

from sklearn import datasets
digits = datasets.load_digits()
X, y = digits.data, digits.target

After loading the datasets module, the load.digits function imports all the data,
from which the example extracts the predictors (digits.data) as X and the pre-
dicted classes (digits.target) asy.

You can look at what’s inside this dataset using the matplotlib functions sub-
plot (for creating an array of drawings arranged in two rows of five columns) and
imshow (for plotting grayscale pixel values onto an 8-x-8 grid). The code arranges
the information inside digits. images as a series of matrices, each one containing
the pixel data of a number.

#matplotlib inline

import matplotlib.pyplot as plt
for k, img in enumerate(range(10)):
plt.subplot(2, 5, k+1)
plt.imshow(digits.images[img],
cmap='"binary',
interpolation="none")
plt.show()

The code displays the first ten numbers as an example of the data used in the
example. You can see the result in Figure 19-4.

By observing the data, you can also determine that SVM could guess a particular
number by associating a probability with the values of specific pixels in the grid.
A number 2 could turn on different pixels than a number 1, or maybe different
groups of pixels. Data science involves testing many programming approaches and
algorithms before reaching a solid result, but it helps to be imaginative and intui-
tive in order to determine which approach to try first. In fact, if you explore X, you
discover that it’s made of exactly 64 variables, each one representing the grayscale
value of a single pixel, and that you have plentiful examples — exactly 1,797 cases.

print(X[0])

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 371

0 - .
5 - -

0 5 0 5 0 5 0 5

0
FIGURE 19-4: u
The first ten 5
handwritten
0 5 0 5 0 5 0 5 0 5

digits from the
digits dataset.

The code returns a vector of the first example in the dataset:

13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15.
3. 15. 2. 0. 11. 8. 0. @0. 4. 12. Q.
0. 0. 5. 8. 0. 0. 9. 8. 0. 0. 4.

11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12. 0. Q.
0. 0. 6. 13. 10. 0. 0. 0.]

(SIS

Q. 5.
9. 0.
8. 8.

If you reprint the same vector as an 8-x-8 matrix, you spot the image of a zero:
print(X[Q] .reshape(8, 8))

You interpret the zero values as the color white and the higher values as darker

shades of gray:
[[@. . 5.13. 9. 1. 0. 0.]
[@. 0. 13. 15. 10. 15. 5. 0.]
[@. 3. 15. 2. 0. 11. 8. 0.]
[@. 4. 12. ©. ©. 8. 8. 0.]
[@0.5. 8. 0. ©. 9. 8. 0.]
[@. 4. 11. 0. 1.12. 7. 0.]
[@. 2. 14. 5. 10. 12. 9. 0.]
[0. . 6. 13. 10. 0. 0. 0.]]

At this point, you might wonder what to do about labels. You can try getting a
count of the labels using the unique function in the NumPy package:

np.unique(y, return_counts=True)

372 PARTS5 Learning from Data

TIP

The output associates the class label (the first number) with its frequency and is
worth observing (it is the second row of output):

(array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
array([178, 182, 177, 183, 181, 182, 181, 179, 174, 180]))

All the class labels present about the same number of examples. That means your
classes are balanced and the SVM won’t be led to think that one class is more
probable than any of the others. If one or more of the classes had a significantly
different number of cases, you’d face an unbalanced class problem. An unbalanced
class scenario requires you to perform an evaluation:

3 Keep the unbalanced class and get predictions biased toward the most
frequent classes

¥ Establish equality among the classes using weights, which means allowing
some observations to count more

¥ Use selection to cut some cases from the classes that have too many cases

An imbalanced class problem requires you to set some additional parameters.
sklearn.svm.SVC has both a class_weight parameter and a sample_weight key-
word in the fit method. The most straightforward and easiest way to solve the
problem is to set class_weight="balanced' when defining your SVC and let the
algorithm fix everything by itself.

Now you’re ready to test the SVC with the linear kernel. However, don’t forget to
split your data into training and test sets, or you won’t be able to judge the effec-
tiveness of the modeling work. Always use a separate data fraction for perfor-
mance evaluation or the results will look good at the start but turn worse when
adding fresh data.

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import MinMaxScaler
X_tr, X_t, y_tr, y_t = train_test_split(

X, vy, test_size=0.3, random_state=0)

The train_test_split function splits X and y into training and test sets, using
the test_size parameter value of 0. 3 as a reference for the split ratio.

scaling = MinMaxScaler(feature_range=(-1, 1)).fit(X_tr)

X_tr = scaling.transform(X_tr)
X_t = scaling.transform(X_t)

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 373

374

REMEMBER

As a best practice, after splitting the data into training and test parts, you scale the
numeric values, first by getting scaling parameters from the training data and
then by applying a transformation on both training and test sets.

Another important action to take before feeding the data into an SVM is scaling.
Scaling transforms all the values to the range between —1to 1 (or from o to 1, if you
prefer). Scaling transformation avoids the problem of having some variables
influence the algorithm (they may trick it into thinking they are important because
they have big values) and it makes the computations exact, smooth, and fast.

The following code fits the training data to an SVC class with a linear kernel. It
also cross-validates and tests the results in terms of accuracy (the percentage of
numbers correctly guessed).

from sklearn.svm import SVC
svc = SVC(kernel='linear', class_weight='balanced')

The code instructs the SVC to use the linear kernel and to reweight the classes
automatically. Reweighting the classes ensures that they remain equally sized
after the dataset is split into training and test sets.

cv = cross_val_score(sve, X_tr, y_tr, cv=10)
test_score = sve.fit(X_tr, y_tr).score(X_t, y_t)

The code then assigns two new variables. Cross-validation performance is
recorded by the cross_val_score function, which returns a list with all ten scores
after a tenfold cross-validation (cv=10). The code obtains a test result by using
two methods in sequence on the learning algorithm — fit(), that fits the model,
and score(), which evaluates the result on the test set using mean accuracy
(mean percentage of correct results among the classes to predict).

print(f'CV accuracy score: {np.mean(cv):.3f}"')
print(f'Test accuracy score: {test_score:.3f}')

Finally, the code prints the two variables and evaluates the result. The result is
quite good: 97.6 percent correct predictions on the test set:

CV accuracy score: 0.981
Test accuracy score: 0.976

You might wonder what would happen if you optimize the principal parameter C
instead of using the default value of 1.0. The following script provides you with an
answer, using gridsearch to look for an optimal value for the C parameter:

PART 5 Learning from Data

TIP

from sklearn.model_selection import GridSearchCV
sve = SVC(class_weight='balanced', random_state=1)
search_space = {'C': np.logspace(-3, 3, 7)}
gridsearch = GridSearchCV(svc,
param_grid=search_space,
scoring="'accuracy',
refit=True, cv=10)
gridsearch. fit(X_tr,y_tr)

Using GridSearchCV is a little more complex, but it allows you to check many
models in sequence. First, you must define a search space variable using a Python
dictionary that contains the exploration schedule of the procedure. To define
a search space, you create a dictionary (or, if there is more than one dictionary, a
dictionary list) for each tested group of parameters. Inside the dictionary, you
place the name of the parameters as keys and associate them with a list (or a
function generating a list, as in this case) containing the values to test.

The NumPy logspace() function creates a list of seven C values, ranging from
10"-3 to 10"3. This is a computationally expensive number of values to test, but
it’s also comprehensive, and you can always be safe when you test C and the other
SVM parameters using such a range.

You then initialize GridSearchCV, defining the learning algorithm, search space,
scoring function, and number of cross-validation folds. The next step is to instruct
the procedure, after finding the best solution, to fit the best combination of
parameters, so that you can have a ready-to-use predictive model:

cv = gridsearch.best_score_
test_score = gridsearch.score(X_t, y_t)
best_c = gridsearch.best_params_['C']

In fact, gridsearch now contains a lot of information about the best score (and
best parameters, plus a complete analysis of all the evaluated combinations) and
methods, such as score, which are typical of fitted predictive models in
Scikit-learn.

print(f'CV accuracy score: {cv:.3f}")

print(f'Test accuracy score: {test_score:.3f}")
print(f'Best C parameter: {best_c:.1f}"')

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 375

376

(==
SiS
TECHNICAL
STUFF

Here, the code extracts cross-validation and test scores, and outputs the C value
related to these best scores:

CV accuracy score: 0.989
Test accuracy score: 0.987
Best C parameter: 10.0

The last step prints the results and shows that using a C=10.0 increases perfor-
mance compared to before, both on the cross-validation and the test set.

Going nonlinear is easy

Having defined a simple linear model as a benchmark for the handwritten digit
project, you can now test a more complex hypothesis, and SVM offers a range of
nonlinear kernels:

3 Polynomial (poly)
¥ Radial Basis Function (rbf)
¥ Sigmoid (sigmoid)

¥ Advanced custom kernels

Even though so many choices exist, you rarely use something different from the
radial basis function kernel (rbf for short) because it’s faster than other kernels
and can approximate almost any nonlinear function.

Here’s a basic, practical explanation about how rbf works: It separates the data
into many clusters, so it’s easy to associate a response to each cluster.

The rbf kernel requires that you set the degree and gamma parameters besides set-
ting C. They’re both easy to set (and a good grid search will always find the right
value).

The degree parameter has values that begin at 2. It determinates the complexity
of the nonlinear function used to separate the points. As a practical suggestion,
don’t worry too much about degree — test values of 2, 3, and 4 on a grid search.
If you notice that the best result has a degree of 4, try shifting the grid range
upward and test 3, 4, and 5. Continue proceeding upward as needed, but using a
value greater than 5 is rare.

The gamma parameter’s role in the algorithm is similar to C (it provides a trade-off
between overfit and underfit). It’s exclusive of the rbf kernel. High gamma values
induce the algorithm to create nonlinear functions that have irregular shapes

PART 5 Learning from Data

because they tend to fit the data more closely. Lower values create more regular,
spherical functions, ignoring most of the irregularities present in the data.

Now that you know the details of the nonlinear approach, it’s time to try rbf on the
previous example. Be warned that, given the high number of combinations tested,
the computations may take some time to complete, depending on the character-
istics of your computer.

from sklearn.model_selection import GridSearchCV

sve = SVC(class_weight='balanced', random_state=1)
search_space = [{'kernel': ['linear'],
'C': np.logspace(-3, 3, T7)},
{'kernel': ['rbf'],
'degree':[2, 3, 4],
'C':np.logspace(-3, 3, 7),
'gamma': np.logspace(-3, 2, 6)}]
gridsearch = GridSearchCV(svc,
param_grid=search_space,
scoring="accuracy',
refit=True, cv=10,
n_jobs=-1)
gridsearch. fit(X_tr, y_tr)
cv = gridsearch.best_score_
test_score = gridsearch.score(X_t, y_t)
print(f'CV accuracy score: {cv:0.3f}')
print(f'Test accuracy score: {test_score:0.3f}")
print(f'Best parameters: {gridsearch.best_params_}"')
print('Best parameters: %s' % dgridsearch.best_params_)

Notice that the only difference in this script is that the search space is more
sophisticated. By using a list, you enclose two dictionaries — one containing the
parameters to test for the linear kernel and another for the rbf kernel. In this way,
you can compare the performance of the two approaches at the same time. The
code will take quite a while to run. Afterward, it will report to you:

CV accuracy score: 0.990

Test accuracy score: 0.993

Best parameters: {'C': 1.0, 'degree': 2, 'gamma': 0.1,
'kernel': 'rbf'}

The results confirm that rbf performs better. However, it’s a small margin of vic-

tory over the linear models, gained at the expense of more complexity and com-
putational time. In such cases, having more data available could help in

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 377

378

determining the better model with greater confidence. Unfortunately, getting
more data may be expensive in terms of money and time. When faced with the
absence of a clear winning model, the best suggestion is to decide in favor of the
simpler model. In this case, the linear kernel is much simpler than rbf.

Performing regression with SVR

Up to now, you have dealt only with classification, but SVM can also handle
regression problems. Having seen how a classification works, you don’t need to
know much more than that the SVM regression class is SVR and there is an addi-
tional parameter to fix, epsilon. Everything else previous sections discussed for
classification works precisely the same with regression.

This example uses a synthetic dataset, created by the make_regression() func-
tion in Scikit-learn. The underlying solution behind the data is made by combin-
ing three variables, but this example tries to confuse the algorithm by providing
more irrelevant variables and adding plenty of noise to the values. In total, the
dataset has 500 cases and 15 numeric variables (only three of which are meaning-
ful for the solution).

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import MinMaxScaler

from sklearn.svm import SVR

from sklearn.datasets import make_regression

X, y = make_regression(n_samples=500,
n_features=15,
n_informative=3,
noise=10,
random_state=101)

X_tr, X_t, y_tr, y_t = train_test_split(X, v,
test_size=0.3,
random_state=0)

scaling = MinMaxScaler(feature_range=(-1, 1)).fit(X_tr)

X_tr = scaling.transform(X_tr)

X_t = scaling.transform(X_t)

You’ll try to guess the solution using SVR (epsilon-Support Vector Regression). In
addition to C, kernel, degree, and gamma, SVR also has epsilon, as mentioned
previously. Epsilon is a measure of how much error the algorithm considers

PART 5 Learning from Data

acceptable. A high epsilon implies fewer support points, and a lower epsilon
requires a larger number of support points. In other words, epsilon provides
another way to trade off underfit against overfit.

As a search space for this parameter, experience tells you that the sequence [0,
0.01, 0.1, 0.5, 1, 2, 4] works quite fine. Starting from a minimum value of
0 (when the algorithm doesn’t accept any error) and reaching a maximum of 4,
you should enlarge the search space only if you notice that higher epsilon values
bring better performance.

Having included epsilon in the search space and assigning SVR as a learning
algorithm, you can complete the script. Be warned that, given the high number of
combinations evaluated, the computations may take quite some time, depending
on the characteristics of your computer.

svr = SVR()
search_space = [{'kernel': ['linear'],
'C': np.logspace(-3, 2, 6),
'epsilon': [0, ©0.01, 0.1, @.5, 1, 2, 4]},
{'kernel': ['rbf'],
'degree':[2,3],
'C':np.logspace(-3, 3, 7),
'gamma': np.logspace(-3, 2, 6),
'epsilon': [@, 0.01, 0.1, 0.5, 1, 2, 4]}]
gridsearch = GridSearchCV(svr,
param_grid=search_space,
refit=True,
scoring= 'r2',
cv=10, n_jobs=-1)
gridsearch.fit(X_tr, y_tr)
cv = gridsearch.best_score_
test_score = gridsearch.score(X_t, y_t)
print(f'CV R2 score: {cv:.3f}')
print(f'Test R2 score: {test_score:.3f}")
print(f'Best parameters: {gridsearch.best_params_}"')

The grid search may take a while on your computer. Even though the example
uses all the computational power in your system (n_jobs=-1), the computer has
to test quite a few combinations; for each kernel, you can figure out how many
models it has to compute by multiplying the number of values it has to test for
each parameter. For instance, for the rbf kernel, it has two values for degree,
seven for C, six for gamma, and seven for epsilon, which equatesto2 *7* 6 * 7 =
588 models, each one replicated 10 times (because cv=10). That is 5,880 models

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 379

380

REMEMBER

tested just for the rbf kernel. (The code also tests the linear model, which requires
420 tests.) Finally, you should get these results:

CV R2 score: 0.990

Test R2 score: ©.992

Best parameters: {'C': 100.0, 'epsilon': 0.5,
'kernel': 'linear'}

Note that on the error measure, as a regression, the error is calculated using R
squared, a measure in the range from 0 to 1 that indicates the model’s perfor-
mance (with 1 being the best possible result to achieve).

Creating a stochastic solution with SVM

Now that you’re at the end of the overview of the family of SVM machine learning
algorithms, you should see that they’re a fantastic tool for a data scientist. Of
course, even the best solutions have problems. For example, you might think that
the SVM has too many parameters. Certainly, the parameters are a nuisance,
especially when you have to test so many combinations of them, which can take a
lot of CPU time. However, the key problem is the time necessary for training the
SVM. You may have noticed that the examples use small datasets with a limited
number of variables, and performing some extensive grid searches still takes a lot
of time. Real-world datasets are much bigger. Sometimes it may seem to take for-
ever to train and optimize your SVM on your computer.

A possible solution when you have too many cases (a suggested limit is 10,000
examples) is found inside the same SVM module, the LinearSVC class. This algo-
rithm works only with the linear kernel, and its focus is to classify (sorry, no
regression) large numbers of examples and variables at a higher speed than the
standard SVC. Such characteristics make the LinearSVC a good candidate for
textual-based classification. LinearSVC has fewer and slightly different parame-
ters to fix than the usual SVM (it’s similar to a regression class):

¥ C:The penalty parameter. Small values imply more regularization (simpler
models with attenuated or set to zero coefficients).

¥ loss: Avalue of 11 (just as in SVM) or 12 (errors weigh more, so it strives
harder to fit misclassified examples).

¥ penalty: Avalue of 12 (attenuation of less important parameters) or 11
(unimportant parameters are set to zero).

¥ dual:Avalue of true or false. It refers to the type of optimization problem
solved and, though it won't change the obtained scoring much, setting the
parameter to false results in faster computations than when it is set to true.

PART 5 Learning from Data

TABLE 19-2

REMEMBER

The loss, penalty, and dual parameters are also bound by reciprocal constraints,
so please refer to Table 19-2 to plan which combination to use in advance.

The Loss, Penalty, and Dual Constraints

Penalty Loss Dual
11 12 False
12 11 True
12 12 True; False

The algorithm doesn’t support the combination of penalty="11" and loss="11".
However, the combination of penalty="12"' and loss='11" perfectly replicates
the SVC optimization approach.

As mentioned previously, LinearSVC is quite fast, and a speed test against SVC
demonstrates the level of improvement to expect in choosing this algorithm. Even
this example uses a synthetic data example, this time for classification, thanks to
Scikit-learn’s make_classification() function:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

X,y = make_classification(n_samples=500,
n_features=15,
n_informative=5,
random_state=101)
X_tr, X_t, y_tr, y_t = train_test_split(X, vy,
test_size=0.3,
random_state=1)

from sklearn.svm import SVC, LinearSVC

sve = SVC(kernel='linear', random_state=0)

linear = LinearSVC(loss='hinge', max_iter=100_000,
random_state=0)

sve. fit(X_tr, y_tr)

linear.fit(X_tr, y_tr)

svc_score = sve.score(X_t, y_t)

libsve_score = linear.score(X_t, y_t)

print(f'SVC test accuracy: {svc_score:.3f}")
print(f'LinearSVC test accuracy: {libsvc_score:.3f}')

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 381

The results are similar to SVC:

SVC test accuracy: 0.787
LinearSVC test accuracy: 0.787

After you create an artificial dataset using make_classfication(), the code
obtains confirmation of how the two algorithms arrive at almost identical results.
At this point, the code tests the speed of the two solutions on the synthetic dataset
to understand how they scale to use more data:

import timeit
import numpy as np

X,y = make_classification(n_samples=10%x*3,
n_features=15,
n_informative=5,
random_state=101)

t_svc = timeit.timeit(

'sve.fit(X, y)',
"from __main__ import svc, X, y',
number=3)

t_libsve = timeit.timeit(

"linear.fit(X, y)',
"from __main__ import linear, X, y',
number=3)

print(f'best avg secs for SVC: {np.mean(t_svc):0.1f}")

print(f'best avg secs for LinearSVC: '

f'{np.mean(t_libsvc):0.1f}")

The example system shows the following result (the output of your system may
differ):

best avg secs for SVC: 0.2
best avg secs for LinearSVC: 0.1

Clearly, given the same data quantity, L inearSVC is faster than SVC. However, it’s
important to understand what happens when you increase the size of the sample
because what counts is how an algorithm scales when you increase the size of the
problem. For example, here’s what happens when you triple the size:

Avg time for SVC: 1.6 secs
Avg time for LinearSVC: 0.1 secs

382 PART 5 Learning from Data

The point here is that the time required for SVC grows much faster than that
required by LinearSVC. This is because SVC requires nonlinearly more time to pro-
cess the data provided, and the time will grow even more as the sample size
increases. Here are the results when you have five times more data, highlighting
even more differences:

Avg time for SVC: 984.9 secs
Avg time for LinearSVC: 5.5 secs

Using SVC with large amounts of data soon becomes unfeasible; LinearSVC should
be your choice if you need to work with large data amounts. Yet, even if LinearSvC
is quite fast at performing tasks, you may need to classify or regress millions of
examples. You need to know whether L inearSVC is still a better choice. You previ-
ously saw how the SGD class, using SGDClassifier and SGDRegressor, helps you
implement an SVM-type algorithm in situations with millions of data rows
without investing too much computational power. All you have to do is to set
their loss to 'hinge' for SGDClassifier and to 'epsilon_insensitive' for
SGDRegressor (in which case, you have to tune the epsilon parameter).

