

Python Without Fear

Overland_Book.indb iOverland_Book.indb i 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

Python Without Fear
A Beginner’s Guide That
Makes You Feel Smart

Brian Overland

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Overland_Book.indb iiiOverland_Book.indb iii 8/31/17 12:56 PM8/31/17 12:56 PM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Catalog Number: 2017946292

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-468747-6
ISBN-10: 0-13-468747-7
1 17

Overland_Book.indb ivOverland_Book.indb iv 8/31/17 12:56 PM8/31/17 12:56 PM

corpsales@pearsoned.com
governmentsales@pearsoned.com
international@pearsoned.com
http://www.informit.com/aw
http://www.pearsoned.com/permissions/

For all my beloved four-legged friends:
Skyler, Orlando, Madison, Cleo, and Pogo.

Overland_Book.indb vOverland_Book.indb v 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

vii

Contents

Preface xvii

Steering Around the “Gotchas” xvii
How to Think “Pythonically” xvii
Intermediate and Advanced Features xviii
Learning in Many Different Styles xviii
What’s Going on “Under the Hood” xviii
Why Python? xix

Acknowledgments xxi

Author Bio xxiii

Chapter 1 Meet the Python 1

A Brief History of Python 1
How Python Is Different 2
How This Book Works 3
Installing Python 4
Begin Using Python with IDLE 6
Correcting Mistakes from Within IDLE 6
Dealing with Ends of Lines 7
Additional Help: Online Sources 8

Overland_Book.indb viiOverland_Book.indb vii 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsviii

Chapter 2 A Python Safari: Numbers 9

Python and Numbers 9
Interlude Why Doesn’t C++ Support Infinite Integers? 11
Interlude How Big Is a Google? 13

Python and Floating-Point Numbers 14
Assigning Numbers to Variables 17

Interlude What Do Python Assignments Really Do? 21
Variable-Naming Conventions in This Book 23
Some Python Shortcuts 23
Chapter 2 Summary 26

Chapter 3 Your First Programs 29

Temperatures Rising? 29
Interlude Python’s Use of Indentation 33

Putting in a Print Message 35
Syntax Summaries 36

Example 3.1. Quadratic Equation as a Function 38
How It Works 39

Getting String Input 41
Getting Numeric Input 43

Example 3.2. Quadratic Formula with I/O 44
How It Works 45

Formatted Output String 46
Example 3.3. Distance Formula in a Script 47
How It Works 48

Chapter 3 Summary 50

Chapter 4 Decisions and Looping 53

Decisions Inside a Computer Program 53
Conditional and Boolean Operators 55
The if, elif, and else Keywords 56

Interlude Programs and Robots in Westworld 56
Example 4.1. Enter Your Age 59
How It Works 60

Overland_Book.indb viiiOverland_Book.indb viii 8/31/17 12:56 PM8/31/17 12:56 PM

Contents ix

while: Looping the Loop 60
Example 4.2. Factorials 63
How It Works 64
Optimizing the Code 65
Example 4.3. Printing Fibonacci Numbers 67
How It Works 69

“Give Me a break” Statement 70
Example 4.4. A Number-Guessing Game 71
How It Works 72
Interlude Binary Searches and “O” Complexity 74

Chapter 4 Summary 75

Chapter 5 Python Lists 77

The Python Way: The World Is Made of Collections 77
Processing Lists with for 80
Modifying Elements with for (You Can't!) 82

Example 5.1. A Sorting Application 83
How It Works 84
Optimizing the Code 84

Indexing and Slicing 85
Copying Data to Slices 88
Ranges 89

Example 5.2. Revised Factorial Program 91
How It Works 91
Optimizing the Code 92
Example 5.3. Sieve of Eratosthenes 93
How It Works 94
Optimizing the Code 96

List Functions and the in Keyword 97
Interlude Who Was Eratosthenes? 98

Chapter 5 Summary 99

Chapter 6 List Comprehension and Enumeration 101

Indexes and the enumerate Function 101
The Format String Method Revisited 103

Example 6.1. Printing a Table 104
How It Works 105

Overland_Book.indb ixOverland_Book.indb ix 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsx

Simple List Comprehension 106
Example 6.2. Difference Between Squares 109
How It Works 110
Interlude Proving the Equation 111

“Two-Dimensional” List Comprehension 112
List Comprehension with Conditional 114

Example 6.3. Sieve of Eratosthenes 2 115
How It Works 116
Optimizing the Code: Sets 117
Example 6.4. Pythagorean Triples 118
How It Works 119
Interlude The Importance of Pythagoras 120

Chapter 6 Summary 123

Chapter 7 Python Strings 125

Creating a String with Quote Marks 125
Indexing and “Slicing” 127
String/Number Conversions 130

Example 7.1. Count Trailing Zeros 131
How It Works 132
Interlude Python Characters vs. Python Strings 135

Stripping for Fun and Profit 135
Example 7.2. Count Zeros, Version 2 137
How It Works 137

Let’s Split: The split Method 138
Building Strings with Concatenation (+) 139

Example 7.3. Sort Words on a Line 141
How It Works 142

The join Method 143
Chapter 7 Summary 144

Chapter 8 Single-Character Ops 147

Naming Conventions in This Chapter 147
Accessing Individual Characters (A Review) 148
Getting Help with String Methods 148
Testing Uppercase vs. Lowercase 149
Converting Case of Letters 150

Overland_Book.indb xOverland_Book.indb x 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xi

Testing for Palindromes 151
Example 8.1. Convert Strings to All Caps 152
How It Works 153
Optimizing the Code 154
Example 8.2. Completing the Palindrome Test 154
How It Works 156
Optimizing the Code 157
Interlude Famous Palindromes 158

Converting to ASCII Code 159
Converting ASCII to Character 160

Example 8.3. Encode Strings 161
How It Works 162
Interlude The Art of Cryptography 164
Example 8.4. Decode Strings 164
How It Works 165

Chapter 8 Summary 166

Chapter 9 Advanced Function Techniques 167

Multiple Arguments 167
Returning More Than One Value 168

Interlude Passing and Modifying Lists 170
Example 9.1. Difference and Sum of Two Points 172
How It Works 172

Arguments by Name 173
Default Arguments 174

Example 9.2. Adding Machine 176
How It Works 176
Optimizing the Code 177

Importing Functions from Modules 178
Example 9.3. Dice Game (Craps) 179
How It Works 180
Interlude Casino Odds Making 182

Chapter 9 Summary 185

Chapter 10 Local and Global Variables 187

Local Variables, What Are They Good For? 187
Locals vs. Globals 188
Introducing the global Keyword 190

Overland_Book.indb xiOverland_Book.indb xi 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxii

The Python “Local Variable Trap” 190
Interlude Does C++ Have Easier Scope Rules? 191
Example 10.1. Beatles Personality Profile (BPP) 192
How It Works 195
Example 10.2. Roman Numerals 196
How It Works 197
Optimizing the Code 198
Interlude What’s Up with Roman Numerals? 200
Example 10.3. Decode Roman Numerals 201
How It Works 202
Optimizing the Code 203

Chapter 10 Summary 204

Chapter 11 File Ops 207

Text Files vs. Binary Files 207
The Op System (os) Module 208

Interlude Running on Other Systems 211
Open a File 211
Let’s Write a Text File 213

Example 11.1. Write File with Prompt 214
How It Works 214

Read a Text File 216
Files and Exception Handling 217

Interlude Advantages of try/except 219
Example 11.2. Text Read with Line Numbers 220
How It Works 221

Other File Modes 223
Chapter 11 Summary 224

Chapter 12 Dictionaries and Sets 227

Why Do We Need Dictionaries, Ms. Librarian? 227
Adding and Changing Key-Value Pairs 229
Accessing Values 230
Searching for Keys 231

Interlude What Explains Dictionary “Magic”? 232
Example 12.1. Personal Phone Book 232
How It Works 234

Overland_Book.indb xiiOverland_Book.indb xii 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xiii

Converting Dictionaries to Lists 235
Example 12.2. Reading Items by Prefix 236
How It Works 238
Example 12.3. Loading and Saving to a File 238
How It Works 240

All About Sets 241
Operations on Sets 242

Interlude What’s So Important About Sets? 244
Example 12.4. Revised Sieve of Eratosthenes 244
How It Works 245

Chapter 12 Summary 246

Chapter 13 Matrixes: 2-D Lists 249

Simple Matrixes 249
Accessing Elements 250
Irregular Matrixes and Length of a Row 251
Multiplication (*) and Lists 252
The Python Matrix Problem 253
How to Create N*M Matrixes: The Solution 254

Interlude Why Isn’t It Easier? 255
Example 13.1. Multiplication Table 256
How It Works 257
Example 13.2. User-Initialized Matrix 258
How It Works 259
Optimizing the Code 260

How to Rotate a Matrix 261
Interlude Pros and Cons of Garbage Collection 263
Example 13.3. Complete Rotation Example 264
How It Works 266
Optimizing the Code 267

Chapter 13 Summary 268

Chapter 14 Winning at Tic-Tac-Toe 271

Design of a Tic-Tac-Toe Board 271
Plan of This Chapter 273

Phase 1 273
Phase 2 273
Phase 3 273

Overland_Book.indb xiiiOverland_Book.indb xiii 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxiv

Python One-Line if/else 274
Example 14.1. Simple Two-Player Game 274
How It Works 276
Interlude Variations on Tic-Tac-Toe 279

The count Method for Lists 279
Example 14.2. Two-Player Game with Win Detection 279
How It Works 282

Introducing the Computer Player 285
Example 14.3. Computer Play: The Computer Goes First 287
How It Works 290
Playing Second 291
Interlude The Art of Heuristics 292

Chapter 14 Summary 294

Chapter 15 Classes and Objects I 295

What’s an Object? 295
Classes in Python 296

How Do I Define a Simple Class? 297
How Do I Use a Class to Create Objects? 297
How Do I Attach Data to Objects? 298
How Do I Write Methods? 300

The All-Important _ _init_ _ Method 301
Interlude Why This self Obsession? 302

Design for a Database Class 303
Interlude C++ Classes Compared to Python 304
Example 15.1. Tracking Employees 305
How It Works 307

Defining Other Methods 309
Design for a Point3D Class 310
Point3D Class and Default Arguments 312
Three-Dimensional Tic-Tac-Toe 312

Example 15.2. Looking for a 3-D Win 313
How It Works 314
Example 15.3. Calculating Ways of Winning 315
How It Works 317
Optimizing the Code 317

Chapter 15 Summary 318

Overland_Book.indb xivOverland_Book.indb xiv 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xv

Chapter 16 Classes and Objects II 321

Getting Help from Doc Strings 321
Function Typing and “Overloading” 323

Interlude What Is Duck Typing? 325
Variable-Length Argument Lists 326

Example 16.1. PointN Class 327
How It Works 329
Optimizing the Code 330

Inheritance 331
The Fraction Class 333

Example 16.2. Extending the Fraction Class 334
How It Works 335

Class Variables and Methods 337
Instance Variables as “Default” Values 339

Example 16.3. Polygon “Automated” Class 340
How It Works 342
Interlude OOPS, What Is It Good For? 343

Chapter 16 Summary 344

Chapter 17 Conway’s Game of Life 347

Interlude The Impact of “Life” 347
Game of Life: The Rules of the Game 348
Generating the Neighbor Count 350
Design of the Program 352

Example 17.1. The Customized Matrix Class 352
How It Works 353

Moving the Matrix Class to a Module 354
Example 17.2. Printing a Life Matrix 355
How It Works 355

The Famous Slider Pattern 358
Example 17.3. The Whole Game of Life Program 358
How It Works 360
Interlude Does “Life” Create Life? 363

Chapter 17 Summary 364

Overland_Book.indb xvOverland_Book.indb xv 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxvi

Chapter 18 Advanced Pythonic Techniques 367

Generators 367
Exploiting the Power of Generators 369

Example 18.1. A Custom Random-Number Generator 370
How It Works 372
Interlude How Random Is “Random”? 373

Properties 375
Getter Methods 376
Setter Methods 377
Putting Getters and Setters Together 378
Example 18.2. Multilevel Temperature Object 379
How It Works 380

Decorators: Functions Enclosing Other Functions 382
Python Decoration 385

Example 18.3. Decorators as Debugging Tools 387
How It Works 388

Chapter 18 Summary 389

Appendix A Python Operator Precedence Table 391

Appendix B Summary of Most Important Formatting Rules
for Python 3.0 393

1. Formatting Ordinary Text 393
2. Formatting Arguments 393
3. Specifying Order of Arguments 393
4. Right Justification Within Field of Size N 394
5. Left Justification Within Field of Size N 394
6. Truncation: Limit Size of Print Field 394
7. Combined Truncation and Justification 395
8. Length and Precision of Floating-Point Numbers 395
9. The Padding Character 395

Appendix C Glossary 397

Index 407

Overland_Book.indb xviOverland_Book.indb xvi 8/31/17 12:56 PM8/31/17 12:56 PM

xvii

Preface

There’s a lot of free programming instruction out there, and much of it’s about
Python. So for a book to be worth your while, it’s got to be good…it’s got to
be really, really, really good.

I wrote this book because it’s the book I wish was around when I was first
learning Python a few years back. Like everybody else, I conquered one concept
at a time by looking at almost a dozen different books and consulting dozens
of web sites.

But this is Python, and it’s not supposed to be difficult!
The problem is that not all learning is as easy or fast as it should be. And

not all books or learning sites are fun. You can, for example, go from site to
site just trying to find the explanation that really works.

Here’s what this book does that I wish I’d had when I started learning.

Steering Around the “Gotchas”
Many things are relatively easy to do in Python, but a few things that ought
to be easy are harder than they’d be in other languages. This is especially
true if you have any prior background in programming. The “Python way”
of doing things is often so different from the approach you’d use in any other
language, you can stare at the screen for hours until someone points out the
easy solution.

Or you can buy this book.

How to Think “Pythonically”
Closely related to the issue of “gotchas” is the understanding of how to think
in Python. Until you understand Python’s unique way of modeling the world,

Overland_Book.indb xviiOverland_Book.indb xvii 8/31/17 12:56 PM8/31/17 12:56 PM

Prefacexviii

you might end up writing a program the way a C programmer would. It runs,
but it doesn’t use any of the features that make Python such a fast develop-
ment tool.

a_list = ['Don\'t', 'do', 'this', 'the' ,'C', 'way']
for x in a_list:
 print(x, end=' ')

This little snippet prints

Don't do this the C way

Intermediate and Advanced Features
Again, although Python is generally easier than other languages, that’s not
universally true. Some of the important intermediate features of Python are
difficult to understand unless well explained. This book pays a lot of atten-
tion to intermediate and even advanced features, including list comprehension,
generators, multidimensional lists (matrixes), and decorators.

Learning in Many Different Styles
In this book, I present a more varied teaching style than you’ll likely find else-
where. I make heavy use of examples, of course, but sometimes it’s the right
conceptual figure or analogy that makes all the difference. Or sometimes it’s
working on exercises that challenge you to do variations on what’s just been
taught. But all of the book’s teaching styles reinforce the same ideas.

What’s Going on “Under the Hood”
Although this book is for people who may be new to programming altogether,
it also caters to people who want to know how Python works and how it’s fun-
damentally different “under the hood.” That is, how does Python carry out
the operations internally? If you want more than just a simplistic introduction,
this book is for you.

Overland_Book.indb xviiiOverland_Book.indb xviii 8/31/17 12:56 PM8/31/17 12:56 PM

Preface xix

Why Python?
Of course, if you’re trying to decide between programming languages, you’ll
want to know why you should be using Python in the first place.

Python is quickly taking over much of the programming world. There are
some things that still require the low-level capabilities of C or C++, but you’ll
find that Python is a rapid application development tool; it multiplies the
effort of the programmer. Often, in a few lines of code, you’ll be able to do
amazing things.

More specifically, a program that might take 100 lines in Python could
potentially take 1,000 or 2,000 lines to write in C. You can use Python as
“proof of concept”: write a Python program in an afternoon to see whether
it fulfills the needs of your project; then after you’re convinced the program is
useful, you can rewrite it in C or C++, if desired, to make more efficient use of
computer resources.

With that in mind, I’ll hope you’ll join me on this fun, exciting, entertaining
journey. And remember this:

x = ['Python', 'is', 'cool']
print(' '.join(x))

Register your copy of Python Without Fear on the InformIT site for con-
venient access to updates and/or corrections as they become available. To
start the registration process, go toinformit.com/register and log in or create
an account. Enter the product ISBN (9780134687476) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials.
If you would like to be notified of exclusive offers on new editions and
updates, please check the box to receive email from us.

Overland_Book.indb xixOverland_Book.indb xix 8/31/17 12:56 PM8/31/17 12:56 PM

http://toinformit.com/register

This page intentionally left blank

xxi

Acknowledgments

It’s customary for authors to write an acknowledgments page, but in this case,
there’s a particularly good reason for one. There is no chapter in this book
that wasn’t strongly influenced by one of the collaborators: retired Microsoft
programmer (and software development engineer) John Bennett.

John, who has used Python for a number of years—frequently to help
implement his own high-level script languages—was particularly helpful in
pointing out that this book should showcase “the Python way of doing things.”
So the book covers not just how to transcribe a Python version of a C++
solution but rather how to take full advantage of Python concepts—that is, how
to “think in Python.”

I should also note that this book exists largely because of the moral support
of two fine acquisition editors: Kim Boedigheimer, who championed the
project early on, and Greg Doench, whom she handed the project off to.

Developmental and technical editors Michael Thurston and John Wargo made
important suggestions that improved the product. My thanks go to them, as well
as the editorial team that so smoothly and cheerfully saw the manuscript
through its final phases: Julie Nahil, Kim Wimpsett, Angela Urquhart, and
Andrea Archer.

Overland_Book.indb xxiOverland_Book.indb xxi 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb xxiiOverland_Book.indb xxii 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

xxiii

Author Bio

At one time or another, Brian Overland was in charge of, or at least influential in,
documenting all the languages that Microsoft Corporation ever sold: Macro
Assembler, FORTRAN, COBOL, Pascal, Visual Basic, C, and C++. Unlike
some people, he wrote a lot of code in all these languages. He’d never document
a language he couldn’t write decent programs in.

For years, he was Microsoft’s “go to” man for writing up the use of utilities
needed to support new technologies, such as RISC processing, linker extensions,
and exception handling.

The Python language first grabbed his attention a few years ago, when he
realized that he could write many of his favorite applications—the Game of
Life, for example, or a Reverse Polish Notation interpreter—in a smaller space
than any computer language he’d ever seen.

When he’s not exploring new computer languages, he does a lot of other
things, many of them involving writing. He’s an enthusiastic reviewer of films
and writer of fiction. He’s twice been a finalist in the Pacific Northwest Literary
Contest.

Overland_Book.indb xxiiiOverland_Book.indb xxiii 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb xxivOverland_Book.indb xxiv 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

1

1
Meet the Python

What if I told you there’s a computer language that’s easier to learn, easier to
get started with, and easier to accomplish a great deal with, using only a few
lines of code, than other computer languages?

In the opinion of millions, Python is that language. Derived from a lan-
guage called ABC (as in “simple as ABC”), it’s gained a massive worldwide
following over the last two decades. So many programmers have joined the
Python community that there are more than 100,000 free packages that work
with the basic Python setup.

Come join the Python stampede. In this book I show you how to get started
even if you have limited programming experience. I also steer you around the
“gotchas”—the things Python does so differently that they trip up experienced
programmers. This book is for new programmers as well as experienced pro-
grammers alike, and it discusses what goes on under the covers.

A Brief History of Python
Python was invented in 1991 by
Dutch programmer Guido van
Rossum, who derived much of it
from the ABC language (not to
be confused with C).

ABC had many features that
exist today in Python. Van Ros-
sum, whose title in the Python
world is Benevolent Dictator
for Life (BDFL), also incorpo-
rated elements of the Modula-3
language.

It’s as easy as
“ABC”!!

A B C

Overland_Book.indb 1Overland_Book.indb 1 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python2

Van Rossum named the language after the BBC comedy series Monty
Python’s Flying Circus, so the connection to pythons is indirect, although
troupe member John Cleese originally came up with “Python” as suggesting
something “slithering and slimy” (source: Wikipedia.org). So there you have
it—there is a connection to reptiles after all.

Since then, several versions of Python have been developed, adding important
capabilities, the latest of which is Python 3.0. This book uses Python 3.0,
although it includes notes about adapting examples to Python 2.0.

How Python Is Different
The first thing to know about Python is that Python is free.

Many Python extensions are free and come with the basic download. These
modules offer features such as math, date/time, fractions, randomization, and
tkinter, which supports a graphical user interface that runs across multiple
platforms. Again, all are free.

Python’s built-in numeric support is impressive, as it includes complex
numbers, floating-point, fractions (from the Fractions module), and “infinite
integers.”

Python has attracted an extraordinary following. Many developers provide
libraries—called packages—to their fellow Python programmers, mostly free
of charge. You can get gain access by searching for Python Package Index in
your Internet browser and then going to the site. As of this writing, the site
offers access to more than 107,000 packages.

At first glance, a Python program may look something like code in other
languages, but a close look reveals major differences.

 Unlike most languages, Python has no “begin block” or “end block” syntax—
all relationships are based on indentation! Although this might seem risky to a
C programmer, it enforces a consistent look that’s more comprehensible to
beginners.

 Python has no variable declarations. You create variables by assigning values
to them. This goes a long way toward simplifying the language syntactically,
but it also creates hidden “gotchas” at a deep level. This book will steer you
around them.

 Python is built heavily on the idea of iteration, which means looping through
sequences. This concept is built deeply into high-level structures (lists, dictio-
naries, and sets). Use them well, and you’ll be able to get a great deal done in
a small space.

Overland_Book.indb 2Overland_Book.indb 2 8/31/17 12:56 PM8/31/17 12:56 PM

http://Wikipedia.org

How This Book Works 3
1Python is often considered a “prototyping” or “rapid application development”

language because of these abilities. You can write a program quickly in Python.
If you later want to improve machine-level efficiency, you can later rewrite the
program in C or C++.

How This Book Works
I believe strongly in learning by example as well as by theory. The plan of
this book is to teach the basics of Python (as well as some intermediate and
advanced features) by doing the following:

 Introducing a Python feature, using syntax diagrams and short examples

 Showing a major example that demonstrates the practical application of the
feature

 Including a “How It Works” section that deconstructs the example code line
by line

 Listing a set of exercises that challenge you to do variations on the example

Because Python has an interactive development environment, IDLE, I often
invite you to follow along with the shorter examples, as well.

This book uses a number of icons in the margin to help give you additional
visual cues.

These sections describe some basic rule of Python syntax. Anything meant
to be entered at the keyboard precisely as shown (such as a keyword or punc-
tuation) is in bold. Meanwhile, placeholders, which contain text you supply
yourself, are in italics. For example, in the syntax for the global statement, the
keyword itself is in bold, while the name of the variable—which you supply—
is in italics.

global variable_name

This icon indicates a block of pseudocode, which systematically describes each
step of a program purely in English, not Python-ese. However, because Python
statements are often not so far from English, I don’t always need to use pseudocode.
It can still be helpful, on occasion, for summarizing program design.

This icon indicates a section that deconstructs every line of a major example,
or at least every line that isn’t already trivial.

Ke
yw

ord

K
ey

 S
yn

tax

Ps
eu

do

code

H
ow

 It

 Works

Overland_Book.indb 3Overland_Book.indb 3 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python4

This icon indicates a section that provides exercises based on the preced-
ing example. You’ll learn Python much faster if you try at least some of the
exercises.

This icon precedes a section that shows how to revise or greatly improve an
example. These are not included for every example. Where this book does use
them, it’s because the example used the more obvious way to do something;
the “optimized” approach will then show how the more experienced, sophisti-
cated Python programmer would handle the job.

Installing Python
The steps for installing Python are essentially the same regardless of whether
you have a Windows-based system, Macintosh, or any other system that Python
supports. Here are the basic steps:

1 Go to the Python home page: python.org.

2 Open the Downloads menu.

3 If a Downloads for Windows screen appears, click the Python 3.6.1 button. If
your system does not run Windows, you’ll need to select another operating sys-
tem by examining all the choices in the Downloads menu.

4 Click the Save File button.

5 Find the file you just saved; any system will generally have a place that it puts
downloads. This saved file contains the Python installer. Double-click the name
of this saved file and follow the instructions.

If all goes well, Python is installed on your computer with all the basic mod-
ules, tkinter (GUI development) included. Now you have a choice to make.
To start using Python, you can use “basic interactive mode”—which is func-
tional but nothing special—or you can use IDLE, the interactive development
environment.

I strongly recommend the latter. IDLE does everything the basic interactive
mode does, and a great deal more. In the next section, I describe some ways of
using IDLE that can save you a lot of time later.

Here’s what basic interactive mode looks like. It offers only rudimentary
editing and no support for loading programs from text files.

Ex
er

cis
es

Op
ti

m

izing

Overland_Book.indb 4Overland_Book.indb 4 8/31/17 12:56 PM8/31/17 12:56 PM

http://python.org

Installing Python 5
1

Here’s what IDLE looks like. Notice all the menus it provides. You can do
a great deal more—including loading programs from text files and debugging
them—than you can with the basic interactive mode.

From within Windows, you should find the basic interactive-mode applica-
tion right on the Start menu. But this is not the Python you want. It’s well worth
your while to select Programs, select Python, and then finally select IDLE.

Overland_Book.indb 5Overland_Book.indb 5 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python6

With Mac systems (assuming you have downloaded Python, including
IDLE), you may need to get to IDLE by opening Finder and selecting Applica-
tions; then select Python and finally select IDLE. Your download may or may
not even have basic mode.

Begin Using Python with IDLE
Start IDLE, the interactive development environment. I advise you to make
this your home base, the place you’ll want to spend most of your time while
learning Python. You should use your system to put the icon on your desktop
so that you can easily start IDLE any time you want.

As soon as you start IDLE, you’ll see a prompt, like this:

>>>

In response to this prompt, you can enter a Python statement or expression.
You can also get help by typing the help command followed by a type name,
like this:

>>>help(str)

Here I’ve shown the user input—the characters you would enter at the
keyboard—in bold; output from Python is in normal font. I follow this con-
vention throughout the book.

Correcting Mistakes from Within IDLE
One of the best features of IDLE is that it makes error correction easy. Let’s
say you sit down and enter the following:

>>>x = z

As you’ll learn in upcoming chapters, this assignment statement produces
an error if the variable z has not already been assigned a value. The environ-
ment responds by printing a message like this:

Traceback (most recent call last):
 File "<pyshell#205>", line 1, in <module>
 x = z
NameError: name 'z' is not defined

In this case, it’s easy to reenter the offending statement. But suppose you
have a much longer block of code that is erroneous and you don’t want to
retype the whole thing. Here’s an example:

Overland_Book.indb 6Overland_Book.indb 6 8/31/17 12:56 PM8/31/17 12:56 PM

Dealing with Ends of Lines 7
1def print_nums(n):

 i = 1
 while i <= n:
 print(i, end='\t')
 i +++= 1

The problem with this block of code is that it ends with the line i +++= i
instead of i += i. There was supposed to be only one plus sign (+).

You’d like to fix this error but don’t want to retype all those statements.
Fortunately, Python makes error correction easy. Just do the following:

1 Position the cursor on any line in the block of code. (If the block of code is only
one line, make sure the cursor is at the end of the line.)

2 Press the Enter key.

Voilà! The entire block of code magically reappears, with the cursor positioned
at the end; you can then fix whatever you need to fix. Use the arrow keys to go back
to any statement and then make your corrections. Finally, to resubmit a block of
code, place the cursor at the end of the last line again and press Enter twice.

Remember this technique. It will save you many hours of work.

Dealing with Ends of Lines
Because of the way in which Python interprets lines, you cannot freely cross
physical-line borders as you can in C. But what if you need to enter an excep-
tionally long line?

The end of a physical line usually terminates a Python statement, because
there is no statement-terminator syntax as in C. However, an open parenthesis,
curly brace, or bracket automatically continues the virtual line to the next
physical line. Here’s an example:

total_amount = (this_amount + that_amount
 + a_big_number + count + even_more amounts)

The open parenthesis, (, on the top line creates a situation in which you
can freely continue the statement onto other lines, until this parenthesis is
matched. This is one case in which indentation doesn’t matter but is only for
readability. (Usually, Python forces indentation to be consistent.)

Occasionally, you may not be able to rely on this technique. If you really need
to continue a physical line and have no alternative, you can use a backslash.

>>>my_str = 'I am typing a very long \
line of code.'

Overland_Book.indb 7Overland_Book.indb 7 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python8

This example raises a question: How would you type a literal backslash in
quoted string? The answer is that you’d use a double backslash, \\, to represent
a literal backslash.

>>>my_str = 'I am typing a backslash: \\ \
in a long line of code.'

Chapter 7, “Python Strings,” will get into the details of creating quoted
strings in much greater detail.

In the last few pages, I’ve given you some Python survival skills. Now, if
you’re ready, it’s time to go on a Python safari.

Ad ditional Help: Online Sources
In this chapter, I’ve strongly suggested you download Python 3.0 or newer. If
you are using an older version of Python 2.0, most of the code in this book will
work, but you may need to make some adjustments. Although I’ve included
some version notes, you can find additional help on the following websites:

wiki.python.org/moin/Python2orPython3

wiki.python.org/moin/PortingToPy3k/BilingualQuickRef

Although many chapters in this book feature examples that are relatively
short and therefore easy to type in yourself, some of the later chapters feature
longer program listings. You may find it helpful to download the code. You
can find the code listings at this site:

brianoverland.com/books

Overland_Book.indb 8Overland_Book.indb 8 8/31/17 12:56 PM8/31/17 12:56 PM

http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/PortingToPy3k/BilingualQuickRef
http://brianoverland.com/books

9

2 A Python Safari:
Numbers

Now that you’ve installed Python (you did install it, didn’t you?), you’re ready to
go. The IDLE interactive environment is your starting point for Python safaris.
But it’s not just for beginners; for a long time, you should find it useful as a
learning device as you advance.

But now—let’s start! This chapter covers the following:

 Python “infinite” integers

 Integer vs. floating-point operations

 How variables are used in Python

Python and Numbers
Start IDLE. Up should come a prompt, although you may have to hit Enter
one time to get it to appear.

>>>

Type in your favorite number and press Enter again. Let’s say it’s five.

>>>5
5

Here I use bold—as I will throughout most of this book—to show user
input. Entering 5 and getting 5 in response is not that exciting. But let’s do a
calculation.

>>>10 + 15
25

Overland_Book.indb 9Overland_Book.indb 9 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers10

So…interactive Python is a handy calculator! It’s obvious what + does. But
as with other programming languages, we can throw in subtraction (–) and
multiplication (*).

>>>25 - 5 * 2
15

There’s an issue of precedence here. If you subtract first, you get a final
result of 40. But standard conventions of math say you multiply first, so 15 is
correct. We could’ve used parentheses to get a different result.

>>>(25 - 5) * 5
40

So far, Python just appears to be a convenient one-line calculator. But wait.
The next thing I want to show you is that Python—almost (but not quite)
uniquely among programming languages—can handle extraordinarily large
numbers.

The easiest way to generate super-large numbers is to use the exponent
operator. This operator consists of two asterisks (**) in a row. For example,
taking 3 to the 4th power gives us 3 times 3 times 3 times 3, or 81.

>>>3 ** 4
81

Eighty-one isn’t that big, but 9 to the 30th power is 30 factors of 9 multi-
plied together…and that’s a pretty big number.

>>>9 ** 30
42391158275216203514294433201

You might be tempted to say, “I’ve used floating-point numbers, and they
can get bigger than this, so what’s so impressive?”

In Python, as in most other programming languages, integers are abso-
lutely precise, which means that no matter how high they get, adding 1 always
creates a new value. That is not true of floating-point numbers, as you’ll see.

For example, enter 10**40 and 10**40+1 and see what happens.

>>>10 ** 40
100
>>>10 ** 40 + 1
10000000000000000000000000000000000000001

You should be able to see that these two numbers are distinct; they are not
equal. Just look at the last digit in each number and compare. If you apply the
test-for-equality operator, you can verify this directly in Python.

Overland_Book.indb 10Overland_Book.indb 10 8/31/17 12:56 PM8/31/17 12:56 PM

Python and Numbers 11
2

Test-for-equality (==) is an operator you’ll probably use a great deal in
Python programming. This operator produces the value True or False,
which are special reserved words, called keywords. That means they have a
special predefined meaning to the Python language.

If the two expressions produce indistinguishable results, then this operator
will produce True.

>>>10 ** 40 == 10 ** 40 + 1
False

The result, False, means that Python recognizes that the results on either
side of the equal signs (==) are not equal. So, adding 1 does produce a truly
distinct number.

That, in turn, is amazing, because it shows the usefulness of super-large integers;
they never lose their precision. Even if you’re counting a very large population, one
item at a time, you can rest assured that each time you add 1, you get a distinct value.

This Python “infinite integer” feature is impressive. You even can handle—
with absolute precision—some legendary large numbers. For example, you
may have heard of the term google (also spelled googol). In math, a google (or
googol) is 10 to the 100th power, an almost unimaginably large number.

But it’s a piece of cake to handle this number in Python.

>>>10 ** 100
1000
000

You can start with this number and then count forward one at a time. As
before, adding 1 produces a distinct number, because there’s no loss of precision.

>>>10 ** 100 + 1
1000
001

By the way, there is a subtlety here. In the absence of parentheses, the expo-
nent operator is applied before addition. There is a definite precedence to
Python operators, as listed in Appendix A.

Why Doesn’t C++ Support Infinite Integers?

Among programming languages in wide use today, Python is the only lan-
guage that supports “infinite integers” in its standard form. Why doesn’t
C++ support this feature?

continued on next page

Interlude

Overland_Book.indb 11Overland_Book.indb 11 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers12

continued

Using the class feature of C++, which is very powerful, you could in
fact create an infinite-integer class for yourself. My book C++ Without
Fear doesn’t discuss how to do that exactly, but by using all the tools in
that book, you could figure it out.

But it would not be easy. Creating a super-integer class that supports
addition and subtraction would not be so difficult, but multiplication and
division are tough. The Python integer type was created by math special-
ists who understand optimal ways to multiply and divide exceptionally
large numbers. The good news is that when you use Python, all these
problems have been solved for you.

Although Python’s integer capacity is impressive, there is ultimately a limitation—
imposed not by Python but by the computer’s hardware capabilities. This is a
fuzzy limitation, admittedly. You can go much bigger than a google, specify-
ing (for example) 10 to the 200th power.

>>>10 ** 200
1000
00
00
000000000000000000000000000000000

This is a number so large it is beyond the ability of the human mind to
grasp. Yet Python can handle this number.

Mathematicians can think of far higher numbers still. A google-plex is 10
raised to the power of a google. This is easy enough to specify.

10 ** (10 ** 100)

But as they say on television, don’t try this at home! Printing out such a
number would be 1 followed by a google zeros! Just the number of zeroes the
computer would have to print would be larger than the number of atoms in
the universe, and that far exceeds the ability of your computer to print zeroes.

Before we leave “the google” altogether, consider that we can use the abili-
ties in this section to solve problems not even solvable in most programming
languages—that is, not without great difficulty. Consider the problem of tak-
ing the number google plus 1 and then determining whether it is divisible by 7.

The remainder operator (%), which has the same precedence as multiplica-
tion and division, comes to our aid here. This operator produces the remainder
after division; if a number is evenly divisible by 7, then—after division by 7—it
will produce a remainder of 0. Let’s try this.

Interlude

Overland_Book.indb 12Overland_Book.indb 12 8/31/17 12:56 PM8/31/17 12:56 PM

Python and Numbers 13
2

>>>(10 ** 100 + 1) % 7
5

What did we just learn? The first number bigger than a google (which is a
google plus 1) yields a remainder of 5 if you divide by 7. It is therefore not a mul-
tiple of 7. With a little mathematical reasoning, you can quickly infer that the
smallest integer bigger than a google, which is a multiple of 7, is a google plus 3.

That is a fact that would be difficult or impossible to determine with other
programming languages.

Ex
er

cis
es

 EXERCISES

Exercise 2.1.1. Would you expect the power operator (**) to take precedence over
multiplication? Try a calculation to test your guess.

Exercise 2.1.2. Use Python to generate the result of 7 to the 40th power.

Exercise 2.1.3. How big, precisely, is the address space of a 64-bit architecture
computer? Bear in mind that for each additional bit, the address space dou-
bles. Use Python to generate this number.

Exercise 2.1.4. Use Python to help determine the first number bigger than a google
that is divisible by 13. You may need to use a little trial and error, but you
shouldn’t need too much.

How Big Is a Google?

The best estimates by scientists now say the number of elementary parti-
cles in our physical universe—counting all electrons, protons, neutrons,
and so on—is around 10 to the 80th power.

The number of grains of sand on our planet has been estimated at a
“mere” 7.5 times 10 to the 18th power. Therefore, the number of particles
in the universe is (no surprise!) incomprehensibly larger.

Although 10 to the 80th is pretty big, it still falls short of a google by
10 to the 20th, and 10 to the 20th is 1 followed by 20 zeroes. That number
itself is not so small.

10,000,000,000,000,000,000,000

That is to say, 10,000 times a billion times another billion. What Carl
Sagan called “billions and billions.” So, if every universe was like our own,
it would take all the particles in that many universes to equal a google!

continued on next page

Interlude

Overland_Book.indb 13Overland_Book.indb 13 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers14

continued

The base number here—10 to the 80th power—is just a few powers of 10
short of the estimated size of the physical universe in cubic centimeters.
This follows from the estimate that the diameter of the physical universe
is 10 to the 26th meters across.

But as far as mathematicians are concerned, we’ve hardly gotten
started. The number called a google-plex can be expressed as 1 followed
by a google’s worth of zeroes. Therefore, just to write out the number
using standard notation would be 1 followed by so many zeroes they
could not fit into the universe, if each 0 was written on its own little block
a 10th of a meter (roughly 3 inches) in diameter.

It would take “billions and billions” of physical universes like our own
just to find space to write down all the zeroes in a google-plex!

Fortunately, scientific notation and substitution makes it possible to
write down these figures, even though they are so large as to be far beyond
corresponding to anything in the universe.

google = 10 ** 100
google-plex = 10 ** google

As I’ve shown in this chapter, Python is good at handling numbers in the
range of a google or even a google squared—which would be 1 followed by 200
zeroes. Even division between two such quantities is fast and efficient. But don’t
ask Python to try to deal with a google-plex, which is far beyond the ability of
Python to handle. It’s really only comprehensible as a theoretical notion.

Oh, and the physical constant that comes closest to a google? That would
be the density of the universe (in kilograms per cubic meter) at the time of the
Big Bang—or rather one unit of Planck time immediately after the Big Bang.
That number is 10 to the 96th power, and it still comes up short.

Python and Floating-Point Numbers
Another operation, of course, is division. Division is special, because even
though you use two integers (an integer being a number with no fractional
portion), division has the possibility of producing a fractional result; if it is
fractional, it will be stored in floating-point format.

>>>15 / 2
7.5

Unfortunately, here is where version differences raise their ugly head. This is
the result you can expect to see with Python version 3.x. With version 2.x, if two

Interlude

Overland_Book.indb 14Overland_Book.indb 14 8/31/17 12:56 PM8/31/17 12:56 PM

Python and Floating-Point Numbers 15
2

integers are involved in division, the result is automatically rounded down to the
nearest integer. To get the same effect with version 3.x, use integer division (//).

>>>15 // 2
7

This looks like the remainder is being thrown away. Indeed it is. But you
can always use the remainder-division operator (%) to get that quantity.

>>>15 % 2
1

Version Ë In version 2.x, all division between two integer operands is interpreted
as integer, or rather “ground” division. That is to say, if both operands are
integers, division will throw fractional portions away. Sadly, Python 3.x is not
100 percent backward compatible, and integer division is one of those areas in
which there is a significant difference.

With version 2.x, to force division to be precise, you’d need to promote one
of the operands to floating point, either by specifying it in floating-point format
(such as “2.0”) or by using a float conversion.

>>>15 / float(2)
7.5

 Ç Version

For the most part, you don’t need to worry about the details of how the
computer carries out floating-point math. However, there are a few things you
do need to know.

First, floating-point numbers have the capacity to represent fractions. For
that reason, there are many situations in which you’ll want to use floating point.

Second, to specify floating-point format, just use a decimal point. The fol-
lowing numbers are both considered floating point by Python, even though
the second case contains a zero fractional portion:

>>>1.75
1.75
>>>9.0
9.0

The third thing to understand about floating-point format is that you can
freely combine integer and floating-point expressions. Python will happily
promote an integer expression to floating point so that the numbers can be
freely combined.

>>>1 + 2.5
3.5

Overland_Book.indb 15Overland_Book.indb 15 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers16

Floating-point numbers, unlike integers, have limited precision. This means
that very large floating-point numbers lose the ability to distinguish between
one number and the next. Consider the following number, formed by taking 9
to the 30th power—but doing so with floating-point math, not integer:

>>>9.0 ** 30
4.23911582752162e+28

We used a decimal point in 9.0, so the expression is treated as floating point,
not integer. With large floating-point numbers (or tiny amounts extremely
close to 0.0), Python switches to scientific notation. The number shown here is
approximately 4.239 times 10 to the 28th power.

If you now add 1 (either floating-point or integer) to this result, you’ll see
that there’s a limited precision. The following produces a result that isn’t dis-
tinguishable from the previous result:

>>>9.0 ** 30 + 1
4.23911582752162e+28

There are cases where you might want to use this number in counting, and
in such cases, it’s critical that adding 1 produces a new number. So if we test the
two quantities for equality (==), we should get False. But look what happens:

>>>9.0 ** 30 == 9.0 ** 30 + 1.0
True

In other words, we added 1 to the quantity 9.0 ** 30 and failed to get a new
number.

Think about what this means. We added 1 to a number, which should pro-
duce a different number not equal to the first! Yet Python says they are equal.
This means either that Python doesn’t understand math or that there was a
rounding error because of loss of precision.

As we saw in the previous section, adding 1 to the quantity 9 ** 30 (which is
an integer expression, not floating point) does produce a new number. That’s
because integers, unlike floating-point numbers, are always precise.

The moral of the story is, if you have a number that’s used for counting or
indexing purposes, it should be an integer.

Ex
er

cis
es

 EXERCISES

Exercise 2.2.1. Describe in English the meaning of the expression
5.23911582752162e+22.

Exercise 2.2.2. Based on how the expressions were evaluated in the previous exam-
ples, what would you say is the precedence of test-for-equality (==) relative to
arithmetic operators (+, –, /, *, **)?

Overland_Book.indb 16Overland_Book.indb 16 8/31/17 12:56 PM8/31/17 12:56 PM

Assigning Numbers to Variables 17
2

Assigning Numbers to Variables
So far, we’ve been using Python as a super-powered calculator, able to handle
numbers such as a google.

But programming requires variables. A variable is simply a name to which
we assign a data value. In Python, any variable can refer to any type of data at
any time. That’s because Python variables have no type; only data objects do.
I’ll get into the consequences of that fact later.

It’s easy to start using variables in Python. For example, you can enter the
following:

>>>a = 1
>>>b = 2
>>>a + b
3

If you’ve used any other programming language before—or even if you
haven’t—what happened here should be clear. Even if this is your first
attempt at programming, this should still be easy to understand. Here’s
what we did:

1 Associate the variable name a with the value 1.

2 Associate the variable name b with the value 2.

3 Add a and b together, which represent 1 and 2, respectively. Python responds as if
1 + 2 were entered.

Although Python may seem lax, there are restrictions. The third statement
in this example used a + b on the right side of the assignment; but this was
valid only because a and b had already been created. Here is the general rule,
and it’s the most fundamental rule in Python:

 A variable must be created before being used, but an assignment (=) creates a
variable if it does not already exist.

One upshot of this rule is that—with few exceptions—a variable must
appear on the left side of an assignment before it appears on the right.

For example, you can create a variable named my_amount, but if a new
variable appears on the right of the assignment, that’s an error. Here, the use
of x on the right side causes an error:

my_amount = x # Error! x not yet created.

Overland_Book.indb 17Overland_Book.indb 17 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers18

The problem was that this statement used x, even though x didn’t represent
anything. The solution is to create x first, by assigning it a value. Only then
can x be used in any other context.

>>>x = 10
>>>my_amount = x

Python has no trouble with these statements now. The effect in this case is
to associate both of the names, x and my_amount, with the data value, 10.

What happens if we assign a value to a variable a second time? The answer is

 First, the value on the right is fully calculated.

 Second, any previous association the variable had is now canceled.

 The variable is now associated with the value on the right side of the equal
sign (=).

Once again, it doesn’t matter whether the variable previously referred to
integer or floating-point data; the variable becomes associated with the new
value. Here’s an example:

>>>x = 7.59
>>>x
7.59
>>>x = 2
>>>x
2

A variable may appear on both sides of an assignment—but only if it was
previously created by another assignment. The old value is used in the calcula-
tion of the new. Here’s an example:

>>>n = 5
>>>n = n + 1
>>>n
6

Another rule is that every name in the Python language is case-sensitive.
Consequently, the following produces 101, not 200!

>>>a = 1
>>>A = 100
>>>a + A
101

Overland_Book.indb 18Overland_Book.indb 18 8/31/17 12:56 PM8/31/17 12:56 PM

Assigning Numbers to Variables 19
2

Assignment, in Python, is a statement. That means there’s a strict syntax
that determines how you can use it. With some exceptions we’ll cover later,
this is how you use assignment:

variable_name = expression

Remember that a single equal sign (=) is used here, not double (==), which
differentiates assignment from test-for-equality.

As for variable names, rules are as follows:

 The first letter in a variable (or other symbolic name) must be an underscore
(_) or a letter.

 The other characters may be any combination of underscores, letters, and
numerals.

The expression on the right can be a single value, or it can be more com-
plex. Here’s an example:

>>>my_num1 = 7
>>>my_num2 = my_num1 + (3.0 / 2)
>>>my_num2
8.5

The first line here creates the variable my_num1, through assignment. The
second statement creates the variable my_num2 while using my_num1 on the right;
this usage of my_num1 is valid because my_num1 was already created. The next
line is just the name my_num2. When you are in the interactive environment
(IDLE) and you enter a variable name by itself, Python prints its value.

Once we get to script programming, you’ll find variables to be essential.
But we can use variables now to build complex expressions.

For example, consider the problem of using the quadratic formula, which is
as follows:

x ==

b b2 4–±– ac
2a

Taking a square root is the same operation as raising it to the power of one
half (0.5). We therefore have all the tools we need to use this formula.

As you may recall from high school, the quadratic formula solves an equa-
tion of the following form:

0 = ax2 + bx + c

K
ey

 S
yn

tax

Overland_Book.indb 19Overland_Book.indb 19 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers20

One quadratic I’ve always been fascinated with is the one that determines
the golden ratio, in which A/B equals (A + B)/A. One of the properties is that the
square of this number is 1 more than the number itself.

x2 = x + 1

This gives us a quadratic equation like this:

0 = x2 – x – 1

This gives us values for a, b, and c, which we can enter into Python.

>>>a = 1
>>>b = -1
>>>c = -1

Now let’s apply the quadratic formula. First, let’s get the determinant,
which is the portion of the formula under the square root sign. I’ll abbreviate
this value as determ to make for less typing.

>>>determ = (b * b - 4 * a * c) ** 0.5

Again, assignment creates a variable, in this case, determ. As always, we
can get the value of this variable by entering it alone on a line.

>>>determ
2.23606797749979

Looking back at the full quadratic formula, it’s not too hard to plug this
into the rest of the formula to get the final answer or, rather, one of them.

>>>x = (-b + determ) / (2 * a)

This statement creates x as a variable by assigning a value to it, and now we
can get its value.

>>>x
1.618033988749895

This result is indeed the golden ratio, to a high degree of precision!

Ex
er

cis
es

 EXERCISES

Exercise 2.3.1. If you look closely at the quadratic formula and the steps we took
to get a value, you should see that there is another value possible for x. Using a
statement similar to the one we just entered, get this second value for x. (Hint:
if you turn a few pages back, you’ll see that the formula uses a plus-or-minus
sign, indicating that there are two different solutions.)

Overland_Book.indb 20Overland_Book.indb 20 8/31/17 12:56 PM8/31/17 12:56 PM

Assigning Numbers to Variables 21
2

Exercise 2.3.2. What is the problem, if any, with the following series of Python
statements?

he_loves = 10
she_loves = -10
Love = 2
they_love = he_loves * she_loves + love

Exercise 2.3.3. Which of the following are valid names for variables?

amount
amount55
_amount
1x
y1
2y
n2

What Do Python Assignments Really Do?

For C, C++, and BASIC, the way I usually define a variable is as a named
location that stores a value. In other words, a variable is like a little box
that has a name on it, into which you can put any value you want as long
as it is in the right format.

Such “little boxes,” it should be noted, have a series of attributes in
C++. A variable, or “box,” is declared to only be able to hold certain
kinds of data. If I try to put any other data in there, the result is an error.

But Python does things differently. This difference may seem trivial
right now. But later in the book, it will matter greatly.

Consider how things are done in other languages. Again, most variables can
be viewed as little boxes that contain values for as long as you want them to:

5

a

5

b

5

c

Python instead treats every variable as a reference. A reference, in turn,
has some similarities to C pointers or to Windows handles. The key point
is that when multiple variables are references (that is, refer to) the same
value, they do not store the value separately. Let’s say several variables are
assigned the value 5.

continued on next page

Interlude

Overland_Book.indb 21Overland_Book.indb 21 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers22

continued

>>>a = 5
>>>b = 5
>>>c = 5

Here’s the result in memory, in which the lines indicate a “refer to”
relationship:

5b

a

c

All of these variables now refer to just one value, 5, which is stored at a
single location in memory. But note that as soon as one of the variables is
assigned a new value, it refers to a new location.

>>>c = 10

The variable c now refers to a new location and a new value (data
object). So, c no longer refers to the same place in memory that a and b do.

5b

10c

a

Yet the following statement still does exactly what you’d expect.

>>> b + c
15

So, it may not be easy at first to see how the difference matters, because
at this point, there seems to be no difference in the results.

One of the most important consequences is that because Python uses this
mechanism, a variable can be assigned a new value with a different type.
One moment it’s storing an integer; the next moment, it’s storing a floating-
point value.

Although you can do that to your heart’s content, it’s almost always bad pro-
gramming practice to use the same name to refer to different kinds of data. Ide-
ally, names should be chosen that remind the programmer of the kind of data
being named. Most letters—i, j, and k, in particular—are usually used to name
integers, while x, y, and z usually are used to name floating-point data.

Interlude

Overland_Book.indb 22Overland_Book.indb 22 8/31/17 12:56 PM8/31/17 12:56 PM

Some Python Shortcuts 23
2

Variable-Naming Conventions in This Book
Remember that, in Python, there are no variable declarations, only assign-
ments. That makes simple programs simpler, but it also means that for more
complex applications, you don’t have the option of looking up a variable’s
type. You can determine type by using the built-in type() function (which is
particularly helpful within the interactive development environment), but you
can’t determine type by seeing how a variable is declared in the program.

I have found that, with Python, programming code is far more readable if
you stick to variable-naming conventions. As a result, you can tell what kind
of data you’re dealing with just by looking at the name. Although there are
occasional exceptions, I mostly stick to the following plan:

NAME USED FOR

xxx_str, or any name with str in it; also
s, s1, s2, and so on

Text strings

xxx_list, or any name with list in it Python lists (introduced in Chapter 5)

x, y, z Floating-point numbers

Most other letters, but especially i, j, k,
and m

Integers

If a variable name does not fit into one of these categories, it’s usually an integer.
Finally, when you get to the use of functions, remember that functions are

usually known through their use of active verbs in the name, for example,
convert_to_centigrade().

Some Python Shortcuts
When it comes to numeric manipulation and assignment, Python has some slick
shortcuts. Some of them resemble shortcuts from the C and C++ languages.

One of the slickest conveniences is the multiple-assignment technique. The
following statement creates five variables and initializes them all to 0:

>>>a = b = c = d = e = 0

You can now use any of these variables and/or get their value.

>>>a
0

Overland_Book.indb 23Overland_Book.indb 23 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers24

But—and this is a caution primarily for C and C++ programmers—this is
a limited technique. In C, for example, multiple assignments work because an
assignment is really an expression and, in those languages, can be included in
larger expressions.

b = (7 + (a = 10)); // This is a C/C++ statement.

In C, this would assign 10 to a, and 17 to b. This does not work in Python.
But in Python, you can use multiple assignments to assign any one value

you want. For example, I could’ve initialized all the variables to 50.77.

>>>a = b = c = d = e = 50.77

Python has some tricks of its own. One of the most impressive (and useful)
is serial assignment, also called tuple assignment. Let’s say I want to create
three variables, i, j, and k, and give them all different values. I can do this by
putting comma-separated groups on either side of the equal sign.

>>>i, j, k = -100, 123, 456
>>>i
-100
>>>j
123
>>>k
456

You can also display multiple values efficiently. In this case, the three data
values named by i, j, and k are displayed as a tuple—which is like an array
but is immutable; its values cannot be altered.

>>>i, j, k
(-100, 123, 456)

Here is another, though related, shortcut. Assuming a and b already exist
(because they’ve previously been the target of assignments), you can do opera-
tions such as the following:

>>>a, b = a + b, a

This kind of assignment is difficult to express in other languages, because
the timing of assignments is an issue. You’d need several statements involving
a “temp” variable. But with Python, a gets the old value of a + b, and b gets
the old value of a, simultaneously, without the need for temporary variables.

One last shortcut we’ll explore combines addition and assignment. Con-
sider how common it is to increment a variable, as in the following statement:

amount = amount + 1

Overland_Book.indb 24Overland_Book.indb 24 8/31/17 12:56 PM8/31/17 12:56 PM

Some Python Shortcuts 25
2

As you might imagine, incrementing a variable is an extremely common
operation. Python provides a shortcut to carry this out. The following state-
ment increments the variable named amount by 1; it is equivalent to the previous
statement, amount = amount + 1.

amount += 1

The next statement increments amount by another 5.

amount += 5

Remember that none of these statements is valid until the variable, amount,
has been initialized by means of a standard assignment statement.

amount = 0

Python supports a whole series of operators that carry out an operation and
store the results in the variable on the left.

OPERATOR EXAMPLE MEANING

+= n += 1 n = n + 1

–= n –= 1 n = n – 1

*= n *= amt n = n * amt

/= n /= 2 n = n / 2

**= n **= 2 n = n ** 2

None of these operators, it should be remembered, forms an expression. Rather,
each of these operators defines a complete statement, as in the following syntax:

value1 += value2

The values, in this case, are added together, and the result is put in value1.
It is roughly equivalent to the following:

value1 = value1 + value2

Two C/C++ shortcuts that do not work are increment (++) and decrement
(--) operators. If you come from the land of C programming, this is a partic-
ularly treacherous “gotcha” because it will not produce a syntax error, but
it will have no effect at run time, which can make for particularly insidious,
difficult-to-track-down bugs.

The issue arises because Python supports unary + and – operators. The
minus sign changes the sign of the operand, but the plus sign doesn’t do any-
thing at all.

K
ey

 S
yn

tax

Overland_Book.indb 25Overland_Book.indb 25 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers26

>>>n = 5
>>>-n
-5
>>>+n
5

Consider the expression ++n. Python evaluates this as follows:

+(+n)

This says, “Do nothing to n and then do nothing again.”
Likewise, --n says, “Take the negative of n and then take the negative of

that result,” which, of course, gets you back to n without change, because a
negative times a negative is a positive.

-(-n)

Remember that the assignment operators (such as += and *=) do work in
Python, but they cannot be used within larger expressions. And they require
that the variable being operated on already exists.

Ex
er

cis
es

 EXERCISES

Exercise 2.4.1. Create a set of variables, a1, a2, and a3, initializing them all to 10.

Exercise 2.4.2. Create a set of variables, tt, ty, and tz, initializing them to 10,
20, and 30, respectively.

Exercise 2.4.3. Assume you assign the variable xx a floating-point value. Then
you assign a new value to it, and this new value is an integer value. What type
would you expect xx to have now?

Chapter 2 Summary
Here are the important points of Chapter 2:

 The +, –, *, /, //, and ** operators are all supported in Python version 3.x.
/ signifies division, // signifies ground division (rounding down), and ** is the
exponent operator.

 The exponent operator (**) can be used to create integers of fantastic sizes.
(An integer is a number with no fractional portion.) The only limitations are
those imposed by the size and speed of the computer itself. But you can easily
specify a google (or googol), for example.

>>>10 ** 100

Overland_Book.indb 26Overland_Book.indb 26 8/31/17 12:56 PM8/31/17 12:56 PM

27
2

Summary

 A number with a decimal point is automatically stored internally in floating-
point format, even if it has a 0 after the decimal point. Floating-point numbers
have large ranges, as well as the ability to store fractional portions, but they
also have limited precision.

>>>9.0

 A variable is a name associated with a particular value in Python. Assignment,
which uses just one equal sign (=), associates the variable with the value on the
right. Also, an assignment will create a variable if it does not already exist.

>>>x = 2.5

 If a variable does not yet exist, it is illegal to use it on the right of an assign-
ment or in any other context. Therefore, you must first assign a value to a
variable before using it.

 If a variable already exists (because it was previously the target of an assign-
ment) and then it’s assigned another value, Python makes no objection. The
effect is that the old association is broken, and the variable takes on the type,
format, and data of the new value on the right side.

>>>x = 88 # x now associated with 88, an integer

 Python has some slick shortcuts. The following statement assigns values to
four variables. The effect of this statement is to associate all the variables with
the value 0.

>>>a = b = c = d = e = 200

 Another slick shortcut is list assignment.

>>>x, y, z = 10, 20, 30

 Python has a set of operators that combine assignment with some other oper-
ation, including +=, –=, *=, etc. Here’s an example:

>>>x += 1 # Increment x by 1 (x = x + 1).

 Remember that names and keywords are case-sensitive in Python.

 Remember, also, that a variable name must begin with a letter or underscore
(_) but may be made up of letters, underscores, and digits throughout the
remainder of the variable name.

Overland_Book.indb 27Overland_Book.indb 27 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb 28Overland_Book.indb 28 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

29

3 Your First
Programs

Programming is like writing a script, creating a predetermined list of words
and actions for actors to perform night after night. A Python function is not
so different. From within the interactive environment, you can execute a func-
tion as often as you like, and it will execute the same predefined “script.” (The
term script can also refer to an entire program.)

Within the Python interactive development environment (IDLE), writing
functions is the beginning of true programming. In this chapter, I explore how
to write functions, including the following:

 Using functions to calculate formulas

 Getting string and numeric input

 Writing formatted output

Temperatures Rising?
I happen to live in the Northwest corner of the United States, and I have Canadian
relatives. When they discuss the weather, they’re always talking Celsius. They
might say, “Temperature’s all the way up to 25 degrees. Gettin’ pretty warm, eh?”

For people accustomed to the Fahrenheit scale, 25 is cold enough to freeze
your proverbial hockey stick. So I have to mentally run a conversion.

fahr = cels * 1.8 + 32

If you have the Python interactive environment running, this is an easy cal-
culation. I can convert 20 degrees in my head, but what about 25? Let’s use
Python! The following statements assign a value to the name cels (a vari-
able), use that value to assign another value to the name fahr, and then finally
display what the fahr value is.

Overland_Book.indb 29Overland_Book.indb 29 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs30

>>>cels = 25
>>>fahr = cels * 1.8 + 32
>>>fahr
77.0

So, 25 “Canadian” degrees are 77.0 degrees on the “real” (that is, the Amer-
ican) temperature scale. That’s comfortably warm, isn’t it? For those living
north of the border, it’s practically blistering.

Python prints the answer with a decimal point: 77.0. That’s because when the
interactive environment combined my input with the floating-point value 1.8, it
promoted all the data to floating-point format.

Let’s try another one. What is the Fahrenheit value of 32 degrees Celsius?
Actually, there’s a faster way to do this calculation. We don’t have to use vari-
ables unless we want to do so.

>>>32 * 1.8 + 32.0
89.6

Thirty-two degrees on the Celsius scale is 89.6 Fahrenheit. For a Canadian,
that’s practically burning up.

But I’d like to make this calculation even easier. What I’d really like to do is
just enter a function name followed by a value to convert.

>>>convert(32)
89.6

And—here is the critical part—if this function worked generally, as if it
were part of Python, I could use it to convert any number from Celsius to
Fahrenheit. All I’d have to do is enter a different argument.

>>>convert(10)
50.0
>>>convert(20)
68.0
>>>convert(22.5)
72.5

But Python lets me create my own such function. This is what the def key-
word does: define a new function. We could write it this way from within the
interactive environment:

>>>def convert(fahr):
 cels = fahr * 1.8 + 32.0
 return cels

>>>

Overland_Book.indb 30Overland_Book.indb 30 8/31/17 12:56 PM8/31/17 12:56 PM

Temperatures Rising? 31
3

Notice that these statements by themselves don’t seem to do anything.
Actually, they do quite a bit. They associate the symbolic name convert with
something referred to as a callable in Python, that is, a function.

If you display the “value” of the function, by itself, you get a cryptic
message.

>>>convert
<function convert at 0x1040667b8>

This message tells you that convert has been successfully associated with
a function. There were no syntax errors; however, runtime errors are always
possible.

Not until we execute convert do we know whether it runs without errors.
But this is easy. To execute a function, just follow it with parentheses—enclosing
any arguments, if any.

>>>convert(5)
41.0

So, 5 degrees Celsius is actually 41.0 Fahrenheit…cool but not quite freezing.
If you enter this example as shown—using the bold font to indicate what

you should type as opposed to what Python prints—and if everything goes
right, then congrats, you’ve just written your first Python function!

If instead you get a syntax error, remember that you can easily edit a func-
tion by 1) moving the cursor to any line of the function and 2) pressing Enter.
The entire function definition will reappear, and you can edit it by moving the
cursor up and down. Finally, you can reenter it again. (To reenter, put your
cursor on the end of the last line and press Enter twice.)

Before resubmitting the function definition, review the following rules:

 The definition of convert is followed by parentheses and the name of an
argument. This name stands in for the value to be converted. In this case, the
argument name is fahr.

 You must type a colon (:) at the end of the first line.

 The environment then automatically indents the next lines. Use this indenta-
tion. Don’t try to modify it—at least not yet.

 The return statement determines what value the function produces.

 Remember that in Python all names are case-sensitive.

 In the interactive environment, you terminate the function by typing an extra
blank line after you’re done.

Overland_Book.indb 31Overland_Book.indb 31 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs32

Note Ë From within the interactive environment, you should use whatever
indentations the environment creates for you. Doing otherwise may cause
Python to report errors and fail to run the program.

However, when you write Python scripts in separate text files, the preferred
convention is to use four spaces (and no tab characters). This is somewhat
arbitrary, because almost any indentation scheme works if you hold to it con-
sistently. But four spaces is the style preferred according to the PEP-8 standard
that is observed by many Python programmers.

As much as possible, this book tries to hold to this PEP-8 standard. You
can read more about this typographic standard for Python programming by
searching for PEP-8 online.

 Ç Note

Let’s take another example. Let’s define another function and this time give it the
name inch_to_cent. This function is even simpler than the convert function: it
changes inches to centimeters, according to the formula 1 inch = 2.54 centimeters.

>>>def inch_to_cent(inches):
 cent = inches * 2.54
 return cent

>>>

As with the earlier function, entering a syntactically correct definition doesn’t
immediately do anything, but it does create a callable that you can then use to
perform the inches-to-centimeter conversation whenever you want.

Here’s an example:

>>>inch_to_cent(10)
25.4
>>>inch_to_cent(7.5)
19.05

Note that the inch_to_cent function definition uses its own variable—a
local variable—named cent. Because it is local, it doesn’t affect what hap-
pens to any variable named cent outside of the function.

But the use of this variable in this case isn’t really necessary. You could
define the same function more succinctly, as follows. But the effect is the same
in either case.

>>>def inch_to_cent(x):
 return x * 2.54

>>>

Overland_Book.indb 32Overland_Book.indb 32 8/31/17 12:56 PM8/31/17 12:56 PM

Temperatures Rising? 33
3

You can conceptualize the action of a function call as follows. Each call
to the inch_to_cent function passes a particular value in parentheses. This
value is passed to the name x inside the function definition, and the return
statement produces the output after operating on the x value passed to it.

Here’s an illustration of how this works:

def convert(x):

 Number crunching

 return ftemp

convert(10)

Return value
to caller

Remember, a function must be defined before a call to that function is
executed.

Python’s Use of Indentation

Syntactically, Python is fundamentally different from all the languages in
the C-language family—including C++, Java, and C#—as well as other
languages such as BASIC. The single biggest difference is that spacing
matters, particularly indentation.

In the interactive environment, Python automatically indents state-
ments inside a control structure, such as a def, if, or while statement
block. Until you terminate that block, you should accept the indentation
and not try to “fix” it.

When you learn later in this chapter to compose text files as Python scripts,
you can indent any number of spaces you want, but you must do it consistently.
If the first statement within a block of statements is indented four spaces, the
next statement must be indented four spaces as well—no more, no less.

Note that the PEP-8 specification states that four-space indentation is
the preferred standard.

A pitfall awaits you in the form of invisible tab characters. You can use
tabs, but the danger is that a tab may look like four blank spaces when in
fact it is only one character. And if you indent with a tab on one line and use
spaces to indent on the next, Python gets confused and issues a syntax error.

continued on next page

Interlude

Overland_Book.indb 33Overland_Book.indb 33 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs34

continued

If possible, then, always use either one technique or the other: a single
tab or multiple blank spaces. The safest policy is to have your text editor
follow the rule of replacing a tab with blank spaces.

Indentation is an area in which C++ programmers are bound to feel
superior. Take the following Python function:

def convert_temp(x):
 cels = x * 1.8 + 32.0
 return cels

In Python, you must indent this way or Python gets horribly confused.
In C and C++, you are freed from spacing issues for the most part, because
statement blocks and function definitions are controlled by curly braces.
Here’s how you might write this function in C++:

float convert_temp(float x) {
 float cels = x * 1.8 + 32.0;
 return cels;
}

There are similarities between these two versions—the Python and
the C/C++ version—but the latter gives you a lot more freedom to space
things as you choose.

float convert_temp(float x)
{cels = x * 1.8 + 32.0; return cels; }

With a little optimization, you can even put all the code on a single line.

float convert_temp(float x){return x * 1.8 + 32.0;}

What C and C++ programmers tend to like about this is that the com-
piler is largely indifferent to spacing issues—as long as some whitespace
appears where needed to separate variable names and keywords. C++
will never complain because you intended three spaces rather than four,
which to a C++ programmer seems fussy, if not petty.

But the Python way has its own advantages. To beginning and interme-
diate programmers especially, Python indentation allows you to see how
“deep” you are in the program. It makes relationships between different
statements more obvious. And it closely echoes the indentation of pseudocode
I use throughout this book.

Once you get used to Python’s reliance on indented statements, you’ll
love it. Just be careful that your text editor doesn’t let you confuse tab
characters with blank spaces.

Interlude

Overland_Book.indb 34Overland_Book.indb 34 8/31/17 12:56 PM8/31/17 12:56 PM

Putting in a Print Message 35
3

Putting in a Print Message
What if I want the function to not just return a number but to instead print
out a user-friendly message such as the following:

7.5 inches are equal to 19.05 centimeters.

I can easily do that in Python. All I need to do is add a call to the built-in
print function. Because print is a built-in function of Python, it’s one that
you do not define yourself; it’s already defined for you. Here’s a sample of this
function in action:

>>>print('My name is Brian O.')
My name is Brian O.

Version Ë Python version 2.0 features a version of print that does not expect
parentheses around the argument list, because it is not a function. Starting
with Python version 3.0, print becomes a function and therefore requires the
parentheses.

print 'My name is Brian O.' # Python 2.0 version
 Ç Version

Why did I place single-quotation marks around the message to be printed?
I did that because this information is text, not numeric data or Python code; it
indicates that the words are to be printed out exactly as shown. Here are some
more examples:

>>>print('To be or not to be.')
To be or not to be.
>>>print('When we are born, we cry,')
When we are born, we cry,
>>>print('That we are come'
 ' to this great stage of fools.')
That we are come to this great stage of fools.

The ability to use print pays off in a number of ways: I can intermix text—
words placed in quotation marks—with variables.

>>>x = 5
>>>y = 25
>>>print('The value of', x, 'squared is', y)
The value of 5 squared is 25

By default, the print function inserts an extra blank space between one
item and the next. Also, after a call to the print function is finished, then by

Overland_Book.indb 35Overland_Book.indb 35 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs36

default it prints a newline character, which causes the terminal to advance to
the next line.

Now let’s combine the printing ability with the power to define functions.

>>>def convert(x):
 c = x * 2.54
 print(x, 'inches equal', c, 'centimeters.')

>>>convert(5)
5 inches equal 12.2 centimeters.
>>>convert(10)
10 inches equal 25.4 centimeters.

Do you now see why the print function is useful? I can call this built-in
function from within a definition of one of my functions; that enables
my functions to print nice output messages rather than just producing a
number.

Syntax Summaries
Throughout this book I use summaries to summarize parts of Python syntax.
These are the grammatical rules of the language, and—although they are gen-
erally easier and more natural than syntax rules for human language—they
must be followed precisely. If you’re required to use a colon at the end of the
line, you must not forget it.

Here is the syntax summary for function definitions:

def function_name(argument) :
 indented_statements

There actually is more to function syntax than this, as you’ll see in Chap-
ters 9 and 10. As I’ll show later in this chapter, you can have more than one
argument; if you do, use commas to separate them.

In a syntax display—such as the one shown previously—items in bold must
be typed in as shown; the items in italics are items you supply, such as names.

Here’s another example you can compare to the syntax summary:

>>>def print_age(n):
 print('Happy birthday.')
 print('I see that you are', n)
 print('years old.')

>>>

Ke
yw

ord

Overland_Book.indb 36Overland_Book.indb 36 8/31/17 12:56 PM8/31/17 12:56 PM

Syntax Summaries 37
3

Remember, as always, that to end the statement block from within the
interactive environment, type an extra blank line at the end.

Remember, also, that certain errors are not detected until the function is
executed. Suppose a function does not contain syntax errors, but it tries to
refer to a variable that is not yet recognized. Executing the function will gen-
erate an error unless the variable is created before the function is executed.

For a variable to be recognized, one of several things must happen.

 The function creates a variable by assigning it a value during an assignment (=).

 The variable must already exist because of an earlier assignment.

 Or, the variable exists because it represents a value passed to the function (for
example, n in the previous function-definition example).

Here’s a sample session that executes the print_age function. It assumes
that this function has already been defined through the use of a def state-
ment, as shown earlier.

>>>print_age(29)
Happy birthday.
I see that you are 29
years old.

Here is the same function, this time called with the value 45 rather than 29:

>>>print_age(45)
Happy birthday.
I see that you are 45
years old.

The built-in print function has a simple syntax—although there are some
special features I’ll introduce later.

print(items)

When print is executed, it displays the items on the console, with an extra
blank space used to separate one item from the next.

During the call to print, you use commas to separate arguments if there is
more than one.

>>>i = 10
>>>j = 5
>>>print(i, 'is greater than', j)
10 is greater than 5

K
ey

 S
yn

tax

Overland_Book.indb 37Overland_Book.indb 37 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs38

Example 3.1. Quadratic Equation as a Function
Now let’s do something a little more interesting: take the quadratic formula exam-
ple from Chapter 2 and place it in a function definition, by using the def keyword.

The quadratic formula computes the value of x, given the following rela-
tionship to arguments a, b, and c.

0 = ax2 + bx + c

The following interactive session defines quad as a function taking three
arguments and returning a value, which is the solution for x.

>>>def quad(a, b, c):
 determ = (b * b - 4 * a * c) ** 0.5
 x = (-b + determ) / (2 * a)
 return x

>>>

With this definition entered into the environment, you can then call the
quad function with any values you like. For example, a simple quadratic equa-
tion is as follows:

0 = x2 + 2x + 1

In this statement, a, b, and c correspond to the values 1, 2, and 1, respec-
tively. Therefore, by giving the values 1, 2, and 1 as arguments to the quad
function, we will get the value of x that satisfies the equation.

>>>quad(1, 2, 1)
-1.0

This means that we should be able to plug the value –1.0 in for x and get the
quadratic equation to come out right. Let’s try it.

0 = (-1)2 + 2(-1) + 1
 = 1 - 2 + 1

It works! Everything checks out nicely, because plugging –1.0 in for x does
indeed produce 0. But a more interesting equation involves the numbers 1, –1,
and –1, which give us the golden ratio. That ratio has the following property:

x/1 = (x + 1)/x,

That equation, in turn, implies the following:

x2 = x + 1

This in turn yields a quadratic equation, as shown here:

 0 = x2 - x - 1

Overland_Book.indb 38Overland_Book.indb 38 8/31/17 12:56 PM8/31/17 12:56 PM

Syntax Summaries 39
3

Finally, that gives us values for a, b, and c of 1, –1, and –1, which we can
evaluate with the quad function. Let’s try it!

>>>quad(1, -1, -1)
1.618033988749895

And this turns out to be correct to the 15th decimal place. This is the spe-
cial number “phi.” One of its many special properties is phi squared minus 1
produces phi itself. This is the golden ratio.

You can verify it this way:

>>>phi = quad(1, -1, -1)
>>>phi
1.618033988749895
>>>phi * phi - 1
1.618033988749895

A-ha! Phi squared, minus 1, gives us phi again! This is indeed the golden
ratio or, rather, a close approximation of it.

H
ow

 It

 Works

 How It Works
Although the quad function may look more complicated than the other, more
elementary examples in this chapter, at the bottom it’s doing the same thing:
taking in some input, doing some number crunching, and returning a result.
The one true innovation in this example is that here I’ve introduced the use of
three arguments rather than just one.

The order of arguments is significant. Because the quad definition takes
three arguments, a, b, and c, each call to quad must specify three values, and
these are passed to those variable names: a, b, and c, in that order.

The following illustration shows how this works for the function call
quad(1, 2, 1), assigning 1, 2, and 1 to the values a, b, and c:

def quad(a, b, c):

 Number crunching

 return x

quad(1, 2, 1)

Return value
to caller

Overland_Book.indb 39Overland_Book.indb 39 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs40

Now it’s simply a matter of doing the correct number crunching to get an
answer, and that means applying the quadratic formula.

x ==

b b2 4–±– ac
2a

We can use pseudocode to express what this function does. A pseudocode
description of a program or function uses sentences that are very close to
human language but lists the steps explicitly.

Here is the pseudocode description of the quad function:

For inputs a, b, and c:
 Set determ equal to the square root of (b * b) – (4 * a * c).
 Set x equal to (–b + determ) divided by (2 * a).
 Return the value x.

The quadratic formula actually produces two answers, not one. The plus or
minus sign indicates that –b plus the determinant (the quantity under the rad-
ical sign) divided by 2a is one answer; but –b minus the determinant divided
by 2a is the other answer. In Example 3.1, the function returns only the first
answer.

Ex
er

cis
es

 EXERCISES

Exercise 3.1.1. Revise the quad function by replacing the name determ with the
name dt and by replacing the name x with the name x1; then verify that the
function still works.

Exercise 3.1.2. Revise the quad function so that instead of returning a value, it
prints two values using the Python print statement in a user-friendly manner:
“The x1 value is…” and “The x2 value is…” (Hint: The use of the plus/minus
sign in the quadratic formula indicates what these two—not one—values
should be. Review this formula closely if you need to do so.) Print each answer
out on a separate line.

Exercise 3.1.3. The mathematical number “phi” represents the golden ratio, more
specifically, the ratio of the long side of a golden rectangle to the short side.
Try to predict what the reciprocal (1/phi) is; then use the Python interactive
environment to see whether you’re right. How would you express the relation-
ship between phi and 1/phi?

Ps
eu

do

code

Overland_Book.indb 40Overland_Book.indb 40 8/31/17 12:56 PM8/31/17 12:56 PM

Getting String Input 41
3

Getting String Input
Before you can finally write “real programs,” you’ll need to be able to write
scripts that can query the user for more information. Fortunately, Python
includes a powerful built-in function, the input function, which makes this
easy.

I’ll give you the syntax first and then show examples.

string_var = input(prompt_string)

Version Ë If you’re using Python 2.0, use the function name raw_input instead
of input. In 2.0, the input function works, but it does something different:
it evaluates the string input as a Python statement rather than just passing it
back as a string.

 Ç Version

The essence of this syntax is that the built-in input statement both takes
and produces a text string. In one way, the concept of text string is easy to
understand; it’s just “words” for the most part—or more accurately, letters
and other characters.

For example, we might write a function, main, which we’re going to use as
a script.

>>>def main():
 name1_str = input('Enter your name: ')
 name2_str = input('Enter another: ')
 name3_str = input('And another: ')
 print('Here are all the candidates: ')
 print(name1_str, name2_str, name3_str)

>>>main()
Enter your name: Brian
Enter another: Hillary
And another: Donald
Here are all the candidates:
Brian Hillary Donald

This by itself is not a very exciting program. It takes some text and displays
it on the console. But this little program demonstrates an important ability of
Python: the ability to prompt the user for a text string and then assign it to a
variable.

K
ey

 S
yn

tax

Overland_Book.indb 41Overland_Book.indb 41 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs42

While other variables up until now have referred to numeric values, these
variables—name1, name2, and name3—all refer to text strings in this case.

What exactly can go into a text string? Basically, anything you can type can
go in a text string. Here’s an example:

>>>in_str = input('Enter input line: ')
Enter input line: When I'm 64...
>>>in_str
'When I'm 64...'

As you can see, text strings can contain numerals (digit characters). But
until they’re converted, they’re just numerals. They are text-string representa-
tions of numbers, not numbers you can perform arithmetic on.

If this isn’t obvious, just remember that the numeral 5 is just a character on
a keyboard or on the screen. But the number 5 can be doubled or tripled to
produce 10 or 15 and has little to do with characters on a keyboard.

Here’s an example:

in_str = '55'

But assigning 55 with no quote marks around it does something different.

n = 55

The difference is that 55 is an actual number, meaning that you can add,
subtract, multiply, and divide it. But when enclosed in quotation marks, '55'
is a text string. That means it is a string consisting of two numerals, each a 5,
strung together.

A simple program should help illustrate the difference.

>>>def main():
 in_str = input('Enter your age: ')
 print ('Next year you'll be', in_str + 1)

>>>main()
Enter your age: 29
Error! Incompatible types.

Oops! What happened? The characters 29 were entered at the prompt and
stored as a text string, that is, a numeral 2 followed by a numeral 9—a string
two characters long. But that’s not the same as a number, even though it looks
like one.

Python complains as soon as you try to add a text string to a number.

in_str + 1

Overland_Book.indb 42Overland_Book.indb 42 8/31/17 12:56 PM8/31/17 12:56 PM

Getting Numeric Input 43
3

No error is reported until you execute the function. Python variables don’t have
types; only data objects do. Consequently, Python syntax seems lax at first. But
the types of data objects—which are not checked for syntax errors, as there are no
“declarations”—are checked whenever a Python statement is actually executed.

This means, among other things, that you cannot perform arithmetic on a
string of numerals such as 100, until that string is first converted to numeric
format. If this doesn’t make sense now, don’t worry; it will make sense when
you read the next section.

The next section shows how to get input and store it as a number rather
than text string.

Getting Numeric Input
As the previous section demonstrated, if you write a program that takes
numeric input and does number crunching on it, you need to first convert to a
numeric format.

To do that, use one of the following statements, depending on whether you
are dealing with integer (int) or floating-point data (float):

var_name = int(input(prompt_message))
var_name = float(input(prompt_message))

These statements combine the input and conversion operations. You can,
if you prefer, do them separately, but this is less efficient. For example, you
could use this approach:

in_str = input('Enter a number: ')
n = int(in_str)

These two statements work fine together, but there’s no reason not to com-
bine the operations.

n = int(input('Enter a number: '))

Here’s an interactive session that uses a number entered at the keyboard
and then multiplies it by 2:

>>>def main():
 n = int(input('Enter a number: '))
 print('Twice of that is:', n * 2)

>>>main()
Enter a number: 10
Twice of that is: 20

K
ey

 S
yn

tax

Overland_Book.indb 43Overland_Book.indb 43 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs44

So, to get actual numeric input, as opposed to storing input in a text string,
use the int and float conversions.

