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Introduction

Welcome to Python Programming for Teens. Whether you’re under 20 or just a teenager at
heart, this book will introduce you to computer programming. You can use it in a class-
room or on your own. The only assumption is that you know how to use a modern com-
puter system with a keyboard, screen, and mouse.

To make your learning experience fun and interesting, you will write programs that draw
pictures on the screen and allow you to interact with them by using the mouse. Along the
way, you will learn the basic principles of program design and problem solving with com-
puters. You will then be able to apply these ideas and techniques to solve problems in
almost any area of study. But most of all, you will experience the joy of building things
that work and look great!

Why Python?
Computer technology and applications have become increasingly more sophisticated over
the past several decades, and so has the computer science curriculum, especially at the
introductory level. Today’s students learn a bit of programming and problem solving
and are then expected to move quickly into topics like software development, complexity
analysis, and data structures that, 20 years ago, were reserved for advanced courses. In
addition, the ascent of object-oriented programming as a dominant method has led
instructors and textbook authors to bring powerful, industrial-strength programming lan-
guages such as C++ and Java into the introductory curriculum. As a result, instead of
experiencing the rewards and excitement of computer programming, beginning students
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often become overwhelmed by the combined tasks of mastering advanced concepts and
learning the syntax of a programming language.

This book uses the Python programming language as a way of making the learning expe-
rience manageable and attractive for students and instructors alike. Python offers the fol-
lowing pedagogical benefits:

n Python has simple, conventional syntax. Its statements are close to those of ordinary
English, and its expressions use the conventional notation found in algebra. Thus,
beginners can spend less time learning the syntax of a programming language and
more time learning to solve interesting problems.

n Python has safe semantics. Any expression or statement whose meaning violates the
definition of the language produces an error message.

n Python scales well. It is easy for beginners to write simple programs. Python also
includes all the advanced features of a modern programming language, such as
support for data structures and object-oriented software development, for use when
they become necessary.

n Python is highly interactive. Expressions and statements can be entered at an
interpreter’s prompts to allow the programmer to try out experimental code and
receive immediate feedback. Longer code segments can then be composed and saved
in script files to be loaded and run as modules or standalone applications.

n Python is general purpose. In today’s context, this means that the language includes
resources for contemporary applications, including media computing and networks.

n Python is free and is in widespread use in the industry. Students can download it to
run on a variety of devices. There is a large Python user community, and expertise in
Python programming has great resume value.

To summarize these benefits, Python is a comfortable and flexible vehicle for expressing
ideas about computation, both for beginners and experts alike. If students learn these
ideas well in their first experience with programming, they should have no problems mak-
ing a quick transition to other languages and technologies needed to achieve their educa-
tional or career objectives. Most importantly, beginners will spend less time staring at a
computer screen and more time thinking about interesting problems to solve.
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Organization of the Book
The approach in this book is easygoing, with each new concept introduced only when you
need it.

Chapter 1, “Getting Started with Python,” advises you how to download, install, and start
the Python programming software used in this book. You try out simple program com-
mands and become acquainted with the basic features of the Python language that you
will use throughout the book.

Chapter 2, “Getting Started with Turtle Graphics,” introduces the basic commands for
turtle graphics. You learn to draw pictures with a set of simple commands. Along the
way, you discover a thing or two about colors and two-dimensional geometry.

Chapter 3, “Control Structures: Sequencing, Iteration, and Selection,” covers the program
commands that allow the computer to make choices and perform repetitive tasks.

Chapters 4, “Composing, Saving, and Running Programs,” shows you how to save your
programs in files, so you can give them to others or work on them another day. You
learn how to organize a program like an essay, so it is easy for you and others to read,
understand, and edit. You also learn a bit about how the computer is able to read, under-
stand, and run a program.

Chapter 5, “Defining Functions,” introduces an important design feature: the function. By
organizing your programs with functions, you can simplify complex tasks and eliminate
unnecessary duplications in your code.

Chapter 6, “User Interaction with the Mouse and the Keyboard,” covers features that
allow people to interact with your programs. You learn program commands for respond-
ing to mouse and keyboard events, as well as pop-up dialogs that can take information
from your programs’ users.

Chapter 7, “Recursion,” teaches you about another important design strategy called recur-
sion. You write some recursive functions that generate computer art and fractal images.

Chapter 8, “Objects and Classes,” offers a beginner’s guide to the use of objects and classes
in programming. You learn how to define new types of objects, such as menu items for
choosing colors and grids for board games, and use them in interesting programs.

Chapter 9, “Animations,” concludes the book with a brief introduction to animations. You
discover how to get images to move independently and interact in interesting ways.

Two appendixes follow the last chapter. Appendix A, “Turtle Graphics Commands,”
provides a reference for the set of turtle graphics commands introduced in the book.
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Each chapter includes a set of two programming exercises that build on concepts and
examples introduced earlier in that chapter. You can find the answers to these exercises
in Appendix B, “Solutions to Exercises.”

Companion Website Downloads
You may download the companion website files from www.cengageptr.com/downloads.
These files include the example programs discussed in the book and the solutions to the
exercises.

A Brief History of Computing
Before you jump ahead to programming, you might want to peek at some context. The
following table summarizes some of the major developments in the history of computing.
The discussion that follows provides more details about these developments.

Approximate Date Major Developments

Before 1800 Mathematicians develop and use algorithms
Abacus used as a calculating aide
First mechanical calculators built by Leibniz and Pascal

1800–1930 Jacquard’s loom
Babbage’s Analytical Engine
Boole’s system of logic
Hollerith’s punch card machine

1930s Turing publishes results on computability
Shannon’s theory of information and digital switching

1940s First electronic digital computers

1950s First symbolic programming languages
Transistors make computers smaller, faster, more durable, less
expensive
Emergence of data-processing applications

1960–1975 Integrated circuits accelerate the miniaturization of computer
hardware
First minicomputers
Time-sharing operating systems
Interactive user interfaces with keyboards and monitors
Proliferation of high-level programming languages
Emergence of a software industry and the academic study of
computer science and computer engineering
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1975–1990 First microcomputers and mass-produced personal computers
Graphical user interfaces become widespread
Networks and the Internet

1990–2000 Optical storage (CDs, DVDs)
Laptop computers
Multimedia applications (music, photography, video)
Computer-assisted manufacturing, retail, and finance
World Wide Web and e-commerce

2000–present Embedded computing (cars, appliances, and so on)
Handheld music and video players
Smartphones and tablets
Touch screen user interfaces
Wireless and cloud computing
Search engines
Social networks

Before Electronic Digital Computers
The term algorithm, as it’s now used, refers to a recipe or method for solving a problem.
It consists of a sequence of well-defined instructions or steps that describe a process that
halts with a solution to a problem.

Ancient mathematicians developed the first algorithms. The word “algorithm” comes
from the name of a Persian mathematician, Muhammad ibn Musa Al-Khawarizmi, who
wrote several mathematics textbooks in the ninth century. About 2,300 years ago, the
Greek mathematician Euclid, the inventor of geometry, developed an algorithm for com-
puting the greatest common divisor of two numbers, which you will see later in this book.

A device known as the abacus also appeared in ancient times to help people perform sim-
ple arithmetic. Users calculated sums and differences by sliding beads on a grid of wires.
The configuration of beads on the abacus served as the data.

In the seventeenth century, the French mathematician Blaise Pascal (1623–1662) built one
of the first mechanical devices to automate the process of addition. The addition opera-
tion was embedded in the configuration of gears within the machine. The user entered
the two numbers to be added by rotating some wheels. The sum or output number then
appeared on another rotating wheel. The German mathematician Gottfried Leibnitz
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(1646–1716) built another mechanical calculator that included other arithmetic functions
such as multiplication. Leibnitz, who with Newton also invented calculus, went on to pro-
pose the idea of computing with symbols as one of our most basic and general intellectual
activities. He argued for a universal language in which one could solve any problem by
calculating.

Early in the nineteenth century, the French engineer Joseph Jacquard (1752–1834)
designed and constructed a machine that automated the process of weaving. Until then,
each row in a weaving pattern had to be set up by hand, a quite tedious, error-prone pro-
cess. Jacquard’s loom was designed to accept input in the form of a set of punched cards.
Each card described a row in a pattern of cloth. Although it was still an entirely mechani-
cal device, Jacquard’s loom possessed something that previous devices had lacked—the
ability to carry out the instructions of an algorithm automatically. The set of cards
expressed the algorithm or set of instructions that controlled the behavior of the loom. If
the loom operator wanted to produce a different pattern, he just had to run the machine
with a different set of cards.

The British mathematician Charles Babbage (1792–1871) took the concept of a program-
mable computer a step further by designing a model of a machine that, conceptually, bore
a striking resemblance to a modern general-purpose computer. Babbage conceived his
machine, which he called the Analytical Engine, as a mechanical device. His design called
for four functional parts: a mill to perform arithmetic operations, a store to hold data and
a program, an operator to run the instructions from punched cards, and an output to pro-
duce the results on punched cards. Sadly, Babbage’s computer was never built. The project
perished for lack of funds near the time when Babbage himself passed away.

In the last two decades of the nineteenth century, a U.S. Census Bureau statistician named
Herman Hollerith (1860–1929) developed a machine that automated data processing for
the U.S. Census. Hollerith’s machine, which had the same component parts as Babbage’s
Analytical Engine, simply accepted a set of punched cards as input and then tallied and
sorted the cards. His machine greatly shortened the time it took to produce statistical
results on the U.S. population. Government and business organizations seeking to auto-
mate their data processing quickly adopted Hollerith’s punched card machines. Hollerith
was also one of the founders of a company that eventually became IBM (International
Business Machines).

Also in the nineteenth century, the British secondary school teacher George Boole
(1815–1864) developed a system of logic. This system consisted of a pair of values,
TRUE and FALSE, and a set of three primitive operations on these values, AND, OR,
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and NOT. Boolean logic eventually became the basis for designing the electronic circuitry
to process binary information.

A half a century later, in the 1930s, the British mathematician Alan Turing (1912–1954)
explored the theoretical foundations and limits of algorithms and computation. Turing’s
most important contributions were to develop the concept of a universal machine that
could be specialized to solve any computable problems and to demonstrate that some pro-
blems are unsolvable by computers.

The First Electronic Digital Computers (1940–1950)
In the late 1930s, Claude Shannon (1916–2001), a mathematician and electrical engineer
at MIT, wrote a classic paper titled “A Symbolic Analysis of Relay and Switching
Circuits.” In this paper, he showed how operations and information in other systems,
such as arithmetic, could be reduced to Boolean logic and then to hardware. For example,
if the Boolean values TRUE and FALSE were written as the binary digits 1 and 0, one
could write a sequence of logical operations to compute the sum of two strings of binary
digits. All that was required to build an electronic digital computer was the ability to rep-
resent binary digits as on/off switches and to represent the logical operations in other
circuitry.

The needs of the combatants in World War II pushed the development of computer hard-
ware into high gear. Several teams of scientists and engineers in the United States, Great
Britain, and Germany independently created the first generation of general-purpose
digital electronic computers during the 1940s. All these scientists and engineers used
Shannon’s innovation of expressing binary digits and logical operations in terms of elec-
tronic switching devices. Among these groups was a team at Harvard University under the
direction of Howard Aiken. Their computer, called the Mark I, became operational in
1944 and did mathematical work for the U.S. Navy during the war. The Mark I was con-
sidered an electromechanical device because it used a combination of magnets, relays, and
gears to store and process data.

Another team under J. Presper Eckert and John Mauchly, at the University of Pennsyl-
vania, produced a computer called the ENIAC (Electronic Numerical Integrator and
Calculator). The ENIAC calculated ballistics tables for the artillery of the U.S. Army
toward the end of the war. Because the ENIAC used entirely electronic components, it
was almost a thousand times faster than the Mark I.

Two other electronic digital computers were completed a bit earlier than the ENIAC.
They were the ABC (Atanasoff-Berry Computer), built by John Atanasoff and Clifford
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Berry at Iowa State University in 1942, and the Colossus, constructed by a group working
with Alan Turing in England in 1943. The ABC was created to solve systems of simulta-
neous linear equations. Although the ABC’s function was much narrower than that of the
ENIAC, the ABC is now regarded as the first electronic digital computer. The Colossus,
whose existence had been top secret until recently, was used to crack the powerful Ger-
man Enigma code during the war.

The first electronic digital computers, sometimes called mainframe computers, consisted
of vacuum tubes, wires, and plugs, and they filled entire rooms. Although they were
much faster than people at computing, by our own current standards they were extraordi-
narily slow and prone to breakdown. Moreover, the early computers were extremely diffi-
cult to program. To enter or modify a program, a team of workers had to rearrange the
connections among the vacuum tubes by unplugging and replugging the wires. Each pro-
gram was loaded by literally hardwiring it into the computer. With thousands of wires
involved, it was easy to make a mistake.

The memory of these first computers stored only data, not the program that processed the
data. As you have read, the idea of a stored program first appeared 100 years earlier in
Jacquard’s loom and in Babbage’s design for the Analytical Engine. In 1946, John von
Neumann realized that the instructions of the programs could also be stored in binary
form in an electronic digital computer’s memory. His research group at Princeton devel-
oped one of the first modern stored-program computers.

Although the size, speed, and applications of computers have changed dramatically since
those early days, the basic architecture and design of the electronic digital computer have
remained remarkably stable.

The First Programming Languages (1950–1965)
The typical computer user now runs many programs, made up of millions of lines of code,
that perform what would have seemed like magical tasks 20 or 30 years ago. But the first
digital electronic computers had no software as today’s do. The machine code for a few
relatively simple and small applications had to be loaded by hand. As the demand for
larger and more complex applications grew, so did the need for tools to expedite the pro-
gramming process.

In the early 1950s, computer scientists realized that a symbolic notation could be used
instead of machine code, and the first assembly languages appeared. The programmers
would enter mnemonic codes for operations, such as ADD and OUTPUT, and for data
variables, such as SALARY and RATE, at a keypunch machine. The keystrokes punched
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a set of holes in a small card for each instruction. The programmers then carried their
stacks of cards to a system operator, who placed them in a device called a card reader.
This device translated the holes in the cards to patterns in the computer’s memory. A pro-
gram called an assembler then translated the application programs in memory to machine
code and executed them.

Programming in assembly language was a definite improvement over programming in
machine code. The symbolic notation used in assembly languages was easier for people
to read and understand. Another advantage was that the assembler could catch some pro-
gramming errors before the program actually executed. However, the symbolic notation
still appeared a bit arcane compared to the notations of conventional mathematics. To
remedy this problem, John Backus, a programmer working for IBM, developed
FORTRAN (Formula Translation Language) in 1954. Programmers, many of whom were
mathematicians, scientists, and engineers, could now use conventional algebraic notation.
FORTRAN programmers still entered their programs on a keypunch machine, but the
computer executed them after a compiler translated them to machine code.

FORTRAN was considered ideal for numerical and scientific applications. However,
expressing the kind of data used in data processing—in particular, textual information—
was difficult. For example, FORTRAN was not practical for processing information that
included people’s names, addresses, Social Security numbers, and the financial data of cor-
porations and other institutions. In the early 1960s, a team led by Rear Admiral Grace
Murray Hopper developed COBOL (Common Business Oriented Language) for data pro-
cessing in the United States government. Banks, insurance companies, and other institu-
tions were quick to adopt its use in data-processing applications.

Also in the late 1950s and early 1960s, John McCarthy, a computer scientist at MIT,
developed a powerful and elegant notation called LISP (List Processing) for expressing
computations. Based on a theory of recursive functions (a subject covered in Chapter 7
of this book), LISP captured the essence of symbolic information processing. A student
of McCarthy’s, Stephen “Slug” Russell, coded the first interpreter for LISP in 1960. The
interpreter accepted LISP expressions directly as inputs, evaluated them, and printed
their results. In its early days, LISP was used primarily for laboratory experiments in an
area of research known as artificial intelligence. More recently, LISP has been touted as
an ideal language for solving any difficult or complex problems.

Although they were among the first high-level programming languages, FORTAN and
LISP have survived for decades. They have undergone many modifications to improve
their capabilities and have served as models for the development of many other
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programming languages. COBOL, by contrast, is no longer in active use but has survived
mainly in the form of legacy programs that must still be maintained.

These new, high-level programming languages had one feature in common: abstraction.
In science or any other area of enquiry, an abstraction allows human beings to reduce
complex ideas or entities to simpler ones. For example, a set of ten assembly language
instructions might be replaced with an equivalent algebraic expression that consists of
only five symbols in FORTRAN. Put another way, any time you can say more with less,
you are using an abstraction. The use of abstraction is also found in other areas of com-
puting, such as hardware design and information architecture. The complexities don’t
actually go away, but the abstractions hide them from view. The suppression of distracting
complexity with abstractions allows computer scientists to conceptualize, design, and
build ever more sophisticated and complex systems.

Integrated Circuits, Interaction, and Timesharing (1965–1975)
In the late 1950s, the vacuum tube gave way to the transistor as the mechanism for imple-
menting the electronic switches in computer hardware. As a solid-state device, the transis-
tor was much smaller, more reliable, more durable, and less expensive to manufacture
than a vacuum tube. Consequently, the hardware components of computers generally
became smaller in physical size, more reliable, and less expensive. The smaller and more
numerous the switches became, the faster the processing and the greater the capacity of
memory to store information.

The development of the integrated circuit in the early 1960s allowed computer engineers to
build ever smaller, faster, and less expensive computer hardware components. They per-
fected a process of photographically etching transistors and other solid-state components
onto thin wafers of silicon, leaving an entire processor and memory on a single chip. In
1965, Gordon Moore, one of the founders of the computer chip manufacturer Intel, made
a prediction that came to be known as Moore’s Law. This prediction states that the proces-
sing speed and storage capacity of hardware will increase and its cost will decrease by
approximately a factor of 2 every 18 months. This trend has held true for the past 50 years.
For example, there were about 50 electrical components on a chip in 1965, whereas by 2010,
a chip could hold more than 60 million components. Without the integrated circuit, men
would not have gone to the moon in 1969, and the world would be without the powerful
and inexpensive handheld devices that people now use on a daily basis.

Minicomputers the size of a large office desk appeared in the 1960s. The means of devel-
oping and running programs were changing. Until then, a computer was typically located
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in a restricted area with a single human operator. Programmers composed their programs
on keypunch machines in another room or building. They then delivered their stacks of
cards to the computer operator, who loaded them into a card reader and compiled and
ran the programs in sequence on the computer. Programmers then returned to pick up
the output results, in the form of new stacks of cards or printouts. This mode of operation,
also called batch processing, might cause a programmer to wait days for results, including
error messages.

The increases in processing speed and memory capacity enabled computer scientists to
develop the first time-sharing operating system. John McCarthy, the creator of the pro-
gramming language LISP, recognized that a program could automate many of the func-
tions performed by the human system operator. When memory, including magnetic
secondary storage, became large enough to hold several users’ programs at the same
time, the programs could be scheduled for concurrent processing. Each process associated
with a program would run for a slice of time and then yield the CPU to another process.
All the active processes would repeatedly cycle for a turn with the CPU until they finished.

Several users could now run their own programs simultaneously by entering commands at
separate terminals connected to a single computer. As processor speeds continued to
increase, each user gained the illusion that a time-sharing computer system belonged
entirely to him.

By the late 1960s, programmers could enter program input at a terminal and see program
output immediately displayed on a CRT (Cathode Ray Tube) screen. Compared to its pre-
decessors, this new computer system was both highly interactive and much more accessi-
ble to its users.

Many relatively small and medium-sized institutions, such as universities, were now able
to afford computers. These machines were used not only for data processing and engi-
neering applications, but for teaching and research in the new and rapidly growing field
of computer science.

Personal Computing and Networks (1975–1990)
In the mid-1960s, Douglas Engelbart, a computer scientist working at the Stanford
Research Institute (SRI), first saw one of the ultimate implications of Moore’s Law: even-
tually, perhaps within a generation, hardware components would become small enough
and affordable enough to mass produce an individual computer for every human being.
What form would these personal computers take, and how would their owners use
them? Two decades earlier, in 1945, Engelbart had read an article in The Atlantic Monthly
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titled “As We May Think” that had already posed this question and offered some answers.
The author, Vannevar Bush, a scientist at MIT, predicted that computing devices would
serve as repositories of information, and ultimately, of all human knowledge. Owners of
computing devices would consult this information by browsing through it with pointing
devices and contribute information to the knowledge base almost at will. Engelbart agreed
that the primary purpose of the personal computer would be to augment the human intel-
lect, and he spent the rest of his career designing computer systems that would accom-
plish this goal.

During the late 1960s, Engelbart built the first pointing device, or mouse. He also designed
software to represent windows, icons, and pull-down menus on a bit-mapped display
screen. He demonstrated that a computer user could not only enter text at the keyboard
but directly manipulate the icons that represent files, folders, and computer applications
on the screen.

But for Engelbart, personal computing did not mean computing in isolation. He partici-
pated in the first experiment to connect computers in a network, and he believed that
soon people would use computers to communicate, share information, and collaborate
on team projects.

Engelbart developed his first experimental system, which he called NLS (oNLine System)
Augment, on a minicomputer at SRI. In the early 1970s, he moved to Xerox PARC
(Palo Alto Research Center) and worked with a team under Alan Kay to develop the first
desktop computer system. Called the Alto, this system had many of the features of
Engelbart’s Augment, as well as email and a functioning hypertext (a forerunner of the
World Wide Web). Kay’s group also developed a programming language called Smalltalk,
which was designed to create programs for the new computer and to teach programming
to children. Kay’s goal was to develop a personal computer the size of a large notebook,
which he called the Dynabook. Unfortunately for Xerox, the company’s management had
more interest in photocopy machines than in the work of Kay’s visionary research group.
However, a young entrepreneur named Steve Jobs visited the Xerox lab and saw the Alto
in action. In 1984, Apple Computer, the now-famous company founded by Steve Jobs,
brought forth the Macintosh, the first successful mass-produced personal computer with
a graphical user interface.

While Kay’s group was busy building the computer system of the future in its research lab,
dozens of hobbyists gathered near San Francisco to found the Homebrew Computer Club,
the first personal computer users group. They met to share ideas, programs, hardware,
and applications for personal computing. The first mass-produced personal computer,
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the Altair, appeared in 1975. The Altair contained Intel’s 8080 processor, the first micro-
computer chip. But from the outside, the Altair looked and behaved more like a miniature
version of the early computers than the Alto. Programs and their input had to be entered
by flipping switches, and output was displayed by a set of lights. However, the Altair was
small enough for personal computing enthusiasts to carry home, and I/O devices eventu-
ally were invented to support the processing of text and sound.

The Osborne and the Kaypro were among the first mass-produced interactive personal
computers. They boasted tiny display screens and keyboards, with floppy disk drives for
loading system software, applications software, and users’ data files. Early personal com-
puting applications were word processors, spreadsheets, and games such as Pacman and
SpaceWar. These computers also ran CP/M (Control Program for Microcomputers), the
first PC-based operating system.

In the early 1980s, a college dropout named Bill Gates and his partner Paul Allen built
their own operating system software, which they called MS-DOS (Microsoft Disk Operat-
ing System). They then arranged a deal with the giant computer manufacturer IBM to
supply MS-DOS for the new line of PCs that the company intended to mass-produce.
This deal proved to be an advantageous one for Gates’s company, Microsoft. Not only
did Microsoft receive a fee for each computer sold, but it was able to get a head start on
supplying applications software that would run on its operating system. Brisk sales of the
IBM PC and its “clones” to individuals and institutions quickly made MS-DOS the
world’s most widely used operating system. Within a few years, Gates and Allen had
become billionaires, and within a decade, Gates had become the world’s richest man, a
position he held for 13 straight years.

Also in the 1970s, the U.S. Government began to support the development of a network
that would connect computers at military installations and research universities. The first
such network, called ARPANET (Advanced Research Projects Agency Network), con-
nected four computers at SRI, UCLA (University of California at Los Angeles), UC Santa
Barbara, and the University of Utah. Bob Metcalfe, a researcher associated with Kay’s
group at Xerox, developed a software protocol called Ethernet for operating a network of
computers. Ethernet allowed computers to communicate in a local area network (LAN)
within an organization and with computers in other organizations via a wide area network
(WAN). By the mid 1980s, the ARPANET had grown into what is now called the Internet,
connecting computers owned by large institutions, small organizations, and individuals all
over the world.
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Communication and Media Computing (1990–2000)
In the 1990s, computer hardware costs continued to plummet, and processing speed and
memory capacity skyrocketed. Optical storage media such as compact discs (CDs) and
digital video discs (DVDs) were developed for mass storage. The computational proces-
sing of images, sound, and video became feasible and widespread. By the end of the
decade, entire movies were being shot or constructed and played back using digital
devices. The capacity to create lifelike three-dimensional animations of whole environ-
ments led to a new technology called virtual reality. New devices appeared, such as flatbed
scanners and digital cameras, which could be used along with the more traditional micro-
phone and speakers to support the input and output of almost any type of information.

Desktop and laptop computers not only performed useful work but gave their users new
means of personal expression. This decade saw the rise of computers as communication
devices, with email, instant messaging, bulletin boards, chat rooms, and the amazing
World Wide Web.

Perhaps the most interesting story from this period concerns Tim Berners-Lee, the creator
of the World Wide Web. In the late 1980s, Berners-Lee, a theoretical physicist doing
research at the CERN Institute in Geneva, Switzerland, began to develop some ideas for
using computers to share information. Computer engineers had been linking computers
to networks for several years, and it was already common in research communities to
exchange files and send and receive email around the world. However, the vast differences
in hardware, operating systems, file formats, and applications still made it difficult for
users who were not adept at programming to access and share this information. Berners-
Lee was interested in creating a common medium for sharing information that would be
easy to use, not only for scientists but for any other person capable of manipulating a key-
board and mouse and viewing the information on a monitor.

Berners-Lee was familiar with Vannevar Bush’s vision of a web-like consultation system,
Engelbart’s work on NLS Augment, and the first widely available hypertext systems. One
of these systems, Apple Computer’s Hypercard, broadened the scope of hypertext to hyper-
media. Hypercard allowed authors to organize not just text but images, sound, video, and
executable applications into webs of linked information. However, a Hypercard database sat
only on standalone computers; the links could not carry Hypercard data from one com-
puter to another. Furthermore, the supporting software ran only on Apple’s computers.

Berners-Lee realized that networks could extend the reach of a hypermedia system to any
computers connected to the Internet, making their information available worldwide.
To preserve its independence from particular operating systems, the new medium would
need to have universal standards for distributing and presenting the information.
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To ensure this neutrality and independence, no private corporation or individual govern-
ment could own the medium and dictate the standards.

Berners-Lee built the software for this new medium, now called the World Wide Web, in
1992. The software used many of the existing mechanisms for transmitting information
over the Internet. People contribute information to the web by publishing files on compu-
ters known as web servers. The web server software on these computers is responsible for
answering requests for viewing the information stored on the web server. To view infor-
mation on the web, people use software called a web browser. In response to a user’s com-
mands, a web browser sends a request for information across the Internet to the
appropriate web server. The server responds by sending the information back to the brow-
ser’s computer, called a web client, where it is displayed or rendered in the browser.

Although Berners-Lee wrote the first web server and web browser software, he made two
other, even more important, contributions. First, he designed a set of rules, called HTTP
(Hypertext Transfer Protocol), which allows any server and browser to talk to each other.
Second, he designed a language, HTML (Hypertext Markup Language), which allows
browsers to structure the information to be displayed on web pages. He then made all
these resources available to anyone for free.

Berners-Lee’s invention and gift of this universal information medium was a truly
remarkable achievement. Today there are millions of web servers in operation around
the world. Anyone with the appropriate training and resources—companies, government,
nonprofit organizations, and private individuals—can start up a new web server or obtain
space on one. Web browser software now runs not only on desktop and laptop computers,
but on handheld devices such as cell phones.

Wireless Computing and Smart Devices (2000–Present)
The twenty-first century has seen the rise of wireless technology and the further miniaturiza-
tion of computing devices. Today’s smartphones allow you to carry enormous computing
power around in your pocket and allow you to communicate with other computing
resources anywhere in the world, via wireless or cellular technology. Tiny computing devices
are embedded in cars and in almost every household appliance, from the washer/dryer and
home theater system to the exercise bike. Your data (photos, music, videos, and other infor-
mation) can now be stored in secure servers (the “cloud”), rather than on your devices.

Accompanying this new generation of devices and ways of connecting them is a wide
array of new software technologies and applications. Only three very significant innova-
tions are mentioned here.
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In the late 1990s, Steve Jobs rejoined Apple Computer after an extended time away. He
realized that the smaller handheld devices and wireless technology would provide a new
way of delivering all kinds of “content”—music, video, books, and applications—to people.