Another performance and speed test makes the advantages and limitations of
using LinearSVC or SGDClassifier clear:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.svm import LinearSVC

import timeit

from sklearn.linear_model import SGDClassifier
X, y = make_classification(n_samples=10%%5,
n_features=15,
n_informative=10,
random_state=101)
X_tr, X_t, y_tr, y_t = train_test_split(X, v,
test_size=0.3,
random_state=1)

The sample now is quite big — 100,000 cases. If you have enough memory and a
lot of time, you may even want to increase the number of trained cases or the
number of features and more extensively test how the two algorithms scale with
even bigger data.

linear = LinearSVC(penalty='12",
loss="hinge"',

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 383

dual=True,
random_state=101)
linear.fit(X_tr, y_tr)
score = linear.score(X_t, y_t)
t = timeit.timeit("linear.fit(X_tr, y_tr)",

"from __main__ import linear, X_tr, y_tr",

number=1)
print(f'LinearSVC test accuracy: {score:.3f}')
print(f'Avg time for LinearSVC: {np.mean(t):.1f} secs')

On the test computer, LinearSVC completed its computations on all the rows in
about 4.2 seconds:

LinearSVC test accuracy: 0.796
Avg time for LinearSVC: 4.2 secs

The following code tests SGDClassi fier using the same procedure:

sgd = SGDClassifier(loss='hinge',
penalty="'12",
alpha=0.1,
max_iter=1000,
shuffle=True,
random_state=101)
sgd.fit(X_tr, y_tr)
score = sgd.score(X_t, y_t)
t = timeit.timeit("sgd.fit(X_tr, y_tr)",
"from __main__ import sgd, X_tr, y_tr",
number=1)
print(f'SGDClassifier test accuracy: {score:.3f}')
print(f'Avg time for SGDClassifier: {np.mean(t):.1f} secs')

SGDClassifier instead took about a fraction of the time for processing the same
data and obtaining a comparable score:

SGDClassifier test accuracy: 0.796
Avg time SGDClassifier: 0.2 secs

Increasing the n_iter parameter can improve the performance, but it proportion-

@ ally increases the computation time. Increasing the number of iterations up to a
certain value (that you have to find out by test) increases the performance. How-
TIP ever, after that value, performance starts to decrease because of overfitting.

384 PART5 Learning from Data

Playing with Neural Networks

Starting with the idea of reverse-engineering how a brain processes signals,
researchers based neural networks on biological analogies and their components,
using brain terms such as neurons and axons as names. However, you’ll discover
that neural networks resemble nothing more than a sophisticated kind of linear
regression because they are a summation of coefficients multiplied by numeric
inputs. You also find that neurons are just where such summations happen.

Even if neural networks don’t mimic a brain very well (they’re arithmetic), these
algorithms are extraordinarily effective against complex problems such as image
and sound recognition, or machine language translation. They also execute quickly
when predicting, if you use the right hardware. Well-devised neural networks use
the name deep learning and are behind powerful tools like Siri and other digital
assistants, along with more astonishing machine learning applications, such as
ChatGPT (https://chat.openai.com/), as well.

Running deep learning requires special hardware (a computer with a GPU) and
installing special frameworks such as Keras and TensorFlow (https://www.
tensorflow.org/), MXNet (https://mxnet.apache.org/), Pytorch (https://
pytorch.org/) or Chainer (https://chainer.org/). This book doesn’t delve into
complex neural networks but does explore a simpler implementation offered by
Keras and TensorFlow instead; that implementation allows you to create neural
network quickly and compare them to other machine learning algorithms.

Understanding neural networks

The core neural network algorithm is the neuron (also called a unit). Many neu-
rons arranged in an interconnected structure make up the layers of a neural net-
work, with each neuron linking to the inputs and outputs of other neurons. Thus,
a neuron can input features from examples or from the results of other neurons,
depending on its location in the neural network.

Contrary to other algorithms, which have a fixed pipeline that determines how
algorithms receive and process data, neural networks require you to decide how
information flows by fixing the number of units (the neurons) and their distribu-
tion in layers. For this reason, setting up neural networks is more an art than a
science; you learn from experience how to arrange neurons into layers and obtain
the best predictions. In a more detailed view, neurons in a neural network take
many weighted values as inputs, sum them, and provide the summation as the
result.

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 385

https://chat.openai.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://pytorch.org/
https://pytorch.org/
https://chainer.org/

386

REMEMBER

A neural network can process only numeric, continuous information; it can’t pro-
cess qualitative variables (for example, labels indicating a quality such as red,
blue, or green in an image). You can process qualitative variables by transforming
them into a continuous numeric value, such as a series of binary values.

Neurons also provide a more sophisticated transformation of the summation. In
observing nature, scientists noticed that neurons receive signals but don’t always
release a signal of their own. It depends on the amount of signal received. When a
neuron in a brain acquires enough stimuli, it fires an answer; otherwise, it remains
silent. In a similar fashion, neurons in a neural network, after receiving weighted
values, sum them and use an activation function to evaluate the result, which
transforms it in a possibly nonlinear way. For instance, the activation function
can release a zero value unless the input achieves a certain threshold, or it can
dampen or enhance a value by nonlinearly rescaling it, thus transmitting a
rescaled signal.

Each neuron in the network receives inputs from the previous layers (when
starting, it connects directly with data), weights them, sums them all, and trans-
forms the result using the activation function. After activating, the computed out-
put becomes the input for other neurons or the prediction of the network.
Consequently, given a neural network made of a certain number of neurons and
layers, what makes this structure efficient in its predictions is the weights used by
each neuron for its inputs. Such weights aren’t different from the coefficients of a
linear regression, and the network learns their value by repeated passes (itera-
tions or epochs) over the examples of the dataset.

Classifying and regressing with neurons

This example uses Keras, which is now part of the TensorFlow framework. There
are instructions for installing TensorFlow on your system at https://docs.
anaconda.com/free/anaconda/applications/tensorflow/ if you’re working
with Anaconda. You may need to ask an administrator to perform the installation
for you if you don’t have administrator privileges on your host machine. You need
to have TensorFlow 2.0 or above installed, which you can check in Jupyter
Notebook using the following code:

import tensorflow as tf

print(tf.__version__)
In addition to TensorFlow version 2.0 and above, Google has integrated the Keras
package with Colab. Keras serves as a tool for constructing complex neural net-
works through a series of straightforward commands. What sets Keras apart is its
ability to simplify the creation of deep learning applications, making it accessible
to a wide range of users. Originally developed as an independent package by
Francois Chollet, Keras has gained significant popularity over time, favored by

PART 5 Learning from Data

https://docs.anaconda.com/free/anaconda/applications/tensorflow/
https://docs.anaconda.com/free/anaconda/applications/tensorflow/

practitioners, due to its intuitive and user-friendly nature. It effectively simplifies
the complexities associated with TensorFlow, offering a performing solution.

Unlike other machine learning algorithms, the construction of neural networks
for classification and regression tasks does not involve distinct sets of commands.
Instead, the key differences reside in the output neurons of the network and the
choice of loss function utilized to optimize the neural network’s outcomes. Hence,
this demonstration delves into a single example for classification, but it can also
apply to a regression problem, with just a few tweaks. The example uses the hand-
written digits dataset as an example of multiclass classification. It starts by
importing the necessary packages, in particular all the building blocks necessary
for Keras to build the neural network, loading the dataset into memory, and split-
ting it into a training and a test set (as the chapter has done when demonstrating
support vector machines):

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

from sklearn.datasets import load_digits

from keras.models import Sequential

from keras.layers import Dense, Dropout

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits

X, vy = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2, random_state=0)

Preprocessing the data to feed to the neural network is an important aspect
because the operations that neural networks perform under the hood are sensitive
to the scale and distribution of data. Consequently, it’s good practice to normalize
the data by putting its mean to zero and its variance to one, or to rescale it by fix-
ing the minimum and maximum between -1 and +1 or 0 and +1. Experimentation
shows which transformation works better for your data, though most people find
that rescaling between —1 and +1 works better. This example rescales all the values
between -1 and +1:

scaler = MinMaxScaler(feature_range=(-1, 1))
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Regarding the target, neural networks require each terminal neuron to make a

prediction, which can take the form of a numeric value or probability. The neuron
accomplishes the prediction by utilizing activation functions, which transform

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 387

388

the input within the neuron. For example, in a classification task, neurons with a
sigmoid transformation are employed as they produce values between zero and
one, representing probabilities. In the case of multiclass classification, one
approach involves encoding the classes using one-hot encoding (which is reviewed
in Chapter 12 and you can find explained in detail at https: //www.geeks forgeeks.
org/ml-one-hot-encoding-of-datasets-in-python/) and assigning a separate
neuron with sigmoid activation to predict the probability for each class. The class
with the highest probability is then considered the winner among the others. The
following code just transforms your target classes for train and test sets into a
matrix of one-encoded values:

num_classes = 10
y_train = np.eye(num_classes)[y_train]
y_test = np.eye(num_classes)[y_test]

The next step involves constructing the architecture of the neural network and
training it using the training data. This process employs the Keras Sequential
APL It begins by initializing an empty network and subsequently adds layers of
neurons progressively, starting from the top, where the data is inputted, and
moving toward the bottom, where the results are obtained. This example incorpo-
rates two layers consisting of 64 and 32 neurons respectively, activated by the
ReLU function. The activation function enables the network to learn nonlinear
patterns. Each of these layers is followed by a dropout layer, which serves as a
regularization technique to prevent overfitting, avoiding excessive adaptation to
the data. The network concludes with a layer containing the probabilities for the
classes, from which the winning class will be determined. To determine the
outcome, the softmax activation function is employed in the final layer.

model = Sequential()

model .add(Dense(64, activation='relu', input_shape=(64,)))
model .add(Dropout(0.2))

model .add(Dense(32, activation='relu'))

model .add(Dropout(0.2))

model .add(Dense(num_classes, activation='softmax'))

Now, the code proceeds to compile the model to configure it for training. The loss
parameter is specified as categorical_crossentropy, which is the appropriate loss
function for tackling multi-class classification problems. For optimization, the
optimizer parameter is set to Adam, a widely used algorithm known for its
efficiency. Furthermore, the metrics parameter is set to accuracy, enabling the
monitoring of the model’s accuracy during the training process. When fitting
the model, the code iterates over the data 50 times, processes the data in batches
of 32 examples each, and utilizes the test data to provide progress updates:

PART 5 Learning from Data

https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/

model .compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=50,
batch_size=32,
validation_data=(X_test, y_test))

During the training process, you will receive updates and guidance regarding the
progress made:

Epoch 32/50

45/45 [] — @s 3ms/step — loss:
0.0752 — accuracy: 0.9812 - val_loss: ©0.0843 - val_accuracy:
0.9778

The script notifies you about the completion of a specific number of iterations,
referred to as epochs, during which it processed a certain number of data batches.
The script provides information on the loss and evaluation metrics for both the
training data and the test data. By plotting this information, it’s possible to assess
how well the model learned to generalize by examining its performance on the
test data, in comparison to its fit on the training data.

When the script has completed, you can check how it finally performs on the
test data:

loss, accuracy = model.evaluate(X_test, y_test)
print('Test accuracy score:', accuracy)

The script also confirms the performance of the model:

12/12 [] - @s 2ms/step -
loss: ©.0832 - accuracy: 0.9750
Test accuracy score: 0.9750000238418579

In addition, you can visualize the entire training process:
import matplotlib.pyplot as plt

train_loss = history.history['loss']
val_loss = history.history['val_loss']

Plot the training and validation loss over epochs

epochs = range(5, len(train_loss) + 1)

plt.plot(epochs, train_loss[4:], 'b',
label='Training loss')

CHAPTER 19 Increasing Complexity with Linear and Nonlinear Tricks 389

plt.plot(epochs, val_loss[4:], 'r',
label="'Validation loss')

plt.axvline(x=val_loss.index(min(val_loss)),

color="r', linestyle='—-")

plt.title('Training and Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

You can see the output in Figure 19-5.

Training and Validation Loss

T
0.5 H —— Training loss

H —— Validation loss
1
1
|
I
0.4 4 H
1
I
1
1
1
0.3 1 1
8 i
S 1
I
1
0.2 1 :
I
I
1
i
FIGURE 19-5: 0.1 !

The training and
test scores of the
neural network . . L ' T
as it learns 10 20 30 40 50
from data. Epochs

390

Looking at the figure, it is evident that the training loss consistently decreased
over time, which is a common pattern observed in neural networks that are either
appropriately sized or oversized for a given problem. Such networks have a tend-
ency to extract increasingly fine-grained details from the data, potentially even
memorizing it. However, what’s more noteworthy is the behavior of the test data,
which is not being used during the training process but is used only for prediction
purposes. The test loss gradually decreases until it reaches a minimum, after
which it begins to deteriorate due to overfitting. The red dashed line indicates that
the minimum loss was achieved prior to the end of the training. In neural
networks, monitoring the model’s performance and deciding when to stop train-
ing is a crucial factor for achieving a well-performing predictor model.

PART 5 Learning from Data

IN THIS CHAPTER

» Understanding how a decision tree
works

» Using Random Forest and other
bagging techniques

» Taking advantage of the best
performing ensembles by boosting

Chapter 20

Understanding the
Power of the Many

n this chapter, you go beyond the single machine learning models you’ve seen

until now and explore the power of ensembles, which are groups of models that

can outperform single models. Ensembles work like the collective intelligence
of crowds, using pooled information to make better predictions. The basic idea is
that a group of simple algorithms can produce better results than a single well-
trained model.

Maybe you’ve participated in one of those games that ask you to guess the number
of sweets in a jar at parties or fairs. Even though a single person has a slim chance
of guessing the right number, various experiments have confirmed that if you
take the wrong answers of a large number of game participants and average them,
you can get close to the right answer! Such incredible shared group knowledge
(also known as the wisdom of crowds) is possible because wrong answers tend to
distribute around the true one. By taking a mean of these wrong answers, you get
almost the right answer.

In data science projects involving complex predictions, you can leverage the wis-
dom of various machine learning algorithms and become more precise and accu-
rate at predictions than you can when using a single algorithm. This chapter
creates a process you can use to leverage the power of many different algorithms
to obtain a better single answer.

CHAPTER 20 Understanding the Power of the Many 391

©

REMEMBER

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions).
The source code for this chapter appears in the P4DS4D3_20_Understanding_the_
Power_of_the_Many. ipynb file.

Starting with a Plain Decision Tree

392

Decision trees have long been part of data mining tools. The first models date well
before the 1970s. Since then, decision trees have enjoyed popularity in many fields
because of their intuitive algorithm, understandable output, and effectiveness
with respect to simple linear models. With the introduction of better-performing
algorithms, decision trees slowly went out of the machine learning scene for a
time, blamed for being too easy to overfit, but they came back in recent years as
an essential building block of ensemble algorithms. Today, tree ensembles such as
Random Forest or Gradient Boosting Machines are the core of many data science
applications and are considered to be state-of-the-art of machine learning tools.

Understanding a decision tree

The basis of decision trees is the idea that you can divide your dataset into smaller
and smaller parts using specific rules based on the values of the dataset’s features.
When dividing the dataset in this way, the algorithm must choose splits that
increase the chance of guessing the target outcome correctly, either as a class or
as an estimate. Therefore, the algorithm must try to maximize the presence of a
certain class or a certain average of values in each split.

As an example of an application and execution of a decision tree, you could try to
predict the likelihood of passenger survival from the RMS Titanic, the British pas-
senger liner that sank in the North Atlantic Ocean in April 1912 after colliding with
an iceberg. Quite a few datasets are available on the web that pertain to this trag-
edy at sea. Most notable among them is the one on the Encyclopedia Titanica web-
site (https://www.encyclopedia-titanica.org), which contains articles,
biographies, and data. Another is a Kaggle data science competition that has
involved tens of thousands of enthusiastic participants (https://www.kaggle.
com/c/titanic).

Many Titanic tragedy datasets differ in the data they contain. This chapter’s
example relies on the Titanic dataset freely granted for use by the Department of
Biostatistics at the Vanderbilt University School of Medicine and available for
download athttps://github.com/lmassaron/datasets/blob/master/titanic.
csv. This dataset features 1,309 recorded passengers with full stats. You don’t find

PART 5 Learning from Data

https://www.encyclopedia-titanica.org
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
https://github.com/lmassaron/datasets/blob/master/titanic.csv
https://github.com/lmassaron/datasets/blob/master/titanic.csv

FIGURE 20-1:

A tree model of
survival rates
from the Titanic
disaster.

any of the crew in the dataset because the records focus on the paying passengers
to determine whether surviving the disaster is a matter of luck or the place pas-
sengers were found on the ship at the time of the collision. The survival rate
among passengers was 38.2 percent (500 of 1,309 passengers lost their lives).
Based on the passengers’ characteristics, the decision tree determines the
following:

¥ Being male changes the likelihood of survival, lowering it from 38.2 percent to
19.1 percent.

¥ Being male, but being younger than 9.5 years of age, raises the chance of
survival to 58.1 percent.

¥ Being female, regardless of age, implies a survival probability of 72.7 percent.

Using such knowledge, you can easily to build a tree like the one depicted in
Figure 20-1. Such visualization (and the visualization of the Mushroom dataset
found later in the chapter) is possible because of the dtreeviz package developed
by Prof. Terence Parr from San Francisco University (https://parrt.cs.usfca.
edu) and Prince Grover, of the same faculty. If you are interested in creating
visualizations of your decision trees, you can get the package and installation
guidance at https://github.com/parrt/dtreeviz and read about the develop-
ment and the functioning of the package in Prof. Parr’s blog entry, “How to
visualize decision trees,” at https://explained.ai/decision-tree-viz.

843 [:
survived
perished
= I survived
0 ,, ry
0 0.50 1
is_female
< >
’ a
279 = 216
— = |—
0 1 M r—r—— 0 Y
0.17 :,‘;D 80.00 2.50 >
o age pclass
1
- v 1
’ —
. - (5 —
n=43 \ / e s
— n=250 n=216
n=800

CHAPTER 20 Understanding the Power of the Many 303

https://parrt.cs.usfca.edu
https://parrt.cs.usfca.edu
https://github.com/parrt/dtreeviz
https://explained.ai/decision-tree-viz

394

REMEMBER

Notice that the visualized tree looks upside down (with the root at the top and all
the branches spreading out from there). It starts at the top using the entire sam-
ple. Then it splits on the gender feature, creating two branches, one that turns into
a leaf. A leaf is a terminal segmentation. The diagram classifies the leaf cases by
using the most frequent class or by calculating the base probability of cases with
the same features as the leaf probability. The second branch is further split by age.

To read the nodes of the tree, consider that the topmost node begins by reporting
the rule used to split that node into all the following nodes. You have to start from
the top. The tree shown in Figure 20-1 implies that gender is the best predictor,
and on the top node, the is_female variable is in vertical, stacked bars. The left
bar is for males and the right bar is for females. At a first glance, you can see that,
proportionally, females had a higher survivability because the survived share (the
light-green area, which doesn’t show in color in the printed book) mostly occu-
pies all the area of the bar.

The tree splits this node in half, separating males from females. You can read the
rest of the story told by the tree by observing what happens on the next level. On
the second level of the tree representation, on the right, you find a node consisting
only of females, and the stacked bars reveal a key insight: almost all the female
first- and second-class passengers survived, and about half of the female third-
class passengers perished. This insight enables the tree to develop a first rule:
Women in first and second class can be classified as survivors because that status
is highly likely. As for third class, survival is uncertain, and the tree would need to
split again to extract some other insight that the analysis doesn’t include.

As for males, the second level shows that age is a criterion that discriminates
because males under the age of ten most likely survived, while older males most
likely perished. Again, the tree stops, but additional criteria could provide a more
precise set of partitioning rules that could explore the probability of surviving the
Titanic disaster based on one’s own characteristics. From the top-level tree splits,
you can see that most of the survivors were women with their children based on
the “women and children first” code of conduct applied in situations when life-
saving resources are scarce. This code perfectly matches the Titanic’s situation
because very few lifeboats were available as a result of the owners’ belief that the
boat was unsinkable. (You can read more speculations about the lifeboats on the
History on the Net website at https://www.historyonthenet.com/the-
titanic-1lifeboats.)

