
Python Unit
Test Automation

Automate, Organize, and
Execute Unit Tests in Python
—
Second Edition
—
Ashwin Pajankar

Python Unit Test
Automation

Automate, Organize, and
Execute Unit Tests in Python

Second Edition

Ashwin Pajankar

Python Unit Test Automation: Automate, Organize, and Execute

Unit Tests in Python

ISBN-13 (pbk): 978-1-4842-7853-6		 ISBN-13 (electronic): 978-1-4842-7854-3
https://doi.org/10.1007/978-1-4842-7854-3

Copyright © 2022 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copyeditor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image by Jason Leung on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Ashwin Pajankar
Nashik, Maharashtra, India

https://doi.org/10.1007/978-1-4842-7854-3

I dedicate this book to Alan Mathison Turing, an
English mathematician, computer scientist, logician,

cryptanalyst, and philosopher who was influential in the
development of theoretical computer science.

v

About the Author��xi

About the Technical Reviewers��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: �Introduction to Python���1

The History of Python���1

Features of Python���3

Simple��3

Easy to Learn��3

Easy to Read���4

Easy to Maintain���4

Open Source���4

High-Level Language��4

Portable��5

Interpreted��5

Object-Oriented��5

Extensible���6

Extensive Libraries���6

Robust��6

Rapid Prototyping���7

Memory Management��7

vi

Powerful���7

Community Support��8

Python 3���8

Differences Between Python 2 and Python 3���8

Why Use Python 3���10

Installing Python 3���11

Installation on Linux���11

Installation on Debian, Ubuntu, and Derivatives���11

Installation on Fedora and CentOS���11

Installation on macOS X���12

Installation on Windows���12

Running a Python Program and Python Modes��15

Interactive Mode���16

Script Mode��17

IDEs for Python���18

IDLE��18

The PyDev Plugin for Eclipse��19

Geany��20

PyCharm���21

Conclusion���23

Chapter 2: �Getting Started���25

A Brief Introduction to Software Testing Concepts��25

Unit Testing���26

Test Automation��26

The Benefits of Automated Unit Testing��26

Using Docstrings��27

Example of a Docstring in Python���28

Table of Contents

vii

A Brief Introduction to doctest���32

Failing Tests��35

Conclusion���41

Chapter 3: �unittest���43

Introduction to xUnit���44

Using unittest���45

Order of Execution of the Test Methods��47

Test Discovery��73

Coding Conventions for unittest���75

Assertions in unittest���76

Other Useful Methods���78

Failing a Test��79

Exceptions in Test Cases��82

Creating Test Suites��86

Creating Test Suites��88

Conclusion���89

Chapter 4: �nose and nose2��91

Introduction to nose���91

Installing nose on Linux Distributions��91

Installing nose on macOS and Windows���92

Verifying the Installation���92

Getting Started with nose���93

A Simple nose Test Case��93

Running the Test Module with nosetests��94

Getting Help��95

Organizing the Test Code��96

Test Discovery��98

Table of Contents

viii

Fixtures for Classes, Modules, and Methods���98

Fixtures for Functions���101

Testing Tools��107

ok_ and eq_��108

The @raises() Decorator���109

The @timed() decorator��111

Report Generation��112

Creating an XML Report��112

Creating an HTML Report���113

Creating Color Output in the Console���114

Running unittest Tests from nose��115

Running doctest Tests from nose���116

Advantages of nose over unittest���116

Disadvantages of nose���117

Using nose2���118

Conclusion���121

Chapter 5: �pytest���123

Introduction to pytest���124

Simple Test���124

Running Tests with the py.test Command��126

Test Class and Test Package in pytest��127

Test Discovery in pytest��129

xUnit-Style Fixtures��129

pytest Support for unittest and nose��131

Introduction to pytest Fixtures���131

Scope of pytest Fixtures���137

Table of Contents

ix

Important pytest Command-Line Options��139

Help��139

Stopping After the First (or N) Failures���140

Profiling Test Execution Duration��140

JUnit-Style Logs���140

Conclusion���140

Chapter 6: �Testing with Selenium��143

Introduction to Selenium��143

Selenium IDE��144

Selenium Webdriver���155

Selenium with Unittest���158

Conclusion���159

Chapter 7: �Logging in Python��161

Logging Basics���161

Logging with an OS��162

Manually Logging with File Operations��163

Logging in Python��165

Logging to a File���167

Customizing the Log Message��168

Customizing Logging Operations��169

Rotating a Log File��172

Using Multiple Loggers���173

Logging with Threads���176

Multiple Loggers Writing to the Same Target���180

Logging with loguru���183

Using loguru and the Available Logging Levels��183

Customizing File Retention���186

Table of Contents

x

Customizing Tracing���187

Customizing the Log Message Format and Display��������������������������������������189

Configuring with a Dictionary���190

Conclusion���191

Chapter 8: �Tips and Tricks���193

Coding and Filenaming Conventions for Easier Test Discovery�������������������������193

Test-Driven Development with pytest��195

Conclusion���203

�Index��205

Table of Contents

xi

About the Author

Ashwin Pajankar is a programmer, a maker, an author, a YouTuber, and a

science popularizer. He graduated from IIIT Hyderabad with an MTech in

Computer Science and Engineering. He has a keen interest in promoting

science, technology, engineering, and mathematics (STEM) education.

He has written many books with Packt, Leanpub, BPB, and Apress, and

has also reviewed many books for Packt and Apress. He’s also working on

many more books with Apress.

His YouTube channel has more than 10,000 subscribers and he also

teaches more than 75,000 students on Udemy.

His personal website is www.AshwinPajankar.com.

His LinkedIn profile is

https://in.linkedin.com/in/ashwinpajankar

http://www.ashwinpajankar.com/
https://in.linkedin.com/in/ashwinpajankar

xiii

About the Technical Reviewers

Shraddha Joshi is currently working as an engineer at PwC with experience

in testing with Python and Java in major production environments. She has

worked with various global clients across multiple domains and helped

them build products and solutions with full-fledged testing frameworks.

She has expertise in all phases of the development process and leads the

design, development, execution, and automation stages of test plans for

a diverse set of system components. Previously, she was a Senior Quality

Engineer at Incture Technologies, where she was involved in designing

functional integration and regression test plans, building and executing

manual and automated tests, and performing highly complex analysis for

multiple products. She also helped set cross-functional product testing

standards involving the application of advanced technical/business skills in

the area of specialization.

Shraddha’s great knack for simplifying concepts and explaining them

in an easy-to-understand manner makes her stand apart. She is passionate

about guiding and mentoring people in their technology journey. She is

also actively involved in conducting workshops, webinars, and sessions.

She lives in Bangalore with her family.

Sujay Raghavendra is a distinguished IT professional with a master’s

degree in Information Technology. His research interests include

computer vision, NLP, machine learning, deep learning, and artificial

intelligence. He has served as an advisor for various universities and

startups. He has been active in the research community. He has also

authored a book with Apress Media. He has published research papers at

various international journals and conferences and is a leading industry

expert and mentor for professionals.

xv

Acknowledgments

I am grateful to the student and teacher community which, with their

continual bombardment of queries, impelled me to learn more, simplify

my findings, and organize them into a book. This book is for them.

I wish to thank my friends and colleagues—the practitioners from the

field—for their good counsel and for filling me in on the latest in the field

of test automation.

A special thanks to the technical reviewers—Shraddha and Sujay—for

their vigilant review and for providing their expert opinions.

I consider myself very fortunate for the editorial assistance provided

by Apress; the collaboration with them has been fabulous. I am thankful

to Celestin Suresh John, Senior Manager, Editorial Acquisitions, Apress

and Springer Science and Business Media Company, for giving me

this and many other opportunities to collaborate with Apress. I wish to

acknowledge and appreciate James Markham, Mark Powers, and the

team of associates from Apress who adeptly guided me through the entire

process of preparation and publication.

xvii

Introduction

�Why This Book?
I have been using Python for more than ten years on a wide variety of

projects. Initially, I used it for GUI applications. Then I quickly moved to

scientific usage, as my academic projects demanded it. When I entered

professional life, I used it for automation first and then for implementation

of alert mechanisms. I have been using Python for the last six years in the

fields of scientific computing, Internet of Things (IoT), and single board

computers. I have written plenty of Python code over these years.

I always prefer it to bash scripting, which offers limited capabilities to

users like me. At different points over the last ten years, I’ve worked as a

developer, an R&D engineer, a maker, an author, and a QA specialist. I used

Python in every single role.

Whenever I write code, I unit test it thoroughly. I used to unit test all

my Python modules in the good old manual way. I used to run all the

scripts once and compare the outcome with what was expected. However,

I learned that when your codebase grows larger, it’s pretty difficult to test

the scripts manually. Also, all the scripts have to be tested, re-tested, and

tested for regression whenever a small part of the codebase changes. I was

looking for a way to run all the tests automatically, which led me to reading

about test automation. It immediately piqued my curiosity and, after a

couple of days, I was running my own automated Python tests.

After acquainting myself with the philosophy of test automation,

I applied my newfound knowledge to automate unit and integration testing

to web, mobile, GUI, API, and a variety of other types of applications using

programming languages like C++, Python, Java, and PHP.

xviii

I wrote this book to share my knowledge and experiences while

automating unit tests in Python 3. I explore different frameworks and

plugins in this book. I learned about the tools and techniques explained

in this book by spending numerous hours learning, coding, discussing,

and actively participating in diverse Internet forums. I have condensed the

knowledge to the basics of the unit test automation frameworks. I hope you

will enjoy reading and following the book as much as I enjoyed writing it.

This book includes the following:

•	 An introduction to Python and various IDEs

•	 Various test automation frameworks for Python 3,

including doctest, unittest, nose, nose2, and pytest

•	 Logging frameworks and web driver automation

•	 Coding standards for Python 3 test automation and

implementation of test-driven development with

pytest in Python 3

�Who This Book Is For
The main audience of this book is Python 3 programmers who want to

automate their unit tests. This includes a large and diverse set of people,

including developers, test automators, students, researchers, and novice

learners. The book is for those who have some knowledge of the Python

programming language. The test automation engineers who have already

worked with other programming frameworks, such as Java and C++, will

find this book immensely useful to learn how test automation is done in

Python 3. If you are just beginning with Python 3 programming and want

to quickly get into automating the unit tests of your modules and packages,

you will find this book helpful.

Introduction

xix

This book is not a book for learning Python 3 programming and syntax

from scratch. It is also not a DIY cookbook for development projects. If

your understanding of coding is limited, you will find it difficult to follow

this book.

�How This Book Is Organized
This book has eight chapters. Here is a sneak peek into the topics covered

in each chapter:

•	 Chapter 1: This chapter introduces you to the history

and philosophy of Python. It teaches you how to install

Python and how to set up the environment for Python 3

programming. It also briefly explores the new features

of Python 3 and introduces you to a few popular

Python 3 IDEs.

•	 Chapter 2: The aim of this chapter is to quickly get

you started with unit test automation in Python 3. The

chapter revises the understanding of testing concepts

and quickly moves into implementing those concepts

with docstring and doctest.

•	 Chapter 3: This chapter serves to introduce xUnit and

its philosophy to you. Then it proceeds to teach you

how to implement concepts of xUnit with unittest, a

xUnit port for Python.

•	 Chapter 4: This chapter explores the inadequacies

of unittest. Then it explores a better unit-testing

framework, called nose. It explains the installation of

plugins for nose to generate reports. It also discusses

nose2, which is nose's next-generation version that’s

under active development.

Introduction

xx

•	 Chapter 5: This chapter introduces you to a modular,

easy-to-use, unit test framework for Python, called

pytest. It discusses the drawbacks of nose and

compares nose, unittest, and pytest.

•	 Chapter 6: This chapter introduces you to a web driver

automation framework known as selenium. You will

learn how to use the Selenium IDE and Selenium

Python library.

•	 Chapter 7: This chapter introduces you to various

logging frameworks in Python. First, you will explore

the built-in framework, logging. Then you will explore

a third-party logging library, called loguru.

•	 Chapter 8: This chapter helps you understand the

coding and filenaming conventions for facilitating

easier test discovery across various unit test

frameworks in Python. The chapter concludes the book

by implementing a test-driven development in Python

3 using pytest.

�How to Get the Most Out of This Book
To get the most out of this book, it’s best to abide by the following:

•	 Read the chapters thoroughly. Use the chapters hands-

on by following the step-by-step instructions stated

in the code examples. Do not skip any of the code

examples.

•	 If need be, repeat them a second time or until the

concept is firmly etched in your mind.

•	 Join a Python community or discussion forum.

Introduction

xxi

•	 Explore and practice with various Python IDEs

•	 Read the online documentation available for various

test automation frameworks for Python 3.

•	 Read the blogs related to test automation, Python 3,

migration to Python 3 from Python 2, logging, and test-

driven development.

�Where Next?
I have endeavored to unleash the power of the unit test automation

libraries for Python 3 as an aid to the community of professional

developers and testers. I recommend you read the book from cover to

cover, without skipping any of the chapters, text, or code examples.

I wish you well in exploring Python!

�A Quick Word About the Instructors’ Fraternity
Attention has been paid to the sequence of chapters and to the flow of

topics in each chapter. This is done particularly with an objective to assist

my fellow instructors and academicians in carving out a syllabus from the

Table of Contents (ToC) of the book. The complete ToC complements the

syllabus of “Introduction to Software Testing,” if students were introduced

to programming during their freshman year with the help of Python.

I have ensured that each concept discussed in this book includes

adequate hands-on content to enable you to teach better and to provide

ample hands-on practice to your students.

Happy learning and exploring!

—Ashwin Pajankar

Introduction

1© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_1

CHAPTER 1

Introduction
to Python
I hope you have glanced through the introduction section. If you have not,

then I recommend reading it, as it will help you with the context and the

philosophy of this book.

Let’s begin this adventurous journey by learning the history and

background of Python.

I personally find Python amazing and have been enchanted by it.

Python is a simple yet powerful programming language. When using

Python, it’s easy to focus on the implementation of the solution to a given

problem, as programmers do not have to worry about the syntax of the

programming language.

�The History of Python
Python was conceived in the late 1980s. Guido van Rossum began its

implementation in late 1989 at the Centrum Wiskunde & Informatica

(National Research Institute for Mathematics and Computer Science) in

the Netherlands. Python is a successor to the ABC programming language,

which itself was inspired by SETL. In February 1991, Van Rossum

published Python code to the alt.sources newsgroup. The name Python

was inspired by the television show “Monty Python’s Flying Circus,” as Van

Rossum is a big fan of Monty Python.

https://doi.org/10.1007/978-1-4842-7854-3_1#DOI

2

Van Rossum is the principal author of Python. He played a central role

in guiding the development and evolution of Python. He held the title of

Benevolent Dictator for Life for Python. In 2018, he stepped down from that

role. As of the writing of this edition, he works for Microsoft.

The central philosophy of Python, called the Zen of Python, is

explained in PEP-20, which can be found at https://www.python.org/

dev/peps/pep-0020.

It is a collection of 20 software principles, as follows:

•	 Beautiful is better than ugly.

•	 Explicit is better than implicit.

•	 Simple is better than complex.

•	 Complex is better than complicated.

•	 Flat is better than nested.

•	 Sparse is better than dense.

•	 Readability counts.

•	 Special cases aren’t special enough to break the rules.

•	 Practicality beats purity.

•	 Errors should never pass silently.

•	 Unless explicitly silenced.

•	 In the face of ambiguity, refuse the temptation to guess.

•	 There should be one—and preferably only one—

obvious way to do it.

•	 Although that way may not be obvious at first unless

you’re Dutch.

•	 Now is better than never.

Chapter 1 Introduction to Python

https://www.python.org/dev/peps/pep-0020
https://www.python.org/dev/peps/pep-0020

3

•	 Although never is often better than right now.

•	 If the implementation is hard to explain, it’s a bad idea.

•	 If the implementation is easy to explain, it may be a

good idea.

•	 Namespaces are one honking great idea—let’s do more

of those!

�Features of Python
The following sections discuss the features of Python that have become

popular and beloved in the programming community.

�Simple
Python is a simple and minimalist language. Reading a well written and

good Python program makes you feel as if you are reading English text.

�Easy to Learn
Due to its simple and English-like syntax, Python is extremely easy for

beginners to learn.

That is the prime reason that, nowadays, it is taught as the first

programming language to high school and university students who

take introduction to programming and programming 101 courses. An

entire new generation of programmers is learning Python as their first

programming language.

Chapter 1 Introduction to Python

4

�Easy to Read
Unlike other high-level programming languages, Python does not provide

much provision for obfuscating code and making it unreadable. The

English-like structure of Python code makes it easier to read, compared

to code written in other programming languages. This makes it easier to

understand and easier to learn, compared to other high-level languages

like C and C++.

�Easy to Maintain
As Python code is easy to read, easy to understand, and easy to learn,

anyone maintaining the code becomes comfortable with its codebase in

considerably less time. I can vouch for this from personal experiences

of maintaining and enhancing large legacy codebases written in a

combination of bash and Python 2.

�Open Source
Python is an open-source project. That means its source code is freely

available. You can make changes to it to suit your needs and use the

original and changed code in your applications.

�High-Level Language
While writing Python programs, you do not have to manage low-level

details like memory management, CPU timings, and scheduling processes.

All these tasks are managed by the Python interpreter. You can directly

write the code in easy-to- understand, English-like syntax.

Chapter 1 Introduction to Python

5

�Portable
Python has been ported to many platforms. All Python programs work on

any of these platforms without requiring any changes, if you are careful

enough to avoid any system-dependent features. You can use Python on

GNU/Linux, Windows, Android, FreeBSD, macOS, iOS, Solaris, OS/2,

Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion,

Acorn, RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE, and

PocketPC.

�Interpreted
Python is an interpreted language. Programs written in a high-level

programming language like C, C++, and Java are first compiled. This

means that they are first converted into an intermediate format. When

you run the program, this intermediate format is loaded from secondary

storage (i.e., a hard disk) to memory (RAM) by the linker/loader. So, C,

C++, and Java have separate compilers and linkers/loaders. This is not

the case with Python. Python runs its programs directly from the source

code. You do not have to bother about compiling and linking to the proper

libraries. This makes Python programs truly portable, as you can copy the

program to one computer from another and the program runs fine as long

as the necessary libraries are installed on the target computer.

�Object-Oriented
Python supports object-oriented programming paradigms. In object-

oriented programming languages, the program is built around objects

that combine data and related functionality. Python is a very simple but

powerful object-oriented programming language.

Chapter 1 Introduction to Python

6

�Extensible
One of the features of Python is that you can call C and C++ routines from

Python programs. If you want the core functionality of the application

to run faster, you can code that part in C/C++ and call it in the Python

program (C/C++ programs generally run faster than Python).

�Extensive Libraries
Python has an extensive standard library, which comes pre-installed.

The standard library has all the essential features of a modern day

programming language. It has provision for databases, unit testing (we will

explore this in this book), regular expressions, multi-threading, network

programming, computer graphics, image processing, GUI, and other

utilities. This is part of Python’s batteries-included philosophy.

Apart from standard library, Python has a large and ever-growing set of

third-party libraries. The list of these libraries can be found in the Python

Package Index (https://pypi.org/). We will explore a few libraries like

unittest, nose, nose2, pytest, and selenium for test automation in this

book. I also have worked with and extensively written on the libraries

for scientific computing and computer vision such as numpy, scipy,

matplotlib, pillow, scikit-image, and OpenCV.

�Robust
Python provides robustness by means of its ability to handle errors.

The full stack trace of the encountered errors is available and makes

the programmer’s life more bearable. The runtime errors are known as

exceptions. The feature that allows handling of these errors is known as the

exception handling mechanism.

Chapter 1 Introduction to Python

https://pypi.org/

7

�Rapid Prototyping
Python is used as a rapid prototyping tool. As you have read, Python has

extensive libraries and is easy to learn, so many software architects are

increasingly using it as a tool to rapidly prototype their ideas into working

models in a very short period of time.

�Memory Management
In assembly language and programming languages like C and C++,

memory management is the responsibility of the programmer. And this

is in addition to the task at hand. This creates an unnecessary burden

on the programmer. In Python, the Python interpreter handles memory

management. This helps programmers steer clear of memory issues and

focus on the task at hand.

�Powerful
Python has everything in it for a modern programming language. It

is used for applications like computer vision, supercomputing, drug

discovery, scientific computing, simulation, and bioinformatics. Millions

of programmers around the world use Python. Many big organizations like

NASA, Google, SpaceX, and Cisco use Python for their applications and

infrastructure.

Chapter 1 Introduction to Python

8

�Community Support
I find this the most appealing feature of Python. As you have read, Python

is open source and has a community of almost a million programmers

(probably more, as today’s high school kids are learning Python)

throughout the world. That means there are plenty of forums on the

Internet supporting programmers who encounter roadblocks. None of my

queries related to Python has ever gone unanswered.

�Python 3
Python 3 was released in 2008. The Python development team decided

to do away with some of the redundant features of the Python language,

simplify some of its features, rectify some design flaws, and add some

much-needed features.

It was decided that a major revision number was warranted and the

resultant release would not be backward compatible. Python 2.x and 3.x

were supposed to coexist in parallel for the programmer community to

have enough time to migrate their code and the third-party libraries from

2.x to 3.x. Python 2.x code cannot run on Python 3 in many cases, as there

are significant differences between 2.x and 3.x.

�Differences Between Python 2 and Python 3
The following are the most notable differences between Python 2 and

Python 3. Let’s look at them in brief:

•	 The print() function

This is perhaps the most notable difference between

Python 2 and Python 3. The print statement

of Python 2 is replaced with the print() function in

Python 3.

Chapter 1 Introduction to Python

9

•	 Integer division

The nature of integer division has been changed in

Python 3 for the sake of mathematical correctness.

In Python 2, the result of division of two integer

operands is an integer. However, in Python 3, it is a

float value.

•	 Omission of xrange()

In Python 2, for creating iterable objects, the

xrange() function is used. In Python 3, range() is

implemented much like xrange(). So, a separate

xrange() is not needed anymore. Using xrange() in

Python 3 raises a nameError.

•	 Raising exceptions

It is mandatory in Python 3 to enclose exception

arguments, if any, in parentheses, whereas in

Python 2 it is optional.

•	 Handling exceptions

In Python 3, while handling exceptions, the as

keyword is needed before the parameter to handle

an argument. In Python 2, it is not needed.

•	 New style classes

Python 2 supports old and new style classes,

whereas Python 3 supports only new style classes.

All classes created in Python 3 use new style classes

by default.

Chapter 1 Introduction to Python

10

•	 New features of Python 3

The following new features of Python 3 have not

been backported to Python 2:

a.	 Strings are Unicode by default

b.	 Clean Unicode/byte separation

c.	 Exception chaining

d.	 Function annotations

e.	 Syntax for keyword-only arguments

f.	 Extended tuple unpacking

g.	 Non-local variable declarations

From this list, you will be frequently using print(), new-style classes,

and exceptions in the code examples in this book.

�Why Use Python 3
From the previous list, you will be frequently using new-style classes and

exceptions in the code examples in this book.

Python’s wiki page (https://wiki.python.org/moin/

Python2orPython3) says the following:

Python 3 is strongly recommended for any new development.

New generation of programmers are introduced to Python 3 as their

first programming language. When they are comfortable with the concept

and philosophy of Python programming, they are gradually introduced

to Python 2 so that they can also work with legacy codebases. Many

organizations have already started migrating codebases from Python 2 to

Python 3. All new projects in Python extensively use Python 3. Python 2 is

almost dead as of writing of this edition of the book. Most organizations

are migrating their legacy codebases from Python 2 to Python 3. Day by

Chapter 1 Introduction to Python

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3

11

day, there is less and less code in Python 2 and it is either abandoned

or converted to Python 3. It is a long and tedious process to convert

Python 2 code to Python 3. Many organizations are doing it on as-needed

basis. The general rule of thumb that most organizations follow is that

if the code works then they do not touch it. However, as I have already

said, all the new projects involving Python are kicked off with Python 3.