To realize his vision, Jobs pursued the design and development of a handheld device with a
clean, simple, and “cool” user interface to access this content. The first installment of such a
device was the iPod, a music player capable of holding your entire music library as well as
photos. Although the interface first used mechanical buttons and click wheels, it was soon
followed by the iTouch, which employed a touch screen and could play video. The touch
screen interface also allowed Apple and its programmers to provide apps, or special-
purpose applications (such as games), that ran on these devices. When wireless connectivity
became available, these apps could provide email, a web browser, weather channels, and
thousands of other services. The iPhone and iPad, true multimedia devices with micro-
phones, cameras, and motion sensors, followed along these lines a few years later.

Jobs also developed a new business model for distributing this content. Owners of these
devices would connect to an e-store, such as the iTunes Store, the iBooks Store, and the App
Store, to download free content or content for purchase. Authors, musicians, and app devel-
opers could upload their products to these stores in a similar manner. Thus, in a few short
years, Jobs changed the way people consume, produce, and think about media content.

Also in the late 1990s, two Stanford University computer science graduate students, Larry
Page and Sergey Brin, developed a powerful algorithm for searching the web. This algo-
rithm served as the basis for a company they founded named Google. “To Google” is
now a verb, synonymous with “to search on the web.” Although people continue to browse
or “surf” the web, much of what they do on the web is now based on search. In fact, most
online research and many new industries would be inconceivable without search.

Finally, just after the turn of the millennium, a Harvard University undergraduate student
named Mark Zuckerberg developed a prototype of the first social network program, which
he called Facebook. The company he founded with the same name has changed the way
that people connect to each other and present themselves online.

This concludes the book’s not-so-brief overview of the history of computing. If you want
to learn more about this history, run a web search or consult your local library. Now it’s
time for that introduction to programming in Python.

I Appreciate Your Feedback
I have tried to produce a high-quality text, but should you encounter errors, please report
them to lambertk@wlu.edu. Any errata and other information about this book will be
posted on the website http://home.wlu.edu/~lambertk/python/.
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Chapter 1

Getting Started with Python

In this chapter, you explore some of Python’s basic code elements. These code elements
include operations on Python’s basic types of data, such as numbers, strings, lists, and dic-
tionaries. These data and operations form the building blocks of programs you will
develop later in this book. The code presented in this chapter consists of simple frag-
ments. As you read along, you are encouraged to run these code fragments in Python’s
interactive shell. Just remember that the best way to learn is to try things out yourself!

Taking Care of Preliminaries
In this section, you learn how to download Python and its documentation from its web-
site, launch Python’s IDLE shell, and evaluate Python expressions and statements within
the shell.

Downloading and Installing Python
Some computer systems, such as Mac OS and Linux, come with Python already installed.
Others, such as Windows, do not. In either case, you should visit Python’s website at
www.python.org/download/ to download the most current version of Python for your
particular system. As of this writing, the most current version of Python is 3.3.4, but that
number may be larger by the time you read these words.

While you are at Python’s website, it’s a good idea to download the documentation for
your new version of Python, at www.python.org/doc/. You might also bookmark the link
to the documentation for quick browsing online.
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After downloading Python for your system, you install it by double-clicking on the instal-
lation file if you’re a Mac or Windows user. Linux users have to unzip a source code pack-
age, compile it with GCC, and place it in the appropriate directory on their systems.

Launching and Working in the IDLE Shell
For the first three chapters of this book, you experiment with Python code in Python’s
IDLE shell. The shell displays a window in which you can enter program codes and obtain
responses. The term IDLE stands for Integrated DeveLopment Environment. (It’s also the
last name of a Monty Python character, Eric Idle.) To launch IDLE in these three chap-
ters, you run the command

idle3

in a terminal window. Before you do this, you must open or launch a terminal window, as
follows:

n Mac users—Launch Terminal from the Utilities folder.

n Windows users—Launch a DOS window by entering the word command in the Start
menu’s entry box.

n Linux users—Right-click on the desktop and select Open Terminal.

Alternatively, Mac OS and Windows users can launch IDLE by double-clicking on the IDLE
icon in the folder where your Python system is located. This folder is in the Applications

folder in Mac OS and in the All Programs option of the Windows Start menu. You can cre-
ate the appropriate shortcuts to these options for quick and easy access.

When you launch IDLE in a terminal window, you should see windows like the ones
shown in Figure 1.1 (Mac OS version). Hereafter, the IDLE shell is simply called the shell.

Figure 1.1
A new shell window.
© 2014 Python Software Foundation.
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If the version number displayed in the shell is not 3.3.4 or higher, you need to close the
shell window and download and install the current version of Python, as described earlier.

The shell provides a “sandbox” where you can try out simple Python code fragments. To run
a code fragment, you type it after the >>> symbol and press the Return or Enter key. The shell
then responds by displaying a result and giving you another >>> prompt. Figure 1.2 shows
the shell and its results after the user has entered several Python code fragments.

Figure 1.2
The shell after entering several code fragments.
© 2014 Python Software Foundation.

Some of the text is color-coded (blue, green, and red) in your shell window, although
these colors do not appear in this monochrome book. The colors indicate the roles of var-
ious code elements, to be described shortly.

To repeat the run of an earlier line of code, just place the cursor at the end of that line and
press Return or Enter twice.

When you are ready to quit a session with the shell, you just select the shell window’s
close box or close the associated terminal window. However, keep a shell handy when
reading this book, so you can try out each new idea as you encounter it.

Obtaining Python Help
There are two good ways to get help when writing Python code:

1. Browse the Python documentation.

2. Run Python’s help function in the shell.
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Python’s help function is especially useful for getting quick help on basic code elements,
such as functions. For example, the use of Python’s abs function in Figure 1.2 might seem
obvious to you, but if you’re not sure, you can learn more by entering help(abs), as shown
in Figure 1.3.

Figure 1.3
Getting help in the shell.
© 2014 Python Software Foundation.

Working with Numbers
Almost all computer programs use numbers in some way or another. In this section, you
explore arithmetic with two basic types of numbers in Python: integers and floating-point
numbers. Along the way, the important concepts of variables, assignment, functions, and
modules are introduced.

Using Arithmetic
As you know from mathematics, integers are the infinite sequence of whole numbers
{..., –2, –1, 0, 1, 2, ...}. Although this sequence is infinite in mathematics, in a computer
program the sequence is finite and thus has a largest positive integer and a largest negative
integer. In Python, the sequence of integers is quite large; the upper and lower bounds of
the sequence depend on the amount of computer memory available.

Real numbers are numbers with a decimal point, such as 3.14 and 7.50. The digits to the
right of the decimal point, called the fractional part, represent the precision of a real num-
ber. In mathematics, real numbers have infinite precision. The set of real numbers is also
infinite. However, in a computer program, real numbers have an upper bound, a lower
bound, and a finite precision (typically 16 digits). In Python and most other programming
languages, real numbers are called floating-point numbers.

As you saw in the previous section, when you enter a number in the Python shell, Python
simply displays that number; when you enter an arithmetic expression, Python evaluates
and displays the value of that expression. Thus, the shell behaves like a pocket calculator
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(without the buttons). Python’s basic arithmetic operations are listed in Table 1.1. In this
table, the symbols A and B can be either numbers or expressions containing numbers and
operators.

Table 1.1 Basic Arithmetic Operations

Operation What It Does Example Value

A + B Returns the sum of A and B 5 + 2 7

A – B Returns the result of subtracting B from A 5 – 2 3

A * B Returns the product of A and B 5 * 2 10

A / B Returns the exact result of dividing A by B 5 / 2 2.5

A // B Returns the integer quotient from dividing
A by B

5 // 2 2

A % B Returns the integer remainder from
dividing A by B

5 % 2 1

A ** B Returns AB 5 ** 2 25

– A Returns the arithmetic negation of A – (5 * 2) –10

Note the following points about the arithmetic operations:

1. The / operator produces the exact result of division, as a floating-point number.

2. The // operator produces an integer quotient.

3. When two integers are used with the other operators, the result is an integer.

4. When at least one floating-point number is used with the other operators, the result
is a floating-point number. Thus, 5 * 2 is 10, whereas 5 * 2.3 is 11.5.

As in mathematics, the arithmetic operators are governed by precedence rules. If operators
of the same precedence appear in consecutive positions, they are evaluated in left-to-right
order. For example, the expression 3 + 4 – 2 + 5 is evaluated from left to right, producing 10.

When the operators do not have the same precedence, ** is evaluated first, then multipli-
cation (*, /, //, or %), and finally addition (+ or –). For example, the expression 4 + 3 * 2 ** 3

first evaluates 2 ** 3, then 3 * 8, and finally 4 + 24, to produce 32.

You can use parentheses to override these rules. For example, (3 + 4) * 2 begins evaluation
with the addition, whereas 3 + 4 * 2 begins evaluation with the multiplication. What are the
results of evaluating these two expressions? Open a shell and check!
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Negative numbers are represented with a minus sign. This sign is also used to negate more
complex expressions, as in – (3 * 5). The precedence of the minus sign when used in this
way is higher than that of any other arithmetic operator.

Table 1.2 shows the precedence of the arithmetic operators, where the operators of higher
precedence are evaluated first.

Table 1.2 The Precedence of Arithmetic Operators

Operator Precedence

– (unary negation) 4

** 3

*, /, //, % 2

+, – (binary subtraction) 1

The exponentiation operator ** is also right associative. This means that consecutive **

operators are evaluated from right to left. Thus, the expression 2 ** 3 ** 2 produces 512,
whereas (2 ** 3) ** 2 produces 64.

Finally, a note on style: although Python ignores spaces within arithmetic expressions, the
use of spaces around each operator can make your code easy for you and other people to
read. For example, compare

34+67*2**6–3

to

34 + 67 * 2 ** 6 – 3

Working with Variables and Assignment
Suppose you are working on a program that computes and uses the volume of a sphere.
You are given the sphere’s radius of 4.2 inches. You first compute its volume using the
formula 4/3πr3, with 3.1416 as your estimate of π. Here is the Python expression you
might write for that:

4 / 3 * 3.1416 * 4.2 ** 3
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If the value of this expression is used just once in your program, you compute it just once
and use it there. However, if it is used in several places in your program, you must write
the same expression several times. That’s a waste of your time in writing code and a waste
of the computer’s time in evaluating it. Is there a way to write the expression, compute its
value just once, and then simply use this value many times thereafter?

Yes, there is, and that’s one reason why programs use variables. A variable in Python is a
name that stands for a value. A Python variable is given a value by using the assignment
operator =, according to the following form:

variable = expression

where variable is any Python name (with a few exceptions to be discussed later) and
expression is any Python expression (including the arithmetic expressions under discus-
sion here). Thus, in our example, the variable volume could be given the volume of the
sphere via the assignment

volume = 4 / 3 * 3.1416 * 4.2 ** 3

and then used many times in other code later on. Note that because the precedence of
assignment is lower that that of the other operators, the expression to the right of the =

operator is evaluated first, before the variable to the left receives the value.

Now, suppose you had to compute the volumes of several different spheres. You could
type out the expressions 4 / 3 and 3.1416 every time you write the code to compute a
new volume. But you could instead use other variables, such as FOUR_THIRDS and PI, to
make these values easy to remember each time you repeat the formula. Figure 1.4 shows
a session in the shell where these values are established and the volumes of two spheres,
with radii 4.2 and 5.4, are computed.

Figure 1.4
Using variables in code fragments.
© 2014 Python Software Foundation.
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Python variables are spelled using letters, digits, and the underscore (‘_’). The following
rules apply to their use:

n A variable must begin with a letter or an underscore (‘_’) and contain at least
one letter.

n Variables are case sensitive. Thus, the variable volume is different from the variable
Volume, although they may refer to the same value.

n Python programmers typically spell variables in lowercase letters but use capital
letters or underscores to emphasize embedded words, as in firstVolume or
first_volume.

n When the value of a variable will not change after its initial assignment, it’s
considered a constant. PI is an example of a constant. Python programmers
typically spell constants using all caps to indicate this.

n Before you can use a variable, you must assign it a value. An attempt to use a variable
that has not been initialized in this way generates an error message, as shown in
Figure 1.5.

Figure 1.5
Attempting to use a variable that has not been assigned a value.
© 2014 Python Software Foundation.

To summarize, there are three reasons to use variables in Python code:

1. They make code easy to read and understand.

2. They help to eliminate unnecessary computations.

3. They make code easy to modify and maintain (to be discussed later).
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Using Functions
As you have seen, the arithmetic and assignment operations consist of an operator and
one or more operands. Python also provides many other basic operations, which are pack-
aged as functions. A function is like an operator but is referred to by a name rather than
an operator symbol. When a function is evaluated or called, its operands are supplied to it
in the form of arguments. For example, the Python function abs expects a number as its
single argument and computes and returns that number’s absolute value. Thus, the func-
tion call abs(-34) returns 34.

When a Python function is called, Python first evaluates its arguments. The resulting
values are then passed to the function, which uses them to compute and return its value.
Although the written form of a function call is slightly different, the process is no different
from evaluating an expression with operands and operators. The form of a function call is
as follows:

functionName(argumentExpression-1, argumentExpression-2, ...)

Function calls are expressions, and their arguments are expressions. For example, the
arithmetic expression

abs(length - width) + 2

produces a result, as long as the variables length and width refer to numbers.

Some Python functions allow for optional arguments as well as required arguments. For
example, the Python function round expects one required argument: the number to be
rounded. If that number is a floating-point number, the integer value nearest to it is
returned. However, round can also be called with a second argument: an integer indicating
the number of places of precision to use in the result. Thus, round(3.1416) returns 3,
whereas round(3.1416, 3) returns 3.142.

Generally, the number of arguments used with a function must match the number of its
required arguments, unless it allows optional arguments. For functions provided by
Python, the types of the arguments (such as numbers) used must also match the types of
the arguments expected at each position in the sequence of arguments.

Using the math Module
Python’s functions either are already available to call in the shell or must be imported
from modules before use. A Python module is just a library of functions and other
resources. There are many such modules, as you can see by browsing the modules index
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in the Python documentation. One of these is the math module, which contains useful
functions for operations on numbers.

There are several ways to import a function from a module to make it available for use.
The most common way is to use the form

import moduleName

where moduleName is the name of the module. When you have done this, you can call any
function in the module by using the form

moduleName.functionName(sequenceOfArguments)

For example, suppose you want to compute the square root of 2. The following shell
session shows how to do this:

>>> import math
>>> math.sqrt(2)
1.4142135623730951

Alternatively, if you prefer not to use the module name as a prefix in a function call, you
can explicitly import the desired function, as follows:

>>> from math import sqrt
>>> sqrt(2)
1.4142135623730951

To view all the functions available in the math module, you run dir(math) after importing
math, as follows:

>>> import math
>>> dir(math)
[’__doc__’, ’__file__’, ’__loader__’, ’__name__’, ’__package__’, ’acos’, ’acosh’, ’asin’,
’asinh’, ’atan’, ’atan2’, ’atanh’, ’ceil’, ’copysign’, ’cos’, ’cosh’, ’degrees’, ’e’,
’erf’, ’erfc’, ’exp’, ’expm1’, ’fabs’, ’factorial’, ’floor’, ’fmod’, ’frexp’, ’fsum’,
’gamma’, ’hypot’, ’isfinite’, ’isinf’, ’isnan’, ’ldexp’, ’lgamma’, ’log’, ’log10’,
’log1p’, ’log2’, ’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’,
’trunc’]

If you have studied trigonometry, you should be able to spot the trigonometric functions,
such as cos and sin, in this list. Note also that the variable pi, which is Python’s name for
the constant PI, is present. The value of this variable is Python’s most precise estimate of π.
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Now you can use this value to compute a more precise volume of a sphere than you did
earlier, using the following statement:

volume = FOUR_THIRDS * math.pi * radius ** 3

Another way to access the items in a module is to import all of them explicitly. To do this
with the math module, you run

from math import *

To access help on any module function, run the help function on the function’s name. If
you’ve imported just the module, you use the form

help(moduleName.functionName)

Otherwise, you use the form

help(functionname)

To get help on an entire module after importing it, run help on the module’s name.

You might be thinking, “Hey, why doesn’t the math module include a function to compute
the volume of a sphere? Then I could just give that function the radius and let it do all the
work.” That would be a nice function to have, but the folks at python.org could not pro-
vide a function for every occasion. Later in this book, you learn how to create your own
functions and modules to add to Python’s built-in capabilities.

Detecting Errors
Figure 1.6 shows a shell session with several errors in Python code.

Figure 1.6
Examples of errors in Python code.
© 2014 Python Software Foundation.
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There are three types of errors that can occur in your code:

n Syntax errors—These errors occur when your code is not well formed, according to
the syntax or grammar rules of Python. For example, the expression abs(-34) is
syntactically correct, but the expression abs(-34)) is not. (It contains an extra right
paren.)

n Semantic errors—These errors occur when a syntactically correct expression is
evaluated, but Python cannot carry out the evaluation. For example, Python cannot
divide a number by zero, cannot compute the square root of a negative number, and
cannot use a variable that has not yet been given a value, even though you can enter
each such expression in the shell without a syntax error.

n Logic errors—Also called design errors, these errors occur when Python successfully
evaluates an expression, but the expression returns an incorrect result. For example,
the expression math.pi * 34 ** 2 does return a value, but if you expect this value to be
the volume of a sphere of radius 34, your code contains a logic or design error.

Python detects syntax and semantic errors automatically and displays error messages.
However, you must detect logic or design errors yourself by testing and inspecting the
results of your code. In advanced software development settings, programmers can use
software tools to automate some of this testing as well.

In general, you should regard error messages with a friendly eye and learn to understand
what they mean. As you become a competent programmer, you will have few syntax and
semantic errors in your code, so you can turn your attention to eliminating any logic
errors.

Working with Strings
Text processing is almost as prevalent in computing as numerical processing. Instant mes-
saging, texting, and word processing would be impossible without it. In this section, you
explore working with strings, which form the basis of text processing.

String Literals
A string is a sequence of characters. The set of characters includes all the letters, digits,
and punctuation marks that you see on a keyboard, as well as command or control char-
acters and many others that don’t appear there (such as the characters used in Arabic,
Chinese, Greek, Japanese, Russian, and most other languages). In Python, string literals
are represented as sequences of characters enclosed in quotes, as shown in the shell ses-
sion in Figure 1.7.
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Figure 1.7
Examples of strings in Python.
© 2014 Python Software Foundation.

Note that you can use pairs of single quotes, pairs of double quotes, or pairs of triple-
single or triple-double quotes. Strings enclosed in single quotes or double quotes cannot
extend to the next line of code. Strings enclosed in triple quotes can extend to multiple
lines of code, but the line breaks are included as characters within these strings.

Note also that, like numbers, strings evaluate to themselves, but the results are displayed
in single quotes.

If you want to embed quotes within a string, you can place the escape character \ imme-
diately before the embedded quote. The escape character is also used to embed special
characters, such as the Tab and Return characters, within a string. Table 1.3 lists some
escaped characters and their meanings.

Table 1.3 Some Escaped Characters

Character Meaning

\n Newline (Return or Enter)

\t Horizontal Tab

\\ \

\’ ‘

\” “

Strangely enough, the empty string, represented as “”, is still a string, even though it con-
tains no characters.
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The len, str, int, and float Functions
A string’s length is the number of characters it contains. The len function allows you to
look up the length of its string argument, as shown in the next shell session:

>>> len("")
0
>>> len("Here are four words.")
20

Note that the empty string contains no characters, whereas the space counts as a character.

The str function converts its argument to a string representation. In the case of numbers,
str has the effect of wrapping the number in a set of quote marks. The str function is
often used to build text from other types of data values, such as numbers.

The int and float functions are used to build numbers from strings. Note that a string of
digits does not look very different from a number that contains the same sequence of
digits, but they are very different species of data from Python’s point of view. The follow-
ing shell session illustrates this difference and shows some uses of the int and float

functions:

>>> 34 + 22
56
>>> "34" + "22"
’3422’
>>> "34" + 22
Traceback (most recent call last):

File "<pyshell#10>", line 1, in <module>
"34" + 22

TypeError: Can’t convert ’int’ object to str implicitly
>>> str(22)
’22’
>>> "34" + str(22)
’3422’
>>> int("34")
34
>>> int("34") + 22
56
>>> int(3.6)
3
>>> float(3)
3.0
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Note that the int function does not round a floating-point number to the nearest integer
but instead truncates or removes its fractional part.

Input and Output Functions
Computer programs typically take input data, process them, and output the results. In the
program fragments you have seen thus far, the inputs are operands in expressions or
arguments to functions, and the outputs are the values returned. When a program is not
run from the Python shell but from a system terminal, separate input and output opera-
tions are needed to supply data to the program and display its results. For text-based ter-
minal programs, Python provides two functions, named input and print, for this purpose.
Although you will write very few such programs in this book, it’s still a good idea to
experiment with Python’s input and print functions here, in “sandbox mode.”

Output with the print Function
The print function expects zero or more arguments. It evaluates these arguments and
converts their values to strings, builds a new string from them with single spaces between
them, and displays this string as a single line of text. A line break is automatically dis-
played as well. The next shell session shows some examples of the use of the print

function:

>>> print()

>>> print("Hello there!")
Hello there!
>>> print("Text followed by a blank line\n")
Text followed by a blank line

>>> print("Four uses the digit", 4)
Four uses the digit 4

Note that print has the effect of stripping off the quotes enclosing each string.

Input with the input Function
The input function expects an optional string as an argument. If the string is provided, the
function displays it as a prompt for an input value and waits for the user to enter some
keystrokes. When the user presses the Return or Enter key, the function builds and
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returns a string containing these keyboard characters. The next shell session shows some
uses of the input function:

>>> input("Enter the radius: ")
Enter the radius: 7.55
’7.55’
>>> input("Press return to quit: ")
Press return to quit:
’’

>>> name = input("Enter your name: ")
Enter your name: Ken Lambert
>>> name
’Ken Lambert’

Note that the minimal case of an input occurs when the user presses the Return or the
Enter key, which produces the empty string.

When the user enters a string of digits for a number, the programmer must run the int or
float function on this string before using the number in further computations. Here is an
example, which inputs the length and width of a rectangle and outputs its area:

>>> width = int(input("Enter the width: "))
Enter the width: 34
>>> length = int(input("Enter the length: "))
Enter the length: 22
>>> print("The area is", width * length)
The area is 748

Indexing, Slicing, and Concatenation
Strings are data structures, which means they contain other data within them. Data struc-
tures provide operations for constructing a new datum from component parts and for
accessing these parts after the datum has been constructed. The parts contained in a string
are its characters, which themselves are other (single-character) strings. Thus, you should
be able to build new strings out of existing strings and be able to access any of the char-
acters or sequences of characters within a string.

Python builds a new string automatically when you enter a string literal in your code. You
can also build new strings from existing strings by running the concatenation operator +.
The next shell session shows some examples of string concatenation.

>>> "Ken" + "Lambert"
’KenLambert’
>>> "Ken" + " " + "Lambert"
’Ken Lambert’
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>>> "" + "Not empty"
’Not empty’
>>> text = ""
>>> text = text + "Not empty"
>>> text
’Not empty’

The concatenation operator simply glues two strings together to form a new string. Note
that the last assignment in this session shows that assignment is not the same thing as an
equation in mathematics. A new string is built from the old one on the right side of the =

operator, and then the variable text is reset to this new string. Python has a different
operator, ==, that compares two values for equality, to be explored later.

The most basic string access operation is indexing or subscripting. This operation gives
you the character at a given position in the string. Each character in a string has a definite
position. These positions range from zero, the position of the first character, to the length
of the string minus one, the position of the last character. The form of this operation is as
follows:

aString[anIntegerIndexPosition]

The integer in square brackets following a string is also called a subscript, and the [] oper-
ator is called the subscript operator. Here is a shell session with some example subscript
operations:

>>> name = "Ken Lambert"
>>> name
’Ken Lambert’
>>> name[0]
’K’
>>> name[len(name) - 1]
’t’
>>> name[len(name)]
Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>
name[len(name)]

IndexError: string index out of range

The error on the last line results from giving an index position that lies beyond the
sequence of positions in the string. Negative index values are allowed, counting from –1
(the last position) down to minus the length of the string (the first position).

The slice operation is similar to the index operation, but a range of positions is given, and
a substring of characters is returned. The form of this operation is

aString[lowerBound:upperBound]
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where lowerBound and upperbound are optional integer values. Here are some examples of
slicing into a string:

>>> name = "Ken Lambert"
>>> name[:]
’Ken Lambert’
>>> name[0:]
’Ken Lambert’
>>> name[:len(name)]
’Ken Lambert’
>>> name[4:8]
’Lamb’
>>> name[4:]
’Lambert’

As you can see, when the lower bound is omitted, the substring begins with the first charac-
ter in the string, and when the upper bound is omitted, the substring ends with the last char-
acter in the string. Otherwise, the substring begins with the character at the position of the
lower bound and ends with the character at the position of the upper bound minus one.

Note that slicing, indexing, and concatenation do not modify the contents of existing
strings because you cannot modify strings after you construct them.

String Methods
When you run dir(str) in the shell, you see all the string operations. They are called
methods. Note that the method names at the beginning of this list contain underscores.
These methods are associated with operators such as + and []. When Python sees an oper-
ator used with a string, it looks up the corresponding method and calls it with the appro-
priate arguments.

A method is like a function but has a slightly different calling protocol. When you run a
method on a string, the string is written first, followed by a dot, followed by the method
name and any of its arguments, as follows:

aString.methodName(argumentSequence)

Here are some example uses of string methods:

>>> "Ken Lambert".upper()
’KEN LAMBERT’
>>> "Ken Lambert".startswith(’L’)
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False
>>> "44".isnumeric()
True
>>> "Ken Lambert".index(’L’)
4
>>> "Ken Lambert".split()
[’Ken’, ’Lambert’]

You should be able to tell what these operations do just by examining the results. But if
you’re unsure of any of them, ask for help by entering help(str.methodName) in the shell.

Working with Lists
People make and use lists of things for many different purposes, such as playlists of music
or wish lists for shopping. In programming, you can create and process lists of numbers,
strings, or any other data values. In this section, you explore the use of lists in Python.

List Literals and Operators
A list is a sequence of data values called items. Items can be any data values whatsoever.
Like the characters in a string, the items in a list are ordered by position, counting from 0.
In Python, a list literal is represented as a sequence of items separated by commas. The
sequence of items is enclosed in square brackets, as shown in the next shell session.

>>> [34, 46, 22]
[34, 46, 22]
>>> emptyList = []
>>> len(emptyList)
0
>>> item1 = 34
>>> item2 = "Ken"
>>> listOfTwoItems = [item1, item2]
>>> listOfTwoItems
[34, ’Ken’]
>>> listOfLists = [listOfTwoItems, emptyList]
>>> listOfLists
[[34, ’Ken’], []]

Note the following points about these lists:

n The empty list, [], contains no items and has a length of 0.

n Lists can contain other data structures, such as strings and lists.
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n When an item in a list is a variable, the list actually contains the value of that
variable. This technique of building a list is called pattern matching.

n Several variables can refer to the same list.

Lists generally support the same operators as strings. Thus, you can concatenate two lists
with +, access an item at an index position with [], and get a slice of a list with [:]. In the
case of the concatenation and slice operations, the results are always other lists.

However, unlike strings, lists can be modified after they are created. You can replace items
at given positions, add them to an existing list, or remove them from an existing list. You
replace an item at a given list position by placing a list subscript on the left side of an
assignment statement, as shown in the following shell session:

>>> fruits = ["oranges", "bananas", "apples"]
>>> fruits
[’oranges’, ’bananas’, ’apples’]
>>> fruits[1] = "cherries"
>>> fruits
[’oranges’, ’cherries’, ’apples’]

Note that the integer index must range from minus the length of the list to the length of
the list minus one. There are many other methods that modify lists, some of which are
considered next.

List Methods
If you run dir(list) in the shell, you see all the list methods. Several of these are index
based, meaning that they expect an integer index position as an argument. For example,
the methods insert and pop are used to add and remove items at given positions, as
shown here:

>>> fruits
[’oranges’, ’cherries’, ’apples’]
>>> fruits.insert(1, "peaches")
>>> fruits
[’oranges’, ’peaches’, ’cherries’, ’apples’]
>>> fruits.pop(0)
’oranges’
>>> fruits
[’peaches’, ’cherries’, ’apples’]
>>> fruits.pop()
’apples’
>>> fruits
[’peaches’, ’cherries’]
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The insert method always inserts an item before the given index, after shifting some
items to the right by one position. The pop method removes the item at the given index,
before shifting some items to the left by one position. Note that when you omit the index,
the pop method removes the last item in the list.