In this example tree, every split is binary, but multiple splits are also possible,
depending on the tree algorithm. In Scikit-learn, the implemented class
DecisionTreeClassifier and DecisionTreeRegressor in the sklearn.tree
module are all binary trees. A decision tree can stop splitting the data when

PART 5 Learning from Data

https://www.historyonthenet.com/the-titanic-lifeboats
https://www.historyonthenet.com/the-titanic-lifeboats

TIP

¥ There are no more cases to split, so the data appears as part of leaf nodes.

¥ The rule used to split a leaf has fewer than a predefined number of cases. This
action keeps the algorithm from working with leaves that have little represen-
tation in general or are more specific than the data you're analyzing, thus
preventing overfitting (see Chapter 18) and variance of estimates.

¥ One of the resulting leaves has fewer than a predefined number of cases —
another sanity check for avoiding inferring general rules without the confi-
dence provided by a good sample size.

Decision trees tend to overfit the data. By setting the right number for splits and
terminal leaves, you can reduce the variance of the estimates. Depending on your
starting sample size, a limit of 30 cases is usually a good choice.

Apart from being intuitive, and easy to understand and represent (depending on
how many branches and leaves you have in your tree), decision trees offer another
strong advantage to the data science practitioner — they don’t require any
particular data treatment or transformation because they model any nonlinearity
using approximations. In fact, they accept any kind of variable, even categorical
variables encoded with arbitrary codes for the represented classes. In addition,
decision trees handle missing cases. All you need to do is to assign missing cases
an unlikely value, such as an extreme or a negative value (depending on your data
distribution of non-missing cases). Finally, decision trees are also incredibly
resistant to outliers.

Creating classification trees

Data scientists call trees that specialize in guessing classes (the attributes, qualities,
or traits that identify groups) classification trees; trees that work with estimation
instead are known as regression trees. Here’s a classification problem: trying to
predict the likelihood of a mushroom being edible or poisonous based on its
appearance. This is based on a dataset freely available on OpenML (https: //www.
openml .org/search?type=data&status=active&id=24) that describes mush-
rooms in terms of their physical characteristics and classifies them as poisonous
or edible. On OpenML, you can find a complete description of the recorded
characteristics. The records are drawn from The Audubon Society Field Guide to North
American Mushrooms (1981), and they are in the public domain thanks to the dona-
tion of Jeff Schlimmer.

from sklearn.datasets import fetch_openml
import pandas as pd

def load_mushroom_data():
features, target = fetch_openml (

CHAPTER 20 Understanding the Power of the Many 395

https://www.openml.org/search?type=data%26status=active%26id=24
https://www.openml.org/search?type=data%26status=active%26id=24

396

data_id=24, return_X_y=True, as_frame=True)
X = pd.get_dummies(features)
y = (target == "p").astype(int)
return X, y
X, y = load_mushroom_data()

After loading the data into X, which contains predictors, and y, which holds the
classifications (1 for poisonous, 0 for edible), you can define a cross-validation for
checking the results using decision trees:

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
crossvalidation = KFold(n_splits=5,
shuffle=True,
random_state=0)

Using the DecisionTreeClassifier class, you define max_depth inside an itera-
tive loop to experiment with the effect of increasing the complexity of the result-
ing tree. The expectation is to reach an ideal point quickly and then witness
decreasing cross-validation performance because of overfitting:

import numpy as np
from sklearn import tree
for depth in range(1,10):
tree_classifier = tree.DecisionTreeClassifier(
max_depth=depth, random_state=0)
if tree_classifier.fit(X,y).tree_.max_depth < depth:
break
score = np.mean(cross_val_score(tree_classifier,
X, v,
scoring="'accuracy',
cv=crossvalidation))
print('Depth: %i Accuracy: %.3f' % (depth,score))

The code will iterate through deeper trees until the tree won’t expand anymore,
and then the code will report the cross-validation score for accuracy:

Depth: 1 Accuracy: ©.887
Depth: 2 Accuracy: 0.954
Depth: 3 Accuracy: 0.984
Depth: 4 Accuracy: 0.991
Depth: 5 Accuracy: ©.999
Depth: 6 Accuracy: ©.999
Depth: 7 Accuracy: 1.00

PART 5 Learning from Data

)
TECHNICAL
STUFF

INSTALL DTREEVIZ

Before you can proceed with the downloadable source, you must install dtreeviz using
the instructions athttps: //github.com/parrt/dtreeviz for your particular plat-
form. The version numbers in these instructions are a little outdated. The book’s code
was tested with the 8.0.5 version. Make sure you use the instructions for your particular
platform. Ensure that you perform the test for dot . exe because you need this particular
tool to display items onscreen. If you're already running the downloadable source, save
and exit both the downloadable source and Jupyter Notebook so that the changes will
take effect. Performing this install doesn't completely satisfy the Python requirement; you
must still use the !pip install detreeviz line shown in the downloadable source.

Note that the downloadable source includes some additional code that isn’t cov-
ered in the chapter due to space limitations. Reviewing this code will help you
understand the example better. This code also works together to produce
Figure 20-2.

The best solution is a tree with seven splits, but you could probably stop with five
splits and accept a minimal risk of eating something not edible. There is some
additional code in the downloadable source to display the results in a graphic for-
mat. Figure 20-2 shows the complexity of the resulting tree with depth five, which
provides another insightful visualization obtained using the dtreeviz package.
Visualizing helps show that the tree is not balanced in the way it grew, and the
presence of certain characteristics help you quickly figure out whether a mush-
room is edible. Other characteristics make things more uncertain and necessitate
a longer scrutiny. For instance, if the mushroom has no odor and its spores are
green, you are 100 percent certain that the mushroom is poisonous, and you don’t
need any other evidence.

Creating regression trees

Just as you use a classification tree for a classification problem in the previous sec-
tion, you can model a regression problem by using the DecisionTreeRegressor
class. This example solves a regression problem using the California Housing data-
set (you first use this dataset in the “Defining applications for data science” section
of Chapter 12). When dealing with a regression tree, the terminal leaves offer the
average of the cases as the prediction output. Here is the code to obtain the data:

from sklearn.datasets import fetch_california_housing
import pandas as pd

CHAPTER 20 Understanding the Power of the Many 397

https://github.com/parrt/dtreeviz

odor_ng@0.40 polsonons

= >

stalk-root_c@i 50 spore-print tolor_r@0.50

staIk-surface-belUw-riﬁgfy@D.SD SIElk—EDlUr—bElUW’-r\ﬂgic@U.ED staIk-surface-belc}w—ringj@ﬂ.sﬂ

Door_lg@n &0 cap-surface._g@D A0 stalk-root_bg@ 50

odor_a@0.50 cap-shape. c@0.50
FIGURE 20-2: =

A tree model of

the Mushroom

dataset using a
depth of five

splits.

def load_california_housing_data():
dataset = fetch_california_housing()
X pd.DataFrame(data=dataset.data,
columns=dataset . feature_names)
y = pd.Series(data=dataset.target, name="target")

return X, y
You can now build the regression tree on the data:
from sklearn.tree import DecisionTreeRegressor

X, y = load_california_housing_data()

regression_tree = tree.DecisionTreeRegressor (
min_samples_split=30, min_samples_leaf=10,
random_state=0)

regression_tree. fit(X,y)

score = np.mean(cross_val_score(regression_tree,

Xl yl
scoring="'neg_mean_squared_error',

cv=crossvalidation))
print('Mean squared error: %.3f' % abs(score))

The cross-validated mean squared error for the California Housing dataset is

Mean squared error: ©.367

398 PARTS5 Learning from Data

Getting Lost in a Random Forest

Random Forest is a classification and regression algorithm developed by Leo Brei-
man and Adele Cutler that uses a large number of decision tree models to provide
precise predictions by reducing both the bias and variance of the estimates. When
you aggregate many models to produce a single prediction, the result is an ensem-
ble of models. Random Forest isn’t just an ensemble model; it’s also a simple and
effective algorithm to use as an out-of-the-box algorithm. It makes machine
learning accessible to non-experts. The Random Forest algorithm uses these steps
to perform its predictions:

1. createa large number of decision trees, each one different from the other,
based on different sets of observations and variables:

a. Bootstrap the dataset of observations for each tree, sampled from the
original data with replacement. The same observation can appear multiple
times in the same dataset.

b. Randomly select and use only a part of the variables for each tree.

2. Estimate the performance for each tree using the observations excluded by
sampling (the Out Of Bag, or OOB, estimate).

3. Obtain the final prediction, which is the average for regression estimates or the
most frequent class for prediction, after all the trees have been fitted and used
for prediction.

You can reduce bias by using these steps, because the decision trees have a good
fit on data and, by relying on complex splits, can approximate even the most com-
plex relationships between predictors and predicted outcome. Decision trees can
produce a great variance of estimates, but you reduce this variance by averaging
many trees. Noisy predictions, due to variance, tend to distribute evenly above and
below the correct value that you want to predict — and when averaged together,
they tend to cancel each other, leaving, as a result, a more correct average
prediction.

Making machine learning accessible

Leo Breiman derived the idea for Random Forest from the bagging technique, which
is described in detail at https://blog.paperspace.com/bagging-ensemble—
methods/ as a method for aggregating multiple versions of a predicted model.
Scikit-learn has a bagging class for both regression (BaggingRegressor) and
classifying (BaggingClassifier) that you can use with any other predictor you
want to choose from the Scikit-learn modules. The max_samples and
max_features parameters let you decide the proportion of cases and variables to

CHAPTER 20 Understanding the Power of the Many 399

https://blog.paperspace.com/bagging-ensemble-methods/
https://blog.paperspace.com/bagging-ensemble-methods/

sample (not bootstrapped, but sampled, so you can use a case only once) for build-
ing each model of the ensemble. The n_estimators parameter decides the total
number of models in the ensemble. Here’s an example that loads the German
Credit Data (https://archive. ics.uci.edu/ml/datasets/Statlog+%28German+
Credit+Data%29) dataset that classifies a bank’s customers, described by a set of
attributes, as good or bad credit risks. Credit risk classification is a common risk
management activity in banking and finance. The dataset was donated in 1990s by
Professor Dr. Hans Hofmann from Hamburg University.

import numpy as np
import pandas as pd

def load_german_credit_data():

url = "https://archive.ics.uci.edu/ml/ "

url += " machine-learning-databases"

url += "/statlog/german/german.data—numeric"

col_names = |
"checking_account", "duration", "credit_history",
"credit_amount", "savings_account",
"employment_duration", "personal_status",

age’,
"other_installment_plans", "number_credits"”,

"residence_duration", "property",

"people_liable", "telephone", "foreign_worker",
"purpose_car_new", "purpose_car_used",
"other_debtors_none",
"other_debtors_coapplicant”,
"housing_rent", "housing_own",
"job_unskilled_non_resident",
"job_unskilled_resident", "job_employee",
"credit_risk"]

df = pd.read_csv(
url, header=None, names=col_names,
delim_whitespace=True)

X = df.iloc[:, :-1]

y = (df.iloc[:, -1] == 2).astype(int) # 2 = "Bad"

return X, y

X, y = load_german_credit_data()
The example then fits the classification model using bagging:
from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_auc_score

400 PART5 Learning from Data

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

REMEMBER

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

tree_classifier = DecisionTreeClassifier(random_state=0)
crossvalidation = KFold(
n_splits=5, shuffle=True, random_state=0)

bagging = BaggingClassifier(tree_classifier,
max_samples=0.7,
max_features=0.7,
n_estimators=300,
random_state=0)

scores = np.mean(cross_val_score(bagging, X, vy,

scoring='roc_auc',

cv=crossvalidation))
print(f'ROC-AUC: {scores:.3f}"')

Here’s the cross-validated ROC-AUC, a metric ranging up to 1.00 for perfect clas-
sifiers. It evaluates whether the riskier cases are assigned to higher probabilities:

ROC-AUC: ©.795

In bagging, as in Random Forest, the more models in the ensemble, the better.
Here are some issues to consider:

¥ You run little risk of overfitting because every model is different from the
others, and errors tend to spread around the real value.

¥ Adding more models adds stability to the result, but on the other hand,
creating the model takes longer.

¥ It permits estimation of variable importance while taking the presence of all
the other predictors into account. In this way, you can determine which
feature is important for predicting a target given the set of features that you
have.

¥ You can use the importance estimate as a guideline for variable selection.

In contrast to single decision trees, you can’t easily visualize or understand Ran-
dom Forest, making it act as a black box (a black box is a transformation that does-
n’t reveal its inner workings; all you see are its inputs and outputs). Given its
opacity, importance estimation is the only way to understand how the algorithm
works with respect to the features.

Importance estimation in a Random Forest is obtained in a straightforward way.
After building each tree, the code fills each variable in turn with junk data, and the

CHAPTER 20 Understanding the Power of the Many 401

402

example records how much the predictive power decreases. If the variable is
important, crowding it with casual data harms the prediction; otherwise, the pre-
dictions are left almost unchanged and the variable is deemed unimportant.

Working with a Random Forest classifier

The example Random Forest classifier keeps using the previously loaded German
Credit Data:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

crossvalidation = KFold(
n_splits=5, shuffle=True, random_state=0)
random_forest = RandomForestClassifier(n_estimators=300,
random_state=0)

score = np.mean(cross_val_score(random_forest, X, vy,
scoring='roc_auc',
cv=crossvalidation))

print(f'ROC-AUC: {scores:.3f}')

The cross-validated ROC-AUC score reported by this code for the Random Forest
is equivalent to the bagging method tested in the previous section:

ROC-AUC: ©.795

Just setting the number of estimators is sufficient for most problems you encoun-
ter, and setting it correctly is a matter of using the highest number possible given
the time and resource constraints of the host computer. You can demonstrate this
by calculating and drawing a validation curve for the algorithm.

from sklearn.model_selection import validation_curve

param_range = [50, 150, 300, 600, 900, 1200, 1800,
2400, 3000, 3600]
crossvalidation = KFold(
n_splits=5, shuffle=True, random_state=0)
random_forest = RandomForestClassifier(
n_estimators=300, n_jobs=-1, random_state=0)
train_scores, test_scores = validation_curve(
random_forest, X, y, param_name='n_estimators',
param_range=param_range, cv=crossvalidation,
scoring='roc_auc')

PART 5 Learning from Data

mean_test_scores = np.mean(test_scores, axis=1)
for i, score in enumerate(mean_test_scores):
print(f"n_estimators: {param_range[i]:4}, " +
f"ROC-AUC score: {score:.3f}")

The code will print the results, and you can visualize them better in a plot depict-
ing the progress of the evaluation metric, the ROC-AUC score, with respect to the
hyperparameter controlling the number of trees used in the ensemble. This plot is
called a validation plot:

import matplotlib.pyplot as plt

plt.plot(param_range, mean_test_scores,
'bo-', label='CV score')
plt.xlabel('Number of Estimators')
plt.ylabel('ROC-AUC Score')
plt.title('Random Forest Validation Curve')
plt.legend(loc="'lower right')
plt.grid(True)
plt.show()

Figure 20-3 shows the results provided by the preceding code. The more estima-

tors, the better the results. However, at a certain point the gain becomes minimal
and it makes little sense to add so many more trees for so little gain.

Random Forest Validation Curve

0.800 -
0.795 4
w ¢
[=]
o
w
8} |
35 0.790
<
o}
o
[+
0.785 4
FIGURE 20-3:
Verifying the
impact of the 0.780 11 & —8— CV score
number of | I ! ! ! | ! I
estimators on 0 500 1000 1500 2000 2500 3000 3500
Random Forest. Number of Estimators

CHAPTER 20 Understanding the Power of the Many 403

404

REMEMBER

Working with a Random Forest regressor

RandomForestRegressor works in a similar way as the Random Forest for clas-

sification, using exactly the same parameters. The following code tests it on the

California Housing dataset:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score, KFold

X, y = load_california_housing_data()
rf_regressor = RandomForestRegressor (
n_estimators=300, random_state=0)
cv = KFold(n_splits=5, shuffle=True, random_state=0)
scores = cross_val_score(
rf_regressor, X, y, scoring='neg_mean_squared_error',
cv=cv)
mean_mse = abs(scores.mean())
print(f"Mean squared error: {mean_mse:.3f}")

Here is the resulting cross-validated mean squared error:
Mean squared error: 0.252

The Random Forest uses decision trees. Decision trees segment the dataset into
small partitions, called leaves, when estimating regression values. The Random
Forest takes the average of the values in each leaf to create a prediction. Using this
procedure causes extreme and high values to disappear from predictions because
of the averaging used for each leaf of the forest, producing damped values instead
of much higher or much lower values.

Optimizing a Random Forest

Random Forest models are out-of-box algorithms that can work quite well with-
out optimization or worrying about overfitting. (The more estimators you use, the
better the output, depending on your resources.) You can always improve perfor-
mance by removing redundant and less informative variables, fixing a minimum
leaf size, and defining a sampling number that avoids having too many correlated
predictors in the sample. The following example shows how to perform these
tasks:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold

X, y = load_german_credit_data()
crossvalidation = KFold(

PART 5 Learning from Data

n_splits=5, shuffle=True, random_state=0)
clf = RandomForestClassifier(random_state=0)
scorer = "roc_auc"

Using the German Credit Data and a first default classifier, you can optimize both
max_features and min_samples_leaf. When optimizing max_features, you use
preconfigured options (None for all features, sqrt or 1og2 functions applied to the
number of features) and integrate them using small feature numbers and a value
of 1/3 of the features. Selecting the right number of features to sample tends to
reduce the number of times when correlated and similar variables are picked
together, thus increasing the predictive performances.

There is a statistical reason to optimize min_samples_leaf. Using leaves with few
cases often corresponds to overfitting to very specific data combinations. You
need to have at least 30 observations to achieve a minimal statistical confidence
that data patterns correspond to real and general rules:

from sklearn.model_selection import GridSearchCV

max_features = [X.shape[1] // 3, "sqrt", "log2", None]
min_samples_leaf = [1, 10, 30]
n_estimators = [50, 100, 300, 500, 1000]
search_grid = {
"n_estimators": n_estimators,
"max_features": max_features,
"min_samples_leaf": min_samples_leaf}
search_cv = GridSearchCV(
estimator=clf,
param_grid=search_grid,
scoring=scorer,
cv=crossvalidation)
search_cv. fit(X, y)

best_params = search_cv.best_params_
best_score = search_cv.best_score_
print(f"Best parameters: {best_params}")
print(f"Best score: {best_score}")

The best parameters and best accuracy obtained are then reported, highlighting
that the parameters to act on is the number of trees:

Best parameters: {'max_features': 8, 'min_samples_leaf': 1,

'n_estimators': 1000}
Best score: ©.8008907775588991

CHAPTER 20 Understanding the Power of the Many 405

Boosting Predictions

406

Q

TIP

Gathering different tree models is not the only ensemble technique possible. In
fact, another machine learning technique, called boosting, uses ensembles effec-
tively. In boosting, you grow many trees sequentially. Each tree tries to build a
model that successfully predicts what trees that were built before it weren’t able
to forecast. The technique pools subsequent models and uses a weighted average
or a weighted majority vote on the final prediction.

The following sections present two boosting applications: AdaBoost (Adaptive
Boosting) and gradient boosting machines. You can use all boosting algorithms
for both regression and classification. The examples in these sections start work-
ing with classification using the German Credit Data.

If you have already prepared the function load_german_credit_data, you just
need to reassign the X and y variables as follows:

X, y = load_german_credit_data()

Knowing that many weak predictors win

AdaBoostClassifier fits sequential weak predictors. It’s used by default when
working with decision trees, but you can choose other algorithms by changing the
base_estimator parameter. Weak predictors are usually machine learning
predictors that don’t perform well because they have too much variance or bias,
so they perform slightly better than chance. The classic example of a weak learner
is the decision stump, which is a decision tree grown to only one level. Usually,
decision trees are the best-performing option in boosting, so you can safely use
the default learner and concentrate on two important parameters to obtain good
predictions: n_estimators and learning_rate.

learning_rate determinates how each weak predictor contributes to the final
result. A high learning rate requires few n_estimators before converging to an
optimal solution, but it likely won’t be the best solution possible. A low learning
rate takes longer to train because it requires more predictors before reaching a
solution. In addition, it also overfits more slowly.