Going forward, conversion of legacy Python 2 codebase to Python 3 will

present technically challenging and financially lucrative opportunities for

professionals.

I personally think that these are pretty good reasons to use Python 3.

�Installing Python 3
This section discusses how to install Python 3 on various commonly used

computer OSs.

�Installation on Linux
Linux has many popular distributions. Python 3 is preinstalled on many

popular distributions.

�Installation on Debian, Ubuntu, and Derivatives
The Python 3 interpreter comes preinstalled on the latest releases of

Debian, Ubuntu, and their derivatives.

�Installation on Fedora and CentOS
The Python 3 interpreter comes preinstalled on the latest releases of

Fedora and CentOS.

Chapter 1 Introduction to Python

12

Note O n most of the latest Linux distributions, both versions
of Python (Python 2 and Python 3) are installed by default. The
interpreter for Python 2 is a binary executable file named python and
the interpreter for Python 3 is another binary executable file named
python3. You can use python3 --V or python3 --version to
check the version of the Python 3 interpreter installed on your Linux
computer. Also, you can use the which python3 command to
determine the location of the interpreter on the disk.

�Installation on macOS X
On macOS X, the Python 2 interpreter is installed by default and can be

invoked from the terminal using the python command. If you want to use

Python 3, you have to install it. Make sure that the computer is connected

to the Internet and run the brew install python3 command in the

terminal. This will install Python 3. It will also install other utilities, such as

pip, setuptools, and wheel.

Once the installation finishes, go to the terminal and type python3 --V

or python3 --version to check the version of the Python 3 interpreter

installed.

�Installation on Windows
In Windows OS, Python 3 installation requires a bit more effort. Python 2

or Python 3 is not preinstalled on a Windows computer. In order to

install it, you have to visit the downloads section of the Python website at

https://www.python.org/downloads, as shown in Figure 1-1.

Chapter 1 Introduction to Python

https://www.python.org/downloads

13

Figure 1-1.  Python downloads section on the website

Select Python 3.5.2. (The numbers 5 and 2 might change if there

is a new stable release of Python after the book is published.) This

will download the setup file for Python 3. Open the setup file once it

is downloaded. Click on the Run button in the dialog box shown in

Figure 1-2.

Figure 1-2.  Open File - Security Warning dialog box

Chapter 1 Introduction to Python

14

Note D epending on the settings, you might require admin privileges
to install Python 3 (or any other program, for that matter) on a
Windows computer. If you are in an organizational setting, check with
your system admin team for this information.

If you are using Windows 7, depending on the update status of your

computer, you might encounter the message box shown in Figure 1-3.

Figure 1-3.  Setup Failed message for Windows 7

Update the OS by installing any Windows updates and then rerun the

setup file. The window in Figure 1-4 will appear when you are successful.

Chapter 1 Introduction to Python

15

Figure 1-4.  Python Installation window

Check the Add Python 3.x to PATH checkbox. This will ensure that

Python is added to the PATH system variable and you will be able to access

Python from the command prompt of Windows (cmd) after the installation.

Click the Install Now button and continue the setup wizard. Once

installation finishes, it will show a success message.

�Running a Python Program and
Python Modes
You have set up your environment for Python programming now. Now

you can get started with a simple concept of Python. Python has two basic

modes—normal and interactive. Let’s look at these modes in detail.

Chapter 1 Introduction to Python

16

�Interactive Mode
Python’s interactive mode is a command-line shell that provides

immediate output for every executed statement. It also stores the output

of previously executed statements in active memory. As new statements

are executed by the Python interpreter, the entire sequence of previously

executed statements is considered while evaluating the current output.

You have to type python3 in the command prompt of Linux/macOS and

python in the command prompt cmd of Windows to invoke the Python 3

interpreter into interactive mode, as follows:

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>>

You can execute Python statements directly in this interactive mode

just like you run commands in the OS shell/console, as follows:

>>> print('Hello World!')

Hello World!

>>>

You will not be using interactive mode in the book. However, it’s the

quickest way to check small snippets of code (5 to 10 lines). You can quit

interactive mode with the exit() statement, as follows:

>>> exit()

$

Chapter 1 Introduction to Python

17

�Script Mode
Script mode is where the Python script files (.py) are executed by the

Python interpreter.

Create a file called test.py and add the print ('Hello World!')

statement to the file. Save the file and run it with the Python 3 interpreter

as follows.

$ python3 test.py

Hello World!

$

In this example, python3 is the interpreter and test.py is the filename.

If the Python test.py file is not in the same directory where you’re

invoking the python3 interpreter, you have to provide the absolute path of

the Python file.

Note  For all Linux and Mac computers, the command for the
Python 3 interpreter is python3. For Windows, it is just python,
assuming that only Python 3 is installed on the Windows computer
and its location is added to the PATH variable during installation or
manually after the installation. Throughout this book, I use a Linux
command prompt (on my Raspberry Pi 4) to run the code examples.
I will mention it explicitly wherever Windows is used for a couple of
examples.

Chapter 1 Introduction to Python

18

�IDEs for Python
An Integrated Development Environment (IDE) is a software suite that has

all the basic tools to write and test programs. A typical IDE has a compiler,

a debugger, a code editor, and a build automation tool. Most programming

languages have various IDEs to make programmers lives better. Python too

has many IDEs. Let’s take a look at a few IDEs for Python.

�IDLE
IDLE stands for Integrated Development Environment. It comes bundled

with Python. IDLE3 is for Python 3. It’s popular with beginners of Python.

Just type idle3 in the command prompt in a Linux computer where

Python 3 is installed. Figure 1-5 is a screenshot of an IDLE3 code editor

and an interactive prompt.

Chapter 1 Introduction to Python

19

Figure 1-5.  IDLE3 running on a Raspberry Pi

If IDLE is not installed by default on your Linux distribution then you

have to install it manually. For Debian and derivatives, the command for

the installation is as follows:

sudo apt-get install idle

�The PyDev Plugin for Eclipse
If you are a seasoned Java programmer, you probably have worked on

Eclipse. Eclipse is a very popular IDE for Java and it can be used with other

programming languages too. PyDev is a Python IDE for Eclipse, and it can

be used in Python, Jython, and IronPython development (see Figure 1-6).

You can install PyDev from the Eclipse marketplace at www.pydev.org.

Chapter 1 Introduction to Python

http://www.pydev.org/
http://www.pydev.org/

20

Figure 1-6.  Eclipse with PyDev

�Geany
Geany (see Figure 1-7) is a text editor that uses the GTK+ toolkit with basic

features of an integrated development environment. It supports many file

types and has some nice features. Check out https://www.geany.org for

more details.

Chapter 1 Introduction to Python

https://www.geany.org/

21

Figure 1-7.  Geany

�PyCharm
PyCharm by JetBrains is another IDE for Python and it’s packed with

powerful features like a debugger, a code inspection tool, version control,

and an integrated unit test runner. It is a cross-platform IDE available for

Windows, macOS, and Linux distributions. Its Community Edition is a free

download. Visit its home page at https://www.jetbrains.com/pycharm/

for more information.

The code examples in this book are better suited for execution from the

command prompt, due to the nature of the libraries involved. I personally

prefer to write the logic and code on paper (Yes! Using a piece of paper!)

first and then use a plain-text editor with syntax highlighting. For example,

Chapter 1 Introduction to Python

https://www.jetbrains.com/pycharm/

22

I recommend Notepad++ on Windows, or nano, Leafpad, and gedit on

Linux. You can use IDLE3 or Geany for writing and compiling the code.

However, most of the code examples are meant to be executed from

the command line.

EXERCISE 1-1

•	 Visit and explore the Python home page at www.python.org.

•	 Read where Python is deployed successfully at https://www

.python.org/about/success/.

•	 Visit and explore the Python documentation page at

https://docs.python.org/3/.

•	 Check the version-wise new features of the latest releases

of Python at https://docs.python.org/3/whatsnew/

index.html.

•	 For practice, write simple programs in Python. For example,

you could write programs for a Fibonacci series and factorial

calculations using iterative and recursive techniques.

Complete this exercise to understand Python 3’s background better.

Chapter 1 Introduction to Python

http://www.python.org/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://docs.python.org/3/
https://docs.python.org/3/whatsnew/index.html
https://docs.python.org/3/whatsnew/index.html

23

�Conclusion
In this chapter, you learned the background, history, and features of

Python. You also studied the important differences between Python 2

and Python 3. You learned how to install and use Python 3 in script and

interactive modes. Finally, you looked at a few popular IDEs for Python. In

the next chapter, you will get started with the concepts of test automation

and look at a simple test automation library for Python, called doctest.

You will also briefly look at pydoc.

Chapter 1 Introduction to Python

25© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_2

CHAPTER 2

Getting Started
In the previous chapter, you learned how to set up the Python 3

environment on Linux, macOS, and Windows computers. You also looked

at a few popular IDEs for Python. In this chapter, you will get started with

concepts of test automation. Then you will explore a light and easy way to

learn the test automation framework in Python 3, called doctest.

�A Brief Introduction to Software
Testing Concepts
The textbook definition of software testing states that it’s the process of

executing a program or application to find any bugs. Usually, there are

multiple stakeholders in the process of software testing. The stakeholders

include testers, the management team, consultants, business, customers,

and end users. With medium- to large-scale projects, software testing is

done to determine if the software behaves as intended under various sets

of inputs and conditions.

https://doi.org/10.1007/978-1-4842-7854-3_2#DOI

26

�Unit Testing
Unit testing is a software testing method in which individual components

of the program, called units, are tested independently with all the required

dependencies. Unit testing is mostly done by programmers, who write the

programs for the units. In smaller projects, it is done informally. In most very

large-scale projects, unit testing is part of a formal process of development,

with proper documentation and proper schedule/efforts allocated to it.

�Test Automation
Test automation is the automated execution and reporting of the outcome

of test scenarios and cases. In most large and complex projects, many

phases of the testing process are automated. Sometimes the effort of

automating tests is so huge that there is a separate project for automation

with a separate team dedicated to it, including a separate reporting

structure with separate management. There are several areas and phases

of testing that can be automated. Various tools like code libraries and

third-party APIs are used for unit testing. Sometimes, the code for unit

testing is also generated in an automated way. Unit testing is a prime

candidate for automation.

�The Benefits of Automated Unit Testing
There are many reasons to automate unit tests. Let’s consider them

one by one.

•	 Time and effort

As your codebase grows, the number of modules to

be unit tested grows. Manual testing is very time-

consuming. To reduce manual testing efforts, you can

automate test cases, which then can be automated

easily and quickly.

Chapter 2 Getting Started

27

•	 Accuracy

Test case execution is a rote and boring activity.

Humans can make mistakes. However, an automated

test suite will run and return correct results every time.

•	 Early bug reporting

Automating unit test cases gives you the distinct

advantage of early reporting of bugs and errors. When

automated test suites are run by the scheduler,

once the code freezes due to an error, all the logical

bugs in the code are quickly discovered and reported,

without much human intervention needed.

•	 Built-in support for unit testing

There are many programming languages that provide

built-in support for writing unit tests by means of

libraries dedicated to unit testing. Examples include

Python, Java, and PHP.

�Using Docstrings
The focus of this chapter is on getting you started with unit test automation

in Python. Let’s get started with the concept of docstrings and their

implementation in Python. Docstrings are going to be immensely useful to

you while learning doctest.

A docstring is a string literal that’s specified in the source code of

a module. It is used to document a specific segment of code. Code

comments are also used for documenting source code. However, there is

a major difference between a docstring and a comment. When the source

code is parsed, the comments are not included in the parsing tree as part

of the code, whereas docstrings are included in the parsed code tree.

Chapter 2 Getting Started

28

The major advantage of this is that the docstrings are available for

use at runtime. Using the functionalities specific to the programming

language, you can retrieve the docstring specific to a module. Docstrings

are always retained through the entire runtime of the module instance.

�Example of a Docstring in Python
Let’s see how the concept of the docstring is implemented in Python. A

Python docstring is a string literal that occurs as the first statement in a

module, function, class, or method definition. A docstring becomes the

doc special attribute of that object.

Let’s take a look at a code example of a Python docstring. From this

chapter onward, you will be programming quite a lot. I recommend that

you create a directory on your computer and create chapter-specific

subdirectories within it. As mentioned earlier, I am using a Linux OS. (My

favorite computer, a Raspberry Pi 3 Model B.) I have created a directory

called book and a directory called code under that. The code directory has

chapter-specific directories containing the code of each chapter. Figure 2-1

shows a graphical representation of the directory structure in the form of a

tree diagram.

Figure 2-1.  The suggested directory structure for the book

Create chapter-specific subdirectories under the directory code, as

shown in the tree diagram in Figure 2-1. We use the directory chapter02

for this chapter, chapter03 for the next chapter, and so on. Navigate to the

chapter02 directory and save the following code (see Listing 2-1) as

test_module01.py in that directory.

Chapter 2 Getting Started

29

Listing 2-1.  test_module01.py

"""

This is test_module01.

This is example of multiline docstring. """

class TestClass01:

 """This is TestClass01."""

 def test_case01(self):

 """This is test_case01()."""

def test_function01():

 """This is test_function01()."""

In Listing 2-1, there is a test file called test_module01.py, which

includes TestClass01 and test_function01(). TestClass01 has a

method called test_ case01(). There is a docstring for all code units

here. The first docstring is a multiline docstring. The rest are examples of

single-line docstrings.

Let’s see how the docstrings work using the code in Listing 2-1 and an

interactive Python session.

Navigate to the chapter02 directory and type python3 to invoke Python

3 in interpreter mode.

pi@raspberrypi:~/book/code/chapter02 $ pwd

/home/pi/book/code/chapter02

pi@raspberrypi:~/book/code/chapter02 $

python3 Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>>

Chapter 2 Getting Started

30

Import the test module you just created with the following statement:

>>> import test_module01

You can use the help() function to see the docstrings of the module

and its members, as follows.

>>> help(test_module01)

The output is as follows:

Help on module test_module01:

NAME

 test_module01

DESCRIPTION

 This is test_module01.

 This is example of multiline docstring.

CLASSES

 builtins.object

 TestClass01

class TestClass01(builtins.object)

 | This is TestClass01.

 |

 | Methods defined here:

 |

 | test_case01(self)

 | This is test_case01().

 |

 |___

Chapter 2 Getting Started

31

 | Data descriptors defined here:

 |

 | __dict

 | dictionary for instance variables (if defined)

 |

 | __weakref

 | list of weak references to the object (if defined)

FUNCTIONS

 test_function01()

 This is test_function01().

FILE

 /home/pi/book/code/chapter02/test_module01.py

You can see the docstring of the individual members using help().

Run the following statements and see the output for yourself.

>>> help(test_module01.TestClass01)

>>> help(test_module01.TestClass01.test_case01)

>>> help(test_module01.test_function01)

As mentioned earlier, a docstring becomes the doc special attribute

of that object. You can also use the print() function to see the docstring

of a module and its members. The following interactive Python session

demonstrates that.

>>> import test_module01

>>> print(test_module01._doc_)

This is test_module01.

This is example of multiline docstring.

>>> print(test_module01.TestClass01._doc_)

This is TestClass01.

Chapter 2 Getting Started

32

>>> print(test_module01.TestClass01.test_case01._doc_)

This is test_case01().

>>> print(test_module01.test_function01._doc_)

This is test_function01().

>>>

You can find detailed information about the Python docstring on the

following PEP pages.

https://www.python.org/dev/peps/pep-0256

https://www.python.org/dev/peps/pep-0257

https://www.python.org/dev/peps/pep-0258

In the next section, you learn to use docstrings to write simple test

cases and execute them with doctest.

�A Brief Introduction to doctest
doctest is the lightweight unit-testing framework in Python that uses

docstrings to test automation. doctest is packaged with the Python

interpreter, so you do not have to install anything separately to use it. It

is part of Python’s standard library and adheres to Python’s “batteries-

included” philosophy.

Note I f you’re interested, you can read Python’s batteries-included
philosophy on the PEP 206 page (see https://www.python.org/
dev/peps/pep-0206).

The code in Listing 2-2 is a simple example of a test module with two

functions and two tests for each function.

Chapter 2 Getting Started

https://www.python.org/dev/peps/pep-0256
https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0258
https://www.python.org/dev/peps/pep-0206
https://www.python.org/dev/peps/pep-0206

33

Listing 2-2.  test_module02.py

"""

Sample doctest test module... test_module02

"""

def mul(a, b):

 """

>>> mul(2, 3)

 6

>>> mul('a', 2)

 'aa'

 """

 return a * b

def add(a, b):

 """

>>> add(2, 3)

 5

>>> add('a', 'b')

 'ab'

 """

 return a + b

In Listing 2-2, the test cases are mentioned as docstrings for the

modules and there is nothing specifically calling the doctest in the code

itself. When the program is executed as a Python 3 program using the

python3 test command, _module02.py does not produce any output at

the command line. In order to see doctest in action, you have to run it

using the following command at the command prompt:

python3 -m doctest -v test_module02.py

Chapter 2 Getting Started

34

The output will be as follows:

Trying:

 add(2, 3)

Expecting:

 5

ok

Trying:

 add('a', 'b')

Expecting:

 'ab'

ok

Trying:

 mul(2, 3)

Expecting:

 6

ok

Trying:

 mul('a', 2)

Expecting:

 'aa'

ok

1. items had no tests:

 test_module02

2. items passed all tests:

 2 tests in test_module02.add

 2 tests in test_module02.mul

4 tests in 3 items.

4 passed and 0 failed.

Test passed.

Let’s take a look at how doctest works. By comparing the code—

specifically the commands for execution and output—you can figure

out quite a few things. doctest works by parsing docstrings. Whenever

Chapter 2 Getting Started

35

doctest finds an interactive Python prompt in the doctest documentation

of a module, it treats its output as the expected output. Then it runs the

module and its members by referring to the docstrings. It compares

the actual output against the output specified in the docstrings. Then it

marks the test pass or fail. You have to use -m doctest while executing

the module to let the interpreter know that you need to use the doctest

module to execute the code.

The command-line argument -v stands for verbose mode. You must

use it because, without it, the test will not produce any output unless it

fails. Using verbose produces an execution log irrespective of whether the

test passes or fails.

�Failing Tests
In Listing 2-2, all the tests passed with no hassles. Now, let’s see how a

test fails. In Listing 2-2, replace + on the last line of the code with an *

(asterisk) and run the test again with the same command. You will get the

following output:

Trying:

 add(2, 3)

Expecting:

 5

File "/home/pi/book/code/chapter02/test_module02.py", line 19,

in test_module02.add

Failed example:

 add(2, 3)

Expected:

 5

Got:

 6

Chapter 2 Getting Started

36

Trying:

 add('a', 'b')

Expecting:

 'ab'

File "/home/pi/book/code/chapter02/test_module02.py", line 21,

in test_module02.add

Failed example:

 add('a', 'b')

Exception raised:

 Traceback (most recent call last):

 File "/usr/lib/python3.4/doctest.py", line 1324, in_run

 compileflags, 1), test.globs)

 �File "<doctest test_module02.add[1]>", line 1,

in <module>

 add('a', 'b')

 �File "/home/pi/book/code/chapter02/test_module02.py",

line 24, in add

 return a * b

TypeError: can't multiply sequence by non-int of type 'str'

Trying:

 mul(2, 3)

Expecting:

 6

ok

Trying:

 mul('a', 2)

Expecting:

 'aa'

Chapter 2 Getting Started

37

ok

1 items had no tests:

 test_module02

1 items passed all tests:

 2 tests in test_module02.mul

1 items had failures:

 2 of 2 in test_module02.add

4 tests in 3 items.

2 passed and 2 failed.

Test Failed 2 failures.

You can clearly see two failures in the execution log. The tests usually

fail due to one or more of the following reasons:

•	 Faulty logic in the code

•	 Faulty input into the code

•	 Faulty test case

In this case, there are two failures in the test. The first one is due to

faulty logic. The second failure is due to faulty logic in the code and the

wrong type of input given to the function to be tested.

Correct the code by replacing the * in the last line with +. Then change

the line that has 'aa' to aa and run the test again. This will demonstrate

the third cause of test failure (a faulty test case).

�Separate Test File

You can also write your tests in a separate test file and run them separately

from the code to be tested. This helps maintain the test modules/code

separately from the development code. Create a file called test_module03.txt

in the same directory and add the code shown in Listing 2-3 to it.

Chapter 2 Getting Started

38

Listing 2-3.  test_module03.txt

>>> from test_module02 import *

>>> mul(2, 3)

6

>>> mul('a', 2)

'aa'

>>> add(2, 3)

5

>>> add('a', 'b')

'ab'

You can run this test in the usual way, by running the following

command in the command prompt:

python3 -m doctest -v test_module03.txt

The output will be as follows:

Trying:

 from test_module02 import *

Expecting nothing

ok

Trying:

 mul(2, 3)

Expecting:

 6

ok

Trying:

 mul('a', 2)

Expecting:

 'aa'

ok

Chapter 2 Getting Started

39

Trying:

 add(2, 3)

Expecting:

 5

ok

Trying:

 add('a', 'b')

Expecting:

 'ab'

ok

1 items passed all tests:

5 tests in test_module03.txt

5 tests in 1 items.

5 passed and 0 failed.

Test passed.

�Advantages and Disadvantages of doctest

As you have learned, doctest is a very simple and intuitive framework for

novice-level testing in Python. It does not require any installation and you

can quickly get started with it without needing to know any API. It is mostly

used for the following purposes:

•	 To verify if the code documentation is up to date and

the interactive examples in the docstring still work after

making changes to the code.

•	 To perform module-wise basic regression testing.

•	 To write illustrative tutorials and documentation that

doubles as a test case for the package and module.

Chapter 2 Getting Started

40

However, doctest has its own set of limitations. It does not have true

API for testing.

doctest tests also tend to be static in nature and cannot be

parameterized.

You are advised to visit the doctest documentation page at https://

docs.python.org/3/library/doctest.html for detailed usage and more

examples.

�Pydoc

Just like doctest, there is another useful utility to view the documentation

of a module. It comes with Python. It is known as Pydoc. On Linux, run the

following command:

pydoc unittest

It will show the documentation of the unittest library. If you have

created the documentation for your own custom module with docstrings,

you can view it with the following command:

pydoc test_module01

This command displays the documentation on the terminal. You can

save all this information in HTML files as follows:

pydoc -w unittest

pydoc -w test_module01

These commands will create unittest.html and test_module01.html

documents in the directory where the commands are run. You can then

open these files with a web browser of your choice.

On Windows, the commands can be run as follows:

python -m pydoc unittest

python -m pydoc -w unittest

Chapter 2 Getting Started

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html

41

�Conclusion
In this chapter, you learned the basics of software testing. You explored

a light testing framework, called doctest. It’s a good module for simple

projects for novice Python users. However, due to its lack of advanced

features like testrunner, test discovery, and test fixtures, doctest is not

used in large projects. The next chapter discusses a built-in xUnit style test

automation framework for Python, called unittest.

Chapter 2 Getting Started

43© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_3

CHAPTER 3

unittest
The last chapter discussed the concepts of test automation. You learned

about docstring and doctest and their use in writing simple, static, yet

elegant test cases for Python 3 programs. However, due to lack of features,

like API, configurable tests, and test fixtures, doctest enjoys very limited

popularity. You need to explore a powerful API library for automating

complex real-life projects and learning Python’s built-in unittest module

is your first step toward it.

This is a detailed and long chapter. You will learn many new concepts

like test fixtures, automated test discovery, organizing your codebase, and

so on, in this chapter. You will use these concepts throughout the book and

see their implementation in more advanced test automation libraries in

Python. So, I recommend that you follow every topic in this chapter very

carefully.

unittest came to life as a third-party module called PyUnit. PyUnit

was the Python port for JUnit. JUnit is Java’s xUnit-style unit test

automation framework.