But what are int and float, exactly? Here I’m using them like functions,
but they’re actually the names of built-in data types, integer and floating
point, respectively. In Python, there’s a general rule that type names can be
used in this fashion, to perform conversions (assuming the appropriate con-
version exists).

type_name(data)

Example 3.2. Quadratic Formula with I/O
This next example takes the quadratic-formula example another step further,
by placing all the statements in a main function and then relying on Python
input and output statements to communicate with the end user.

>>>def main():
 a = float(input('Enter value for a: '))
 b = float(input('Enter value for b: '))
 c = float(input('Enter value for c: '))
 determ = (b * b - 4 * a * c) ** 0.5
 x1 = (-b + determ) / (2 * a)
 x2 = (-b - determ) / (2 * a)
 print('Answers are', x1, 'and', x2)

>>>main()

Here is a sample session that might follow after you type main():

Enter value for a: 1
Enter value for b: -1
Enter value for c: -1
Answers are 1.618033988749895 and -0.6180339887498948

There are two different answers in this case, not equal to each other, because
the golden ratio is either phi (the ratio of the large side to the small) or 1/phi (the
ratio of the small side to the large), depending on how you look at it. The nega-
tive sign in the second answer is necessary for the math to come out right.

Nearly all the digits are identical in this case, except for a small differ-
ence due to rounding errors. The actual values of phi and 1/phi are irrational
(which means you would need an infinite number of digits to represent them
precisely).

K
ey

 S
yn

tax

Overland_Book.indb 44Overland_Book.indb 44 8/31/17 12:56 PM8/31/17 12:56 PM

Getting Numeric Input 45
3

Note Ë Remember that the interactive environment supports cut-and-paste
operations, as well as a “magic” technique for revising blocks of code.

So, if you enter a long function definition and realize you’ve made a mis-
take, you can save a great deal of time by doing the following:

1 Scroll up to the block of code.

2 Place your cursor on any line of code in this block.

3 Press Enter.

4 The block of code will appear in the window—at the new cursor position—ready
for you to edit it.

Then go ahead and make your changes, scrolling up and down if you need.
When done, type an extra blank line after the new block of code.

 Ç Note

H
ow

 It

 Works

 How It Works
In this chapter, we’re still dealing with programs that are relatively short and
translate into simple pseudocode.

Prompt the user for the values of a, b, and c.
Apply the quadratic formula to get x1 and x2.
Print the values of x1 and x2.

Because a, b, and c all need to refer to numeric data, the program applies a
float conversion combined with the built-in input function. If these numbers
are not converted to float format, you won’t be able to do math with them.

 a = float(input('Enter value for a: '))
 b = float(input('Enter value for b: '))
 c = float(input('Enter value for c: '))

Next, the quadratic formula is applied to get the two solutions for x. Remem-
ber that the operation ** 0.5 has the same effect as taking the square root.

 determ = (b * b – 4 * a * c) ** 0.5
 x1 = (-b + determ) / (2 * a)
 x2 = (-b - determ) / (2 * a)

Finally, the program displays the output, featuring x1 and x2.

 print('The answers are', x1, 'and', x2)

Ps
eu

do

code

Overland_Book.indb 45Overland_Book.indb 45 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs46
Ex

er
cis

es

 EXERCISES

Exercise 3.2.1. In Example 3.2, instead of using the prompt messages “Enter the
value of a,” etc., prompt the user with the following messages:

“Enter the value of the x-square coefficient.”

“Enter the value of the x coefficient.”

“Enter the value of the constant.”

Do you have to change the variable names as a result? Note that the user
never sees the names of variables inside the code, unless you deliberately print
those names.

Exercise 3.2.2. Modify Example 3.2 so that it restricts input to integer values.

Exercise 3.2.3. Write a program to calculate the area of a right triangle, based
on height and width inputs. Apply the triangle area formula: A = w * h * 0.5.
Prompt for width and height separately and print a nice message on the dis-
play saying, “The area of the triangle is….”

Exercise 3.2.4. Do the same for producing the volume of a sphere based on the
radius of the sphere. I’ll invite you to look up the formula for volume of a sphere.
For the value pi, you can insert the following statement into your program:

pi = 3.14159265

Formatted Output String
In Example 3.2, typical output looked like this:

The answers are 3.0 and 4.0

(This is produced, incidentally, when the inputs to the quadratic formula
are 1, –7, and 12.)

But we might like to place a period at the end, making the output read as a
nice sentence. We’d like to get the following:

The answers are 3.0 and 4.0.

But the print function puts a space between each print field so that you end up
getting the following, which has an unnecessary space before the last character.

The answers are 3.0 and 4.0 .

Overland_Book.indb 46Overland_Book.indb 46 8/31/17 12:56 PM8/31/17 12:56 PM

Formatted Output String 47
3

There are at least two solutions. One is to include the special sep (separa-
tor) argument to the print function. By default, print uses a single space as a
separator. But we can use sep='' (this consists of two single quotes in a row)
to indicate that print shouldn’t put in any separator at all.

This is fine, because we just take on responsibility for putting in space sepa-
rators ourselves. The output statement then becomes the following:

print('The answers are ', x1, ' and ', x2, '.', sep='')

And this works, although it’s a fair amount of extra work. Not only do we
have to add sep='', but we have to add all those extra spaces.

But there’s a better way. Python provides a way to create a formatted-output
string. To use this approach, follow these steps:

1 Create a format specification string that includes print fields denoted with the
characters {}. A print field is an indication of where output characters, produced
by arguments, are to be inserted into the resulting string.

2 Apply the format method to this format-specification string, specifying the values
to be printed as arguments.

3 Print the resulting output string.

For example, you can set up a format specification string (fss) as follows:

fss = 'The numbers are {} and {}.'

Then you apply the format method to this string. The result produces an
output string.

output_str = fss.format(10, 20)
print(output_str)

And here’s what the result looks like:

The numbers are 10 and 20.

Example 3.3. Distance Formula in a Script
Sooner or later, you’ll want to write and permanently save your Python pro-
grams. The steps are as follows:

1 From within IDLE, choose the New File command from the File menu.

2 Enter a program (or copy text) into the window that appears, which serves as a
text editor for your programs.

Overland_Book.indb 47Overland_Book.indb 47 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs48

3 To save the program, choose Save or Save As from the File menu. The first time
you save a program this way, the environment will prompt you to enter a name
with a .py extension. (It will add this extension for you automatically.)

4 To run the program, make sure the program window has the focus. Then either
press F5 or select Run Module from the Run menu.

5 After the program begins running, you may need to shift focus back to IDLE’s
main window (the shell). [An exception is that with tkinter (graphical) programs,
you’ll need to shift focus to the window generated by the program.]

Alternatively, you can write a program with any text editor you want, but be
sure you save the file in plain-text format and give it a .py extension. Then you
can load it into Python by using the Open command from IDLE’s File menu.

Although the Python environment is still extremely useful for experi-
menting with, and getting help with, individual commands and features, the
text-editor approach is usually better for writing and executing long programs.

This next example shows how to use the Pythagorean distance formula to
calculate the distance between any two points on a Cartesian plane. Here’s
the formula:

distance = square_root(horizontal_dist2 + vertical_dist2)

Here’s the program listing:

dist.py

x1 = float(input('Enter x1: '))
y1 = float(input('Enter y1: '))
x2 = float(input('Enter x2: '))
y2 = float(input('Enter y2: '))
h_dist = x2 - x1
v_dist = y2 - y1
dist = (h_dist ** 2 + v_dist ** 2) ** 0.5
print('The distance is ', dist)

H
ow

 It

 Works

 How It Works
The Pythagorean distance formula is derived from the Pythagorean theorem,
which I’ll have more to say about in Chapter 6. By applying this theorem, you
can see that the distance between two points is equivalent to the hypotenuse
of a right triangle, in which the vertical distance (v_dist) and horizontal dis-
tance (h_dist) are the two other sides.

Overland_Book.indb 48Overland_Book.indb 48 8/31/17 12:56 PM8/31/17 12:56 PM

Formatted Output String 49
3

sqrt(v_dist2 + h_dist2)

v_dist

h_distx1, y1

x2, y2

The square of the hypotenuse is equal to the sums of the squares of the
other sides. Therefore, the hypotenuse itself is equal to the square root of this
sum. (See the figure.)

Remember that the exponentiation operator in Python is **. Therefore, the
following

amount ** 2

means to produce the square of amount (multiply itself by itself), whereas this
next expression

b ** 0.5

is equivalent to taking the square root of b. Therefore, the distance formula is

dist = (h_dist ** 2 + v_dist ** 2) ** 0.5

Ex
er

cis
es

 EXERCISES

Exercise 3.3.1. As I just mentioned, the syntax x ** 2 translates as x to the second
power, in other words, x squared. There is another, slightly more verbose,
way of expressing the same operation. Revise Example 3.3 so that it uses this
other means of calculating a square. Also, replace h_dist, v_dist, and dist
in the program with h, v, and d. Then rerun and make sure everything works.
For example, if you input the points 0, 0 and 3, 4, the program should say that
the distance between the points is 5.0.

Exercise 3.3.2. Revise Example 3.3 so that it outputs the result and puts a period (.) at
the end of the sentence, without any superfluous blank spaces. Use the format-
specification-string technique I outlined in the previous section.

Exercise 3.3.3. Write a program that calculates the area of a triangle after prompt-
ing for the values of the triangle’s height and width. Use the formula height *
width * 0.5. Use the format-specification-string technique to print a period at
the end of the output.

Overland_Book.indb 49Overland_Book.indb 49 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs50

Exercise 3.3.4. Write a program that calculates the area of a circle after prompt-
ing for the value of the radius. (I’ll leave it to you to look up the formula for
area of a circle if you don’t remember it.) Use the format-specification-string
technique to print a period at the end of the output. Also, to get the value of pi,
place the following statement at the beginning of your program:

from math import pi

With this statement at the beginning of your program, you can use pi to
refer to a good approximation of pi.

Chapter 3 Summary
Here are the main points of Chapter 3:

 A function definition lets you perform a series of calculations over and over,
without having to reenter all the steps in number crunching. At least this is a
simple way to understand the concept.

 The syntax of a function definition has this form:

def function_name(arguments):
 indented_statements

 The arguments may be blank, may have one argument name, or may be a
series of argument names separated by commas.

 If you enter the function-definition heading correctly, the Python interactive
environment automatically creates indentation. Remember that a correct
function-definition heading ends with a colon (:).

 From within the Python interactive environment, you complete a function
definition by typing an extra blank line after you’ve entered all the indented
statements.

 To call a function, enter the name of the function followed by parentheses
and argument values. These values are then passed to the function-definition
code. Here’s an example:

>>>convert(10)

 You can prompt the user for string input by using the input statement. The
prompt message is a string printed on the console to prompt the user for input.

string_var = input(prompt_message)

Overland_Book.indb 50Overland_Book.indb 50 8/31/17 12:56 PM8/31/17 12:56 PM

51
3

Summary

 To get numeric input, use an int or float conversion, as appropriate.

var = int(input(prompt_message))
var = float(input(prompt_message))

 The built-in print function prints all its arguments in order. By default, argu-
ments are printed with a single blank space separating them. You can use the
optional sep argument to specify another separator character. sep='' specifies
that no separator character should be used.

 You can use a format-specification string, in which {} indicates a print field.
Here’s an example:

fss = 'The square root of {} is {}.'

 You can then apply the format method to a format specification string to pro-
duce an output string.

format_spec_string.format(arguments)

 Here’s an example:

fss.format(25, 5)

Overland_Book.indb 51Overland_Book.indb 51 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb 52Overland_Book.indb 52 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

53

4 Decisions and
Looping

To write any but the most elementary programs, you need to be able to make
decisions. Programmers have a special term for decision-making abilities:
control structures. A control structure determines whether a computer will
turn left or turn right, in other words, whether it will continue to operate on a
set of data or exit out of a loop.

This chapter explores some of the basics of decision-making and looping
within Python.

 if and elif

 Looping with while

 Breaking from a loop

 A Python guessing game, illustrating these concepts

Decisions Inside a Computer Program
I once had a colleague named Myron who wrote that control structures give
computers the ability to exercise “judgment.” We never could agree on that.

A computer doesn’t exercise judgment or discretion. It can only take actions
based on simple comparisons. Here’s an example:

n = int(input('Enter your age: '))
if n < 30:
 print('Don't trust anyone over 30.')

This example is simple. It compares n to the number 30. If n is less than 30,
it executes the print statement. Otherwise, it skips that statement. The general
syntax of if is as follows:

if condition :
 indented_statements

Ke
yw

ord

Overland_Book.indb 53Overland_Book.indb 53 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping54

As with the def keyword, you must not forget the colon (:) at the end of
the first line. Assuming you enter everything correctly, the Python interactive
environment (if that’s where you’re writing the code) will automatically indent
the statements that follow. Within the environment, you terminate the state-
ment block by typing an extra blank line at the end.

Here’s a sample interactive session:

>>>def is_even(n):
remainder = n % 2

 if remainder == 0:
 print('n is even.')

>>>is_even(2)
n is even.
>>>is_even(15)
>>>is_even(202)
n is even.

The function is_even either prints the message n is even or it does noth-
ing. Let’s review the key parts. First, this code uses remainder division (%),
also called mod division. It’s used to divide by 2 in this case and produce the
remainder. If that remainder is zero, n is even.

 remainder = n % 2

The if statement, remember, uses double equal signs to compare the value
to zero. This is an important rule in Python, as in the C family of languages. A
single equal sign (=) specifies assignment. Double equal signs (==) specify test
for equality and return either True or False.

 if remainder == 0:
 print('n is even.')

What qualifies as a condition? In general, a condition is a comparison
between two values (which also includes greater-than and less-than, etc.) or
it’s a combination of comparisons joined by the Boolean operators and, or,
and not. Here’s another example:

 if age > 12 and age < 20:
 print('Wow!')
 print('You are a teenager.')

The condition after the if keyword is presumed to have a value that is
True or False, so normally you’d use a condition such as n > 3.

However, you can use any valid expression, and Python will convert to a
Boolean (True/False) as well as it can. For numeric values, zero is converted

Overland_Book.indb 54Overland_Book.indb 54 8/31/17 12:56 PM8/31/17 12:56 PM

Conditional and Boolean Operators 55
4

to False; other values are converted to True. (Also, the special value None is
converted to False, while most non-numeric values are converted to True.)

do_more = True
if n > 3:
 do_more = False

if do_more:
 print('n is not greater than 3.')

See if you can determine for yourself precisely what these statements do.
Then ask yourself if you can come up with a more direct way to write it. You
can use the less-than-or-equal-to (<=) comparison operator if you want, or
you can use the not operator.

Conditional and Boolean Operators
Python has a set of comparison operators as well as Boolean operators that
enable you to combine conditions.

The Boolean operators (and, or, not) all have lower precedence than the
comparison operators (==, >, <, etc.), so you can confidently write “if” con-
ditions as follows:

>>>if n > 0 and n < 10:
print('n is in range 1 to 10.')

>>>

Here are the operators:

OPERATOR MEANING EXAMPLE OF USE

== Test for equality n == 5

> Greater than x > y

< Less than x < 100.55

>= Greater than or equal to n >= 20

<= Less than or equal to age < 15

!= Test for inequality x != y

and Boolean “and” x > 12 and x < 20

or Boolean “or” a > b or a > 0

not Boolean “not” not (x > 12 and x < 20)

Overland_Book.indb 55Overland_Book.indb 55 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping56

The if, elif, and else Keywords
But there’s still more you can do with control structures involving the if key-
word. Suppose you want to respond differently to a series of alternative condi-
tions. You can create such structures with the help of elif and else clauses.
The full syntax of if is actually as follows:

if condition :
indented_statements

[elif condition :
indented_statements]...

[else:
indented_statements]

This syntax display does not use brackets literally. Instead, in this case, the
brackets indicate an optional item. An if control structure must have one if
clause. It can then have zero or more elif clauses (each with its own condi-
tion), and it can have at most one else clause.

Here’s an example:

def check_range(n):
 if n < 1:
 print('n is below range 1 to 100.')
 elif n < 101:
 print('n is inside the range.')
 print('Thank you.')
 else:
 print('n is above the range 1 to 100.')

What the elif clause does—in this case there is exactly one—is to test for an
alternative condition if the first condition (n < 1) fails. If all conditions fail and if
there is an else clause, the statement or statements following else are executed.

An elif clause is essentially a test for an “else if” condition.

Programs and Robots in Westworld

The 1973 film Westworld, written and directed by Michael Crichton, is
about a futuristic adult theme park in which robots play the roles of cow-
boys, gunslingers, and saloon girls. By paying thousands of dollars a day,
the human visitors to the park can shoot it out with the bad guys…all in
perfect safety, because while the humans can shoot the robots, the robots
can’t shoot back, at least not with real bullets.

Ke
yw

ord

Interlude

Overland_Book.indb 56Overland_Book.indb 56 8/31/17 12:56 PM8/31/17 12:56 PM

The if, elif, and else Keywords 57
4

continued

Eventually, things go wrong, and one day the robots start shooting
back with lethal ammunition. There’s a computer breakdown or virus,
and that’s a problem, because the robots are in effect controlled by com-
puter programs. So everything goes haywire.

The critically acclaimed HBO television series, also called Westworld,
takes the same idea but raises it to an even more interesting level. The
problem is not a bug in the programming of the robots but, on the con-
trary, the unforeseen success of the programming.

According to the premise, the programming of these robots (called
hosts) is so sophisticated that they actually attain consciousness. Mor-
ally and ethically, they become no different from human beings. These
“hosts” develop genuine emotions. And when they do, they start to resent
being the playthings of humans.

And when that happens…when they decide it’s wrong of humans to
treat them as toys instead of conscious beings with real feelings…then
they start shooting back.

This HBO series raises a fascinating question: is it possible for a com-
puterized entity, given enough sophisticated programming, to attain con-
sciousness? This means far more than being able to add numbers, predict
the weather, or even play chess, which are things we all know that computers
can do quite well. This is a deep philosophical question as to whether a
computer or robot could ever feel genuine emotions, or even pain.

Having a robot experience just a moment of actual pain would be
enough. But philosophically, this is a difficult bar to cross. You could
program a robot, or an entity within a virtual environment, to avoid cer-
tain kinds of situations. You could simulate what happens when a living
organism feels pain. You could, for example, program the robot to scream
and say, “Ouch, that hurts!” if it should ever put its hand on a hot stove.

And if you ask the robot, “Are you feeling actual pain?” the robot will
of course say “yes.” But that begs the question…because it’s programmed
to say yes. So that proves nothing.

Maybe a robot would be genuinely conscious if it could somehow break
its programming—an idea suggested in Westworld—but just how would
it do that?

Philosophers have debated the question for centuries, but especially so in
the last century, as the possibility of machine intelligence now seems like it
might be a real thing. Some people feel that a sufficiently good simulation
of pain is no different from the real thing. I happen to differ. Like most peo-
ple, I feel that there is something mysterious that goes on inside the mind.

continued on next page

Interlude

Overland_Book.indb 57Overland_Book.indb 57 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping58

continued

But in that case, what is this mysterious medium called “consciousness”?
And what really is “mind”? What, really, is going on inside the cranium?

koya979. Shutterstock

Alan Turing, the great computer scientist who cracked the ENIGMA code
in the 1940s, thought he had the answer: put a computer behind a curtain and
have it communicate with a human interrogator through a console and key-
board. The interrogator has a finite amount of time to ask questions. If, after
time is up, he or she is unable to determine whether he’s been communicating
with a human or computer, then the computer has attained consciousness.

This is one reason you’ll increasingly hear references to Turing in science-
fiction stories, movies, and television. You’ll hear statements like, “Our
robot has already passed the Turing test. What now?”

But as you read this chapter, consider what a robot or computer is doing
when it’s (apparently) making decisions and exercising “judgment.” At the
base level, you should know that it’s not exercising judgment at all. A pro-
gram can do nothing more than compare two numerical values and take
different actions depending on whether the first value is less than, equal to,
or greater than the other value.

Do you believe that consciousness and true judgment can be built up from
such limited comparisons? Maybe a kind of judgment can result. Maybe a pro-
gram making millions of these little decisions can put those decisions together
to make a Really Big Decision, such as where to move the queen in a chess game
or when to launch a missile strike. But whether this adds up to feeling even a
nanosecond of pain or awareness is a deep philosophical question.

Interlude

Overland_Book.indb 58Overland_Book.indb 58 8/31/17 12:56 PM8/31/17 12:56 PM

The if, elif, and else Keywords 59
4

Example 4.1. Enter Your Age
The following is about as simple a program as possible using an if statement.
We’ll quickly progress to more interesting programs after this.

Following the procedure outlined for Example 3.3, you can copy the following
code to a file, save it, and then load it into the Python interactive environment.

age.py

age = int(input('Enter your age, please: '))
name_str = input('Enter your name, please: ')
print('Happy birthday, ', name_str, '.', sep='')
print('You are', age, 'years old.')
if age > 12 and age < 20:
 print('You are a teenager!')
else:
 print('You\'re NOT a teenager!')

Here’s a sample session, illustrating input (in bold) and output (not in bold)
that you might see when running the program:

Enter your age, please: 39
Enter your name, please: Brian
Happy birthday, Brian.
You are 39 years old.
You're NOT a teenager!

Alternatively, you can enter the entire program from within the interactive
environment by placing all the statements inside a function called main and
then executing main. Remember that if you mistype anything, you can copy
and paste the code you entered earlier, make corrections, and then type an
extra blank line after the end of the definition.

>>>def main():
age = int(input('Enter your age, please: '))

 name_str = input('Enter your name, please: ')
 print('Happy birthday, ', name_str, '.', sep='')
 print('You are', age, 'years old.')
 if age > 12 and age < 20:
 print('You are a teenager!')
 else:
 print('You\'re NOT a teenager!')

>>>main()

Overland_Book.indb 59Overland_Book.indb 59 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping60
H

ow
 It

 Works

 How It Works
The interesting part of this little program is the last part. The program, which
takes a value stored in age, which is input by the user, tests whether this value
is in the range 13 to 19. To be considered in range, the value of age must be
both greater than 12 and less than 20.

 if age > 12 and age < 20:
 print('You are a teenager!')
 else:
 print('You\'re NOT a teenager!')

 There are other ways this same condition could have been written. Here’s
an example:

 if not (age < 13 or age > 19):
 print('You are a teenager!')
 else:
 print('You\'re NOT a teenager!')

These statements would have the same effect because they specify the same
condition, although they express it in a different way.

Ex
er

cis
es

 EXERCISES

Exercise 4.1.1. Write a program similar to Example 4.1 that prompts the user for
a number and tests to see if it is in the range 1 to 100. If it is, print a message
verifying that it is in range; if not, print a message reporting that it is out of
range.

Exercise 4.1.2. Modify the answer to Exercise 4.1.1, but use a different way of
expressing the condition. The results should be precisely the same (given the
same user input), but the condition should involve the use of the not and or
keywords.

Exercise 4.1.3. Write a program that takes an integer n as input and then prints a
message stating whether it is or is not a multiple of 7.

while: Looping the Loop
One of the most important concepts in computer programming is the loop,
which simply means “After performing a set of tasks, go back to the begin-
ning. Wash. Rinse. Repeat.”

Overland_Book.indb 60Overland_Book.indb 60 8/31/17 12:56 PM8/31/17 12:56 PM

while: Looping the Loop 61
4

The simplest way to start writing loops is to use the while statement.

while condition :
 indented_statements

As with other Python control structures, a colon (:) has special meaning in
the interactive environment. As soon as you correctly enter the first line of a
while block, lines that follow are automatically indented. To end all state-
ment blocks, type an extra blank line.

The following figure summarizes the basic operation of a loop created with
the while keyword:

while condition:
 indented statements

Test condition

Execute all the
indented_statements

Done. (Resume rest of program.)

False

True

One of the issues with while is that there always needs to be a terminating
condition, or at least some other way to break out of the loop, unless you want
the loop to be infinite. In the following example, execution stops as soon as n
equals or exceeds 10.

>>>n = 1
>>>while n <= 10: # while n less than or eq. 10
 print(n, end=' ')
 n += 1 # This means n = n + 1

1 2 3 4 5 6 7 8 9 10
>>>

In this example, I added two comments. A comment is text put in to pro-
vide information to any human who might be reading the statements, but it is

Ke
yw

ord

Overland_Book.indb 61Overland_Book.indb 61 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping62

ignored by Python itself, starting with the comment symbol (#) and onward
to the end of the physical line.

A comment has this general form:

text

A comment can contain any message I want. Smart programmers add com-
ments to give clues as to what a program is doing—at least if they want it to
be readable.

I also used a variation on the print function by using the end keyword
argument. This argument specifies what character, if any, is printed at the
end of the output. By default, this character is a newline, causing output to
advance to the next line. But in this example, I decided to just print a single
blank space after each call to print.

 print(n, end=' ')

Remember that the statement n += 1 is equivalent to this:

 n = n + 1

All these statements do is count to ten. By manipulating starting and ending
conditions, I can print any range of integers. For example, I could print all the
integers from 15 to 20.

>>>n = 15
>>>while n <= 20: # while n less than or eq. 20
 print(n, end=' ')
 n += 1

15 16 17 18 19 20
>>>

Once you start writing programs complex enough to have loops, pseudocode
becomes especially useful; it helps you think of the steps of the program in
something very close to human language. The count-to-ten program can be
summarized this way:

Set n equal to 1
While n is less than or equal to 10,
 Print n followed by a space,
 Add 1 to n

K
ey

 S
yn

tax

Ps
eu

do

code

Overland_Book.indb 62Overland_Book.indb 62 8/31/17 12:56 PM8/31/17 12:56 PM

while: Looping the Loop 63
4

You can envision operation of the program by looking at a simple flow
chart. Counting to ten involves repeated actions.

Is n <= 10?

print n

Done.

False

True

n = n + 1

Set n to 1

Example 4.2. Factorials
Let’s graduate to a more interesting example. A factorial for any positive
whole number N is defined as follows:

Factorial(N) = 1 * 2 * 3... * N

In other words, multiply all the positive integers from 1 to N together. The
factorial of 3 is 1 * 2 * 3, or 6. The factorial of 4 is 1 * 2 * 3 * 4, or 24, and so
on. As you might imagine, factorials get very big very quickly. But Python,
with its “infinite integer” capability, is perfectly suited to hold extremely large
numbers.

fact.py

n = int(input('Enter value of n: '))
prod = i = 1
while i <= n:
 prod *= i
 i += 1
print('The factorial is:', prod)

Overland_Book.indb 63Overland_Book.indb 63 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping64

Here’s a sample session, which runs after you have saved this code as a text
file, opened it from within the environment, and then selected the Run Module
command, as mentioned near the end of Chapter 3.

Enter the value of n: 5
The factorial is 120

You can also enter the program from within the interactive environment
itself, by creating a main function and executing it. Remember that you can
correct mistakes by copying all the statements, pasting them in at the next
cursor position, and then editing the statements.

>>>def main():
n = int(input('Enter value of n: '))

 prod = i = 1
 while i <= n: # While i less than or eq. to n,
 prod *= i
 i += 1
 print('The factorial is:', prod)

>>>main()

H
ow

 It

 Works

 How It Works
This is not a very complex program to begin with, but we can still use pseudocode
to clarify its operation.

Get value of n from user
Set i and prod to 1
While i is less than or equal to n,
 Multiply prod by i
 Add 1 to i
Print value of prod

Wow, that’s pretty simple. All this program does, really, is to set both prod
(short for “product”) to 1 and then multiply by the numbers 1, 2, 3, and so on,
until you’ve multiplied by n. At that point, stop. The variable i is used to hold
the value of each factor in turn.

You can also visualize this action through a flow chart:

Ps
eu

do

code

Overland_Book.indb 64Overland_Book.indb 64 8/31/17 12:56 PM8/31/17 12:56 PM

while: Looping the Loop 65
4

Is i <= n?

Multiply prod by i

print prod, and
DONE

False

True

i = i + 1

Set i and prod to 1Input n from user

Op
ti

m

izing

 Optimizing the Code
In examining what this program does, you should be able to see that one of the
operations—multiplying by 1—is always performed but is always unnecessary.
A slight optimization, therefore, is simply to start i at the value 2, not 1:

 i = 2

A more important optimization, from the standpoint of the user, is that
a user might want to calculate several factorials rather than starting the
program over and over. A superior program design, therefore, is to place
everything inside a large while loop, in which the factorials are repeatedly
calculated until the user enters 0. Here is one way to do that:

n = int(input('Enter n (0 to quit): '))
while n != 0:
 prod = 1
 i = 2
 while i <= n:
 prod *= i
 i += 1
 print('The factorial is:', prod)
 n = int(input('Enter n (0 to quit): '))
print('Bye now!')

Overland_Book.indb 65Overland_Book.indb 65 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping66

Note that this expanded program is a prime example of a nested loop.
(Note that loops can be nested to a very deep level.) There is an outer while
statement that controls the execution of the program—that is, whether to
continue or to end. There is also an inner while statement that calculates the
factorial. This creates a more complex flow of control, which can be summa-
rized through the following pseudocode:

Prompt the user for n
While n is not equal to zero
 Set prod to 1 and i to 2
While i is less than or equal to n,
 Multiply prod by i
 Add 1 to i
Print value of prod
Prompt the user for n

Here’s a sample session of this expanded program. Note that the factorial
of 10 is larger than you might have expected. As I pointed out earlier, factorials
get very large very fast.

Enter n (0 to quit): 6
The factorial is: 720
Enter n (0 to quit): 10
The factorial is: 3628800
Enter n (0 to quit): 0
Bye now!

Ex
er

cis
es

 EXERCISES

Exercise 4.2.1. Revise Example 4.2—in either the simple or expanded version—so
that it prints a nicely formatted output statement ending in a period, as follows:

The factorial of 5 is 120.

(Hint: You can use the printing techniques from Chapter 3.)

Exercise 4.2.2. Write a program to calculate and print the triangle number for
any given input. Instead of using a variable named prod, call the variable sum.
The triangle number for N is defined as follows:

1 + 2 + 3 + ... N

So, for example, the triangle number for 5 is 1 + 2 + 3 + 4 + 5 = 15.

Ps
eu

do

code

Overland_Book.indb 66Overland_Book.indb 66 8/31/17 12:56 PM8/31/17 12:56 PM

while: Looping the Loop 67
4

Exercise 4.2.3. Expand on the answer to Exercise 4.2.2 so that each time the pro-
gram calculates a triangle number, it also tests the Triangle Number theorem
and prints a message stating whether the theorem holds. This theorem states
that for any given N,

1 + 2 + 3 + ... N = N * (N + 1) / 2

Example 4.3. Printing Fibonacci Numbers
Now let's move on to an even more interesting use of a Python while loop:
calculating Fibonacci numbers. Because of Python’s “infinite integer” capability,
first introduced in Chapter 2, you can easily use Python to calculate much bigger
Fibonacci numbers than you can do in most any other language.

The Fibonacci series is the most famous series of numbers in mathematics—
with the possible exception of the primes, which Python is also good at calculating.

The rules for producing this series are simple.

 The first number in the series is 1.

 The second number is likewise 1.

 The next number is determined by adding the two numbers immediately before
it in the series. To get the third number, you add 1 + 1 to get 2. To get the fourth
number, you add 1 + 2 to get 3. To get the fifth number, you add 2 + 3 to get 5.

In short, take the two most recent numbers in the series and add them
together to get the next number. So, the first few numbers are as follows:

1 1 2 3 5 8 13

Remember that you add the last two numbers in the series to get the next.
Therefore, the next Fibonacci number is 8 + 13, or 21.

1 1 2 3 5 8 13 21

You can imagine this process visually with the following figure, which shows how
the next two figures in the sequence are calculated: adding 13 and 21 produces 34,
and adding 21 and 34 produces 55. This process can be continued without limit.

1 1 2 3 5 8 13 21 34 55

plus

plus

Overland_Book.indb 67Overland_Book.indb 67 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping68

Calculating the Fibonacci series is an ideal task for a computer, as long as
the computer can hold sufficiently large numbers—because these numbers
start to get large after a while. Fortunately, that’s an easy task for Python.

To write the mini-program, we track two values, a and b, which represent
the two most recent Fibonacci values. We start a and b off as 1 and 1, the first
two numbers in the series.

>>>a = b = 1

Now, to calculate the next value, we add a and b together and assign this as
the new value of a. In the meantime, b should “bring up the rear” by getting the
old value of a. So, for example, if the most recent values of a and b are 2 and 3
(a always being larger), then:

 The new value of a should be the total of 2 and 3 (producing 5).

 The new value of b should be the old value of a (which is 3).

You should be amazed at how concise the Python code is. Assuming a and b
have already been set to 1; all you need to do is write and execute the following
while loop:

>>>while a < 200:
a, b = a + b, a

 print(a)

The first statement inside the while loop is what makes this code so concise.
Look at it again:

 a, b = a + b, a

What this does is associate the name a with the sum of the old values, a + b.
Simultaneously, it associates the name b with the old value of a.

More precisely, this operation creates a tuple. Assume a and b hold the val-
ues 5 and 13, respectively. The tuple a + b, a is evaluated as (21, 13). That
tuple is then assigned to a, b so that a is now set to 21 and b is now set to 13.

Other languages would require a temporary variable so that the old value
of a is preserved, to be assigned later to b. This is not necessary in Python, but
you could do it that way if you wanted.

>>>while a < 200:
 temp = a
 a = a + b
 b = temp
 print(a)

Overland_Book.indb 68Overland_Book.indb 68 8/31/17 12:56 PM8/31/17 12:56 PM

while: Looping the Loop 69
4

But either the short approach or the long approach will work in Python.
The result, in either case, is to print Fibonacci numbers up until the first value
that is not less than 200.

2
3
5
8
13
21
34
55
89
144
233

To place these all on the same line, use the end argument of the print
function.

 print(a, end=" ")

With this change made to the print function, the loop produces the following:

2 3 5 8 13 21 34 55 89 144 233

Of course, by varying the while condition, you can print as many Fibonacci
numbers as you like.

H
ow

 It

 Works

 How It Works
In case it’s not clear what this loop does, let’s look at the pseudocode for this
mini-program. In this case I’ll use capital A and B just to make the algorithm
clearer to read.

Set both A and B to 1.
While A < 200,
 Set A to the value A + B
 Simultaneously, set B to the old value of A.

Again, notice that with most other programming languages, you wouldn’t
be able to assign a value to A while simultaneously assigning B the old value
of A. It wouldn’t work, because the computer would lose track of the old
value of A before B got assigned a value. You’d have no choice but to use a
temporary variable (temp) as shown earlier.

Ps
eu

do

code

Overland_Book.indb 69Overland_Book.indb 69 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping70

But Python gets around this annoying problem beautifully by enabling you
to assign multiple values simultaneously.

 a, b = a + b, a

Note that before you rerun this loop, you need to first reset the A and B
values to 1.

>>>a = b = 1

Ex
er

cis
es

 EXERCISES

Exercise 4.3.1. Write and test a program that prompts the user for the value n
and then prints all the Fibonacci numbers up to but not exceeding n. You can
either write a text file and run the program from the Run Module command
or enter all the statements into a function called main and then execute
main() from within the interactive environment.

Exercise 4.3.2. Instead of printing the Fibonacci numbers themselves, print the
ratio of each two consecutive numbers and look for a pattern. In other words,
print the ratio a/b each time through the loop and see what ratio this number
converges to, if any.

You should find that this ratio converges to the number mathematicians
call phi, which is equal to approximately 1.618. This is the same as the golden
ratio that you earlier calculated in Chapters 2 and 3. (Maybe you can tell I’m
fond of this number.)

“Give Me a break” Statement
How do you break out of the middle of a loop? The solution adopted in Exam-
ple 4.2, in the section “Optimizing the Code,” prompted the user for input in
more than one place. While this works, it’s not the best solution.

A more direct way is just to use the break keyword, which has the simplest
possible syntax. This keyword does in Python exactly what it does in C, C++,
Java, and other languages: it breaks out of the current loop.

break

Let’s use it! The following statements cause numbers to be added until a 0 is
detected. If 0 is detected, then the break keyword causes the loop to exit and
the program to end after it prints results.

Ke
yw

ord

Overland_Book.indb 70Overland_Book.indb 70 8/31/17 12:56 PM8/31/17 12:56 PM

“Give Me a break” Statement 71
4

amt = 0
while True:
 n = int(input('Enter a number (0 to exit): '))
 if n == 0:
 break
 amt += n
print('The sum is ' amt)

As you can see, one virtue of this approach is that it involves only one use of
the input statement rather than two.

Example 4.4. A Number-Guessing Game
You now know enough about Python to do some extensive programming,
including the ability to write entertaining game programs.

In the following game, the computer picks a random number between 1
and 50 without revealing what the number is. Then, during each round of
the game, the player—that is, the end user—makes a guess. The computer
responds with one of three answers: “Too high,” “Too low,” or “Correct!”

guessing.py

import random
n = random.randint(1, 50)
while True:
 ans = int(input('Enter your guess: '))
 if ans == n:
 print('Success! You win!')
 break
 elif ans > n:
 print('Too high.')
 else:
 print('Too low.')

From the Python interactive environment (IDLE), you can enter these state-
ments into a new file and save it as guessing.py. Then, from the Run menu,
choose the Run Module command.

Here’s a sample session. It assumes that Python randomly selected the num-
ber 40 as the secret number.

Overland_Book.indb 71Overland_Book.indb 71 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping72

Enter guess:24
Too low.
Enter guess:37
Too low.
Enter guess:43
Too high.
Enter guess:40
Success!

H
ow

 It

 Works

 How It Works
First, the program secretly picks a random number from 1 to 50 without telling
the user. The following two statements get this random number:

import random
n = random.randint(1, 50)

The import statement doesn’t do anything by itself, but it enables the pro-
gram to use the functions in the Python randomization library.

The rest of program operation is described by the following pseudocode:

While True (do always),
 Prompt for an answer and store result in ans
 If ans equals n,
 Print Success message and exit
 Else if ans > n,
 Print “Too high.”
 Else
 Print “Too low.”

Notice how while True seems to set up an infinite loop. What it actually
does is to create a loop that does not end until break is executed. Each time
through the loop, the program prompts for another guess and then reports
whether it is too high, too low, or just right.

Like Goldilocks.
After picking the secret number, the program prompts the end user for a

guess. Note that because this guess has to be in numeric form—so that you can
use it in numeric comparisons—the input must be converted to an integer using
the int function. Python enables you to combine this in one smooth operation.

 ans = int(input('Enter your guess: '))

Ps
eu

do

code

Overland_Book.indb 72Overland_Book.indb 72 8/31/17 12:56 PM8/31/17 12:56 PM

“Give Me a break” Statement 73
4

The following figure illustrates the action of this program:

ans == n?

Print “Success!”

False

True

Prompt user for ans

Select random val. for n while True

ans > n?

Print “Too high!”

DONE.
True

Print “Too low!”

False

Ex
er

cis
es

 EXERCISES

Exercise 4.3.1. Instead of having the program pick a secret number from 1 to 50,
revise it to pick a number from 1 to 100. This should be easy, as you have to
change only one line.

Exercise 4.3.2. Revise the program so that it gives some instructions up front,
advising the end user that it will be guessing a secret number in a certain range.

Exercise 4.3.3. Revise the loop so that it repeats the game until the end user wants
to stop. The user indicates this by entering 0 at any time. To make this work,
the “success” alternative will need to choose a new random number and then
continue the game. You’ll also need to add an elif alternative that tests
whether ans is equal to 0, at which point it should break.

Overland_Book.indb 73Overland_Book.indb 73 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping74

Exercise 4.3.4. Let the end user pick a range from 1 to N before the program
begins. Once this is determined, of course, the program must still pick a num-
ber within this range, in secret.

Binary Searches and “O” Complexity

If you play this game a few times, you should quickly realize what the best
strategy is, if you don’t already know: you should pick a number close to
the halfway point in the range of legal values. If you’re successful, that’s
great. Otherwise, the answer you get (too high or too low) should enable
you to reduce the possible answers to (roughly) the upper half or lower half
of the range. After each guess, the possible range of values should either get
a “Success!” or enable you to cut the range roughly in half…again.

The important thing is: each time you should be able to cut down the
range of possible values by roughly one-half.

By doing this repeatedly, you should be able to get the answer much faster
than a simple linear search. A linear search starts at the beginning and then
examines one item after another, getting the simple answer “right” or “wrong.”

The faster technique teaches the essence of what’s called a binary
search. As the number of steps increases, the size of how many values can
be covered increases exponentially. You could find one number out of a
trillion in just 40 steps if you played optimally! A linear search, which
starts at one end and moves forward, examining just one item at a time,
would on the average take centuries to find one number out of a trillion,
assuming that each question and response used up only one second and
you played 24 hours a day!

Computer scientists and programmers use something called Big-O nota-
tion to signify how fast the number of steps increases with the size of the data
set to be covered. The binary search technique is the inverse of exponential
growth—because exponential describes the converse relationship—which is
logarithmic growth.

So, for example, assume it requires N seconds to search 1,000 items. It
would take N * 2 seconds to search 1,000,000 items. And it would take
only N * 3 seconds to search 1,000,000,000 items. This is what’s meant
by logarithmic growth. The time taken grows much more slowly than the
amount of data to search.

Computer scientists have a notation for this. O(log n) says that the
number of steps covered to solve the problem is proportional to the loga-
rithm of n. In plain English, this means that the growth in the number of
steps slows down as n increases without limit. In other words, the proce-
dure becomes more and more efficient for very large n.

Interlude

Overland_Book.indb 74Overland_Book.indb 74 8/31/17 12:56 PM8/31/17 12:56 PM

75
4

Summary

continued

This is not trivial. It helps explain why computers, communication sys-
tems, and databases are useful servants. If most procedures were O(n),
meaning that the time required is directly proportional to the size of the
data set, large databases would be useless.

 The slower growth relationship, O(log n), makes databases remark-
ably efficient in the modern world because it really doesn’t take that long
to search a database with hundreds of millions of records. If database
access were not O(log n), then both the Internet and credit-checking
systems, to name just two, would be impractical.

Chapter 4 Summary
Here are the main points of Chapter 4:

 The if statement has the following syntax. The condition should be a Boolean
value, that is, a value that is either True or False. If this condition is true,
then the indented statements are all executed; otherwise, they are skipped.

if condition:
indented_statements

 You can optionally have an else clause that is executed if the condition is false.

if condition:
 indented_statements
else:
 indented_statements

 You can also include any number of (that is, zero or more) elif clauses. The
elif keyword in Python means “else if,” and each tests a separate condition.
Only if the if condition and all elif conditions are false is the else clause
executed. The complete syntax is therefore as follows:

if condition:
indented_statements

[elif condition:
indented_statements]...

[else:
 indented_statements]

Interlude

Overland_Book.indb 75Overland_Book.indb 75 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 4 Decisions and Looping76

 The while keyword sets up a loop. A loop is executed as long as the condition
is true. Here’s the syntax:

while condition:
indented_statements

 More specifically, the condition after while is tested first. If it is true, all the
indented statements are executed. Control of the program then returns to the
top of the loop, and the while condition is tested again. Rinse and repeat.
Normally, the loop ends only when this condition is tested and is false. At that
point, all the indented statements are skipped.

 This creates a problem if you want to exit from the middle of the loop. The
easy way to do that is to use the break keyword.

break

 The words while True: set up an infinite loop that continues forever unless
you break out.

while True:
 # Do some stuff
 if (n < 0):
 break
 # Do some more stuff

 List assignment—or rather, tuple assignment—enables you to perform multiple
assignments simultaneously. For example, the following statement assigns the
value of a + b to a, and the value of a to b; and it does these operations simul-
taneously so you don’t have to worry about how one such assignment would
affect the other:

a, b = a + b, a

Overland_Book.indb 76Overland_Book.indb 76 8/31/17 12:56 PM8/31/17 12:56 PM

77

5
Python Lists

Until you understand lists, you don’t know Python.
Along with text strings, lists are the most important example of an iterable

in Python: a source of data you can always get “the next value” from (until
you can’t). The biggest key to writing efficient, high-quality Python code is to
understand the Python concept of lists.

This chapter explains how to do the following:

 Use lists to sort information

 Get selected subranges of data, called slices

 Work efficiently with the Python for statement

The Python Way: The World Is Made of Collections
A Python list is like a set of ordered boxes into which you place data. A simple
example stores the high temperatures for each day of a one-week period.

temp_list = [79, 79, 80, 68, 79, 68, 80]

For the Pacific Northwest—specifically, the Seattle area—this might
describe the daily highs of a typical week in June. Pleasantly warm but not
hot. (Unless you live in Canada and these are Celsius temperatures, in which
case these temperatures are lethal to human life; remember that 100 is actually
the boiling point of water.)

The result of this assignment is to make the name temp_list refer to a list.
After a list has been created, the most efficient way to extend it is to use the
append method.

temp_list.append(85)

Overland_Book.indb 77Overland_Book.indb 77 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists78

This statement preserves the existing data but modifies it. The name
temps refers to the same list that it did before, just altered. However, con-
sider this:

temp_list = temp_list + [85]

This statement joins two lists and creates a new list altogether and then
reassigns the variable temp_list to it. The effect is usually the same, but it’s
less efficient. (But note that, as we’ll see later, assignments like that can have
large consequences because they break the old data association. This will
matter when we return to passing variables to functions.)

Yet the following isn’t even legal, because you can’t join a list to a nonlist:

temp_list = temp_list + 85

List specification has the following syntax:

[items]

In this syntax, items is zero or more items, separated by commas if there
are more than one. Yes, you can have an empty list if you choose. Python lists
have some important features.

 A list can contain any number of duplicate values. For example, I might have a
week in which the high temperature is 82 for five days in a row.

 The order of values is significant. In this example, the first temperature (Sunday)
is 79, and the last (Saturday) is 80. These can’t be reversed without altering the
meaning of the data.

 Python lists are mutable, meaning you can change contents without having to
create a whole new list.

So, for example, [77, 80, 99] might record weekend temperatures. [77, 80, 99]
is not the same as [99, 80, 77], which would reverse Friday and Sunday. You
can test this.

>>>[77, 80, 99] == [99, 80, 77]
False
>>>[77, 80, 85] == [77, 80, 80 + 5]
True

Lists can contain any type of data, including other lists—but numbers and
strings are common. The following example contains four strings.

beat_list = ['John', 'Paul', 'George', 'Pete']

K
ey

 S
yn

tax

Overland_Book.indb 78Overland_Book.indb 78 8/31/17 12:56 PM8/31/17 12:56 PM

The Python Way: The World Is Made of Collections 79
5

The order might be meaningful or it might not be. It might, for exam-
ple, represent the order the members joined the band. But if you sort a list of
strings, Python imposes alphabetical order. Consider these statements:

>>>beat_list2 = beats[:]
>>>beat_list.sort()
>>>beat_list == beat_list2
False

These statements demonstrate several fine points of Python lists.
The first of these statements introduces a new syntax, which I’ll cover in

detail later. It uses slicing to force Python to create beat_list2 as a separate
list and then do a member-by-member copy of all the values.

>>>beat_list2 = beat_list[:] # Copy elements.

In contrast, the following statements make beat_list2 an alias for the same
list referred to by beat_list. Remember that all Python variables are aliases;
that is, they are really references to data. Creating an alias does not make any new
copies of the underlying data. It guarantees that the two lists refer to the same
data, even if that data changes.

>>>beat_list2 = beat_list # Make an alias.
>>>beat_list.append('Brian')
>>>best_list2 == beat_list # Equal?
True

Do you see what happened? The last statement entered by the user was not
an assignment (=) but a test for equality. And because beat_list2 was made
an alias for beat_list, the append method did not change the relationship
between the two variables; they still refer to the same data.

But assume we do things the first way: we use syntax that indicates the list
data is to be copied, one element at a time. The variable beat_list2 then refers
to a separate copy of the data, so there are now two separate lists that start out
equal. Now let’s sort beat_list.

>>>beat_list.sort()

This statement tells Python to reorder beat_list, but not beat_list2,
alphabetically:

['John', 'Paul', 'George', 'Pete'] # beat_list2
['George', 'John', 'Paul', 'Pete'] # beat_list

Remember that in this case, we’re assuming that one list was originally cre-
ated by doing a member-by-member copy, rather than making one name an
alias for the other. If, instead, one name is an alias for another, then changes
to one will be reflected by both.

Overland_Book.indb 79Overland_Book.indb 79 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists80

As you can see, the order of the members has changed, making the lists
different. So in this case, if you compare these lists for equality (==), Python
returns False.

Python provides many ways to manipulate the contents of a list. You can
add and remove individual members using append and remove.

beat_list.remove('Pete')
beat_list.append('Ringo')

I always feel sorry for Pete, don’t you?
Another useful feature is the in keyword, which determines whether an item

is in the list. This is useful because if an item is not included in a list to begin
with, then trying to remove it causes an error. Here’s an example:

if 'Pete' in beat_list:
 beat_list.remove('Pete')

Processing Lists with for
One of the most common things to do with a list is to perform the same operation
on all the elements, one at a time. Python provides the for keyword to do just that.

for var in collection:
 indented_statements

This is essentially a “for each” control structure. It sets var to each element
in collection in turn and executes all the indented_statements. Here’s
an example:

beat_list = ['John', 'Paul', 'George', 'Ringo']
for b_str in beat_list:
 print(b_str)

These statements carry out the following actions:

 The variable b_str gets the value of the first element of beat_list, which
happens to be the string “John.”

 The indented statement is then executed, with b_str set to this value (“John”).
So in this case, “John” gets printed.

 The loop then advances to the next element. The text string “Paul” is assigned
to the variable b_str and now it gets printed. Then, “George” is printed, and
finally “Ringo.”

 This continues until all the elements of beat_list have been processed this way.

Ke
yw

ord

Overland_Book.indb 80Overland_Book.indb 80 8/31/17 12:56 PM8/31/17 12:56 PM

Processing Lists with for 81
5

So in this case, the for statement loop says, “For each element of beat_list,
print the element.”

John
Paul
George
Ringo

This next figure summarizes the process visually:

Any items left?

for item in iter :

Set item = next
element from iter

DONE. (Resume
rest of program.)

YESNO

Execute
indented_statements

Let’s take another example. The following statements operate on a list of
numbers, printing ten times the number in each case:

num_list = [1, 13, 7, 9]
for i in num_list:
 j = i * 10
 print(j, end=' ') # Print m followed by a space.

The output of this example is

10 130 70 90

You can even process lists by initializing them inside the for statement
header. Here’s an example:

for i in [10, 30, 50]:
 print(i)

Overland_Book.indb 81Overland_Book.indb 81 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists82

This prints the following:

10
30
50

It’s easy to use the for statement. It basically says for each element in the
collection, execute the indented_statements, passing the value of each ele-
ment in turn.

Modifying Elements with for (You Can't!)
Can you modify values in a list by using for? Yes and no. Try to predict what
the following does:

>>>num_list = [4, 10, 7, 90]
>>>for n in num_list:
 n = 0

It probably looks like this should set all the elements of num_list to 0.
However, printing num_list shows that nothing happened to its contents.
They were not set to 0.

>>>num_list
[4, 10, 7, 90]

During execution of the loop, the values 4, 10, 7, and 90 are all passed in
turn to the variable n. Then n is set to 0, over and over. But that has no effect
on the list.

To modify the collection itself, we need to index into it. But there’s a more
direct way to build a list. Suppose we have a series of Celsius temperatures
that we want to convert to corresponding Fahrenheit temperatures. Here are
the Celsius temperatures:

>>>cels_list = [15, 20, 25, 30]

We can build a new list containing Fahrenheit temperatures this way:

>>>fahr_list = []
>>>for c in cels_list:
 x = c * 1.8 + 32.0
 fahr_list.append(x)

>>>fahr_list
[59.0, 68.0, 77.0, 86.0]

Overland_Book.indb 82Overland_Book.indb 82 8/31/17 12:56 PM8/31/17 12:56 PM

Modifying Elements with for (You Can't!) 83
5

Another important feature of lists is that it’s easy to sort them; you just call the
sort method, as was done earlier in the chapter. Example 5.1 is going to use it again.

list.sort()

A call to this method does not return a value, but it modifies the contents of
the list, as does the append method. To see an example, read on.

Example 5.1. A Sorting Application
I once used an application like this to help me to compile index entries in a
book, so it is not at all trivial.

You can enter this text into a blank file after selecting the New File com-
mand from within IDLE. Or you can enter it into a text file named sort.py,
using any plain-text editor you choose, and then load that file into IDLE using
the Open command. Both these commands are available on the File menu.

sort.py

a_list = []
while True:
 str1 = input('Enter a name: ')
 if str1 == '': # If string is empty,
 break
 a_list.append(str1)
a_list.sort()
print('Here is the alpha sorted list...')
for str1 in a_list:
 print(str1)

Here’s a sample session:

Enter a name: John
Enter a name: George
Enter a name: Paul
Enter a name: Ringo
Enter a name: Brian
Enter a name:
Here is the alpha sorted list...
Brian
George
John
Paul
Ringo

K
ey

 S
yn

tax

Overland_Book.indb 83Overland_Book.indb 83 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists84

In response to the sixth and last “Enter a name,” the end user in this session
entered an empty string, by just pressing Enter without entering any text.

H
ow

 It

 Works

 How It Works
This program is amazingly short. But the main thing it has to do is prompt for
strings and add them to a list.

First, however, the program must create an empty list. This is critical.
Unlike a C programmer, you don’t “declare” an empty list and then operate on
it. You must have a list variable before you call the append method. And that
means you must assign some variable the empty list value, [].

a_list = []

Given this assignment, all the program has to do now is: 1) get a string from
the end user, 2) append the string to the list, and 3) repeat, until the user enters an
empty string, which is notated by quotation marks with no text between them.

while True:
 str1 = input('Enter a name:')
 if str1 == '': # If string is empty,
 break
 a_list.append(str1)

The sort function then does most of the work. This is usually the part of
a sort program that is most difficult to write because you have to figure out
some sophisticated algorithm for sorting the different elements. But you don’t
have to do that with Python, because the sorting ability is built into lists.

a_list.sort()

The final lines print the list. The loop variable in this case is str1, but we
could’ve used any word that was not a keyword. This code just cycles through
every element in a_list, printing each one in turn.

for str1 in a_list:
 print(str1)

Op
ti

m

izing

 Optimizing the Code
As I explained in the previous chapter, certain values equate to False when
evaluated as conditions. In particular, empty strings are considered False.
Therefore, consider the following code:

if s == '':

Overland_Book.indb 84Overland_Book.indb 84 8/31/17 12:56 PM8/31/17 12:56 PM

Indexing and Slicing 85
5

You can save a little space by rewriting this as:

if not s:

If s is empty, then not s has the effect of True within an if condition.

Ex
er

cis
es

 EXERCISES

Exercise 5.1.1. As the program takes input from the end user, have it count the
number of names entered. Then before the sort names are output, print a mes-
sage stating how many names were input.

Exercise 5.1.2. Instead of printing the sorted names one to a line, print all the
names on the same line.

Exercise 5.1.3. Input a series of numbers and then sort them numerically, not
alphabetically. (Hint: a list of numbers stored as integers or floating point,
not strings, will be sorted numerically if you use the sort method on the list.)

Indexing and Slicing
If you’ve programmed in another language, such as C++, you’re used to
manipulating a list by accessing one member at a time, through indexing. You
can index lists as well when you need to do so.

You can use brackets to index individual elements in the list, just as you can
in other programming languages that have arrays. Index numbers for a list of
length N run from 0 to N-1. For example, consider this list of three members:

ls = ['Peter', 'Paul', 'Mary', 'Simon']

This is a list with four elements, which therefore uses indexes running from
0 to 3. You can think of it this way:

'Simon'

ls[3]

'Mary'

ls[2]

'Paul'

ls[1]

'Peter'

ls[0]

The following statements print out the individual members of this list,
along with the length:

print('ls[0] =', ls[0])
print('ls[1] =', ls[1])
print('ls[2] =', ls[2])
print('ls[3] =', ls[3])
print("The length is", len(ls))

Overland_Book.indb 85Overland_Book.indb 85 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists86

These statements print out the following output:

ls[0] = Peter
ls[1] = Paul
ls[2] = Mary
ls[3] = Simon
The length is 4

Negative numbers have a specialized usage in Python lists. An index of –1
accesses the last element in the list. An index of –2 accesses the next-to-last
element in the list. And so on. In the previous example, ls[-1] refers to the
last element, Simon.

Negative indexes run backward from –1 to –N, where N is the length of the list.

'Simon'

ls[-1]

'Mary'

ls[-2]

'Paul'

ls[-3]

'Peter'

ls[-4]

Here’s an example using negative indexes:

print('Last element in list is', ls[-1])

When executed, this prints the following:

Last element in list is Simon

Accessing one element at a time is the obvious way to use an index. But
Python also supports a technique called slicing, which enables you to access a
subrange of list elements. The result is to produce a new, possibly smaller, list.
But it’s still a list.

INDEXING SYNTAX MEANING

[begin: end] Include all elements from the index named begin, up to but not
including end.

[begin:] Include all elements from the index named begin forward to
the end of the list.

[: end] Include all elements up to but not including end.

[:] Include all elements of the list. When this appears on the right
side of an assignment, it forces copies to be made of all elements.

[begin: end: step] The step argument, if included, indicates which elements of the
list to include. For example, a step value of 2 indicates that every
other item is to be included. A negative argument (such as –1) causes
the direction to be reversed.

Overland_Book.indb 86Overland_Book.indb 86 8/31/17 12:56 PM8/31/17 12:56 PM

Indexing and Slicing 87
5

Here’s an example using lists of numbers. The slicing in this example says,
“Include all elements beginning with the second element (index 1) up to but
not including the fifth element (index 4).

>>>a_list = [10, 200, 300, 44, 55, 999]
>>>a_list[1:4]
[200, 300, 44]

Note that when two positive indexes are used this way, you can always pre-
dict the length of the resulting list by subtracting the two numbers. For exam-
ple, the following figure shows how the expression [1:4] works:

44

3

300

2

99

5

55

4

200

a_list[1:4]

1

10

0

Start with
index 1

Up to but not
including index 4

With slicing, it’s easy to say “Get the first N elements” or “Get the last N
elements.” To get the first N elements, just use [:N].

>>>a_list[:3]
>>>[10, 200, 300]

Likewise, you can use negative indexes to get the last N elements, using [-N:].

>>>a_list[-3:]
[44, 55, 99]

You can also “mix and match” positive and negative indexes. Here’s an
example that gets the elements starting with the third element (index 2) up to
but not including the last:

>>>a_list[2:-1]
[300, 44, 55]

When indexing and slicing, you can use integer variables as well as
constants.

Finally, notice that a third argument can be used: step. If included, it spec-
ifies how quickly to step through the list; it can even specify direction. For

Overland_Book.indb 87Overland_Book.indb 87 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists88

example, the following use of slicing creates a complete reversal of the original
string. It starts out at with the last element (indicated by –1) and moves backward
through the string, because the step argument is also –1:

>>>a_list = [1, 2, 3, 4]
>>>reversed_list = a_list[-1::-1]
>>>print(reversed_list)
[4, 3, 2, 1]

The middle argument, end, is omitted in the expression a_list[-1::-1].
When end is omitted, the slicing simply goes as far as it can, in this case, all
the way to the beginning of the string.

Note Ë Indexing and slicing look similar, but there are important differences.
Indexing returns a specific element, not a list. When you use indexing to get
an element, you must use an index in range or the result is a runtime error.

Slicing (for example, [2:–1]) produces a list, not an element, even though it
may be a list of length 1 or even length 0 (an empty list). Out-of-range indexes,
used in slicing, do not produce runtime errors. For example, list[10:]
gets a list starting with the 11th element. If there are fewer than 11 elements,
list[10:] just produces an empty list.

 Ç Note

Copying Data to Slices
Because Python lists are mutable (changeable), you can use slicing to specify
a target, as well as the source, of an assignment. For example, assume the fol-
lowing list:

>>>x_list = [1, 2, 5]

The slice notation [:2] selects the first two elements in a list. Therefore, the
following statement replaces the first two elements, 1 and 2, with the values
10, 20, and 30:

>>>x_list[:2] = [10, 20, 30]

The result is that most of the list values change, making it four elements
long. Three elements (10, 20, and 30) have replaced two elements (1 and 2).

>>>x_list
[10, 20, 30, 5]

If you try to replace an element without using the slicing notation, you put a
list inside a list. Here’s an example:

Overland_Book.indb 88Overland_Book.indb 88 8/31/17 12:56 PM8/31/17 12:56 PM

Ranges 89
5

>>>x_list[0] = [1, 2]
>>>x_list
[[1, 2], 20, 30, 5]

If this is not what you want—if instead you want to replace a single element
with a series of other elements but not create a two-dimensional list—then
remember to use slicing. Assume that the previous operation was not per-
formed. Instead, the following notation is used to select a slice with just one
member, consisting of the first element:

>>>x_list[:1] = [11, 22]
>>>x_list
[11, 22, 20, 30, 5]

This technique can even be used to insert elements into the indicated position.
The following statement inserts the values –2, –2 before the first element (index 0):

>>>x_list[0:0] = [-2, -2]
>>>x_list
[-2, -2, 11, 22, 20, 30, 5]

Ranges
If you want to actually change list elements from inside a loop, use indexing.

Let’s return to a problem that we didn’t completely solve earlier. Take an
array of three values, all of them specifying a Celsius temperature. Suppose
we want to change all these values to Fahrenheit temperatures. Indexing pro-
vides a way to do this.

temp_list = [0.01, 250.5, 22.77]
for i in [0, 1, 2]:
 temp_list[i] = temp_list[i] * 1.8 + 32.0

Or, suppose that the list has five elements.

temp_list = [0.01, 67.003, 21.2, 15.9, 10.7]
for i in [0, 1, 2, 3, 4]:
 temp_list[i] = temp_list[i] * 1.8 + 32.0

Do you see the pattern? To operate on a list of size N, you need to generate a
list of integers that range from 0 to N-1, where N-1 is the length of the first list.

Fortunately, Python provides an easy way to generate just such a set of
numbers automatically, by using the built-in range function. This function
can be used in three ways.

Overland_Book.indb 89Overland_Book.indb 89 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists90

range(end)
range(start, end)
range(start, end, step)

Each of these does something a little different. The basic action is to gen-
erate a series of numbers beginning with start and continuing up to but not
including end. If start is omitted, it is 0 by default.

When working with index numbers, it’s often most efficient to specify the
length of a list as the end argument and leave start set to 0 (the default).
Here’s an example:

for i in range(len(temp_list)):
 temp_list[i] = temp_list[i] * 1.8 + 32.0

If you specify a third argument, it’s interpreted as the step argument,
which specifies how much the index (i in this case) should increase during
iteration. For example, the following statement operates only on items with an
even number, starting with index number 0.

for i in range(0, len(temp_list), 2):
 temp_list[i] = temp_list[i] * 1.8 + 32.0

Remember that the range of numbers generated includes integers up to but
not including the end argument. This is called the excluded end point.

The following table shows examples of how uses of range translate into a
series of numbers:

EXAMPLE RANGE RESULTING LIST

range(3) [0, 1, 2]

range(4) [0, 1, 2, 3]

range(1, 4) [1, 2, 3]

range(1, 5) [1, 2, 3, 4]

range(1, 6) [1, 2, 3, 4, 5]

range(10, 16) [10, 11, 12, 13, 14, 15]

range(10, 16, 2) [10, 12, 14]

range(0, 10, 3) [0, 3, 6, 9]

It’s common to combine the range function with the len function, as shown
earlier. The latter has the following syntax:

len(collection)

Ke
yw

ord

Ke
yw

ord

Overland_Book.indb 90Overland_Book.indb 90 8/31/17 12:56 PM8/31/17 12:56 PM

Ranges 91
5

Here’s a simple example of the len function in use, to determine the length
of a list:

>>>my_list = [3, 2, 1]
>>>len(my_list)
3

Example 5.2. Revised Factorial Program
Let’s revisit the factorial example from the previous chapter. This section
introduces a shorter version, using the for keyword instead of while.

fact2.py

n = int(input('Calculate factorial for which n? '))
prod = 1
for i in range(1, n + 1): # For 1 to n, inclusive
 prod = prod * i
print('The result is: ', prod)

This is a short program, but it does a lot. An important thing to remember
is that range(1, n + 1) generates the numbers 1 through n…because of the
excluded end point.

Here’s a sample session:

Calculate factorial for which n? 5
The result is 120

H
ow

 It

 Works

 How It Works
This program works the same way as the factorial program in Chapter 3,
except that it replaces the following version that uses while:

i = prod = 1
while i <= n:
 prod = prod * i
 n = n + 1

The program replaces these statements with the following block of code,
which is both shorter and easier to read:

prod = 1
for i in range(1, n + 1):
 prod = prod * i

Overland_Book.indb 91Overland_Book.indb 91 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists92

Again, the end specification in the for statement is n+1, not n, because of
the excluded end point. Remember that range generates numbers up to but
not including, its “end” argument.

The pseudocode for this version is also shorter.

Prompt the user for the value of n.
Set prod to 1.
For each element i in the range 1 to n inclusive,
 Multiply prod by i
Print the value of prod.

So if, for example, n were set equal to 5, i would be multiplied in turn by 1, 2,
3, 4, and 5, causing the same effect as the following calculation:

prod = 1 * 2 * 3 * 4 * 5

Op
ti

m

izing

 Optimizing the Code
Recall that when multiplying one number by another, you can often use the *=
(multiplication assignment) operator as a shortcut.

prod *= i # Multiply prod by i, store result in prod

This is a slight “optimization” in that it reduces a few keystrokes.
An alternative approach, but not necessarily more efficient, would be to use

range(n), producing 0, 1, 2, … n-1. But to translate this into 1, 2, 3, … n, it’s then
necessary to add 1 to the index number. The following code shows the result:

fact3.py

n = int(input('Calculate factorial for which n?'))
prod = 1
for i in range(n):
 prod = prod * (i + 1)
print('The result is:', prod)

Ex
er

cis
es

 EXERCISES

Exercise 5.2.1. Write a while statement around the rest of the program that quits
whenever the user enters 0 as the input but otherwise continues and repeats.
In other words, make the program repeat operation until the end user quits by

Ps
eu

do

code

Overland_Book.indb 92Overland_Book.indb 92 8/31/17 12:56 PM8/31/17 12:56 PM

Ranges 93
5

entering 0 at any time. This way, the end user can calculate many factorials
without having to reload the program over and over.

Exercise 5.2.2. Verify that the program works for small numbers. Then, before
working on larger numbers, think about the factorial of 50, and try to make
an educated guess as to how many trailing zeroes there are in the result. Then
run the program to see if you’re right.

Example 5.3. Sieve of Eratosthenes
One of the classic examples in computer programming is the “sieve of Eratos-
thenes,” which is used to generate prime numbers. The sieve is frequently used
as a benchmark to demonstrate how fast a computer program is.

A prime number is a whole number divisible only by itself and 1. Prime
numbers include 2, 3, 5, 7, 11, 13, 17, and so on. They do not include 9, for
example, because 9 is divisible by 3; yet 3 itself is prime because it’s divisible by
no number smaller than itself except for 1. A number divisible by some num-
ber other than itself, and 1 is called a composite number.

For the purpose of this example, we’re going to use a Boolean list, which is
a list in which every element is either True or False. Remember that Python
does not declare types of variables or collections, but we can create a list and
initialize it with Boolean values.

bool_list = [True] * 100

This statement uses a special syntax—which we’ll revisit in Chapter 13—that
uses the multiplication operator (*) to repeat an element over and over. Multi-
plying an array by N, an integer, says, “Create a longer array that repeats the
element, or elements, N times.”

The value True indicates the corresponding index number is prime; the value
False indicates it is not prime. We start by assuming all the numbers are primes.

The sieve recognizes a prime number and then eliminates all multiples of
that number from the rest of the list, by assigning the value False to higher
index numbers. For example, suppose you have a list representing the num-
bers from 1 to 20. We ignore the first two numbers, 0 and 1. Then, 2 is rec-
ognized as a prime number, and all multiples of 2 are eliminated by assigning
False to the appropriate index positions.

We assign the value False to bool_list[4], bool_list[6], bool_list[8],
bool_list[10], bool_list[12], and so on, because all those indexes cor-
respond to numbers that are multiples of 2.

Overland_Book.indb 93Overland_Book.indb 93 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists94

T
0
<= INDEXES =>

T
1

T
2

T
3

F
4

T
5

F
6

T
7

F
8

T
9

F
10

T
11

F
12

Then, we do this for the next prime number, which is 3. Eliminating multi-
ples is done the same way, by increasing each index by 3. We assign the value
False to bool_list[6], bool_list[9], bool_list[12], bool_list[15],
bool_list[18], and so on.

T
0
<= INDEXES =>

T
1

T
2

T
3

F
4

T
5

F
6

T
7

F
8

F
9

F
10

T
11

F
12

After that, we get to the number 4, but it has earlier been eliminated when
its value was marked as False. So, the number 4 is ignored because it’s not
prime. The procedure continues this way until the end of the list is reached.
All those elements that have not been marked False are prime.

Here’s the program listing. It is quite short for what it does.

prime.py

bool_list = [True] * 100
for prime in range(2, 100):
 if bool_list[prime]:
 print(prime, end=' ')
 for i in range(prime * 2, 100, prime):
 bool_list[i] = False

Here’s the output you can expect this program to print, assuming it is properly
entered and run in Python. Remember, these are all the numbers, up to but
not including 100, which are divisible only by themselves and 1.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
73 79 83 89 97

H
ow

 It

 Works

 How It Works
Although this program is short, it is slightly complex because of its use of a for
statement that is nested two levels down, as reflected by the following pseudocode:

Overland_Book.indb 94Overland_Book.indb 94 8/31/17 12:56 PM8/31/17 12:56 PM

Ranges 95
5

Initialize the list named “bool_list” to contain 100 values of True.
For each number ‘prime’ in the range 2 to 99
 If bool_list[prime] contains True,
 Print prime
 for each i in the range 2*prime to 99, step by prime,
 Set bool_list[i] to False

In case it’s not immediately clear what this does, I’ll step through this pro-
gram a line or two at a time. The first line creates a Boolean list with 100
members, each member set to the value True, and then associates this list with
the name bool_list.

bool_list = [True] * 100

The appearance of [True] by itself creates a list with just one member, and
this member is given the value True, which is Boolean. When the multiplica-
tion operator is (*) used, it creates a much longer list, in which all 100 mem-
bers are set to True. Finally, the resulting list of 100 elements is associated with the
name bool_list.

For example, you could create a list this way:

bool_list = [True] * 4

It would be equivalent to

bool_list = [True, True, True, True]

For ease of reading, I created a variable called prime as a loop variable to keep
track of where we are in the list. Be careful, though: this may look like a keyword,
but it’s not. I’m using it as a suggestive name to make the program more readable.

The next two lines in the program scan the list, one at a time, looking for a
value that is equal to the Boolean value True.

for prime in range(2, 100):
 if bool_list[prime]:

This for loop starts with index value 2 and goes up to but not including 100,
so this creates a range from 2 to 99 inclusive. For ease of writing the program,
we include the first two elements, bool_list[0] and bool_list[1], in the
data structure itself but otherwise ignore them. Such an approach is slightly
inefficient—the first two elements are never used—but this approach makes it
easier to write the program by making all the indexing obvious.

If the next element contains True, that means we’ve found a prime number; it
hasn’t been eliminated yet. The first thing to do when a prime is found is print it.

 print(prime, end=' ')

Ps
eu

do

code

Overland_Book.indb 95Overland_Book.indb 95 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists96

Next, all multiples of prime, starting with prime*2, are composite numbers
and therefore should be flagged as such by having the corresponding elements
set to False.

The inner loop marks composite numbers as false—that is, not prime. For exam-
ple, since 2 is prime, every multiple of 2, starting with 4, should be flagged as False.
So, all the elements bool_list[4], bool_list [6], bool_list[8], etc., get set
to False, because 4, 6, 8, and so on, are multiples of 2 and therefore not prime.

Python’s range statement supports an optional “step” parameter, which
tells how much to increase the loop variable each time. The loop variable in
this inner loop is i, and we want to increase it by prime places at a time,
where prime is the number that’s been identified.

 for i in range(prime * 2, 100, prime):
 bool_list[i] = False

This says, starting with 2 times the value of prime (the prime number that
was found), mark every multiple of 2 with the value False.

The first element so marked is bool_list[4]; the index is then increased
by the amount prime—in this case, that’s 2. Therefore, this loop marks every
even element, starting with index 4.

Op
ti

m

izing

 Optimizing the Code
One of the most important principles you’ll ever learn about optimizing
Python programs is this: print statements are very expensive in terms of
time taken to execute the program. If you can replace repeated calls to print,
sprinkled throughout the program, with a single output operation, it improves
performance. The string join method comes to our aid here by creating one
string out of a series of strings.

In this case, we can do that by building a new list, call it primes_found,
and then printing that list at the end. That list is first created as an empty list,
and then we call the append function repeatedly.

prime2.py

bool_list = [True] * 100
primes_found_list = []
for prime in range(2, 100):
 if bool_list[prime]:
 primes_found_list.append(str(prime))
 for i in range(prime * prime, 100, prime):
 bool_list[i] = False
out_str = ' '.join(primes_found_list)
print(out_str)

Overland_Book.indb 96Overland_Book.indb 96 8/31/17 12:56 PM8/31/17 12:56 PM

List Functions and the in Keyword 97
5

Also, if you think about it, it’s more efficient for the sieve to start eliminating
composite numbers at prime * prime (the square of the latest prime found)
rather than prime * 2, because composite numbers smaller than prime * prime
have already been eliminated. If you doubt this, try doing the sieve manually for
a few cycles.

The join method is one of the most useful string methods. Chapter 7,
“Python Strings,” covers this subject in greater detail. For now, you should
just accept that join works as shown here.

Ex
er

cis
es

 EXERCISES

Exercise 5.3.1. Instead of finding all the prime numbers between 2 and 100, allow
the user to specify the upper limit on prime numbers to report. Ask for a num-
ber N at the beginning of the program and then use this number instead of 100.

Exercise 5.3.2. Calculate the number of primes that you found. There is a way to
cheat this result: build a list called primes_found (as shown in the previous
section) and then just take the length of this list by using the len function. The
other way, which takes a little more work, is to increment a variable inside one
of the loops. For extra credit, use both ways of getting this value.

Exercise 5.3.3. Just as an exercise, rewrite the innermost for loop as a while
statement.

List Functions and the in Keyword
Python provides so many powerful ways to manipulate lists, it’s difficult for
one chapter to mention them all. But there are several functions that are espe-
cially important for dealing with lists; they also apply to other collections,
such as strings.

 len, which returns the length of a collection

 min, which returns the value of the lowest element

 max, which returns the value of the highest element

The len function has appeared in this chapter before. It’s one of the most
useful tools for dealing with collections. Python returns the correct value for
the length of any list; however, this value counts the elements in the top layer
of a Python list. Here’s an example:

>>>my_list = [[0, 1, 2], 30, ['John', 'Paul']]
>>>len(my_list)
3

Overland_Book.indb 97Overland_Book.indb 97 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists98

The min and max functions do just what you’d expect. But they can only be
used with lists in which every element can be meaningfully compared to every
other element in the list. In the following example, some elements are integers
and some are floating point, but all can be compared:

>>>nums = [10, 3.1415, -9, 10.5]
>>>min(nums)
-9
>>>max(nums)
10.5

The sort method of lists is similar to min and max, in that sorting works
only when all the elements are close enough in type to be compared. Other-
wise, you get an “incompatible types” error.

The in and not in keywords are also very useful, and we’ll use them in
upcoming chapters.

>>>my_list = [300, 400, 50]
>>>300 in my_list
True
>>>50 not in my_list
False

Who Was Eratosthenes?

Eratosthenes was one of the greatest minds who ever lived. He was,
among other things, the chief librarian of the great Library of Alexandria,
more than 2,000 years ago.

Alexandria is located in Egypt and is still considered one of the great cities
of that country. But after the conquests of Alexander the Great, many Greek
intellectuals settled there and made it, in ancient times at least, more Greek than
Egyptian. Some of the greatest Greek scientists were residents of Alexandria.

Eratosthenes’ greatest achievement may be the measurement of the earth,
which he performed by noticing that on a certain day, a pole in southern
Egypt cast no shadow at noon, but on the same day, a pole in Alexandria cast
a shadow of several feet. He used primitive trigonometry to determine the
circumference of the earth, based on the curvature of the earth inferred from
the angle between the poles.

Based on these calculations, he was able to estimate the circumfer-
ence of the earth with 98 percent accuracy. The irony is that almost 2,000
years later, Columbus ignored this estimate in favor of smaller, less accurate
guesses. Had Columbus used Eratosthenes’ more accurate figure, he would’ve

Interlude

Overland_Book.indb 98Overland_Book.indb 98 8/31/17 12:56 PM8/31/17 12:56 PM

99
5

Summary

continued

known the ocean was more than half the circumference of the earth and
therefore impossible to cross with the resources he had. It turned out,
though, there were entire continents in the middle of this mega-ocean.

Eratosthenes could not have known about digital computers, but his
method for finding prime numbers—one of the most famous methods in
mathematics for more than 2,000 years—turned out to be a perfect test to
run on computers to demonstrate their speed and efficiency.

Chapter 5 Summary
Here are the major points of Chapter 5:

 In Python, a list is an ordered collection, similar to an array in C++ or Java, but
with far more built-in capabilities. This is the notation for specifying a list:

[item, item,…]

 You can also specify lists with only a single item or with no items at all.

my_list = []

 In a list, order is meaningful, as are duplicate values.

[25, 25, 30, 27, 20, 20, 20]

 By “order is meaningful,” I mean that [3, 2, 1] does not equal [1, 2, 3].

 You can use the for keyword to loop through a list. In this syntax, thing is
a variable that represents each element in turn, but you can use any variable
name you like.

for thing in my_list:
 print(thing)

 For a list of length N, index numbers run from 0 to N-1.

 You can also access elements through negative indexes, in which the last ele-
ment is indexed as –1, and then indexes run backward to –N, indicating the
first element.

 The range keyword can be combined with the for keyword to process a list
by its index numbers. Here’s an example:

for i in range(len(my_list))
 my_list[i] = 0 # Reset each elem to 0.

Interlude

Overland_Book.indb 99Overland_Book.indb 99 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 5 Python Lists100

 The expression range(N) generates a series of integers starting with 0, up to
but not including N.

 The expression range(start, end) generates a series of integers beginning
with start, up to but not including end.

 The expression range(start, end, step) is similar, but step specifies
how much to increment the index each time.

 The len function returns the length of a list or any other Python collection. It
is often combined with range.

 You can use the splicing syntax both to produce a subrange of data from a list
and to assign to it. [start : end] selects all elements beginning with start,
up to but not including end, in which start and end are index numbers.

 [start:] selects all elements beginning with start, continuing to the end of
the string.

 [:end] selects all elements from the beginning of the string, up to but not
including end.

 [:] selects the entire string for copying purposes.

 The in and not in keywords return True or False, depending on whether a
specified element can be found in the specified container.

Overland_Book.indb 100Overland_Book.indb 100 8/31/17 12:56 PM8/31/17 12:56 PM

101

6 List Comprehension
and Enumeration

Python version 2.0 introduced some exciting new features that, while not man-
datory, can make your Python code more compact, error-free, and streamlined.
The current version of Python (Python 3.0) inherits these powerful features.

This chapter explores these features:

 The built-in enumerate function, which automatically supplies a loop counter.

 Enhanced use of the format function, to format output.

 List comprehension, a technique that collapses an entire for loop into a sin-
gle line. Although the result may at first look cryptic, you’ll eventually wonder
how you ever programmed without it.

Indexes and the enumerate Function
Standard Python style encourages iteration directly on a list—or other iterable.
An iterable is most often a collection. But technically, it is anything that
returns a steady stream of data, one item at a time; you can always ask for
“the next item” until there are no more. This book has so far featured lists and
strings as two common kinds of iterables in Python.