In contrast to bagging, boosting can overfit if you use too many estimators. A
cross-validation is always helpful in finding the correct number, keeping in mind
that lower learning rates take longer to overfit, so picking an almost optimal value
using a loose grid search is easier.

PART 5 Learning from Data

from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score, KFold
from sklearn.metrics import roc_auc_score

ada = AdaBoostClassifier(

n_estimators=1000, learning_rate=0.01, random_state=0)
cv = KFold(n_splits=5, shuffle=True, random_state=0)
roc_scores = cross_val_score(

ada, X, y, scoring='roc_auc', cv=cv)
mean_score = roc_scores.mean()
print(f'ROC-AUC score: {mean_score:.3f}")

After running the code, you get the cross-validated ROC-AUC score:

ROC-AUC score: 0.774

This example uses the default estimator, which is a full-blown decision tree.
If you’d like to try a stump (which needs more estimators), you should instan-
tiate the AdaBoostClassifier with base_estimator=DecisionTreeClassifier

(max_depth=1).

Setting a gradient boosting classifier

The Gradient Boosting Machine (GBM) performs much better than the AdaBoost
boosting technique, the first boosting algorithm ever created. In particular, GBM
uses an optimization computation for weighting the subsequent estimators. As
with the example in the preceding section, the following example uses the Ger-

man Credit Data and explores some extra parameters available in GBM:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

X, y = load_german_credit_data()
crossvalidation = KFold(
n_splits=5, shuffle=True, random_state=0)
gbc = GradientBoostingClassifier (
n_estimators=300, subsample=1.0, max_depth=2,
learning_rate=0.1, random_state=0)
crossvalidation = KFold(
n_splits=5, shuffle=True, random_state=0)
score = np.mean(cross_val_score(
gbc, X, y, scoring='roc_auc', cv=crossvalidation))
print(f'ROC-AUC: {score:.3f}")

CHAPTER 20 Understanding the Power of the Many

407

408

Apart from the learning rate and the number of estimators, which are key para-
meters for optimal learning without overfitting, you must provide values for
subsample and max_depth. subsample introduces subsampling into the training
(so that the training is done on a different dataset every time), as is done in
bagging. max_depth defines the maximum level of the built trees. It’s usually a
good practice to start with three levels, but more levels may be necessary for
modeling complex data.

On the very same problem you tested before, the GradientBoostingClassifier
results in the following accuracy score after running the code:

ROC-AUC: 0.784

Running a gradient boosting regressor

Creating a gradient boosting regressor doesn’t present particular differences from
creating the classifier. The main difference is the presence of multiple loss func-
tions that you can use (contrast this with GradientBoostingClassifier, which
has only the deviance loss, analogous to the cost function of a logistic regression).
The following example tests it on the California Housing dataset:

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score, KFold

X, y = load_california_housing_data()
gbr = GradientBoostingRegressor (
n_estimators=1000, subsample=1.0, max_depth=8,
learning_rate=0.01, random_state=0)
cv = KFold(n_splits=5, shuffle=True, random_state=0)
mse = np.mean(cross_val_score(
gbr, X, y, scoring='neg_mean_squared_error', cv=cv))
print(f"Mean squared error: {abs(mse):.3f}")

After running the code, you get the mean squared error for the regression, which
is worse than the corresponding one by a Random Forest:

Mean squared error: 0.285
The example trains a GradientBoostingRegressor using the default 1s value for

the loss parameter, which is analogous to a linear regression. Here are some
other choices:

¥ quantile: This guesses a particular quantile that you specify using the alpha
parameter (usually it's 0.5, which is the median).

PART 5 Learning from Data

TIP

¥ lad (least absolute deviation): This choice is highly robust to outliers; it tends
to ordinally rank the predictions correctly.

¥ huber: This creates a combination of 1s and lad. It requires that you fix the
alpha parameter.

Using GBM hyperparameters

GBM models are quite sensitive to overfitting when you have too many sequential
estimators and the model starts fitting the noise in the data. It’s important to
check the efficiency of the coupled values of the number of estimators and the
learning rate. The following example uses the California Housing dataset and tries
to improve the previous score:

from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

X, vy = load_california_housing_data()
crossvalidation = KFold(
n_splits=5, shuffle=True, random_state=0)
gbr = GradientBoostingRegressor (
n_estimators=1000, learning_rate=0.01,
random_state=0)
search_grid = {'subsample': [1.0, 0.9, 0.7],
'max_depth': [2, 3, 4, 5, 6]}
search_func = GridSearchCV(
estimator=gbr, param_grid=search_grid,
scoring="'neg_mean_squared_error',
cv=crossvalidation)
search_func.fit(X, y)
best_params = search_func.best_params_
best_score = abs(search_func.best_score_)
print(f'Best parameters: {best_params}')
print(f'Best mean squared error: {best_score:.3f}")

Optimization may take some time because of the computational burden required
by the GBM algorithms, especially if you decide to test high values of max_depth.

A good strategy is to keep the learning rate fixed and try to optimize subsample
and max_depth with respect to n_estimators (keeping in mind that high values of
max_depth usually imply a lesser number of estimators). After you find the opti-
mum values for subsample and max_depth, you can start searching for further
optimization of n_estimators and learning_rate.

CHAPTER 20 Understanding the Power of the Many 409

410

After running the optimization, you can examine the resulting best mean squared
error (which is much better now than those of Random Forest) and notice how it
improved running the algorithm by the default parameters. Gradient Boosting
always requires some parameter tuning in order to return the best results:

Best parameters: {'max_depth': 6, 'subsample': 0.7}
Best mean squared error: 0.220

Using XGBoost

XGBoost is a versatile and scalable machine learning algorithm that was originally
developed as a command-line tool by Tiangi Chen and has since been enhanced
with a Python wrapper. XGBoost supports multiple programming languages,
including Python, R, Java, Scala, Julia, and C++. It can be utilized on a single
machine with multithreading, as well as on Hadoop and Spark clusters. You can
find more information about XGBoost on its website: https://xgboost.
readthedocs.io/en/latest/ and also instructions on how to install it on various
systems at https://xgboost.readthedocs.io/en/latest/install.html. For
Python usage the fastest ways are using pip or conda:

pip install xgboost
conda install -c conda-forge py-xgboost

The interesting fact about XGBoost is that its name stands for eXtreme Gradient
Boosting, indicating that the algorithm working under the hood is a bit different,
and faster performing, than the gradient boosting offered by Scikit-learn. That’s
also the reason that XGBoost has gained much popularity in data science competi-
tions such as Kaggle (https://www.kaggle.com/) and the KDD Cup. The follow-
ing example shows how it performs on the problems found earlier in this chapter,
starting with the German Credit Data:

import xgboost as xgb
from sklearn.model_selection import cross_val_score, KFold

X, y = load_german_credit_data()
cv = KFold(n_splits=5, shuffle=True, random_state=0)

params = {'n_estimators': 800, 'subsample': 0.7,
'max_depth': 2, 'learning_rate': 0.015,
'random_state': 0O,

'objective': 'binary:logistic',

'eval_metric': 'auc'}

PART 5 Learning from Data

https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/install.html
https://www.kaggle.com/

gbc = xgb.XGBClassifier (*x*params)

score = np.mean(cross_val_score(
gbc, X, y, scoring='roc_auc', cv=cv))

print(f'ROC-AUC: {score:.3f}")
Here are the results for the ROC-AUC score:
ROC-AUC: 0.801

The following example tests XGBoost on the California Housing Dataset regres-
sion problem:

import xgboost as xgb
from sklearn.model_selection import cross_val_score, KFold

X, y = load_california_housing_data()

xg_reg = xgb.XGBRegressor (
n_estimators=900, subsample=0.8, max_depth=5,
learning_rate=0.07, random_state=0)

cv = KFold(n_splits=5, shuffle=True, random_state=0)

mse = np.mean(cross_val_score(
xg_reg, X, y, scoring='neg_mean_squared_error',
cv=cv))

print(f"Mean squared error: {abs(mse):.3f}")

Also in this case, the results are the best obtained so far:

Mean squared error: 0.200

The impressive results are due to the fact that, if tuned using the right parame-
ters, XGBoost can outpace all the other algorithms seen so far in the book.

CHAPTER 20 Understanding the Power of the Many 411

The Part of Tens

IN THIS PART ...

Reading the news about data science
Buffing up with developer resources
Considering personal information and security issues

Finding useful advanced data science problems to
solve

IN THIS CHAPTER

» Finding a good starting point

» Obtaining essential learning
materials

» Tracking authoritative sources

» Getting the developer resource
you need

Chapter 21

Ten Essential Data
Resources

©

REMEMBER

n reading this book, you discover quite a lot about data science and Python.

Before your head explodes from all the new knowledge you gain, it’s important

to realize that this book is really just the tip of the iceberg. Yes, there really is
more information available out there, and that’s what this chapter is all about.
The following sections introduce you to a wealth of data science resource collec-
tions that you really need to make the best use of your new knowledge.

In this case, a resource collection is simply a listing of really cool links with some
text to tell you why they’re so great. In some cases, you gain access to articles
about data science; in other cases, you’re exposed to new tools. In fact, data sci-
ence is such a huge topic that you could easily find more resources than those
discussed here, but the following sections provide a good place to start.

As with anything else on the internet, links break, sites go out of business, and

new sites take their place. If you find that a link is broken, please let me know
about it at John@JohnMuellerBooks.com.

CHAPTER 21 Ten Essential Data Resources 415

mailto:John@JohnMuellerBooks.com

Discovering the News with Reddit

The data science field changes constantly for a number of reasons, including the
addition of new algorithms and techniques, as well as the use of ever-larger data-
sets from an increasingly diverse set of sources. Consequently, you need a news
source, such as the data science area of Reddit (https://www.reddit.com/r/
datascience/) to obtain the latest information and stay ahead of your competi-
tors. These blog posts often contain the latest techniques as well, ensuring that
after you get up to speed on data science, you can stay that way. In addition, you
find topics that are essential for your career, such as finding the range of data sci-
ence salaries. This site also provides Python-specific information at https://
www.reddit.com/r/python/ (which is a private community that you have to sign
up to join) and data science news at https://www.reddit.com/r/
datasciencenews/.

Getting a Good Start with KDnuggets

©

REMEMBER

Learning about data mining and data science is a process. KDnuggets breaks down
the learning process into a series of steps at https://www.kdnuggets.com/faq/
learning-data-mining-data-science.html. Each step gives you an overview of
what you should be doing and why. You also find links to a variety of resources
online to make the learning process considerably easier. Even though the site
emphasizes the use of R, Python, and SQL (in that order) to perform data science
tasks, the steps will actually work for any of a number of approaches that you
might take.

As with any other learning experience, a procedure like the one shown on the
KDnuggets site will work for some people and not others. Everyone learns a little
differently. Don’t be afraid to improvise. The resources on this site might provide
insights into other things that you can do to make your learning process easier.

Locating Free Learning Resources
with Quora

416

Resisting the word free is really hard, especially when it comes to education, which
normally costs many thousands of dollars. The Quora site at https: //www.quora.
com/What-are-the-best-free-resources-to-learn-data-science provides a
listing of the best no-cost learning resources for data science.

PART 6 The Part of Tens

https://www.reddit.com/r/datascience/
https://www.reddit.com/r/datascience/
https://www.reddit.com/r/
https://www.reddit.com/r/
https://www.reddit.com/r/datasciencenews/
https://www.reddit.com/r/datasciencenews/
https://www.kdnuggets.com/faq/learning-data-mining-data-science.html
https://www.kdnuggets.com/faq/learning-data-mining-data-science.html
https://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
https://www.quora.com/What-are-the-best-free-resources-to-learn-data-science

Most of the links take on a question format, such as, “What are good ways to get
started with data science for a complete novice?” The question-and-answer for-
mat is helpful because you might be asking the questions that the site answers.
The resulting list of sites, courses, and resources are introductory, for the most
part, but they are a good way to get started working in the data science field.

you access to course materials such as lecture videos and blackboards. However,
you don’t get the actual course free of charge. If you want the benefits of the

TIP course, you still need to pay for it. Even so, just by viewing the course materials,
you can obtain a lot of useful data science knowledge.

‘ A few of the links go to prestigious institutions such as Harvard. The link gives

Gaining Insights with Oracle’s
Al & Data Science Blog

Major vendors can offer you significant amounts of useful information. Of course,
you need to keep the source of this information in mind because it can be quite
biased; pointing out vendor products (as an example) in favor of a more balanced
view that includes all available products. The Oracle Al & Data Science Blog
(https://blogs.oracle.com/ai-and-datascience/) provides you with a
considerable amount of information — everything from the latest data analysis
techniques to the methods you can use to reduce costs. In addition, you find
category-specific information based on

¥ Best practices
9 Data science education
¥ Use cases

¥ Data science as a platform

Accessing the Huge List of Resources
on Data Science Central

Many of the resources you find online cover mainstream topics. Data Science Cen-
tral (https://www.datasciencecentral.com/) provides access to a relatively
large number of data science experts who tell you about the most obscure facts of

CHAPTER 21 Ten Essential Data Resources 417

https://blogs.oracle.com/ai-and-datascience/
https://www.datasciencecentral.com/

data science. One of the more interesting blog posts appears at https://www.
datasciencecentral.com/how-ai-is-revolutionizing-change-data-
capture/.

This resource tells you about Change Data Capture (CDC) and methods of enhanc-
ing the capture of changes to databases using Al The nice thing about this post is
that it’s succinct and doesn’t bury you in detail that you might not want until you
know that the techniques will actually work for your organization. Most of the
posts follow this same format, which means that you can gain an overview of a
considerable number of topics in a short period of time.

Discovering New Beginner Data Science
Methodologies at Data Science 101

One of the major problems with becoming a data scientist is that many sites
assume that you already are one or that you have a significant level of training in
some related field. The result is a really high wall that exhausts many aspiring
new data scientists before they even begin learning about the trade. Data Science
101 (https://ryanswanstrom.com/datascience1@1/) isn’t like most sites. You
find all sorts of materials that can help you become a data scientist even if your
current level of knowledge leaves something to be desired when visiting those
other sites. The information is also quite varied; you’ll find resources of this type:

¥ Blog posts
¥ Learning resources

¥ Videos

¥ Academic papers

Obtaining the Most Authoritative
Sources at Udacity

418

Even with the right connections online and a good search engine, trying to find
just the right resource can be hard. U Climb Higher has published a list of 24 data
science resources at https://blog.udacity.com/2014/12/24-data-science-
resources-keep-finger-pulse.html that’s guaranteed to help keep your finger

PART 6 The Part of Tens

https://www.datasciencecentral.com/how-ai-is-revolutionizing-change-data-capture/
https://www.datasciencecentral.com/how-ai-is-revolutionizing-change-data-capture/
https://www.datasciencecentral.com/how-ai-is-revolutionizing-change-data-capture/
https://ryanswanstrom.com/datascience101/
https://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
https://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html

on the pulse of new strategies and technologies. This resource broaches the fol-
lowing topics: trends and happenings; places to learn more about data science;
joining a community; data science news; people who really know data science
well; all the latest research.

Receiving Help with Advanced Topics at
Conductrics

TIP

The Conductrics site (https://conductrics.com/) as a whole is devoted to sell-
ing products that help you perform various data science tasks. However, the site
includes a blog that contains a couple of useful blog posts answering the sorts of
advanced questions you might find it difficult to get answered elsewhere. The two
posts appear at https://blog.conductrics.com/data-science-resources/
and https://blog.conductrics.com/data-science-resources-2. (The main
blog athttps://blog.conductrics.com/blog/ also contains a great many newer
posts that any data scientist will find useful.)

The author of the blog posts, Matt Gershoff, makes it clear that the listings are the
result of answering people’s questions in the past. The list is huge, which is why
it appears in two posts rather than one, so Matt must answer many questions. The
list focuses mostly on machine learning rather than hardware or specific coding
issues. Therefore, you can expect to see entries for topics such as Latent Semantic
Indexing (LSI); Single Value Decomposition (SVD); Linear Discriminant Analysis
(LDA); nonparametric Bayesian approaches; statistical machine translation;
Reinforcement Learning (RL); Temporal Difference (TD) learning; and context
bandits.

The list goes on and on. Many of these entries won’t make much sense to you right
now unless you’re already heavily involved in data science. However, the authors
write many of the articles in a way that helps you pick up the information even if
you aren’t completely familiar with it. In most cases, your best course of action is
to at least scan the article to see whether you can understand it. If the article starts
to make sense, read it in detail. Otherwise, hold on to the article reference for later
use. You might be surprised to discover that the article you can’t completely
understand today becomes something you understand with ease tomorrow.

CHAPTER 21 Ten Essential Data Resources 419

https://conductrics.com/
https://blog.conductrics.com/data-science-resources/
https://blog.conductrics.com/data-science-resources-2
https://blog.conductrics.com/blog/

Obtaining the Facts of Open Source
Data Science from Springboard

Working with Open Source Data Science (OSDS) is essential for most organizations
that want to keep costs under control. In addition, if you’re just starting in data
science, you may be leery of spending huge sums on data science tools at the out-
set. With this in mind, the Springboard site at https://www.springboard.com/
blog/data-science/open-source-data-science-tools/ provides you with a
listing of open source data science tools that will help you gain the experience you
need while keeping costs down. Some of the tools mentioned on the site, such as
pandas, already appear in this book; others will be completely new. You can also
use the site to read about other data science students and their stories. The point
is to keep the cost of becoming a data scientist low so that you can actually gain
some experience before investing a lot of money.

Zeroing In on Developer Resources
with Jonathan Bower

420

More than a few interesting resources appear on GitHub (https://github.com/),
a site devoted to collaboration, code review, and code management. One of the
sites you need to check out is Jonathan Bower’s listing of data science resources at
https://github.com/jonathan-bower/DataScienceResources. The majority of
these resources will appeal to the developer, but just about anyone can benefit
from them. You find resources categorized into the following topics:

¥ Data science, getting started
¥ Data pipeline and tools

¥ Product

¥ Career resources

3 Open source data science resources

The hierarchical formatting of the various topics makes finding just what you
need easier. Each major category divides into a list of topics. Within each topic,
you find a list of resources that apply to that topic. For example, within Data
Pipeline & Tools, you find Python, which includes a link for Anyone Can Code. This
is one of the most usable sites in the list.

PART 6 The Part of Tens

https://www.springboard.com/blog/data-science/open-source-data-science-tools/
https://www.springboard.com/blog/data-science/open-source-data-science-tools/
https://github.com/
https://github.com/jonathan-bower/DataScienceResources

IN THIS CHAPTER

» Locating starting challenges

» Working with specific kinds of data

» Performing analysis, pattern
recognition, and classification

» Dealing with huge online datasets

Chapter 22

Ten Data Challenges
You Should Take

REMEMBER

ata science is all about working with data. While working through this

book, you use a number of datasets, including the toy datasets that come

with the Scikit-learn library. Of course, these datasets are all great for get-
ting you started, but just as a runner wouldn’t stop after conquering the local fun
run, you need to start training for data science marathons by working with larger
datasets.

This chapter introduces you to a number of challenging datasets that can help you
become a world-class data scientist. By combining what you discover in this book
with these new datasets, you can learn how to do amazing things. In fact, some
people may view you as a bit of a magician as you pull seemingly impossible data
patterns out of your hat. Each of the following datasets provides you with specific
skills and helps you achieve different goals.

You can find a wealth of datasets on the internet. However, not every dataset is
created equal, and you need to choose your challenges with care. The ten datasets
described in this chapter provide well-known functionality, often offering tutori-
als and appearing in scientific papers. These three features make these datasets
stand apart from the competition. Yes, other good datasets are available, but these
ten datasets provide skills needed to conquer even bigger challenges, such as that
database lurking on your company server.

CHAPTER 22 Ten Data Challenges You Should Take 421

Removing Personally Identifiable
Information

422

As people have grown tired of having their personal information exchanged like
trading cards, the legal system has responded by making the use of Personally
Identifiable Information (PII) restricted or even illegal in many ways. You can find
legal requirements for the protection of PII all over the internet, from the
U.S. Department of Labor (https://www.dol.gov/general/ppii) to the European
Union’s General Data Protection Regulation (GDPR) (https://gdpr-info.eu/
issues/personal-data/). This section appears first in the chapter because it’s
one that you simply can’t ignore under any circumstance unless you want to end
up in trouble with the law. So, practicing to remove PII from your datasets and
getting the process down to a fine art is a required skill for anyone working with
data — not just data scientists, but financial experts, researchers, and scientists
as well.