Other list methods are content based, meaning that they are given or targeted at an item
rather than a position in the list. For example, the append method adds a given item to the
end of a list, whereas the remove method removes the first instance of a given item from a
list. The flowing shell session demonstrates these operations:

>>> fruits
[’oranges’, ’bananas’, ’apples’]
>>> fruits.append("grapes")
>>> fruits
[’oranges’, ’bananas’, ’apples’, ’grapes’]
>>> fruits.remove("bananas")
>>> fruits
[’oranges’, ’apples’, ’grapes’]

Note that the item given to the remove method must already be in the list.

Although the items in a list are always ordered by position, they may not be in alphabeti-
cal order (if they are strings) or in ascending or descending order (if they are numbers).
Rearranging list items into this kind of order is called sorting. Sorting is a complex pro-
cess, but the list method sort makes that easy, as shown here:

>>> fruits
[’oranges’, ’peaches’, ’cherries’, ’apples’]
>>> fruits.sort()
>>> fruits
[’apples’, ’cherries’, ’oranges’, ’peaches’]
>>> grades
[77, 100, 85, 92]
>> grades.sort()
>>> grades
[77, 85, 92, 100]
>>> grades.reverse()
>>> grades
[100, 92, 85, 77]

Note that the methods sort and reverse are used in sequence to place list items in des-
cending order.
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Table 1.4 summarizes some commonly used list operations, where the variable L refers
to a list.

Table 1.4 Some Commonly Used List Operations

List Operation What It Does

len(L) Returns the number of items currently in the list.

L[index] Returns the item at the integer position index in the list. Note: do not
use an index that is less than 0 or greater than or equal to the length
of the list.

L[index] = item Replaces the item at the integer position index in the list with item.
Note: do not use an index that is less than 0 or greater than or equal
to the length of the list.

L.append(item) Adds item to the end of the list.

L.count(item) Returns the number of instances of item in the list.

L.index(item) Returns the position of the first instance of item in the list, or raises
an exception if item is not present.

L.insert(index,
item)

Inserts item at position index, shifting other items to the right by one
position if necessary.

L.pop(index) Removes the item at position index, shifting other items to the left by
one position if necessary. If index is not provided, removes the item at
the end of the list.

L.remove(item) Removes the first instance of item in the list, or raises an exception if
item is not present.

Lists from Other Sequences
Sometimes you’ll want to build a new list from another sequence, such as a string or
another list. The easiest way to do this is to supply that sequence as an argument to the
list function, as follows:

>>> characters = list("Ken Lambert")
>>> characters
[’K’, ’e’, ’n’, ’ ’, ’L’, ’a’, ’m’, ’b’, ’e’, ’r’, ’t’]
>>> myCopy = list(characters)
>>> myCopy
[’K’, ’e’, ’n’, ’ ’, ’L’, ’a’, ’m’, ’b’, ’e’, ’r’, ’t’]
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The first assignment creates a list of the characters in a string. The second assignment
creates a copy of that list.

Another common way to build a list from a string is to use the string method split. This
method returns a list of the words in the string, where the space character is the separator
between the words. The original string can be reconstructed by running the string method
join with the list of words as an argument. Here is an example:

>>> words = "Ken Lambert".split()
>>> words
[’Ken’, ’Lambert’]
>>> " ".join(words)
’Ken Lambert’

Finally, to create a list from a range of numbers, you use Python’s range function to create
the range and pass this result to the list function.

Here are some examples:

>>> numbers = list(range(15))
>>> numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
>>> oneThroughFifteen = list(range(1, 16))
>>> oneThroughFifteen
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> fifteenThroughOne = list(range(15, 0, -1))
>>> fifteenThroughOne
[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

When range gets a single integer argument, it returns a range of numbers from 0 to this
integer minus one. When range gets two integer arguments, it returns a range from the
first integer to the second integer minus one. When range gets three integer arguments,
it returns a range from the first integer to the second integer minus one, but the value of
the third integer is used to count the interval between the integers in the range. Thus, to
count down rather than up, as in the example, the first integer must be greater than the
second one, and the third integer must be negative.

Lists and the random Module
The set of integers is also a sequence, which allows you to treat other sets, such as the set
of characters and the set of positions in a list or string, as sequences. You have seen that
even when the items in a list or string are in a sequence, they may otherwise be in a
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random (unsorted) order. In many applications, you might want to arrange a set of items
in a list in random order or perhaps select an item from a random position. (Think of
shuffling a new deck of cards or picking a random ping pong ball from a bowl of such
balls.) Python’s random module includes some functions that allow you to perform these
tasks with lists. The two most commonly used functions are random.shuffle and
random.choice. Here are some uses of these two functions:

>>> import random
>>> numbers = list(range(1, 16))
>>> numbers
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> random.shuffle(numbers)
>>> numbers
[6, 11, 1, 12, 3, 10, 13, 4, 5, 15, 2, 7, 9, 8, 14]
>>> random.choice(numbers)
13
>>> random.choice(numbers)
8
>>> coin = ["heads", "tails"]
>>> random.choice(coin)
’heads’
>>> random.choice(coin)
’heads’
>>> random.choice(coin)
’tails’

Tuples as Immutable Lists
You saw earlier that a string is immutable, meaning that its contents and structure cannot
change after it is created. You also saw that lists are mutable, meaning that you can alter
their contents and structure with replacements, insertions, and removals. Although lists
are mutable, occasionally you want to create sequences of items that are list-like but also
immutable. In Python, a data structure called a tuple fills this bill.

A tuple looks just like a list but uses parentheses rather than square brackets to enclose its
items. Tuples are created by mentioning them as literals (with possibly embedded vari-
ables) or by running the tuple function on another sequence, such as a list, a string, or a
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range of numbers. The usual operators have the expected results, but a tuple with a sub-
script cannot appear on the left side of an assignment. The next shell session shows some
examples:

>>> pair = (1, 2)
>>> triple = (3, 4, 5)
>>> len(triple)
3
>>> triple[2]
5
>>> triple[1:]
(4, 5)
>>> pair + triple
(1, 2, 3, 4, 5)
>>> tuple(range(15))
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
>>> tuple("Ken Lambert".split())
(’Ken’, ’Lambert’)

Working with Dictionaries
Lists and tuples are sequences. They are well suited for applications in which items must
be ordered by position. Another type of data structure, called the dictionary, does not
order its items by position. Instead, a dictionary associates each item with a unique value
called a key. For example, when you hear the words mother and father, it’s likely that
images of your mother and father immediately come to mind. In a crude sense, your
mind or memory is like a big dictionary, in which each item or idea is associated with a
unique key that allows you to access it. In this section, you explore the use of Python dic-
tionaries to model this type of memory storage.

Dictionary Literals
A dictionary is a set of key/value pairs. In a Python dictionary, the keys must be unique,
but the values can be repeated. A key must be an immutable value, such as a number or a
string. A value can be any Python data object or even a function or method.

A dictionary literal consists of curly braces {}, which enclose a sequence of key/value
pairs. Commas separate the pairs. Within each pair, a colon appears between the key
and the value. The next shell session shows some example dictionaries:

>>> {}
{}
>>> kenInfo = {"name":"Ken", "hair-color":"gray", "age":63}
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>>> kenInfo
{’hair-color’: ’gray’, ’name’: ’Ken’, ’age’: 63}
>>> list(kenInfo.keys())
[’hair-color’, ’name’, ’age’]
>>> list(kenInfo.values())
[’gray’, ’Ken’, 63]
>>> list(kenInfo.items())
[(’hair-color’, ’gray’), (’name’, ’Ken’), (’age’, 63)]
>>> elvisInfo = dict([("name", "Elvis"), ("hair-color", "black"), ("age", 22)])
>>> elvisInfo
{’hair-color’: ’black’, ’name’: ’Elvis’, ’age’: 22}

Dictionary Methods and Operators
Note the use of the keys, values, and items methods to pick out the dictionary’s keys,
values, and key/value pairs, respectively. Like other data structures, a dictionary is created
when it’s mentioned as a literal, or when you run the dict function with the appropriate
argument—in this case, a list of tuples. The len function returns the number of keys in a
dictionary, but the + operator is undefined.

There are two basic access operations. One operation just places a target key in a subscript
operator, as in

>>> elvisInfo["name"]
’Elvis’

and the value associated with that key is returned. However, if the key is absent, Python
displays an error message. To avoid that potential problem, you can run the get method
on the dictionary, with the purported key and a default value to be returned if that key is
not found, as follows:

>>> elvisInfo.get("weight", None)
None

The pop method, like get, expects two arguments: a key and a default value to return if the
key is absent. If the key exists, Python removes the key and its associated value and
returns the value; otherwise, the default value is returned.

When a subscript appears with a dictionary on the left side of an assignment, it is used as
either a replacement or an insertion operation. Here is an example:

>>> ringoInfo = {}
>>> ringoInfo["name"] = "Ringo"
>>> ringoInfo["profession"] = "drummer"
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>>> ringoInfo
{’profession’: ’drummer’, ’name’: ’Ringo’}
>>> ringoInfo["profession"] = "retired"
>>> ringoInfo
{’profession’: ’retired’, ’name’: ’Ringo’}

As you can see, the first two assignments access keys for the first time, so they serve as
insertions. The third assignment performs a replacement of a value at a given key.

Table 1.5 summarizes some commonly used dictionary operations, where the variable D

refers to a dictionary.

Table 1.5 Some Commonly Used Dictionary Operations

Dictionary Operation What It Does

len(D) Returns the number of keys currently in the dictionary.

D[key] Returns the value at key in the dictionary.
Note: do not use a key that is not in the dictionary.

D[key] = value Replaces the value at key in the dictionary with value,
if key is in the dictionary. Otherwise, inserts key and value
into the dictionary.

D.get(key, defaultValue) Returns the value at key, or defaultValue if key is not
present.

D.pop(key, defaultValue) Removes and returns the value at key, or defaultValue
if key is not present.

This concludes your introduction to Python basics. After doing the exercises for this chap-
ter, you will be ready to explore turtle graphics programming in Python.

Summary
n The Python shell provides a playspace for entering Python code, running it, and

viewing the results.

n Basic Python data types include integers, floating-point numbers, strings, lists, tuples,
and dictionaries.

n Python arithmetic operators include addition (+ and –), multiplication (*, /, and %),
and exponentiation (**).
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n A Python function is an operation that can be called by name to produce a value.
When a function is called, it can receive other data as arguments to use in its
computations.

n A Python module, like the math module, is a library of functions and other resources
that can be imported for use in your code. Examples of these resources are the
function math.sqrt and the constant math.pi.

n The int, float, and str functions are used to convert data to integers, floating-point
numbers, and strings, respectively.

n Python variables are names that refer to data values.

n The assignment operator = is used to set a variable to a value.

n A data structure is a datum that contains other data values. Operations exist to
construct data structures and to access their component parts. Examples of data
structures are strings, lists, tuples, and dictionaries.

n A string is a sequence of zero or more characters. Python strings appear enclosed in
quote marks.

n The + operator glues together two strings to build a new string that contains them.
This operation is called concatenation.

n The [] operator returns the character at the given integer index position in a string.

n The [] operator returns a substring of a string when a ":" appears within the
operator. This is known as a slice operation.

n A list is a sequence of zero or more data values. The items in Python lists appear
enclosed in square brackets. Lists respond to the + and [] operators, as well as
operations to insert and remove items. Unlike strings, lists are mutable.

n A tuple is a sequence of zero or more data values. The items in Python tuples appear
enclosed in parentheses. Unlike lists, tuples are immutable.

n A dictionary is a set of key/value pairs. The items in Python dictionaries appear
enclosed in curly braces. The data within a dictionary are not ordered by their
positions, but by their keys.

n The named operations on strings, lists, tuples, and dictionaries are known as
methods. A method call consists of a datum, followed by a dot, followed by the
method’s name and a parenthesized list of arguments.
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Exercises
Launch the Python shell and complete the following exercises.

1. Enter expressions that compute the area of a circle, the volume of a sphere, and the
surface area of a sphere. You should use the variable radius with the same value in
each of these expressions, as well as the most precise value of π available in Python.

2. Enter an assignment statement that sets the variable name to your full name. Then
enter an expression that uses this variable and the slice operator to return your
last name.
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Chapter 2

Getting Started with
Turtle Graphics

Python’s basic code elements allow you to manipulate numbers, text, and data structures
such as lists and dictionaries. However, modern computers also make extensive use of
graphics and allow you to interact with graphical images directly by moving a mouse or
pointing device. In this chapter, you learn some basic Python graphics operations, using a
subsystem called turtle graphics.

Looking at the Turtle and Its World
Turtle graphics was developed with the Logo programming language in the late 1960s to
teach programming to children. Turtle graphics allows you to simulate the movements of
a turtle robot by moving an image around on a computer monitor. The turtle is equipped
with a pen that can draw lines and shapes as it moves about.

The turtle has a position in a two-dimensional coordinate system. In geometry, a two-
dimensional coordinate system consists of a horizontal x-axis and a vertical y-axis, as
shown in Figure 2.1.
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Figure 2.1
A two-dimensional coordinate system.

The origin or center point of this system, (0, 0), is located at the intersection of the axes.
Any other position (x, y) is relative to the origin. The x values are positive to the right of
the origin and negative to the left of it. The y values are positive above the origin and
negative below it.

You can move the turtle forward or backward a given distance from its current position.
The direction of this movement is determined by its current heading. You can turn its
heading a given number of degrees to the left or to the right. You can also set the turtle
pen’s color and size, draw some basic shapes, fill those shapes with color, control the tur-
tle’s speed, and access the boundaries of the turtle’s drawing area.

To experiment with turtle graphics in the Python shell, launch IDLE as you did in
Chapter 1, “Getting Started with Python.” Then run the following code fragments in the
shell:

>>> from turtle import *
>>> showturtle()

You should see a second window pop up, like the one shown in Figure 2.2.
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Figure 2.2
The turtle at home in its window.
© 2014 Python Software Foundation.

If the turtle graphics window is too large, you can resize it in the usual manner. Note that
the turtle’s image or shape is a caret symbol, and its initial heading is due east, or 0
degrees.

The import statement makes all the turtle graphics operations available to run as function
calls. The showturtle function displays the turtle at its current position. The turtle’s initial
position is (0, 0) in the coordinate system. Note that this position, also called the home
position, is at the center of the turtle graphics window.

The turtle has a number of attributes, whose initial values are listed in Table 2.1.

Table 2.1 Some of the Turtle’s Initial Settings

Attribute Initial Value

fillcolor “black”

heading 0 degrees (due east)

pencolor “black”

pensize 1 (pixel unit)

position (0, 0)

shape “classic” (the caret symbol)

speed 3 (0 is the fastest; 10 is the slowest)
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You should arrange the shell and turtle graphics windows so that they are side by side on
your computer monitor, as shown in Figure 2.2. You can then enter commands in the
shell and view the results in the other window.

You might be wondering why you see a caret symbol rather than an image of a turtle. If
you prefer to see a turtle, you can change the turtle’s shape. To do that, return to the shell
and enter the command shape("turtle"). The new shape is shown in Figure 2.3.

Figure 2.3
Changing the turtle’s shape.
© 2014 Python Software Foundation.

When you have finished a session with turtle graphics, you can quit by closing the turtle
graphics window and then the shell window.

As you work through the rest of this chapter, be sure that you can access the turtle gra-
phics documentation at Python’s website. The turtle module documentation is in the
Global Modules Index of Python’s documentation (http://docs.python.org/3/library/
turtle.html#module-turtle). Appendix A, “Turtle Graphics Commands,” also documents
the commonly used turtle graphics operations.

Using Basic Movement Operations
In this section, you pick up where you left off after showing the turtle in the previous sec-
tion. You learn various ways of moving the turtle around to draw some geometric shapes.
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Moving and Changing Direction
After you run the following commands in the shell, the results should appear as shown in
Figure 2.4:

>>> left(45)
>>> forward(64)
>>> position()
(45.25,45.25)
>>> heading()
45.0

Figure 2.4
The turtle turns and moves to a new position.
© 2014 Python Software Foundation.

Note that turning the turtle to the left rotates it counterclockwise by a given number of
degrees. When you move it 64 units in the current direction, the turtle’s pen draws a line
segment that ends at position (45.25, 45.25). Most of the turtle graphics functions either
tell the turtle to do things or return information about its current situation.

Now, you might be asking yourself, “Why is there no reference to the turtle in my Python
code? Why didn’t I have to pass a turtle datum as an argument to those functions, like I
did with numbers and other data in Chapter 1?”

The nice thing about getting started with turtle graphics is that you just run the basic
functions without worrying about things like this. Python takes care of directing these
commands to a single “system” turtle underneath the hood. When you start to work
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with multiple turtles later in this book, you learn how to identify them so you can manip-
ulate them separately.

If at any point you want to clear all the turtle’s drawings and return the turtle to its initial
position and heading, you just call the reset function.

When you start turtle graphics, the turtle’s pen is initially down on the canvas, ready to
draw lines and shapes. You can pick the pen up and put it down by calling the up and
down functions, respectively. When the pen is up, you can move the turtle without drawing
anything.

Drawing a Square
The basic turtle movement functions are listed in Table 2.2.

Table 2.2 Turtle Movement Functions

Function What It Does

backward(distance) Moves the turtle the given distance in the opposite of its
current direction

forward(distance) Moves the turtle the given distance in its current direction

goto(x, y) Moves the turtle to position (x, y)

home() Moves the turtle to position (0, 0) and sets its heading to
0 degrees

left(degrees) Turns the turtle counterclockwise by the given degrees

right(degrees) Turns the turtle clockwise by the given degrees

setheading(degrees) Sets the turtle’s heading to degrees

There are also several synonyms for these functions, which you can look up in the docu-
mentation. Note that the functions forward, backward, left, and right adjust the turtle’s
position or heading relative to its current position or heading. By contrast, the functions
goto, home, and setheading reset the turtle’s position or heading directly.

To explore some of these operations, you’ll examine two ways to draw a square of length
70 with the turtle. Assume that the lower-left corner of this square is at the home position.
The desired result is shown in Figure 2.5.
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Figure 2.5
Drawing a square.
© 2014 Python Software Foundation.

The first method uses the reset, forward, and left functions. The reset function positions
the turtle at the lower-left corner of the square, heading east. Now imagine that you are
the turtle, standing on the drawing area and heading east. You would walk forward 70
units, turn left 90 degrees, walk forward again, and turn left again. You’d perform these
two steps twice more until you were back at the home position. Here is the code that
describes this process and carries it out in turtle graphics:

>>> reset()
>>> forward(70)
>>> left(90)
>>> forward(70)
>>> left(90)
>>> forward(70)
>>> left(90)
>>> forward(70)
>>> left(90)

Note that the last call of the left function is not necessary to complete the drawing, but it
leaves the turtle’s heading as it was at the beginning of the process.

The second method uses the goto function to draw line segments between each of the
four corners of the square. To do this, you must first figure out the positions of the four
corners. They are (0, 0), (70, 0), (70, 70), and (0, 70). These coordinates give the argu-
ments to the four calls of goto required to draw the square, as follows:

>>> reset()
>>> goto(70, 0)
>>> goto(70, 70)
>>> goto(0, 70)
>>> goto(0, 0)
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Note that goto does not change the turtle’s heading.

Which method seems easier and more straightforward to you? The first method probably
requires less mental effort; aside from knowing that each corner of a square encloses a
90-degree angle, you just have to know the number of sides and the length of a side. The
second method forces you to calculate all the coordinates of the corners ahead of time.
Moreover, if you want to change the length of the square the next time you draw it, you
only have to change one value in the first method: the length of the square. At times, you
will want to use goto, but this is not one of them.

Drawing an Equilateral Triangle
Now consider drawing an equilateral triangle. In this type of triangle, all the sides are the
same length, and each vertex forms an interior angle of 60 degrees. If you assume that
the length is 70 units, the leftmost vertex is at the origin, and the top vertex is above the
x-axis, then the triangle is as shown in Figure 2.6.

Figure 2.6
Drawing an equilateral triangle.
© 2014 Python Software Foundation.

How would you draw this triangle? Each vertex of the triangle encloses an angle of 60
degrees. So, following the preferred method for drawing a square, if you move the turtle
forward 70 units and turn left 60 degrees three times, that should do it, right? Unfortu-
nately, the result shown in Figure 2.7 doesn’t quite cut it.
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Figure 2.7
A failed attempt to draw an equilateral triangle.
© 2014 Python Software Foundation.

This is a good example of a logic or design error. You meant to create an interior angle of
60 degrees by turning left 60 degrees, but you got an interior angle of 120 degrees instead.
To get the correct result, you need to turn further, exactly 120 degrees, each time. Recall
that drawing a square requires four left turns of 90 degrees each, or 360 total degrees. The
total number of degrees turned by the turtle in its circuit for an equilateral triangle is also
360 degrees (3 turns of 120 degrees each). You will use this fact about turtle geometry to
draw some other geometric shapes in the exercises.

Undoing, Clearing, and Resetting
When you edit a file of text, the Edit menu typically offers an Undo Typing option. When
you select this option, the editor deletes the word or phrase that you most recently
entered. In a similar fashion, turtle graphics keeps track of all the commands that you
enter and allows you to undo the most recent command by calling the undo function.
Thus, instead of clearing the canvas, you can back up just a bit if you don’t like the results
by entering one or more undo commands.

If you don’t like the results at all, or you just want to clear a drawing and start over, you
can call clear or reset. Both functions erase all the drawings on the canvas. However,
clear leaves all the turtle’s current settings alone (position, heading, color, and pen size),
whereas reset restores the turtle’s initial settings.
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Setting and Examining the Turtle’s State
You have seen how the turtle has some initial settings when the turtle graphics window
opens: a position, a heading, and a pen color. These and various other values are called
the turtle’s state. The turtle functions either change the turtle’s state or allow you to exam-
ine it. In this section, you explore three other aspects of the turtle’s state: its pen size, its
shape, and its speed.

The Pen Size
The turtle’s pen draws lines by painting tiny colored squares at various positions. These
squares are called pixels. If your monitor has a high resolution, these pixels are quite tiny,
so the lines drawn appear very thin. This is okay for fine work, but you might want to
increase the pen’s size to draw heavier lines otherwise. To do so, you call the pensize func-
tion with the new pen size as an integer argument. For example, the expression pensize(4)

sets the pen’s size to 4 pixels. To look up the current pen size, you call pensize().

The Shape
As you saw earlier, the turtle’s shape is initially a caret symbol. You can change the turtle’s
shape to any of the built-in shapes provided by turtle graphics, or you can add a new
shape of your own. Table 2.3 lists the names and icons of the standard turtle shapes. The
function getshapes returns a list of the available shape names.

Table 2.3 The Built-in Turtle Shapes and Their Names

Name Shape

"arrow"

"blank" No visible shape.

"circle"

"classic"

"square"

"triangle"

"turtle"
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To change the turtle’s shape, simply call the shape function with the desired shape name
as a string argument. For example, the expression shape("turtle") changes the turtle’s
shape to a turtle. Calling shape with no argument returns the turtle’s current shape
name. If you do not want to see the turtle’s shape, simply call hideturtle() or change its
shape to "blank".

The function addshape adds a new shape to the set of shapes already in turtle graphics.
You can use an image you have created for the new shape as long as its file is in GIF for-
mat. You then give addshape the name of this file as an argument. For example, if you
want the turtle’s shape to be the Trident, the logo of Washington and Lee University,
you run the following code. The result is shown in Figure 2.8.

>>> addshape("trident.gif")
>>> getshapes()
[’arrow’, ’blank’, ’circle’, ’classic’, ’square’, ’triangle’,
’trident.gif’, ’turtle’]
>>> shape("trident.gif")

Figure 2.8
Changing the turtle’s shape to the Trident.
© 2014 Python Software Foundation.

Python looks in the current working directory for the shape’s file. If the file is somewhere
else, you must provide its full pathname. If you want to find the pathname of the current
working directory, run the following code:

>>> import os
>>> os.getcwd()
’/Users/ken/Documents’

Setting and Examining the Turtle’s State 41



Note that the string returned is the pathname of the Documents folder on my computer. If I
put the file for the shape in that folder, Python can locate it with just the file’s name.

You can also create your own shapes for the turtle with Python’s shape and poly functions.
Check the documentation for details.

The Speed
You can see the turtle move when it draws a line. If the turtle moves too slowly, you might
get impatient with it, but if it moves too quickly, you might not be able to observe its
movement. The function speed allows you to set the turtle’s speed to your satisfaction.
The argument to speed can be either an integer or a string. The integers range from 0 to
10, with 0 being the fastest speed. The other integers decrease the speed, from 10 down to
1. The turtle’s initial speed is 3. Table 2.4 lists the available strings for speeds and the cor-
responding integers. As usual, calling the function with no argument returns the current
speed.

Table 2.4 Turtle Speed Values as Strings and Integers

String Integer

“fastest” 0

“fast” 10

“normal” 6

“slow” 3

“slowest” 1

Other Information About the Turtle’s State
As you have seen, when you call the functions pensize, shape, and speed without argu-
ments, these functions return the current values of these settings. You can obtain informa-
tion about any aspect of the turtle’s state by calling the appropriate function. For instance,
try calling the functions position, heading, isdown, and isvisible. You will use this infor-
mation in turtle graphics applications later in this book.
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Working with Colors
Color monitors support the display of bright and beautiful drawings and images.
Although the turtle’s initial color is black and the color of the canvas is white, you can
reset these colors to any color that your system supports.

The Pen Color and the Background Color
The easiest way to change the pen’s color is to call the pencolor function with a string
argument. Example strings are the names of common colors, such as “red” or “green”.
You can change the color of the canvas by calling the bgcolor function in a similar
manner. Figure 2.9 shows a white square drawn on a black background after changing
the initial pen and background colors.

Figure 2.9
Drawing with a white pen on a black background.
© 2014 Python Software Foundation.

Note that when you change the pen color, the turtle’s shape also assumes that color.

Millions of other colors are available on modern computer systems. To use these, you
need to learn how computers represent colors.

How Computers Represent Colors
All data used in computers are ultimately represented as numbers. Integers and floating-
point numbers are obvious examples. The characters contained in strings translate to inte-
ger values that are stored and manipulated within the computer. Colors are no different.
Each of the shades of the basic colors that you see, and all the mixtures thereof, must be
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translated by input devices such as scanners and cameras to numbers before you can store
and process them. Before colors are displayed on a monitor, the computer must translate
these numbers back to the colors that you see.

Among the various schemes for representing colors, the RGB system is a fairly common
one. The letters stand for the color components of red, green, and blue, to which the
human retina is sensitive. These components are mixed to form a unique color value. Nat-
urally, the computer represents these values as integers. A color component can be any
integer from 0 through 255. The value 255 represents the maximum intensity of a given
color component, whereas the value 0 represents the total absence of that component. The
RGB value (0, 0, 0) is black, and the RGB value (255, 255, 255) is white. Table 2.5 lists
some example colors and their RGB values.

Table 2.5 Some Colors and Their RGB Values

Color RGB Value

"black" (0, 0, 0)

"red" (255, 0, 0)

"green" (0, 255, 0)

"blue" (0, 0, 255)

"yellow" (255, 255, 0)

"gray" (127, 127, 127)

"white" (255, 255, 255)

In Python, an RGB value is represented as the tuple (r, g, b). There are 2563 or 16,777,216
distinct colors in this system—so many that the human eye cannot distinguish many of
the adjacent values.

To set the pen color or background color to an RGB value, you first have to set the turtle’s color
mode to 255 by calling colormode(255). You then can call pencolor or bgcolor with three
integer arguments or with a single tuple of three integers. For example, pencolor(127, 0, 0)

sets the pen color to maroon.

For more information on colors, consult PageTutor’s ColorPicker site, at
www.pagetutor.com/colorpicker/index.html.
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Filled Shapes
Earlier you saw how to draw a square with the turtle. Suppose you want to draw not just
the outline of a square, but a square filled with a given color. Turtle graphics allows you to
do so by using the fillcolor, begin_fill, and end_fill functions.

You begin by setting the fill color of the shape. The fillcolor function does this using a
color argument, as discussed in the previous section. The initial fill color is black. Note
that when you set the fill color, this color also fills the shape of the turtle.

You then call the begin_fill function, followed by the commands that draw the square.
Finally, you call the end_fill function, which tells turtle graphics to fill any fillable shapes
drawn since the last call of begin_fill. The next session draws a filled square of length 70,
with a black outline and a red interior. The result is shown in Figure 2.10 (color omitted, of
course).

>>> reset()
>>> fillcolor("red")
>>> begin_fill()
>>> forward(70)
>>> left(90)
>>> forward(70)
>>> left(90)
>>> forward(70)
>>> left(90)
>>> forward(70)
>>> left(90)
>>> end_fill()

Figure 2.10
Drawing a filled shape.
© 2014 Python Software Foundation.
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The color function combines actions of the pencolor and fillcolor functions. Its first
argument is the pen color, and its second argument is the fill color. When called with
no arguments, color returns a tuple containing these two colors. Thus, the expression
color("blue", "red") would set the pen color to blue and the fill color to red.

