Python Unit
Test Automation

Automate, Organize, and
Execute Unit Tests in Python

Second Edition

Ashwin Pajankar

Apress-

Python Unit Test
Automation

Automate, Organize, and
Execute Unit Tests in Python

Second Edition

Ashwin Pajankar

Apress’

Python Unit Test Automation: Automate, Organize, and Execute
Unit Tests in Python

Ashwin Pajankar
Nashik, Maharashtra, India

ISBN-13 (pbk): 978-1-4842-7853-6 ISBN-13 (electronic): 978-1-4842-7854-3
https://doi.org/10.1007/978-1-4842-7854-3

Copyright © 2022 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Mark Powers

Copyeditor: Kezia Endsley

Cover designed by eStudioCalamar
Cover image by Jason Leung on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7854-3

I dedicate this book to Alan Mathison Turing, an
English mathematician, computer scientist, logician,
cryptanalyst, and philosopher who was influential in the
development of theoretical computer science.

Table of Contents

About the AUhOFcccmminmmmmsessmsssss s xi
About the Technical REVIEWEIScccsmsssmsmsssnsssssssssssnsssssnsssssnsssssnnss xiii
Acknowledgments.........cccuuussssnmmnnmmmmmssssssssssssnnnmesssssssssssnnnsnesssssssnnnnns XV
INtroductioncccccnsemmmnsnmmsssnnmssssnmsssnsmsssnnssssnsssssnsssssnnnnssnnnnssnnnnnnns Xvii
Chapter 1: Introduction to Python............cccvvnnmeemmnmnnnnnnnsssssssnnnmmn. 1
The History of PYthoN...........ccvieiiiinesercse e 1
Features of PYtON ... 3
SIMPIE et ——————— 3

o L (0 I 1T T o SRR 3

Easy t0 Read.........ccoocircerererrr s 4

Easy t0 Maintain..........cccvvvernenennsesnesessse s s ssans 4

OPEBN SOUICE ..cveveieirerie ettt e s st s b e st e b st e s nne s 4
High-Level LaNQUAGE.........ccovrererrnserrnesssrssessssessssesessssessssssssssssssssessssesssssssssans 4
POMADIE ... e 5
INTEIPreted..... ..o ——————————— 5
ObjeCt-0riented ..o e 5
EXTENSIDIE ... 6
EXIENSIVE LIDIAriEs ...ccccevereerreerisse s 6

20 11 S 6
Rapid Prototyping.......ccccoveererenernsesenesessse s sessse s sessssesssse s sessssessssessnnes 7
Memory Managementcooccvvrrnnenmnnnesssesesese s e sessans 7

TABLE OF CONTENTS

POWEITUL ...t s 7
COMMUNILY SUPPOL.....civereecirerere e ser e e e s s se s s sasse s saesaesassesaesnens 8
PYENON 3. e e s 8
Differences Between Python 2 and Python 3ccccovinivncnccccnccenccnnen 8
Why Use PYThon 3. ssssssssssssesenes 10
Installing Python 3 ... 11
INStallation 0N LINUX ..o 11
Installation on Debian, Ubuntu, and Derivatives..........ccccceverercervnrennerierienns 1
Installation on Fedora and CentOS ... 11
Installation 0n MACOS X ..o s 12
Installation on WindOWS..........ccoeorrenrerereerreses e 12
Running a Python Program and Python Modes...........ccceoeeerercrnncnnnenesenerenscnenns 15
INtEractive MOdE.........ccov e 16
SCHPL MOUE ..ot e 17
IDES fOF PYINON.......coeeeeeee s 18
IDLE ...ttt e 18
The PyDev Plugin for ECHIPSE......ccoveeeerenerercrnesereser e 19
(€T ST 20
g0 = T 1 21
0] T L1 SRRSO 23

Chapter 2: Getting Started..........ccorcmmmrnnnmmmnnnennsesn——— 0 29

A Brief Introduction to Software Testing COnCeptsccvvvrerrevrrerreriernserserenns 25
LT [T S 26
Test AULOMALION.........ccviieree e 26
The Benefits of Automated Unit Testing.........cccccvvrvnneninvnnnninsnsenseesenenans 26

USING DOCSIIINGS ..ccucivevieiriere s s sr s snen 27
Example of a Docstring in Python.........c.ccoovrvrvnve v 28

TABLE OF CONTENTS

A Brief Introduction t0 doctest ... 32
L 11T 0T S 35
(00411 11 TR 41
Chapter 3: unittest........cccerrrnremmmmmnssnnnmmnmsssnmmsssn s —————— 43
INtroduction 10 XUNIL........coeocoereereerec e 44
USING UNITEST......coriccecccere s 45
Order of Execution of the Test Methods.........c.cccovrvrrnsrnnennnesesnsesesesenennes 47
TESE DISCOVEIY ...veuerrrrerrreerrsse s e e sr s sr e sa e e nrnnsnnns 73
Coding Conventions for UNIESt ... 75
AsSertions in UNITEST ... ————— 76
Other Useful Methods..........covienineninnise s 78

[VLT 0 T T S 79
EXCeptions iN TESE CASEScovvverereererrererserseressessessessssessessesssssssessessssesessesaes 82
Creating TESt SUITES.....cvvvvrerrererererrerre e s s s se s sre s s e saeene s 86
Creating TESt SUITES.....cuvvvverrerererer e re e s s s s se e s sa e e saesne s 88

0] T 1T (0] o P 89
Chapter 4: nose and N0SE2.......cccusseemmrsssssnnnmsssssnnsssssssnnsssssssnnssssssnnnnss 91
INtrOdUCEION 10 NOSE.......cervecrercer e 91
Installing nose on Linux Distributions...........cccvvevennnsnnsensese e 91
Installing nose on Mac0S and Windows........c.ccccevenmrnnesensenesenesensesesesessnns 92
Verifying the Installation.............ccoveeerennecrnserreses s 92
Getting Started With NOSE.........cccvrerrerr s 93

A Simple N0SE TESE CASEccccvverererirriren e sessesaens 93
Running the Test Module with noSetests.........c.ccovvvrnrenerieseresernseseresereenes 94

(6T 114105] o 95
Organizing the TeSt COde.........ovrrrrermrrererererer e 96
TESE DISCOVEIYveereeererecerree e s sesse e s sensesensnnens 98

vii

TABLE OF CONTENTS

Fixtures for Classes, Modules, and Methodsccccvciiiininsinnnnnsnsse s 98
Fixtures for FUNCHONS........cccooivirirnr s 101
TESHNG TOOIS ...eevererrercr e s 107
(0] LG 1210 o [SR 108
The @raises() DECOIALOr........cvvveererierierererrerseresrssessere e ssssesessessesessessessens 109
The @timed() dECOrator.........ccovvveverrererererrere e r e sre e e e ssesaens 111
Report GENeration ... s 112
Creating an XML RepOrt.........cceveiiininiencsnse s ses e snes 112
Creating an HTML REpOrt ... 113
Creating Color Output in the Consoleccceeeerrverrrenrieccrrce e 114
Running unittest TEStS from NOSEccceveerrerrerer s 115
Running doctest Tests from NOSE.........ccvvrernnesssesesinsesssesese e sessenes 116
Advantages 0f nose over UNIHESt.........coucvvenrns s 116
Disadvantages 0f NOSE......cccccvvrrrrierenirrere s sr e 117
USING NOSE2 ...ttt s e e e s e e s a e s a e e ne s 118
(00416 11O 121
Chapter 5: pytest.......ccccccnmmmmmmmmmmmmssmnmmmsssmmmmsssnmmsssssnsssssannnn. 123
INtroduction t0 PYLEST.......ccvceerererrrre e ———— 124
SIMPIE TEST ..o ————————— 124
Running Tests with the py.test Commandccccooverncnniennresnnseseneens 126
Test Class and Test Package in PYtest.........ccocveerrrerereneresesensesesenesessenenns 127
Test DiSCOVEry in PYLEST.......cccvverrererrscrere s 129
XUNIE-Style FIXTUIESccveveerecerereer e 129
pytest Support for unittest and NOSE..........cccocvcriivrcrininr s 131
Introduction to pytest FIXIUIESccovevrecrscesrese e 131
Scope of pytest FIXTUIES ... 137

viii

TABLE OF CONTENTS

Important pytest Command-Line Optionsccccvvvierernvnienenensensesesessessensenes 139
3]| S 139
Stopping After the First (or N) FaIlUres........ccocvverevnrrienienssensereve s senennes 140
Profiling Test Execution Duration..........c.cccocevvninvnnnininse s senenens 140
JUNIE-STYIE LOUS ..voerererieerere e ses e s s sss e sesse e sss e ssessessesessessesnesassesnesnees 140

(00416 11 R 140

Chapter 6: Testing with Selenium.........ccccccivnnnnnnmnnsnnnsssmm——— 143

Introduction t0 SEleNiUM...........cc o 143

SeleniUM IDE...........co e 144

Selenium WebdriVer ... s 155

Selenium With Unittest..........covriincnnnsss s 158

{0] T 11T (0] o 159

Chapter 7: Logging in Pythonccccvnnnemmmmnssssnnnmssssssssssssssssssssssnns 161

LOQQING BaASICS.....cecerreririrereriesisse s s se s se s s s 161

Logging With @n 0S.........ccoroererrrer e 162

Manually Logging with File Operations............ccovvenernnernsmsmnsesesesesessesessesessens 163

Logging in PYINON ... 165
LOggiNg 10 @ File...ccveeerrecereerrre s 167
Customizing the Log MESSAQE..........ccrrvrerrrrermrreserrnsessssessssse s sessesssssessnnes 168
Customizing Logging Operations...........ccovveverrenernsesensesessssessssesessesessssessnnes 169
Rotating @ Log File........ccovevrrenernscrneserese s 172
USiNg MUItIPIE LOGOEIS....ccovvererererreerinsesesesesse e sesse e s sessssnssasessnnes 173
Logging With TRIEadSccvererererernsesire s 176
Multiple Loggers Writing to the Same Targetcccovevnienrinnrnsesenenens 180

LOgging With IOQUIUccoviiircere e s 183
Using loguru and the Available Logging Levelscccovveeernvrnicnenesennnne, 183
Customizing File Retention...........cccccvvennnesnnnsennse s 186

ix

TABLE OF CONTENTS

(T3 0] 0T T T [e 3T R 187
Customizing the Log Message Format and Display..........ccccecvrerrereererseriennes 189
Configuring With @ DICHIONArYcccccverevvrrrere e enes 190

0] T3 13 o OO 191
Chapter 8: Tips and TriCKScuursrrssmmmsssnsssssnsssssnsesssnsssssssssssnnssssnnssss 193
Coding and Filenaming Conventions for Easier Test Discoveryc.cocueeuee.. 193
Test-Driven Development with pytest........ccccoovvininnininin e 195
CONCIUSION ...ttt s a e s e e e sae e e nne s 203
INA@X..euiiiisnnnnrisssnnnnmsssssnnnmssssnnnnnsssssnnnnssssnnnnnssssnnnnessssnnnnessssnnnnssssnnnnnss 205

About the Author

Ashwin Pajankar is a programmer, a maker, an author, a YouTuber, and a
science popularizer. He graduated from IIIT Hyderabad with an MTech in
Computer Science and Engineering. He has a keen interest in promoting
science, technology, engineering, and mathematics (STEM) education.
He has written many books with Packt, Leanpub, BPB, and Apress, and
has also reviewed many books for Packt and Apress. He’s also working on
many more books with Apress.

His YouTube channel has more than 10,000 subscribers and he also
teaches more than 75,000 students on Udemy.

His personal website is www.AshwinPajankar.com.

His LinkedIn profile is

https://in.linkedin.com/in/ashwinpajankar

http://www.ashwinpajankar.com/
https://in.linkedin.com/in/ashwinpajankar

About the Technical Reviewers

Shraddha Joshi is currently working as an engineer at PwC with experience
in testing with Python and Java in major production environments. She has
worked with various global clients across multiple domains and helped
them build products and solutions with full-fledged testing frameworks.
She has expertise in all phases of the development process and leads the
design, development, execution, and automation stages of test plans for

a diverse set of system components. Previously, she was a Senior Quality
Engineer at Incture Technologies, where she was involved in designing
functional integration and regression test plans, building and executing
manual and automated tests, and performing highly complex analysis for
multiple products. She also helped set cross-functional product testing
standards involving the application of advanced technical/business skills in
the area of specialization.

Shraddha'’s great knack for simplifying concepts and explaining them
in an easy-to-understand manner makes her stand apart. She is passionate
about guiding and mentoring people in their technology journey. She is
also actively involved in conducting workshops, webinars, and sessions.

She lives in Bangalore with her family.

Sujay Raghavendra is a distinguished IT professional with a master’s
degree in Information Technology. His research interests include
computer vision, NLP, machine learning, deep learning, and artificial
intelligence. He has served as an advisor for various universities and
startups. He has been active in the research community. He has also
authored a book with Apress Media. He has published research papers at
various international journals and conferences and is a leading industry

expert and mentor for professionals.

xiii

Acknowledgments

I am grateful to the student and teacher community which, with their
continual bombardment of queries, impelled me to learn more, simplify
my findings, and organize them into a book. This book is for them.

I'wish to thank my friends and colleagues—the practitioners from the
field—for their good counsel and for filling me in on the latest in the field
of test automation.

A special thanks to the technical reviewers—Shraddha and Sujay—for
their vigilant review and for providing their expert opinions.

I consider myself very fortunate for the editorial assistance provided
by Apress; the collaboration with them has been fabulous. I am thankful
to Celestin Suresh John, Senior Manager, Editorial Acquisitions, Apress
and Springer Science and Business Media Company, for giving me
this and many other opportunities to collaborate with Apress. I wish to
acknowledge and appreciate James Markham, Mark Powers, and the
team of associates from Apress who adeptly guided me through the entire
process of preparation and publication.

Introduction

Why This Book?

I'have been using Python for more than ten years on a wide variety of
projects. Initially, I used it for GUI applications. Then I quickly moved to
scientific usage, as my academic projects demanded it. When I entered
professional life, I used it for automation first and then for implementation
of alert mechanisms. I have been using Python for the last six years in the
fields of scientific computing, Internet of Things (IoT), and single board
computers. [have written plenty of Python code over these years.

I always prefer it to bash scripting, which offers limited capabilities to
users like me. At different points over the last ten years, I've worked as a
developer, an R&D engineer, a maker, an author, and a QA specialist. I used
Python in every single role.

Whenever I write code, I unit test it thoroughly. I used to unit test all
my Python modules in the good old manual way. I used to run all the
scripts once and compare the outcome with what was expected. However,
Ilearned that when your codebase grows larger, it’s pretty difficult to test
the scripts manually. Also, all the scripts have to be tested, re-tested, and
tested for regression whenever a small part of the codebase changes. I was
looking for a way to run all the tests automatically, which led me to reading
about test automation. It immediately piqued my curiosity and, after a
couple of days, I was running my own automated Python tests.

After acquainting myself with the philosophy of test automation,

I applied my newfound knowledge to automate unit and integration testing
to web, mobile, GUI, API, and a variety of other types of applications using
programming languages like C++, Python, Java, and PHP.

xvii

INTRODUCTION

I wrote this book to share my knowledge and experiences while
automating unit tests in Python 3. I explore different frameworks and
plugins in this book. I learned about the tools and techniques explained
in this book by spending numerous hours learning, coding, discussing,
and actively participating in diverse Internet forums. I have condensed the
knowledge to the basics of the unit test automation frameworks. I hope you
will enjoy reading and following the book as much as I enjoyed writing it.
This book includes the following:

e Anintroduction to Python and various IDEs

e Various test automation frameworks for Python 3,
including doctest, unittest, nose, nose2, and pytest

o Logging frameworks and web driver automation

e Coding standards for Python 3 test automation and
implementation of test-driven development with
pytest in Python 3

Who This Book Is For

The main audience of this book is Python 3 programmers who want to
automate their unit tests. This includes a large and diverse set of people,
including developers, test automators, students, researchers, and novice
learners. The book is for those who have some knowledge of the Python
programming language. The test automation engineers who have already
worked with other programming frameworks, such as Java and C++, will
find this book immensely useful to learn how test automation is done in
Python 3. If you are just beginning with Python 3 programming and want
to quickly get into automating the unit tests of your modules and packages,
you will find this book helpful.

xviii

INTRODUCTION

This book is not a book for learning Python 3 programming and syntax

from scratch. It is also not a DIY cookbook for development projects. If

your understanding of coding is limited, you will find it difficult to follow

this book.

How This Book Is Organized

This book has eight chapters. Here is a sneak peek into the topics covered

in each chapter:

Chapter 1: This chapter introduces you to the history
and philosophy of Python. It teaches you how to install
Python and how to set up the environment for Python 3
programming. It also briefly explores the new features
of Python 3 and introduces you to a few popular
Python 3 IDEs.

Chapter 2: The aim of this chapter is to quickly get
you started with unit test automation in Python 3. The
chapter revises the understanding of testing concepts
and quickly moves into implementing those concepts
with docstring and doctest.

Chapter 3: This chapter serves to introduce xUnit and
its philosophy to you. Then it proceeds to teach you
how to implement concepts of xUnit with unittest, a
xUnit port for Python.

Chapter 4: This chapter explores the inadequacies
of unittest. Then it explores a better unit-testing
framework, called nose. It explains the installation of
plugins for nose to generate reports. It also discusses
nose2, which is nose's next-generation version that’s
under active development.

Xix

INTRODUCTION

Chapter 5: This chapter introduces you to a modular,
easy-to-use, unit test framework for Python, called
pytest. It discusses the drawbacks of nose and
compares nose, unittest, and pytest.

Chapter 6: This chapter introduces you to a web driver
automation framework known as selenium. You will
learn how to use the Selenium IDE and Selenium
Python library.

Chapter 7: This chapter introduces you to various
logging frameworks in Python. First, you will explore
the built-in framework, logging. Then you will explore
a third-party logging library, called loguru.

Chapter 8: This chapter helps you understand the
coding and filenaming conventions for facilitating
easier test discovery across various unit test
frameworks in Python. The chapter concludes the book
by implementing a test-driven development in Python
3 using pytest.

How to Get the Most Out of This Book

To get the most out of this book, it’s best to abide by the following:

Read the chapters thoroughly. Use the chapters hands-
on by following the step-by-step instructions stated
in the code examples. Do not skip any of the code

examples.

If need be, repeat them a second time or until the
concept is firmly etched in your mind.

Join a Python community or discussion forum.

INTRODUCTION

o Explore and practice with various Python IDEs

¢ Read the online documentation available for various
test automation frameworks for Python 3.

e Read the blogs related to test automation, Python 3,
migration to Python 3 from Python 2, logging, and test-
driven development.

Where Next?

I have endeavored to unleash the power of the unit test automation
libraries for Python 3 as an aid to the community of professional
developers and testers. I recommend you read the book from cover to
cover, without skipping any of the chapters, text, or code examples.

I wish you well in exploring Python!

A Quick Word About the Instructors’ Fraternity

Attention has been paid to the sequence of chapters and to the flow of
topics in each chapter. This is done particularly with an objective to assist
my fellow instructors and academicians in carving out a syllabus from the
Table of Contents (ToC) of the book. The complete ToC complements the
syllabus of “Introduction to Software Testing,” if students were introduced
to programming during their freshman year with the help of Python.

I have ensured that each concept discussed in this book includes
adequate hands-on content to enable you to teach better and to provide
ample hands-on practice to your students.

Happy learning and exploring!

—Ashwin Pajankar

CHAPTER 1

Introduction
to Python

I hope you have glanced through the introduction section. If you have not,
then I recommend reading it, as it will help you with the context and the
philosophy of this book.

Let’s begin this adventurous journey by learning the history and
background of Python.

I personally find Python amazing and have been enchanted by it.
Python is a simple yet powerful programming language. When using
Python, it’s easy to focus on the implementation of the solution to a given
problem, as programmers do not have to worry about the syntax of the
programming language.

The History of Python

Python was conceived in the late 1980s. Guido van Rossum began its
implementation in late 1989 at the Centrum Wiskunde & Informatica
(National Research Institute for Mathematics and Computer Science) in
the Netherlands. Python is a successor to the ABC programming language,
which itself was inspired by SETL. In February 1991, Van Rossum
published Python code to the alt.sources newsgroup. The name Python
was inspired by the television show “Monty Python’s Flying Circus,” as Van
Rossum is a big fan of Monty Python.

© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_1

https://doi.org/10.1007/978-1-4842-7854-3_1#DOI

CHAPTER 1 INTRODUCTION TO PYTHON

Van Rossum is the principal author of Python. He played a central role
in guiding the development and evolution of Python. He held the title of
Benevolent Dictator for Life for Python. In 2018, he stepped down from that
role. As of the writing of this edition, he works for Microsoft.

The central philosophy of Python, called the Zen of Python, is
explained in PEP-20, which can be found at https://www.python.org/
dev/peps/pep-0020.

It is a collection of 20 software principles, as follows:

o Beautiful is better than ugly.

o Explicit is better than implicit.

e Simple is better than complex.

o Complex is better than complicated.

o Flatis better than nested.

o Sparse is better than dense.

o Readability counts.

e Special cases aren’t special enough to break the rules.
e Practicality beats purity.

o Errors should never pass silently.

e Unless explicitly silenced.

o In the face of ambiguity, refuse the temptation to guess.

e There should be one—and preferably only one—
obvious way to do it.

o Although that way may not be obvious at first unless
you're Dutch.

e« Now s better than never.

https://www.python.org/dev/peps/pep-0020
https://www.python.org/dev/peps/pep-0020

CHAPTER 1 INTRODUCTION TO PYTHON

o Although never is often better than right now.
o Ifthe implementation is hard to explain, it's a bad idea.

o Ifthe implementation is easy to explain, it may be a
good idea.

o Namespaces are one honking great idea—let’s do more
of those!

Features of Python

The following sections discuss the features of Python that have become
popular and beloved in the programming community.

Simple

Python is a simple and minimalist language. Reading a well written and
good Python program makes you feel as if you are reading English text.

Easy to Learn

Due to its simple and English-like syntax, Python is extremely easy for
beginners to learn.

That is the prime reason that, nowadays, it is taught as the first
programming language to high school and university students who
take introduction to programming and programming 101 courses. An
entire new generation of programmers is learning Python as their first
programming language.

CHAPTER 1 INTRODUCTION TO PYTHON

Easy to Read

Unlike other high-level programming languages, Python does not provide
much provision for obfuscating code and making it unreadable. The
English-like structure of Python code makes it easier to read, compared
to code written in other programming languages. This makes it easier to
understand and easier to learn, compared to other high-level languages
like C and C++.

Easy to Maintain

As Python code is easy to read, easy to understand, and easy to learn,
anyone maintaining the code becomes comfortable with its codebase in
considerably less time. I can vouch for this from personal experiences
of maintaining and enhancing large legacy codebases written in a
combination of bash and Python 2.

Open Source

Python is an open-source project. That means its source code is freely
available. You can make changes to it to suit your needs and use the
original and changed code in your applications.

High-Level Language

While writing Python programs, you do not have to manage low-level
details like memory management, CPU timings, and scheduling processes.
All these tasks are managed by the Python interpreter. You can directly
write the code in easy-to- understand, English-like syntax.

CHAPTER 1 INTRODUCTION TO PYTHON

Portable

Python has been ported to many platforms. All Python programs work on
any of these platforms without requiring any changes, if you are careful
enough to avoid any system-dependent features. You can use Python on
GNU/Linux, Windows, Android, FreeBSD, macOS, iOS, Solaris, OS/2,
Amiga, AROS, AS/400, BeOS, 0S/390, z/0S, Palm OS, QNX, VMS, Psion,
Acorn, RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE, and
PocketPC.

Interpreted

Python is an interpreted language. Programs written in a high-level
programming language like C, C++, and Java are first compiled. This
means that they are first converted into an intermediate format. When
you run the program, this intermediate format is loaded from secondary
storage (i.e., a hard disk) to memory (RAM) by the linker/loader. So, C,
C++, and Java have separate compilers and linkers/loaders. This is not

the case with Python. Python runs its programs directly from the source
code. You do not have to bother about compiling and linking to the proper
libraries. This makes Python programs truly portable, as you can copy the
program to one computer from another and the program runs fine as long
as the necessary libraries are installed on the target computer.

Object-Oriented

Python supports object-oriented programming paradigms. In object-
oriented programming languages, the program is built around objects
that combine data and related functionality. Python is a very simple but
powerful object-oriented programming language.

CHAPTER 1 INTRODUCTION TO PYTHON

Extensible

One of the features of Python is that you can call C and C++ routines from
Python programs. If you want the core functionality of the application

to run faster, you can code that part in C/C++ and call it in the Python
program (C/C++ programs generally run faster than Python).

Extensive Libraries

Python has an extensive standard library, which comes pre-installed.

The standard library has all the essential features of a modern day
programming language. It has provision for databases, unit testing (we will
explore this in this book), regular expressions, multi-threading, network
programming, computer graphics, image processing, GUI, and other
utilities. This is part of Python’s batteries-included philosophy.

Apart from standard library, Python has a large and ever-growing set of
third-party libraries. The list of these libraries can be found in the Python
Package Index (https://pypi.org/). We will explore a few libraries like
unittest, nose, nose2, pytest, and selenium for test automation in this
book. I also have worked with and extensively written on the libraries
for scientific computing and computer vision such as numpy, scipy,
matplotlib, pillow, scikit-image, and OpenCV.

Robust

Python provides robustness by means of its ability to handle errors.

The full stack trace of the encountered errors is available and makes

the programmer’s life more bearable. The runtime errors are known as
exceptions. The feature that allows handling of these errors is known as the
exception handling mechanism.

https://pypi.org/

CHAPTER 1 INTRODUCTION TO PYTHON

Rapid Prototyping

Python is used as a rapid prototyping tool. As you have read, Python has
extensive libraries and is easy to learn, so many software architects are
increasingly using it as a tool to rapidly prototype their ideas into working
models in a very short period of time.