When iterating through a collection, you may be tempted to use the approach
used in C++ and many other languages, relying on index numbers.

for i in range(len(my_list)):
 print(my_list[i], end=' ')

But Python style strongly prefers for loops that iterate directly through the
list, without the use of the range function, whenever possible. This is “thinking
Pythonically.”

Overland_Book.indb 101Overland_Book.indb 101 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration102

for item in my_list:
 print(item, end=' ')

It should be clear why this form is better. It’s shorter and expresses the
action more directly: for each element in my_list, print out the element.
Also, you don’t have to worry about the indexes going out of range because
Python handles that for you

But sometimes it’s convenient to have access to an index number. For example,
suppose you want to print a numbered list.

1. 10
2. 20
3. 30

If you don’t want to revert to using the range function, you can intro-
duce an extra variable to keep track of how many iterations have been
performed.

i = 1
for item in my_list:
 print(i, '. ', item, sep='')
 i += 1

This produces the desired result, but it introduces an extra variable, separate
from the for statement. It also adds two lines of code. It works, but it’s ugly.

Python 2.0 introduced a better solution. The enumerate function lets you
iterate directly over the data while getting an index number “for free.” Assume
you have the following list:

beat_list = ['John', 'Paul', 'George', 'Ringo']

By using enumerate, you get an index number brought to you free of
charge by Python! These numbers start with 1 in this case, because 1 is explicitly
specified here.

for i, b_str in enumerate(beat_list, 1):
 print(i, '. ', b_str, sep='')

This prints the following:

1. John
2. Paul
3. George
4. Ringo

Overland_Book.indb 102Overland_Book.indb 102 8/31/17 12:56 PM8/31/17 12:56 PM

The Format String Method Revisited 103
6

The enumerate function is a built-in function that generates a series of
value pairs (tuples) of the form index, item, in which index is a running
count, and item refers to an element. The function has this syntax:

enumerate(iterable, start=0)

The iterable is a set of data, such as a list, tuple, or string, that you can always
get the “next” element of, until the end is reached; an iterable is usually a col-
lection but may also be a generator (a topic we’ll return to in Chapter 18).
The second parameter, which sets the starting value of the “index number,” is
optional; if omitted, its value is 0.

The enumerate function is most often used within for statements.
Remember that each call to this function produces an index, item pair.

for index, item in enumerate(iterable, num=0):
indented_statements

A common use is to print the index and item for each element of iterable, side
by side, as in the upcoming example. This example also uses formatted output.

The Format String Method Revisited
Chapter 3, “Your First Programs,” introduced the format string method,
which formats one or more fields of output in an output string. That chapter
gave a simple example of use, shown again here:

format_spec_str = '{} results in {}.'
print(format_spec_str.format(x, y))

Remember that the basic syntax includes a format-specification string, fol-
lowed by the word format, followed by arguments in parentheses.

format_spec_str.format(args)

The result of this syntax is to produce a new string, which includes the
arguments arranged and printed according to the format_spec_str, a string
that combines print fields with other text.

The format_spec_str itself contains curly braces, {}, to define a print
field corresponding to one of the arguments, or args. Other text that appears
is considered “template” or “boilerplate” and is printed unconditionally.

In this chapter we’ll use a further refinement. You can modify fields by specify-
ing left or right justification. Left justification is usually best for words and other
kinds of text; right justification is usually best for displaying columns of numbers.

K
ey

 S
yn

tax

K
ey

 S
yn

tax

K
ey

 S
yn

tax

Overland_Book.indb 103Overland_Book.indb 103 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration104

SPECIFICATION MEANING

{:>n} Right-justified field n spaces wide. This field is usually best for
columns of numbers; it is also the default for numbers, so that {:n}
is equivalent to {:>n} for numeric fields.

{:<n} Left-justified field n spaces wide. This field is usually best for ordi-
nary text; it is also the default for non-numeric fields, so that {:n}
is equivalent to {:<n} for non-numeric fields.

{:^n} Center-justified field n spaces wide.

So, for example, to print a column of even numbers from 2 to 100, right-
justified, you might print them each in a field three characters wide.

for i in range(2, 100, 2):
 print('{:>3}'.format(i))

“Justification” tells how to position text within the field. If the size of the
text exceeds the size of the field, some text will overflow to the right. But you
should try to ensure that the size of a print field is large enough to print the
corresponding argument. Right justification is the default for numeric fields
so that the previous statements have the same effect as these:

for i in range(2, 100, 2):
 print('{:3}'.format(i))

Example 6.1. Printing a Table
Save the following code in a file called table.py, open that module from
within the Python interactive environment, and choose Run Module:

table.py

fib_list = [1, 2, 4, 5, 8, 13, 21, 34, 55, 89, 144]
format_str = '{:>2}. {:>4}'
for i, item in enumerate(fib_list, 1):
 print(format_str.format(i, item))

Amazingly, this is only a four-line program, and yet it illustrates the use of
both the enumerate function and the format method. Here is the output of the
program:

Overland_Book.indb 104Overland_Book.indb 104 8/31/17 12:56 PM8/31/17 12:56 PM

The Format String Method Revisited 105
6

 1. 1
 2. 2
 3. 4
 4. 5
 5. 8
 6. 13
 7. 21
 8. 34
 9. 55
10. 89
11. 144

You can also enter this program from the interactive environment, as
follows:

>>>def main():
fib_list = [1, 2, 4, 5, 8, 13, 21, 34, 55, 89, 144]

 for i, item in enumerate(fib_list, 1):
 print('{:>2}. {:>4}'.format(i, item))

>>>main()

H
ow

 It

 Works

 How It Works
This example, Example 6.1, features the enumerate function, as well as making
expanded use of the format method.

The following line creates the format-specification string, called format_str
in this example.

format_str = '{:>2}. {:>4}'

This creates two print fields, one of which is a field two spaces wide, in
which the data is right-justified. The second creates a print field four spaces
wide, in which the data is also right-justified. That’s usually the correct
approach for printing numbers.

Alternatively, you could left-justify the data within these two print fields by
using left arrows rather than left.

format_str = '{:<2}. {:<4}'

To create the output string for any given line, apply the format method.

format_str.format(i, item)

Overland_Book.indb 105Overland_Book.indb 105 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration106

Remember that i and item together form a tuple (a group) output by the
enumerate function within the for statement. That function produces a
series of index, item pairs—which in this example are then printed together
on each line.

 for i, item in enumerate(fib_list, 1):
 print('{:>2}. {:>4}'.format(i, item))

You should also remember that because the starting index number used in
this case is 1, not 0, the number 1 must be specified as the second argument
to enumerate. The first argument is just the name of the list to be iterated
through.

Ex
er

cis
es

 EXERCISES

Exercise 6.1.1. Revise Example 6.1 so that it produces precisely the same output
but without using the built-in enumerate function. (Hint: Use the range
function instead.) Again, make sure the output is precisely the same.

Exercise 6.1.2. Instead of initializing fib_list, use a loop that produces the first
11 Fibonacci numbers. (Hint: Look at Chapter 3 if you need to.) Then make
sure the whole program still works correctly.

Exercise 6.1.3. Revise the example so that it has three print fields. The third
should be printed only if the current index is 1 or greater. It should be the cur-
rent element minus the previous element. Make the print fields 3, 5, and 5 in
size, respectively.

Exercise 6.1.4. Do you see any pattern in the final column (assuming you’ve done
Exercise 6.1.3)? How would you describe this difference?

Simple List Comprehension
List comprehension is another technique that, while not strictly necessary, can
be a very nice addition to your Python skills.

One of the most common uses of a for statement is to append items, one
at a time, to a list. For example, to create a list consisting of all even numbers,
you can write the following:

my_list = []
for i in range(1, 51):
 my_list.append(i * 2)

Overland_Book.indb 106Overland_Book.indb 106 8/31/17 12:56 PM8/31/17 12:56 PM

Simple List Comprehension 107
6

It turns out there used to be a great deal of Python code that looked like
this. We can say such coding techniques have this general form:

list_name = []
for_statement_header :

list_name.append(expression)

Now here comes the magic. The designers of Python realized how common
such code was and created a shortcut for it. The shortcut looks like this:

list_name = [expression for_statement_header]

More generally, this syntax can be used to create an iterable series of values,
for which the most common use (though not the only) is to create a list.

expression for_statement_header

To make sense of this technique, you need to look at several concrete exam-
ples. First, look at one of the simplest uses possible: creating a list from 0 to 9.

a_list = []
for i in range(10):
 a_list.append(i)

Using list comprehension, you can replace these three statements with one.

a_list = [i for i in range(10)]

This syntax inside the brackets includes the following:

 The expression i, which is the value to be appended during each iteration

 The for statement header, for i in range(10)

You can think of this visually.

a_list = []
for i in range(10):
 a_list.append(i)

a_list = [i for i in range(10)]

The next example creates a list from 0 to 18, including even numbers only.
It is the same as the previous example, except that it appends the value i * 2
instead of i.

Overland_Book.indb 107Overland_Book.indb 107 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration108

a_list = []
for i in range(10):
 a_list.append(i * 2)

And here is the list-comprehension version:

a_list = [i * 2 for i in range(10)]

The conceptual diagram for this example is the same, except that the value
to be appended, i * 2, now appears at the front; it is then followed by the
same for statement header, up to but not including the colon.

a_list = []
for i in range(10):
 a_list.append(i * 2)

a_list = [i * 2 for i in range(10)]

Here’s an even simpler example, which doesn’t use the range function at
all but just copies from one list to another:

new_list = []
for i in old_list:
 new_list.append(i)

Using list comprehension produces a shorter, more compact version of this
code. It begins with i, the value to be appended, followed by the for statement
header, for i in old_list.

new_list = [i for i in old_list]

Again, you can understand this conceptually by remembering that it
includes the value to be appended in each case, i, followed by the for statement
up to but not including the colon.

new_list = []
for i in old_list
 a_list.append(i)

new_list = [i for i in old_list]

Overland_Book.indb 108Overland_Book.indb 108 8/31/17 12:56 PM8/31/17 12:56 PM

Simple List Comprehension 109
6

The effect, in either case, is just to copy each element of old_list onto
new_list. Incidentally, for a simple copy, you can use either of the following
alternative techniques to achieve the same result:

new_list = list(old_list)
new_list = old_list[:]

If i * 2 is used instead of the initial i, then new_list becomes a list con-
taining the double of each element in old_list. For example, if old_list
contained [5, 7, 9], then new list would contain [10, 14, 18].

new_list = [i * 2 for i in old_list]

Likewise, the use of the expression i * 3 at the front would create a new list
containing a triple of each element in old_list; this would result in [15, 21, 27].

tri_list = [i * 3 for i in old_list]

Example 6.2. Difference Between Squares
Difference between squares is another succinct program that does some-
thing interesting. This program uses list comprehension to create a list of the
squares of the first six integers, and then it calculates the differences between
one square and the previous square.

squares.py

sqr_list = [i * i for i in range(1, 7)]
format_str = '{:>3} {:>3} {:>3}'
old_val = 0
for i, item in enumerate(sqr_list, 1):
 print(format_str.format(i, item, item – old_val))
 old_val = item

Here are the results printed by the program:

 1 1 1
 2 4 3
 3 9 5
 4 16 7
 5 25 9
 6 36 11

Overland_Book.indb 109Overland_Book.indb 109 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration110

Do you notice anything interesting happening in the third column? What
these results suggest is that the difference between any two successive square
numbers is an odd number that gets 2 bigger each time. In other words, these
results predict the following relationship:

 N*N = 1 + 3 + 5 + ... 2N – 1

If you compare all three columns, you’ll see that the difference between any
square number and the preceding square is an odd number but not just any odd
number: it is the odd number 2N – 1, where N is the number in the first column.

I’ll discuss this mathematical pattern more in the upcoming interlude.

H
ow

 It

 Works

 How It Works
The first statement in this program is the interesting one. This is the most effi-
cient way to create a list of square numbers.

sqr_list = [i * i for i in range(1, 7)]

This statement produces squares of the numbers 1 to 6 inclusive because the
built-in range function generates elements beginning with the first number,
up to but not including the second.

The first part of this expression is i * i—calculate the squares. The second part
is for i in range(1, 7), which means “get all the numbers from 1 to 6, inclusive.

The next statement sets up the output format. The following format-
specification string indicates that a row of the table will have three print
fields—each of which is three characters wide and is right-justified.

format_str = '{:>3} {:>3} {:>3}'

The rest of the program has to print each successive integer and its cor-
responding square, which is easy. The program also prints the difference
between each square and the one before it, which is a little more challenging.

old_val = 0
for i, item in enumerate(sqr_list, 1):
 format_str.format(i, item, item – old_val)
 old_val = item

Usually, you don’t want to rely too much on variables created outside the
for loop, but this is the most convenient way to attack this particular prob-
lem. The variable named old_val starts off at 0, but each time through the
loop its value is reset, so it always refers to the previous square number in the
series rather than the current one.

Overland_Book.indb 110Overland_Book.indb 110 8/31/17 12:56 PM8/31/17 12:56 PM

Simple List Comprehension 111
6

The statement old_val = item sets up old_val so that during the next
iteration, old_val will refer to the previous value of the item—which, remem-
ber, will hold N2, or rather (N – 1)2.

Ex
er

cis
es

 EXERCISES

Exercise 6.2.1. Revise Example 6.2 so that it gets a number n from the user; this
should be the number of squares and differences to print. Also, alter the for-
mat string so that each print field is four characters wide, not three. This will
help accommodate larger numbers.

Exercise 6.2.2. After making the changes specified in Exercise 6.2.1, add another
change: print out cube numbers (n * n * n) along with their differences.
Does any pattern emerge in the third column? Are these differences all odd?
All even? Or a mix?

Exercise 6.2.3. Can you rewrite the for loop in Example 6.2 so that it does not
use the “dangling variable,” old_val? (Hint: Printing the first row without a
runtime error may be difficult, so you may have to skip it. You may also need
to resort to the built-in range function and to explicit indexing.)

Proving the Equation

Proving the difference-of-squares equation is one of the basic tasks in ele-
mentary algebra, so forgive me if this section seems familiar. The geomet-
ric proof, which I include, is a good deal more interesting.

Here’s the exact equation to be proved:

 N*N = 1 + 3 + 5 + ... 2N – 1

In proof by induction, we start by observing that it works for the first
case, N = 1:

1 * 1 = 2 (1) – 1
 1 = 1

Both sides simplify to 1. Therefore we can conclude that this equation
works for the case that N equals 1. This is trivial: 12 is equal to all the odd
numbers up to 1 (which is simply 1 itself).

continued on next page

Interlude

Overland_Book.indb 111Overland_Book.indb 111 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration112

continued

Now it remains to show that each time N increases…as the left side
goes from (N)**2 to (N+1)**2, the difference will be an odd number—
more precisely, it will be the next odd number in the series. For N + 1,
corresponding odd number is as follows:

2(N + 1) – 1 = 2N + 1

Therefore, we just need to show that the difference between N2 and (N + 1)2

is 2N + 1. This is easy, given basic algebra.

(N + 1) * (N + 1) = N *(N + 1) + 1 * (N + 1)
 = (N*N + N) + (N + 1)
 = N*N + 2N + 1

Now, subtract N2. What’s left is

 = 2N + 1

Voilà! We’ve demonstrated that the difference between (N + 1)2 and N2

is indeed 2N + 1, which is exactly what we needed to show.
That’s a simple algebraic proof. The “geometric proof,” which is visual and

intuitive, is more fun. In the following figure, by comparing 42 to 52, you can
see that the difference must be an odd number, specifically, 2(4) + 1, or 9. And
it should be intuitively obvious that this pattern will hold for any value of N.

(N + 1)2 = N

2 + 2N + 1

N

2

N

N

“Two-Dimensional” List Comprehension
When you’ve been programming for a while, you’ll likely have occasion to use
nested for loops. For example, suppose you want to create a multiplication

Interlude

Overland_Book.indb 112Overland_Book.indb 112 8/31/17 12:56 PM8/31/17 12:56 PM

“Two-Dimensional” List Comprehension 113
6

table. One way to do this is to create a one-dimensional list and then print it, a
subgroup at a time, creating a two-dimensional table.

A more natural solution might be to create a two-dimensional list, but I’ll
introduce that technique in Chapter 13. Two-dimensional lists raise special
issues in Python.

Here’s what the one-dimensional list would look for a small table:

[1, 2, 3, 2, 4, 6, 3, 6, 9]

Printing three to a line produces a table.

1 2 3
2 4 6
3 6 9

Generating this list of values is the interesting part. It’s a good example of
what you might use a nested for loop to do. Here’s the code:

nums = []
for i in range(1, 4):
 for j in range(1, 4):
 nums.append(i * j)

This looks just like a candidate for list comprehension, aside from the fact
that there are two for loops, one nested inside another. But it turns out you
can use list comprehension for any number of nested loops. This gives us the
following:

nums = [i * j for i in range(1,4) for j in range(1,4)]

Conceptually, you can visualize the list comprehension as follows. The
expression to be added, i * j, appears at the beginning, followed by the two
for statement headers, one after the other—not including the colons.

nums = []
for i in range(1,4):
 for j in range(1,4):
 nums.append(i*j)

nums = [i*j for in range(1,4)for j in range(1,4)]

Printing three numbers to a line is then easy enough. The following pseudocode
shows a way to print three numbers to a line.

Overland_Book.indb 113Overland_Book.indb 113 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration114

For each element of nums,
 Print the element
 If index number MOD 3 is zero,
 Print a blank line

And here are actual Python statements to implement this pseudocode. The
enumerate function, introduced earlier in this chapter, is helpful because it
provides an index number (in this case, set to start at 1) for free.

for i, item in enumerate(nums):
 print(item, end='')
 if i % 3 == 0: # After every 3rd element,
 print() # Print blank line

List Comprehension with Conditional
What if, instead of printing a symmetrical multiplication table, you want to
print an asymmetrical table, which does not duplicate any values? In the case
of our simple 3 × 3 multiplication table, the asymmetrical would look this way:

1
2 4
3 6 9

How do you produce this table? First, start with the nested for loops shown
earlier. Then, add the conditional i >= j… adding that conditional prevents inclu-
sion of values in which j, the column number, is bigger than i, the row number.

nums = []
for i in range(1, 4):
 for j in range(1, 4):
 if i >= j:
 nums.append(i * j)

List comprehension, amazingly, has another piece of syntax that accommo-
dates this if conditional, while making it possible to reduce these five lines
of code to a single virtual line, although this virtual line may carry over into
more than one physical line.

num_list = [i * j for i in range(1,4)
 for j in range(1,4) if i >= j]

Wow! That's concise! Five lines of code replaced by one “virtual” line.

Ps
eu

do

code

Overland_Book.indb 114Overland_Book.indb 114 8/31/17 12:56 PM8/31/17 12:56 PM

List Comprehension with Conditional 115
6

The resulting syntax may look complex, but all we’ve done is add one part,
if i >= j, at the end of the expression. In general, here is the full syntax for
list comprehension:

list = [value for_stmt_header conditional_expr]

Or, more generally, we can say that the following syntax produces an iterable—
a series of values that can be read one at a time:

value for_stmt_header conditional_expr

But to this, we have to add these qualifiers:

 The for_stmt_header appears one or more times, as it can include any num-
ber of nested for statement headers.

 The conditional_expr is optional and appears at most one time.

Example 6.3. Sieve of Eratosthenes 2
Using the principles of list comprehension introduced so far, we can write a
much more succinct version of the sieve of Eratosthenes. This is the program
from Chapter 4, which listed all the prime numbers up to a specified number,
N, by first determining the composite numbers—numbers divisible by some
other number (other than itself and 1). Numbers that are not composite num-
bers are primes.

sieve2.py

n = 20 # Print primes from 2 up to 20.
comp_list = [j for i in range(2, n)
 for j in range(i * i, n, i)]
prime_list = [i for i in range(2, n)
 if i not in comp_list]
print(prime_list)

This program prints all the primes from 2 to 20, in a list. By changing the
value of n in the first line, you can print as many prime numbers as you like.

Here is the output of the program:

 [2, 3, 5, 7, 11, 13, 17, 19]

K
ey

 S
yn

tax

Overland_Book.indb 115Overland_Book.indb 115 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration116
H

ow
 It

 Works

 How It Works
This program features two uses of list comprehension. The first usage replaces
a nested for loop.

comp_list = [j for i in range(2, n)
 for j in range(i * i, n, i)]

As before, the easy way to think about this is to remember that the initial
appearance of j is the value expression; it’s the value produced. The rest of
the code between the brackets consists of the two for statement headers. This
statement is equivalent to the following:

comp_list = []
for i in range(2, n):
 for j in range(i * i, n, i):
 comp_list.append(j)

The effect of these statements, in pseudocode form, is as follows:

For all the numbers i from 2 up to N,
 For every j, where j ranges from i*i to N, increasing i at a time,
 Append j to comps.

In even plainer language, for each number i, do the following: take all the
multiples of i, starting with i*i, and append them to the list named comps.
So, for example, if i is set equal to 2, then comps (composite numbers) will
include 4, 6, 8, 10, etc.—that is, all the multiples of 2. Then all the multiples of 3
are appended to the list starting with 9, and so on.

This means that some numbers—such as 12—might be appended to list
named comps more than once. That may be inefficient, but it doesn’t produce
any wrong results.

The second use of list comprehension uses a conditional.

prime_list = [i for i in range(2, n)
 if i not in comp_list]

This statement says, “For all the numbers from 2 to N, select that number if
it is not in comps; add selected numbers to the list named primes.” You could
write it out as follows:

prime_list = []
for i in range(2, n):
 if i not in comp_list:
 prime_list.append(i)

Ps
eu

do

code

Overland_Book.indb 116Overland_Book.indb 116 8/31/17 12:56 PM8/31/17 12:56 PM

List Comprehension with Conditional 117
6

In other words, if a number 2 or greater is not a composite, it’s a prime. It’s that
simple. The list named primes will include a number from the range 2 to 20, if
and only if that number is not in comps.

Op
ti

m

izing

 Optimizing the Code: Sets
In the preceding discussion, you may have noticed that the list named comps will
end up with multiple copies of the same number. Subsequently, when the program
detects to see if a number is in this list, it does some redundant work. As you deal
with larger and larger ranges, this becomes a greater efficiency issue.

Ideally, you’d use a data structure for comps that stores a given value at
most once. Python does provide such a structure; it’s called the set. You create
a set in almost the same way you create a list.

To use a “set” data structure for the comps, use curly braces instead of
brackets.

comps = {j for i in range(2, n) for j in range(2*i, n, i)}

If you type this statement into the interactive environment, after assigning
a number of your choice for n, you’ll find that none of the values are repeated.
For example, if n equals 20, you get the following set, in which each value is
unique:

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18}

If instead you had created this data structure as a list, it would be longer
and have some duplicate values.

Sets and lists have some important differences.

 An element of a set must be unique within the set. It can appear at most one
time. In contrast, a list may repeat any number of duplicate values.

 Order does not matter in a set, although it definitely matters in lists. For
example, the sets {1, 2, 3} and {3, 2, 1} are considered to be equal. But [1, 2, 3]
defines a different list from [3, 2, 1], because in lists, order is significant.

 Sets are usually displayed in sorted order, if possible, for the sake of pre-
sentation. But a list is not displayed in sorted order unless the values have
been kept sorted—either they were appended in that order or the sort
method has been used. There is usually no need to use a sort method on
a set because that would serve no useful purpose; in fact, sets do not even
support that method.

Overland_Book.indb 117Overland_Book.indb 117 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration118
Ex

er
cis

es

 EXERCISES

Exercise 6.3.1. Revise Example 6.3 so it prompts the number n from the user and
then uses that number to decide how many prime numbers to print.

Exercise 6.3.2. Revise Example 6.3 so that it prints the results by iterating
over the list named primes. Use a for statement to iterate through this list
directly.

Exercise 6.3.3. Write a short program to print the first ten triangle numbers,
using list comprehension to produce this list. A “triangle number” is a number
of the form 1 + 2 + 3… + n = number. For example, 1 + 2 = 3, 1 + 2 + 3 = 6,
and 1 + 2 + 3 + 4 = 10, so the first four triangle numbers are 1, 3, 4, and 10.
(Hint: the Nth triangle number is equal to N * (N + 1) /2. This will give you a
floating-point result. If you want to convert it to an integer, use int(N).)

Exercise 6.3.4. Take the program you wrote for Exercise 6.3.3 and revise it so that
the results only include triangle numbers that are even.

Exercise 6.3.5. Using list comprehension, create two lists, evens and odds. If a
number between 1 and 20 is a multiple of two, include it in evens. Then, using
the clause if i not in evens, build a list containing odd numbers only.

Example 6.4. Pythagorean Triples
The final example in this chapter showcases another famous group of num-
bers in mathematics: Pythagorean triples. These are integers that fulfill the
Pythagorean theorem for right triangles.

a2 + b2 = c2

Do such numbers exist? Yes, infinitely many of them. An obvious case is (1, 0, 1).

1*1 + 0*0 = 1*1

But this is a trivial and uninteresting case. We can limit ourselves to values
of a, b, and c that are all greater than zero. The smallest and best known case
is (3, 4, 5).

3*3 + 4*4 = 5*5
 9 + 16 = 25

Assume we’d like to find all such Pythagorean triples, in which each
value of a, b, or c ranges between 1 and 20. Here is the code, using list

Overland_Book.indb 118Overland_Book.indb 118 8/31/17 12:56 PM8/31/17 12:56 PM

List Comprehension with Conditional 119
6

comprehension, that produces these triples; each such triple is stored in a
tuple of the form (a, b, c).

pythag.py

nums = range(1, 21)
trips = [(a, b, c) for a in nums for b in nums for
 c in nums if a*a + b*b == c*c]
print(trips)

H
ow

 It

 Works

 How It Works
The compactness of this program is, once again, remarkable. The second
statement is shorthand for the following:

trips = []
for a in nums:
 for b in nums:
 for c in nums:
 if a*a + b*b == c*c:
 trips.append((a, b, c))

This doubly nested for loop may look intimidating, but all it says is this:

For every combination of a, b, and c within nums (which is 1 to 20),
 If the relationship a2 + b2 == c2 holds,
 Add the tuple (a, b, c) to the list called “trips.”

So, the program begins by establishing a general range, 1 to 20 inclusive;
you can, of course, specify a much wider range if you want.

Then the program uses a triply nested for loop to consider all possible
combinations of a, b, and c, in which a, b, and c are all in range. Each com-
bination that fulfills the required condition is appended to the master list,
named trips, in this format:

(a, b, c)

This is a tuple. It would have been just as easy to add a list:

[a, b, c]

In that case, the result would have been a series of three-member lists within
a much larger list, in other words, a two-dimensional list. That’s a topic I’ll
return to in Chapter 12.

Ps
eu

do

code

Overland_Book.indb 119Overland_Book.indb 119 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration120

Note Ë A tuple is similar to a list, except that it is immutable and does not
provide all the same functionality. However, its use is more efficient at the
machine-code level, so if you need a list-like data structure that doesn’t need
to be manipulated, tuples are often the right choice.

But don’t confuse “tuple” with Pythagorean “triple.”
 Ç Note

Ex
er

cis
es

 EXERCISES

Exercise 6.4.1. Revise Example 6.4 so that it prints each tuple, one to a line, in the
format a = {:>3}, b = {:>3}, c = {:>3}, where the items in curly braces
each describe a three-character, right-justified print field. (Hint: Review the
section titled “The Format String Method Revisited,” earlier in this chapter, if
needed.) Remember to iterate over the list named trips directly. Also revise
the example so it gets a number n from the user and then uses that to establish
a range for a, b, and c.

Exercise 6.4.2. Using list comprehension, write a program that finds every combi-
nation of integers a and b, in which a and b are numbers ranging from 1 to 10
inclusive, and a*a + b*b is less than 100. For each such combination of a and b,
print a*a, b*b, and their total.

Exercise 6.4.3. Using list comprehension, write a program that finds all Pythagorean
quadruples in which the numbers a, b, c, and d are all in the range 1 to 10,
inclusive, and in which a2 + b2 + c2 = d2. Such numbers do exist, for example,
(1, 2, 2, 3).

Exercise 6.4.4. Is it possible to find “Pythagorean triples” for positive integer val-
ues of a, b, and c, but raised to a power higher than 2? For example, can you
find a, b, and c such that a3 plus b3 equals c3? (Warning: Do not spend too
much time on this. Either you know the answer or you don’t. If you don’t, I
recommend doing an Internet search on Fermat.)

The Importance of Pythagoras

It’s not known with certainty whether the ancient Greek philosopher
Pythagoras invented the theorem that bears his name, although many his-
torians would not begrudge him the credit.

What is known is that there was a Pythagorean cult. This was a myste-
rious group of Greek intellectuals who met in secret, for whom numbers
were their religion.

Interlude

Overland_Book.indb 120Overland_Book.indb 120 8/31/17 12:56 PM8/31/17 12:56 PM

List Comprehension with Conditional 121
6

continued

When I say that numbers had religious significance, I’m not exagger-
ating. The members of this cult considered numbers to be supernatural
entities, almost like gods. Amounts that could be expressed as perfect
fractions—a ratio between two whole numbers—were called rational; the
word rational itself came to signify that there was order in the world.

Every number, they thought, was rational. And therefore the universe
itself was rational.

Can you imagine the horror that members of this cult felt when they real-
ized that there were infinitely many irrational numbers? The square root
of two, for example, which is the length of the diagonal of a square and
therefore important, is not expressible as the ratio of any two whole num-
bers, and this led members of the cult to the suspicion that the universe was
essentially “irrational”—and therefore was a realm of Chaos and Disorder.

For that reason, the discovery that the square root of two was irra-
tional, if mentioned to anyone outside the cult, was grounds for excom-
munication. To reveal that secret was to betray the truth: that maybe the
universe itself was not so reasonable after all.

But for whatever reason, one of the most important equations in all of
mathematics—some might say the most important equation, certainly in
geometry—was named after Pythagoras.

a2 + b2 = c2

And this is true whenever a, b, and c represent the measures of three
sides of a right triangle—a triangle having a 90-degree angle. Side c,
which is opposed to the right angle, is necessarily the longest side:

A

2 = 1 cm

2

C

2 = 2 cm

2

B

2 = 1 cm

2

continued on next page

Interlude

Overland_Book.indb 121Overland_Book.indb 121 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration122

continued

It’s difficult to think of any equation in the history of mankind, even
E=mc2, having so much impact. The field of trigonometry, as well as the
entire profession of surveying, rests firmly upon this equation. The most
important identity in trigonometry is derived from it.

(sin x)2 + (cos x)2 = 1

Even Einstein appealed to the Pythagorean theorem to work out the
mathematics of special relativity.

It’s possible that what we call the Pythagorean theorem was anticipated
by earlier cultures. But the crowning achievement fell to the Greek math-
ematician Euclid, who is known to have published the first proof of the
theorem, which meant that for the first time in history, people could really
know that this equation was true, not merely suspect it.

Euclid’s proof is too long to show here, but here I give a short and sim-
ple geometric proof:

A

B

C

Each of the four “wedges” around the side of the square is equal to (1/2)
times A times B, according to the equation for area of a triangle. The total
area of these wedges is 2AB:

4 * ((1/2) * A * B) = (4/2) * A * B = 2AB

Therefore, you can see that the figure demonstrates the following true
statement for any right triangle:

 (A + B)2 = C2 + 2AB

From this you can easily derive the following:

 A2 + 2AB + B2 = C2 + 2AB

Interlude

Overland_Book.indb 122Overland_Book.indb 122 8/31/17 12:56 PM8/31/17 12:56 PM

123
6

Summary

continued

Now subtract 2AB from both sides, and we get a pleasing final result.

 A2 + B2 = C2

Voilà! We produce the Pythagorean theorem, one of the foundational
pieces of knowledge of the human race.

Chapter 6 Summary
Here are the main points of Chapter 6:

 The built-in enumerate function, applied to an iterable data set, produces an
iterable series of index, item pairs. The function takes two arguments: an
iterable set of data (such as a string or list) and an optional argument setting
the first index number produced. By default, the number is zero.

enumerate(iterable, start=0)

 You usually would use the enumerate function as part of a for statement.

for index, item in enumerate(iterable, start=0):
 indented_statements

 The format-specification string used with the format string method can
include left- and right-justified print fields, such as {:>3} and {:<4}. The
arrow indicates right or left justification; the number indicates the size of
the print field. Here’s an example of a format-specification string with three
print fields:

format_spec_str = '{:>2} plus {:>2} yields {:>3}.'

 Here is an example of how such a string could be used to print output. The
format method, which takes arguments corresponding to the print fields,
applies to the print-specification string. There are three print fields in this
case, so there need to be three arguments.

print(format_spec_str.format(12, 13, 25))

 List comprehension provides a way to collapse a complex for statement into a
single expression. The general syntax is as follows:

list = [expression for_statement_header]

Interlude

Overland_Book.indb 123Overland_Book.indb 123 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 6 List Comprehension and Enumeration124

 This statement corresponds to the following statements:

list = []
for_statement_header :
 list.append(expression)

 Here is an example that creates a list of square numbers, each number being
the square of a number from 1 to 10 inclusive (up to but not including 11).

a_list = [i * i for i in range(1, 11)]

 List comprehension can also include an optional if clause, which determines
whether the expression will be appended during any particular iteration of
the for statement.

 For example, here is a use of conditional list comprehension to create a list
of the square of even numbers. Squares of odd numbers, in this case, are not
included.

a_list = [i * i for i in range(1, 11) if i % 2 == 0]

Overland_Book.indb 124Overland_Book.indb 124 8/31/17 12:56 PM8/31/17 12:56 PM

125

7
Python Strings

Computer programs do more than crunch numbers. They communicate with
the end user. This is what text strings are for: they contain human-readable
information made up of printable characters. One of the most important tasks
of programs is tokenization—breaking down a line of input into individual
words.

In this chapter, we’re going to get inside of strings and show how to effi-
ciently pull them apart and put them together.

 Counting characters

 Stripping trailing and leading spaces

 Splitting lines of input (tokenization)

 Building strings efficiently with join

Creating a String with Quote Marks
In many other programming languages, it’s common to specify strings by
enclosing text in double quotation marks. You can do this in Python, too.

a_string = "To be or not to be."

But in Python you can also use single quotation marks.

a_string = 'To be or not to be.'

There’s no difference between these two statements. The effect is the same.
Although quotation marks are used to delineate the string, they are not part of
the string itself. The actual text is

To be or not to be.

Overland_Book.indb 125Overland_Book.indb 125 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings126

which is what gets printed if you use the print function.

>>>s = 'To be or not to be.'
>>>print(s)
To be or not to be.

But single and double quotation marks are not interchangeable. The begin-
ning and ending marks must match. For example, the following assignments
are both valid:

name1 = 'Brian'
name2 = "Sam"

The following are not valid, because they use quotation marks that don’t
match:

name1 = 'Brian" # Syntax error!
name2 = "Sam' # Syntax error!

Which, then, should you use? It’s more common for Python programmers to
use single quotation marks when given a choice, but that’s not an absolute rule.

Sometimes you may want to embed a quotation mark. Suppose you want to
create the following string:

That's odd, said Alice.

In this case, use double quotation marks, because doing that allows you to
embed the single quote mark.

s1 = "That's odd, said Alice."

Conversely, suppose you want to embed double quotation marks.

She sighed. "That is odd," said Alice.

In this case, it makes sense to use single quotation marks to delineate the
string, because that enables you to embed the double quotation marks (“)
without errors.

s2 = 'She sighed. "That is odd," said Alice.'

What if I want to embed both kinds of quotation marks? One solution is to
use triple quote marks, consisting of three single quotation mark characters (').
This creates a literal quotation, which reads all characters between the triple
quotes (''') as they are. Here’s an example:

s3 = '''She sighed. "That's odd," said Alice.'''

Overland_Book.indb 126Overland_Book.indb 126 8/31/17 12:56 PM8/31/17 12:56 PM

Indexing and “Slicing” 127
7

If you then print s3 using the print function, you’ll get the exact text
between the first and second occurrences of the triple quote marks (''').

>>>s3 = '''She sighed. "That's odd," said Alice.'''
>>>print(s3)
She sighed. "That's odd," said Alice.

Triple quote marks have another special feature. You can place any char-
acters between them, including newline (end-of-line) characters. Here’s an
example:

>>>s4 = '''Now sit back and hear the tale
of "Gilgamesh's Island"!'''

Now, printing this string causes Python to output all the characters between
the triple quotation marks (''') exactly as shown, including newlines.

>>>print(s4)
Now sit back and hear the tale
of "Gilgamesh's Island"!

There’s another technique for handling embedded quotation marks—as
well as other kinds of special characters. You can use the backslash (\) as an
escape character.

>>>s5 = 'Gilgamesh\'s Island'
>>>print(s5)
Gilgamesh's Island.

The backslash has other uses, the most important of which is to embed
newlines (\n) and tab characters (\t). But if you put a backslash before a quota-
tion mark, that mark is considered part of the string.

Indexing and “Slicing”
Python supports many of the same indexing and slicing abilities for strings
that it does for lists. All indexes in Python run from 0 to N-1, where N is the
length of the thing being accessed. So, for example, the string “Hello” would
be indexed as follows:

H
0
<= INDEXES =>

e
1

l
2

l
3

o
4

Overland_Book.indb 127Overland_Book.indb 127 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings128

The substring-accessing syntax in Python echoes the list-member accessing
closely. Here is the syntax:

string_name[index]
string_name[begin : end]
string_name[begin :]
string_name[: end]
string_name[:]
string_name[begin : end : step]

All of these are correct. When the first form is used, the expression gener-
ates a character at the specified index, in which the indexes run from 0 to N-1.

With the other forms—which use slicing—the expression generates a sub-
string starting with the character indexed by begin, up to but not including
the character indexed by end. Again, indexes run from 0 to N-1.

The third argument, if it appears, is the step argument. It specifies how
quickly to move through the string. A step value of 2 means include every other
character. A step value of –1 means to move backward through the string. The
following statement—which deliberately omits the middle argument—reverses
a string, because it begins with the last character and then moves to the left:

rev_str = a_str[-1::-1]

Note that the “double colons” (::) are not double colons at all, but an omitted
second argument. When the second argument is omitted, that means to pro-
cess the string as far as possible in the direction specified…in this case, all the
way to the beginning!

Here are examples of both the first and second kinds of string syntax, using
the interactive development environment, so you can follow along:

>>>s = 'Hello'
>>>print(s[0])
H
>>>print(s[1])
e
>>>print(s[1:3])
el

Take a closer look at these examples. The first index, 0, refers to the first
character, since indexes in Python run from 0 to N-1. The value 1 indexes the
second character, and 2 indexes the third character.

The meaning of [1:3] is “Get all characters beginning with the second
character, up to but not including the fourth character.” Therefore, s[1:3]
produces a substring containing the second and third characters, el.

K
ey

 S
yn

tax

Overland_Book.indb 128Overland_Book.indb 128 8/31/17 12:56 PM8/31/17 12:56 PM

Indexing and “Slicing” 129
7

As with lists, Python supports the use of negative index numbers for
strings. The last character can be indexed as –1, the next-to-last character can
be indexed as –2, and so on. You can index characters in the string “Hello” as
follows:

H
–5

<= INDEXES =>

e
–4

l
–3

l
–3

o
–1

So, for example, you can use –1 to get the last character in the string.

>>>print(s[-1])
o

By the way, it isn’t always necessary to use the print function from within
the interactive environment. I've been using it to demonstrate that the quota-
tion marks are not part of the string. But if you type the name of a string, the
environment prints it with quotation marks (giving preference to single quota-
tion marks) to show that the item is string data.

>>>s[-1]
'o'

Here’s another example. This example creates a string, “DragonFly,” and
then uses slicing to get all the characters except the last three.

>>>s2 = "DragonFly"
>>>s2[:-3]
'Dragon'

This last example of slicing tells Python to get all the characters starting with
the first character in s2, up to but not including the third-to-last character, F.

Conceptually, you can think of it this way:

D
0

Start
with

r
1

a
2

g
3 –3 –2 –1

o
...

n F l y

s[0:–3] = 'Dragon'

Up to but not
including

Overland_Book.indb 129Overland_Book.indb 129 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings130

The next list of examples in this section, assume that the variable s is
assigned the string data DragonFly.

s = 'DragonFly'

Here is a table that shows a list of examples and what they produce:

EXAMPLE DESCRIPTION OUTPUT

s[0] First character. D

s[1] Second character. r

s[2] Third character. a

s[-1] Last character. y

s[-2] Next to last (“second to last”) character. l

s[-3] Third to last character. F

s[0:6] Gets characters starting with the first, up to but not
including the 7th. Means the same as s[:6].

Dragon

s[1:6] Gets characters starting with the second, up to but not
including the 7th.

ragon

s[:6] Gets the first six characters; more specifically, it gets all
characters from the beginning of the string up to but not
including the seventh character (index number 6).

Dragon

s[-3:] Gets the last three characters; more specifically, it gets
characters starting with the third-to-last character, F,
and onward to the end of the string.

Fly

String/Number Conversions
Chapter 3, “Your First Programs,” described how strings can be converted to
numeric form. This is important, because if a user enters a string such as '33',
you can use it for display purposes, but you can’t perform arithmetic on it.

>>>3 + '33' # ERROR! Type mismatch error!

An apparent exception is multiplication. You can (apparently) multiply a string
by an integer; but this does not mean what you might think. Instead, it means to
extend the string through repetition—a special operation enabled in Python.

>>>3 * '33'
'333333'
>>>4 * '1 1'
'1 11 11 11 1'

Overland_Book.indb 130Overland_Book.indb 130 8/31/17 12:56 PM8/31/17 12:56 PM

String/Number Conversions 131
7

Remember that the input function returns a string, and conversion is
necessary if you want to use the data to perform arithmetic. If so, convert to
numeric by using int or float.

n = int(input('Enter a number: '))
print('Three times your number is', n * 3)

But there’s a flip side. Suppose you have a number, and you want to analyze
it as a text string. For example, you might want to count the occurrences of a
certain digit. The solution is to use a str conversion, which converts to string
format. Here’s an example:

n = 800555
s = str(n)
print('This string is', len(s), 'characters long.')

The effect of str in this case is to take the numeric value 800555 as input
and produce “800555”, a digit string consisting of six characters.

You can then apply string-handling functions and operations, such as get-
ting the length of the string with the len function. You can also access indi-
vidual digit characters.

print('The first two characters are', s[:2])
print('The last three characters are', s[-3:]

These statements print the following:

The first two characters are 80
The last three characters are 555

Example 7.1. Count Trailing Zeros
In Chapter 2, “A Python Safari: Numbers,” I showed how Python, with its
“infinite integer” capability, can calculate factorials that are immense. A fun
game to play with factorials is to deduce, mathematically, how many trailing
zeros such a number has.

But when you get to very large factorials (100 factorial has 24 trailing zeros) it
becomes tedious to count trailing zeros by hand. Instead, let’s have Python do it.

Note Ë This example shows how to count trailing zeros one at a time. Example 7.2
shows a faster way of doing the same thing by using the strip method.
Example 7.1 is useful, however, for demonstrating how to index individual
characters.

 Ç Note

Overland_Book.indb 131Overland_Book.indb 131 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings132

This example converts a large number into a string and then counts occur-
rences of the digit character 0 at the end of the string.

Zeros.py

prod = 1
for i in range(1, 51): # For 1 to 50 inclusive,
 prod = prod * i
s = str(prod) # Convert factorial to string s
n = len(s) # n = length of string s
z = 0
while n > 0 and s[n - 1] == '0':
 z = z + 1
 n = n - 1
print('50! is', s)
print('The number of trailing zeros is', z)

Enter these statements into a plain-text file and save it as zeros.py. Then
open it from within the interactive environment and choose the Run Module
command. If you correctly entered the program, you should get this output:

50! is 30414093201713378043612608166064768844377641568960
512000000000000
The number of trailing zeros is 12

Note that 50! is mathematical notation that means the factorial of the
number 50, a rather large number by human standards.

H
ow

 It

 Works

 How It Works
The first thing the program does is calculate factorials as we did in an earlier
chapter. Remember that the meaning of 50 factorial is as follows:

50! = 1 * 2 * 3 *...* 50

You should also remember that the range keyword generates a list of
values, starting with the start argument, up to but not including the end
argument.

Therefore, range(1, 51) generates the following:

[1, 2, 3, 4,...50]

All the loop has to do, then, is to multiply these numbers together. The
variable prod accumulates the product.

Overland_Book.indb 132Overland_Book.indb 132 8/31/17 12:56 PM8/31/17 12:56 PM

String/Number Conversions 133
7

The next few lines do some much-needed initialization, including setting
the initial count of zeros, which I call z, to 0.

s = str(prod) # Convert factorial to string s
n = len(s) # n = length of string s
z = 0

Now, what the second loop does is, in effect, to say, “Check to see if the
number of remaining characters (n) is greater than 0, and if the character cur-
rently indexed by n-1 is a 0 character.”

If both those conditions are true, first reduce n by 1 and then increase the
count of zeros by 1. The effect is to start by accessing index number N-1, refer-
ring to the last character in the string. If this character exists and is 0, then up
the count of zeros and move N one position to the left.

while n > 0 and s[n - 1] == '0':
 z = z + 1
 n = n - 1

I’ve engaged in some defensive programming here. If there isn’t at least one
character remaining, then s[n - 1] results in an out-of-range error—a possi-
bility you want to avoid. The while condition tests the length of the string first.

Python uses “short circuit” logic. The first half of an and condition is
tested, and if it’s false, the second condition is never evaluated. The following
figure illustrates how the two subconditions in this and condition are evalu-
ated, one after the other:

while

Execute statements:

 n = n - 1
 z = z + 1

DONE.

False

False

n > 0?

True

s[n-1] == '0'

True

Overland_Book.indb 133Overland_Book.indb 133 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings134

The point of this program is to use s[n-1] to access the last character. If
this character is a zero numeral, that is, 0, then the loop continues. Each time
through the loop, n is decreased by one, effectively moving s[n-1] one posi-
tion to the left.

The purpose of the variable z is to count the number of successful times
through the loop—the number of zeros at the end of the string. In the case of
the string 3628800, you can see that z is increased two times before the loop
exits, leaving z equal to 2.

'3'
0
<= INDEXES =>

'6'
1

'2'
2

'8'
3

'8'
4

'0'
5

'0'
6

n = len(s) = 7

s[n-1]

Subtracting 1 from n moves
index to the left.

Ex
er

cis
es

 EXERCISES

Exercise 7.1.1. Rewrite all the number crunching to use combined assignment
operations where possible. These include the operators +=, *=, and –=.

Exercise 7.1.2. Instead of calculating the factorial of 50 (notated as 50!), have
it calculate the N factorial, where N is any integer greater than 0. Prompt
the user for this value. Report both the result and the number of trailing
zeros.

Exercise 7.1.3. Instead of using positive indexes to access the “last character” from
within the loop, rewrite the loop so it uses negative indexes, such as –1, –2, etc.
You can start with –1 and just subtract one number from it each time (for
example, moving from –1 to –2), or you can calculate the index based on the
value of z, which increases each time through the loop.

Exercise 7.1.4. Set up a loop around the whole program so that the computer
keeps repeating the operation—asking for N and calculating the results—
until the user enters 0. (Hint: The break keyword is helpful for breaking out
of loops in these situations.)

Overland_Book.indb 134Overland_Book.indb 134 8/31/17 12:56 PM8/31/17 12:56 PM

Stripping for Fun and Profit 135
7

Python Characters vs. Python Strings

If you’ve programmed in C or C++, you’re used to thinking of charac-
ter and strings as different kinds of entities. You’d use double quotation
marks to create a string and single quotation marks to refer to an individ-
ual character.

char my_str [] = "i am a string.";
my_str [0] = 'I';

For the C programmer, one of the obstacles to learning Python is that
Python accepts both double and single quotation marks as meaning the same
thing. The difference is mostly a matter of convenience.

But—and the importance of this principle can’t be overstated—single
characters are accessed in Python as strings of length equal to 1. For
example, the following are valid statements in Python:

if my_str[1] == "A":
 print('Second char. is an "A".')

Does this equivalence—single characters are strings of length 1—cause
confusion? Generally no. Python operators and functions consistently fol-
low this principle. They all work on strings, not individual characters,
although those strings may be of length 1.

Efficiency is another matter. The C family of languages treats individ-
ual characters not as strings but as numeric codes. In Chapter 8, you’ll
learn how to get the numeric code corresponding to any character, but in
general, Python treats characters as substrings.

Because character access is a little less direct in Python, you do pay a
small penalty in terms of execution speed. But with today’s modern com-
puters, this difference is small. Nonetheless, the need for super-efficiency
is a reason that commercial software is typically written in C or C++.

Stripping for Fun and Profit
In addition to the indexing and splicing operations shown earlier, this chapter
introduces three important methods unique to strings.

 strip, which applies to a string and returns another string that is stripped of
trailing and leading characters (which are typically zeros or spaces)

Interlude

Overland_Book.indb 135Overland_Book.indb 135 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings136

 split, which applies to a string and returns a list of smaller strings

 join, which applies to a separator string, takes a list of strings as an argu-
ment, and returns one large string

This chapter also highlights the use of the len function, which returns the
length of a string, list, or other collection.

Let’s look at strip first. This method can be used to strip any trailing or
leading character, but it’s most commonly used on spaces. Suppose you have
the following string:

king_str = ' Henry V '

This has both leading and trailing spaces. To produce a stripped string,
apply the strip method.

king_str = king_str.strip()

And here’s what happens:

H e n r y V

H e n r y V

string.strip()

There is an internal space that is untouched; only trailing and leading
spaces are stripped away. Here’s the formal syntax:

new_string = string.strip(chars)

The chars is a string specifying which characters to strip. If chars is not
specified, the default value is a “whitespace,” which matches both blank
spaces and tab characters ('\t').

Note that if chars is specified, the action of strip is to remove each and
every instance of any character in chars that are trailing or following the rest
of the text, regardless of what order they are found in. They don’t necessarily
have to appear together. Here’s an example:

s = '***+++Hello**there+++*+**!'
s = s.strip('*+!')

Printing s now produces this:

Hello**there

K
ey

 S
yn

tax

Overland_Book.indb 136Overland_Book.indb 136 8/31/17 12:56 PM8/31/17 12:56 PM

Stripping for Fun and Profit 137
7

Example 7.2. Count Zeros, Version 2
This next example demonstrates how a use of the strip method can be used
to make the previous example, Example 7.1, substantially shorter. The front
end of the program is similar; it takes a number, calculates a factorial, and
converts the result into a string.

But the second half of the program—counting the trailing zeros—comes
down to one simple line of code, thanks to the len function and the strip
method.

Zeros2.py

n = int(input('Enter number to calc. factorial for:'))
prod = 1
for i in range(1, n + 1): # For 1 to n inclusive,
 prod = prod * i
s = str(prod) # Convert fact. to string
z = len(s) - len(s.strip('0'))
print(n, 'factorial is', s)
print('The number of trailing zeros is', z)

H
ow

 It

 Works

 How It Works
The main work of this program is done by a single statement, which shows
how incredibly succinct and powerful Python can be.

z = len(s) - len(s.strip('0'))

Let’s take the example of 10 factorial. Converted to a string, it looks like this:

'3628800'

This string, stripped of trailing 0 numerals, looks like this:

'36288'

Now it’s only necessary to subtract the length of the second string from the
first. This yields the correct answer, which is 2. Isn’t that amazing?

Ex
er

cis
es

 EXERCISES

Exercise 7.2.1. Put a while loop in the program that causes it to operate repeat-
edly until the user enters 0. Also, replace any assignment statements (=) with
combined-op statements (*=, etc.) wherever possible.

Overland_Book.indb 137Overland_Book.indb 137 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings138

Exercise 7.2.2. Can you use a similar technique to calculate the number of digits
of precision in the default Python floating-point format? Try calculating 1/3
and getting the length of the resulting string. Finally, use a technique similar
to that in Example 7.2 to determine the number of trailing 3 digits.

Let’s Split: The split Method
The split method for strings is one of the most powerful weapons in the
Python arsenal, especially when getting a line of input. Consider a typical task,
such as getting three names.

line_str = input('Enter names of the members:')

Let’s suppose the session goes as follows, with user input (as usual) high-
lighted in bold.

Enter names of the members: Tom Bob Joe

Now you have a single text string containing “Tom Bob Joe”—what can
you do with it? The easiest way to evaluate it is to use the split method.

list_of_guys = line_str.split()

The result of this statement is to create list_of_guys as a list containing
three strings.

T o m B o b J o e

 list = str.split()

list[0] list[1] list[2]

Now you have a list of strings, each of which contains one of the three
names, while spaces (by default) are thrown out. More formally, here is the
split syntax:

list = source_string.split(delims)

The split method generates a list. The delims is a string containing one
or more delimiter characters, which are used to separate one substring from
another. Only one delimiter may be specified, but it may be multiple charac-
ters long. By default, the delimiter is a whitespace, which matches any combi-
nation of blank spaces and/or tab characters.

Ke
yw

ord

Overland_Book.indb 138Overland_Book.indb 138 8/31/17 12:56 PM8/31/17 12:56 PM

Building Strings with Concatenation (+) 139
7

Here’s an example:

>>>s = 'A man, a plan, a canal, Panama!'
>>>a_list = s.split(',')
>>>for str1 in a_list:

print(str1)

A man
 a plan
 a canal
 Panama!

These string operations interpret a comma as the separator between sub-
strings, because the delims string contains a comma. The example may still
seem incomplete, because three of these four substrings contain a leading space.

However, thanks to previous sections in this chapter, we know how to get
rid of leading spaces: just strip each string before printing it.

>>>for str1 in a_list:
print(str1.strip())

A man
a plan
a canal
Panama!

And now the display is perfect. (Another solution, which would work in this
particular case, would be to specify a space and a comma [,] as the delimiter.
This would require both a space and a comma between each item.)

Building Strings with Concatenation (+)
Python strings are immutable, as are certain other data types such as tuples.
This has important practical implications. You cannot change part of a string.
Suppose you have a string referred to by the variable named s.

s = 'hello'

We might like to change just the first character, capitalizing it. It would be
convenient to do the following:

s[0] = 'H' # Error! Not a legal assignment target

The problem is that you can’t modify the contents of string. But the follow-
ing is valid:

s = 'Hello' # This is completely fine.

Overland_Book.indb 139Overland_Book.indb 139 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings140

What’s going on here? This may seem an inconsistency. But strings are
immutable in Python.

The solution is to assign a new string altogether, which does the following: 1)
it breaks the old association the variable had, if any, and 2) it associates
the variable with completely new string data. The old string data itself is
untouched, but now it’s ignored! Here’s an example:

s = 'Hello'

So, how do you build up completely new strings out of old? Concatenation,
although not always the most efficient solution, comes to our aid. Here’s an
example:

s1 = 'Dragon'
s2 = 'Fly'
s3 = s1 + s2
print(s3)

This produces the following:

DragonFly

When you use concatenation, Python does not automatically insert a blank
space. If you want to place two or more words into one string, you need to
account for blank spaces yourself.

>>>s3 = s1 + ' ' + s2
>>>s3
'Dragon Fly'

What happens here is that s1, a blank space, and s2 are all used to create a
new string. That string is then associated with the name s3.

You can also use a combined assignment-concatenation operator (+=).

s1 = 'live'
s1 += ' and let live'

This last line does the same as the following statements, which work
because assignment, remember, builds a new string, breaks the old associa-
tion that s1 had, and associates s1 with the new string.

s1 = 'live'
s1 = s1 + ' and let live'

This looks just like the append method for lists, but although the effect
may be similar, the implementation is different.

Overland_Book.indb 140Overland_Book.indb 140 8/31/17 12:56 PM8/31/17 12:56 PM

Building Strings with Concatenation (+) 141
7

Later in this chapter, I’ll show how you can achieve more efficient results
by using the join method. For now, however, remember that you can build up
strings through concatenation.

my_string = ''
for i in range(5)
 my_string += 'hello '

In this example, it’s necessary to start with an empty string so that it can
appear on the right side of an assignment:

my_string = mystring + 'hello '

Example 7.3. Sort Words on a Line
The following program is a variation on the sort program from Chapter 5. The
difference is that in this case all the words are entered on a single line, which
is then split into a list.

sort2.py

in_str = input('Enter items:')
a_list = in_str.split()
a_list.sort()
print('Here is the sorted list...')
for s in a_list:
 print(s)

This is an incredibly short program, thanks to Python’s programming
power. All it does is get a line of string input, split it into a list, sort the list,
and print. That’s it. Done. Amazing. Don’t you wish everything in life were
this easy?

Here’s a sample session:

Enter items: John Paul George Ringo Brian
Here is the sorted list...
Brian
George
John
Paul
Ringo

Overland_Book.indb 141Overland_Book.indb 141 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings142
H

ow
 It

 Works

 How It Works
This example program is so incredibly simple, there’s almost nothing to say
about it. The interesting lines are the ones using the split and sort methods.
The following uses split:

a_list = in_str.split()

The call to split creates a list consisting of the individual names John,
Paul, and so on. Because the separator argument is omitted, the default value
of a whitespace is used as a separator—that is, to interpret input. Here’s how
Python displays this list:

['John', 'Paul', 'George', 'Ringo', 'Brian']

Now the list needs to be sorted. This is a piece of cake, because all we have
to do is call the sort method.

a_list.sort()

Ex
er

cis
es

 EXERCISES

Exercise 7.3.1. Revise Example 7.3 so that instead of accepting a list of names sepa-
rated by spaces, it accepts a list of names separated by commas. Note that apply-
ing the split method may result in strings that contain a leading space or two,
so use the strip method on each element so that there are no leading spaces.

Exercise 7.3.2. Revise Example 7.3 so that instead of printing the sorted results
one to a line, it prints out all the results on a single line, items separated by a
single space.

Exercise 7.3.3. Revise the result of the previous exercise so that instead of printing
the elements one at a time, it builds a single string. (Hint: Consult the previous
section, “Building Strings with Concatenation (+).”) Then print the entire line
of output by using one print statement. Do you find runtime performance
noticeably improves?

Exercise 7.3.4. Instead of printing a list of items separated by spaces, as in the
previous examples, use a comma-separated list. But do not print a comma
after the last item. (Hint: use [:-1] or [:-2] to select everything but the final
space or two. However, you should test the length of the string before apply-
ing such an operation, because an out-of-range index for an empty string will
cause a runtime error.)

Overland_Book.indb 142Overland_Book.indb 142 8/31/17 12:56 PM8/31/17 12:56 PM

The join Method 143
7

The join Method
Some of the statements in the previous section involved building strings, one
substring or group of characters at a time. But Python provides the join
method for much more efficiently joining groups of characters together to
form a single string.

Assume that a_list is a list containing four strings.

>>>a_list = ['John', 'Paul', 'George', 'Ringo']

The join method can be used to generate a string that combines the ele-
ments of this list, separated by commas.

>>>', '.join(a_list)
'John, Paul, George, Ringo

The same method can also be used to generate a string that combines ele-
ments of this list, but this time separated by hyphens (-).

>>>'-'.join(a_list)
'John-Paul-George-Ringo

Here’s an illustration of how the join method works:

J o h n – P a u l – G e o r g e – R i n g o

'-'.join(a_list)

a_list[0] a_list[1] a_list[2] a_list[3]

Here’s a syntax summary for join. The following produces a new string,
containing all the strings in the list:

separator_string.join(list_of_strings)

Remember that the join method is a method of strings, not lists, and
it’s applied to the separator string, which is usually no more than a char-
acter or two.

Here’s another example:

>>>sep_string = ', '
>>>print(sep_string.join(a_list))
John, Paul, George, Ringo

K
ey

 S
yn

tax

Overland_Book.indb 143Overland_Book.indb 143 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings144

Using a different set of separator characters, of course, changes the result-
ing string that’s produced by the join method.

>>>sep_string = '---'
>>>print(sep_string.join(a_list))
John---Paul---George---Ringo

One of the conveniences of the join method is that it automatically avoids
printing the separator characters at the end of the list. It knows enough to only
print the separator characters between items, not at the end.

To print the results shown earlier, you’d need to do the following if you
didn’t have join…in particular, you’d need to trim off the last two characters
from the result so that an extra comma and space do not get included.

s = ''
for thing in a_list:
 s = s + thing + ', '
if len(s) > 1:
 s = s[:-2]

But it’s clearly much more efficient to use the join method, don’t you
think? Not only does it require fewer lines of code, but it’s more efficient in
terms of runtime performance.

s = ', '.join(a_list)

Isn’t that far more convenient?
If we print the string, we get the following:

John, Paul, George, Ringo

Chapter 7 Summary
Here are the main points of Chapter 7:

 You can use either single quotation marks or double quotation marks to delin-
eate a text string, but the quotation marks must match.

s1 = 'To be or not to be'
s2 = "That is the question"

 You can embed a single quotation mark in string delineated by double quota-
tion marks, and vice versa.

s1 = 'My name is "Money." '
s2 = "They call me 'Mr. Bill.' "

Overland_Book.indb 144Overland_Book.indb 144 8/31/17 12:56 PM8/31/17 12:56 PM

145
7

Summary

 Remember that the quotation marks used for delineation are not part of the
actual string. The previous examples, when printed, result in the following
text being output:

My name is "Money."
They call me 'Mr. Bill.'

 Strings can be indexed just as lists can, and the index numbers run from 0 to
N-1, where N is the length of the string. You cannot assign to parts of a string,
however, because strings are immutable, which means they cannot be modified.

a_str [0] = 'H' # Error! Assignment not allowed.

 But that last rule doesn’t stop you from assigning directly to the string variable
itself, which has the effect of associating the name with an entirely new string.
Therefore, no string is being modified; rather, the variable is reassigned to
refer to new data.

a_str = 'This is an utterly new string.'

 You can use slicing to produce parts of a string, just with lists. [start: end]
produces a string beginning with the start index, up to but not including the
end index.

 [:end] produces a slice up to but not including the end index.

 [start:] produces a slice beginning with the start index and including the
remainder of the string.

 Strings can also be indexed with negative numbers. –1 refers to the last char-
acter, and –2 refers to the next-to-last character, and so on.

 Slicing also supports a third argument, step, which lets you specify how
many characters at a time to move through the string. Use of this argument
enables you to reverse a string as follows:

reversed_s = s[-1: :-1]

 The strip method produces a string without leading or trailing instances of a
character, such as a blank space (which is the default character to strip).

king_str = ' Henry V '
print(king_str.strip())

 The split method takes a long input string and returns each substring, as delin-
eated by the specified characters (and again, a blank space is the default character).

s = input('Enter a list of names:')
a_list = s.split()

Overland_Book.indb 145Overland_Book.indb 145 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 7 Python Strings146

 The join method applies to a separator string, such as a comma (,) or hyphen
(-). This separator is used to join the elements in a list.

s = '-'.join(a_list)
print(s)

This might produce output such as the following:

John-Paul-George-Ringo

Overland_Book.indb 146Overland_Book.indb 146 8/31/17 12:56 PM8/31/17 12:56 PM

147

8
Single-Character Ops

The previous chapter showed how easy it is to input, build, and pull apart
strings in Python. This chapter is about manipulating individual characters.

Normally, you don’t need to do this. The virtue of Python strings is how
easy they are to operate on at a high level. But certain applications need to
test and evaluate single characters. This chapter applies those techniques in
specialized applications.

 “Case-free” comparisons

 A palindrome tester, with which you can test strings like “Madam, I’m Adam”

 Encryption and decryption of secret messages

Naming Conventions in This Chapter
As I mentioned in Chapter 2, Python lets you use any variable name (subject to
very few limitations, such as having to start with a letter or underscore) with
any data. Unfortunately, because there are no declarations, there’s no way to
look up the data type for any variable except by using the type function. (One
good place to use it is when you are in IDLE, the interactive environment.)

That’s why all through this book, I’ve tried to stick to consistent naming
conventions to help make the code more readable. The following are conven-
tions especially relevant to this chapter:

NAMING PATTERN DATA TYPE

xxx_str; also or variations
on s such as s, s1, s2, etc.

A Python string.

continued on next page

Overland_Book.indb 147Overland_Book.indb 147 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops148

NAMING PATTERN DATA TYPE

xxx_ch A single-character Python string. There is no difference
between such strings and longer ones, except length. But
the difference is important in this chapter, because some
functions are designed to work on strings of length 1.

xxx_list A Python list. The lists in this chapter are all lists of strings.

Other variables, not covered by the previous conventions, are almost always
used with integers.

Accessing Individual Characters (A Review)
First, let’s review a basic principle from Chapter 6. There is no separate char-
acter type in Python; characters are simply one-length strings. For example,
you can test a string, such as dog, as follows:

>>>s = 'dog' # Assign a string value.
>>>s == 'dog' # Test it.
True

Given that s contains the string 'dog', you can meaningfully test the first
character by using indexing.

>>>s[0] == 'd' # Test first character.
True

A character in Python is treated as a string of one length in size. This
approach keeps things simple in Python. Indexing a string in Python does not
produce a different data type (such as char in C or C++). A single character is
represented in a string—it’s just a string one character in length.

There are, however, cases in which you might want to translate an individ-
ual character into its ASCII character code (a numeric equivalent). Encryp-
tion of coded messages—as you’ll see in the latter half of the chapter—is such
a case.

Getting Help with String Methods
Python has so many functions and methods that apply to strings that it’s hard
to remember them all. Fortunately, the interactive environment provides a

Overland_Book.indb 148Overland_Book.indb 148 8/31/17 12:56 PM8/31/17 12:56 PM

Testing Uppercase vs. Lowercase 149
8

useful help system. To get a printout of all the functions and methods sup-
ported for Python strings, type the following at the prompt:

>>>help(str)

The resulting printout is a syntax summary, not a tutorial. You may want
to try to look up these functions and methods in this book. You can get similar
help for list functions and methods by typing the following:

>>>help(list)

In both cases, the help printouts will probably be much too long to display
on one screen. But you can scroll the window up and down to view all the
output.

Testing Uppercase vs. Lowercase
One of the most useful things you can do with a character is test its case. Is
a character uppercase (for example, H) or lowercase (for example, h)? The
following four methods are all Boolean, meaning they return either True or
False. But although they are often used on single-character strings, they can
be used on longer strings as well.

METHOD BEHAVIOR

string.isupper() Returns True if all letters in the string are uppercase letters
and if there is at least one such letter.
With a one-character string, this method just tests whether
or not it is an uppercase letter.

string.islower() Returns True if all letters in the string are lowercase letters
and if there is at least one such letter.
With a one-character string, this method just tests whether
or not it is a lowercase letter.

string.istitle() Returns True if the beginning of each word begins with a
capital letter and if there is at least one such letter.
With a one-character string, this method just tests whether
or not it is an uppercase letter.

string.isalpha() Returns True if every character in the string is alphabetical—
that is, a letter. For a one-length string, obviously, this just
tests the one character.

Overland_Book.indb 149Overland_Book.indb 149 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops150

For example, the following statements test whether the fourth character in
a string is an uppercase letter:

>>>s = 'TheBeatles'
>>>if s[3].isupper():
 print('Fourth char. is uppercase letter.')

Fourth char. is uppercase letter.

But the istitle() method, if applied to the whole string, TheBeatles,
returns False because one of the uppercase letters (B) immediately follows a
lowercase letter (e).

>>>s.istitle()
False

Both isupper and islower return False in this case, because the string
TheBeatles does not consists of all uppercase or all lowercase letters.

>>>s.isupper()
False
>>>s.islower()
False

But testing the first character, of course, reveals that it is uppercase, as
expected. Remember that indexing a string produces another string—but a
shorter string of only character in this case.

>>>s[0].isupper()
True

Finally, here’s an example of the isalpha method, which will become useful
in an upcoming exercise. Calling isalpha returns True if all the characters in
the string are alphabetic.

>>>s = 'Car'
>>>s.isalpha()
True

Converting Case of Letters
It’s frequently useful to convert between uppercase and lowercase letters.
These operations are more useful than you’d think. For example, what do you
do if you want to perform a case-insensitive comparison? Remember that tests
for equality use the double equal signs (==).

Overland_Book.indb 150Overland_Book.indb 150 8/31/17 12:56 PM8/31/17 12:56 PM

Testing for Palindromes 151
8

s1 = 'dog' # Assignment (=)
s2 = 'Dog'
s1 == s2 # Test for equality (==)
False

The problem is, I wanted the comparison of s1 and s2 to match, because
the letters were in fact the same—they just had a different case.

The solution is to convert both strings to all uppercase and then compare
them. Here’s an example:

s1.upper() == s2.upper()
True

Alternatively, you could convert both to lowercase and then compare.

s1.lower() == s2.lower()
True

Note, however, that the first technique (convert to upper) is strongly recom-
mended because it works much more correctly with international character sets.

Here's a summary of what these two methods do:

METHOD BEHAVIOR

string.upper() Produces a new string formed by converting every
character in the target string to uppercase if it’s a letter.
Nonletter characters are left as is.

string.lower() Produces a new string formed by converting every
character in the target string to lowercase if it’s a letter.
Nonletter characters are left as is.

Note that, as with the other methods, you can use it on a single-character
string (that is, a string of length 1) or on larger strings.

Testing for Palindromes
Now we get to the fun part of the chapter. In the previous chapter, I featured a
famous palindrome.

A man, a plan, a canal, Panama!

Here’s another famous palindrome. It consists of the very first words that
Adam said upon seeing Eve for the first time.

Madam, I'm Adam.

Overland_Book.indb 151Overland_Book.indb 151 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops152

Do you see what’s special about these sentences? They contain the same let-
ters whether read backward and forward. If you ignore punctuation, capitaliza-
tion, and internal spacing, a Palindromic string is equal to the reverse of itself.

A good test for string-handling functions is to prompt the user for a line of
input and report whether or not a palindrome was entered.

You can do this with a simple two-step process:

1 Convert the input string into an intermediate string that is stripped of spaces and
punctuation and in which all the letters are converted to all uppercase.

2 Write a test that compares the first half of the string to the last; if the string is
equal to its own reversal, it is a Palindrome.

For example, take Adam’s famous words to Eve (“Madam, I’m Adam”) and
then convert to uppercase.

MADAM, I'M ADAM

Then remove all nonletters. This produces the following:

MADAMIMADAM

It’s then easy to test this string for being a palindrome.

Example 8.1. Convert Strings to All Caps
In this example, we’ll convert a string to all-uppercase form, with nonletters
removed.

convert.py

input_str = input('Enter input string: ')
output_str = input_str.upper()
s = ''
for ch in output_str:
 if ch.isalpha():
 s = s + ch
print(s)

Here’s a sample session. The output is a converted string. That string is one
that we can test directly for being a palindrome, as I’ll show in the next section.

Enter input string: Madam, I'm Adam
MADAMIMADAM

Overland_Book.indb 152Overland_Book.indb 152 8/31/17 12:56 PM8/31/17 12:56 PM

Testing for Palindromes 153
8

H
ow

 It

 Works

 How It Works
This is a short program, with two tasks. The first is to convert all letters to
uppercase.

output_str = input_str.upper()

The other task is the more challenging one because it’s not directly supported
by Python: we need to delete all nonletters from the string. You can’t delete or
insert characters directly because strings are immutable; they can’t be changed.

But you can build an entirely new string by inspecting the contents of an old
string and then either including that character or not.

When building a new string like this, it’s usually necessary to start with an
empty string:

s = ''

From within the loop, the string data referred to by the variable s is built
up, one character at a time. Or, more accurately, a new string is created over
and over, and each time the variable s is assigned to refer to this ever-growing
amount of string data.

for ch in output_str:
 if ch.isalpha():
 s = s + ch

The following pseudocode summarizes what the loop does:

For each letter in output_str,
 If that letter is alphabetic,
 Place that letter onto the end of string s

If you examine the code, you’ll see why s had to be initialized to an empty
string. Consider the following statement, placed at the deepest level of this
simple program:

 s = s + ch

Do you see why s had to be initialized to an empty string? Because other-
wise, in this innermost statement, s would appear on the right of the assign-
ment without previously being set, and that would produce an error the first
time Python attempted to execute this statement.

From now on I’ll assume you understand this principle. Lists and strings (as
well as other complex data types) have to be initialized to some value—even if
it is an empty list or empty string—before they appear on the right of an assign-
ment or are used in any other operation, such as the append method for lists.

Ps
eu

do

code

Overland_Book.indb 153Overland_Book.indb 153 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops154
Op

ti
m

izing

 Optimizing the Code
In the preceding section, the use of string concatenation (+) works perfectly
well. But in general, it’s better to use the join method to bring a series of
strings together. In applications that build a string out of a great many small
strings, it’s possible to see a performance difference.

So, you’ll want to get into the habit of preparing for a join operation by
appending each string into a list and then calling the join method.

a_list = []
for ch in output_str:
 if ch.isalpha():
 a_list.append(ch)
s = ''.join(a_list)

This version is a line longer, so you might not think it worth the effort. But
there are ways of making it more compact. The following two lines take advan-
tage of list comprehension, the technique explained at length in Chapter 6. This
works because strings, just like any collections, are iterables.

a_list = [ch for ch in output_str if ch.isalpha()]
s = ''.join(a_list)

That’s the most compact version yet!

Ex
er

cis
es

 EXERCISES

Exercise 8.1.1. This is a review question, to which you should already know the
answer: strings are immutable. How, therefore, can we assign new values to s,
which refers to string data?

Exercise 8.1.2. Revise Example 8.1 to use combined assignment operators (+=, *=, etc.)
wherever possible. Better yet, implement and test the “list comprehension”
version described in the section “Optimizing the Code.”

Example 8.2. Completing the Palindrome Test
Utilizing the Python code in Example 8.1 as a starting point, it’s now an easy
matter to complete a program that tests an input string and returns True or
False depending on whether or not it’s a palindrome.

The strategy, remember, is to take an input string, convert the letters to all
uppercase, and omit all the nonalphabetic characters. So this input string

Madam, I'm Adam.

Overland_Book.indb 154Overland_Book.indb 154 8/31/17 12:56 PM8/31/17 12:56 PM

Testing for Palindromes 155
8

…produces the following string after conversion:

MADAMIMADAM

Now, the final trick is to see if the string is equal to the reverse of itself.
There are several ways to do this. I’m going to show you how Python makes
this incredibly easy. But first, let’s do it the obvious way: the way that a C or
C++ programmer would solve the problem. Then I’ll show the Python way.

The straightforward way is to compare the first and last characters, one at
a time, and then move inward, comparing the second and second-to-last char-
acters. Continue until you reach the middle.

With the string "MADAMIMADAM", here’s how the algorithm would proceed.

1 Compare the first letter to the last. Both are "M".

2 Compare the second letter to the next-to-the-last letter. Both are "A".

3 Compare the third letter to the third-to-the-last letter. Both are "D".

Finally, when we reach the middle of the string, we stop. Also, if a mis-
match is found, then the code can stop the comparisons immediately. But if all
the comparisons check out, the string is a palindrome.

The following figure illustrates the first three comparisons out of the five needed:

M A D A M I M A D A M

Where is the correct stopping point? A little reflection suggests that the
number of comparisons is exactly half the length, rounded down, because if
the length is odd and there is an extra character in the middle of the string,
that character is simply ignored.

Chapter 2 explained how double forward slashes (//) indicate integer division,
which automatically rounds down. The number of comparisons we need to do is

len(string) // 2

Here’s another example. The string RACECAR is a palindrome, which can be
established by performing comparisons between letters at the two ends. Because
the length of the string is 7, the number of comparisons needed is 7//2, equal to 3.

R A C E C A R

Overland_Book.indb 155Overland_Book.indb 155 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops156

We can now write the code for the Palindrome-testing program.

palin.py

From Example 8.1: converts to all upper.

input_str = input('Enter input string: ')
my_str = input_str.upper()
a_list = [ch for ch in my_str if ch.isalpha()]
s = ''.join(a_list)

This part is NEW. Tests for matching letters.

is_palin = True # Assume True until proven false.
for i in range(len(s)//2):
 if s[i] != s[-i-1]: # If mismatch,
 is_palin = False

if is_palin:
 print('String is a palindrome.')
else:
 print('String is NOT a palindrome.')

H
ow

 It

 Works

 How It Works
The heart of the program is the loop that tests for a mismatch between a char-
acter near the front and a character near the end. If there is a mismatch, it
breaks and sets the Boolean condition (is_palin) to False.

 if s[i] != s[-i-1]: # If mismatch,

The starting position, s, is 0. The effect of this loop is therefore as follows:

1 Compare s[0] to s[-1].

2 Compare s[1] to s[-2].

3 Compare s[2] to s[-3].

4 And so on.

The following figure shows how this works with the palindromic string
RACECAR:

Overland_Book.indb 156Overland_Book.indb 156 8/31/17 12:56 PM8/31/17 12:56 PM

Testing for Palindromes 157
8

R

s[0] ->
Increase by 1 Decrease by 1

A C E C A R

<- s[-1]

Op
ti

m

izing

 Optimizing the Code
Now I’m going to explain the more efficient way of testing a palindromic string,
the Python way! You can use the slicing syntax to specify the exact reversal of a
string. This use of slicing syntax deliberately omits the second argument.

rev_str = a_str[-1::-1]

You might recall from Chapter 7, “Python Strings,” that there are up to
three arguments to the slicing syntax.

 The first argument specifies the starting point. A starting point of –1 means to
start with the last character of the string.

 The second argument is omitted in this case, which means to continue as long
as possible (that is, there is no stopping point except running out of characters).

 The third argument is the step argument, which determines which character
to get next. A step value of –1 means to move backward through the string.

Some testing of this syntax should convince you that it works.

>>>'dog'[-1::-1]
'god'
>>>'Dog backwards is goD'[-1::-1]
'Dog si sdrawkcab goD'
>>>'ABC'[-1::-1]
'CBA'

So, to test whether a string is its own reversal, all you need is the following
statement, which replaces the for loop:

is_palin = (s == s[-1::-1])

Ex
er

cis
es

 EXERCISES

Exercise 8.2.1. A general rule of good programming is to never execute more
statements than you need to. Once a mismatch is found—that is to say, one

Overland_Book.indb 157Overland_Book.indb 157 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops158

of the comparisons found two characters not equal to each other—the loop
can quit early. Utilize this principle to make the program more efficient at run
time. (Hint: Remember what the break statement does.)

Exercise 8.2.2. Python was created with the assumption that small increases in
runtime efficiency are not significant, but it’s not a bad idea to write more
efficient code just on general principle. If you look at the second loop, it
appears to calculate the limit of the range, len(s)//2, over and over. Revise
the program so as to guarantee that this number is never calculated more
than once.

Exercise 8.2.3. Revise the program so that it runs any number of times, quitting
execution only when the user enters an empty string—that is, presses Enter
without typing any input.

Famous Palindromes

It’s fun to develop new palindromes, although it takes a lot of trial and
error. The programs presented in this chapter can help, by enabling you to
quickly test strings. This chapter has featured several of the better known
palindromes.

The first one describes the presidency of Teddy Roosevelt, while the
second one may be a quote from the Garden of Eden.

A man, a plan, a canal, Panama!
Madam, I’m Adam.
Racecar.

The word racecar is one of a number of one-word palindromes. This,
in turn, led me to create a silly one of my own.

I’m a racecar, Ami!

Here are some other palindromes, starting with one of the most famous
of all. Suggestive of what Napoleon might have said, it may be the most
famous one in English (although Napoleon was French).

Able was I ere I saw Elba.
Amore, Roma.
A Toyota’s a Toyota.
Are we not drawn onward to new era?
A slut nixes sex in Tulsa.
Wow, Bob, wow!

Interlude

Overland_Book.indb 158Overland_Book.indb 158 8/31/17 12:56 PM8/31/17 12:56 PM

Converting to ASCII Code 159
8

Converting to ASCII Code
Now we’re going to switch to an exciting subject: techniques for encrypting
(encoding) and decrypting (decoding) a string.

The simple techniques presented here would be easy for the CIA and NSA to
crack. But no matter which technique you use to encrypt messages, your program-
ming language needs to examine the mathematical value of individual characters.

You’ve probably read somewhere that a computer can store only numbers.
More specifically, it can only store 1s and 0s. This is true, but the binary num-
ber system enables a computer to use patterns of 1s and 0s to represent much
larger numbers. Decimal numbers (such as 27 or 99) are typically used for
input and output.