You do have a considerable number of sources available for discovering techniques
for removing PII. For example, Machine Learning Security Principles, by John Paul
Mueller, Packt Publishing, contains an entire chapter on the topic. Articles like
“Remove personal information from a text with Python” (https://towardsdata
science.com/remove-personal-information-from-text-with-python-
232cb69cf0T4) also tell you what is needed to meet legal requirements. It also
pays to look at both large organization and government sites, such as The World
Bank site at https://dimewiki.worldbank.org/Personally_Identifiable_
Information_(PII) for tips on just how PII is handled. Getting the process to a
point where you can automate it is also essential, and articles like “Automate
Detecting Sensitive Personally Identifiable Information (PII)” (https://gretel.
ai/blog/automate-detecting-sensitive-personally-identifiable-
information-pii-with-gretel) can help you. Automation reduces the risk that
you’ll miss something.

Some datasets you find online, such as Single Family Purchase Loan Data 1999-
2020 (https://covidi9.census.gov/documents/USCensus: :single-family-
purchase-loan-data-1999-2020/about) have already had the PII removed so
that you can see what such a dataset should look like. One of the most popular
datasets for experimentation is the bigcode-pii-dataset at https://huggingface.
co/datasets/bigcode/bigcode-pii-dataset. You can also find datasets on sites
like Data.Gov (https://catalog.data.gov/dataset/?tags=pii). The point is
that PII is a big deal, and you really need to spend time learning how to deal with
it before you build that shiny new application.

PART 6 The Part of Tens

https://www.dol.gov/general/ppii
https://gdpr-info.eu/issues/personal-data/
https://gdpr-info.eu/issues/personal-data/
https://towardsdatascience.com/remove-personal-information-from-text-with-python-232cb69cf074
https://towardsdatascience.com/remove-personal-information-from-text-with-python-232cb69cf074
https://towardsdatascience.com/remove-personal-information-from-text-with-python-232cb69cf074
https://dimewiki.worldbank.org/Personally_Identifiable_Information_(PII)
https://dimewiki.worldbank.org/Personally_Identifiable_Information_(PII)
https://gretel.ai/blog/automate-detecting-sensitive-personally-identifiable-information-pii-with-gretel
https://gretel.ai/blog/automate-detecting-sensitive-personally-identifiable-information-pii-with-gretel
https://gretel.ai/blog/automate-detecting-sensitive-personally-identifiable-information-pii-with-gretel
https://covid19.census.gov/documents/USCensus::single-family-purchase-loan-data-1999-2020/about
https://covid19.census.gov/documents/USCensus::single-family-purchase-loan-data-1999-2020/about
https://huggingface.co/datasets/bigcode/bigcode-pii-dataset
https://huggingface.co/datasets/bigcode/bigcode-pii-dataset
https://catalog.data.gov/dataset/?tags=pii

Creating a Secure Data Environment

Hackers are a creative and innovative lot, often creating attacks that most people
would never think about; much less know how to implement. These attacks create
havoc everywhere for everyone. Even the tools you use to create applications
aren’t safe, as described in “Cyberattackers Torch Python Machine Learning
Project” (https://www.darkreading.com/application-security/cyberattackers-
torch-python-machine-learning-project) for the PyTorch machine learning
project. So, creating a safe environment for your data, applications, tools, users,
network, and anything else you can think of is a priority.

Becoming security aware is an essential step that every data scientist can take to
reduce the potential for security issues with any project. Security is more than
protecting the data from unwanted scrutiny. Many attacks don’t actually steal any
data; some add data or corrupt data so that the output of a machine learning
model is corrupted in all sorts of ways for all sorts of reasons, such as to give a
competitor an edge when bidding for a job. Being aware is part of the security
picture. When you create a model that doesn’t seem to provide the results you
predicted, it’s important to find out why, rather than simply assume that the
result is a novelty.

Machine learning is used by hackers to break security as described at “9 ways
hackers will use machine learning to launch attacks” (https://www.csoonline.
com/article/3250144/6-ways—hackers-will-use-machine-learning-

rRememBer to-launch-attacks.html). In fact, there is no shortage of such articles because
hackers are quite prolific. However, you can also use machine learning to protect
your system, as described in “How Machine Learning helps Cyber Security?” at
(https://www.kaggle.com/code/rockystats/how-machine-learning-helps-
cyber-security). Only by creating coding solutions and then exposing them to
simulated attacks can you hope to stay slightly ahead of the security threats
against your system.

Working with a Multiple-Data-
Source Problem

You won’t often encounter a situation where you can use just one data source to
create a machine learning solution. Even though the examples in this book largely
work with a single data source, they do so to keep the problems simple enough for
you to discover how machine learning works. Consequently, articles like “How to
Get Data from Multiple Sources” (https://www.integrate.io/blog/get-data-
from-multiple-sources/) are an essential next step in your training as a data

CHAPTER 22 Ten Data Challenges You Should Take 423

https://www.darkreading.com/application-security/cyberattackers-torch-python-machine-learning-project
https://www.darkreading.com/application-security/cyberattackers-torch-python-machine-learning-project
https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
https://www.kaggle.com/code/rockystats/how-machine-learning-helps-cyber-security
https://www.kaggle.com/code/rockystats/how-machine-learning-helps-cyber-security
https://www.integrate.io/blog/get-data-from-multiple-sources/
https://www.integrate.io/blog/get-data-from-multiple-sources/

REMEMBER

scientist. These articles introduce you to strategies like Extract, Transform, Load
(ETL) (https://www.ibm.com/topics/etl) that enable you to take data from
multiple sources and create a single data source from it.

You can find seemingly endless sources of ideas for multiple data source problems
because that’s how the real world works. However, the best multiple data source
problems take a unique view of what makes the real world work in a particular
way. For example, it might not seem likely that you can combine COVID data
with national park visits, but “Understanding changes in park visitation during
the COVID-19 pandemic: A spatial application of big data” (https://www.
sciencedirect.com/science/article/pii/S2666558121000105) does just that.
Chapter 13 introduces you to the Palmer Penguins dataset. This dataset also
appears in Chapters 14 and 17. What if you were to combine that and other penguin
statistical datasets with weather data to see whether there is a correlation between
the weather and the size of various penguins? The point is that using multiple
data sources often helps you create unique views of the world that ultimately
prove useful in all sorts of ways.

Honing Your Overfit Strategies

424

TIP

The Madelon dataset at https://archive.ics.uci.edu/ml/datasets/Madelon
is an artificial dataset containing a two-class classification problem with continu-
ous input variables. This NIPS 2003 feature selection challenge will seriously test
your skills in cross-validating models. The main emphasis of this challenge is to
devise strategies for avoiding overfit — an issue that you first confront in the
“Finding more things that can go wrong” section of Chapter 16. You find overfit
issues mentioned in Chapters 18, 19, and 20 as well. To test your models, you can
create your own synthetic data problem similar to the Madelon Data Set by using
the make_classification command from Scikit-learn (https://scikit-learn.
org/stable/modules/generated/sklearn.datasets.make_classification.
html).

This particular dataset attracted the attention of a number of people who created
papers about it. The best papers appear in the book Feature Extraction, Foundations
and Applications at https://www.springer.com/us/book/9783540354871. You
can also download an associated technical report from https://clopinet.com/
isabelle/Projects/ETH/TM-fextract-class.pdf. The Advances in Neural
Information Processing Systems 17 (NIPS 2004) website at https://mitpress.
mit.edu/9780262195348/advances-in-neural-information-processing-
systems-17/ also contains useful links to papers that will help you with this par-
ticular dataset.

PART 6 The Part of Tens

https://www.ibm.com/topics/etl
https://www.sciencedirect.com/science/article/pii/S2666558121000105
https://www.sciencedirect.com/science/article/pii/S2666558121000105
https://archive.ics.uci.edu/ml/datasets/Madelon
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://www.springer.com/us/book/9783540354871
https://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
https://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
https://mitpress.mit.edu/9780262195348/advances-in-neural-information-processing-systems-17/
https://mitpress.mit.edu/9780262195348/advances-in-neural-information-processing-systems-17/
https://mitpress.mit.edu/9780262195348/advances-in-neural-information-processing-systems-17/

Trudging Through the MovieLens Dataset

The MovieLens site (https://movielens.org/) is all about helping you find a
movie you might like. After all, with millions of movies out there, finding some-
thing new and interesting could take time that you don’t want to spend. The setup
works by asking you to input ratings for movies you already know about. The
MovieLens site then makes recommendations for you based on your ratings. In
short, your ratings teach an algorithm what to look for, and then the site applies
this algorithm to the entire dataset.

You can obtain the MovieLens dataset at https://grouplens.org/datasets/
movielens/. The interesting thing about this site is that you can download all or
part of the dataset based on how you want to interact with it. You can find down-
loads in the following sizes:

3 100,000 ratings from 1,000 users on 1,700 movies
3 1 million ratings from 6,000 users on 4,000 movies

3 10 million ratings and 100,000 tag applications applied to 10,000 movies by
72,000 users

3 20 million ratings and 465,000 tag applications applied to 27,000 movies by
138,000 users

¥ Movielens'’s latest dataset in small or full sizes (the full size contained
21,000,000 ratings and 470,000 tag applications applied to 27,000 movies by
230,000 users as of this writing but will increase in size with time)

This dataset presents you with an opportunity to work with user-generated data
using both supervised and unsupervised techniques. The large datasets present
special challenges that only big data can provide. You can find some starter infor-
mation for working with supervised and unsupervised techniques in Chapter 14.

Locating the Correct Data Source

Machine learning isn’t about finding a data source, but rather finding the correct
data source for a particular need. The data in the wrong data source might be the
best data on the planet, but it simply may not meet the need you have in mind and
won’t do the job for you. For example, a dataset about fraud committed online
may contain the best information available, but it may not help much if you’re
trying to create a machine learning model to predict fraud in open-air markets.
The environments are different, so the way fraud is perpetrated may be different,

CHAPTER 22 Ten Data Challenges You Should Take 425

https://movielens.org/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

TIP

too. Even if the data is perfect, the resulting model may not accurately predict
fraud in an open-air market environment because the way people interact in the
two settings is also different. Consequently, your search may begin by under-
standing where to look, as described in articles like 9 Best Places To Find Machine
Learning Datasets” (https://towardsdatascience.com/9-best-places-to-
find-machine-learning-datasets-dfdba8af5220).

It helps to look for articles and data sources that relate specifically to your indus-
try. An article like “Al in marketing: How to find the right data sources” (https://
econsultancy.com/ai-in-marketing-how-to-find-the-right-data-
sources/) can give you a significant boost in locating just the right data source for
a particular model. Some sites, such as bigml (https://blog.bigml.com/list-
of-public-data-sources-fit-for-machine-learning/), supply actual lists of
places to look for the data you need. In looking at this site, you find that govern-
ments are actually a good place to look for data because they’re constantly collect-
ing it in myriad ways (just think about how much data a government collects
during a census). Government agencies also have mandates to share data with the
public in some cases.

Where you look for data has a lot to do with the entity performing the collecting.
Looking at online stores like Amazon is probably a good idea for sales-related
data, but not really a good idea at all if you’re looking for people-specific data.
Amazon, despite what you may think, doesn’t actually have a good idea of who
you are as a person, but your local government likely does. Looking at the reason
for collecting data is a good indicator of whether the collected data will prove use-
ful for building your model. It pays to build a list of these sources to use when you
need to create a new model, rather than reinvent the wheel reviewing sources that
you’ve already decided won’t work.

Working with Handwritten Information

426

Pattern recognition, especially working with handwritten information, is an
important data science task. The Mixed National Institute of Standards and Tech-
nology (MNIST) dataset of handwritten digits at https://paperswithcode.com/
dataset/mnist or http://yann.lecun.com/exdb/mnist/ provides a training set
of 60,000 examples and a test set of 10,000 examples. This is a subset of the origi-
nal National Institute of Standards and Technology (NIST) dataset found at
https://www.nist.gov/itl/products-and-services/emnist-dataset. It’s a
good dataset to use to learn how to work with handwritten data without having to
perform a lot of preprocessing at the outset.

PART 6 The Part of Tens

https://towardsdatascience.com/9-best-places-to-find-machine-learning-datasets-dfdba8af5220
https://towardsdatascience.com/9-best-places-to-find-machine-learning-datasets-dfdba8af5220
https://econsultancy.com/ai-in-marketing-how-to-find-the-right-data-sources/
https://econsultancy.com/ai-in-marketing-how-to-find-the-right-data-sources/
https://econsultancy.com/ai-in-marketing-how-to-find-the-right-data-sources/
https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/
https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/
https://paperswithcode.com/dataset/mnist
https://paperswithcode.com/dataset/mnist
http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/itl/products-and-services/emnist-dataset

The dataset appears in four files. The two training and two test files contain

images and labels. You need all four files in order to create a complete dataset for
working with digits. A potential problem in working with the MNIST dataset is

TIP that the image files aren’t in a particular format. The format used for storing the
images appears at the bottom of the page. Of course, you could always build your

own Python application for reading them, but using code that someone else has

created is a lot easier. The following list provides places where you can get code to
read the MNIST dataset using Python:

¥ https://cs.indstate.edu/~jkinne/cs475-£2011/code/
mnistHandwriting.py

¥ https://martin-thoma.com/classify-mnist-with-pybrain/

¥ https://gist.github.com/akesling/5358964

The host page also contains an important listing of methods used to work with the
training and test set. The list contains an impressive number of classifiers that
should give you some ideas for your own experiments. The point is that this par-
ticular dataset is useful for all sorts of different tasks.

chapters in the book. To use this dataset, you import the digits database using
from sklearn.datasets import load_digits. This particular dataset appears in

rememser Chapters 12, 15, 17, 19, and 20, so you gain a considerable amount of experience in
working with a much smaller digits database when you work through the exam-
ples in those chapters.

@ You have worked with the digits toy dataset from Scikit-learn in a number of

Working with Pictures

The Canadian Institute for Advanced Research (CIFAR) datasets at https://www.
cs.toronto.edu/~kriz/cifar.html provide you with graphics content to work
with in various ways. The CIFAR-10 and CIFAR-100 datasets contain labeled sub-
sets of a dataset with 80 million tiny images (you can read about how the dataset
works with the original image dataset in the Learning Multiple Layers of Features
from Tiny Images technical report at https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf). In the CIFAR-10 dataset, you find 60,000
32-x-32 color images in ten classes (for 6,000 images in each class). Here are the
classes you find:

¥ Airplane

3 Automobile

CHAPTER 22 Ten Data Challenges You Should Take 427

https://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
https://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
https://martin-thoma.com/classify-mnist-with-pybrain/
https://gist.github.com/akesling/5358964
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

WARNING

¥ Bird
» Cat
¥ Deer
¥ Dog
¥ Frog
¥ Horse
¥ Ship
» Truck

The CIFAR-100 dataset contains more classes. Instead of 10 classes, you get
100 classes containing 600 images each. The size of the dataset is the same, but
the number of classes is larger. The classification system is hierarchical in this
case. The 100 classes divide into 20 superclasses. For example, in the aquatic
mammals superclass, you find the beaver, dolphin, otter, seal, and whale classes.

Both CIFAR datasets come in Python, MATLAB, and binary versions. Make sure
that you download the correct version and follow the instructions for using them
on the download page. Yes, you could use the other versions with Python, but
doing so would require a lot of extra programming, and because you already have
access to a Python version, you wouldn’t gain anything from the exercise.

This is an excellent challenge to take after you have worked with the digits dataset
described in the previous section. Taking this challenge helps you to deal with col-
orful, complex images. If you worked through the examples in Chapter 14, you
already have some experience working with images using the Olivetti faces
dataset.

Indentifying Data Lineage

428

Asking the right questions about data you use is important. Knowing who pro-
duced the data, how they produced it, and why they needed it are all essential. As
explained in “What is data lineage?” (https://www.ibm.com/topics/data—
lineage), data lineage is the process of tracking data over time and accumulating
relevant statistics about it. For example, the original authors of a dataset may
clean the data to meet PII requirements, which would change the data and modify
any models created using it. Understanding these changes is important because
they help you better understand the outcome of building a model.

PART 6 The Part of Tens

https://www.ibm.com/topics/data-lineage
https://www.ibm.com/topics/data-lineage

governing is to create a reliable data environment that matches a particular orga-
nization’s needs. Using the data has to be within legal guidelines, yet allow you to

rememser produce predictable results when performing various kinds of analysis. Employ-
ing the data in a manner that doesn’t create copyright or other issues is also
important. As a data scientist, having the results of models you create and analy-
sis you perform questioned due to data lineage issues could prove to be a career
breaker.

@ Overall, the goal of the combination of data lineage, data provenance, and data

The Data Lineage site (https://www.imperva.com/learn/data-security/data-
lineage/) offers some ideas for tracking the history of data within your organiza-
tion. In addition, you may want to review “5 Types of Data Lineage: Understand
All Ways to View Your Data” (https://atlan.com/types-of-data-lineage/) to
better understand how data lineage is tracked. You can find data lineage examples
at “Top 10 Examples of Data Lineage” (https://www.knowledgenile.com/blogs/
data-lineage-examples/).

As you work with data to clean it, transform it, and perform other manipulations
with it, you modify the data in a manner that also needs to be tracked and docu-
mented so that peer review of processes you employed is possible. In short, some
of what data lineage is all about is making other people feel comfortable, and
everyone wants to feel that sort of comfort.

Interacting with a Huge Graph

Imagine trying to work through the connections between 3.5 billion web pages.
You can do just that by downloading the immense dataset at http://webdata
commons .org/hyperlinkgraph/index.html. The biggest, richest, most complex
dataset of all is the internet itself. Start with a subsample offered by the Common
Crawl 2012 web corpus (https://commoncrawl.org/) and learn how to extract
and elaborate data from websites. The principle uses for this dataset are

¥ Search algorithms
¥ Spam detection methods
¥ Graph analysis algorithms

¥ Web science research

CHAPTER 22 Ten Data Challenges You Should Take 429

https://www.imperva.com/learn/data-security/data-lineage/
https://www.imperva.com/learn/data-security/data-lineage/
https://atlan.com/types-of-data-lineage/
https://www.knowledgenile.com/blogs/data-lineage-examples/
https://www.knowledgenile.com/blogs/data-lineage-examples/
http://webdatacommons.org/hyperlinkgraph/index.html
http://webdatacommons.org/hyperlinkgraph/index.html
https://commoncrawl.org/

You need the additional information to perform most data science tasks. The link
at https://commoncrawl .org/the-data/examples/ provides a list of the various
projects currently using Common Crawl data. You can also find some interesting
tutorials for using this data at https://commoncrawl .org/the-data/tutorials/.

Don’t let the idea of performing an analysis on such a large dataset scare you. If
you worked through the examples in Chapter 7, you have worked with simple
graph data. This dataset is a similar task but on a significantly larger scale. Yes,
size does matter to some extent, but you already know some of the required tech-
niques for getting the job done.