Table 2.6 summarizes the functions related to colors in turtle graphics.

Table 2.6 Functions Related to Colors

Function What It Does

bgcolor(color) Sets the color of the canvas to color

color(pColor, fColor) Sets the turtle’s pen color to pColor and its fill color to fColor

fillcolor(color) Sets the turtle’s fill color to color

pencolor(color) Sets the turtle’s pen color to color

begin_fill() Begins a sequence of commands to draw filled shapes

end_fill() Ends a sequence of commands to draw filled shapes

Drawing Circles
Turtle graphics provides just one built-in function that draws a shape. This function,
named circle, expects the circle’s radius as an argument. Optional arguments include
the extent (the portion of the circle to be drawn, in degrees) and the steps (the number
of lines used to draw the circle’s circumference). You supply the extent argument when
you want to draw an arc. Filling an arc requires you to connect the turtle’s starting and
ending points.

To get a feel for how the circle function works, run the following code in the shell:

>>> from turtle import *
>>> home()
>>> circle(50)

Note that the turtle starts by facing east at the home position, draws the circle by repeat-
edly moving forward and turning left, and finally returns to its original position and
heading.

Now consider how to draw a filled pie slice within this circle. The slice is a filled arc that
occupies the lower-right quarter of the circle, as shown in Figure 2.11.
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Figure 2.11
Drawing a circle containing a filled arc.
© 2014 Python Software Foundation.

You start by running begin_fill to begin drawing a filled shape. To draw the arc, the tur-
tle starts at the home position and draws a circle with a radius of 50 and an extent of 90
degrees. The turtle then draws two line segments to close the arc, create the pie slice, and
allow it to be filled. To do this, you move the turtle to position (0, 50), which is the center
point of the circle, and then return it to the home position. Finally, you run end_fill to fill
the new shape. Here is the code:

>>> begin_fill()
>>> circle(50, 90)
>>> goto(0, 50)
>>> home()
>>> end_fill()

The key to working with circles and arcs is to set the initial position and the heading of
the turtle to get the results that you want. For example, suppose you want a half-moon
shape whose center point is the origin, whose radius is 50, and whose flat side lies along
the x-axis, as shown in Figure 2.12.
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Figure 2.12
Drawing a half moon.
© 2014 Python Software Foundation.

The turtle starts drawing the circle from position (–50, 0), with the turtle’s heading at 270
degrees. Moving to that position from the home position draws half of the flat side of the
arc. Then the turtle turns right 90 degrees. To draw the arc, the turtle draws the circle with
an extent of 180 degrees. After drawing the arc, the turtle draws the other half of its flat
side by returning home. Here is the code:

>>> reset()
>>> begin_fill()
>>> goto(-50, 0)
>>> right(90)
>>> circle(50, 180)
>>> home()
>>> end_fill()
>>> hideturtle()

Drawing Text
You draw text in the turtle’s window by calling the write function. The required argument
is a string. Optional arguments direct the turtle to move during the drawing, align the text
to the left, center, or right of the turtle’s initial position, and use a text font that you sup-
ply. The following code fragments show two ways to draw some text, with and without the
optional arguments. The results are shown in Figure 2.13.
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>>> from turtle import *
>>> reset()
>>> write("Python is way cool!")
>>> up()
>>> goto(0, 60)
>>> write("Python is way cool!", move = True, align = "Center",

font = ("Arial", 14, "bold"))

Figure 2.13
Drawing text.
© 2014 Python Software Foundation.

Note that the default alignment is left, the turtle does not move, and the text font is quite
small. A font is expressed as a tuple, which contains the font name, point size, and style.
Note also that if the turtle moves, it draws a line under the text. To avoid this effect, pick
up the turtle before calling write.

Using the Turtle’s Window and Canvas
The turtle graphics window provides a partial view of a canvas or drawing area that lies
beneath it. If the turtle moves beyond this visible area, you can either enlarge the window
or scroll to the area of the canvas that you want to view.

The canvas is initially 400 pixels wide by 300 pixels high. The function screensize returns
the current dimensions of the canvas. When you supply the first two optional arguments
to this function, it resets the width and height of the canvas to these integers. An optional
third argument is a color value for the background color.
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The window’s initial width is 50% of your screen’s width and 75% of its height. The
window is centered on your screen. The functions window_width and window_height return
the window’s current width and height, respectively. (Recall that the user may alter these
dimensions with the mouse at any time.)

To change the size and position of the window under program control, call the setup

function. The first two arguments to set up are the window’s dimensions. If these argu-
ments are integers, they represent the actual width and height. If these arguments are
floating-point numbers, they represent fractions of the screen’s width and height. The
third and fourth arguments represent the window’s position relative to the boundaries of
the screen. If these arguments are positive, they indicate the distances of the window from
the left boundary and the top boundary, respectively. If they are negative, the distances are
relative to the right and bottom edges of the screen.

The next shell session places a turtle graphics window in the upper-right corner of the
screen. The background color is black, and the pen and fill colors are white.

>>> setup(400, 300, -400, 50)
>>> screensize(1650, 1080, "black")
>>> color("white", "white")

Table 2.7 summarizes the functions related to the window and canvas in turtle graphics.

Table 2.7 Functions Related to the Window and Canvas

Function What It Does

screensize() Returns the tuple (canvasWidth, canvasHeight).

screensize(canvwidth,
canvheight, bg)

Sets the width, height, and background color of the canvas.
(All arguments are optional.)

setup(width, height,
startx, starty)

Sets the size and position of the turtle graphics window. width
and height can be integers (the actual number of pixels) or
floats (the percentages of the screen’s dimensions). startx
and starty can be positive (the position in pixels from the left
edge of the screen) or negative (the position in pixels from
the right edge of the screen).

window_height() Returns the height of the turtle graphics window.

window_width() Returns the width of the turtle graphics window.
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Using a Configuration File
As you become proficient with turtle graphics, you will want to customize the settings for
the initial state of the turtle and its window. You can put your settings in a configuration
file, so you won’t have to run them in your code each time you start up IDLE.

When you import resources from the turtle module, Python looks for a file named
turtle.cfg in the current working directory. This should be a text file containing your set-
tings. If the file exists, Python automatically calls the appropriate functions with the data
contained in the configuration file. Here is an example of some of the settings that Python
uses by default:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
colormode = 1.0
shape = classic
pencolor = black
fillcolor = black
title = Python Turtle Graphics

Note that the string values for the colors, shape, and window title are written without the
quotes.

There are many other turtle graphics functions not covered in this chapter. If you’re curi-
ous about them, check the documentation. Some of them handle user inputs from the
keyboard and the mouse. Others are useful for programming animations. You will learn
about some of these operations later in this book. For now, practice using the basic func-
tions introduced here, before you move on to the next chapter.

Summary
n Turtle graphics supports drawing pictures with a virtual pen and canvas. You can

access turtle graphics operations by running the statement from turtle import *.

n The turtle has a position, heading, speed, pen size, shape, pen color, and fill color.
You can examine these attributes or change them by calling the appropriate
functions.
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n You can show or hide the turtle, and you can pick up its pen or place it down on the
canvas.

n The turtle’s position is located within a two-dimensional coordinate system whose
origin (0, 0) is at the center of the canvas.

n You can move the turtle forward or backward a given distance in its current heading.

n You can rotate the turtle’s heading to the left or the right by a given number of
degrees.

n You can examine and reset the dimensions of the turtle’s canvas and window. You
can examine or reset the color of the canvas.

n The reset function restores the original state of turtle graphics, whereas the clear

function just erases the turtle’s drawings.

n Colors are represented in two modes. The first mode uses names, such as “red” and
“blue”, for a few common colors. The second mode uses the RGB system. In this
system, color values are tuples of the form (r, g, b), where each item is an integer
ranging from 0 through 255. The integers represent the intensities of the red, green,
and blue components of a color. There are 2553 colors available in this mode.

n The begin_fill and end_fill functions enclose a code segment that fills a shape with
the turtle’s current fill color.

n The write function draws text in the turtle graphics window.

Exercises
Launch the IDLE shell and complete the following exercises. You should write your code
interactively in the IDLE shell.

1. The Müller-Lyer illusion is caused by an image that consists of two parallel line
segments. One line segment looks like an arrow with two heads, and the other line
segment looks like an arrow with two tails. Although the line segments are the same
length, they appear to be unequal (see Figure 2.14). Illustrate this illusion with turtle
graphics.
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Figure 2.14
The Müller-Lyer illusion.
© 2014 Python Software Foundation.

2. Draw the following geometric shapes so they appear in the same turtle graphics
window. The turtle should begin in the home position when you’re drawing each
shape.
a. A square of length 40.

b. A pentagon of length 50.

c. A hexagon of length 60.

d. An octagon of length 80.
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Chapter 3

Control Structures:
Sequencing, Iteration,
and Selection

In the previous chapter, you learned how to draw some simple geometric shapes, such as
squares and triangles, using basic turtle graphics operations. Each basic operation models
what you would do when drawing these shapes with pencil and paper; for example, turn
left 90 degrees, and then move forward 70 units. When you entered a sequence of such
operations in the Python shell, you were actually writing a computer program.

Many programs consist of simple sequences of operations that instruct the computer to
perform one task after another, until the overall task is completed and a problem is solved.
However, there are two reasons why moving forward through a simple sequence of opera-
tions is not sufficient to solve some problems:

1. The type of operation to perform might depend on some aspect of the current
situation in the computer’s world. For example, if you enter a bad password, the
program must detect this and respond with an error message; otherwise, the program
can go ahead and log you in for the requested service. This type of control, in which a
choice of operations is based on a condition, is called selection.

2. You might need to perform a sequence of operations several times. For example, if
you enter an incorrect password three times, the program might block further
attempts until you contact the service by phone. This type of control, in which the
same sequence of operations is repeated, is called iteration.
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It turns out that sequencing, selection, and iteration are the only types of control structures
really needed to solve any problem with a computer program. In this chapter, you return
to the Python shell to experiment with these control structures.

Repeating a Sequence of Statements: Iteration
The simplest form of control structure iterates or repeats a given sequence of operations a
fixed number of times. This structure, called a definite loop, is examined first. You will see
examples of indefinite loops, which incorporate a selection component, later in this chapter.

The for Loop
When you drew a square in the last chapter, you actually entered the two expressions

>>> forward(70)
>>> left(90)

a total of four times. Wouldn’t it be nice if you could just tell Python to repeat these two
operations four times, instead of writing them four times yourself?

Python provides a control structure called a for loop for just this purpose. Now start up
turtle graphics and enter this statement into the shell. (Remember that the >>> symbol is
the shell prompt, not part of your code.)

>>> for count in range(4):
forward(70)
left(90)

>>>

Note that the sequence of two drawing operations appears just once and is indented in the
body of the loop structure. The indentation is significant, in that it tells Python (and you,
the reader) which statements belong to the sequence to be repeated. You end this
sequence and the loop by pressing the Return or Enter key twice.

The heading of the loop structure, for count in range(4):, is Python’s way of saying,
“repeat the following sequence of operations four times.” Note that Python automatically
indents each statement in the sequence of statements after the loop heading.

Now compose a loop that draws a triangle. Actually, you don’t have to rewrite all the
code; just place the cursor at the end of the last expression in the previous loop and
press Enter. This copies and pastes the code after the next shell prompt. Which parts of
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the code do you still have to edit to draw a triangle? Assuming that the length of a side
doesn’t change, you need three sides and three left turns of 120 degrees each. When you
make these changes to the code and press Enter twice, you should see your triangle within
the square.

Now use the same loop structure again to draw a pentagon, a hexagon, and an octagon.
The result should look like your solution to Exercise 1.2 in Chapter 1, “Getting Started
with Python,” but your code is much easier to write.

The real power of a for loop is that it allows you to write a short sequence of statements
and then repeat it any number of times that you like.

Nested Loops
Suppose that you want to draw several hexagons of the same length in different positions
or orientations. For example, you might want to rotate 10 hexagons around the origin to
produce the pattern shown in Figure 3.1.

Figure 3.1
Using 10 hexagons to produce a pattern.
© 2014 Python Software Foundation.

You already know how to use a loop to draw a single hexagon. Now you want to repeat
that process 10 times and adjust the heading of the turtle by 36 degrees after each hexagon
is drawn. Here is a design plan for the complete process:

Repeat 10 times
Draw a hexagon
Turn left 36 degrees

Repeating a Sequence of Statements: Iteration 57



This design plan is expressed in pseudocode. Pseudocode cannot be run as actual program
code, but it is close enough to English and to Python that it can serve as a blueprint for
writing the equivalent Python code.

Now you translate this pseudocode design to Python code. The first statement in the body
of the loop expands to another loop to draw a hexagon. The entire design expands to the
following Python code:

>>> for count in range(10):
for count in range(6):

forward(70)
left(60)

left(36)

In this code, the loop that draws the hexagon is nested with another loop. Note how the
indentation helps you and Python determine which statements belong in the bodies of the
two loops. When you enter this code into the shell, be careful to press the Delete or Back-
space key once after entering the line left(60) so that the line left(36) aligns with the
second line beginning with for. On each pass through the outer loop, the inner loop is
run first. When the inner loop terminates, the turtle turns left 36 degrees before drawing
the next hexagon.

You can vary the pattern drawn in the turtle graphics window by changing the number of
iterations and the turtle’s rotation angle in the outer loop or by changing the type of shape
drawn by the inner loop. You are encouraged to experiment with different combinations
of these options.

How the range Function Works with a for Loop
If you want to repeat a sequence of operations a given number of times, the loop patterns
just shown suffice. However, you might want to iterate through a sequence of values and
use each value for some purpose in the body of the loop. For example, consider comput-
ing the sum total of the integers from 1 through 10. The following code fragments accom-
plish this:

>>> total = 0
>>> for number in range(1, 11):

total = total + number

>>> total
55
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The for loop is set up to iterate over a sequence of values. When used with the range func-
tion, the loop iterates over each integer included in a range of integers. As you saw in
Chapter 1, when range is called with a single integer argument, it produces a sequence of
integers, ranging from 0 through the integer argument minus one. On each pass through
the loop, the current value in the sequence is automatically assigned to the variable in the
loop heading. You can use this variable in the loop body, as shown in following code
fragment:

>>> for number in range(5):
print(number)

>>>
0
1
2
3
4

You also saw that you can begin a range with a value other than 0 by calling the range

function with two arguments. For example, you can print the integers from 1 through 5
by passing the arguments 1 and 6 to range.

Finally, you can visit a range of integers in descending order by calling the range function
with three arguments. The first argument is the upper bound, the second argument is the
lower bound minus one, and the third argument is –1.

You should experiment with all three of these methods of counting with a for loop until
you understand how they work.

Loops with Strings, Lists, and Dictionaries
Because a for loop visits items in a sequence, it can also visit the items in a string or a list.
The next code fragments demonstrate this:

>>> name = "Kenneth"
>>> for ch in name:

print(ch)
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>>> fruits = ["banana", "apple", "orange"]
>>> for fruit in fruits:

print(fruit)

banana
apple
orange
>>>

Although dictionaries are not sequences, when you supply a dictionary to a for loop, the
loop visits the dictionary’s keys in some unspecified order. For example, to display a dic-
tionary’s keys and their values, you might run the following code:

>>> kenInfo = {"name":"Ken", "hair-color":"gray", "age":63}
>>> for key in kenInfo:

print(key, kenInfo[key])

name Ken
age 63
hair-color gray
>>>

As you can see, the for loop is easy to use as long as you have a sequence of items to pro-
cess or a definite number of iterations to perform.

Asking Questions: Boolean Expressions
As mentioned earlier, a computer program may have to respond to conditions in the
computer’s environment to select which course of action to take. Examining these condi-
tions takes the form of asking yes/no questions. For example, is the integer value greater
than 0? Is the turtle at the right edge of the turtle graphics window? Does the file exist in
the current working directory? Is the length of the list equal to 0? These questions take the
form of Boolean expressions in Python code. In this section, you explore various ways of
getting answers to yes/no questions with Boolean expressions.
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Boolean Values
Named for the nineteenth century British mathematician and logician George Boole, a
Boolean expression returns one of two values: True or False. These values are taken to
mean “yes” or “no” when they result from evaluating Boolean expressions. Like the
words for, from, and import, the words True and False are Python keywords. They are col-
ored orange in IDLE and cannot be used as the names of variables. Like the numbers and
other literals, the values True and False evaluate to themselves.

Comparisons
The == operator compares any two Python values for equality and returns True if they’re
equal and False if they’re not. The != operator stands for “not equal to” and returns the
opposite results of ==. Here are some example comparisons:

>>> 34 == 0
False
>>> 34 != 0
True
>>> 34 == 2 * 17
True
>>> "Ken" == "KEN"
False
>>> "Ken" == 34
False

As you can see, comparisons are Boolean expressions. Note that Python compares two
strings by examining the pairs of characters at each position. Because "e" does not equal
"E", the strings "Ken" and "KEN" are not equal.

The operators <, >, <=, and >= are used to compare values that can be ordered in ascending
or descending order. Thus, you can compare two numbers or two strings in this manner.
You should try these other comparison operators in the shell to make sure you under-
stand their meanings.

Logical Operations
Boole used the values True and False in a system of logic. There are three basic operations
in this system:

n Logical negation—This operation applies the logical operator not to a Boolean
expression. The result returned is False if the expression is True and True if the
expression is False.
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n Logical conjunction—This operation applies the logical operator and to two
operands, both of which are Boolean expressions. The operation returns True if both
of the expressions are True, and it returns False otherwise.

n Logical disjunction—This operation applies the logical operator or to two operands,
both of which are Boolean expressions. The operation returns False if both of the
expressions are False; otherwise, it returns True.

Suppose that a program receives an input number from the user, and you want to test it to
verify that its value is within a range of values, say, from 0 through 100. For this condition
to be True, the number must be greater than or equal to 0 and less than or equal to 100.
The following shell session shows some tests for this condition:

>>> number = int(input("Enter a number: "))
Enter a number: 55
>>> number >= 0 and number <= 100
True
>>> number = int(input("Enter a number: "))
Enter a number: -1
>>> number >= 0 and number <= 100
False
>>> number = int(input("Enter a number: "))
Enter a number: 101
>>> number >= 0 and number <= 100
False

Logical operations might seem strange at first, but they are actually easier to understand
than arithmetic operations once you get used to them. The main reason for this is that
there is only a finite number of possible combinations of values for the operands. You
can list these combinations and the results in truth tables. Table 3.1 shows the combina-
tions and results for negation. Table 3.2 shows the combinations and results for conjunc-
tion and disjunction. Note that both A and B refer to Boolean expressions.

Table 3.1 The Truth Table for Logical Negation

A not A

True False

False True
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Table 3.2 The Truth Table for Logical Conjunction and Logical Disjunction

A B A and B A or B

True True True True

True False False True

False True False True

False False False False

You probably won’t use logical operations very often. But if you need help with them, you
can always review these tables for their evaluation rules and then try your expressions in
the shell.

Making Choices: Selection Statements
After you determine how to ask a yes/no question about a condition, you must decide
what to do with the answer. Sometimes you take action if the answer is “yes” but do noth-
ing if it is “no.” For example, if the remainder of an integer division is not 0, you would
output the remainder; otherwise, the output of the quotient, which happened earlier,
would suffice.

Other times, you perform one action if the answer to your question is “yes” but another
action if the answer is “no.” For example, if a password is recognized, you can perform the
requested service; otherwise, you output an error message to the user.

Still other times, there may be many different options available, but only one of them is
input. You must compare the input to each possible option until a match is found, where-
upon you perform the associated action. Command menus call for this type of multiway
decision.

In this section, you explore Python’s different types of selection statements for making
one-way, two-way, and multiway decisions.

The One-Way if Statement
You use the one-way if statement to make a one-way decision. Its form is

if BooleanExpression:
Statements
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where Statements is a sequence of one or more statements. Note the indentation before the
nested statements. As in the for loop, the indentation in an if statement is significant. It
picks out the statements that are run if the Boolean expression is True. If the Boolean
expression is False, these statements are skipped, and the computation continues follow-
ing the entire if statement. Figure 3.2 shows the flow of control in this type of selection
statement.

Statements

Boolean
expression

Figure 3.2
The flow of control in a one-way if statement.

Here is the example of integer division mentioned earlier:

>>> divisor = 10
>>> divisor = 3
>>> dividend = 10
>>> quotient = dividend // divisor
>>> remainder = dividend % divisor
>>> print("The quotient is", quotient)
The quotient is 3
>>> if remainder != 0:

print("The remainder is", remainder)

The remainder is 1

As you can see, if the divisor had been 2 or the dividend had been 9, the remainder, 0,
would not have been output at all.

One-way if statements are rare, but you should experiment with one just in case you have
a need for it some day.
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The Two-Way if Statement
Two-way decisions, like forks in the road, are common. You go one way or the other,
depending on the condition you examine at the choice point. The form for a two-way if

statement to make this type of choice is

if BooleanExpression:
ConsequentStatements

else:
AlternativeStatements

Once again, the indentation of the nested statements reflects the logic of this control
structure. If the Boolean expression is True, run the consequent statements and then skip
to the end of the entire if-else statement. Otherwise, skip the consequent statements and
run the alternative statements following the keyword else. Figure 3.3 shows the flow of
control in this type of selection statement.

Consequent statements

Boolean
expression

Alternative statements

Figure 3.3
The flow of control in a two-way if statement.

Here is an example of how you can use an if-else statement to accept or reject a user’s
input number:

>>> import math
>>> number = input(“Enter a positive number: “)
>>> if number > 0:

print("The square root is", math.sqrt(number))
else:

print("Error: the number must be greater than 0")
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Probable Options with random.randint
In Chapter 1, you saw how to use Python’s random.choice function with a list to simulate a
coin toss:

>>> import random
>>> coin = ["heads", "tails"]
>>> random.choice(coin)
’tails’

Because there are two options from which to choose, picking one at random causes each
option to be chosen approximately 50% of the time over the course of many tosses. To
demonstrate this, you can run the following code fragments, which count the number of
heads and tails over 50 tosses:

>>> headCount = 0
>>> tailCount = 0
>>> for count in range(50):

result = (random.choice(coin))
if result == "heads":

headCount += 1
else:

tailCount += 1

>>> headCount
22
>>> tailCount
28

As you can see, over the long haul, a coin toss turns up heads about half of the time and
tails about half of the time. In mathematical terms, each side of the coin turns up with a
probability of .5. As a rule, if an event has a probability of 1, it means that it is certain to
occur (100% of the time). Smaller probability values correlate to smaller percentages.

Occasionally, you will want to select an option based on a given probability value. Suppose
that the probability of that option is .25 (1 out of 4). Instead of building a Python list of
four values, you can pick a random integer from a range of integers using the function
random.randint. This function expects two arguments: the lower and upper bounds of the
range. Thus, to select an option with a probability of .25, you can call random.randint(1, 4)
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and compare the result to a given number, say, 1. Over the long haul, you should see this
number returned 25% of the time, as shown in the next shell session:

>>> total = 0
>>> for count in range(50):

result = random.randint(1, 4)
if result == 1:

total += 1

>>> total
13
>>> 4 * 13
52

This method works well for probabilities expressed as the fractions ½, ¼, and so forth, but
what about fractions with larger numerators, such as ¾? This means that you are looking
for any of 3 given numbers out of 4. Expressed in English, you want to see if a random
number between 1 and 4 is in the range from 1 to 3. Here is the Python code for this test:

>>> random.randint(1, 4) in range(1, 4)
False

To verify that this expression returns True three-quarters of the time, test it in loop like
the others shown in this section.

Using these techniques, you should be able to perform an action in code with any given
probability that is required by a problem. The exercises give you a chance to perform fur-
ther experiments with probability.

The Multiway if Statement
You must make a multiway decision when there are more than two possible paths of
action. (Most conventional forks have four prongs, after all.) Thus, there are at least two
conditions that must be checked in this kind of situation. Python provides a multiway if

statement for this purpose. Its form is

if BooleanExpression:
statements

elif Booleanexpression:
statements

.

.
else:

statements
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After you ask the first question in the if clause, you can ask as many questions with elif

clauses as you need to. The trailing else clause, which is optional, handles the case where
the answer to all the questions is False, or “no.” Note that only one sequence of state-
ments is chosen and run.

The following code fragments demonstrate a simple command interpreter for doing
arithmetic:

>>> x = float(input("Enter the first number: "))
Enter the first number: 3.44
>>> y = float(input("Enter the second number: "))
Enter the second number: 45.6
>>> command = input("Enter an arithmetic operator [+, -, *, /]: ")
Enter an arithmetic operator [+, -, *, /]: *
>>> if command == "+":

print("The sum is", x + y)
elif command == "-":

print("The differnce is", x - y)
elif command == "*":

print("The product is", x * y)
elif command == "/":

print("The quotient is", x / y)
else:

print("Error: unrecognized operator")

The product is 156.864

You will see uses of selection statements in turtle graphics programs later in this chapter.

Using Selection to Control Iteration
The for loop examined earlier is quite rigid. It iterates a definite number of times, over
some fixed sequence of values. This type of loop is simple to design and works well for
many problems. However, some situations call for a more flexible type of loop: one that
cannot anticipate how many iterations will be performed. This type of loop must be able
to ask the question, “Should I continue or not?” and be able to exit when the answer is
“no.” This type of loop is called an indefinite loop, and in this section, you explore how
to design indefinite loops for various situations.
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The while Loop
Python provides a control structure called a while loop for when you can’t predict how
many times the loop will iterate. Its form is quite simple:

while BooleanExpression:
Statements

This form looks a bit like that of the one-way if statement discussed earlier. The behavior
is similar, too. The difference is that the loop repeatedly tests the Boolean expression until
it becomes False. Whenever the expression returns True, the statements in the body of the
loop are run; otherwise, the body of the loop is skipped, and computation continues after
the loop. Thus, the statements in the one-way if statement are run once or not at all,
whereas the statements in the while loop are run zero or more times. Figure 3.4 shows
the flow of control in this type of loop.

Statements

Boolean
expression

Figure 3.4
The flow of control in a while loop.

A while loop can be used like a for loop, to move through a sequence of values, as shown
in the next shell session:

>>> number = 0
>>> while number < 5:

print(number)
number = number + 1

>>>
0
1
2
3
4
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However, the while loop really comes into its own when the number of iterations is
unpredictable. For example, consider Euclid’s method for computing the greatest com-
mon divisor of two integers. The greatest common divisor of two integers is the largest
integer by which both numbers can be evenly divided (with a remainder of 0). For
instance, the greatest common divisor of 120 and 32 is 8. Euclid’s method starts with the
two numbers A and B and assumes A >= B and B >= 0. You repeatedly replace B with the
remainder of dividing A by B and replace A with B. You stop when B equals 0; at that
point, A is the answer. Here is a pseudocode design for this method:

While B > 0
C = A remainder B
A = B
B = C

When A = 128 and B = 32, the loop sets A to 32 and B to 24 on the first pass. On the
second pass, A becomes 24 and B becomes 8. On the third and final pass, A becomes 8
and B becomes 0. You can confirm that this is how Euclid’s method works with Python
code in the following shell session:

>>> a = 120
>>> b = 32
>>> while b > 0:

c = a % b
a = b
b = c
print(a, b)

32 24
24 8
8 0
>>> a
8

As you can see, it’s impossible to anticipate the number of iterations required for any
given values of A and B. Therefore, the while loop is the appropriate loop control struc-
ture to use for Euclid’s method.

Random Walks in Turtle Graphics
In the turtle graphics examples seen thus far, your turtle has moved in quite rigid and reg-
ular ways to draw geometric shapes. But consider the movements of animals, such as
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insects, in their natural environment. Their movements might be determined by the near-
ness of food or potential predators. Other movements might appear to be quite random;
they seem to just wander around.

To simulate this type of random movement, you can make the turtle take a random walk.
One way to do this is to move the turtle a random distance and then turn a random num-
ber of degrees to the left or right. You repeat this process a given number of times. You
use Python’s function random.randint to obtain a random integer within a given range.
The following shell session produces the random walk shown in Figure 3.5.

>>> from random import randint
>>> reset()
>>> for count in range(30):

distance = randint(10, 60)
forward(distance)
degrees = randint(45, 135)
if randint(1, 2) == 1:

left(degrees)
else:

right(degrees)

Figure 3.5
A random walk.
© 2014 Python Software Foundation.

Note that the turtle might walk beneath the edge of the window for a bit and then return
to the visible area of the canvas.
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A more interesting scenario has the turtle stopping when it encounters a piece of food or
an obstacle that it can’t get around. This type of process calls for an indefinite loop that
continues while such an encounter has not occurred. The next shell session directs the
turtle to move around until it encounters one of the edges of its window. Figure 3.6
shows a result.