Memory Management

In assembly language and programming languages like C and C++,
memory management is the responsibility of the programmer. And this
is in addition to the task at hand. This creates an unnecessary burden
on the programmer. In Python, the Python interpreter handles memory
management. This helps programmers steer clear of memory issues and
focus on the task at hand.

Powerful

Python has everything in it for a modern programming language. It

is used for applications like computer vision, supercomputing, drug
discovery, scientific computing, simulation, and bioinformatics. Millions
of programmers around the world use Python. Many big organizations like
NASA, Google, SpaceX, and Cisco use Python for their applications and
infrastructure.

CHAPTER 1 INTRODUCTION TO PYTHON

Community Support

I find this the most appealing feature of Python. As you have read, Python
is open source and has a community of almost a million programmers
(probably more, as today’s high school kids are learning Python)
throughout the world. That means there are plenty of forums on the
Internet supporting programmers who encounter roadblocks. None of my
queries related to Python has ever gone unanswered.

Python 3

Python 3 was released in 2008. The Python development team decided
to do away with some of the redundant features of the Python language,
simplify some of its features, rectify some design flaws, and add some
much-needed features.

It was decided that a major revision number was warranted and the
resultant release would not be backward compatible. Python 2.x and 3.x
were supposed to coexist in parallel for the programmer community to
have enough time to migrate their code and the third-party libraries from
2.x to 3.x. Python 2.x code cannot run on Python 3 in many cases, as there
are significant differences between 2.x and 3.x.

Differences Between Python 2 and Python 3

The following are the most notable differences between Python 2 and
Python 3. Let’s look at them in brief:

e The print() function

This is perhaps the most notable difference between
Python 2 and Python 3. The print statement

of Python 2 is replaced with the print() function in
Python 3.

CHAPTER 1 INTRODUCTION TO PYTHON

Integer division

The nature of integer division has been changed in
Python 3 for the sake of mathematical correctness.
In Python 2, the result of division of two integer
operands is an integer. However, in Python 3, itis a
float value.

Omission of xrange()

In Python 2, for creating iterable objects, the
xrange() function is used. In Python 3, range() is
implemented much like xrange(). So, a separate
xrange() is not needed anymore. Using xrange() in
Python 3 raises a nameError.

Raising exceptions

It is mandatory in Python 3 to enclose exception
arguments, if any, in parentheses, whereas in
Python 2 it is optional.

Handling exceptions

In Python 3, while handling exceptions, the as
keyword is needed before the parameter to handle
an argument. In Python 2, it is not needed.

New style classes

Python 2 supports old and new style classes,
whereas Python 3 supports only new style classes.
All classes created in Python 3 use new style classes
by default.

CHAPTER 1 INTRODUCTION TO PYTHON

o New features of Python 3

The following new features of Python 3 have not
been backported to Python 2:

a. Strings are Unicode by default

b. Clean Unicode/byte separation

c. Exception chaining

d. Function annotations

e. Syntax for keyword-only arguments
f. Extended tuple unpacking

g. Non-local variable declarations

From this list, you will be frequently using print (), new-style classes,
and exceptions in the code examples in this book.

Why Use Python 3

From the previous list, you will be frequently using new-style classes and
exceptions in the code examples in this book.

Python’s wiki page (https://wiki.python.org/moin/
Python2orPython3) says the following:

Python 3 is strongly recommended for any new development.

New generation of programmers are introduced to Python 3 as their
first programming language. When they are comfortable with the concept
and philosophy of Python programming, they are gradually introduced
to Python 2 so that they can also work with legacy codebases. Many
organizations have already started migrating codebases from Python 2 to
Python 3. All new projects in Python extensively use Python 3. Python 2 is
almost dead as of writing of this edition of the book. Most organizations
are migrating their legacy codebases from Python 2 to Python 3. Day by

10

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3

CHAPTER 1 INTRODUCTION TO PYTHON

day, there is less and less code in Python 2 and it is either abandoned
or converted to Python 3. Itis a long and tedious process to convert
Python 2 code to Python 3. Many organizations are doing it on as-needed
basis. The general rule of thumb that most organizations follow is that
if the code works then they do not touch it. However, as I have already
said, all the new projects involving Python are kicked off with Python 3.
Going forward, conversion of legacy Python 2 codebase to Python 3 will
present technically challenging and financially lucrative opportunities for
professionals.

I personally think that these are pretty good reasons to use Python 3.

Installing Python 3

This section discusses how to install Python 3 on various commonly used
computer OSs.

Installation on Linux

Linux has many popular distributions. Python 3 is preinstalled on many
popular distributions.

Installation on Debian, Ubuntu, and Derivatives

The Python 3 interpreter comes preinstalled on the latest releases of
Debian, Ubuntu, and their derivatives.

Installation on Fedora and Cent0S

The Python 3 interpreter comes preinstalled on the latest releases of
Fedora and CentOS.

11

CHAPTER 1 INTRODUCTION TO PYTHON

Note On most of the latest Linux distributions, both versions

of Python (Python 2 and Python 3) are installed by default. The
interpreter for Python 2 is a binary executable file named python and
the interpreter for Python 3 is another binary executable file named
python3.You can use python3 --Vor python3 --versionto
check the version of the Python 3 interpreter installed on your Linux
computer. Also, you can use the which python3 command to
determine the location of the interpreter on the disk.

Installation on mac0S X

On macOS X, the Python 2 interpreter is installed by default and can be
invoked from the terminal using the python command. If you want to use
Python 3, you have to install it. Make sure that the computer is connected
to the Internet and run the brew install python3 command in the
terminal. This will install Python 3. It will also install other utilities, such as
pip, setuptools, and wheel.

Once the installation finishes, go to the terminal and type python3 --V
or python3 --version to check the version of the Python 3 interpreter
installed.

Installation on Windows

In Windows OS, Python 3 installation requires a bit more effort. Python 2
or Python 3 is not preinstalled on a Windows computer. In order to
install it, you have to visit the downloads section of the Python website at
https://www.python.org/downloads, as shown in Figure 1-1.

12

https://www.python.org/downloads

CHAPTER 1 INTRODUCTION TO PYTHON

Downloads Documentation Success Stories

Community

All releases
Download for Windows

Source code
! Python3.5.2 | Python2.7.12
Windows

Note that Python 3.5+ cannot be used on Windows XP
MacOSX or earlier.
Not the O5 you are looking for? Python can be used on

Other Platforms many operating systems and environments.

imre View the full list of downloads.

Figure 1-1. Python downloads section on the website

Select Python 3.5.2. (The numbers 5 and 2 might change if there
is a new stable release of Python after the book is published.) This
will download the setup file for Python 3. Open the setup file once it
is downloaded. Click on the Run button in the dialog box shown in
Figure 1-2.

"Open File - Security Warning Ex3
Do you want to run this file?

‘ﬂ Name: C:\Users\acer\Downloads\python-3.5.2.exe
Publisher: hon Software Foundation
Type: Application
From: C\Users\acer\Downloads\python-3.5.2.exe

[R [Concel |

[V] Aways ask before opening this file

-2 While files from the Intemet can be useful, this file type can
@ potentially ham your computer. Only run software from publishers
you trust. What's the risk?

Figure 1-2. Open File - Security Warning dialog box

13

CHAPTER 1 INTRODUCTION TO PYTHON

Note Depending on the settings, you might require admin privileges
to install Python 3 (or any other program, for that matter) on a
Windows computer. If you are in an organizational setting, check with
your system admin team for this information.

If you are using Windows 7, depending on the update status of your
computer, you might encounter the message box shown in Figure 1-3.

} Setup failed

One or more issues caused the setup to fail. Please fix the issues and
then retry setup. For more information see the log file.

Windows 7 Service Pack 1 and all applicable updates are required to
install Python 3.5.2 (32-bit).

Please update your machine and then restart the installation.

python
for
windows

Figure 1-3. Setup Failed message for Windows 7

Update the OS by installing any Windows updates and then rerun the
setup file. The window in Figure 1-4 will appear when you are successful.

14

CHAPTER 1 INTRODUCTION TO PYTHON

Install Python 3.5.2 (32-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

% Install Now
C:\Users\suvidha\AppData\Local\Programs\Python\Python35-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

< Customize installation
Choose location and features

pqthfon

[¥] Install launcher for all users (recommended)

WiﬂdOWS [#] Add Python 3.5 to PATH [E

Figure 1-4. Python Installation window

Check the Add Python 3.x to PATH checkbox. This will ensure that
Python is added to the PATH system variable and you will be able to access
Python from the command prompt of Windows (cmd) after the installation.
Click the Install Now button and continue the setup wizard. Once
installation finishes, it will show a success message.

Running a Python Program and
Python Modes

You have set up your environment for Python programming now. Now
you can get started with a simple concept of Python. Python has two basic
modes—normal and interactive. Let’s look at these modes in detail.

15

CHAPTER 1 INTRODUCTION TO PYTHON

Interactive Mode

Python'’s interactive mode is a command-line shell that provides
immediate output for every executed statement. It also stores the output
of previously executed statements in active memory. As new statements
are executed by the Python interpreter, the entire sequence of previously
executed statements is considered while evaluating the current output.
You have to type python3 in the command prompt of Linux/macOS and
python in the command prompt cmd of Windows to invoke the Python 3

interpreter into interactive mode, as follows:

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "help", "copyright", "credits" or "license" for more
information.

>>>

You can execute Python statements directly in this interactive mode
just like you run commands in the OS shell/console, as follows:

>>> print('Hello World!")
Hello World!
>>>

You will not be using interactive mode in the book. However, it’s the
quickest way to check small snippets of code (5 to 10 lines). You can quit
interactive mode with the exit() statement, as follows:

>>> exit()
$

16

CHAPTER 1 INTRODUCTION TO PYTHON

Script Mode

Script mode is where the Python script files (. py) are executed by the
Python interpreter.

Create a file called test.py and add the print ('Hello World!")
statement to the file. Save the file and run it with the Python 3 interpreter
as follows.

$ python3 test.py
Hello World!

$

In this example, python3 is the interpreter and test.py is the filename.
If the Python test.py file is not in the same directory where you're
invoking the python3 interpreter, you have to provide the absolute path of
the Python file.

Note For all Linux and Mac computers, the command for the
Python 3 interpreter is python3. For Windows, it is just python,
assuming that only Python 3 is installed on the Windows computer
and its location is added to the PATH variable during installation or
manually after the installation. Throughout this book, | use a Linux
command prompt (on my Raspberry Pi 4) to run the code examples.
| will mention it explicitly wherever Windows is used for a couple of
examples.

17

CHAPTER 1 INTRODUCTION TO PYTHON

IDEs for Python

An Integrated Development Environment (IDE) is a software suite that has
all the basic tools to write and test programs. A typical IDE has a compiler,
a debugger, a code editor, and a build automation tool. Most programming
languages have various IDEs to make programmers lives better. Python too
has many IDEs. Let’s take a look at a few IDEs for Python.

IDLE

IDLE stands for Integrated Development Environment. It comes bundled
with Python. IDLE3 is for Python 3. It’s popular with beginners of Python.
Just type idle3 in the command prompt in a Linux computer where
Python 3 is installed. Figure 1-5 is a screenshot of an IDLE3 code editor
and an interactive prompt.

18

CHAPTER 1 INTRODUCTION TO PYTHON

® O 5B % O [Boeosve | arvonss | aunmter || ol 1) [z 4
e T . o = =
4 o L =
< <) Fle Edt Shel Debug Options Windows Help 4
= - Python 3.4.2 (default. Oct 19 2014, 13:31:11) 51

[6CC 4.9.1] on linux
Type “copyright™, "credits™ or “license()” for more information.
>3

Ede Eor Fgrmat Bun QOptions Windows Help

pifraspberrypi

Figure 1-5. IDLE3 running on a Raspberry Pi

If IDLE is not installed by default on your Linux distribution then you
have to install it manually. For Debian and derivatives, the command for
the installation is as follows:

sudo apt-get install idle

The PyDev Plugin for Eclipse

Ifyou are a seasoned Java programmer, you probably have worked on
Eclipse. Eclipse is a very popular IDE for Java and it can be used with other
programming languages too. PyDev is a Python IDE for Eclipse, and it can
be used in Python, Jython, and IronPython development (see Figure 1-6).
You can install PyDev from the Eclipse marketplace at www. pydev.org.

19

http://www.pydev.org/
http://www.pydev.org/

CHAPTER 1 INTRODUCTION TO PYTHON

B ——— e ——

c-lda!Ar & Al -0 A A A9 Lo B =y
Boawm i Bk k> W Ia.-:n.a'ln“'c - Virables | % Breshponts| 4] Uipraeas 1 LaABYxR~T0O
P Detrwn Server [Psn Server] ;m"ud-nmuw-wm I
o prietimace - 4 Iyl Blarama's wicode: abenstan rm |
privvdmte - 1 57 el Mgna”s wt SIT2098 |
o Bawr v gl 9% sogd BT el s armde: W Sy shend omy doanive.
B Ao bcadf de [avsice Eivbemlr stabes gy 104
B i anee (B e e deeninataber bl |
B e [Pt oy M0
= (Mo 4
= onChek [laintid]
S hom s Panin sy Li8) | |
e] - o] |
Batrnpy EPwwdomey BoWay | Pricalconias 1B ity " =c|
eyt =l

FRT.Tilesiae = LAE(Desders|C
wusepry
eif.filesiae = 01

enseps Emseption, e11
Self.Cilenamt = “usknewrfilsnens™
atus = "ERAOATILIMNE T

ax% L@ ~0--"C

[[SCRIFT 1FX)
[(SCREIFT 18X): Calendar

[SCRINT 16K): imetaliltes - [tem o slresdy 1astelied - stepping inetadl
[SCRIFT IFX]: Calesdar inetall Ras besn canceiled by the user

(SCRIPT IFXI: (*sbmc_type’s *SCRIPT®, ‘scded*s '34-02-2040°, 1 Troe, ‘mame’y » ‘parest’: i1, ‘suther’s u'', ‘previewpleture’: '’

[SCRIFT I0X): _dowslcesTile with destimstica - X

[3CRIFT IFX): _dowelcaalile - TEyisg to rescieve the file 1
- J

Figure 1-6. Eclipse with PyDev

Geany

Geany (see Figure 1-7) is a text editor that uses the GTK+ toolkit with basic
features of an integrated development environment. It supports many file
types and has some nice features. Check out https://www.geany.org for
more details.

20

https://www.geany.org/

CHAPTER 1 INTRODUCTION TO PYTHON

Fla fdt Search Y Docurant Project Guld Toos Helb
—= =
O-@-20 @X «» §d & > 4
Symbohs | Documents |mcx documentc ¢ odterc 3¢
= 2 Funcoons = 1 e @
2 - editer.c - this file is part of Geany. a fast and lightweight ICE |
&P sppend_calltp [1227] 3 . i
& at_eol[1772) 4 Copyright 2005- 2008 Enrico Troger <enricoldot)troegeriatiuvens(dot)de>
= - s . Copyright 2006-2008 Mick Treleaven =nickidot)treleaven(atibtinternet(dot)con>
o auto_close_bracket [92] 6 .
‘ 7 . This pregras is free software: you can redistribute it andfor modify
auto_cl 1
& close_brecket 1014 a . it under the terss of the MU General Public License as published by
@ auto_multlne [$0] 9 the Free Software Foundation: either version 2 of the License. or
& _muttline (2637) i: . {at your option) any later version
& auto_table [93] 12 This pregras is distributed in the hope that it will be useful,
3 13 . but WITHOUT ANY WARRANTY: without even the implied wvarranty of
G? auto_table [2001] 14 . MERCHANTABILITY or FITNESS FOR & PARTICLLAR PURPOSE. See the
& aute_update_margin_wid 15 - GMU General Public License for sere details
! A L} 16
autocomplete_check for_ Lx: You should have received a copy of the GMU General Public License
| heck_f 1 f 1 1
i 19 & along with this program: if not. write to the Free Softwvare
& autocomplete_html (1403 19 . Foundation, Inc., 675 Mass Ave, Casbridge, MA 02139, USA
7 autocemplete_tags (1431 20 "
n * §1d: editor.c 3155 2008-10-25 10:57:007 ehtl6 §
P brace_match[1034] 22 .
P check_line_bresking [348 S |
b 24 @/
o close_block [94) s * @lile editor.h
I k{17 o * Editor-related functions for @ref GeanyGditor
QP £lomn_bleck 1107L] a7 * Geany uses the Scintilla editing widget. and this file is mostly built around
P count_indent_size [1343] m * Scintal functionality
& create_new_aci [3950] el * @see sciwrappers.h
naw 1 0
Bndhan nnndiindosamnsk il VRLTTR) e Callbacks for the Scintilla widget (Scintilladbject) =]
i I § O I &
| Statia 15.06.47 This is Geany 0.15
| Compder | 15:06:48 New file "untitled” opened
| Massages| 15:06:58: File untitled closed
Scrbile | 19.06:58 File th A ¢ openedil),
| 15:07:27: File b jectag ¢ openedi2)
| Terrrwnad |
i | 15:07:34; e ¢ X di3)
|
rhcn 0 sl 0 NS TAB mode Unix (LF) enceding UTF-8 Ratype © scode unknown

Figure 1-7. Geany

PyCharm

PyCharm by JetBrains is another IDE for Python and it’s packed with
powerful features like a debugger, a code inspection tool, version control,
and an integrated unit test runner. It is a cross-platform IDE available for
Windows, macOS, and Linux distributions. Its Community Edition is a free
download. Visit its home page at https://www.jetbrains.com/pycharm/
for more information.

The code examples in this book are better suited for execution from the
command prompt, due to the nature of the libraries involved. I personally
prefer to write the logic and code on paper (Yes! Using a piece of paper!)
first and then use a plain-text editor with syntax highlighting. For example,

21

https://www.jetbrains.com/pycharm/

CHAPTER 1 INTRODUCTION TO PYTHON

I recommend Notepad++ on Windows, or nano, Leafpad, and gedit on
Linux. You can use IDLE3 or Geany for writing and compiling the code.
However, most of the code examples are meant to be executed from

the command line.

EXERCISE 1-1

e Visit and explore the Python home page at www.python.org.

¢ Read where Python is deployed successfully at https://www
.python.org/about/success/.

e Visit and explore the Python documentation page at
https://docs.python.org/3/.

e (Check the version-wise new features of the latest releases
of Python at https://docs.python.org/3/whatsnew/
index.html.

e For practice, write simple programs in Python. For example,
you could write programs for a Fibonacci series and factorial
calculations using iterative and recursive techniques.

Complete this exercise to understand Python 3’s background better.

22

http://www.python.org/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://docs.python.org/3/
https://docs.python.org/3/whatsnew/index.html
https://docs.python.org/3/whatsnew/index.html

CHAPTER 1 INTRODUCTION TO PYTHON

Conclusion

In this chapter, you learned the background, history, and features of
Python. You also studied the important differences between Python 2

and Python 3. You learned how to install and use Python 3 in script and
interactive modes. Finally, you looked at a few popular IDEs for Python. In
the next chapter, you will get started with the concepts of test automation
and look at a simple test automation library for Python, called doctest.
You will also briefly look at pydoc.

23

CHAPTER 2

Getting Started

In the previous chapter, you learned how to set up the Python 3
environment on Linux, macOS, and Windows computers. You also looked
at a few popular IDEs for Python. In this chapter, you will get started with
concepts of test automation. Then you will explore a light and easy way to
learn the test automation framework in Python 3, called doctest.

A Brief Introduction to Software
Testing Concepts

The textbook definition of software testing states that it’s the process of
executing a program or application to find any bugs. Usually, there are
multiple stakeholders in the process of software testing. The stakeholders
include testers, the management team, consultants, business, customers,
and end users. With medium- to large-scale projects, software testing is
done to determine if the software behaves as intended under various sets
of inputs and conditions.

© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_2

25

https://doi.org/10.1007/978-1-4842-7854-3_2#DOI

CHAPTER 2 GETTING STARTED

Unit Testing

Unit testing is a software testing method in which individual components

of the program, called units, are tested independently with all the required
dependencies. Unit testing is mostly done by programmers, who write the
programs for the units. In smaller projects, it is done informally. In most very
large-scale projects, unit testing is part of a formal process of development,
with proper documentation and proper schedule/efforts allocated to it.

Test Automation

Test automation is the automated execution and reporting of the outcome
of test scenarios and cases. In most large and complex projects, many
phases of the testing process are automated. Sometimes the effort of
automating tests is so huge that there is a separate project for automation
with a separate team dedicated to it, including a separate reporting
structure with separate management. There are several areas and phases
of testing that can be automated. Various tools like code libraries and
third-party APIs are used for unit testing. Sometimes, the code for unit
testing is also generated in an automated way. Unit testing is a prime
candidate for automation.

The Benefits of Automated Unit Testing

There are many reasons to automate unit tests. Let’s consider them
one by one.

¢ Time and effort

As your codebase grows, the number of modules to
be unit tested grows. Manual testing is very time-
consuming. To reduce manual testing efforts, you can
automate test cases, which then can be automated
easily and quickly.

26

CHAPTER 2 GETTING STARTED

e Accuracy

Test case execution is a rote and boring activity.
Humans can make mistakes. However, an automated

test suite will run and return correct results every time.
o Earlybugreporting

Automating unit test cases gives you the distinct
advantage of early reporting of bugs and errors. When
automated test suites are run by the scheduler,

once the code freezes due to an error, all the logical
bugs in the code are quickly discovered and reported,
without much human intervention needed.

e Built-in support for unit testing

There are many programming languages that provide
built-in support for writing unit tests by means of
libraries dedicated to unit testing. Examples include
Python, Java, and PHP.

Using Docstrings

The focus of this chapter is on getting you started with unit test automation
in Python. Let’s get started with the concept of docstrings and their
implementation in Python. Docstrings are going to be immensely useful to
you while learning doctest.

A docstring is a string literal that’s specified in the source code of
amodule. It is used to document a specific segment of code. Code
comments are also used for documenting source code. However, there is
a major difference between a docstring and a comment. When the source
code is parsed, the comments are not included in the parsing tree as part
of the code, whereas docstrings are included in the parsed code tree.

27

CHAPTER 2 GETTING STARTED

The major advantage of this is that the docstrings are available for
use at runtime. Using the functionalities specific to the programming
language, you can retrieve the docstring specific to a module. Docstrings
are always retained through the entire runtime of the module instance.

Example of a Docstring in Python

Let’s see how the concept of the docstring is implemented in Python. A
Python docstring is a string literal that occurs as the first statement in a
module, function, class, or method definition. A docstring becomes the
doc special attribute of that object.

Let’s take a look at a code example of a Python docstring. From this
chapter onward, you will be programming quite a lot. I recommend that
you create a directory on your computer and create chapter-specific
subdirectories within it. As mentioned earlier, I am using a Linux OS. (My
favorite computer, a Raspberry Pi 3 Model B.) I have created a directory
called book and a directory called code under that. The code directory has
chapter-specific directories containing the code of each chapter. Figure 2-1
shows a graphical representation of the directory structure in the form of a
tree diagram.

-[_'

Figure 2-1. The suggested directory structure for the book

Create chapter-specific subdirectories under the directory code, as
shown in the tree diagram in Figure 2-1. We use the directory chapter02
for this chapter, chapter03 for the next chapter, and so on. Navigate to the
chaptero02 directory and save the following code (see Listing 2-1) as
test module01.py in that directory.

28

CHAPTER 2

Listing 2-1. test_module0l.py

This is test moduleo1l.
This is example of multiline docstring.

class TestClassoO1:
"""This is TestClasso1."""

def test case01(self):
"""This is test case01().

def test functionoi():
"""This is test functiono1()."""

GETTING STARTED

In Listing 2-1, there is a test file called test_module01.py, which
includes TestClass01 and test function01().TestClass01 hasa
method called test_ case01(). There is a docstring for all code units

here. The first docstring is a multiline docstring. The rest are examples of

single-line docstrings.

Let’s see how the docstrings work using the code in Listing 2-1 and an

interactive Python session.

Navigate to the chapter02 directory and type python3 to invoke Python

3 in interpreter mode.

pi@raspberrypi:~/book/code/chapter0o2 $ pwd
/home/pi/book/code/chaptero2
pi@raspberrypi:~/book/code/chaptero2 $

python3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "help", "copyright", "credits" or "license" for more
information.
>>>

29

CHAPTER 2 GETTING STARTED
Import the test module you just created with the following statement:
>>> import test moduleo1

You can use the help() function to see the docstrings of the module
and its members, as follows.

>>> help(test moduleo1)
The output is as follows:
Help on module test moduleO1:

NAME
test moduleo1

DESCRIPTION
This is test moduleo1l.
This is example of multiline docstring.

CLASSES
builtins.object
TestClasso1

class TestClasso1(builtins.object)
| This is TestClasso1.

Methods defined here:

|
|
|
| test case01(self)
| This is test case01().
|
|

30

CHAPTER 2 GETTING STARTED

Data descriptors defined here:

|
|
| __ dict

| dictionary for instance variables (if defined)
|

|

|

__weakref
list of weak references to the object (if defined)

FUNCTIONS
test_functionoi()
This is test functionoi().

FILE
/home/pi/book/code/chaptero2/test moduleo1.py

You can see the docstring of the individual members using help().
Run the following statements and see the output for yourself.

>>> help(test module01.TestClass01)
>>> help(test_module0l.TestClassO1l.test case01)
>>> help(test _moduleoi.test functiono1)

As mentioned earlier, a docstring becomes the doc special attribute
of that object. You can also use the print () function to see the docstring
of a module and its members. The following interactive Python session
demonstrates that.

>>> import test_module01
>>> print(test_moduleol._doc_)

This is test_moduleo1.
This is example of multiline docstring.

>>> print(test_moduleo1.TestClasso1._doc_)
This is TestClasso1.

31

CHAPTER 2 GETTING STARTED

>>> print(test module01.TestClass01.test case01. doc_)
This is test case01().

>>> print(test_moduleo1.test functiono1._doc_)

This is test functionoi().

>>>

You can find detailed information about the Python docstring on the
following PEP pages.

https://www.python.org/dev/peps/pep-0256
https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0258

In the next section, you learn to use docstrings to write simple test
cases and execute them with doctest.