430 PART 6 The Part of Tens

https://commoncrawl.org/the-data/examples/
https://commoncrawl.org/the-data/tutorials/

Index

A

absolute errors, 332
academic papers, 148
accessing data. See data access

accuracy metric, 321,
332-333, 388

AdaBoost (Adaptive Boosting),
293, 406-407

AdaBoostClassifier class,
406-407

add_edge() function, 141,
196, 198

add_edges_ from() function,
196, 198

add_feature() function, 193
add_node() function, 196, 198

add_nodes_from() function,
196, 198

adjacency matrices, 138-139
adjacency_matrix() function, 139

Advances in Neural Information
Processing Systems 17, 424

agglomerative (hierarchical)
clustering, 274, 283-287

defined, 283
dendrograms, 283, 286
distance metrics, 284
image data, 284-285
linkage methods, 283-284
visualization, 285-287

aggregating data, 129-130,
285-287

Al (artificial intelligence), 14,
417-418, 426

Al-Kindi, 13

Anaconda. See also Anaconda
Prompt; Jupyter Notebook

installing
on Linux, 39-40

on Mac OS X, 40-41

on Windows, 36-38
overview, 34-35
screenshots in book, 39

Anaconda Prompt

(base) environment, 35
finding, 35
overview, 35
Windows 10 Start menu, 36

Analysis Of Variance (ANOVA),
236-237, 342

Android devices, 50
annotate() function, 173
annotations

adding to charts,
173-174

defined, 172
anonymizing data

aggregating data, 130

removing Pll, 422

ANOVA (Analysis Of Variance),
236-237, 342

application programming
interfaces (APIs). See also
Keras API

Keras, 30

Python and, 11

Scikit-learn, 100, 202-203
arrays, 153-155

matrix multiplication, 155

matrix vector multiplication,
154-155

NumPy, 29, 219
scatterplots, 184-185

Scikit-learn and data science
applications, 203-205

simple arithmetic on vectors
and matrices, 154

slicing and dicing data,
123-125

unstructured image data,
96-97

vectorization, 153

artificial intelligence (Al), 14,
417-418, 426

AskSam, 97

average linkage, 284

axes
accessing, 163-164
formatting, 164-165
handles, 163
labeling, 172-173
time series, 186-188

bag of words model, 132-138,
212-213, 319

bagging technique, 399-401

BaggingClassifier class,
399-401

BaggingRegressor class, 399
bar charts

comparisons, 178-179

distributions, 180
BaseEstimator class, 202
Bayes, Thomas, 317
benchmarking, 213-216
BernoulliNB class, 319-321
bias, 145, 336

fitting data to models,
329-330

linear models, 357

mistruths of, 147

nonlinear transformations, 352
Random Forest, 399

Index 431

big data, 361-365. See also

dimensionality (complexity)

reduction
defined, 251
K-means clustering, 281-283
linking data science with, 14

Stochastic Gradient Descent
optimization, 362-365

when data is considered
big, 362

bigcode-pii-dataset, 422

bigml, 426

binning
categorical data, 231-234
defined, 151
heterogeneous data, 210
histograms, 179-180
pandas library, 107

black boxes, 30, 401

boosting, 406-411
AdaBoost, 293, 406-407

Gradient Boosting Machines,
293, 407-410

XGBoost, 314, 410-411
Bower, Jonathan, 420
boxplot() function, 181
boxplots

cross-validation, 339-340

EDA, 234-236

groups, 181-182

outlier detection, 296-297

percentiles, 229

performing t-tests after,
236-237

Breiman, Leo, 399
bunches, defined, 27, 133

C

California Housing dataset
fitting data to models, 334
forward feature selection, 343
GBM hyperparameters, 409

gradient boosting regressor,
408-409

grid search, 345
heterogeneous data, 210
interactions, 355

linear regression, 204, 309-310
loading, 18, 28-29, 47-48
Random Forest regressor, 404
regression trees, 397-398

stratification sampling,
338-339

variable transformations, 353
XGBoost, 411

Canadian Institute for Advanced
Research (CIFAR) image
datasets, 427-428

Cartopy, 190-194

adding to Google Colab
environment, 190

adding to Jupyter Notebook
environment, 190-192

plotting geographic data,
192-194

cases, defined, 84, 155

categorical variables
(enumerations), 113-117

chi-square statistic, 246
combining levels, 116-117
correlation, 241
creating, 114-115
defined, 113
frequencies, 107, 232-233
renaming levels, 115-116
cells
Google Colab, 59-64
clearing output, 62
code execution within, 51, 54
comments, 61
copying, 62
copying links to, 61
creating code cells, 60-62
creating special cells, 63
creating text cells, 62-63

432 Python for Data Science For Dummies

cutting, 62
deleting, 61
editing, 64
forms, 62
mirroring, 61
moving, 60, 64
running, 65
selecting, 62
Jupyter Notebook
creating, 74
deleting, 74

Markdown cells, 44-45,
74-75

running, 48
styles, 74-75
central tendency
EDA, 227
outliers, 292
centroids, 275-284
Chainer, 385
charts. See graphs and charts
ChatGPT, 385
Chebyshev's inequality, 298
Chen, Tiangqi, 410
chi2_ contingency() function, 246
chi-square
Cramér's V, 246
tables, 245

univariate approach to
variable selection, 342

Chollet, Francois, 386
Chrome browser, 18, 50-52

CIFAR (Canadian Institute for
Advanced Research) image
datasets, 427-428

classification. See also clustering;
Support Vector Machines

bag of words model, 132, 138
bagging technique, 400
boosting, 406-408

decision trees, 394-397
defined, 203

fitting data to models, 331-333

Gradient Boosting Machine,
407-408

k-nearest neighbors, 323-325,
345-346

Madelon dataset, 424

Naive Bayes algorithm, 318,
320-321

neural networks, 386-390
Random Forest, 402-403

Stochastic Gradient
Descent, 362

Support Vector Classifier,
371-376

support vector machines,
366-369

variable selection, 342
ClassifierMixin class, 202
classifiers, defined, 132
Cleveland, William S., 12
clustering, 273-289

agglomerative, 274, 283-287

defined, 283
dendrograms, 283, 286
distance metrics, 284

example with image data,
284-285

linkage methods, 283-284
visualization, 285-287
cross-validation, 339
data density approaches, 274

DBScan algorithm, 287-289,
302-303

distinguishing between
techniques, 274

fuzzy, 274
K-means, 275-283
big data, 281-283

centroid-based algorithms,
275-277

defined, 275
image data, 277-281
outlier detection, 303

partition-clustering
techniques, 274

ClusterMixin class, 202

coastlines() method, 193

code repository for Jupyter
Notebook, 43-47

adding notebook content,
44-45

create notebooks, 44
defining folder, 43
exporting notebooks, 45-46
importing notebooks, 46-47
coding styles
effect on performance, 26
Python support for, 10, 17
coef () method, 205
Colab. See Google Colab
collaborative filtering, 268
Columbia University, 12

ColumnTransformer() function,
209-212

COM (Component Object Model)
applications, 100

comma-separated value (CSV)
files, 89-93

commission, mistruths of, 146
Common Crawl, 429-430
compiling Python, 10, 12
complete linkage, 283

complexity reduction. See
dimensionality reduction

Component Object Model (COM)
applications, 100

concat() function, 103, 126
concept drift, 295
Conductrics, 419
contextualization, 144-149
data preparation, 149
evaluating problems, 145

formulating hypotheses,
148-149

importance of, 144-145

researching solutions, 147-148
contingency tables

chi-square statistic, 247

Cramér's 'V, 248

creating, 233-234

correlation, 241-245
chi-square for tables, 245
covariance and, 242-244

movie recommendations,
270-271

multivariate, 149
nonparametric, 244-246, 248
outlier detection, 292-293

Pearson’s correlation, 241,
243-244, 246-248

redundancy of
information, 277

scatterplots, 184-186, 240

Spearman correlation,
244-245, 248

variable selection, 342
cosine distance, 284

CountVectorizer() function, 207,
213-215, 321

covariance, 242-244
COVID-related data, 422, 424
Cramér's V, 246

Cross Validated website, 148

cross_val_score() function,
337,374

cross-tabulation, 245, 279, 285,
289, 318

cross-validation, 336-341
boosting, 406
defined, 220
grid search, 346-347
interactions, 355-356
k folds, 337-338
multiprocessing, 221
pipeline and, 208

stratification sampling,
338-341

SVC, 374-376

CSV (comma-separated value)
files, 89-93

curse of dimensionality, 321
cut() function, 231
Cutler, Adele, 399

433

Index

D

data access, 83-103
flat files, 83, 89-94

reading CSV delimited
format, 90-93

reading from text files, 90

reading Microsoft Excel and
Office files, 93-94

image data, 86-87, 94-97
memory streams, 83, 86
relational databases, 83, 97-98
sampling data, 88-89
unstructured files, 94-97

uploading small amounts of
data, 84-85

web-based data, 83, 100-103

data analysis. See also
Exploratory Data Analysis

as core competency, 13

discretization, 210

EDA, 15, 223-249
boxplots, 234-236
categorical data, 231-234
confirmatory approach, 224
correlation, 241-245
Cramér's V, 246
defined, 223

distribution modification,
246-249

goal of, 223

graphing distributions,
238-239

Initial Data Analysis vs.,
224-225

nonlinear
transformations, 352

numeric data, 225-231
parallel coordinates, 238
scatterplots, 240-241
t-tests, 236-237
visualization, 234-241

effect of algorithm on
performance, 26

434

feature creation, 149
pandas library, 29

prototyping and
experimentation
process, 25

Scikit-learn library, 30
XGBoost, 31
data capture, 13, 418

data density clustering
approaches, 274

data lineage, 428-429
data maps, 110-111

data munging. See data
wrangling

data partitioning, 335-336
data plans, 111-112
data preparation, 15, 107, 149

data presentation. See also
visualization

as core competency, 13
display frameworks, 23

prototyping and
experimentation
process, 25

data science, 1, 9, 12, 143-155
arrays, 153-155
matrix multiplication, 155

matrix vector multiplication,
154-155

simple arithmetic on vectors
and matrices, 154

vectorization, 153
challenging datasets, 421-430
contextualization, 144-149

data preparation, 149

evaluating problems, 145

formulating hypotheses,
148-149

importance of, 144-145

researching solutions,
147-148

core competencies of data
scientists, 13-14

emergence of, 12-13

Python for Data Science For Dummies

feature creation (engineering),
149-152

binning, 151

combining variables, 150-151
defining, 149-150
discretization, 151

indicator variables, 151-152

transforming
distributions, 152

libraries, 23
linking with big data and Al, 14
pipeline for, 15

Python libraries and
ecosystem, 28-32

Python setup, 33-48

Python's role in, 16-17, 22-23
data access, 23
data display, 23
library support, 23

multipurpose, simple, and
efficient language, 17

parallel processing, 23

shifting profile of data
scientists, 16

resource collections, 415-420
Conductrics, 419
Data Science 101, 418

Data Science Central,
417-418

Jonathan Bower, 420
KDnuggets, 416

Oracle Al & Data Science
Blog, 417

Quora, 416-417
Reddit, 416
Springboard, 420
Udacity, 418-419

Data Science 101, 418
Data Science Central, 417-418
data scientists

core competencies of, 13-14
preparing data, 107
shifting profile of, 16

data validation, 108-112
data maps, 110-111
data plans, 111-112
finding duplicates, 108-109
purpose of, 108
removing duplicates, 110

data wrangling (data munging),
201-222

clustering, 273-289
defined, 201

dimensionality reduction,
251-271

Exploratory Data Analysis,
223-249

outlier detection, 291-304

performance and speed
issues, 212-219

Scikit-learn, 201-212

applications for data science,
203-206

classes, 202-203
documentation, 201

multicore parallelism,
220-222

transformative functions,
207-212

Database Management Systems
(DBMSes), 97-99

Data.gov, 422

datasets. See also names of
specific datasets

challenging, 421-430
downloading, 42, 44

functions for importing, 47-48
high-dimensional sparse, 134
NoSQL Databases, 99

providing access to in local
environment, 28

size of and effect on
performance, 26

toy datasets, 84

date- and time-related data,
117-119

formatting date and time
values, 118

issues with, 117-118
time transformations, 118-119

DBMSes (Database
Management Systems),
97-99

DBScan algorithm, 287-289, 302
decision trees, 392-398
branches, 394
classification trees, 395-397
leaves, 394
overfitting, 395
reading nodes of, 394
regression trees, 397-398
visualization, 393-394, 397

DecisionTreeClassifier class,
394, 396

DecisionTreeRegressor class,
394, 397

dendrograms, 283, 286
describe() method, 111-112, 226
desired solutions, 145

diabetes dataset, 296

dicing data, 124-125

DiGraph() constructor, 198

dimensionality (complexity)
reduction, 251-271

curse of dimensionality, 321
factor analysis, 256-258

principal component analysis,
256-265

components, 258

facial recognition, 262-265
reducing dimensionality, 259
SVD vs., 258

topic extraction, 266-268
t-SNE, 259-261

unique vs. shared
variance, 256

Singular Value Decomposition,
252-256

entertainment preferences
and recommendations, 256

formula of, 252

measuring the invisible,
255-256

movie recommendations,
268-271

reducing dimensionality,
253-255

text hinting at ideas and
meaningful categories, 255

dir() function, 27, 78
directed graphs, 195, 197-198
discretization, 151

defined, 210

heterogeneous data,
210-211

distributions

boxplots, 234-236

defined, 152

graphing, 238-239

histograms, 179-181

modifying, 246-249

transforming, 152
Domingos, Pedro, 150
dot() function, 254
draw_networkx() function, 198
drop() method, 127
dropna() method, 121
dtreeviz package, 393, 397

dummy variables (indicator
variables), 151-152

duplicate data
finding duplicates, 108-109
removing duplicates, 110
duplicated() method, 109
duplicates() method, 110
DurusWorks, 23

EDA. See Exploratory Data
Analysis

edges, defined, 138, 195
ElasticNet class, 361-362

ELT (Extract, Load,
Transform), 14

435

Index

Encyclopedia Titanica, 392
ensembles, 221, 391-411
boosting, 406-411
AdaBoost, 406-407

Gradient Boosting Machine
classifier, 407-408

Gradient Boosting Machine
hyperparameters, 409-410

Gradient Boosting Machine
regressor, 408-409

XGBoost, 410-411
decision trees, 392-398
branches, 394

classification trees,
395-397

leaves, 394
overfitting, 395
reading nodes of, 394
regression trees, 397-398
visualization, 393-394
defined, 391
ensembles of models, 399
Random Forest, 399-405
classifier, 402-403
machine learning, 399-402
optimizing, 404-405
regressor, 404
steps for, 399

entertainment preferences and
recommendations, 256,
268-271

enumerate() method, 88

enumerations. See categorical
variables

error functions, 294, 331, 362

ETL (Extract, Transform, Load),
14, 424

Euclidean distance, 275-277,
284, 324

evaluation metrics, 331

Excel files. See Microsoft
Excel files

436

Exploratory Data Analysis (EDA),
15, 223-249

boxplots, 234-236

categorical data, 231-234

confirmatory approach, 224

correlation, 241-245
chi-square for tables, 245
covariance and, 242-244
nonparametric, 244-245

Cramér's V, 246

defined, 223

distribution modification,
246-249

converting into uniform
or normal distributions,
248-249

using different statistical
distributions, 247

Z-score standardization,
247-248

goal of, 223

graphing distributions,
238-239

Initial Data Analysis vs.,
224-225

nonlinear transformations, 352
numeric data, 225-231
central tendency, 227
percentiles, 228-229

skewness and kurtosis,
229-231

standard deviation, 228
parallel coordinates, 238
scatterplots, 240-241
t-tests, 236-237
visualization, 234-241

boxplots, 234-236

graphing distributions,

238-239

parallel coordinates, 238
scatterplots, 240-241
t-tests, 236-237

Python for Data Science For Dummies

Extract, Load, Transform
(ELT), 14

Extract, Transform, Load (ETL),
14,424

eXtreme Gradient Boosting
(XGBoost) library, 31,
410-411

F

facial recognition, 262-265

factor analysis, 256-258
hidden factors, 257-258
psychometric model, 257

unique vs. shared
variance, 256

FactorAnalysis class, 258

feature creation (engineering),
149-152

binning, 151

combining variables, 150-151
defining, 149-150
discretization, 151

indicator variables, 151-152

nonlinear transformations,
352-354

transforming distributions, 152

FeatureUnion() function,
209-210

fillna() method, 121
Firefox browser, 51, 53

fit() method, 122, 203-206, 278,
346, 363, 373-374

fit_transform() method, 134

fitting data to models (model
training), 205, 208-209,
309-310, 328-336

bias, 329-330

boosting, 406

decision trees, 395
defined, 328

evaluation metrics, 331
optimization process, 331

overfitting, 311, 348-349,
364-365, 370, 376, 388,
390, 392, 395-396, 401,
406, 409, 424

Python workflow, 18-19

strategy for picking models,
330-333

training vs. test sets, 334-336
underfitting, 370
variance, 329-330

flat files, 83, 89-94
reading CSV files, 90-93
reading from text files, 90

reading Microsoft Excel and
Office files, 93-94

ForecastWatch, 22-23

forward and backward
approach, 341, 343-344

frame-of-reference
mistruths, 147

functional coding, 17
fuzzy clustering, 274

G

Gaussian distribution, 230,
297-298

GaussianNB class, 319
GBMs. See gradient boosting

General Data Protection
Regulation (GDPR), 422

Generalized Linear Models
(GLMs), 313

geographical data, 190-195
Basemap, 194-195
Cartopy, 191-194

German Credit Data dataset, 47,
400-402, 405-407, 410

Gershoff, Matt, 419
getroot() method, 102
GitHub, 50, 52, 420

opening notebooks from,
55-56

saving notebooks to, 57-58

saving notebooks with GitHub
gists, 58-59

GLMs (Generalized Linear
Models), 313

Google Chrome browser, 18,
50-52

Google Colab, 2, 24, 33,
49-69, 386

Android devices, 50
browsers, 51
Cartopy, 190
cells, 59-64
clearing output, 62
code execution within, 51, 54
comments, 61
copying, 62
copying links to, 61
creating code cells, 60-62
creating special cells, 63
creating text cells, 62-63
cutting, 62
deleting, 61
editing, 64
forms, 62
mirroring, 61
moving, 60, 64
running, 65
selecting, 62
code execution
within cells, 51, 54
checking, 67
overview, 65
defined, 49
functions of, 50
GitHub repository, 50
hardware acceleration, 64-65
help resources, 68-69
Jupyter Notebook vs., 50-52
local runtime support, 53
notebooks, 53-59
creating, 54

displaying table of
contents, 66

downloading, 59

getting notebook
information, 66-67

opening, 54-55
saving, 56-59
sharing, 67-68
storage locations, 55-59
viewing, 66
Google Drive
opening notebooks from, 55
saving notebooks to, 56-57
Google Scholar, 148
Gorman, Kristen, 225
gradient boosting

Gradient Boosting
Machines, 293

classifier, 407-408
hyperparameters, 409-410
regressor, 408-409
XGBoost, 31, 410-411
gradient descent, 309, 362-365

GradientBoostingClassifier class,
407-408

GradientBoostingRegressor
class, 408-409

graphics. See graphs and charts;
multimedia and graphics

graphs and charts, 138-141,
159-175

adjacency matrices, 138-139
annotations, 172-174

axes, 163-165

bar charts, 178-179
boxplots, 181-182

directed graphs, 197-198
distributions, 238-239
geographical data, 190-195
graphs, defined, 195

grids, 165-166

hairballs, 139

histograms, 179-181

labels, 171-173

legends, 172, 174-175

Index

437

graphs and charts (continued)
lines
colors, 168-169
drawing multiple, 161-162
line styles, 167-168
markers, 169-171
links (edges), 138
NetworkX, 31-32, 139-141
nodes, 138
plots, 160-162
saving work to disk, 162-163
scatterplots, 182-186
time series, 186-190
undirected graphs, 195-197
grid() function, 166
grid search, 220, 345-348
gridlines() method, 194
GridSearch class, 346

GridSearchCV() function,
350, 375

ground truth, 278-279, 285, 289
groupby() function, 111, 130
Grover, Prince, 393

H

hairballs, 139

HalvingGridSearchCV() function,
348-349

handwriting recognition, 221,
260-261, 277-289, 366,
371-372, 376, 387, 426-428

handwritten number dataset,
221, 260, 277-278, 280, 282,
288,371-372, 387, 426-427

heterogeneous data, 210-212

hierarchical clustering. See
agglomerative clustering

high-dimensional sparse
datasets, 134

histograms, 179-181, 238-
239, 241

Hofmann, Hans, 400
hurdle values, 299

438

hyperlinkgraph dataset,
429-430

hyperparameters, 204, 220,
344-350, 358

defined, 344

Gradient Boosting Machine,
409-410

grid search, 345-348
randomized search, 348-350
hypotheses, 148-149, 205

IDA (Initial Data Analysis),
224-225

IDEs (Integrated Development
Environments), 24, 39. See
also Google Colab; Jupyter
Notebook

imperative coding, 17
imshow() function, 87, 95, 371
indentation, 24

indicator variables (dummy
variables), 151-152

inductive learning, 327-350
cross-validation, 336-341
fitting models, 328

bias, 329-330

strategy for picking models,
330-333

training vs. test sets, 334-336

variance, 329-330
hyperparameters, 344-350
selecting variables, 338-341

forward and backward
approach, 341, 343-344

univariate approach, 341-343
inertia
defined, 280
rate of change in, 280-282

information redundancy,
149, 242

Information Retrieval (IR), 133

Initial Data Analysis (IDA),
224-225

Python for Data Science For Dummies

insights, 15, 27

Integrated Development
Environments (IDEs), 24,
39. See also Google Colab;
Jupyter Notebook