PyUnit became part of the Python Standard library from version 2.5

onward. It was rechristened unittest. unittest is the batteries-included

test automation library of Python, which means you do not have to install

an additional library or tool in order to start using it. Anyone who is

familiar with xUnit-style libraries in other programming languages (such

as JUnit for Java, PHPUnit for PHP, CPPUnit for C++, etc.) will find it very

easy to learn and use unittest.

https://doi.org/10.1007/978-1-4842-7854-3_3#DOI

44

�Introduction to xUnit
Let’s take a look at the xUnit philosophy in brief. xUnit is the collective

name for several unit-testing frameworks for various languages. All the

xUnit-style unit testing frameworks more or less derive their functionality,

structure, and coding style from Smalltalk’s unit testing framework, called

SUnit. Kent Beck designed and wrote SUnit. After it gained popularity, it

was ported to Java as JUnit by Kent Beck and Erich Gamma. Eventually,

it was ported to almost every programming language. Now most

programming languages come prepackaged with at least one xUnit-style

test automation library. Also, many programming languages like Python

and Java have more than one xUnit-style framework. Java has TestNG

in addition to JUnit. Python has nose, pytest, and Nose2 apart from

unittest.

All the xUnit-style test automation libraries follow a common

architecture. The following are the major components of the architecture:

•	 Test case class: This is the base class of all the test

classes in the test modules. All the test classes are

derived from here.

•	 Test fixtures: These are functions or methods that run

before and after blocks of test code execute.

•	 Assertions: These functions or methods are used to

check the behavior of the component being tested.

Most of the xUnit-style frameworks are packed with

powerful assertion methods.

•	 Test suite: This is a collection or group of related tests

that can be executed or scheduled to be executed

together.

•	 Test runner: This is a program or block of code that runs

the test suite.

Chapter 3 unittest

45

•	 Test result formatter: This formats the test results to

produce the output of test execution in various human

readable formats like plaintext, HTML, and XML.

The implementation details of these components of xUnit differ

slightly across unit testing frameworks. Interestingly, this enables

programmers to choose the framework based on the needs of their

projects and their comfort.

If you are a seasoned programmer who has experience with any of

these frameworks, you will quickly be able to translate your knowledge to

Python code. If you do not have prior experience with any of the xUnit-

style frameworks, then after reading the book, executing all the examples

in the book and solving all the exercises, you can get started with any of the

xUnit frameworks on your own without much hand-holding.

�Using unittest
This section starts with unittest. It begins with the most fundamental

concept of a test class.

For this chapter, create a directory called chapter03 in the code

directory. In chapter03, create another directory called test (you will

learn later in the chapter why you need that additional directory). Save the

code in Listing 3-1 as test_module01.py.

Listing 3-1.  test_module01.py

import unittest

class TestClass01(unittest.TestCase):

 def test_case01(self):

 my_str = "ASHWIN"

 my_int = 999

 self.assertTrue(isinstance(my_str, str))

 self.assertTrue(isinstance(my_int, int))

Chapter 3 unittest

46

 def test_case02(self):

 my_pi = 3.14

 self.assertFalse(isinstance(my_pi, int))

if __name__ == '__main__':

 unittest.main()

In the code in Listing 3-1, the import unittest statement imports the

unittest module. TestClass01 is the test class. It is subclassed from the

TestCase class in the unittest module. The test_case01() and

test_case02() class methods are test methods, as their names start with

test_ (You will learn about the guidelines and naming conventions for

writing tests later in this chapter.) The assertTrue() and assertFalse()

methods are assertion methods that check if the argument passed to them

is True or False, respectively. If the argument meets the assert condition,

the test case passes; otherwise, it fails. unittest.main() is the test runner.

You will explore more assert methods in detail later.

Navigate to the test directory as follows:

cd ~/book/code/chapter03/test

Run the following command:

python3 test_module01.py

It yields the following output:

Ran 2 tests in 0.002s

OK

It says OK, as both tests passed. This is one of the ways you can write

and execute tests.

Chapter 3 unittest

47

The test execution did not display much information. That’s because

verbosity is disabled by default. You can run the tests in verbose mode

using the -v command-line option. Run the following command at the

command prompt:

python3 test_module01.py -v

The verbose output is as follows:

test_case01 (main .TestClass01) ... ok

test_case02 (main .TestClass01) ... ok

Ran 2 tests in 0.004s

OK

Certainly, verbose execution mode provides more insight about test

execution. You will be using this mode very frequently throughout the

book for running tests and gathering the log for test executions.

�Order of Execution of the Test Methods
Now, you will see the order in which the test methods are executed. Check

out the code in Listing 3-2.

Listing 3-2.  test_module02.py

import unittest

import inspect

class TestClass02(unittest.TestCase):

 def test_case02(self):

 �print("\nRunning Test Method : " + inspect.

stack()[0][3])

Chapter 3 unittest

48

 def test_case01(self):

 �print("\nRunning Test Method : " + inspect.

stack()[0][3])

if name == ' main ':

 unittest.main(verbosity=2)

In the code in Listing 3-2, the inspect.stack()[0][3] method prints

the name of the current test method. It’s useful for debugging when you

want to know the order that the methods are executed in the test class. The

output of the code in Listing 3-2 is as follows:

test_case01 (main .TestClass02) ...

Running Test Method : test_case01

ok

test_case02 (main .TestClass02) ...

Running Test Method : test_case02

ok

Ran 2 tests in 0.090s

OK

Note that the test methods ran in alphabetical order, irrespective of the

order of the test methods in the code.

�Verbosity Control

In earlier examples, you controlled the verbosity of test execution through

the command while invoking the Python test script in the OS console.

Now, you will learn how to control verbose mode from the code itself. The

code in Listing 3-3 shows an example.

Chapter 3 unittest

49

Listing 3-3.  test_module03.py

import unittest

import inspect

def add(x, y):

 �print("We're in custom made function : " + inspect.

stack()[0][3])

 return(x + y)

class TestClass03(unittest.TestCase):

 def test_case01(self):

 �print("\nRunning Test Method : " + inspect.

stack()[0][3])

 self.assertEqual(add(2, 3), 5)

 def test_case02(self):

 �print("\nRunning Test Method : " + inspect.

stack()[0][3])

 my_var = 3.14

 self.assertTrue(isinstance(my_var, float))

 def test_case03(self):

 �print("\nRunning Test Method : " + inspect.

stack()[0][3])

 self.assertEqual(add(2, 2), 5)

 def test_case04(self):

 ��print("\nRunning Test Method : " + inspect.

stack()[0][3])

 my_var = 3.14

 self.assertTrue(isinstance(my_var, int))

if name == ' main ':

 unittest.main(verbosity=2)

Chapter 3 unittest

50

In Listing 3-3, you are testing a custom function called add() with

the assertEqual() method. assertEqual() takes two arguments and

determines if both arguments are equal. If both arguments are equal,

the test case passes; otherwise, it fails. There is also a function called

add() in the same test module that’s not a member of the test class. With

test_case01() and test_case03(), you are testing the correctness of the

function.

The code also sets verbosity to the value 2 in the unittest.main()

statement.

Run the code in Listing 3-3 with the following command:

python3 test_module03.py

The output is as follows:

test_case01 (main .TestClass03) ...

Running Test Method : test_case01

We're in custom made function : add

ok

test_case02 (main .TestClass03) ...

Running Test Method : test_case02

ok

test_case03 (main .TestClass03) ...

Running Test Method : test_case03

We're in custom made function : add

FAIL

test_case04 (main .TestClass03) ...

Running Test Method : test_case04

FAIL

===

FAIL: test_case03 (main .TestClass03)

Chapter 3 unittest

51

Traceback (most recent call last):

 File "test_module03.py", line 23, in test_case03

 self.assertEqual(add(2, 2), 5)

AssertionError: 4 != 5

===

FAIL: test_case04 (main .TestClass03)

Traceback (most recent call last):

 File "test_module03.py", line 28, in test_case04

 self.assertTrue(isinstance(my_var, int))

AssertionError: False is not true

Ran 4 tests in 0.112s

FAILED (failures=2)

The test_case03() and test_case04() test cases failed because the

assert conditions failed. You now have more information related to the

test case failure, since verbosity was enabled in the code.

�Multiple Test Classes Within the Same Test File/Module

Until now, the examples included a single test class in a single test file. A

.py file that contains the test class is also called a test module. Listing 3-4

shows an example of a test module that has multiple test classes.

Listing 3-4.  test_module04.py

import unittest

import inspect

class TestClass04(unittest.TestCase):

 def test_case01(self):

 print("\nClassname : " + self. class . name)

 print("Running Test Method : " + inspect.stack()[0][3])

Chapter 3 unittest

52

class TestClass05(unittest.TestCase):

 def test_case01(self):

 print("\nClassname : " + self. class . name)

 print("Running Test Method : " + inspect.stack()[0][3])

if name == ' main ':

 unittest.main(verbosity=2)

The following is the output after running the code in Listing 3-4:

test_case01 (main .TestClass04) ...

Classname : TestClass04

Running Test Method : test_case01

ok

test_case01 (main .TestClass05) ...

Classname : TestClass05

Running Test Method : test_case01

ok

Ran 2 tests in 0.080s

OK

All the test classes are executed one by one in alphabetical order.

�Test Fixtures

To put it simply, test fixtures are the set of steps performed before and after

the tests.

Chapter 3 unittest

53

In unittest, these are implemented as methods of the TestCase

class and can be overridden for your purposes. An example of custom test

fixtures in unittest is shown in Listing 3-5.

Listing 3-5.  test_module05.py

import unittest

def setUpModule():

 """called once, before anything else in this module"""

 print("In setUpModule()...")

def tearDownModule():

 """called once, after everything else in this module"""

 print("In tearDownModule()...")

class TestClass06(unittest.TestCase):

 @classmethod

 def setUpClass(cls):

 """called once, before any test"""

 print("In setUpClass()...")

 @classmethod

 def tearDownClass(cls):

 """�called once, after all tests, if setUpClass

successful"""

 print("In tearDownClass()...")

 def setUp(self):

 """called multiple times, before every test method"""

 print("\nIn setUp()...")

 def tearDown(self):

 """called multiple times, after every test method"""

 print("In tearDown()...")

Chapter 3 unittest

54

 def test_case01(self):

 self.assertTrue("PYTHON".isupper())

 print("In test_case01()")

 def test_case02(self):

 self.assertFalse("python".isupper())

 print("In test_case02()")

if name == ' main ':

 unittest.main()

In the code in Listing 3-5, the setUpModule() and tearDownModule()

methods are the module-level fixtures. setUpModule() is executed before

any method in the test module. tearDownModule() is executed after all

methods in the test module. setUpClass() and tearDownClass() are

class-level fixtures. setUpClass() is executed before any method in the test

class. tearDownClass() is executed after all methods in the test class.

These methods are used with the @classmethod decorator, as shown

in the code in Listing 3-5. The @classmethod decorator must have a

reference to a class object as the first parameter. setUp() and tearDown()

are method-level fixtures. setUp() and tearDown() methods are executed

before and after every test method in the test class. Run the code in

Listing 3-5 as follows:

python3 test_module05.py -v

The following is the output of the code:

In setUpModule()...

In setUpClass()...

test_case01 (main .TestClass06) ...

In setUp()...

In test_case01()

In tearDown()...

Chapter 3 unittest

55

ok

test_case02 (main .TestClass06) ... In

setUp()...

In test_case02()

In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...

Ran 2 tests in 0.004s

OK

The test fixtures and their implementation are a key feature of any test

automation library. This is a major advantage over the static testing offered

by doctest.

�Running Without unittest.main()

Up until now, you have run the test modules with unittest.main().

Now you will see how to run the test module without unittest.main().

Consider the code in Listing 3-6, for example.

Listing 3-6.  test_module06.py

import unittest

class TestClass07(unittest.TestCase):

 def test_case01(self):

 self.assertTrue("PYTHON".isupper())

 print("\nIn test_case01()")

If you try to run it the usual way, with python3 test_module06.py,

you do not get output in the console, as it does not have the if name =='

main ' and unittest. main() statements in it. Even running in verbose

mode with python3 test_module06.py -v does not yield any output in

the console.

Chapter 3 unittest

56

The only way to run this module is to use the Python interpreter with

the -m unittest option and the module name, as follows:

python -m unittest test_module06

The output is as follows:

In test_case01()

.

Ran 1 test in 0.002s

OK

Note that you do not need to have .py after the module name as you

did earlier. You can also enable verbosity with the -v options, as follows:

python -m unittest test_module06 -v

The verbose output is as follows:

test_case01 (test_module06.TestClass07) ...

In test_case01()

ok

Ran 1 test in 0.002s

OK

You will use this same method throughout the chapter to run test

modules. In later sections of this chapter, you will learn more about this

method. For now, run all the previous code examples with this method of

execution as an exercise.

Chapter 3 unittest

57

�Controlling the Granularity of Test Execution

You learned how to run a test module using the -m unittest option. You

can also run individual test classes and test cases using this option.

Consider the earlier example of test_module04.py again, shown in

Listing 3-7.

Listing 3-7.  test_module04.py

import unittest

import inspect

class TestClass04(unittest.TestCase):

 def test_case01(self):

 print("\nClassname : " + self. class . name)

 print("Running Test Method : " + inspect.stack()[0][3])

class TestClass05(unittest.TestCase):

 def test_case01(self):

 print("\nClassname : " + self. class . name)

 print("Running Test Method : " + inspect.stack()[0][3])

if name == ' main ':

 unittest.main(verbosity=2)

You can run the entire test module with the following command:

python3 -m unittest -v test_module04

The output is as follows:

test_case01 (test_module04.TestClass04) ...

Classname : TestClass04

Running Test Method : test_case01

ok

test_case01 (test_module04.TestClass05) ...

Chapter 3 unittest

58

Classname : TestClass05

Running Test Method : test_case01

ok

Ran 2 tests in 0.090s OK

You can run a single test class with the following command:

python3 -m unittest -v test_module04.TestClass04

The output is as follows:

test_case01 (test_module04.TestClass04) ...

Classname : TestClass04

Running Test Method : test_case01

ok

Ran 1 test in 0.077s

OK

You can also run a single test case with the following command:

python3 -m unittest -v test_module04.TestClass05.test_case01

The output is as follows:

test_case01 (test_module04.TestClass05) ...

Classname : TestClass05

Running Test Method : test_case01

ok

Ran 1 test in 0.077s

OK

This way, you can control the granularity of the test execution.

Chapter 3 unittest

59

�Listing All the Command-Line Options and Help

You can list all the command-line options of unittest using the -h

command-line option. Run the following command:

python3 -m unittest -h

The following is the output:

usage: python3 -m unittest [-h] [-v] [-q] [-f] [-c] [-b] [tests

[tests ...]] positional arguments:

tests a list of any number of test modules, classes and test

methods.

optional arguments:

-h, --help show this help message and exit

-v, --verbose Verbose output

-q, --quiet Quiet output

-f, --failfast Stop on first fail or error

-c, --catch Catch ctrl-C and display results so far

-b, --buffer Buffer stdout and stderr during tests

Examples:

python3 -m unittest test_module - run tests from test_module

python3 -m unittest module.TestClass - run tests from module.

TestClass

python3 -m unittest module.Class.test_method - run specified

test method

usage: python3 -m unittest discover [-h] [-v] [-q] [-f] [-c]

[-b] [-s START] [-p PATTERN] [-t TOP]

optional arguments:

-h, --help show this help message and exit

-v, --verbose Verbose output

-q, --quiet Quiet output

Chapter 3 unittest

60

-f, --failfast Stop on first fail or error

-c, --catch Catch ctrl-C and display results so far

-b, --buffer Buffer stdout and stderr during tests

-s START, --start-directory START

 Directory to start discovery ('.' default)

-p PATTERN, --pattern PATTERN

 Pattern to match tests ('test*.py' default)

-t TOP, --top-level-directory TOP

 �Top level directory of project (defaults to

start directory)

For test discovery all test modules must be importable from the

top level directory of the project.

This way you get a detailed summary of the various command-line

options available with unittest.

�Important Command-Line Options

Let’s take a look at the important command-line options in unittest. Take

a look at the code in Listing 3-8 for example.

Listing 3-8.  test_module07.py

import unittest

class TestClass08(unittest.TestCase): def test_case01(self):

 self.assertTrue("PYTHON".isupper())

 print("\nIn test_case1()")

 def test_case02(self):

 �self.assertTrue("Python".isupper())

print("\nIn test_case2()")

 def test_case03(self):

 self.assertTrue(True) print("\nIn test_case3()")

Chapter 3 unittest

61

You already know that -v stands for verbose mode. The following is the

output in verbose mode:

test_case01 (test_module07.TestClass08) ...

In test_case1()

ok

test_case02 (test_module07.TestClass08) ... FAIL

test_case03 (test_module07.TestClass08) ...

In test_case3()

ok

===

FAIL: test_case02 (test_module07.TestClass08)

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module07.py",

line 11, in test_case02

 self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 3 tests in 0.012s

FAILED (failures=1)

The -q option stands for quiet mode. Run the following command to

demonstrate quiet mode:

python3 -m unittest -q test_module07

The output is as follows:

In test_case1()

In test_case3()

Chapter 3 unittest

62

==

FAIL: test_case02 (test_module07.TestClass08)

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module07.py",

line 11, in test_case02

 self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 3 tests in 0.005s

FAILED (failures=1)

The -f option stands for failsafe. It forcefully stops execution as

soon as the first test case fails. Run the following command to initiate

failsafe mode:

python3 -m unittest -f test_module07

The following is the output in failsafe mode:

In test_case1()

.F

===

FAIL: test_case02 (test_module07.TestClass08)

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module07.py",

line 11, in test_case02

 self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 2 tests in 0.004s

FAILED (failures=1)

Chapter 3 unittest

63

You can also use more than one option. For example, you can combine

verbose with failsafe using the following command:

python3 -m unittest -fv test_module07

The output is as follows:

test_case01 (test_module07.TestClass08) ...

In test_case1()

ok

test_case02 (test_module07.TestClass08) ... FAIL

==

FAIL: test_case02 (test_module07.TestClass08)

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module07.py",

line 11, in test_case02

 self.assertTrue("Python".isupper())

AssertionError: False is not true

Ran 2 tests in 0.005s

FAILED (failures=1)

As an exercise, try to use different combinations of command-line

options.

�Creating a Test Package

Up until now, you have created and executed test modules individually.

However, you can use Python’s built-in packaging feature to create a

package of tests. This is standard practice in complex projects with large

codebases.

Chapter 3 unittest

64

Figure 3-1 shows a snapshot of the current test directory where you

are saving your test modules.

Figure 3-1.  Snapshot of the test subdirectory in the chapter03
directory

Now, let’s create a package of test modules. Create an init.py file in

the test directory. Add the code in Listing 3-9 to the init.py file.

Listing 3-9.  init.py

all = ["test_module01", "test_module02", "test_module03",

"test_module04", "test_module05", "test_module06",

"test_module07"]

Congratulations! You just created a test package. test is the name of

the testing package and all modules mentioned in init.py belong to this

package. If you need to add a new testing module to the test package, you

need to create a new test module file in the test directory and then add the

name of that module to the init.py file.

Now you can run the test modules from the parent directory of test

(chapter03) in the following way. Move to the chapter03 directory using

the following command:

cd /home/pi/book/code/chapter03

Chapter 3 unittest

65

Note that the path might be different in your case, depending on where

you created the book directory.

Run the test module with the following command:

python3 -m unittest -v test.test_module04

The following is the output:

test_case01 (test.test_module04.TestClass04) ...

Classname : TestClass04

Running Test Method : test_case01

ok

test_case01 (test.test_module04.TestClass05) ...

Classname : TestClass05

Running Test Method : test_case01

ok

Ran 2 tests in 0.090s

OK

Run a test class in the test module with the following command:

python3 -m unittest -v test.test_module04.TestClass04

The output is as follows:

test_case01 (test.test_module04.TestClass04) ...

Classname : TestClass04

Running Test Method : test_case01

ok

Ran 1 test in 0.078s

OK

Chapter 3 unittest

66

Run a test case from a test module as follows:

python3 -m unittest -v test.test_module04.TestClass04.

test_case01

The output is as follows:

test_case01 (test.test_module04.TestClass04) ...

Classname : TestClass04

Running Test Method : test_case01

ok

Ran 1 test in 0.079s

OK

�Organizing the Code

Let’s look at ways you can organize the test code and the dev code. You’re

now moving toward real-life project scenarios for using unittest. Up

until now, the tests (the testing code) and the code to be tested (the

development code) were in the same module. Usually in real-life projects,

the development code and the test code are kept in different files.

�Placing the Development and Test Code
in a Single Directory

Here, you will organize the dev and test code into a single directory. In the

test directory, create a module called test_me.py and add the code in

Listing 3-10 to it.

Listing 3-10.  test_me.py

def add(x, y):

 return(x + y)

Chapter 3 unittest

67

def mul(x, y):

 return(x * y)

def sub(x, y):

 return(x - y)

def div(x, y):

 return(x / y)

Now, since test_me.py is in the test directory, it can directly be

imported into another module in the same directory using the import

test_me statement. The test module in Listing 3-11 imports test_me.py to

test its functionality.

Listing 3-11.  test_module08.py

import unittest

import test_me

class TestClass09(unittest.TestCase):

 def test_case01(self):

 self.assertEqual(test_me.add(2, 3), 5)

 print("\nIn test_case01()")

 def test_case02(self):

 self.assertEqual(test_me.mul(2, 3), 6)

 print("\nIn test_case02()")

Run the test module with the following command:

python3 -m unittest -v test_module08

The output is as follows:

test_case01 (test_module08.TestClass09) ...

In test_case01()

ok

Chapter 3 unittest

68

test_case02 (test_module08.TestClass09) ...

In test_case02()

ok

Ran 2 tests in 0.004s OK

This way, you can organize the development code and the testing code

in the same directory, in different files.

�Placing the Development and Test Code
in Separate Directories

Many coding standards recommend that the development code and the

testing code files be organized in separate directories. Let’s do that now.

Navigate to the chapter03 directory:

cd /home/pi/book/code/chapter03

Create a new directory called mypackage in the chapter03 directory:

mkdir mypackage

Navigate to the mypackage directory:

cd mypackage

Save the code in Listing 3-12 as mymathlib.py in the mypackage

directory.

Listing 3-12.  mymathlib.py

class mymathlib:

 def init (self):

 """Constructor for this class..."""

 print("Creating object : " + self. class . name)

Chapter 3 unittest

69

 def add(self, x, y):

 return(x + y)

 def mul(self, x, y):

 return(x * y)

 def mul(self, x, y):

 return(x - y)

 def del (self):

 """Destructor for this class..."""

 print("Destroying object : " + self. class . name)

Save the code in Listing 3-13 as mymathsimple.py in the mypackage

directory.

Listing 3-13.  mymathsimple.py

def add(x, y):

 return(x + y)

def mul(x, y):

 return(x * y)

def sub(x, y):

 return(x - y)

def div(x, y):

 return(x / y)

These modules you just created are the development modules. Finally,

to create a package of development modules, create the init.py file with

the code shown in Listing 3-14.

Chapter 3 unittest

70

Listing 3-14.  init.py

all = ["mymathlib", "mymathsimple"]

This will create a Python package for the development code. Navigate

back to the chapter03 directory. The structure of the chapter03 directory

should now look like Figure 3-2.

Figure 3-2.  Snapshot of the chapter03 directory

mypackage is the development code package and test is the testing

code package.

You now need to create a test module to test the development code in

mypackage. Create a new test module called test_module09.py in the test

directory and add the code shown in Listing 3-15.