Note Ë It’s easy to write programs that convert back and forth between binary
and decimal representation. So don't worry about the difference.

 Ç Note

How are letters, punctuation, and numerals represented inside a com-
puter? Computers use a special coding system for this purpose called ASCII.
Python actually uses Unicode, which is an extended coding system used
for internationalization. But it’s a superset of ASCII, and the principles are
roughly the same.

The system translates back and forth between Unicode, which is numeric,
and printable characters, which can actually be displayed on the screen. To
get a code for a character, use the Python ord function.

ord(one_char_string)

This function takes one argument, one_char_string, which must be a
string, but it must have a length of exactly one character. The function pro-
duces an integer value.

For example, this function can be used to produce the numeric codes for
the first five letters. Consider the following loop:

for ch in 'abcde':
 n = ord(ch)
 print(ch, n)

This loop applies the ord function to each of the letters abcde and then
prints the resulting value next to the letter itself. Here are the results:

a 97
b 98

K
ey

 S
yn

tax

Overland_Book.indb 159Overland_Book.indb 159 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops160

c 99
d 100
e 101

If you look closely at this list, you should see an obvious pattern. If you
don’t see it right away, then you’re thinking too hard. The pattern is just that
these numbers are all in sequence.

When, later, we devise an encryption system, that fact is going to be
important.

You can use almost identical code to list the values of the first few capital let-
ters. Use a loop identical to the one just shown, except instead of using abcde,
use ABCDE. The results are as follows:

A 65
B 66
C 67
D 68
E 69

There are several things you can count on with regard to character code:

 The codes for lowercase letters are in a sequence, from a to z.

 The codes for uppercase letters are in a sequence, from A to Z.

 Other characters, such as punctuation, are not part of either sequence.

Converting ASCII to Character
Python supports an equally simple function for converting ASCII numeric
codes back to character form.

chr(numeric_code)

This function produces a string of length 1, containing the character corre-
sponding to numeric_code.

For example, in the previous section, we learned that the ASCII character
code for the letter A is 65. Therefore, applying the chr function to the num-
ber 65 should produce an A.

From within the interactive environment, enter char(65):

>>>chr(65)
'A'

K
ey

 S
yn

tax

Overland_Book.indb 160Overland_Book.indb 160 8/31/17 12:56 PM8/31/17 12:56 PM

Converting ASCII to Character 161
8

It’s clear what this does. You can see, therefore, that it’s easy to go back and forth
between a character and the numeric value that represents it inside the computer.

You should be able to see the usefulness of that in the next section. By the
way, ord and chr are inverses of each other, so you should be able to guess
what the following does, even before looking at the results:

>>>chr(ord('B'))
'B'

Example 8.3. Encode Strings
One of the simplest encoding schemes is to move each letter one position to the
right, replace all As with Bs, all Bs with Cs, and so on. Finally, Z is replaced
with A…in the case of Z, we go “off the edge” and return to the beginning of
the alphabet.

You can think of this process conceptually as follows:

a b c d . . . z

a b c d . . . z

What about spaces and punctuation? Let’s leave those unchanged. That
gives us exactly 52 cases to worry about, specifically, the 26 uppercase letters
and the 26 lowercase letters, each of which has its own unique code.

Because Python strings are immutable, the encrypted string must be built
up one character at a time.

Handling 52 separate cases is theoretically possible, but it makes for
incredibly tedious programming. You could, if you wanted, use if and elif
to examine these 52 cases.

if old_str[i] == 'a':
 s += 'b'
elif old_str[i] == 'b':
 s += 'c'
...

Clearly, this is going to be too much work. But instead of considering 52
separate cases, we have to consider only three: the character is an uppercase
letter, a lowercase letter, or neither. Each such case requires a separate action
involving the ord and chr functions.

Overland_Book.indb 161Overland_Book.indb 161 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops162

The following program shows how:

code.py

input_str = input('Enter string to encode: ')
a_list = []
for ch in input_str:
 n = ord(ch) + 1
 if ch.isupper() and n > ord('Z'):
 n -= 26
 elif ch.islower() and n > ord('z'):
 n -= 26
 if ch.isalpha():
 a_list.append(chr(n))
 else:
 a_list.append(ch)
s = ''.join(a_list)
print('Coded string is', s)

As usual, you can implement the program by saving in a text file called
code.py. Then, from within the interactive environment, load the file and
then choose the Run Module command. Here is a sample session.

Enter string to encode: I am HAL.
J bn IBM.

H
ow

 It

 Works

 How It Works
The basic operation of this program is very simple, but it has to handle some
exceptions. Here’s the basic idea:

For each letter in the input string:
 Convert character to numeric form.
 Add 1 to this number.
 Convert the resulting number back to a character.

Because—as I noted earlier—all the uppercase letters are in numeric sequence
and all the lowercase letters are in numeric sequence, the most basic operation
of this program is just to translate each letter to the next in the sequence.

Ps
eu

do

code

Overland_Book.indb 162Overland_Book.indb 162 8/31/17 12:56 PM8/31/17 12:56 PM

Converting ASCII to Character 163
8

But there are some exceptions.
First, the encryption technique leaves spaces and other nonletter charac-

ters alone: they are simply transferred into the output string “as is.” Not all
encryption techniques do that, by the way. But it makes for more readable
output.

Another exception is what to do with letters z and Z. These letters are trans-
formed into a and A, respectively. An easy way to do that is to subtract 26, so
that when 1 is added to the ASCII code of z or Z, it yields a number one past
the normal sequence of uppercase and lowercase letters. Subtracting 26 pushes
the number back to the beginning, so to speak.

I could have handled numbers greater than z and Z as unique cases, but
as you’ll see when doing some of the exercises, subtracting 26 creates a more
general solution. It solves the problem even when letters are shifted by more
than one position.

Ex
er

cis
es

 EXERCISES

Exercise 8.3.1. Example 8.3 uses the combined assignment-action operators, and
that will be the standard practice for the rest of the book. Purely as an exer-
cise, revise these statements so they just use standard addition and subtraction
operators (+, –, and =).

Exercise 8.3.2. Revise the example so that the user can enter any shift number
they choose, not just the number 1. The way the code is written now ought to
make this very easy to do. For example, if the user enters 2, each letter should
be transformed two positions in the alphabet, not one.

Exercise 8.3.3. Implement Exercise 8.3.2, but do it in a way such that integers
larger than 25 are converted to the range 0 to 24. The easiest way to do this
is to use remainder, or modular division, carried about the modular division
operator, %.

Exercise 8.3.4. Revise the example so that inside the loop, the first thing the
code does is to test whether a character is alphabetic or not. If it isn’t, then
simply add the character onto the end of the output string and go to the next
letter in the input string. This should achieve precisely the same results, but
simply do things in a slightly different order. Is this order more efficient or
less? Do you expect to see any difference in execution speed?

Overland_Book.indb 163Overland_Book.indb 163 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops164

The Art of Cryptography

The encryption scheme presented in this chapter is about as simple a
“code,” or cypher, as exists. Even with the aid of a computer or other
tools, an expert from the CIA or NSA could probably crack this code
fairly easily. Consider the following coded message:

J bn pof xip mpwfe upp xfmm, opu xjtfmz.

A cryptography expert would start by supposing that J is actually I, since
among one-letter words, I is the most common, especially as it appears
at the beginning of a sentence. Next, an expert would observe that upp
stands for a three-letter word in which one letter is followed by two copies
of some other letter. Among such words, too is probably the most com-
mon. Finally, and this is a little more of a stretch, f is the most common of
the remaining letters and therefore a good candidate for representing e.

Making all these substitutions, which are reasonable guesses, gets us
this far:

I bn ooe xio mowee too xemm, oot xitemz.

This still reads cryptically to most people (pun intended), but at this
point an expert is likely to seize on an important observation. These sub-
stitutions, which look promising, all have one thing in common: the coded
letters differ from their substitutions by the same distance, specifically,
just one position in the alphabet. Filling in the rest of the letters according
to this pattern produces the entirely decoded string.

I am one who loved too well, not wisely.

Most forms of cryptography used professionally are much more sophis-
ticated. For example, the ENIGMA machine developed by the Germans
in World War II used a series of gears that associated each character in
the message with a different “delta” so that there was no obvious connec-
tion between the way one letter was transformed and the next. At first the
British thought this created the uncrackable code. But Alan Turing, and
his associates at Bletchley Park, eventually found a way.

Example 8.4. Decode Strings
This next program just reverses the encryption process that was used in
Example 8.3.

Interlude

Overland_Book.indb 164Overland_Book.indb 164 8/31/17 12:56 PM8/31/17 12:56 PM

Converting ASCII to Character 165
8

decode.py

input_str = input('Enter string to decode: ')
a_list = []
for ch in input_str:
 n = ord(ch) - 1
 if ch.isupper() and n < ord('A'):
 n += 26
 if ch.isalpha():
 a_list.append(chr(n))
 else:
 a_list.append(ch)
s = ''.join(a_list)
print('Coded string is', s)

Here is a sample session, using the output from Example 8.3. If all goes
well, this should produce the original input string.

Enter string to decode: J bn IBM.
I am HAL.

H
ow

 It

 Works

 How It Works
This example essentially does everything that Example 8.3 does, but does it in
reverse. Instead of adding 1 to the ASCII code of a letter—thereby advancing
a to b, for example—this program subtracts 1 from the ASCII code, and then
if the resulting ASCII code is less than the code for a or A, as appropriate, it
adjusts the code number upward by 26 rather than downward.

It’s worth asking yourself if Examples 8.3 and 8.4 really need to be separate
programs. If you revise these examples so that the “delta,” or change factor,
can be any number between 1 and 25, then ask yourself what the difference is
between subtracting 1 (replacing b with a) and adding 25. The latter operation
would add 25 but then subtract 26 and so ends up having the same effect.

Ex
er

cis
es

 EXERCISES

Exercise 8.4.1. Revise Example 8.4 so that it takes any “delta” between 1 and 25.
You can either restrict user input, reprompt until the user enters a valid num-
ber, or use modular division to get a number in the correct range.

Exercise 8.4.2. Assume that you accept the argument that subtracting 1 produces the
same result as adding by 25. In that case, revise Example 8.3 (the previous exam-
ple) so that it can either “encode” or “decode” depending on the user’s command.

Overland_Book.indb 165Overland_Book.indb 165 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 8 Single-Character Ops166

Exercise 8.4.3. After doing the previous exercise, alter the program so that it
operates over and over (each time either coding or encoding) until the user
indicates that the program should exit by entering an empty string.

Chapter 8 Summary
Here are the main points of Chapter 8:

 The ord() function converts a one-length string, containing a single charac-
ter, into its corresponding ASCII code, an integer.

n = ord('A')

 The chr() function is the inverse of ord(). It takes a numeric code and produces
a one-character string containing the character corresponding to that code.

print(n, 'corresponds to', chr(n))

 The upper and lower methods convert an entire string to uppercase and
lowercase letters, respectively. When upper is used on a string with multi-
ple characters, alphabetic characters are converted to uppercase, while non-
alphabetical characters are left alone. The lower method works in a similar
way, except that it converts letter characters to lowercase. In either case, a new
string is produced from the old one.

 The isalpha function returns True if every character in a string is an alpha-
betic character.

 The isupper function returns True if every letter in a string is uppercase and
there is at least one letter.

 The islower function returns True if every letter in a string is lowercase and
there is at least one letter.

 Although it is permissible to use repeated string concatenation to build new
strings, it’s usually better to build up a list of substrings—even if they are only
one character in length each—and then apply the join method.

 Remember that a great deal can be done with Python slicing syntax, both for lists
and for strings. In particular, use of the third argument—the step argument—
can be used to completely reverse a string.

reversed_str = a_str[-1::-1]

Overland_Book.indb 166Overland_Book.indb 166 8/31/17 12:56 PM8/31/17 12:56 PM

167

9 Advanced Function
Techniques

The concept of functions is fundamental and was first introduced in Chapter 3,
“Your First Programs.” But Python provides a number of advanced features used
with functions. They make for simpler, easier, and more efficient programs.

By the end of this chapter, we’ll have explored how to use Python to play
one of the most popular casino games in the world (without taking your
money, however).

This chapter includes the following functional features:

 Multiple arguments

 Named arguments

 Default arguments

 Imported functions

Multiple Arguments
Chapter 3 introduced the concept of passing multiple arguments, so if you’re
comfortable with the concept, you can skip to the next section.

The ability to pass more than one argument is universal among program-
ming languages. You can have as many arguments as you want—the only
basic rule being that the number of arguments in a function definition must
(as a general rule) match the number of argument values during a call.

function_name(argument, argument,...):
 indented_statements

The arguments are separated by commas if there is more than one.

K
ey

 S
yn

tax

Overland_Book.indb 167Overland_Book.indb 167 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques168

A simple example is a function that returns the average of two numbers
that are input and returns the result in floating-point format.

>>>def avg(a, b):
return (a + b) / 2

>>>

Having entered this function definition, you can then call it any number
of times.

>>>avg(1, 9)
5.0
>>>avg(100, 201)
150.5

You can even include a call to the function as part of a larger expression,
although you can do this only because it returns a numeric value. (Functions
that do not explicitly return a value return the special value None by default.)

>>>100 + avg(4, 5)
104.5

Because there are two arguments, a and b, each call to the avg function
must include two argument values. By default, the values are passed to a and b
in that order, as shown in the following figure:

def avg(a, b):

 return amt

avg(4, 5)

Return value
to caller

Returning More Than One Value
A more difficult question is this: what if I want to give the function the ability
to permanently change the value of a variable passed to it?

The short answer is you can’t. You can accomplish the same objective, how-
ever, even by returning a series of values separated by a comma.

Overland_Book.indb 168Overland_Book.indb 168 8/31/17 12:56 PM8/31/17 12:56 PM

Returning More Than One Value 169
9

There is no “pass by reference” in the sense of BASIC, Fortran, C++, or any
number of other languages. Here’s a simple example:

def double_it(n):
 n = n * 2

n = 5
double_it(n)
print('The value of n=5 after "doubling":', n)

These statements should show the value n as now containing 10, but they don’t.
Instead, n still has the value 5, which is the same value it had to begin with.

The value of n=5 after "doubling": 5

What happened? When n was passed to the function, the function got a
reference to 5, so in a sense, n is a reference variable. But as with all Python
assignments, when you assign new data to a variable, the association with old
data is broken, so the local copy of n no longer affects the variable n outside
the function.

n = n * 2

Python doesn’t enable you to create a simple “output” parameter. Fortu-
nately, such output parameters are not necessary; you can always return multi-
ple values.

To pass back multiple return values, just place a series of comma-separated
values after a return statement.

return value, value, ...

There’s no limit to the number of values you can return, but the caller of the
function must expect all these values. For example, we can define a function
that returns three values.

def func(n):
 return n, n+10, n+20

Because the function, func, returns three values, you need to assign its
return value to a series of comma-separated variables. Alternatively, you can
assign these values to a tuple of size 3.

a, b, c = func(2)
print(a, b, c)

The result of these statements is

2 12 22

Ke
yw

ord

Overland_Book.indb 169Overland_Book.indb 169 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques170

In this case, the variables a, b, and c all become, in effect, output param-
eters. In effect, then, you can have a Python function take as many inputs as
needed and pass back as many outputs as needed. You can think of it this way:

def func(a, b, c...):

 return i, j, k...

(any number)

INPUTS

OUTPUTS

Passing and Modifying Lists

If you’ve programmed in another language such as C++, the lack of a true
in/out parameter (reference argument) may strike you as a frustrating limita-
tion. There are several ways around this, however—one of them being the
ability to return multiple values.

Another solution is to put your in/out parameters in a list. Here’s an example:

def double_it(list_arg):
 list_arg[0] *= 2

a = [5]
print('Value before is:', a[0])
double_it(a)
print('Value after is:', a[0])

These statements, when executed, produce the following output:

Value before is 5
Value after is 10

Doing things this way—placing a value in a one-element list and then passing
the list—is slightly more work, but it does make the argument into a true in/out
parameter. This example works because, first, Python lists are mutable (change-
able) and because, second, there’s no reassignment of the list variable itself.

You also get all the flexibility that comes with Python lists. You can use
a list to specify as many “outputs” as you want, even adding to the size of
the list that was passed. Here’s an example:

def double_it(list_arg):
 list_arg.append(1)
 list_arg.append(2)

Interlude

Overland_Book.indb 170Overland_Book.indb 170 8/31/17 12:56 PM8/31/17 12:56 PM

Returning More Than One Value 171
9

continued

This function, when it returns, will append 1 and 2 onto the end of
whatever list you passed to it. But note that the following does not work—
assuming what you want to do is to enable the function to effectively pass
new values back to the caller.

def double_it(list_arg):
 list_arg = list_arg + [1, 2] # Does not work!

What is wrong with this function? The problem is that it uses direct
assignment to the list variable itself. And when such an assignment occurs
in Python, what happens is that 1) a new list is created from the expres-
sion on the right, and 2) the argument name—list_arg in this case—is
associated with a completely new list. And that means it no longer has a
connection to the list that was passed to the function.

You can, however, assign to any list element, as shown earlier, and the
change will be recognized. Just make sure the index is not out of range.

if len(list_arg) > 2:
 list_arg[2] = 555

And you can change any or all the values in a list if you want, by using
slicing. This is where the notation [:] comes in handy; use it to represent
the “slice” that contains the entire list. The following statement succeeds
in copying new information to the existing list. This statement does not re-
assign the variable name list_arg to a whole new list; instead, it changes
the individual values “in place” but continues to refer to the same list.

list_arg[:] = [1, 2, 3] # Replace entire list
 # by copying new values

This is a subtle but important distinction. The previous statement
manages to permanently alter data from within a function, where the fol-
lowing does not:

list_arg = [1, 2, 3] # list_arg no longer refers
 # the original list!

But remember this caveat: Python does not check the type of an argu-
ment when you define or call a function. If you use incompatible types,
Python raises an error during execution. Simply put, if the function
expects a list argument, you better pass a list argument.

Remember, also, that Python raises an error whenever you use out-of-
range indexes, so be careful how you index. Again, testing a list with the
len function is helpful as a way of ensuring that your indexes won’t be out
of range, if you’re in any doubt.

Interlude

Overland_Book.indb 171Overland_Book.indb 171 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques172

Example 9.1. Difference and Sum of Two Points
The following program highlights a function that takes several inputs and
passes back two outputs: the first output being the distance between two points
and the second being the sum. It also features an output function, get_point,
that gets two inputs (from the end user) and returns two outputs.

def main():
 x1, y1 = get_point()
 x2, y2 = get_point()
 dist, sum = calc_pts(x1, y1, x2, y2)
 print('The distance between points is:', dist)
 print('The sum of the points is:', sum)

def get_point():
 s = input('Enter point in "x, y" format:')
 a_list = s.split(',')
 a = int(a_list[0].strip())
 b = int(a_list[1].strip())
 return a, b

def calc_pts(x1, y1, x2, y2):
 dist1 = y2 - y1
 dist2 = x2 - x1
 dist = (dist1 ** 2 + dist2 ** 2) ** 0.5
 sum = [x1 + x2, y1 + y2]
 return dist, sum

main()

Here is a sample session:

Enter point in "x, y" format: 1, 1
Enter point in "x, y" format: 4, 5
The distance between points is 5.0
The sum of the points is [5, 6]

H
ow

 It

 Works

 How It Works
The main function makes two calls to get_points. Each call prompts the
user to enter a point in the form “x, y.” The get_points function uses a com-
bination of the split method, which divides the string input into two strings;

Overland_Book.indb 172Overland_Book.indb 172 8/31/17 12:56 PM8/31/17 12:56 PM

Arguments by Name 173
9

and strip, which strips away leading and trailing spaces. Chapter 7, “Python
Strings,” introduced these methods.

The result is that get_points returns two coordinates as a series of values.

 a_list = s.split(',')
 a = int(a_list[0].strip())
 b = int(a_list[1].strip())
 return a, b

Therefore, calling this function twice produces a total of four coordinates:
x1, x2, y1, and y2. All four are passed to the calc_pts function to calculate
these two answers:

 Distance, specifically, the linear distance between the points, calculated by
the Pythagorean distance formula

 The sum of the two points, which is a third point that contains x1 + x2 as its x
coordinate and y1 + y2 as its y coordinate

The main function then prints the results.
Note that the calc_pt function returns two values, each being a different

kind of data: a simple number (the distance) and a list of two numbers. No
problem arises as long as the caller of the function handles each of the return
values (a number and a list) correctly.

Ex
er

cis
es

 EXERCISES

Exercise 9.1.1. Revise Example 9.1 so that it accepts point input in the format “(x, y)”
as well as “x, y.” Also modify the main function so that it outputs the sum as a
point in the form “(x, y).”

Exercise 9.1.2. Write a program that prompts for four numbers and then calls a func-
tion to determine both the sum and the average. Finally, print the sum and average.

Exercise 9.1.3. Write a function that takes a list of numbers of any size and then
returns the sum as well as the average and returns these two values. Then
write a main function that prompts for a series of values, puts them in the list,
and calls the function.

Arguments by Name
Python supports a couple of argument-passing techniques used widely in Python
built-in functions. You can also use them in your own functions.

Overland_Book.indb 173Overland_Book.indb 173 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques174

The first technique is named arguments, in other words, arguments speci-
fied by name. You’ve seen this used with the print function.

print(10, 20, 30, 40, sep='-', end='!\n')

This prints

10-20-30-40!

The sep and end arguments are special because they’re named during the func-
tion call. Such named arguments should be specified at the end of the argument list.

Calls to your own Python functions can use the same technique. Consider
the following function definition:

def expo(a, b, e):
 return a * (b**e)

You can call this function normally, with “positional arguments”—that is,
the ordinary way, without naming the arguments during the call.

expo(1, 2, 5)

This prints 2 raised to the 5th power.

32

But you can also name arguments. Remember that such named arguments
must appear after any other arguments appear. Arguments passed the usual
way are considered positional arguments.

expo(1, e=3, b=2)

Because the first argument is not named during this call, it is assigned by
position. Therefore, the value 1 gets passed as the “a” argument. The values
e and b are assigned out of order, and that isn’t a problem, because they are
named. This function call returns the value 8.

You can pass every argument by name, if you choose. In that case, you can
pass all the arguments in any order at all.

expo(b = 2, e = 3, a = 1)

The complete procedure, by the way, is this: named assignments are per-
formed first. Remaining argument values are then paired with remaining
function arguments in the order they appear.

Default Arguments
The second advanced technique for passing arguments requires changes to the
function definition. Instead of listing an argument by just using a name, you

Overland_Book.indb 174Overland_Book.indb 174 8/31/17 12:56 PM8/31/17 12:56 PM

Default Arguments 175
9

can give an argument in the form arg = default_value. Here’s a simple
example:

def repeat_s(a_str, n = 1):
 for i in range(n):
 print(a_str)

This function prints the string argument n times. Within the interactive
environment, you might use it this way:

>>>repeat_s('Hello', 3)
Hello
Hello
Hello

But the second argument, n, has a default value, 1, specified in the function
definition itself. That argument may be omitted in a function call. If it is, it
takes on the default value. For example, you could enter the following in the
interactive environment:

>>>repeat_s('Hello')
Hello

Default arguments must be placed at the end of the list of arguments in the
definition.

These two techniques are often used together but are distinct. It’s easy to
get them confused. To keep them separate, remember that

 During a function call, an argument may be omitted if the argument has a
default value in the function definition, using the form arg = default_value.

def func(x = 0, y = 0):
 # Definition follows

func() # Use default values for both x and y.

 During a function call, “call by name” passes an argument by naming it,
using arg = value. The value is assigned to the named argument rather than
by position.

func(y = 10.5) # x gets default val, y gets 10.5.

The print function has arguments that are referred to by name as well as
having default values. For example, print has default values you’ve already
seen, of sep=' ' and end='\ n'. These default values are a blank space and
a newline, respectively.

Overland_Book.indb 175Overland_Book.indb 175 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques176

Example 9.2. Ad ding Machine
One of the simplest applications just adds a series of numbers. The only tricky
part is how does the end user indicate that he or she wants to terminate the
series of inputs?

An obvious approach is to let the user press Enter, with no input, to terminate
entries. So far, so good, but if input is handled by a “get number” function, then
it really needs to pass back two pieces of information: 1) the number entered
by the user, and 2) whether the user has entered the end-the-series indicator.

adding.py

def main():
 amt = 0
 while True:
 b, n = get_num()
 if not b:
 break
 amt += n
 print('The total is', amt)

def get_num(num = 0.0):
 s = input('Input number (ENTER to quit): ')
 if not s:
 return False, num
 else:
 return True, float(s)
main()

H
ow

 It

 Works

 How It Works
This example really does nothing special except for having a function passing
back two pieces of information, which it does through its return statement.

 if not s:
 return False, 0.0
 else:
 return True, float(s)

The first value passed back is Boolean; it is True if and only if a non-zero-length
string was entered by the user. If this value is False (meaning the user entered

Overland_Book.indb 176Overland_Book.indb 176 8/31/17 12:56 PM8/31/17 12:56 PM

Default Arguments 177
9

a zero-length string), the caller stores False in the variable name b, which in
turn causes the function to exit.

 b, n = get_num()
 if not b:
 break

Alternatively, if the user does enter a number, the number entered is stored
in the variable named n.

Note that the get_num function takes an argument, num, which has a
default value of 0.0. Because the argument is omitted, 0.0 is assumed. This
is the number passed back if the user enters an empty string. (However, that
value is never actually used in this program.)

Here’s a sample session:

Input number (ENTER to quit): -1.5
Input number (ENTER to quit): 2.5
Input number (ENTER to quit): 100
Input number (ENTER to quit):
The total is 101.0

Op
ti

m

izing

 Optimizing the Code
Although it’s useful to be able to pass back multiple values (which was the
point of this example), a Python function can always pass back the special
value None if you choose. This value can then be used as the exit code rather
than have to pass that code back in a separate value. Using this approach, you
could revise the example as follows:

def main():
 amt = 0.0
 while True:
 x = get_num()
 if x is None:
 break
 amt += x
 print('The total is', amt)

def get_num():
 s = input('Input number (ENTER to quit): ')
 if not s:
 return None
 else:
 return float(s)
main()

Overland_Book.indb 177Overland_Book.indb 177 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques178

Note Ë This chapter uses the optimization if not s, introduced in the previ-
ous chapter. In each of these lines of code, I could have used

if s == '':

This line of code tests the string s and returns True if and only if s is an empty
string. The following line of code does precisely the same thing (assuming s is a
string) but is shorter and easier to read. An empty string equates to the value None
when tested. None is equivalent to False, but the not operator reverses the logi-
cal value to True. Therefore, not s is a test for whether the string is empty.

if not s:
 Ç Note

Ex
er

cis
es

 EXERCISES

Exercise 9.2.1. Instead of applying the float conversion within the get_num func-
tion, could you apply an int conversion instead? What would be gained or lost?

Exercise 9.2.2. Revise the get_num function so that it takes one default argument:
a value to return for n if the user enters a zero-length string. If the function is
called with no argument value, this argument should default to 0. Does any
other statement need to change as a result?

Importing Functions from Modules
Although Python provides many powerful built-in functions, still more are
available from Python modules, which are extended libraries that provide
even more functionality. Some of these come standard with Python. These
include the math and random libraries.

There are three different techniques for importing functions from modules.

import module_name
from module_name import function_name
from module_name import *

With the first version, importing the name of the module, module_name,
enables you to use any function from that module but requires that each use
be qualified. Here’s an example:

import random
n = random.randint(0, 9)

You can also import a particular function from a module, in which case it
can then be referred to without qualification.

Ke
yw

ord

Overland_Book.indb 178Overland_Book.indb 178 8/31/17 12:56 PM8/31/17 12:56 PM

Importing Functions from Modules 179
9

from random import randint
n = randint(0, 9)

Finally, you can choose to import all function names without qualification,
but be careful when you do this. All the names are imported and could poten-
tially conflict with your own function names.

from random import *

Example 9.3. Dice Game (Craps)
The following program listing implements a complete game of the tradi-
tional French dice game of “crabs,” which is referred to in casinos all over the
world as “craps.” The code enables you to play over and over; the only thing it
doesn’t do is keep score or enable you to place a bet—although that can easily
be added and is left as an exercise.

craps.py

from random import randint

def main():
 s = ''
 while not s or s[0] in 'Yy':
 play_the_game()
 s = input('Play again? (Y or N): ')

def play_the_game():
 r = roll();
 if r == 7 or r == 11:
 print(r, 'is an instant WINNER!\n')
 return
 if r == 2 or r == 3 or r == 12:
 print(r, 'is an instant LOSER. Sorry.\n')
 return
 print('Your point is now a', r)
 point = r
 while True:
 s = input("Roll again (E=exit)?")
 if len(s) > 0 and s[0] in 'Ee':
 return

continued on next page

Overland_Book.indb 179Overland_Book.indb 179 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 9 Advanced Function Techniques180

 r = roll()
 print('You rolled a', r)
 if r == point:
 print('You\'re a WINNER!\n')
 return
 elif r == 7:
 print('Sorry, you\'re a LOSER.\n')
 return

def roll():
 d1 = randint(1, 6)
 d2 = randint(1, 6)
 print(d1, d2)
 return d1 + d2

main()

This is the longest program listing so far in this book, but what it does
is straightforward once you thoroughly understand the rules of the game
(explained in the next section). The basic idea is to try to roll a 7 or 11 during
the first roll of a round—or “game.”

If you fail to win or lose on the very first roll of the game, you note your
first roll as your “point” and then keep rolling the dice until you either get
your “point” again (in which case you win) or roll a 7 (in which case you lose).

So, rolling a 7 either wins the game or loses it, depending on when you roll it.

H
ow

 It

 Works

 How It Works
The central function in this program is the play_the_game function. It plays
one round of craps, which you can think of as “one game,” even though such
games sometimes only last for a single roll of the two dice.

The rules themselves, once clearly understood, essentially become the
pseudocode for this game.

Roll the dice.
If the roll is a 7 or 11,
 Announce instant winner and end.
If the role is a 2, 3, or 12,
 Announce instant loser and end.
Note the current roll as the “point.”

craps.py, cont.

Ps
eu

do

code

Overland_Book.indb 180Overland_Book.indb 180 8/31/17 12:56 PM8/31/17 12:56 PM

Importing Functions from Modules 181
9

While True,
 Roll dice.
 If the point is rolled,
 Announce “You win” and end.
 If 7 is rolled,
 Announce “You lose” and end.

This pseudocode for the game serves as a template for the main function, if you
just add one more conditional. After while True, ask the user if he or she wants
to roll the dice or exit immediately. This enables the user to exit at any time.

For all such choices, the default action is to keep on playing. The user can
therefore continue just by entering an empty string (pressing Enter without
typing any content). Remember that an empty string is equivalent to None,
which is treated as False; but the not operator reverses the logical value.
Therefore, not s is True if and only if s is an empty string.

 s = ''
 while not s or s[0] in 'Yy':
 play_the_game()
 s = input('Play again? (Y or N): ')

This game program involves a total of four functions if you include the
three that you enter in the program—main, play_the_game, and roll—as
well as the randint function imported from the random module.

(call one or more times)

From random module

(call one or more times)

main()

play_the_game()

roll() randint()

Overland_Book.indb 181Overland_Book.indb 181 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 9 Advanced Function Techniques182
Ex

er
cis

es

 EXERCISES

Exercise 9.3.1. Several statements in this program use test-for-equality (==) two
or more times. Replace these tests by a single test of a value in a string or in a
list, such as s[0] in 'Nn' or r in [7, 11]; make these changes throughout
the program.

Exercise 9.3.2. Revise the dice game so that before each round, the user can spec-
ify a bet. Then, depending on whether the user wins or loses the round, add
or subtract the bet from the user’s current assets. The initial stake should
be 100. (Hint: To implement this without the use of global variables, have
the play_the_game function return True or False. Return True only if the
round is completed and the user wins.) Depending on the value returned,
either increase or decrease the user’s assets and report the current amount.

Exercise 9.3.3. Replace the roll function with a more generic version—but then
call it correctly so that it still works within the context of the craps.py pro-
gram. This generic “roll” function should take two arguments: n, which deter-
mines how many dice to roll; and sides, which determines how many sides
each die has. No matter how many sides, have the faces run in value from 1 to
N. Finally, have the function return two values: the first is a total; the second
is a list containing all the dice rolls.

This particular program should simply ignore the second return value (even
though the return value might be used by other programs). To do that, create
a dummy variable and call the function as follows:

r, dummy = roll(2, 6)

Finally, specify default values of 2 and 6 for the two arguments so that you
can call the function this way:

r, dummy = roll()

Casino Odds Making

The game of craps is played in casinos all over the world. The game has
variations and side bets, but the principal bet is “the line,” as described in
the exercises in the previous section.

If this game were not profitable for the casino, then casinos everywhere
would quickly go broke, because people would keep playing until “the

Interlude

Overland_Book.indb 182Overland_Book.indb 182 8/31/17 12:57 PM8/31/17 12:57 PM

Importing Functions from Modules 183
9

continued

house” lost everything. On the other hand, if the odds of a player winning
were not fairly close to 50/50, then people would stop coming to the casinos,
because it would be too difficult to win and players would be discouraged.

The mathematician and philosopher Blaise Pascal (1623–1662) pro-
vided all the tools necessary to figure out dice games, as well as many card
games. Using a computer language such as Python, it’s not too hard to
calculate who wins the game of craps.

Remember, you’re an instant winner if you roll 7 or 11 on the first roll.
There are 6 ways of rolling a 7, so the likelihood of winning by rolling a 7 is
6/36. Likewise, there are 2 ways of rolling an 11, so the likelihood of win-
ning by rolling an 11 on the first roll is 2/36.

Now, what is the probability of winning by 1) rolling a “point” and 2)
rolling the “point” again before rolling a 7? That means rolling a 4, 5, 6, 8, 9,
or 10, and then rolling that number again before getting a 7. The ways of
rolling these six numbers are

 Three ways to roll a 4

 Four ways to roll a 5

 Five ways to roll a 6

 Five ways to roll an 8

 Four ways to roll a 9

 Three ways to roll a 10

In Python, we can summarize this information—the number of ways
of rolling each of the “points”—by placing it into a list. According to Pascal,
if the dice are fair, the probability of a number coming up is exactly pro-
portional to the number of ways of rolling that number.

>>>ways = [3, 4, 5, 5, 4, 3]

The probability of winning by rolling and then rerolling any given point is

Prob. = (Prob. of rolling the point on first roll) * (Prob. of rolling it
again before 7 is rolled)

The second part of this probability calculation is the tricky part. If the
point is a 10, then only rolls of 10 and 7 matter; other rolls are effectively

continued on next page

Interlude

Overland_Book.indb 183Overland_Book.indb 183 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 9 Advanced Function Techniques184

continued

no-ops. So, what is the probability of rolling another 10 before a 7? Start
by ignoring all rolls other than 7 or 10. Then the probability must be

(Ways of rolling that point) / (Total ways of rolling that point OR a 7)

And remember, there are six ways of rolling a 7. Therefore, the next
Python statements to enter—which you can do in the interactive environ-
ment, by the way—are

>>>p = 0
>>>for n in ways:
 p += (n/36) * n/(n + 6)

This for loop calculates the probability for winning on each of the dif-
ferent “points,” 4, 5, 6, 8, 9, 10, and then sums all these individual win-
ning probabilities together by applying the addition-assignment operator
(+=) each time through the loop.

For example, the probability that the player will win on a “point” of 6
is the probability of rolling a 6 on the first roll (which is 5/36) times the
probability of then rolling a 6 before a 7 (which is 5/(5+6) = 5/11).

Now all that remains is to add in the probability of “instant wins” from
a 7 or 11 and then to print the grand total.

>>>p += (6/36) + (2/36)
>>>print(p)
0.492929292929293

Therefore, the player’s probability of winning a “straight line” bet at
the dice table in a casino is approximately 49.3 percent. Another way of
saying this is that for every dollar a gambler bets in this way, the casino
pays out, in the long run, approximately 98.6 cents. So, the “house” is making
1.4 cents for every dollar wagered.

Essentially, a player has almost a 50/50 chance of winning any given
bet, but in the long run, the “house” wins.

And that is good news for the casinos. The payout is sufficiently good
for the players that if a player has an above-average run of good luck, they
can walk away a winner. But it also means that—by making 1.4 cents
per dollar wagered—the casino, by running the game day in, day out, for
years and years, should consistently make money.

If a grand total of a billion dollars were wagered at a casino’s dice tables in
a year’s time, a casino’s income from those tables would be in the neighbor-
hood of $14,141,000.

Interlude

Overland_Book.indb 184Overland_Book.indb 184 8/31/17 12:57 PM8/31/17 12:57 PM

185
9

Summary

Chapter 9 Summary
Here are the main points of Chapter 9:

 Functions can be defined with any number of arguments—that is, zero or
more. The syntax for functions with more than one argument is

function_name(argument, argument,…) :
indented_statements

 In most function calls, values are passed to function arguments according to
position.

 Ordinary arguments passed to a Python function are not “reference” argu-
ments in the sense that the function can use them to permanently change the
value of a variable passed to it. For example, the following does not do what
you want:

double_it(n):
 n = n * 2 # This does not work!

 However, there are a number of ways around this limitation. The simplest
way is for the function to return a series of values in the return statement.

def func():
 return 100, 200, 300

 The caller of such a function needs to receive the information passed back to it
in a meaningful way; that is, the programmer who calls such a function must
understand the number and type of each data object passed back.

a, b, c = func()

 Arguments may be passed by name, in the form arg = value, such as the fol-
lowing call to the print function. Such argument values must be given after
other arguments. This technique lets you pass values to arguments without
regard to position.

print('Stay on the same line', end=' ')

 Within a function definition, default values may be created by using the
arg = default_value syntax. This causes the default value to be used if the argu-
ment is omitted during a function call. For example, in the following definition, the
value 1 is assumed if a second argument is not specified during a function call:

def repeat_s(my_string, reps=1):
 # Place indented statements here.

Overland_Book.indb 185Overland_Book.indb 185 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 9 Advanced Function Techniques186

 The syntax for importing a module is

import module

 After you import a module this way, you can refer to any function from that
module, but it must be qualified. Here’s an example:

import random
n = random.randint(0, 9)

 The syntax for importing a specific function within a module is given next.
The advantage of this approach is that the function may thereafter be used
without the module name as a qualifier.

from module import function

 Finally, you can use the following syntax to permit you to refer to all the func-
tions from the module without qualification. Be careful, however, about name
collisions.

from module import *

Overland_Book.indb 186Overland_Book.indb 186 8/31/17 12:57 PM8/31/17 12:57 PM

187

10 Local and Global
Variables

One of the issues in programming is communication—how do you share
information between two functions or between a group of functions? The
most direct way is to use global variables.

But Python has idiosyncratic rules about global and local variables. Python
likes to do things its own way.

This chapter covers

 The difference between local and global variables

 The global keyword

 Using this keyword to prevent “the local variable trap”

 Using global in programs that encode and decode Roman numerals

Local Variables, What Are They Good For?
What are local variables good for? Plenty, as it turns out. A local variable is
visible to only one function at a time. Here’s an example:

def fact(n):
 prod = 1
 for i in range(1, n + 1):
 prod *= i
 return prod

i = -1
n = fact(5)
print('i and n are', i, 'and', n)

Overland_Book.indb 187Overland_Book.indb 187 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables188

These statements print the following:

i and n are -1 and 120

In the fact function just shown, the variable i is local—as all function
variables are by default; that means the function sees only its own value of i.
The value of i outside the function is –1. And it remains equal to –1.

Because i is local, any changes the function makes to this variable have no
effect outside the function. Here’s what would be printed if i were not local,
meaning visible to the whole program at the same time:

i and n are 5 and 120

Do you see the problem? The value of i ought to be –1, but now the pro-
gram is reporting a value of 5. That’s because if i were global everywhere, the
function would interfere with the value of i, using the for loop to set i to 1, 2,
3, 4, and finally to 5.

Fortunately, the function uses a local, not a global, version of i. Therefore,
the function doesn’t interfere with what’s going on outside. Most of the time,
this is desirable behavior.

 When a variable is local, the function sees only its own version of that variable;
it cannot use that variable to affect statements outside the function.

Locals vs. Globals
The rule favoring local variables makes programs easier to create and
maintain.

Usually, you want functions to be independent. You want a function to carry
out a task and tell it, “Use whatever variables you need; don’t worry about what
other functions are doing.” You don’t want to create hidden dependencies.

Many years ago, I helped program a complex system in BASICA before
Microsoft added support for local variables. A function might change the
value of a variable X even though the caller of the function relied on its own
copy of X not changing. If you lost track of how many versions of X were run-
ning around, it could change without warning. That caused debugging head-
aches you wouldn’t believe.

But sometimes you need variables that are global, not local. This occurs when

 Functions need to share information.

 It becomes impractical to share all this information through passing long
series of arguments and return values.

Overland_Book.indb 188Overland_Book.indb 188 8/31/17 12:57 PM8/31/17 12:57 PM

Locals vs. Globals 189
10

In these situations, you may need one or more global variables. A global vari-
able has the same lifetime as the program and can be seen by multiple functions.

In the following figure, the variable n can be accessed (or seen) by more than
one function. Changes to n in one function affect the value of n in another. As
long as a group of functions all use global n, then they all see the same ver-
sion of n.

global n
n = 0

common value
seen by the
program

FuncA()

global n
n = 0

FuncA()

But if n is left as a local variable within a given function, then that function
sees only its own version of it. In that case, changes to n in one function do not
affect the value of n in another.

Changes to n in one function
have no effect on value of n
in another function

FuncA()

n = 0

FuncB()

n = 100

So, what determines whether a function sees a global variable or a local
variable? The rules are

1 Within a function definition, an appearance of a variable name, var, is inter-
preted as local provided that variable exists at the local level—because an assign-
ment statement created it.

Overland_Book.indb 189Overland_Book.indb 189 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables190

2 If a local version of var does not exist, then a global version of var is used, if it
exists (but again, it must have been assigned a value somewhere).

3 However, if a global var statement has been used, then skip step 1; Python
looks for a global version only.

Introducing the global Keyword
The global keyword has a simple syntax. Place it at the beginning of a func-
tion definition.

global variable_names

This syntax means that global is followed by one or more variable names. If
there is more than one, then commas are used as separators. Here’s an example:

global n1, n2

The global keyword says: within this function, do not recognize a local
version of this variable (or variables, if more than one are listed).

Note that the global keyword does not create the variable in question, which
means that the variable still has to be created somewhere. You can create it by
assigning a value at the global level or assigning it a value within a function.

For example, the following statements create two global variables and a local:

def a_func():
 global my_thing
 my_thing = 0 # This creates 'a_thing'
 locvar = 0 # Local var: created but ignored

your_thing = 10 # This creates 'your_thing'

This example creates two global variables: my_thing and your_thing.
The first, my_thing, is created inside the function, but it has global scope,
thanks to the global keyword. The second, your_thing, is global because
it’s created outside of any function (the “module level”). Meanwhile, the local
variable locvar is also created, but it is local.

The Python “Local Variable Trap”
Consider these statements:

n_bank_account = 27333
def reset_funds():
 print('Your bank account holds:', n_bank_acct)

Ke
yw

ord

Overland_Book.indb 190Overland_Book.indb 190 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 191
10

Python comes across the variable name, n_bank_acct, and asks whether
a local version of n_bank_acct has been created yet. It has not been created
within this function, so Python uses the global version of n_bank_acct.

But what if an assignment is added to the function definition?

def resent_funds():
 n_bank_acct = 10500 # This creates n_bank_acct.
 print('Your bank account holds:', n_bank_acct)

Whoops! Do you see what happened? Suddenly, n_bank_acct is a local
variable, because the assignment creates n_bank_acct, and now it can be
interpreted as local.

And—here’s the problem—this statement, which was intended to change
the value of n_bank_acct throughout the program, is of no effect; all this
function does now is set a local version of n_bank_acct to 10500.

In this situation, the global keyword comes to the rescue. It says: don’t
consider this variable to be local, even if it would otherwise make sense to
do so.

def resent_funds():
 global n_bank_acct # This ensures var is global.
 n_bank_acct = 10500 # Now this affects the whole
 # program.
 print('You bank account holds:', n_bank_acct)

Now the statement n_bank_acct=10500 affects the rest of the program,
because the variable is global.

This may seem complex. But the bottom line is that there is one main rule
you need to follow regarding global variables.

 If a function uses a global variable and assigns anything to it, use a global
statement to prevent the variable from being interpreted as local.

Remember that the global keyword does not create a variable; it only pre-
vents it from being interpreted as local.

Does C++ Have Easier Scope Rules?

I'm an old C/C++ programmer, and I’m happy to defend these languages—
up to a point. Most of the time, Python is easier to use and makes it
possible to create powerful programs that do a lot of things in a small
space.

continued on next page

Interlude

Overland_Book.indb 191Overland_Book.indb 191 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables192

continued

But once in a while, C++ syntax is easier. The C paradigm for local
and global variables, inherited by C++, is sublimely simple:

 A variable declared outside all blocks (including functions) is global
and static.

 A variable declared inside a block is local and temporary.

 If there’s a name collision, the local variable declared in the innermost
block is the one that gets recognized.

Remember, these are the rules for C and C++, not Python!
There! That’s easy. There’s also the issue of extern and static dec-

larations, but I won’t get into those. You can see how easy and consistent
the C/C++ rules are. Here’s an example:

int my_glob_var = 0; // my_glob_var defined here.
void a_func() {
 int my_loc = 12; // Local var defined here.
 my_glob_var = my_loc + 1; // Successful use of
 // both.
}

The position of a variable declaration in C or C++ determines its scope.
End of story. The Python rules, in contrast, are more complex. Why? To
put the question another way, what does the Python complexity in the
area of local vs. global “buy” you?

There is one thing. Python doesn’t require you to create global vari-
ables at the module level. You can create variables by assigning to them
within functions, as long as they have global scope. Such functions can do
double duty: you can use them to create the variables, but you can also call
the function to reset values by calling this function again.

def create_global_vars():
 global n_acct, n_age, n_generation
 n_acct = n_age = n_generation = 0

Example 10.1. Beatles Personality Profile (BPP)
This next application is my contribution to the field of amateur psychology. It
also illustrates use of a global variable. My theory, using a variation on Jungian

Interlude

Overland_Book.indb 192Overland_Book.indb 192 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 193
10

archetypes, is that you can classify every person into one of four basic modes
of being. These are

 John Lennon, founder of the Beatles. Walked the line between rebel and leader.
He’s the classic person to start a new organization if he doesn’t like what he sees.

 Paul McCartney, the “cute” Beatle. Paul is also a leader but makes fewer waves
and cultivates popularity. Known today as Sir Paul. Loved by millions.

 George Harrison, a talented songwriter, but at first he spent time in the
shadow of John and Paul. The “quiet Beatle.” Serious about his work, mysti-
cal, and spiritual.

 Ringo Starr, the drummer, and most lovable of the Fab Four. Last to join the group.
Ringo was happy just to be included and felt that he had three brothers for life.

Which Beatle are you? Take my test, which I’ve written up as a fairly simple
Python program. By analyzing this program, you should be able to see why—
at least under its current overall architecture—this program needs to make
use of a global variable.

Beatles.py

b = '' # Var. b created (Is this necessary?)
j_str = '''John Lennon. Witty, cheeky, sassy. You like
 to be the leader of your own band.'''
p_str = '''Paul McCartney. You are popular, likable, and
 charismatic. You make a great impression.'''
g_str = '''George Harrison. You are serious, reflective,
 and deeply committed to your work.'''
r_str = '''Ringo Starr. You are lovable and just want
 everyone to get along.'''

def main():
 a = ask_q(
 'Are you more Assertive or Supportive? ','AS')
 if a == 'A':
 are_assertive()
 else:
 are_supportive()
 print('You are a', b) # Global b assumed.

continued on next page

Overland_Book.indb 193Overland_Book.indb 193 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables194

def are_assertive():
 global b
 a = ask_q(
 'Are you more Intellectual or Social? ','IS')
 if a == 'I':
 b = j_str
 else:
 b = p_str

def are_supportive():
 global b
 a = ask_q(
 'Are you more Intellectual or Social? ', 'IS')
 if a == 'I':
 b = g_str
 else:
 b = r_str

Ask Q (question) function.
This function takes a prompt message and a set of
acceptable choices. Will re-prompt until user gives
one of the choices...First letter, either case, is
accepted.
def ask_q(msg, choices):
 while True:
 s = input(msg)
 s = s.upper() # convert input to uppercase
 if s and s[0] in choices:
 return s[0]
 else:
 print('Enter one of the choices.')
 print('First letter is sufficient.')

main()

Here’s a sample session:

Are you more Assertive or Supportive? A
Are you more Intellectual or Social? I
You are a John Lennon. Witty, cheeky, sassy. You like
to be the leader of your own band.

Beatles.py, cont.

Overland_Book.indb 194Overland_Book.indb 194 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 195
10

H
ow

 It

 Works

 How It Works
In its overall design, this program is simple. It classifies a person into one of four
archetypes based on the answers to two questions. This is about as simple an
example of a personality profile as you can have, because it asks these questions
in a direct way. A more sophisticated program might ask dozens of questions to
determine a person’s psychological type.

In my analysis, there are two dimensions each with two possible values, so
the number of resulting combinations is two times two, which equals four.

These two dimensions are Assertive vs. Supportive and Intellectual vs. Social.
The first is really a “leader vs. follower” axis, but I tried to make the choice
sound more neutral, without one sounding better than the other. The four
types break down as follows:

George

John

Intellectual

Assertive

Supportive

Social

Ringo

Paul

The following pseudocode shows exactly how the program applies these
choices.

If you are Assertive,
 If you are more Intellectual,
 You are a John Lennon.
 Else (you are more Social),
 You’re a Paul McCartney.
Else (you are Supportive),
 If you are more Intellectual,
 You are a George Harrison.
 Else (you are more Social),
 You are a Ringo.

Ps
eu

do

code

Overland_Book.indb 195Overland_Book.indb 195 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables196

This example illustrates two features. First is the use of the global statement to
ensure that the variable b is not interpreted as local. If b were local, then it would
get set to the desired message, but as soon as the function returned, that message
would be ignored…because every function would have its own version of b.

This example also illustrates the in keyword. The statement item in list
or substring in string produces a True or False value, depending on
whether the item is an element of the specified object—or in this case, a sub-
string of the specified string.

 if s and s[0] in choices:
 return s[0]

Note the use of s here as the first condition. A string can be tested in this
manner; if it is not an empty string, it is interpreted as if True. You need to
make sure s is not empty before using s[0] to test the first character of input.

Remember that the strings "AS" and "IS" are passed to the choices argu-
ment. Therefore, the user is prompted to type A or S (or a word beginning
with A or S) and then the user is prompted to type I or S (or a word beginning
with I or S). The ask_q function keeps prompting until the user responds with
one of the responses permitted.

Ex
er

cis
es

 EXERCISES

Exercise 10.1.1. The beginning of Example 10.1 creates the variable b and sets it
to an empty string. Is this statement necessary? Why or why not? Try remov-
ing the statement, rerun the program, and explain why it still works or why
it doesn’t.

Exercise 10.1.2. Along the same line, does the statement global b need to be
included at the beginning of the main function? Why or why not? Explain
your answer in terms of Python’s rules regarding local and global rules.

Exercise 10.1.3. Rewrite the whole program in such a way that no global vari-
ables are required. One way to do this is to combine are_assertive() and
are_supportive() into the main function so it isn’t necessary to share
information. Another way is to return the value of b.

Example 10.2. Roman Numerals
This next sample program converts numbers into Roman numeral form. For
example, 2016 is converted into the string “MMXVI.” The number 1998 is
converted into the string “MCMXCVIII.” And here’s a simpler example: 152
is converted into “CLII.”

Overland_Book.indb 196Overland_Book.indb 196 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 197
10

This example uses a variable, amt, which is declared outside of all func-
tions but needs to be declared “global” inside of the make_roman function to
prevent it from being interpreted as local.

from_roman.py

amt = 0
def make_roman(letter, n):
 global amt
 while amt >= n:
 amt = amt - n
 print(letter, end='')

def main():
 global amt
 amt = int(input('Enter a number: '))
 print('The Roman number is: ', end='')
 make_roman('M', 1000)
 make_roman('CM', 900)
 make_roman('D', 500)
 make_roman('CD', 400)
 make_roman('C', 100)
 make_roman('XC', 90)
 make_roman('L', 50)
 make_roman('XL', 40)
 make_roman('X', 10)
 make_roman('IX', 9)
 make_roman('V', 5)
 make_roman('IV', 4)
 make_roman('I', 1)

main()

Here’s a sample session:

Enter a number: 1308
The Roman number is: MCCCVIII

H
ow

 It

 Works

 How It Works
This program—although I will show an even better way of doing it in the next
section—illustrates the purpose of functions. The program makes many calls
to the make_roman function.

Overland_Book.indb 197Overland_Book.indb 197 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables198

Although this function is relatively short—only four or five statements
long—imagine that instead of calling make_roman, you had to repeat the
same four statements over and over. You may think the program is long now,
but imagine it being five times longer.

The make_roman function generates the appropriate Roman numeral—
sometimes once, sometimes several times. Take the target number 3,000. The
appropriate action is to generate the letter M for each quantity of 1,000 that
can be successfully subtracted from the target number without producing a
negative. The result is then

MMM

because we can subtract 1,000 three times before exhausting the target
number (3,000).

Now, let’s take a slightly more challenging example: 3,002. After 1,000 has
been subtracted three times, 2 is left over. The program then tries subtracting
other quantities and fails, until it gets to this function call:

make_roman('I', 1)

This function call says, “Subtract 1 as many times as possible,” each time gen-
erating the letter I. The value of amt is now only 2. The final result is therefore

MMMII

This is correct.
So, make_roman is a kind of general-purpose function that can generate

any letter, or combination of letters, while it looks for one or more instances
of the corresponding quantity. For example, it’s used to generate “M” for each
thousand found and later used to generate “I” for each value of 1 that is left.

The pseudocode for this function is simple.

While amt is greater or equal to N,
 Generate the corresponding letter or letters
 Subtract N from amt

So, for example, if the starting amount is 5,000, this function will sub-
tract 1,000 from the starting amount five times, each time producing an “M”
character.

Note that the variable amt must be declared global because it is the target
of an assignment from within the local function, make_roman.

Op
ti

m

izing

 Optimizing the Code
This program benefits from the ability to use functions, saving many lines of
code, but it may still strike you as too long. All the calls to make_roman still

Ps
eu

do

code

Overland_Book.indb 198Overland_Book.indb 198 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 199
10

take up a good deal of space. Shouldn’t there be a way to automate this pro-
gram further?

There is. Many of the previous chapters have been dedicated to the idea
that—especially in Python—the easiest way to perform a lot of calculation is to

1 Put all the data in a list.

2 Process the list.

In this case, we need to process two pieces of information for each call to
the function: a string containing a letter (or letters), and a numerical amount
corresponding to that string. One solution is to create a list of lists—in effect,
a two-dimensional list.

While that approach is fine, you can write a slightly more efficient data
structure by creating a list of tuples—in which each tuple contains two values.
Tuples are very similar to lists, but they are immutable (cannot be changed)
and support fewer methods and functions. But in this case, they suffice.

Let’s call this list of tuples rom_list.

rom_list = [('M', 1000), ('CM', 900), ('D', 500),
 ('CD', 400), ('C', 100), ('XC', 90), ('L', 50),
 ('XL', 40), ('X', 10), ('IX', 9), ('V', 5),
 ('IV', 4), ('I', 1)]

All the calls to the make_roman function can then be replaced with a for
statement.

for item in rom_list:
 make_roman(item[0], item[1])

Now, does the data structure rom_list itself need to be global?
Not necessarily. The make_roman function itself does not work on or alter

this data structure. The function named main gets these values and sends
them to make_roman, which goes about its business without any knowledge
of the rom_list data structure.

Ex
er

cis
es

 EXERCISES

Exercise 10.2.1. Revise Example 10.1 by introducing the new code shown in the
subsection “Optimizing the Code.” Make all the revisions necessary and then
verify that the program still works.

Exercise 10.2.2. Optimize behavior by gathering all the output into a single string
and then printing the entire string at the end of the program, by calling print.
Does this approach cause the program to run appreciably faster or not?

Overland_Book.indb 199Overland_Book.indb 199 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables200

Exercise 10.2.3. This one is an “extra for experts.” You can support quantities
larger than 1,000 by first dividing 1,000 and then producing the Roman numeral
for quantity. Label this with “(M)” if it is greater than zero. Then process the
remaining amount. 1,306,306 would produce “MCCCVI (M) CCCVI”.

What’s Up with Roman Numerals?

Roman numerals are a classic case of a system considered outdated centu-
ries ago that we still can’t get rid of.

The Roman numbering system is like most ancient number systems. It’s
derived from the Latin alphabet, so the Romans didn’t have to invent a sep-
arate set of characters for numerals. But unlike the superior Hindu-Arabic
system, Roman numerals cannot appear in arbitrary positions, making
calculations much more difficult.

And that’s the problem. Consider how easy it is to add the following
Hindu-Arabic numbers, which we use today:

 7 4 1
+ 5 3 8

You should be able to tell at a glance that the answer is 1279. Now try
to add the following Roman numerals:

 DCCXLI
+ DXXXVIII

Can you figure out, in your head, that the answer is MCCLXXIX? Can
you do this without converting to 741 and 538? Even if you collect all the
matching letters and try adding them together (a clever idea), you’ll still
get the wrong answer, because the Roman numeral is partly positional.
The X in XL means something different from the X in DX.

It’s no surprise, then, that when Fibonacci tried to import the Hindu-
Arabic numbering system to Europe in the late Middle Ages, he was at
first met with resistance. But the support of one group swung his way:
Europe’s rising merchant class.

Business was booming, and merchants needed to add, subtract, and
multiply numbers on their account books. Governments needed to collect
their taxes, and banks needed to collect their interest payments. It was
literally a matter of money in the bank.

It was practicality versus tradition, and practicality won out, which is
often the case where money is concerned.

Interlude

Overland_Book.indb 200Overland_Book.indb 200 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 201
10

continued

Yet the legacy of the Roman state and the Church is so great, Roman
numerals are still used to mark Highly Important Figures to this day, pro-
vided they’re figures that don’t need to be multiplied or added. Years are good
examples, such as MMXVII.

Roman numerals are applied to mark other important numbers as
well, such as which Rocky or Star Wars movie you’ve seen, or which king
or queen we’re talking about. I hope you know the difference between
Richard II and Richard III. Only one of them said, “A horse, a horse, my
kingdom for a horse!”

Example 10.3. Decode Roman Numerals
If there’s one thing that’s harder than writing Roman numerals, it’s reading
them. You can imagine a situation in which a program must read a large num-
ber of Roman numerals as input and then convert these numerals into actual
numbers. This section presents the core of such a program, although it con-
verts only one number at a time.

decode_roman.py

rom_list = [('M', 1000), ('CM', 900), ('D', 500),
 ('CD', 400), ('C', 100), ('XC', 90), ('L', 50),
 ('XL', 40), ('X', 10), ('IX', 9), ('V', 5),
 ('IV', 4), ('I', 1)]

amt = 0 # Global vars created here.
romstr = ''

def main():
 global romstr
 romstr = input('Enter Roman numeral: ')
 for item in rom_list:
 decode_roman(item[0], item[1])
 print('The equivalent number is', amt)

continued on next page

Interlude

Overland_Book.indb 201Overland_Book.indb 201 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables202

def decode_roman(letters, n):
 global amt, romstr
 sz = len(letters)
 while len(romstr) >= sz and letters == romstr[:sz]:
 amt += n
 romstr = romstr[sz:]

main()

Here is a sample session:

Enter Roman numeral: MCDXCII
The equivalent number is 1492

H
ow

 It

 Works

 How It Works
Not surprisingly, this example uses the same list of data, rom_list, that
the previous example did. But in this exercise, the task is to take a string
and process it, one or two characters at a time, while building up a total
stored in amt.

One issue that could have been a problem in this case was the problem of
context. For example, the letter C can have a different meaning depending on
whether or not it appears before an M or a D or neither.

CD ' means 400

CM ' means 900

CCC ' each of these mean 100

Fortunately, the logic of the program solves the context issue. Because of
the way rom_list is constructed, letter combinations are checked out in a
particular order. The program first looks for the appearance of “CM” and
“CD” at the beginning of the input string. Only if neither of these combi-
nations can be found does the program interpret C as meaning 100. In that
case, the program reads as many Cs as it can, each time adding 100 to the
total answer.

Here is the pseudocode of the decode_roman function. Basically, all it does
is look for a particular one or two-letter string, such as “M” or “CD” at the very
beginning of the string. If these characters are found, then the corresponding

decode_roman.py, cont.

Overland_Book.indb 202Overland_Book.indb 202 8/31/17 12:57 PM8/31/17 12:57 PM

The Python “Local Variable Trap” 203
10

quantity is added to the amount (amt), the target characters are stripped from
the beginning of the string, and the action repeats.

Set sz to length of the string named “letter”
While length of romstr is greater or equal to sz AND
 letter string matches beginning of romstr,
 Add n to amt
 Remove sz characters from the front of romstr

Finally, note that slicing is used here effectively. The expression

letters == romstr[:sz]

…compares the string named letters to the first sz characters of the string
named romstr. But what is sz? It’s the length of letters, which we estab-
lished on the previous line by using the len function.

 sz = len(letters)

Therefore, these statements determine whether letters is a substring that
appears at the beginning of romstr!

Op
ti

m

izing

 Optimizing the Code
The line of code

 while len(romstr) >= sz and letters == romstr[:sz]:

can be replaced with the following, even while keeping every other line of
code the same:

 while romstr.startswith(letters):

The startswith method compares two strings; if the second string letters
in this case) appears at the beginning of the first string, the method returns True.

Ex
er

cis
es

 EXERCISES

Exercise 10.3.1. The decode_roman function includes global statements for two
variables: amt and romstr. Would the program still work properly without
these statements? Why or why not?

Exercise 10.3.2. The main function includes a global statement for the variable
romstr. Would the program work properly without this statement? Why or
why not?

Ps
eu

do

code

Overland_Book.indb 203Overland_Book.indb 203 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 10 Local and Global Variables204

Exercise 10.3.3. Using Example 10.1 as a model, write a program that takes
any number of roman numerals, entered one at a time, and then gives their
total. This is a “Roman numeral adding machine,” possibly the first the
world has ever known (except for the fact that I wrote it and made it work
first).

Chapter 10 Summary
The major ideas of Chapter 10 are

 Variables in Python can be either local or global. A local variable can only be
“seen” by the function it’s part of. For example, two different functions can
have a local variable named i, and the value of i in one function doesn’t affect
the value of i in the other.

 Most variables in functions should be left as local variables. If all your vari-
ables are global, then the changes made by one function’s internal calcula-
tions may interfere with what happens in other functions, causing debugging
headaches.

 Remember that the most important rule in Python is this: an assignment cre-
ates a variable if it does not already exist.

a_var = 100 # Create a_var as a new variable,
 # it doesn't exist already

 When Python comes across a variable name, it asks if the variable already
exists at the local level—that is, was there an assignment to that value within
the current function? If so, the variable is interpreted as local.

 If a variable does not exist at the local level—because there was no assignment
to it within the current function—Python must interpret it as global. But as
soon as there is an assignment to this same variable, then it is interpreted as
local, and that in turn means the variable is no longer shared with the rest of
the program.

 However, a global var statement alters this process by telling Python, “Do
not interpret this variable as local—even if there is an assignment to it.” This
statement has this simple syntax, in which variables is one or more names, and
commas separate them if there is more than one.

global variable, variable, ...

Overland_Book.indb 204Overland_Book.indb 204 8/31/17 12:57 PM8/31/17 12:57 PM

205
10

Summary

 A global statement does not create a variable. One way to create a global vari-
able is to assign a value to it, provided that is done when it has global scope
(thanks to the global keyword).

global my_acct
my_acct = 0 # Create this if it does not exist.

 Another way to create a global variable is to assign it a value outside of any
function (in what is sometimes called module-level code).

 The best general rule is this: if a function assigns a value to a variable and that
variable needs to be the global, not local, version, then you need a global var
statement. (And if there’s any possibility you might assign a value to this vari-
able, it’s a good policy to declare it global just to be safe.)

Overland_Book.indb 205Overland_Book.indb 205 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 206Overland_Book.indb 206 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

207

11
File Ops

In programming, there’s no getting away from disk files—or rather just “files,”
because these days files are not necessarily restricted to disk files. In any case,
they’re essential, because they store data that doesn’t go away after the program
ends. Everything from credit databases to police records depend on file storage.

Python facilities for reading and writing to files are especially easy. Some
take advantage of the Python concept of iterable, which makes everything
easier once you understand it.

In this chapter, I’ll introduce simple techniques for reading and writing text files.

 Text vs. binary files

 The op system (os) module

 Writing to text files

 Reading text files

Reading and writing binary files is an advanced topic to be covered in another
book. Many of the issues in reading and writing to text files apply to binary files
as well. However, the Python facilities for text files are especially easy to use, so
I recommend you get your feet wet by working with text files first.

Text Files vs. Binary Files
But what do I mean by “text file”? If you’ve programmed in other languages
before, you’re probably familiar with this term, so you can skip this section
and go right to the next, “The Op System (os) Module.”

Disk files tend to come in two major kinds: text files and binary files. Text
files are intended to be written to and read from as if you were reading or writing
to the console. All the data consists of printable characters.

Overland_Book.indb 207Overland_Book.indb 207 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops208

For example, if you read the sentence “1,000 years” from either a text file
or the console, you’re reading a text string 11 characters in length. The first charac-
ter happens to contain the numeral 1, and the third, fourth, and fifth characters
happen to contain the numeral 0, but all of it consists of printable text.

,1 0 0 0 y e a r s

As we’ve seen in earlier chapters, a string such as 1,000 can be entered at
the console like any other; after all, your keyboard lets you type a digit charac-
ter such as 1 or 5 just as you can type a letter. But a string has to be converted
to numeric format before you can actually perform arithmetic on it.

Binary files are different. They can contain text strings, but they mostly
contain data in a format that is not readable to human eyes.

A text file, in essence, is one long text string, although, as we’ll see, it can
be broken up with newlines.

A binary file consists of raw data that may not mean anything at all unless you
know how to read it. Microsoft Outlook can understand binary files written by
Outlook. Microsoft Excel can understand binary files written by Excel, and so on.

You cannot successfully read a binary file without knowing in advance
how the information is formatted.

To be, or not to be
That is the question
Whether 'tis nobler in the
mind to suffer the slings and
arrows of outrageous
fortune

Hamlet Act 3

Text file

09 18 E3 FF 03 7A FE 00
33 76 67 8B 32 99 38 E0
87 27 E3 95 03 7A FE 00
25 76 67 EE 76 8B E0

Binary file

The Op System (os) Module
Before you read or write to files, you may want to be able to figure out what
files actually reside on your disk.

Overland_Book.indb 208Overland_Book.indb 208 8/31/17 12:57 PM8/31/17 12:57 PM

The Op System (os) Module 209
11Python provides a powerful module for interacting with files and directo-

ries, called os, which is short for “operating system.” Importing the module—
which gains access to all its functions—is easy.

import os

You can give this command from within a program or within the interac-
tive environment. In the latter case, the next thing you may want to do is get
help on this module.

>>>import os
>>>help(os)

The help listing for os is quite long. Fortunately, the Python interactive
environment enables you to scroll up and down so that you can view this
information one screen at a time. It shows that there are many functions you
can call from this module.

For example, you can list the contents of the current directory. On my com-
puter, Python sets the default directory to my principal Documents folder,
which is huge.

>>>file_list = os.listdir()
>>>for item in file_list:

print(item)

In my case, I have hundreds of files, and printing out the directory another
way could cause long delays. Incidentally, you can figure out the number of
items by using the len function.

>>>len(file_list)
356

So, there are 356 files in my current directory (also called a folder). Whew!
I need to delete or move some files!

I recommend you do what I did: under this directory (folder), use your
operating system to create a subdirectory specifically for use with reading and
writing text files with Python. I created a subdirectory called Python Txt.
You can easily create such a subdirectory with either Windows or Macintosh
systems.

From within Python, you can then switch to this directory with the chdir
function, which takes one string argument.

>>>os.chdir('Python Txt')

You can then get the full path name for the current working directory.
(Don’t worry; I’ll summarize all these commands at the end of the section.)

Ke
yw

ord

Overland_Book.indb 209Overland_Book.indb 209 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops210

The command that does this is os.getcwd, which is short for “GET Current
Working Directory.”

>>>os.getcwd()
'/Users/brianoverland/Documents/Python Txt'

The function name is easy to misspell, so enter it carefully. The output of
this function is a string that you may, if you want, assign to a variable. In any
case, this string shows the full path name of the directory you want to work in.

Alternatively, you can select a directory as your Python directory and then
for each project create a subdirectory.

The path name you get on your computer will of course be different. I rec-
ommend that whatever this name is, you make it the working directory of
programs that read and write text. You can put the following at the beginning
of each program—bearing in mind that your path name will be different.

import os
os.chdir('/Users/brianoverland/Documents/Python Txt')

Here’s a summary of the os functions used so far.

SYNTAX NAME/DESCRIPTION

import os Import the os module.

help(os) From within the interactive environment, this prints a list of os
functions and other features.

os.listdir() List directory. Returns a list, each element of which is a string
containing a file name.

os.chdir(string) Change directory. The string can contain either a relative or a
full path name.

os.getcwd() Get Current Working Directory. Returns the full path name of
the current directory, in a string.

The following figure illustrates the move from a directory to a subdirec-
tory. The string “Python Txt” is a relative, not a full, path name; it does not
begin with a slash (/).

/Users/brianoverland/Documents

os.chdir('Python Txt')

/Users/brianoverland/Documents/Python Txt

Overland_Book.indb 210Overland_Book.indb 210 8/31/17 12:57 PM8/31/17 12:57 PM

Open a File 211
11Running on Other Systems

My programs refer to the particular directory that I use, and your pro-
grams can refer to your own dedicated Python-text-file directory. But
what happens when you give your programs to someone else to run on
their computer?

You have several options. The simplest is to let your Python programs
run in the default directory on every computer, whatever it is, and hope
for the best.

Another choice is to have your program install a new, dedicated direc-
tory, possibly just under the root. This is a little risky, because you’re
assuming you can make changes to the directory structure of the host
computer. For example, if your program was the “Delta” program, it
could check to see if a /delta directory existed on the host computer, and
if it did not, create that directory itself.

This is one reason standard Python installations include the os module…
because that module enables you to do many operations involving the read-
ing, changing, and creation of new directories.

Finally—and this is what many large commercial applications do—you
could purchase dedicated “Setup” software that you can use to write a
customized setup script. This script will take the end user through the
process of properly installing the software you’ve written, including the
installation of required directories and subdirectories.

Open a File
All input/output operations on a file, no matter how complex, boil down to a
three-step process.

1 Open the file.

2 Read information, write information, or both.

3 Close the file.

Opening a file is critical, because when you tell Python to write or read
information to a file, it has to know which file you mean. It would be extremely
inefficient to do this for each individual read or write operation. The operat-
ing system has to do quite a bit of work to find a file and set up internal infor-
mation for it, such as read/write mode and file pointers, so it should never
have to open a particular file more than once or twice per session.

Interlude

Overland_Book.indb 211Overland_Book.indb 211 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops212

The second step is to read or write to the file, which is usually the interest-
ing part. We’ll get to that in the next section.

Finally, the file must be closed. Until you close a file, the information
you thought you wrote may only partially be written to the disk file. Clos-
ing the file forces the last of the write operations, if any, to be physically sent
to the file.

Let’s assume that the current working directory is the one you want to be in.
Here’s the syntax for opening a file for writing:

file_obj_name = open(file_name, 'w')

Here are some examples that open three different files and create three dif-
ferent file objects:

f = open('read.txt', 'w')
f1 = open('brian.txt', 'w')
f2 = open('My Biography', 'w')

This is a simple syntax, but you must remember to include the w string as
the second argument, assuming you want to write to the file.

Opening a file for writing is fairly simple, because it works whether or not
the file already exists. There’s a danger, however. If the file doesn’t exist, a
new one will be created. But if it does exist, the old contents are destroyed and
replaced with the new text you write.

So be careful. This is one reason I advise learning about file operations by
creating a new directory, where you can’t destroy any existing files needed
by other programs.

Look at the first file opening again.

f = open('read.txt', 'w')

The f is a variable name just like any other. Because this is an assignment, it
creates f as a new variable; and if f already exists, the old association is broken.
You might choose to use a more descriptive name.

in_file = open('read.txt', 'w')

The value returned is a file object. You don’t need to understand all about
objects yet—just keep in mind that this variable just created, in_file in this
case, will be used to read from the file.

Remember that after you’re done working on a file, it’s important to close it.
No arguments are involved.

f.close()

K
ey

 S
yn

tax

Overland_Book.indb 212Overland_Book.indb 212 8/31/17 12:57 PM8/31/17 12:57 PM

Let’s Write a Text File 213
11Let’s Write a Text File

After a file has been opened in write mode, it’s easy to write out text—although
there are one or two caveats.

file_obj.write(string)

Let’s open a file, write a line of text, and close it.

out_file = open('hamlet.txt', 'w')
out_file.write('To be or not to be')
out_file.close()

Now if you use your operating system to look in the current working direc-
tory, and you click the file hamlet.txt, the system’s default text editor should
display the following:

To be or not to be

So far, so good. Now, let’s try to write two lines instead of one.

out_file = open('hamlet.txt', 'w')
out_file.write('To be or not to be')
out_file.write('That is the question')
out_file.close()

Now when you click the file hamlet.txt, you should find that the old con-
tents were entirely deleted, replaced (not appended) by the new content. This
is what you’ll see:

To be or not to beThat is the question

Oops. What happened? The write method does not automatically append
a newline character to advance to the next line.

However, you can add a newline by adding the characters \n to the end of
each string. So unless you want text to be put together on the same line, you
should make the following calls instead of the ones just shown. I added com-
ments for emphasis.

f.write('To be or not to be\n') # Note the \n.
f.write('That is the question\n') # Note the \n.

When you run the fixed version of the program, here’s what gets put in the
hamlet.txt file:

To be or not to be
That is the question

K
ey

 S
yn

tax

Overland_Book.indb 213Overland_Book.indb 213 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops214

Example 11.1. Write File with Prompt
The following application opens a file and writes to a file named stuff.txt.
The user enters as many lines as he or she wants and enters a blank line to quit.

writefil.py

def main():
 out_file = open('stuff.txt', 'w')
 while True:
 s = input('Enter>>')
 if not s:
 break
 out_file.write(s + '\n')
 out_file.close()
 print('Done!')

main()

This is a simple program, in which the basic operation is just a loop that
prompts for input and then—unless the input is a blank line—writes the
input out as string, appending a newline, and prompts again. (Remember that
not s returns True if the string is blank.)

Here’s a sample session:

Enter>>To be or not to be
Enter>>Whether tis nobler in the mind
Enter>>To suffer the slings and arrows
Enter>>Of outrageous fortune
Enter>>
Done!

H
ow

 It

 Works

 How It Works
Inside the main function, the first action is to attempt to open a file. Because
this attempts a “write file” opening, the file does not need to previously exist.
It therefore always succeeds unless you use an illegally formed file name. But
stuff.txt should present no problems.

 out_file = open('stuff.txt', 'w')

Overland_Book.indb 214Overland_Book.indb 214 8/31/17 12:57 PM8/31/17 12:57 PM

Let’s Write a Text File 215
11Now a simple loop is executed, in which the user is prompted, the text is

written to the file, and the loop does not quit until a blank string is entered—
meaning that the user pressed Enter after entering no text.

 while True:
 s = input('Enter line: ')
 if not s:
 break
 out_file.write(s + '\n')

Note that it’s the last line that does the interesting work: writing to the file.
We can represent this loop through the following pseudocode:

While true (loop always):
 Set s to user input after prompting
 if s is an empty string,
 Exit loop
 Write s to the file, appending a newline

This program logic might present one little defect if you’re staying alert
here. What if the user wants to enter a completely blank line? How would she
do that? Fortunately, there’s at least one obvious answer: the user can just type
a single blank space and then press Enter. A string consisting of one blank
space is different from a completely empty string, but if you look at the con-
tents of the file later, the difference is not noticeable to the human eye.

Other solutions are possible. For example, you could use a special code to
indicate that user should exit, such as @.

Finally, it’s important to close the file, or the data won’t be written out.

 out_file.close()

Ex
er

cis
es

 EXERCISES

Exercise 11.1.1. Instead of having the program exit when the user enters a blank
line (''), have it exit in response to a special code such as @. Remind the user of
this in the input prompt.

Exercise 11.1.2. Prompt the user for a file name rather than using stuff.txt.

Exercise 11.1.3. Example 11.1 writes a string to the output file by directly append-
ing a newline character (\n). Instead of doing this in the main function, offload
this job to a dedicated write_line function that automatically adds a newline.

Ps
eu

do

code

Overland_Book.indb 215Overland_Book.indb 215 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops216

Exercise 11.1.4. This example writes lines to a file, one at a time. Instead of writ-
ing the text directly, place each new line into a list of strings. Then create one
composite string out of this list and write the entire string to the file in one
operation. (Hint: You may find it useful to use helper functions from Chapter 7,
“Python Strings.”)

Read a Text File
Reading a text file is about as easy as writing to a file, but when you open a
file, you need to make sure it already exists, or the result is something called
an exception, which we’ll deal with in the next section.

For now, try to be sure that a file exists before you open it. You can use an
optional second argument that specifies read mode.

in_file = open('hamlet.txt', 'r')

However, this second argument is not necessary, because read mode is
assumed by default, as is text mode.

in_file = open('hamlet.txt')

If all goes well, you now have a file object for the disk file named hamlet.txt,
created earlier in this chapter.

At this point, you actually have several choices for how to read a file. Python is
a language highly organized around the idea of iterables, which are data collec-
tions from which you can read one element at a time, by asking for “the next one.”

Even a text file can be treated as an iterable. When used with a for state-
ment, each element corresponds to a line of the file, that is, separate strings
delineated by newline characters (\n).

The following statements, therefore, print one line of the file at a time.

for a_line in in_file:
 print(a_line)

The results for a version of hamlet.txt containing two lines of text are

To be or not to be

That is the question

What happened? The problem is that Python prints each line entirely—
including the newline character (\n). The solution is simple: suppress the print
function’s default behavior, which is to print an additional newline.

for a_line in in_file:
 print(a_line, end='')

Overland_Book.indb 216Overland_Book.indb 216 8/31/17 12:57 PM8/31/17 12:57 PM

Files and Exception Handling 217
11And now the result is what we want:

To be or not to be
That is the question

Note Ë If you try reading a file more than once, you might be frustrated, because
after the first time through a file, the file pointer is at the end and there’s noth-
ing more to read. The operating system uses the file pointer to determine what
part of the file to read or write next.

To reset the file pointer to the beginning of the file, use this statement:

f.seek(0)
 Ç Note

But as long as your file isn’t too large, I recommend reading all the lines
into a list, where they can be easily managed. The readlines method reads
the entire file at once, placing each line (including the newline, remember) into
a different element in a list of strings. Here’s an example:

str_list = in_file.readlines()
for a_line in str_list:
 print(a_line, end='')

As I pointed out in the previous note, if you want to try all these approaches,
reset the file pointer after each read.

in_file.seek(0)

Finally, if you want the simplest way to just display the contents of the file
as they are, you can read the entire contents into a single string and just print
that string.

print(in_file.read())

Always remember, when you are finished with the file, close it.

in_file.close()

Files and Exception Handling
One of the difficulties with opening a file in read mode is that the file must
already exist. If it doesn’t, you can’t proceed.

In some programming languages (such as C and C++), a failed attempt at
opening a file just returns a null pointer. But Python raises an exception: spe-
cifically, a runtime error of type FileNotFoundError.

Overland_Book.indb 217Overland_Book.indb 217 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops218

If you want to handle the possibility of such an exception, you need to write
an exception-handling control structure, which has this general syntax:

try:
try_statements

except error_type:
 except_statements

Incidentally, you may have more than one “except” block, each one is looking
for a different class of exception.