A Brief Introduction to doctest

doctest is the lightweight unit-testing framework in Python that uses
docstrings to test automation. doctest is packaged with the Python
interpreter, so you do not have to install anything separately to use it. It
is part of Python’s standard library and adheres to Python’s “batteries-
included” philosophy.

Note If you're interested, you can read Python’s batteries-included
philosophy on the PEP 206 page (see https://www.python.org/
dev/peps/pep-0206).

The code in Listing 2-2 is a simple example of a test module with two
functions and two tests for each function.

32

https://www.python.org/dev/peps/pep-0256
https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0258
https://www.python.org/dev/peps/pep-0206
https://www.python.org/dev/peps/pep-0206

CHAPTER 2

Listing 2-2. test_module02.py

Sample doctest test module... test module02

def mul(a, b):
>>> mul(2, 3)

6
>>> mul('a', 2)

da

return a * b

def add(a, b):
>>> add(2, 3)
5
>>> add('a', 'b")
Iabl

return a + b

GETTING STARTED

In Listing 2-2, the test cases are mentioned as docstrings for the

modules and there is nothing specifically calling the doctest in the code

itself. When the program is executed as a Python 3 program using the

python3 test command, module02.py does not produce any output at

the command line. In order to see doctest in action, you have to run it

using the following command at the command prompt:

python3 -m doctest -v test module02.py

33

CHAPTER 2 GETTING STARTED

The output will be as follows:

Trying:
add(2, 3)
Expecting:
5
ok
Trying:
add('a', 'b")
Expecting:
'3b’
ok
Trying:
mul(2, 3)
Expecting:
6
ok
Trying:
mul('a', 2)
Expecting:
‘33"
ok
1. items had no tests:
test_module02
2. 1items passed all tests:
2 tests in test_module02.add
2 tests in test module02.mul
4 tests in 3 items.
4 passed and 0 failed.
Test passed.

Let’s take a look at how doctest works. By comparing the code—
specifically the commands for execution and output—you can figure
out quite a few things. doctest works by parsing docstrings. Whenever

34

CHAPTER 2 GETTING STARTED

doctest finds an interactive Python prompt in the doctest documentation
of a module, it treats its output as the expected output. Then it runs the
module and its members by referring to the docstrings. It compares

the actual output against the output specified in the docstrings. Then it
marks the test pass or fail. You have to use -m doctest while executing

the module to let the interpreter know that you need to use the doctest
module to execute the code.

The command-line argument -v stands for verbose mode. You must
use it because, without it, the test will not produce any output unless it
fails. Using verbose produces an execution log irrespective of whether the
test passes or fails.

Failing Tests

In Listing 2-2, all the tests passed with no hassles. Now, let’s see how a
test fails. In Listing 2-2, replace + on the last line of the code with an *
(asterisk) and run the test again with the same command. You will get the
following output:

Trying:

add(2, 3)
Expecting:

5

>k 3k ok ok ok ok ok >k ok ok ok Sk sk ok >k ok ok ok Sk sk sk >k ok ok ok Sk sk sk >k ok sk ok Sk sk sk sk ok sk ok sk sk ok >k sk sk ok sk sk ok ok skook ok sk sk sk sk okosk sk sk k >k

File "/home/pi/book/code/chapter0o2/test moduleo2.py", line 19,
in test module02.add
Failed example:

add(2, 3)
Expected:

5
Got:

6

35

CHAPTER 2 GETTING STARTED

Trying:
add('a", 'b")
Expecting:
'3b’
Kok koK ok ok ok ok ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk sk sk sk sk skosk sk sksk sk ks sk ki k
File "/home/pi/book/code/chapter02/test moduleo2.py", line 21,
in test_module02.add
Failed example:
add('a', 'b")
Exception raised:
Traceback (most recent call last):
File "/usr/lib/python3.4/doctest.py”, line 1324, in_run
compileflags, 1), test.globs)
File "<doctest test module02.add[1]>", line 1,
in <module>
add('a', 'b")
File "/home/pi/book/code/chapter02/test moduleo2.py",
line 24, in add
return a * b
TypeError: can't multiply sequence by non-int of type 'str'
Trying:
mul(2, 3)
Expecting:
6
ok
Trying:
mul('a', 2)
Expecting:

da

36

CHAPTER 2 GETTING STARTED

ok
1 items had no tests:

test _module02
1 items passed all tests:

2 tests in test module02.mul
ook sk ok sk s ok sk ok sk sk ok sk ok sk s ok sk sk sk sk ok sk sk sk s ok sk ok sk s ok sk sk sk s ok sk ok sk sk ok sk sk ok s ok sk sk sk ok sk ok ok sk sk ok ok ok
1 items had failures:

2 of 2 in test module02.add
4 tests in 3 items.

2 passed and 2 failed.
Test Failed 2 failures.

You can clearly see two failures in the execution log. The tests usually
fail due to one or more of the following reasons:

o Faultylogic in the code
o Faulty inputinto the code
o Faulty test case

In this case, there are two failures in the test. The first one is due to
faulty logic. The second failure is due to faulty logic in the code and the
wrong type of input given to the function to be tested.

Correct the code by replacing the * in the last line with +. Then change
the line that has 'aa' to aa and run the test again. This will demonstrate
the third cause of test failure (a faulty test case).

Separate Test File

You can also write your tests in a separate test file and run them separately
from the code to be tested. This helps maintain the test modules/code
separately from the development code. Create a file called test_module03.txt
in the same directory and add the code shown in Listing 2-3 to it.

37

CHAPTER 2 GETTING STARTED

Listing 2-3. test_module03.txt

>>> from test _module02 import *
>>> mul(2, 3)

6

>>> mul('a’', 2)
.

>>> add(2, 3)

5

>>> add('a', 'b")
'3b"

You can run this test in the usual way, by running the following
command in the command prompt:

python3 -m doctest -v test module03.txt
The output will be as follows:

Trying:

from test module02 import *
Expecting nothing
ok
Trying:

mul(2, 3)
Expecting:

6
ok
Trying:

mul('a', 2)
Expecting:

aa
ok

38

CHAPTER 2 GETTING STARTED

Trying:

add(2, 3)
Expecting:

5
ok
Trying:

add('a', 'b")
Expecting:

'3b’
ok
1 items passed all tests:
5 tests in test moduleo03.txt
5 tests in 1 items.
5 passed and 0 failed.
Test passed.

Advantages and Disadvantages of doctest

As you have learned, doctest is a very simple and intuitive framework for
novice-level testing in Python. It does not require any installation and you
can quickly get started with it without needing to know any API. It is mostly
used for the following purposes:

o To verify if the code documentation is up to date and
the interactive examples in the docstring still work after
making changes to the code.

e To perform module-wise basic regression testing.

o To write illustrative tutorials and documentation that
doubles as a test case for the package and module.

39

CHAPTER 2 GETTING STARTED

However, doctest has its own set of limitations. It does not have true
API for testing.

doctest tests also tend to be static in nature and cannot be
parameterized.

You are advised to visit the doctest documentation page at https://
docs.python.org/3/1library/doctest.html for detailed usage and more
examples.

Pydoc

Just like doctest, there is another useful utility to view the documentation
of a module. It comes with Python. It is known as Pydoc. On Linux, run the
following command:

pydoc unittest

It will show the documentation of the unittest library. If you have
created the documentation for your own custom module with docstrings,
you can view it with the following command:

pydoc test moduleo1

This command displays the documentation on the terminal. You can
save all this information in HTML files as follows:

pydoc -w unittest
pydoc -w test moduleo1

These commands will create unittest.html and test_module01.html
documents in the directory where the commands are run. You can then
open these files with a web browser of your choice.

On Windows, the commands can be run as follows:

python -m pydoc unittest
python -m pydoc -w unittest

40

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html

CHAPTER 2 GETTING STARTED

Conclusion

In this chapter, you learned the basics of software testing. You explored

a light testing framework, called doctest. It’s a good module for simple
projects for novice Python users. However, due to its lack of advanced
features like testrunner, test discovery, and test fixtures, doctest is not
used in large projects. The next chapter discusses a built-in xUnit style test
automation framework for Python, called unittest.

41

CHAPTER 3

unittest

The last chapter discussed the concepts of test automation. You learned
about docstring and doctest and their use in writing simple, static, yet
elegant test cases for Python 3 programs. However, due to lack of features,
like API, configurable tests, and test fixtures, doctest enjoys very limited
popularity. You need to explore a powerful API library for automating
complex real-life projects and learning Python’s built-in unittest module
is your first step toward it.

This is a detailed and long chapter. You will learn many new concepts
like test fixtures, automated test discovery, organizing your codebase, and
so on, in this chapter. You will use these concepts throughout the book and
see their implementation in more advanced test automation libraries in
Python. So, I recommend that you follow every topic in this chapter very
carefully.

unittest came to life as a third-party module called PyUnit. PyUnit
was the Python port for JUnit. JUnit is Java’s xUnit-style unit test
automation framework.

PyUnit became part of the Python Standard library from version 2.5
onward. It was rechristened unittest. unittest is the batteries-included
test automation library of Python, which means you do not have to install
an additional library or tool in order to start using it. Anyone who is
familiar with xUnit-style libraries in other programming languages (such
as JUnit for Java, PHPUnit for PHP, CPPUnit for C++, etc.) will find it very
easy to learn and use unittest.

© Ashwin Pajankar 2022 43
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_3

https://doi.org/10.1007/978-1-4842-7854-3_3#DOI

CHAPTER 3 UNITTEST

Introduction to xUnit

Let’s take a look at the xUnit philosophy in brief. xUnit is the collective
name for several unit-testing frameworks for various languages. All the
xUnit-style unit testing frameworks more or less derive their functionality,
structure, and coding style from Smalltalk’s unit testing framework, called
SUnit. Kent Beck designed and wrote SUnit. After it gained popularity, it
was ported to Java as JUnit by Kent Beck and Erich Gamma. Eventually,
it was ported to almost every programming language. Now most
programming languages come prepackaged with at least one xUnit-style
test automation library. Also, many programming languages like Python
and Java have more than one xUnit-style framework. Java has TestNG
in addition to JUnit. Python has nose, pytest, and Nose2 apart from
unittest.

All the xUnit-style test automation libraries follow a common
architecture. The following are the major components of the architecture:

o Test case class: This is the base class of all the test
classes in the test modules. All the test classes are
derived from here.

o Test fixtures: These are functions or methods that run
before and after blocks of test code execute.

o Assertions: These functions or methods are used to
check the behavior of the component being tested.
Most of the xUnit-style frameworks are packed with
powerful assertion methods.

o Test suite: This is a collection or group of related tests
that can be executed or scheduled to be executed
together.

e Test runner: This is a program or block of code that runs
the test suite.

44

CHAPTER 3 UNITTEST

o Test result formatter: This formats the test results to
produce the output of test execution in various human
readable formats like plaintext, HTML, and XML.

The implementation details of these components of xUnit differ
slightly across unit testing frameworks. Interestingly, this enables
programmers to choose the framework based on the needs of their
projects and their comfort.

If you are a seasoned programmer who has experience with any of
these frameworks, you will quickly be able to translate your knowledge to
Python code. If you do not have prior experience with any of the xUnit-
style frameworks, then after reading the book, executing all the examples
in the book and solving all the exercises, you can get started with any of the
xUnit frameworks on your own without much hand-holding.

Using unittest

This section starts with unittest. It begins with the most fundamental
concept of a test class.

For this chapter, create a directory called chapter03 in the code
directory. In chapter03, create another directory called test (you will
learn later in the chapter why you need that additional directory). Save the
code in Listing 3-1 as test_module01.py.

Listing 3-1. test_module0l.py

import unittest
class TestClassoi(unittest.TestCase):
def test case01(self):
my str = "ASHWIN"
my_int = 999
self.assertTrue(isinstance(my str, str))
self.assertTrue(isinstance(my int, int))

45

CHAPTER 3 UNITTEST

def test case02(self):
my pi = 3.14
self.assertFalse(isinstance(my pi, int))

if name_ ==" main_"':

unittest.main()

In the code in Listing 3-1, the import unittest statementimports the
unittest module. TestClasso01 is the test class. It is subclassed from the
TestCase class in the unittest module. The test case01() and
test_case02() class methods are test methods, as their names start with
test_(You will learn about the guidelines and naming conventions for
writing tests later in this chapter.) The assertTrue() and assertFalse()
methods are assertion methods that check if the argument passed to them
is True or False, respectively. If the argument meets the assert condition,
the test case passes; otherwise, it fails. unittest.main() is the test runner.
You will explore more assert methods in detail later.

Navigate to the test directory as follows:

cd ~/book/code/chapter03/test
Run the following command:
python3 test module01.py

It yields the following output:

Ran 2 tests in 0.002s
(0]

It says OK, as both tests passed. This is one of the ways you can write
and execute tests.

46

CHAPTER 3 UNITTEST

The test execution did not display much information. That’s because
verbosity is disabled by default. You can run the tests in verbose mode
using the -v command-line option. Run the following command at the

command prompt:
python3 test module0Oi.py -v
The verbose output is as follows:

test case01 (main .TestClass01l) ... ok
test _case02 (main .TestClasso1) ... ok
Ran 2 tests in 0.004s

0K

Certainly, verbose execution mode provides more insight about test
execution. You will be using this mode very frequently throughout the
book for running tests and gathering the log for test executions.

Order of Execution of the Test Methods

Now, you will see the order in which the test methods are executed. Check
out the code in Listing 3-2.

Listing 3-2. test_module02.py

import unittest
import inspect
class TestClass02(unittest.TestCase):
def test case02(self):
print("\nRunning Test Method :
stack()[0][3])

+ inspect.

47

CHAPTER 3 UNITTEST

def test case01(self):
print("\nRunning Test Method :
stack()[0][3])

+ inspect.

if name == ' main

unittest.main(verbosity=2)

In the code in Listing 3-2, the inspect.stack()[0][3] method prints
the name of the current test method. It’s useful for debugging when you
want to know the order that the methods are executed in the test class. The
output of the code in Listing 3-2 is as follows:

test case01 (main .TestClasso02) ...
Running Test Method : test case01
ok

test case02 (main .TestClasso02) ...
Running Test Method : test case02
ok

Ran 2 tests in 0.090s

0K

Note that the test methods ran in alphabetical order, irrespective of the
order of the test methods in the code.

Verbosity Control

In earlier examples, you controlled the verbosity of test execution through
the command while invoking the Python test script in the OS console.
Now, you will learn how to control verbose mode from the code itself. The
code in Listing 3-3 shows an example.

48

CHAPTER 3 UNITTEST

Listing 3-3. test_module03.py

import unittest
import inspect

def add(x, y):
print("We're in custom made function :
stack()[0][3])
return(x + y)
class TestClass03(unittest.TestCase):
def test case01(self):
print("\nRunning Test Method : " + inspect.

stack()[0][3])
self.assertEqual(add(2, 3), 5)

def test case02(self):
print("\nRunning Test Method : " + inspect.

stack()[0][3])
my var = 3.14
self.assertTrue(isinstance(my var, float))

def test case03(self):
print("\nRunning Test Method : " + inspect.

stack()[0][3])
self.assertEqual(add(2, 2), 5)

def test case04(self):
print("\nRunning Test Method : " + inspect.
stack()[0][3])
my_var = 3.14
self.assertTrue(isinstance(my var, int))

if name == "' main '
unittest.main(verbosity=2)

+ inspect.

49

CHAPTER 3 UNITTEST

In Listing 3-3, you are testing a custom function called add () with
the assertEqual() method. assertEqual() takes two arguments and
determines if both arguments are equal. If both arguments are equal,
the test case passes; otherwise, it fails. There is also a function called
add() in the same test module that’s not a member of the test class. With
test case01() and test case03(), you are testing the correctness of the
function.

The code also sets verbosity to the value 2 in the unittest.main()
statement.

Run the code in Listing 3-3 with the following command:

python3 test module03.py
The output is as follows:

test case01 (main .TestClasso03) ...
Running Test Method : test case01
We're in custom made function : add
ok

test case02 (main .TestClasso03) ...
Running Test Method : test case02
ok

test case03 (main .TestClasso03) ...
Running Test Method : test case03
We're in custom made function : add
FAIL

test case04 (main .TestClass03) ...
Running Test Method : test case04
FAIL

50

CHAPTER 3 UNITTEST

Traceback (most recent call last):
File "test module03.py", line 23, in test case03
self.assertEqual(add(2, 2), 5)
AssertionError: 4 != 5

Traceback (most recent call last):
File "test_module03.py", line 28, in test case04
self.assertTrue(isinstance(my var, int))
AssertionError: False is not true
Ran 4 tests in 0.112s
FAILED (failures=2)

The test_case03() and test_case04() test cases failed because the
assert conditions failed. You now have more information related to the
test case failure, since verbosity was enabled in the code.

Multiple Test Classes Within the Same Test File/Module

Until now, the examples included a single test class in a single test file. A
.py file that contains the test class is also called a test module. Listing 3-4
shows an example of a test module that has multiple test classes.

Listing 3-4. test_module04.py

import unittest
import inspect
class TestClasso4(unittest.TestCase):
def test case01(self):
print("\nClassname : " + self. class . name)
print("Running Test Method : " + inspect.stack()[0][3])

51

CHAPTER 3 UNITTEST

class TestClasso5(unittest.TestCase):
def test case01(self):
print("\nClassname : " + self. class . name)
print("Running Test Method : " + inspect.stack()[0][3])

if name == "' main '
unittest.main(verbosity=2)

The following is the output after running the code in Listing 3-4:

test case01 (main .TestClasso4) ...
Classname : TestClasso4

Running Test Method : test_case01
ok

test case01 (main .TestClasso05) ...
Classname : TestClasso5

Running Test Method : test case01
ok

Ran 2 tests in 0.080s

0K

All the test classes are executed one by one in alphabetical order.

Test Fixtures

To put it simply, fest fixtures are the set of steps performed before and after
the tests.

52

CHAPTER 3 UNITTEST

In unittest, these are implemented as methods of the TestCase
class and can be overridden for your purposes. An example of custom test
fixtures in unittest is shown in Listing 3-5.

Listing 3-5. test_module05.py
import unittest

def setUpModule():

called once, before anything else in this module
print("In setUpModule()...")

def tearDownModule():
"""called once, after everything else in this module
print("In tearDownModule()...")
class TestClasso6(unittest.TestCase):
@classmethod
def setUpClass(cls):
"""called once, before any test
print("In setUpClass()...")

@classmethod
def tearDownClass(cls):
"""called once, after all tests, if setUpClass
successful"""
print("In tearDownClass()...")

def setUp(self):
"""called multiple times, before every test method"""
print("\nIn setUp()...")

def tearDown(self):
"""called multiple times, after every test method"""
print("In tearDown()...")

53

CHAPTER 3 UNITTEST

def test case01(self):
self.assertTrue("PYTHON".isupper())
print("In test case01()")

def test case02(self):
self.assertFalse("python".isupper())
print("In test case02()")

if name == "' main '
unittest.main()

In the code in Listing 3-5, the setUpModule() and tearDownModule()
methods are the module-level fixtures. setUpModule() is executed before
any method in the test module. tearDownModule () is executed after all
methods in the test module. setUpClass() and tearDownClass() are
class-level fixtures. setUpClass() is executed before any method in the test
class. tearDownClass() is executed after all methods in the test class.

These methods are used with the @classmethod decorator, as shown
in the code in Listing 3-5. The @classmethod decorator must have a
reference to a class object as the first parameter. setUp() and tearDown()
are method-level fixtures. setUp() and tearDown() methods are executed
before and after every test method in the test class. Run the code in
Listing 3-5 as follows:

python3 test module05.py -v
The following is the output of the code:

In setUpModule()...

In setUpClass()...

test case01 (main .TestClass06) ...
In setUp()...

In test case01()

In tearDown()...

54

CHAPTER 3 UNITTEST

ok

test case02 (main .TestClass06) ... In
setUp()...

In test case02()

In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...

Ran 2 tests in 0.004s

0K

The test fixtures and their implementation are a key feature of any test
automation library. This is a major advantage over the static testing offered
by doctest.

Running Without unittest.main()

Up until now, you have run the test modules with unittest.main().
Now you will see how to run the test module without unittest.main().
Consider the code in Listing 3-6, for example.

Listing 3-6. test_module06.py

import unittest
class TestClasso7(unittest.TestCase):
def test case01(self):
self.assertTrue("PYTHON".isupper())
print("\nIn test case01()")

If you try to run it the usual way, with python3 test_module06.py,
you do not get output in the console, as it does not have the if name =='
main ' andunittest. main() statements in it. Even running in verbose
mode with python3 test module06.py -v does notyield any output in
the console.
55

CHAPTER 3 UNITTEST

The only way to run this module is to use the Python interpreter with
the -m unittest option and the module name, as follows:

python -m unittest test module06
The output is as follows:

In test case01()

Ran 1 test in 0.002s
0K

Note that you do not need to have . py after the module name as you
did earlier. You can also enable verbosity with the -v options, as follows:

python -m unittest test module06 -v
The verbose output is as follows:

test case01 (test module06.TestClass07) ...
In test case01()
ok

Ran 1 test in 0.002s
0K

You will use this same method throughout the chapter to run test
modules. In later sections of this chapter, you will learn more about this
method. For now, run all the previous code examples with this method of

execution as an exercise.

56

CHAPTER 3 UNITTEST

Controlling the Granularity of Test Execution

You learned how to run a test module using the -m unittest option. You
can also run individual test classes and test cases using this option.

Consider the earlier example of test_module04.py again, shown in
Listing 3-7.

Listing 3-7. test_module04.py

import unittest
import inspect

class TestClasso4(unittest.TestCase):

def test case01(self):
print("\nClassname : " + self. class . name)
print("Running Test Method : " + inspect.stack()[0][3])
class TestClasso5(unittest.TestCase):
def test case01(self):
print("\nClassname : " + self. class . name)
print("Running Test Method : " + inspect.stack()[0][3])

if name == "' main '
unittest.main(verbosity=2)

You can run the entire test module with the following command:
python3 -m unittest -v test moduleo4
The output is as follows:

test case01 (test module04.TestClasso04) ...
Classname : TestClasso4

Running Test Method : test_case01

ok

test case01 (test module04.TestClassO5) ...

57

CHAPTER 3 UNITTEST

Classname : TestClasso05
Running Test Method : test case01
ok

Ran 2 tests in 0.090s OK

You can run a single test class with the following command:
python3 -m unittest -v test module04.TestClass04

The output is as follows:

test case01 (test module04.TestClasso04) ...
Classname : TestClasso4

Running Test Method : test_case01

ok

Ran 1 test in 0.077s
0K

You can also run a single test case with the following command:
python3 -m unittest -v test module04.TestClass05.test case01
The output is as follows:

test case01 (test module04.TestClassO5) ...
Classname : TestClasso5

Running Test Method : test_case01

ok

Ran 1 test in 0.077s

0]4

This way, you can control the granularity of the test execution.

58

CHAPTER 3 UNITTEST

Listing All the Command-Line Options and Help

You can list all the command-line options of unittest using the -h

command-line option. Run the following command:
python3 -m unittest -h
The following is the output:

usage: python3 -m unittest [-h] [-v] [-q] [-f] [-c] [-b] [tests
[tests ...]] positional arguments:

tests a list of any number of test modules, classes and test
methods.

optional arguments:

-h, --help show this help message and exit

-v, --verbose Verbose output

-q, --quiet Quiet output

-f, --failfast Stop on first fail or error

-c, --catch Catch ctrl-C and display results so far
-b, --buffer Buffer stdout and stderr during tests

Examples:
python3 -m unittest test module - run tests from test module
python3 -m unittest module.TestClass - run tests from module.
TestClass

python3 -m unittest module.Class.test method - run specified
test method

usage: python3 -m unittest discover [-h] [-v] [-q] [-f] [-c]
[-b] [-s START] [-p PATTERN] [-t TOP]

optional arguments:

-h, --help show this help message and exit
-v, --verbose Verbose output
-q, --quiet Quiet output

59

CHAPTER 3 UNITTEST

-f, --failfast Stop on first fail or error
-c, --catch Catch ctrl-C and display results so far
-b, --buffer Buffer stdout and stderr during tests
-s START, --start-directory START
Directory to start discovery ('.' default)
-p PATTERN, --pattern PATTERN
Pattern to match tests ('test*.py' default)
-t TOP, --top-level-directory TOP
Top level directory of project (defaults to
start directory)

For test discovery all test modules must be importable from the
top level directory of the project.

This way you get a detailed summary of the various command-line
options available with unittest.

Important Command-Line Options

Let’s take a look at the important command-line options in unittest. Take
alook at the code in Listing 3-8 for example.

Listing 3-8. test_module07.py

import unittest

class TestClasso8(unittest.TestCase): def test case01(self):
self.assertTrue("PYTHON".isupper())
print("\nIn test case1()")

def test case02(self):
self.assertTrue("Python".isupper())
print("\nIn test case2()")

def test case03(self):
self.assertTrue(True) print("\nIn test case3()")

60

CHAPTER 3 UNITTEST

You already know that -v stands for verbose mode. The following is the
output in verbose mode:

test case01 (test module07.TestClass08) ...

In test case1()

ok

test case02 (test module07.TestClass08) ... FAIL
test case03 (test module07.TestClass08) ...

In test case3()

ok

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test_moduleo7.py",
line 11, in test case02
self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 3 tests in 0.012s

FAILED (failures=1)

The -q option stands for quiet mode. Run the following command to
demonstrate quiet mode:

python3 -m unittest -q test module07
The output is as follows:

In test case1()
In test case3()

61

CHAPTER 3 UNITTEST

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test_moduleo7.py",
line 11, in test case02
self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 3 tests in 0.005s

FAILED (failures=1)

The -f option stands for failsafe. It forcefully stops execution as
soon as the first test case fails. Run the following command to initiate
failsafe mode:

python3 -m unittest -f test module07
The following is the output in failsafe mode:

In test casel()

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test_moduleo7.py",
line 11, in test_case02
self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 2 tests in 0.004s

FAILED (failures=1)

62

CHAPTER 3 UNITTEST

You can also use more than one option. For example, you can combine
verbose with failsafe using the following command:

python3 -m unittest -fv test _moduleo7
The output is as follows:

test case01 (test module07.TestClass08) ...