Chapter 3 unittest

71

Listing 3-15.  test_module09.py

from mypackage.mymathlib import *

import unittest

math_obj = 0

def setUpModule():

 """called once, before anything else in the module"""

 print("In setUpModule()...")

 global math_obj

 math_obj = mymathlib()

def tearDownModule():

 """called once, after everything else in the module"""

 print("In tearDownModule()...")

 global math_obj

 del math_obj

class TestClass10(unittest.TestCase):

 @classmethod

 def setUpClass(cls):

 """called only once, before any test in the class"""

 print("In setUpClass()...")

 def setUp(self):

 """called once before every test method"""

 print("\nIn setUp()...")

 def test_case01(self):

 print("In test_case01()")

 self.assertEqual(math_obj.add(2, 5), 7)

Chapter 3 unittest

72

 def test_case02(self):

 print("In test_case02()")

 def tearDown(self):

 """called once after every test method"""

 print("In tearDown()...")

 @classmethod

 def tearDownClass(cls):

 """called once, after all the tests in the class"""

 print("In tearDownClass()...")

Add test_module09 to init.py in the test directory to make it part of

the test package.

Run the code from the test directory using the following command:

python3 -m unittest -v test_module09

It will throw an error as follows:

from mypackage.mymathlib import *

ImportError: No module named 'mypackage'

That’s because the mypackage module is not visible from the test

directory. It lives not in the test directory, but in the chapter03 directory.

This module cannot be executed from the test directory. You must

execute this module as a part of the test package. You can do this from the

chapter03 directory. The mypackage module is visible in this directory as

mypackage, which is a subdirectory of chapter03.

Navigate to the chapter03 directory and run this module as follows:

python3 -m unittest -v test.test_module09

Here is the output of the execution:

In setUpModule()...

Creating object : mymathlib

Chapter 3 unittest

73

In setUpClass()...

test_case01 (test.test_module09.TestClass10) ...

In setUp()...

In test_case01()

In tearDown()...

ok

test_case02 (test.test_module09.TestClass10) ...

In setUp()...

In test_case02()

In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...

Destroying object : mymathlib

Ran 2 tests in 0.004s

OK

That’s how you organize the development and testing code files in

separate directories. It is standard practice to separate these code files.

�Test Discovery
Test discovery is the process of discovering and executing all tests in the

project directory and all its subdirectories. The test discovery process

is automated in unittest and can be invoked using the discover sub-

command. It can be invoked with the following command:

python3 -m unittest discover

Chapter 3 unittest

74

Here is the partial output of this command when it runs in the

chapter03 directory:

..

Running Test Method : test_case01

.

Running Test Method : test_case02

.

Running Test Method : test_case01

We're in custom made function : add

.

Running Test Method : test_case02

.

Running Test Method : test_case03

We're in custom made function : add

F

Running Test Method : test_case04

F

Classname : TestClass04

Running Test Method : test_case01

You can also invoke it using verbose mode with the following

command:

python3 -m unittest discover -v

Here is partial output of this command:

test_case01 (test.test_module01.TestClass01) ... ok

test_case02 (test.test_module01.TestClass01) ... ok

test_case01 (test.test_module02.TestClass02) ...

Running Test Method : test_case01

ok

test_case02 (test.test_module02.TestClass02) ...

Running Test Method : test_case02

ok

Chapter 3 unittest

75

test_case01 (test.test_module03.TestClass03) ...

Running Test Method : test_case01

We're in custom made function : add

ok

test_case02 (test.test_module03.TestClass03) ...

Running Test Method : test_case02

ok

test_case03 (test.test_module03.TestClass03) ...

Running Test Method : test_case03

We're in custom made function : add

There are more command-line options for test discovery. You can

specify the starting directory with -s or --start-directory. By default, the

current directory is the starting directory.

You can use -p or --pattern for the filename pattern. test*.py is the

default pattern.

You can use -t or --top-level-directory to specify the top-level

directory of the project. The default value for this is the start directory.

As you can see in the verbose output, the unittest automatically

found and ran all the test modules located in the chapter03 directory and

its subdirectories. This saves you the pain of running each test module

separately and collecting the results individually. Test discovery is one of

the most important features of any automation testing framework.

�Coding Conventions for unittest
As you have seen, test discovery automatically finds and runs all the tests

in a project directory. To achieve this effect, you need to follow some

coding and naming conventions for your test code. You may have noticed

already that I have consistently followed these conventions in all the code

examples in this book.

Chapter 3 unittest

76

•	 In order to be compatible with test discovery, all of

the test files must be either modules or packages

importable from the top-level directory of the project.

•	 By default, test discovery always starts from the

current directory.

•	 By default, test discovery always searches for test*.py

patterns in the filenames.

�Assertions in unittest
You have learned about a few basic assertions, like assertEqual() and

assertTrue(). The following tables list the most used assertions and their

purpose.

Method Checks That

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b

assertIsNot(a, b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

(continued)

Chapter 3 unittest

77

Method Checks That

assertIsInstance(a, b) isinstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

assertAlmostEqual(a, b) round(a-b, 7) == 0

assertNotAlmostEqual(a, b) round(a-b, 7) != 0

assertGreater(a, b) a > b

assertGreaterEqual(a, b) a >= b

assertLess(a, b) a < b

assertLessEqual(a, b) a <= b

assertRegexpMatches(s, r) r.search(s)

assertNotRegexpMatches(s, r) not r.search(s)

assertItemsEqual(a, b) sorted(a) == sorted(b)

assertDictContainsSubset(a, b) all the key/value pairs in

a exist in b

Method Used to Compare

assertMultiLineEqual(a, b) Strings

assertSequenceEqual(a, b) Sequences

assertListEqual(a, b) Lists

assertTupleEqual(a, b) Tuples

assertSetEqual(a, b) sets or frozensets

assertDictEqual(a, b) Dicts

All the assert methods listed in the previous table are good enough for

most programmers and testers when automating tests.

Chapter 3 unittest

78

�Other Useful Methods
This section looks at a few useful methods that will help you debug and

understand the flow of execution.

The id() and shortDescription() methods are very useful for

debugging. id() returns the name of the method and shortDescription()

returns the description of the method. Listing 3-16 shows an example.

Listing 3-16.  test_module10.py

import unittest

class TestClass11(unittest.TestCase):

 def test_case01(self):

 """This is a test method..."""

 print("\nIn test_case01()")

 print(self.id())

 print(self.shortDescription())

The output of Listing 3-16 is as follows:

test_case01 (test_module10.TestClass11)

This is a test method... ...

In test_case01()

test_module10.TestClass11.test_case01

This is a test method...

ok

Ran 1 test in 0.002s

OK

Chapter 3 unittest

79

�Failing a Test
Many times, you might want to have a method that explicitly fails a test

when it’s called. In unittest, the fail() method is used for that purpose.

Check the code in Listing 3-17 as an example.

Listing 3-17.  test_module11.py

import unittest

class TestClass12(unittest.TestCase):

 def test_case01(self):

 """This is a test method..."""

 print(self.id())

 self.fail()

The output of Listing 3-17 is as follows:

test_case01 (test_module11.TestClass12)

This is a test method... ...

test_module11.TestClass12.test_case01

FAIL

===

FAIL: test_case01 (test_module11.TestClass12)

This is a test method...

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module11.py",

line 9, in test_case01

 self.fail()

AssertionError: None

Ran 1 test in 0.004s

FAILED (failures=1)

Skipping tests

Chapter 3 unittest

80

unittest provides a mechanism for skipping tests, conditionally or

unconditionally.

It uses the following decorators for implementing the skipping

mechanism:

•	 unittest.skip(reason): Unconditionally skips the

decorated test. reason should describe why the test is

being skipped.

•	 unittest.skipIf(condition, reason): Skips the

decorated test if condition is true.

•	 unittest.skipUnless(condition, reason): Skips the

decorated test unless condition is true.

•	 unittest.expectedFailure(): Marks the test as an

expected failure. If the test fails when it runs, the test is

not counted as a failure.

The code in Listing 3-18 demonstrates how to skip tests conditionally

and unconditionally.

Listing 3-18.  test_module12.py

import sys

import unittest

class TestClass13(unittest.TestCase):

 @unittest.skip("demonstrating unconditional skipping")

 def test_case01(self):

 self.fail("FATAL")

 �@unittest.skipUnless(sys.platform.startswith("win"),

"requires Windows")

 def test_case02(self):

 # Windows specific testing code

 pass

Chapter 3 unittest

81

 �@unittest.skipUnless(sys.platform.startswith("linux"),

"requires Linux")

 def test_case03(self):

 # Linux specific testing code

 pass

When you run the code in Listing 3-18 on the Linux platform, the

output is as follows:

test_case01 (test_module12.TestClass13) ... skipped

'demonstrating unconditional skipping'

test_case02 (test_module12.TestClass13) ... skipped 'requires

Windows'

test_case03 (test_module12.TestClass13) ... ok

Ran 3 tests in 0.003s

OK (skipped=2)

When you run the code in Listing 3-18 on the Windows platform, the

output is as follows:

test_case01 (test_module12.TestClass13) ... skipped

'demonstrating unconditional skipping'

test_case02 (test_module12.TestClass13) ... ok

test_case03 (test_module12.TestClass13) ... skipped

'requires Linux'

Ran 3 tests in 0.003s

OK (skipped=2)

Chapter 3 unittest

82

As you can see, the code skips the test cases based on the OS where it

runs. This trick is very useful for running platform-specific test cases.

You can also skip entire test classes in a test module using the

unittest. skip(reason) decorator.

�Exceptions in Test Cases
When an exception is raised in a test case, the test case fails. The code

shown in Listing 3-19 will raise an exception explicitly.

Listing 3-19.  test_module13.py

import unittest

class TestClass14(unittest.TestCase):

 def test_case01(self):

 raise Exception

The output of Listing 3-19 is as follows:

test_case01 (test_module13.TestClass14) ... ERROR

===

ERROR: test_case01 (test_module13.TestClass14)

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module13.py",

line 6, in test_case01

 raise Exception

Exception

Ran 1 test in 0.004s

FAILED (errors=1)

Chapter 3 unittest

83

The failure message shown when the test fails due to an exception is

different from when the test fails due to an assertion.

�assertRaises()

You learned that assert methods are used to check test conditions. The

assertRaises() method is used to check if the code block raises the

exception mentioned in assertRaises(). If the code raises the exception

then the test passes; otherwise, it fails. The code shown in Listing 3-20

demonstrates the use of assertRaises() in detail.

Listing 3-20.  test_module14.py

import unittest

class Calculator:

 def add1(self, x, y):

 return x + y

 def add2(self, x, y):

 number_types = (int, float, complex)

 �if isinstance(x, number_types) and isinstance

(y, number_ types):

 return x + y

 else:

 raise ValueError

calc = 0

class TestClass16(unittest.TestCase):

 @classmethod

 def setUpClass(cls):

 global calc

 calc = Calculator()

 def setUp(self):

 print("\nIn setUp()...")

Chapter 3 unittest

84

 def test_case01(self):

 self.assertEqual(calc.add1(2, 2), 4)

 def test_case02(self):

 self.assertEqual(calc.add2(2, 2), 4)

 def test_case03(self):

 self.assertRaises(ValueError, calc.add1, 2, 'two')

 def test_case04(self):

 self.assertRaises(ValueError, calc.add2, 2, 'two')

 def tearDown(self):

 print("\nIn tearDown()...")

 @classmethod

 def tearDownClass(cls):

 global calc

 del calc

The code in Listing 3-20 defined a class called Calculator that has two

different methods for the addition operation. The add1() method does not

have a provision to raise an exception if a non-numeric argument is passed

to it. The add2() method raises a ValueError if any of the arguments are

non-numeric. Here is the output of the code in Listing 3-20:

test_case01 (test_module14.TestClass16) ...

In setUp()...

In tearDown()...

ok

test_case02 (test_module14.TestClass16) ...

In setUp()...

In tearDown()... ok

test_case03 (test_module14.TestClass16) ...

In setUp()...

Chapter 3 unittest

85

In tearDown()...

ERROR

test_case04 (test_module14.TestClass16) ...

In setUp()...

In tearDown()...

ok

===

ERROR: test_case03 (test_module14.TestClass16)

Traceback (most recent call last):

 �File "/home/pi/book/code/chapter03/test/test_module14.py",

line 37, in test_case03

 self.assertRaises(ValueError, calc.add1, 2, 'two')

 �File "/usr/lib/python3.4/unittest/case.py", line 704, in

assertRaises

 �return context.handle('assertRaises', callableObj,

args, kwargs)

 �File "/usr/lib/python3.4/unittest/case.py", line 162, in

handle callable_obj(*args, **kwargs)

 �File "/home/pi/book/code/chapter03/test/test_module14.py",

line 7, in add1

 return x + y

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Ran 4 tests in 0.030s

FAILED (errors=1)

In the output, the test_Case03() fails because add1() does not have a

provision to raise an exception when you pass it a non-numeric argument

(a string, in this case). assertRaises() is very useful in writing negative

test cases, such as when you need to check the behavior of the API against

invalid arguments.

Chapter 3 unittest

86

�Creating Test Suites
You can create your own custom test suites and test runners to run those

test suites. The code is presented in Listing 3-21.

Listing 3-21.  test_module16.py

import unittest

def setUpModule():

 """called once, before anything else in this module"""

 print("In setUpModule()...")

def tearDownModule():

 """called once, after everything else in this module"""

 print("In tearDownModule()...")

class TestClass06(unittest.TestCase):

 @classmethod

 def setUpClass(cls):

 """called once, before any test"""

 print("In setUpClass()...")

 @classmethod

 def tearDownClass(cls):

 �"""called once, after all tests, if setUpClass

successful"""

 print("In tearDownClass()...")

 def setUp(self):

 """called multiple times, before every test method"""

 print("\nIn setUp()...")

Chapter 3 unittest

87

 def tearDown(self):

 """called multiple times, after every test method"""

 print("In tearDown()...")

 def test_case01(self):

 self.assertTrue("PYTHON".isupper())

 print("In test_case01()")

 def test_case02(self):

 self.assertFalse("python".isupper())

 print("In test_case02()")

def suite():

 test_suite = unittest.TestSuite()

 test_suite.addTest(unittest.makeSuite(TestClass06))

 return test_suite

if __name__ == '__main__':

 mySuit=suite()

 runner=unittest.TextTestRunner()

 runner.run(mySuit)

This code example created a suite that created an object for unittest

.TestSuite(). Then it added the test class to this object with the addTest()

method. You can add multiple test classes to that. You can also create

multiple test suites like that. Finally, this example is creating an object of

this test suite class in the main section. It also creates a testrunner object

and then calls that object to run the object of the test suite. You can create

multiple test suites and create their objects in the main section. Then you

can use the testrunner object to call the objects of those test suites.

Chapter 3 unittest

88

�Creating Test Suites

EXERCISE 3-1

unittest, like all the other Python libraries, is too vast a topic to be covered

in a single book. So, I recommend you complete the following exercises to

gain more knowledge and experience with unittest.

	1.	 Visit the Python 3 Documentation page for unittest at

https://docs.python.org/3/library/unittest.html.

	2.	P ractice all the assertion methods mentioned in this chapter by

writing tests using each one of them.

	3.	P ractice using the unittest.skipIf(condition,

reason) and unittest.expectedFailure() decorators.

Write code to demonstrate their functionality.

	4.	 Write a test module with multiple test classes and skip an entire

test class using the unittest.skip(reason) decorator.

	5.	E xperiment with raising exceptions in the test fixtures.

Hint T ry to run the code in Listing 3-22 by enabling each
commented-out raise Exception line, one line at a time. This
will help you understand how an individual fixture behaves when you
raise an exception in it.

Listing 3-22.  test_module15.py import unittest

def setUpModule():

raise Exception

 pass

Chapter 3 unittest

https://docs.python.org/3/library/unittest.html

89

def tearDownModule():

raise Exception

 pass

class TestClass15(unittest.TestCase):

 @classmethod

 def setUpClass(cls):

raise Exception

 pass

 def setUp(self):

raise Exception

 pass

 def test_case01(self):

 self.id()

 def tearDown(self):

raise Exception

 pass

 @classmethod

 def tearDownClass(cls):

raise Exception

 Pass

�Conclusion
In this chapter, you learned about several important concepts, including

test fixtures, test classes, test methods, test modules, and test suites. You

also learned how to implement all these concepts with unittest. You

also learned assertions and automated test discovery. Almost all the

concepts you learned in this chapter will be revisited in later chapters that

cover other Python testing frameworks. The next chapter looks at nose

Chapter 3 unittest

90

and nose2, which are two other popular Python test automation and test

runner frameworks.

All the concepts we learned in this chapter are the foundations of the

area of unit test automation. We will be using them throughout this book

and these concepts are very useful at work for professional testers and

developers.

Chapter 3 unittest

91© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_4

CHAPTER 4

nose and nose2
The last chapter introduced xUnit and unittest. In this chapter, you will

explore yet another unit-testing API for Python, called nose. Its tagline is

nose extends unittest to make testing easier.

You can use nose’s API to write and run automated tests. You can

also use nose to run tests written in other frameworks like unittest. This

chapter also explores the next actively developed and maintained iteration

of nose, nose2.

�Introduction to nose
nose is not part of Python’s standard library. You have to install it in order

to use it. The next section shows how to install it on Python 3.

�Installing nose on Linux Distributions
The easiest way to install nose on a Linux computer is to install it using

Python’s package manager pip. Pip stands for pip installs packages. It’s a

recursive acronym. If pip is not installed on your Linux computer, you can

install it by using a system package manager. On any Debian/Ubuntu or

derivative computer, install pip with the following command:

sudo apt-get install python3-pip

https://doi.org/10.1007/978-1-4842-7854-3_4#DOI

92

On Fedora/CentOS and derivatives, run the following commands

(assuming you have Python 3.5 installed on the OS) to install pip:

sudo yum install python35-setuptools

sudo easy_install pip

Once pip is installed, you can install nose with the following

command:

sudo pip3 install nose

�Installing nose on macOS and Windows
pip is preinstalled with Python 3 on macOS and Windows. Install nose

with the following command:

pip3 install nose

�Verifying the Installation
Once nose is installed, run the following command to verify the

installation:

nosetests -V

It will show output as follows:

nosetests version 1.3.7

On Windows, this command may return error, so you can use the

following command alternatively:

python -m nose -V

Chapter 4 nose and nose2

93

�Getting Started with nose
To get started with nose, follow the same path of exploration that you

followed with unittest. Create a directory called chapter04 in the code

directory and copy the mypackage directory from the chapter03 directory

to code. You will need it later. Create a directory called test too. After

all this, the chapter04 directory structure should look like the structure

shown in Figure 4-1.

Figure 4-1.  The chapter04 directory structure

Save all the code examples to the test directory only.

�A Simple nose Test Case
A very simple nose test case is demonstrated in Listing 4-1.

Listing 4-1.  test_module01.py

def test_case01():

 assert 'aaa'.upper() == 'AAA'

In Listing 4-1, test_case01() is the test function. assert is Python’s

built-in keyword and it works like the assert methods in unittest. If you

compare this code with the simplest test case in the unittest framework,

you will notice that you do not have to extend the test from any parent

class. This makes the test code cleaner and less cluttered.

Chapter 4 nose and nose2

94

If you try to run it with the following commands, it will not yield

any output:

python3 test_module01.py

python3 test_module01.py -v

This is because you have not included a test-runner in the code.

You can run it by using the -m command-line option for Python, as

follows:

python3 -m nose test_module01.py

The output is as follows:

.

--

Ran 1 test in 0.007s

OK

Verbose mode can be invoked by adding the -v command-line option

as follows:

python3 -m nose -v test_module01.py

The output is as follows:

test.test_module01.test_case01 ... ok

--

Ran 1 test in 0.007s

OK

�Running the Test Module with nosetests
You can use nose’s nosetests command to run the test modules as

follows:

nosetests test_module01.py

Chapter 4 nose and nose2

95

The output is as follows:

.

--

Ran 1 test in 0.006s

OK

Verbose mode can be invoked as follows:

nosetests test_module01.py -v

The output is as follows:

test.test_module01.test_case01 ... ok

--

Ran 1 test in 0.007s

OK

Using the nosetests command is the simplest way to run test modules.

Due to the simplicity and convenience of the coding and invocation style,

we will use nosetests to run tests until we introduce and explain nose2.

If the command returns an error in Windows, you can invoke the nose

module with the Python interpreter.

�Getting Help
Use the following commands to get help and documentation about nose:

nosetests -h

python3 -m nose -h

Chapter 4 nose and nose2

96

�Organizing the Test Code
In the previous chapter, you learned how to organize the development and

testing code of the project in separate directories. You will follow the same

standard in this and the next chapter too. First create a test module to test

the development code in mypackage. Save the code shown in Listing 4-2 in

the test directory.

Listing 4-2.  test_module02.py

from mypackage.mymathlib import *

class TestClass01:

 def test_case01(self):

 print("In test_case01()")

 assert mymathlib().add(2, 5) == 7

Listing 4-2 creates a test class called TestClass01. As discussed earlier,

you do not have to extend it from a parent class. The line containing

assert checks if the statement mymathlib().add(2, 5) == 7 is true or

false to mark the test method as PASS or FAIL.

Also, create an init.py file with the code in Listing 4-3 placed in the

test directory.

Listing 4-3.  init.py

all = ["test_module01", "test_module02"]

After this, the chapter04 directory structure will resemble Figure 4-2.

Chapter 4 nose and nose2

97

Figure 4-2.  The chapter04 directory structure

The test package is ready now. You can run the tests from the

chapter04 directory as follows:

nosetests test.test_module02 -v

The output is as follows:

test.test_module02.TestClass01.test_case01 ... ok

--

Ran 1 test in 0.008s

OK

The convention for running a specific test class is a bit different in

nose. The following is an example:

nosetests test.test_module02:TestClass01 -v

You can also run an individual test method as follows:

nosetests test.test_module02:TestClass01.test_case01 -v

Chapter 4 nose and nose2

98

�Test Discovery
You learned about test discovery in an earlier chapter. nose also supports

the test discovery process. In fact, test discovery in nose is even simpler

than in unittest. You do not have to use the discover subcommand

for test discovery. You just need to navigate to the project directory

(chapter04 in this case) and run the nosetests command, as follows:

nosetests

You can also invoke this process in verbose mode:

nosetests -v

The output is as follows:

test.test_module01.test_case01 ... ok

test.test_module02.TestClass01.test_case01 ... ok

Ran 2 tests in 0.328s

OK

As you can see in the output, nosetests automatically discovers the

test package and runs all its test modules.

�Fixtures for Classes, Modules, and Methods
nose provides xUnit-style fixtures that behave in similar way as the fixtures

in unittest. Even the names of the fixtures are same. Consider the code in

Listing 4-4.

Chapter 4 nose and nose2

99

Listing 4-4.  test_module03.py

from mypackage.mymathlib import *

math_obj = 0

def setUpModule():

 """called once, before anything else in this module"""

 print("In setUpModule()...")

 global math_obj

 math_obj = mymathlib()

def tearDownModule():

 """called once, after everything else in this module"""

 print("In tearDownModule()...")

 global math_obj del math_obj

class TestClass02:

 @classmethod

 def setUpClass(cls):

 """called once, before any test in the class"""

 print("In setUpClass()...")

 def setUp(self):

 """called before every test method"""

 print("\nIn setUp()...")

 def test_case01(self):

 print("In test_case01()")

 assert math_obj.add(2, 5) == 7

 def test_case02(self):

 print("In test_case02()")

 def tearDown(self):

 """called after every test method"""

 print("In tearDown()...")

Chapter 4 nose and nose2

100

 @classmethod

 def tearDownClass(cls):

 """�called once, after all tests, if setUpClass()

successful"""

 print ("\nIn tearDownClass()...")

If you run the code in Listing 4-4 with the following command:

nosetests test_module03.py -v

The output will be as follows:

test.test_module03.TestClass02.test_case01 ... ok

test.test_module03.TestClass02.test_case02 ... ok

--

Ran 2 tests in 0.010s

OK

In order to get more details about the test execution, you need to add

the -s option to the command line, which allows any stdout output to be

printed in the command line immediately.

Run the following command:

nosetests test_module03.py -vs

The output is as follows:

In setUpModule()...