>>> reset()
>>> width = window_width()
>>> height = window_height()
>>> (minX, maxX) = (-(width / 2), width / 2)
>>> (minY, maxY) = (-(height / 2), height / 2)
>>> (x, y) = position()
>>> while x > minX and y > minY and x < maxX and y < maxY:

distance = randint(10, 60)
forward(distance)
degrees = randint(45, 135)
if randint(1, 2) == 1:

left(degrees)
else:

right(degrees)
(x, y) = position()

Figure 3.6
A random walk to a boundary.
© 2014 Python Software Foundation.
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Because the distances and headings are random, and the user may alter the size of the
window at runtime, the number of paths that the turtle takes on any given walk is unpre-
dictable. That’s why you must use a while loop in this case.

Summary
n The basic control structures in programming are sequencing, selection, and iteration.

n A sequence of statements consists of one statement written after another. The
computer runs them in the order in which they appear.

n A selection statement tests at least one condition. If the condition is True, the
computer runs the sequence of statements. Otherwise, the computer skips this
sequence and runs the code following it.

n A one-way if statement contains one test of a condition, followed by a sequence of
statements. A two-way if statement contains one test of a condition, followed by two
alternative sequences of statements. A multiway if statement contains two or more
tests of conditions, each of which is followed by an alternative sequence of
statements.

n The two Boolean values are True and False.

n A condition is a Boolean expression. A Boolean expression returns True or False.

n The comparison operators ==, !=, <, >, <=, and >= can compare integers, floating-point
numbers, or strings. Comparisons return True or False.

n The logical operators and, or, and not take Boolean expressions as operands. Logical
operations return True or False.

n The rules for logical operations are described in truth tables.

n A for loop is used to repeat a sequence of statements a definite number of times.

n A for loop uses the range function to count through a sequence of integers.

n A for loop can visit the characters in a string, the items in a list or tuple, and the keys
in a dictionary.

n A while loop is used to repeat a sequence of statements zero or more times. The loop
is governed by the test of a condition, which must be True for the loop to continue
running the sequence of statements.
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Exercises
Launch the IDLE shell and complete the following exercises. You should write your code
interactively in the IDLE shell.

1. You have drawn various geometric shapes by moving the turtle forward and then
turning left. Write a code fragment that draws a circle in a similar manner. Hint: the
turtle turns 1 degree to the left. How do you increase or decrease the size of your
circles?

2. You can modify your code from Exercise 1 to draw a spiral. Start by calling left with
a larger number of degrees, say, 4, and observe what happens. Then clear the drawing
and set a new variable named distance to 1. Use this variable as the argument to
move forward within the loop, and increment the variable by a small amount, say,
.05, on each pass through the loop. How do you increase or decrease the number of
rotations and the distance between them?
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Chapter 4

Composing, Saving,
and Running Programs

Thus far in this book, you have been entering short Python code fragments into the IDLE
shell and viewing the results. This method works well for experimenting with the basic
elements of Python, including the turtle graphics operations. However, as the things you
want to do with your code get more complicated, so does your code. At that point, enter-
ing lots of small pieces of code into the shell becomes unwieldy and inconvenient. When
you put related code fragments together, you really have what counts as a computer pro-
gram. What you need now is an editor for composing programs, a means of saving them
to files for later use, and a means of running them. The programming process and its sup-
porting tools are the topics of this chapter.

Exploring the Program Development Process
A program is a sequence of statements or instructions that solves a problem. Programs
can be as short as a single line of code or can consist of millions of lines of code. Software
companies may employ many teams of programmers to work on a single large program.
Each team is responsible for working on a solution to a piece of the overall problem (for
example, the spell checker, file manager, and editor in a word processing program). Each
team in turn may be composed of smaller teams who work on different stages of the pro-
gramming process. These stages include the following, which are also shown in the flow
diagram of Figure 4.1:

1. Analysis—In this stage, you determine exactly what counts as a solution to a
problem. For example, a spell checker should check the spelling of words in a text file
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and make changes where necessary. Note that you do no coding here, but you
determine what the results of your program should be. You will check the program
for these results during program testing. You might also write the manual for the
program’s users.

2. Design—In this stage, you use the results of analysis to determine how the program
will solve its assigned problem. Some coding might occur here, although design tools
such as the pseudocode that you saw in Chapter 3, “Control Structures: Sequencing,
Iteration, and Selection,” might also be used.

3. Coding—In this stage, you translate the results of design into the code of a
programming language. Note that the same design could be coded in different
languages, such as Python, Java, and C++, depending on the needs of the client and
the computer system where the program will be run.

4. Compilation—In this stage, you run a program that translates your program into a
form that can be run on a computer. Compilation may reveal syntax errors, which
you must correct before continuing.

5. Testing—In this stage, you repeatedly run the program with different inputs and
observe the outputs. If the program halts with an error message, or if the program
produces unexpected outputs, you have to retreat to an earlier phase to fix the errors.

Analysis

Design

Coding

Compilation

Testing

Figure 4.1
The program development process.

Very rarely would you participate in all of these stages in a large programming project. In
fact, you might have an entire career in just one area, as an analyst, designer, coder, or
tester. But for short programs, you might do everything.
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Throughout this book, you will conduct analysis, design, and testing informally. In this
chapter, you will focus on the tools in IDLE for coding, compiling, and running Python
programs.

Composing a Program
Thus far in this book, you have typed your Python code fragments in the IDLE shell and
run them there. You have viewed the results either in the shell window or in a turtle gra-
phics window. When you want to enter and save code that you can edit and run later, you
can open a new file in IDLE and work in a separate window. In this section, you learn
how to do that. You also explore the kind of structure your code should have, as a com-
plete Python program.

Program Edits
There are several ways to edit a program with IDLE. Each one depends on where you are
in the process.

n You’re starting from scratch on a new program. You launch IDLE and then select the
New File option from the shell window’s File menu. A new, empty window pops up.
You can then place the two windows (the shell and the file windows) side by side on
your screen and get to work.

n You’ve been experimenting with code fragments in the shell, and you want to write a
complete program. You just open a new file window as before.

n You want to edit a file that you saved earlier or that you got from another
programmer. You launch IDLE and select the Open option from the File menu. You
then browse for the file in your file system. On some systems, such as Mac OS, you
can combine both of these steps into one by launching (double-clicking on) the
Python program file in its directory window. Finally, you can run the command
idle3 filename in a terminal window after navigating to the file’s directory with the
appropriate system commands in the terminal window.

Like a word processor, IDLE lets you have several file windows open at the same time.
Thus, you could open windows on existing program files to copy code from them to a
new program in a different window. Note that your Python code in these windows is
color-coded, just as it is in the shell window. IDLE also knows how to indent your code
automatically when you enter selection statements and loops. Common editing com-
mands, such as Copy/Cut/Paste and Find/Replace, are similar to those of the word
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processors on your particular system. The Format menu includes some commands for
formatting Python code and cleaning up indentation problems.

To save a program to a file, select the Save option from the File menu, or use the control
key sequence on your particular system (Command+S on a Mac, and Ctrl+S on other sys-
tems). Python program files have a .py extension. If you don’t provide that when you save
a file for the first time, Python adds it for you.

Program Structure
As you saw in Chapter 3, some Python statements, such as loops and selection statements,
have a structure. Python follows this structure to run the statements, just as you follow it
to understand what they mean.

A complete Python program also has a structure—one that you employ in each program
you write. Here is an example turtle graphics program that draws a pattern of hexagon
shapes similar to the one you saw in Chapter 3. You can find this program in the file
named samplepattern.py on the companion website (www.cengageptr.com/downloads).
The next few subsections explain each part of the program’s structure.

"""
samplepattern.py
Draws a pattern using a hexagon.
"""

from turtle import *

def main():
reset()
speed(0)
pensize(2)
hideturtle()
color("blue", "yellow") # Blue outline, yellow fill
begin_fill()
for count in range(10): # Draw 10 hexagons

for count in range(6): # Draw each hexagon
forward(70)
left(60)

left(36) # Rotate them evenly
end_fill()
return "Done!"
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if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Docstrings and End-of-Line Comments
The first four lines at the top of this program form a string enclosed in triple-double
quotes. When a string appears in Python code in this manner, it is called a docstring.
Python ignores docstrings when it runs a program, but you should not ignore docstrings
when you read it. This docstring tells you the name of the program’s file and summarizes
what the program does. Python also displays a program’s docstrings when you ask for
help with the help function in the shell. Although the docstring in this program seems to
provide only trivial information, it’s a good idea to make a practice of beginning all of
your programs with docstrings.

About halfway into the program code, you see several pieces of text that begin with the #

character and are colored red in IDLE. Python also ignores this text, called end-of-line
comments, at runtime. Once again, this information is there for you, the reader, to help
you understand what’s going on at those points in the program code. You should include
end-of-line comments sparingly—only when you think your code needs some
clarification.

import Statements
This program uses turtle graphics functions, so it must import them, as you did in your
shell experimentation. In a program file, all import statements should appear before the
rest of the program code. Note that blank lines, which Python ignores, separate the initial
docstring from the import section and that section from the rest of the program code.

The main Function
Although Python does not require it, programmers typically organize their top-level code
in a main function. The next part of the example program defines this function, which is
not built in to Python. Note that the function’s first line, or heading, is aligned to the left
of its code, or body, by indentation. The body of the main function contains the sequence
of statements that are run when the function is called. That’s all you need to know about
function definitions for now.
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Review the code in the main function. It sets up the initial state of the turtle so that it can draw
the pattern of hexagons, and then it runs the nested for loop to do so. When the main func-
tion has finished its work, it returns the string "Done!" to its caller with a return statement.

Each turtle graphics program that you write from now on will contain a main function. You
can use this first one as a template and just edit the code before the return statement.

The if main == "__main__" Idiom
The last four lines of code in the program form a one-way if statement. This statement
determines whether the code is being run as a Python program or whether it is being
imported as a Python module. Once again, Python does not require this part, but it is
standard practice for Python programmers.

Each Python program file can be viewed as a module. Which view Python takes of a file
depends on how it’s loaded into the Python runtime system. If you were to enter the state-
ment import samplepattern into the shell, Python would view the file as a module. You
could then get help by entering help(samplepattern) or call the main function by entering
samplepattern.main(). The next shell session shows the results of entering the first two
commands:

>>> import samplepattern
>>> help(samplepattern)
Help on module samplepattern:

NAME
samplepattern

DESCRIPTION
samplepattern.py
Draws a pattern using a hexagon.

FUNCTIONS
main()

FILE
/Users/ken/examples/samplepattern.py

However, if you were to run the program from an IDLE file window or from a terminal
window (as described in the next section), the program itself would have to call its own
main function to start things up. That’s the purpose of the one-way if statement at the
end of the program.

When the program is imported as a module, Python sets the hidden module variable
__main__ to the name of the module—in this case, "samplepattern". But if the program is
launched from an IDLE file window or from a terminal window, Python gives this

80 Chapter 4 n Composing, Saving, and Running Programs



variable the value "__main__". So you can see that the logic of the one-way if statement
makes the right thing happen, no matter what. If __name__ is "__main__", the program
calls the main function to run the program. Otherwise, the program does nothing further
but has already loaded the other pieces of code that belong to this module.

The mainloop Function
Now it’s time to look more closely at the last three lines of code in the example program.
The first line calls the main function, which pops up the turtle graphics window and draws
the pattern. At that point, main returns the string "Done!" The program then outputs this
string either to the IDLE shell or to the terminal window, depending on the launch
method. The last line of code calls the mainloop() function. This function causes the turtle
graphics window to stay open when the program is run from a terminal window. If you
are running the program from an IDLE file window, you cannot return to the shell until
you close the turtle graphics window.

Running a Program
By now you will be eager to run the example program. This section explores a couple of
ways to do this. But first you need a quick reminder about using a turtle graphics config-
uration file.

Using a Turtle Graphics Configuration File
As mentioned in Chapter 2, “Getting Started with Turtle Graphics,” a turtle graphics con-
figuration file can provide the same initial settings for several programs. For example, you
might want a smaller initial turtle graphics window and the full RGB color mode. Many of
the example programs in the rest of this book use a configuration file with the following
settings:

width = 400
height = 300
canvwidth = 1200
canvheight = 900
using_IDLE = True
colormode = 255
title = Python Turtle Graphics

This file is named turtle.cfg and should sit in the same directory as your Python pro-
gram file. Of course, you are free to modify any of these settings from within your pro-
gram after it launches.
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Running a Program from an IDLE Window
Now, at long last, you are ready to run a Python program. The easiest way to do so in
IDLE is to place your mouse cursor in the program file window and press the Function
+5 or F5 key. If the program has not yet been saved, Python stops you with a request to
do that. Then, if the program has not yet been compiled, Python does that. If there are no
syntax errors, Python loads the resulting code into its runtime system and runs the pro-
gram. In the case of the example program, you should now see three windows: the shell
window, the file window, and the turtle graphics window, as shown in Figure 4.2.

Figure 4.2
Running a program in IDLE.
© 2014 Python Software Foundation.

Note that if there are any runtime errors in the program (but there should be none in this
example), the error messages appear in red, as always, in the shell window.
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To quit your running program, close the turtle graphics window. At that point, control
returns to the shell, and you can make any desired changes to the program in the file
window.

When you develop programs in the rest of this book, you’ll be working with windows of
this sort in IDLE. Learn where the F5 key is!

Running a Program from a Terminal Window
If you want to give a finished Python program to others, note that they will likely run it
from a terminal window. To try this yourself, open a terminal window and navigate to the
directory that contains the file samplepattern.py. Then enter the command

python3 samplepattern.py

in the terminal window. The turtle graphics window should pop up and display the pat-
tern. When you close this window, the program quits and returns control to the terminal
window. Note that the message “Done!” should be displayed in that window. If you don’t
want extra output like this from your program, you can delete the output statement in the
penultimate line of code.

Most computer systems provide a way to set the action that is triggered when you launch
a file by double-clicking on its icon. In Windows systems, this action runs the Python pro-
gram. In Mac OS, this action opens an IDLE file window. Also, in either system, you must
make sure that Python 3.0 or higher is installed.

Using the sys Module and Command-Line Arguments
When you run a program from a terminal window, you can usually provide optional
command-line arguments. For example, the idle3 command pops up a shell window, but
you can instead run idle3 filename to open a file window. Likewise, when you run python3

filename, you are launching a Python program, but when you run just python3, a shell
opens (in the terminal window itself, not in an IDLE window).

Python lets you distribute programs that you can run with additional command-line argu-
ments. For example, suppose you want the example program that draws a pattern with
hexagons to use pentagons or octagons instead. Your program could accept an additional
command-line argument that represents the number of sides in the figure. The default
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number would still be 6 if the user does not supply the extra argument. Here are three
examples of how to use this feature in the terminal window:

Madison:~ ken$ python3 samplepattern.py
Done!
Madison:~ ken$ python3 samplepattern.py 5
Done!
Madison:~ ken$ python3 samplepattern.py 8
Done!

When a Python program is run in the terminal window, the system places each optional
argument in a list of strings. The first string in this list is the program’s filename. To
access this list in your Python program, you import the sys module. The variable
sys.argv is the name of the list.

To experiment with command-line arguments before you actually use them, try printing
them at the beginning of the main function. Here are the changes to the example program
to accomplish this, followed by the terminal outputs:

"""
samplepattern.py
Draws a pattern using a hexagon.
"""

from turtle import *
import sys

def main():
print(sys.argv)

# The rest of the program would go here

Program output from two runs:

Madison:~ ken$ python3 samplepattern.py
[’samplepattern’]
Done!
Madison:~ ken$ python3 samplepattern.py 5
[’samplepattern’, ’5’]
Done!

Now you’ll modify the program so that it handles the extra command-line argument, if
there is one. Here is the relevant code, followed by an explanation.
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from turtle import *
import sys

def main():
if len(sys.argv) == 2:

numSides = int(sys.argv[1])
if numSides < 3:

return "Error: number of sides must be > 2"
else:

numSides = 6
angle = 360 / numSides # Compute interior angle for polygon
reset()
speed(0)
width(2)
hideturtle()
color("blue", "yellow") # Blue outline, yellow fill
begin_fill()
for count in range(10): # Draw 10 polygons

for count in range(numSides): # Draw each polygon
forward(70)
left(angle)

left(36) # Rotate them evenly
end_fill()
return "Done!"

The main function now uses the variable numSides to refer to the number of sides in the
shape, and it uses the variable angle to refer to the interior angle between sides in the
shape. Note how these variables are initialized and then used in the loop.

The rest of the new code at the beginning of main deals with the possibility of the extra
command-line argument. If the extra command-line argument is not present, the number
of sides in the figure is 6, as before. Otherwise, this argument is converted to an int and
checked for an error before being used to establish the number of sides and the angle.

Note the use of the nested if and return statements to handle the error.

Looking Behind the Scenes:
How Python Runs Programs
Whether you are running Python code as a program or interactively in a shell, Python
does a great deal of work to carry out the instructions in your program. Think for a
moment about bridging the huge gap between the instructions that you write in Python
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code and the computer hardware that carries out these instructions. It’s a gap that most
programmers (and most other users of computers) never have to worry about; they all just
take for granted that the programs they build or use will accomplish their tasks on any
computer.

In this section, you learn a bit about what goes on underneath the hood to allow a physical
device like a computer to carry out the instructions you write in Python code.

Computer Hardware
The basic hardware components of a computer are memory, a central processing unit
(CPU), and a set of input/output devices, as shown schematically in Figure 4.3.

Memory CPU

Input
Devices

Output
Devices

Figure 4.3
Hardware components of a modern computer system.

Human beings primarily interact with input and output devices. The input devices include
a touchscreen, a keyboard, a mouse, a camera, and a microphone. Common output devices
include a monitor, a printer, and speakers. Computers can also communicate with the
external world through various ports that connect them to networks and to other devices
such as handheld music players, digital cameras, and drone robots. The purpose of most of
the input devices is to convert information that human beings deal with, such as text,
images, and sounds, into information for computational processing. The purpose of most
output devices is to convert the results of this processing back to human-usable form.

Computer memory is set up to represent and store information in electronic form. Specif-
ically, information is stored as patterns of binary digits (1s and 0s), also called bits. To
understand how this works, consider a basic device such as a non-dimming light switch,
which can only be in one of two states: on or off. Now suppose there is a bank of switches
that controls 16 small lights in a row. By turning the switches off or on, you can represent
any pattern of 16 binary digits as patterns of lights that are on or off. Computer scientists
have discovered how to represent any information, including text, images, and sound, in
binary form.
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Now, suppose there are 4 of these groups of 16 lights. You can select any group of lights
and examine or change the state of each light within that collection. You have just devel-
oped a tiny model of computer memory. This memory has 4 cells, each of which can store
16 bits of binary information. A diagram of this model, in which the memory cells are
filled with binary digits, is shown in Figure 4.4. This memory is also sometimes called
primary or internal or random access memory (RAM).

0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1

0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0

1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1

0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1

Figure 4.4
A model of computer memory.

The information stored in memory can represent any type of data, such as numbers, text,
images, sound, or the instructions of a program. You can also store in memory a program
encoded as binary instructions for the computer. Once the information is stored in mem-
ory, you typically want to do something with it—that is, you want to process it. The part
of a computer that is responsible for processing data is the central processing unit (CPU).
This device, which is also sometimes called a processor, consists of electronic switches
arranged to perform simple logical, arithmetic, and control operations. The CPU runs a
machine language program by fetching its binary instructions from memory, decoding
them, and executing them. Executing an instruction might involve fetching other binary
information—the data—from memory as well.

The processor can quickly locate data in a computer’s primary memory. However, these
data exist only as long as electric power comes into the computer. If the battery fails or the
power is turned off, the data in primary memory are lost. Clearly, a more permanent type
of memory is needed to preserve data. This more permanent type of memory is called
external or secondary memory, and it comes in several forms. Magnetic storage media,
such as tapes and hard disks, allow bit patterns to be stored as patterns on a magnetic
field. Semiconductor storage media, such as flash memory sticks, perform much the
same function with a different technology, as do optical storage media, such as CDs and
DVDs. Some of these secondary storage media can hold much larger quantities of infor-
mation than the internal memory of a computer. Smartphones, tablets, and many laptops
now use built-in flash memory for secondary storage as well as primary storage.
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Computer Software
A computer is a general-purpose problem-solving machine. To solve any computable
problem, a computer must be capable of running any program. Because it is impossible
to anticipate all the problems for which there are computable solutions, there is no way to
“hard-wire” all potential programs into a computer’s hardware. Instead, you build some
basic operations into the hardware’s processor and require any program to use them.
The programs are converted to binary form and then loaded, with their data, into the
computer’s memory. The processor can then execute the programs’ instructions by run-
ning the hardware’s more basic operations.

Any programs that are stored in memory so that they can be run later are called software.
A program stored in computer memory must be represented in binary digits, also known
as machine code. Loading machine code into computer memory one digit at a time would
be a tedious, error-prone task for human beings. It would be convenient if you could auto-
mate this process to get it right every time. For this reason, computer scientists have
developed another program, called a loader, to perform this task. A loader takes a set of
machine language instructions as input and loads them into the appropriate memory
locations in the hardware. When the loader is finished, the machine language program is
ready to run. Obviously, the loader cannot load itself into memory, so this is one of those
programs that must be hardwired into the computer.

Now that a loader exists, you can load and run other programs that make the develop-
ment, running, and management of programs easier. This type of software is called system
software. The most important example of system software is a computer’s operating sys-
tem. You are probably already familiar with at least one of the most popular operating
systems, whether Linux, Apple’s Mac OS, or Microsoft Windows. Handheld devices use
their own versions of operating systems, such as iOS and Android. An operating system
is responsible for managing and scheduling several concurrently running programs. It also
manages the computer’s memory, including the external storage, and manages communi-
cations between the CPU, the input/output devices, and other computers on a network.
An important part of any operating system is its file system, which allows people to orga-
nize their data and programs in permanent storage. Another important function of an
operating system is to provide user interfaces—that is, ways for you to interact with the
computer’s software. A terminal-based interface accepts inputs from a keyboard and dis-
plays text output on a monitor screen. A modern graphical user interface (GUI) organizes
the monitor screen around the metaphor of a desktop, with windows containing icons for
folders, files, and applications. This type of user interface also allows the user to manipu-
late images with a pointing device such as a mouse or your fingers.
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Another major type of software is called applications software, or simply applications (or
apps on handheld devices). An application is a program that is designed for a specific task,
such as editing a document or displaying a web page. Applications include web browsers,
word processors, spreadsheets, database managers, graphic design packages, music pro-
duction systems, and games, among many others.

As you have learned, computer hardware can run only instructions that are written in
binary form—that is, in machine language. Writing a machine language program, how-
ever, would be an extremely tedious, error-prone task. To ease the process of writing com-
puter programs, computer scientists have developed high-level programming languages
for expressing programs. These languages resemble English and allow authors to express
their programs in a form that they and other people can understand.

As you have been doing thus far in this book, you start by writing high-level language
statements in a text editor. You then run another program called a compiler to convert the
high-level program code into runnable code. (When you press the F5 key in Python, that’s
what happens.) Because it is possible for you to make grammatical mistakes even when
writing high-level code, the compiler checks for syntax errors before it completes the
translation process. If it detects any of these errors, the compiler alerts you via error
messages.

If the translation process succeeds without a syntax error, the program can be executed by
the runtime system. The runtime system might execute the program directly on the hard-
ware or run yet another program called an interpreter or virtual machine to execute the pro-
gram. Figure 4.5 shows the steps and software used in this process for a Python program.

Python compiler

Python Virtual Machine
(PVM)

Python code

User inputs

Syntax error messages

Runtime error messages

Byte code

Program
outputs

Figure 4.5
Software used to compile and run a program.
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If a Python program is well formed, the compiler translates it to an equivalent form in a
low-level language called byte code.

This byte code is sent to another software component, called the Python Virtual Machine
(PVM), where it is run. It is here that the PVM further translates the byte code to the
machine code of your particular type of computer. If another error occurs during this
step, execution halts with an error message.

This concludes your introduction to composing and running Python programs. In the
next chapter, you explore some ways to design programs that solve more interesting and
complex problems.

Summary
n A program is a sequence of statements that solves a problem.

n The five stages of software development are analysis, design, coding, compilation,
and testing.

n In analysis, a programmer states what the various parts of a program will do.

n In design, a programmer states how the parts of a program will solve their assigned
tasks.

n In coding, a programmer translates a design into a program in a particular
programming language.

n A compiler is a software tool that checks a program for syntax errors and then
translates it to a form that a computer can run.

n In testing, a programmer determines whether a program does what it is supposed
to do.

n Computer hardware consists of memory, a central processing unit (CPU), and a set
of input/output devices.

n The data and instructions of a program are ultimately represented by a set of
hardware switches, which can be set to on or off. These physical states in turn can
represent the binary digits 1 and 0, which in turn are capable of representing any
data or instructions at the machine level.

n Computer memory is a set of switches that store data and programs in machine code
(a language of 1s and 0s).
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n The central processing unit contains circuitry to carry out basic operations on data in
machine code. All computer operations are composed of these basic operations.

n Secondary memory, such as disks and flash sticks, provides permanent storage
for data.

n The operating system provides user interfaces for the various input and output
devices, such as monitors, keyboards, pointing devices, scanners, cameras, and
printers.

n The Python compiler translates Python programs to byte code programs, which are
then run on the Python Virtual Machine (PVM).

n System software includes the operating system, text editors (such as IDLE), the
Python compiler, and the Python Virtual Machine.

n Application software performs specific tasks, such as word processing and
spreadsheet management.

n To run a byte code program, the Python Virtual Machine calls operations in machine
language.

Exercises
Launch the IDLE shell, open a file window, and complete the following exercises. You
should run each program within IDLE and, when it is completed, in the terminal window.

1. Write a Python program, in the file stopsign.py, that draws a stop sign. The sign
should be a filled red hexagon with the word “Stop” centered in white letters.

2. Modify the code in samplepattern.py so that it can accept three optional command-
line arguments. They represent the number of sides, the outline color, and the fill
color, respectively. The program should be able to use one, two, or all three of these
arguments. The defaults are as before. Be sure to test your program by running it in a
terminal window.
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Chapter 5

Defining Functions

Thus far in this book, your Python programs have consisted of built-in operators, control
statements, calls to built-in functions, and one programmer-defined function, main, intro-
duced in the previous chapter.

Strictly speaking, programmer-defined functions are not necessary. You can construct any
program using only Python’s built-in operators, functions, and control statements. How-
ever, in any significant program, the resulting code would be extremely complex, difficult
to verify, and almost impossible to maintain.

The problem is that the human brain can wrap itself around just a few things at once.
(Psychologists say three things comfortably, and at most seven.) People cope with com-
plexity by developing a mechanism to simplify or hide it. This mechanism is called
abstraction. Put most plainly, abstraction hides detail and thus allows a person to view
many things as just one thing. You use abstractions to refer to the most common tasks
in everyday life. For example, consider the expression “doing my laundry.” This expres-
sion is simple, but it refers to a multistep process that involves fetching dirty clothes
from the hamper, separating them into whites and colors, loading them into the washer,
transferring them to the dryer, and folding them and putting them into the dresser or
closet. Indeed, without abstractions, most of your everyday activities would be impossible
to discuss, plan, or carry out. Likewise, effective designers must invent useful abstractions
to control complexity.

Design is important in many fields. The architect who designs a building, the engineer who
designs a bridge or a new automobile, and the politician, advertising executive, or military
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commander who designs the next campaign must organize a team and coordinate its
members to achieve its objectives. Design is equally important in constructing computer
programs, some of which are the most complex artifacts that human beings have ever
built. In this chapter, you explore the use of functions to design computer programs.

Basic Elements of Function Definitions
In this section, you learn the basic elements of function definitions. These elements
include arguments, docstrings, the return statement, and optional/keyword/default
arguments.

Circles and Squares
Consider what you need to do to draw several circles and squares in a turtle graphics
program. To draw a circle, you just move the turtle to the desired position and call the
built-in circle function with the radius as an argument. But to draw a square of a given
length, you have to write the following loop:

for count in range(4):
forward(length)
left(90)

You could copy and paste this code to each place in your program where you want to
draw a square, but what if you want to use a different variable or a number for the length?
Then you’d still have to edit this code after you copied it. You’d probably agree that call-
ing a function, such as square, with the length as an argument, would be a lot easier. For
example, the code fragments in the next shell session would draw a circle within a square:

>>> reset()
>>> hideturtle()
>>> circle(40)
>>> backward(40)
>>> square(80)

Fortunately, as you first saw in Chapter 4, “Composing, Saving, and Running Programs,”
Python allows you to define your own functions. You can define a square function by
placing the loop below an appropriate heading, as follows:

def square(length):
"""Draws a square with the given length."""
for count in range(4):

forward(length)
left(90)
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Now you can call the function square, just like you call the function circle. All you have
to do is move the turtle to the desired position and heading and then call the function
with an appropriate argument. For example, here is how you would draw a pattern dis-
cussed in Chapter 3, “Control Structures: Sequencing, Iteration, and Selection,” with the
square function:

for count in range(10):
square(70)
left(36)

You can define similar functions to draw other geometric shapes, such as hexagons and
octagons, as you will see in the exercises.