In test casei()

ok

test_case02 (test module07.TestClasso8) ... FAIL

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test_moduleo7.py",
line 11, in test case02
self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 2 tests in 0.005s

FAILED (failures=1)

As an exercise, try to use different combinations of command-line
options.

Creating a Test Package

Up until now, you have created and executed test modules individually.
However, you can use Python’s built-in packaging feature to create a
package of tests. This is standard practice in complex projects with large
codebases.

63

CHAPTER 3 UNITTEST

Figure 3-1 shows a snapshot of the current test directory where you
are saving your test modules.

pi@raspberrypi:~/book/code/chapter03/test § tree

— test_modulell.py
—— test_modulel2.py
—— test_modulel3.py
—— test_modulel4.py
—— test_modulel0S.py
—— test_modulel6.py
—— test_modulel07.py

Figure 3-1. Snapshot of the test subdirectory in the chapter03
directory

Now, let’s create a package of test modules. Create an init.py file in
the test directory. Add the code in Listing 3-9 to the init.py file.

Listing 3-9. init.py

all = ["test moduleo1”, "test module02", "test module03",
"test module04", "test moduleos", "test module06",
"test module07"]

Congratulations! You just created a test package. test is the name of
the testing package and all modules mentioned in init.py belong to this
package. If you need to add a new testing module to the test package, you
need to create a new test module file in the test directory and then add the
name of that module to the init.py file.

Now you can run the test modules from the parent directory of test
(chaptero03) in the following way. Move to the chapter03 directory using
the following command:

cd /home/pi/book/code/chaptero3

64

CHAPTER 3 UNITTEST

Note that the path might be different in your case, depending on where
you created the book directory.
Run the test module with the following command:

python3 -m unittest -v test.test module04
The following is the output:

test case01 (test.test module04.TestClasso4) ...
Classname : TestClasso4

Running Test Method : test_case01

ok

test case01 (test.test module04.TestClass05) ...
Classname : TestClasso5

Running Test Method : test_case01

ok

Ran 2 tests in 0.090s

0K

Run a test class in the test module with the following command:
python3 -m unittest -v test.test module04.TestClasso04
The output is as follows:

test case01 (test.test module04.TestClasso4) ...
Classname : TestClasso4

Running Test Method : test_case01

ok

Ran 1 test in 0.078s

0K

65

CHAPTER 3 UNITTEST
Run a test case from a test module as follows:

python3 -m unittest -v test.test module04.TestClasso04.
test case01

The output is as follows:

test case01 (test.test moduleo4.TestClasso4) ...
Classname : TestClasso4

Running Test Method : test case01

ok

Ran 1 test in 0.079s

0K

Organizing the Code

Let’s look at ways you can organize the test code and the dev code. You're
now moving toward real-life project scenarios for using unittest. Up
until now, the tests (the testing code) and the code to be tested (the
development code) were in the same module. Usually in real-life projects,
the development code and the test code are kept in different files.

Placing the Development and Test Code
in a Single Directory

Here, you will organize the dev and test code into a single directory. In the
test directory, create a module called test_me.py and add the code in
Listing 3-10 to it.

Listing 3-10. test_me.py

def add(x, y):
return(x + y)

66

CHAPTER 3 UNITTEST

def mul(x, y):
return(x * y)

def sub(x, y):
return(x - y)

def div(x, y):
return(x / y)

Now, since test_me.py is in the test directory, it can directly be
imported into another module in the same directory using the import
test me statement. The test module in Listing 3-11 imports test_me.py to
test its functionality.

Listing 3-11. test_module08.py

import unittest
import test me
class TestClass09(unittest.TestCase):
def test case01(self):
self.assertEqual(test me.add(2, 3), 5)
print("\nIn test case01()")

def test case02(self):
self.assertEqual(test me.mul(2, 3), 6)
print("\nIn test case02()")

Run the test module with the following command:
python3 -m unittest -v test module08
The output is as follows:

test case01 (test module08.TestClass09) ...
In test case01()
ok

67

CHAPTER 3 UNITTEST

test case02 (test module08.TestClass09) ...
In test case02()
ok

Ran 2 tests in 0.004s OK

This way, you can organize the development code and the testing code
in the same directory, in different files.

Placing the Development and Test Code
in Separate Directories

Many coding standards recommend that the development code and the
testing code files be organized in separate directories. Let’s do that now.
Navigate to the chapter03 directory:

cd /home/pi/book/code/chaptero3

Create a new directory called mypackage in the chaptero03 directory:
mkdir mypackage

Navigate to the mypackage directory:
cd mypackage

Save the code in Listing 3-12 as mymathlib.py in the mypackage
directory.

Listing 3-12. mymathlib.py

class mymathlib:
def init (self):

Constructor for this class...
print("Creating object : " + self. class . name)

68

def add(self, x,
return(x + y)

def mul(self, x,
return(x * y)

def mul(self, x,
return(x - y)

def del (self):

Destructor

print("Destroying object :

for this class...
" + self. class . name)

CHAPTER 3 UNITTEST

Save the code in Listing 3-13 as mymathsimple.py in the mypackage

directory.

Listing 3-13. mymathsimple.py
def add(x, y):

return(x + y)

def mul(x, y):

return(x * y)

def sub(x, y):

return(x - y)

def div(x, y):

return(x / y)

These modules you just created are the development modules. Finally,

the code shown in Listing 3-14.

to create a package of development modules, create the init. py file with

69

CHAPTER 3 UNITTEST

Listing 3-14. init.py

all = ["mymathlib", "mymathsimple"]

This will create a Python package for the development code. Navigate
back to the chaptero03 directory. The structure of the chapter03 directory

should now look like Figure 3-2.

pi@raspberrypi:~/book/

wwypackage

— __init__ .py
— mymathlib.py

— __init__ .py

— test_me.py

—— test_moduleOl
— test_module02
—— test_module03
—— test_module04
— test_moduleO05

—— test_module0?
— test_module08

Figure 3-2. Snapshot of the chapter03 directory

mypackage is the development code package and test is the testing

code package.

You now need to create a test module to test the development code in
mypackage. Create a new test module called test_module09.py in the test
directory and add the code shown in Listing 3-15.

70

— mymathsimple.py

-PY
-PY
-PY
-PY
-PY
—— test_moduleO6.

pY

-DbY
-PY

CHAPTER 3 UNITTEST

Listing 3-15. test_module09.py

from mypackage.mymathlib import *
import unittest

math_obj = 0

def setUpModule():

called once, before anything else in the module
print("In setUpModule()...")

global math_obj

math_obj = mymathlib()

def tearDownModule():
"""called once, after everything else in the module"""
print("In tearDownModule()...")
global math_obj
del math_obj

class TestClass10(unittest.TestCase):

@classmethod

def setUpClass(cls):
"""called only once, before any test in the class
print("In setUpClass()...")

def setUp(self):
"""called once before every test method"""
print("\nIn setUp()...")

def test case01(self):
print("In test case01()")
self.assertEqual(math obj.add(2, 5), 7)

CHAPTER 3 UNITTEST

def test case02(self):
print("In test case02()")

def tearDown(self):
"""called once after every test method"""
print("In tearDown()...")

@classmethod

def tearDownClass(cls):
"""called once, after all the tests in the class"""
print("In tearDownClass()...")

Add test_module09 to init.py in the test directory to make it part of
the test package.
Run the code from the test directory using the following command:

python3 -m unittest -v test module09
It will throw an error as follows:

from mypackage.mymathlib import *
ImportError: No module named 'mypackage'

That'’s because the mypackage module is not visible from the test
directory. It lives not in the test directory, but in the chapter03 directory.
This module cannot be executed from the test directory. You must
execute this module as a part of the test package. You can do this from the
chaptero3 directory. The mypackage module is visible in this directory as
mypackage, which is a subdirectory of chapter03.

Navigate to the chapter03 directory and run this module as follows:

python3 -m unittest -v test.test module09
Here is the output of the execution:

In setUpModule()...
Creating object : mymathlib

72

CHAPTER 3 UNITTEST

In setUpClass()...

test case01 (test.test module09.TestClass10) ...
In setUp()...

In test case01()

In tearDown()...

ok

test case02 (test.test module09.TestClass10) ...
In setUp()...

In test case02()

In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...

Destroying object : mymathlib

Ran 2 tests in 0.004s

0K

That’s how you organize the development and testing code files in
separate directories. It is standard practice to separate these code files.

Test Discovery

Test discovery is the process of discovering and executing all tests in the
project directory and all its subdirectories. The test discovery process
is automated in unittest and can be invoked using the discover sub-
command. It can be invoked with the following command:

python3 -m unittest discover

73

CHAPTER 3 UNITTEST

Here is the partial output of this command when it runs in the
chaptero3 directory:

Running Test Method : test_case01
Running Test Method : test case02

Running Test Method : test case01
We're in custom made function : add

Running Test Method : test case02

Running Test Method : test case03
We're in custom made function : add
F

Running Test Method : test case04

F

Classname : TestClasso4

Running Test Method : test case01

You can also invoke it using verbose mode with the following
command:

python3 -m unittest discover -v
Here is partial output of this command:

test case01 (test.test module0i.TestClasso1) ... ok
test case02 (test.test module0il.TestClass01l) ... ok
test case01 (test.test module02.TestClass02) ...
Running Test Method : test_case01

ok

test case02 (test.test module02.TestClass02) ...
Running Test Method : test case02

ok

74

CHAPTER 3 UNITTEST

test case01 (test.test module03.TestClasso03) ...
Running Test Method : test_case01

We're in custom made function : add

ok

test case02 (test.test module03.TestClass03) ...
Running Test Method : test case02

ok

test case03 (test.test module03.TestClass03) ...
Running Test Method : test case03

We're in custom made function : add

There are more command-line options for test discovery. You can
specify the starting directory with -s or --start-directory. By default, the
current directory is the starting directory.

You can use -p or --pattern for the filename pattern. test*.py is the
default pattern.

You can use -t or --top-level-directory to specify the top-level
directory of the project. The default value for this is the start directory.

Asyou can see in the verbose output, the unittest automatically
found and ran all the test modules located in the chapter03 directory and
its subdirectories. This saves you the pain of running each test module
separately and collecting the results individually. Test discovery is one of
the most important features of any automation testing framework.

Coding Conventions for unittest

As you have seen, test discovery automatically finds and runs all the tests
in a project directory. To achieve this effect, you need to follow some
coding and naming conventions for your test code. You may have noticed
already that I have consistently followed these conventions in all the code
examples in this book.

75

CHAPTER 3 UNITTEST

e In order to be compatible with test discovery, all of
the test files must be either modules or packages
importable from the top-level directory of the project.

e By default, test discovery always starts from the
current directory.

o Bydefault, test discovery always searches for test*.py
patterns in the filenames.

Assertions in unittest

You have learned about a few basic assertions, like assertEqual() and
assertTrue(). The following tables list the most used assertions and their

purpose.
Method Checks That
assertkEqual(a, b) a ==
assertNotEqual(a, b) al=b
assertTrue(x) bool(x) is True
assertFalse(x) bool(x) is False
assertIs(a, b) aisb
assertIsNot(a, b) a is not b
assertIsNone(x) x is None
assertIsNotNone(x) x is not None
assertIn(a, b) ainb
assertNotIn(a, b) a not in b

(continued)

76

CHAPTER 3 UNITTEST

Method

Checks That

assertIsInstance(a, b)
assertNotIsInstance(a, b)
assertAlmostEqual(a, b)
assertNotAlmostEqual(a, b)
assertGreater(a, b)
assertGreaterkEqual(a, b)
assertless(a, b)
assertlessEqual(a, b)
assertRegexpMatches(s, r)
assertNotRegexpMatches(s, 1)
assertItemsEqual(a, b)

assertDictContainsSubset(a, b)

isinstance(a, b)

not isinstance(a, b)
round(a-b, 7) == 0
round(a-b, 7) != 0
a>b

a>=b

a<b

a<=b

.search(s)

~

not r.search(s)
sorted(a) == sorted(b)

all the key/value pairs in
a exist in b

Method

Used to Compare

assertMultilineEqual(a, b)
assertSequenceEqual(a, b)
assertListEqual(a, b)
assertTupleEqual(a, b)
assertSetEqual(a, b)
assertDictEqual(a, b)

Strings

Sequences

Lists

Tuples

sets or frozensets

Dicts

All the assert methods listed in the previous table are good enough for

most programmers and testers when automating tests.

77

CHAPTER 3 UNITTEST

Other Useful Methods

This section looks at a few useful methods that will help you debug and
understand the flow of execution.

The id() and shortDescription() methods are very useful for
debugging. id() returns the name of the method and shortDescription()
returns the description of the method. Listing 3-16 shows an example.

Listing 3-16. test_modulel0.py

import unittest
class TestClassi1(unittest.TestCase):
def test case01(self):

This is a test method...
print("\nIn test case01()")
print(self.id())

print(self.shortDescription())

The output of Listing 3-16 is as follows:

test case01 (test modulel0.TestClassi1)
This is a test method... ...

In test case01()

test module10.TestClassi1.test caseO1
This is a test method...

ok

Ran 1 test in 0.002s

0K

78

CHAPTER 3 UNITTEST

Failing a Test

Many times, you might want to have a method that explicitly fails a test
when it’s called. In unittest, the fail() method is used for that purpose
Check the code in Listing 3-17 as an example.

Listing 3-17. test_modulell.py

import unittest
class TestClass12(unittest.TestCase):
def test case01(self):

This is a test method...
print(self.id())
self.fail()

The output of Listing 3-17 is as follows:

test case01 (test moduleil.TestClassi2)
This is a test method... ...

test module11.TestClass12.test caseO1
FAIL

FAIL: test case01 (test module11.TestClassi12)

This is a test method...

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test_moduleii.py”,
line 9, in test_case01
self.fail()

AssertionError: None

Ran 1 test in 0.004s

FAILED (failures=1)

Skipping tests

79

CHAPTER 3 UNITTEST

unittest provides a mechanism for skipping tests, conditionally or
unconditionally.

It uses the following decorators for implementing the skipping
mechanism:

e unittest.skip(reason): Unconditionally skips the
decorated test. reason should describe why the test is
being skipped.

e unittest.skipIf(condition, reason): Skipsthe
decorated test if condition is true.

o unittest.skipUnless(condition, reason): Skips the
decorated test unless condition is true.

o unittest.expectedFailure(): Marks the test as an
expected failure. If the test fails when it runs, the test is
not counted as a failure.

The code in Listing 3-18 demonstrates how to skip tests conditionally
and unconditionally.

Listing 3-18. test_modulel2.py

import sys
import unittest

class TestClass13(unittest.TestCase):

@unittest.skip("demonstrating unconditional skipping")
def test case01(self):
self.fail("FATAL")

@unittest.skipUnless(sys.platform.startswith("win"),
"requires Windows")
def test case02(self):

Windows specific testing code

pass

80

CHAPTER 3 UNITTEST

@unittest.skipUnless(sys.platform.startswith("linux"),
"requires Linux")
def test case03(self):

Linux specific testing code

pass

When you run the code in Listing 3-18 on the Linux platform, the
output is as follows:

test case01 (test moduleil2.TestClass13) ... skipped
'demonstrating unconditional skipping'

test case02 (test modulei2.TestClass13) ... skipped 'requires
Windows'

test case03 (test module1l2.TestClass13) ... ok

Ran 3 tests in 0.003s

0K (skipped=2)

When you run the code in Listing 3-18 on the Windows platform, the
output is as follows:

test case01 (test module1l2.TestClass13) ... skipped
"demonstrating unconditional skipping'

test case02 (test modulel2.TestClassi13) ... ok

test case03 (test modulel2.TestClass13) ... skipped
‘requires Linux'

Ran 3 tests in 0.003s

0K (skipped=2)

81

CHAPTER 3 UNITTEST

As you can see, the code skips the test cases based on the OS where it
runs. This trick is very useful for running platform-specific test cases.

You can also skip entire test classes in a test module using the
unittest. skip(reason) decorator.

Exceptions in Test Cases

When an exception is raised in a test case, the test case fails. The code
shown in Listing 3-19 will raise an exception explicitly.

Listing 3-19. test_modulel3.py
import unittest

class TestClass14(unittest.TestCase):
def test case01(self):
raise Exception

The output of Listing 3-19 is as follows:

test case01 (test module13.TestClassi4) ... ERROR

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test_module13.py",
line 6, in test case01
raise Exception

Exception

Ran 1 test in 0.004s

FAILED (errors=1)

82

CHAPTER 3 UNITTEST

The failure message shown when the test fails due to an exception is
different from when the test fails due to an assertion.

assertRaises()

You learned that assert methods are used to check test conditions. The
assertRaises() method is used to check if the code block raises the
exception mentioned in assertRaises(). If the code raises the exception
then the test passes; otherwise, it fails. The code shown in Listing 3-20
demonstrates the use of assertRaises() in detail.

Listing 3-20. test_modulel4.py

import unittest
class Calculator:
def addi(self, x, y):
return x +y

def add2(self, x, y):
number types = (int, float, complex)
if isinstance(x, number types) and isinstance
(y, number types):
return x +y
else:
raise ValueError

calc = 0
class TestClass1i6(unittest.TestCase):
@classmethod
def setUpClass(cls):
global calc
calc = Calculator()

def setUp(self):
print("\nIn setUp()...")

83

CHAPTER 3 UNITTEST

def test case01(self):
self.assertEqual(calc.add1(2, 2), 4)

def test case02(self):
self.assertEqual(calc.add2(2, 2), 4)

def test case03(self):
self.assertRaises(ValueError, calc.add1, 2, 'two')

def test case04(self):
self.assertRaises(ValueError, calc.add2, 2, 'two')

def tearDown(self):
print("\nIn tearDown()...")

@classmethod

def tearDownClass(cls):
global calc
del calc

The code in Listing 3-20 defined a class called Calculator that has two
different methods for the addition operation. The add1() method does not

have a provision to raise an exception if a non-numeric argument is passed

to it. The add2 () method raises a ValueError if any of the arguments are
non-numeric. Here is the output of the code in Listing 3-20:

test case01 (test module1l4.TestClass16) ...
In setUp()...

In tearDown()...

ok

test _case02 (test_module1l4.TestClass16) ...
In setUp()...

In tearDown()... ok
test case03 (test modulei4.TestClassi6) ...
In setUp()...

84

CHAPTER 3 UNITTEST

In tearDown()...

ERROR

test case04 (test modulel4.TestClassi6) ...
In setUp()...

In tearDown()...
ok

Traceback (most recent call last):
File "/home/pi/book/code/chapter03/test/test _modulei4.py",
line 37, in test case03
self.assertRaises(ValueError, calc.addi, 2, "two')
File "/usr/lib/python3.4/unittest/case.py", line 704, in
assertRaises
return context.handle('assertRaises', callableObj,
args, kwargs)
File "/usr/lib/python3.4/unittest/case.py", line 162, in
handle callable obj(*args, **kwargs)
File "/home/pi/book/code/chapter03/test/test_modulei4.py”,
line 7, in add1
return x +y

TypeError: unsupported operand type(s) for +: 'int' and 'str
Ran 4 tests in 0.030s
FAILED (errors=1)

In the output, the test_Case03() fails because add1() does not have a
provision to raise an exception when you pass it a non-numeric argument
(a string, in this case). assertRaises() is very useful in writing negative
test cases, such as when you need to check the behavior of the API against
invalid arguments.

85

CHAPTER 3 UNITTEST

Creating Test Suites

You can create your own custom test suites and test runners to run those
test suites. The code is presented in Listing 3-21.

Listing 3-21. test_modulel6.py
import unittest

def setUpModule():
"""called once, before anything else in this module
print("In setUpModule()...")

def tearDownModule():

called once, after everything else in this module
print("In tearDownModule()...")

class TestClasso6(unittest.TestCase):

@classmethod

def setUpClass(cls):
"""called once, before any test
print("In setUpClass()...")

@classmethod

def tearDownClass(cls):
"""called once, after all tests, if setUpClass
successful"""
print("In tearDownClass()...")

def setUp(self):
"""called multiple times, before every test method"""
print("\nIn setUp()...")

86

CHAPTER 3 UNITTEST

def tearDown(self):

called multiple times, after every test method"""
print("In tearDown()...")

def test case01(self):
self.assertTrue("PYTHON".isupper())
print("In test case01()")

def test case02(self):
self.assertFalse("python".isupper())
print("In test case02()")

def suite():
test suite = unittest.TestSuite()
test suite.addTest(unittest.makeSuite(TestClass06))
return test suite

if _name_ == "' main_':
mySuit=suite()
runner=unittest.TextTestRunner()
runner.run(mySuit)

This code example created a suite that created an object for unittest
.TestSuite(). Then it added the test class to this object with the addTest ()
method. You can add multiple test classes to that. You can also create
multiple test suites like that. Finally, this example is creating an object of
this test suite class in the main section. It also creates a testrunner object
and then calls that object to run the object of the test suite. You can create
multiple test suites and create their objects in the main section. Then you
can use the testrunner object to call the objects of those test suites.

87

CHAPTER 3 UNITTEST

Creating Test Suites

EXERCISE 3-1

unittest, like all the other Python libraries, is too vast a topic to be covered
in a single book. So, I recommend you complete the following exercises to
gain more knowledge and experience with unittest.

1. Visit the Python 3 Documentation page for unittest at
https://docs.python.org/3/1ibrary/unittest.html.

2. Practice all the assertion methods mentioned in this chapter by
writing tests using each one of them.

3. Practice using the unittest.skipIf(condition,
reason) and unittest.expectedFailure() decorators.
Write code to demonstrate their functionality.

4. Write a test module with multiple test classes and skip an entire
test class using the unittest.skip(reason) decorator.

5. Experiment with raising exceptions in the test fixtures.

Hint Try to run the code in Listing 3-22 by enabling each
commented-out raise Exception line, one line at a time. This
will help you understand how an individual fixture behaves when you
raise an exception in it.

Listing 3-22. test_modulel5.py import unittest

def setUpModule():
raise Exception
pass

88

https://docs.python.org/3/library/unittest.html

CHAPTER 3 UNITTEST

def tearDownModule():
raise Exception
pass
class TestClass15(unittest.TestCase):
@classmethod
def setUpClass(cls):
raise Exception
pass

def setUp(self):
raise Exception
pass

def test case01(self):
self.id()

def tearDown(self):
raise Exception
pass

@classmethod
def tearDownClass(cls):
raise Exception
Pass

Conclusion

In this chapter, you learned about several important concepts, including
test fixtures, test classes, test methods, test modules, and test suites. You
also learned how to implement all these concepts with unittest. You
also learned assertions and automated test discovery. Almost all the
concepts you learned in this chapter will be revisited in later chapters that
cover other Python testing frameworks. The next chapter looks at nose

89

CHAPTER 3 UNITTEST

and nose2, which are two other popular Python test automation and test
runner frameworks.

All the concepts we learned in this chapter are the foundations of the
area of unit test automation. We will be using them throughout this book
and these concepts are very useful at work for professional testers and
developers.

90

CHAPTER 4

nose and nose2

The last chapter introduced xUnit and unittest. In this chapter, you will
explore yet another unit-testing API for Python, called nose. Its tagline is
nose extends unittest to make testing easier.

You can use nose’s API to write and run automated tests. You can
also use nose to run tests written in other frameworks like unittest. This
chapter also explores the next actively developed and maintained iteration
of nose, nose2

Introduction to nose

nose is not part of Python’s standard library. You have to install it in order
to use it. The next section shows how to install it on Python 3.

Installing nose on Linux Distributions

The easiest way to install nose on a Linux computer is to install it using
Python’s package manager pip. Pip stands for pip installs packages. It's a
recursive acronym. If pip is not installed on your Linux computer, you can
install it by using a system package manager. On any Debian/Ubuntu or
derivative computer, install pip with the following command:

sudo apt-get install python3-pip

© Ashwin Pajankar 2022 91
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_4

https://doi.org/10.1007/978-1-4842-7854-3_4#DOI

CHAPTER 4 NOSE AND NOSE2

On Fedora/CentOS and derivatives, run the following commands
(assuming you have Python 3.5 installed on the OS) to install pip:

sudo yum install python35-setuptools
sudo easy install pip

Once pip is installed, you can install nose with the following

command:

sudo pip3 install nose

Installing nose on mac0S and Windows

pip is preinstalled with Python 3 on macOS and Windows. Install nose
with the following command:

pip3 install nose

Verifying the Installation

Once nose is installed, run the following command to verify the
installation:

nosetests -V
It will show output as follows:
nosetests version 1.3.7

On Windows, this command may return error, so you can use the
following command alternatively:

python -m nose -V

92

CHAPTER 4 NOSE AND NOSE2

Getting Started with nose

To get started with nose, follow the same path of exploration that you
followed with unittest. Create a directory called chapter04 in the code
directory and copy the mypackage directory from the chapter03 directory
to code. You will need it later. Create a directory called test too. After

all this, the chaptero04 directory structure should look like the structure

__init__
mmat.hllb py
mymaths imple.py

Figure 4-1. The chapter04 directory structure

shown in Figure 4-1.

Save all the code examples to the test directory only.

A Simple nose Test Case

A very simple nose test case is demonstrated in Listing 4-1.

Listing 4-1. test_module01.py

def test case01():
assert 'aaa'.upper() == "AAA'

In Listing 4-1, test_case01() is the test function. assert is Python’s
built-in keyword and it works like the assert methods in unittest. If you
compare this code with the simplest test case in the unittest framework,
you will notice that you do not have to extend the test from any parent
class. This makes the test code cleaner and less cluttered.