Creating object : mymathlib

In setUpClass()...

test.test_module03.TestClass02.test_case01 ...

In setUp()...

In test_case01()

In tearDown()...

ok

Chapter 4 nose and nose2

101

test.test_module03.TestClass02.test_case02 ...

In setUp()...

In test_case02()

In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...

Destroying object : mymathlib

--

Ran 2 tests in 0.011s

OK

From now on, the examples will add the -s option to the nosetests

command while executing the tests.

�Fixtures for Functions
Before you get started with the fixtures for functions, you must understand

the difference between a function and a method in Python. A function

is a named piece of code that performs an operation and a method is a

function with an extra parameter that’s the object on which it runs. A

function is not associated with a class. A method is always associated with

a class.

Check the code in Listing 4-5 as an example.

Listing 4-5.  test_module04.py

from nose.tools import with_setup

def setUpModule():

 """called once, before anything else in this module"""

 print("\nIn setUpModule()...")

Chapter 4 nose and nose2

102

def tearDownModule():

 """called once, after everything else in this module"""

 print("\nIn tearDownModule()...")

def setup_function():

 """setup_function(): use it with @with_setup() decorator"""

 print("\nsetup_function()...")

def teardown_function():

 �"""teardown_function(): use it with @with_setup()

decorator"""

 print("\nteardown_function()...")

def test_case01():

 print("In test_case01()...")

def test_case02():

 print("In test_case02()...")

@with_setup(setup_function, teardown_function)

def test_case03():

 print("In test_case03()...")

In the code in Listing 4-5, test_case01(), test_case02(),

test_case03(), setup_ function(), and teardown_function() are the

functions. They are not associated with a class. You have to use the

@with_setup() decorator, which is imported from nose.tools, to

assign setup_function() and teardown_function() as fixtures

of test_case03(). nose recognizes test_case01(), test_case02(), and

test_case03() as test functions because the names begin with

test_. setup_function() and teardown_function() are recognized as

fixtures of test_case03(), due to the @with_setup() decorator.

The test_case01() and test_case02() functions do not have any

fixtures assigned to them.

Chapter 4 nose and nose2

103

Let’s run this code with the following command:

nosetests test_module04.py -vs

The output is as follows:

In setUpModule()...

test.test_module04.test_case01 ... In test_case01()...

ok

test.test_module04.test_case02 ... In test_case02()...

ok

test.test_module04.test_case03 ... setup_function()...

In test_case03()...

teardown_function()...

ok

In tearDownModule()...

--

Ran 3 tests in 0.011s

OK

As you can see in the output, setup_function() and

teardown_function() run before and after test_case03(), respectively.

unittest does not have a provision for the fixtures at the test function

level. Actually, unittest does not support the concept of standalone test

functions, as everything has to be extended from the TestCase class and a

function cannot be extended.

It’s not mandatory that you name the function-level fixtures

setup_function() and teardown_function(). You can name them

anything you want (except, of course, for Python 3’s reserved keywords).

They will be executed before and after the test function as long as you use

them in the @with_setup() decorator.

Chapter 4 nose and nose2

104

�Fixtures for Packages

unittest does not have a provision for package-level fixtures. Package

fixtures are executed when the test package or part of the test package is

invoked. Change the contents of the init.py file in the test directory to

the code shown in Listing 4-6.

Listing 4-6.  init.py

all = ["test_module01", "test_module02", "test_module03",

"test_module04"]

def setUpPackage():

 print("In setUpPackage()...")

def tearDownPackage():

 print("In tearDownPackage()...")

If you run a module in this package now, the package-level fixtures will

run before beginning any test and after the entire test in the package. Run

the following command:

nosetests test_module03.py -vs

Here is the output:

In setUpPackage()...

In setUpModule()...

Creating object : mymathlib

In setUpClass()...

test.test_module03.TestClass02.test_case01 ...

In setUp()...

In test_case01()

In tearDown()...

ok

test.test_module03.TestClass02.test_case02 ...

Chapter 4 nose and nose2

105

In setUp()...

In test_case02() In tearDown()...

ok

In tearDownClass()...

In tearDownModule()...

Destroying object : mymathlib

In tearDownPackage()...

--

Ran 2 tests in 0.012s

OK

�Alternate Names of the nose Fixtures

This table lists the alternate names of the nose fixtures.

Fixture Alternative Name(s)

setUpPackage setup, setUp, or setup_package

tearDownPackage teardown, tearDown, or teardown_package

setUpModule setup, setUp, or setup_module

tearDownModule teardown, tearDown, or teardown_module

setUpClass setupClass, setup_class, setupAll, or

setUpAll

tearDownClass teardownClass, teardown_class,

teardownAll, or tearDownAll

setUp (class method

fixtures)

setup

tearDown (class method

fixtures)

Teardown

Chapter 4 nose and nose2

106

�assert_equals()

Until now, you have been using Python’s built-in keyword assert to

check the actual results against expected values. nose has its own

assert_equals() method for this. The code in Listing 4-7 demonstrates

the use of assert_equals() and assert.

Listing 4-7.  test_module05.py

from nose.tools import assert_equals

def test_case01():

 print("In test_case01()...")

 assert 2+2 == 5

def test_case02():

 print("In test_case02()...")

 assert_equals(2+2, 5)

Run the code in Listing 4-7. Here is the output:

In setUpPackage()...

test.test_module05.test_case01 ... In test_case01()...

FAIL

test.test_module05.test_case02 ... In test_case02()...

FAIL

In tearDownPackage()...

==

FAIL: test.test_module05.test_case01

--

Traceback (most recent call last):

 �File "/usr/local/lib/python3.4/dist-packages/nose/case.py",

line 198, in runTest

 self.test(*self.arg)

Chapter 4 nose and nose2

107

 �File "/home/pi/book/code/chapter04/test/test_module05.py",

line 6, in test_case01

 assert 2+2 == 5

AssertionError

===

FAIL: test.test_module05.test_case02

--

Traceback (most recent call last):

 �File "/usr/local/lib/python3.4/dist-packages/nose/case.py",

line 198, in runTest

 self.test(*self.arg)

 �File "/home/pi/book/code/chapter04/test/test_module05.py",

line 11, in test_case02

 assert_equals(2+2, 5)

AssertionError: 4 != 5

--

Ran 2 tests in 0.013s

FAILED (failures=2)

Both test cases failed due to incorrect test inputs. Note the difference

between the logs printed by these test methods. In test_case02(), you get

more information about the cause of the failure, as you are using nose’s

assert_equals() method.

�Testing Tools
nose.tools has a few methods and decorators that come in very handy

when you’re automating tests. This section looks at a few of those

testing tools.

Chapter 4 nose and nose2

108

�ok_ and eq_
ok_ and eq_ are shorthand for assert and assert_equals(), respectively.

They also come with a parameter for an error message when the test case

fails. The code in Listing 4-8 demonstrates this.

Listing 4-8.  test_module06.py

from nose.tools import ok_, eq_

def test_case01():

 ok_(2+2 == 4, msg="Test Case Failure...")

def test_case02():

 eq_(2+2, 4, msg="Test Case Failure...")

def test_case03():

 ok_(2+2 == 5, msg="Test Case Failure...")

def test_case04():

 eq_(2+2, 5, msg="Test Case Failure...")

The following shows the output of the code in Listing 4-8.

In setUpPackage()... test.test_module06.test_case01 ... ok

test.test_module06.test_case02 ... ok

test.test_module06.test_case03 ... FAIL

test.test_module06.test_case04 ... FAIL

In tearDownPackage()...

===

FAIL: test.test_module06.test_case03

--

Traceback (most recent call last):

 �File "/usr/local/lib/python3.4/dist-packages/nose/case.py",

line 198, in runTest

Chapter 4 nose and nose2

109

 self.test(*self.arg)

 �File "/home/pi/book/code/chapter04/test/test_module06.py",

line 13, in test_case03

 ok_(2+2 == 5, msg="Test Case Failure...")

AssertionError: Test Case Failure...

==

FAIL: test.test_module06.test_case04

--

Traceback (most recent call last):

 �File "/usr/local/lib/python3.4/dist-packages/nose/case.py",

line 198, in runTest

 self.test(*self.arg)

 �File "/home/pi/book/code/chapter04/test/test_module06.py",

line 17, in test_case04

 eq_(2+2, 5, msg="Test Case Failure...")

AssertionError: Test Case Failure...

--

Ran 4 tests in 0.015s

FAILED (failures=2)

�The @raises() Decorator
When you use the raises decorator before the test, it must raise one of

the exceptions mentioned in the list of exceptions associated with the

@raises() decorator. Listing 4-9 demonstrates this idea.

Listing 4-9.  test_module07.py

from nose.tools import raises

@raises(TypeError, ValueError)

def test_case01():

 raise TypeError("This test passes")

Chapter 4 nose and nose2

110

@raises(Exception)

def test_case02():

 pass

The output is as follows:

In setUpPackage()...

test.test_module07.test_case01 ... ok

test.test_module07.test_case02 ... FAIL

In tearDownPackage()...

===

FAIL: test.test_module07.test_case02

--

Traceback (most recent call last):

 �File "/usr/local/lib/python3.4/dist-packages/nose/case.py",

line 198, in runTest

 self.test(*self.arg)

 �File "/usr/local/lib/python3.4/dist-packages/nose/tools/

nontrivial.py", line 67, in newfunc

 raise AssertionError(message)

AssertionError: test_case02() did not raise Exception

--

Ran 2 tests in 0.012s

FAILED (failures=1)

As you can see, test_case02() fails, as it does not raise an exception

when it is supposed to. You can cleverly use this to write negative

test cases.

Chapter 4 nose and nose2

111

�The @timed() decorator
If you are using a timed decorator with the test, the test must finish within

the time mentioned in the @timed() decorator to pass. The code in

Listing 4-10 demonstrates this idea.

Listing 4-10.  test_module10.py

from nose.tools import timed

import time

@timed(.1)

def test_case01():

 time.sleep(.2)

This test fails, as it takes more time to finish the execution of the test

than is allotted in the @timed() decorator. The output of execution is as

follows:

In setUpPackage()...

test.test_module08.test_case01 ... FAIL

In tearDownPackage()...

===

FAIL: test.test_module08.test_case01

--

Traceback (most recent call last):

 �File "/usr/local/lib/python3.4/dist-packages/nose/case.py",

line 198, in runTest

 self.test(*self.arg)

 �File "/usr/local/lib/python3.4/dist-packages/nose/tools/

nontrivial.py", line 100, in newfunc

Chapter 4 nose and nose2

112

 �raise TimeExpired("Time limit (%s) exceeded" % limit) nose.

tools.nontrivial.TimeExpired: Time limit (0.1) exceeded

--

Ran 1 test in 0.211s

FAILED (failures=1)

It is the collection or group of related tests that can be executed or

scheduled to be executed together.

�Report Generation
Let’s look at the various ways to generate comprehensible reports

using nose.

�Creating an XML Report
nose has a built-in feature for generating XML reports. These are xUnit-

style formatted reports. You have to use --with-xunit to generate the

report. The report is generated in the current working directory.

Run the following command in the test directory:

nosetests test_module01.py -vs --with-xunit

The output will be as follows:

In setUpPackage()...

test.test_module01.test_case01 ... ok

In tearDownPackage()...

--

XML: /home/pi/book/code/chapter04/test/nosetests.xml

--

Ran 1 test in 0.009s

OK

Chapter 4 nose and nose2

113

The generated XML file is shown in Listing 4-11.

Listing 4-11.  nosetests.xml

<?xml version="1.0" encoding="UTF-8"?>

<testsuite name="nosetests" tests="1" errors="0" failures="0"

skip="0">

<testcase classname="test.test_module01" name="test_case01"

time="0.002">

</testcase>

</testsuite>

�Creating an HTML Report
nose does not have a built-in provision for HTML reports. You have to

install a plugin for that. Run the following command to install the HTML

output plugin:

sudo pip3 install nose-htmloutput

Once the plugin is installed, you can run the following command to

execute the test:

nosetests test_module01.py -vs --with-html

Here is the output:

In setUpPackage()...

test.test_module01.test_case01 ... ok

In tearDownPackage()...

--

HTML: nosetests.html

--

Ran 1 test in 0.009s

OK

Chapter 4 nose and nose2

114

The plugin saves the output in the current location in a file called

nosetests.html.

Figure 4-3 shows a snapshot of the nosetests.html file, opened in a

web browser.

Figure 4-3.  The nosetests.html file

�Creating Color Output in the Console
Until now, you saw methods that generate formatted output files. While

running nosetest, you must have observed that the console output is

monochrome (white text on a dark background and vice versa). The plugin

called rednose is used to create colored console output. You can install

that plugin using the following command:

sudo pip3 install rednose

Chapter 4 nose and nose2

115

Once the plugin is installed, run the following command:

nosetests test_module08.py -vs --rednose

Figure 4-4 shows a screenshot of the output, although you won’t see it

in color here, due to the grayscale nature of the published book.

Figure 4-4.  A rednose demo

�Running unittest Tests from nose
In the beginning of the chapter, you read that you can run unittest tests

with nose. Let’s try that now. Navigate to the chapter03 directory. Run

the following command to discover and execute all of the unittest tests

automatically:

nosetests -v

This is the output:

test_case01 (test.test_module01.TestClass01) ... ok

test_case02 (test.test_module01.TestClass01) ... ok

test_case01 (test.test_module02.TestClass02) ... ok

test_case02 (test.test_module02.TestClass02) ... ok

test_case01 (test.test_module03.TestClass03) ... ok

Chapter 4 nose and nose2

116

test_case02 (test.test_module03.TestClass03) ... ok

test_case03 (test.test_module03.TestClass03) ... FAIL

test_case04 (test.test_module03.TestClass03) ... FAIL

test_case01 (test.test_module04.TestClass04) ... ok

I am truncating the output as it would otherwise fill many pages. Run

the command yourself to see the entire output.

�Running doctest Tests from nose
You can run doctest test from nose as follows. First navigate to the

directory where you saved the doctest tests:

cd ~/book/code/chapter02

Then run the tests as follows:

nosetests -v

The output is as follows:

This is test_case01(). ... ok

This is test_function01(). ... ok

--

Ran 2 tests in 0.007s

OK

�Advantages of nose over unittest
Here is a summary of the advantages of nose over unittest:

•	 Unlike unittest, nose does not require you to extend

test cases from a parent class. This results in less code.

Chapter 4 nose and nose2

117

•	 Using nose, you can write test functions. This is not

possible in unittest.

•	 nose has more fixtures than unittest. In addition to

the regular unittest fixtures, nose has package- and

function-level fixtures.

•	 nose has alternate names for fixtures.

•	 nose.tools offers many features for automating

test cases.

•	 Test discovery is simpler in nose than in unittest,

as nose does not need a Python interpreter with the

discover subcommand.

•	 nose can recognize and run unittest tests easily.

�Disadvantages of nose
The only and biggest disadvantage of nose is that it is not under active

development and has been in maintenance mode for the past several

years. It will likely cease without a new person or team to take over its

maintenance. If you’re planning to start a project and are looking for a

suitable automation framework for Python 3, you should use pytest,

nose2, or plain unittest.

You might be wondering why I even spent time covering nose if it is

not being actively developed. The reason is that learning a more advanced

framework like nose helps you understand the limitations of unittest.

Also, if you are working with an older project that uses nose as the test

automation and/or unit-testing framework, it will help you understand

your tests.

Chapter 4 nose and nose2

118

�Using nose2
nose2 is the next generation of testing for Python. It is based on the plugins

branch of unittest2.

nose2 aims to improve on nose in the following ways:

•	 It provides a better plugin API.

•	 It is easier for users to configure.

•	 It simplifies internal interfaces and processes.

•	 It supports Python 2 and 3 from the same codebase.

•	 It encourages greater community involvement in its

development.

•	 Unlike nose, it is under active development.

nose2 can be installed conveniently using the following command:

sudo pip3 install nose2

Once installed, nose2 can be invoked by running nose2 at the

command prompt.

It can be used to auto-discover and run the unittest and nose test

modules. Run the nose2 -h command at the command prompt to get help

with the various nose2 command-line options.

The following are the important differences between nose and nose2:

•	 Python versions

nose supports Python version 2.4 and above. nose2

supports pypy, 2.6, 2.7, 3.2, 3.3, 3.4, and 3.5. nose2

does not support all the versions, as it is not possible

to support all the Python versions in a single

codebase.

Chapter 4 nose and nose2

119

•	 Test loading

nose loads and executes test modules one by one,

which is called lazy loading. On the contrary, nose2

loads all the modules first and then executes them

all at once.

•	 Test discovery

Because of the difference between the test loading

techniques, nose2 does not support all the project

layouts. The layout shown in Figure 4-5 is supported

by nose. However, it will not be loaded correctly by

nose2. nose can distinguish between ./dir1/test.

py and ./dir1/dir2/test.py.

Figure 4-5.  nose2 unsupported test layout

You can run tests with nose2 as follows:

nose2 -v

You can also parameterize tests, as shown in Listing 4-12.

Listing 4-12.  test_module09.py

from nose2.tools import params

@params("Test1234", "1234Test", "Dino Candy")

def test_starts_with(value):

 assert value.startswith('Test')

Chapter 4 nose and nose2

120

You can run the tests as follows:

nose2 -v

or

python -m nose2 test_module09

The output is as follows:

.FF

===

FAIL: test_module09.test_starts_with:2

'1234Test'

Traceback (most recent call last):

 �File "C:\Users\Ashwin\Google Drive\Python Unit

Test Automation - Second Edition\Code\chapter04\test\

test_module09.py", line 5, in test_starts_with

 assert value.startswith('Test')

AssertionError

==

FAIL: test_module09.test_starts_with:3

'Dino Candy'

--

Traceback (most recent call last):

 �File "C:\Users\Ashwin\Google Drive\Python Unit Test

Automation - Second Edition\Code\chapter04\test\

test_module09.py", line 5, in test_starts_with

 assert value.startswith('Test')

AssertionError

--

Ran 3 tests in 0.002s

FAILED (failures=2)

Chapter 4 nose and nose2

121

You can directly launch the test script from any IDE without specifying

the nose2 module by modifying the code, as shown in Listing 4-13.

Listing 4-13.  test_module20.py

from nose2.tools import params

@params("Test1234", "1234Test", "Dino Candy")

def test_starts_with(value):

 assert value.startswith('Test')

if __name__ == '__main__':

 import nose2

 nose2.main()

You can launch it directly from any IDE like IDLE and it will produce

the same results.

EXERCISE 4-1

Check if the codebase in your organization is using unittest, nose, or

nose2. Consult with the owners of the codebase and plan a migration from

these frameworks to a better and more flexible unit-testing framework.

�Conclusion
In this chapter, you learned about the advanced unit-testing framework,

nose. Unfortunately, it is not being developed actively so you need to use

nose2 as a test-runner for nose tests. In the next chapter, you learn about

and explore an advanced test automation framework called py.test.

Chapter 4 nose and nose2

123© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_5

CHAPTER 5

pytest
In Chapter 4, you explored nose, which is an advanced and better

framework for Python testing. Unfortunately, nose has not been under

active development for the past several years. That makes it an unsuitable

candidate for a test framework when you want to choose something for a

long-term project. Moreover, there are many projects that use unittest or

nose or a combination of both. You definitely need a framework that has

more features than unittest, and unlike nose, it should be under active

development. nose2 is more of a test-runner for unittest and an almost

defunct tool. You need a unit test framework that’s capable of discovering

and running tests written in unittest and nose. It should be advanced

and must be actively developed, maintained, and supported. The answer

is pytest.

This chapter extensively explores a modern, advanced, and better test

automation framework, called pytest. First, you’ll learn how pytest offers

traditional xUnit style fixtures and then you will explore the advanced

fixtures offered by pytest.

https://doi.org/10.1007/978-1-4842-7854-3_5#DOI

124

�Introduction to pytest
pytest is not a part of Python’s standard library. You have to install it in

order to use it, just like you installed nose and nose2. Let’s see how you can

install it for Python 3. pytest can be installed conveniently by running the

following command in Windows:

pip install pytest

For Linux and macOS, you install it using pip3 as follows:

sudo pip3 install pytest

This installs pytest for Python 3. It might show a warning. There will

be a directory name in the warning message. I used a Raspberry Pi with

Raspberry Pi OS as the Linux system. It uses bash as the default shell.

Add the following line to the .bashrc and .bash_profile files in the home

directory.

PATH=$PATH:/home/pi/.local/bin

After adding this line to the files, restart the shell. You can now check

the installed version by running the following command:

py.test --version

The output is as follows:

pytest 6.2.5

�Simple Test
Before you begin, create a directory called chapter05 in the code directory.

Copy the mypackage directory as it is from the chapter04 directory. Create

a directory called test in chapter05. Save all the code files for this chapter

in the test directory.

Chapter 5 pytest

125

Just like when using nose, writing a simple test is very easy. See the

code in Listing 5-1 as an example.

Listing 5-1.  test_module01.py

def test_case01():

 assert 'python'.upper() == 'PYTHON'

Listing 5-1 imports pytest in the first line. test_case01() is the test

function. Recall that assert is a Python built-in keyword. Also, just like

with nose, you do not need to extend these tests from any class. This helps

keep the code uncluttered.

Run the test module with the following command:

python3 -m pytest test_module01.py

The output is as follows:

===================== test session starts ====================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 rootdir: /home/pi/book/code/chapter05/test,

inifile:

collected 1 items

test_module01.py .

================== 1 passed in 0.05 seconds =================

You can also use verbose mode:

python3 -m pytest -v test_module01.py

The output is as follows:

=============== test session starts ===========================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

Chapter 5 pytest

126

cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

inifile: collected 1 items

test_module01.py::test_case01 PASSED

================ 1 passed in 0.04 seconds ====================

�Running Tests with the py.test Command
You can also run these tests with pytest's own command, called py.test:

py.test test_module01.py

The output is as follows:

================= test session starts =======================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 rootdir: /home/pi/book/code/chapter05/test,

inifile:

collected 1 items

test_module01.py .

=============== 1 passed in 0.04 seconds ===================

You can also use verbose mode as follows:

py.test test_module01.py -v

The output in verbose mode is as follows:

=================== test session starts =======================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

Chapter 5 pytest

127

rootdir: /home/pi/book/code/chapter05/test,

inifile:

collected 1 items

test_module01.py::test_case01 PASSED

==================== 1 passed in 0.04 seconds =================

For the sake of simplicity and convenience, from now onward, you

will use the same method to run these tests for rest of this chapter and the

book. You will use pytest in the last chapter to implement a project with

the methodology of test-driven development. Also, observe when you

run your own tests that the output of test execution is in color by default,

although the book shows the results in black and white. You do not have

to use any external or third-party plugin for this effect. Figure 5-1 shows a

screenshot of an execution sample.

Figure 5-1.  Sample pytest execution

�Test Class and Test Package in pytest
Like all the previous test automation frameworks, in pytest you can create

test classes and test packages. Take a look at the code in Listing 5-2 as an

example.

Chapter 5 pytest

128

Listing 5-2.  test_module02.py

class TestClass01:

 def test_case01(self):

 assert 'python'.upper() == 'PYTHON'

 def test_case02(self):

 assert 'PYTHON'.lower() == 'python'

Also create an init.py file, as shown in Listing 5-3.

Listing 5-3.  _init.py

all = ["test_module01", "test_module02"]

Now navigate to the chapter05 directory:

cd /home/pi/book/code/chapter05

And run the test package, as follows:

py.test test

You can see the output by running the previous command. You can

also use the following command to run a test package in verbose mode.

py.test -v test

You can run a single test module within a package with the following

command:

py.test -v test/test_module01.py

You can also run a specific test class as follows:

py.test -v test/test_module02.py::TestClass01

Chapter 5 pytest

129

You can run a specific test method as follows:

py.test -v test/test_module02.py::TestClass01::test_case01

You can run a specific test function as follows:

py.test -v test/test_module01.py::test_case01

�Test Discovery in pytest
pytest can discover and automatically run the tests, just like unittest,

nose, and nose2 can. Run the following command in the project directory

to initiate automated test discovery:

py.test

For verbose mode, run the following command:

py.test -v

�xUnit-Style Fixtures
pytest has xUnit-style fixtures. See the code in Listing 5-4 as an example.