International Council for
Science, 12

Internet World Stats, 1
interpreted mode, 10-12

interquartile range (IQR), 229,
235, 297, 299

IPython Notebook files, 46, 50
IR (Information Retrieval), 133
isin() method, 117

isnull() method, 115, 120
Isolation Forests, 303-304

J

JavaScript Object Notation
(JSON), 103

join() method, 126
jQuery, 100

Jupyter Notebook, 2, 10, 18,
23-24, 33, 42-43, 73-82.
See also Google Colab

Cartopy, 190-191
cells
creating, 74
deleting, 74

Markdown cells, 44-45,
74-75

running, 48

styles, 74-75
defining new folders, 43
GitHub repository, 50
Google Colab vs., 50-52
help resources, 75-76
identifying version of, 34-35
literate programming, 34
magic functions

axes, 163

backend list, 163

benchmarking, 213-216

displaying status
information, 77

embedding graphics, 80, 161
graph display, 163, 165

loading examples from
online sites, 80

multiprocessing, 221
obtaining list of, 76-77
percent signs, 77
using with objects, 78

multimedia and graphics,
79-82

notebooks
adding content to, 44-45
creating, 44
exporting, 45-46
importing, 46-47
removing, 46
objects, 77-78
package installation, 190-191
restarting kernel, 79
restoring checkpoints, 79
starting, 42
stopping server, 42-43
styles, 74-75

K

k folds cross-validation, 337-338

Kaggle, 31, 150, 392, 410, 423

KDnuggets, 416

Kelvin, Lord, 145

Keras API, 30-31, 385-388

kernel trick, 368

keys, 27-28

keys() function, 28

KMeans class, 278

K-means clustering, 275-283
big data, 281-283

centroid-based algorithms,
275-277

cross-tabulation, 279

defined, 275

image data, 277-281
inertia, 280-281

memory leak warning, 283
outlier detection, 303

k-nearest neighbors (KNN),
322-325, 334

choosing k parameter,
324-325

hyperparameters, 345

predicting after observing
neighbors, 323-324

Knuth, Donald, 34
kurtosis, 229-231

L

labels, 171-173

Lasso (L1) regularization,
358-361

last_valid_index() method, 126

Latent Semantic Indexing
(LSI), 256

learning from data, 15, 307-411
algorithms, 307-325
big data, 361-365
ensembles, 391-411
inductive learning, 327-350
neural networks, 385-390

nonlinear transformations,
352-357

regularization, 357-361

support vector machines,
365-384

legend() function, 174-175
legends, 172, 174-175

libraries. See names of specific
libraries

linear regression, 307-312,
331-332

family of linear models,
308-309

formula type, 308, 329

heterogeneous data, 211
instantiation, 204-206

L2 (Ridge) regularization, 358
limitations and problems, 312
model training, 18-19
multiple variables, 309-312

univariate approach to
variable selection, 341

LinearRegression class, 205-
206, 355

LinearSVC class, 369, 380-384

lines, in graphs and charts
colors, 168-169
drawing multiple, 161-162
line styles, 167-168
markers, 169-171

links (edges), defined, 138

Linux, installing Anaconda on,
39-40

listwise deletion, 298
literate programming, 11, 34

loading data, effect on
performance, 26

local storage, opening
notebooks from, 56

logistic regression, 313-317
applying, 313-315
multiclass problems, 315-317
logspace() function, 375

LSI (Latent Semantic
Indexing), 256

M

Mac OS X, installing Anaconda
on, 40-41

machine capability, effect on
performance, 26

machine code, 21

Machine Learning Security
Principles (Mueller), 422

Macready, William, 308
Madelon dataset, 424

439

Index

magic functions, 76-78
axes, 163
backend list, 163
benchmarking, 213-216
displaying status
information, 77

embedding graphics,
80, 161

graph display, 163, 165

loading examples from online
sites, 80

multiprocessing, 221

obtaining list of, 76-77

percent signs, 77

using with objects, 78
main effects models, 354

make_classification() function,
381-383, 424

make_regression() function,
378

Manhattan distance, 284, 324

manifold learning (nonlinear
dimensionality reduction),
259-261

Manuscript on Deciphering
Cryptographic Messages
(Al-Kindi), 13

markers, adding to graphs,
169-171

MATLAB, 25, 159-160

Matplotlib library, 2, 25, 87,
159-175

agglomerative clustering, 286
annotations, 172-174

axes, 163-165

bar charts, 178-179
boxplots, 181-182

geographical data,
190-195

graphs, 195-198
grids, 165-166
histograms, 179-181
labels, 171-173
legends, 172, 174-175
lines

440

colors, 168-169
drawing multiple, 161-162
line styles, 167-168
markers, 169-171
MATLAB vs., 159-160
overview, 31
plots, 160-162
saving work to disk, 162-163
scatterplots, 182-186
time series, 186-190
matrices
adjacency matrices, 138-139
matrix multiplication, 155

matrix vector multiplication,
154-155

simple arithmetic on, 154

Singular Value Decomposition,
252-256

maximum likelihood estimation
(MLE) method, 259

mebibytes (MiBs), 217

memory_profiler package,
217-218

microservices, 100
Microsoft Academic, 148
Microsoft Excel files

CSV files, 91-92

dates, 117

flat files, 89

reading from, 93-94

Microsoft Office files, reading
from, 93-94

Microsoft Windows

Anaconda Prompt and
Windows 10, 36

installing Anaconda, 36-38
memory leak warning, 283

MiniBatchKMeans class,
281-282

MinMaxScaler() function,
207,362

mistruths, 146-147
of bias, 147
of commission, 146

Python for Data Science For Dummies

of frame of reference, 147
of omission, 146
of perspective, 146-147

Mixed National Institute of
Standards and Technology
(MNIST), 426-427

MLE (maximum likelihood
estimation) method, 259

model training. See fitting data
to models

MongoClient class, 99
MongoDB, 99

MovielLens dataset, 47,
268-269, 425

multicore parallelism,
220-222

demonstrating, 221-222

performing, 220-221
MultiDiGraph() constructor, 198
MultiGraph() constructor, 198
multilabel prediction, 220-221

multimedia and graphics. See
also graphs and charts

facial recognition, 262-265
image data, 86-87, 94-97
Jupyter Notebook, 79-82

embedding plots and
images, 80

loading examples from
online sites, 80

obtaining online graphics
and multimedia, 80-82

MultinomialNB class, 319-321

multiple-data-source problems,
423-424

multivariate approach

data analysis, 234

outlier detection, 300-304
multivariate correlation, 149

Mushroom dataset, 393,
395-398

MXNet, 385
mysqlclient, 23
MySQLdb library, 23

N

Naive Bayes algorithm, 317-
322,355

text classification prediction,
320-322

uses for, 318-319

National Institute of Standards
and Technology (NIST),
152,426

Natural Language Processing
(NLP), 133

ndarray structure, 96-97, 153,
267,296

n-dimensional array
manipulation, 29

neighborhoods

defined, 288

k-nearest neighbors, 322-325
NetworkX library

directed graphs, 198

graph data, 139-141

overview, 31-32

undirected graphs, 196

neural networks, 329, 351,
385-390

classification problems,
386-390

deep learning, 385

neurons, 385-386

numeric values, 386

overview, 385-386

regression problems, 386-387
n-grams, 134-135, 138, 320

NIST (National Institute of
Standards and Technology),
152, 426

NLP (Natural Language
Processing), 133

NMF (Non-Negative Matrix
Factorization), 266-268

“no free lunch” theorem,
308, 330

nodes
adding to graphs, 196
adjacency matrices, 138-139
defined, 138, 195

nonlinear dimensionality
reduction (manifold
learning), 259-261

nonlinear transformations,
352-357

interactions between variables,
354-357

variable transformations,
353-354

Non-Negative Matrix
Factorization (NMF),
266-268

nonparametric correlation,
244-246, 248

NoSQL databases, 99
notebooks
Google Colab, 53-59
creating, 54

displaying table of
contents, 66

downloading, 59

getting notebook
information, 66-67

opening, 54-55
saving, 56-59
sharing, 67-68
storage locations, 55-59
viewing, 66
Jupyter Notebook, 44-47
adding content to, 44-45
creating, 44
exporting, 45-46
importing, 46-47
removing, 46
novelty detection, 294-295
np.max() method, 153
np.min() method, 153
NumPy library
aggregating data, 128
arrays, 153-155, 219

covariance and
correlation, 243

dimensionality reduction,
253-254

documentation, 148
identifying version of, 226

installing, 216
label count, 372

ndarray structure, 96-97, 153,
267,296

overview, 29
pandas vs., 106-107

performance and speed
issues, 219

random generator, 292

transformers returning
features as, 210

trendlines, 185

(0

objectify.parse() method, 101

object-oriented
programming, 17

objects, 76-78
help resources, 77-78

properties and methods
associated with, 78

using magic functions with,
76-78

Olivetti faces dataset,
262,428

omission, mistruths of, 146
one-hot encoding, 212, 388
OneHotEncoder() function, 207

OneVsOneClassifier class,
316-317

OneVsRestClassifier class,
316-317

online resources

Advances in Neural
Information Processing
Systems, 424

Anaconda, 36, 39-40

AskSam, 97

author's website, 411

bagging technique, 399
Basemap, 194

bigml, 426

Cartopy, 190, 193-194
Chainer, 385

ChatGPT, 385

L4

Index

online resources (continued)

cheat sheet (companion to
book), 5

Common Crawl, 429-430
Conductrics, 419
COVID data, 424
Cross Validated, 148
data lineage, 428-429
Data Science 101, 418
Data Science Central, 417-418
Data.gov, 422
datasets
bigcode-pii-dataset, 422
California Housing, 18, 47
CIFAR, 427
finding, 426
German Credit Data, 47, 400

handwritten numbers,
426-427

Madelon, 424
Movielens, 47, 425
mushrooms, 395
Olivetti faces, 262
Palmer Penguins, 47

Single Family Purchase Loan
Data, 422

Titanic tragedy, 392, 394
20 Newsgroups, 132

date- and time-related
data, 118

distributions, 152
dtreeviz package, 393, 397
DurusWorks, 23

example code (companion to
book), 5

Extract, Transform, Load, 424

feature engineering and
ML, 150

Feature Extraction,
Foundations and
Applications, 424

flat files, 90, 92, 94

frame-of-reference
mistruths, 147

442

GDPR, 422

GitHub, 57, 420

Google Colab, 49-50, 53, 64, 68
Google Drive, 56

Google Scholar, 148

Imputer parameters, 121
Jonathan Bower, 420

jQuery, 100

JSON, 103

Jupyter Notebook, 82, 191, 216
Kaggle, 150, 392, 410
KDnuggets, 416

Keras API, 30, 385-386

kernel trick, 368

literate programming
techniques, 11, 34

MATLAB, 25

Matplotlib library, 31, 159, 160,
175,179

measurement and
improvement, 145

mebibytes, 217

Microsoft Academic, 148
Microsoft Excel and dates, 117
MNIST, 426-427

MongoDB, 99

multiple-data-source
resources, 423-424

MXNet, 385

mysqlclient, 23

MySQLdb library, 23
NetworkX library, 32, 139-140
NIST, 152

“no free lunch” theorem, 308
NumPy library, 29

one-hot encoding, 388

Oracle Al & Data Science
Blog, 417

overfit strategies, 424
pandas library, 29, 106, 112

Personally Identifiable
Information resources, 422

PyMongo library, 99

Python for Data Science For Dummies

Python, 3, 10-12, 22, 135, 148

PyTorch, 385, 423

Quixote, 23

Quora, 148,416

Reddit, 416

relational databases, 98

Scikit-image library, 94

Scikit-learn library, 30, 148,
201, 207-208, 235, 287,313

SciPy library, 29
security resources, 423

Singular Value
Decomposition, 252

skewness and kurtosis, 231
Spearman correlation, 245
Springboard, 420

Stack Overflow, 148

TensorFlow ML platform,
30, 386

TF-IDF transformations, 136
Tiny Images, 427

t-SNE, 261

Udacity, 418-419

updates to book, 5

U.S. Department of Labor, 422
World Bank, 422

XGBoost library, 31,410

XML and JSON
alternatives, 103

YAML, 103
open() method, 85

Open Source Data Science
(OSDS), 420

OpenML, 47, 395

Oracle Al & Data Science
Blog, 417

OrdinalEncoder() function, 207
ordinary least squares, 309
outliers
binning and, 151
defined, 292
detecting, 291-304
concept drift vs., 295

DBScan, 302-303

Gaussian distribution,
297-298

Isolation Forests, 303-304

multivariate approach,
300-304

novelty detection vs.,
294-295

principal component
analysis, 300-302

univariate approach, 295-299
effects of, 292-294
remediating, 294, 298-299

overfitting
bagging technique, 401
boosting, 406, 409
decision trees, 392, 395-396
defined, 311
grid search, 348-349
neural networks, 388, 390
nonlinear kernels, 376

Stochastic Gradient
Descent, 364

strategies for, 424

support vector machines,
365, 370

P

Palmer Penguins dataset, 47,
225-248, 257-259, 313-
316, 424

pandas library, 89-94, 102,
106-117

categorical variables, 113-117
documentation, 148

finding duplicates, 108-109
identifying version of, 113
NumPy vs., 106-107

outlier detection, 295
overview, 29

performance and speed
issues, 219

removing duplicates, 110
unstacked data, 112

parallel coordinates, 238

parallel processing, 17, 23, 31,
220-222

Parr, Terence, 393
parse() method, 94, 101
partial_fit() method, 363

partition-clustering
techniques, 274

partitioning data, 335-336

PCA. See principal component
analysis

pd.concat() function, 103

Pearson’s correlation, 241,
243-244, 246-248

percentiles, 228-229, 342

Personally Identifiable
Information (PIl), 422

perspective, mistruths of,
146-147

pip (preferred installer
program), 113, 216

Pipeline() function, 208

plot() function, 161, 167,
169-171, 186, 188-189

plots
defining, 160-161
drawing multiple, 161-162
embedding, 80

plt.figure() function, 164

plt.plot() function, 161, 167,
169-171

plt.savefig() function, 161

plt.show() function, 87, 95,
161,188

poly1d() function, 186
polyfit() function, 185-186

PolynomialFeatures() function,
207, 356

precision metric, 332-333
predict() method, 206
predict_proba() method, 206

preferred installer program
(pip), 113, 216

principal component analysis
(PCA), 256-265

components, 258

facial recognition, 262-265
outlier detection, 300-302
reducing dimensionality, 259
SVD vs., 258

topic extraction, 266-268
t-SNE, 259-261

unique vs. shared
variance, 256

print() function, 27, 96, 117, 262
probability
Bayes' theorem, 317-318
defined, 317

Generalized Linear
Models, 313

procedural language, 17

prototyping and
experimentation process,
24-25

psychometric model, 257
PyMongo library, 99
Python, 11, 21-32

capabilities and features of,
10-12, 23-28

compiling, 10, 12

factors affecting
performance, 26-27

functional coding, 17

general-purpose language,
10-11

imperative coding, 17
indentation, 24
interpreted mode, 10-12

object-oriented
programming, 17

procedural language, 17

prototyping and
experimentation process,
24-25

simplicity, 23-24

visualization, 27-28
common uses for, 10-11
companies using, 11
documentation, 148

443

Index

Python (continued)

libraries and ecosystem, 17,
28-32

Keras and TensorFlow, 30-31

Matplotlib, 31

NetworkX, 31-32

NumPy, 29

pandas, 29

Scikit-learn, 30

SciPy, 29

XGBoost, 31
multicore parallelism, 220-222
online tutorials, 3

performance and speed
issues, 26-27, 212-219

benchmarking, 213-216

memory_profiler package,
217-218

NumPy and pandas, 219

preferred installer
program, 216

role of in data science, 16-17,
22-23

setting up, 33-48
versions of, 33
workflow, 17-19
loading data, 18-19
model training, 18-19
viewing results, 19
PyTorch, 385, 423

Q

gcut() function, 231

QuantileTransformer()
function, 248

quartiles, defined, 181
Quixote, 23
Quora, 148, 416-417

R

R? score, 206, 212, 310-311,
331-332

radial basis function (rbf) kernel,
376-380

L

Random Forest, 399-405
classifier, 402-403
machine learning, 399-402
optimizing, 404-405
regressor, 404
steps for, 399

random() method, 88

RandomForestClassifier class,
402-405

RandomForestRegressor
class, 404

randomized data
boxplots, 181-182
histograms, 179-181
scatterplots, 182-183
randomized search, 348-350
random.shuffle() method, 129
range() function, 178, 196

rbf (radial basis function) kernel,
376-380

read() method, 85

read_csv() method, 92
read_sql() method, 98
read_sql_query() method, 98
read_sql_table() method, 98
read_table() method, 90
recall metric, 332-333

Receiver Operating
Characteristic Area Under
Curve (ROC AUCQ), 332-333,
401-403, 407, 411

Reddit, 416
regression, 203
gradient boosting, 408-409

linear regression, 307-312,
331-332

logistic regression, 313-317
neural networks, 386-387
Random Forest, 404
regression trees, 397-398
SGDRegressor, 362-365, 383
support vector machines, 369

Support Vector Regression,
378-380

RegressorMixin class, 202

Python for Data Science For Dummies

regularization, 357-361
ElasticNet class, 361

L1 (Lasso) regularization,
358-360

L2 (Ridge) regularization,
358-359

leveraging, 360
relational databases, 83, 97-98

reset_index() method, 126,
128-129

residuals, 309, 311

Ridge (L2) regularization,
358-361

RobustScaler() function, 299

ROC AUC (Receiver Operating
Characteristic Area Under
Curve), 332-333, 401-403,
407, 411

S

scaling transformations, 374
scatterplots, 177, 182-186
correlations, 184-186
EDA, 240-241
groups, 184

outlier detection through
PCA, 301

randomized data, 182-183
Schlimmer, Jeff, 395
Scikit-image library, 94
Scikit-learn library, 2, 132, 201.