The simplest form of a Python function definition is

def functionName(arguments):
statements

where arguments is a series of names separated by commas. Note that each statement in
statements must be indented below the function’s heading.

Docstrings
In Chapter 4, you saw how a docstring, the quoted text at the top of a program or module
file, describes the purpose of that program or module. As you define new functions to
solve problems, you should also document them with docstrings. As shown in your defi-
nition of the square function, the docstring appears on a line between the function head-
ing and the body of the function. Note that you must indent this string to the same
column as the statements within the function. When used in a function definition, a doc-
string should state what the function does, describe the roles of any arguments, and
describe the value, if there is one, that the function returns.

As mentioned in Chapter 4, docstrings allow Python to provide help to the programmer
from the shell. When you import a function’s module, you can get help on the function by
entering help(moduleName.functionName) at a shell prompt.

Always write the doctring before you write the function’s code. This practice helps you
clarify what the function does and what roles its arguments play. It also gives the callers
of your function, who might be other programmers, valuable information about the use of
a resource that you are providing.
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The return Statement
The square function defined earlier just draws a square but does not return a value to its
caller. The main function discussed in Chapter 4 returns a string value, which is not very
interesting. Many other functions, such as Python’s math.sqrt function, expect one or
more arguments and compute and return a value.

To see how a function can return a value, consider the creation of a random color. In the
code examples so far, you have seen that a random color is a tuple containing three ran-
dom integers, each of which is in the range from 0 to 255. You might create a random
color in Python with this code:

randomColor = (randint(0, 255), randint(0, 255), randint(0, 255))

Here you assign a color value of the appropriate form to the variable randomColor. How-
ever, each time you need a new random color, you have to run the same assignment state-
ment (or a different one, if the variable’s name changes).

It would be much more convenient if you could call a function named randomColor

and then use its value wherever you wanted. You would not have to rewrite or copy and
paste a line of complex code every time you wanted a random color. Here is the definition
of this function:

def randomColor():
"""Returns a random RGB color."""
return (randint(0, 255), randint(0, 255), randint(0, 255))

Note that this function expects no arguments and returns a value. The return statement
here includes the Python expression that creates the color value. The next code fragment
shows how you might use the function randomColor to draw colored squares in the exam-
ple pattern:

for count in range(10):
pencolor(randomColor())
square(70)
left(36)

Here’s the form of the return statement:

return optionalExpression

You can use a return statement to quit a function at any point, even within a loop and
even though the function does not return a value. When you omit the expression from a
return statement or omit the return statement entirely from a function’s statements, that
function automatically returns the Python value None.
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Testing Functions in a Program
Now that you’ve seen how to define and call your own functions, you need to know where
to put them in Python code files. One way is to write a short tester program. You compose
this program in an Integrated DeveLopment Environment (IDLE) file window, just as in
Chapter 4. The structure of a tester program now includes the definitions of your func-
tions. Although these definitions can appear in any order in the file, it’s common to
place them between the import section and the main function. The next code segment
shows a program that tests the functions you have defined thus far in this chapter.

"""
testsquare.py
Tester program for square and randomColor functions.
"""

from turtle import *
from random import randint

def square(length):
"""Draws a square with the given length."""
for count in range(4):

forward(length)
left(90)

def randomColor():
"""Returns a random RGB color."""
return (randint(0, 255), randint(0, 255), randint(0, 255))

def main():
"""Draws a radial pattern with 10 randomly colored squares."""
speed(0)
pensize(2)
colormode(255)
hideturtle()
for count in range(10):

pencolor(randomColor())
square(70)
left(36)

return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
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Run this program in an IDLE file window (F5 key). Then import the module testsquare

in the shell. At that point, you can ask for help on any of the functions, or on the entire
module, by running the help function with the function or the module name as an argu-
ment. You can also run the function testsquare.randomColor. Do that a couple of times to
view the results. As you experiment with this program, you are also encouraged to add
and test new functions, such as a function that draws a hexagon.

Remember to write the docstrings first!

Optional, Default, and Keyword Arguments
Suppose that you want to accept an optional color argument in your square function. This
argument, if present, allows the caller to draw a square in a new pen color. If this argu-
ment is absent, the function draws the square in the current pen color. If the function
draws the square in a new color, it restores the old color before returning.

The next code fragment draws a radial pattern of squares using random colors.

for count in range(10):
square(70, randomColor())
left(36)

To define a function with an optional argument, you place the argument name and
the default value in what looks like an assignment statement, as shown in the next
definition:

def square(length, newColor = None):
"""Draws a square with the given length and optional color."""
if newColor:

oldColor = pencolor() # Save old pen color and use new color
pencolor(newColor)

for count in range(4):
forward(length)
left(90)

if newColor:
pencolor(oldColor) # Restore old pen color

Note that the first argument, named length, has no default value. This argument is not
optional but is required, meaning that the function’s caller must supply the length.

If the caller does not supply a second argument when the function is called, the value of
newColor is automatically None. Because Python views this value as False and any color
value as True, you can check for the presence of a new color in a one-way if statement.
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If the new color is present, you can save the current pen color in the temporary variable
oldColor and reset the pen to the new color. Otherwise, if no color argument is present,
you can leave the pen color as it is.

After the square is drawn, you check for the presence of the new color once more and
restore the old color if the new color exists.

Here are some example calls of this function:

>>> square(70)
>>> square(70, "red")
>>> square(length = 70, newColor = "red")
>>> square(newColor = "red", length = 70)

The first two calls of the function show just the values of the arguments. The next two
calls show the names of the arguments as well as their values. When used in this way,
they are called keyword arguments. The use of keyword arguments allows you to supply
the arguments to a function in a different order than the one shown earlier in the func-
tion’s definition. However, if you omit the keyword with an argument, that argument
must appear in the same position as it was in the function’s definition.

Functions as General Solutions to Problems
Once you become comfortable with defining your own functions, you will start to write
them for almost every occasion. But after you’ve written the code for several functions,
you might start to see a common or redundant pattern in them. You might try to find a
way to capture this redundancy in a new function, thus saving yourself the trouble of
rewriting or copying and pasting the same code. In this section, you examine two ways
to do this.

Regular Polygons
The functions square and hexagon are already solutions to general problems, in so far as
they allow you to draw a square or a hexagon of any length. However, when you examine
the code of each function, you see that the only differences are in the number of sides and
the size of the interior angle. Here they are:

def square(length):
"""Draws a square with the given length."""
for count in range(4):

forward(length)
left(90)
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def hexagon(length):
"""Draws a hexagon with the given length."""
for count in range(6):

forward(length)
left(60)

Both squares and hexagons are examples of a more general type of geometric shape called
a regular polygon. In a regular polygon, all the sides are the same length and all the
interior angles are the same size. Because the interior angle always equals 360 divided by
the number of sides, the only variations in these shapes are in fact the length of a side and
the number of sides.

Now, can you see a way of defining a new, more general function that allows the caller to
draw a regular polygon? Of course, you can; this function, named regularPolygon, takes
two arguments: the length and the number of sides. Its loop iterates over the number of
sides after computing the appropriate interior angle to use, as follows:

def regularPolygon(length, numSides):
"""Draws a regular polygon with the given length
and number of sides."""
interiorAngle = 360 / numSides
for count in range(numSides):

forward(length)
left(interiorAngle)

Here are some example calls of this function, to draw a square and a hexagon:

>>> regularPolygon(70, 4) # Draw a square of length 70
>>> regularPolygon(70, 6) # Draw a hexagon of length 70

You can also simplify the definitions of the functions square and hexagon, as follows:

def square(length):
"""Draws a square with the given length."""
regularPolygon(length, 4)

def hexagon(length):
"""Draws a hexagon with the given length."""
regularPolygon(length, 6)

If you need to add code to draw a new type of regular polygon, such as a triangle or a
pentagon, you can define a specific function like you did for squares and hexagons.
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Functions as Arguments
Consider the code that draws a radial pattern of 10 squares:

for count in range(10):
square(70)
left(36)

As you saw in Chapter 4, you can use code such as this to draw a pattern that uses trian-
gles, hexagons, or other regular polygons. At this point, you should be asking yourself
this: what must change in this pattern of code to use a different type of polygon in the
drawing? Obviously, it’s just the name of the function, which in this particular instance
happens to be square. If you substitute the name hexagon, the code calls the function to
draw hexagons instead.

Unfortunately, you must rewrite the same loop each time you want to draw the pattern.
You would like to capture this common pattern of code in a single function. The only
thing that would vary from call to call of this function would be the name of the function
used to draw the particular type of polygon. If you could pass this function as an argu-
ment to a pattern-drawing function, you’d be all set.

Assume that your new pattern-drawing function is named radialPattern. You could call it
to draw a square-based pattern and a hexagon-based pattern in the following manner:

radialPattern(square)
radialPattern(hexagon)

Fortunately, Python is one of the few programming languages that allow you to do this.
Here is the code for the definition of the radialPattern function:

def radialPattern(polygonFunction):
"""Draws a series of polygons by rotating around a center point."""
for count in range(10):

polygonFunction(70)
left(36)

Note that the argument name, polygonFunction in this definition, refers to the function
that the caller passes. This function can be square, hexagon, or any function of one argu-
ment that draws a polygon.

By now, you should be thinking to yourself, “Hey, this radialPattern function is still not
general enough. It always draws a pattern with 10 polygons of length 70. I want to provide
a function that can draw any number of polygons of any length.” You’d be right to think
that, and in the exercises, you’ll have an opportunity to act on that thought.
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Building Functions with lambda Expressions
After you get over the shock of learning that you can pass functions as arguments to other
functions, you need to learn another related idea.

You saw earlier that you can define any function to draw a particular type of regular poly-
gon by calling the more general function regularPolygon. The arguments to this function
are the length of a side and the number of sides. When you want to draw a new type of
polygon, you just define a function for it in this manner and call that function.

However, there are lots of regular polygons besides the standard ones with three, four,
five, six, and eight sides. Defining a new function for each one can get rather tedious,
when you could simply call the regularPolygon function to perform the desired task. But
you can’t pass this function as an argument to the radialPattern function. That’s because
regularPolygon expects two arguments, whereas radialPattern’s function argument
expects only one argument—the length of a side—when it is called.

Fortunately, Python provides a nice way around this problem. When you defined the
square function, you essentially “wrapped” a call of regularPolygon with two arguments
inside of a function, square, that expects one argument. Python includes a special form
called a lambda expression that allows you to do just that, without going to the trouble of
defining a named function. The form of a Python lambda expression follows:

lambda arguments: expression

Suppose, for example, that you want to draw a 16-sided figure. The following lambda

expression builds a new function that would do the trick:

>>> lambda length: regularPolygon(length, 16)
<function <lambda> at 0x102b69ef0>

This lambda expression is evaluated in a shell session to show you that a function is built
and returned. This is an anonymous function of one argument, the length, which is just
what you need for radialPattern. When your new function is eventually called, it calls
regularPolygon to draw a regular polygon with 16 sides. Here is a sample call of your
new function, which draws a 16-sided polygon of length 70:

>>> (lambda length: regularPolygon(length, 16))(70)

Pass this lambda expression as an argument to the radialPattern function to draw the pat-
tern with a 16-sided polygon:

>>> radialPattern(lambda length: regularPolygon(length, 16))

To change the particular type of polygon, you only have to change the number of sides.
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Modules as Libraries of Functions
By now you will have written several related functions for drawing geometric shapes and
perhaps a few patterns that use these shapes. You should continue to test your functions
in short tester programs. But as the number of functions grows, you need a better place to
keep them, where you can access them just like you access Python’s library functions
math.sqrt and random.randint.

After you test each function and verify that it’s working as expected, you should place it in
an appropriate module or library file. Call your first module mygeometry. You create this
file by opening a new file window in IDLE. Immediately save this file with the name
mygeometry.py. Then add a doctring at the top of the file that summarizes the purpose of
this module. At that point, you can start to paste in each function definition as it becomes
available.

Every so often, you should import your new module into one of the tester programs
you’ve used and run your functions as module functions. If you use the form

moduleName.functionName(argumentList)

when calling your functions, you can be sure that they will be available for any program-
mers who eventually use your module.

Math Topic: Graphing Functions
In this section, you learn how you can use functions in a Python program to express func-
tions as understood in mathematics.

Functions in Mathematics
There are several ways to express a function in mathematics. In algebra, a function f
expresses a relationship between two variables, x and y. In shorthand, this relationship is
stated as the equation

y ¼ f ðxÞ
In this equation, f is the function, y is the dependent variable, and x is the independent
variable. This means that, for the function f, as you change the value of x, the value of y
also changes. The set of all values that x can take on is called the function’s domain, and
the set of all values that y can take on is called the function’s range.
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A function f expresses a rule for mapping the values of its domain into the corresponding
values in its range. For example, take the function that expresses the square of a given
number x, also known as x2. Subsets of this function’s domain and range are shown
in Table 5.1.

Table 5.1 A Subset of the Domain and Range of y = x2

x (Domain) y (Range)

1 1

2 4

3 9

4 16

In each row of this table, you can see that the value of y is the square of the value of x.

To state the rule for a function f, you must expand this function into an expression that
uses x to compute the corresponding value of y. This expression can consist of operators
and applications of other functions to the value of x. For example, you can expand the
function f(x) to the expression x * x or x ** 2 to state the rule for expressing the square
of x. Thus, for this case, the equation y = f(x) expands to the equation y = x * x (or y =
x ** 2, if you use the exponentiation operator).

Another way to express a function is to draw a graph that plots a given subset of its
domain. Each point (x, y) on this plot represents the solution to the equation y = f(x) for
a given value of x. The values of x are plotted along the x-axis, and the values of y are
plotted along the y-axis. Figure 5.1 shows the graphs of two equations, y = 2 * x + 10
and y = x ** 2 – 10 * x + 3. The first equation is also called a linear equation, and the
second equation is also called a quadratic equation.
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Figure 5.1
Graphs of two functions.
© 2014 Python Software Foundation.

Graphing Functions in Turtle Graphics
You’ll develop a simple function that plots a given function, f(x), for a set of values, x1 . . xn,
in the function’s domain. Expressing each function f(x) is easy in Python. For example,
here are the two functions graphed in Figure 5.1:

def quadratic(x):
"""A quadratic function."""
return x ** 2 - 10 * x + 3

def linear(x):
"""A linear function."""
return 2 * x + 10

The function that plots the graph of another function is called plot. The plot function
accepts another function as an argument. In all, the plot function expects four arguments:

n The function to be plotted

n The lower bound of the domain

n The upper bound of the domain

n A string that labels the plotted function
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Thus, to plot the two functions as shown in Figure 5.1, you would call the following:

plot(linear, 0, 50, "y = 2 * x + 10")
plot(quadratic, –5, 15, "y = x ** 2 – 10 * x + 3")

In the plot function, you raise the pen and position it at the first point (x, y) generated by
applying the argument function. You then lower the pen and loop through the remaining
x values in the domain. On each pass through the loop, you apply the function to compute
a y value and go to the new (x, y) position. When the loop finishes, the last step writes the
label at the final (x, y) position. Here is the code for the plot function:

def plot(f, x1, x2, label):
"""Plots f(x) for the domain x1..x2."""
up()
y = f(x1)
goto(x1, y)
down()
for x in range(x1 + 1, x2 + 1):

y = f(x)
goto(x, y)

write(label, font = ("Arial", 16, "bold"))

A helper function draws the axes to the dimensions of the canvas, and the size of the pen
is set to 2 before plotting the functions for clarity. The development of the complete pro-
gram is left as an exercise for you.

Refactoring a Program with Functions
The process of modifying a program to make it simpler to read and maintain is called
refactoring. In this section, you explore how to refactor the code for a random walk, intro-
duced in Chapter 3. Here is the code for the second version of that program:

from turtle import *
from random import randint
reset()
width = window_width() # Line 4
height = window_height()
(minX, maxX) = (–(width / 2), width / 2)
(minY, maxY) = (–(height / 2), height / 2)
(x, y) = position()
while x > minX and y > minY and x < maxX and y < maxY: # Line 9

distance = randint(10, 60) # Line 10
forward(distance) # Line 11
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degrees = randint(45, 135) # Line 12
if randint(1, 2) == 1:

left(degrees)
else:

right(degrees) # Line 16
(x, y) = position() # Line 17

In this version of the program, the turtle moves a random distance and then turns left or
right a random number of degrees until it moves past one of the edges of the window. At
that point, the turtle stops and the program ends.

Simplifying the Code for the Random Walk
If you study the code for the random walk closely, you will spot several major tasks that
function calls could simplify:

Lines 4–9 and line 17 are run to determine whether the turtle has crossed an edge of the
window. This code could be packaged in a Boolean function named atEdge. This function
returns True if the turtle’s position has crossed an edge, or False otherwise. Moreover,
because the window’s dimensions are examined each time the function is called, the turtle
can continue if the user grows the window or stop sooner if the user shrinks the window.

Lines 11 and 12 move the turtle forward a random distance. This code could go in a
function named randomForward, which expects the bounds of the possible distances as
arguments.

Lines 12–16 turn the turtle left or right by a random number of degrees. You could place
this code in a function named randomTurn, which expects the bounds of the possible
degrees as arguments. You could also add a third, optional argument that specifies the
probability of making a turn.

Before you define each of these new functions, you should rewrite the code for the top-
level program (now in a main function) to see how your functions are used:

from turtle import *
from random import randint

# New function definitions will go here

def main():
reset()
while not atEdge():

randomForward(1, 3) # Move 1, 2, or 3 units
randomTurn(45, 135, .05) # Turn 1/20 of the time
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As you can see, you have just reduced 15 lines of code to 4 lines of code and made the top-
level program easier to read and understand. You can also supply arguments that move
the turtle shorter distances and turn it fewer times to smooth the pattern of the walk.
Now it’s time to complete the program by defining the functions.

The atEdge Function
As a first cut at defining the atEdge function, you simply move the code from the earlier
program into a new function definition, as follows:

def atEdge():
"""Returns True if the turtle is at an edge of the window,
or False otherwise."""
width = window_width()
height = window_height()
(minX, maxX) = (–(width / 2), width / 2)
(minY, maxY) = (–(height / 2), height / 2)
(x, y) = position()
return x > minX and y > minY and x < maxX and y < maxY

Before you move on to the other functions, consider how you might simplify the code of
the atEdge function, while adding some other potentially useful functions. The atEdge

function determines whether the turtle has crossed an edge. This will be True if the turtle
crosses the top edge, the bottom edge, the left edge, or the right edge. By expressing it in
this way and imagining that you have four new functions at your disposal, you can rewrite
the code for atEdge as follows:

def atEdge():
"""Returns True if the turtle is at an edge of the window,
or False otherwise."""
return atTopEdge() or atBottomEdge() or \

atLeftEdge() or atRightEdge()

Each of the four new edge-detection functions compares one of the turtle’s coordinates to
a single boundary coordinate. For instance, here is the code for the topEdge function:

def atTopEdge():
"""Returns True if the turtle is at the top edge of the window,
or False otherwise."""
return ycor() > window_height() / 2

The other three functions have a similar pattern of code. You will use these new functions
to create a more realistic random walk shortly.
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The randomForward Function
The randomForward function might contain the two lines of code that pick a random dis-
tance and move the turtle forward by that amount. But you can make this function a bit
more flexible than that, as follows:

def randomForward(lower, upper = None):
"""Moves the turtle a random distance, from lower through upper.
If upper is absent, moves turtle the lower distance"""
if not upper:

distance = lower
else:

distance = randint(lower, upper)
forward(distance)

You might be surprised to see that the second argument, upper, has a default value of None.
This, together with the if-else statement, allows the caller to move the turtle forward
either a random distance or a given distance. Thus, the randomForward function will work
just as expected in the random walk program, but will also be helpful when used in a
slightly different way in other programs.

The randomTurn Function
The randomTurn function has one required argument and two optional arguments.

As in the randomDistance function, the first two arguments are named lower and upper, and
they work together in a similar manner. If the value of upper is absent, the turn is not ran-
dom, and the value of lower is the number of degrees used to take the turn. If they are
both present, a random number from lower through upper is chosen to specify the num-
ber of degrees.

The third argument is named probability, and it specifies the probability of the turtle’s
turning. The default value of this argument is 1, meaning that the turn will be made.
Any value less than 1 means that the turn might not be taken at all.

As you can imagine, this function requires substantial control logic. Here is the code, fol-
lowed by an explanation:

def randomTurn(lower, upper = None, probability = 1):
"""Turns the turtle a random number of degrees, from
lower through upper.
If upper is absent, turns the turtle by the lower amount of degrees.
Probability represents the likelihood of making the turn."""
from random import choice
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# Determine whether to make a turn first.
if probability < .01: # Probability too small to take the turn

return
if probability < 1: # Maybe not take the turn

if not choice(range(100)) in range(0, int(probability * 100)):
return

# A turn will be made, so the # of degrees is either random or given
if not upper: # Upper absent, so use lower

degrees = lower
else: # Choose a random amount of degrees

degrees = randint(lower, upper)

if randint(1, 2) == 1: # Turn left or right with equal prob.
left(degrees)

else:
right(degrees)

Whew! There is a saying that nothing good comes cheaply, and this function is a case in
point. Whenever there is complex logic, you try to handle the easiest cases first. So, here
are the cases in this function:

1. The probability is less than .01, so you just quit the function.

2. The probability is less than 1, so you use it to determine whether to continue. You
pick a random number from 0 through 99 and then see if that number is in the range
of numbers from 0 through 100 times the probability. If it’s not in that range, you
quit the function.

3. If you get this far, you’ll be turning the turtle. If the value of upper is not present, the
number of degrees will be the value of lower. Otherwise, the number of degrees is a
random number from lower through upper.

4. Finally, you choose whether to turn left or right, with equal probability.

Note that the function also imports the random function choice for later use in its code.

Even though you have expended a lot of effort on several new function definitions, this
effort will be well rewarded. Your top-level code will be simpler and easier to read and
manage. Moreover, other programmers will find your code useful, should you decide to
share it with them.
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Another Version of the Random Walk
The random walk program halts when the turtle crosses an edge of the window. But ani-
mals don’t typically stop when they encounter obstacles; they either climb over them or
turn to try another route.

Another version of a random walk allows the turtle to turn back into the enclosed area of
the window when it encounters an edge. In this version, the main loop runs a definite
number of times—perhaps long enough to allow the turtle several “rebounds” off the
edges of its window. When the turtle crosses an edge, it turns its back to that edge and
proceeds from there. Otherwise, it takes a random turn, as before. The program also
allows the user to specify the number of iterations via a command-line argument. This
value is 1000 by default.

Here is the code for the new version of the program:

from turtle import *
from random import randint
import sys

# New function definitions will go here

def main():
if len(sys.argv) > 1:

iterations = int(sys.argv[1])
else:

iterations = 1000
reset()
for count in range(iterations):

randomForward(1, 3) # Move 1, 2, or 3 units
if atTopEdge():

setheading(270) # Go south
elif atBottomEdge():

setheading(90) # Go north
elif atLeftEdge():

setheading(0) # Go east
elif atRightEdge():

setheading(180) # Go west
else:

randomTurn(45, 135, .05) # Turn 1/20 of the time by default

As you can see, the functions you developed in this section have come in quite handy. You
will have many more occasions to structure your code with functions in the rest of
this book.
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Summary
n A function definition consists of a heading and a set of statements.

n A function heading contains the function’s name and a parenthesized list of
argument names.

n A function’s docstring is located between the function’s heading and its statements.

n A default argument appears as an assignment of a default value to the argument’s
name in a function heading.

n If an argument has a default value, you can omit that argument when the function
is called.

n Arguments can be passed with keywords when a function is called. The keyword is
the argument’s name, which is followed by the assignment operator and its value. A
keyword argument may appear in a different position than its position in the
function definition’s heading.

n An argument without a keyword must appear in the same position in both the call
and the definition of the function.

n An argument without a default value must appear before any of the arguments with
defaults in the function definition’s heading.

n An argument without a default value is required; you cannot omit it when the
function is called.

n The return statement returns the value of an expression to the function’s caller.
When the expression is omitted or the function has no return statement, that
function returns the value None.

n A function may be passed as an argument to another function.

n The lambda expression creates an anonymous function.

Exercises
Launch the IDLE shell, open a file window, and complete the following exercises. You
should run each program within IDLE and, when it is completed, in the terminal window.

1. The Pythagorean Theorem defines the relationship between the hypotenuse of a
right triangle and its other two sides. It states that the square of the hypotenuse is
equal to the sum of the squares of the other two sides. Define a function named hypo
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that expects the lengths of other two sides of a right triangle as arguments. This
function returns the triangle’s hypotenuse. Include this function in a tester program
that exercises its capabilities.

2. Try to use the regularPolygon function to draw circles. Note what happens when you
vary the length. Then define a new function named myCircle, which expects the
radius of the circle as an argument. This function should call regularPolygon with the
appropriate arguments to draw a circle with the given radius. Include this function in
a tester program that exercises its capabilities. Hint: determine the radius of a circle
that is a regular polygon with a length of 1 and 360 sides. Then use that information
to determine the length to be used for any given radius.
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Chapter 6

User Interaction with the
Mouse and the Keyboard

In the previous two chapters, you wrote programs that drew shapes in a turtle graphics
window. However, many other programs take information as input from people. This
information might be text (like a username and password) or numbers (like your age
or income tax paid). Text and numbers are entered from the keyboard. People might
also interact with a program by moving a mouse, clicking it, or dragging it. Many
programs, especially computer games, would be unthinkable without such input capabili-
ties. In this chapter, you explore various ways of allowing users to interact with your turtle
graphics programs.

Using Dialog-Based Input
In Chapter 4, “Composing, Saving, and Running Programs,” you learned how some pro-
grams obtain input via command-line arguments. For example, when you run the
command

examplepattern.py 6 blue pink

the program draws a radial pattern of hexagons with a blue pen color and a pink fill color.
This way of taking input into a program is fine for some applications, but it has two
shortcomings:

n Most people don’t run programs from a terminal window.

n When they do, it may not be clear to them what role the input plays in the program.
In this program, which color is the pen color, and which color is the fill color? And
what does the 6 mean?
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Most people are used to receiving an informative prompt for a computer input; such a
prompt describes the type of value that’s requested. In terminal-based Python programs,
Python’s input function serves this purpose, but again, most people don’t run programs
from a terminal window. Moreover, even when you do run a turtle graphics program
from a terminal, your program code can no longer access the terminal window for input
values.

The primary way in which window-based applications receive input is via labeled entry
fields within a window. As you know from filling in forms on the web, you place the
mouse cursor in a box and type in the number or text requested. The request or prompt
is a label that appears next to the field. You then click a Submit or OK button to inform
the program that the input is ready, or you click a Cancel button to back out of the input
operation altogether. Turtle graphics supports this strategy for input with input dialogs,
which form the subject of this section.

Input Dialogs in Turtle Graphics
An input dialog is a small window that pops up for input. The window contains a message
about the kind of data requested and a field for the user to enter this information via the
keyboard. Command buttons are available to submit or cancel the input.

Assume that the pattern drawing program of the previous two chapters takes three inputs
from input dialogs. At program start-up, the user is presented with a sequence of three
dialogs, shown in Figure 6.1.

Figure 6.1
Three input dialogs.
© 2014 Python Software Foundation.

When the user closes each dialog, the next one pops up, until all the input has been sub-
mitted or canceled. If input is canceled, the program uses a default value, as before.

Turtle graphics dialogs come in two flavors: one for accepting numbers, and the other for
accepting strings. The two functions for input dialogs are named textinput and numinput.
Now you’ll examine these functions more closely.

116 Chapter 6 n User Interaction with the Mouse and the Keyboard



Input Dialogs for Text
The textinput function obtains a string input. The function expects a title and a prompt as
arguments. If the user clicks the dialog’s OK button, the dialog returns the string con-
tained in the input field. Otherwise, the user has clicked Cancel or has simply closed the
dialog window, so the dialog returns the Python value None. The program has to check for
this value after the textinput function returns to make sure that some text has actually
been entered.