Listing 5-4.  test_module03.py

def setup_module(module):

 print("\nIn setup_module()...")

def teardown_module(module):

 print("\nIn teardown_module()...")

def setup_function(function):

 print("\nIn setup_function()...")

def teardown_function(function):

 print("\nIn teardown_function()...")

Chapter 5 pytest

130

def test_case01():

 print("\nIn test_case01()...")

 def test_case02():

 print("\nIn test_case02()...")

class TestClass02:

 @classmethod

 def setup_class(cls):

 print ("\nIn setup_class()...")

 @classmethod

 def teardown_class(cls):

 print ("\nIn teardown_class()...")

 def setup_method(self, method):

 print ("\nIn setup_method()...")

 def teardown_method(self, method):

 print ("\nIn teardown_method()...")

 def test_case03(self):

 print("\nIn test_case03()...")

 def test_case04(self):

 print("\nIn test_case04()...")

In this code, setup_module() and teardown_module() are module-

level fixtures that are invoked before and after anything else in the module.

setup_class() and teardown_class() are class-level fixtures

and they run before and after anything else in the class. You have to

use the @classmethod() decorator with them. setup_method() and

teardown_method() are method-level fixtures that run before and after

every test method. setup_function() and teardown_function() are

function-level fixtures that run before and after every test function in the

Chapter 5 pytest

131

module. In nose, you need the @with_setup() decorator with the test

functions to assign those to the function level-fixtures. In pytest, function-

level fixtures are assigned to all test functions by default.

Also, just like with nose, you need to use the -s command-line option

to see the detailed log on the command line.

Now run the code with an additional -s option, as follows:

py.test -vs test_module03.py

Next, run the test again with the following command:

py.test -v test_module03.py

Compare the outputs of these modes of execution for a better

understanding.

�pytest Support for unittest and nose
pytest supports all the tests written in unittest and nose. pytest can

automatically discover and run the tests written in unittest and nose.

It supports all the xUnit-style fixtures for unittest test classes. It also

supports most of the fixtures in nose. Try running py.test -v in the

chapter03 and chapter04 directories.

�Introduction to pytest Fixtures
Apart from supporting xUnit-style fixtures and unittest fixtures, pytest

has its own set of fixtures that are flexible, extensible, and modular. This

is one of the core strengths of pytest and why it’s a popular choice of

automation testers.

In pytest, you can create a fixture and use it as a resource where it

is needed.

Chapter 5 pytest

132

Consider the code in Listing 5-5 as an example.

Listing 5-5.  test_module04.py

import pytest

@pytest.fixture()

def fixture01():

 print("\nIn fixture01()...")

def test_case01(fixture01):

 print("\nIn test_case01()...")

In Listing 5-5, fixture01() is the fixture function. It is because you are

using the @pytest.fixture() decorator with that. test_case01() is a test

function that uses fixture01(). For that, you are passing fixture01 as an

argument to test_case01().

Here is the output:

=================== test session starts ======================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

inifile: collected 1 items

test_module04.py::test_case01

In fixture01()...

In test_case01()...

PASSED

================= 1 passed in 0.04 seconds ====================

Chapter 5 pytest

133

As you can see, fixture01() is invoked before the test function

test_case01(). You could also use the @pytest.mark.usefixtures()

decorator, which achieves the same result. The code in Listing 5-6 is

implemented with this decorator and it produces the same output as

Listing 5-5.

Listing 5-6.  test_module05.py

import pytest

@pytest.fixture() def fixture01():

 print("\nIn fixture01()...")

@pytest.mark.usefixtures('fixture01')

def test_case01(fixture01):

 print("\nIn test_case01()...")

The output of Listing 5-6 is exactly the same as the code in Listing 5-5.

You can use the @pytest.mark.usefixtures() decorator for a class, as

shown in Listing 5-7.

Listing 5-7.  test_module06.py

import pytest

@pytest.fixture()

def fixture01():

 print("\nIn fixture01()...")

@pytest.mark.usefixtures('fixture01')

class TestClass03:

 def test_case01(self):

 print("I'm the test_case01")

 def test_case02(self):

 print("I'm the test_case02")

Chapter 5 pytest

134

Here is the output:

================== test session starts =======================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

inifile: collected 2 items

test_module06.py::TestClass03::test_case01

In fixture01()...

I'm the test_case01

PASSED

test_module06.py::TestClass03::test_case02

In fixture01()...

I'm the test_case02

PASSED

================ 2 passed in 0.08 seconds ====================

If you want to run a block of code after a test with a fixture has run,

you have to add a finalizer function to the fixture. Listing 5-8 demonstrates

this idea.

Listing 5-8.  test_module07.py

import pytest

@pytest.fixture()

def fixture01(request):

 print("\nIn fixture...")

 def fin():

 print("\nFinalized...")

 request.addfinalizer(fin)

Chapter 5 pytest

135

@pytest.mark.usefixtures('fixture01')

def test_case01():

 print("\nI'm the test_case01")

The output is as follows:

================= test session starts ========================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

 cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

inifile: collected 1 items

test_module07.py::test_case01

In fixture...

I'm the test_case01

PASSED

Finalized...

============== 1 passed in 0.05 seconds =====================

pytest provides access to the fixture information on the requested

object. Listing 5-9 demonstrates this concept.

Listing 5-9.  test_module08.py

import pytest

@pytest.fixture()

def fixture01(request):

 print("\nIn fixture...")

 print("Fixture Scope: " + str(request.scope))

 print("Function Name: " + str(request.function. name))

Chapter 5 pytest

136

 print("Class Name: " + str(request.cls))

 print("Module Name: " + str(request.module. name))

 print("File Path: " + str(request.fspath))

@pytest.mark.usefixtures('fixture01')

def test_case01():

 print("\nI'm the test_case01")

The following is the output of Listing 5-9:

================== test session starts =======================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

 cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

inifile:

collected 1 items

test_module08.py::test_case01

In fixture...

Fixture Scope: function

Function Name: test_case01

Class Name: None

Module Name: test.test_module08

File Path: /home/pi/book/code/chapter05/test/test_module08.py

I'm the test_case01

PASSED

============== 1 passed in 0.06 seconds ===================

Chapter 5 pytest

137

�Scope of pytest Fixtures
pytest provides you with a set of scope variables to define exactly when

you want to use the fixture. The default scope of any fixture is the function

level. It means that, by default, the fixtures are at the level of function.

The following shows the list of scopes for pytest fixtures:

•	 function: Runs once per test

•	 class: Runs once per class of tests

•	 module: Runs once per module

•	 session: Runs once per session

To use these, define them like this:

@pytest.fixture(scope="class")

•	 Use the function scope if you want the fixture to run

after every single test. This is fine for smaller fixtures.

•	 Use the class scope if you want the fixture to run in

each class of tests. Typically, you’ll group tests that are

alike in a class, so this may be a good idea, depending

on how you structure things.

•	 Use the module scope if you want the fixture to run at

the start of the current file and then after the file has

finished its tests. This can be good if you have a fixture

that accesses the database and you set up the database

at the beginning of the module and then the finalizer

closes the connection.

•	 Use the session scope if you want to run the fixture

at the first test and run the finalizer after the last test

has run.

Chapter 5 pytest

138

There is no scope for packages in pytest. However, you can cleverly

use the session scope as a package-level scope by making sure that only a

specific test package runs in a single session.

�pytest.raises()

In unittest, you have assertRaises() to check if any test raises an

exception. There is a similar method in pytest. It is implemented as

pytest.raises() and is useful for automating negative test scenarios.

Consider the code shown in Listing 5-10.

Listing 5-10.  test_module09.py

import pytest

def test_case01():

 with pytest.raises(Exception):

 x = 1 / 0

def test_case02():

 with pytest.raises(Exception):

 x = 1 / 1

In Listing 5-10, the line with pytest.raises(Exception) checks if an

exception is raised in the code. If an exception is raised in the block of code

that include the exception, the test passes; otherwise, it fails.

Here is Listing 5-10’s output:

============= test session starts =============================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter05/test,

Chapter 5 pytest

139

inifile:

collected 2 items

test_module09.py::test_case01 PASSED

test_module09.py::test_case02 FAILED

=========================== FAILURES ==========================

__________________________test_case02__________________________

def test_case02():

 with pytest.raises(Exception):

> x = 1 / 1

E Failed: DID NOT RAISE <class 'Exception'>

test_module09.py:10: Failed

============== 1 failed, 1 passed in 0.21 seconds =============

In test_case01(), an exception is raised, so it passes. test_case02()

does not raise an exception, so it fails. As mentioned earlier, this is

extremely useful for testing negative scenarios.

�Important pytest Command-Line Options
Some of pytest’s more important command-line options are discussed in

the following sections.

�Help
For help, run py.test -h. It will display a list with uses of various

command-line options.

Chapter 5 pytest

140

�Stopping After the First (or N) Failures
You can stop the execution of tests after the first failure using py.test -x.

In the same way, you can use py.test --maxfail=5 to stop execution after

five failures. You can also change the argument provided to --maxfail.

�Profiling Test Execution Duration
Profiling means assessing execution of programs for factors like time,

space, and memory. Profiling is primarily done to improve programs so

that they consume fewer resources while executing. The test modules

and suites you write are basically programs that test other programs.

You can find the slowest tests with pytest. You can use the py.test

--durations=10 command to show the slowest tests. You can change the

argument provided to --duration. Try running this command on the

chapter05 directory as an example.

�JUnit-Style Logs
Frameworks like JUnit (a unit test automation framework for Java) produce

the logs for execution in XML format. You can generate JUnit-style XML log

files for your tests by running the following command:

py.test --junitxml=result.xml

The XML file will be generated in the current directory.

�Conclusion
The following are the reasons I use pytest and recommend that all Python

enthusiasts and professionals use it:

Chapter 5 pytest

141

•	 It is better than unittest. The resulting code is cleaner

and simpler.

•	 Unlike with nose, pytest is still under active

development.

•	 It has great features for controlling test execution.

•	 It can generate XML results without an

additional plugin.

•	 It can run unittest tests.

•	 It has its own set of advanced fixtures that are modular

in nature.

If you are working on a project that uses unittest, nose, or doctest

as the test framework for Python, I recommend migrating your tests

to pytest.

Chapter 5 pytest

143© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_6

CHAPTER 6

Testing with Selenium
In the last chapter, you became acquainted with a unit test framework,

pytest. You should now be somewhat comfortable with writing unit tests

with the pytest framework. In this chapter, you learn about the webdriver

framework called Selenium.

�Introduction to Selenium
Selenium is a webdriver framework. It is used for browser automation.

It means that you can open a browser program (or a browser app)

programmatically. All the browser operations that you perform manually

can be performed programmatically with webdriver frameworks. Selenium

is the most popular webdriver framework that is used for browser

automation.

Jason Huggins developed Selenium in 2004 as a tool at ThoughtWorks.

It was intended to be for internal usage in the organization. After the

tool became popular, many people joined its development and it was

made open source. Its development continued thereafter as open source.

Huggins joined Google in 2007 and continued with the development of

the tool.

The name Selenium is a joke played on Mercury Interactive, which

also created proprietary tools for test automation. The joke is that Mercury

poisoning can be cured by Selenium, so the new open source framework

was named Selenium. Selenium and Mercury are both elements on the

Periodic table.

https://doi.org/10.1007/978-1-4842-7854-3_6#DOI

144

Simon Stewart at ThoughtWorks developed a browser automation

tool called WebDriver. The developers at ThoughtWorks and Google met

at the Google Test Automation Conference in 2009 and decided to merge

the Selenium and Webdriver projects. The new framework was christened

Selenium Webdriver or Selenium 2.0.

Selenium has three major components:

•	 Selenium IDE

•	 Selenium Webdriver

•	 Selenium Grid

You will read about Selenium IDE and Selenium Webdriver in this

chapter.

�Selenium IDE
Selenium IDE is a browser plugin used to record browser actions. After

recording, you can play back the entire sequence of actions. You can

also export the scripted actions as a code file in various programming

languages. Let’s get started by installing the plugin on the Chrome and

Firefox browsers.

Add the extension to the Chrome web browser with the following URL:

https://chrome.google.com/webstore/detail/selenium-ide/

mooikfkahbdckldjjndioackbalphokd

Once it’s been added, you can access it from the menu next to the

address bar, as shown in Figure 6-1.

Chapter 6 Testing with Selenium

https://chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd
https://chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd

145

Figure 6-1.  Selenium IDE for Chrome

You can access the add-on for the Firefox browser from the

following URL:

https://addons.mozilla.org/en-GB/firefox/addon/selenium-ide/

Once you add it, you can access it from the menu next to the address

bar, as shown in the top-right corner of Figure 6-2.

Figure 6-2.  Selenium IDE for Chrome

Clicking these options in the respective browser opens a window, as

shown in Figure 6-3.

Chapter 6 Testing with Selenium

https://addons.mozilla.org/en-GB/firefox/addon/selenium-ide/

146

Figure 6-3.  Selenium IDE window

The GUI for the Selenium IDE is same for all browsers. Click Create a

New Project to open a new window, as shown in Figure 6-4.

Chapter 6 Testing with Selenium

147

Figure 6-4.  Selenium new project

Enter a name of your choice. This will enable the OK button. Click the

OK button to show the window in Figure 6-5.

Chapter 6 Testing with Selenium

148

Figure 6-5.  Selenium IDE window

As you can see, this window is divided into various sections. In the top

left, you can see the name of the project. In the top right, you have three

icons. The first icon creates a new project when clicked. The second icon

is for opening an existing project. The third icon saves the current project.

The saved file has a *.side extension (Selenium IDE).

Let’s rename the existing test. Check the left tab. You can see an

untitled test, as shown in Figure 6-6.

Chapter 6 Testing with Selenium

149

Figure 6-6.  Renaming the untitled test

When you save the project, it tries to save it as a new file. You have to

save it with the existing name by overwriting the earlier file. Now, click the

Record button. The shortcut is Ctrl+U. It opens a new dialog box asking

you for the base URL of the project; see Figure 6-7.

Chapter 6 Testing with Selenium

150

Figure 6-7  Project Base URL

You have to enter the URL of the web page to be tested. The URL

should also include the text http:// or https://, otherwise it won’t

consider it a URL. Enter http://www.google.com into the box. It will then

enable the Start Recording button. The recording button is red and can

be found on the top-right side of the window. Click the button and it will

launch a new window with the specified URL. It looks like Figure 6-8.

Chapter 6 Testing with Selenium

http://www.google.com

151

Figure 6-8.  Selenium IDE recording

Type Python into the search bar and then click Google Search. It will

show you the search results. Click the first result and then, after loading

the page, close the browser window. Then stop recording by clicking

the button from the menu. You will see the recorded steps in the IDE, as

shown in Figure 6-9.

Chapter 6 Testing with Selenium

152

Figure 6-9.  Selenium IDE after recording

You can automatically rerun all the steps. You can see a group of four

icons in the same bar for the Record button. The first icon is to run all the

tests and the second is for running the current test. The current project has

a single test, so it will run the only test in the suite. Click any of the buttons

to automatically repeat this sequence of actions.

This way you can record and execute sequence of actions. Once the

recorded tests execute successfully, the bottom section will show the log,

as shown in Figure 6-10.

Chapter 6 Testing with Selenium

153

Figure 6-10.  Selenium IDE logs

You can add new tests to the project by clicking the + icon in the menu.

A project will usually have multiple tests. Now you learn how to export

your project. You can right-click the test to open a menu, as shown in

Figure 6-6. Click the Export option. It opens a new window, as shown in

Figure 6-11.

Figure 6-11.  Exporting the project as code

Chapter 6 Testing with Selenium

154

Check the top two options and then click the Export button. It will

open a window called Save As. Provide the details and it will save the

project as a Python file with the *.py extension in the specified directory.

The generated code is shown in Listing 6-1.

Listing 6-1.  test_test01.py

Generated by Selenium IDE

import pytest

import time

import json

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.common.action_chains import

ActionChains

from selenium.webdriver.support import expected_conditions

from selenium.webdriver.support.wait import WebDriverWait

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.common.desired_capabilities import

DesiredCapabilities

class TestTest01():

 def setup_method(self, method):

 self.driver = webdriver.Chrome()

 self.vars = {}

 def teardown_method(self, method):

 self.driver.quit()

 def test_test01(self):

 # Test name: Test01

 # Step # | name | target | value

 # 1 | open | / |

 self.driver.get("https://www.google.com/")

Chapter 6 Testing with Selenium

155

 # 2 | setWindowSize | 1042x554 |

 self.driver.set_window_size(1042, 554)

 # 3 | type | name=q | python

 self.driver.find_element(By.NAME, "q").send_keys("python")

 # 4 | click | css=form > div:nth-child(1) |

 �self.driver.find_element(By.CSS_SELECTOR, "form >

div:nth-child(1)").click()

 # 5 | click | css=center:nth-child(1) > .gNO89b |

 �self.driver.find_element(By.CSS_SELECTOR,

"center:nth-child(1) > .gNO89b").click()

 # 6 | click | css=.eKjLze .LC20lb |

 �self.driver.find_element(By.CSS_SELECTOR,

".eKjLze .LC20lb").click()

 # 7 | close | |

 self.driver.close()

This is how you can export automated tests to Python. You can run

this file with the unittest framework to reproduce the tests later. Don’t

execute the code yet, as you have not installed the Selenium framework

for Python. You will analyze and learn to write your own code in the next

section.

�Selenium Webdriver
Selenium IDE is a plugin. It is just a record and playback tool with a little

provision to customize test cases. If you want full control over your tests,

you should be able to write them from scratch. Selenium Webdriver allows

you to do that.

Chapter 6 Testing with Selenium

156

The code exported in the last section uses webdriver for browser

automation. Here, you see how to write your own code from scratch. You

can install Selenium Webdriver with the following command:

pip3 install selenium

Now you can run the code saved in the last section.

Let’s look at how to write the code from scratch. Check out the code in

Listing 6-2.

Listing 6-2.  prog00.py

from selenium import webdriver

driver_path=r'D:\\drivers\\geckodriver.exe'

driver = webdriver.Firefox(executable_path=driver_path)

driver.close()

Consider this code line-by-line. The first line imports the library to

your program. The second line defines a string. The string contains the

path to the driver executable for the browser you are about to automate.

You can download the drivers for the various browsers from the

following URLs:

https://sites.google.com/chromium.org/driver/

https://developer.microsoft.com/en-us/microsoft-edge/tools/

webdriver/

https://github.com/mozilla/geckodriver/releases

Visit these web pages and download the appropriate driver for your

OS (Windows/Linux/macOS) and architecture (32/64-bit) combination.

I downloaded and saved them in a location identified by D:\drivers on

my Windows 64-bit OS.

Chapter 6 Testing with Selenium

https://sites.google.com/chromium.org/driver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://github.com/mozilla/geckodriver/releases

157

The third line creates a driver object and the fourth line closes

it. Launch the program from IDLE or from the command line. It will

momentarily open the browser and close it. If you use IDLE, it will also

open the geckodriver.exe file separately and you will have to close it

manually. You will see how to terminate it programmatically shortly. For

now, close it manually. Check out Listing 6-3.

Listing 6-3.  prog01.py

from selenium import webdriver

driver_path=r'D:\\drivers\\chromedriver.exe'

driver = webdriver.Chrome(executable_path=driver_path)

driver.close()

driver.quit()

Here, you are using the Chrome driver and closing the driver

executable in the last line. Run this to see the code in action. Next, let’s

experiment with the edge browser and add some waiting time into the

code. Check out Listing 6-4.

Listing 6-4.  prog02.py

from selenium import webdriver

import time

driver_path=r'D:\\drivers\\msedgedriver.exe'

driver = webdriver.Edge(executable_path=driver_path)

time.sleep(10)

driver.close()

time.sleep(5)

driver.quit()

Run the code to see it in action.

Chapter 6 Testing with Selenium

158

You can also write the code for the Safari Browser. Safari webdriver

comes preinstalled in macOS. It can be found at /usr/bin/safaridriver.

You can enable it with the following shell command:

safaridriver –enable

You can create the driver object with the following line of code

in Python:

driver = webdriver.Safari()

�Selenium with Unittest
You can use Selenium framework with unittest. This way you can create

separate tests for separate cases. You can track the progress of your tests

this way. See Listing 6-5.

Listing 6-5.  test_test02.py

import unittest

from selenium import webdriver

class TestClass01(unittest.TestCase):

 def setUp(self):

 driver_path=r'D:\\drivers\\geckodriver.exe'

 driver = webdriver.Firefox(executable_path=driver_path)

 self.driver = driver

 print ("\nIn setUp()...")

 def tearDown(self):

 print ("\nIn tearDown")

 self.driver.close()

 self.driver.quit()

Chapter 6 Testing with Selenium

159

 def test_case01(self):

 print("\nIn test_case01()...")

 self.driver.get("http://www.python.org")

 assert self.driver.title == "Welcome to Python.org"

if __name__ == "__main__":

 unittest.main()

This script is creating the webdriver object, opening a web page and

checking its title, and when it’s done, it closes the browser window and the

webdriver. Run the script to see it all in action.

�Conclusion
In this chapter, you studied the basics of web browser automation with

Selenium. You also learned about the Selenium IDE and how to combine

unittest with Selenium.

The next chapter is dedicated to the logging mechanisms in Python.

Chapter 6 Testing with Selenium

161© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_7

CHAPTER 7

Logging in Python
In the last chapter, you became acquainted with a unit test framework,

Selenium. This chapter is a change of pace and you learn about a related

topic, logging.

The chapter covers the following:

•	 Logging basics

•	 Logging with an OS

•	 Manually logging with file operations

•	 Logging in Python

•	 Logging with loguru

After reading this chapter, you will be more comfortable logging

in Python.

�Logging Basics
The process of recording something is known as logging. For example, if

I am recording the temperature, that is known as temperature logging,

which is an example of physical logging. We can use this concept in

computer programming as well. Many times, you’ll get an intermediate

output on the terminal. It is used for the purpose of debugging when the

program runs. Sometimes programs run automatically using crontab

(in UNIX-like OSs) or using Windows Scheduler. In such cases, logging

is used to determine if there was a problem during execution. Generally,

https://doi.org/10.1007/978-1-4842-7854-3_7#DOI

162

such information is logged to files so that if the maintenance or operations

people are not present, they can review the logs at the earliest available

opportunity. There are various ways you can log information related to the

execution of a program. The following sections look at them one by one.

�Logging with an OS
Let’s log with an OS using the command line. Consider the program in

Listing 7-1.

Listing 7-1.  prog00.py

import datetime

import sys

print("Commencing Execution of the program...")

print(datetime.datetime.now())

for i in [1, 2, 3, 4, 5]:

 print("Iteration " + str(i) + " ...")

print("Done...")

print(datetime.datetime.now())

sys.exit(0)

When you run this using IDLE or any IDE, you’ll see the following

output in the terminal:

Commencing Execution of the program...

2021-09-01 19:09:14.900123

Iteration 1 ...

Iteration 2 ...

Iteration 3 ...

Iteration 4 ...

Iteration 5 ...

Done...

2021-09-01 19:09:14.901121

Chapter 7 Logging in Python

163

This is what logging on a terminal looks like. You can also log this in a

file. You can use IO redirection in Linux and Windows to achieve this. You

can run the program on the Windows command prompt as follows:

python prog00.py >> test.log

On the Linux terminal, the command is as follows:

python3 prog00.py >> test.log

This command will create a new file called test.log in the same

directory and redirect all the output there.

This is how you can display the execution log and save it in a file.