The try_statements are executed unconditionally. (They can be inter-
rupted by an exception, of course, but that’s always true.)

The except_statements are executed if and only if an exception is raised
during the execution of the try_statements.

In either case, execution resumes after the end of the try/except block.
More statements may follow, or you might be at the end of the program.

The use of this syntax makes it easy to recover gracefully from a “file not
found” error. In the following example, the program fails to go forward if a
file is not found, but at least it does so by printing a friendly error message.

try:
 f = open('hamlet.txt') # Open hamlet for reading
 print(f.read())
 f.close()
except FileNotFoundError:
 print('Sorry; "hamlet.txt" not found.')

The problem with this approach is that it doesn’t give the user a chance
to reenter the name or find a name that does work. If the user enters a file
name and commits a typo, she might want a chance to reenter the name. We
can therefore put the code into a while loop and reprompt the user until she
enters the name of an existing file.

while True:
 try:
 fname = input('Enter file name: ')
 if not fname:
 break
 f = open(fname) # Attempt file open here.
 print(f.read())
 f.close()
 break
 except FileNotFoundError:
 print('File could not be found. Re-enter.')

Ke
yw

ord

Overland_Book.indb 218Overland_Book.indb 218 8/31/17 12:57 PM8/31/17 12:57 PM

Files and Exception Handling 219
11The try/except block in this example says essentially, “Try to open a file

using the file name entered by the user. If this succeeds, then print the file and
be done. Otherwise, print a friendly error message.”

So how do I get the user to reenter the file name? Simple. The entire try/except
block is placed inside a while loop. That loop continues until something is done
to break it. A successful read operation breaks it by using the break keyword.
But a failed read does nothing but print a message; and because nothing is done
to break the loop in that case, the while loop executes again.

This code also enables a user to get out directly by just typing an empty
string (Enter without entering any text).

Advantages of try/except

Exception handling, for the most part, is a special kind of error handling,
although it is occasionally used for other situations.

Why use this technique? After all, one perfectly good approach would
be for a file-open function to return an error code if it failed. The pro-
gram could then test the value returned to determine if there is an error.
After all, C and C++ do in fact use that technique. For example, to open a
disk file in C, you’d use code something like this:

fp = file_open("hamlet.txt", 'rb');
if (fp) {
 /* read the file */
} else {
 puts("File could not be opened.");
}

One problem with this approach is that no specific information is given
as to why the file open failed. Was it that the name was badly formed to
begin with? Was the name valid but it wasn’t found in the directory? Or
did some other process have exclusive rights to the file?

Another, more general problem is that large programs can get very com-
plex. The “main” function might call FuncA, FuncA might call FuncB, and
so on. If error detection and handling is based on error codes handed back
the obvious way, then an error code might have to be propagated all the way
back to the highest level, where the code actually interacts with the user.

The beauty of exception handing is that errors and other special events
can be handled in one central location, regardless of where they occur.
Control of the program automatically transfers “all the way back up” to
the exception-handling block.

continued on next page

Interlude

Overland_Book.indb 219Overland_Book.indb 219 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops220

continued

In short, one part of your program, if you want, can deal with all
the exceptions you anticipate, and the rest of the program can be much
cleaner as a result. The rest of the program can be completely free of error
detection and propagating error codes by returning values up through a
chain of function calls.

The following figure illustrates how a function can call another function,
which calls yet another function, but no matter where the problem occurs,
control “pops back up” all the way to the except block, where it is dealt with.

main()

Try:

 indented_statements

catch error_type

 indented_statements

funcA()

funcB()

Raise exception

Example 11.2. Text Read with Line Numbers
The following program queries a user for a file name and then prints the con-
tents of the file after reading it. It also prints line numbers.

readfil.py

in_file = None

def main():
 if open_file():
 fss = '{:>2}. {}'
 str_list = in_file.readlines()

Interlude

Overland_Book.indb 220Overland_Book.indb 220 8/31/17 12:57 PM8/31/17 12:57 PM

Files and Exception Handling 221
11 for i, item in enumerate(str_list, 1):

 print(fss.format(i, item), end='')
 in_file.close()

Open file function: return True if file is found...
Return False if user wants to quit early.
def open_file():
 global in_file
 while True:
 try:
 fname = input('Enter file name: ')
 if not fname:
 return False
 in_file = open(fname) # Attempt file open.
 return True
 except FileNotFoundError:
 print('File not be found. Re-enter.')

main()

Here’s a sample session:

Enter file name: hamet.txt
File could not be found. Re-enter.
Enter file name: hamlet.txt
 1. To be or not to be
 2. Whether tis nobler in the mind
 3. To suffer the slings and arrows
 4. Of outrageous fortune

H
ow

 It

 Works

 How It Works
This example brings together a number of features introduced in previous chap-
ters. First, the variable in_file is created at the module level, making it global,
but relying on a global statement to make sure that it is treated as such.

in_file = None

Actually, this statement is unnecessary. If you truly understand the rules
for global variables, you can leave out this initial, module-level assignment to
in_file. The open_file returns a valid setting to in_file if successful—that is,
it returns a value other than None.

readfil.py, cont.

Overland_Book.indb 221Overland_Book.indb 221 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops222

This is the only function that needs the global statement, because it
assigns a value to in_file; main() does not. By the time in_file is referred
to in main, the open_file function has been executed and it has assigned a
value to in_file, thus creating in_file as a global variable!

The main function turns over the jobs of querying the user, and then find-
ing and opening the chosen file, to the open_file function. This function
returns True if the file was successfully opened, and False otherwise; in the
latter case, the user decided to quit early, so main does nothing more.

If the file was successfully opened, the program first uses the readlines
method to fill up a list and then uses the enumerate function to turn each
of the lines into line number/string pairs, which are then printed. A format
specification string (fss) is used to ensure that the numbers and text lines are
nicely spaced, with numbers being right-justified.

 if open_file():
 fss = '{:>2}. {}'
 str_list = in_file.readlines()
 for i, item in enumerate(str_list, 1):
 print(fss.format(i, item), end='')
 in_file.close()

The call to the readlines method reads the entire file, placing each line of
input into a separate string—with all the strings together placed in a list. The
variable str_list is then used to refer to this list.

The enumerate function is then used to generate a series of number/text
pairs, beginning with the number 1.

The open_file function seems to do a lot of work, but all it does is con-
tinue to query the user until one of two conditions happen:

1 The user enters a blank string by just pressing Enter, in which case no file is
selected and the open_file function returns False.

2 The open method returns a legitimate file object without raising an exception. In
that case, the variable in_file is associated with this object and the open_file
function returns True.

Note that in_file is created by an assignment in this function; therefore,
since in_file is meant to be accessed by both functions, it must be explicitly
declared global:

global in_file

Overland_Book.indb 222Overland_Book.indb 222 8/31/17 12:57 PM8/31/17 12:57 PM

Other File Modes 223
11

Ex
er

cis
es

 EXERCISES

Exercise 11.2.1. Revise Example 11.2 so that instead of making f_obj a global
variable, make f_obj a value that is passed back by the file_open function.
Revise the statements in the caller, main(), accordingly. (Hint: you might
need to pass back more than one value.)

Exercise 11.2.2. Revise the example so it continues operation, until the user
presses Enter after a blank line. This way, the user can view any number of
text files before terminating the program.

Exercise 11.2.3. Alter the print format so that the example displays lines in the
format nnn>>, where nnn is a print field three spaces wide (enough to print up
to line 999 without losing vertical alignment).

Exercise 11.2.4. Revise the program to prompt for a range of line numbers to print.
Test the numbers carefully to confirm that they are valid indexes and then print
the range shown. Take input in the form begin, end and parse it, using string
functions from Chapter 7. For example, if the user enters 5, 15, print all the
lines from line 5 up to and including line 15.

Other File Modes
So far, I have presented only two modes: text-file read and text-file write. You
can actually open a file in a number of different modes.

MODE DESCRIPTION

r Open text file for reading. (Default.)

w Open text file for writing.

w+ Open text file for both reading and writing. Unlike the “w” mode, this
mode does not destroy existing contents.

rb Open binary for reading.

wb Open binary for writing.

w+b Open binary file for both reading and writing. Unlike the “w” mode, this
mode does not destroy existing contents.

Overland_Book.indb 223Overland_Book.indb 223 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 11 File Ops224

Chapter 11 Summary
Here are the basic ideas of Chapter 11:

 You can import the os module to read the current directory, change directory,
and perform many other operations related to disk file operations.

import os

 As with other modules, you can get help on the features of the os module.

help(os)

 File operations are generally a three-step process: 1) open a file, 2) read or
write to the file, and 3) close the file.

 The Python open method returns a file object if successful, which you can
assign to a variable.

my_file = open('hamlet.txt')

 The file object can then be used to read or write, depending on the mode.
(Note that the default is read mode on a text file.)

 Text-file operations are different from binary-file operations because text files
assume that the entire file consists of printable characters—including numbers,
which are represented as numerals.

 For example, “100,000” in a text file is not an integer but rather a string
six-characters long.

 The Python write method simply writes out a string of text.

out_file.write('To be or not to be.')

 This method does not automatically append a newline character (\n), so you
need to do that if you want to write separate lines.

out_file.write('To be or not to be.\n')

 After you are done working with a file, remember to use the close method.

out_file.close()

 To open a file for reading, you must specify the r mode.

in_file = open('hamlet.txt', 'r')

Overland_Book.indb 224Overland_Book.indb 224 8/31/17 12:57 PM8/31/17 12:57 PM

225
11

Summary

 An attempt to open a file for reading fails if the file cannot be found. The
best way to respond to this possibility is to set up a try/except block that
“catches” the FileNotFoundError exception.

 There are several ways to read a file. One way is to treat the file as an iterable
and read one line at a time.

for in_str in in_file:
 print(in_str, end= '')

 Another way to read a file is to treat it as a series of lines and read it into a list
of strings:

a_list = in_file.readlines()

 Finally, you can use a call to the read file to read in the entire contents of the
file as one large string.

print(in_file.read())

 If you want to return to the beginning of the file (in order to re-read it), you
can reset the file pointer by using the seek function.

my_file.seek(0)

Overland_Book.indb 225Overland_Book.indb 225 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 226Overland_Book.indb 226 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

227

12
Dictionaries and Sets

How would you like to be able to give a key value—such as a name—and have
Python find the corresponding value for you? How would you like to be able
to have the language carry out searches at lightning speed?

That’s what Python data dictionaries do. They potentially solve many pro-
gramming problems by creating something like a rudimentary database.

This chapter explores dictionaries and sets by covering the following
topics:

 Setting up a simple dictionary

 Loading and saving to disk files

 Operations on sets

Why Do We Need Dictionaries, Ms. Librarian?
With a Python list, you access data by index number in the range 0 to N-1.
For example, if you taught a small class, you might record the grades as
follows:

grade_list = [2.0, 3.5, 4.0, 3.8, 2.5]

There’s a big limitation here. How do you know which grade belongs to
which student? What you’d really like to do is assign grades by name, not by
index number, which is almost meaningless. Assume names are in alphabetical
order. Instead of writing this:

grade_list[0] = 4.0

Overland_Book.indb 227Overland_Book.indb 227 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets228

…you’d prefer to use a more meaningful index, such as a student name. That’s
exactly what you can do with Python dictionaries.

grade_dict['Alan Anderson'] = 4.0

When a value such as Alan Anderson is used this way, it’s called a key.
The number 4.0 is its corresponding value.

You create a data dictionary—or just “dictionary”—as a group of key-value
pairs. Here’s an example:

grade_dict = { 'Alan Anderson': 4.0,
 'Betsy Baron': 2.8,
 'Tom Swift': 3.5 }

These keys happen to be listed here in alphabetical order, but order has no
significance in data dictionaries. I could have the same key-value pairs in a
different order, and the dictionaries would be considered equivalent.

grade2_dict = { 'Tom Swift': 3.5,
 'Betsy Baron': 2.8,
 'Alan Anderson': 4.0 }

This equivalency can be tested from within the interactive environment.

>>>grade_dict == grade2_dict
True

Order is not significant because the internal storage of the database items
has no direct relation to how items are accessed. Remember, items in a dictio-
nary are accessed by key value, not by position. As for how a key is found, for
now you should consider that “magic.”

The following syntax summarizes how to create and initialize a dictionary.

dictionary = { key : value, key : value, ...}

You can have zero or more key-value pairs. Starting with an empty dictio-
nary, which has zero of these pairs, is perfectly valid.

employee_dict = { }

Having created a dictionary, you want to know how to do the following:

 How do I add and change key-value pairs?

 How do I use a key to access a value?

 How do I test the existence of a key?

The next few sections provide the answers.

K
ey

 S
yn

tax

Overland_Book.indb 228Overland_Book.indb 228 8/31/17 12:57 PM8/31/17 12:57 PM

Adding and Changing Key-Value Pairs 229
12

Ad ding and Changing Key-Value Pairs
Once a dictionary exists, you can add any number of key-value pairs by using
the following syntax:

dictionary[key] = value

The dictionary must already exist, although it may be empty to begin with.
If the key does not yet exist in the dictionary, it is added along with its corre-
sponding value. If the key does exist, it is given the new value.

The following statements initialize the dictionary called grades as empty
and then add three entries:

grade_dict = {}
grade_dict['Alan Anderson'] = 2.0
grade_dict['Tom Swift'] = 3.2
grade_dict['Betsy Baron'] = 3.5

Each statement, after the first, adds a key-value pair. The order in which
these are added is not relevant. You can add new key-value pairs at any time.
Here’s an example:

grade_dict['Bill Gates'] = 3.9

Here we’ve given Bill a high grade. But suppose we want to go back and
give him an even higher grade later? The answer is: we use the same syntax for
changing values as for creating new ones.

grade_dict['Bill Gates'] = 4.0

There were four key-value pairs before this statement, and there continue
to be four. The effect of this last statement is to alter one of the values. This
produces the following dictionary:

key value

grades dictionary

2.0'Alan Anderson'

3.5'Tom Swift'

3.2'Betsy Baron'

4.0'Bill Gates'

K
ey

 S
yn

tax

Overland_Book.indb 229Overland_Book.indb 229 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets230

Accessing Values
You use a similar syntax to access existing values.

dictionary[key]

This expression, appearing on the right side of an assignment, or another
context such as a print statement, produces the value corresponding to the key.

For example, we could print all four values as follows:

print(grade_dict['Alan Anderson'])
print(grade_dict['Tom Swift'])
print(grade_dict['Betsy Baron'])
print(grade_dict['Bill Gates'])

When you print the contents of the dictionary this way, each key—in this case
the name of a student—must currently exist. Use of a key that does not already
exist results in a runtime error. Specifically, Python raises a KeyError exception.

If you want to print out the entire contents of the dictionary, without know-
ing ahead of time what the existing keys are, you can use a for statement.

for key in grade_dict:
 print(key, '\t', grade_dict[key])

Dictionaries, when iterated, return a series of keys, which you can then use
to get corresponding values. The effect of this loop is to print the following:

Alan Anderson 2.0
Tom Swift 3.5
Betsy Baron 3.2
Bill Gates 4.0

You can think of each dictionary[key] reference this way: the key is the
input; the dictionary returns the corresponding value.

This is how the reference to grade_dict['Bill Gates'] produces the
value 4.0:

Value produced is 4.0

grade_dict['Bill Gates']

2.0'Alan Anderson'

3.5'Tom Swift'

3.2'Betsy Baron'

4.0'Bill Gates'

K
ey

 S
yn

tax

Overland_Book.indb 230Overland_Book.indb 230 8/31/17 12:57 PM8/31/17 12:57 PM

Searching for Keys 231
12

Searching for Keys
Although key-value pairs can be assigned new values at any time, you cannot
print or refer to a key-value pair if the key does not already exist. So the fol-
lowing is perfectly valid, assuming the grade_dict dictionary exists:

grade_dict['Bill Sykes'] = 2.0

But this next statement will cause a KeyError exception to be raised,
assuming that “Sky” is a typo.

print(grade_dict['Bill Sky'])

There are several ways to deal with this problem. One is to use try and
except to deal with such situations when they arise. Another solution is to
search for a key before using it to access a value. Here is the relevant syntax:

key in dictionary.keys()

This expression returns True if the specified key currently exists in the dic-
tionary; it returns False otherwise.

For example, we could search for the key “Bill Sky” before trying to use
that key to access a value.

k = 'Bill Sky'
if k in grade_dict.key():
 print(k, 'has the grade', grade_dict[k])
else:
 print(k, 'not in the database')

Another, more efficient approach, is to the use the get method, which has
this syntax:

dictionary.get(key, default_val)

This expression produces the value corresponding to the key, if found.
Otherwise, it returns the default value.

The default_val argument is itself optional and has None as its default
value. This means that if get returns the special value None, the key wasn’t
found. So the search can be written as follows:

k = 'Bill Sky'
v = grade_dict.get(k) # Look-up is performed here.
if v: # If v is not None...
 print(k, 'has the grade', v)
else:
 print(k, 'not in the database')

This is an efficient approach, because it performs only one lookup.

K
ey

 S
yn

tax

K
ey

 S
yn

tax

Overland_Book.indb 231Overland_Book.indb 231 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets232

Dictionaries, in some ways, are the most flexible and powerful Python col-
lection we’ve seen so far. But they have some restrictions.

 Each key in a dictionary is unique, appearing at most once, but the associ-
ated values can contain any number of duplicate values. For example, every
student must have a unique name, but everyone could be given a grade of 4.0
if you chose.

 Once you choose a data type to use for your keys, this data type must not vary.
Only certain types can be used, as described in the upcoming interlude. Values
can have any data type, although it is a good idea to use a consistent type for
those as well.

What Explains Dictionary “Magic”?

In a way, dictionaries are magic. You specify the key value you’re interested in,
and you get an associated value back. Common sense suggests that some kind
of searching is going on under the covers and that nothing is ever really free.

And yet, the Python encourages you to think of the process as instan-
taneous: specify a key and get back a value. Python syntax treats this as a
direct access, not a search.

There is in fact a kind of magic involved with key-value access. The
underlying values are not stored in a simple list or array. Instead, the val-
ues are accessed through something called a hash table. A mathematical
formula is applied to each key to determine the actual location of the value
(called a bucket). Then Python is able to access that value almost instantly.

Another way to achieve this kind of “instant searching” effect is to use
a binary tree, but Python uses hash tables for dictionary collections, and
hashing is even faster.

But for this process to work, the keys must be “hashable”—that means
that Python must be able to apply a mathematical formula to each key. Not
all data types are hashable, which restricts your choice of data type. The main
requirement is that the type is immutable. You can therefore use a numeric
field (integer and floating-point values supported) and strings. You can even
use tuples of numbers and/or strings, but you cannot use lists as keys.

Example 12.1. Personal Phone Book
This example is a rudimentary database application that keeps track of phone
numbers, letting you access them by typing in the subject’s name.

Interlude

Overland_Book.indb 232Overland_Book.indb 232 8/31/17 12:57 PM8/31/17 12:57 PM

Searching for Keys 233
12

The key for this dictionary is the name of a person whose phone number
you want to retrieve. The value is a string containing the phone number itself.

phone_book1.py

phone_dict = { }

Main function. Prompts for next command and executes.
def main():
 while True:
 prompt = 'Enter command: 1. data entry, '
 prompt += '2. query, 3. exit >> '
 s = input(prompt)
 if not s: # If string empty, break
 break
 cmd = int(s)
 if cmd == 3:
 break
 if cmd == 1:
 add_entries()
 elif cmd == 2:
 display_entries()

Add Entries function. Prompts for key-value pairs
until user wants to exit. Adds key-value to dict.
def add_entries():
 while True:
 key_str = input(Input name (ENTER to exit): ')
 key_str = key_str.strip()
 if not key_str: # If key_str empty, return
 return
 val_str = input('Enter phone no: ')
 val_str = val_str.strip()
 if not val_str:
 return
 phone_dict[key_str] = val_str

Display Entries function. Prompts for name & prints
corresponding value. Re-prompts if key not found.
def display_entries():
 while True:
 key_str = input('Enter name (ENTER to exit): ')

continued on next page

Overland_Book.indb 233Overland_Book.indb 233 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets234

 key_str = key_str.strip()
 if not key_str: # If string empty, return
 return
 val_str = phone_dict.get(key_str)
 if val_str:
 print(val_str)
 else:
 print('Name not found. Re-enter.')

main()

This program, although simple, creates a database. It does not contain any
facilities for loading from and saving to a disk file, which normally you’d need
for the application to be useful. But those features will be added later in this
chapter. Here’s a sample session:

Enter command: 1. data entry, 2. query, 3. exit >> 1
Enter name (ENTER to exit): John Bennett
Enter phone no: 555-2000
Enter name (ENTER to exit): Jane Austen
Enter phone no: 555-1212
Enter name (ENTER to exit):
Enter command: 1. data entry, 2. query, 3. exit >> 2
Enter name (ENTER to exit): John Bennet
Name not found. Re-enter.
Enter name (ENTER to exit): John Bennett
555-2000
Enter name (ENTER to exit): Jane Austen
555-1212
Enter name (ENTER to exit):
Enter command: 1. data entry, 2. query, 3. exit >> 3

H
ow

 It

 Works

 How It Works
Despite its length, this is actually a simple program. All the main function
does is give the user a choice between executing one of several commands and
then call the appropriate function.

The dictionary, called phone_dict is created as an empty dictionary at the
beginning of the program.

phone_dict = {}

phone_book1.py, cont.

Overland_Book.indb 234Overland_Book.indb 234 8/31/17 12:57 PM8/31/17 12:57 PM

Converting Dictionaries to Lists 235
12

Most of the statements in this program perform actions that you’ve seen
performed many times in this book: prompt the user, get input, make modifi-
cations to the input as appropriate, and then respond.

The add_entries function prompts for two strings: key_str and val_str.
After the function gets these strings, it’s easy to add them as a key-value pair.

 phone_dict[key_str] = val_str

The display_entries function prompts for a key string and then dis-
plays the corresponding value, checking to see if the key currently exists in the
phone book. The code is written so as to perform only one lookup per item,
which makes it efficient. If the specified key is not found, the get method
returns None; we therefore test to see if this value is not None.

 val_str = phone_dict.get(key_str)
 if val_str:
 print(val_str)
 else:
 print('Name not found. Re-enter.')

Ex
er

cis
es

 EXERCISES

Exercise 12.1.1. Revise Example 12.1 so that it uses strings to store a command
rather than actual numbers. The virtue of this approach is that it doesn’t risk
an exception by using to use an int conversion. (Hint: you can still test the
first character to see what digit it contains, if any.)

Exercise 12.1.2. If the phone book is empty and the user selects command num-
ber 2 (query), return immediately after stating that it’s empty. (Hint: use the
len method.)

Exercise 12.1.3. Write a similar application for a grades dictionary, in which the
value field is stored as floating-point. Remember to change user prompts as
appropriate.

Converting Dictionaries to Lists
Python dictionaries support a number of operations, and these are different
from the ones supported for lists—although both support the len function.

From within the interactive environment, you can get a list of dictionary
abilities by typing the following:

>>>help(dict)

Overland_Book.indb 235Overland_Book.indb 235 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets236

Note that Python uses the word dict to refer to the general type that all
dictionaries have.

So far, I’ve mentioned the use of the get method and the len function.
Another useful method is the items method, which returns all the contents of
the dictionary in a list format. Each element of this list is a tuple in (key, value)
format. Here’s an example:

>>>print(phone_dict.items())
dict_items([('John Bennett', '555-1000'),
 ('Jane Austen', '555-1212')])

But what is this strange thing called dict_items? It’s not a list in the strict
sense, but it is an iterable, which means you can loop through it. For example,
you can print all the contents.

for i in phone_dict.items():
 print(i)

This might produce output such as the following:

('John Bennett', '555-1000')
('Jane Austen’, '555-2000')

You can refer separately to keys and values if you want. Remember that the
items method returns a series of tuples of the form (key, value).

for k, v in phone_dict.items():
 print('Key: {}, Value: {}'.format(k, v))

This loop prints

Key: John Bennett, Value: 555-1000
Key: Jane Austen, Value: 555-2000

Example 12.2. Reading Items by Prefix
This example is essentially the same as Example 12.1, but it adds one
important function: the ability to select items based on their first few
characters.

When using a phone book, I might not be able to remember the exact
spelling of a certain name. Was it John Bennet or John Bennett? I can never
remember. Sometimes it would be much easier just to tell the computer, “Give
me a list of every name beginning with J.” That’s what the function in the next
code listing does.

Overland_Book.indb 236Overland_Book.indb 236 8/31/17 12:57 PM8/31/17 12:57 PM

Converting Dictionaries to Lists 237
12

phone_dict2.py

Get by Prefix function. Prompt and search dict.
def display_by_prefix():
 while True:
 s = input('Enter prefix (ENTER to exit): ')
 s = s.strip()
 if not s:
 return
 for k, v in phone_dict.items():
 if k.startswith(s):
 print(k, '\t', v)

This function, of course, needs to be linked into the main program through a
function call. We can let the user access this function through another command—
let’s call it the prefix command and assign it the number 4. The following bold
lines represent new or altered statements.

Main function. Prompts for next command and executes.
def main():
 while True:
 prompt = 'Enter command:\n1. data entry, '
 prompt += '2. query, 3. exit, 4. prefix >> '
 s = input(prompt)
 if not s:
 break
 cmd = int(s)
 if cmd == 3:
 break
 if cmd == 1:
 get_entries()
 elif cmd == 2:
 display_entries()
 elif cmd == 4:
 display_by_prefix()

Here’s a brief excerpt from a sample session:

Enter command:
1. data entry, 2. query, 3. exit, 4. prefix >> 4
Enter prefix (ENTER to exit): J
Jane Austen 555-1212
John Bennett 555-2000
Joseph Bloe 555-3333

Overland_Book.indb 237Overland_Book.indb 237 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets238
H

ow
 It

 Works

 How It Works
This example relies heavily on the startswith string method, which has the
following syntax:

string.startswith(prefix_str)

This expression returns True if the first X characters of string match the char-
acters in prefix_str, in which X is the length of the prefix. This method also has
optional arguments that specify starting and ending positions to search.

This is a case-sensitive comparison.

string.startswith(prefix_str, start, end)

Most often, however, you’ll use this method without the optional argu-
ments. The startswith method enables the following loop to select every-
thing that starts with the characters in s, the input string:

 for k, v in phone_dict.items():
 if k.startswith(s):
 print(v, '\t', itm[1])

Ex
er

cis
es

 EXERCISES

Exercise 12.2.1. Revise Example 12.2 in such a way as to guarantee that the out-
put is in sorted order. (Hint: Step through the items in such a way as to build a
list, and then use the sort method on this list.)

Exercise 12.2.2. Write the answer to Exercise in 12.2.1 so that it makes at least
one use of list comprehension.

Exercise 12.2.3. Write and test a “substring” function, which prints all items
whose keys contain a substring entered by the user.

Example 12.3. Loading and Saving to a File
The next block of code adds two additional functions, for loading from a file
and saving to a file. These capabilities help make the phone-book application
truly useful, by enabling you to save the data semipermanently.

phone_book3.py

Load files function.
Use try/except to re-prompt if file not found.
def load_file():

K
ey

 S
yn

tax

K
ey

 S
yn

tax

Overland_Book.indb 238Overland_Book.indb 238 8/31/17 12:57 PM8/31/17 12:57 PM

Converting Dictionaries to Lists 239
12

 phone_dict.clear() # This dict created earlier.
 while True:
 try:
 fname = input('Enter file to load: ')
 in_file = open(fname, 'r')
 a_list = in_file.readlines()
 for i in range(0, len(a_list), 2):
 key_str = (a_list[i]).strip('\n')
 val_str = (a_list[i + 1]).strip('\n')
 phone_dict[key_str] = val_str
 print(fname, 'successfully loaded.')
 in_file.close()
 break
 except FileNotFoundError:
 print('File not found. Re-enter.')

Save file function.
Prompt for name of a file and then write out
key/val pairs.
def save_file():
 fname = input('Enter file to save to: ')
 out_file = open(fname, 'w')
 for k in phone_dict:
 out_file.write(k + '\n')
 out_file.write(phone_dict[k] + '\n')
 out_file.close()

In addition to adding to these two functions, you would also need to modify
the main function so that it provides access to these functions through com-
mand choices. One way to do this is to create a global list that contains tuples,
each with a command number and name.

commands = [(1, 'Enter Records'), (2, 'Query'),
 (3, 'Load File'), (4, 'Save'), (5, 'Exit')]

You can also add in a list-by-prefix command if you want to incorporate
the code from Example 12.2.

With this list in place, you can then print out a command list as follows:

 for i, s in commands:
 print(i, s)

phone_book3.py, cont.

Overland_Book.indb 239Overland_Book.indb 239 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets240
H

ow
 It

 Works

 How It Works
This example introduces one method that may be new to you. But what it
does is obvious: it clears the existing contents of phone_book, if any. This is
optional, but usually it makes sense to do this before loading a new file.

 phone_dict.clear()

Most of what the code in this example does is lifted from similar functions
shown in Chapter 11, “File Ops.” But Example 12.3 doesn’t just read and
write lines of text; it “reads” and “writes” these lines by reading or writing
them into the dictionary named phone_dict.

For example, the load_file function reads pairs of text lines: the first line
is read as a key, and the next as its corresponding value. Note that the for
loop advances two lines at a time.

 a_list = f.readlines()
 for i in range(0, len(a_list), 2):
 key_str = (a_list[i]).strip('\n')
 val_str = (a_list[i + 1]).strip('\n')
 phone_book[key_str] = val_str

Notice how the readlines method reads all the lines of a text file into a list.
The length of that list controls how many iterations of the loop are executed.
Each iteration creates one key/value pair.

Similarly, the save_file function has a loop that writes two lines—one
containing a key, the one after that containing the associated value—for each
key/value pair. It’s necessary to append a newline character (\n) so that each
such write operation writes out a separate line.

 for k in phone_dict:
 out_file.write(k + '\n')
 out_file.write(phone_book[k] + '\n')

After each of these loops, the close method is called on the file object (f)
so that a file is kept open only as long as necessary.

 out_file.close()

The following figure illustrates how two key/value pairs would be stored in
a file:

'John Bennett\n'

'555-1000\n'

'Jane Austen\n'

'555-1212\n'

first key

first value

second key

second value

Overland_Book.indb 240Overland_Book.indb 240 8/31/17 12:57 PM8/31/17 12:57 PM

All About Sets 241
12

Ex
er

cis
es

 EXERCISES

Exercise 12.3.1. Put together all the code just described and test it, to make sure
the application works. For extra credit, build a single print string, preferably
using the join method, and then print that string rather than printing each
command separately.

Exercise 12.3.2. When a file is loaded, save the name in a global string variable.
Revise the save_file function so that it automatically saves to this same
file. However, if no file has been previously loaded (so that you are dealing
with a “new” file, so to speak), then when the save_file function is called, it
prompts for a file name. If you’re really ambitious, provide both a Save and a
Save File command.

Exercise 12.3.3. Add a default file name to the application, such as phone_data.txt.
At the beginning of the program, load this file if it exists. Then, when the user
saves to a file, use this file name. In addition to a Save command, which uses
the default file, maintain a separate Save As command so that the user can
save to a different file.

All About Sets
Another type of data collection, closely related to the Python dictionary
(dict) type, is the Python notion of set. Several things to keep in mind are

 Instead of “keys,” a set has simple elements, very much as a list does.

 As with dictionary keys, these elements are always unique. Adding a value to a
set that already contains that value has no effect.

 But unlike dictionaries, Python elements have no associated values. A set contains
elements, not key-value pairs.

One basic idea should make it very easy to understand sets: a Python set is
close to the concept of sets in mathematics. For example, you can get unions
and intersections.

But there’s at least one little “gotcha.” Sets use a notation that looks much
like a dictionary: they use curly braces, which mathematicians sometimes call
set braces.

set_name = { value1, value2, value3… }K
ey

 S
yn

tax

Overland_Book.indb 241Overland_Book.indb 241 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets242

There’s a limitation. This notation works only when there is one or more
elements, or values. So the following all work, as ways of creating sets:

lucky_nums = { 3, 7, 11, 27, 9 }
friends_set = {'John', 'Pete', 'Ken', 'Jane'}
fav_num_set = { 5 }

But a problem occurs when you use an empty set of braces: Python considers
that to designate an empty dictionary.

a_set = {}

This looks innocent enough, but consider the following behavior, which
you can test from within the interactive environment:

>>>a_set = {}
>>>type(a_set)
<class 'dict'>

You should be able to see that you’re already in trouble. The type function
indicates that you’ve created a dictionary (dict), not a set.

Fortunately, Python provides an easy way to create an empty set.

empty_set_name = set()

Here’s an example:

a_set = set()

Operations on Sets
The biggest single difference between sets and lists is that sets maintain
unique values. You can attempt to keep adding a duplicate value to a set, but
that operation is simply ignored. As I first explained in Chapter 6, “List Com-
prehension and Enumeration,” there are times this is exactly the behavior you
want, and we’ll take advantage of it in the upcoming Example 12.4.

Another difference is that ordering in a set does not matter. So the follow-
ing two sets are equivalent:

>>>a_set = {1, 2, 3}
>>>b_set = {3, 2, 1}
>>>a_set == b_set
True

Set collections support a number of methods that are unique to sets. First,
remember that you can always add and remove members. This is similar to the
append method for lists.

K
ey

 S
yn

tax

Overland_Book.indb 242Overland_Book.indb 242 8/31/17 12:57 PM8/31/17 12:57 PM

Operations on Sets 243
12

>>>beat_set = {'John', 'Paul', 'George', 'Pete'}
>>>beat_set.remove('Pete')
>>>beat_set.add('Ringo')
>>>beat_set
{ 'George', 'Paul', 'John', 'Ringo' }

Remember that the ordering a set is given has no significance.
Some of the other most important operations on sets include intersection,

union, and difference. There are many other operations, which you can learn
about by typing help(set) from within IDLE.

Assume the following two sets:

a_set = {1, 2, 3, 4, 5, 6}
b_set = {4, 5, 6, 10, 20}

Given these definitions, we can picture the union of the two sets through
a traditional set-theory diagram (Venn diagram). The union produces the set
{1, 2, 3, 4, 5, 6, 10, 20}. An element is in the union if it is a member of either
or both sets.

a_set.union(b_set)

1 2 3 10 20
4
5
6

We can do the same thing with intersections. An element is in the intersection if
it is a member of both sets. Therefore, the intersection of these two sets is {4, 5, 6}.

a_set.intersection(b_set)

1 2 3 10 20
4
5
6

Overland_Book.indb 243Overland_Book.indb 243 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets244

Finally, the difference between the sets is either “a_set – b_set” or
“b_set – a_set”; in the former case, it consists of all elements of a_set that
are not elements of b_set. That operation produces the set {1, 2, 3}.

a_set – b_set

1 2 3 10 20
4
5
6

What’s So Important About Sets?

Back in the 1960s and 1970s, many mathematics textbooks at the elemen-
tary school level introduced something called “The New Math.” What this
meant was mostly that students would be exposed to set theory early on.

Set theory had taken on special significance a number of decades ear-
lier, around the turn of the previous century. A group of mathematical
philosophers—especially Frege, Russell, and Whitehead—were looking
for a more solid basis on which to base mathematics and logic. They found
what they were looking for in set theory, or thought they did. For example,
the number 2, they thought, could be defined as the set of all dualities.

But alas, there were logical problems even in the heart of set theory.
Russell himself famously realized that if a set could contain itself, this led
to an unsolvable logical paradox—and the only solution was to declare
that a set could not be a member of itself.

Set theory is still considered useful in mathematics, for example, in clas-
sifying rational and irrational numbers as members of different sets: sets
that, surprisingly, have different properties even though both are infinite.
But in recent decades, set theory has been eclipsed to a large extent by
group theory. That’s another story.

Example 12.4. Revised Sieve of Eratosthenes
This example uses the Python set-collection capability to provide a more effi-
cient version of the sieve of Eratosthenes example in Chapter 6.

Interlude

Overland_Book.indb 244Overland_Book.indb 244 8/31/17 12:57 PM8/31/17 12:57 PM

Operations on Sets 245
12

sieve3.py

nums = set(range(2, 20))
comps = {j for i in nums for j in range(i*i, 20, i)}
primes = nums - comps
print(primes)

When properly entered and executed, this short program prints the follow-
ing set of prime numbers, which begins with 2 and continues up to but not
including 20.

{2, 3, 5, 7, 11, 13, 17, 19}

H
ow

 It

 Works

 How It Works
Although this program is incredibly short, it has some subtle features. First,
the range keyword is used to help generate a set beginning with 2, up to but
not including 20.

{2, 3, 4, 5… 19}

The problem is that the range keyword produces a list, not a set. It might
be tempting to make a set by putting it inside braces.

nums = { range(2, 20) } # ERROR! Wrong way to do this.

The problem with that approach is that it simply creates a set with one ele-
ment; and that element is a list! Instead, the proper way to create a set from a
range is to use the set keyword to do a conversion. This produces the set we
actually want.

nums = set(range(2, 20)) # Right way to make a set.

Another subtle feature is the use of list comprehension, although here it
is actually “set comprehension.” Look again at the longest statement in the
program.

comps = {j for i in nums for j in range(i*i, 20, i)}

This statement is equivalent to the following:

comps = set()
for i in nums:
 for j in range(i * i, 20, j):
 comps.add(j)

Overland_Book.indb 245Overland_Book.indb 245 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 12 Dictionaries and Sets246

The reason the set-comprehension approach works is that the expression
between the braces is not a list but actually an iterable, which is a series of
values that you can get one at a time, and an iterable can be made into a list or
a set, depending on whether brackets or braces are used.

As explained in Chapter 6, this nested for loop causes j to be set to the mul-
tiple of each number in the set nums. Each such value of j—which represents
the multiple of some number i, starting with i * i—is added to the set named
comps, which forms the set of composite numbers.

And it makes far more sense to make comps a set rather than a list, because
in some cases, a number would be added for inclusion more than once (12, for
example), and it’s more efficient to automatically avoid maintaining duplicate
values, which is what sets do.

Finally, to get the prime numbers in the interval between 2 and 19, inclusive,
we simply “subtract out” the composite numbers by using the set-difference
operation.

primes = nums – comps

Ex
er

cis
es

 EXERCISES

Exercise 12.4.1. Two of the statements in Example 12.4 can be combined in a very
easy and trivial way to save a line. Carry out this fix.

Exercise 12.4.2. Revise Example 12.4 so that it prompts the user to enter a num-
ber N; then find and print all the prime numbers up to but not including N.

Exercise 12.4.3. Write a program that uses sets, as much as possible, to contain all
the even numbers between 1 and 25. Then use the set “difference” operation
to produce a set containing all the odd numbers in that range.

Chapter 12 Summary
Here are the major points of Chapter 12:

 A Python dictionary (type dict) is a collection type that a series of key/value
pairs. Here’s an example:

my_dict = {'one' : 1, 'two' : 2, 'three' : 3}

 Keys are maintained so that they are always unique.

 Values can contain any number of duplications relative to each other. For
example, the same value, 4.0, can be assigned to many different keys.

Overland_Book.indb 246Overland_Book.indb 246 8/31/17 12:57 PM8/31/17 12:57 PM

247
12

Summary

 The following syntax can be used either to add a new key/value pair or to
change the value associated with an existing key.

my_dict['four'] = 4

 You can also use this expression on the right side of an assignment or in
another context, provided that the key already exists. The result is to produce
the associated value.

n = my_dict['four']

 But this syntax raises a KeyError exception if the key can’t currently be found
in the dictionary.

 The get method returns the value associated with a key; if the key does not
exist in the dictionary, then get returns the special value None. This return
value can be tested to see if the key does or does not exist, but it will not raise
an exception.

n = my_dict.get('four')

 Once you choose a type for keys, use it consistently. The associated values can
have any type, but it is usually a good idea to pick a consistent data type for
values as well.

 Sets are similar to lists but contain no duplicate members, and the ordering
within a set has no significance.

 To declare an empty set, you must use a set conversion, not just empty braces.

empty_set = set()

 You can also use braces to specify a set, but that notation must include at least
one element; otherwise it creates an empty dictionary.

a_set = {1, 2, 3}

 Thereafter, you can use the add and remove methods to add or remove new
elements. If you try to add an element that duplicates an existing element, that
has no effect.

 The methods supported by sets include union, intersection, and
difference.

 The subtraction operator (-) performs a set difference operation, yielding all the
elements that are members of the first set (nums) but not the second (comps).

primes = nums - comps

 The len function works on dictionaries and sets, just as it works on lists.

Overland_Book.indb 247Overland_Book.indb 247 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 248Overland_Book.indb 248 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

249

13
Matrixes: 2-D Lists

Python lists can contain almost any kind of Python data, including other lists.
So what would you call a list of lists?

The answer is a two-dimensional list, also called a matrix. Many applications—
and game programs in particular—depend on the use of matrixes.

This chapter covers several aspects of matrixes.

 Creating small matrixes

 Creating large, N*M matrixes

 Rotating a matrix

Simple Matrixes
With Python, you can easily create small matrixes (two-dimensional lists) by
direct initialization. For example, to create a three-by-three matrix, in which
all elements initialized to 0, you could use this statement:

list2D = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

For clarity, I could also enter the statement this way. Remember that this
works because a statement with an open parenthesis or bracket automatically
extends onto the next line.

list2D = [[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]

You can, of course, initialize the elements to any values you want. Here’s an
example:

list2D = [[1, 3, 2],
 [50, 50, 66],
 [-1, -2, -3]]

Overland_Book.indb 249Overland_Book.indb 249 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists250

These values are all integers. But you can use any kind of data you want.
You could use floating-point numbers or strings, for example. But for this
chapter, we’ll stick with numeric data, just to keep things simple.

Accessing Elements
If you’ve programmed in another language such as C, C++, or Java, this next
section should be obvious to you. To access an element of a two-dimensional
list, use the following syntax:

list_name[row_num][col_num] = n

For example, to assign 67 to the first element of the first row, you’d use this
statement:

mat[0][0] = 67

Within Python, index numbers—whether for lists, tuples, or other data
collections—are always zero-based, and this extends to any number of dimen-
sions. Zero-based numbers run from 0 to N-1, where N is the length of the
dimension.

So in a three-by-three matrix, the index numbers are as shown here:

m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

Once a matrix has been created, you can both assign to and assign from
array elements all you want, as long as none of the indexes go out of range.

mat[2][1] = mat[0][1] + mat[1][1]

K
ey

 S
yn

tax

Overland_Book.indb 250Overland_Book.indb 250 8/31/17 12:57 PM8/31/17 12:57 PM

Irregular Matrixes and Length of a Row 251
13

This statement assigns a value to one element by adding up the values of
two other elements. Essentially, this particular statement sums the middle col-
umn’s top two rows and enters the result in the bottom row.

0

mat = [[0,5,0], [0,3,0], [0,0,0]]

mat[2][1] = mat[0][1] + mat[1][1]

5 0

0 3 0

0 8 0

Irregular Matrixes and Length of a Row
Python makes it easy to create irregular-shaped matrixes. Here’s an example:

>>>mat = [[-1, -2, -3],
[10, 20],

 [1, 2, 3, 4, 5]]

This matrix doesn’t have a simple rows × cols shape but instead has rows of size
3, 2, and 5. How, in general, do you determine the size (or sizes) of such a matrix?

You can get the length of a matrix directly, but doing so just gives the num-
ber of rows.

>>>len(mat)
3

The variable matr refers to a list that happens to contain three other lists. Each of
these lists can be thought of as a “row.” These rows, in turn, have length 3, 2, and 5.

>>>len(mat[0])
3
>>>len(mat[1])
2
>>>len(mat[2])
5

Overland_Book.indb 251Overland_Book.indb 251 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists252

–1

matrix[2][4]

matrix[0]

matrix

–2 –3

10 20

0 1 2 3 4

matrix[1]

matrix[2]

Multiplication (*) and Lists
Once you’ve been programming for a while, you’ll want to know how to create
larger, N*M matrixes—matrixes of arbitrarily large size. This is almost trivial
to do in other languages but requires special techniques in Python.

First, however, you need to understand how the multiplication operator (*)
affects lists. Suppose you want to create a string made of hyphens (-) without
typing them all out. In Python, you can do that this way:

border_str = '-' * 40

This statement creates a string consisting of 40 hyphens. It’s a useful tech-
nique in itself, and we’ll make use of it in Chapter 17, “Conway’s Game of Life.”

You can do something similar with lists. A long list can be created out of a
shorter list, efficiently creating a list of any size.

z_list = [0] * 9

Now z_list is a list of length 9, initialized to all 0s. Valid indexes run
from 0 to 8. It’s still a one-dimensional list that you can use just like any other.
And you can print it out.

>>>z_list = [0] * 9
>>>print(z_list)
[0, 0, 0, 0, 0, 0, 0, 0, 0]

This technique enables you to build arbitrarily large lists from smaller lists
of any size. Here’s an example:

>>>z_list = [0, 1] * 5
>>>print(z_list)
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

Overland_Book.indb 252Overland_Book.indb 252 8/31/17 12:57 PM8/31/17 12:57 PM

The Python Matrix Problem 253
13

But so far, we’ve only been able to create (or rather, extend) one- dimensional
lists. To get a list of lists is another matter. You might imagine you could do it
this way:

mat = [[0] * 4] * 4

And this actually does create a list of lists—in a sense. But it’s not usable.
Why not?

The Python Matrix Problem
The problem with the statement at the end of the previous section is that it
does create several rows—but it’s the same row created over and over. Here’s
another example:

>>>mat = [[0] * 3] * 3

You can print it out. But watch what happens if you set an element and then
print it again:

>>>print(mat)
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>>mat[0][0] = 555
>>>print(mat)
[[555, 0, 0], [555, 0, 0], [555, 0, 0]]

What happened? We set one element to 555, and yet 555 occurs three times!
If you experiment, you’ll discover that whatever setting you make to any row
of the matrix automatically affects every other row.

Here’s the problem: The expression [[0] * 3] * 3 was supposed to create
a three-by-three matrix. Instead, it created one row and then created three
 references to it. Instead of getting three separate rows, you get one row, but
it’s referred to three times. This is not what we want.

Here’s another way to understand this problem. In Python, a statement
such as

mat = [[0] * 3] * 3

…has the same effect as if you’d entered the following:

row = [0] * 3
mat = [row, row, row]

Overland_Book.indb 253Overland_Book.indb 253 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists254

How to Create N*M Matrixes: The Solution
The problem is that, unlike many other languages, Python has no data dec-
larations. If it did, it would’ve been easy for the designers of the language to
come up with a multidimensional list syntax.

Instead, you have to create, or rather build, a multidimensional list from
the ground up. Here’s the simplest way to do that:

name = [[val] * cols for i in range(rows)]

Here are some examples. These create a 3-by-3, 10-by-10, and a 20-by-12
matrix.

m1 = [[0] * 3 for i in range(3)]
m2 = [[0] * 10 for i in range(10)]
m3 = [[0] * 12 for i in range(20)]

In this last case, there are 12 columns and 20 rows, because the left part of
the expression creates a single row ([0] * 12) and then replicates it 20 times.
The last element of that matrix is m3[19][11].

This syntax uses list comprehension, first introduced in Chapter 6. The
reason it works—to take the last example—is because it is equivalent to the
following:

m3 = []
for i in range(20):
 m3.append([0] * 12)

Here’s the critical point: this loop generates a new instance of [0] * 12
each time it executes. You therefore get 20 independent rows rather than get-
ting the same row over and over.

If you want, you can initialize all the values of the matrix to a value other
than 0. For example, the following assignment initializes all the values to –1:

m4 = [[-1] * 10 for i in range(10)]

You can even initialize every row to different values.

m5 = [[i] * 4 for i in range(4)]

By now, you should be able to predict what you’ll see if the matrix, m5,
is printed.

But if you want to initialize every element of the matrix to a unique value,
you have no choice but to use nested list comprehension. Here’s an example:

m6 = [[i * j for j in range(5)] for i in range(5)]

Here’s a “pretty” display loop followed by the results:

K
ey

 S
yn

tax

Overland_Book.indb 254Overland_Book.indb 254 8/31/17 12:57 PM8/31/17 12:57 PM

How to Create N*M Matrixes: The Solution 255
13

>>>for i in m6:
 print (i)

[0, 0, 0, 0, 0]
[0, 1, 2, 3, 4]
[0, 2, 4, 6, 8]
[0, 3, 6, 9, 12]
[0, 4, 8, 12, 16]

Can you create matrixes of three, four, or even more dimensions?
Yes. The technique requires you to keep adding uses of list comprehension.

So, a two-dimensional matrix is created this way:

mat_2d = [[0] * 10 for i in range(10)]

A three-dimensional array (each dimensional also equal to 10) is created this way:

mat_3d = [[[0] * 10 for i in range(10)]
 for j in range(10)]

You should be able to see that by adding list-comprehension clauses, you
can increase the matrix to have as many dimensions as you want. It’s not even
necessary to use variables on the right side, by the way. You can use an under-
score (_) to indicate a “blank” variable.

mat_3d = [[[0] * 10 for _ in range(10)]
 for _ in range(10)]

And a four-dimensional list? You could create it with the following state-
ment, although I am reducing each dimension to five elements each, because
this matrix is starting to occupy a great deal of space!

mat_4d = [[[[0] * 5 for _ in range(5)]
 for _ in range(5)]
 for _ in range(5)]

Why Isn’t It Easier?

The previous section should be the response to anyone who says the rea-
son for learning Python is “It’s easier.”

It’s certainly easier to do many, many things in Python. You can sit
down and program without having to declare anything. You don’t have to
worry about semicolons and braces, for the most part. Best of all, you’re
provided with many powerful built-in functions.

continued on next page

Interlude

Overland_Book.indb 255Overland_Book.indb 255 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists256

continued

But creating large matrixes is, sadly, not easier in Python. In a supposedly
“harder” language such as C or C++, you can create a matrix of any size
just by declaring it.

int my_matrix[20][50];

If this declaration is at the global level (not inside a function), all the
values are initialized to zero for you, courtesy of C!

Why can’t the Python technique for creating matrixes be as easy as the
technique in C or C++?

The answer is that this is part of the price one pays for Python’s
 declaration-free language. As this book has stated many times, the way
you create a variable is by assigning it a value. To create an array, there-
fore, it’s necessary to append one row at a time and one element a time.
The list-comprehension syntax, in effect, sets up loops that do just that….
but do it in a relatively small amount of space.

Example 13.1. Multiplication Table
This application builds a matrix that contains the values of a multiplication
table and prints them out.

mult_tab.py

def main():
 rows = cols = 8
 mat = [[(i + 1) * (j + 1) for j in range(cols)]
 for i in range(rows)]
 # Print out matrix
 for i in range(rows):
 for j in range(cols):
 print('{:>2} '.format(mat[i][j]), end='')
 print()

main()

This application produces an 8-by-8 multiplication table that shows the
results of multiplying values ranging between 1 and 8. You can easily make it
bigger if your screen has the room.

Interlude

Overland_Book.indb 256Overland_Book.indb 256 8/31/17 12:57 PM8/31/17 12:57 PM

How to Create N*M Matrixes: The Solution 257
13

Here’s the output:

 1 2 3 4 5 6 7 8
 2 4 6 8 10 12 14 16
 3 6 9 12 15 18 21 24
 4 8 12 16 20 24 28 32
 5 10 15 20 25 30 35 40
 6 12 18 24 30 36 42 48
 7 14 21 28 35 42 49 56
 8 16 24 32 40 48 56 64

H
ow

 It

 Works

 How It Works
This program stores multiplication values in a matrix and then prints out the
values. If that’s all you need a program to do, it would make more sense to just
print the values on the screen without bothering to store them.

However, this example features some important coding techniques we’re
going to utilize in upcoming sections. First, the program begins by creating
an 8-by-8 matrix. We could have created a matrix initialized to all zeroes and
set the values later, using a nested loop. But that would have been inefficient.

This is the less efficient way.
m = [[0] * cols for i in range(rows)]

As long as we’re going to the trouble of creating the array, why not initialize it
with the correct values from the beginning? The program therefore uses the fol-
lowing statement to generate and set up the multiplication table in one fell swoop:

m = [[(i + 1) * (j + 1) for j in range(cols)]
 for i in range(rows)]

The values i + 1 and j + 1 create a 1-based table rather than a 0-based
table, because multiplication by zero isn’t interesting.

The program uses a nested loop to print out the contents of the matrix.

 for i in range(rows):
 for j in range(cols):
 print('{:>2} '.format(m[i][j]), end='')
 print()

Notice the use of the format string method, which right-justifies each element in
a print field two characters in size. The string {:>2} fixes this formatting pattern.

Note, also, that it’s necessary to print a newline after each row of the table
is printed. This does not happen automatically. Instead, the final line, which
calls print again with no arguments, prints a newline at the end of each row.

Overland_Book.indb 257Overland_Book.indb 257 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists258
Ex

er
cis

es

 EXERCISES

Exercise 13.1.1. Revise Example 13.1 so that it prints a 12-by-12 multiplication
table. Make sure everything still aligns nicely; this will require a change to the
formatting code.

Exercise 13.1.2. What advantage, if any, is there to using the variables rows and
cols, instead of “hard-coding” 8 and 8 or 12 and 12?

Exercise 13.1.3. Instead of using fixed sizes for the dimension of the table, prompt
the user for these values: number of rows and number of columns.

Exercise 13.1.4. Remember that making many calls to the print function slows
down performance time substantially. Instead of making many such calls,
build up a large print string and then print it at the end. (Hint: Remember that
you can represent a newline as \n.)

Exercise 13.1.5. Create a four-dimensional matrix, each dimension length 2 in size.
Set every element to the product of i * j * k * m, where each value is an index
of the element plus one (because we’re simulating one-based indexes). Use list
comprehension as shown in this chapter rather than direct specification of values.

If you’re really ambitious, figure out an elegant way to print this four-
dimensional matrix. This may take some thought.

Example 13.2. User-Initialized Matrix
The next step in mastering two-dimensional (matrix) technology is to let the
user enter any and all the values of the elements. We’ll assume a five-by-five
matrix size.

This program, in turn, will prove to be a slick little utility for entering any
numbers the user likes into the matrix; and it will be useful in the next sec-
tions, when we rotate the matrix.

mat_enter.py

def main():
 rows = cols = 5
 mat = [[0] * cols for i in range(rows)]
 for i in range(rows):
 s = input('Enter a row of values: ')

Overland_Book.indb 258Overland_Book.indb 258 8/31/17 12:57 PM8/31/17 12:57 PM

How to Create N*M Matrixes: The Solution 259
13

 a_list = s.split()
 for j, item in enumerate(a_list):
 if j >= cols:
 break
 mat[i][j] = int(item)
 print_mat(mat)

Print_mat function. This is written in such a way
that size information (row, col) does not need to
to be passed in as extra arguments.

def print_mat(mat):
 s = ''
 for a_row in mat:
 for item in a_row:
 s +='{:>3} '.format(item)
 s += '\n'
 print(s)

main()

H
ow

 It

 Works

 How It Works
The program starts by creating a five-by-five matrix in which each element is
initialized to 0. This initialization is desirable in this case, because we want
the default value for each element to be 0.

 rows = cols = 5
 mat = [[0] * cols for i in range(rows)]

The rest of the main function consists of an input-values loop. For each row
in the matrix—in this case, there are five rows—the user is prompted to enter
a set of values. The approach here is meant to be “idiot proof.”

Specifically, let’s suppose that N is the number of items entered, while Cols
is the number of columns in a row.

 If N is smaller than Cols, then the last Col-N elements are left set to 0.

 If N is greater than Cols, then the last N-Col entries are ignored.

Here is pseudocode that summarizes what the statements do.

mat_enter.py, cont.

Overland_Book.indb 259Overland_Book.indb 259 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists260

For each i from 0 to rows–1,
 Prompt user for a line of input
 Split that input line into a list of strings
 For each item in this list,
 If the max. number of items have been entered, break.
 Assign item to appropriate matrix element.

The enumerate function, first introduced in Chapter 6, is useful here.
Remember that this function returns an index/item pair—which in turn pro-
vides direct access to individual elements as well as getting an index number
“for free.” There are other ways to write this, but enumerate, in this situa-
tion, enables you to write cleaner code.

 for j, item in enumerate(a_list):
 if j >= cols:
 break
 m[i][j] = int(item)

Op
ti

m

izing

 Optimizing the Code
The snippet of code at the end of the previous section works, but we can
improve on it. Remember the problem: to read as many items from the input
line as possible, provided the number of items read does not exceed the column
size (5 in this case).

Really, then, we’d like to just get up to the first five items—or rather the
first cols items—but no more. We can do this through slicing.

 for j, item in enumerate(a_list[:cols]):
 m[i][j] = int(item)

The expression a_list[:cols] says, “Get all the elements up to but not
including the element indexed by cols.” In other words, get the first five
elements.

But what if the user entered fewer than five elements? That’s not a problem,
because in that case, a_list[:cols] simply gets all the elements. Therefore,
a_list[:cols] really says, “Get at most the first five elements,” which is
exactly what we want.

Ex
er

cis
es

 EXERCISES

Exercise 13.2.1. At the beginning of the program, prompt the user for the number
of rows and the number of columns to use.

Ps
eu

do

code

Overland_Book.indb 260Overland_Book.indb 260 8/31/17 12:57 PM8/31/17 12:57 PM

How to Rotate a Matrix 261
13

Exercise 13.2.2. Revise the program so that as soon as the user enters a number
larger than 1000, the size of the print field is increased. Also, increase the print field
if the number entered is less than –99. How general can you make this solution?

Exercise 13.2.3. Revise the program so that it converts negative entries into posi-
tive ones.

Exercise 13.2.4. Can you write the program in such a way that it avoids using a
range in the outer loop? Specifically, after the matrix exists, can you replace

for i in range(rows):

with a more direct form of iteration? You still need to make the program work
correctly.

How to Rotate a Matrix
Now that you know how to create a matrix and let the user enter values for
it, you can create an application that does something interesting: rotating a
matrix entered by a user.

Rotating a matrix clockwise 90 degrees is a classic problem in computer
science. Complex “in-place” solutions are possible, so I’m going to present the
approach that is by far the easiest: build a new matrix from an old one and
then just replace the first.

Python, as you’ll see, makes this whole process easy. First, examine what
happens to the coordinates of a cell as it’s rotated clockwise 90 degrees.

During these two rotations, the coordinates of a typical cell (element) trans-
form as follows—to which I’ve added two more rotations:

[0][3]
[3][4]
[4][1]
[1][0]
[0][3]

Overland_Book.indb 261Overland_Book.indb 261 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists262

From observation, you can see a pattern for each pair of coordinates, [i][j]:

 The new value of i gets the old value of j.

 The new value of j gets 4 minus the old value of i.

Therefore, to create a new matrix out of the old one, the correct transfor-
mation for each cell is

new_matrix[j][4 - i] = old_matrix[i][j]

This rotation rule can also be expressed as follows (and we’ll find this use-
ful later):

new_matrix[i][j] = old_matrix[4 - j][i]

But how do we create a whole new matrix and use it to replace the old?
Ideally, we want to be able to perform this entire operation over and over, so
the old matrix has to be discarded after each rotation.

The solution is essentially a three-step process:

1 Create a new matrix of the same dimensions as the first; we can label this new
matrix mat2.

2 Assign new values to each individual mat2 element, using the transformation for-
mula we just arrived at.

3 Assign the “current matrix” value, mat, to refer to the same matrix as mat2. This
is accomplished by the simple statement mat1 = mat2.

The third step is the interesting one. It has a couple of effects. First, it causes
mat1 to refer to the same data in memory that mat2 does. This operation hap-
pens lightning fast, as no actual data is copied other than a simple reference to
mat2. The second effect is that the old data is now an “orphan,” in a sense. It’s
still there, but nothing refers to it. There’s no way for the program to get at it
anymore.

And in C, that would be a problem, because of the danger of “memory
leaks”—sections of memory that are no longer used but take up space that
could be used other programs.

Fortunately, Python magically solves this problem through a process
called garbage collection. When a piece of data exists for which there is no
reference, the Python engine deletes it. It’s “magic” because you don’t have to
pay attention to it.

The bottom line is that mat1 now refers to the post-rotational data—which
is what we want—and the old data will be deleted from memory automatically.

Overland_Book.indb 262Overland_Book.indb 262 8/31/17 12:57 PM8/31/17 12:57 PM

How to Rotate a Matrix 263
13

mat1 mat2

Old mat1 now “orphan” mat1 = mat2

Elements rotated

Pros and Cons of Garbage Collection

The “garbage collection” approach to matrix rotation, presented in the previ-
ous section, is the easiest from a Python programming perspective. However,
it does involve the constant creation of a new matrix, followed by the copy-
ing of element values into their new positions, and followed by the automatic
deletion of the old matrix in memory. For most purposes, this is fine.

But if you’re dealing with very large matrixes and if performance time
is an issue, you might want to look for a more efficient solution.

One such solution would be to maintain exactly two matrixes in mem-
ory at all times and then switch between them after each rotation. This is
a good solution, and it is left as one of the exercises later in this chapter.

But what if you’re happy with the “garbage collection” solution, in which
the old matrix is automatically deleted by some background process?

Is such a solution doable in C?
As a matter of fact, yes. But it requires a great deal more work on the

part of the programmer. The C coder has to explicitly allocate memory
when he or she wants to dynamically create a new object in memory. That
memory, in turn, has to be referred to something called a pointer, which
in C is the only way to refer to new objects in memory. Finally, the C pro-
grammer has to explicitly delete the memory when it’s no longer in use, or
the program can and will create memory leaks.

continued on next page

Interlude

Overland_Book.indb 263Overland_Book.indb 263 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists264

continued

Modern programmers who program in Python, Java, or C# have come
to appreciate the freedom from worry that automatic garbage collection
gives them. “Let the programming environment itself worry about garbage
collection,” they might say. “That’s what it’s there for.”

That is one way to look at it. But a typical C programmer has a differ-
ent way of looking at it. Because garbage collection isn’t hidden from the
programmer by being taken care of automatically, the C programmer can
get garbage collection only by making a deliberate decision to use it. This
is an advantage to having a C-language background. It forces you to think
about implementation and performance issues.

Example 13.3. Complete Rotation Example
The following major example is the culmination of everything in this chapter.
It demonstrates how to create a matrix, let the user initialize any and all values,
and finally rotate it any number of times.

rotate.py

n = 5
mat1 = [[0] * n for i in range(n)]

def main():
 enter_mat_vals()
 print_mat()
 s = ''
 while not s or s[0] not in 'Nn':
 rotate_mat()
 print('Here is the rotated version:')
 print_mat()
 s = input('Rotate matrix again? (Y or N): ')

def rotate_mat():
 global mat1
 mat2 = [[0] * n for i in range(n)]
 for i in range(n):
 for j in range(n):
 mat2[j][n - 1 - i] = mat1[i][j]

Interlude

Overland_Book.indb 264Overland_Book.indb 264 8/31/17 12:57 PM8/31/17 12:57 PM

How to Rotate a Matrix 265
13

 mat1 = mat2

def enter_mat_vals():
 for i in range(n):
 s = input('Enter a row of values: ')
 a_list = s.split()
 for j, item in enumerate(a_list[:n]):
 mat1[i][j] = int(item)

def print_mat():
 s = ''
 for i in range(n):
 for j in range(n):
 s +='{:>3} '.format(mat1[i][j])
 s += '\n'
 print(s)

main()

Here is a sample session:

Enter a row of values: 1 2 3 4 5
Enter a row of values: 20
Enter a row of values: 30
Enter a row of values: 0 0 0 66
Enter a row of values: 0 55
 1 2 3 4 5
 20 0 0 0 0
 30 0 0 0 0
 0 0 0 66 0
 0 55 0 0 0

Here is the rotated version:
 0 0 30 20 1
 55 0 0 0 2
 0 0 0 0 3
 0 66 0 0 4
 0 0 0 0 5

Rotate matrix again? (Y or N): N

rotate.py, cont.

Overland_Book.indb 265Overland_Book.indb 265 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists266
H

ow
 It

 Works

 How It Works
This program consists of four functions: main, enter_mat_vals, rotate_mat,
and print_mat. The main function does something only mildly interesting:
it sets up a loop that continues until the user indicates they’d like to quit the
programming by typing No, N, or just n.

The main program executes the “Should I continue?” test at the top of the loop.

 s = ''
 while not s or s[0] not in 'Nn':

The expression not s is tested first, because if the input string is empty, then test-
ing the first character would cause an error. By the way, because of how this is writ-
ten, the default command (selected by just pressing Enter) is to do another rotation.

The enter_mat_vals and print_mat functions execute lines of code
that have already been described earlier in this chapter, in Example 13.2. The
interesting new function, therefore, is the rotate_mat function.

def rotate_mat():
 global mat1
 mat2 = [[0 for j in range(n)] for i in range(n)]
 for i in range(n):
 for j in range(n):
 mat2[j][n - 1 - i] = mat1[i][j]
 mat1 = mat2

This function requires a global statement, because there’s a global vari-
able named “mat1” that needs to be seen by the entire program. As explained
in Chapter 10, “Local and Global Variables,” when Python sees an assign-
ment, it tries to determine whether the variable could be interpreted as a local.
In this case, mat1 could be interpreted as local because

 An assignment to a variable creates that variable if it does not exist already.

But the global statement prevents Python from interpreting mat1 as local,
thereby forcing it to recognize the global version.

 global mat1

Coming to our aid here is another Golden Rule of Python. As Chapter 10
pointed out, there is one principle that determines when you must use the
global statement to avoid error.

 If a function uses a global variable, and if that function assigns data to the
variable, then use a “global” statement to prevent it from being local.

Overland_Book.indb 266Overland_Book.indb 266 8/31/17 12:57 PM8/31/17 12:57 PM

How to Rotate a Matrix 267
13

Now, what about the enter_mat_vals function? This function assigns
data to an element within mat:

 mat1[i][j] = int(item)

This statement is permitted because Python lists are mutable, and there-
fore list elements can be changed. But this is a change to an element, not a re-
assignment to mat1 itself. Therefore, a global statement is not needed.

But consider this statement:

mat1 = mat2

This statement breaks the association mat1 has with the old matrix and
makes it an alias for the new data, stored in mat2.

What happens to the old matrix, the one that holds data before rotation? It no
longer has any variable referring to it. Therefore, Python will eventually delete
that old data from memory when it has a chance, thanks to Python garbage
collection.

To summarize, here are the statements in the rotate_mat function:

The “global” statement ensures that changes to mat1 affect the entire
program.
Create mat2 as a new 5 by 5 matrix, taking up 25 places in memory.
For i in range 0 to 4,
 For j in range 0 to 4,
 Copy mat1[i][j] to a rotated position in mat2
Assign mat1 to refer to the new matrix, mat2

Op
ti

m

izing

 Optimizing the Code
In the rotate_mat function, I broke down everything into a series of discrete
steps. However, by using list comprehension, it’s possible to combine many of
these steps.

def rotate_mat():
 global mat1
 mat2 = [[mat1[n - 1 - j][i] for j in range(n)]
 for i in range(n)]
 mat1 = mat2

This does everything the longer version of the function does, but it does
some of it implicitly. A new matrix is created, and the variable mat1 is associ-
ated with this new data object in memory. The effect is therefore the same: the
old matrix is orphaned and will be the target of garbage collection. All this

Ps
eu

do

code

Overland_Book.indb 267Overland_Book.indb 267 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 13 Matrixes: 2-D Lists268

happens without having to name a new matrix (mat2). You can now replace
all occurrences of mat1 with just mat if you wish.

To make this work, I had to reverse the coordinates for rotation. The list
comprehension in this case implicitly does the following:

new_matrix[i][j] = old_matrix[n - 1 - j][i]

Ex
er

cis
es

 EXERCISES

Exercise 13.3.1. Revise the print_mat function in this example to use the sim-
pler, more direct for loops used earlier, in Example 13.2. Test everything to
make sure it still works.

Exercise 13.3.2. Revise Example 13.3.1 so that it rotates the matrix counterclock-
wise during each rotation.

Exercise 13.3.3. Revise the example so that it gives the user three choices: 1)
horizontal inversion, 2) vertical inversion, and 3) quitting. Inversion should
flip the matrix either horizontally or vertically, changing the matrix into its
reflection.

Exercise 13.3.4. Revise the example so that instead of creating a new matrix each
cycle, it switches back and forth between two matrixes in memory. Alter-
nately, either mat1 or mat2 is the “current” matrix, and the other becomes the
new matrix to be written to.

Chapter 13 Summary
Here are the main points of Chapter 13:

 Python supports lists inside of lists, which become two-, three-, and higher-
dimensional matrixes.

 You can create small arrays by declaring all the elements of the two-dimensional
lists (matrixes) this way:

my_matrix = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

 To create larger matrixes, you need to use a declaration such as the following,
which creates a matrix of size rows by cols:

m = [[v] * cols for i in range(rows)]

Overland_Book.indb 268Overland_Book.indb 268 8/31/17 12:57 PM8/31/17 12:57 PM

269
13

Summary

 You can also use

m = [[v for j in range(cols)] for i in range(rows)]

 You can refer to an individual element of a matrix as follows; remember that
in each dimension, indexes run from 0 to N-1, in which N is the size of the
dimension.

mat[4][5] = n

 To print or reset all the values of a matrix, use a nested loop. Here’s an example:

for i in range(rows):
 for j in range(cols):
 mat[i][j] = n

 If you’re not going to be setting or resetting matrix values, you can loop this way:

for a_row in mat:
 for item in a_row:
 print(item, end=' ')

 If the only variable referring to a block of data, such as a matrix, loses its asso-
ciation to the data, that data becomes an “orphan” that no longer is accessible
by the program.

 Python automatically looks for and deletes such orphans from memory. This
process is called garbage collection.

 Remember the general principle that the fewer separate calls a program makes
to the print function, the faster will be the runtime performance.

Overland_Book.indb 269Overland_Book.indb 269 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 270Overland_Book.indb 270 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

271

14 Winning at
Tic-Tac-Toe

One of the most universally played childhood games is Tic-Tac-Toe. In a
three-by-three matrix, each player takes turns marking an X or an O until one
player gets three in a row, horizontally, vertically, or diagonally.

Sounds simple, doesn’t it? But to handle all aspects of the game is far from
trivial. This chapter attacks the problem in several steps.

 Creating the board and permitting moves

 Determining the winner

 Implementing a complete strategy for a computer player

Design of a Tic-Tac-Toe Board
As we implement a Tic-Tac-Toe game, the use of character-based graphics is
fine for now. This version of the game will print out a simple display, prompt
the user for a move, and then print the new board. Here is the game board at
the beginning:

 1 2 3
1 . . .
2 . . .
3 . . .

There are two players, the X player and the O player. Player 1 (the X player)
goes first. Let’s say she enters the coordinates 2, 2 to take the center. The
refreshed board is then

Overland_Book.indb 271Overland_Book.indb 271 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe272

 1 2 3
1 . . .
2 . X .
3 . . .

Player 2 (the O player) chooses to go one square above—coordinates row 1,
column 2. This results in the following board:

 1 2 3
1 . O .
2 . X .
3 . . .

So far, so good. But the X player (player 1) gets the next move. She takes the
corner (1,1), threatening a win on the diagonal (1,1), (2,2), (3,3).

 1 2 3
1 X O .
2 . X .
3 . . .

Now the O player has no choice but to block the threatened win. He plays
in the opposite corner: (3,3).

 1 2 3
1 X O .
2 . X .
3 . . O

X now plays the coup de grâce. Placing the X in the space (2,1) threatens
two wins: there’s the vertical win with (1,1), (2,1), (3,1), and there’s the hori-
zontal win with (2,1), (2,2), (2,3). Player 2 cannot block both.

 1 2 3
1 X O .
2 X X .
3 . . O

There’s a critical point here you may need to remind your users: when a
move is entered in the form 2, 2 (for example, to take the center), you need
to use a consistent scheme such as the “row, column” scheme I’m adopt-
ing here. For the rest of the chapter, we’ll assume that the row coordi-
nate comes first and that user input—except when stated elsewhere—uses
1-based indexes.

Overland_Book.indb 272Overland_Book.indb 272 8/31/17 12:57 PM8/31/17 12:57 PM

Plan of This Chapter 273
14

1, 11

Column Number (Enter Second)

Row Number
(Enter First)

1, 2 1, 3

2, 12 2, 2 2, 3

3, 13

1 2 3

3, 2 3, 3

Plan of This Chapter
The ultimate goal of this chapter is to create a game in which the computer
plays X. The user will take the role of the O player. Ideally, we should build
a computer strategy that achieves a win whenever possible. The plan of this
approaches the task in three stages.

Phase 1
The program maintains the game board and invites two human players to
make a move. It must reprompt the user over and over if 1) the input is not
in the right format, 2) the coordinates entered are out of range, or 3) the user
tries to play in a square that is no longer available. The program prints out the
current board state after each move.

Phase 2
In this phase, the program operates as it did in Phase 1, except for one major dif-
ference: if one of the two players gets three in a row, the computer announces
the winner and terminates the game.

Phase 3
Using insights gleaned in Phase 2, this version replaces one of the human play-
ers with a computer player, which should play optimally. The program in this
chapter will make the first move; but I’ll describe a strategy for the computer
if it goes second.

Overland_Book.indb 273Overland_Book.indb 273 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe274

Python One-Line if/else
One of the tasks of the program in Phase 1 is to alternate between the X and O
players. The program will employ a variable named num_moves to keep track
of whose turn it is; if num_moves is odd, then it’s X’s turn; if this variable is
even, then it’s O’s turn.

Here’s an obvious way to write the program logic, using the condition
num_moves % 2 to determine whether the number of moves (turn number) is
even or odd.

if num_moves % 2 > 0:
 player_ch = 'X'
else:
 player_ch = 'O'

But there’s a more compact way to write this, using a one-line version of
if and else.

player_ch = 'X' if num_moves % 2 > 0 else 'O'

For clarity’s sake, I can put parentheses around the condition, making the
purpose of if and else more obvious.

player_ch = 'X' if (num_moves % 2 > 0) else 'O'

This is an example of the Python “ternary” or “conditional” operator,
which has the following syntax:

value1 if condition else value2

This expression produces value1 if the condition evaluates to True and
value2 otherwise.

Version Ë The conditional operator was introduced in Python 2.5. If you’re run-
ning an earlier version of Python, you can use the following statement, which
has the same effect in this case:

player_ch = ['O', 'X'][num_moves % 2]
 Ç Version

Example 14.1. Simple Two-Player Game
The following example implements a simple two-player game but only per-
mits legal moves in the required “row, col” format. It reprompts as necessary

Ke
yw

ord

Overland_Book.indb 274Overland_Book.indb 274 8/31/17 12:57 PM8/31/17 12:57 PM

Python One-Line if/else 275
14

and reprints the board after each move. The program terminates automat-
ically when all nine squares have been filled in or if the user enters 0 to exit
immediately.

ttt1.py

n = 3
mat = [['.'] * n for i in range(n)]

Main function: alternately prompt the two human
players – 'X' and 'O' – by calling get_move function.
#
def main():
 num_moves = 0
 print_mat()
 print('Moves are r, c or "0" to exit.')
 exit_flag = False
 while not exit_flag:
 num_moves += 1
 if num_moves > 9:
 print('No more space left.')
 break
 player_ch = 'X' if num_moves % 2 > 0 else 'O'
 exit_flag, r, c = get_move(player_ch)

Get Move function.
Prompt and re-prompt human player ('X' or 'O')
until a valid move of form 'row, col' has been
entered at an available square. Then enter move
into the grid and re-print the grid display.
def get_move(player_ch):
 while True:
 prompt = 'Enter move for ' + player_ch + ': '
 s = input(prompt)
 a_list = s.split(',')
 if len(a_list) >= 1 and int(a_list[0]) == 0:
 print('Bye now.')
 return True, 0, 0 # Throw 'EXIT' flag
 elif len(a_list) < 2:
 print('Use row, col. Re-enter.')

continued on next page

Overland_Book.indb 275Overland_Book.indb 275 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe276

 else:
 # First, convert to 0-based indexes.
 r = int(a_list[0]) - 1
 c = int(a_list[1]) - 1
 if r < 0 or r >= n or c < 0 or c >= n:
 print('Out of range. Re-enter.')
 elif mat[r][c] != '.':
 print('Occupied square. Re-enter.')
 else:
 mat[r][c] = player_ch
 print_mat()
 break
 return False, r, c # Do not throw 'EXIT' flag

def print_mat():
 s = ' 1 2 3\n'
 for i in range(n):
 s += str(i + 1) + ' '
 for j in range(n):
 s += str(mat[i][j]) + ' '
 s += '\n'
 print(s)

main()

H
ow

 It

 Works

 How It Works
This is the simplest form of the Tic-Tac-Toe game. All it does is alternately ask
two different human players for moves. Yet there still is a good deal to do on
the housekeeping side.

First, it’s necessary to create a true three-by-three matrix. The first two
statements do that using the techniques of Chapter 13, “Matrixes: 2-D Lists.”
Each element in the array has the starting value of a string containing a dot (.),
which indicates a blank space.

n = 3
mat = [['.'] * n for i in range(n)]

The main function then alternates between X and O by calling the get_move
function.

ttt1.py, cont.

Overland_Book.indb 276Overland_Book.indb 276 8/31/17 12:57 PM8/31/17 12:57 PM

Python One-Line if/else 277
14

The get_move function returns True if and only if the user types 0 to termi-
nate the game early. When that happens, the exit_flag variable is switched on
(set to True) within the main function, and the program terminates.

The main function also terminates the game if nine moves have been made.

 while not exit_flag:
 num_moves += 1
 if num_moves > 9:
 print('No more space left.')
 break
 player_ch = 'X' if num_moves % 2 > 0 else 'O'
 exit_flag, r, c = get_move(player_ch)

The program prompts and reprompts until it gets valid input. The function
returns three values: exit_flag, r, and c. The last two, r and c, aren’t used
in this version of the program but will be useful in Phase 2.

The split method is extremely helpful in reading user input. As explained
in Chapter 7, “Python Strings,” it conveniently splits an input line into a list of
individual strings.

def get_move(player_ch):
 while True:
 prompt = 'Enter move for ' + player_ch + ': '
 s = input(prompt)
 a_list = s.split(',')
 if len(a_list) >= 1 and a_list[0] == '0':
 print('Bye now.')
 return True # Throw 'EXIT' flag
 elif len(a_list) < 2:
 print('Use row, col. Re-enter.')
 else:
 ...
 return False # Do not throw 'EXIT' flag

The else clause is reached if input is in the form r, c: a comma-separated
list of two items. The statements in this clause test the other conditions nec-
essary to accept the move. Note that this else clause has a nested else
clause of its own.

 r = int(a_list[0]) - 1
 c = int(a_list[1]) - 1
 if r < 0 or r >= n or c < 0 or c >= n:
 print('Out of range. Re-enter.')
 elif mat[r][c] != '.':
 print('Occupied square. Re-enter.')

Overland_Book.indb 277Overland_Book.indb 277 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe278

 else:
 mat[r][c] = player_ch
 print_mat()
 break

The first thing this block of code does is to interpret the two items entered,
converting 1-based index numbers to 0-based indexes. Valid moves run from
(1,1) to (3,3), and these are converted to actual coordinates, running from
(0,0) to (2,2).

If the input passes all tests, the program places an X or O into the grid
as appropriate, calls the print_mat function, and breaks the re-prompting
cycle.

Note Ë Python lists evaluate to None if empty; therefore, when tested as condi-
tions, they are equivalent to False if empty and True otherwise. This means
that the following line of code:

 if len(a_list) >= 1 and a_list[0] == '0':

Can be replaced by this shorter line:

 if a_list and a_list[0] == '0':

Doing that replacement is left as an exercise.
 Ç Note

Ex
er

cis
es

 EXERCISES

Exercise 14.1.1. Revise the print_mat function to use the join method. It should
be used to join all the input on a line, using a blank space to separate items. It
should also be used to join output lines together, using newlines to separate
them. (This approach is a more efficient approach to building a string, but
unless you are joining hundreds of strings, you probably won’t notice a big
difference in performance.)

Exercise 14.1.2. Revise the example so that instead of using an exit code of 0,
accept an exit code consisting of the word exit. Enable the program to recog-
nize any word as meaning exit if the first character is E or e.