See also names of specific
datasets

applications for data science,
203-206

bagging classes, 399
bunches, 27
classes, 202-203

classification problems, 203,
332, 369, 388

clustering datasets, 287
cross-validation, 337
decision tree classes, 394
documentation, 148, 201
feature selection, 207

hyperparameters, 344,
348-349

linear models, 313
multiprocessing, 220-221
Naive Bayes classes, 319
object-based interfaces, 203
outlier remediation, 299
overview, 30

regression problems, 203, 331,
369, 378

support vector machines, 369
text processing tools, 207

transformative functions,
207-212

variable selection helper
functions, 342-343

SciPy library stack
chi-square statistic, 246
documentation, 148
overview, 29
score() method, 206, 310
secure data environment, 423
select_dtypes() method, 235, 244
SelectKBest class, 342
SelectPercentile class, 342

SequentialFeatureSelector
class, 343

set_extent() method, 193
set_xlim() function, 164
set_xticks() function, 164
set_ylim() function, 164
set_yticks() function, 164

SGD. See Stochastic Gradient
Descent optimization

shaping data, 105-130, 131-141
aggregation, 129-130
binning, 107
categorical variables, 113-117
dataframes, 107

date- and time-related data,
117-119

defined, 105-106
graph data, 138-141

missing data, 119-122
NumPy vs. pandas, 106-107

prototyping and
experimentation
process, 25

slicing data, 123-125
tokenizing, 132-138
transforming data, 125-129
validation, 108-112
workflow, 107

shared variance, 256-257
psychometric model, 257
unique variance vs., 256

Simplelmputer() function, 207

Single Family Purchase Loan
Data dataset, 422

Singular Value Decomposition
(SVD), 252-256

entertainment preferences
and recommendations, 256

formula of, 252

measuring the invisible,
255-256

movie recommendations,
268-271

reducing dimensionality,
253-255

topic extraction, 255
skewness

defined, 229

EDA, 229-231
slicing data, 123-125

columns, 124

dicing data, 124-125

rows, 123-124
sort_values() method, 128

Spearman correlation, 244-
245, 248

Springboard, 420

SQL (Structured Query
Language), 97-98

sqlalchemy library, 98
stack() method, 112

Stack Overflow, 148

standard deviation, 228-229,
298, 337

StandardScaler() function, 205,
207, 235, 278, 355, 359, 363

statistics, 12-13
StatLib repository, 18
stemming, 133

Stochastic Gradient Descent
(SGD) optimization,
362-365

classifier (SGDClassifier),
362-365, 383-384

regressor (SGDRegressor),
362-365, 383

stop words
defined, 133
removing data, 213

text classification
prediction, 321

TF-IDF transformations,
136, 266

str() function, 118
StratifiedKFold class, 340
strftime() function, 118

Structured Query Language
(SQL), 97-98

supervised learning,
defined, 273

Support Vector Classifier (SVC)
classification, 371-376
multicore parallelism, 221-222

support vector machines (SVMs),
365-384

benefits and drawbacks of,
365-366

classification problems,
366-368

creating stochastic solutions,
380-384

hyperplanes, 368
nonlinear kernels, 376-378
regression problems, 378-380

setting up predictive models,
368-370

445

Index

support vector machines
(continued)

Support Vector Classifier,
371-376

Support Vector Regression,
378-380

support vectors, defined, 367

SVC. See Support Vector
Classifier

SVD. See Singular Value
Decomposition

SVMs. See support vector
machines

T

TensorFlow ML platform, 30,
385-387

term frequency-inverse
document frequency
(TF-IDF), 136-138, 267

text files, reading from, 90
TfidfTransformer() method, 137
TfidfVectorizer() function, 207
TfidVectorizer class, 266
Thucydides, 12-13
time series, 186-190

axes, 186-188

trends, 188-190
timedelta() function, 119
timeit() function, 215
Tiny Images, 427

Titanic tragedy datasets,
392-393

to_frame() function, 103

to_sql() method, 98

tokenizing, 132-138
bag of words model, 132-138
CountVectorizer() function, 213
n-grams, 134

TF-IDF transformations,
136-138

446

train_test_split() function,
335, 373

transform() method, 122, 130,
137, 206

transformative functions,
206-212

chaining estimators into
pipelines, 208

composing features, 209-210
heterogeneous data, 210-212
transforming targets, 209

TransformedTargetRegressor()
method, 209

TransformerMixin class, 202
transforming data, 125-129
concatenating data, 126-127
distributions, 152
numeric features, 152
removing data, 127-128
shuffling data, 127-128
sorting data, 127
trendlines, 184-186, 188-190
TruncatedSVD class, 270
t-SNE algorithm, 259-261
t-tests, 236-237
Tukey, John, 224

20 Newsgroups dataset, 132-
134, 136-137, 266, 320-322

U

U Climb Higher, 418
Udacity, 418-419
underfitting, 370
undirected graphs, 195-197
unique variance, 256
univariate approach

EDA, 234

outlier detection, 295-299

variable selection, 341-343
unsupervised learning

Python for Data Science For Dummies

clustering, 273-274
defined, 273
U.S. Department of Labor, 422

\"

validating data. See data
validation

validation_curve() method, 347
value_counts() function, 233
values, defined, 27

Vanderbilt University School of
Medicine, 392

VanderPlas, Jake, 216-217
vanilla models, 346
Vapnik, Vladimir, 365-366
variables, 18
categorical, 113-117
combining, 150-151
composing, 210
defined, 84, 155, 205
frequencies, 225, 232-233
indicator, 151-152

linear regression with multiple,
309-312

selecting, 338-341

variable distribution, 225
variance

EDA, 228

fitting data to models, 329-330

Random Forest, 399
vectorization

arrays, 153-154

count vectorization, 207,
213-215, 321

n-grams, 135

TF-IDF transformations,
207, 266

visualization, 15, 159-175,
177-198

agglomerative clustering,
285-287

bar charts, 178-180
boxplots
cross-validation, 339-340
EDA, 234-236
groups, 181-182
outlier detection, 296-297
percentiles, 229

performing t-tests after,
236-237

decision trees, 392-398
EDA, 234-241
boxplots, 234-236

graphing distributions,
238-239

parallel coordinates, 238
scatterplots, 240-241
t-tests, 236-237
geographical data, 190-195
Basemap, 194-195
Cartopy, 191-194

graphs and charts, 138-141,
159-175, 195-198

adjacency matrices, 138-139
annotations, 172-174

axes, 163-165

directed graphs, 197-198
distributions, 238-239
graphs, defined, 195

grids, 165-166

hairballs, 139

labels, 171-173

legends, 172, 174-175

lines, 161-162, 167-171
links (edges), 138

NetworkX, 31-32, 139-141
nodes, 138

saving work to disk, 162-163
undirected graphs, 195-197

histograms, 179-181, 238-
239, 241

playing with data, 27-28
plots
defining, 160-161
drawing multiple, 161-162
embedding, 80
saving work to disk, 162-163
scatterplots, 177, 182-186
correlations, 184-186
EDA, 240-241
groups, 184

outlier detection through
PCA, 301

randomized data, 182-183
time series, 186-190

axes, 186-188

trends, 188-190

W

ward linkage, 283-284
web services, defined, 100
whiskers, defined, 181

Windows

Anaconda Prompt and
Windows 10, 36

installing Anaconda, 36-38
memory leak warning, 283
winsorizing, 299
Wolpert, David, 308, 330
World Bank, 422

X

XGBoost (eXtreme Gradient
Boosting) library, 31,
410-411

xlabel() function, 172
XML, 100-101, 103

Y

YAML, 103
ylabel() function, 172

Z

Z-score standardization,
247-248

Index 447

About the Authors

Luca Massaron is a data scientist and a marketing research director who special-
izes in multivariate statistical analysis, machine learning, and customer insight,
with more than a decade of experience in solving real-world problems and gener-
ating value for stakeholders by applying reasoning, statistics, data mining, and
algorithms. From being a pioneer of web audience analysis in Italy to achieving
the rank of top ten Kaggler on kaggle.com, he has always been passionate about
everything regarding data and analysis and about demonstrating the potentiality
of data-driven knowledge discovery to both experts and nonexperts. Favoring
simplicity over unnecessary sophistication, he believes that a lot can be achieved
in data science by understanding and practicing the essentials of it.

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 124 books and more than 600 articles to date. The topics
range from networking to artificial intelligence and from database management
to heads-down programming. Some of his current books include discussions of
data science, data security, machine learning, and algorithms. His technical edit-
ing skills have helped more than 70 authors refine the content of their manu-
scripts. John has provided technical editing services to various magazines,
performed various kinds of consulting, and writes certification exams. Be sure to
read John’s blog at http://blog. johnmuellerbooks.com/. You can reach John on
the internet at John@JohnMuel lerBooks .com. John also has a website at http://
www . johnmuellerbooks.com/. Be sure to follow John on Amazon at https://www.
amazon.com/John-Mueller/e/BOBQAQTTKK/.

Luca’s Dedication

I would like to dedicate this book to my parents, Renzo and Licia, who both love
simple and well-explained ideas and who now, by reading the book we wrote, will
understand more of my daily work in data science and how this new discipline is
going to change the way we understand the world and operate in it.

John's Dedication

This book is dedicated to all the people who help me each day — from the people
at the café where I drink coffee to the guy who cuts my grass. I really couldn’t
make it without all these helpers, and it’s my hope that they know how much
I appreciate them.

http://kaggle.com
http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/
http://www.johnmuellerbooks.com/
https://www.amazon.com/John-Mueller/e/B000AQ77KK/
https://www.amazon.com/John-Mueller/e/B000AQ77KK/

Luca’s Acknowledgments

My greatest thanks to my family, Yukiko and Amelia, for their support and loving
patience.

John's Acknowledgments

Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in every
book I write, in every word that appears on the page. She believed in me when no
one else would.

Rod Stephens deserves thanks for his technical edit of this book. He greatly added
to the accuracy and depth of the material you see here. Rod often provides a dif-
ferent perspective on things, which I find helpful in making my books more
rounded and appealing to a wider group of readers.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first
place and taking care of all the details that most authors don’t really consider.
I always appreciate his assistance. It’s good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach,
test scripts, and generally provide input that all readers wish they could have.
These unpaid volunteers helped in ways too numerous to mention here.

Finally, I would like to thank Steve Hayes, Hanna Sytsma, Susan Christophersen,
and the rest of the editorial and production staff.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes Production Editor: Pradesh Kumar

Project Manager and Copy Editor: Cover Image: © filo/Getty Images
Susan Christophersen

Technical Editor: Rod Stephens

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Data Science and Python
	Chapter 1 Discovering the Match between Data Science and Python
	Understanding Python as a Language
	Viewing Python’s various uses as a general-purpose language
	Interpreting Python
	Compiling Python

	Defining Data Science
	Considering the emergence of data science
	Outlining the core competencies of a data scientist
	Linking data science, big data, and AI

	Creating the Data Science Pipeline
	Understanding Python’s Role in Data Science
	Considering the shifting profile of data scientists
	Working with a multipurpose, simple, and efficient language

	Learning to Use Python Fast
	Loading data
	Training a model
	Viewing a result

	Chapter 2 Introducing Python’s Capabilities and Wonders
	Working with Python
	Contributing to data science
	Getting a taste of the language
	Understanding the need for indentation
	Working with Jupyter Notebook and Google Colab

	Performing Rapid Prototyping and Experimentation
	Considering Speed of Execution
	Visualizing Power
	Using the Python Ecosystem for Data Science
	Accessing scientific tools using SciPy
	Performing fundamental scientific computing using NumPy
	Performing data analysis using pandas
	Implementing machine learning using Scikit-learn
	Going for deep learning with Keras and TensorFlow
	Performing analysis efficiently using XGBoost
	Plotting the data using Matplotlib
	Creating graphs with NetworkX

	Chapter 3 Setting Up Python for Data Science
	Working with Anaconda
	Using Jupyter Notebook
	Accessing the Anaconda Prompt

	Installing Anaconda on Windows
	Installing Anaconda on Linux
	Installing Anaconda on Mac OS X
	Downloading the Datasets and Example Code
	Using Jupyter Notebook
	Starting Jupyter Notebook
	Stopping the Jupyter Notebook server

	Defining the code repository
	Defining a new folder
	Creating a new notebook
	Adding notebook content
	Exporting a notebook
	Removing a notebook
	Importing a notebook

	Understanding the datasets used in this book

	Chapter 4 Working with Google Colab
	Defining Google Colab
	Understanding what Google Colab does
	Considering the online coding difference
	Using local runtime support

	Working with Notebooks
	Creating a new notebook
	Opening existing notebooks
	Using Google Drive for existing notebooks
	Using GitHub for existing notebooks
	Using local storage for existing notebooks

	Saving notebooks
	Using Drive to save notebooks
	Using GitHub to save notebooks
	Using GitHub gists to save notebooks

	Downloading notebooks

	Performing Common Tasks
	Creating code cells
	Creating text cells
	Creating special cells
	Editing cells
	Moving cells

	Using Hardware Acceleration
	Executing the Code
	Viewing Your Notebook
	Displaying the table of contents
	Getting notebook information
	Checking code execution

	Sharing Your Notebook
	Getting Help

	Part 2 Getting Your Hands Dirty with Data
	Chapter 5 Working with Jupyter Notebook
	Using Jupyter Notebook
	Working with styles
	Getting Python help
	Using magic functions
	Obtaining the magic functions list
	Working with magic functions

	Discovering objects
	Getting object help
	Obtaining object specifics
	Using extended Python object help

	Restarting the kernel
	Restoring a checkpoint

	Performing Multimedia and Graphic Integration
	Embedding plots and other images
	Loading examples from online sites
	Obtaining online graphics and multimedia

	Chapter 6 Working with Real Data
	Uploading, Streaming, and Sampling Data
	Uploading small amounts of data into memory
	Streaming large amounts of data into memory
	Generating variations on image data
	Sampling data in different ways

	Accessing Data in Structured Flat-File Form
	Reading from a text file
	Reading CSV delimited format
	Reading Excel and other Microsoft Office files

	Sending Data in Unstructured File Form
	Managing Data from Relational Databases
	Interacting with Data from NoSQL Databases
	Accessing Data from the Web

	Chapter 7 Processing Your Data
	Juggling between NumPy and pandas
	Knowing when to use NumPy
	Knowing when to use pandas

	Validating Your Data
	Figuring out what’s in your data
	Removing duplicates
	Creating a data map and data plan

	Manipulating Categorical Variables
	Creating categorical variables
	Renaming levels
	Combining levels

	Dealing with Dates in Your Data
	Formatting date and time values
	Using the right time transformation

	Dealing with Missing Data
	Finding the missing data
	Encoding missingness
	Imputing missing data

	Slicing and Dicing: Filtering and Selecting Data
	Slicing rows
	Slicing columns
	Dicing

	Concatenating and Transforming
	Adding new cases and variables
	Removing data
	Sorting and shuffling

	Aggregating Data at Any Level

	Chapter 8 Reshaping Data
	Using the Bag of Words Model to Tokenize Data
	Understanding the bag of words model
	Sequencing text items with n-grams
	Implementing TF-IDF transformations

	Working with Graph Data
	Understanding the adjacency matrix
	Using NetworkX basics

	Chapter 9 Putting What You Know into Action
	Contextualizing Problems and Data
	Evaluating a data science problem
	Researching solutions
	Formulating a hypothesis
	Preparing your data

	Considering the Art of Feature Creation
	Defining feature creation
	Combining variables
	Understanding binning and discretization
	Using indicator variables
	Transforming distributions

	Performing Operations on Arrays
	Using vectorization
	Performing simple arithmetic on vectors and matrices
	Performing matrix vector multiplication
	Performing matrix multiplication

	Part 3 Visualizing Information
	Chapter 10 Getting a Crash Course in Matplotlib
	Starting with a Graph
	Defining the plot
	Drawing multiple lines and plots
	Saving your work to disk

	Setting the Axis, Ticks, and Grids
	Getting the axes
	Formatting the axes
	Adding grids

	Defining the Line Appearance
	Working with line styles
	Using colors
	Adding markers

	Using Labels, Annotations, and Legends
	Adding labels
	Annotating the chart
	Creating a legend

	Chapter 11 Visualizing the Data
	Choosing the Right Graph
	Creating comparisons with bar charts
	Showing distributions using histograms
	Depicting groups using boxplots
	Seeing data patterns using scatterplots

	Creating Advanced Scatterplots
	Depicting groups
	Showing correlations

	Plotting Time Series
	Representing time on axes
	Plotting trends over time

	Plotting Geographical Data
	Using an environment in Notebook
	Using Cartopy to plot geographic data
	Avoiding outdated libraries: The Basemap Toolkit

	Visualizing Graphs
	Developing undirected graphs
	Developing directed graphs

	Part 4 Wrangling Data
	Chapter 12 Stretching Python’s Capabilities
	Playing with Scikit-learn
	Understanding classes in Scikit-learn
	Defining applications for data science

	Using Transformative Functions
	Chaining estimators
	Transforming targets
	Composing features
	Handling heterogeneous data

	Considering Timing and Performance
	Benchmarking with timeit
	Working with the memory profiler

	Running in Parallel on Multiple Cores
	Performing multicore parallelism
	Demonstrating multiprocessing

	Chapter 13 Exploring Data Analysis
	The EDA Approach
	Defining Descriptive Statistics for Numeric Data
	Measuring central tendency
	Measuring variance and range
	Working with percentiles
	Defining measures of normality

	Counting for Categorical Data
	Understanding frequencies
	Creating contingency tables

	Creating Applied Visualization for EDA
	Inspecting boxplots
	Performing t-tests after boxplots
	Observing parallel coordinates
	Graphing distributions
	Plotting scatterplots

	Understanding Correlation
	Using covariance and correlation
	Using nonparametric correlation
	Considering chi-square for tables

	Working with Cramér’s V
	Modifying Data Distributions
	Using different statistical distributions
	Creating a Z-score standardization
	Transforming other notable distributions

	Chapter 14 Reducing Dimensionality
	Understanding SVD
	Looking for dimensionality reduction
	Using SVD to measure the invisible

	Performing Factor Analysis and PCA
	Considering the psychometric model
	Looking for hidden factors
	Using components, not factors
	Achieving dimensionality reduction
	Squeezing information with t-SNE

	Understanding Some Applications
	Recognizing faces with PCA
	Extracting topics with NMF
	Recommending movies

	Chapter 15 Clustering
	Clustering with K-means
	Understanding centroid-based algorithms
	Creating an example with image data
	Looking for optimal solutions
	Clustering big data

	Performing Hierarchical Clustering
	Using a hierarchical cluster solution
	Visualizing aggregative clustering solutions

	Discovering New Groups with DBScan

	Chapter 16 Detecting Outliers in Data
	Considering Outlier Detection
	Finding more things that can go wrong
	Understanding anomalies and novel data

	Examining a Simple Univariate Method
	Leveraging on the Gaussian distribution
	Remediating outliers

	Developing a Multivariate Approach
	Using principal component analysis
	Using cluster analysis for spotting outliers
	Automating detection with Isolation Forests

	Part 5 Learning from Data
	Chapter 17 Exploring Four Simple and Effective Algorithms
	Guessing the Number: Linear Regression
	Defining the family of linear models
	Using more variables
	Understanding limitations and problems

	Moving to Logistic Regression
	Applying logistic regression
	Considering the case when there are more classes

	Making Things as Simple as Naïve Bayes
	Finding out that Naïve Bayes isn’t so naïve
	Predicting text classifications

	Learning Lazily with Nearest Neighbors
	Predicting after observing neighbors
	Choosing your k parameter wisely

	Chapter 18 Performing Cross-Validation, Selection, and Optimization
	Pondering the Problem of Fitting a Model
	Understanding bias and variance
	Defining a strategy for picking models
	Dividing between training and test sets

	Cross-Validating
	Using cross-validation on k folds
	Sampling stratifications for complex data

	Selecting Variables Like a Pro
	Selecting by univariate measures
	Employing forward and backward selection

	Pumping Up Your Hyperparameters
	Implementing a grid search
	Trying a randomized search

	Chapter 19 Increasing Complexity with Linear and Nonlinear Tricks
	Using Nonlinear Transformations
	Doing variable transformations
	Creating interactions between variables

	Regularizing Linear Models
	Relying on Ridge regression (L2)
	Using the Lasso (L1)
	Leveraging regularization
	Combining L1 & L2: Elasticnet

	Fighting with Big Data Chunk by Chunk
	Determining when there is too much data
	Implementing Stochastic Gradient Descent

	Understanding Support Vector Machines
	Relying on a computational method
	Fixing many new parameters
	Classifying with SVC
	Going nonlinear is easy
	Performing regression with SVR
	Creating a stochastic solution with SVM

	Playing with Neural Networks
	Understanding neural networks
	Classifying and regressing with neurons

	Chapter 20 Understanding the Power of the Many
	Starting with a Plain Decision Tree
	Understanding a decision tree
	Creating classification trees
	Creating regression trees

	Getting Lost in a Random Forest
	Making machine learning accessible
	Working with a Random Forest classifier
	Working with a Random Forest regressor
	Optimizing a Random Forest

	Boosting Predictions
	Knowing that many weak predictors win
	Setting a gradient boosting classifier
	Running a gradient boosting regressor
	Using GBM hyperparameters
	Using XGBoost

	Part 6 The Part of Tens
	Chapter 21 Ten Essential Data Resources
	Discovering the News with Reddit
	Getting a Good Start with KDnuggets
	Locating Free Learning Resources with Quora
	Gaining Insights with Oracle’s AI & Data Science Blog
	Accessing the Huge List of Resources on Data Science Central
	Discovering New Beginner Data Science Methodologies at Data Science 101
	Obtaining the Most Authoritative Sources at Udacity
	Receiving Help with Advanced Topics at Conductrics
	Obtaining the Facts of Open Source Data Science from Springboard
	Zeroing In on Developer Resources with Jonathan Bower

	Chapter 22 Ten Data Challenges You Should Take
	Removing Personally Identifiable Information
	Creating a Secure Data Environment
	Working with a Multiple-Data- Source Problem
	Honing Your Overfit Strategies
	Trudging Through the MovieLens Dataset
	Locating the Correct Data Source
	Working with Handwritten Information
	Working with Pictures
	Indentifying Data Lineage
	Interacting with a Huge Graph

	Index
	EULA

he fo

on' for

Do Shente
s