Here is the code that inputs the pen color in your program after setting the default input
values and inputting the number of sides:

(numSides, outline, background) = (6, "blue", "yellow")
# Input the number of sides here first (see exercises)
datum = textinput("Input Dialog", "Enter the pen color")
if datum:

outline = datum

Note that if the user clicks OK and the dialog’s input field happens to be empty, the
textinput function returns the empty string. In the context of the if statement, the
empty string behaves just like the value False. Therefore, the outline variable in that case
retains its default value (set earlier in the program), just as if the user had canceled or
simply closed the dialog.

Input Dialogs for Numbers
The numinput function obtains a numeric input. The function expects a title and a prompt
as arguments. Optional arguments include a default input number, a minimum acceptable
number, and a maximum acceptable number. When the dialog pops up, the default num-
ber is displayed in the input field if that number is supplied as an argument; otherwise, the
field is empty. If the minimum or maximum argument is supplied, the dialog checks the
user’s input number against these limits before returning. If the number is out of this
range, the dialog displays a message and waits for more input. Like the text input dialog,
a numeric dialog returns None if the user cancels or closes the window; otherwise, it
returns the input as a floating-point number.

Here is the code that inputs the number of sides in the example program:

datum = numinput("Input Dialog",
"Enter the number of sides [3-8]",
default = 6, minval = 3, maxval = 8)

if datum:
numSides = int(datum)

Using Dialog-Based Input 117



The nice thing about using the minval and maxval arguments is that they free you from
checking the input value later with your own code. But note that this program must later
convert the input value to an int because numinput returns it as a float.

The complete sequence of input operations in this program is left as an exercise for you.

Responding to Mouse Events
Perhaps you have used a paint program, which allows you to make drawings by dragging
the mouse around on a virtual sketchpad. To do this in turtle graphics, you have to be able
to detect mouse events and respond to them. The turtle graphics system recognizes the
three types of mouse events listed in Table 6.1.

Table 6.1 Mouse Events

Mouse Event When It Happens Example

Click The user presses and releases the mouse
button, without moving the mouse.

The user selects a file icon.

Drag The user presses the mouse button and
moves the mouse while continuing to
press the button.

The user drags a file icon from
one window to another.

Release The user releases the mouse button. The user releases the mouse
button when the icon of a file
is over the trashcan icon.

In this section, you explore how to detect and respond to mouse events in turtle graphics.

Drawing Line Segments with Mouse Clicks
To enable turtle graphics to respond to a mouse event, you need to perform two steps:

1. Let turtle graphics know which function it should call when a given type of mouse
event, such as a click, occurs. This function is called an event-handling function.

2. Tell turtle graphics to start listening for events.

Suppose you want turtle graphics to call its goto function whenever the user clicks the
mouse anywhere in the turtle graphics window. To do this, you pass the goto function as
an argument to the function onscreenclick (Step 1). You then call the listen function,
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which instructs turtle graphics to listen for events in its window (Step 2). When you click
the mouse in that window, the turtle moves from its current position to the mouse click
position.

These operations are so simple that you can experiment with them in the shell. For exam-
ple, the following shell session allows you to draw line segments by clicking the mouse.
A sample drawing is shown in Figure 6.2.

>>> from turtle import *
>>> shape("circle")
>>> pencolor("blue")
>>> width(2)
>>> onscreenclick(goto)
>>> listen()

Figure 6.2
Drawing with mouse clicks.
© 2014 Python Software Foundation.

Note that you should call the listen function only after all the event-handling functions
have been set, although in this case, there is only one of these.

Turtle graphics includes another function, onclick, which registers a function to handle
mouse clicks that occur within the boundaries of the turtle’s shape. You should experi-
ment with the use of onclick in a session similar to the one just shown.
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How Event Handling Works
Even after you have told turtle graphics which function should handle a given mouse
event and told it to start listening for events, nothing happens until an event occurs. In
the example you just saw, turtle graphics is ready to call the goto function whenever you
click the mouse in its window. When you do that, turtle graphics passes the current
mouse coordinates as arguments to the goto function, and the turtle moves to that new
position. So event handling is automatic once you have told turtle graphics which func-
tions to use and readied it to listen for events. The only thing you have to do, in the case
of a mouse event, is to provide an event-handling function that expects two arguments.
These arguments represent the (x, y) coordinates of the current mouse position.

Freehand Drawing by Dragging the Mouse
Drawing line segments with mouse clicks, as you did just now, is pretty simple but also
pretty rigid. You can only draw straight lines, and you can’t pick the pen up and put it
down again without drawing another line segment. A true freehand drawing program
allows you to drag the virtual pen around with the mouse and draw curved lines as well
as straight ones. When you let go of the mouse button, you can move the virtual pen to a
new position without drawing anything.

Turtle graphics allows you to respond to mouse drag events with the ondrag function. Like
the onscreenclick function, the ondrag function expects another function as an argument.
The latter function is triggered repeatedly, while the user drags the mouse from one posi-
tion to another in the turtle graphics window. Initially, you must position the mouse on
the turtle’s shape for the first drag event to be detected. As before, the event-handling
function’s two arguments will be the current mouse coordinates.

To experiment with ondrag in the shell, you can pass it the goto function, just as you did
with onscreenclick earlier. Figure 6.3 shows a sample drawing. Here is the new shell
session:

>>> from turtle import *
>>> shape("circle")
>>> pencolor("blue")
>>> width(2)
>>> ondrag(goto)
>>> listen()
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Figure 6.3
Drawing by dragging the mouse.
© 2014 Python Software Foundation.

This technique works well for drawing line segments that are connected, but it fails when
you want to pick up the pen to move to a new position (say, to draw the smiley face
shown in Figure 6.4). To move to a new position without drawing, your code needs to
respond to a mouse click event as well. But this time, instead of simply calling goto,
which draws a line segment to the new position, you must pick up the pen, call goto, and
put the pen back down when a click event occurs. You can package these steps in a func-
tion named skip and then pass that function to onscreenclick to handle the click events.

Here is a complete Python program that provides these two capabilities:

"""
sketching1.py
Simple drawing by dragging the mouse; also allows movement by clicking.
"""

from turtle import *

def skip(x, y):
"""Moves the pen to the given location without drawing."""
up()
goto(x, y)
down()

def main():
shape("circle")
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width(2)
speed(0)
pencolor("blue")
ondrag(goto) # Register the two event-handling functions
onscreenclick(skip)
listen()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

Figure 6.4
Dragging to draw and clicking to move.
© 2014 Python Software Foundation.

Responding to Keyboard Events
Believe it or not, early computer systems did not include a mouse. In these systems, all the
commands to do things had to come from the keyboard. In modern computer systems,
you can still use some keyboard combinations, such as Ctrl+s or Command+s, to save a
file. Furthermore, you can use the arrow keys to move up, down, left, or right through the
text in a window.

Some early computer systems allowed people to use the keyboard to sketch drawings. For
example, you might use the right and left arrow keys to draw forward and backward, the
“l” and “r” keys to turn left and right, the “u” and “d” keys to pick the pen up and put it
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down, and the “c” key to clear the drawing window. In this section, you learn how to
respond to keyboard events in the same manner as you responded to mouse events earlier
in this chapter.

The onkey Function
Turtle graphics can recognize two keyboard events: a key press and a key release. There
are two functions to register event handlers for these events: onkeypress and onkeyrelease.
In this section, you learn about the function onkey, which is a synonym for onkeyrelease.

The function onkey expects two arguments: a function and a keyboard value. The key-
board value is either a string containing the single character on a given keyboard key or
a string reserved for a special key, such as an arrow key. The onkey function binds a given
key to a given function, meaning that when the key is released, the function is called. For
example, if you issue the command onkey(down, "d"), Python binds the “d” key to the down

function, and the pen is placed down when the user releases the “d” key. As before, you set
up all your event handlers for the different keys and then call the listen function to start
listening for events.

To experiment with key events, you can bind the arrow keys to move the turtle forward or
backward, turn it left or right, and clear the drawing, as shown in the following shell
session:

>>> from turtle import *
>>> pencolor("blue")
>>> speed(0)
>>> width(2)
>>> onkey(clear, "c")
>>> onkey(lambda: forward(5), "Right")
>>> onkey(lambda: back(5), "Left")
>>> onkey(lambda: right(5), "r")
>>> onkey(lambda: left(5), "l")
>>> listen()

Note several points about this code:

n “Right” identifies the right arrow key, whereas “r” identifies the key containing that
letter.

n The movement and rotation functions use a distance of 5 units and an angle of 5
degrees, respectively, for faster interaction.

n All but one of the event-handing functions are provided as lambda expressions. You
first saw lambda expressions in Chapter 5, “Defining Functions.” You use a lambda

Responding to Keyboard Events 123



expression here to create a no-argument function that calls a function of one
argument. Key events can only trigger no-argument functions, so the lambda

expression here does the trick.

A Complete Retro Drawing Program
You can now marshal your knowledge of keyboard events to write a complete Python
program to make drawings with the keyboard. Here is the code:

"""
sketching2.py
Simple drawing with the keyboard.
All movements and turns are by increments of 5.
Right arrow key = move forward
Left arrow key = move backward
r = turn right
l = turn left
u = pen up
d = pen down
h = go home
c = clear
"""

from turtle import *

def main():
width(2)
speed(0)
pencolor("blue")
onkey(up, "u")
onkey(down, "d")
onkey(clear, "c")
onkey(home, "h")
onkey(lambda: forward(5), "Right")
onkey(lambda: back(5), "Left")
onkey(lambda: left(5), "l")
onkey(lambda: right(5), "r")
listen()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
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Using Module Variables
In the programs you have written thus far, you have used variables to track various kinds
of information, such as a pen color input by the user or the coordinates of a point that are
the arguments in a function definition. When you manipulated these variables, either to
use their values or to reset them, you usually did so within the body of a function defini-
tion. For example, you used variables to receive inputs in the main function or to access
arguments in the skip function. Variables of this sort are considered to be local to that
function, meaning that their values are accessible only within the body of that function
and not outside of it (either in another function or in the surrounding module).

Local variables may be of no help when you need to track information that several func-
tions should know about. For example, the functions that respond to mouse events know
the turtle’s current position, but not its previous one. In this section, you examine the use
of another kind of variable, called a module variable, which allows you to share this infor-
mation among different functions.

Initializing and Using Module Variables
You have seen several module variables in your turtle graphics programs thus far—the
variables __main__ and msg in the if statement at the end of each program. The variables
math.pi and sys.argv are also module variables, although they belong to another module
that your program module imports. The math module assigns the variable pi its value.
Python automatically assigns __main__ and sys.argv their values when a program is run.
Your program assigns msg its value. Each name is a module variable because it is assigned
a value outside the bodies of any function definitions.

After a module variable has been assigned a value, you can access this value anywhere
within the module, including within the bodies of function definitions. The next short
Python program demonstrates the introduction and use of another module variable for π:

"""
modulevariables.py
"""

PI = 3.14 # Module variable (instead of math.pi)

def area(radius):
return PI * radius ** 2

def volume(radius):
return 4 / 3 + PI * radius ** 3

def main():
radius = 4.5
print("PI:", PI)
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print("Radius:", radius)
print("Area:", area(radius))
print("Volume:", volume(radius))

if __name__ == ’__main__’:
main()

Note that the variable PI is assigned a value above any of the function definitions. Thus, it
is a module variable, and its value is accessible everywhere in the module. Because
PI behaves like a constant in this program, you set its value just once. The only restriction
on the use of a module variable is that you cannot assign it a new value within a function
definition. You will see how to get around that limitation shortly.

Tracking the History of Turtle Positions
Now, suppose you need to know the positions that the turtle has recently visited. For
example, you might write a program that allows the user to draw a triangle with three
mouse clicks. Each click will be on a vertex of the triangle, and the turtle will connect
them with line segments to complete the drawing. The first line-drawing program won’t
be able to do this. (Try it yourself; you’ll need four clicks.)

To draw a triangle with just three clicks, your program needs a different strategy. On the
first mouse click, the turtle skips to that position, without drawing. On the second
mouse click, the turtle draws a line segment connecting the first two vertices. On the
third mouse click, the turtle draws two more line segments to complete the figure.

To support this capability, you need to record the positions of earlier clicks somewhere,
and you need to make some choices based on the number of clicks that have already
occurred. A list would work fine for that; it would start out empty, and you could append
each position to the list when the mouse is clicked. Here are the rules for making choices,
based on the length of this list:

n If the list is empty, skip to the click position and add the click position to the list.

n If the list contains one position, go to the click position (drawing a line segment from
the first position) and add the click position to the list.

n If the list contains two positions, draw line segments from each of them to the click
position, and make the list empty again.

All this code goes in the event-handling function for mouse clicks. Name that function
setVertex. As usual, the function expects two arguments: the coordinates of the mouse
click. The function assumes that the variable positionHistory refers to a list of the
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positions of the most recent mouse clicks. Now the only remaining question is this: where
is this variable initialized to the empty list?

Because the variable positionHistory must retain its value between function calls, it must
be a module variable. Thus, it is initialized near the beginning of the module, just like you
did with PI in the earlier example. Here is the code for the complete program:

"""
triangle.py

Draws triangles with 3 mouse clicks.
"""

from turtle import *

positionHistory = []

def setVertex(x, y):
"""Sets vertices and possibly connects them."""
if len(positionHistory) == 0: # The first click skips

positionHistory.append((x, y)) # to the first vertex
skip(x, y)

elif len(positionHistory) == 1: # The second click connects
positionHistory.append((x, y)) # two vertices
goto(x, y)

else:
(xCoord, yCoord) = positionHistory.pop() # The third click
skip(xCoord, yCoord) # connects the remaining
goto(x, y) # vertices
(xCoord, yCoord) = positionHistory.pop()
goto(xCoord, yCoord)

def skip(x, y):
"Moves the pen to the given location without drawing."
up()
goto(x, y)
down()

def main():
shape("circle")
width(2)
speed(0)
pencolor("blue")
onscreenclick(setVertex)
listen()
return "Done!"
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if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Because the third click empties the position history list, you can continue to draw new
triangles at other positions.

Using Two Mouse Buttons
As you probably know, a mouse usually has at least two buttons, located on the left and
the right of the top surface of the device. Clicking the left button is called a left-click, and
clicking the right button is called a right-click. For mice that do not have a right button,
you can perform a right-click by holding the Ctrl key while clicking the left button.

You probably accomplish most of your mouse-related tasks by clicking or holding down
the left button, but the right button occasionally comes in handy. For example, a right-
click often pops up a menu of options related to the context of your current window. In
this section, you learn how to respond to a right-click in turtle graphics, to add some com-
mand options to your applications.

Adding an Event-Handling Function for the Right Button
Each type of mouse event in turtle graphics—a click, a drag, or a release—can result from
a press of the left button or the right button. The functions onscreenclick, onclick, ondrag,
and onrelease allow you to specify separate event-handling functions for the left and the
right buttons. You do that by supplying a second optional argument to these functions.
Table 6.2 lists their headings.

Table 6.2 Functions That Register Event-Handling Functions for Mouse Events

Function What It Does

onscreenclick(fun, btn = 1, add = None) Registers fun to handle a click event anywhere in
the window.

onclick(fun, btn = 1, add = None) Registers fun to handle a click event on the turtle.

ondrag(fun, btn = 1, add = None) Registers fun to handle a drag event on the turtle.

onrelease(fun, btn = 1, add = None) Registers fun to handle a release event on the
turtle.
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As you can see, the event-handling function fun is a required argument, and the button
number btn is an optional argument. (Remember: arguments that have no = following
them are required.) The default button number is 1, signifying the left mouse button.
That’s the option you have used for any mouse events so far in this chapter. But if you
supply 2 as a second argument, turtle graphics binds the right mouse button to your
event-handling function for that event. Thus, your function is triggered when the user
manipulates the right mouse button.

The add option by default replaces any existing event-handling functions for the specified
button with the new function. But if you supply the value True for this argument, turtle
graphics adds your new function to the set of functions to be triggered when that event
occurs. Thus, you can register multiple event-handling functions for both buttons for all
four of the mouse events.

Example 1: Simple Drawing with Random Colors
To experiment with the use of right mouse button, you can return to sketching in the
shell. In this session, you register the goto function for screen clicks with the left mouse
button. This draws a line segment between the turtle’s position and the position of the
left-click. (See Figure 6.2 earlier in this chapter.) You also register a lambda expression for
screen clicks with the right mouse button. This expression builds a function that sets the
pen color to a random color. Here is a transcript of this session:

>>> from turtle import *
>>> from random import choice
>>> colors = ("red", "blue", "green", "purple", "orange")
>>> shape("circle")
>>> onscreenclick(goto)
>>> onscreenclick(lambda x, y: pencolor(choice(colors)), btn = 2)
>>> listen()

Now when you left-click, the turtle draws a line segment, as before. But when you right-
click, the turtle’s pen color resets to a randomly chosen color (which may be the same
color as the previous one, because the set of colors here is pretty small).

Example 2: Drawing and Moving
Now instead of changing the pen color, suppose you want to move the turtle to a new
position without drawing a line segment. You can do this with a right-click by binding
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the right button to the skip function discussed earlier in this chapter. Here is how you
could do that in a shell session:

>>> from turtle import *
>>> def skip(x, y): up(); goto(x, y); down()

>>> shape("circle")
>>> onscreenclick(goto)
>>> onscreenclick(skip, btn = 2)
>>> listen()

Note the use of the semicolons in the definition of the skip function. They allow you to
write separate Python statements on a single line of code, for a more concise presentation.

Example 3: Drawing, Moving, and Random Colors
Suppose you want a right-click to both move the turtle to a new position and change its
color. To do this, you register both event-handling functions with the right-click, being
careful to supply an optional add argument of True when you register the second function.
Here is the code for this version:

>>> from turtle import *
>>> from random import choice
>>> colors = ("red", "blue", "green", "purple", "orange")
>>> def skip(x, y): up(); goto(x, y); down()

>>> shape("circle")
>>> onscreenclick(goto)
>>> onscreenclick(lambda x, y: pencolor(choice(colors)), btn = 2)
>>> onscreenclick(skip, btn = 2, add = True)
>>> listen()

The two event-handling functions associated with the right button fire in the order in
which they were registered by onscreenclick.

Example 4: Dialogs for Shape Properties
Perhaps you would like to draw some polygons interactively at different positions in the
turtle graphics window. Each polygon has a length, a number of sides, and a color. Given
these properties, you can position a polygon anywhere in the window with a left-click of
the mouse. A right-click should allow you to change any of the attributes of the next poly-
gon to be drawn. A series of pop-up dialogs allows you to enter this information (length,
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number of sides, and color). As a first cut, here is a program that allows you to draw a
polygon with default properties:

"""
drawpolygon1.py
Draw polygons with a left-click.
"""

from turtle import *

properties = {"length":30, "numSides":4, "color":"black"}

def regularPolygon(length, numSides):
"""Draws a regular polygon.
Arguments: the length and number of sides."""
interiorAngle = 360 / numSides
for count in range(numSides):

forward(length)
left(interiorAngle)

def skip(x, y):
"Moves the pen to the given location without drawing."
up()
goto(x, y)
down()

def moveAndDraw(x, y):
"""Draws a polygon with the current properties at
position (x, y)."""
skip(x, y)
pencolor(properties["color"])
regularPolygon(properties["length"], properties["numSides"])

def main():
width(2)
speed(0)
hideturtle()
onscreenclick(moveAndDraw)
listen()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
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This program sets up the default properties of the polygon in a module variable named
properties. This variable is initialized to a dictionary, and each property is stored as a
key/value pair there. The dictionary initially contains the default values of all the proper-
ties. The dictionary makes it easy for you to access or change any property, as well as add
new properties to improve the program.

There are two things you need to do to allow the user to change the properties. First, you
define an event-handling function that runs when the user clicks the right mouse button.
This function, named changeProperties, expects the coordinates of the mouse click, which
are ignored. The function then takes the user through a series of three pop-up dialogs,
which allow him to reset the polygon’s length, number of sides, and color. Here is the
code for this new function:

def changeProperties(x, y):
"""Obtains new values for the polygon’s properties from
the user and resets them in the properties dictionary."""
length = numinput("Input Dialog", "Enter the length",

default = properties["length"], minval = 1)
if length:

properties["length"] = int(length)
numSides = numinput("Input Dialog", "Enter the number of sides",

default = properties["numSides"], minval = 3)
if numSides:

properties["numSides"] = int(numSides)
color = textinput("Input Dialog", "Enter the color")
if color:

properties["color"] = color

The second change is to register the changeProperties function as the event handler for the
right button, with the onscreenclick function. You do this in the main function, as follows:

def main():
width(2)
speed(0)
hideturtle()
onscreenclick(moveAndDraw)
onscreenclick(changeProperties, btn = 2)
listen()
return "Done!"
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You can easily extend this design to include properties for the fill color and pen size. You
add defaults for these properties to the dictionary and the appropriate input dialogs to the
changeProperties function. The rest is automatic.

This concludes your introduction to user interaction with turtle graphics. You can now
write some programs that really engage people.

Summary
n The user can provide interactive inputs to a turtle graphics program by means of

pop-up dialogs. Turtle graphics provides two types of dialogs: one for numbers and
one for text.

n The textinput function is used to pop up a dialog for a string (a single line of text).
The function expects the dialog’s title and a prompt as string arguments. If the user
cancels or closes the dialog, the function returns None. Otherwise, if the user clicks
OK, the function returns the string contained in the input field.

n The numinput function is used to pop up a dialog for an input number. The function
expects the dialog’s title and a prompt as string arguments. Optional arguments
include a default numeric value, a minimum allowable value, and a maximum
allowable value. If the user cancels or closes the dialog, the function returns None.
Otherwise, if the user clicks OK, the function checks the text in the input field for
correct format, converts this text to a number, and checks it against any optional
bounds. If an error occurs, the dialog informs the user and waits for more input.
Otherwise, the number is returned as a float.

n The user can also interact with a turtle graphics program if that program is set up to
respond to mouse events and keyboard events.

n The four mouse events in turtle graphics are a click in the window, a click on the
turtle’s shape, a drag on the turtle’s shape, and a release on the turtle’s shape.

n The programmer responds to a mouse event by providing an event-handling
function. This function is triggered when an event of that type occurs.

n The functions to register event-handling functions for mouse events are
onscreenclick, onclick, ondrag, and onrelease. Each of these functions expects an
event-handling function as an argument. When triggered, this function is passed the
coordinates where the mouse event occurred.
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n Optional arguments to onscreenclick, onclick, ondrag, and onrelease are the number
of the button (1 = left, 2 = right) and a Boolean value indicating whether to add the
new event-handling function or replace the existing ones.

n The functions to register event-handling functions for keyboard events are onkeypress

and onkeyrelease (a synonym for onkey). onkeypress expects a function and an
optional string as arguments. onkeyrelease expects both a function and a string as
arguments. The string represents a keyboard character. When the user presses or
releases a registered key, the associated event-handling function is triggered. If the
string argument to onkeypress is omitted, the function is triggered when any key is
pressed.

n After the event-handing functions have been registered, the listen function tells
turtle graphics to listen for events.

n A module variable is used to make data accessible to all the functions in a module. A
module variable cannot be reset with an assignment statement within a function.
However, if the variable refers to a mutable structure, like a list, that structure can be
modified.

Exercises
Launch the IDLE shell, open a file window, and complete the following exercises. You
should run each program within IDLE and, when it is completed, in the terminal window.

1. Write a pattern-drawing program similar to the one discussed in Chapters 4 and 5.
This version uses dialogs to take the length of a side, the number of sides, the pen
color, and the fill color as inputs via dialogs.

2. Write a program that allows the user to draw circles with two mouse clicks. The
position of the first click will be the circle’s center point, and the position of the
second click will be a point on the circle’s circumference. Hint: the function
distance(x, y) returns the distance from the turtle’s current position to the
position (x, y). Also, use a module variable to remember the position of the first
mouse click.
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Chapter 7

Recursion

Computer science is sometimes called the science of abstraction. As you learned in
Chapter 5, “Defining Functions,” an abstraction is a means of simplifying a complex situ-
ation or problem. For example, the term word processing refers to all the things you might
do with text, including editing text, checking the spelling and grammar of text, and saving
text to files, among other things. Each of these apparently simple processes, in turn, is an
abstraction of other processes.

In this chapter, you learn an especially beautiful and elegant way to create abstractions
called recursion. A recursive situation or problem can be subdivided into smaller situa-
tions or problems of the same form. Along the way, you learn how to construct recursive
functions to solve such problems and explore some recursive patterns in art and nature.

Recursive Design
Recursive design is a variation of an important design strategy called top-down design. In
this section, you review the top-down design of a program from Chapter 5, as a prelude to
learning about the important features of recursive design.

Top-Down Design
One popular design strategy for programs of any significant size and complexity is called
top-down design. This strategy starts with a global view of the entire problem and breaks
the problem into smaller, more manageable subproblems—a process known as problem
decomposition. As each subproblem is isolated, its solution is assigned to a function.
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Problem decomposition may continue down to lower levels, because a subproblem might
in turn contain two or more lower-level problems to solve. As functions are developed to
solve each subproblem, the solution to the overall problem is gradually filled out in detail.
This process is also called stepwise refinement.

For example, consider the problem of plotting the graph of a function, for which you
wrote a program in Chapter 5. The solution to this problem required you to perform sev-
eral subtasks:

n Initialize the turtle’s state.

n Draw the axes.

n Compute the value of y for each value x in a set of values in a function’s domain.

n Draw line segments between the resulting (x, y) points in the graph.

You assigned each of these tasks to a Python function and coordinated their actions
within a top-level main function. The relationships among the programmer-defined func-
tions are depicted in the call diagram of Figure 7.1.

drawAxes plot(linear)

linear

main

plot(quadratic)

quadratic

Figure 7.1
The call diagram of the function-plotting program.

Note that program execution begins with the main function at the top of the diagram. This
function calls the functions shown in the next level below, from left to right. The functions
not shown, such as speed, are built in. Others, like plot, are defined by you and call still
other functions at a lower level to do their work.

There are four important points to note about top-down design:

n You typically begin with a main function, which simply calls other functions to
accomplish its task. This part of design is easy, because you simply think of
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appropriate names and arguments for these functions and let them worry about how
they do their jobs. In other words, passing the buck and procrastination are virtues!

n You continue to pass the buck at each level of the design. To complete each function,
you think of other functions to call, with the appropriate arguments.

n The buck appears to stop when you call a built-in function.

n Although there is occasionally some overlap, the subtasks in a top-down design are
typically different from each other and thus call for different functions to perform
them.

Recursive design shares some of these characteristics with top-down design but also dif-
fers in important ways, as you will see in the next subsection.

Recursive Function Design
In recursive design, a problem is broken into subproblems of the same form. In these
cases, you assign each subproblem to the same function as the one that solves the problem
at a higher level. A function of this sort is called a recursive function.

For example, consider the problem of computing the summation of a sequence of integers
from a lower bound to an upper bound. The function summation(1, 4) should return the
result of 1 + 2 + 3 + 4, or 10. One way to design a solution to this problem is to recognize
that this sequence of additions contains the following nested summations:

summation(1, 4) = 1 + summation(2, 4)
summation(2, 4) = 2 + summation(3, 4)
summation(3, 4) = 3 + summation(4, 4)
summation(4, 4) = 4

Note that the last case, summation(4, 4), is not composed of another summation but simply
returns one if its arguments. Figure 7.2 shows a call diagram for summation(1, 4).

summation(1, 4)

summation(2, 4)

summation(3, 4)

summation(4, 4)

Figure 7.2
A call diagram of summation(1, 4).
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Note that each call of the summation function, with the exception of the last one, calls
summation again. This call is known as a recursive call of the function.

The final call of the summation function makes no recursive call but instead returns one of
the arguments directly. This is known as the base case of the function.

On each recursive call of the function, the first argument increases by 1. As this value
increases, it eventually reaches a limit that stops the recursive process. In other words,
this adjustment allows the function to detect when the recursion should stop and return
the base case value.

Now, can you come up with a general formula for the summation function from its recur-
sive description? Of course you can. You assume that the summation function has two argu-
ments, named low and high. As their names imply, you also assume that low is less than or
equal to high whenever the function is called. So the recursive formula for the summation

function is expressed as two equations. The first equation expresses what a summation is
when the two arguments are equal (the final call in Figure 7.2). The second equation
expresses what a summation is otherwise. Here are the two equations:

summation(low, high) = high, if low == high
summation(low, high) = low + summation(low + 1, high)

You should review Figure 7.2 to verify that these two equations describe the partial sum-
mations contained in summation(1, 4) before continuing.