Exercise 14.1.3. Revise Example 14.1 so that it plays on a four-by-four square.
Remember that the total number of moves is now larger than nine. (Hint:
there are only a few changes that need to be made, but there are several of
them, scattered throughout the program.)

Exercise 14.1.4. Revise Example 14.1 so that it plays on a six-by-six square.

Overland_Book.indb 278Overland_Book.indb 278 8/31/17 12:57 PM8/31/17 12:57 PM

The count Method for Lists 279
14

Variations on Tic-Tac-Toe

Tic-Tac-Toe may be the simplest game that has a visual component. But it’s
just the beginning. You could, for example, implement a game of four or
five in a row, on a larger board. And you’re not limited to two dimensions.

 1 2 3 1 2 3 1 2 3
1 X
2 X
3 X
 (1) (2) (3)

In this three-dimensional version, each of the grids is one “plane” or
“slice” of a cube. Winning combinations include the one shown here:
(1, 1, 1), (2, 2, 2), (3, 3, 3).

This three-by-three-by-three game is too easily won by whoever goes
first, but other games are possible. What about a four-by-four-by-four
game in which a player wins by getting four in a row?

The count Method for Lists
Much of Python’s programming power comes from its list-handling abilities.
The rest of the chapter makes use of another list method, count.

n = list.count(value)

The call to count generates an integer value. For example, suppose you
have the following list of single-character strings:

a_list = ['X', 'X', 'O', '.', 'X, 'O']

The count method makes it easy to count the number of occurrences of
Xs, Os, and dots, which will be useful in this chapter. Here is a sample session
from within the interactive environment that demonstrates this method:

>>>a_list.count('X')
3
>>>a_list.count('O')
2

Example 14.2. Two-Player Game with Win Detection
This next phase adds one element to the game, but it’s an important one: after
each move, detect whether either player has achieved three in a row.

Interlude
Ke

yw

ord

Overland_Book.indb 279Overland_Book.indb 279 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe280

The reason this phase is so important is that in detecting a three-in-a-row sit-
uation, we have begun to give the program a certain intelligence: if the program
can detect wins, then it also can detect when someone is about to win, and such
awareness can be used in creating an optimal computer-player strategy, which
we’ll do in Phase 3.

Most of the statements in this version are the same as in Phase 1. The new
lines are in bold.

ttt2.py

n = 3
mat = [['.'] * n for i in range(n)]

win_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9],
 [1, 4, 7], [2, 5, 8], [3, 6, 9],
 [1, 5, 9], [3, 5, 7]]

Main function: alternately prompt the two human
players – 'X' and 'O' – by calling get_move function.
#
def main():
 num_moves = 0
 print_mat()
 print('Moves are r, c or "0" to exit.')
 exit_flag = False
 while not exit_flag:
 num_moves += 1
 if num_moves > 9:
 print('No more space left.')
 break
 player_ch = 'X' if num_moves % 2 > 0 else 'O'
 exit_flag, r, c = get_move(player_ch)
 if (not exit_flag) and test_win(r, c):
 print('\n', player_ch, 'WINS THE GAME!')
 break

Get Move function.
Prompt and re-prompt human player ('X' or 'O')
until a valid move of form 'row, col' has been
entered at an available square. Then enter move
into the grid and re-print the grid display.
def get_move(player_ch):

Overland_Book.indb 280Overland_Book.indb 280 8/31/17 12:57 PM8/31/17 12:57 PM

The count Method for Lists 281
14

 while True:
 prompt = 'Enter move for ' + player_ch + ': '
 s = input(prompt)
 a_list = s.split(',')
 if len(a_list) >= 1 and int(a_list[0]) == 0:
 print('Bye now.')
 return True, 0, 0
 elif len(a_list) < 2:
 print('Use row, col. Re-enter.')
 else:
 # First, convert to 0-based indexes.
 r = int(a_list[0]) - 1
 c = int(a_list[1]) - 1
 if r < 0 or r >= n or c < 0 or c >= n:
 print('Out of range. Re-enter.')
 elif mat[r][c] != '.':
 print('Occupied square. Re-enter.')
 else:
 mat[r][c] = player_ch
 print_mat()
 break
 return False, r, c

def print_mat():
 s = ' 1 2 3\n'
 for i in range(n):
 s += str(i + 1) + ' '
 for j in range(n):
 s += str(mat[i][j]) + ' '
 s += '\n'
 print(s)

Test Win function.
win_list = List of all winning combinations.
ttt_list = an individual list, such as [1, 2, 3],
that holds one winning Tic-Tac-Toe combination.
my_win_list = list of all ttt_list instances
that contain the current cell.
Function tests all the combos in my_win_list.
A combo returns True if it has 3 Xs or 3 Os.
#

continued on next page

ttt2.py, cont.

Overland_Book.indb 281Overland_Book.indb 281 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe282

def test_win(r, c):
 cell_n = r * 3 + c + 1 # Get cell num. 1 to 9.
 my_win_list = [ttt_list for ttt_list in win_list
 if cell_n in ttt_list]
 for ttt_list in my_win_list:
 num_x, num_o, num_blanks = test_way(ttt_list)
 if num_x == 3 or num_o == 3:
 return True
 return False

def test_way(cell_list):
 letters_list = []
 # Create list of the form ['X', '.', 'O']
 for cell_n in cell_list:
 r = (cell_n - 1) // 3
 c = (cell_n - 1) % 3
 letters_list.append(mat[r][c])
 num_x = letters_list.count('X') # How many X's?
 num_o = letters_list.count('O') # How many O's?
 num_blanks = letters_list.count('.')
 return num_x, num_o, num_blanks

main()

H
ow

 It

 Works

 How It Works
The first thing this version does is to create a matrix called ways, which lists
all eight ways the game can be won. I could have used row-column coordinates
such as “(0,0), (0,1), (0,2),” representing the top row, but for Tic-Tac-Toe, it’s
easier to use cell numbers 1 through 9, at this point, and then translate into
row-column coordinates as needed.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

ttt2.py, cont.

Overland_Book.indb 282Overland_Book.indb 282 8/31/17 12:57 PM8/31/17 12:57 PM

The count Method for Lists 283
14

The ways of winning the game are therefore summarized by the following
combinations. In detecting win conditions, the program is only interested in
these combinations of cells.

win_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9],
 [1, 4, 7], [2, 5, 8], [3, 6, 9],
 [1, 5, 9], [3, 5, 7]]

The test_win function takes a coordinate pair—(r, c), which is expressed
in zero-based indexes—and produces a cell number from 1 to 9.

 cell_n = r * 3 + c + 1 # Get cell # 1-9

We need to find winning combinations that contain this cell number. The
variable ttt_list refers to a member of win_list: that is, each ttt_list is a
three-number combo such as [1, 2, 3] or [4, 5, 6] that refers to one Tic-Tac-Toe
combination.

From this list of lists (win_list), we build my_win_list, a group of lists to
be tested.

 my_win_list = [ttt_list for ttt_list in win_list
 if cell_n in ttt_list]

This means the following: if, for example, the cell number is 1, we want to
find all the Tic-Tac-Toe combinations that include 1. So we get the following
list of lists, by (in effect) saying, “Use all lists from win_list that contain the
number 1.”

[[1, 2, 3], [1, 4, 7], [1, 5, 9]]

As another example, if the cell number is 5, we want to find all the Tic-Tac-Toe
combinations that include the cell number 5. So, we get the following list of
lists by saying, “Use all lists from win_list that contain the number 5.”

 [[4, 5, 6], [2, 5, 8], [1, 5, 9], [3, 5, 7]]

To make this (potentially) cryptic code more obvious, consider that the
Python list-comprehension statement shown earlier is a compact way of writ-
ing this:

my_win_list = []
for ttt_list in win_list:
 if cell_n in ttt_list:
 my_win_list.append(ttt_list)

In other words, look at each of the lists inside win_list (itself a list of win-
ning combinations); append a list onto my_win_list if and only if it contains
cell_n, the cell number.

Overland_Book.indb 283Overland_Book.indb 283 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe284

Each of these three-element lists is then passed to the test_ways function.
That function returns the number of Xs, Os, and blanks in the combination
passed to it. If three Xs or three Os are found, then there is a winner. Congrat-
ulate the winner and terminate!

For example, if positions 1, 5, and 9 all contain an X, then the X player
wins. These positions are converted to matrix elements (0, 0), (1, 1), and (2, 2);
then we detect how many Xs and Os are at these positions.

1 1 (0, 0)

5

9

5 (1, 1)

9 (2, 2)

The test_ways function does the actual counting of letters, looking
for three of the same kind. First, it builds up a list called letters_list,
which contains individual characters X, O, and ., found in the correspond-
ing matrix squares. The count method makes it easy to return the three
counts—the number of Xs, the number of Os, and the number of dots. A
typical return value might be 1, 1, 1, which means that one of each type of
letter was found.

def test_way(cell_list):
 letters_list = []
 # Create list of the form ['X', '.', 'O']
 for cell_n in cell_list:
 r = (cell_n - 1) // 3
 c = (cell_n - 1) % 3
 letters_list.append(mat[r][c])
 num_x = letters_list.count('X') # How many X's?
 num_o = letters_list.count('O') # How many O's?
 num_blanks = letters_list.count('.')
 return num_x, num_o, num_blanks

A return value of 3, 0, 0 would mean three Xs were found. A return value of
0, 3, 0 would mean that three Os were found. Clearly, when three Xs or three
Os are found in any winning combination—such as in the list [1, 2, 3]—someone
has won the game.

Overland_Book.indb 284Overland_Book.indb 284 8/31/17 12:57 PM8/31/17 12:57 PM

Introducing the Computer Player 285
14

Ex
er

cis
es

 EXERCISES

Exercise 14.2.1. Write two additional functions, make_cell_n and make_
rc_coords, to perform the translation back and forth between cell number
(such as 5) and corresponding 0-based coordinates (such as 2,2). Then revise
Example 14.2 accordingly, to use these functions as needed. Some of the func-
tions should now be shorter.

Exercise 14.2.2. Instead of using positional numbers 1 to 9, just use tuples directly.
For example, instead of [1, 2, 3] denoting a horizontal row, use [(0,0),
(0,1), (0,3)]. This will be a good deal more work initially, but it will save
work later in the program and permit you to collapse a number of statements.

Introducing the Computer Player
Phase 2 of the Tic-Tac-Toe game introduced the ability to detect a win con-
dition. It involved finding three Xs or three Os in any of the eight winning
combinations.

The final step is to use this ability—count the Xs and Os in winning
combinations—to come up with a winning strategy for a computer player.
Then the game can be rewritten so that the user plays against the computer.
We want to give the computer a solid strategy.

We need a hierarchy of principles, of “heuristics.” First, if the computer can
win anywhere on the board, it should make that move immediately, regardless
of all other considerations. To keep the program simple, let’s assume that the
computer is the X player.

X Rule 1: Play here
immediately

X .

Second, if no immediate win is possible, the computer’s next priority is
to prevent an immediate win by the opponent (the human player). This is a
“blocking” situation, and it occurs anywhere there are two Os in a winning
combo along with an open space, signified by a dot (.).

Overland_Book.indb 285Overland_Book.indb 285 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe286

O Rule 2: Play here
if Rule 1 does not
apply

O .

But if no side has an immediate win, we need to look for other winning
opportunities. The best opportunity is a “double threat.” We look for an open
square that, if played, creates two winning combs, only one of which can be
answered. This guarantees a win.

Rule 3: Play a
“double threat.”

X

X

..

.

But we need still more rules. Fortunately, there are general principles that win
in Tic-Tac-Toe. Assume we’re going first. Then the winning strategy is to play in a
corner on the first turn and the opposite corner the next turn (turn 3). Otherwise,
play in the first available corner. This gives us a winning strategy most of the time.

First two positions force O to repond in such a way as to let X win;
third position keeps hope for a win alive

X

?

X O

O

X X?

X

O

X ?

In the games shown here, X has either forced a win or still has a possible win.
In all three cases, if O plays in the “?” position, then X has a winning move in
the bottom-left corner.

Overland_Book.indb 286Overland_Book.indb 286 8/31/17 12:57 PM8/31/17 12:57 PM

Introducing the Computer Player 287
14

But if it’s turn 3 and if opponent has responded by playing in a side space
(2, 4, 6, or 8), then the winning move is to play in the center (5). This is a
“special rule.” It can be implemented by examining the human players’ most
recent move.

We can construct a priority list. Select the first available square from the
following list of moves. This “default” rule plays in a corner first. Then it
plays in the opposite corner next, if available; otherwise, it takes first available
corner.

pref_list = [1, 9, 3, 7, 5, 2, 4, 6, 8]

So, we can summarize the rules as follows. Remember that these are a hier-
archy and must be evaluated in precisely this order:

1 If the turn number is 3 and the opponent has played in a side space, play the center.
(This is the “special rule.”)

2 If an immediate win is possible anywhere, take it.

3 If the opponent has an immediate win possible, play to block him.

4 If it’s possible to play a double threat, do so.

5 Otherwise, play the first available cell number indicated in the preference list.

Example 14.3. Computer Play: The Computer Goes First
The following code listing contains new functions only; otherwise, it is nearly
identical to the previous example, 14.2.

ttt3.py

Get Computer Move function.
For each blank cell in the grid, test it according to
the three rules; 1) look for win, 2) look to block,
3) look for double threat. If none of these work,
use pref. list
def get_comp_move(num_moves, opp_cell):
 # If it's turn 3 and opponent played in a side
 # space, play the center.
 if num_moves == 3 and opp_cell in [2, 4, 6, 8]:
 return 1, 1 # Take the center

continued on next page

Overland_Book.indb 287Overland_Book.indb 287 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe288

 # Get a list of all available (blank) cells
 cell_list = [(i, j) for j in range(n)
 for i in range(n) if mat[i][j] =='.']

 # Test every avail. cell for "to win" condition
 for cell in cell_list:
 if test_to_win(cell[0], cell[1]):
 return cell[0], cell[1]

 # Test every avail. cell for "to block" condition
 for cell in cell_list:
 if test_to_block(cell[0], cell[1]):
 return cell[0], cell[1]

 # Test every avail. cell for "double threat" cond.
 for cell in cell_list:
 if test_dbl_threat(cell[0], cell[1]):
 return cell[0], cell[1]

 pref_list = [1, 9, 3, 7, 5, 2, 4, 6, 8]
 for i in pref_list:
 r = (i - 1) // 3
 c = (i - 1) % 3
 if mat[r][c] == '.':
 return r, c

Test To Win: Test every win combo for the cell...
If two Xs are present, this cell will win!
def test_to_win(r, c):
 cell_n = r * 3 + c + 1
 my_win_list = [ttt_list for ttt_list in win_list
 if cell_n in ttt_list]
 for ttt_list in my_win_list:
 num_x, num_o, num_blanks = test_way(ttt_list)
 if num_x == 2:
 print('Watch THIS...')
 return True
 return False

Test to Block: Test every win combo for the cell...

ttt3.py, cont.

Overland_Book.indb 288Overland_Book.indb 288 8/31/17 12:57 PM8/31/17 12:57 PM

Introducing the Computer Player 289
14

If two Os are present, this cell must be blocked
def test_to_block(r, c):
 cell_n = r * 3 + c + 1
 my_win_list = [ttt_list for ttt_list in win_list
 if cell_n in ttt_list]
 for ttt_list in my_win_list:
 num_x, num_o, num_blanks = test_way(ttt_list)
 if num_o == 2:
 print('Ha ha, I am going to block you!')
 return True
 return False

Test Double Threat: Test all win combos for the cell;
If there are two threats, play this cell.
def test_dbl_threat(r, c):
 threats = 0
 cell_n = r * 3 + c + 1
 my_win_list = [ttt_list for ttt_list in win_list
 if cell_n in ttt_list]
 for ttt_list in my_win_list:
 num_x, num_o, num_blanks = test_way(ttt_list)
 if num_x == 1 and num_blanks == 2:
 threats += 1
 if threats >= 2:
 print('I have you now!')
 return True
 return False

Remember that these functions are additions to the Phase 2 version of the
game (Example 14.2). Place them anywhere in the program, but include them
before the final call to main().

Also, replace the definition of main with the version shown next. Altered
and new statements are in bold.

def main():
r = c = 0
num_moves = 0

 print_mat()
 print('Moves are r,c or "0" to exit.')
 exit_flag = False

ttt3.py, cont.

Overland_Book.indb 289Overland_Book.indb 289 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe290

 while not exit_flag:
 num_moves += 1
 if num_moves > 9:
 print('No more space left.')
 break
 if num_moves % 2 > 0:
 cell_n = 3 * r + c + 1
 r, c = get_comp_move(num_moves, cell_n)
 mat[r][c] = 'X'
 print('\nOkay, my move...\n')
 print_mat()
 if test_win(r, c):
 print('\nX WINS THE GAME!')
 break
 else:
 exit_flag, r, c = get_move('O')
 if (not exit_flag) and test_win(r, c):
 print('\nO WINS THE GAME!')
 break

H
ow

 It

 Works

 How It Works
Even though this chapter has presented the longest and (in some ways) the
most complicated Python code in the book so far, the heuristics supported by
the get_comp_move function are reasonably simple.

The logic of the computer player can be summarized in the following
pseudocode:

If it’s the third turn and the opponent has played in a side space,
 Return 1, 1, the center position.
Get a list of all available squares (squares currently containing a dot)
For every cell in this list,
 Return this cell if it would score an immediate win.
For every cell in this list,
 Return this cell if it would block opponent’s win.
For every cell in this list,
 Return this cell if it would create a “double threat.”
Return first available cell from the preference list.

Ps
eu

do

code

Overland_Book.indb 290Overland_Book.indb 290 8/31/17 12:57 PM8/31/17 12:57 PM

Introducing the Computer Player 291
14

Notice how this logic works: all available cells are tested for a direct-win
opportunity (two Xs already present); only after all those cells are checked
does the program move on to check all cells for a block (two Os already
present). Finally, if no cell passes the “to win” or “to block” tests, all avail-
able cells are checked for a double-threat opportunity, which would guarantee
a win in two turns.

When any of these tests succeed, the get_comp_move function returns
immediately, so the remaining tests are not performed. Only when all the
tests fail does the program pick a move from the preference list. The program
selects the first available position from the list.

 for i in pref_list:
 r = (i - 1) // 3
 c = (i - 1) % 3
 if mat[r][c] == '.':
 return r, c

Playing Second
Of course, for a complete game, you’d want to be able to have the computer play
second.

But a change in strategy is required. The three main heuristics still apply.
But now we need a different preference list. When going second, the computer’s
overriding goal is to avoid losing. The correct first move is therefore to take
the center, if available; if it isn’t, the computer should play in any corner. Here
is the preference list if going second:

 pref_list = [5, 1, 9, 3, 7, 2, 4, 6, 8]

We also need a special rule. If the opponent plays in a corner, the computer
responds by taking the center, and the human opponent plays in the opposing
corner, this sets up a trap.

Play in opposing
corner; O in corner
now fatal

O

X

X

Overland_Book.indb 291Overland_Book.indb 291 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe292

It’s important now to not play in a corner. The special rule is to avoid play-
ing a corner in this situation. I’ll write it in pseudocode. The implementation
is left as an exercise.

If num_moves is equal to 4,
If opponent played in both 0,0 and 2,2 or
opponent played in both 0,2 and 2,0,
 Return 1,0 (play a side space)

Ex
er

cis
es

 EXERCISES

Exercise 14.3.1. Revise the example so that instead of starting in the center every
time, it randomly selects from a group of starting positions including the center
and all four corners. Note that several numbers in the preference list may need
to be changed as a result, as the second move should favor playing in the oppo-
site corner.

Exercise 14.3.2. Revise the example so that the computer plays second, as the O
player. (Or, you can take the approach that X is always the computer and O is
always the user; this simplifies a number of problems.) Changes to strategy should
be made as described in the previous section. All three heuristics remain the same,
but the preference list should be different, and a new special rule is needed.

Exercise 14.3.3. Expand the example so that when the program begins, it offers
the human player the choice of going either first or second. The computer
adjusts strategy as appropriate. (Hint: Again, it may simplify things to always
make the computer the X player, whether going first or second, but you can
make the program more flexible than that if you choose.)

The Art of Heuristics

For the computer to give you a good game, it must employ strategy and
tactics. This is called heuristics, and it’s the closest thing to “making a
judgment” you’ll find in this book. By employing heuristics, the program
makes a kind of judgment as to what would be a superior play. And yet—
here’s the paradox—each decision is the result of tiny, limited decisions,
which just compare two quantities.

This again raises the philosophical question of whether computers,
which at the lowest level do nothing but follow mechanistic, predeter-
mined rules, can in any real sense be intelligent or exercise judgment.

Ps
eu

do

code

Interlude

Overland_Book.indb 292Overland_Book.indb 292 8/31/17 12:57 PM8/31/17 12:57 PM

Introducing the Computer Player 293
14

continued

Still, if you play against the computer many times, you can almost feel
the computer plotting against you, outmaneuvering and outsmarting you.
I’ll leave the philosophical questions on the table for now.

The art of heuristics is a fascinating field unto itself, and people have
devoted years to it. Much of it comes down to two major techniques, both
demonstrated in this chapter: look-ahead and playing for position.

Look-ahead, sometimes called brute force, determines the quality of
a move by directly looking ahead to its consequences, in which the com-
puter seeks to achieve wins and avoid losses. The program in this chapter
applies a primitive example, looking ahead one move, to discover a possible
win, loss, or a guaranteed win.

The program also gives an example of playing for position. If there are
no immediate win or loss opportunities, the program chooses on the basis
of a preference list. The computer does not deduce this preference list; it is
just told that certain positions have greater strategic value.

Super-chess playing programs use more refined examples of these two
techniques. IBM’s Big Blue, which can defeat the best human chess players
in the world, can look ahead 10 or 20 moves to evaluate the effects of moves.
But Big Blue does not look ahead to play out all possible games; if it did, the
entire planet Earth might not be big enough to house all the processors and
memory circuits needed. Instead, at some point Big Blue must value some
positions as simply being better than others. It therefore plays for position,
as well as evaluating whether certain moves would result directly in a win.

For Tic-Tac-Toe, I challenged a programmer friend of mine, extremely
skilled in Python, to write a 100 percent brute-force look-ahead solution for
the game. If it worked, it would be guaranteed to play the absolute perfect
game of Tic-Tac-Toe in every possible situation.

With some feedback from me, he got his program to work. It took 20
seconds to make its first move. That may sound tolerable, but imagine the
game were played on a three-dimensional board or a larger matrix, such as
four in a row played on a six-by-six board. Faced with a more sophisticated
game, the pure “look-ahead” program would likely take many minutes,
hours, or more, sitting there “thinking,” before it made its first move!

Similarly, a computer could completely “solve” chess—if it were big
enough (it might have to be bigger than Earth)—but even if such a complete
brute-force solution to chess could be produced, it might take millions of
years to make its first move…maybe far longer!

And this is why game-playing programs need heuristics, strategies
based on high-level principles.

Interlude

Overland_Book.indb 293Overland_Book.indb 293 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 14 Winning at Tic-Tac-Toe294

Chapter 14 Summary
Here are the main points of Chapter 14:

 A game program, even a simple one such as Tic-Tac-Toe, often requires a
matrix, that is, a two-dimensional list. Remember to use the matrix-creating
syntax from Chapter 13.

mat = [['.'] * n for i in range(n)]

 Remember that in Python, indexes always run from 0 to N-1, where N is the
length of the dimension. But it’s often easier for users to use 1-based indexes
rather than 0-based. This may require you to convert back and forth.

 This chapter introduced the use of the conditional, one-line if/else opera-
tor. The expression produces value1 if the condition is true, and value2
otherwise.

player_ch = 'X' if (num_moves % 2 > 0) else 'O'

 This chapter also introduced the count method. This is a method applied to
lists that counts how often a specified value occurs.

row_vals = ['X', 'X', 'O']
num_of_Xs = row_vals.count('X')

 The art of designing computer strategy is called heuristics. Two of the most com-
mon techniques are “brute-force looking ahead” and “playing for position.”

Overland_Book.indb 294Overland_Book.indb 294 8/31/17 12:57 PM8/31/17 12:57 PM

295

15
Classes and Objects I

Object orientation is one of the most interesting topics in computer pro-
gramming. Classes, objects, and the object-oriented paradigm are especially
important in Python because they underlie everything done in the language.

But in this chapter, as elsewhere, I’ll focus on a functional, hands-on approach:
creating interesting but relatively simple applications. The topics include

 Basic object-oriented techniques

 Using objects in a database application

 A multidimensional point class

What’s an Object?
Believe it or not, you’ve been using Python objects from the beginning of this book.

Strings are objects, and they support methods. Methods are similar to
functions, but they apply to specific objects through the dot notation (.).
What a method does, in effect, is send a message to an object, to which it then
responds. Here’s an example:

my_str = ' Henry VII '
a_str = my_str.strip()
print(a_str) # print 'Henry VIII'

These statements call the strip method of a string object, my_str. The
object responds by sending back a version of the string that is stripped of leading
and trailing spaces.

Now, here's a mind-blowing fact…
In Python, every data item is an object! This includes built-in data types

such as int and float, in addition to string, as well as data types you create

Overland_Book.indb 295Overland_Book.indb 295 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I296

yourself. Even instances of int and float are objects, and they even support
methods. Here’s a method called on two data objects: the integers 5 and 33.

>>>(5).bit_length()
3
>>>(33).bit_length()
6

Can you guess what the bit_length method does? It’s a method of the int
class, which says, “Return the minimum number of bits necessary to represent
this integer in binary format.”

Classes in Python
In Python, all data items are objects, and each object is an instance of a class.
The importance of classes is: by defining your own class, you define a funda-
mental new data type.

A class is like an object factory. A class determines what data will be stored
in each object. The class also determines what methods, if any, each object
supports. There is a one-to-many relationship. You define a class and then
crank out as many objects as you want.

CLASS OBJECTS

If you’ve programmed classes and objects in another language before (such
as C++), these basic concepts should be familiar to you, although the syntax
will be new. With that in mind, let’s explore several questions:

 How do I define a simple class?

 How do I use that class to create objects?

 How do I attach data to objects?

 How do I write methods?

Overland_Book.indb 296Overland_Book.indb 296 8/31/17 12:57 PM8/31/17 12:57 PM

Classes in Python 297
15

How Do I Define a Simple Class?
The class keyword is one of the simplest Python keywords to use. In the
beginning, at least, there’s almost nothing to it.

class class_name:
 method_definitions

In general, there are zero or more method definitions. Here’s a simple class
without any definitions at all. Usually, you will want at least one method defi-
nition, but the following is legal:

class Dog:
 pass

That’s it. Type this into the environment, and you’ve created your first
Python class.

The keyword pass is a kind of placeholder. It says, “There’s nothing more
to do here for now; I’ll come back and add things later.” Or, you might just use
it as a permanent no-op (no operation). Occasionally this is needed because
Python has no statement terminator; therefore, it has no way to specify a
blank statement other than pass.

How Do I Use a Class to Create Objects?
Once you’ve defined a class, creating an object is a breeze. It uses this syntax:

obj_name = class_name(args)

For example, given that we’ve defined a Dog class, it’s easy to create Dog
objects. Right now, there are no arguments involved, but we’ll add those later.

my_dog = Dog()
your_dog = Dog()
top_dog = Dog()

Remember to always include the parentheses in this context, even when
there are no arguments. If you omit the parentheses, something strange hap-
pens: you create an alias for the class itself. At this point in your Python career,
there’s no reason you’d want to do that.

To see the difference, consider this session:

>>>a = Dog() # Right way!
>>>a
<_ _main_ _.Dog object at 0x1041499e8>
>>>b = Dog # Wrong way!
>>>b

Ke
yw

ord

K
ey

 S
yn

tax

Overland_Book.indb 297Overland_Book.indb 297 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I298

<class '_ _main_ _.Dog'>
>>>c = b() # Weird consequence(!)
>>>c
<_ _main_ _.Dog object at 0x1041c7438>

Do you see what happened? The variable named a became attached to an
object, meaning that (once we write some more code) that object will give all
the information we need on a particular dog.

But when b was created, I forgot the parentheses, so instead of represent-
ing a particular dog, b became an alias for the Dog class itself. This caused
the strange, and probably unintended, effect of making “b” another name for
Dog. You should generally avoid that.

As another example of how to do things the right way, consider another
class, Cat:

class Cat:
 pass

my_cat = Cat()
your_cat = Cat()
top_cat = Cat()

Finally, it isn’t always necessary to assign an object to a variable, as these
last three statements do. You can create an object “on the fly,” so to speak,
which is sometimes done for arguments and return values.

return Cat() # Return a cat object.

Note Ë Python is a dynamic language, and there is no rule about the order
things are defined in, except one: a class, just like a function, must be defined
before you execute statements that refer to it.

In practice, this means you shouldn’t have to worry about forward refer-
ences. To be safe, just put all your class definitions early in the source file,
before you execute any statements.

 Ç Note

How Do I Attach Data to Objects?
In this section, I show the easiest way to attach data to individual objects,
which is the “ad hoc” approach. (But even though it’s easy, it enables different
objects of the same class to have different data structures—which is a draw-
back I’ll discuss later.)

With any object, I can attach a data field (or rather, instance variable)
directly to it at runtime. Here’s an example:

Overland_Book.indb 298Overland_Book.indb 298 8/31/17 12:57 PM8/31/17 12:57 PM

Classes in Python 299
15

my_dog = Dog()
my_dog.name = 'Skyler'
my_dog.breed = 'Great Dane'
my_dog.age = 7

Three pieces of information—name, breed, and age—are now attached to
my_dog. We can do the same thing to another dog object, this time using dif-
ferent values.

your_dog = Dog()
your_dog.name = 'Handsome Dan'
your_dog.breed = 'Bulldog'
your_dog.age = 12

All this information can now be used anywhere appropriate, by again using
the dot notation. Here’s an example:

print('My dog\'s name is', my_dog.name)
print('Your dog\s name is', your_dog.name)

This prints

My dog's name is Skyler
Your dog's name is Handsome Dan

Consequently, we end up with two objects—my_dog and yr_dog—each of
which supports three pieces of information.

name 'Skyler'

breed 'Great Dane'
age 7

my_dog object

name 'Handsome Dan'

breed 'Bulldog'
age 12

yr_dog object

But there’s a limitation. Creating instance variables on an ad hoc basis
does nothing to guarantee that all objects of the same class include the same
instance variables. Here’s an example:

top_dog = Dog()
top_dog.name = 'Alfie the Alpha'
top_dog.breed = 'Border Collie'
print(top_dog.age) # ERROR! 'Age' never created!

Overland_Book.indb 299Overland_Book.indb 299 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I300

The problem in this case is that just because the other dogs were given an
age variable doesn’t mean that Alfie was. In an upcoming section, I'll show how
to ensure that all the objects support the same instance variables (data fields).

How Do I Write Methods?
Writing a method is how we give objects of a class the ability to respond to
messages; another way of saying this is that methods give objects of a class
behavior.

One of the most important rules in object orientation, in every language I’ve
seen, is that methods are always written at the class level, even though data is mostly
stored at the instance level. That’s important enough to state as a golden rule:

 In Python, as elsewhere, methods are functions defined inside class definitions—
even though they may be called through an object (an “instance method”).

The general syntax is

class class_name:
def method_name(self, other_args):

statements

Here’s an example for the Dog class:

class Dog:
 def speak(self):
 print('Ruff, ruff!')

And another for the Cat class:

class Cat:
 def speak(self):
 print('Meow!')

With these method names in place, we can create both Dog and Cat objects that
behave differently, even though (in this case) they both support a speak method.

d = Dog() # Don't forget parentheses when
c = Cat() # creating objects!

So we get behavior like this, which you can enter within the interactive
environment:

>>>d.speak()
Ruff, ruff!
>>>c.speak()
Meow!

Ke
yw

ord

Overland_Book.indb 300Overland_Book.indb 300 8/31/17 12:57 PM8/31/17 12:57 PM

301
15

The All-Important _ _init_ _ Method

To review:

1 The variable d is an object of the Dog class, and c is an object of the Cat class.

2 Each of these two classes defines its own speak function.

3 When you use dot notation (.) to call a method through an instance, Python looks
up the method defined for that particular object’s class and then calls that method.

4 So d.speak() calls the speak method defined in the Dog class, and c.speak()
calls the speak method defined in the Cat class.

This illustrates one of the most important aspects of object orientation. In
Python, you get it for free: methods are automatically polymorphic, which
means you can write one function and have it interpreted an unlimited num-
ber of ways by different objects.

For example, in the following statements, the cry function automatically
calls the right version of the speak method for any object passed to it. The
only requirement is that, at run time, the object in question must support the
method. So, and this is the key to polymorphism, any object that supports a
speak method can be passed to this function. Python automatically does the
right thing at runtime.

>>>def cry(x): # Define cry, a new function.
 x.speak()
 x.speak()

>>>cry(d)
 Ruff, ruff!
 Ruff, ruff!
>>>cry(c)
 Meow!
 Meow!

The All-Important _ _init_ _ Method
Python has a number of special method names. These names are effectively
reserved words, and they start and end with double underscores (_ _). By con-
vention, a leading underscore (_) indicates that a member is private, although
the language does not enforce private access.

But if you use a combination of leading and trailing double underscores
(_ _), you may conflict with one of the reserved names, such as _ _init_ _.

Overland_Book.indb 301Overland_Book.indb 301 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I302

The _ _init_ _ method is one of the most important methods. It is an ini-
tialization method, called just after an object of the class is created. This is
the ideal place to create instance variables. The initialization method ensures
that all objects of the class support a common group of variables. Here’s the
general syntax:

class class_name:
 def _ _init_ _(self, other_args)

self.var_name = arg
self.var_name = arg
self.var_name = arg

For example, the Dog class can automatically create three instance variables
for each and every Dog object created.

class Dog:
 def _ _init_ _(self, name, breed, age):
 self.name = name
 self.breed = breed
 self.age = age

Given this definition, you can create a Dog object as follows—either by
using positional arguments or by using “keyword” arguments, specifying the
argument name. There’s an advantage to using keyword arguments—and
you get this feature of Python “for free.” The advantage is you don’t have to
remember the position of the args.

a_dog = Dog('Speedy', 'Greyhound', 5)
b_dog = Dog(breed='Poodle', name='Toots', age=3)

Why This self Obsession?

If you’re new to Python, the use of self may be surprising. What exactly does it do?
The word self is just a symbolic name that could—in theory—be

anything you want. You could use fred if you really wanted. But Python
programmers use self by convention, and going against that convention
makes your code far less readable by other people.

When Python evaluates a method called through an object, it automat-
ically passes a hidden argument: a reference to the object itself. But this
argument is not hidden within the method definition, which is why (gen-
erally speaking) a method definition will have a total of N+1 arguments,
where N was the number explicitly passed.

Within a definition, when you see a variable modified by self, you
know that this is a reference to an instance variable. So, statements such

K
ey

 S
yn

tax

Interlude

Overland_Book.indb 302Overland_Book.indb 302 8/31/17 12:57 PM8/31/17 12:57 PM

Design for a Database Class 303
15

continued

as the following cannot be misinterpreted. The left side is an instance
variable; the right is an argument.

self.name = name

Design for a Database Class
One way to think of an object is a “data record plus.” By this, I mean that—at
minimum—a class does everything a data record does. For example, with an
employee data record, we might want to have the following fields:

 Employee name

 Employee job name

 Employee job rank

 Employee salary

This is typical of a class: it consists of four different fields with different data
formats. We could realize these as two strings, an integer, and a floating-point
number. You can think of this data format—this class—as follows:

This forms a blueprint,
or a “factory,” that can
be used to create any
number of objects.

str

str

int

float

Employee class design

Employee name

Employee job title

Employee job rank

Employee salary

Now, to create this class, we write a class definition, including one method
declaration, for the method called _ _init_ _.

class Employee:
 def _ _init_ _(self, name, jname, jrank, salary):
 self.name = name
 self.jname = jname
 self.jrank = jrank
 self.salary = salary

Interlude

Overland_Book.indb 303Overland_Book.indb 303 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I304

C++ Classes Compared to Python

Python is not a language for systems programming or sophisticated com-
mercial software. It is a language for quick development, writing solu-
tions in a small number of lines. It’s popular in web development and IT
departments. It might seem strange, therefore, that at first the Python
classes seem more complex. Consider this small Python class:

class Point:
 _ _init_ _(self, x, y):
 self.x = x
 self.y = y

This might seem like more work than the C++ version.

class Point {
 double x, y;
};

But wait! C++ recognizes three levels of access: public, private, and
protected. Without at least one public member, the C++ version is useless.
Another problem is that until recently, C++ could initialize only by using
a constructor. So the minimal C++ version would be

class Point {
 public:
 double x, y;

 Point(double new_x, double new_y) {
 x = new_x:
 y = new_y;
 }
};

Class syntax in C++ provides a feature that many OOP programmers
swear by: private data access, as well as protected. Use of private data lets
you construct classes and objects as “black boxes,” in which no outsider
can make assumptions about internals.

Python has a different philosophy. It’s a language for smaller projects
in which the goal is to get things working quickly. The emphasis in Python
is on fast turn-around and easy access.

Python has a weaker concept of private data. Presumably you’re only letting
people on the project you trust. To improve ease of access, Python makes every-
thing public. Such an attitude, in C++ circles, would be deemed heresy, punish-
able by spending eternity in Purgatory debugging poorly commented code.

Interlude

Overland_Book.indb 304Overland_Book.indb 304 8/31/17 12:57 PM8/31/17 12:57 PM

Design for a Database Class 305
15

Example 15.1. Tracking Employees
So far, we’ve used classes as passive data-record types. That functionality is
enough to write a rudimentary database for keeping track of employees.

This program will look much like the phone book application in Chapter 12.
But now, instead of the value in a dictionary being a string containing a phone
number, the value will be an object having multiple attributes.

Each object will be a complete employee record, including employee
name—even though the name is also going to be the key. This is not as ineffi-
cient as it seems, as I’ll explain.

So, for example, we create three Employee objects:

emp1 = Employee('Steve Balmer', 'President', 10,
 300888.66)
emp2 = Employee('Bill Gates', 'CEO', 12, 1700444.75)
emp3 = Employee('Brian O.', 'Prog.', 5, 29000.89)

The objects can then be attached to the database as follows:

key value

Employee DB combining string key with
class/object value field

'Steve Balmer'

'Bill Gates'

'Brian O.'

'Steve Balmer'

'Bill Gates'

'Brian O.'

'President'

'CEO'

'Programmer'

9

12

5

300888.66

1700444.75

29000.89

Even though it looks like this scheme duplicates some of the information,
it doesn’t really, because the key string and the employee name field, as you’ll
see, are references to the same data in memory.

Here’s the complete program—although the find-by-prefix, save to file,
and load from file features are yet to be added.

db1.py

emp_dict = {}
prompt='Select: 1. data entry, 2. query, 3. exit>> '

continued on next page

Overland_Book.indb 305Overland_Book.indb 305 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I306

class Employee:
 def _ _init_ _(self, name, jname, jrank, salary):
 self.name = name
 self.jname = jname
 self.jrank = jrank
 self.salary = salary

Main function. Prompts for command and executes.
def main():
 while True:
 s = input(prompt)
 if len(s) == 0:
 break
 cmd = int(s)
 if cmd == 3:
 break
 if cmd == 1:
 add_entries()
 elif cmd == 2:
 display_entries()

Add Entries function. Prompts for key-value pairs
until user wants to exit. Adds key-value to dict.
def add_entries():
 while True:
 key_str = input('Input name (ENTER to exit): ')
 key_str = key_str.strip()
 if not key_str:
 return
 jname = input('Enter job name: ')
 jrank = int(input('Enter job rank: '))
 salary = float(input('Enter salary: '))
 emp_dict[key_str] = Employee(key_str, jname,
 jrank, salary)

Display Entries function. Prompts for a name and
prints values. Re-prompts if key not found.
def display_entries():
 while True:
 key_str = input('Input name (ENTER to exit): ')

db1.py, cont.

Overland_Book.indb 306Overland_Book.indb 306 8/31/17 12:57 PM8/31/17 12:57 PM

Design for a Database Class 307
15

 key_str = key_str.strip()
 if not key_str:
 return
 emp_obj = emp_dict.get(key_str)
 if emp_obj is None:
 print('Name not found. Re-enter. ')
 else:
 print('Name:', emp_obj.name)
 print('Job title:', emp_obj.jname)
 print('Job rank:', emp_obj.jrank)
 print('Salary:', emp_obj.salary)

main()

H
ow

 It

 Works

 How It Works
The critical parts of this example include: the class definition, the statements
that insert a new object, and the statements that read and print an object.

First, the beginning of the program creates the Employee database as
an empty dictionary. As the user enters employee records, the dictionary
increases in size.

emp_dict = {}

class Employee:
 def _ _init_ _(self, name, jname, jrank, salary):
 self.name = name
 self.jname = jname
 self.jrank = jrank
 self.salary = salary

These statements create an Employee class. Remember that the purpose of
a class is to create a blueprint (or a factory, if you prefer) from which to generate
any number of instances (or “objects”).

In this program, each Employee object will contain data for one employee,
including employee name, which is also the key.

The function that enters new employee records is simple. It gets an employee
name, which becomes a key in the dictionary. It collects the other information
for that employee and puts it in an Employee object. That object is the value
associated with the key.

db1.py, cont.

Overland_Book.indb 307Overland_Book.indb 307 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I308

 jname = input('Enter job name: ')
 jrank = int(input('Enter job rank: '))
 salary = float(input('Enter salary: '))
 emp_dict[key_str] = Employee(key_str, jname,
 jrank, salary)

This last line is the critical one. It could have been written a little more simply,
at the cost of using an extra line:

 emp_obj = Employee(key_str, jname, jrank,
 salary)
 emp_dict[key_str] = emp_obj

Then there’s the function that queries for data. First, it prompts the user for
an employee name, which is a key. Then it verifies whether that key exists in
the database by testing the value returned from get. If that value is not None,
then the key exists, and the rest of the record (that is, the object) is printed out.

 emp_obj = emp_dict.get(key_str)
 if not emp_obj:
 print('Name not found. Re-enter')
 else:
 print('Name:', emp_obj.name)
 print('Job title:', emp_obj.jname)
 print('Job rank:', emp_obj.jrank)
 print('Salary:', emp_obj.salary)

Ex
er

cis
es

 EXERCISES

Exercise 15.1.1. Create an application similar to Example 15.1 but designed for a
Kennel Club. For this rudimentary database, store the following information on
each dog, in addition to the dog’s name: breed (a string), owner name (a string),
and age (an integer). Change all the prompts so that they communicate the
correct information to the user.

Exercise 15.1.2. Go back to Example 15.1, but add a user command that searches
for values by prefix.

Exercise 15.1.3. Add user commands to save information to a file and to load
from file.

Exercise 15.1.4. Add all these user commands (from the last two exercises) to the
Kennel Club database application specified in Exercise 15.1.1.

Overland_Book.indb 308Overland_Book.indb 308 8/31/17 12:57 PM8/31/17 12:57 PM

Defining Other Methods 309
15

Defining Other Methods
So far, I’ve discussed simple classes that have just one method: initialization.
But you can write others. Methods empower objects to provide services to
the user. With ordinary functions, you need to specify all the information the
function needs by passing arguments—potentially a very long list.

But when you invoke a method, you assume that the object already contains
most of the information to be worked on…or at least a great deal of it. Methods
can also have arguments, but their argument lists tend to be shorter.

For example, let’s add a promote method to the Employee class. This
method will 1) increment job rank, 2) increase salary by $20,000, and 3) print
a message.

class Employee:

 # Put the _ _init_ _ method definition here.

 def promote(self):
 self.jrank += 1
 self.salary += 20000
 print('Send a congratulatory message.')

If we’re using the database from Example 15.1, then here’s how this method
could be called in the context of that application:

emp_obj = emp_dict.get('Bill Gates')
emp_obj.promote()

In coming up with method names, you should avoid starting with under-
scores (_ _), because Python has a number of reserved method names that
have special meaning. One of these is _ _init_ _.

Another special method name is _ _str_ _, which determines what hap-
pens when the object is converted to string format; the method does this by
returning a string.

This method provides a default printing format. For example, we might
add the following _ _str_ _ method to the Employee class:

 def _ _str_ _(self):
 ls = [self.name,
 'Job title:' + self.jname,
 'Job rank:' + str(self.jrank),
 'Salary:' + str(self.salary)]
 return ', '.join(ls)

Overland_Book.indb 309Overland_Book.indb 309 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I310

When this definition is added to the class, then you can print objects
automatically.

emp_obj = Employee('Bill Gates', 'CEO', 13,
 1955888.5)
print(emp_obj)

This prints

Bill Gates, Job title: CEO, Job rank: 13,
Salary: 1955888.5

Notice that, as with all methods that work on instances, the first argument
in the definition is self.

Note Ë The _ _repr_ _ (“represent”) method name fulfills a purpose similar
to _ _str_ _. If you define both, then the string returned by _ _repr_ _ deter-
mines the display format recognized by the Python interpreter (for example,
when printed from within IDLE). In contrast, the _ _str_ _ method is used by
the print function. If you define _ _repr_ _ but not _ _str_ _, then _ _repr_ _
is used by the print function as well.

As with other instance methods, remember to make self the first argu-
ment in the method definition.

 Ç Note

Design for a Point3D Class
Classes and objects come in many shapes in sizes. For the rest of this chapter,
we’ll use a Point3D class, which will support three instance variables: x, y,
and z. It will also support the following methods:

 _ _init_ _, to create the instance variables x, y, and z

 _ _sub_ _, which determines how to subtract one point from another

 _ _eq_ _, which determines how to compare two points for equality

We could also, if wanted, create a print format by defining a _ _str_ _
method.

These methods, in turn, will be extremely useful when we want to deter-
mine whether a group of points is linear. More specifically, a function will
answer the question, “Do a group of three points exist along a single straight
line?”

Overland_Book.indb 310Overland_Book.indb 310 8/31/17 12:57 PM8/31/17 12:57 PM

Design for a Point3D Class 311
15

Here’s a picture of the class design:

DATA:

Design for the Point3D Class

x

y

z

METHODS:

_ _init_ _

_ _sub_ _

_ _eq_ _

Here’s the class definition, which includes a document string. (Document
strings provide information in response to the help command.)

class Point3D:
 ''' Three dimensional point class, supporting
 subtraction and comparison. '''

 def _ _init_ _(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z

 def _ _sub_ _(self, other):
 d1 = self.x - other.x
 d2 = self.y - other.y
 d3 = self.z - other.z
 return Point3D(d1, d2, d3)

 def _ _eq_ _(self, other):
 return (self.x==other.x and self.y==other.y
 and self.z==other.z)

Given this class definition, you could perform the following operations,
creating point objects and then subtracting them (thanks to the _ _sub_ _ and
_ _eq_ _ methods).

pt1 = Point3D(5, 5, 10)
pt2 = Point3D(4, 4, 9)
pt1 - pt2 == Point3D(1, 1, 1)

The last statement produces the Boolean value True.

Overland_Book.indb 311Overland_Book.indb 311 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I312

Point3D Class and Default Arguments
If you’ve programmed in C++ or Java before, the Python initialization
method, _ _init_ _, may not seem flexible. What if you want to have the near-
est equivalent of a “default constructor,” which is called when the user speci-
fies no initial values?

But the _ _init_ _ method is a function like any other, and therefore you
can use the default-argument technique to achieve the same result.

 def _ _init_ _(self, x=0, y=0, z=0):
 self.x = x
 self.y = y
 self.z = z

When the _ _init_ _ method is written this way, you can create objects of the
class without specifying arguments. But it’s always necessary to use parentheses
after the class name.

pt1 = Point3D()

The object is now initialized to all zero values. So given these statements:

fss = 'The value of the point is {}, {}, {}.'
print(fss.format(pt1.x, pt1.y, pt1.z))

the following is printed:

The value of the point is 0, 0, 0.

Of course, it would be easier to print this data if you wrote a _ _str_ _
method for the class; that’s left as an exercise. Remember, that method needs
to return a string.

Three-Dimensional Tic-Tac-Toe
How do we make practical use of a three-dimensional point class? A good way
to use it is to solve problems related to a three-dimensional game of Tic-Tac-Toe.
I won’t show an entire solution to the game in this chapter, but I’ll give some clues.

As I showed in Chapter 14, a three-dimensional game consists of three planes,
indexed as 1, 2, or 3. Each individual point consists of coordinates running from
(1, 1, 1) to (3, 3, 3). Assume coordinates are read in this way: plane-row-column.

 1 2 3 1 2 3 1 2 3
1 . . . 1 . . . 1 X . .
2 . . . 2 . X . 2 . . .
3 . . X 3 . . . 3 . . .
 (1) (2) (3)

Overland_Book.indb 312Overland_Book.indb 312 8/31/17 12:57 PM8/31/17 12:57 PM

Three-Dimensional Tic-Tac-Toe 313
15

However, for ease of programming, we instead use zero-based, instead of
one-based, coordinates, so that point coordinates run from (0, 0, 0) to (2, 2, 2).

So the winning combination is (1,3,3), (2,2,2), (3,1,1). Or, in zero-based
coordinates, this is (0,2,2), (1,1,1), (2,0,0). It would be nice to have a function
that determined whether a group of positions does, in fact, constitute a win.

To do that, in turn, the function needs to see if the three points are “linear,”
meaning all along the same line within three dimensions. And because every
position exists inside a three-by-three-by-three cube, we can make some sim-
plifying assumptions.

Example 15.2. Looking for a 3-D Win
The following program prompts the user for three positions in a three-by-
three-by-three Tic-Tac-Toe game and reports whether or not these constitute
a winning combination.

points2.py

class Point3D:
 ''' Three dimensional point class, supporting
 subtraction and comparison. '''

 def _ _init_ _(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z

 def _ _sub_ _(self, other):
 d1 = self.x - other.x
 d2 = self.y - other.y
 d3 = self.z - other.z
 return Point3D(d1, d2, d3)

 def _ _eq_ _(self, other):
 return (self.x==other.x and self.y==other.y
 and self.z==other.z)

def main():
 s = ''
 while not s or s[0] in 'Yy':
 p1 = get_point()

continued on next page

Overland_Book.indb 313Overland_Book.indb 313 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I314

 p2 = get_point()
 p3 = get_point()
 if is_win(p1, p2, p3):
 print('Is a winning combination.')
 else:
 print('Is not a win.')
 s = input('Do again (Y or N)?')

def get_point():
 s = input('Enter point in x, y, z format: ')
 ls = s.split(',')
 x, y, z = int(ls[0]), int(ls[1]), int(ls[2])
 return Point3D(x, y, z)

def is_win(p1, p2, p3):
 if (p3 - p2 == p2 - p1
 or p2 - p3 == p3 - p1
 or p3 - p1 == p1 - p2):
 return True
 else:
 return False

main()

Here’s a sample session:

Enter point in x, y, z format: 0, 0, 0
Enter point in x, y, z format: 1, 1, 1
Enter point in x, y, z format: 2, 2, 2
Is a winning combination.
Do again? N

H
ow

 It

 Works

 How It Works
Most of this example is straightforward. All it does is prompt for the informa-
tion needed to create three Point3D objects, determine if those points together
form a winning combination, and then ask the user if she wants to go again.

As long as you understand the Point3D class, the only thing that needs to
be explained is the is_win function. If three points in a three-by-three-by-
three grid are all aligned, then we can assume the following: if we can find the
midpoint, then the points on either side are equidistant.

points2.py, cont.

Overland_Book.indb 314Overland_Book.indb 314 8/31/17 12:57 PM8/31/17 12:57 PM

Three-Dimensional Tic-Tac-Toe 315
15

Therefore, three tests are performed. Each time, a different midpoint is
assumed. Here I’ve added comments to clarify which point is being tested as
the midpoint.

def is_win(p1, p2, p3):
 if (p3 - p2 == p2 - p1 # p2 is midpoint
 or p2 - p3 == p3 - p1 # p3 is midpoint
 or p3 - p1 == p1 - p2) # p1 is midpoint
 return True
 else
 return False

Ex
er

cis
es

 EXERCISES

Exercise 15.2.1. Example 15.2 assumes that the three different points entered are all
different. If any of them are equal, the analysis does not hold up. Alter is_win
so that it returns False immediately if any two of the three points are equal.

Exercise 15.2.2. Alter the get_point function so that it reprompts the user until
the three coordinates are in the correct format and each ranges between 0 and 2,
inclusive.

Exercise 15.2.3. Write another method to the Point3D class. (Suggestion: if nothing
else, write an _ _add_ _ method that enables two points to be added together
with the plus sign.)

Example 15.3. Calculating Ways of Winning
This example uses the Point3D class for another but related purpose. Before
you write a 3-D Tic-Tac-Toe game, you might want to determine this: how
many different ways are there to win in this three-dimensional game?

There are a number of ways to arrive at this answer. Many such approaches,
however, are error-prone. But there’s a foolproof technique that, if followed
correctly, must produce the right answer. Here is the technique:

1 Produce a list of all possible locations (Point3D objects) in the three-by-three-by-
three game. Call this list all_pts.

2 Produce a list of all trios of such locations, but do it in an ordered way that does
not repeat any combinations. Call this list combos. This is a list in which each
element has a trio of points.

3 Finally, eliminate all elements of combos that are not linear—that do not repre-
sent three points in a straight 3-D row, column, or diagonal.

Overland_Book.indb 315Overland_Book.indb 315 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I316

Here is the program listing:

points2.py

class Point3D:
 ''' Three dimensional point class, supporting
 subtraction and comparison. '''

 def _ _init_ _(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z

 def _ _sub_ _(self, other):
 d1 = self.x - other.x
 d2 = self.y - other.y
 d3 = self.z - other.z
 return Point3D(d1, d2, d3)

 def _ _eq_ _(self, other):
 return (self.x==other.x and self.y==other.y
 and self.z==other.z)

def is_linear(t):
 p1, p2, p3 = t
 return p3 - p2 == p2 - p1

all_pts = []
for a in range(3):
 for b in range(3):
 for c in range(3):
 all_pts.append(Point3D(a, b, c))

n = len(all_pts)
print('The number of positions is', n)
combos = []
for i in range(n):
 for j in range(i+1, n):
 for k in range(j+1, n):
 combos.append((all_pts[i], all_pts[j],
 all_pts[k]))
my_combos = [i for i in combos if is_linear(i)]
print('Number of winning combos is', len(my_combos))

Overland_Book.indb 316Overland_Book.indb 316 8/31/17 12:57 PM8/31/17 12:57 PM

Three-Dimensional Tic-Tac-Toe 317
15

When the program is run, it produces this output:

The number of positions is 27
The number of winning combos is 49

In other words, in a three-by-three-by-three board there are 27 places you
can place an X or O, and there are 49 combinations of all Xs (or all Os) that
represent “three in a row” (or three in a diagonal, or a column), for example,
(0,0,0), (0,1,0), and (0,2,0). Order in which points are listed is not a factor.

H
ow

 It

 Works

 How It Works
If you read the earlier description, this program is straightforward. It creates
a list containing all positions, or points. From that list, it creates a list called
combos that consists of all unique combinations of three points. Each such
combination is a tuple.

The combos list is the following size:
27 x 26 x 25
From this larger list, we eliminate every combination except those that rep-

resent a win. Such combinations are linear—all three points line up. More-
over, if the combination is linear, p2 will always be the midpoint and the other
two points will be equidistant from.

You may be able to grasp that fact intuitively: that because of how the
“combos” list is built, p2 will automatically be the midpoint. This assumption
simplifies things greatly.

In this function, there is one expected argument, t. But it is a tuple with
three members; therefore, Python always you to assign it to a three-element
series, in this case, the three points p1, p2, and p3.

def is_linear(t):
 p1, p2, p3 = t
 return p3 - p2 == p2 - p1

Finally, a single line selects only those tuples in the combos list that passes
the is_linear test.

my_combos = [i for i in combos if is_linear(i)]

Op
ti

m

izing

 Optimizing the Code
You can improve the code by putting the Point3D class definition in its own
file and name it point3d.py. You can then import the file easily, in each and
every application in which you want to use the class, by including this line:

from point3d import Point3D

Overland_Book.indb 317Overland_Book.indb 317 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 15 Classes and Objects I318

This relieves you from having to cut and paste a chunk of code whenever
you want to include the class definition.

Ex
er

cis
es

 EXERCISES

Exercise 15.3.1. Replace the first and second loops with list comprehension state-
ments, if possible.

Exercise 15.3.2. Revise Example 15.3 so that it tests how many winning combi-
nations there are in a four-by-four-by-four game of Tic-Tac-Toe. In this game,
there are four units in each direction, and to win, you have to get four points in
a row that line up. The logic is similar, but now you have to test combinations of
four points. However, the class Point3D should still be usable without change.

Chapter 15 Summary
Here are the major points of Chapter 15:

 You can think of a Python class as a “data record plus.” It can do everything a
passive data record can do—store a series of data fields in different formats—
but potentially much more.

 An instance of a class is called an object. This means that there is a one-to-
many relationship between classes and objects. For each class, you can create
zero or more objects.

an_obj = ClassName(args)
another_obj = ClassName(args)

 A function defined within a class is called a method. In this chapter, we dealt
with instance methods, which operate on a single object at a time.

 A reference to the object itself is passed as the first argument to such a method.
By convention, this argument is named self. It should be placed at the begin-
ning of each method definition.

def method_name(self, other_args):
statements

 However, when you call an instance method, you do not include the self
argument. That is passed automatically.

object.method_name(args)

Overland_Book.indb 318Overland_Book.indb 318 8/31/17 12:57 PM8/31/17 12:57 PM

319
15

Summary

 Classes generally have at least one method: _ _init_ _, which creates instance
variables recognized by every object of the class.

def _ _init_ _(self, other_args):
 self.var1 = value

self.var2 = value
self.var3 = value

 Other special methods include _ _str_ _, which produces a string representa-
tion used by the print function. This method must return a string. Still other
special methods are _ _add_ _, _ _eq_ _, and _ _sub_ _.

 You can also create any number of your own method names. Use of a leading
underscore or two (_) is encouraged as a way of signaling that the member
should be regarded as private. However, you should avoid using the combination
of leading and trailing double underscores, as in _ _init_ _, because that con-
vention is used by special method names.

 All references to an instance variable from within the class definition must be
accessed as self.name.

 Remember to use the dot notation (.) to access instance variables as well as methods.

Overland_Book.indb 319Overland_Book.indb 319 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 320Overland_Book.indb 320 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

321

16
Classes and Objects II

Classes are a big topic in Python. Chapter 15 introduced most of the basic syntax,
but there’s much more involved. Python provides many ways to make your
classes and objects expressive, convenient, and powerful.

The object-oriented topics we’ll look at in this chapter include such
“Pythonic” features as

 Doc strings

 Testing types at run time

 Inheritance

 Class methods and variables

Getting Help from Doc Strings
As I mentioned earlier in the book, you can get help from within the interac-
tive environment. For example, all the string methods, as well as other infor-
mation, are printed in response to this command:

>>>help(str)

You can also get help on your own classes in essentially the same way. The
generic help message for a new class is rudimentary and not a great deal of
help. For example, let’s create a Cat class and get help on it.

>>>class Cat:
 pass

>>>help(Cat)
Help on class Cat in module _ _main_ _:

Overland_Book.indb 321Overland_Book.indb 321 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II322

class Cat(builtins.object)
 | Data descriptors defined here:
 |
 | _ _dict_ _
 | dictionary for instance variables (if defined)
 |
 | _ _weakref_ _
 | list of weak references to the object (if defined)

This help message may not tell you much, but it does tell you three things:
1) Cat is now a recognized class, 2) classes in Python 3.0 implicitly inherit
from a root class called object, and 3) Python keeps a data dictionary for
each class, although you generally don’t have to worry about this dictionary.

You can ensure that your classes and methods have much more informa-
tive help messages by adding document strings to your classes. These serve
the same purpose as comments, but as a bonus, they report information in
response to the help command.

A document string is placed on the first line of a class, method, or function
definition—right after the header. Observe normal indentation.

For this next example, I put all the code in normal font, except for the text
that consists of documentation strings (doc strings). Note the indentation of
these strings.

>>>class Cat:
 '''This class provides a data record for a feline
 creature.'''
 def _ _init_ _(self, name, age):
 self.name = name
 self.age = age
 def speak(self):
 '''This produces a feline noise.'''
 print('Meow!)

>>>help(Cat)

If you type all of this in correctly, then the environment responds with help
that adds the strings in quotes just shown, documenting the class itself as well
as the purpose of the speak method.

Remember the following syntactic rules for doc strings:

 The doc string must be the first statement after the beginning (header) of the
definition.

Overland_Book.indb 322Overland_Book.indb 322 8/31/17 12:57 PM8/31/17 12:57 PM

Function Typing and “Overloading” 323
16

 Normal indentation rules apply. The doc string must be indented under the
heading of the definition, just as any statement would.

 That indentation requirement applies only to the first physical line within the
doc string. However, the cleanest style is to continue the indentation of the
first line.

 You can use any kind of quotation marks. However, the literal quote marks
(''') enable you to write doc strings that span any number of physical lines.
Literal quotes can also be started and ended with three double quotation
marks (""").

Remember that you can write doc strings for ordinary functions as well.
You can also write a doc string for the entire file, which can be useful if the file
is a module that will be imported by other files.

Note Ë If you create an object as an instance of a particular class, then you can
apply the help function to the object, and you’ll get similar help information.
Here’s an example:

c = Cat('Fluffy', 12)
help(c)

These statements would result in printing help for the Cat class.
 Ç Note

Function Typing and “Overloading”
One of the most convenient features of the C++ language is that it provides
overloading—you can write different functions that initialize (construct) an
object, but do it different depending on what kind of data is being used to
initialize.

To accomplish the same result in Python, here’s what you do:

1 Test the type of an argument that’s passed to a function.

2 Take a different action depending on what this type is.

There are multiple ways to test the type of a data object. The preferred way
is shown here:

isinstance(object, type_name)Ke
yw

ord

Overland_Book.indb 323Overland_Book.indb 323 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II324

This expression returns True if the object is an instance of the indicated
type. You can experiment with this function from within the interactive
environment.

>>>s = "Ain't we got fun?"
>>>isinstance(s, str)
True
>>>n = 1.5
>>>isinstance(n, int)
False
>>>isinstance(n, float)
True

Here’s a simple example using isinstance. If the argument used to initial-
ize the object is an instance of the string type, str, then the function uses the
_ _init_ _ method to convert the input to an int before storing the value.

class MagicNum:
 def _ _init_ _(self, arg):
 if isinstance(arg, str):
 self.num = int(arg)
 else:
 self.num = arg

In terms of pseudocode, we can summarize the action of this initialization
function as

If arg is an instance of the string class, str.
 Convert it to integer (int) format and assign to self.num.
Else,
 Assign the value of the arg directly to self.num.

There’s another way to test a data item’s type before proceeding to use it.
However, it is not recommended as strongly as isinstance, because this
other approach does not account for inheritance relationships, a feature we’re
going to look at later in this chapter.

if type(my_thing) == str:
 # Do whatever is appropriate for strings

This technique has the advantage of being more readable, so you can be
forgiven for preferring it. However, this expression evaluates to True only if
the type of my_thing matches str—the Python string type—precisely.

Finally, there’s an advanced technique called duck typing, discussed in the
upcoming interlude.

Ps
eu

do

code

Overland_Book.indb 324Overland_Book.indb 324 8/31/17 12:57 PM8/31/17 12:57 PM

Function Typing and “Overloading” 325
16

What Is Duck Typing?

Duck typing is something that many C++ programmers regard as blas-
phemy, but Python programmers look at favorably. If it walks like a duck
and quacks like a duck, etc., then it’s a duck.

In other words, duck typing means you don’t even bother with testing
an object’s type directly. You infer what a type is by testing what you can
do with it.

WHY A DUCK?

Most modern programming languages, such as C++, are strict about
typing so that a function never even gets passed an argument unless its
type matches the declaration. Class inheritance creates some latitude
here; for example, you may pass an object to a DogClass argument (for
example) if the object has that class or any class derived from DogClass.
But that still imposes a certain amount of discipline.

Python is the perfect duck typing language because it freely permits pass-
ing of any objects at any time regardless of type but then uses exceptions at
run time to give feedback on what operations an object supports. The try
and except keywords enable you to respond to situations in which an oper-
ation is not supported.

So, in Python, here’s how you might engage in duck typing:

try:
 val = thing.quack()
except TypeError:
 # Do something else

This code does not test the type of “thing” explicitly. It just uses try
and except to implicitly ask whether the quack method can be called
without error. If so, then the program assumes that “thing” has the right
type. If the quack method is not supported, then you can ask the program
to do something else.

Interlude

Overland_Book.indb 325Overland_Book.indb 325 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II326

Variable-Length Argument Lists
Using variable-length argument lists is a technique that’s necessary to the
upcoming example. Fortunately, Python makes this feature easy.

A function or method definition that uses a variable argument list has this
syntax:

def function_name(*args):
 statements

Note that the argument name, args, can be any valid name, but by conven-
tion, Python programmers most often use args in this context.

If you’re a C or C++ programmer, that little symbol, the asterisk (*), will
look quite familiar. But don’t get too excited. Forget everything you know
about the asterisk in C.

This syntax turns out to be very easy to use if you’ve followed this book
up to now. Where *args appears in an argument list, it means that all the
arguments passed are packed into a list—which, inside the definition, you
refer to as args.

The following example will show how simple this is. It just prints out all its
arguments.

def print_them_out(*args):
 for thing in args:
 print(thing, '\t')

Or let’s say you want the arguments separated by hyphens. Here’s an even
slicker example:

def print_them_out(*args):
 my_str = '--'.join(args)
 print(my_str)

Let’s assume this second definition is in use. Then the following function call

print_them_out('John', 'Paul', 'George', 'Ringo')

produces this result:

John--Paul--George--Ringo

You should be able to see how args is being used here (and remember, you
can use another name for args if you really want, although I don’t recom-
mend that). args is a list of arguments used in the function call. That enables
the caller of the function to pass as many values to the function as he or she
chooses.

K
ey

 S
yn

tax

Overland_Book.indb 326Overland_Book.indb 326 8/31/17 12:57 PM8/31/17 12:57 PM

Variable-Length Argument Lists 327
16

The full syntax is actually more flexible than that. Here is the more com-
plete syntax:

def function_name(fixed_args, *args):
 statements

This syntax indicates that you can begin the argument list with any number
of “regular” or “fixed” arguments. When the function is called, arguments
are assigned to their corresponding parameters (fixed_args) until those
arguments are accounted for. Any arguments not assigned to a fixed arg are
packed into the list represented by args.

Here’s an example:

 funct(10, 20, 30, 40, 50)

def funct(a, b, *args)

 args = [30, 40, 50]

Here’s an example of how this feature might be used in a definition:

def print_them_out(n, *args):
 print('There are', n, 'band members.')
 my_str = '--'.join(args)
 print(my_str)

And here’s a sample function call:

>>>print_them_out(4, 'John', 'Paul', 'George', 'Ringo')
There are 4 band members.
John--Paul--George--Ringo

But in this case, an easier and more reliable approach is to read the length of
the list directly and not involve an additional argument. After all, this is Python!

def print_them_out(*args):
 print('There are', len(args), 'band members.')
 my_str = '--'.join(args)
 print(my_str)

Example 16.1. PointN Class
With all these tools in place, it’s now possible to write a PointN class that sup-
ports points of any number of dimensions.

K
ey

 S
yn

tax

Overland_Book.indb 327Overland_Book.indb 327 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II328

In writing such a class, it is desirable to give the class user the option of
passing a list of numbers directly, or alternatively, simply listing all the num-
bers individually.

a_list = [10, 20, 34.5, 0]
pt1 = PointN(a_list)
pt2 = PointN(1.5, 33, 5, 100)

Ideally, the class should support both approaches to initializing a multidi-
mensional point.

pointn.py

class PointN:
 '''General-purpose multidimensional point class.'''
 def _ _init_ _(self, *args):
 # If first arg is a list...
 if isinstance(args[0], list):
 self.the_list = [i for i in args[0]]

 # Otherwise, process all the args as a list.
 else:
 self.the_list = [i for i in args]
 self.list_len = len(self.the_list)

 def _ _str_ _(self):
 al_list = [str(i) for i in self.the_list]
 return 'point(' + ', '.join(al_list) + ')'

 def _ _add_ _(self, other):
 ''' Add two points together & return a point.'''
 new_list = []
 n = min(self.list_len, other.list_len)
 for i in range(n):
 new_list.append(self.the_list[i]
 + other.the_list[i])
 return PointN(new_list)

pt1 = PointN(1, 2, 3, 4)
a_list = [10, 10, 10, 10]
pt2 = PointN(a_list)
print('pt1 is', pt1)
print('pt2 is', pt2)
print('Sum is', pt1 + pt2)

Overland_Book.indb 328Overland_Book.indb 328 8/31/17 12:57 PM8/31/17 12:57 PM

Variable-Length Argument Lists 329
16

After all this code is entered and executed, if everything has been typed in
correctly, you should see the following printed:

pt1 is point(1, 2, 3, 4)
pt2 is point(10, 10, 10, 10)
Sum is point(11, 12, 13, 14)

H
ow

 It

 Works

 How It Works
The _ _init_ _ function of the PointN class makes a straightforward use of the
variable-argument feature. With this class, we assume that the user initializes
an instance in one of two ways: by giving any number of numeric arguments or
by giving just one argument—but that argument contains a list of numbers.

Therefore, the _ _init_ _ function checks the type of the first argument; if
it is a list, then all the elements of that list are copied to an instance variable,
self.the_list.

If the second argument is not a list, then all the elements of args are copied
to this variable. The action is essentially the same in either case. It’s simply a
matter of whether the values are copied from the first argument (args[0]) or
from all the arguments (args).

 def _ _init_ _(self, *args):
 # If first arg is a list...
 if isinstance(args[0], list):
 self.the_list = [i for i in args[0]]

 # Otherwise, process all the args as a list.
 else:
 self.the_list = [i for i in args]
 self.list_len = len(self.the_list)

Note that list copying is used here rather than variable assignment. This
is by far the safest approach. You should want the PointN object’s internal
values—self.the_list—to live as long as the object exists; you shouldn’t
want them to be tied to changes made somewhere else.

The _ _str_ _ method, which returns a string to be printed, is simple. Once
you realize the object’s values are permanently stored in self.the_list, it’s
an easy matter to print them.

The _ _add_ _ method is in some ways the most interesting, although we’ll
improve on it in the next section. The method assumes that the “other” object
to be added is another object of the PointN class. We therefore add each pair
of corresponding values (the Nth element in one object and the Nth element in
the other) to produce a new PointN object.

Overland_Book.indb 329Overland_Book.indb 329 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II330

Note that the built-in min function is used to get the minimum of the
dimension sizes of the two points involved; otherwise, with two points of dif-
ferent dimensions, the code would raise an exception.

 def _ _add_ _(self, other):
 new_list = []
 n = min(self.list_len, other.list_len)
 for i in range(n):
 new_list.append(self.the_list[i]
 + other.the_list[i])
 return NPoint(new_list)

Op
ti

m

izing

 Optimizing the Code
The current version of the _ _add_ _ method, although it works, is not the most
“Pythonic” solution. With preferred Python style, we want to avoid indexing
where possible, preferring to operate on “iterables” as a whole.

The Python zip function takes two lists and produces a hybrid list, con-
taining a list of tuples. Each tuple contains an element from the first list and
an element from the second. Here’s an example:

>>>coll_a = [1, 2, 3]
>>>coll_b = [10, 20, 30, 40]
>>>coll_c = zip(coll_a, coll_b)
>>>coll_c
[(1, 10), (2, 20), (3, 30)]

Note that the size is the minimum of the two input lists, which is what we want.
Using the zip function, we can write a better _ _add_ _ method for two points.

 def _ _add_ _(self, other):
 hy = zip(self.the_list, other.the_list)
 new_list = [i[0] + i[1] for i in hy]
 return NPoint(new_list)

Isn’t this a short, simple, elegant solution?

Ex
er

cis
es

 EXERCISES

Exercise 16.1.1. Write a _ _sub_ _ method for the NPoint class and test it. This
method should take two NPoint objects and return a third object in which
each element is generated by subtracting corresponding point values.

Exercise 16.1.2. Write a _ _mult_ _ method for the NPoint class and test it. In
addition to the self argument, the method should take a single numeric

Overland_Book.indb 330Overland_Book.indb 330 8/31/17 12:57 PM8/31/17 12:57 PM

Inheritance 331
16

argument, n, and multiply each element by n, producing (va1 * n, val2 * n,
val3 * n….). Then return the result.

Exercise 16.1.3. Does the class get a “free” test for equality or do you have to
write an _ _eq_ _ method? Why or why not?

Exercise 16.1.4. This one is for the truly ambitious! Write an is_linear function
that takes three points and returns True or False, depending on whether the
three points line up in N-dimensional space. The solution is to calculate the dif-
ference (using _ _sub_ _) for p2 – p1, and the difference for p3 – p2. Now, all
three points are linear if and only if one of these “deltas” (differences) is a strict
multiple of the other difference. Determining this last condition is not trivial,
however, as you need to avoid dividing by zero. Also, remember to return False
if the two NPoint objects don’t have the same number of dimensions (points).

Inheritance
Gobs of material have been written about inheritance, but in this chapter, I’m
going to reduce it to its basic idea, which is simple in theory:

 When one class inherits from another, it automatically gets the methods and
attributes of that parent object—which it may either maintain or override.

A class inheriting from another is said to subclass the other class, which in
turn becomes the superclass or parent class. The basic syntax for subclassing is

class class_name(base_class):
class_definitions

What exactly gets inherited in Python?

 In Python, all methods are inherited, including special methods such as
_ _init_ _ (unlike C++, in which constructors are not inherited). Be careful,
though: if you override _ _init_ _, you may need to call the parent’s class ver-
sion of that method.

 All class variables are inherited.

 But instance variables are a different matter, and here it gets a bit compli-
cated. In Python, instance variables attach to instances, not classes; therefore,
they are not necessarily inherited. However, if you use _ _init_ _ or some
other method to create those variables, then that behavior is inherited as well,
assuming you do not override _ _init_ _.

Ke
yw

ord

Overland_Book.indb 331Overland_Book.indb 331 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II332

The great advantage of subclassing is that you can potentially save yourself
from writing the same code over and over. I’m going to start with a simple
example, but one that involves several classes.

 The Pet class stores basic information for each pet: name, breed, and age.

 The Dog and Cat classes each inherit directly from the Pet class. The Dog class
adds a method, called play; and the Cat class adds a method called snooze.

 Finally, the Puppy class inherits from the Dog class and adds an instance vari-
able: favorite_toy.

The important point is (as with all object-oriented languages) the Dog, Cat,
and Puppy classes all inherit all the methods and variables created in the Pet
class so that code (at least in theory) does not have to be written again, so
attributes defined in Pet are shared everywhere in this hierarchy. Here is a
figure that illustrates the relationships:

Contains all Pet
class attributes
plus play method.

Dog Class

Contains all Pet
class attributes
plus snooze.

Cat Class

Pet Class

Contains all Dog
attributes plus
favorite_toy.

Puppy Class

Here’s how this class hierarchy might be coded:

class Pet:
 '''Parent class for Dog, Cat, etc.'''
 def _ _init_ _(self, name, breed, age):
 self.name = name
 self.breed = breed
 self.age = age

Overland_Book.indb 332Overland_Book.indb 332 8/31/17 12:57 PM8/31/17 12:57 PM

The Fraction Class 333
16

class Dog(Pet):
 '''Dog class – adds play() method.'''
 def play(self):
 '''Dogs just want to have fun.'''
 s = ''
 while not s or s[0] not in 'Nn':
 print(self.name, 'fetches the ball!')
 s = input('Wanna play again? (Y/N) ')

class Cat(Pet):
 def snooze(self):
 print(self.name, 'opens an eye slightly.')
 for i in range(5):
 print('Snooze.')

class Puppy(Dog):
 def _ _init_ _(self, name, breed, age, toy):
 Pet._ _init_ _(self, name, breed, age)
 self.favorite_toy = toy

Most of this example is straightforward if you just remember the one basic
rule: subclasses automatically inherit all the methods of their superclasses.

But there are some fine points, even in this simple example.
First, inheritance can be either direct or indirect. In this case, Puppy inher-

its directly from Dog, but it not only gets the play method, which originated
in the Dog class; it inherits all the attributes of the Pet class (the grandfather
class) as well.

Descendant classes inherit all parent-class methods, including the _ _init_ _
method, so it isn’t always necessary to write new _ _init_ _ methods.

However, sometimes it’s useful to call an ancestor class version of a method.
The Puppy class does that so that it doesn’t have to do all the initialization
itself. It calls its “grandfather’s” version of _ _init_ _ to initialize everything
but the favorite_toy variable.

The way to call another class’s version of a function is to use the dot (.) notation.

class_name.method(self, args)

The Fraction Class
Now let’s graduate to a more practical example. One of the more practical
ways to use inheritance—although you do have to show some extra care—is
to inherit and extend classes provided by Python itself.

Overland_Book.indb 333Overland_Book.indb 333 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II334

One of Python’s most useful extended classes is the Fraction class. It
requires the following import statement:

from fractions import Fraction

Here’s a sample session using this class.

>>>a = Fraction('1/2')
>>>b = Fraction('2/3')
>>>print('Total is', a + b)
Total is 7/6

Wow, do you see the usefulness of this class? It can add two fractional num-
bers, such as 1/2 and 2/3, and produce the correct result precisely and reliably—a
result that floating-point formats can sometimes get right, but with a high risk
of errors.

Consider that floating-point format, which is based on binary radix, can-
not really hold a figure like 1/3 or 1/7 precisely. If you execute an operation
such as 2/7 + 5/7, you may get the right answer (1.0), but there is no guaran-
tee that such operations will always be right. Rounding errors may creep in.
But a Fraction class can hold rational numbers such as 1/3 with absolute
precision.

In this next example, I’m going to show how to add new capabilities to this class.

Example 16.2. Extending the Fraction Class
If you experiment with the Fraction class, you’ll find that it can perform calcu-
lations such as 1/2 + 2/3. But this produces 7/6 as the answer, when we instead
might want to get a proper fraction, namely:

1 1/6
The correct strategy is to override the _ _str_ _ method. However, it’s not

quite that easy; a few other modifications need to be made as well.

pfraction.py

from fractions import Fraction

class PFraction(Fraction):
 def _ _str_ _(self):
 n = self.numerator
 d = self.denominator
 i = n // d
 int_str = str(i)+' ' if i > 0 else ''

Overland_Book.indb 334Overland_Book.indb 334 8/31/17 12:57 PM8/31/17 12:57 PM

The Fraction Class 335
16

 n = n % d
 n_str = str(n)+'/'+ str(d) if n > 0 else ''
 return int_str + n_str

 def _ _add_ _(self, other):
 f = Fraction._ _add_ _(self, other)
 return PFraction(f)

f1 = PFraction('1/2')
f2 = PFraction('2/3')
print('The result is', f1 + f2)

When run, this code will print

The result is 1 1/6

Note that we get this result rather than the “The result is 7/6” answer.

H
ow

 It

 Works

 How It Works
The Fraction class maintains numerator and denominator instance variables,
as well as performing internal operations so that given any mathematical
operation, these variables will reflect the correct value of a fraction.

We don’t want to mess with these. Let the methods in the class do their
thing. The only thing we want to change, ideally, is the _ _str_ _ method,
although we’ll find that other changes need to be made as well.

The overridden _ _str_ _ method works by, first of all, assigning
self.numerator and self.denominator—two instance variables created
in the Fraction class—to the variables n and d, for convenience.

 n = self.numerator
 d = self.denominator

Assuming these values produce an improper fraction, we can reduce to a
“proper fraction” by performing the following operations:

 n // d (integer division) will give us the integer portion.

 n % d (modular division) will give us the adjusted numerator.

So, we’re done, right? Not quite. If no changes are made to the _ _add_ _
function, then the program prints

The result is 7/6.

pfraction.py, cont.

Overland_Book.indb 335Overland_Book.indb 335 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II336

This would mean the PFraction class did nothing different at all! But why?
The explanation is if the _ _add_ _ method is not overridden, then when two

PFraction objects are added, the base_class method, Fraction._ _add_ _,
gets executed. This is as we ought to expect.