93

CHAPTER 4 NOSE AND NOSE2

If you try to run it with the following commands, it will not yield
any output:

python3 test module01.py
python3 test module0Oi.py -v

This is because you have not included a test-runner in the code.
You can run it by using the -m command-line option for Python, as
follows:

python3 -m nose test_moduleO1.py

The output is as follows:

Ran 1 test in 0.007s
0K

Verbose mode can be invoked by adding the -v command-line option
as follows:

python3 -m nose -v test module01.py
The output is as follows:

test.test moduleOi.test case01 ... ok

Ran 1 test in 0.007s
(0]

Running the Test Module with nosetests

You can use nose’s nosetests command to run the test modules as
follows:

nosetests test moduleoO1l.py

94

CHAPTER 4 NOSE AND NOSE2

The output is as follows:

Ran 1 test in 0.006s
(0]

Verbose mode can be invoked as follows:
nosetests test module0l.py -v
The output is as follows:

test.test moduleO1.test case01 ... ok

Ran 1 test in 0.007s
(0]

Using the nosetests command is the simplest way to run test modules.
Due to the simplicity and convenience of the coding and invocation style,
we will use nosetests to run tests until we introduce and explain nose2.

If the command returns an error in Windows, you can invoke the nose
module with the Python interpreter.

Getting Help
Use the following commands to get help and documentation about nose:

nosetests -h
python3 -m nose -h

95

CHAPTER 4 NOSE AND NOSE2

Organizing the Test Code

In the previous chapter, you learned how to organize the development and
testing code of the project in separate directories. You will follow the same
standard in this and the next chapter too. First create a test module to test
the development code in mypackage. Save the code shown in Listing 4-2 in
the test directory.

Listing 4-2. test_module02.py
from mypackage.mymathlib import *

class TestClasso1:
def test case01(self):
print("In test case01()")
assert mymathlib().add(2, 5) == 7

Listing 4-2 creates a test class called TestClass01. As discussed eatrlier,
you do not have to extend it from a parent class. The line containing
assert checks if the statement mymathlib().add(2, 5) == 7istrueor
talse to mark the test method as PASS or FAIL.

Also, create an init.py file with the code in Listing 4-3 placed in the
test directory.

Listing 4-3. init.py
all = ["test moduleo1", "test module02"]

After this, the chaptero04 directory structure will resemble Figure 4-2.

96

CHAPTER 4 NOSE AND NOSE2

pi@raspberrypi:~/book/code/chapter04 § tree

— __init__ .py
—— mymathlib.py
— mymathsimple.py

— __init__ .py
— test_modulell.py
—— test_modulel2.py

Figure 4-2. The chapter04 directory structure

The test package is ready now. You can run the tests from the
chapter04 directory as follows:

nosetests test.test module02 -v
The output is as follows:

test.test module02.TestClassO1.test case0l ... ok

Ran 1 test in 0.008s
(0]

The convention for running a specific test class is a bit different in
nose. The following is an example:

nosetests test.test module02:TestClassol -v
You can also run an individual test method as follows:

nosetests test.test_module02:TestClassO1.test case01 -v

97

CHAPTER 4 NOSE AND NOSE2

Test Discovery

You learned about test discovery in an earlier chapter. nose also supports
the test discovery process. In fact, test discovery in nose is even simpler
than in unittest. You do not have to use the discover subcommand
for test discovery. You just need to navigate to the project directory
(chaptero04 in this case) and run the nosetests command, as follows:

nosetests

You can also invoke this process in verbose mode:
nosetests -v

The output is as follows:

test.test moduleOl.test case01 ... ok

test.test module02.TestClassO1.test case01 ... ok
Ran 2 tests in 0.328s

OK

As you can see in the output, nosetests automatically discovers the
test package and runs all its test modules.

Fixtures for Classes, Modules, and Methods

nose provides xUnit-style fixtures that behave in similar way as the fixtures
in unittest. Even the names of the fixtures are same. Consider the code in
Listing 4-4.

98

CHAPTER 4 NOSE AND NOSE2

Listing 4-4. test_module03.py

from mypackage.mymathlib import *

math_obj = 0

def

def

setUpModule():

"""called once, before anything else in this module
print("In setUpModule()...")

global math_obj

math_obj = mymathlib()

tearDownModule():

called once, after everything else in this module
print("In tearDownModule()...")
global math_obj del math_obj

class TestClasso02:

@classmethod
def setUpClass(cls):

called once, before any test in the class
print("In setUpClass()...")

def setUp(self):
"""called before every test method"""
print("\nIn setUp()...")

def test case01(self):
print("In test case01()")
assert math obj.add(2, 5) == 7

def test case02(self):
print("In test case02()")

def tearDown(self):

called after every test method"""
print("In tearDown()...")

99

CHAPTER 4 NOSE AND NOSE2

@classmethod
def tearDownClass(cls):
"""called once, after all tests, if setUpClass()
successful"""
print ("\nIn tearDownClass()...")

If you run the code in Listing 4-4 with the following command:
nosetests test module03.py -v
The output will be as follows:

test.test module03.TestClass02.test case01 ... ok
test.test module03.TestClass02.test case02 ... ok
Ran 2 tests in 0.010s

0K

In order to get more details about the test execution, you need to add
the -s option to the command line, which allows any stdout output to be
printed in the command line immediately.

Run the following command:

nosetests test module03.py -vs
The output is as follows:

In setUpModule()...

Creating object : mymathlib

In setUpClass()...

test.test module03.TestClass02.test case0l ...
In setUp()...

In test case01()

In tearDown()...

ok

100

CHAPTER 4 NOSE AND NOSE2

test.test module03.TestClass02.test case02 ...
In setUp()...

In test case02()

In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...
Destroying object : mymathlib
Ran 2 tests in 0.011s

0K

From now on, the examples will add the -s option to the nosetests
command while executing the tests.

Fixtures for Functions

Before you get started with the fixtures for functions, you must understand
the difference between a function and a method in Python. A function
is a named piece of code that performs an operation and a method is a
function with an extra parameter that’s the object on which it runs. A
function is not associated with a class. A method is always associated with
a class.

Check the code in Listing 4-5 as an example.

Listing 4-5. test_module04.py
from nose.tools import with_setup

def setUpModule():
"""called once, before anything else in this module
print("\nIn setUpModule()...")

101

CHAPTER 4 NOSE AND NOSE2

def tearDownModule():

called once, after everything else in this module
print("\nIn tearDownModule()...")

def setup function():
"""setup_function(): use it with @with setup() decorator
print("\nsetup function()...")

def teardown function():
"""teardown_ function(): use it with @with_setup()
decorator"""
print("\nteardown function()...")

def test case01():
print("In test case01()...")

def test case02():
print("In test case02()...")

@with setup(setup function, teardown function)
def test case03():
print("In test case03()...")

In the code in Listing 4-5, test_case01(), test case02(),
test case03(), setup_ function(), and teardown function() are the
functions. They are not associated with a class. You have to use the
@with_setup() decorator, which is imported from nose.tools, to
assign setup_function() and teardown function() as fixtures
of test_case03(). nose recognizes test_case01(), test case02(), and
test case03() as test functions because the names begin with
test . setup function() and teardown function() are recognized as
fixtures of test_case03(), due to the @with_setup() decorator.

The test _case01() and test_case02() functions do not have any
fixtures assigned to them.

102

CHAPTER 4 NOSE AND NOSE2
Let’s run this code with the following command:
nosetests test moduleO4.py -vs

The output is as follows:

In setUpModule()...

test.test moduleo4.test case01 ... In test case01()...
ok

test.test_moduleo4.test case02 ... In test case02()...
ok

test.test module04.test case03 ... setup function()...
In test case03()...

teardown_function()...
ok

In tearDownModule()...
Ran 3 tests in 0.011s
(0]

As you can see in the output, setup_function() and
teardown_function() run before and after test _case03(), respectively.
unittest does not have a provision for the fixtures at the test function
level. Actually, unittest does not support the concept of standalone test
functions, as everything has to be extended from the TestCase class and a
function cannot be extended.

It’s not mandatory that you name the function-level fixtures
setup_function() and teardown function(). You can name them
anything you want (except, of course, for Python 3’s reserved keywords).
They will be executed before and after the test function as long as you use
them in the @with_setup() decorator.

103

CHAPTER 4 NOSE AND NOSE2

Fixtures for Packages

unittest does not have a provision for package-level fixtures. Package
fixtures are executed when the test package or part of the test package is
invoked. Change the contents of the init.py file in the test directory to
the code shown in Listing 4-6.

Listing 4-6. init.py

all = ["test moduleo1", "test module02", "test module03",
"test _module04"]

def setUpPackage():
print("In setUpPackage()...")

def tearDownPackage():
print("In tearDownPackage()...")

If you run a module in this package now, the package-level fixtures will
run before beginning any test and after the entire test in the package. Run
the following command:

nosetests test module03.py -vs
Here is the output:

In setUpPackage()...

In setUpModule()...

Creating object : mymathlib

In setUpClass()...

test.test module03.TestClass02.test caseO1l ...
In setUp()...

In test case01()

In tearDown()...

ok

test.test module03.TestClass02.test case02 ...

104

CHAPTER 4 NOSE AND NOSE2
In setUp()...
In test case02() In tearDown()...
ok
In tearDownClass()...
In tearDownModule()...
Destroying object : mymathlib
In tearDownPackage()...
Ran 2 tests in 0.012s
0]
Alternate Names of the nose Fixtures
This table lists the alternate names of the nose fixtures.
Fixture Alternative Name(s)
setUpPackage setup, setUp, or setup package
tearDownPackage teardown, tearDown, or teardown package
setUpModule setup, setUp, or setup module
tearDownModule teardown, tearDown, or teardown module
setUpClass setupClass, setup class, setupAll, or
setUpAll
tearDownClass teardownClass, teardown class,

teardownAll, or tearDownAll

setUp (class method setup
fixtures)

tearDown (class method Teardown
fixtures)

105

CHAPTER 4 NOSE AND NOSE2

assert_equals()

Until now, you have been using Python’s built-in keyword assert to
check the actual results against expected values. nose has its own
assert_equals() method for this. The code in Listing 4-7 demonstrates
the use of assert_equals() and assert.

Listing 4-7. test_module05.py
from nose.tools import assert equals

def test case01():
print("In test case01()...")
assert 2+2 == 5

def test case02():
print("In test case02()...")
assert _equals(2+2, 5)

Run the code in Listing 4-7. Here is the output:

In setUpPackage()...

test.test moduleo5.test case01 ... In test case01()...
FAIL

test.test moduleo5.test case02 ... In test case02()...
FAIL

In tearDownPackage()...

Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/nose/case.py",
line 198, in runTest
self.test(*self.arg)

106

CHAPTER 4 NOSE AND NOSE2

File "/home/pi/book/code/chapter04/test/test _moduleos.py",
line 6, in test case01
assert 2+2 ==

AssertionError

Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/nose/case.py”,
line 198, in runTest
self.test(*self.arg)
File "/home/pi/book/code/chapter04/test/test_moduleos.py",
line 11, in test case02
assert _equals(2+2, 5)

AssertionError: 4 != 5

Ran 2 tests in 0.013s

FAILED (failures=2)

Both test cases failed due to incorrect test inputs. Note the difference
between the logs printed by these test methods. In test_case02(), you get
more information about the cause of the failure, as you are using nose’s
assert_equals() method.

Testing Tools

nose.tools has a few methods and decorators that come in very handy
when you're automating tests. This section looks at a few of those
testing tools.

107

CHAPTER 4 NOSE AND NOSE2

ok_and eq_

ok _and eq_ are shorthand for assert and assert_equals(), respectively.
They also come with a parameter for an error message when the test case
fails. The code in Listing 4-8 demonstrates this.

Listing 4-8. test_module06.py
from nose.tools import ok , eq_

def test case01():
ok_(2+2 == 4, msg="Test Case Failure...")

def test case02():
eq_(2+2, 4, msg="Test Case Failure...")

def test case03():
ok (2+2 == 5, msg="Test Case Failure...")

def test case04():
eq_(2+2, 5, msg="Test Case Failure...")

The following shows the output of the code in Listing 4-8.

In setUpPackage()... test.test module06.test case01l ... ok
test.test module06.test case02 ... ok

test.test module06.test case03 ... FAIL

test.test module06.test case04 ... FAIL

In tearDownPackage()...

Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/nose/case.py"”,
line 198, in runTest

108

CHAPTER 4 NOSE AND NOSE2

self.test(*self.arg)

File "/home/pi/book/code/chaptero4/test/test_module06.py",
line 13, in test case03

ok_(2+2 == 5, msg="Test Case Failure...")

AssertionError: Test Case Failure...

Traceback (most recent call last):

File "/usr/local/lib/python3.4/dist-packages/nose/case.py"”,
line 198, in runTest

self.test(*self.arg)

File "/home/pi/book/code/chaptero4/test/test_module06.py",
line 17, in test_case04

eq_(2+2, 5, msg="Test Case Failure...")

AssertionError: Test Case Failure...

Ran 4 tests in 0.015s
FAILED (failures=2)

The @raises() Decorator

When you use the raises decorator before the test, it must raise one of

the exceptions mentioned in the list of exceptions associated with the

@raises() decorator. Listing 4-9 demonstrates this idea.

Listing 4-9. test_module07.py

from nose.tools import raises

@raises(TypeError, ValueError)
def test case01():

raise TypeError("This test passes”)

109

CHAPTER 4 NOSE AND NOSE2

@raises(Exception)
def test case02():
pass

The output is as follows:

In setUpPackage()...
test.test_module07.test case01 ... ok
test.test module07.test case02 ... FAIL
In tearDownPackage()...

Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/nose/case.py",
line 198, in runTest
self.test(*self.arg)
File "/usr/local/lib/python3.4/dist-packages/nose/tools/
nontrivial.py", line 67, in newfunc
raise AssertionError(message)

AssertionError: test case02() did not raise Exception

Ran 2 tests in 0.012s

FAILED (failures=1)

Asyou can see, test_case02() fails, as it does not raise an exception
when it is supposed to. You can cleverly use this to write negative
test cases.

110

CHAPTER 4 NOSE AND NOSE2

The @timed() decorator

If you are using a timed decorator with the test, the test must finish within
the time mentioned in the @timed() decorator to pass. The code in
Listing 4-10 demonstrates this idea.

Listing 4-10. test_modulel0.py

from nose.tools import timed
import time

@timed(.1)
def test case01():
time.sleep(.2)

This test fails, as it takes more time to finish the execution of the test
than is allotted in the @timed() decorator. The output of execution is as
follows:

In setUpPackage()...
test.test module08.test case01 ... FAIL
In tearDownPackage()...

Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/nose/case.py",
line 198, in runTest
self.test(*self.arg)
File "/usr/local/lib/python3.4/dist-packages/nose/tools/
nontrivial.py", line 100, in newfunc

111

CHAPTER 4 NOSE AND NOSE2

raise TimeExpired("Time limit (%s) exceeded" % limit) nose.
tools.nontrivial.TimeExpired: Time limit (0.1) exceeded

Ran 1 test in 0.211s
FAILED (failures=1)

It is the collection or group of related tests that can be executed or
scheduled to be executed together.

Report Generation

Let’s look at the various ways to generate comprehensible reports
using nose.

Creating an XML Report

nose has a built-in feature for generating XML reports. These are xUnit-
style formatted reports. You have to use --with-xunit to generate the
report. The report is generated in the current working directory.

Run the following command in the test directory:

nosetests test moduleOl.py -vs --with-xunit
The output will be as follows:

In setUpPackage()...
test.test module0Ol.test case01 ... ok
In tearDownPackage()...

Ran 1 test in 0.009s
(0]

112

CHAPTER 4 NOSE AND NOSE2

The generated XML file is shown in Listing 4-11.

Listing 4-11. nosetests.xml

<?xml version="1.0" encoding="UTF-8"?>

<testsuite name="nosetests" tests="1" errors="0" failures="0"
skip="0">

<testcase classname="test.test module01" name="test case01"
time="0.002">

</testcase>

</testsuite>

Creating an HTML Report

nose does not have a built-in provision for HTML reports. You have to
install a plugin for that. Run the following command to install the HTML
output plugin:

sudo pip3 install nose-htmloutput

Once the plugin is installed, you can run the following command to
execute the test:

nosetests test module0l.py -vs --with-html
Here is the output:

In setUpPackage()...
test.test moduleOl.test case01 ... ok
In tearDownPackage()...

Ran 1 test in 0.009s
(0]

113

CHAPTER 4 NOSE AND NOSE2

The plugin saves the output in the current location in a file called
nosetests.html.
Figure 4-3 shows a snapshot of the nosetests.html file, opened in a

web browser.

Y e L=
& (D) file///C:/Users/acer/Desktop/nosets c » =
Overview
Class :FaiI-Error.Skip.Sucuss.Total
test.test_module010 0 0 1 11

Total b o [0 [1

Failure details

All tests

test.test_module01 (0 failures, O errors)

® test_case0l

Figure 4-3. The nosetests.html file

Creating Color Output in the Console

Until now, you saw methods that generate formatted output files. While
running nosetest, you must have observed that the console output is
monochrome (white text on a dark background and vice versa). The plugin
called rednose is used to create colored console output. You can install
that plugin using the following command:

sudo pip3 install rednose

114

CHAPTER 4 NOSE AND NOSE2
Once the plugin is installed, run the following command:
nosetests test module08.py -vs --rednose

Figure 4-4 shows a screenshot of the output, although you won'’t see it
in color here, due to the grayscale nature of the published book.

pifraspberrypi:~/book de/chaprer04/tesat 5 nosetests test_modulel8.py -vs --rednose
In secUpPackage()...

test.test_modulel8.test_casell ...

In tearDownPackage()...

Traceback (most recent call last):
line 198 in runTest
self.test (*self.arg)
line 100 in newfunc
raise TimeExpired("Time limit (%s3) exceeded”™ % limic)

TimeExpired

1l test run in 0.224 seconds.

Figure 4-4. A rednose demo

Running unittest Tests from nose

In the beginning of the chapter, you read that you can run unittest tests
with nose. Let’s try that now. Navigate to the chapter03 directory. Run
the following command to discover and execute all of the unittest tests
automatically:

nosetests -v
This is the output:

test case01 (test.test module0i.TestClass01l) ... ok
test case02 (test.test module0il.TestClass01l) ... ok
test case01 (test.test module02.TestClass02) ... ok
test case02 (test.test module02.TestClass02) ... ok
test case01 (test.test module03.TestClass03) ... ok

115

CHAPTER 4 NOSE AND NOSE2

test case02 (test.test module03.TestClass03) ... ok
test case03 (test.test module03.TestClass03) ... FAIL
test _case04 (test.test module03.TestClasso3) ... FAIL
test case01 (test.test moduleo4.TestClasso4) ... ok

I am truncating the output as it would otherwise fill many pages. Run
the command yourself to see the entire output.

Running doctest Tests from nose

You can run doctest test from nose as follows. First navigate to the
directory where you saved the doctest tests:

cd ~/book/code/chaptero2
Then run the tests as follows:
nosetests -v
The output is as follows:

This is test case01(). ... ok
This is test functiono1(). ... ok

Ran 2 tests in 0.007s

0K

Advantages of nose over unittest

Here is a summary of the advantages of nose over unittest:

e Unlike unittest, nose does not require you to extend
test cases from a parent class. This results in less code.

116

CHAPTER 4 NOSE AND NOSE2

o Using nose, you can write test functions. This is not
possible in unittest.

¢ nose has more fixtures than unittest. In addition to
the regular unittest fixtures, nose has package- and
function-level fixtures.

e nose has alternate names for fixtures.

o nose.tools offers many features for automating
test cases.

o Test discovery is simpler in nose than in unittest,
as nose does not need a Python interpreter with the
discover subcommand.

e nose canrecognize and run unittest tests easily.

Disadvantages of nose

The only and biggest disadvantage of nose is that it is not under active
development and has been in maintenance mode for the past several
years. It will likely cease without a new person or team to take over its
maintenance. If you're planning to start a project and are looking for a
suitable automation framework for Python 3, you should use pytest,
nose2, or plain unittest.

You might be wondering why I even spent time covering nose if it is
not being actively developed. The reason is that learning a more advanced
framework like nose helps you understand the limitations of unittest.
Also, if you are working with an older project that uses nose as the test
automation and/or unit-testing framework, it will help you understand
your tests.

117

CHAPTER 4 NOSE AND NOSE2

Using nose2

nose2 is the next generation of testing for Python. It is based on the plugins
branch of unittest2.
nose2 aims to improve on nose in the following ways:

o It provides a better plugin API.

o Itis easier for users to configure.

o Itsimplifies internal interfaces and processes.

o Itsupports Python 2 and 3 from the same codebase.

o Itencourages greater community involvement in its
development.

e Unlike nose, it is under active development.

nose2 can be installed conveniently using the following command:
sudo pip3 install nose2

Once installed, nose2 can be invoked by running nose2 at the
command prompt.

It can be used to auto-discover and run the unittest and nose test
modules. Run the nose2 -h command at the command prompt to get help
with the various nose2 command-line options.

The following are the important differences between nose and nose2:

o Python versions

nose supports Python version 2.4 and above. nose2
supports pypy, 2.6, 2.7, 3.2, 3.3, 3.4, and 3.5. nose2
does not support all the versions, as it is not possible
to support all the Python versions in a single
codebase.

118

CHAPTER 4 NOSE AND NOSE2

Test loading

nose loads and executes test modules one by one,
which is called lazy loading. On the contrary, nose2
loads all the modules first and then executes them
all at once.

Test discovery

Because of the difference between the test loading
techniques, nose2 does not support all the project
layouts. The layout shown in Figure 4-5 is supported
by nose. However, it will not be loaded correctly by
nose2. nose can distinguish between ./dir1/test.
py and ./dir1/dir2/test.py.

pi@raspberrypi:~ § tree dirl

E e testc.py
test.py

1 directory, 2 files

Figure 4-5. nose2 unsupported test layout

You can run tests with nose2 as follows:

You can also parameterize tests, as shown in Listing 4-12.

Listing 4-12. test_module09.py

from nose2.tools import params

@params("Test1234", "1234Test", "Dino Candy")
def test starts with(value):
assert value.startswith('Test")

119

CHAPTER 4 NOSE AND NOSE2

You can run the tests as follows:
nose2 -v

or
python -m nose2 test_module09

The output is as follows:

FAIL: test_module09.test starts with:2
'1234Test'
Traceback (most recent call last):
File "C:\Users\Ashwin\Google Drive\Python Unit
Test Automation - Second Edition\Code\chaptero4\test\
test _module09.py", line 5, in test starts with
assert value.startswith('Test")
AssertionError

FAIL: test_module09.test starts with:3
'Dino Candy'

Traceback (most recent call last):
File "C:\Users\Ashwin\Google Drive\Python Unit Test
Automation - Second Edition\Code\chapter04\test\
test module09.py", line 5, in test starts with
assert value.startswith('Test")
AssertionError

Ran 3 tests in 0.002s

FAILED (failures=2)
120

CHAPTER 4 NOSE AND NOSE2

You can directly launch the test script from any IDE without specifying
the nose2 module by modifying the code, as shown in Listing 4-13.

Listing 4-13. test_module20.py
from nose2.tools import params

@params("Test1234", "1234Test", "Dino Candy")
def test starts with(value):
assert value.startswith('Test")

if _name__ == "' main_ ':
import nose2
nose2.main()

You can launch it directly from any IDE like IDLE and it will produce
the same results.

EXERCISE 4-1

Check if the codebase in your organization is using unittest, nose, or
nose2. Consult with the owners of the codebase and plan a migration from
these frameworks to a better and more flexible unit-testing framework.

Conclusion

In this chapter, you learned about the advanced unit-testing framework,
nose. Unfortunately, it is not being developed actively so you need to use
nose2 as a test-runner for nose tests. In the next chapter, you learn about
and explore an advanced test automation framework called py.test.

121

CHAPTER 5

pytest

In Chapter 4, you explored nose, which is an advanced and better
framework for Python testing. Unfortunately, nose has not been under
active development for the past several years. That makes it an unsuitable
candidate for a test framework when you want to choose something for a
long-term project. Moreover, there are many projects that use unittest or
nose or a combination of both. You definitely need a framework that has
more features than unittest, and unlike nose, it should be under active
development. nose2 is more of a test-runner for unittest and an almost
defunct tool. You need a unit test framework that’s capable of discovering
and running tests written in unittest and nose. It should be advanced
and must be actively developed, maintained, and supported. The answer
is pytest.

This chapter extensively explores a modern, advanced, and better test
automation framework, called pytest. First, you'll learn how pytest offers
traditional xUnit style fixtures and then you will explore the advanced
fixtures offered by pytest.

© Ashwin Pajankar 2022 123
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_5

https://doi.org/10.1007/978-1-4842-7854-3_5#DOI

CHAPTER5 PYTEST

Introduction to pytest

pytest is not a part of Python’s standard library. You have to install it in
order to use it, just like you installed nose and nose2. Let’s see how you can
install it for Python 3. pytest can be installed conveniently by running the
following command in Windows:

pip install pytest
For Linux and macOS, you install it using pip3 as follows:
sudo pip3 install pytest

This installs pytest for Python 3. It might show a warning. There will
be a directory name in the warning message. I used a Raspberry Pi with
Raspberry Pi OS as the Linux system. It uses bash as the default shell.
Add the following line to the .bashrc and .bash_profile files in the home
directory.

PATH=$PATH: /home/pi/.local/bin

After adding this line to the files, restart the shell. You can now check
the installed version by running the following command:

py.test --version
The output is as follows:

pytest 6.2.5

Simple Test

Before you begin, create a directory called chapter05 in the code directory.
Copy the mypackage directory as it is from the chapter04 directory. Create

a directory called test in chapter05. Save all the code files for this chapter
in the test directory.

124

CHAPTER5 PYTEST

Just like when using nose, writing a simple test is very easy. See the
code in Listing 5-1 as an example.

Listing 5-1. test_module0l.py

def test case01():
assert 'python'.upper() == 'PYTHON'

Listing 5-1 imports pytest in the first line. test_case01() is the test
function. Recall that assert is a Python built-in keyword. Also, just like
with nose, you do not need to extend these tests from any class. This helps
keep the code uncluttered.