�Manually Logging with File Operations
This section explains how to log events with file operations in Python. First

you need to open a file. Use the open() routine to do so. Run the following

example from the Python 3 interpreter prompt:

>>> logfile = open('mylog.log', 'w')

This command creates an object named logfile for the file

operations. The first argument to the open() routine is the name of the file

and the second operation is the mode in which the file is to be opened.

This example uses the w mode, which stands for the write operation. There

are many modes for opening files, but this is the only one that’s relevant

right now. As an exercise, you may explore other modes.

The previous line of code opens the file in write mode if the file exists;

otherwise, it creates a new file. Now run the following code:

>>> logfile.write('This is the test log.')

The output will be as follows:

21

Chapter 7 Logging in Python

164

The write() routine writes the given string to the file and returns the

length of the string. Finally, you can close the file object as follows:

>>> logfile.close()

Now, let’s modify the earlier script called prog00.py to add the file

operations for logging, as shown in Listing 7-2.

Listing 7-2.  prog01.py

import datetime

import sys

logfile = open('mylog.log', 'w')

msg = "Commencing Execution of the program...\n" +

str(datetime.datetime.now())

print(msg)

logfile.write(msg)

for i in [1, 2, 3, 4, 5]:

 msg = "\nIteration " + str(i) + " ..."

 print(msg)

 logfile.write(msg)

msg = "\nDone...\n" + str(datetime.datetime.now())

logfile.write(msg)

print(msg)

logfile.close()

sys.exit(0)

As you can see in Listing 7-2, you are creating strings of the log

messages. The program then sends them to the log file and to the terminal

at the same time. You can run this program using the IDLE or with the

command prompt.

This is how to log the execution of programs manually using file

operations.

Chapter 7 Logging in Python

165

�Logging in Python
This section explains the logging process in Python. You do not have to

install anything for this, as it comes with the Python installation as a part

of its batteries-included philosophy. You can import the logging library as

follows:

import logging

Before getting into the programming part, you need to know

something important—the level of logging. There are five levels of logging.

These levels have priorities assigned to them. The following is the list of

these levels in increasing order of severity:

DEBUG

INFO

WARNING

ERROR

CRITICAL

Now consider the code example in Listing 7-3.

Listing 7-3.  prog02.py

import logging

logging.debug('Debug')

logging.info('Info')

logging.warning('Warning')

logging.error('Error')

logging.critical('Critical')

The output is as follows:

WARNING:root:Warning

ERROR:root:Error

CRITICAL:root:Critical

Chapter 7 Logging in Python

166

As you can see, only the last three log lines are printed. This is because

the default level of logging is Warning. This means that all the levels of

logging starting with warning will be logged. These include Warning,

Error, and Critical.

You can change the level of logging, as shown in Listing 7-4.

Listing 7-4.  prog03.py

import logging

logging.basicConfig(level=logging.DEBUG)

logging.debug('Debug')

logging.info('Info')

logging.warning('Warning')

logging.error('Error')

logging.critical('Critical')

As you can see, the basicConfig() routine configures the level of

logging. You need to call this routine before calling any logging routines.

This example sets the logging level to Debug. Debug is the lowest level of

logging and this means that all the logs with logging level Debug and above

will be recorded. The output is as follows:

DEBUG:root:Debug

INFO:root:Info

WARNING:root:Warning

ERROR:root:Error

CRITICAL:root:Critical

Let’s look at the log messages in detail. As you can see, the log

messages are divided into three parts. The first part is the level of the log.

The second part is the name of the logger. In this case, it is the root logger.

The third part is the string that you pass to the logging routines. You will

learn later how to change the details of this message.

Chapter 7 Logging in Python

167

This is a good time to discuss what the different logging levels mean.

Debug and Info levels usually indicate general execution of programs. The

Warning logging level indicates problems that are not showstoppers. Error

is used when you have serious problems affecting the normal execution

of your programs. Finally, Critical is the highest level and it indicates a

system-wide failure.

�Logging to a File
You have learned how to display log messages to the terminal. You can also

log messages to a file, as shown in Listing 7-5.

Listing 7-5.  prog04.py

import logging

logging.basicConfig(filename='logfile.log',

 encoding='utf-8',

 level=logging.DEBUG)

logging.debug('Debug')

logging.info('Info')

logging.warning('Warning')

logging.error('Error')

logging.critical('Critical')

As you can see, the program sets the encoding and the name of the log

file. Run the program and check the log file.

This program checks for the existence of the log file with the name

passed as a string to the basicConfig() routine. If the file does not exist, it

creates the file with the name. Otherwise, it appends to the existing file. If

you want to create a fresh file every time you execute the code, you can do

that using the code in Listing 7-6.

Chapter 7 Logging in Python

168

Listing 7-6.  prog05.py

import logging

logging.basicConfig(filename='logfile.log',

 encoding='utf-8',

 filemode='w',

 level=logging.DEBUG)

logging.debug('Debug')

logging.info('Info')

logging.warning('Warning')

logging.error('Error')

logging.critical('Critical')

Notice the additional parameter and the associated argument for the

call of the basicConfig() routine.

�Customizing the Log Message
You can customize your log messages as well. You have to specify this

by passing an argument to the parameter of the basicConfig() routine.

Listing 7-7 shows an example.

Listing 7-7.  prog06.py

import logging

logging.basicConfig(filename='logfile.log',

 format='%(asctime)s:%(levelname)s:%(message)s',

 encoding='utf-8',

 filemode='w',

 level=logging.DEBUG)

logging.debug('Debug')

logging.info('Info')

Chapter 7 Logging in Python

169

logging.warning('Warning')

logging.error('Error')

logging.critical('Critical')

As you can see, this example passes the formatting string '%(asctime)

s:%(levelname)s:%(message)s' to the parameter format of the

basicConfig() routine. The output is as follows:

2021-09-02 13:36:35,401:DEBUG:Debug

2021-09-02 13:36:35,401:INFO:Info

2021-09-02 13:36:35,401:WARNING:Warning

2021-09-02 13:36:35,401:ERROR:Error

2021-09-02 13:36:35,401:CRITICAL:Critical

The output shows the date and time, the logging level, and the

message.

�Customizing Logging Operations
Up to now, the examples have been using the default logger, known as

root. You can also create your own custom loggers. Logger objects send

log messages to handler objects. Handlers send the log messages to their

destinations. The destination can be a log file or the console. You can

create objects for console handlers and file handlers. Log formatters are

used to format the contents of the log messages. Let’s look at an example

line by line. Create a new file called prog07.py. You will now see how to

add the code to this file to show customized logging operations.

Import the library as follows:

import logging

Chapter 7 Logging in Python

170

Create a custom logger as follows:

logger = logging.getLogger('myLogger')

logger.setLevel(logging.DEBUG)

You have created the custom logger with the name myLogger.

Whenever you include the name in the log message, it will show myLogger

in place of root. Now create a handler to log to a file.

fh = logging.FileHandler('mylog.log', encoding='utf-8')

fh.setLevel(logging.DEBUG)

Create a file formatter:

file_formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s')

Set it to the file handler:

fh.setFormatter(file_formatter)

Add the file handler to the logger:

logger.addHandler(fh)

You can create a console handler too. Repeat these steps for a new

console handler:

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console_formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s')

ch.setFormatter(console_formatter)

logger.addHandler(ch)

Chapter 7 Logging in Python

171

The entire script is shown in Listing 7-8.

Listing 7-8.  prog07.py

import logging

logger = logging.getLogger('myLogger')

logger.setLevel(logging.DEBUG)

fh = logging.FileHandler('mylog.log',

 encoding='utf-8')

fh.setLevel(logging.DEBUG)

file_formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s')

fh.setFormatter(file_formatter)

logger.addHandler(fh)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console_formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s')

ch.setFormatter(console_formatter)

logger.addHandler(ch)

logger.debug('Debug')

logger.info('Info')

logger.warning('Warning')

logger.error('Error')

logger.critical('Critical')

This is how you can simultaneously log onto the console and onto a

file. Run the code and see the output.

Chapter 7 Logging in Python

172

�Rotating a Log File
You can also have rotating log file. You just need to change one line in

Listing 7-8. Rotating log files means that all the new logs will be written to a

new file and the old logs will be backed up by renaming the log files. Check

out Listing 7-9.

Listing 7-9.  prog08.py

import logging

import logging.handlers

logfile = 'mylog.log'

logger = logging.getLogger('myLogger')

logger.setLevel(logging.DEBUG)

rfh = logging.handlers.RotatingFileHandler(logfile,

 maxBytes=10,

 backupCount=5)

rfh.setLevel(logging.DEBUG)

file_formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s')

rfh.setFormatter(file_formatter)

logger.addHandler(rfh)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console_formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s')

ch.setFormatter(console_formatter)

logger.addHandler(ch)

logger.debug('Debug')

logger.info('Info')

logger.warning('Warning')

logger.error('Error')

logger.critical('Critical')

Chapter 7 Logging in Python

173

As you can see in Listing 7-9, the code has implemented the rotating

file handle. The following line of code creates it:

rfh = logging.handlers.RotatingFileHandler(logfile,

 maxBytes=10,

 backupCount=5)

It creates log files as follows:

mylog.log

mylog.log.1

mylog.log.2

mylog.log.3

mylog.log.4

mylog.log.5

The most recent logs are saved in mylog.log and its capacity is 10

bytes. When this log file reaches 10 bytes, as specified in the routine call

parameter maxBytes, it is renamed mylog.log.1. When the file is full

again, this process repeats and mylog.log.2 is renamed mylog.log.2. This

process continues and the files from mylog.log.5 onward are purged. This

is because you passed 5 as an argument to the backupCount parameter. As

an exercise, try changing the arguments.

�Using Multiple Loggers
You can use multiple loggers in your programs as well. Listing 7-10

creates two loggers, one handler, and one formatter. The handler is shared

between the loggers.

Chapter 7 Logging in Python

174

Listing 7-10.  prog09.py

import logging

logger1 = logging.getLogger('Logger1')

logger1.setLevel(logging.DEBUG)

logger2 = logging.getLogger('Logger2')

logger2.setLevel(logging.DEBUG)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console_formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s')

ch.setFormatter(console_formatter)

logger1.addHandler(ch)

logger2.addHandler(ch)

logger1.debug('Debug')

logger2.debug('Debug')

logger1.info('Info')

logger2.info('Info')

logger1.warning('Warning')

logger2.warning('Warning')

logger1.error('Error')

logger2.error('Error')

logger1.critical('Critical')

logger2.critical('Critical')

The output is as follows:

2021-09-03 00:25:40,135:Logger1:DEBUG:Debug

2021-09-03 00:25:40,153:Logger2:DEBUG:Debug

2021-09-03 00:25:40,161:Logger1:INFO:Info

2021-09-03 00:25:40,168:Logger2:INFO:Info

2021-09-03 00:25:40,176:Logger1:WARNING:Warning

2021-09-03 00:25:40,184:Logger2:WARNING:Warning

Chapter 7 Logging in Python

175

2021-09-03 00:25:40,193:Logger1:ERROR:Error

2021-09-03 00:25:40,200:Logger2:ERROR:Error

2021-09-03 00:25:40,224:Logger1:CRITICAL:Critical

2021-09-03 00:25:40,238:Logger2:CRITICAL:Critical

Now you’ll see how to create separate handler and formatter for both

loggers. Listing 7-11 shows an example.

Listing 7-11.  prog10.py

import logging

logger1 = logging.getLogger('Logger1')

logger1.setLevel(logging.DEBUG)

logger2 = logging.getLogger('Logger2')

logger2.setLevel(logging.DEBUG)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console_formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s')

ch.setFormatter(console_formatter)

logger1.addHandler(ch)

fh = logging.FileHandler('mylog.log',

 encoding='utf-8')

fh.setLevel(logging.DEBUG)

file_formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s')

fh.setFormatter(file_formatter)

logger2.addHandler(fh)

logger1.debug('Debug')

logger2.debug('Debug')

logger1.info('Info')

logger2.info('Info')

logger1.warning('Warning')

Chapter 7 Logging in Python

176

logger2.warning('Warning')

logger1.error('Error')

logger2.error('Error')

logger1.critical('Critical')

logger2.critical('Critical')

As you can see, there are two separate sets of a logger, a handler, and a

formatter. One set sends logs to the console and another set sends logs to a

log file. The output to the console is as follows:

2021-09-03 15:13:37,513:Logger1:DEBUG:Debug

2021-09-03 15:13:37,533:Logger1:INFO:Info

2021-09-03 15:13:37,542:Logger1:WARNING:Warning

2021-09-03 15:13:37,552:Logger1:ERROR:Error

2021-09-03 15:13:37,560:Logger1:CRITICAL:Critical

The output to the log file is as follows:

2021-09-03 15:13:37,532 - Logger2 - DEBUG - Debug

2021-09-03 15:13:37,542 - Logger2 - INFO - Info

2021-09-03 15:13:37,551 - Logger2 - WARNING - Warning

2021-09-03 15:13:37,560 - Logger2 - ERROR - Error

2021-09-03 15:13:37,569 - Logger2 - CRITICAL – Critical

�Logging with Threads
Sometimes, you’ll use multithreading in your programs. Python allows you to

use the logging feature with threads. This ensures that you are informed about

the details of execution of threads you use in your programs. Create a new

Python file and name it prog11.py. Add the following code to that file:

import logging

import threading

import time

Chapter 7 Logging in Python

177

Now create a function as follows:

def worker(arg, number):

 while not arg['stop']:

 logging.debug('Hello from worker() thread number '

 + str(number))

 time.sleep(0.75 * number)

This function accepts an argument and, unless you terminate it, it

keeps running a loop displaying a message.

Let’s configure the default console logger as follows:

logging.basicConfig(level='DEBUG',

format='%(asctime)s:%(name)s:%(levelname)s:%(message)s')

Now create two threads as follows:

info = {'stop': False}

thread1 = threading.Thread(target=worker, args=(info, 1,))

thread1.start()

thread2 = threading.Thread(target=worker, args=(info, 2,))

thread2.start()

Create a loop that will be interrupted by the keyboard and will also

interrupt the threads:

while True:

 try:

 logging.debug('Hello from the main() thread')

 time.sleep(1)

 except KeyboardInterrupt:

 info['stop'] = True

 break

Chapter 7 Logging in Python

178

Finally, join these threads:

thread1.join()

thread2.join()

The entire program is shown in Listing 7-12.

Listing 7-12.  prog11.py

import logging

import threading

import time

def worker(arg, number):

 while not arg['stop']:

 logging.debug('Hello from worker() thread number '

 + str(number))

 time.sleep(0.75 * number)

logging.basicConfig(level='DEBUG',

format='%(asctime)s:%(name)s:%(levelname)s:%(message)s')

info = {'stop': False}

thread1 = threading.Thread(target=worker, args=(info, 1,))

thread1.start()

thread2 = threading.Thread(target=worker, args=(info, 2,))

thread2.start()

while True:

 try:

 logging.debug('Hello from the main() thread')

 time.sleep(1)

 except KeyboardInterrupt:

 info['stop'] = True

 break

thread1.join()

thread2.join()

Chapter 7 Logging in Python

179

Run the program and then press Ctrl+C to terminate it after a few

seconds. The output is as follows:

2021-09-03 15:34:27,071:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:27,304:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:27,664:root:DEBUG:Hello from worker() thread

number 2

2021-09-03 15:34:27,851:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:28,364:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:28,629:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:29,239:root:DEBUG:Hello from worker() thread

number 2

2021-09-03 15:34:29,381:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:29,414:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:30,205:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:30,444:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:30,788:root:DEBUG:Hello from worker() thread

number 2

2021-09-03 15:34:30,990:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:31,503:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:31,828:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:32,311:root:DEBUG:Hello from worker() thread

number 2

2021-09-03 15:34:32,574:root:DEBUG:Hello from the main() thread

Chapter 7 Logging in Python

180

2021-09-03 15:34:32,606:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:33,400:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:33,634:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:33,865:root:DEBUG:Hello from worker() thread

number 2

2021-09-03 15:34:34,175:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:34,688:root:DEBUG:Hello from the main() thread

2021-09-03 15:34:34,969:root:DEBUG:Hello from worker() thread

number 1

2021-09-03 15:34:35,456:root:DEBUG:Hello from worker() thread

number 2

Traceback (most recent call last):

 File "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/Code/Chapter07/prog11.py", line 26,

in <module>

 thread2.join()

KeyboardInterrupt

Multiple Loggers Writing to the Same Target
You can have multiple loggers writing to the same target. The code

example shown in Listing 7-13 sends the logs of two different loggers to a

console handler and a file handler.

Chapter 7 Logging in Python

181

Listing 7-13.  prog12.py

import logging

logger1 = logging.getLogger('Logger1')

logger1.setLevel(logging.DEBUG)

logger2 = logging.getLogger('Logger2')

logger2.setLevel(logging.DEBUG)

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

console_formatter = logging.Formatter('%(asctime)s:%(name)

s:%(levelname)s:%(message)s')

ch.setFormatter(console_formatter)

logger1.addHandler(ch)

logger2.addHandler(ch)

fh = logging.FileHandler('mylog.log',

 encoding='utf-8')

fh.setLevel(logging.DEBUG)

file_formatter = logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s - %(message)s')

fh.setFormatter(file_formatter)

logger1.addHandler(fh)

logger2.addHandler(fh)

logger1.debug('Debug')

logger2.debug('Debug')

logger1.info('Info')

logger2.info('Info')

logger1.warning('Warning')

logger2.warning('Warning')

logger1.error('Error')

logger2.error('Error')

logger1.critical('Critical')

logger2.critical('Critical')

Chapter 7 Logging in Python

182

Run the program to see the following output on the console:

2021-09-03 16:10:53,938:Logger1:DEBUG:Debug

2021-09-03 16:10:53,956:Logger2:DEBUG:Debug

2021-09-03 16:10:53,966:Logger1:INFO:Info

2021-09-03 16:10:53,974:Logger2:INFO:Info

2021-09-03 16:10:53,983:Logger1:WARNING:Warning

2021-09-03 16:10:53,993:Logger2:WARNING:Warning

2021-09-03 16:10:54,002:Logger1:ERROR:Error

2021-09-03 16:10:54,011:Logger2:ERROR:Error

2021-09-03 16:10:54,031:Logger1:CRITICAL:Critical

2021-09-03 16:10:54,049:Logger2:CRITICAL:Critical

The log file contains the following log after the execution of the

program:

2021-09-03 16:10:53,938 - Logger1 - DEBUG - Debug

2021-09-03 16:10:53,956 - Logger2 - DEBUG - Debug

2021-09-03 16:10:53,966 - Logger1 - INFO - Info

2021-09-03 16:10:53,974 - Logger2 - INFO - Info

2021-09-03 16:10:53,983 - Logger1 - WARNING - Warning

2021-09-03 16:10:53,993 - Logger2 - WARNING - Warning

2021-09-03 16:10:54,002 - Logger1 - ERROR - Error

2021-09-03 16:10:54,011 - Logger2 - ERROR - Error

2021-09-03 16:10:54,031 - Logger1 - CRITICAL - Critical

2021-09-03 16:10:54,049 - Logger2 - CRITICAL – Critical

Chapter 7 Logging in Python

183

�Logging with loguru
There is another logging mechanism for Python that can be installed

and used. It is known as loguru. It is a third-party library, so it needs to

be installed separately. It is slightly better than the built-in logger and

has more features. In this section, you see how to install it, use it, and

explore it.

You can install loguru on Windows and Linux using the following

command:

pip3 install loguru

The following is the installation log on a Windows computer:

Collecting loguru

 Downloading loguru-0.5.3-py3-none-any.whl (57 kB)

 |████████████████| 57 kB 1.1 MB/s

Collecting win32-setctime>=1.0.0

 Downloading win32_setctime-1.0.3-py3-none-any.whl (3.5 kB)

Requirement already satisfied: colorama>=0.3.4 in c:\users\

ashwin\appdata\local\programs\python\python39\lib\site-packages

(from loguru) (0.4.4)

Installing collected packages: win32-setctime, loguru

Successfully installed loguru-0.5.3 win32-setctime-1.0.3

�Using loguru and the Available Logging Levels
There is only one logger in loguru. You can configure it per your needs. By

default, it sends the log messages to stderr. Listing 7-14 shows a simple

example.

Chapter 7 Logging in Python

184

Listing 7-14.  Prog13.py

from loguru import logger

logger.trace('Trace')

logger.debug('Debug')

logger.info('Info')

logger.success('Success')

logger.warning('Warning')

logger.error('Error')

logger.critical('Critical')

The code in Listing 7-14 lists all the logging levels in increasing order of

severity. You can also log everything to a file, as shown in Listing 7-15.

Listing 7-15.  Prog14.py

from loguru import logger

import sys

logger.add("mylog_{time}.log",

 format="{time}:{level}:{message}",

 level="TRACE")

logger.trace('Trace')

logger.debug('Debug')

logger.info('Info')

logger.success('Success')

logger.warning('Warning')

logger.error('Error')

logger.critical('Critical')

When you run this, the output to the file is as follows:

2021-09-02T21:56:04.677854+0530:TRACE:Trace

2021-09-02T21:56:04.680839+0530:DEBUG:Debug

2021-09-02T21:56:04.706743+0530:INFO:Info

Chapter 7 Logging in Python

185

2021-09-02T21:56:04.726689+0530:SUCCESS:Success

2021-09-02T21:56:04.749656+0530:WARNING:Warning

2021-09-02T21:56:04.778333+0530:ERROR:Error

2021-09-02T21:56:04.802271+0530:CRITICAL:Critical

You can also create a custom log level, as shown in Listing 7-16.

Listing 7-16.  Prog15.py

from loguru import logger

import sys

logger.add("mylog_{time}.log",

 format="{time}:{level}:{message}",

 level="TRACE")

new_level = logger.level("OKAY", no=15, color="<green>")

logger.trace('Trace')

logger.debug('Debug')

logger.log("OKAY", "All is OK!")

logger.info('Info')

This code creates a new level with the logger.level() routine. You

can use it with the logger.log() routine. Run the program. The output

dumped in the log file is as follows:

2021-09-02T22:44:59.834885+0530:TRACE:Trace

2021-09-02T22:44:59.839871+0530:DEBUG:Debug

2021-09-02T22:44:59.893727+0530:OKAY:All is OK!

2021-09-02T22:44:59.945590+0530:INFO:Info

Chapter 7 Logging in Python

186

�Customizing File Retention
Log files, just like any other piece of information, require storage space.

Over time and multiple execution passes, the log files can grow bigger and

bigger. Nowadays, storage is cheaper. Even so, there are always limitations

to space and storing older and unnecessary logs is a waste of space. Many

organizations have policies in place for retaining older logs. You can

implement those policies in the following way.

The following configuration rotates big files. You can specify the size of

the file as follows:

logger.add("mylog_{time}.log", rotation="2 MB")

The following configuration creates a new file after midnight:

logger.add("mylog_{time}.log", rotation="00:01")

The following configuration rotates week-old files:

logger.add("mylog_{time}.log", rotation="1 week")

The following configuration cleans up a file after a specified number

of days:

logger.add("mylog_{time}.log", retention="5 days") # Cleanup

after some time

The following configuration compresses the files into the ZIP format:

logger.add("mylog_{time}.log", compression="zip")

As an exercise, try all these configurations.

Chapter 7 Logging in Python

187

�Customizing Tracing
You can customize the tracing process and obtain detailed information

about any underlying problems. It is difficult to implement this in the built-

in logger, but it can be easily done using loguru. You can customize tracing

by passing some additional arguments, as shown in Listing 7-17.

Listing 7-17.  Prog16.py

from loguru import logger

logger.add('mylog.log',

 backtrace=True,

 diagnose=True)

def function1(a, b):

 return a / b

def function2(c):

 try:

 function1(5, c)

 except ZeroDivisionError:

 logger.exception('Divide by Zero!')

function2(0)

These additional parameters allow you to trace failures in detail. The

log file has the following output:

2021-09-03 17:16:40.122 | ERROR |

__main__:function2:14 - Divide by Zero!

Traceback (most recent call last):

 File "<string>", line 1, in <module>

Chapter 7 Logging in Python

188

 �File "C:\Users\Ashwin\AppData\Local\Programs\Python\Python39\

lib\idlelib\run.py", line 156, in main

 ret = method(*args, **kwargs)

 | | -> {}

 �| -> (<code object <module> at

0x000001D3E9EFDB30, file

"C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition...