PFraction
1/2

PFraction
2/3

PFraction
7/6

Fraction._ _add_ _
Takes 2 objects and
produces a Fraction

Results needs to
be recast back to
PFraction format.

But the Fraction._ _add_ _ method returns a Fraction, not a PFraction
object. So when we add two PFraction objects, we get a Fraction object.
And therefore when we print it, we get the old printing behavior as well.

The solution is to override the _ _add_ _ method. We want the base class,
Fraction._ _add_ _, to do its thing. But then we want to change the type of
the return value so that we end up with a PFraction object. Only then will
we get the _ _str_ _ behavior we want.

 def _ _add_ _(self, other):
 f = Fraction._ _add_ _(self, other)
 return PFraction(f)

Remember, this overridden method doesn’t change any behavior by itself.
All it does is recast the type of the object being returned to PFraction, so
when this object is printed, it will use PFraction’s _ _str_ _ method.

It’s as if the code is saying, “Go ahead and use the base-class version of
_ _add_ _, but don’t forget to return a PFraction object.”

Note Ë In addition to built-in methods _ _add_ _, _ _mult_ _, _ _div_ _, and so on,
Python also recognizes corresponding methods such as _ _radd_ _, _ _rmult_ _,
and _ _rdiv_ _, which are useful if you want to define how to add objects of dif-
ferent types. For example, if you want to define how to add pfract1 to fract1,
where the types are PFraction and Fraction, respectively, then you need to
define _ _radd_ _ so that the following expression can be evaluated:

fact1 + pfract1

Note that in this case, pfract1 is on the right side. This is a situation in
which defining PFraction._ _radd_ _ is useful.

 Ç Note

Overland_Book.indb 336Overland_Book.indb 336 8/31/17 12:57 PM8/31/17 12:57 PM

Class Variables and Methods 337
16

Ex
er

cis
es

 EXERCISES

Exercise 16.2.1. Write a calculation program that prompts for input in the form
of a fraction and continues until the user enters a blank space. Then print the
total of all the fractions, in PFraction form.

Exercise 16.2.2. Look at the solution devised for the _ _str_ _ method of the
PFraction. Then apply the same solution to other operations, by overriding
the _ _sub_ _, _ _mult_ _, and _ _div_ _ methods.

Exercise 16.2.3. Override the _ _init_ _ method so that if the first argument is a
string of the form "2 1/3", it parses the string into the form (n, d) and then
passes those two numbers to the base-class method, Fraction._ _init_ _. If
the first argument is a string that does not contain an embedded space, pass
it along to the base-class method. If there are two arguments instead of one,
then just pass them along to the base-class method.

Class Variables and Methods
Instance variables, it should be clear by now, are variables whose values are attached
to individual objects. Although all instances can (and usually should) have a com-
mon blueprint, each will maintain its own values. Instance variables are not shared.

A class variable is a variable that is shared among all members of a class.
This is an advanced technique, and you may go a long time in your Python
career before you ever really need it.

A common example is an automatic counter that keeps track of how many
instances you’ve created. Let’s call this variable num_dogs. To create this as
a class variable, I simply make an assignment to it, directly under the class
header. Let’s assume a rudimentary Dog class.

class Dog:
 num_dogs = 0

Not that interesting, is it? But I access this new value by using class name
combined with the dot notation.

>>>Dog.num_dogs
0

I can also access it through any of the objects of the class, in a similar manner.

>>>d = Dog()
>>>d.num_dogs
0

Overland_Book.indb 337Overland_Book.indb 337 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II338

But within methods of the class, do not refer to class variables as self.variable.
Instead, use the syntax class.variable. Here’s a complete example, with
the key lines in bold:

class Dog:
 '''Dog class illustrating a class variable.'''
 num_dogs = 0
 def _ _init_ _(self, name, breed, age):
 self.name = name
 self.breed = breed
 self.age = age
 Dog.num_dogs += 1

With these additions (remember, marked in bold), the class will now
behave the way we wanted: it will keep track of how many dogs have been
created. Here’s how to demonstrate this feature from within the interactive
environment:

>>>my_dog = Dog('Toodles', 'Poodle', 5)
>>>yr_dog = Dog('Masher', 'Doberman', 7)
>>>Dog.num_dogs
2

The environment correctly reported that two Dog objects have been created.
A class may also support class methods and static methods, which are similar:

they are shared by all instances of a class and do not apply to individual
instances. The difference is that static methods take no additional argument
at all, whereas class methods take an additional argument referring to the
class itself.

Static methods have the following syntax:

@staticmethod
def method_name(args):
 statements

I’ll show an example of such a method in Example 16.3.
The syntax for class methods is similar. The difference is that the extra

argument (which by convention is cls) provides a convenient way to call other
methods of the same class, as cls.method.

@classmethod
def method_name(cls, args):

statements

Ke
yw

ord

Ke
yw

ord

Overland_Book.indb 338Overland_Book.indb 338 8/31/17 12:57 PM8/31/17 12:57 PM

Instance Variables as “Default” Values 339
16

Instance Variables as “Default” Values
Still not convinced that class variables are worth learning? They have still
more uses, in addition to the count variable shown in the previous section.
These other uses include

 Defining constants that are useful to the class generally, such as pi.

 Defining default values for instance variables.

For example, suppose we have a Circle class, which includes a get_area
method for calculating the area of that circle.

class Circle:
 pi = 3.14

 def _ _init_ _(self, r):
 self.r = r

 def get_area(self):
 return Circle.pi * self.r * self.r

Here’s an example of the class in use:

r = 2
c = Circle(r)
print('For circle of radius', r, '...')
print('area is', c.get_area())

This prints an answer of 12.56.
The limitation here, of course, is that 3.14 is a very rough approximation of

pi, and we might like to use a much more precise approximation: 3.14159265.
Let’s try to do this by changing the value of pi on the object itself. Python

allows this, and it seems, at first, to work. You can demonstrate this feature
from within the interactive environment.

>>>c.pi = 3.14159265
>>>print(c.pi)
3.14159265

But if you rerun get_area(), the result doesn’t change; it’s still 12.56. The
explanation is that the get_area() method specifically referred to the class
variable pi, not the instance variable.

 return Circle.pi * self.r * self.r

Overland_Book.indb 339Overland_Book.indb 339 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II340

Remember that you assign a value to c.pi, it creates a new instance vari-
able…just as in a function, if you assign a new value to a variable, it creates a
new local.

So if you create other Circle variables, you’ll see the value of pi hasn’t
changed.

>>>new_circ = Circle(2)
>>>print(new_circ.pi)
3.14

What happened was that the statement

c.pi = 3.14159265

created an instance variable attached to the object c, and that in turn has no
effect on other objects, such as new_circ.

If you want to change the class variable itself, and not add an instance vari-
able, remember to use the class name.

Circle.pi = 3.14159265

This statement will change the value of the class variable pi, which in turn
will affect other Circle objects.

When Python comes across an expression such as c.pi, it looks for an
assignment to pi in this order: instance variable name, class variable name,
and any inherited names from the base class.

Instance
variables

1.

How Python resolves expressions such as obj.var

Class
variables

2. Inherited
class
variables

3.

Example 16.3. Polygon “Automated” Class
In the following example, a great deal of work is “automated” by being placed
in the base class, Polygon, which is ideally how you should want to use inher-
itance when possible.

Normally, when you create polygon classes such as Square, Circle, and so
on, you’d have to write code—either in the class or outside the class—to get
the value of each side (or in the case of circles, the radius). You’d also need to
write a function that calculated such things as area of volume.

Overland_Book.indb 340Overland_Book.indb 340 8/31/17 12:57 PM8/31/17 12:57 PM

Instance Variables as “Default” Values 341
16

In this example, both those basic functions are automated…by being per-
formed in the base class.

class Polygon:
 '''Base classes for polygons and solids.'''
 pi = 3.14159265

 @ staticmethod
 def get_area(factors, sides, cfacts):
 ''' This method prompts for values of all
 sides and returns area or volume.
 Factors is a list indexing all the sides;
 'sides' is a list of strings, cfacts are
 constants multiplied into the result.'''
 data = []
 for name in sides:
 x = float(input('Enter ' + name + ': '))
 data.append(x)
 prod = 1
 for i in factors:
 prod *= data[i - 1]
 for i in cfacts:
 prod *= i
 return prod

class Square(Polygon):
 def _ _init_ _(self):
 self.a = Polygon.get_area([1,1], ['side'], [])

class Rectangle(Polygon):
 def _ _init_ _(self):
 self.a = Polygon.get_area([1,2],
 ['height', 'width'], [])

class Sphere(Polygon):
 def _ _init_ _(self):
 self.v = Polygon.get_area([1,1,1],
 ['radius'], [Polygon.pi, 4/3])

print('The area of a square...')
a_square = Square()
print('The area is the square is', a_square.a)

Overland_Book.indb 341Overland_Book.indb 341 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II342

print('The area of a rectangle...')
a_rect = Rectangle()
print('The area of a rectangle is', a_rect.a)

print('The volume of a sphere...')
a_sphere = Sphere()
print('The volume of the sphere is', a_sphere.v)

H
ow

 It

 Works

 How It Works
The subclasses that appear in this example include Square, Circle, and
Sphere. All each of these subclasses do, upon initialization, is to call the class
function, get_area, which is inherited from Polygon. But each calls the
get_area method with different arguments, supporting an endless variety of
shapes and solids.

Although different words are used for the input data—side, length, width,
radius—and so on, the process of prompting the user for this data is repeti-
tive. That’s why it can be automated. And the process of calculating area (or
volume, as the case may be) is just a matter of multiplying together the right
list of values. The get_area method uses list arguments to determine what
information to multiply together.

 prod = 1
 for i in factors:
 prod *= data[i - 1]

The data list was filled out by an input loop before this loop is executed.
This loop then takes that data and multiplies it together according to the one-
based index numbers in the factors list.

Therefore, a factors list of [1, 1] combined with a sides list of ['side']
causes the following calculation to be made:

Area = side * side

Likewise, a Rectangle object passes a factors list of [1, 2], combined with
a sides list of ['height', 'width'], multiplies together two factors, not one.

Area = height * width

Finally, all the numeric values in the cfact list are multiplied directly into the
result. So a factors list of [1, 1, 1] combined with a cfact list of [pi, 4/3]
calculates the result as

V = radius * radius * radius * pi * 4/3

Overland_Book.indb 342Overland_Book.indb 342 8/31/17 12:57 PM8/31/17 12:57 PM

Instance Variables as “Default” Values 343
16

Throughout this example, note that all references to the class variable, pi,
as well as the class method, get_area, are qualified with a reference to the
Polygon class.

class Sphere(Polygon):
 def _ _init_ _(self):
 self.v = Polygon.get_area([1,1,1],
 ['radius'], [Polygon.pi, 4/3])

Ex
er

cis
es

 EXERCISES

Exercise 16.3.1. Add the following shapes to the program, remembering to sub-
class from Polygon: pyramids and cylinders. (Each has its own volume for-
mula that you can easily look up online.)

Exercise 16.3.2. One limitation of Example 16.3 as it now stands is that each sub-
class object ends up storing area/volume only, with access to no other data.
Solve this problem by revising get_area to return the information in the
factor and name arguments; then, store that information in subclass objects.
Doing so will enable each object to have extensive information about the poly-
gon or shape.

Exercise 16.3.3. Ask yourself: does get_area have to be written as a class
method? Could it have been written as an instance method? If so, what effi-
ciency, if any, is gained by having it written as a class method?

OOPS, What Is It Good For?

Object-oriented programming (OOP)—or as I like to say, object- oriented
programming systems (OOPS!)—has for decades been among the big-
gest topics in computer programming. It was once seen as the solution
to every problem; now it’s seen as a convenient way to package certain
kinds of code.

In particular, although OOPS is not equivalent to event-based pro-
gramming, or graphical user interface (GUI) programming, all these
models are in harmony. Think about it: a window or a command button
is very much like a self-contained object, which you can send messages to
in the form of method calls.

I’ve always liked that model…thinking of objects as independent enti-
ties that sit there and send messages to each other.

continued on next page

Interlude

Overland_Book.indb 343Overland_Book.indb 343 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 16 Classes and Objects II344

continued

Object orientation is almost too well supported in Python. Inheritance
is easy, with no protected variables. Polymorphism is automatically sup-
ported. This means that every object can have its own implementation of
the print_me method, for example, and an object’s own version of the
code (not the caller’s) will always be executed.

In these last two chapters, I hope I’ve shown some cases in which the
class-object syntax is useful, even necessary: this includes situations in
which you need a data-record type and situations in which you need a
customized data type. Still another good use for OOP occurs when you
have repetitive code that can be put in a base class and then inherited by
subclasses.

But OOPS has a drawback in Python. Because variables are not declared
and have no type except that of the data assigned at run time, Python is
less self-documenting than other languages (although you can make up
for that with extensive comments). When you assign an object, what class
is it? Who knows? This can make reading another programmer’s code a
nightmare, especially if this person likes to write lots of classes.

You might be better off sticking to built-in types and consistent naming
conventions. For example, my_str should be a string, and a_list should
be a list. Simple variables, such as a, b, and c, should be int or float. I’ve
tried to stick to that standard in this book.

Chapter 16 Summary
Here are the main points of Chapter 16:

 In Python, documentation strings serve the same basic purpose as comments
but also provide automatic help text from within the interactive environment.
Place a string right after the heading of a class, function, or method definition
while observing standard indentation. You can also place it at the beginning
of a file to provide information on a module that has been imported.

 You can test the type of an object at run time, by using either the isinstance
or type functions. The first—which is preferred because of how it cooperates
with inheritance—returns True or False.

if isinstance(my_dog, Dog):
 print('I am a dog.')

Interlude

Overland_Book.indb 344Overland_Book.indb 344 8/31/17 12:57 PM8/31/17 12:57 PM

345
16
Summary

 You can treat a series of N arguments as a variable-length list by including an
asterisk.

def print_the_out(*args):
 print('First arg is', args[0])
 print('Second arg is', args[1])
 print('There are', len(args), 'args total.')

 Inheritance is realized through subclassing in Python. The following syntax
causes new_class to automatically include all the methods and class vari-
ables of base_class (although the methods may be overridden):

class new_class(base_class):
definitions

 Remember that _ _init_ _ is a true initialization function. This makes some
aspects of inheritance easier. In particular, the _ _init_ _ function is automat-
ically inherited but may be overridden.

 A subclass may call any method in the base class by referring to the base class
explicitly and using the dot notation (.).

class Dog(Pet):
 def _ _init_ _(self, name, breed, age, toy):
 self.toy = toy
 Pet._ _init_ _(self, name, breed, age)

 Class variables are defined directly under the class header rather than from within
a method. Class variables are shared by all members of the class and are always
referred to with the syntax class_name.var, rather than object_name.var
or self.var.

Overland_Book.indb 345Overland_Book.indb 345 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 346Overland_Book.indb 346 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

347

17 Conway’s Game
of Life

How do you get to Carnegie Hall? Practice, practice! Now answer this: how
do you become a programmer?

The answer is to practice on what I call “real projects.” That’s why I focused
on Tic-Tac-Toe in Chapter 14. Playing a perfect strategy—even for this simple
game—is far from trivial. It required serious mastery of Python fundamen-
tals, as well as creative decision-making.

In this chapter, I’ll apply Python tricks introduced in the last few chapters
to an even more ambitious project: Conway’s Game of Life, which simulates
living cells! That this entire program can be written in 100 lines (38 if you
take out the comments and blank lines!) is remarkable. The strategy of this
chapter is

 Develop a general-purpose matrix class

 Print out a matrix as a series of blanks and Xs

 Create the full Game of Life program

The Impact of “Life”

The “Game”—which is more properly called a simulation—has its origins
back in the 1940s when John von Newman, the legendary mathematician
and game theorist, invented a set of rules for a “self-reproducing machine”
that used complex rules played out on a grid.

The British mathematician John Horton Conway came up with a way of
simplifying Von Newman’s rules, producing the Game of Life we know today.
A 1970 issue of Scientific American contained an article by Martin Gardner,
explaining the rules and presenting some of the more interesting patterns.

continued on next page

Interlude

Overland_Book.indb 347Overland_Book.indb 347 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 348

continued

I was very young at the time, but I remember reading that article. Personal
computers were not yet on the market, so the Game could only be played
by painstakingly working out alternating generations on a chessboard…
first with blue chips, then with red chips. Research institutes, of course,
could use mainframe computers to run the game, but other people had to
do it the hard way. Even then, it was fascinating.

Martin Gardner’s article on the Game had immediate impact. It single-
handedly created the field of cellular automata—which seeks to under-
stand cell behavior as if each were a little machine. And it made John
Horton Conway famous overnight.

After the advent of personal computers in the late 1970s, the Game of
Life became even more popular—among programmers. I knew at least
one programmer I worked with told me that when he could write the
Game of Life in a new programming language, then he knew he “had
finally cracked the language.”

The Game of Life was the first serious program I wrote in C. At that
time processors were so slow that I needed to use every trick I could to
optimize speed, eventually ending up with a program 40 or 50 times faster
than the one I started with. Some of my optimizations were specific to the
C language, but other insights influenced the version I present here.

Game of Life: The Rules of the Game
The Game consists of a grid (of whatever size you like) in which every position
is either “alive” or “empty”—that is, dead. This makes everything compara-
tively simple.

The rules are

 For each and every position in the grid, count up the number of neighboring
positions that have living cells. Diagonals are counted, so there are at most
eight living neighbors and as few as zero.

Interlude

Overland_Book.indb 348Overland_Book.indb 348 8/31/17 12:57 PM8/31/17 12:57 PM

Game of Life: The Rules of the Game 349
17

 If there are fewer than two neighbors, the current position has a “death” event:
if there is a living cell at this position, it’s erased. This is the Starvation Rule.

 If a cell has exactly two neighbors, keep the cell as it is: if it was empty, it stays
empty; if it was living, it continues to live. This is the Maintenance Rule.

 If a position has exactly three neighbors, this is a birth event. Three neighbors
is the “ideal” condition, indicating a perfect environment. Action: turn the
cell to living if it is currently empty.

 If a position has more than three neighbors, this is also a death event. If there
is a cell at the current position, turn it off. This is the Overpopulation Rule.

This may sound like a lot of rules but turns out to be incredibly simple.
When you synthesize these rules, using the techniques I use in this chapter,
there are actually only two.

N = NEIGHBOR COUNT
FOR A CELL POSITION ACTION PERFORMED

N < 2 or N > 3 Death event. Set corresponding cell in Life matrix to OFF.
(Famine and Overpopulation Rules.)

N == 3 Birth event. Set corresponding cell in Life matrix to ON.

That’s it! We need no other rules to process the next generation… just gen-
erate a “neighbor-count” matrix from the current state (the “Life matrix”)
and then set positions in the Life matrix to ON or OFF as summarized by
these two rules.

For N equal to 2, no action is taken at all: cells that are already ON are left
on, and cells that are OFF are left off. N equal to 2 is a no op.

The next figure illustrates how these rules would be applied to a “blinker”
pattern, which oscillates between two states.

 An X in the first graphic shows a living cell in the old generation.

 The numbers in the second graphic show the neighbor counts, superimposed
on the living-cell information. It includes the values in the corresponding cells
in the Neighbor Count matrix; the little wedges show the living cells from the
old generation, so you can see the information combined.

 An X in the final graphic shows the position of a living cell in the new
generation.

Overland_Book.indb 349Overland_Book.indb 349 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 350

The numbers in the middle picture are the neighbor counts. Remember that
a count of 3 causes a birth event, and a count of 1 causes a death event. A count
of 2 maintains the status quo.

X

X

X

1 1 1

2 1 2

3 2 3

2 1 2

1 1 1

X X X

Here’s another illustration: the stable square. This pattern has “birth”
events only where living cells already exist. And it has “death” events only
where positions are empty. Therefore, this pattern goes from one generation
to the next without changing…until some foreign cells invade its territory,
which can happen.

X

X

X XX

X

2 2 1

3 3 2

3 3 2

2

1

2

2

1 2 1

X X

As these figures illustrate, the key to a super-efficient algorithm for the
Game of Life—the one we’ll be using in this chapter—is to have two matrixes:
one for state of the game and another for neighbor counts.

Generating the Neighbor Count
So, given two matrixes—one that contains the current state of the game
and another dedicated to holding neighbor counts—how do you count
neighbors?

I’ve found that the most efficient way to do this is not to count up the neigh-
bors of each individual cell, even though that’s the more obvious approach.
Let’s say we have a Life matrix 40 columns by 20 rows, which is 800 cells. You
could do the following:

Overland_Book.indb 350Overland_Book.indb 350 8/31/17 12:57 PM8/31/17 12:57 PM

Generating the Neighbor Count 351
17

For each of the 800 cells,
 Count up all 8 neighbors

This approach works, but it’s inefficient. It examines each of the 800 cells,
and then for each cell, it accesses all 8 of its neighbors. This requires a grand
total of 800 times 9, or 7,200 separate cell accesses.

My approach takes advantage of there rarely being more than 5 or 10 percent
density in the Life matrix.

For each living cell in the Life matrix,
 Increment the count for all surrounding cells in N.C. Matrix

The current state of the Life matrix is used to “populate” the Neighbor
Count matrix. The beauty of this approach is that where cells are empty, the
program does almost nothing. Living-cell density above 5 or 10 percent is
rare, so this approach constitutes a big win in terms of efficiency and execu-
tion speed.

For example, if a living cell is found in the Life matrix at point (2, 2), then
Neighbor Count elements are incremented in the following positions:

 On the row above: (1, 1), (1, 2), (1, 3)

 To either side: (2, 1), (2, 3)

 One the row below: (3, 1), (3, 2), (3, 3)

Here’s how the operation looks in graphical terms. Remember, the living cell
is located in the Life matrix, but incrementing is done to cells in the Neighbor
Count matrix.

+1 +1 1

+1 +1 +1

+1 +1

+1 +1 +1

+1 +1

+1 +1 +1

There’s a twist here. If the Life-matrix cell is on an edge or in a corner,
then the results “wrap” to the other side. I’ll return to that technique later and
show how wrapping is implemented.

Ps
eu

do

code
Ps

eu
do

code

Overland_Book.indb 351Overland_Book.indb 351 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 352

Design of the Program
The overall flow of the program is fairly simple.

Get N from the user,
For 1 to N times,
 Print out the Life Matrix.
 Reset Neighbor-Count Matrix to all 0’s.
 Populate Neighbor-Count matrix.
 Use Neighbor Count to generate next generation of Life, using the

two rules.

The main work of the program comes down to these steps: (1) print the Life
matrix, (2) populate the Neighbor Count matrix, and (3) create the next gen-
eration in the Life matrix by using the two rules stated in the previous section.

The first thing to do is to create a generic Matrix class that knows how to
perform a number of useful operations. This will simplify the rest of the pro-
gramming to be done later.

This Matrix class will be used to generate the two matrixes:

 life_mat, which holds the current state of the game

 nc_mat, which holds all the neighbor counts

Example 17.1. The Customized Matrix Class
Here’s the code for the Matrix class. Although I’ve included certain methods
that will be especially useful in the Game of Life application, this is to a large
extent a general-purpose class; you could reuse it with other applications.

For each method, I’ve supplied a doc string that summarizes what the
method does.

lifemat.py

class Matrix2D:
 ''' General-purpose 2-d Matrix class for Life.'''

 def _ _init_ _(self, rows, cols):
 ''' Init matrix to rows times cols. '''
 self.grid = [[0] * cols for _ in range(rows)]

Ps
eu

do

code

Overland_Book.indb 352Overland_Book.indb 352 8/31/17 12:57 PM8/31/17 12:57 PM

Design of the Program 353
17

 self.rows = rows
 self.cols = cols

 def get_cell(self, r, c):
 ''' Get value at cell r, c. '''
 return self.grid[r][c]

 def set_cells(self, n, *args):
 ''' Set any number of cells to n. '''
 for r, c in args:
 self.grid[r][c] = n

 def inc_cells(self, *args):
 ''' Increment any number of cells by 1 each. '''
 for r, c in args:
 self.grid[r][c] += 1

 def set_all_cells(self, n=0):
 ''' Set any number of cells to n, default 0. '''
 for i in range(self.rows):
 for j in range (self.cols):
 self.grid[i][j] = n

H
ow

 It

 Works

 How It Works
Each of these methods will prove useful in the program. For example, we’ll
use _ _init_ _ and set_cells to create and initialize the Life matrix to a start-
ing state.

Chapter 13 introduced the technique for creating multidimensional lists,
and that technique is used here, in _ _init_ _:

 self.grid = [[0] * cols for _ in range(rows)]

The get_cell and inc_cells methods will do most of the work of the
program. During the main loop, we’ll use get_cell to find out whether a
position in the Life matrix is on or off. Then we’ll use inc_cells to populate
adjacent positions in the Neighbor Count matrix.

The set_cells and inc_cells method both use the variable-length-
argument feature introduced in the previous chapter.

 def set_cells(self, n, *args):
 for r, c in args:
 self.grid[r][c] = n

lifemat.py, cont.

Overland_Book.indb 353Overland_Book.indb 353 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 354

Any number of arguments are packed into *args. This definition requires
a little explanation. We assume each argument is a tuple, of the form (r, c).
The loop reads one tuple at a time, but it reads that tuple directly into the vari-
ables r and c.

Here’s an example of a call to this method, preceded by a statement creat-
ing the matrix.

my_mat = Matrix2D(20, 20)
my_mat.set_cells(5, (0,0), (0,1), (0, 2))

This method call sets each of the first three cells of the top row to 5. The
first argument, 5, is passed to n, and the tuples (0, 0), (0, 1), and (0,2) are read
into r and c during each iteration of the loop. First r and c are 0 and 0; then r
and c are 0 and 1; and then finally they are 0 and 2.

Ex
er

cis
es

 EXERCISES

Exercise 17.1.1. Place this class definition into a file and then add a few lines of code
of your own to test the class. First, make some calls to set_cells and inc_cells
to put some information in the matrix. Then print out some of these values, one
at a time.

Exercise 17.1.2. Repeat Exercise 17.1, but this time print out all the values in the
matrix, one row at a time.

Moving the Matrix Class to a Module
If you want to reuse a class in multiple programs or if you just want to break
your program into manageable chunks, called modules—in which each module
occupies a different source file—you can move class definitions into separate
modules.

There are just a few steps required to do this:

1 Move the class definition place into a file with a .py extension. Place this file in
the same directory that the rest of your program will reside in. Let’s say the name
is lifemat.py for the sake of illustration.

2 Although the file name has a .py extension, the module name should not include
it. In this case, the module name will be lifemat.

3 For a program to use the class definition, place an important statement at the
beginning of the main program. Here’s an example:

from lifemat import Matrix2D

Overland_Book.indb 354Overland_Book.indb 354 8/31/17 12:57 PM8/31/17 12:57 PM

Moving the Matrix Class to a Module 355
17

Example 17.2. Printing a Life Matrix
The first major task in the program is to print out the Life matrix nicely, print-
ing not numbers but some character chosen specifically to represent a living:
this might, for example, be an X.

Writing this code shouldn’t be difficult, but keep in mind that a border
should be printed between generations and smooth, fast printing is achieved
by making as few separate calls to print as possible.

lifeprint.py

Import from the file lifemat.py in the same dir.
from lifemat import Matrix2D

rows = 20
cols = 40
life_mat = Matrix2D(rows, cols)
life_mat.set_cells(1, (1,1),(2,2),(3,0),(3,1),(3,2))
border_str = '_' * cols # Create border string.

def do_generation():
 print(border_str + '\n' + get_mat_str(life_mat))

def get_mat_str(a_mat):
 disp_str = ''
 for i in range(rows):
 lst=[get_chr(a_mat,i,j) for j in range(cols)]
 disp_str += ''.join(lst) + '\n'
 return disp_str

def get_chr(a_mat, r, c):
 return 'X' if a_mat.get_cell(r, c) > 0 else ' '

do_generation()

H
ow

 It

 Works

 How It Works
Despite the number of physical lines involved, this example is simple. All it
does is create a Matrix2D object, turn some cells on in the matrix, and then
print it.

Overland_Book.indb 355Overland_Book.indb 355 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 356

The first statement imports the class from another source file. The statement
assumes that there is a file named lifemat.py located in the same directory as
the rest of the code.

from lifemat import Matrix2D

The next few statements create a series of global variables, including the matrix
itself, life_mat; they also initialize the matrix by turning five of the cells on.

rows = 20
cols = 40
life_mat = Matrix2D(rows, cols)
life_mat.set_cells(1, (1,1),(2,2),(3,0),(3,1),(3,2))
border_str = '_' * cols # Create border string.

Note that even though these statements create a series of global variables,
the global statement never needs to be used with any of the functions; this
is because (as you’ll see) none of the functions in this program ever assigns
new values to them. Individual values within the matrix are changed—which
is fine, because lists are mutable—but the variable itself, life_mat, is never
again the target of an assignment after it is declared.

The statement that creates the border string is noteworthy, because it uses
the multiplication operator (*) to repeat a character, creating one long string.

border_str = '_' * cols # Create border string.

The key function in this example is get_mat_str. It creates a string con-
sisting of spaces and Xs corresponding to all the empty and living cells, respec-
tively, in the matrix.

def get_mat_str(a_mat):
 disp_str = ''
 for i in range(rows):
 lst=[get_chr(a_mat,i,j) for j in range(cols)]
 disp_str += ''.join(lst) + '\n'
 return disp_str

You could print the matrix one row at a time; you could even do it one char-
acter at a time. But remember that in Python, making many calls to print
greatly slows down the application. Therefore, the efficient approach is to
build up one long string—newlines included—that contains the entire matrix.

This could have been done through concatenation and nested loops. The
more obvious way to create this string (especially if you’re programming
background is in C, C++, or another language), would be to use the follow-
ing block:

Overland_Book.indb 356Overland_Book.indb 356 8/31/17 12:57 PM8/31/17 12:57 PM

Moving the Matrix Class to a Module 357
17

 for i in range(rows):
 for j in range(cols):
 if life_mat.get_cell(i, j) > 0:
 out_str += 'X'
 else:
 out_str += ' '

However, the approach I use here takes advantage of Python features, spe-
cifically, list comprehension and the join function, enabling the program to
do in two lines what would otherwise take more.

 lst=[get_chr(a_mat,i,j) for j in range(cols)]
 disp_str += ''.join(lst) + '\n'

The efficiency of this approach is not limited to the number of lines. By
making use of the join method, this code is much more efficient than building
strings through concatenation. The approach used here builds a full row at a
time by doing the following:

1 For each character in the current row, generate either an X or a blank by calling
the get_chr function and place it in the list of strings named lst.

2 Then use the join method to put all these individual characters into a single string,
and append a newline.

Finally, the current row is concatenated onto strings representing other
rows. This approach does use some string concatenation, but not nearly as
much as the more obvious approach.

The get_chr function uses the trinary, “conditional” operator to select
either an X or a blank. This operator is supported in Python 3.0 but not 2.0. If
you’re using Python 2.0, you could use the following code instead:

def get_chr(a_mat, r, c):
 return [' ', 'X'][a_mat.get_cell(r, c) % 2]

Ex
er

cis
es

 EXERCISES

Exercise 17.2.1. Revise Example 12.1 so that it makes even heavier use of the join
function. A correct solution must create a list in which each element is a string
containing all the characters for a row. Those strings should then be joined,
using a newline (\n) to separate one row from another.

Exercise 17.2.2. The program does not have to print Xs. It can just as easily print
capital Os, or any other character. Revise the code so that it prints the character
contained in the variable ch, which can be set earlier in the program.

Overland_Book.indb 357Overland_Book.indb 357 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 358

Exercise 17.2.3. Using a piece of graph paper as an aid, design a much more
complicated pattern, set those cells with set_cells, and then print out that
design. For example, you could print out a happy face.

The Famous Slider Pattern
Some patterns die off after a few generations. Other patterns are stable, never
changing unless they are “invaded” by a foreign pattern. But the most interest-
ing patterns oscillate through a series of states.

The famous “slider” pattern is one of those that oscillates between sev-
eral states. But it’s more interesting than that…it moves in one of four direc-
tions. The slider is not the only pattern that does all that, but it’s probably the
simplest.

The following figure illustrates how to process one generation of a slider.
During each generation, there are always five living cells, but they move—as a
group—to the right in this case. Eventually this pattern will move downward
as well.

Remember that a neighbor count of 3 is a birth event; a count of 1 or 4 is a
death event. 2 means “Keep the status quo.”

X

X

X

X

X

1 1 1

1 3 1

1 4 3

2

1

1

1 3 2

1 2 2

2

3

2

1

X

X

X

X X

In the full program shown next, I initialize life_mat to contain a slider,
but you can experiment with lots of other patterns and combinations of pat-
terns. For example, sometimes two sliders will collide and annihilate each
other. Or they may create a stable colony. It’s fun to watch a grid of multiple
sliders zipping around the board and causing collisions.

Example 17.3. The Whole Game of Life Program
Here is the entire program, except for the definition of the Matrix2D class,
which I import from a separate module.

Overland_Book.indb 358Overland_Book.indb 358 8/31/17 12:57 PM8/31/17 12:57 PM

The Famous Slider Pattern 359
17

life.py

Import from the file lifemat.py in the same dir.
from lifemat import Matrix2D

rows = 20
cols = 40
life_mat = Matrix2D(rows, cols)
nc_mat = Matrix2D(rows, cols) # Neighbor Counts
life_mat.set_cells(1, (1,1),(2,2),(3,0),(3,1),(3,2))
border_str = '_' * cols # Create border string.

Helper functions for printing state of matrix.

def get_mat_str(a_mat):
 disp_str = ''
 for i in range(rows):
 lst=[get_chr(a_mat,i,j) for j in range(cols)]
 disp_str += ''.join(lst) + '\n'
 return disp_str

def get_chr(a_mat, r, c):
 return 'X' if a_mat.get_cell(r, c) > 0 else ' '

Do Generation function.
Print the current state of life_mat, and then process
one generation.

def do_generation():

 # Print the current 'Life' state.
 print(border_str + '\n' + get_mat_str(life_mat))

 nc_mat.set_all_cells(0)

 # Populate nc_mat, but 1) looking at each living
 # cell in life_mat, and for each, increment all
 # surrounding positions... in nc_mat. Use % op
 # to implement "wrap around" at edges & corners.

continued on next page

Overland_Book.indb 359Overland_Book.indb 359 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 360

 for i in range(rows):
 for j in range(cols):
 if life_mat.get_cell(i, j):
 im = (i - 1) % rows
 ip = (i + 1) % rows
 jm = (j - 1) % cols
 jp = (j + 1) % cols

 nc_mat.inc_cells((im, jm), (im, j),
 (im, jp), (i, jm), (i, jp),
 (ip, jm), (ip, j), (ip, jp))

 # Process a generation, by comparing neighbor
 # counts to living cells, and applying the rules.

 for i in range(rows):
 for j in range(cols):
 n = nc_mat.get_cell(i, j)
 if n < 2 or n > 3: # Death.
 life_mat.set_cells(0, (i, j))
 elif n == 3: # Birth
 life_mat.set_cells(1, (i, j))

n = int(input("How many generations of slider? "))
for i in range(n):
 do_generation()

H
ow

 It

 Works

 How It Works
The do_generation function does most of the action in this program. When
you understand do_generation, you’ll understand the program.

The first thing it does is to print the current status of the Life matrix,
life_mat. I explained how this works in Example 17.2.

The next thing it does is reset all the counts in the Neighbor Count matrix,
nc_mat, to zero.

 nc_mat.set_all_cells(0)

The next part is more interesting. The Neighbor Count matrix is “populated”
by looking at each living cell in life_mat but then incrementing surrounding
cells—not in life_mat itself but in the corresponding nc_mat cells.

life.py, cont.

Overland_Book.indb 360Overland_Book.indb 360 8/31/17 12:57 PM8/31/17 12:57 PM

The Famous Slider Pattern 361
17

First, however, the program has to deal with the “edge” problem. If a cell is
on the bottom row, for example, attempting to access positions below it would
cause an indexing error.

There are several solutions, but I prefer the one in which the bottom “wraps
around” to the top, the top “wraps” to the bottom, and so on. Here’s how it’s
implemented:

 im = (i - 1) % rows
 ip = (i + 1) % rows
 jm = (j - 1) % cols
 jp = (j + 1) % cols

Essentially, i and j are the current row and column, respectively; ip and im
are 1plus and minus the current row number, and jp and jm are 1 plus and
minus the column number.

By using remainder division (%), also called the modulus operator, we
effectively get the left edge to wrap around to the right edge, and so on. For
example, assume the current column is 0. Subtracting 1 and applying remainder
division produces cols-1, the right edge.

The effect is wonderful. It causes the program to view the Game of Life
board as finite yet unbounded, very much as most physicists today regard our
physical universe. That means theoretically, if you traveled in a straight line in
any direction, eventually you’d come back around to where you started. How
is this possible? Because according to Einstein, space is curved, so an explorer
in space would eventually come back to her starting point, just as Magellan’s
ships did when they went all the way around the earth.

Now, with ip and im calculated (plus or minus 1 from current row) and jp
and jp calculated (plus or minus 1 from current column), the corresponding
neighbor cells in the Neighbor Count matrix are incremented.

 nc_mat.inc_cells((im, jm), (im, j),
 (im, jp), (i, jm), (i, jp),
 (ip, jm), (ip, j), (ip, jp))

The last step is to examine the neighbor counts, stored in nc_mat, and use
them to determine where birth and death events happen in the game-state
matrix, life_mat.

 for i in range(rows):
 for j in range(cols):
 n = nc_mat.get_cell(i, j)
 if n < 2 or n > 3: # Death.
 life_mat.set_cells(0, (i, j))
 elif n == 3: # Birth
 life_mat.set_cells(1, (i, j))

Overland_Book.indb 361Overland_Book.indb 361 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 362
Ex

er
cis

es

 EXERCISES

Exercise 17.3.1. This version of the Game of Life creates several data objects out-
side of any function; they are therefore global variables, yet there is no use of
the global keyword. Why is this or isn’t this correct?

Exercise 17.3.2. Without removing the five initial cells that constitute the “slider”
pattern, add a “stable box” pattern somewhere to the Life matrix. Remember that
this is a pattern of just four cells that form a square. With this pattern added,
you should be able to watch the slider zip around the grid until it finally runs
into the box and destroys it. Or, it may form some completely new pattern.

Exercise 17.3.3. Currently the game produces one generation after another with-
out delays or pause, so you don’t get a good look at any given state. Slow the
game down by prompting the user in between each generation. If the user
presses Enter or types Y, process the next generation. If the user enters N or n,
then quit.

Exercise 17.3.4. Slow down the game—this time not by waiting for user input, but
through an arbitrary delay device. More specifically, put in a loop that counts
to some large number in between generations.

Exercise 17.3.5. Right now the game always starts with a single slider on the
board and nothing else. Revise the game so that it starts by asking the user to
enter as many cell coordinates of the form (r, c) as she likes. You can do this
either by repeatedly prompting the user for a cell—with an empty string sig-
naling she’s done—or by letting her enter any number of coordinates on one
line. The best solution combines both these techniques, because one line may
not be long enough to enter all the coordinates desired. Write this solution as a
single function that can be called from the main program.

Exercise 17.3.6. If you look at the overall program size, including the defini-
tion of the Matrix2D class itself, the total number of lines of code is longer
because it defines this class. However, there are other considerations. First,
the Matrix2D class may be profitably used by other programs. Second, the
main program is easier to write and easier to follow as a result.

To convince yourself of this, rewrite the loop that increments cells in the
nc_mat class. Instead of making nc_mat an object of type Matrix2D, write
nc_mat as a simple two-dimensional grid without making it into a class.
You should find that the code you have to write is much longer and more
cumbersome.

Overland_Book.indb 362Overland_Book.indb 362 8/31/17 12:57 PM8/31/17 12:57 PM

The Famous Slider Pattern 363
17

 Does “Life” Create Life?

When the Scientific American article appeared in 1970, the Game of Life
promised to change the way that everyone thought of biology. In that, I
think it was only partly successful.

Many scientists, mathematicians, and computer scientists saw great
promise in the field of study, cellular automata, that the Game of Life
created. Traditionally, biologists, chemists, and others thought of biology
as entirely a top-down endeavor.

First, observe behavior on the macro level, the level of everyday reality.
Try to explain this behavior by analyzing the underling building blocks—
that is, organic chemistry. Understand the chemical laws in terms of its
basic laws. From there, analyze those laws in terms of even smaller build-
ing blocks—atoms, molecules, and elementary particles.

Eventually, you were supposed to have explained the entire universe.
The Game of Life suggested that a bottom-up approach might work

as well or better. With this approach, you experiment with individual
cells programmed to follow some set of rules. Then see if you can find the
right rules, and the right group of cells, to simulate the behavior we see
all around us. If you could do that, then you might have discovered the
hidden secrets of nature.

How successful is the Game of Life at simulating our reality? If you
try the program in this chapter, you’ll see that some patterns, such as the
“slider,” look promising.

And there are much more sophisticated patterns, such as a slider “gun” that
every few generations launches a new slider and sends it on its way. That’s
an example of a pattern that is both self-sustaining and endlessly expanding,
because it generates a never-ending supply of new colonies sent off to infinity.

However, there is some reason to be skeptical. After I wrote my first
computerized version of Life, I experimented with it for some time. And
I found that the vast majority of patterns degenerated into stable (and
therefore boring) patterns such as square blocks, or they died out.

Yet it’s been shown you can use Life to build complex machines, such as
a slider gun. You can also—and this is especially interesting to computer
scientists—build a Turing machine, a device that, in theory, can solve any
problem a digital computer can solve.

But here is where I think patterns in Conway’s Game of Life fail: in a
very complex pattern involving tens of thousands of cells, it seems to me
that having even a single extra or a single missing cell makes the entire

continued on next page

Interlude

Overland_Book.indb 363Overland_Book.indb 363 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 17 Conway’s Game of Life 364

continued

machine fail. Can the computerized Game of Life ever achieve the robust-
ness of real life, in which a stray cell (let’s say, a virus or cancer cell) is
“cleaned up” by the rest of the body without causing the whole thing to
collapse?

That remains to be seen. It might be a clue as to how real life really is
different.

Chapter 17 Summary
Here are some of the important points utilized in Chapter 17—even though
many of them were introduced earlier:

 Cellular automata is the field of coming up with a set of simple rules that can
be programmed into individual “cells” and then watching what happens as
they interact.

 In designing and implementing complex programs, it’s often helpful to classes
that do most of the work of the program, or at least much of it. If you can do that,
then the main program may be much easier to write and understand as a result.

 The class can then be placed in a separate module and used by any program
that needs it.

from lifemat import Matrix2D

 Remember that two-dimensional arrays require some special syntax to build
successfully; you either need to list comprehension or nested loops. (This idea
was first introduced in Chapter 13.)

self.grid = [[0] * cols for _ in range(rows)]

 Remember that the fewer individual calls you make to the print function, the
faster your output will be in Python. String-concatenation and the string join
method are both helpful in this regard, but the latter is preferred by the most
experienced Python programmers.

 Therefore, use join whenever you can. For example, the following statements
work by creating a list of strings, in which each string is a character returned
by get_chr; that function returns either an X or a blank. A call to the join
method then combines all these one-character strings into a single string.

lst=[get_chr(a_mat,i,j) for j in range(cols)]
disp_str += ''.join(lst) + '\n'

Interlude

Overland_Book.indb 364Overland_Book.indb 364 8/31/17 12:57 PM8/31/17 12:57 PM

365
17

Summary

 The multiplication operator (*) can be used to generate characters over and
over again. We’ve already seen how useful this is when creating a list, as in a
two-dimensional grid. But you can also use this technique to create a border
string, which consists of a series of underscores:

border_str = '_' * cols

 Remember that to use variable-length argument lists, include the special *args
argument. (This technique was first introduced in the previous chapter.)

def inc_cells(self, n, *args):
 for r, c in args:
 self.grid[r][c] += n

Overland_Book.indb 365Overland_Book.indb 365 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 366Overland_Book.indb 366 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

367

18 Advanced Pythonic
Techniques

Python is a big language. In this chapter, I introduce you to some of Python’s
more advanced features—features that you don’t necessarily have to learn to be
productive but can be used to do some amazing things. This chapter explores

 Generators

 Properties

 Decorators

Generators
Python is based largely on the concept of iterables. You can create your own
iterables within Python, which in turn can be used within for loops as well as
other contexts.

But what exactly is an iterable?
The idea is simple. Return to the car factory example from Chapter 15,

“Classes and Objects I.” But this time, the factory can produce only one car at
a time, and it does so only when an order has been placed.

next!

Overland_Book.indb 367Overland_Book.indb 367 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques368

As soon as the car dealer places an order for a car, the factory fulfills it. What
happens when the factory runs out of materials and can’t produce another car?
It says, “Out of stock,” and the car dealer accepts there are no more cars.

To create your own iterable, replace a return statement with the following:

yield value

Remember how easy it is to print Fibonacci numbers? Here’s one away to do it:

def print_fibos(n):
 a = b = 1
 while a <= n:
 a, b = a + b, a
 print(a)

To make this function into a generator—and therefore an iterable—just
replace the call to the print function with a yield statement.

def gen_fibo(n):
 a = b = 1
 while a <= n:
 a, b = a + b, a
 yield a

The gen_fibs function stops executing as soon as yield a is reached. At that
point, it sends back the value of a, and then it suspends operation until called again.
Unlike an ordinary function, this generator saves the value of all local variables.

All the local variables are saved. Therefore, when the user says, “Give the next
number,” the generator yields a larger number in the series. Here’s another example:

for num in gen_fibos(1000):
 print(num)

What would be the advantage of replacing this approach—using an ordinary
function—with the use of a generator?

One advantage is that you can represent a “virtual sequence” in a very small
space.

For example, the following generator produces odd numbers. You couldn’t
hold the entire sequence of all the odd numbers in memory at the same time; it
would be infinite. But you can process any quantity of these numbers as long
as you deal with them one at a time.

def gen_odd_num():
 i = 1
 while True:
 yield i
 i += 2

K
ey

 S
yn

tax

Overland_Book.indb 368Overland_Book.indb 368 8/31/17 12:57 PM8/31/17 12:57 PM

Exploiting the Power of Generators 369
18

Exploiting the Power of Generators
You can use a generator anywhere Python syntax calls for an iterable. This
includes for loops. The call to gen_odd_num is an iterable, and here I place it
in bold for emphasis.

for i in gen_odd_num():
 print(i)
 if i > 1000:
 break

You can also combine a generator with the in and not in operators. Assum-
ing that gen_fibo is defined as in the previous section, what do you think the
following does?

 55 in get_fibo(55)

Give up? Here’s another clue. This use of gen_fibo returns True or False
in the interactive environment, depending on the input.

>>>55 in get_fibo(55)
True
>>>56 in gen_filo(56)
False

The answer is the generator, along with the in operator, becomes a slick
way of testing whether any given number is a Fibonacci number.

Note Ë Note that this version of the generator, gen_fibo, has an argument that
limits how long the generator runs before it stops. Otherwise, assuming it did
not find 55 or 56, it would run forever.

 Ç Note

You can think of an iterable as something you can get the “next” of. In fact,
next is a built-in function that can be applied to any iterable.

next(iterable)

So, we ought to be able to make repeated calls to next and the gen_fib()
generator to get as many Fibonacci numbers as we want, one at a time.

>>>next(gen_fibo(100))
2
>>>next(gen_fibo(100))
2
>>>next(gen_fibo(100))
2

Ke
yw

ord

Overland_Book.indb 369Overland_Book.indb 369 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques370

Oops! What happened? We should’ve gotten the first three Fibonacci
numbers that the generator produces. Instead, we got the first number, three
times.

Each separate invocation of gen_fibo(100) starts a new instance of the
generator—thereby starting over. The solution is to create a new instance only
once. We can do that by assigning the name gen_fibo(100) to a name and
then reusing the same instance.

>>>my_gen = gen_fibo(100)
>>>next(my_gen)
2
>>>next(my_gen)
3
>>>next(my_gen)
5

What happens if you set the limit very low and keep iterating until you go
past the end?

>>>my_gen = gen_fibo(3)
>>>next(my_gen)
2
>>>next(my_gen)
3
>>>next(my_gen)
Traceback (most recent call last):
 File "<pyshell#122>", line 1, in <module>
 next(my_gen)
StopIteration

Python raises a StopIteration exception in these situations. This excep-
tion is usually handled internally, as an end-of-loop indicator. Alternatively,
you can handle this exception yourself, using try and except keywords,
catching the StopIteration exception.

Example 18.1. A Custom Random-Number Generator
Some of the most useful of all generators are random-number generators, which
Python supplies through the random module. It’s used in game programs and
simulations.

There are several reasons you might want to write your own. Maybe you
don’t trust the standard version. Or maybe someone has hacked into the

Overland_Book.indb 370Overland_Book.indb 370 8/31/17 12:57 PM8/31/17 12:57 PM

Exploiting the Power of Generators 371
18

Python code, and you want your program to use a randomization scheme that
hasn’t been hacked yet.

Here is a “homemade” random-number generator you can use yourself:

rand_gen.py

from time import time

def gen_rand():
 p1 = 1200556037 # Prime number 1
 p2 = 2444555677 # Prime number 2
 max_rand = 2 ** 32
 r = int(time() * 1000) # Get time in millisecs.
 while True:
 n = r
 n *= p2
 n %= p1
 n += r
 n *= p2
 n %= p1
 n %= max_rand
 r = n
 yield n

Given this definition, you can use the following loop to simulate a 100-sided
die, rolled 10 times:

my_gen = gen_rand()
for i in range(10):
 print(next(my_gen) % 100) # Roll 100-sided die.

Here’s some sample output. Your results, of course, will vary.

4
76
25
16
78
93
10
76
69
23

Overland_Book.indb 371Overland_Book.indb 371 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques372
H

ow
 It

 Works

 How It Works
The goal is to generate pseudorandom numbers. To achieve anything resembling
randomness, you need to have an appropriate seed to begin the sequence. System
time is ideal for this purpose. For that reason, the program uses the time module.

from time import time

The time module supports several functions, but the one needed here is the
time function itself, which returns the number of milliseconds since a partic-
ular date.

 r = int(time())

The generator, gen_rand, takes this seed and performs a series of mathe-
matical transformations on it. Not just any transformation will do. For reasons
explained later, this random-number “engine” makes use of two large prime
numbers, p1 and p2.

 p1 = 1200556037
 p2 = 2444555677

You may wonder where I got these prime numbers. That’s easy. I used
Python itself! First, I created an is_prime function that efficiently tests
whether a particular number is prime.

def is_prime(n):
 sqrt_n = int(n ** 0.5)
 for i in range(2, sqrt_n + 1):
 if n % i == 0:
 return False
 return True

I then wrote a function called get_next_prime that—given a target number—
returns the first prime number that is larger than the target number I input.

def get_next_prime(n):
 while True:
 if is_prime(n):
 return n
 n += 1

Finally, I entered a couple of large numbers, got the two prime numbers I
wanted, and plugged them in the program as p1 and p2. By replacing them
with your own prime numbers, you in effect create your own random-number
generator.

Overland_Book.indb 372Overland_Book.indb 372 8/31/17 12:57 PM8/31/17 12:57 PM

Exploiting the Power of Generators 373
18

The generator needs to produce random numbers in a consistent range.
The range of integers is theoretically infinite. Therefore, to restrict ourselves
to a 32-bit range, the generator uses remainder division.

 n %= max_rand

where max_rand had been set at the beginning of the function.

 max_rand = 2 ** 32

The statements that make use of the generator restrict output to an even smaller
range, by again using remainder (modular) division. For example, applying the
operation % 100 produces numbers, equally distributed, in the 0 to 99 range, just
as % 6 would produce numbers, equally distributed, in the 0 to 5 range.

my_gen = gen_rand()
for i in range(10):
 print(next(my_gen) % 100)

Ex
er

cis
es

 EXERCISES

Exercise 18.1.1. Using the sieve of Eratosthenes, as explained in Chapters 5 and 6,
create a generator for prime numbers. First, generate the primes up to N, where
N is an argument to the generator; yield one of these primes at a time by step-
ping through the set; and then combine this generator with the in operator to
determine whether a given number is prime. Note: This technique is incredibly
slow for large numbers, so don’t use it for help in the exercises that follow!

Exercise 18.1.2. Using the techniques I just showed in “How It Works,” obtain
two large primes in the range of one to four billion. Then substitute these
numbers in for p1 and p2, rerun the exercise, and see if the results still seem
acceptably random.

Exercise 18.1.3. Can you improve the quality of the generator by arbitrarily select-
ing four large primes and putting them in the code?

Exercise 18.1.4. Use the random-number generator in Exercise 18.1 to simulate the roll
of two six-sided die. Roll these “dice” ten times. Do these rolls appear random?

How Random Is “Random”?

Given that everything that happens inside a computer is deterministic—
for a particular state of the computer, what each instruction does is abso-
lutely predictable—how is randomness possible even in theory?

continued on next page

Interlude

Overland_Book.indb 373Overland_Book.indb 373 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques374

continued

Randomness is impossible inside the computer itself but may be intro-
duced by interaction with some outside physical device. In the case of the
random-number generator used here, the random element is provided by
the system time, which is always changing.

But despite the system time changing too fast for a human to predict,
it’s not good enough by itself.

What we need is a technique in which small differences in system time
cause large differences in the next number in sequence so that the num-
bers produced will vary all over the range, in this case, a minimum of 0
and a maximum of 2 to the 32nd power.

Random Numbers:

0199637412743300
2482681660386877
1489637365552079
6820133556430219
173...

The mathematical transformations used by the generator, gen_rand,
produce a series of pseudorandom numbers. Why pseudo? It’s because the
sequence, by its very nature, is deterministic. But random-number engines are
thought to have the practical effect of randomness, for a couple of reasons.

First, the combination of system-time seed with the mathematical
transformations makes it difficult to predict the first number generated
by the sequence.

Second, the repeated use of modular division makes it extraordinarily
difficult to “reverse engineer” the sequence based on output alone. For
example, an output of the dice-rolling experiment (Exercise 18.1.4)
might be 5. But how did we get there? The number of different states that
could’ve resulted in the generation of “5” is astronomical.

Of course, 5 itself is not produced in isolation; it is part of a sequence,
and the weak spot of any pseudorandom generator is this: does a subtle
pattern emerge that a sufficiently smart mathematician could detect?
Specialists working with mainframe computers can sometimes “crack” a
pseudorandom-number generator unless it is very, very good.

What makes a good generator? Clearly, the more transformations, the
better; but time is not a limitless resource even in the digital world.

Equally important is the quality of transformations. You should see
that transformations based on small numbers, or numbers that are not

Interlude

Overland_Book.indb 374Overland_Book.indb 374 8/31/17 12:57 PM8/31/17 12:57 PM

Properties 375
18

continued

prime, are poor. Let’s say that you did modular vision by 2 or a multiple
of 2, for example. Repeated division by 2 would tend to weed out even
numbers, therefore causing a bias toward odd numbers. Conversely,
multiplying by 2, or any multiple of two, would cause a bias toward even
numbers.

A better approach is to alternately multiply, and use modular division
with, large prime numbers. Primes are frequently used in randomization
and encryption schemes.

Back in the days before personal computing, companies such as the
RAND Corporation used to print large books full of nothing but ran-
dom numbers. They were necessary for anyone running a simulation or
playing a game that demanded true randomness. Another technique—
occasionally still used—for people who play games by post (that is,
ordinary mail) is to look at the last digit in the Dow Jones Industrial
Average the next day.

What those examples should illustrate is that 1) random numbers are
useful, and 2) human beings are poor generators of random numbers. A
human, told to write down 1,000 random numbers, would do a poor job
because they would try too hard to avoid patterns. A subject would not
write down “9999,” for example, even though a truly random sequence
not only can produce this pattern, it’s nearly inevitable that it will produce it.

Properties
When Microsoft first introduced Visual Basic 1.0 (it was just called Visual
Basic then) and I headed up the documentation team, I came upon my first
sight of a property:

MyFrame.BackColor = Blue

From the beginning, I knew it was revolutionary. Gone were the long lists
of obscure arguments one had to use in programming the Windows SDK.
Instead, here was an altogether new syntax. The simple declarative statement
MyFrame.BackColor = Blue was a kind of imperative statement; that is, it
did something.

What the statement did in this case was to set the background color (BackColor)
of a frame to blue. When Visual Basic (VB) executed this statement, it turned
the background color of the frame to blue without any further effort on the
VB programmer’s part.

Interlude

Overland_Book.indb 375Overland_Book.indb 375 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques376

But underneath the covers, properties are driven by two hidden methods:

 A “getter” method: This method is called whenever there’s an attempt to get
the attribute, for example, a statement of the form value = object.property.

 A “setter” method: This method is called whenever there’s an attempt to
set the attribute to a value, for example, any statement of the form object
.property = value.

The setter and getter methods are what make properties work. The attribute
itself does not necessarily have to exist at any physical location. All that matters
is that the setter and getter methods are called as needed. These methods can do
any additional work you need, such as changing color or redisplaying some-
thing on the screen.

"getter" methodval = obj.x

obj.x = val

@property
def x(self)
(returns a value)

"setter" method

@x.setter
def x(self, val)

CALLS

CALLS

When you use getter and setter methods, you typically (but not always)
include both a setter and getter for each property in your class.

Getter Methods
To write a getter method for a property, place the following definition inside
a class:

@property # "Getter" method
def property_name(self):

statements

return value

A getter method is automatically called when the user of the class tries to
get the value of the named property. Here are examples for properties named
a, b, and c:

K
ey

 S
yn

tax

Overland_Book.indb 376Overland_Book.indb 376 8/31/17 12:57 PM8/31/17 12:57 PM

Properties 377
18

class MyClass:
 def _ _init_ _(self):
 self._a = self._b = self_c = -1

 @property # "Getter" for property a
 def a(self):
 return self._a

 @property # "Getter" for property b
 def b(self):
 return abs(self._b)

 @property # "Getter" for property c
 def c(self):
 return self._c % 2 == 0

Each of these “getters” would be invoked in a statement such as this, where
my_obj is an instance of MyClass:

print my_obj.a

In the case of the property named a, the value of _a (a private version of a) is
returned exactly as is. In the case of the property named b, the absolute value
of _b is returned. Finally, in the case of the property named c, True or False
is returned, depending on whether the value of _c is even or odd.

Note Ë The variables _a, _b, and _c are instance variables like any other,
except that the underscore (_) suggests they are meant to be private. Double-
underscore names, such as _ _a, _ _b, and _ _c, enforce privacy by mangling
the names. Any references to these names, from outside the class, are auto-
matically changed during run time into cryptic (altered) versions of them-
selves. The effect is to make these names private to the class, for all practical
purposes.

 Ç Note

Setter Methods
Setter methods are the flip side of getters. To write a setter method for a prop-
erty, place the following definition inside a class:

 @property_name.setter # "Setter" method
 def property_name(self, new_value):
 statements

K
ey

 S
yn

tax

Overland_Book.indb 377Overland_Book.indb 377 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques378

A setter method is automatically called when the user of the class tries to
set the value of a property. Here’s an example:

my_obj.a = 100

Here are examples for properties named a, b, and c. In these examples, we
assume that the corresponding getter methods do nothing but print the under-
lying value (_a, _b, or _c) and that we rely upon the setters to adjust the values.

 @a.setter # "Setter" for property a
 def a(self, new_a):
 self._a = new_a

 @b.setter # "Setter" for property b
 def b(self, new_b):
 self._b = abs(new_b)

 @c.setter # "Setter" for property c
 def c(self, new_c):

 self._c = max(new_c, 100)

These methods set the property values for properties a, b, and c, respectively.
Note that the properties don’t set instance variables a, b, and c, but rather pri-
vate variables _a, _b, and _c. Each of these methods sets the value differently.

Putting Getters and Setters Together
Getters and setters are typically written in pairs. There are some exceptions, how-
ever; if you want a property to be read-only, then write a getter but not a setter.

Here’s a simple example that has property b that is always zero or positive,
no matter what the class user attempts to assign to b:

class MyClass:
 '''Demonstrates a property, b, that is always
 non-negative.'''

 def _ _init_ _(self, new_b):
 self.b = new_b # Invoke "setter"

 @property # "Getter" for property b
 def b(self):
 return self._ _b

 @b.setter # "Setter" for property b
 def b(self, new_b):

 self._ _b = abs(new_b)

Overland_Book.indb 378Overland_Book.indb 378 8/31/17 12:57 PM8/31/17 12:57 PM

Properties 379
18

Let’s examine these in reverse order. First, the setter acts as a filter for
the property. The absolute value of the argument is assigned to the private
variable, _ _b; therefore the property will never have a negative value. If the
user of the calls assigns a negative value to the property, it’s changed into a
positive.

>>>my_obj = MyClass(-5)
>>>my_obj.b
5

What about the getter? In this case, all it does is return the value stored in _ _b.
The _ _init_ _ method must set the value of property b, because other-

wise, the first time you referred to my_obj.b, you’d get an error. However,
the _ _init_ _ method does not set the value of _ _b directly, which it could
have done.

 self._ _b = abs(new_b)

Instead, the method leverages the work done in the setter method, by caus-
ing the setter method to be called.

 self.b = new_b

Example 18.2. Multilevel Temperature Object
Another use for properties is to encapsulate a virtual value, which is a value
that’s never stored in memory but is calculated on the fly. For example, sup-
pose you wanted a temperature object that can be set in either Fahrenheit or
Celsius—but stores only one value.

The temperature has only one value at any given time, but it can be read
in one of two ways. To implement this behavior, we create a ctmp (Celsius)
property.

multi_temp.py

class Temperature:
 ''' This class is a Temperature object that stores
 just one value, but represented two ways.
 ftmp is an inst. variable, ctmp a property.'''

 def _ _init_ _(self, ftmp=32.0):
 self.ftmp = ftmp

continued on next page

Overland_Book.indb 379Overland_Book.indb 379 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques380

 @property # ctmp "getter" method
 def ctmp(self):
 return (self.ftmp - 32.0) / 1.8

 @ctmp.setter # ctmp "setter" method
 def ctmp(self, ctmp):
 self.ftmp = ctmp * 1.8 + 32.0

my_tmp = Temperature()
my_tmp.ctmp = 0
print('0 C. is', my_tmp.ftmp, 'F.')
my_tmp.ctmp = 100
print('100 C. is', my_tmp.ftmp, 'F.')
my_tmp.ctmp = 50
print('50 C. is', my_tmp.ftmp, 'F.')
my_tmp.ftmp = 86
print('86 F. is', my_tmp.ctmp, 'C.')

This program, when run, produces the following output:

0 C. is 32.0 F.
100 C. is 212.0 F.
50 C. is 122.0 F.
86 F. is 30.0 C.

H
ow

 It

 Works

 How It Works
This class has some interesting uses. It could be used in a situation in which
two groups of meteorologists are working on a project, but each group is using
a different scale.

It would be inadequate to have an object with separate instance variables
for Fahrenheit and Celsius, because there’d be no way to keep the two vari-
ables in sync. But this class—which makes ctmp into a property and not a
separately stored value—solves the problem by calculating one of these values
(ctmp) “on the fly” while storing ftmp in memory.

There’s only one instance variable, ftmp, and it stores Fahrenheit tempera-
ture. Suppose you set the ctmp property.

my_tmp.ctmp = 100

The ctmp setter method is called, and the value 100 is passed to this method.

multi_temp.py, cont.

Overland_Book.indb 380Overland_Book.indb 380 8/31/17 12:57 PM8/31/17 12:57 PM

Properties 381
18

 @ctmp.setter
 def ctmp(self, ctmp):
 self.ftmp = ctmp * 1.8 + 32.0

The value is converted and then stored in ftmp as 212.0. Likewise, any
operation expressed in Celsius (ctmp) is translated into Fahrenheit (ftmp)
before being stored.

Ex
er

cis
es

 EXERCISES

Exercise 18.2.1. Do the following statements both work? Why or why not?

my_tmp.ftmp += 10.0
my_tmp.ctmp += 10.0

And if they do both work, do they have the same effect? Why or why not?

Exercise 18.2.2. Use the Temperature class of Example 18.2 to get a list of Fahr-
enheit temperatures and convert this as efficiently as possible to a list of equiv-
alent Celsius temperatures.

Exercise 18.2.3. Rewrite the Temperature class so that ctmp, the Celsius tem-
perature, is the instance variable and ftmp is a property. (This actually makes
more sense because for most of the world, Celsius is the standard scale; there-
fore, it’s more efficient for most people to use Celsius as the default unit.)

Exercise 18.2.4. Write a class that maintains a distance value, but measured in
two different ways: inches and centimeters. Create inch as an instance vari-
able and cent as a property—or vice versa.

Exercise 18.2.5. Write a class that has an instance variable, x, but it is restricted to
the range 1 to 100, inclusive. Settings below 1 are automatically converted to 1,
and settings above 100 are converted to 100.

Exercise 18.2.6. Write a class in which both ftmp and ctmp are properties so that
you can restrict both of them to temperatures that are physically possible.
Specifically, neither should ever go below 0 on the Kelvin scale (“absolute
zero”). This temperature is –459.67 on the Fahrenheit scale and –273.15 in
Celsius. The relationship between ftmp and ctmp should be retained, as it is
throughout Exercise 18.2.

The physics of absolute zero, by the way, are fascinating. The temperature
is in principle not achievable, but scientists have come within a billionth of a
degree.

Overland_Book.indb 381Overland_Book.indb 381 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques382

Decorators: Functions Enclosing Other Functions
Next we set sail to the rocky shores of decoration, which has a reputation for
being difficult. But if you do need to write decorators, you can use the code in
this chapter as a template.

To understand decoration, start with how Python enables you to define
nested functions, that is, functions inside of other functions. Here’s an example:

def outer(n):
 print('I am in outer.')
 def inner():
 print('I inherited', n)
 inner()

The function outer can then be run.

>>>outer(4)
I am in outer.
I inherited 4

Note carefully what happened. The outer function defined the inner function,
called inner. After the outer function created this inner function, it executed
inner by calling it.

 inner()

We can diagram the process as follows:

Creates a new
function . . .

. . . which is
called here.

def outer(n):
 print(’I am in outer’)
 def inner():
 print(I inherited’, n)

 inner()

Now we’re going to add a twist. Functions, in Python, are objects just like any
other. They can be assigned to names and even returned…by other functions.
The difference between data objects and function objects is that functions can
be called.

For example, from within the function named outer, we could have done
this, assigning the function to the name f and then calling it:

f = inner # The name 'f' now an alias for inner.
f() # Call 'inner' by using the alias.

Overland_Book.indb 382Overland_Book.indb 382 8/31/17 12:57 PM8/31/17 12:57 PM

Decorators: Functions Enclosing Other Functions 383
18

Now things are going to get more interesting. Consider the definition of
outer again, this time, with a new feature. This version of outer returns inner
as its return value.

def outer(n):
 def inner_func():
 print('I inherited', n)
 return inner // Return this new function!!

If you now execute outer, it doesn’t seem to do anything.

>>>func = outer(10)

But actually, outer did something important. It created a new function—
passing along an argument, n, to it—and then returned this new function.
The new function was assigned to the name func. So the name func can be
used to call the newly defined function.

>>>func()
I inherited 10

Now, there is one more thing to add, and we’re ready to add decoration. A
function can both return a function and take a function as an argument. So
you can write this:

def outer(f):
 def inner():
 print('I am doing extra stuff.')
 f()
 print('Doing more extra stuff.')
 return inner // "outer" returns NEW function!

The effect of the function outer is now to take a function argument, f;
build a new function around it; and return that function. For example, define
some function, f1.

>>>def f1():
 print('Hi!')

Now pass this function to outer(), which returns a new function that does
everything f1 did but does more. The result—the new function—is assigned
to the name g.

>>>g = outer(f1)

Now g is an alias for the newly created function (which we could also call the
“wrapper” function). You can use g to call this function as often as you like.

Overland_Book.indb 383Overland_Book.indb 383 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques384

>>>g()
I am doing extra stuff.
Hi!
Doing more extra stuff.

Here’s another example. We can use outer() to create a wrapper around
any function and then assign the result to the name g; g then names this new
function, and we can call it.

>>>def print_nums():
 for i in [1, 2, 3]:
 print(i, ' ')

>>>g = outer(print_nums) # Create new function around
 # print_nums, assign to g.
>>>g() # Call this wrapped function.
I am doing extra stuff.
1 2 3
Doing more extra stuff.

Any function we “wrap” will do what it did before, but it will also print a
message before and after execution. We can even re-assign to the old function
name! Here’s an example:

 >>>print_nums = outer(print_nums)

Okay, this is weird. Is the function name, print_num, being reassigned to
a new version of…itself? Yes, that’s exactly what’s happening. Now we can
execute this new function.

>>>print_nums()
I am doing extra stuff.
1 2 3
Doing more extra stuff.

Okay, that’s a lot to digest, so let’s diagram the process up to this point:

Creates a new
function . . .

. . . which replaces
old version of func

def outer(f):
 def inner():
 print(message 1)
 f()
 print(message 2)
 return inner

func = outer(func)

Overland_Book.indb 384Overland_Book.indb 384 8/31/17 12:57 PM8/31/17 12:57 PM

Python Decoration 385
18

The key point here is that the name func, which started out referring to a
simple function, now refers to a more elaborate version of itself—the function
we started with.

Python Decoration
Decoration reassigns a function name to a “wrapped” version of the original
function. These actions are useful for debugging and performance testing, as
you’ll see. Let’s revisit the example in the previous section, but this time I’ll
use more meaningful names.

def my_decorator(f):
 '''Take an ordinary function, create a new version
 called wrapper, and return this new function.'''

 def wrapper():
 print('I am doing extra stuff.')
 f()
 print('Doing more extra stuff.')

 return wrapper // Return the "wrapper"!

The decorator creates a new function…and returns it. We assign it to the
name of the original function. We can do the same thing for any functions we
choose!

func1 = my_decorator(func1) # Wrap func1!
func2 = my_decorator(func2) # Wrap func2!
func3 = my_decorator(func3) # Wrap func3!

The final stage is to apply the decoration syntax. This syntax generates a
line similar to each of the three lines above. Then it reverses the order. Con-
sider the following lines of code:

@my_decorator // New syntax!
def hello():
 print('Hi!')

Python translates this into

def hello():
 print('Hi!')
hello = my_decorator(hello) // This is the key line!

Overland_Book.indb 385Overland_Book.indb 385 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques386

Here is the syntax display that summarizes how decorators work:

@decorator_name
def func(args):

statements

This translates into

def func(args):
 statements
func = decorator_name(func)

But what if the function to be decorated has arguments? And what if it
returns a value?

The argument problem is solved by passing the list of arguments, repre-
sented by *args, back to the wrapped function. We also pass **kwargs to
take care of named arguments.

def my_decorator(f):
 def wrapper(*args, **kwargs):
 print('I am doing extra stuff.')
 f(*args, **kwargs)
 print('Doing more extra stuff.')

 return wrapper

You should recall from Chapter 16, “Classes and Objects II,” that *args is
a list of all the arguments passed to a function. wrapper becomes the new func-
tion, and it takes the list of arguments; these function are now passed back to f,
the wrapped function.

The other change is to make the wrapper return the same value, if any,
that f does.

def my_decorator(f):
 def wrapper(*args, **kwargs):
 print('I am doing extra stuff.')
 value = f(*args, **kwargs)
 print('Doing more extra stuff.')
 return value

 return wrapper

Now the return value of the function object, f, is also returned by wrapper().
If f has no return value, the value None is returned by default. Let’s diagram
this final version.

K
ey

 S
yn

tax

Overland_Book.indb 386Overland_Book.indb 386 8/31/17 12:57 PM8/31/17 12:57 PM

Python Decoration 387
18

Creates a new
function, "wrapper" . . .

. . . which replaces
old version of func

def my_decorator(f):
 def wrapper(*args):
 print(message 1)
 value = f(*args)
 print(message 2)
 return value
 return wrapper

@my_decorator
def func(args...)
 statements

Example 18.3. Decorators as Debugging Tools
Now we’re ready to apply a decorator to a practical use, namely, printing
function diagnostics each time a decorated function is called. But just to be
clear, let’s restate what decoration does:

 A decorator re-assigns a function name to a “wrapped” version of the original
function. The wrapped version does everything the function did but does
additional things as well.

If you’ve ever had to debug a complex program, you realize it’s useful to
know which functions were called when and what values were passed to it. It
would be nice to have an easy way to add such diagnostics to a function. The
following code shows how to do that:

diagnostics.py

from time import time

def diagnostics(f):
 def wrapper(*args, **kwargs):
 print('Executed', f._ _name_ _, 'at', time())
 value = f(*args, **kwargs)
 print('Exited ', f._ _name_ _, 'at', time())
 print('Arguments:', args)
 print('Value returned:', value, '\n')
 return value
 return wrapper

continued on next page

Overland_Book.indb 387Overland_Book.indb 387 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques388

@diagnostics
def print_nums():
 for i in range(4):
 print(i, end='\t')
 print()

@diagnostics
def calc_hypotenuse(a, b):
 return ((a*a + b*b) ** 0.5)

print_nums()
print (calc_hypotenuse(3, 4))

Here’s some sample output:

Executed print_nums at 1492177491.831115
0 1 2 3
Exited print_nums at 1492177492.31574
Arguments: ()
Value returned: None

Executed calc_hypotenuse at 1492177492.803701
Exited calc_hypotenuse at 1492177493.000599
Arguments: (3, 4)
Value returned: 5.0

5.0

This output shows the diagnostics decorator working successfully on
two different functions, print_nums and calc_hypotenuse. Examining the
relative time stamps in this case shows that arithmetic calculations, even those
involving exponentiation, are fast.

H
ow

 It

 Works

 How It Works
The diagnostics function is the decorator: it takes a target function, f, as an
argument; then it builds a wrapper function around f and returns the wrap-
per as the new function.

Then the @diagnostics syntax says, “Re-assign the function name to
refer to this wrapper function.” Remember that the syntax is equivalent to

print_nums = diagnostics(print_nums)

diagnostics.py, cont.

Overland_Book.indb 388Overland_Book.indb 388 8/31/17 12:57 PM8/31/17 12:57 PM

389
18

Summary

Therefore, the name print_nums is re-assigned to refer to the wrapped
version of print_nums. The wrapped version does everything done before
but also prints diagnostics.

Example 18.3 uses a couple of advanced features, introduced earlier in this book.
First, the time function is imported from the time module. This function returns
the number of seconds that have elapsed from a particular date, expressed in a fixed-
point format. It’s used to determine when function execution began and ended.

 print('Executed', f._ _name_ _, 'at', time())
 value = f(*args, **kwargs)
 print('Exited ', f._ _name_ _, 'at', time())

The expression f._ _name_ _ displays the name of the function: _ _name_ _
is an attribute that every function has.

Finally, args accesses a list of argument values. The expression *args indi-
cates a list of arguments of indefinite size. Referring to args gets the actual
list. If there are no arguments, this statement just prints an empty list.

 print('Arguments:', args)

Ex
er

cis
es

 EXERCISES

Exercise 18.3.1. Revise the example so that it prints the difference between the
two time stamps (start and stop) rather than printing out the time itself. Also,
rename the decorator as timer.

Exercise 18.3.2. Use this timer to compare sieve timings. Compare the speeds
of the sieve of Eratosthenes run on numbers up to 1,000, for the functional
version (Chapter 5), the list comprehension version (Chapter 6), and the set-
comprehension version (Chapter 12).

Exercise 18.3.3. Revise the decorator so that it displays named arguments used in
a function call, if any. You should be able to do that with the following state-
ment, which should print any named (“keyworded”) arguments in the form of
a data dictionary.

print('Keyword args:', kywrds)

Chapter 18 Summary
Here are the key points of Chapter 18:

 To build your own iterable in Python, write a generator function. Instead of
returning a value, the generator uses a yield statement.

yield x

Overland_Book.indb 389Overland_Book.indb 389 8/31/17 12:57 PM8/31/17 12:57 PM

Chapter 18 Advanced Pythonic Techniques390

 The state of the generator is saved and reused when it’s invoked again. The
current values of all local variables are preserved.

 Once you instantiate a generator function, do not instantiate it again unless
you want the generator to start over. Instead, save it once and then reuse.

my_gen = gen_fibo(1000)
print(next(my_gen))
print(next(my_gen))
print(next(my_gen))

 Although a property looks and behaves just like an instance variable, its
implementation is different. You support a property by adding two special
methods: getter and setter for each property.

 The getter method for a property is called when the user of a class tries to get
the value of the property. A getter has this syntax:

@property
def property_name(self):

statements
return value

 The setter method for a property is called when the user of a class tries to set
the property’s value. A setter has this syntax:

@property_name.setter
def(self, new_value):

statements

 A decorator takes another function as argument (let’s call it f), defines a new
function around the old one (f), and finally returns the resulting function.

 The following statement causes the new version of the function (the “wrapped”
function) to replace itself, that is, the original function.

function = decorator(function)

 The @decorator syntax provides a more readable version of the same thing.
Preceding a function definition with @decorator causes the function name to
be replaced with the wrapped version of the same function.

@decorator_name
function_definition

 In Python, functions have attributes, just as other objects do. You can use the
_ _fname__ attribute to get the name of the function at the time it was defined.

print(f._ _name_ _)

Overland_Book.indb 390Overland_Book.indb 390 8/31/17 12:57 PM8/31/17 12:57 PM

391

A Python Operator
Precedence Table

Operators in Python expression are evaluated in the order shown here, for Python 3.0:

OPERATOR DESCRIPTION

func(args) Function call

collection[begin : end : step] Slicing

collection[index] Indexing

object.attribute Property or member access

num ** num Exponentiation

~int Bitwise NOT

+num, -num Plus/minus sign

*, /, %, // Multiplication, division, remainder division, integer
division (when operation is between two numbers);
also multiplication of lists and strings: list * n

+, – Addition and subtraction (when operation is between
two numbers); also str + str produces string (or list)
concatenation

int << n, int >> n Left and right bit shifts

int & int Bitwise AND

int ^ int Bitwise XOR

int | int Bitwise OR

in, not in, is, is not, <, <=, >, >=,
<>, !=, ==

Comparisons; each produces Boolean value (true/false)

not vala Boolean NOT

val and vala Boolean AND

val or vala Boolean OR

a. The val may be almost any kind of value; Python will apply the operation bool() to convert before
applying to conditionals—within, say, if or while. See notes that follow.

Overland_Book.indb 391Overland_Book.indb 391 8/31/17 12:57 PM8/31/17 12:57 PM

Appendix A Python Operator Precedence Table392

Other notes:

a Where operators are at the same level of precedence, they are evaluated left to
right.

b Parentheses override precedence rules.

c The special symbol = (not to be confused with ==, which is test for equality) is
part of assignment-statement syntax and is not an operator.

d With combined assignment-operator symbols (+=, *=, /=, etc.), the entire expres-
sion on the right is evaluated and then the assignment operator applied, regard-
less of precedence. For example, if x starts out as 12, then the statement x /= 3
+ 9 sets x to 1, but the statement x = x / 3 + 9 sets x to 13.

e Assignment-operator symbols include +=, –=, *=, /=, //=, **=, <<=, >>=, &=,
^=, |=. In each case, x op= y is equivalent to x = x op y; but note d applies.

f As mentioned in Chapter 4, the Boolean operators apply short-circuit logic. If
the first operand is true, the operator and returns the second operand. If the first
operand is false, the operator or returns the second operand. Otherwise, the first
operand is returned without evaluating the second operand.

g To determine whether a value behaves as true or false, Python applies a Boolean
conversion, bool(). For numeric values, zero is “false.” For collections, an empty
string or collection is “false.” For most types, None is “false.” In all other cases,
the value behaves as if “true.” (Comparisons, such as n > 1 always return True
or False, which are fixed values.)

By combining the last two rules, you should be able to see why Python
responds as follows:

>>>print(None and 100)
None
>>>print(None or 100)
100
>>>print(not(''))
True

Overland_Book.indb 392Overland_Book.indb 392 8/31/17 12:57 PM8/31/17 12:57 PM

393

B
Summary of Most
Important Formatting
Rules for Python 3.0

This appendix explains the most common ways to use the format method
for string objects, which provides an easy way to print data in nicely struc-
tured columns.