Run the test module with the following command:

python3 -m pytest test module0O1.py
The output is as follows:

===================== test session starts ====================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 rootdir: /home/pi/book/code/chapter05/test,
inifile:

collected 1 items

test module0O1.py .
===m==m==m=m========] passed in 0.05 Seconds —=—=—=—====—=—========

You can also use verbose mode:
python3 -m pytest -v test moduleo1l.py
The output is as follows:

=============== test session starts ===============ccooooooooac
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

/ust/bin/python3

125

CHAPTER5 PYTEST

cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test,
inifile: collected 1 items

test module0O1.py::test case01 PASSED

Running Tests with the py.test Command

You can also run these tests with pytest's own command, called py.test:
py.test test module01.py
The output is as follows:

================= test session starts ===============cccooooc
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 rootdir: /home/pi/book/code/chapter05/test,
inifile:

collected 1 items

test module0O1.py .
===============] passed in 0.04 Seconds —==================

You can also use verbose mode as follows:
py.test test module0i.py -v
The output in verbose mode is as follows:

=================== test session starts =================z======
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

126

CHAPTER5 PYTEST

rootdir: /home/pi/book/code/chapteros/test,
inifile:
collected 1 items

test module0O1.py::test case01 PASSED
==================== 1] passed in 0.04 Seconds —=—=—=====—=—=—=======

For the sake of simplicity and convenience, from now onward, you
will use the same method to run these tests for rest of this chapter and the
book. You will use pytest in the last chapter to implement a project with
the methodology of test-driven development. Also, observe when you
run your own tests that the output of test execution is in color by default,
although the book shows the results in black and white. You do not have
to use any external or third-party plugin for this effect. Figure 5-1 shows a
screenshot of an execution sample.

pi@raspberrypi:~/t k/cede/chapter0S/test § py.testc test_mcduleOZ.py -
Test session starts
plactform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31, pluggy-0.4.0 -- fusr/bin/python3
cachedir: .cache

rootdir: /home/pi/bock/code/chapter05/test, inifile:

collected 1 items

test modulell.py::test caseQl PASSEL

1 passed in 0.08 seconds

Figure 5-1. Sample pytest execution

Test Class and Test Package in pytest

Like all the previous test automation frameworks, in pytest you can create
test classes and test packages. Take a look at the code in Listing 5-2 as an
example.

127

CHAPTER5 PYTEST

Listing 5-2. test_module02.py
class TestClasso1:

def test case01(self):
assert 'python'.upper() == 'PYTHON'

def test case02(self):
assert 'PYTHON'.lower() == 'python’

Also create an init.py file, as shown in Listing 5-3.

Listing 5-3. _init.py
all = ["test moduleo1”, "test module02"]
Now navigate to the chapter05 directory:
cd /home/pi/book/code/chapteros
And run the test package, as follows:
py.test test

You can see the output by running the previous command. You can
also use the following command to run a test package in verbose mode.

py.test -v test

You can run a single test module within a package with the following
command:

py.test -v test/test_moduleO1.py
You can also run a specific test class as follows:

py.test -v test/test _module02.py::TestClasso1

128

CHAPTER 5 PYTEST
You can run a specific test method as follows:
py.test -v test/test module02.py::TestClassO1l::test case01
You can run a specific test function as follows:

py.test -v test/test moduleOl.py::test case01l

Test Discovery in pytest

pytest can discover and automatically run the tests, just like unittest,
nose, and nose2 can. Run the following command in the project directory
to initiate automated test discovery:

py.test
For verbose mode, run the following command:

py.test -v

xUnit-Style Fixtures

pytest has xUnit-style fixtures. See the code in Listing 5-4 as an example.

Listing 5-4. test_module03.py

def setup module(module):
print("\nIn setup_module()...")

def teardown module(module):
print("\nIn teardown module()...")

def setup function(function):
print("\nIn setup function()...")

def teardown function(function):
print("\nIn teardown function()...")

129

CHAPTER5 PYTEST

def test case01():
print("\nIn test case01()...")

def test case02():
print("\nIn test _case02()...")

class TestClasso02:

@classmethod
def setup class(cls):
print ("\nIn setup class()...")

@classmethod
def teardown class(cls):
print ("\nIn teardown class()...")

def setup method(self, method):
print ("\nIn setup method()...")

def teardown method(self, method):
print ("\nIn teardown method()...")

def test case03(self):
print("\nIn test case03()...")

def test case04(self):
print("\nIn test case04()...")

In this code, setup_module() and teardown module() are module-
level fixtures that are invoked before and after anything else in the module.
setup_class() and teardown_class() are class-level fixtures
and they run before and after anything else in the class. You have to
use the @classmethod() decorator with them. setup method() and
teardown_method() are method-level fixtures that run before and after
every test method. setup_function() and teardown_function() are
function-level fixtures that run before and after every test function in the

130

CHAPTER5 PYTEST

module. In nose, you need the @with_setup() decorator with the test
functions to assign those to the function level-fixtures. In pytest, function-
level fixtures are assigned to all test functions by default.

Also, just like with nose, you need to use the -s command-line option
to see the detailed log on the command line.

Now run the code with an additional -s option, as follows:

py.test -vs test module03.py
Next, run the test again with the following command:
py.test -v test moduleo03.py

Compare the outputs of these modes of execution for a better
understanding.

pytest Support for unittest and nose

pytest supports all the tests written in unittest and nose. pytest can
automatically discover and run the tests written in unittest and nose.
It supports all the xUnit-style fixtures for unittest test classes. It also
supports most of the fixtures in nose. Try running py.test -vin the
chaptero3 and chaptero4 directories.

Introduction to pytest Fixtures

Apart from supporting xUnit-style fixtures and unittest fixtures, pytest
has its own set of fixtures that are flexible, extensible, and modular. This
is one of the core strengths of pytest and why it’s a popular choice of
automation testers.

In pytest, you can create a fixture and use it as a resource where it
is needed.

131

CHAPTER5 PYTEST

Consider the code in Listing 5-5 as an example.

Listing 5-5. test_module04.py
import pytest

@pytest.fixture()
def fixtureoi():
print("\nIn fixtureo1()...")

def test case01(fixtureo1):
print("\nIn test case01()...")

In Listing 5-5, fixtureo01() is the fixture function. It is because you are
using the @pytest.fixture() decorator with that. test_case01() is a test
function that uses fixture01(). For that, you are passing fixture01 as an
argument to test_case01().

Here is the output:

============z======= test session starts ======================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

/ust/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapteros/test,

inifile: collected 1 items

test_module04.py::test case01
In fixtureo1()...

In test case01()...
PASSED

132

CHAPTER5 PYTEST

As you can see, fixture01() is invoked before the test function
test case01(). You could also use the @pytest.mark.usefixtures()
decorator, which achieves the same result. The code in Listing 5-6 is
implemented with this decorator and it produces the same output as
Listing 5-5.

Listing 5-6. test_module05.py
import pytest

@pytest.fixture() def fixtureoi():
print("\nIn fixtureo1()...")

@pytest.mark.usefixtures('fixtureo1')
def test case01(fixtureol):
print("\nIn test case01()...")

The output of Listing 5-6 is exactly the same as the code in Listing 5-5.
You can use the @pytest.mark.usefixtures() decorator for a class, as
shown in Listing 5-7.

Listing 5-7. test_module06.py
import pytest

@pytest.fixture()
def fixtureo1():
print("\nIn fixtureo1()...")

@pytest.mark.usefixtures('fixtureo1')
class TestClasso03:
def test case01(self):
print("I'm the test case01")

def test case02(self):
print("I'm the test case02")

133

CHAPTER 5 PYTEST
Here is the output:

==z=========z=z=z==== test session starts ===============z=z=z=====
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

inifile: collected 2 items

test module06.py::TestClass03::test case0l
In fixtureo1()...

I'm the test case01

PASSED

test module06.py::TestClass03::test case02
In fixtureo1()...

I'm the test case02

PASSED

—=============== 2 passed in 0.08 Seconds —==—===-===—==—=========

If you want to run a block of code after a test with a fixture has run,
you have to add a finalizer function to the fixture. Listing 5-8 demonstrates
this idea.

Listing 5-8. test_module07.py
import pytest

@pytest.fixture()
def fixtureoi(request):
print("\nIn fixture...")

def fin():
print("\nFinalized...")
request.addfinalizer(fin)
134

CHAPTER 5

@pytest.mark.usefixtures('fixtureo1')
def test case01():
print("\nI'm the test case01")

The output is as follows:

—=====—=—=—========= test Session starts —==—=—=—=—=—=—============

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --
/ust/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapter05/test,
inifile: collected 1 items

test module07.py::test case01
In fixture...

I'm the test case01
PASSED
Finalized...

—============= 1 passed in 0.05 Seconds —==—=—==============

PYTEST

pytest provides access to the fixture information on the requested

object. Listing 5-9 demonstrates this concept.

Listing 5-9. test_module08.py
import pytest

@pytest.fixture()
def fixtureoi(request):
print("\nIn fixture...")

print("Fixture Scope:
print("Function Name:

+ str(request.scope))

+ str(request.function. name))

135

CHAPTER5 PYTEST

print("Class Name: " + str(request.cls))
print("Module Name: " + str(request.module. name))

print("File Path: " + str(request.fspath))

@pytest.mark.usefixtures('fixtureo1")
def test case01():
print("\nI'm the test case01")

The following is the output of Listing 5-9:

s================= test session starts =================z======
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --
/usr/bin/python3
cachedir: .cache
rootdir: /home/pi/book/code/chapteros/test,
inifile:
collected 1 items

test module08.py::test case01

In fixture...

Fixture Scope: function

Function Name: test case0O1

Class Name: None

Module Name: test.test _module08

File Path: /home/pi/book/code/chaptero5/test/test moduleo08.py

I'm the test caseo1
PASSED

136

CHAPTER5 PYTEST

Scope of pytest Fixtures

pytest provides you with a set of scope variables to define exactly when
you want to use the fixture. The default scope of any fixture is the function
level. It means that, by default, the fixtures are at the level of function.

The following shows the list of scopes for pytest fixtures:

e function: Runs once per test

e class: Runs once per class of tests
e module: Runs once per module

e session: Runs once per session

To use these, define them like this:

@pytest.fixture(scope="class")

o Use the function scope if you want the fixture to run
after every single test. This is fine for smaller fixtures.

e Use the class scope if you want the fixture to run in
each class of tests. Typically, you'll group tests that are
alike in a class, so this may be a good idea, depending
on how you structure things.

e Use the module scope if you want the fixture to run at
the start of the current file and then after the file has
finished its tests. This can be good if you have a fixture
that accesses the database and you set up the database
at the beginning of the module and then the finalizer
closes the connection.

e Use the session scope if you want to run the fixture
at the first test and run the finalizer after the last test
has run.

137

CHAPTER5 PYTEST

There is no scope for packages in pytest. However, you can cleverly
use the session scope as a package-level scope by making sure that only a
specific test package runs in a single session.

pytest.raises()

In unittest, you have assertRaises() to check if any test raises an

exception. There is a similar method in pytest. It is implemented as

pytest.raises() and is useful for automating negative test scenarios.
Consider the code shown in Listing 5-10.

Listing 5-10. test_module09.py
import pytest

def test case01():
with pytest.raises(Exception):
x=1/0

def test case02():
with pytest.raises(Exception):
x=1/1

In Listing 5-10, the line with pytest.raises(Exception) checks if an
exception is raised in the code. If an exception is raised in the block of code
that include the exception, the test passes; otherwise, it fails.

Here is Listing 5-10’s output:

===z=z========= test session starts ===========z=z=z========zzz=z===z==
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

138

CHAPTER5 PYTEST
inifile:
collected 2 items

test module09.py::test case01 PASSED
test module09.py::test case02 FAILED

test case02

def test case02():
with pytest.raises(Exception):
> x=1/1
E Failed: DID NOT RAISE <class 'Exception'>

test module09.py:10: Failed
============== 1 failed, 1 passed in 0.21 seconds =============

In test case01(), an exception is raised, so it passes. test_case02()
does not raise an exception, so it fails. As mentioned earlier, this is
extremely useful for testing negative scenarios.

Important pytest Command-Line Options

Some of pytest’s more important command-line options are discussed in
the following sections.

Help

For help, run py.test -h. It will display a list with uses of various
command-line options.

139

CHAPTER5 PYTEST

Stopping After the First (or N) Failures

You can stop the execution of tests after the first failure using py.test -x.
In the same way, you can use py.test --maxfail=5 to stop execution after
five failures. You can also change the argument provided to --maxfail.

Profiling Test Execution Duration

Profiling means assessing execution of programs for factors like time,
space, and memory. Profiling is primarily done to improve programs so
that they consume fewer resources while executing. The test modules
and suites you write are basically programs that test other programs.

You can find the slowest tests with pytest. You can use the py.test
--durations=10 command to show the slowest tests. You can change the
argument provided to --duration. Try running this command on the
chaptero5 directory as an example.

JUnit-Style Logs

Frameworks like JUnit (a unit test automation framework for Java) produce
the logs for execution in XML format. You can generate JUnit-style XML log
files for your tests by running the following command:

py.test --junitxml=result.xml

The XML file will be generated in the current directory.

Conclusion

The following are the reasons I use pytest and recommend that all Python
enthusiasts and professionals use it:

140

CHAPTER5 PYTEST

o Itisbetter than unittest. The resulting code is cleaner
and simpler.

o Unlike with nose, pytest is still under active
development.

o Ithas great features for controlling test execution.

e It can generate XML results without an
additional plugin.

e Itcanrununittest tests.

o Ithasits own set of advanced fixtures that are modular

in nature.

If you are working on a project that uses unittest, nose, or doctest
as the test framework for Python, I recommend migrating your tests
to pytest.

141

CHAPTER 6

Testing with Selenium

In the last chapter, you became acquainted with a unit test framework,
pytest. You should now be somewhat comfortable with writing unit tests
with the pytest framework. In this chapter, you learn about the webdriver
framework called Selenium.

Introduction to Selenium

Selenium is a webdriver framework. It is used for browser automation.

It means that you can open a browser program (or a browser app)
programmatically. All the browser operations that you perform manually
can be performed programmatically with webdriver frameworks. Selenium
is the most popular webdriver framework that is used for browser
automation.

Jason Huggins developed Selenium in 2004 as a tool at ThoughtWorks.
It was intended to be for internal usage in the organization. After the
tool became popular, many people joined its development and it was
made open source. Its development continued thereafter as open source.
Huggins joined Google in 2007 and continued with the development of
the tool.

The name Selenium is a joke played on Mercury Interactive, which
also created proprietary tools for test automation. The joke is that Mercury
poisoning can be cured by Selenium, so the new open source framework
was named Selenium. Selenium and Mercury are both elements on the
Periodic table.

© Ashwin Pajankar 2022 143
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_6

https://doi.org/10.1007/978-1-4842-7854-3_6#DOI

CHAPTER6 TESTING WITH SELENIUM

Simon Stewart at ThoughtWorks developed a browser automation
tool called WebDriver. The developers at ThoughtWorks and Google met
at the Google Test Automation Conference in 2009 and decided to merge
the Selenium and Webdriver projects. The new framework was christened
Selenium Webdriver or Selenium 2.0.

Selenium has three major components:

e Selenium IDE
e Selenium Webdriver
¢ Selenium Grid

You will read about Selenium IDE and Selenium Webdriver in this
chapter.

Selenium IDE

Selenium IDE is a browser plugin used to record browser actions. After
recording, you can play back the entire sequence of actions. You can
also export the scripted actions as a code file in various programming
languages. Let’s get started by installing the plugin on the Chrome and
Firefox browsers.

Add the extension to the Chrome web browser with the following URL:

https://chrome.google.com/webstore/detail/selenium-ide/
mooikfkahbdckldjjndioackbalphokd

Once it's been added, you can access it from the menu next to the
address bar, as shown in Figure 6-1.

144

https://chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd
https://chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd

CHAPTER 6 TESTING WITH SELENIUM

£& chrome web store

E Selenium IDE sores e
Olered by: selenumhg o [®)

LE 2 2 2 por Tools | L 000+ Lsor

Figure 6-1. Selenium IDE for Chrome

You can access the add-on for the Firefox browser from the
following URL:

https://addons.mozilla.org/en-GB/firefox/addon/selenium-ide/

Once you add it, you can access it from the menu next to the address
bar, as shown in the top-right corner of Figure 6-2.

Firefox Bro

9 ADD-ONS -

Figure 6-2. Selenium IDE for Chrome

Clicking these options in the respective browser opens a window, as
shown in Figure 6-3.

145

https://addons.mozilla.org/en-GB/firefox/addon/selenium-ide/

CHAPTER6 TESTING WITH SELENIUM

3t B selenium IDE - o x [

™ Welcome to Selenium IDE!
Se \emsion3170

What would you like to do?
Record a new test in a new project
Open an existing project

Create a new project

Close Selenium IDE

To learn more on Selenium IDE and how to use it
visit the the Selenium IDE project page.

Figure 6-3. Selenium IDE window

The GUI for the Selenium IDE is same for all browsers. Click Create a
New Project to open a new window, as shown in Figure 6-4.

146

CHAPTER 6 TESTING WITH SELENIUM

B selenium IDE - O X

Name your new project

Please provide a name for your new project.

PROJECT NAME

You can change the name of your project at any
time by clicking it and entering a new name.

CANCEL

Figure 6-4. Selenium new project

Enter a name of your choice. This will enable the OK button. Click the
OK button to show the window in Figure 6-5.

147

CHAPTER6 TESTING WITH SELENIUM

B selenium IDE - TestProject01 = O X F
he
Project: TestProject01 C b
Tests - + | bt Ghe ﬁ@@.
Q 3
Untitied Command Target Value "
iC
R
=
Command -
Target
Value
Description
Log Reference OF

Figure 6-5. Selenium IDE window

As you can see, this window is divided into various sections. In the top
left, you can see the name of the project. In the top right, you have three
icons. The first icon creates a new project when clicked. The second icon
is for opening an existing project. The third icon saves the current project.
The saved file has a *. side extension (Selenium IDE).

Let’s rename the existing test. Check the left tab. You can see an
untitled test, as shown in Figure 6-6.

148

CHAPTER 6 TESTING WITH SELENIUM

Selenium IDE - TestProject01

Project: TestProject01

Tests ~ +
Q
Untitled
Rename
Duplicate
Delete
Export

Figure 6-6. Renaming the untitled test

When you save the project, it tries to save it as a new file. You have to
save it with the existing name by overwriting the earlier file. Now, click the
Record button. The shortcut is Ctrl+U. It opens a new dialog box asking
you for the base URL of the project; see Figure 6-7.

149

CHAPTER6 TESTING WITH SELENIUM

Selenium IDE - TestProject01 - (] X

Set your project's base URL

Before you can start recording, you must specify
a valid base URL for your project. Your tests will
start by navigating to this URL.

BASE URL

Figure 6-7 Project Base URL

You have to enter the URL of the web page to be tested. The URL
should also include the text http:// or https://, otherwise it won't
consider it a URL. Enter http://www.google.cominto the box. It will then
enable the Start Recording button. The recording button is red and can
be found on the top-right side of the window. Click the button and it will
launch a new window with the specified URL. It looks like Figure 6-8.

150

http://www.google.com

CHAPTER 6 TESTING WITH SELENIUM

G Google » [-]

C @ googlecom 8 & ® 5 2 i

Gmail Images [@

Google

o
Q,

==

Google Search I'm Feeling Lucky

Selenium IDE is

o 5 *
Google offered in: [g=al T SBenih b s ey Py

Figure 6-8. Selenium IDE recording

Type Python into the search bar and then click Google Search. It will
show you the search results. Click the first result and then, after loading
the page, close the browser window. Then stop recording by clicking
the button from the menu. You will see the recorded steps in the IDE, as
shown in Figure 6-9.

151

CHAPTER6 TESTING WITH SELENIUM

= B p
4 Selenium IDE - TestProject01* = o 7
Project: TestProjectd1* e E
Tests - (B2 B 33 O~ Z 0 |
hitps:ffwww.google com
Command Target Value
Test01™ a
open
sel window size 1042x554
ype name=g python
click css=form > divnth-child(1)
clck css=centernth-chid(1) > gNOSY
b
click £55= eKjlze LC20Ib
clase
n
3 Command
H
¥ Target
n
Value
Description
Log Reference @

Figure 6-9. Selenium IDE after recording

You can automatically rerun all the steps. You can see a group of four
icons in the same bar for the Record button. The firsticon is to run all the
tests and the second is for running the current test. The current project has
a single test, so it will run the only test in the suite. Click any of the buttons
to automatically repeat this sequence of actions.

This way you can record and execute sequence of actions. Once the

recorded tests execute successfully, the bottom section will show the log,
as shown in Figure 6-10.

152

CHAPTER 6 TESTING WITH SELENIUM

Log Reference ©
4. click on css=form > div:nth-child(1) OK 18:56:04
5. click on css=center:nth-child(1) > gNO&3b OK 18:56:05
6. click on css=eKjLze LC20ib OK 18:56.05
7. close OK 18:56:10
'Test01' completed successfully 18:56:10

Figure 6-10. Selenium IDE logs

You can add new tests to the project by clicking the + icon in the menu.
A project will usually have multiple tests. Now you learn how to export
your project. You can right-click the test to open a menu, as shown in

Figure 6-6. Click the Export option. It opens a new window, as shown in
Figure 6-11.

B Selenium IDE - TestProject0]

Select language

O C#NUnit

O C# xUnit

O Java JUnit

O JavaScript Mocha
@& Python pytest

O Ruby RSpec

v/ Include origin tracing code comments

| Include step description as a separate comment

Expont for use on Selenium Grid

EXPORT

Figure 6-11. Exporting the project as code

153

CHAPTER6 TESTING WITH SELENIUM

Check the top two options and then click the Export button. It will
open a window called Save As. Provide the details and it will save the
project as a Python file with the *. py extension in the specified directory.
The generated code is shown in Listing 6-1.

Listing 6-1. test_testOl.py

Generated by Selenium IDE

import pytest

import time

import json

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.common.action_chains import
ActionChains

from selenium.webdriver.support import expected conditions
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.common.keys import Keys

from selenium.webdriver.common.desired capabilities import
DesiredCapabilities

class TestTesto1():
def setup method(self, method):
self.driver = webdriver.Chrome()
self.vars = {}

def teardown method(self, method):
self.driver.quit()

def test testoi(self):
Test name: TestoO1
Step # | name | target | value
#1 | open | / |
self.driver.get("https://www.google.com/")

154

CHAPTER 6 TESTING WITH SELENIUM

2 | setWindowSize | 1042x554 |
self.driver.set window size(1042, 554)

3 | type | name=q | python
self.driver.find_element(By.NAME, "q").send_keys("python")
4 | click | css=form > div:nth-child(1) |
self.driver.find_element(By.CSS SELECTOR, "form >
div:nth-child(1)").click()

5 | click | css=center:nth-child(1) > .gNO89b |
self.driver.find element(By.CSS SELECTOR,
"center:nth-child(1) > .gN089b").click()

6 | click | css=.eKjLze .LC201b |
self.driver.find element(By.CSS SELECTOR,
".eKjlLze .LC201b").click()

#7 | close | |

self.driver.close()

This is how you can export automated tests to Python. You can run

this file with the unittest framework to reproduce the tests later. Don’t

execute the code yet, as you have not installed the Selenium framework

for Python. You will analyze and learn to write your own code in the next

section.

Selenium Webhdriver

Selenium IDE is a plugin. It is just a record and playback tool with a little
provision to customize test cases. If you want full control over your tests,

you should be able to write them from scratch. Selenium Webdriver allows
you to do that.

155

CHAPTER6 TESTING WITH SELENIUM

The code exported in the last section uses webdriver for browser
automation. Here, you see how to write your own code from scratch. You
can install Selenium Webdriver with the following command:

pip3 install selenium

Now you can run the code saved in the last section.
Let’s look at how to write the code from scratch. Check out the code in
Listing 6-2.

Listing 6-2. prog00.py

from selenium import webdriver
driver_path=r'D:\\drivers\\geckodriver.exe'

driver = webdriver.Firefox(executable path=driver path)
driver.close()

Consider this code line-by-line. The first line imports the library to
your program. The second line defines a string. The string contains the
path to the driver executable for the browser you are about to automate.
You can download the drivers for the various browsers from the
following URLs:

https://sites.google.com/chromium.org/driver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/
webdriver/

https://github.com/mozilla/geckodriver/releases

Visit these web pages and download the appropriate driver for your
0OS (Windows/Linux/macOS) and architecture (32/64-bit) combination.
I downloaded and saved them in a location identified by D: \drivers on
my Windows 64-bit OS.

156

https://sites.google.com/chromium.org/driver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://github.com/mozilla/geckodriver/releases

CHAPTER 6 TESTING WITH SELENIUM

The third line creates a driver object and the fourth line closes
it. Launch the program from IDLE or from the command line. It will
momentarily open the browser and close it. If you use IDLE, it will also
open the geckodriver.exe file separately and you will have to close it
manually. You will see how to terminate it programmatically shortly. For
now, close it manually. Check out Listing 6-3.

Listing 6-3. prog01.py

from selenium import webdriver

driver path=r'D:\\drivers\\chromedriver.exe'

driver = webdriver.Chrome(executable path=driver path)
driver.close()

driver.quit()

Here, you are using the Chrome driver and closing the driver
executable in the last line. Run this to see the code in action. Next, let’s
experiment with the edge browser and add some waiting time into the
code. Check out Listing 6-4.

Listing 6-4. prog02.py

from selenium import webdriver

import time

driver path=r'D:\\drivers\\msedgedriver.exe'

driver = webdriver.Edge(executable path=driver path)
time.sleep(10)

driver.close()

time.sleep(5)

driver.quit()

Run the code to see it in action.

157

CHAPTER6 TESTING WITH SELENIUM

You can also write the code for the Safari Browser. Safari webdriver
comes preinstalled in macOS. It can be found at /usr/bin/safaridriver.
You can enable it with the following shell command:

safaridriver -enable

You can create the driver object with the following line of code
in Python:

driver = webdriver.Safari()

Selenium with Unittest

You can use Selenium framework with unittest. This way you can create
separate tests for separate cases. You can track the progress of your tests
this way. See Listing 6-5.