 �-> <bound method Executive.runcode of <idlelib.run.

Executive object at 0x000001D3E802F730>>

 �File "C:\Users\Ashwin\AppData\Local\Programs\Python\Python39\

lib\idlelib\run.py", line 559, in runcode

 exec(code, self.locals)

 | | -> {'__name__': '__main__', '__doc__':

None, '__package__': None, '__loader__': <class '_frozen_

importlib.BuiltinImporter'>, '__...

 | -> <idlelib.run.Executive object at

0x000001D3E802F730>

 �-> <code object <module> at 0x000001D3E9EFDB30,

file "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/...

 �File "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/Code/Chapter07/prog16.py",

line 16, in <module>

 function2(0)

 -> <function function2 at 0x000001D3EA6264C0>

> File "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/Code/Chapter07/prog16.py", line 12,

in function2

Chapter 7 Logging in Python

189

 function1(5, c)

 | -> 0

 -> <function function1 at 0x000001D3EA61DE50>

 �File "C:/Users/Ashwin/Google Drive/Python Unit Test

Automation - Second Edition/Code/Chapter07/prog16.py",

line 8, in function1

 return a / b

 | -> 0

 -> 5

ZeroDivisionError: division by zero

�Customizing the Log Message Format
and Display
You can also customize the log message format and determine how it is

displayed on the console, as shown in Listing 7-18.

Listing 7-18.  Prog17.py

from loguru import logger

import sys

logger.add(sys.stdout,

 colorize=True,

 �format="<blue>{time}</blue> <level>{message}

</level>")

logger.add('mylog.log',

 �format="{time:YYYY-MM-DD @ HH:mm:ss} - {level} -

{message}")

logger.debug('Debug')

logger.info('Info')

Chapter 7 Logging in Python

190

If you run this on the console, you will get the output shown in

Figure 7-1.

Figure 7-1.  Customized output

�Configuring with a Dictionary
You can configure the log files with a dictionary as well, as shown in

Listing 7-19.

Listing 7-19.  Prog18.py

from loguru import logger

import sys

config = {

 'handlers': [

 {'sink': sys.stdout, 'format': '{time} - {message}'},

 {'sink': 'mylog.log', 'serialize': True}]

}

logger.configure(**config)

logger.debug('Debug')

logger.info('Info')

Run the program and you will see the following output:

2021-09-03T17:44:49.396318+0530 - Debug

2021-09-03T17:44:49.416051+0530 – Info

Chapter 7 Logging in Python

191

�Conclusion
This chapter explained Python’s logging mechanisms in detail. Logging

is a very useful technique used to analyze problems encountered during

the execution of programs. Every application or program has unique

requirements for logging and you can include diverse and detailed

information in the log files. The chapter covered a few examples of logging.

As an exercise, identify what kind of information you want to see in the logs

in your Python programs and then write the appropriate code for logging.

The next chapter is the culmination of all that you have learned

throughout this book. You learn about TDD (test-driven development).

Chapter 7 Logging in Python

193© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3_8

CHAPTER 8

Tips and Tricks
In the first chapter of this book, you about learned the history and

philosophy of Python. Subsequent chapters explored the features of

various test automation frameworks in Python. The frameworks you

explored included doctest, unittest, nose, nose2, and pytest. Later,

you learned about Selenium and logging in detail. This chapter looks at

coding conventions that will make the test discovery easier across these

frameworks. Then, you will look at the concept of test-driven development

and learn how it can be implemented in Python 3 projects with the help

of pytest.

�Coding and Filenaming Conventions
for Easier Test Discovery
You have seen that all the xUnit-style frameworks include test discovery,

that is, the automated detection, execution, and report generation of tests.

This is a very important feature, as it makes life easier for code testers.

You can even schedule the test discovery process using OS schedulers (for

example, cron in Linux-based operating systems and Windows Scheduler

in Windows), and they will automatically run tests at scheduled times.

https://doi.org/10.1007/978-1-4842-7854-3_8#DOI

194

In order to ensure that the test discovery system detects all the tests

successfully, I usually follow these code and filename conventions:

•	 The names of all the test modules (the test files) should

start with test_

•	 The names of all the test functions should start

with test_

•	 The names of all the test classes should start with Test

•	 The names of all the test methods should start

with test_

•	 Group all the tests into test classes and packages

•	 All the packages with test code should have an

init.py file

It is always a good idea to follow the PEP 8 convention for the code. It

can be found at https://www.python.org/dev/peps/pep-0008/.

If you use these conventions for your code and filenames, the test

discovery feature of all the test automation frameworks—including

unittest, nose, nose2, and pytest—will detect the tests without any

problem. So, the next time you write your tests, follow these conventions

for best results.

Note  You can read more about xUnit at
https://www.martinfowler.com/bliki/Xunit.html
and http://xunitpatterns.com/

Chapter 8 Tips and Tricks

https://www.python.org/dev/peps/pep-0008/
https://www.martinfowler.com/bliki/Xunit.html
http://xunitpatterns.com/

195

�Test-Driven Development with pytest
Test-driven development (TDD) is a paradigm whereby you implement

a new feature or requirement by writing tests first, watch them fail, and

then write the code to make the failed tests pass. Once the basic skeleton

is implemented this way, you then build on this by altering the tests and

changing the development code to accommodate the added functionality.

You repeat this process as many times as needed to accommodate all new

requirements.

Essentially, TDD is a cycle where you write the tests first, watch them

fail, implement the required features, and repeat this process until the new

features are added to the existing code.

By writing the automated tests before the development code, it forces

you to think about the problem at hand first. As you start to build your

tests, you have to think about the way you write the development code that

must pass the already-written automated tests in order to be accepted.

Figure 8-1 sums up the TDD approach.

Write a

Failing

Test

Make

the Test

Pass

Refactor

Figure 8-1.  TDD flow

Chapter 8 Tips and Tricks

196

To see how TDD is implemented in Python with pytest, create a

directory called chapter08 for this TDD in the code directory. You will use

this directory for the TDD exercise.

Create the test module shown in Listing 8-1 in the chapter08 directory.

Listing 8-1.  test_module01.py

class TestClass01:

 def test_case01(self):

 calc = Calculator()

 result = calc.add(2, 2)

 assert 4 == result

Run the code in Listing 8-1 with the following command:

py.test -vs test_module01.py

The output will be as follows:

===================== test session starts =====================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 -- / usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 1 items

test_module01.py::TestClass01::test_case01 FAILED

=========================== FAILURES ==========================

____________________ TestClass01.test_case01___________________

self = <test_module01.TestClass01 object at 0x763c03b0>

Chapter 8 Tips and Tricks

197

 def test_case01(self):

> calc = Calculator()

E NameError: name 'Calculator' is not defined

test_module01.py:4: NameError

==================== 1 failed in 0.29 seconds =================

From this output, you can see that the problem is that Calculator has

not been imported. That is because you have not created the Calculator

module! So let’s define the Calculator module in a file called calculator.

py, as shown in Listing 8-2, in the same directory.

Listing 8-2.  calculator.py

class Calculator:

 def add(self, x, y):

 pass

Make sure that there are no errors in calculator.py by running the

following command every time you modify the module:

python3 calculator.py

Now import Calculator in the test module, as shown in Listing 8-3.

Listing 8-3.  test_module01.py

from calculator import Calculator class TestClass01:

def test_case01(self):

calc = Calculator() result = calc.add(2, 2) assert 4 == result

Run the test_module01.py again. The output will be as follows:

===================== test session starts =====================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

Chapter 8 Tips and Tricks

198

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 1 items

test_module01.py::TestClass01::test_case01 FAILED

========================= FAILURES ============================

___________________ TestClass01.test_case01____________________

self = <test_module01.TestClass01 object at 0x762c24b0>

 def test_case01(self):

 calc = Calculator()

 result = calc.add(2, 2)

> assert 4 == result

E assert 4 == None

test_module01.py:9: AssertionError

=================== 1 failed in 0.32 seconds ==================

The add() method returns the wrong value (i.e., pass), as it does not

do anything at the moment. Fortunately, pytest returns the line with the

error in the test run so you can decide what you need to change. Let’s fix

the code in the add() method in calculator.py, as shown in Listing 8-4.

Listing 8-4.  calculator.py

class Calculator:

 def add(self, x, y):

 return x+y

Chapter 8 Tips and Tricks

199

You can run the test module again. Here is the output:

===================== test session starts ====================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 --

/usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 1 items

test_module01.py::TestClass01::test_case01 PASSED

================== 1 passed in 0.08 seconds ===================

Now you can add more test cases to the test module (as shown in

Listing 8-5) to check for more features.

Listing 8-5.  test_module01.py

from calculator import Calculator

import pytest

 class TestClass01:

 def test_case01(self):

 calc = Calculator()

 result = calc.add(2, 2)

 assert 4 == result

 def test_case02(self):

 with pytest.raises(ValueError):

 result = Calculator().add(2, 'two')

Chapter 8 Tips and Tricks

200

The modified code shown in Listing 8-5 is trying to add an integer and

a string, which should raise a ValueError exception.

If you run the modified test module, you get the following:

===================== test session starts ====================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 -- / usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 2 items

test_module01.py::TestClass01::test_case01 PASSED test_

module01.py::TestClass01::test_case02 FAILED

========================= FAILURES ============================

__________________ TestClass01.test_case02_____________________

self = <test_module01.TestClass01 object at 0x7636f050>

 def test_case02(self):

 with pytest.raises(ValueError):

> result = Calculator().add(2, 'two')

test_module01.py:14:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <calculator.Calculator object at 0x7636faf0>, x = 2,

y = 'two'

 def add(self, x, y):

> return x+y

E TypeError: unsupported operand type(s) for +: 'int'

and 'str'

calculator.py:4: TypeError

============= 1 failed, 1 passed in 0.33 seconds ==============

Chapter 8 Tips and Tricks

201

As you can see in the output, the second test fails because it does not

detect a ValueError exception. So, let’s add the provision to check if both

the arguments are numeric, or otherwise raise a ValueError exception—

see Listing 8-6.

Listing 8-6.  calculator.py

class Calculator:

 def add(self, x, y):

 number_types = (int, float, complex)

 �if isinstance(x, number_types) and isinstance(y,

number_types):

 return x + y

 else:

 raise ValueError

Finally, Listing 8-7 shows how to add two more test cases to the test

module to check if add() is behaving as expected.

Listing 8-7.  test_module01.py

from calculator import Calculator

import pytest

class TestClass01:

 def test_case01(self):

 calc = Calculator()

 result = calc.add(2, 2)

 assert 4 == result

 def test_case02(self):

 with pytest.raises(ValueError):

 result = Calculator().add(2, 'two')

Chapter 8 Tips and Tricks

202

 def test_case03(self):

 with pytest.raises(ValueError):

 result = Calculator().add('two', 2)

 def test_case04(self):

 with pytest.raises(ValueError):

 result = Calculator().add('two', 'two')

When you run the test module in Listing 8-7, you get the

following output:

===================== test session starts =====================

platform linux -- Python 3.4.2, pytest-3.0.4, py-1.4.31,

pluggy-0.4.0 -- / usr/bin/python3

cachedir: .cache

rootdir: /home/pi/book/code/chapter08,

inifile:

collected 4 items

test_module01.py::TestClass01::test_case01 PASSED test_

module01.py::TestClass01::test_case02 PASSED test_module01.

py::TestClass01::test_case03 PASSED test_module01.

py::TestClass01::test_case04 PASSED

============== 4 passed in 0.14 seconds ================

This is how TDD is implemented in real-life projects. You write a failing

test first, refactor the development code, and continue with the same

process until the test passes. When you want to add a new feature, you

repeat this process to implement it.

Chapter 8 Tips and Tricks

203

�Conclusion
In this chapter, you learned the coding and filename conventions for

easy test discovery; these conventions can be implemented across all the

automation frameworks. You also read a brief introduction to TDD.

This book began with an introduction to Python, including how to

install it on the various OSs and the differences between Python versions 2

and version 3. Subsequent chapters explored the most commonly used test

automation frameworks for Python.

Chapter 2 explored docstrings and explained how they are useful in

writing doctests.

You learned that the doctest is not a very powerful test framework, as

it lacks many essentials of a true test framework.

In Chapter 3, you were introduced to Python's batteries-included test

automation framework, unittest. You learned how to write xUnit-style

test cases for Python with unittest.

In Chapter 4, you explored a more advanced, but defunct, test

automation framework called nose. You learned about the advanced

features and plugins offered by nose. Because nose is not under active

development, the chapter used nose2 as a test-runner for running nose

and unittest tests.

In Chapter 5, you studied and explored one of the best unit test

automation frameworks for Python, pytest. You learned how and why it is

better than unittest and nose. You also explored its plugins and modular

fixtures.

In Chapter 6, you studied and explored the Selenium browser

automation framework, which is very useful in automating test cases for

various web-related programming using web browsers.

Chapter 7 explored logging with logger and loguru. Logging is a very

useful feature for developers and testers.

Chapter 8 Tips and Tricks

204

You have practiced numerous examples throughout the book, the

goal of which is to instill you with confidence in Python test automation.

You also learned to work with codebases where they have implemented

test automation with unittest, doctest, or nose and plan a migration to

pytest. You can now write your own routines and use logging to log the

errors. You can also automate web-related test cases. Also, if you are a

career Python developer or an automation expert, you can follow the TDD

approach in your projects. I hope you have enjoyed reading this book as

much as I enjoyed writing it. Happy Pythoning and testing!!

Chapter 8 Tips and Tricks

205© Ashwin Pajankar 2022
A. Pajankar, Python Unit Test Automation, https://doi.org/10.1007/978-1-4842-7854-3

Index
A, B, C
Assertions, 76–78
Automated Unit Testing, 26

D, E
Docstrings

advantage, 28
code comments, 27
Python

graphical representation, 28
help() function, 30
interpreter mode, 29
print() function, 31
tree diagram, 28, 29

doctest
command prompt, 33
failing tests

advantages/disadvantages, 39
execution log, 37
novice-level testing, 39
Pydoc, 40
separate test file, 37–39
source code, 35–37

nose test, 116
standard library, 32
test module, 32, 33
verbose mode, 35

F, G, H
Fixtures

nose
alternate names, 105
assert_equals()

method, 106, 107
functions, 101–103
package, 104
setup_function()/

teardown_function(), 103
stdout output, 100
unittest, 98–101

pytest
pytest.raises(), 138, 139
scope variables, 137
source

code, 131–136

I, J, K
Integrated Development

Environment (IDE)
eclipse, 20
Geany, 20
IDLE, 18, 19
PyCharm, 21
PyDev plugin, 19
Raspberry Pi, 19

https://doi.org/10.1007/978-1-4842-7854-3#DOI

206

Selenium
Chrome browsers, 144, 145
exporting project, 153
Firefox browser, 145
logs, 153, 154
name creation, 147, 148
project base URL, 150, 151
project creation, 147
recording button, 151
renaming option, 149
source code, 154, 155
stop recording, 151, 152
window screen, 145, 146

test programs, 18

L
Linux, 91, 92
Logging process, 161

crontab, 161
definition, 161
file operations, 163, 164
loguru

configuration
compresses, 186

dictionary, 190
features, 183
file retention, 186
installation log, 183
logging levels, 184–186
log message format/

display, 189

tracing process, 187–189
OS command line, 162, 163
Python

basicConfig() method, 166
console/file handler, 180
customization, 168, 169
file structure, 167
multiple loggers, 173–176
operations, 169–171
rotating log file, 172, 173
source code, 165
threads/

multithreading, 176–180
warning, 166
writing code, 180–183

M
macOS/Windows

nose
directory structure, 93, 97
discovery process, 98
help and documentation, 95
installation, 92
nosetests command, 94, 95
organization, 96
test case, 93
verbose mode, 94

N, O
Nose

advantages, 116
differences, 118

Integrated Development
Environment (IDE) (cont.)

Index

207

disadvantage, 117
doctest test, 116
fixtures (see Fixtures)
Linux computer, 91, 92
macOS and Windows, 92–98
nose2, 118–121
report generation, 112

color output, 114, 115
HTML files, 113, 114
nosetests.html file, 114
rednose demo, 115
XML reports, 112, 113

standard library, 91
testing tools

ok_ and eq_, 108–110
@raises() decorator, 109, 110
@timed() decorator, 111, 112

unittest tests, 115, 116

P, Q, R
pytest, 123

classes/packages, 127
command-line options

failures, 140
help, 139
JUnit-style XML log

files, 140
profiling test, 140

discovery, 129
execution process, 127
fixtures

pytest.raises(), 138, 139

scope variables, 137
source code, 131–136

Linux and macOS, 124
py.test command, 126, 127
setup_function()/

teardown_function(), 130
simple test, 125–127
test-driven development

(TDD), 195–202
unittest and nose, 131
Windows command, 124
xUnit-style fixtures, 129–131

Python
code maintaining, 4
community, 8
extensible, 6
extensive standard library, 6
features, 3
high-level languages, 4
history, 1–3
IDE (see Integrated

Development
Environment (IDE))

interactive mode, 16
interpreted language, 5
learning process, 3
logging process, 165–182
memory management, 7
modes, 15
object-oriented programming, 5
open-source project, 4
portable, 5
powerful language, 7

Index

208

rapid prototyping tool, 7
robustness, 6
script mode, 17
simple/minimalist language, 3
software principles, 2

Python 3
differences, 8
features, 8, 10
installation, 11

Debian/Ubuntu/
derivatives, 11

Fedora/CentOS, 11
Linux, 11
macOS X, 12
Windows OS, 12–15

new-style classes/exceptions, 10

S
Selenium

browser operations, 143
components, 144
IDE, 144–155
unittest, 158, 159
Webdriver, 155–158

Software testing concepts
docstring

Python, 28–32
source code, 27

doctest, 32–40
textbook definition, 25
unit testing, 26, 27

T
Test discovery system, 193, 194
Test-driven development (TDD)

add() method, 198
add() method, 198, 201
approach, 195
calculator.py, 197
feature/requirements, 195
flow process, 195
modification code, 200
module, 199
module creation, 196
source code, 196
test module, 202
test_module01.py, 197
ValueError exception, 201

U, V
unittest module

assert methods, 46
assertions, 76–78
coding and naming

conventions, 75
command prompt, 47
concepts, 43
discovering and executing

test, 73–75
exceptions

assertRaises()
method, 83–85

source code, 82
ValueError, 84

Python (cont.)

Index

209

fail() method, 79–82
id() and shortDescription()

methods, 78
nose tests, 115, 116
PyUnit, 43
Selenium, 158, 159
skipping tests, 80
suites/runners, 86, 87
test methods

assertEqual() method, 50
classes (test

file/modules), 51
code organization, 66
command-line

options, 60–63
development/testing code

files, 68–73
execution, 57, 58
fixtures, 52–55
help/command-line

options, 59, 60
inspect.stack(), 48
packaging feature, 63–66
quiet mode, 61
setUp()/tearDown()

methods, 54

single directory, 66–68
source code, 47, 48
subdirectory, 64
unittest.main(), 55, 56
verbosity control, 48–51

test_module01.py, 45
test_module15.py, 46, 88
xUnit, 44, 45

Unit testing
automated execution and

reporting, 26
benefits, 26
definition, 26, 27

W
Webdriver Selenium, 155–158
Windows OS

Python installation window, 15
security warning dialog box, 13
setup failed message, 14
website, 12

X, Y, Z
xUnit-style unit testing, 44, 45

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Why This Book?
	Who This Book Is For
	How This Book Is Organized
	How to Get the Most Out of This Book
	Where Next?
	A Quick Word About the Instructors’ Fraternity

	Chapter 1: Introduction to Python
	The History of Python
	Features of Python
	Simple
	Easy to Learn
	Easy to Read
	Easy to Maintain
	Open Source
	High-Level Language
	Portable
	Interpreted
	Object-Oriented
	Extensible
	Extensive Libraries
	Robust
	Rapid Prototyping
	Memory Management
	Powerful
	Community Support

	Python 3
	Differences Between Python 2 and Python 3
	Why Use Python 3

	Installing Python 3
	Installation on Linux
	Installation on Debian, Ubuntu, and Derivatives
	Installation on Fedora and CentOS
	Installation on macOS X
	Installation on Windows

	Running a Python Program and Python Modes
	Interactive Mode
	Script Mode

	IDEs for Python
	IDLE
	The PyDev Plugin for Eclipse
	Geany
	PyCharm

	Conclusion

	Chapter 2: Getting Started
	A Brief Introduction to Software Testing Concepts
	Unit Testing
	Test Automation
	The Benefits of Automated Unit Testing

	Using Docstrings
	Example of a Docstring in Python

	A Brief Introduction to doctest
	Failing Tests
	Separate Test File
	Advantages and Disadvantages of doctest
	Pydoc

	Conclusion

	Chapter 3: unittest
	Introduction to xUnit
	Using unittest
	Order of Execution of the Test Methods
	Verbosity Control
	Multiple Test Classes Within the Same Test File/Module
	Test Fixtures
	Running Without unittest.main()
	Controlling the Granularity of Test Execution
	Listing All the Command-Line Options and Help
	Important Command-Line Options
	Creating a Test Package
	Organizing the Code
	Placing the Development and Test Code in a Single Directory
	Placing the Development and Test Code in Separate Directories

	Test Discovery
	Coding Conventions for unittest
	Assertions in unittest
	Other Useful Methods

	Failing a Test
	Exceptions in Test Cases
	assertRaises()

	Creating Test Suites
	Creating Test Suites

	Conclusion

	Chapter 4: nose and nose2
	Introduction to nose
	Installing nose on Linux Distributions
	Installing nose on macOS and Windows
	Verifying the Installation
	Getting Started with nose
	A Simple nose Test Case
	Running the Test Module with nosetests
	Getting Help
	Organizing the Test Code
	Test Discovery

	Fixtures for Classes, Modules, and Methods
	Fixtures for Functions
	Fixtures for Packages
	Alternate Names of the nose Fixtures
	assert_equals()

	Testing Tools
	ok_ and eq_
	The @raises() Decorator
	The @timed() decorator

	Report Generation
	Creating an XML Report
	Creating an HTML Report
	Creating Color Output in the Console

	Running unittest Tests from nose
	Running doctest Tests from nose
	Advantages of nose over unittest
	Disadvantages of nose
	Using nose2
	Conclusion

	Chapter 5: pytest
	Introduction to pytest
	Simple Test
	Running Tests with the py.test Command
	Test Class and Test Package in pytest
	Test Discovery in pytest
	xUnit-Style Fixtures
	pytest Support for unittest and nose

	Introduction to pytest Fixtures
	Scope of pytest Fixtures
	pytest.raises()

	Important pytest Command-Line Options
	Help
	Stopping After the First (or N) Failures
	Profiling Test Execution Duration
	JUnit-Style Logs

	Conclusion

	Chapter 6: Testing with Selenium
	Introduction to Selenium
	Selenium IDE
	Selenium Webdriver
	Selenium with Unittest
	Conclusion

	Chapter 7: Logging in Python
	Logging Basics
	Logging with an OS
	Manually Logging with File Operations
	Logging in Python
	Logging to a File
	Customizing the Log Message
	Customizing Logging Operations
	Rotating a Log File
	Using Multiple Loggers
	Logging with Threads
	Multiple Loggers Writing to the Same Target

	Logging with loguru
	Using loguru and the Available Logging Levels
	Customizing File Retention
	Customizing Tracing
	Customizing the Log Message Format and Display
	Configuring with a Dictionary

	Conclusion

	Chapter 8: Tips and Tricks
	Coding and Filenaming Conventions for Easier Test Discovery
	Test-Driven Development with pytest
	Conclusion

	Index