1. Formatting Ordinary Text
Ordinary text in a format specification string is printed as it appears. This
includes all text except for curly braces, {}, and the content between them.

2. Formatting Arguments
Use curly braces, {}, to indicate arguments. This example

'{} plus {} is {}!'.format(4, 6, 10)

prints the following:

4 plus 6 is 10!

3. Specifying Order of Arguments
{n} is a zero-based index into the argument list. This example

'{2} {1} {0}'.format(10, 20, 30)

prints the following:

 30 20 10

This feature—order specification—can be combined with any and all of the
rules that follow. If so, the ordering number appears to the left of the colon (:).

Overland_Book.indb 393Overland_Book.indb 393 8/31/17 12:57 PM8/31/17 12:57 PM

394 Appendix B Summary of Most Important Formatting Rules for Python 3.0

4. Right Justification Within Field of Size N
By default, numeric values are right-justified within a print field of indicated
size n; other text is left-justified by default. Here is the general syntax for right
justification:

'{:>n}'.format(arg)
'{:n}'.format(arg) # Numeric data assumes
 # right justification.

This example

'ab{:>10}ab'.format('1234')

prints the following:

ab 1234ab

5. Left Justification Within Field of Size N
Non-numeric values, by default, are left-justified within a print field of speci-
fied width n. But you can always specify left-justification by using <.

'{:<n}'.format(arg)
'{:n}'.format(arg) # Non-numeric data assumes
 # left justification.

This example

'**{:<10}**'.format('Hello')

prints the following:

**Hello **

6. Truncation: Limit Size of Print Field
Specifying a number to the right of a decimal point gives a limit to the size of
the argument to be printed. This example

'{:.4}'.format('abcdef'}

prints the following:

abcd

Overland_Book.indb 394Overland_Book.indb 394 8/31/17 12:57 PM8/31/17 12:57 PM

Summary of Most Important Formatting Rules for Python 3.0 395

7. Combined Truncation and Justification
Put the field size to the left of the decimal point, and put the limit on the length
of the printed item to the right of the decimal point. This example

'##{:12.4}##'.format('abcdef')

prints abcd but left-justifies it in a field of 12 spaces.

##abcd ##

8. Length and Precision of Floating-Point Numbers
The width and precision specifications, which, respectively, specify print-field
width for floating-point numbers, as well as precision (number of positions
displayed to the right of the decimal point), has this syntax:

'{:width.precisionf}'.format(number)

Right justification is the default for numeric fields, so it’s not necessary to
specify right justification (>) if you want it. This example

'{:7.3f}'.format(3.1415962)

prints the following:

 3.142

To produce this result, Python examines the third digit after the decimal
point and rounds it upward.

Either width or precision may be omitted. A decimal point is required for
the latter. Note that number (the value to be printed) may be an integer, but it
will be printed in floating-point format.

9. The Pad ding Character
If a leading zero or other character appears just before the print-field-width
specification, that character becomes the padding character for the print field.
This example

'{:07.3f}'.format(3.1415962)

prints the following:

003.142

Overland_Book.indb 395Overland_Book.indb 395 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 396Overland_Book.indb 396 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

397

C
Glossary

attribute: A named quality attached to an object. For example, for a Dog class,
every Dog object might have the attributes breed, name, and age, the first two
of which are strings and the third of which is a number. In Python, attributes
are usually instance variables or properties.

Each attribute has a value as well as a name, and each is accessed as object
.attribute_name.

base class: A class that another class inherits from; also called a superclass.
See also superclass.

bitwise operations: An operation applied to individual bits of a number (which
must be in integer format). For example, the integers 14 and 9 can be rep-
resented as binary-radix expressions 0b1110 and 0b1001, respectively. The
expression 0b1110 & 0b1001 applies binary AND (&) to these operands,
resulting in 0b1000.

Although Python does not support everything that C does—in particular,
it has no pointers—it supports the bitwise operators.

Boolean: A value intended to be limited to two values: True and False. How-
ever, the Boolean operators and, or, and not work with Python values gen-
erally and treat a value as “true” or “false” as appropriate. For example, all
nonzero numeric values are treated as if true; a zero value is treated as if false.
The special value None is treated as false.

Note that empty collections and strings are treated as false; collections and
strings with a size greater than zero are treated as true.

Such a true/false value determines the behavior of an if or while state-
ment. See the notes to Table A.1 for more information.

callable: Essentially, a function. A callable is created whenever Python manages
to correctly execute a def statement—that is, execute it without syntax errors.
A variable can become a callable through assignment to a function: new_name
= existing_function.

Overland_Book.indb 397Overland_Book.indb 397 8/31/17 12:57 PM8/31/17 12:57 PM

Appendix C Glossary398

Until a callable exists (through definition), it may not be executed. Once
it is defined, it can be called through the syntax name(args). There is no
forward-reference problem in Python provided that all functions are defined
before any are executed.

class: In essence, a programmer-defined or language-defined type. The class
keyword is used to define new types (that is, programmer-defined types). A
class can define any number of methods, as well as static and class variables.
Once a class is defined, it can be used to define any number of instances,
which are called objects.

class variable: A variable shared by all objects of the same class.

collection: A series of data objects tightly organized together, with a group
name. In most collections, including strings, lists, and dictionaries, individual
elements can be accessed through a key or index.

Collections are important to computer programming in general, and Python
in particular, because they permit you to have units of data ranging in size from
very small (such as [1, 2, 3]) to extremely large; for example, [0] * 1000000
creates a list that’s a million units in size!

comment: Text that is placed in a program but is skipped over by the Python
interpreter. In general, the purpose of a comment is to make the program
more readable to a human looking at the code (but note that you can place any
text in a comment you choose). In Python, a comment consists of text from
the comment sign (#) forward to the end of the physical line.

control structure: A statement or loop that determines what to do next. Such
structures include code constructed with the if, for, and while keywords.

decorator: A function that takes a target function as an argument and then
returns an enhanced version of this same function, usually called a wrapper
function. The wrapper function does everything the old target function does,
but it may do other things as well, such as print out diagnostics and timing
information. Once a decorator is defined, you can then wrap any number of
functions. This example

@my_decorator
(Definition of a_func)

is translated by Python into the following:

(Definition of a_func)
a_func = my_decorator(a_func)

This last line means, “Reassign the name a_func to refer to the new
(wrapped) version of itself.”

Overland_Book.indb 398Overland_Book.indb 398 8/31/17 12:57 PM8/31/17 12:57 PM

Glossary 399

dictionary: A collection in the Python language that organizes information
around key-value pairs; each such pair is a tuple. Within a given dictionary keys
must be unique, and each key is associated with a value. (Values, however, need
not be unique.) For example, a database for storing numeric grades could be
realized as the following dictionary:

grades_dist = {'Bob' : 4.0, 'Nancy' : 3.5, 'Sid' : 3.5}

The names—which are keys in this case—must be unique with regard to
each other, but Sid and Nancy both have a grade of 3.5.

first-class object: A data (or function) object that has attributes, can be assigned
to a name, and can be returned by a function definition. You can query a first-
class object for information about itself. In Python, unlike most other computer-
programming languages, functions are first-class objects. This is why decora-
tion is possible.

floating point: A numeric value that can hold a fractional portion. For example,
3.75 is a floating-point value and 3 is not. Although the details of numeric
operations are hidden from Python programmers (generally speaking), it’s
important to know a few basic facts about numeric storage. Internally, floating-
point and integer formats are completely different, but Python takes care of
executing an expression such as 3.75 - 3, by promoting 3 to floating-point
format. All that is handled automatically for you, the Python programmer.

However, it’s worth knowing that in Python, the positive and negative
range of integers is actually greater than the range for floating-point numbers.
Furthermore, Python storage of very large floating-point numbers (5 times 10
to the 75th power, for example) causes a loss of precision so that adding 1 to
such a value has no effect. For this reason, if you have a choice and don’t need
to store fractional portions, use integer values. Another alternative is to use
the fractions module and its Fraction class, which can store numbers such
as one-third with absolute precision.

Note that expressions with a decimal point (.) are stored in floating-point
format even if they currently have no fractional portion. 1.0 is stored in
floating-point format.

for loop: A control structure that executes a block of statements, each time
applying the statements to a different value within a collection. In other pro-
gramming languages, the for loop is based on a sequence of numbers (for
example, 1 to N). In Python, the for loop is based primarily on the idea of
iterating through a collection.

A for loop can be combined with the built-in range function to iterate
through a series of numbers (such as index numbers). However, experienced
Python programmers iterate through collections rather than index numbers
most of the time.

Overland_Book.indb 399Overland_Book.indb 399 8/31/17 12:57 PM8/31/17 12:57 PM

Appendix C Glossary400

function: A subunit of the program that takes inputs and (optionally) pro-
duces outputs. The existence of functions enables a programmer to take a
“divide and conquer” approach to accomplishing programming tasks, rather
than having to put everything in one big undifferentiated sequence. The key
concept is that once you write a function, you can execute it (or rather call it)
any number of times.

Python functions have some interesting quirks. First, you define a function
by using the def keyword. Second, a reference to a function does not have to
exist until the function is actually called. The practical effect is that as long as
you define all your functions before calling any of them, you can write them in
any order you choose and ignore forward-reference problems.

Finally, functions in Python are first-class objects, which means that certain
information is always available, such as function name. Note that you can
assign a function to any name you want—and even later assign a new function
to the same name (which is what makes decorators possible).

generator: A function that yields a new value each time it’s called. Unless
restarted, a generator retains its state, including the value of all local variables.
(See Chapter 18, “Advanced Pythonic Techniques,” for more information.) A
generator can be used as an iterable.

global variable: A variable with a value that’s shared by multiple functions so
that changes to the variable by one function are recognized by all the func-
tions that can “see” the variable in its global form. Global variables enable
communication between functions (although passing arguments and return-
ing values is an alternative technique). To create a global variable, either place
it in module-level code, outside all functions, or else declare it global within
a function and then assign a value to it.

The most important rule regarding global variables is this: if a function is
going to assign a value to a variable that needs to be global, make sure that
the statement global variable_name is included at the beginning of the
function.

If a variable x is used, but there is no local version of x, and if there is no
assignment to x, then the global version of x is automatically used—if it exists.

grounded division: See integer division.

IDLE: The Python interactive development environment. Although Python
may also download another (less interactive) basic environment, IDLE is the
environment you should prefer, and many mini-exercises in this book are
designed to be followed with IDLE.

immutable: A data type that cannot be changed. Strings, for example, are
immutable, as are tuples. However, the name of a string (but not its internal
data) can be reassigned to a completely new string at any time. Therefore, the

Overland_Book.indb 400Overland_Book.indb 400 8/31/17 12:57 PM8/31/17 12:57 PM

Glossary 401

following statements might seem to break the rule of immutability for strings,
but actually they do not break this rule at all; the second statement shown
here re-assigns my_str to refer to a completely new string.

my_str = 'Brian'
my_str = my_str + ' Overland'

index: A numeric selector for an element within a list, string, or tuple. In Python,
indexes are zero-based rather than one-based. Therefore, the first element in a
collection is referred to as collection_name[0].

infinite integer: The capability of integers in Python to store incredibly large
numbers (both positive and negative)—limited only by the physical capacity
of the system.

inheritance: The ability of a new class—called the subclass—to automatically
inherit all the attributes and methods of another class—called the superclass—
except those that the subclass overrides.

instance: An individual data value or data object that has a clearly defined
type (or class) but has its own values. For example, you might define a Dog
class, but individual instances might be named fido, rover, and skippy, and
each of these Dog instances has its own data values.

instance variable: A value attached to an object. Two objects of the same class
share the same general design, but each will have its own individual instance
variables, with their own values.

Note, however, that you can use a class’s _ _init_ _ method to assure that
objects of the same class share a common list of instance variables. Even then,
however, each object will maintain its own values.

integer: A numeric value that can store positive, negative, and zero values, as
long as those values do not include a fractional portion. Integers are absolutely
precise, because adding 1 to an integer always results in a distinct value, and
there are never rounding errors. Integers in Python are “infinite” in range,
in the sense that the only limits to integer range are those imposed by what the
system can support. You can, for example, create integers in excess of a google
(10 to the 100th power).

integer division: Division between two numbers in which the result is rounded
down to the nearest integer, and the fractional portion, if any, is thrown away.
(The remainder, however, can be found through modular, or remainder, divi-
sion.) Integer division in Python 3.0 is specified by // instead of /.

iterable: A collection, or a generator, that produces a series of values in a par-
ticular order; these may be processed one at a time or viewed as a series. The
concept of iterable is fundamental to Python, because a number of control

Overland_Book.indb 401Overland_Book.indb 401 8/31/17 12:57 PM8/31/17 12:57 PM

Appendix C Glossary402

structures (such as the for loop) depend on it. Even text files in Python are
considered iterables, as you can read one line at a time.

key: A data value that works like an index into a Python dictionary. But
whereas an index is numeric, the keys to a dictionary can be built around
some other type. Those types must be immutable and “hashable”; this enables
strings and tuples, but not lists, to be used as keys.

keyword: A reserved word that has special meaning to the Python language,
such as if, not, def, and for. You cannot use these words to name your own
variables. Also, Python supports “passing by keyword,” in which you specify
an argument’s name along with the value you are passing. (These are two dif-
ferent uses of the word keyword that have little to do with each other.)

list: An ordered collection in Python in which elements are accessed by zero-
based indexes. A list is mutable, meaning that its elements can be modified.
A list in Python can do almost everything that an array in C or C++ can do;
however, it can do a great deal more. For example, Python lists support many
built-in methods such as min, max, and sort. Moreover, you can grow or
shrink a list without any negative consequences, subject only to the physical
limits of the system. Python lists are the major replacement for the array feature
of other programming languages.

list comprehension: A technique for building a list by compressing the effects
of a for loop into a single statement. A simple example is the following, which
builds a list of square numbers out of another list. The result is a list of the
first five square numbers: [1, 4, 9, 16, 25]. For more information, see
Chapter 6, “List Comprehension and Enumeration.”

num_list = [1, 2, 3, 4, 5]
square_list = [i * i for i in num_list]

local variable: A variable seen by only one function at a time. For example, each
function can have its own variable named amount, and changes to amount in
one function have no effect on the value of amount in any other function. In
Python, variables are local by default. See also global variable.

loop: A control structure that repeats a set of statements over and over, until
some terminating condition is reached. In a for loop, for example, the loop
completes after the end of a collection (or other iterable) is reached.

magic method: A method that has special meaning to Python and is automati-
cally executed under certain circumstances, such as _ _init_ _ (initialization)
and _ _add_ _ (addition).

matrix: A two-dimensional list. The successful creation of such lists are non-
obvious in Python and require a special technique. See Chapter 13, “Matrixes:
2D Lists,” for more information.

Overland_Book.indb 402Overland_Book.indb 402 8/31/17 12:57 PM8/31/17 12:57 PM

Glossary 403

method: A function defined inside a class. By defining methods, you give a
class and its instances the ability to do things, rather than just passively store
data. Unlike ordinary function calls, a method is called with the object.
method(args) syntax.

modular division: Modular (or remainder) division returns the remainder
from the division of two numbers. This operation is surprisingly useful in a
large number of applications. For example, modular division by 2 (N % 2)
always returns a 1 or 0; depending on this result, you know whether N is odd
or even.

mutable: A mutable object is changeable; more specifically, its elements, if
any, can be changed. For example, changes to a string (immutable) are not
legal, whereas changes to a list (mutable) are.

my_str = 'hello'
my_list = [5, 6, 3]
my_str[0] = 'H' # ERROR! Strings are immutable
my_list[1] = 9 # Fine; lists are mutable

object: A data object, or other item, that has a definite value and can also have
attributes. An instance of a class is an object; but many other elements of a
Python program are also objects, although you don’t always need to know
that. (For example, in Python, functions are objects.)

When you first start learning about classes and objects, it may be easiest
just to think of an object as an instance of a class.

object orientation: An approach to programming and design, in which data
and functions are organized tightly together into units called classes and in
which objects are instances of classes. Object-oriented programming tends
to be more data-centric than programming that does not use object-oriented
techniques; such traditional methods tend to develop data structures and
functions separately.

In Python, object orientation is deeply built into the structure of the lan-
guage, even though you don’t necessarily have to create your own classes. The
better you understand object-oriented concepts, however, the deeper will be
your understanding of Python, especially as everything in Python is an object.

Personally, I prefer the name object-oriented programming systems and its
acronym, OOPS!

one-based indexing: An indexing system that begins with 1, and in which
name[1] is the first object. Python itself exclusively uses zero-based indexing
rather than one-based indexing.

polymorphism: One of the fundamental properties of object orientation, as
well as being a universally supported aspect of Python. With polymorphism,
every class of every object may define a method with the same name, but

Overland_Book.indb 403Overland_Book.indb 403 8/31/17 12:57 PM8/31/17 12:57 PM

Appendix C Glossary404

Python will always ensure that the method executed is the one attached to
the object’s class. This may not sound like much, but it’s very important. For
example, every class may define an _ _add_ _ method, but each class can cus-
tomize this method so that it makes sense for the particular type of data you’re
working with. The important point is that the correct version of _ _add_ _ is
always called when the program is run.

In Python, you don’t have to do anything special to support polymorphism.

property: An attribute of a class that looks like (and is used in the same way
as) an instance variable but may have a far more sophisticated implementa-
tion. You implement a property by writing “getter” and “setter” methods;
these methods are automatically called when someone tries to get or set the
value of a property. A property doesn’t even have to correspond to any partic-
ular place in memory; it may be a value calculated “on the fly.” See Chapter
18, “Advanced Pythonic Techniques,” for more information.

reference: Essentially, what a variable name is in Python. A variable does not
have any attributes of its own. Any valid name may refer to any kind of data at
any time: string, list, number, dictionary, etc. You give a variable attributes by
assigning it to refer to a particular object. Otherwise, it has none.

In theory, many names may refer to the same data object. Changes made
through one variable are reflected by all the others.

For this reason, it’s important to develop a consistent naming scheme. For
example, in this book, _str is the suffix used for most strings, and _list is
the suffix used for most lists.

remainder division: See modular division.

set: A collection in Python similar to a dictionary, except that it has keys only
and no “values.” The important characteristic of a set is that it contains N
unique elements. For any given value, it is either in the set or not in the set.
Python supports all the traditional operations on sets, such as union and
intersection.

Unlike lists—in which order is significant—sets contain values without dis-
tinguishing between sets of different ordering. For example, {1, 2, 3} is equiv-
alent to {3, 2, 1}. Also note that because elements in a set are always unique,
sets may be more efficient for applications in which you don’t want duplicate
values to accumulate when you add elements to the collection.

set comprehension: A technique similar to list comprehension, except that it
can be used to create sets.

slicing: A technique in Python enabling you to efficiently select subsets of
strings and lists. The general syntax is collection[index1 : index2].
This selects all elements beginning with index1 (using zero-based indexing)
up to but not including index2.

Overland_Book.indb 404Overland_Book.indb 404 8/31/17 12:57 PM8/31/17 12:57 PM

Glossary 405

string: A packed series of text characters (usually human-readable characters)
that can form a word, phrase, or sentence. When the program is run, these char-
acters can be displayed to the end user. You can specify a string by enclosing it
in single quotation marks, double quotation marks, or triple quotation marks
(which are used for literal quotations). The beginning and ending quotation
marks, however, must match each other. Examples of strings include

'Brian'
"Mike"
'''Tell the teacher we're surfing!'''

superclass: A class from which another class—a subclass—inherits all the mem-
bers, including all methods, even initialization.

symbol: Generally variable names, as opposed to keywords. I also use symbol
briefly in Appendix A to discuss operator symbols.

tkinter: A graphical user interface (GUI) package that is automatically down-
loaded with the standard Python release. This package includes support for
drawing, selecting fonts and colors, and using event-driven, rather than purely
procedural, programming; the package also supports window management
and creation of standard controls, or widgets.

tuple: An organized collection similar to a list, except that it is immutable
(unchangeable) and does not support all the same methods that lists do. In
Python, when you want to use a list, but it will never be changed, manipulated,
or sorted, it is often sufficient—and more efficient—to use a tuple instead. Note
that tuples can be indexed, so that the first element of a tuple is name[0].

type: A general class of data. The type of an object determines the precise for-
mat in which information is stored; but a type in Python may also have many
other attributes, such as the type name. For example, all strings have the type str.
Types in Python include int, float, complex, str, list, dict, tuple, set, and
user-defined types, called classes.

variable: A name assigned to refer to a piece of data (or possibly a function).
There are no data declarations in Python, and variable have no attributes. The
type associated with a variable is determined by the data or function assigned to it.

Note that in Python, a variable is created through an assignment (or alter-
natively, through the implicit assignment that occurs within a for loop).

For this reason, it’s particularly important in Python to use consistent
naming conventions that suggest how a variable is intended to be used. Or,
rather, this is important if you want your programs to be readable by humans.

widget: A standard screen element—such as a label, command button (or just
button), text box, or canvas—supported by tkinter, which supports 21 different
kinds of widgets.

Overland_Book.indb 405Overland_Book.indb 405 8/31/17 12:57 PM8/31/17 12:57 PM

Appendix C Glossary406

wrapper function: A function built around another function. For example,
a typical wrapper prints out the name of a function and its arguments; but it
also executes the target function itself (the “wrapped” function).

Through the process of decoration, the wrapper can be made to replace the
target function so that every time the target function is called, it’s really the
wrapper that gets called.

zero-based indexing: An indexing scheme in which the first element is
name[0], not name[1]. Python itself uses zero-based indexing exclusively in
all situations; however, it is possible for your programs to adopt one-based
indexing and then translate it into “Python-ese” by subtracting 1.

Overland_Book.indb 406Overland_Book.indb 406 8/31/17 12:57 PM8/31/17 12:57 PM

407

Index

Numbers
0(log n) notation, binary searches, 74–75
1/phi number, as golden ratio, 44–46
2D list comprehension, 112–114
2D lists. See Matrixes (2D lists)
3D Tic-Tac-Toe game

calculating ways of winning,
315–318

looking for win, 313–315
overview of, 312–313

A
ABC language, Python derived from, 1
_ _add_ _ method

extending Fraction class, 335–336
as magic method, 402
PointN class, 328–330

add method, sets, 243, 247
add_entries, personal phone book,

233, 235
Addition operator (+), shortcut with

assignment and, 24–25
Advanced features

decorators, 382–389
generators, 367–375
properties, 375–382
summary, 389–390

Aliases, Python variables as, 79
amt variable, 197–201

and operator
Boolean, 55
counting trailing zeros, 133

append method
modifying elements, 83–84
optimizing code, 96–97
preparing for join, 154
sorting information with lists, 77–78

*args
customized Matrix class for Game of

Life, 353–354
decorators, 386–387, 389
defined, 326
random-number generator, 371–372
randomization via system time, 374
variable-length argument lists,

326–327
Arguments

calling by name, 173–174, 175
calling functions with incompatible,

171
customized Matrix class for Game of

Life, 353–354
default, 174–178
defining functions with, 31, 50, 185
method, 309–310
ordering in functions, 39–40, 393
passing and modifying lists, 170–171
passing multiple, 36, 37–40, 167–168

Overland_Book.indb 407Overland_Book.indb 407 8/31/17 12:57 PM8/31/17 12:57 PM

Index408

Arguments (continued)
rules for formatting, 393
slicing, 157
variable-length argument lists, 326–327

ASCII code
converting to, 159–160
converting to characters, 160–163
defined, 159
translating individual characters into,

148
ask_q function, global variables, 194, 196
Assignment operator (=)

creates variable if one does not exist,
189, 191, 204

passing/modifying lists and direct,
171

rule for Python variables, 17–18
shortcut using addition with, 24–25
strict syntax for, 19

Assignment-concatenation operator (+=),
24–26, 27, 140

Attributes
in class inheritance, 331–333
definition of, 397
displaying name of function, 389, 390
getter and setter methods, 376

B
Backslash (\)

continue physical lines, 7–8
embedded quotation marks, 127

Base class
creating Polygon “automated” class,

340–342
definition of, 397
extending Fraction class, 336–337
realizing inheritance via subclassing,

331, 344, 345
Basic interactive mode, Python in IDLE

vs., 4–6
Beatles personality profile, 192–196

Behavior, methods and, 300
Big Bang, 14
Big Blue, IBM super-chess playing program,

293
Big-O notation, 74
Binary files, text files vs., 207–208, 224
Binary numbers, 74–75, 159
Birth events, Game of Life, 349–350,

360–361
Bitwise operations, 391, 397
Blinker pattern, Game of Life, 349–350
Blocking, computer player heuristics, 285,

287
Boolean

adding machine application, 176–178
definition of, 397
list, sieve of Eratosthenes, 93–97
operators, 55
testing character case, 149–150

break keyword
breaking from loop, 70–71
breaking out of infinite loop, 72, 75
counting trailing zeros, 134

Brute force (look-ahead), heuristics, 293
b_str variable, processing lists with for,

80–82
Bucket, dictionary key-value access, 232

C
C programming language

Python characters/strings vs., 135
Python indentation vs., 33–34
Python local/global variables syntax

vs., 190
C++ programming language

non-support for infinite integers, 11–12
Python characters/strings vs., 135
Python indentation vs., 33–34
Python local/global variables syntax

vs., 190
C++ Without Fear (Overland), 12

Overland_Book.indb 408Overland_Book.indb 408 8/31/17 12:57 PM8/31/17 12:57 PM

Index 409

calc_pts function, difference/sum of two
points, 172–173

Calculator, Python as one-line, 10
Callable, 31–32, 397–398
Cartesian plane, Pythagorean distance for-

mula, 48–50
Case

converting letters, 150–151
testing upper and lower, 149–150

Case-sensitivity
keywords, 27
names, 18–19, 27

Casino odds making, 179–184
Cellular automata, defined, 348, 364
Celsius, 29–33, 82, 379–381
Characters

accessing individual, 148
format for padding, 395
join to form single string, 143–144
as one-length strings, 148
Python strings vs., 135
single. See Single-character ops

chars string, defined, 136
chdir function, os module, 209
chr function, convert ASCII to character,

160–161, 166
Circle subclass, 339–343
Class definition

creating objects with classes, 297
methods as functions defined inside,

300
moving into separate modules,

354–358
optimizing code with, 317–318
realizing inheritance via subclassing,

331, 345
references to instance variables within,

319
writing for database class, 303, 307
writing for Point 3D class, 311

Class hierarchy, inheritance, 332–333

class keyword, 297
Class variables

define default values for instance vari-
ables via, 339–343

definition of, 398
inheritance of, 331
methods and, 337–338
summary, 345

Classes
attaching data to objects, 298–300
C++ vs. Python, 304
creating objects with, 297–298
defining simple, 297
definition of, 398
designing database, 303–308
getting help from your own, 322–323
overview of, 296
writing methods at level of, 300–301

Classes and objects. See also Classes
_ _init_ _ method, 301–302
3D Tic-Tac-Toe, 312–318
benefits of OOP, 343–344
class variables and methods, 337–338
database class design, 303–308
defining other methods, 309–310
definition of object, 295–296
duck typing, 325
Fraction class, 334–337
function typing/overloading, 323–324
help from doc strings, 321–323
inheritance, 331–333
instance variables as default values,

339–343
obsession with self, 302–303
overview of, 295
Point3D class/default arguments, 312
Point3D class design, 310–311
summary, 318–319, 344–345
variable-length argument lists,

326–327
writing PointN class, 327–331

Overland_Book.indb 409Overland_Book.indb 409 8/31/17 12:57 PM8/31/17 12:57 PM

Index410

close method
after opening file, 212
after reading text file, 217
loading and saving to file, 240
writing file with prompt, 215

Collections, 101, 398
Colon (:)

at end of first line of if, 54
at end of first line of while, 61
function definition syntax, 50
rules for functions, 31

Colons (::), omitted second arguments, 128
Commas (,)

joining group of characters into single
string, 143–144

returning multiple function values,
168–173

separating multiple function argu-
ments, 36–40, 167–168

Comments (#), 61–62, 398
Comparison operators, vs. Boolean, 55
Comparisons

palindrome test, 154–158
testing character case, 149–150
testing for palindromes, 151–154

Composite numbers
all multiples of prime as, 96
defined, 93
optimizing sieve of Eratosthenes code,

97, 115–117
prime numbers vs., 93

Computer player, Tic-Tac-Toe, 287–292
Concatenation (+) operator, building up

strings, 140–141
Condition, defined, 54
Conditional

list comprehension with, 114–116
operators, 55

conditional_expr, list comprehension,
115

Consciousness, computer, 56–58

Control structure
automatic indentation inside, 33
conditional and Boolean operators as,

55
as decision-making, 53
decisions inside computer program, 53
definition of, 398
if, elif, and else keywords as, 56,

59–60
processing lists with for, 80–82
programs/robots in Westworld and,

56–58
while keyword as, 60–63
writing exception handling, 218–219

convert function
ASCII code to characters, 30–33
in print message, 36
Python indentation and, 33–34

Converting
to 0-based indexes, 278, 281, 294
ASCII code to characters, 160–163
Celsius to Fahrenheit, 29–33, 82
characters to ASCII code, 159–160
encoding strings, 162
factorial to string, 132–133, 137
numbers into Roman numerals,

196–199
to numeric format, 43, 131
Roman numerals into numbers,

201–203
string input to integer, 324
strings to all caps, 152–154
between uppercase/lowercase letters,

150–151
Conway, John Horton, 347–348
Conway’s Game of Life

customizing Matrix class, 352–354
design of program, 352
full program for, 358–362
generating neighbor counts, 350–351
impact of, 347–348

Overland_Book.indb 410Overland_Book.indb 410 8/31/17 12:57 PM8/31/17 12:57 PM

Index 411

moving Matrix class to module,
354–358

overview of, 347
printing Life matrix, 355–358
rules of, 348–350
simulating our reality with, 363–364
slider pattern, 358
summary, 364–365

Copying data to slices, 88–89
count method, for lists, 275–278
Count trailing zeros, 131–134, 136–137
Craps (dice game), 179–184
cry function, 301
Cryptography

art of, 164
converting ASCII to characters,

160–163
converting characters to ASCII code,

159–160
decoding strings, 164–166

ctmp property, multilevel temperature object,
379–381

Curly braces { }
dealing with ends of lines, 7
format string method, 103
print fields, 47, 51
specifying sets, 241–242

Custom random-number generator, 370–373

D
Data

attaching to objects, 298–300
function objects vs., 382

Data types
choosing for dictionary keys, 232
and dictionary magic, 232
as objects in Python, 295–296
testing before using, 323–324

Database class design, 303–308
Death events, Game of Life, 349–350,

360–361
Debugging tools, decorators as, 387–389

Decimal number system, computers, 159
Decimal point (.), 15–16, 27
Decision-making and looping

binary searches and “0” complexity,
74–75

breaking from loop, 70–71
conditional and Boolean operators, 55
decisions inside computer programs,

53–55
factorials, 63–67
if, elif, and else, 56, 59–60
looping with while, 60–63
number-guessing game, 71–74
overview of, 53
printing Fibonacci numbers, 67–70
programs and robots in Westworld,

56–58
using factorials, 63–65

Decoding
Roman numerals, 201–204
strings, 164–166

Decorators
as debugging tools, 387–389
definition of, 398
exercises, 389
as functions enclosing other functions,

382–385
in Python, 385–387
summary, 390
what they do, 387

Decryption
art of cryptography, 164
converting ASCII to character, 160–163
converting to ASCII code, 159–160
of strings, 164–166

def keyword
adding call to print function, 35–36
defining functions with, 30–31, 32–33,

400
quadratic equation as function, 38–40
syntax summaries for function defini-

tions, 35–36

Overland_Book.indb 411Overland_Book.indb 411 8/31/17 12:57 PM8/31/17 12:57 PM

Index412

Default arguments, 174–178, 185
Delimiters, split method for strings, 138–139
Descendant classes, inheritance in, 333
Design

program, 352
program for Game of Life, 352–354
Tic-Tac-Toe board, 271–273

diagnostics decorator, as debugging tool,
387–389

Dice game (craps), 179–184
dict type, defined, 235–236
Dictionaries

accessing values, 230
adding/changing key-value pairs, 229
converting to lists, 235–236
creating personal phone book, 232–235
definition of, 399
design Employee database as empty, 307
loading and saving to file, 238–241
magic of, 232
overview of, 227
reading items by prefix, 236–238
searching for keys, 231–232
and sets. See Sets
why we need, 227–228

dict.items, 235–238
Difference between squares, 109–112, 124
difference method, sets, 244
Directories, os module, 209–211
Disk files. See Files
Distance formula, scripts, 47–48
Division

operators, 26
remainder operator. See Remainder

operator (%)
storing fractional result as floating-

point number, 14–16
Doc strings

customized Matrix class for Game of
Life, 352–354

getting help from, 321–322
syntactic rules, 322–323

Documentation, drawback of OOP in
Python, 344

do_generation function, Game of Life,
358–360

Dot notation (.)
accessing instance variables/methods,

295, 299, 319
call another class’s version of a func-

tion, 333
Double backslash (\\), quoted strings, 7–8
Double forward slash (//), integer division,

155
Double threat, computer player heuristics,

286–287
Double underscores (__), 303–304, 377,

379
Downloads menu, installing Python, 4
Duck typing, 325
Duplicate values, lists, 78

E
Edge problem, Game of Life, 360–361
Editing of functions, 31
Einstein, using Pythagorean theory, 122
Elements

accessing matrix, 250–251
adding/removing, 241
creating matrixes, 249–250
in sets, 241

elif keyword
in control structures, 56
encoding strings, 161–162
summary, 75

else keyword
in control structures, 56
if/else operator, 274–278
simple program using if, 59–60
summary, 75

Embedded quotation marks, text strings,
126–127, 144

Employee class, creating, 307
Employee database, designing, 305–308

Overland_Book.indb 412Overland_Book.indb 412 8/31/17 12:57 PM8/31/17 12:57 PM

Index 413

Empty sets, creating, 242
Empty strings, 151–153
Encryption

art of cryptography, 164
converting ASCII to character, 160–163
converting to ASCII code, 159–160
decoding strings, 164–166

end argument
adding to print function, 62
changing list elements from inside loop,

90, 92
named arguments, 174
slicing strings, 145

ENIGMA code, 58, 164
enter_mat_vals function, rotating matrix,

264–267
enumerate function

indexes, 101–103
printing tables, 104–106
reading text file with line numbers, 222
for statement used with, 103, 106, 123
summary, 123
two-dimensional list comprehension,

114
user-initialized matrix, 259–260

Enumeration
format string method, 103–104
indexes and, 101–103
overview of, 101
printing tables, 104–106

_ _eq_ _ method, Point3D class, 310–311, 313,
316

Equivalency, testing in data dictionaries, 228
Eratosthenes

history of, 98–99
sieve of. See Sieve of Eratosthenes

Error correction, within IDLE, 6–7
Exception handling

calling function with incompatible
argument types, 171

files and, 217–220
try/except block advantages, 219–220

Exercises, in this book, 4
Exponent operator (**)

applied before addition, 11
exercises, 13
handling super-large numbers, 10–11
Pythagorean distance formula, 49
summary, 26

Expressions
building complex, 19–20
how Python resolves, 340

F
Factorials

changing list elements from inside loop,
91–93

count trailing zeros, 131–134
optimizing code, 65–67
writing loops with while, 63–65

Fahrenheit, 29–33, 82, 379–381
False value

adding machine, 176–178
computer program decisions and,

54–55
dice game (craps), 181
in keyword, 196
palindrome test, 154–158
reading text file with line numbers,

222
searching dictionary keys, 231
sieve of Eratosthenes, 93–97
sorting lists, 84–85
test-for-equality (==) and, 11
testing character case, 149–150

Fibonacci numbers
exploiting power of generators,

369–370
Hindu-Arabic numbering system and,

200
printing, 67–70
working with generators, 368

File pointers, resetting, 217, 225
FileNotFoundError, 217–220, 225

Overland_Book.indb 413Overland_Book.indb 413 8/31/17 12:57 PM8/31/17 12:57 PM

Index414

Files
exception handling, 217–220
loading and saving to, 238–241
opening and closing, 211–212
os module, 208–210
other modes of, 223
overview of, 207
reading text, 216–217
reading text, with line numbers,

220–223
running on other systems, 211
summary, 224
text vs. binary, 207–208
writing text, 213–216

First-class objects, 399
float numeric type

convert strings to numeric, 131
forcing division to be precise, 15
getting numeric input, 43–44
as object in Python, 295–296
in quadratic formula with I/O, 45
summary, 51

Floating-point numbers
definition of, 399
getting numeric input, 43–44
Python and, 10, 14–16
rule for length/precision, 395
variable naming conventions, 23

for loop
casino odds making, 184
combine generator with, 369
definition of, 399
load_file function, 240
Pythagorean triples, 119–120

for statement
accessing dictionary values, 230
end specification in, 92
enumerate function with, 103, 106, 123
list comprehension, 106–111, 112–116,

123–124
printing out entire dictionary contents,

230

processing lists, 81–84
reading text file, 216–217
replace calls to make_roman function

with, 199
sieve of Eratosthenes example, 94–96

format string method
creating matrix for multiplication table,

256–257
difference between squares, 110
format fields of output, 47, 51
printing table, 104–106
revisited, 103–104
summary, 123

format_spec_str.format(args), 103–104
Formatting rules, important

arguments, 393
left justification for non-numeric values,

394
ordinary text, 393–395
right justification for numeric values,

394
specify order of arguments, 393
truncation (limit size of print field), 394

Fraction class, 333–337
ftmp property, multilevel temperature object,

379–381
func function, decorators, 383–387
Functions

adding call to built-in, 35–36
creating with def, 30–33
decorator. See Decorators
definition of, 400
editing, 31
executing new, 31
generator. See Generators
getting string input, 41–43
global vs. local variable rules for, 189–190
list, 97–98
methods vs., 295
naming conventions, 23
order of arguments, 39–40
passing back multiple values, 176–177

Overland_Book.indb 414Overland_Book.indb 414 8/31/17 12:57 PM8/31/17 12:57 PM

Index 415

passing back None, 177–178
pseudocode descriptions of, 40
quadratic equations as, 38–40
summary, 50–51
syntax summaries for, 36–37
typing and overloading, 323–324
wrapper, 406
writing first Python, 30–31

Functions, advanced
arguments by name, 173–174
casino odds making, 182–184
default arguments, 174–178
importing functions from modules,

178–182
multiple arguments, 167–168
overview of, 167
passing and modifying lists, 170–171
returning more than one value,

168–173
summary, 185–186

G
Game of Life. See Conway’s Game of Life
Garbage collection, 262–264, 269
Gardner, Martin, 347–348
Generators

about randomness, 372–375
custom random-number, 370–372
definition of, 400
exercises, 372
exploiting power of, 369–370
overview of, 367–368
summary, 389–390

gen_fibo function, 368, 369–370
gen_odd_num iterable, 369
get method

converting dictionaries to lists, 236
personal phone book, 234–235
searching for dictionary keys, 231

get_area() method, instance variables,
339–343

get_cell method, Game of Life, 352–353
get_comp_move function, 288, 290–291
getcwd function, os module, 210
get_mat_str function, Game of Life,

355–356
get_move function, Tic-Tac-Toe, 275–277
get_next_prime function, random-number

generator, 372
get_num function, adding machine,

176–178
get_point function

3D Tic-Tac-Toe, 314
difference/sum of two points, 172–173

getter methods
defined, 376
multilevel temperature object,

379–381
using with setter methods, 378–379
writing for property, 376–377

global keyword, 190
Global variables

Beatles personality profile, 192–196
C++ syntax for, 191–192
decoding Roman numerals, 201–204
definition of, 400
global keyword, 190
local variables vs., 188–190
preventing local variable trap,

190–191
printing Life matrix for Game of Life,

355–356
reading text file with line numbers,

221–222
Roman numerals, 196–201
summary, 204–205
using global statements, 266–267

Glossary, 397–406
Google, as unimaginably large number,

11–14
Google-plex, 12, 14
Grounded division. See Integer division (//)

Overland_Book.indb 415Overland_Book.indb 415 8/31/17 12:57 PM8/31/17 12:57 PM

Index416

Group theory, eclipsing set theory, 244
GUI (graphical user interface) package.

See Tkinter (GUI package)

H
Hash table, dictionaries, 232
h_dist (horizontal distance), Pythagorean

distance formula, 48–49
Help

begin using Python with IDLE, 6
dictionary, 235
from doc strings, 321–323
online resources for, 8
os module, 209
sets, 243
string methods, 148–149

Heuristics
art of, 292–293
computer player strategy, 285–287
of get_comp_move function, 288,

290–291
History, of Python, 1–2
Horizontal distance (h_dist), Pythagorean

distance formula, 48–49
Hyphens (-), joining group of characters,

143–144

I
i expression, list comprehension, 106–109, 116
IBM’s Big Blue, super-chess playing program,

293
IDLE (interactive development environment)

basic interactive mode vs., 4–6
begin Python with, 6
correcting mistakes from within, 6–7
definition of, 400
how this books works, 3
printing values for variable names, 19

if/else operator, 274–278
if keyword

computer program decisions, 53–55
control structures, 56

encoding strings, 161–162
list comprehension, 114–115, 124
simple program using, 59–60
summary, 75

Immutable
definition of, 400–401
Python strings as, 139–141

Importing
in Fraction class inheritance, 334
functions from modules, 178–182
in number-guessing game, 72
os module, 209–210

inc_cells method, Game of Life, 352–353
Indentation

computer program decisions, 54
of doc strings, 323
processing lists with for, 80–82
in Python, 2, 33–34
rules for functions, 31–32

Index numbers. See Zero-based indexing
Indexes

definition of, 401
enumerate function and, 101–103
for lists, 89–93
one-based, 294, 403
out-of-range, 171
and slicing, 85–88, 127–130
for strings, 145
zero-based, 406

Infinite integers
computer hardware limits on, 12
definition of, 401
in Python, 11
why C++ does not support, 11–12

Inheritance
definition of, 331, 401
Fraction class and, 333–336
OOP and, 344
overview of, 330–333

_ _init_ _ function
3D Tic-Tac-Toe, 313, 316
database class design, 303–307

Overland_Book.indb 416Overland_Book.indb 416 8/31/17 12:57 PM8/31/17 12:57 PM

Index 417

Fraction class and, 335–336
function typing/overloading, 324
Game of Life, 352–353
importance of, 301–302
as magic method, 402
Point3D class design, 310–312
PointN class and, 328–329
summary, 345

Initialization
creating N*M matrixes, 254–255
creating user-initialized matrix, 258–261
database class design, 303–307
elements in small matrixes, 249–250
_ _init_ _. See _ _init_ _ function
Point3D class design, 310–312

in operator
generator used with, 369
global variables, 194, 196
lists, 98

In/out parameters, lists, 170–171
I/O

opening text file, 211–212
quadratic equation with, 44–46

input function
getting numeric, 43–44
getting string input, 41–43
quadratic formula with I/O, 45–46
returns string, 131

Installation, Python, 4–6
Instance, definition of, 401
Instance variables

as default values, 339–343
definition of, 337, 401
in getter methods, 376
not necessarily inherited, 331
in setter methods, 377

int numeric type
convert strings to numeric, 131
getting numeric input, 43–44
in number-guessing game, 72
as object in Python, 295–296
summary, 51

Integer division (//)
automatically rounds down, 155
definition of, 401
extending Fraction class, 335
floating point and, 15

Integers
changing list elements, 89–93
definition of, 401
getting numeric input, 43–44
variable naming conventions, 23

intersection method, sets, 243
Irregular-shaped matrixes, length of row,

251–252
isalpha() method, 149–150, 166
is_even function, computer program deci-

sions, 54
isinstance function, 323–324
islower() method, character case, 149–150,

166
is prime function, random-number genera-

tor, 372
istitle() method, character case, 149–150
isupper() method, character case, 149–150,

166
is_win function, 3D Tic-Tac-Toe, 314–315
Iterable

creating own, 368
definition of, 101, 401–402
exploiting power of generators,

369–370
reading text file as, 216–217, 225
understanding, 367–368

Iteration, in Python, 2

J
join method

Game of Life, 357
for one-character strings, 364
optimizing code, 97–98
returns one long string, 136, 141,

143–145
for series of strings, 154, 166

Overland_Book.indb 417Overland_Book.indb 417 8/31/17 12:57 PM8/31/17 12:57 PM

Index418

Justification
left, for non-numeric values, 394
modifying fields in format string

method, 103–104
right, for numeric values, 394
rule for truncation and, 395

K
KeyError exception, dictionaries, 230, 231
Keys, dictionary

accessing existing values, 230
definition of, 402
explaining dictionary magic, 232
personal phone book, 233–235
restrictions, 232
searching, 231–232

Key-value pairs
creating dictionary as group of, 228
explaining dictionary magic, 232
storing in file, 240
syntax for adding/changing, 229

Keywords
defined, 11
definition of, 402
how this book works, 3

L
Left justification, format strings, 103–104
len function

converting dictionaries to lists, 236
counting trailing zeros, 137
decoding Roman numerals, 202–203
for dictionaries/sets/lists, 247
range combined with, 90–91
returns length of collection, 100
returns length of string, 131, 136
returns number of files in current direc-

tory, 209
Letters, variable naming conventions, 19, 27
Life matrix

design of program, 352
Game of Life rules, 350

generating neighbor counts, 350–351
printing, 355–358

life_mat, Game of Life, 355–356, 358–360
Linear vs. binary searches, 74–75
Lines

dealing with ends of, 7–8
reading text file with numbers of,

220–223
sort words on, 141–142

List assignment, 23, 27
list-by-prefix command, saving to file, 239
List comprehension

with conditional, 114–115
creating large matrixes, 254–255, 256
definition of, 402
in difference between squares, 109–112
optimizing rotating matrix code,

267–268
printing Life matrix for Game of Life,

356–357
Pythagorean triples, 118–120
Sieve of Eratosthenes 2, 115–118
simple, 106–109
summary, 123–124
two-dimensional, 112–114

listdir function, os module, 210
Lists

converting dictionaries to, 235–236
converting numbers to Roman numerals,

199–201
copying data to slices, 88–89
definition of, 402
generating with split method, 138–139
indexing and slicing, 85–88
as iterables in Python, 101
in keyword and, 98
matrixes as list of. See Matrixes (2D

lists)
modifying elements with for, 82–85
naming conventions, 148
overview of, 77
passing and modifying, 170–171

Overland_Book.indb 418Overland_Book.indb 418 8/31/17 12:57 PM8/31/17 12:57 PM

Index 419

processing with for, 80–82
ranges and, 89–93
sets vs., 242
sieve of Eratosthenes example, 93–97
sorting information, 77–80
summary, 99–100
Tic-Tac-Toe, count method, 279–285
tuples vs., 120
variable-length arguments, 326–327
variable naming conventions, 23

Literal quotations, creating, 126–127
Living cells, 348–350, 351
load_file function, 238–241
Local variables

C++ syntax, 191–192
definition of, 402
favoring, 187–188
global variables vs., 188–190
preventing trap of, 190–191
summary, 204–205

log n (0) notation, binary searches, 74–75
Look-ahead (brute force), heuristics, 293
Loops

breaking from, 70–71
changing list elements from inside, 89–93
creating with while, 61–63
defined, 60
definition of, 402
number-guessing game, 71–74
optimizing code, 65–67
printing Fibonacci numbers, 67–70
using factorials, 63–65

Lowercase letters
character code for, 160
converting case of, 150–151
testing character case, 149–150

M
Mac systems, opening IDLE in, 6
Magic method

definition of, 402
explaining dictionary, 232

garbage collection, 262
list comprehension, 107
revising blocks of code, 45
special meaning in Python, 402

main function
dice game (craps), 181
difference/sum of two points, 172–173
factorials, 64
reading text file with line numbers,

220–223
rotating matrix, 264–266
Tic-Tac-Toe 3D, 313–314
Tic-Tac-Toe with one-line if/else,

275–277
Maintenance Rule, Conway’s Game of Life,

349
make_roman function, converting numbers,

197–201
mat variable

creates unusable lists of lists, 253
irregular-shaped matrixes, 251–252

Matrix class, 352–358
Matrix, definition of, 402
Matrixes (2D lists)

accessing elements, 250–251
creating multiplication table, 256–258
creating N*M matrixes, 254–255
creating user-initialized, 258–261
customized for Game of Life,

352–354
irregular-shaped, and length of row,

251–252
multiplication (*) and lists, 252–253
overview of, 249
Python problem with, 253
rotating, 261–268
simple, 249–250
summary, 268–269
Tic-Tac-Toe. See Tic-Tac-Toe game
why it is not easier to create large,

255–256
max function, lists, 98

Overland_Book.indb 419Overland_Book.indb 419 8/31/17 12:57 PM8/31/17 12:57 PM

Index420

Methods
_ _init_ _. See _ _init_ _ function
all are inherited, 331
class variables and, 337–338
for customized Matrix class in Game of

Life, 352–354
defining other, 309–310
definition of, 403
getting from doc strings, 322–323
getting help for string, 148–149
properties driven by, 376
reserved names for, 301–302
strings as objects that support, 295
write, 300–301

min function
lists, 98
PointN class, 328, 330

Modula-3 language, and Python, 1
Modular division

definition of, 403
extending Fraction class, 334–336
in randomization, 374–375

Modules
moving Matrix class to, 354–358
syntax for importing, 178–182, 186

Modulus operator (%). See Remainder oper-
ator (%)

Monty Python’s Flying Circus, Python
named after, 2

Multidimensional lists, 254–255
Multiple arguments, passing, 36–40, 167–168
Multiple-assignments, as shortcut, 23–24
Multiplication assignment (*=) operator

factorial code, 64–65
factorial code optimization, 92
not used in larger expressions, 26

Multiplication operator (*)
affect on lists, 252–253
generating characters repeatedly, 365
printing Life matrix for Game of Life,

355–356

in sieve of Eratosthenes, 93
string/number conversions, 130–131

Multiplication table, matrix for, 256–258
Mutable

copying data to slices, 88–89
definition of, 78, 403

N
Named arguments, passing, 174–175, 185
Naming conventions

case-sensitivity, 18–19
lists, 148
modules, 354
for special methods, 300–301
strings, 147–148
variables, 19, 23, 27

nc_mat cells, Game of Life, 358–361
Negative indexes, 86
Negative numbers

counting trailing zeros, 134
indexing lists, 86
indexing strings, 145
strings, 129

Neighbor Count, Conway’s Game of Life,
348–351, 358, 360–361

Nested functions, writing decorators,
382–385

Nested loops
building two-dimensional arrays, 364
list comprehension for, 113
optimizing code for factorial program,

66
print/reset all values of matrix, 257, 269

New File command, writing programs, 47
Newline character (\n)

matrix for multiplication tables,
257–258

save_file function, 240
writing separate lines, 216, 224

next function, generators, 369–370
N*M matrixes, 254–255

Overland_Book.indb 420Overland_Book.indb 420 8/31/17 12:57 PM8/31/17 12:57 PM

Index 421

None value
of empty lists, 278
functions, 177–178
personal phone book application, 235
reading text file with line numbers, 221
searching for dictionary keys, 231

not in operator
generators, 369
lists, 98

not operator, Boolean, 55
Number-guessing game, 71–75
Numbers

adding machine, 176–178
assigning to variables, 17–22
built-in support for, 2
changing list elements from inside loop,

89–93
as common data in lists, 78
converting ASCII to characters from,

160–161
converting into Roman numerals, 196–201
converting strings to, 130–134
converting to ASCII code, 159–160
difference between square, 109–112
floating-point. See Floating-point

numbers
getting numeric input, 43–44
indexing and slicing lists, 85–88
personal phone book, 232–235
printing Fibonacci, 67–70
Python and, 9–14
shortcuts for, 23–26
sieve of Eratosthenes generating prime,

93–97
summary, 26–27
writing factorials, 63–67

O
O player. See Tic-Tac-Toe game
Object orientation

advantages of, 343–344
definition of, 403

overview of, 295
polymorphic methods in Python and,

301
write methods at class level, 300–301

Object-oriented programming (OOP),
343–344

Objects
attaching data to, 298–300
definition of, 295–296, 403
as instances of classes, 296–301
using classes to create, 297–298

One-based indexing, 294, 403
one_char_string argument, ord function,

159
One-line version of if/else, Tic-Tac-Toe,

274–278
One-to-many relationship, classes,

296–301
Online resources, help, 8
OOP (object-oriented programming),

343–344
Op System (os) module, 208–211, 224
open method, text files, 211–212, 224
Open parenthesis, ends of lines, 7
Operations, on sets, 242–244
Operators

conditional and Boolean, 55
exponent (**), 10
precedence, 11
precedence table for Python, 391–392
remainder (%), 12–13
test-for-equality (==), 10–11

Optimized approach, in this book, 4
or operator, Boolean, 55
ord function, converts one-length string to

ASCII, 159, 166
Order

meaningful in lists, 78–80
no significance in dictionaries, 228
no significance in sets, 117–118,

242–243
os (Op System) module, 208–211, 224

Overland_Book.indb 421Overland_Book.indb 421 8/31/17 12:57 PM8/31/17 12:57 PM

Index422

Output string, formatted, 46–47
Overloading, function typing and, 323–324

P
Packages, Python, 2
Padding characters, 395
Parentheses ()

completing test for, 154–158
enclosing arguments in functions, 31
executing functions, 31
famous, 158
testing for, 151–154
using classes to create objects, 297–298

Parenthesis, open, 7
Pascal, Blaise, 183
pass keyword, as placeholder, 297
Path name, reading/writing text, 210
Patterns, Game of Life, 358
PEP-8 standard, 32–34
phi number, as golden ratio, 39, 40, 44–46
Phone book, personal

converting dictionaries to lists, 235–236
exercises, 241
loading and saving to file, 238–241
personal phone book, 232–235
reading items by prefix, 236–238

phone_dict. See Phone book, personal
Playing for position, heuristics, 293
play_the_game function, dice (craps),

179–182
Point3D class, 310–312
PointN class, 327–331
Polygon “automated” class, 340–343
Polymorphism, 301, 403–404
Positional arguments, advanced functions,

174
Precedence

Boolean vs. comparison operators, 55
Python operator, 11, 13
table for Python operator, 391–392

Precision, limited in floating-point numbers, 16

Prefix, reading phone book items by,
236–238

Prime numbers
creating random-number generator, 372
defined, 93
in randomization, 375
sieve of Eratosthenes generating, 93–97,

115–118
Print field, formatting rules, 394
print function

adding call to, 35–36
adding end keyword on, 62
arguments, 175
computer program decisions for, 53
Fibonacci numbers, 69–70
formatted output strings, 46–47
full program for Game of Life, 358–360
indexing and slicing strings, 127–130
Life matrix for Game of Life, 355–356
making into generator, 368
multiplication table matrix, 256–258
optimizing code, 96–97
performance time and number of calls

to, 258, 269
reading text file, 216
summary, 51
syntax, 38–40
using quotation marks, 126–127

print_mat function, 265–266, 275–278
print_nums function, decorators, 387–389
Printouts, string method, 148–149
Privacy

data access in C++ vs. Python, 304
getter methods, 377
setter methods, 378

Probability calculation, casino odds, 183–184
Program, in Westworld, 56–58
Programs, your first

adding print message, 35–36
distance formula in scripts, 47–48
formatted output string, 46–50

Overland_Book.indb 422Overland_Book.indb 422 8/31/17 12:57 PM8/31/17 12:57 PM

Index 423

getting numeric input, 43
getting string input, 41–43
indentation, 33–34
quadratic equation as a function,

38–40
quadratic formula with I/O, 44–46
summary, 50–51
syntax summaries, 36–37
temperatures rising, 29–33
writing Python functions, 29

promote method, 309
Prompt, writing text file with, 214–216
Properties

definition of, 404
exercises, 381
getter methods, 376–377
multilevel temperature object, 379–381
overview of, 375–376
putting getters and setters together,

378–379
setter methods, 377–378
summary, 390

Prototyping language, Python as, 3
Pseudocode

changing list elements from inside loop, 92
computer play, 290, 292
decode_roman function, 202–203
dice game (craps), 180–181
of programs or functions, 40
in this book, 3
user-initialized matrix, 259–260
writing loops, 62–65
writing Sieve of Eratosthenes, 95, 116
writing text file with prompt, 215

Pseudorandom numbers, 372–373, 374
Punctuation, in this book, 3
Pythagorean distance formula, 48–50
Pythagorean theorem, 120–122
Pythagorean triples, 118–120
Python, introduction

begin with IDLE, 6
brief history of, 1–2

correct mistakes from within IDLE,
6–7

dealing with ends of lines, 7–8
how it is different, 2–3
how this book works, 3–4
installing, 4–6
online sources of help, 8
overview of, 1

Python lists. See Lists
Python Package Index, 2
Python txt subdirectory, 209

Q
quad function, 38–40
Quadratic equation

assigning numbers to variables, 19–21
as function, 38–40
with I/O, 44–46

Quotation marks
adding call to print function, 35–36
delineating text string with matching,

125–127, 144–145
getting from doc strings, 322–323
typing literal backslash (\\) in strings, 8

R
randint function, dice game (craps), 181
random module, 370–373
Randomness, how to introduce, 373–375
Random-number generator, customizing,

370–373
range function

combining with for loop, 399
combining with len function, 90–91
counting trailing zeros, 132–133
difference between squares, 110
generating list of integers from 0 to N-1,

89–90
iterating through lists without, 101–102
revised sieve of Eratosthenes, 244
sieve of Eratosthenes example, 96
simple list comprehension, 106–109

Overland_Book.indb 423Overland_Book.indb 423 8/31/17 12:57 PM8/31/17 12:57 PM

Index424

Rapid application development language,
Python, 3

raw_input function, Python 2.0, 41–43
Reading

items by prefix, 236–238
text files, 216–217
text files vs. binary, 207–208
text files with line numbers, 220–223,

225
readlines method

load_file function, 240
reading text files, 217
reading text files with line numbers, 222

References, variables in Python as, 21–22
Remainder division operator (%). See

Remainder operator (%)
Remainder operator (%)

computer program decisions, 54
creating random-number generator, 373
defined, 12–13
floating-point numbers and, 15
full program for Game of Life, 361

remove method, set operations, 243, 247
_ _repr_ _ method, 310
return statement

creating own generator, 368
returning multiple values to functions,

169–170, 176–177, 185
rules for functions, 31

Revised sieve of Eratosthenes, 401
Right justification, format string method,

103–104
Right triangles, Pythagorean triples, 118–120
Robots, in Westworld, 56–58
r mode, opening file for reading, 224
roll function, dice game (craps), 181, 182
Roman numerals

decoding, 201–204
global variables, 196–199
marking highly important figures in,

201
superior Hindu-Arabic system vs., 200

rom_list, Roman numerals, 199–203
rotate_mat function, rotating matrix,

264–268
Rotating matrix

example, 264–268
and garbage collection, 263–264
overview of, 261–263

Rows. See Matrixes (2D lists)
Rule(s)

assigning numbers to variables, 17–20
computer player heuristics, 285–287
Conway’s Game of Life, 348–350
functions, 31
global variables, 191
important formatting, 393–395
local vs. global variables, 189–190
Python syntax, 3–4
variables, 27

Run Module (F5), Python programs, 48

S
Save File button, installing Python, 4
Save (or Save As) command, Python pro-

grams, 48
save_file function, 238–241
Scripts

distance formula, 47–48
string input, 41–43

seek function, file pointer, 217, 225
self argument

_ _init_ _ method, 301–302
defined, 318
defining other methods, 309–310
design database class, 306–307,

309–310
design Point3D class, 310–311, 312
in Python, 302–303

sep'' (separator) argument, 47, 51
sep (separator) argument

named arguments, 174
print function, 47, 51

Separator characters, 143–144

Overland_Book.indb 424Overland_Book.indb 424 8/31/17 12:57 PM8/31/17 12:57 PM

Index 425

Set braces notation, mathematics, 241
set_cells method, Game of Life, 352–353
Set comprehension, 244–245, 404
set keyword, sieve of Eratosthenes, 244
Sets

definition of, 404
importance of, 244
mathematical theory, 244
operations on, 242–244
overview of, 241–242
sieve of Eratosthenes, 117–118,

244–246
summary, 246–247

setter methods
defined, 376
multilevel temperature object example,

379–381
using with getter methods, 378–379
writing for property, 377–378

Set-theory (Venn) diagram, 243
Shortcuts, Python, 23–27
Side space, computer player heuristics, 287
Sieve of Eratosthenes

list functions and in keyword, 97–98
overview of, 93–97
revised, 244–246
using list comprehension to write,

115–118
who Eratosthenes was, 98–99

Simulation, Conway’s Game of Life, 360–361
Single-character ops

accessing individual characters, 148
art of cryptography, 164
completing palindrome test, 154–158
converting ASCII to character, 160–163
converting case of letters, 150–151
converting to ASCII code, 159–160
decoding strings, 164–166
encoding strings, 161–164
famous palindromes, 158
help with string methods, 148–149
overview of, 147

Python string/list naming conventions,
147–148

summary, 166
testing for palindromes, 151–154
testing uppercase vs. lowercase, 149–150

Slicing
changing any/all values in lists, 171
definition of, 404
producing parts of strings, 128–130, 145
strings, 166
testing for palindromes, 157–158
user-initialized matrix, 260

Slicing lists
copying data to slices, 88–89
creating separate lists, 79
and indexing, 85–87
indexing vs., 88

Slider pattern, Conway’s Game of Life, 358
sort method

sieve of Eratosthenes, 117–118
sorting lists, 83–85, 98
sorting words on line, 141–142

Spaces
in default print function, 35–36
formatted output strings, 46–47
Python indentation and, 33–34
replacing tab with multiple blank, 34
strip method used on, 136

Special method names
_ _init_ _. See _ _init_ _ function
_ _repr_ _, 310
_ _str_ _, 309
defined, 301–302
Point3D class, 310–311

Sphere subclass, Polygon “automated” class,
341–342

split method
difference/sum of two points, 172–173
returns list of smaller strings, 136,

138–139, 145
sorting words on line, 141–142
Tic-Tac-Toe, 275, 277

Overland_Book.indb 425Overland_Book.indb 425 8/31/17 12:57 PM8/31/17 12:57 PM

Index426

Square root
assigning numbers to variables, 19–21
Pythagorean distance formula, 48–50

Square subclass, Polygon “automated” class,
341–342

Squares, difference between, 109–112, 124
start argument

changing list elements from inside loop,
90

counting trailing zeros, 132–134
slicing strings, 145

startswith method, read phone book by
prefix, 237–238

Starvation Rule, Conway’s Game of Life, 349
step argument

indexing and slicing lists, 87–88
slicing strings, 145, 157, 166

StopIteration exception, generators, 369
Strings

alphabetical order for lists of, 79
building with concatenation (+),

139–141
characters as one-length, 148
as common data in lists, 78
creating with quote marks, 125–127
definition of, 405
encrypting/decoding. See Cryptography
formatted output, 46–47
getting help from doc, 321–323
getting help with methods for, 148–149
indexing and slicing, 127–130
input for, 41–43
as iterables in Python, 101
join method, 143–144
naming conventions, 147–148
as objects in Python, 295–296
as objects that support methods, 295
overview of, 125
Python characters vs., 135
single-character. See Single-character ops
sorting words on line, 141–142
splitting, 138–139

string/number conversions, 130–134
stripping, 135–138
summary, 144–146

strip method
counting trailing zeros, 131–132
difference and sum of two points, 173
producing stripped strings, 135–136,

145
of string object, 295

_ _str_ _ method
converting object to string format, 309
extending Fraction class, 334–336
writing PointN class, 328–329

str type, 131, 324
Subclasses

advantage of, 332
inheriting methods from superclasses,

333
in Polygon “automated” class, 342
summary, 345
syntax, 331

_ _sub_ _ method
3D Tic-Tac-Toe, 313, 316
Point3D class, 310–311

Super-chess playing programs, 293
Superclasses

definition of, 405
subclasses inherit methods of their, 333

Symbol, definition of, 405
Syntax errors

functions, 31
indentation, 33–34

System time
creating random-number generator,

370–372
randomization via, 374

T
Tab characters, indentation and, 33–34
Temperature class, multilevel temperature

object, 379–381
temp_list, sorting information, 77–80

Overland_Book.indb 426Overland_Book.indb 426 8/31/17 12:57 PM8/31/17 12:57 PM

Index 427

Test-for-equality (==) operator
in case-insensitive comparisons,

150–151
as comparison operator, 55
dice game (craps), 182
if statement, 54
sorting information with lists, 79
vs. assignment (=), 19
working with, 10–11

Testing
for character case, 149–150
complete palindrome, 154–158
palindrome, 151–154

test_way function, Tic-Tac-Toe, 282, 284
test_win function, Tic-Tac-Toe, 280–283
Text-editor, writing/executing long pro-

grams, 48
Text files

vs. binary files, 207–208, 224
closing, 212
opening, 211–212
reading, 216–217
treating as iterables, 216
writing, 213–216

Text, rules for formatting ordinary, 393
Text strings

getting input, 41–43
variable naming conventions, 23

This book
how it works, 3–4
Python 3.0 used in, 2

Three-dimensional (3D) Tic-Tac-Toe. See 3D
Tic-Tac-Toe game

Tic-Tac-Toe game
3D. See 3D Tic-Tac-Toe game
art of heuristics, 292–293
computer play, computer plays first,

287–291
computer play, computer plays second,

291–292
computer player, 285–287

count method for lists, 279–285
create variations on, 279
designing board, 271–273
implementing strategy, 271
phases of play, 273
Python one-line if/else, 274–278
summary, 294

time module
creating random-number generator,

371–372
decorators as debugging tool, 387–389
randomization via system time, 374

Tkinter (GUI package)
definition of, 405
Python installed with, 4
shifting focus to window generated by, 48

Tracking employees, 305–308
Transformations, generators and, 374–375
Triple quotation marks, 126–127
True value

adding machine application, 176–178
completing palindrome test, 154–158
decisions inside computer program, 54–55
dice game (craps), 181–182
get_move function, 277
in keyword producing, 196
reading text file with line numbers, 222
searching for dictionary keys, 231
sieve of Eratosthenes, 93–97
sorting lists, 85
test-for-equality (==) operator, 11
testing character case, 149–150

Truncation (limit size of print field) rules,
394, 395

Try/except block
advantages of, 219–220
duck typing, 325
FileNotFoundError, 218–219, 225
searching for dictionary keys, 231
StopIteration exception, 370

ttt_list, two-player Tic-Tac-Toe, 280–283

Overland_Book.indb 427Overland_Book.indb 427 8/31/17 12:57 PM8/31/17 12:57 PM

Index428

Tuples
converting numbers to Roman numerals,

199–201
customizing Matrix class for Game of

Life, 354
definition of, 405
enumerate function generating, 103
lists vs., 120
loading and saving to file, 239
printing table, 106
Pythagorean triples and, 119
as Python shortcut, 23–24

Turing, Alan, 58, 164
Two-dimensional (2D) list comprehension,

112–114
Two-dimensional (2D) lists. See Matrixes

(2D lists)
Types, definition of, 405

U
Underscore (_), variable names, 19, 27
Unicode, numeric display on computer, 159
union method, sets, 243
upper() method, converts string to upper-

case, 151, 166
Uppercase letters

character code for, 160
converting case of, 150–151
converting strings to, 151–153
testing characters for case, 149–150

User-initialized matrix
creating, 258–261
rotating. See Rotating matrix

V
Values

accessing existing dictionary, 230
creating default argument, 174–175, 185
defining default instance variables,

339–343
difference and sum of two points, 173

duplicating/ordering in Python lists, 78
explaining dictionary magic, 232
passed to function arguments based on

position, 185
personal phone book, 233–235
properties can encapsulate virtual,

379
Python elements have no associated,

241
returning multiple function, 168–173
sets maintaining unique, 242

Van Rossum, Guido, 1–2
Variable-length argument lists, 326–327
Variables

as aliases, 79
assigning numbers to, 17–22
definition of, 405
general rule of Python, 17, 27
getting numeric input, 41–43
getting string input, 41–43
global. See Global variables
how Python is different, 2
local. See Local variables
naming conventions, 19, 27
as references in Python, 21–22

v_dist (vertical distance), Pythagorean
distance formula, 48–49

Venn (set-theory) diagram, 243
Versions, integer division differences, 15
Vertical distance (v_dist), Pythagorean

distance formula, 48–49
Virtual sequences, generators, 368
Virtual values, properties, 379–380
Von Newman, John, 347

W
Westworld, programs and robots in, 56–58
while loop

breaking from, 70–71
counting trailing zeros, 133
creating, 61–63

Overland_Book.indb 428Overland_Book.indb 428 8/31/17 12:57 PM8/31/17 12:57 PM

Index 429

files and exception handling,
218–219

optimizing code, 65–67
printing Fibonacci numbers, 67–70
summary, 74–75
using factorials, 63–65

while True, infinite loops, 72, 75
Widget, definition of, 405
Win detection, two-player Tic-Tac-Toe,

279–285
Words, sorting on line, 141–142
Wrapper

decoration in Python, 385–387
definition of, 406
implementing in Game of Life,

351
writing decorators, 383–384

write method
save_file function, 240
text file, 213–216

X
X player. See Tic-Tac-Toe game

Y
yield statement, generators, 368

Z
Zero-based indexing

accessing matrix elements, 250, 269
definition of, 406
vs. one-based, 294

Zeros, count trailing, 131–134, 136–137
zip function, 330

Overland_Book.indb 429Overland_Book.indb 429 8/31/17 12:57 PM8/31/17 12:57 PM

Overland_Book.indb 430Overland_Book.indb 430 8/31/17 12:57 PM8/31/17 12:57 PM

This page intentionally left blank

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certification • Prentice Hall • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.
• Check the box to hear from us and receive exclusive offers on new

editions and related products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Overland_Book.indb 440Overland_Book.indb 440 8/31/17 12:57 PM8/31/17 12:57 PM

http://www.informit.com/register
http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.InformIT.com

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Steering Around the “Gotchas”
	How to Think “Pythonically”
	Intermediate and Advanced Features
	Learning in Many Different Styles
	What’s Going on “Under the Hood”
	Why Python?
	Acknowledgments
	Author Bio
	Chapter 1 Meet the Python
	A Brief History of Python
	How Python Is Different
	How This Book Works
	Installing Python
	Begin Using Python with IDLE
	Correcting Mistakes from Within IDLE
	Dealing with Ends of Lines
	Additional Help: Online Sources

	Chapter 2 A Python Safari: Numbers
	Python and Numbers
	Interlude: Why Doesn’t C++ Support Infinite Integers?
	Interlude: How Big Is a Google?

	Python and Floating-Point Numbers
	Assigning Numbers to Variables
	Interlude: What Do Python Assignments Really Do?

	Variable-Naming Conventions in This Book
	Some Python Shortcuts
	Chapter 2 Summary

	Chapter 3 Your First Programs
	Temperatures Rising?
	Interlude: Python’s Use of Indentation

	Putting in a Print Message
	Syntax Summaries
	Example 3.1. Quadratic Equation as a Function
	How It Works

	Getting String Input
	Getting Numeric Input
	Example 3.2. Quadratic Formula with I/O
	How It Works

	Formatted Output String
	Example 3.3. Distance Formula in a Script
	How It Works

	Chapter 3 Summary

	Chapter 4 Decisions and Looping
	Decisions Inside a Computer Program
	Conditional and Boolean Operators
	The if, elif, and else Keywords
	Interlude: Programs and Robots in Westworld
	Example 4.1. Enter Your Age
	How It Works

	while: Looping the Loop
	Example 4.2. Factorials
	How It Works
	Optimizing the Code
	Example 4.3. Printing Fibonacci Numbers
	How It Works

	“Give Me a break” Statement
	Example 4.4. A Number-Guessing Game
	How It Works
	Interlude: Binary Searches and “O” Complexity

	Chapter 4 Summary

	Chapter 5 Python Lists
	The Python Way: The World Is Made of Collections
	Processing Lists with for
	Modifying Elements with for (You Can't!)
	Example 5.1. A Sorting Application
	How It Works
	Optimizing the Code

	Indexing and Slicing
	Copying Data to Slices
	Ranges
	Example 5.2. Revised Factorial Program
	How It Works
	Optimizing the Code
	Example 5.3. Sieve of Eratosthenes
	How It Works
	Optimizing the Code

	List Functions and the in Keyword
	Interlude: Who Was Eratosthenes?

	Chapter 5 Summary

	Chapter 6 List Comprehension and Enumeration
	Indexes and the enumerate Function
	The Format String Method Revisited
	Example 6.1. Printing a Table
	How It Works

	Simple List Comprehension
	Example 6.2. Difference Between Squares
	How It Works
	Interlude: Proving the Equation

	“Two-Dimensional” List Comprehension
	List Comprehension with Conditional
	Example 6.3. Sieve of Eratosthenes 2
	How It Works
	Optimizing the Code: Sets
	Example 6.4. Pythagorean Triples
	How It Works
	Interlude: The Importance of Pythagoras

	Chapter 6 Summary

	Chapter 7 Python Strings
	Creating a String with Quote Marks
	Indexing and “Slicing”
	String/Number Conversions
	Example 7.1. Count Trailing Zeros
	How It Works
	Interlude: Python Characters vs. Python Strings

	Stripping for Fun and Profit
	Example 7.2. Count Zeros, Version 2
	How It Works

	Let’s Split: The split Method
	Building Strings with Concatenation (+)
	Example 7.3. Sort Words on a Line
	How It Works

	The join Method
	Chapter 7 Summary

	Chapter 8 Single-Character Ops
	Naming Conventions in This Chapter
	Accessing Individual Characters (A Review)
	Getting Help with String Methods
	Testing Uppercase vs. Lowercase
	Converting Case of Letters
	Testing for Palindromes
	Example 8.1. Convert Strings to All Caps
	How It Works
	Optimizing the Code
	Example 8.2. Completing the Palindrome Test
	How It Works
	Optimizing the Code
	Interlude: Famous Palindromes

	Converting to ASCII Code
	Converting ASCII to Character
	Example 8.3. Encode Strings
	How It Works
	Interlude: The Art of Cryptography
	Example 8.4. Decode Strings
	How It Works

	Chapter 8 Summary

	Chapter 9 Advanced Function Techniques
	Multiple Arguments
	Returning More Than One Value
	Interlude: Passing and Modifying Lists
	Example 9.1. Difference and Sum of Two Points
	How It Works

	Arguments by Name
	Default Arguments
	Example 9.2. Adding Machine
	How It Works
	Optimizing the Code

	Importing Functions from Modules
	Example 9.3. Dice Game (Craps)
	How It Works
	Interlude: Casino Odds Making

	Chapter 9 Summary

	Chapter 10 Local and Global Variables
	Local Variables, What Are They Good For?
	Locals vs. Globals
	Introducing the global Keyword
	The Python “Local Variable Trap”
	Interlude: Does C++ Have Easier Scope Rules?
	Example 10.1. Beatles Personality Profile (BPP)
	How It Works
	Example 10.2. Roman Numerals
	How It Works
	Optimizing the Code
	Interlude: What’s Up with Roman Numerals?
	Example 10.3. Decode Roman Numerals
	How It Works
	Optimizing the Code

	Chapter 10 Summary

	Chapter 11 File Ops
	Text Files vs. Binary Files
	The Op System (os) Module
	Interlude: Running on Other Systems

	Open a File
	Let’s Write a Text File
	Example 11.1. Write File with Prompt
	How It Works

	Read a Text File
	Files and Exception Handling
	Interlude: Advantages of try/except
	Example 11.2. Text Read with Line Numbers
	How It Works

	Other File Modes
	Chapter 11 Summary

	Chapter 12 Dictionaries and Sets
	Why Do We Need Dictionaries, Ms. Librarian?
	Adding and Changing Key-Value Pairs
	Accessing Values
	Searching for Keys
	Interlude: What Explains Dictionary “Magic”?
	Example 12.1. Personal Phone Book
	How It Works

	Converting Dictionaries to Lists
	Example 12.2. Reading Items by Prefix
	How It Works
	Example 12.3. Loading and Saving to a File
	How It Works

	All About Sets
	Operations on Sets
	Interlude: What’s So Important About Sets?
	Example 12.4. Revised Sieve of Eratosthenes
	How It Works

	Chapter 12 Summary

	Chapter 13 Matrixes: 2-D Lists
	Simple Matrixes
	Accessing Elements
	Irregular Matrixes and Length of a Row
	Multiplication (*) and Lists
	The Python Matrix Problem
	How to Create N*M Matrixes: The Solution
	Interlude: Why Isn’t It Easier?
	Example 13.1. Multiplication Table
	How It Works
	Example 13.2. User-Initialized Matrix
	How It Works
	Optimizing the Code

	How to Rotate a Matrix
	Interlude: Pros and Cons of Garbage Collection
	Example 13.3. Complete Rotation Example
	How It Works
	Optimizing the Code

	Chapter 13 Summary

	Chapter 14 Winning at Tic-Tac-Toe
	Design of a Tic-Tac-Toe Board
	Plan of This Chapter
	Phase 1
	Phase 2
	Phase 3

	Python One-Line if/else
	Example 14.1. Simple Two-Player Game
	How It Works
	Interlude: Variations on Tic-Tac-Toe

	The count Method for Lists
	Example 14.2. Two-Player Game with Win Detection
	How It Works

	Introducing the Computer Player
	Example 14.3. Computer Play: The Computer Goes First
	How It Works
	Playing Second
	Interlude: The Art of Heuristics

	Chapter 14 Summary

	Chapter 15 Classes and Objects I
	What’s an Object?
	Classes in Python
	How Do I Define a Simple Class?
	How Do I Use a Class to Create Objects?
	How Do I Attach Data to Objects?
	How Do I Write Methods?

	The All-Important_ _init_ _ Method
	Interlude: Why This self Obsession?

	Design for a Database Class
	Interlude: C++ Classes Compared to Python
	Example 15.1. Tracking Employees
	How It Works

	Defining Other Methods
	Design for a Point3D Class
	Point3D Class and Default Arguments
	Three-Dimensional Tic-Tac-Toe
	Example 15.2. Looking for a 3-D Win
	How It Works
	Example 15.3. Calculating Ways of Winning
	How It Works
	Optimizing the Code

	Chapter 15 Summary

	Chapter 16 Classes and Objects II
	Getting Help from Doc Strings
	Function Typing and “Overloading”
	Interlude: What Is Duck Typing?

	Variable-Length Argument Lists
	Example 16.1. PointN Class
	How It Works
	Optimizing the Code

	Inheritance
	The Fraction Class
	Example 16.2. Extending the Fraction Class
	How It Works

	Class Variables and Methods
	Instance Variables as “Default” Values
	Example 16.3. Polygon “Automated” Class
	How It Works
	Interlude: OOPS, What Is It Good For?

	Chapter 16 Summary

	Chapter 17 Conway’s Game of Life
	Interlude: The Impact of “Life”
	Game of Life: The Rules of the Game
	Generating the Neighbor Count
	Design of the Program
	Example 17.1. The Customized Matrix Class
	How It Works

	Moving the Matrix Class to a Module
	Example 17.2. Printing a Life Matrix
	How It Works

	The Famous Slider Pattern
	Example 17.3. The Whole Game of Life Program
	How It Works
	Interlude: Does “Life” Create Life?

	Chapter 17 Summary

	Chapter 18 Advanced Pythonic Techniques
	Generators
	Exploiting the Power of Generators
	Example 18.1. A Custom Random-Number Generator
	How It Works
	Interlude: How Random Is “Random”?

	Properties
	Getter Methods
	Setter Methods
	Putting Getters and Setters Together
	Example 18.2. Multilevel Temperature Object
	How It Works

	Decorators: Functions Enclosing Other Functions
	Python Decoration
	Example 18.3. Decorators as Debugging Tools
	How It Works

	Chapter 18 Summary

	Appendix A: Python Operator Precedence Table
	Appendix B: Summary of Most Important Formatting Rules for Python 3.0
	1. Formatting Ordinary Text
	2. Formatting Arguments
	3. Specifying Order of Arguments
	4. Right Justification Within Field of Size N
	5. Left Justification Within Field of Size N
	6. Truncation: Limit Size of Print Field
	7. Combined Truncation and Justification
	8. Length and Precision of Floating-Point Numbers
	9. The Padding Character

	Appendix C: Glossary
	A
	B
	C
	D
	F
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	V
	W
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