Listing 6-5. test_test02.py

import unittest
from selenium import webdriver

class TestClasso1(unittest.TestCase):

def setUp(self):
driver path=r'D:\\drivers\\geckodriver.exe'
driver = webdriver.Firefox(executable path=driver path)
self.driver = driver
print ("\nIn setUp()...")

def tearDown(self):
print ("\nIn tearDown")
self.driver.close()
self.driver.quit()

158

CHAPTER 6 TESTING WITH SELENIUM

def test case01(self):
print("\nIn test case01()...")
self.driver.get("http://www.python.org")
assert self.driver.title == "Welcome to Python.org"

if _name__ == " main_":

unittest.main()

This script is creating the webdriver object, opening a web page and
checking its title, and when it’s done, it closes the browser window and the
webdriver. Run the script to see it all in action.

Conclusion

In this chapter, you studied the basics of web browser automation with
Selenium. You also learned about the Selenium IDE and how to combine
unittest with Selenium.

The next chapter is dedicated to the logging mechanisms in Python.

159

CHAPTER 7

Logging in Python

In the last chapter, you became acquainted with a unit test framework,
Selenium. This chapter is a change of pace and you learn about a related
topic, logging.

The chapter covers the following:

o Logging basics

o Logging with an OS

e Manually logging with file operations
o Logging in Python

o Logging with loguru

After reading this chapter, you will be more comfortable logging
in Python.

Logging Basics

The process of recording something is known as logging. For example, if
I am recording the temperature, that is known as temperature logging,
which is an example of physical logging. We can use this concept in
computer programming as well. Many times, you'll get an intermediate
output on the terminal. It is used for the purpose of debugging when the
program runs. Sometimes programs run automatically using crontab
(in UNIX-like OSs) or using Windows Scheduler. In such cases, logging
is used to determine if there was a problem during execution. Generally,

© Ashwin Pajankar 2022 161
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_7

https://doi.org/10.1007/978-1-4842-7854-3_7#DOI

CHAPTER 7 LOGGING IN PYTHON

such information is logged to files so that if the maintenance or operations
people are not present, they can review the logs at the earliest available
opportunity. There are various ways you can log information related to the
execution of a program. The following sections look at them one by one.

Logging with an 0S

Let’s log with an OS using the command line. Consider the program in
Listing 7-1.

Listing 7-1. prog00.py

import datetime
import sys
print("Commencing Execution of the program...")
print(datetime.datetime.now())
for i in [1, 2, 3, 4, 5]:
print("Iteration " + str(i) + " ...")
print("Done...")
print(datetime.datetime.now())
sys.exit(0)

When you run this using IDLE or any IDE, you'll see the following
output in the terminal:

Commencing Execution of the program...
2021-09-01 19:09:14.900123

Iteration 1 .
Iteration 2 .
Iteration 3 .
Iteration 4 .
Iteration 5 .
Done...

2021-09-01 19:09:14.901121

162

CHAPTER7 LOGGING IN PYTHON

This is what logging on a terminal looks like. You can also log thisin a
file. You can use IO redirection in Linux and Windows to achieve this. You
can run the program on the Windows command prompt as follows:

python progoo.py >> test.log
On the Linux terminal, the command is as follows:
python3 progoo.py >> test.log

This command will create a new file called test.log in the same
directory and redirect all the output there.
This is how you can display the execution log and save it in a file.

Manually Logging with File Operations

This section explains how to log events with file operations in Python. First
you need to open a file. Use the open() routine to do so. Run the following
example from the Python 3 interpreter prompt:

>>> logfile = open('mylog.log', 'w")

This command creates an object named logfile for the file
operations. The first argument to the open() routine is the name of the file
and the second operation is the mode in which the file is to be opened.
This example uses the w mode, which stands for the write operation. There
are many modes for opening files, but this is the only one that’s relevant
right now. As an exercise, you may explore other modes.

The previous line of code opens the file in write mode if the file exists;
otherwise, it creates a new file. Now run the following code:

>>> logfile.write('This is the test log.')
The output will be as follows:

21

163

CHAPTER 7 LOGGING IN PYTHON

The write() routine writes the given string to the file and returns the
length of the string. Finally, you can close the file object as follows:

>>> logfile.close()

Now, let’s modify the earlier script called prog00.py to add the file
operations for logging, as shown in Listing 7-2.

Listing 7-2. prog01.py

import datetime

import sys

logfile = open('mylog.log', 'w')

msg = "Commencing Execution of the program...\n" +

str(datetime.datetime.now())

print(msg)

logfile.write(msg)

for i in [1, 2, 3, 4, 5]:
msg = "\nIteration "
print(msg)
logfile.write(msg)

+ str(datetime.datetime.now())

+ str(i) +

msg = "\nDone...\n
logfile.write(msg)
print(msg)
logfile.close()
sys.exit(0)

As you can see in Listing 7-2, you are creating strings of the log
messages. The program then sends them to the log file and to the terminal
at the same time. You can run this program using the IDLE or with the
command prompt.

This is how to log the execution of programs manually using file
operations.

164

CHAPTER7 LOGGING IN PYTHON

Logging in Python

This section explains the logging process in Python. You do not have to
install anything for this, as it comes with the Python installation as a part
of its batteries-included philosophy. You can import the logging library as
follows:

import logging

Before getting into the programming part, you need to know
something important—the level of logging. There are five levels of logging.
These levels have priorities assigned to them. The following is the list of
these levels in increasing order of severity:

DEBUG
INFO
WARNING
ERROR
CRITICAL

Now consider the code example in Listing 7-3.

Listing 7-3. prog02.py

import logging
logging.debug('Debug")
logging.info('Info")
logging.warning('Warning")
logging.error('Error")
logging.critical('Critical')

The output is as follows:

WARNING:root:Warning
ERROR:root:Error
CRITICAL:root:Critical

165

CHAPTER 7 LOGGING IN PYTHON

As you can see, only the last three log lines are printed. This is because
the default level of logging is Warning. This means that all the levels of
logging starting with warning will be logged. These include Warning,
Error,and Critical.

You can change the level of logging, as shown in Listing 7-4.

Listing 7-4. prog03.py

import logging
logging.basicConfig(level=1ogging.DEBUG)
logging.debug('Debug")
logging.info('Info")
logging.warning('Warning")
logging.error('Error")
logging.critical('Critical")

Asyou can see, the basicConfig() routine configures the level of
logging. You need to call this routine before calling any logging routines.
This example sets the logging level to Debug. Debug is the lowest level of
logging and this means that all the logs with logging level Debug and above
will be recorded. The output is as follows:

DEBUG: root :Debug
INFO:ro0t:Info
WARNING:root:Warning
ERROR:root:Exrror
CRITICAL:root:Critical

Let’s look at the log messages in detail. As you can see, the log
messages are divided into three parts. The first part is the level of the log.
The second part is the name of the logger. In this case, it is the root logger.
The third part is the string that you pass to the logging routines. You will
learn later how to change the details of this message.

166

CHAPTER7 LOGGING IN PYTHON

This is a good time to discuss what the different logging levels mean.
Debug and Info levels usually indicate general execution of programs. The
Warning logging level indicates problems that are not showstoppers. Exrror
is used when you have serious problems affecting the normal execution
of your programs. Finally, Critical is the highest level and it indicates a
system-wide failure.

Logging to a File

You have learned how to display log messages to the terminal. You can also
log messages to a file, as shown in Listing 7-5.

Listing 7-5. prog04.py

import logging
logging.basicConfig(filename="1logfile.log’,
encoding="utf-8',
level=1logging.DEBUG)
logging.debug('Debug")
logging.info('Info")
logging.warning('Warning")
logging.error('Error")
logging.critical('Critical')

As you can see, the program sets the encoding and the name of the log
file. Run the program and check the log file.

This program checks for the existence of the log file with the name
passed as a string to the basicConfig() routine. If the file does not exist, it
creates the file with the name. Otherwise, it appends to the existing file. If
you want to create a fresh file every time you execute the code, you can do
that using the code in Listing 7-6.

167

CHAPTER 7 LOGGING IN PYTHON
Listing 7-6. prog05.py

import logging
logging.basicConfig(filename="1logfile.log",
encoding="utf-8',
filemode="w",
level=1ogging.DEBUG)
logging.debug('Debug")
logging.info('Info")
logging.warning('Warning")
logging.error('Error")
logging.critical('Critical’)

Notice the additional parameter and the associated argument for the
call of the basicConfig() routine.

Customizing the Log Message

You can customize your log messages as well. You have to specify this
by passing an argument to the parameter of the basicConfig() routine.
Listing 7-7 shows an example.

Listing 7-7. prog06.py

import logging
logging.basicConfig(filename="1logfile.log’,
format="%(asctime)s:%(levelname)s:%(message)s’,

encoding="utf-8",
filemode="w",
level=1ogging.DEBUG)

logging.debug('Debug")

logging.info('Info")

168

CHAPTER7 LOGGING IN PYTHON

logging.warning('Warning")
logging.error('Error")
logging.critical('Critical’)

As you can see, this example passes the formatting string '%(asctime)
s:%(levelname)s:%(message)s' to the parameter format of the
basicConfig() routine. The output is as follows:

2021-09-02 13:36:35,401:DEBUG:Debug
2021-09-02 13:36:35,401:INFO:Info
2021-09-02 13:36:35,401:WARNING:Warning
2021-09-02 13:36:35,401:ERROR:Exrror
2021-09-02 13:36:35,401:CRITICAL:Critical

The output shows the date and time, the logging level, and the

message.

Customizing Logging Operations

Up to now, the examples have been using the default logger, known as
root. You can also create your own custom loggers. Logger objects send
log messages to handler objects. Handlers send the log messages to their
destinations. The destination can be a log file or the console. You can
create objects for console handlers and file handlers. Log formatters are
used to format the contents of the log messages. Let’s look at an example
line by line. Create a new file called prog07.py. You will now see how to
add the code to this file to show customized logging operations.

Import the library as follows:

import logging

169

CHAPTER 7 LOGGING IN PYTHON
Create a custom logger as follows:

logger = logging.getlLogger('myLogger")
logger.setLevel(logging.DEBUG)

You have created the custom logger with the name myLogger.
Whenever you include the name in the log message, it will show myLogger
in place of root. Now create a handler to log to a file.

fh = logging.FileHandler('mylog.log', encoding="utf-8")
th.setLevel(logging.DEBUG)

Create a file formatter:

file formatter = logging.Formatter('%(asctime)s - %(name)s -
%(levelname)s - %(message)s")

Set it to the file handler:
th.setFormatter(file formatter)

Add the file handler to the logger:
logger.addHandler (fh)

You can create a console handler too. Repeat these steps for a new
console handler:

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console formatter = logging.Formatter('%(asctime)s:%(name)
s:%(levelname)s:%(message)s')
ch.setFormatter(console_formatter)

logger.addHandler(ch)

170

CHAPTER7 LOGGING IN PYTHON

The entire script is shown in Listing 7-8.

Listing 7-8. prog07.py

import logging
logger = logging.getlLogger('myLogger")
logger.setlLevel(logging.DEBUG)

th = logging.FileHandler('mylog.log"',
encoding="utf-8")
th.setLevel(logging.DEBUG)
file formatter = logging.Formatter('%(asctime)s - %(name)s -
%(levelname)s - %(message)s"')
th.setFormatter(file formatter)
logger.addHandler (fh)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
console formatter = logging.Formatter('%(asctime)s:%(name)
s:%(levelname)s:%(message)s")
ch.setFormatter(console formatter)
logger.addHandler(ch)
logger.debug('Debug")
logger.info('Info")
logger.warning('Warning")
logger.error('Error")
logger.critical('Critical')

This is how you can simultaneously log onto the console and onto a
file. Run the code and see the output.

171

CHAPTER 7 LOGGING IN PYTHON

Rotating a Log File

You can also have rotating log file. You just need to change one line in
Listing 7-8. Rotating log files means that all the new logs will be written to a
new file and the old logs will be backed up by renaming the log files. Check
out Listing 7-9.

Listing 7-9. prog08.py

import logging

import logging.handlers

logfile = 'mylog.log'

logger = logging.getlLogger('myLogger")

logger.setLevel(logging.DEBUG)

rfh = logging.handlers.RotatingFileHandler(logfile,
maxBytes=10,
backupCount=5)

rfh.setLevel(logging.DEBUG)

file formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s"')

rth.setFormatter(file formatter)

logger.addHandler (rfh)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s")

ch.setFormatter(console formatter)

logger.addHandler(ch)

logger.debug('Debug")

logger.info('Info")

logger.warning('Warning")

logger.error('Error')

logger.critical('Critical')

172

CHAPTER7 LOGGING IN PYTHON

Asyou can see in Listing 7-9, the code has implemented the rotating
file handle. The following line of code creates it:

rfh = logging.handlers.RotatingFileHandler(logfile,
maxBytes=10,
backupCount=5)

It creates log files as follows:

mylog.log

mylog.log.1
mylog.log.2
mylog.log.3
mylog.log.4
mylog.log.5

The most recent logs are saved in mylog.log and its capacity is 10
bytes. When this log file reaches 10 bytes, as specified in the routine call
parameter maxBytes, it is renamed mylog.log.1. When the file is full
again, this process repeats and mylog.log.2 is renamed mylog.log.2. This
process continues and the files from mylog.log.5 onward are purged. This
is because you passed 5 as an argument to the backupCount parameter. As
an exercise, try changing the arguments.

Using Multiple Loggers

You can use multiple loggers in your programs as well. Listing 7-10
creates two loggers, one handler, and one formatter. The handler is shared
between the loggers.

173

CHAPTER 7 LOGGING IN PYTHON
Listing 7-10. prog09.py

import logging

logger1 = logging.getlLogger('Logger1")
logger1.setlLevel(logging.DEBUG)
logger2 = logging.getlLogger('Logger2")
logger2.setlLevel (logging.DEBUG)

ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)

console formatter = logging.Formatter('%(asctime)s:%(name)
s:%(levelname)s:%(message)s")
ch.setFormatter(console formatter)
loggeri.addHandler(ch)
logger2.addHandler(ch)
loggeri1.debug('Debug")
logger2.debug('Debug")
loggeri.info('Info")
logger2.info('Info")
logger1.warning('Warning")
logger2.warning('Warning")
loggeri.error('Error")
logger2.error('Error")
loggeri.critical('Critical')
logger2.critical('Critical")

The output is as follows:

2021-09-03 00:25:40,135:Logger1:DEBUG:Debug
2021-09-03 00:25:40,153:Logger2:DEBUG:Debug
2021-09-03 00:25:40,161:Logger1:INFO:Info
2021-09-03 00:25:40,168:Logger2:INFO:Info
2021-09-03 00:25:40,176:Logger1:WARNING:Warning
2021-09-03 00:25:40,184:Logger2 :WARNING:Warning

174

CHAPTER7 LOGGING IN PYTHON

2021-09-03 00:25:40,193:Logger1:ERROR:Exror
2021-09-03 00:25:40,200:Logger2:ERROR:Exrror
2021-09-03 00:25:40,224:Logger1:CRITICAL:Critical
2021-09-03 00:25:40,238:Logger2:CRITICAL:Critical

Now you'll see how to create separate handler and formatter for both

loggers. Listing 7-11 shows an example.

Listing 7-11. progl0.py

import logging

logger1 = logging.getlLogger('Loggeri")

loggeri.setlLevel(logging.DEBUG)

logger2 = logging.getlLogger('Logger2")

logger2.setlLevel (logging.DEBUG)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s")

ch.setFormatter(console formatter)

logger1.addHandler(ch)

fh = logging.FileHandler('mylog.log",
encoding="utf-8")

fh.setLevel(logging.DEBUG)

file formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s")

fh.setFormatter(file formatter)

logger2.addHandler(fh)

logger1.debug('Debug")

logger2.debug('Debug")

loggeri.info('Info")

logger2.info('Info")

loggeri.warning('Warning")

175

CHAPTER 7 LOGGING IN PYTHON

logger2.warning('Warning")
loggeri.error('Error")
logger2.error('Error")
loggeri.critical('Critical')
logger2.critical('Critical")

As you can see, there are two separate sets of a logger, a handler, and a
formatter. One set sends logs to the console and another set sends logs to a
log file. The output to the console is as follows:

2021-09-03 15:13:37,513:Logger1:DEBUG:Debug
2021-09-03 15:13:37,533:Logger1:INFO:Info
2021-09-03 15:13:37,542:Logger1:WARNING:Warning
2021-09-03 15:13:37,552:Logger1:ERROR:Exrror
2021-09-03 15:13:37,560:Logger1:CRITICAL:Critical

The output to the log file is as follows:

2021-09-03 15:13:37,532 - Logger2 - DEBUG - Debug
2021-09-03 15:13:37,542 - Logger2 - INFO - Info
2021-09-03 15:13:37,551 - Logger2 - WARNING - Warning
2021-09-03 15:13:37,560 - Logger2 - ERROR - Error
2021-09-03 15:13:37,569 - Logger2 - CRITICAL - Critical

Logging with Threads

Sometimes, you'll use multithreading in your programs. Python allows you to
use the logging feature with threads. This ensures that you are informed about
the details of execution of threads you use in your programs. Create a new
Python file and name it prog11. py. Add the following code to that file:

import logging
import threading
import time

176

CHAPTER 7 LOGGING IN PYTHON
Now create a function as follows:

def worker(arg, number):
while not arg['stop']:
logging.debug('Hello from worker() thread number
+ str(number))
time.sleep(0.75 * number)

This function accepts an argument and, unless you terminate it, it
keeps running a loop displaying a message.
Let’s configure the default console logger as follows:

logging.basicConfig(level="DEBUG",
format="%(asctime)s:%(name)s:%(levelname)s:%(message)s")

Now create two threads as follows:

info = {'stop': False}

thread1l = threading.Thread(target=worker, args=(info, 1,))
threadi.start()

thread2 = threading.Thread(target=worker, args=(info, 2,))
thread2.start()

Create a loop that will be interrupted by the keyboard and will also
interrupt the threads:

while True:
try:
logging.debug('Hello from the main() thread")
time.sleep(1)
except KeyboardInterrupt:
info['stop'] = True
break

177

CHAPTER 7 LOGGING IN PYTHON
Finally, join these threads:

thread1.join()
thread2.join()

The entire program is shown in Listing 7-12.

Listing 7-12. progll.py

import logging
import threading
import time
def worker(arg, number):
while not arg['stop']:
logging.debug('Hello from worker() thread number '
+ str(number))
time.sleep(0.75 * number)
logging.basicConfig(level="DEBUG",
format="%(asctime)s:%(name)s:%(levelname)s:%(message)s")
info = {'stop': False}
thread1l = threading.Thread(target=worker, args=(info, 1,))
threadi.start()
thread2 = threading.Thread(target=worker, args=(info, 2,))
thread2.start()
while True:
try:
logging.debug('Hello from the main() thread')
time.sleep(1)
except KeyboardInterrupt:
info['stop'] = True
break
thread1.join()
thread2.join()

178

CHAPTER7 LOGGING IN PYTHON

Run the program and then press Ctrl+C to terminate it after a few
seconds. The output is as follows:

2021-09-03 15:34:27,071:root:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:27,304:r00t:DEBUG:Hello from the main() thread
2021-09-03 15:34:27,664:100t:DEBUG:Hello from worker() thread
number 2

2021-09-03 15:34:27,851:r00t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:28,364:r00t:DEBUG:Hello from the main() thread
2021-09-03 15:34:28,629:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:29,239:100t:DEBUG:Hello from worker() thread
number 2

2021-09-03 15:34:29,381:r00t:DEBUG:Hello from the main() thread
2021-09-03 15:34:29,414:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:30,205:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:30,444:100t:DEBUG:Hello from the main() thread
2021-09-03 15:34:30,788:r00t:DEBUG:Hello from worker() thread
number 2

2021-09-03 15:34:30,990:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:31,503:100t:DEBUG:Hello from the main() thread
2021-09-03 15:34:31,828:r00t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:32,311:100t:DEBUG:Hello from worker() thread
number 2

2021-09-03 15:34:32,574:100t:DEBUG:Hello from the main() thread

179

CHAPTER 7 LOGGING IN PYTHON

2021-09-03 15:34:32,606:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:33,400:r00t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:33,634:100t:DEBUG:Hello from the main() thread
2021-09-03 15:34:33,865:100t:DEBUG:Hello from worker() thread
number 2

2021-09-03 15:34:34,175:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:34,688:100t:DEBUG:Hello from the main() thread
2021-09-03 15:34:34,969:100t:DEBUG:Hello from worker() thread
number 1

2021-09-03 15:34:35,456:100t:DEBUG:Hello from worker() thread
number 2

Traceback (most recent call last):

File "C:/Users/Ashwin/Google Drive/Python Unit Test
Automation - Second Edition/Code/Chapter07/progii.py", line 26,
in <module>

thread2.join()
KeyboardInterrupt

Multiple Loggers Writing to the Same Target

You can have multiple loggers writing to the same target. The code
example shown in Listing 7-13 sends the logs of two different loggers to a
console handler and a file handler.

180

CHAPTER 7 LOGGING IN PYTHON
Listing 7-13. progl2.py

import logging
logger1 = logging.getlLogger('Logger1")
loggeri.setlLevel(logging.DEBUG)
logger2 = logging.getlLogger('Logger2")
logger2.setlLevel (logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
console formatter = logging.Formatter('%(asctime)s:%(name)
s:%(levelname)s:%(message)s")
ch.setFormatter(console formatter)
loggeri.addHandler(ch)
logger2.addHandler(ch)
th = logging.FileHandler('mylog.log',
encoding="utf-8")
fh.setLevel(logging.DEBUG)
file formatter = logging.Formatter('%(asctime)s - %(name)s -
%(levelname)s - %(message)s"')
th.setFormatter(file formatter)
logger1.addHandler(fh)
logger2.addHandler (fh)
logger1.debug('Debug")
logger2.debug('Debug")
logger1.info('Info")
logger2.info('Info")
logger1.warning('Warning")
logger2.warning('Warning")
loggeri.error('Error')
logger2.error('Error")
loggeri.critical('Critical’)
logger2.critical('Critical')

181

CHAPTER 7

LOGGING IN PYTHON

Run the program to see the following output on the console:

2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03

16:
16:
16:
16:
16:
16:
16:
16:
16:
16:

10:

10

10:
10:

10

10:
10:
10:
10:
10:

53,938:
:53,956:
53,966:
53,974:
:53,983:
53,993:
54,002:
54,011:
54,031:
54,049:

Logger1:DEBUG:Debug
Logger2:DEBUG:Debug
Logger1:INFO:Info
Logger2:INFO:Info
Logger1:WARNING:Warning
Logger2 :WARNING:Warning
Logger1:ERROR:Exror
Logger2:ERROR: Error
Logger1:CRITICAL:Critical
Logger2:CRITICAL:Critical

The log file contains the following log after the execution of the

program:

2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03
2021-09-03

182

16:
16:
16:
16:
16:
16:
16:
16:
16:
16:

10

153,938
10:
10:
10:
10:
10:
10:
10:
10:
10:

53,956
53,966
53,974
53,983
53,993
54,002
54,011
54,031
54,049

- Logger1 - DEBUG - Debug

- Logger2 - DEBUG - Debug

- Logger1 - INFO - Info

- Logger2 - INFO - Info

- Logger1l - WARNING - Warning

- Logger2 - WARNING - Warning

- Logger1l - ERROR - Error

- Logger2 - ERROR - Error

- Logger1 - CRITICAL - Critical
- Logger2 - CRITICAL - Critical

CHAPTER7 LOGGING IN PYTHON

Logging with loguru

There is another logging mechanism for Python that can be installed
and used. It is known as loguru. It is a third-party library, so it needs to
be installed separately. It is slightly better than the built-in logger and
has more features. In this section, you see how to install it, use it, and
explore it.

You can install loguru on Windows and Linux using the following
command:

pip3 install loguru
The following is the installation log on a Windows computer:

Collecting loguru

Downloading loguru-0.5.3-py3-none-any.whl (57 kB)

N | 57 G 1. YB/s

Collecting win32-setctime>=1.0.0

Downloading win32_setctime-1.0.3-py3-none-any.whl (3.5 kB)
Requirement already satisfied: colorama>=0.3.4 in c:\users\
ashwin\appdata\local\programs\python\python39\lib\site-packages
(from loguru) (0.4.4)
Installing collected packages: win32-setctime, loguru
Successfully installed loguru-0.5.3 win32-setctime-1.0.3

Using loguru and the Available Logging Levels

There is only one logger in loguru. You can configure it per your needs. By
default, it sends the log messages to stderr. Listing 7-14 shows a simple
example.

183

CHAPTER 7 LOGGING IN PYTHON
Listing 7-14. Progl3.py

from loguru import logger
logger.trace('Trace")
logger.debug('Debug")
logger.info('Info")
logger.success('Success")
logger.warning('Warning")
logger.error('Error")
logger.critical('Critical')

The code in Listing 7-14 lists all the logging levels in increasing order of
severity. You can also log everything to a file, as shown in Listing 7-15.

Listing 7-15. Progl4.py

from loguru import logger
import sys
logger.add("mylog {time}.log",
format="{time}:{level}:{message}",
level="TRACE")
logger.trace('Trace")
logger.debug('Debug")
logger.info('Info")
logger.success('Success")
logger.warning('Warning")
logger.error('Exrror")
logger.critical('Critical')

When you run this, the output to the file is as follows:

2021-09-02T21:56:04.677854+0530: TRACE: Trace
2021-09-02T21:56:04.680839+0530:DEBUG: Debug
2021-09-02T21:56:04.706743+0530:INFO:Info

184

CHAPTER7 LOGGING IN PYTHON

2021-09-02T21:56:04.726689+0530: SUCCESS:Success
2021-09-02T721:56:04.749656+0530:WARNING: Warning
2021-09-02T21:56:04.778333+0530: ERROR:Exrror
2021-09-02T21:56:04.802271+0530: CRITICAL:Critical

You can also create a custom log level, as shown in Listing 7-16.

Listing 7-16. Progl5.py

from loguru import logger

import sys

logger.add("mylog {time}.log",
format="{time}:{level}:{message}",
level="TRACE")

new_level = logger.level("OKAY", no=15, color="<green>")

logger.trace('Trace")

logger.debug('Debug")

logger.log("OKAY", "All is OK!")

logger.info('Info")

This code creates a new level with the logger.level() routine. You
can use it with the logger.log() routine. Run the program. The output
dumped in the log file is as follows:

2021-09-02T22:44:59.834885+0530: TRACE: Trace
2021-09-02T22:44:59.839871+0530:DEBUG: Debug
2021-09-02T22:44:59.893727+0530:0KAY:All is OK!
2021-09-02T22:44:59.945590+0530: INFO: Info

185

CHAPTER 7 LOGGING IN PYTHON

Customizing File Retention

Log files, just like any other piece of information, require storage space.
Over time and multiple execution passes, the log files can grow bigger and
bigger. Nowadays, storage is cheaper. Even so, there are always limitations
to space and storing older and unnecessary logs is a waste of space. Many
organizations have policies in place for retaining older logs. You can
implement those policies in the following way.

The following configuration rotates big files. You can specify the size of
the file as follows:

logger.add("mylog {time}.log", rotation="2 MB")

The following configuration creates a new file after midnight:
logger.add("mylog {time}.log", rotation="00:01")

The following configuration rotates week-old files:
logger.add("mylog {time}.log", rotation="1 week")

The following configuration cleans up a file after a specified number
of days:

logger.add("mylog {time}.log", retention="5 days") # Cleanup
after some time

The following configuration compresses the files into the ZIP format:
logger.add("mylog {time}.log", compression="zip")

As an exercise, try all these configurations.

186

CHAPTER7 LOGGING IN PYTHON

Customizing Tracing

You can customize the tracing process and obtain detailed information
about any underlying problems. It is difficult to implement this in the built-
in logger, but it can be easily done using loguru. You can customize tracing
by passing some additional arguments, as shown in Listing 7-17.

Listing 7-17. Progl6.py
from loguru import logger

logger.add('mylog.log",
backtrace=True,
diagnose=True)

def functioni(a, b):
return a / b

def function2(c):
try:
function1(5, c)

except ZeroDivisionError:
logger.exception('Divide by Zero!')

function2(0)

These additional parameters allow you to trace failures in detail. The
log file has the following output:

2021-09-03 17:16:40.122 | ERROR |
__main__:function2:14 - Divide by Zero!
Traceback (most recent call last):

File "<string>", line 1, in <module>

187

CHAPTER 7 LOGGING IN PYTHON

File "C:\Users\Ashwin\AppData\Local\Programs\Python\Python39\
lib\idlelib\run.py", line 156, in main
ret = method(*args, **kwargs)

| | -> {}
| -> (<code object <module> at
0X000001D3E9EFDB30, file
"C:/Users/Ashwin/Google Drive/Python Unit Test
Automation - Second Edition...
-> <bound method Executive.runcode of <idlelib.run.
Executive object at 0x000001D3E802F730>>

File "C:\Users\Ashwin\AppData\Local\Programs\Python\Python39\
lib\idlelib\run.py", line 559, in runcode
exec(code, self.locals)
| | ->{' _name__': ' main__ "', ' doc_ ":
None, ' package ': None, ' loader ': <class ' frozen_

importlib.BuiltinImporter's,

| -> <idlelib.run.Executive object at
0x000001D3E802F730>

-> <code object <module> at 0x000001D3E9EFDB30,

file "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/...

File "C:/Users/Ashwin/Google Drive/Python Unit Test
Automation - Second Edition/Code/Chapter07/progi6.py",
line 16, in <module>

function2(0)

-> <function function2 at 0x000001D3EA6264C0>

> File "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/Code/Chapter07/progl6.py", line 12,
in function2

188

CHAPTER7 LOGGING IN PYTHON

functioni(s, c)
| -> 0
-> <function functionl at 0x000001D3EA61DE50>

File "C:/Users/Ashwin/Google Drive/Python Unit Test
Automation - Second Edition/Code/Chapter07/progi6.py",
line 8, in functioni

return a / b

ZeroDivisionError: division by zero

Customizing the Log Message Format
and Display

You can also customize the log message format and determine how it is
displayed on the console, as shown in Listing 7-18.

Listing 7-18. Progl7.py

from loguru import logger

import sys

logger.add(sys.stdout,
colorize=True,
format="<blue>{time}</blue> <level>{message}
</level>")

logger.add('mylog.log",
format="{time:YYYY-MM-DD @ HH:mm:ss} - {level} -
{message}")

logger.debug('Debug")

logger.info('Info")

189

CHAPTER 7 LOGGING IN PYTHON

If you run this on the console, you will get the output shown in
Figure 7-1.

| | main :<module>: -
INFO main :<module>:12 - Info
| o
Info

Figure 7-1. Customized output

Configuring with a Dictionary

You can configure the log files with a dictionary as well, as shown in
Listing 7-19.

Listing 7-19. Progl8.py

from loguru import logger
import sys
config = {
"handlers': [
{'sink': sys.stdout, 'format': '{time} - {message}'},
{"sink': 'mylog.log', 'serialize': True}]
}
logger.configure(**config)
logger.debug('Debug")
logger.info('Info")

Run the program and you will see the following output:

2021-09-03T17:44:49.396318+0530 - Debug
2021-09-03T17:44:49.416051+0530 - Info

190

CHAPTER7 LOGGING IN PYTHON

Conclusion

This chapter explained Python’s logging mechanisms in detail. Logging
is a very useful technique used to analyze problems encountered during
the execution of programs. Every application or program has unique
requirements for logging and you can include diverse and detailed
information in the log files. The chapter covered a few examples of logging.
As an exercise, identify what kind of information you want to see in the logs
in your Python programs and then write the appropriate code for logging.
The next chapter is the culmination of all that you have learned
throughout this book. You learn about TDD (test-driven development).

191

CHAPTER 8

Tips and Tricks

In the first chapter of this book, you about learned the history and
philosophy of Python. Subsequent chapters explored the features of
various test automation frameworks in Python. The frameworks you
explored included doctest, unittest, nose, nose2, and pytest. Later,
you learned about Selenium and logging in detail. This chapter looks at
coding conventions that will make the test discovery easier across these
frameworks. Then, you will look at the concept of test-driven development
and learn how it can be implemented in Python 3 projects with the help
of pytest.

Coding and Filenaming Conventions
for Easier Test Discovery

You have seen that all the xUnit-style frameworks include test discovery,
that is, the automated detection, execution, and report generation of tests.
This is a very important feature, as it makes life easier for code testers.
You can even schedule the test discovery process using OS schedulers (for
example, cron in Linux-based operating systems and Windows Scheduler
in Windows), and they will automatically run tests at scheduled times.

© Ashwin Pajankar 2022 193
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_8

https://doi.org/10.1007/978-1-4842-7854-3_8#DOI

CHAPTER 8 TIPS AND TRICKS

In order to ensure that the test discovery system detects all the tests
successfully, I usually follow these code and filename conventions:

¢ The names of all the test modules (the test files) should
start with test_

¢ The names of all the test functions should start
with test

o« The names of all the test classes should start with Test

o« The names of all the test methods should start
with test

e Group all the tests into test classes and packages

o All the packages with test code should have an
init.py file

It is always a good idea to follow the PEP 8 convention for the code. It
can be found at https://www.python.org/dev/peps/pep-0008/.

If you use these conventions for your code and filenames, the test
discovery feature of all the test automation frameworks—including
unittest, nose, nose2, and pytest—will detect the tests without any
problem. So, the next time you write your tests, follow these conventions
for best results.

Note You can read more about xUnit at
https://www.martinfowler.com/bliki/Xunit.html
and http://xunitpatterns.com/

194

https://www.python.org/dev/peps/pep-0008/
https://www.martinfowler.com/bliki/Xunit.html
http://xunitpatterns.com/

CHAPTER 8 TIPS AND TRICKS

Test-Driven Development with pytest

Test-driven development (TDD) is a paradigm whereby you implement

a new feature or requirement by writing tests first, watch them fail, and
then write the code to make the failed tests pass. Once the basic skeleton
is implemented this way, you then build on this by altering the tests and
changing the development code to accommodate the added functionality.
You repeat this process as many times as needed to accommodate all new
requirements.

Essentially, TDD is a cycle where you write the tests first, watch them
fail, implement the required features, and repeat this process until the new
features are added to the existing code.

By writing the automated tests before the development code, it forces
you to think about the problem at hand first. As you start to build your
tests, you have to think about the way you write the development code that
must pass the already-written automated tests in order to be accepted.

Figure 8-1 sums up the TDD approach.

Write a Make

Failing the Test

Test Pass
Refactor

Figure 8-1. TDD flow

195

CHAPTER 8 TIPS AND TRICKS

To see how TDD is implemented in Python with pytest, create a
directory called chapter08 for this TDD in the code directory. You will use
this directory for the TDD exercise.

Create the test module shown in Listing 8-1 in the chapter08 directory.

Listing 8-1. test_module0l.py
class TestClassoO1:

def test case01(self):
calc = Calculator()
result = calc.add(2, 2)
assert 4 == result

Run the code in Listing 8-1 with the following command:
py.test -vs test moduleO1.py
The output will be as follows:

==========oms======== fest session starts ============ccoooooe-
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 -- / usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 1 items

test module0O1.py::TestClass01::test case01 FAILED
=========================== FAILURES ==========================
TestClassOl.test case01

self = <test _module01.TestClass01 object at 0x763c03b0>

196

CHAPTER 8 TIPS AND TRICKS

def test case01(self):
> calc = Calculator()
E NameError: name 'Calculator' is not defined

test_moduleO1.py:4: NameError
==================== 1] failed in 0.29 Seconds —=—=—=====—=—=—=======

From this output, you can see that the problem is that Calculator has
not been imported. That is because you have not created the Calculator
module! So let’s define the Calculator module in a file called calculator.
py, as shown in Listing 8-2, in the same directory.

Listing 8-2. calculator.py
class Calculator:

def add(self, x, y):
pass

Make sure that there are no errors in calculator.py by running the
following command every time you modify the module:

python3 calculator.py

Now import Calculator in the test module, as shown in Listing 8-3.

Listing 8-3. test_module0l.py

from calculator import Calculator class TestClasso1:
def test case01(self):
calc = Calculator() result = calc.add(2, 2) assert 4 == result

Run the test_module01.py again. The output will be as follows:

—o=—==—=—=—=—=—==-===—======= test Session Starts —o——----=—=—=—=—=—=—=======
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

197

CHAPTER 8 TIPS AND TRICKS

/ust/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,
inifile:

collected 1 items

test module0O1.py::TestClass01::test case01 FAILED
============z============ FAILURES ============cc=sssooooooooe-
TestClassol.test case01

self = <test module01.TestClass01 object at 0x762c24bo>

def test case01(self):
calc = Calculator()
result = calc.add(2, 2)
> assert 4 == result
E assert 4 == None

test_module0O1.py:9: AssertionError
—================== 1 'Fai]_ed in 0.32 Seconds —=================

The add() method returns the wrong value (i.e., pass), as it does not
do anything at the moment. Fortunately, pytest returns the line with the
error in the test run so you can decide what you need to change. Let’s fix
the code in the add () method in calculator.py, as shown in Listing 8-4.

Listing 8-4. calculator.py
class Calculator:

def add(self, x, y):
return x+y

198

CHAPTER 8 TIPS AND TRICKS

You can run the test module again. Here is the output:

==z=========zz=z======= test session starts =============z=z=z===z==
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 1 items

test module0O1.py::TestClass01::test case01 PASSED
==================] passed in 0.08 seconds ===================

Now you can add more test cases to the test module (as shown in
Listing 8-5) to check for more features.

Listing 8-5. test_module0l.py

from calculator import Calculator
import pytest

class TestClasso1:

def test case01(self):
calc = Calculator()
result = calc.add(2, 2)
assert 4 == result

def test case02(self):
with pytest.raises(ValueError):
result = Calculator().add(2, "two')

199

CHAPTER 8 TIPS AND TRICKS

The modified code shown in Listing 8-5 is trying to add an integer and
a string, which should raise a ValueError exception.
If you run the modified test module, you get the following:

===================== test session starts ====================
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 -- / usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 2 items

test module0O1.py::TestClass01::test case01 PASSED test
module0O1.py::TestClass01::test case02 FAILED

TestClassol.test case02

self = <test module01.TestClass01 object at 0x7636f050>

def test case02(self):
with pytest.raises(ValueError):
> result = Calculator().add(2, "two')

test module01.py:14:

self = <calculator.Calculator object at ox7636fafo>, x = 2,
y = 'two’

def add(self, x, y):
> return x+y
E TypeError: unsupported operand type(s) for +: 'int'
and 'str'

calculator.py:4: TypeError
—============ 1 failed, 1 passed in 0.33 Seconds —=============

CHAPTER 8 TIPS AND TRICKS

As you can see in the output, the second test fails because it does not
detect a ValueError exception. So, let’s add the provision to check if both
the arguments are numeric, or otherwise raise a ValueError exception—
see Listing 8-6.

Listing 8-6. calculator.py
class Calculator:

def add(self, x, y):
number types = (int, float, complex)

if isinstance(x, number types) and isinstance(y,
number types):
return x +y
else:
raise ValueError

Finally, Listing 8-7 shows how to add two more test cases to the test
module to check if add() is behaving as expected.

Listing 8-7. test_module0l.py

from calculator import Calculator
import pytest

class TestClassoO1:

def test case01(self):
calc = Calculator()
result = calc.add(2, 2)
assert 4 == result

def test case02(self):
with pytest.raises(ValueError):
result = Calculator().add(2, 'two')

201

CHAPTER 8 TIPS AND TRICKS

def test case03(self):
with pytest.raises(ValueError):
result = Calculator().add('two', 2)

def test case04(self):
with pytest.raises(ValueError):
result = Calculator().add('two', "two")

When you run the test module in Listing 8-7, you get the
following output:

=============z======== test session starts ==============z=z=z=====
platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,
pluggy-0.4.0 -- / usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chaptero8,

inifile:

collected 4 items

test module0O1.py::TestClass01::test case01 PASSED test
moduleO1.py::TestClass01::test case02 PASSED test moduleo1.
py::TestClass01::test _case03 PASSED test moduleO1.
py::TestClass01::test case04 PASSED

============== 4 passed in 0.14 seconds ================

This is how TDD is implemented in real-life projects. You write a failing
test first, refactor the development code, and continue with the same
process until the test passes. When you want to add a new feature, you
repeat this process to implement it.

202

CHAPTER 8 TIPS AND TRICKS

Conclusion

In this chapter, you learned the coding and filename conventions for
easy test discovery; these conventions can be implemented across all the
automation frameworks. You also read a brief introduction to TDD.

This book began with an introduction to Python, including how to
install it on the various OSs and the differences between Python versions 2
and version 3. Subsequent chapters explored the most commonly used test
automation frameworks for Python.

Chapter 2 explored docstrings and explained how they are useful in
writing doctests.

You learned that the doctest is not a very powerful test framework, as
it lacks many essentials of a true test framework.

In Chapter 3, you were introduced to Python's batteries-included test
automation framework, unittest. You learned how to write xUnit-style
test cases for Python with unittest.

In Chapter 4, you explored a more advanced, but defunct, test
automation framework called nose. You learned about the advanced
features and plugins offered by nose. Because nose is not under active
development, the chapter used nose2 as a test-runner for running nose
and unittest tests.

In Chapter 5, you studied and explored one of the best unit test
automation frameworks for Python, pytest. You learned how and why it is
better than unittest and nose. You also explored its plugins and modular
fixtures.

In Chapter 6, you studied and explored the Selenium browser
automation framework, which is very useful in automating test cases for
various web-related programming using web browsers.

Chapter 7 explored logging with logger and loguru. Logging is a very
useful feature for developers and testers.

203

CHAPTER 8 TIPS AND TRICKS

You have practiced numerous examples throughout the book, the
goal of which is to instill you with confidence in Python test automation.
You also learned to work with codebases where they have implemented
test automation with unittest, doctest, or nose and plan a migration to
pytest. You can now write your own routines and use logging to log the
errors. You can also automate web-related test cases. Also, if you are a
career Python developer or an automation expert, you can follow the TDD
approach in your projects. I hope you have enjoyed reading this book as
much as I enjoyed writing it. Happy Pythoning and testing!!

204

Index

A B, C
Assertions, 76-78
Automated Unit Testing, 26

D, E
Docstrings
advantage, 28
code comments, 27
Python
graphical representation, 28
help() function, 30
interpreter mode, 29
print() function, 31
tree diagram, 28, 29
doctest
command prompt, 33
failing tests

advantages/disadvantages, 39

execution log, 37
novice-level testing, 39
Pydoc, 40
separate test file, 37-39
source code, 35-37
nose test, 116
standard library, 32
test module, 32, 33
verbose mode, 35

© Ashwin Pajankar 2022

F,G,H
Fixtures
nose
alternate names, 105
assert_equals()
method, 106, 107
functions, 101-103
package, 104
setup_function()/
teardown_function(), 103
stdout output, 100
unittest, 98-101
pytest
pytest.raises(), 138, 139
scope variables, 137
source
code, 131-136

LJ,K
Integrated Development
Environment (IDE)

eclipse, 20
Geany, 20
IDLE, 18, 19
PyCharm, 21
PyDev plugin, 19
Raspberry Pi, 19

205

A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3

https://doi.org/10.1007/978-1-4842-7854-3#DOI

INDEX

Integrated Development tracing process, 187-189
Environment (IDE) (cont.) OS command line, 162, 163
Selenium Python

Chrome browsers, 144, 145
exporting project, 153
Firefox browser, 145

logs, 153, 154

name creation, 147, 148
project base URL, 150, 151
project creation, 147
recording button, 151
renaming option, 149
source code, 154, 155
stop recording, 151, 152
window screen, 145, 146

test programs, 18

basicConfig() method, 166
console/file handler, 180
customization, 168, 169
file structure, 167
multiple loggers, 173-176
operations, 169-171
rotating log file, 172, 173
source code, 165
threads/

multithreading, 176-180
warning, 166
writing code, 180-183

L macOS/Windows

Linux, 91, 92 nose

Logging process, 161 directory structure, 93, 97
crontab, 161 discovery process, 98
definition, 161 help and documentation, 95
file operations, 163, 164 installation, 92
loguru nosetests command, 94, 95

organization, 96

test case, 93

verbose mode, 94

configuration
compresses, 186

dictionary, 190

features, 183

file retention, 186

installation log, 183 N, 0)

logging levels, 184-186 Nose

advantages, 116

differences, 118

log message format/
display, 189

206

disadvantage, 117
doctest test, 116
fixtures (see Fixtures)
Linux computer, 91, 92
macOS and Windows, 92-98
nose2, 118-121
report generation, 112
color output, 114, 115
HTML files, 113, 114
nosetests.html file, 114
rednose demo, 115
XML reports, 112, 113
standard library, 91
testing tools
ok_andeq_, 108-110
@raises() decorator, 109, 110
@timed() decorator, 111, 112
unittest tests, 115, 116

P,Q,R

pytest, 123

classes/packages, 127
command-line options

failures, 140

help, 139

JUnit-style XML log

files, 140

profiling test, 140
discovery, 129
execution process, 127
fixtures

pytest.raises(), 138, 139

INDEX

scope variables, 137
source code, 131-136
Linux and macOS, 124
py.test command, 126, 127
setup_function()/
teardown_function(), 130
simple test, 125-127
test-driven development
(TDD), 195-202
unittest and nose, 131
Windows command, 124
xUnit-style fixtures, 129-131

Python

code maintaining, 4

community, 8

extensible, 6

extensive standard library, 6

features, 3

high-level languages, 4

history, 1-3

IDE (see Integrated
Development
Environment (IDE))

interactive mode, 16

interpreted language, 5

learning process, 3

logging process, 165-182

memory management, 7

modes, 15

object-oriented programming, 5

open-source project, 4

portable, 5

powerful language, 7

207

INDEX

Python (cont.) T
rapid prototyping tool, 7
robustness, 6
script mode, 17
simple/minimalist language, 3
software principles, 2

Python 3
differences, 8
features, 8, 10
installation, 11

Debian/Ubuntu/
derivatives, 11
Fedora/CentOS, 11
Linux, 11
macOS X, 12
Windows OS, 12-15
new-style classes/exceptions, 10

Test discovery system, 193, 194
Test-driven development (TDD)
add() method, 198
add() method, 198, 201
approach, 195
calculator.py, 197
feature/requirements, 195
flow process, 195
modification code, 200
module, 199
module creation, 196
source code, 196
test module, 202
test_module01.py, 197
ValueError exception, 201

u,Vv

S unittest module
Selenium assert methods, 46
browser operations, 143 assertions, 76-78
components, 144 coding and naming
IDE, 144-155 conventions, 75
unittest, 158, 159 command prompt, 47
Webdriver, 155-158 concepts, 43
Software testing concepts discovering and executing
docstring test, 73-75
Python, 28-32 exceptions
source code, 27 assertRaises()
doctest, 32-40 method, 83-85
textbook definition, 25 source code, 82
unit testing, 26, 27 ValueError, 84

208

fail() method, 79-82
id() and shortDescription()
methods, 78
nose tests, 115,116
PyUnit, 43
Selenium, 158, 159
skipping tests, 80
suites/runners, 86, 87
test methods
assertEqual() method, 50
classes (test
file/modules), 51
code organization, 66
command-line
options, 60-63
development/testing code
files, 68-73
execution, 57, 58
fixtures, 52-55
help/command-line
options, 59, 60
inspect.stack(), 48
packaging feature, 63-66
quiet mode, 61
setUp()/tearDown()
methods, 54

INDEX

single directory, 66-68
source code, 47, 48
subdirectory, 64
unittest.main(), 55, 56
verbosity control, 48-51
test_module01.py, 45
test_modulel5.py, 46, 88
xUnit, 44, 45
Unit testing
automated execution and
reporting, 26
benefits, 26
definition, 26, 27

W

Webdriver Selenium, 155-158
Windows OS
Python installation window, 15
security warning dialog box, 13
setup failed message, 14
website, 12

XY, Z

xUnit-style unit testing, 44, 45

209

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Why This Book?
	Who This Book Is For
	How This Book Is Organized
	How to Get the Most Out of This Book
	Where Next?
	A Quick Word About the Instructors’ Fraternity

	Chapter 1: Introduction to Python
	The History of Python
	Features of Python
	Simple
	Easy to Learn
	Easy to Read
	Easy to Maintain
	Open Source
	High-Level Language
	Portable
	Interpreted
	Object-Oriented
	Extensible
	Extensive Libraries
	Robust
	Rapid Prototyping
	Memory Management
	Powerful
	Community Support

	Python 3
	Differences Between Python 2 and Python 3
	Why Use Python 3

	Installing Python 3
	Installation on Linux
	Installation on Debian, Ubuntu, and Derivatives
	Installation on Fedora and CentOS
	Installation on macOS X
	Installation on Windows

	Running a Python Program and Python Modes
	Interactive Mode
	Script Mode

	IDEs for Python
	IDLE
	The PyDev Plugin for Eclipse
	Geany
	PyCharm

	Conclusion

	Chapter 2: Getting Started
	A Brief Introduction to Software Testing Concepts
	Unit Testing
	Test Automation
	The Benefits of Automated Unit Testing

	Using Docstrings
	Example of a Docstring in Python

	A Brief Introduction to doctest
	Failing Tests
	Separate Test File
	Advantages and Disadvantages of doctest
	Pydoc

	Conclusion

	Chapter 3: unittest
	Introduction to xUnit
	Using unittest
	Order of Execution of the Test Methods
	Verbosity Control
	Multiple Test Classes Within the Same Test File/Module
	Test Fixtures
	Running Without unittest.main()
	Controlling the Granularity of Test Execution
	Listing All the Command-Line Options and Help
	Important Command-Line Options
	Creating a Test Package
	Organizing the Code
	Placing the Development and Test Code in a Single Directory
	Placing the Development and Test Code in Separate Directories

	Test Discovery
	Coding Conventions for unittest
	Assertions in unittest
	Other Useful Methods

	Failing a Test
	Exceptions in Test Cases
	assertRaises()

	Creating Test Suites
	Creating Test Suites

	Conclusion

	Chapter 4: nose and nose2
	Introduction to nose
	Installing nose on Linux Distributions
	Installing nose on macOS and Windows
	Verifying the Installation
	Getting Started with nose
	A Simple nose Test Case
	Running the Test Module with nosetests
	Getting Help
	Organizing the Test Code
	Test Discovery

	Fixtures for Classes, Modules, and Methods
	Fixtures for Functions
	Fixtures for Packages
	Alternate Names of the nose Fixtures
	assert_equals()

	Testing Tools
	ok_ and eq_
	The @raises() Decorator
	The @timed() decorator

	Report Generation
	Creating an XML Report
	Creating an HTML Report
	Creating Color Output in the Console

	Running unittest Tests from nose
	Running doctest Tests from nose
	Advantages of nose over unittest
	Disadvantages of nose
	Using nose2
	Conclusion

	Chapter 5: pytest
	Introduction to pytest
	Simple Test
	Running Tests with the py.test Command
	Test Class and Test Package in pytest
	Test Discovery in pytest
	xUnit-Style Fixtures
	pytest Support for unittest and nose

	Introduction to pytest Fixtures
	Scope of pytest Fixtures
	pytest.raises()

	Important pytest Command-Line Options
	Help
	Stopping After the First (or N) Failures
	Profiling Test Execution Duration
	JUnit-Style Logs

	Conclusion

	Chapter 6: Testing with Selenium
	Introduction to Selenium
	Selenium IDE
	Selenium Webdriver
	Selenium with Unittest
	Conclusion

	Chapter 7: Logging in Python
	Logging Basics
	Logging with an OS
	Manually Logging with File Operations
	Logging in Python
	Logging to a File
	Customizing the Log Message
	Customizing Logging Operations
	Rotating a Log File
	Using Multiple Loggers
	Logging with Threads
	Multiple Loggers Writing to the Same Target

	Logging with loguru
	Using loguru and the Available Logging Levels
	Customizing File Retention
	Customizing Tracing
	Customizing the Log Message Format and Display
	Configuring with a Dictionary

	Conclusion

	Chapter 8: Tips and Tricks
	Coding and Filenaming Conventions for Easier Test Discovery
	Test-Driven Development with pytest
	Conclusion

	Index