You can turn this design into an implementation by defining a Python function named
summation. This function states the assumptions about the arguments in a docstring and
then uses a two-way if statement to express the two options stated in the design. Here is
the code for the function, embedded in a short tester program:

"""
File: recursion1.py
Define and test a recursive summation function.
"""

import sys

def summation(low, high):
"""Returns the summation of the integers
from low to high.
Precondition: low <= high."""
if low == high:

return high
else:

return low + summation(low + 1, high)
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def main(low = 1, high = 4):
if len(sys.argv) == 3:

low = int(sys.argv[1])
high = int(sys.argv[2])

print("The summation of", low, "and", high,
"is", summation(low, high))

if __name__ == "__main__":
main()

Note that the main function here includes default arguments of 1 and 4, which are passed
on to the summation function when the program launches. You can then test the function
by calling main in the shell with other arguments, as shown in the next session:

>>>
The summation of 1 and 4 is 10
>>> main(1, 10)
The summation of 1 and 10 is 55
>>> main(2, 10)
The summation of 2 and 10 is 54
>>>

Because the program also checks for command-line arguments, you can test the program
in a terminal window as well:

Madison:~ ken$ python3 recursion1.py
The summation of 1 and 4 is 10
Madison:~ ken$ python3 recursion1.py 1 10
The summation of 1 and 10 is 55

Recursive Function Call Tracing
To get a better understanding of how a recursive function works, it is helpful to trace its
calls. You’ll do that for the summation function. You add an argument for a margin of
indentation and print statements to trace the two arguments and the value returned on
each call. The first statement on each call computes the indentation, which is then used
in printing the two arguments. The value computed is also printed with this indentation
just before each call returns. Here is the code for the summation function with tracing:

def summation(low, high, margin = 0):
"""Returns the summation of the integers
from low to high. Prints a trace of low,
high, and the value returned for each call,
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using the given margin.
Precondition: low <= high."""
blanks = " " * margin
print(blanks, low, high)
if low == high:

print(blanks, high)
return high

else:
result = low + summation(low + 1, high, margin + 4)
print(blanks, result)
return result

Note that the expression " " * margin builds a string that contains the number of blank
spaces specified by the margin operand. This value is initially 0 when the function is called
and increases by 4 on each recursive call. Thus, each pair of arguments is indented further
to the right as the recursion proceeds down to the base case. When control returns to each
caller, the previous value of margin is restored, so the return values are undented further to
the left as the recursion unwinds. Here is sample trace of summation(1, 4):

>>>
1 4

2 4
3 4

4 4
4

7
9

10
The summation of 1 and 4 is 10
>>>

As you can see from this trace, the value of the first argument increases on each recursive
call until it equals the value of the second argument. As the recursive calls return, the
value of the summation increases.

Recursive Functions and Loops
By now, you may have guessed that a recursive function repeats a given process until a
condition becomes False. If you think that sounds like a loop, you’re right. In principle,
you can rewrite any recursive function as a loop, and you can rewrite any loop as a recur-
sive function. The choice between recursion and iteration is partly a matter of program-
mer taste and partly a matter of performance requirements.
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The recursive summation function developed in this section might seem elegant and grace-
ful to the eye, but each call at runtime requires an extra chunk of computer memory to
support the storage for the arguments and return values. Thus, the amount of memory
required to run this function grows as a linear function of the size of the range of numbers
being summed. For small ranges, this is not a significant problem, but for large ranges, a
loop-based summation provides a better alternative.

The loop-based version of the summation function uses a for loop with the range function
and adds each value to an ongoing total. The total is initially set to 0 and is returned when
the loop finishes. Here is the code:

def summation(low, high):
"""Returns the summation of the integers
from low to high.
Precondition: low <= high."""
total = 0
for number in range(low, high + 1):

total += number
return total

Why is the runtime performance of this version better than the recursive version? The
loop-based function is called just once, with memory allocated for the two arguments low

and high and for the temporary variables total and number. On each pass through the
loop, the values in this storage are reset, but no new storage is ever added or ever
needed.

So now you might ask, “Why do I need to bother with recursion at all, if a loop-based
function seems to perform better than a recursive one?” There are two cases in which
you might still prefer a recursive alternative.

The first reason you might prefer recursion is that it allows you to write some recursive
functions that do not result in growth of memory usage at runtime. These functions are
called tail-recursive functions. In a tail-recursive function, no operation is performed after
a recursive call. The recursive summation function defined earlier is not, on this definition,
tail recursive. After each recursive call of summation returns, its total is added to the previ-
ous value of the low argument, in the following statement:

return low + summation(low + 1, high)

To convert such a function to a tail-recursive function, you need to think of a way of pass-
ing the total as an extra argument to each function call. Then you can increase the total at
runtime before each recursive call, rather than after. In the case of the summation function,
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the total is initially 0, and it is returned directly when low becomes greater than high.
When low is less than or equal to high, summation is called recursively, as follows:

summation(low + 1, high, low + total)

The total argument has a default value of 0, so it doesn’t need to be provided on the top-
level call of the summation function. Here is the complete code for the tail-recursive
version:

def summation(low, high, total = 0):
"""Returns the summation of the integers
from low to high.
Precondition: low <= high."""
if low > high:

return total
else:

return summation(low + 1, high, low + total)

Although this function looks like it might be called multiple times, a smart compiler can
translate the Python code to a loop-based version that uses a fixed amount of memory for
the three arguments and the single value returned if low is greater than high. Thus, it
becomes a matter of your Python taste whether you use this version or the loop-based
version of the function, because they are both loop based at runtime.

The second reason you might prefer recursion is that some loop-based solutions also require
a linear growth of computer memory at runtime. In those solutions, your code manipulates
a Python data structure called a stack, which schedules other data values for processing by
the loop. As the size of the problem grows, so does the stack. In this case, a recursive solu-
tion performs no less efficiently than an iterative solution but might be preferred on the
grounds of taste or simplicity. You will see examples of such problems later in this chapter.

Infinite Recursion
As you design and use recursive functions, you need to be aware of a potential error that
can occur in their use. Like loops, recursive functions have to have a way of stopping and
returning with a solution to a problem. Thus, you have to be careful to move the process
along so that you can reach the base case.

For example, the first version of the summation function increments the value of the first
argument until it equals the value of the second argument:

def summation(low, high):
"""Returns the summation of the integers
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from low to high.
Precondition: low <= high."""
if low == high:

return high
else:

return low + summation(low + 1, high)

This code works correctly as long as low <= high on the top-level call. (Note the precondi-
tion in the docstring.) But suppose you run the program in the terminal window, with low

initially greater than high, as follows:

Madison:~ ken$ python3 recursion1.py 2 1
Traceback (most recent call last):

File "recursion1.py", line 25, in <module>
main()

File "recursion1.py", line 22, in main
"is", summation(low, high))

RuntimeError: maximum recursion depth exceeded in comparison
Madison:~ ken$

The program halts with a runtime error message, called an infinite recursion. Because the
first argument is greater than the second one and continues to be incremented, it never
has a chance to equal the second argument. Thus, the recursive calls cannot stop. The
only reason they don’t continue forever is that the Python virtual machine (PVM) runs
out of memory to support additional calls of the function. That is, when the number of
recursive calls reaches a maximum depth, the PVM raises an exception, and the program
crashes.

The key to avoiding such errors is to warn the users of your function about the precondi-
tions on its arguments. Remember to include that information in docstrings!

Sequential Search of a List
Before you explore the use of recursion in turtle graphics, you’ll explore the design of a
recursive function for searching a list. Python has two operations for searching a list.
The first operator, the in operator, returns True if an item is in the list, or False otherwise.
The second operator, the index method, returns the position of the item if it’s in the list or
raises an exception otherwise. The following session shows their use:

>>> fruits = ["apples", "bananas", "grapes", "oranges"]
>>> fruits
[’apples’, ’bananas’, ’grapes’, ’oranges’]
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>>> "grapes" in fruits
True
>>> "cherries" in fruits
False
>>> fruits.index("grapes")
2
>>> fruits.index("cherries")
Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>
fruits.index("cherries")

ValueError: ’cherries’ is not in list
>>>

Both operations perform a sequential search. This means that the search starts with the
first item in the list, compares it to the target item, and continues from there through con-
secutive positions until the target is located or the end of the list is reached.

Writing your own sequential search function for the in operation can help you under-
stand this process. There are two base cases in this function. Either you have reached the
end of the list or the item at the current position equals the target item. You return False

in the first case and True in the second case. Otherwise, you apply the search function
recursively to the rest of the list after the current position. This recursive strategy is for-
malized in the following pseudocode:

Function myIn(targetItem, lyst, currentPosition = 0)
If currentPosition == len(lyst)

Return False
Else if lyst[currentPosition] == targetItem

Return True
Else

Return myIn(targetItem, lyst, currentPosition + 1)

Your design translates quite easily to the corresponding Python code:

def myIn(targetItem, lyst, currentPosition = 0):
if currentPosition == len(lyst):

return False
elif lyst[currentPosition] == targetItem:

return True
else:

return myIn(targetItem, lyst, currentPosition + 1)
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Binary Search of a List
Your sequential search function works as advertised, but it does not run as quickly as it could
with the given list. A sequential search like this one has a linear running time, meaning that
the amount of time it takes to run the search grows directly with the length of the list. For
example, in the worst case, you must examine each item to determine that the target item
"cherries" is not in the list. If the list contains 100 items, 100 recursive calls are required,
and if the list grows in length by a factor of 10, so does the number of recursive calls.

Why should a search perform better than that with this particular list? If you look closely,
you see that the items in the list are strings in ascending order. If the items are guaranteed
to be in sorted order, your search function can take advantage of this fact to reduce the
search time considerably.

The strategy for this type of search, called a binary search, is simple. You go to the mid-
point of the list, instead of the first item, and compare the item at that position to the
target item. If the two items are equal, you’re done. Otherwise, if the target item is less
than the item at the midpoint, you continue the search in the part of the list to the left
of the midpoint. Otherwise, the target must be greater than the item at the midpoint, so
you search only the part of the list to the right of the midpoint.

Instead of always searching the rest of the list to the right of the current position, as in
sequential search, the binary search examines either the segment of the list to the right
or the segment of the list to the left of the current position. Because the binary search
function is recursive, you have to feed it arguments that tell it the leftmost and rightmost
positions of the current list segment under examination.

The only things left to determine are how to compute the midpoint, how to adjust the
endpoints before the recursive calls, and how to determine when there are no more
items left to examine. If you assume that left and right are the current endpoints of the
list, the midpoint between them is always

(left + right) // 2

If the target item is less than the item at the midpoint, the new right endpoint becomes

right = midpoint - 1

If the target item is greater than the item at the midpoint, the new left endpoint becomes

left = midpoint + 1

As the search moves around in the list, the two endpoints left and right eventually
converge toward a crossover point somewhere within the list. When they move past
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each other, there are no more items to examine, and the target item is not present. So,
as long as

left <= right

the search must continue.

Your new version of the myIn function keeps its header and defines a recursive helper
function named binaryIn. This function takes the left and right endpoints of the list as
arguments. Their initial values are 0 and the length of the list minus one, respectively.
Here is the complete code for the new version of myIn:

def myIn(targetItem, lyst):
def binaryIn(left, right):

if left <= right:
midpoint = (left + right) // 2
if lyst[midPoint] == targetItem:

return True
elif targetItem < lyst[midPoint]:

return binaryIn(left, midpoint – 1)
else:

return binaryIn(midPoint + 1, right)
else:

return False
return binaryIn(0, len(lyst) – 1)

Recall that the sequential search function must examine every item in the worst case,
when the target item is not present. Thus, in this case, if there are 16 items, the sequential
search function must make 16 recursive calls. Just how much faster is the binary search
function? The binary search discards half of the remaining list items before each recursive
call. So, how many recursive calls must be made before you discover that a target item is
not in a list? That number is equal to the number of times that you can divide the length
of the list by 2 before you reach a list segment whose length is 0. For example, for a list of
length 16, the recursive calls examine list segments of lengths 8, 4, 2, 1, and 0. That’s a
maximum of 5 calls, whereas the sequential search requires a maximum of 16 calls. Put
mathematically, the binary search has a logarithmic running time (5 equals 1 + log2 of
16, where the log2 of a number is the exponent used with 2 to obtain that number). This
means that the running time grows only logarithmically with the size of the list. That is,
when the size of the list doubles, the amount of work that the binary search performs does
not double, but increases by just 1 recursive call!
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Recursive Patterns in Art: Abstract Painting
The twentieth century Dutch artist Piet Mondrian developed a style of abstract painting
that exhibited simple recursive patterns. To generate such a pattern with a computer, you
begin with a rectangle drawn in a random color and then repeatedly draw two unequal
subdivisions with random colors. Several sample drawings are shown in Figure 7.3 (actual
colors not shown).

Figure 7.3
Generating simple recursive patterns in the style of Piet Mondrian.
© 2014 Python Software Foundation.

As you can see, the program continues the process of subdivision until an “aesthetically
right moment” is reached. In this version, the program divides the current rectangle into
portions representing one-third and two-thirds of its area and randomly alternates these
subdivisions along the horizontal and vertical axes. The user of the program specifies the
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level of detail in the drawing. In Figure 7.3, you see, from left to right, a level-1 drawing, a
level-3 drawing, a level-4 drawing, and a level-8 drawing.

In this section, you develop the parts of a program to create drawings like the ones in Fig-
ure 7.3. The exercises give you an opportunity to add embellishments.

Design of the Program
Your art-drawing program appears in a single module file named mondrian.py. As usual, the
program consists of a main function and several supporting functions. Because you are
drawing in random colors, you can use the randomColor function discussed in Chapter 5.
Also, because you might be drawing many rectangles, you will define a drawRectangle func-
tion. Finally, you will define a function to draw a complete artwork. This function’s name is,
appropriately, mondrian. Figure 7.4 shows the call diagram for the programmer-defined
functions.

mondrian

main

drawRectangle mondrian mondrian

Figure 7.4
The call diagram for the mondrian program.

As you can see, the main function makes a single call to the mondrian function. This func-
tion then makes a call to the drawRectangle function and calls itself (recursively) twice.
You will learn in a moment how to stop these recursive calls.

Performance Tracking
Just for fun, you can maintain some statistics on the performance of the program. These
data include the number of rectangles drawn and the number of calls of the mondrian func-
tion. You keep these values in a dictionary named stats, which is set up as a module
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variable. This variable is initialized near the beginning of the module, and its data are reset
to 0 at the beginning of the main function. Here is the code to initialize stats:

# Data to track performance
stats = {"calls":0, "rectangles":0}

You increment the number of calls each time that mondrian is called, and you increment
the number of rectangles each time that drawRectangle is called. You will use these statis-
tics to analyze the program’s behavior shortly.

The drawRectangle Function
Unlike the functions you developed for drawing geometric shapes in Chapter 5, the
drawRectangle function expects the coordinates of two corner points—the upper-left cor-
ner and the lower-right corner—as arguments. In this case, you can draw the rectangle’s
line segments by calling the goto function. Before these line segments are drawn, you must
obtain a random color, set the pen to that color, pick up the pen to move a corner point,
and place the pen down. The remaining steps, which draw the four line segments with
goto, require you to figure out the correct coordinates for the other two corner points.
Here is the code for the drawRectangle function:

def drawRectangle(x1, y1, x2, y2):
"""Draws a rectangle with the given corner points
using a random color."""
stats["rectangles"] = stats["rectangles"] + 1
(red, green, blue) = randomColor()
pencolor(red, green, blue)
up()
goto(x1, y1)
down()
goto(x2, y1)
goto(x2, y2)
goto(x1, y2)
goto(x1, y1)

The mondrian Function
The mondrian function expects the coordinates of two corner points of a rectangle and a
level number as arguments. The function draws a complete artwork for that level. Now,
what does that last sentence really mean?
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Suppose the function receives a level of 3 on its top-level call. A level-3 drawing consists of
two rectangles, each of which is a level-2 drawing. Each of these, in turn, consists of two
rectangles, each of which is a level-1 drawing. A level-1 drawing is a simple rectangle con-
taining no smaller rectangles.

The main point here is that you use the same mondrian function to create all these draw-
ings, as long as their levels are greater than or equal to 1. Each one is drawn on either the
top-level call or a recursive call of mondrian.

When does the recursion stop? When the level becomes 0. In that case, the function sim-
ply returns and does nothing. Here is a pseudocode design for this recursive process:

Function mondrian(x1, y1, x2, y2, level)
If level > 0

Call drawRectangle(x1, y1, x2, y2)
Compute the corner points of two smaller rectangles
Call mondrian with one set of corner points and level - 1
Call mondrian with the other set of corner points and level - 1

As you can see, because the level decreases by 1 on each recursive call, it will eventually
reach 0, and the recursion will stop.

The most complicated part of the mondrian function is the computation of the corner
points of the two new rectangles. There are many options here. The simplest strategy
would be to locate the corner points of the two rectangles given by a vertical line through
the middle of the current rectangle. However, if you do this every time, you’ll see a boring
series of evenly spaced vertical lines in the drawing.

A better alternative is to subdivide the current rectangle either vertically or horizontally,
with equal probability. In addition, you can split the current rectangle into unequal areas,
perhaps using fractions of 1/3 and 2/3 of the current rectangle’s size.

The following Python code for the mondrian function uses this strategy. You will have an
opportunity to refine it in the exercises.

def mondrian(x1, y1, x2, y2, level):
"""Draws a Mondrian-like painting at the given level."""
stats["calls"] = stats["calls"] + 1
if level > 0:

drawRectangle(x1, y1, x2, y2)
vertical = randint(1, 2)
if vertical == 1: # Vertical split

mondrian(x1, y1, (x2 - x1) / 3 + x1, y2,
level - 1)
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mondrian((x2 - x1) / 3 + x1, y1, x2, y2,
level - 1)

else: # Horizontal split

mondrian(x1, y1, x2, y1 - (y1 – y2) / 3,
level - 1)

mondrian(x1, y1 - (y1 – y2) / 3, x2, y2,
level - 1)

The main Function
You conclude with the code for the main function. This function performs the following
steps:

1. Prompt the user for the level of the drawing. Level 1 will be the default and the
minimum value allowed.

2. Initialize the turtle. The turtle will be hidden, its pen size will be 2, and its speed
will be 0.

3. Compute the coordinates of the upper-left and lower-right corners of the initial
rectangle. To show the outermost within the current boundaries of the turtle graphics
window, provide a margin of 20 pixels.

4. Call the mondrian function with the rectangle’s coordinates and the level as
arguments.

Here is the code for the main function:

def main():
# Reset the stats on each call of main.
stats["calls"] = 0
stats["rectangles"] = 0
# Obtain the level from the user.
level = numinput("Input Dialog", "Enter the level",

default = 1, minval = 1)
if not level:

level = 1
paintingWidth = window_width() // 2 - 20 # Offset within edge of
paintingHeight = window_height() // 2 - 20 # window.
hideturtle()
speed(0)
pensize(2)
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# Delay drawing if level is greater than 6.
if level > 6:

tracer(False)
mondrian(–paintingWidth, paintingHeight,

paintingWidth, -paintingHeight, level)
# Draw now if level is greater than 6.
if level > 6:

update()

The tracer and update Functions
Note that you call the tracer function before calling the mondrian function, if the level is
greater than 6. When called with an argument of False, the tracer function delays any
drawing until the update function is called. The update function is called in the matching
if statement after the mondrian function finishes. In between, the turtle still does all the
computations for the drawing in the mondrian function, but no output occurs until update
is called. If you did not do this for large levels, it would take a long time to draw all the
rectangles in the figure.

Generally, input and output operations are much slower than other computations, which
occur at the speed of light within the CPU. But despite this move to speed up the output,
even the internal computations are not fast enough to prevent considerable delays, as the
size of the level grows quite large.

Just how large is this rate of growth in the mondrian function? Table 7.1 shows the number
of calls of the mondrian function and the number of rectangles drawn for levels 1 through 5.

Table 7.1 Performance Statistics of the mondrian Function

Level Number of Rectangles Number of Calls

1 1 3

2 3 7

3 7 15

4 15 31

5 31 63

N 2N–1 2N+1–1
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As you can see, the amount of work (and ultimately, the running time) of the mondrian

function increases more quickly than the square of the size of the level. In each case,
there are exactly 2N–1 rectangles drawn, where N is the level. For very large levels (say,
greater than 20), the program eventually completes its task, but not in a reasonable
amount of time. (Run the expression 2 ** 20–1 in the shell to see how many rectangles
would be drawn for a level-20 figure.)

Note that this exponential rate of growth is the inverse of the logarithmic rate for the
binary search function that you saw earlier in this chapter. Unfortunately, there is no
way to improve on the exponential behavior of the mondrian function. Fine art can be
expensive!

Recursive Patterns in Nature: Fractals
Fractals are highly repetitive or recursive patterns. A fractal object appears geometric, yet
it cannot be described with ordinary Euclidean geometry. Strangely, a fractal curve is not
one dimensional, and a fractal surface is not two dimensional. Instead, every fractal shape
has its own fractal dimension. To understand what this means, you start by considering
the nature of an ordinary curve, which has a precise finite length between any two points.
By contrast, a fractal curve has an indefinite length between any two points. The apparent
length of a fractal curve depends on the level of detail in which it is viewed. As you zoom
in on a segment of a fractal curve, you can see more and more details, and its length
appears greater and greater. Consider a coastline, for example. Seen from a distance, it
has many wiggles but a discernible length. Now put a piece of the coastline under magni-
fication. It has many similar wiggles, and the discernible length increases. Self-similarity
under magnification is the defining characteristic of fractals; it’s seen in the shapes of
mountains, the branching patterns of tree limbs, and many other natural objects.

One example of a fractal curve is the c-curve. Figure 7.5 shows the first six levels of
c-curves and a level-10 c-curve.
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Figure 7.5
C-curves of levels 0 through 6 and a c-curve of level 10.
© 2014 Python Software Foundation.
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The level-0 c-curve is a simple line segment. The level-1 c-curve replaces the level-0
c-curve with two smaller level-0 c-curves that meet at right angles. The level-2 c-curve
does the same thing for each of the two line segments in the level-1 c-curve. This pattern
of subdivision can continue indefinitely, producing quite intricate shapes. In the remain-
der of this section, you develop a function that uses turtle graphics to display a c-curve.

What the Program Does
The program prompts the user for the level of the c-curve. After this integer is entered,
the program displays a turtle graphics window in which it draws the c-curve.

Design of the Program
You can draw an N-level c-curve with a recursive function. The function receives the end-
points of a line segment and the current level as arguments. At level 0, the function draws
a simple line segment. Otherwise, a level N c-curve consists of two level N–1 c-curves,
constructed as follows:

Let xm be (x1 + x2 + y1 - y2) // 2
Let ym be (x2 + y1 + y2 - x1) // 2

The first level N–1 c-curve uses the line segment (x1, y1), (xm, ym) and level N–1, so the
function is called recursively with these arguments.

The second level N–1 c-curve uses the line segment (xm, ym), (x2, y2) and level N–1, so
the function is called recursively with these arguments.

For example, in a level-0 c-curve, let (x1, y1) be (50, –50) and (x2, y2) be (50, 50). Then,
to obtain a level-1 c-curve, use the formulas for computing xm and ym to obtain (xm, ym),
which is (0, 0). Figure 7.6 shows a solid line segment for the level-0 c-curve and two
dashed line segments for the level-1 c-curve that result from these operations. In effect,
the operations produce two shorter line segments that meet at right angles.

(50,50)

(50,-50)

(0,0)

Figure 7.6
A level-0 c-curve (solid) and a level-1 c-curve (dashed).
© 2014 Python Software Foundation.
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Here is the pseudocode for the recursive design of the function:

Function cCurve(x1, y1, x2, y2, level)
If level == 0:

drawLine(x1, y1, x2, y2)
Else

xm = (x1 + x2 + y1 - y2) // 2
ym = (x2 + y1 + y2 - x1) // 2
cCurve(x1, y1, xm, ym, level - 1)
cCurve(xm, ym, x2, y2, level - 1)

The function drawLine uses the turtle to draw a line between two given endpoints.

Code for the Program
The program includes definitions of the functions cCurve, drawLine, and main. Note that,
unlike the mondrian program, the ccurve program draws a line segment as the base case.

"""
Program file: ccurve.py

This program prompts the user for the level of
a c-curve and draws a c-curve of that level.
"""

from turtle import *

def drawLine(x1, y1, x2, y2):
"""Draws a line segment between the endpoints."""
up()
goto(x1, y1)
down()
goto(x2, y2)

def cCurve(x1, y1, x2, y2, level):
if level == 0:

drawLine(x1, y1, x2, y2)
else:

xm = (x1 + x2 + y1 - y2) // 2
ym = (x2 + y1 + y2 - x1) // 2
cCurve(x1, y1, xm, ym, level - 1)
cCurve(xm, ym, x2, y2, level - 1)

def main():
# Obtain the level and size from the user.
level = numinput("Input Dialog", "Enter the level",

default = 0, minval = 0)
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if not level:
level = 0

size = numinput("Input Dialog", "Enter the size",
default = 100, minval = 100)

if not size:
size = 100

size = size / 2
hideturtle()
speed(0)
pensize(2)

# Delay drawing if level is greater than 8.
if level > 8:

tracer(False)
cCurve(size, -size, size, size, level)
# Draw now if level is greater than 8.

if level > 8:
update()

if __name__ == "__main__":
main()

You might want to increase the size when the level is greater than 10 so you will be able to
see the detail of the lines.

This concludes your introduction to the design of programs with functions. The next
chapter explores features of Python that allow you to define new types of data and the
operations on them.

Summary
n A recursive solution breaks a problem into smaller problems that are the same form

as the original problem.

n A recursive function has two parts: a base case and a recursive step. In the base case,
the function solves a problem directly. In the recursive step, the function applies
itself, with a recursive call, to a smaller instance of the same problem (in the form of
an argument to the function).

n Like loops, recursive functions repeat the same task until a termination condition is
reached (the base case). A recursive function uses an if statement rather than a while

loop to test for this condition.
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n An infinite recursion is an error that occurs when the base case is never reached.

n Recursive functions can be elegant to read but costly to run. When work is done after
a recursive call, the runtime system must add memory for each recursive call. A loop-
based strategy runs faster and consumes less memory.

n A tail-recursive function, which does no work after a recursive call, can consume the
same amount of running time and memory as a loop-based function.

n The sequential search has a linear running time, whereas a binary search has a
logarithmic running time.

n Abstract paintings and fractals are examples of structures that have a recursive
character.

n The tracer function delays output until the update function is called. However, the
computation of the data to be output can continue during this delay.

Exercises
Launch the IDLE shell, open a file window, and complete the following exercises. You
should run each program within IDLE and, when it is completed, in the terminal window.

1. The factorial of a positive integer, N, is defined recursively as follows:

factorial(n) = 1, if n == 1

factorial(n) = n * factorial(n - 1), otherwise.

Define and test a recursive function that computes this value. Is this function tail
recursive?

2. The Mondrian painting program discussed in this chapter draws randomly colored
rectangles. Modify this program so that it fills each rectangle with a random color.
Then modify it so that it randomly alternates the positions of the larger and smaller
rectangles when it splits a given rectangle in two.
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Chapter 8

Objects and Classes

Throughout this book, you have been using functions to construct programs that solve
interesting problems. Many of these functions, such as the turtle graphics functions and the
math module functions, are built in to the Python programming language. In Chapter 5,
“Defining Functions,” you learned how to define your own more specialized functions, and
in Chapter 7, “Recursion,” you learned how to define functions that can be applied recur-
sively in special situations.

In this chapter, you learn to construct programs that use another important abstraction
mechanism. In this style of abstraction, you think of the data and their behavior as the
basic program components. Each datum is called an object, and each object is of a partic-
ular type or class. A class specifies the set of methods that can be applied to its objects to
produce their behavior. But from the perspective of a programmer, objects and classes are
software resources like any other. To use these resources, you

n Create objects of a class by running a special function or mentioning these objects
as literals (in the case of strings, lists, tuples, and dictionaries).

n Assign these objects to variables or place them in the appropriate data structures
(such as lists or dictionaries).

n Get these objects to do things by calling their methods.

n Define new classes of objects if suitable ones do not yet exist.

Now you are ready to explore the use of objects, methods, and classes in turtle graphics.
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Objects, Methods, and Classes in Turtle Graphics
When you call a turtle graphics function such as goto or setcolor, the position or color of
the turtle changes. Underneath the hood, turtle graphics maintains a single turtle object
that does all this work. Hereafter, this object is called the system turtle. Also underneath
the hood, other objects represent the window and the canvas on which the turtle does its
drawing. If all you need is a single turtle, this arrangement suffices. However, if you would
like to use several turtles, you need to be able to create them, give them names or place
them in the appropriate data structures, and manipulate them directly by calling methods.
In this section, you learn how to do that.

The Turtle Class and Its Methods
The class of all turtle objects is named Turtle. This name is capitalized, to distinguish it
from the turtle module in which it is defined. You can access this class by running the
statement from turtle import Turtle. At that point, you can create two new turtle objects,
named sleepy and happy, as follows:

>>> from turtle import Turtle
>>> sleepy = Turtle(shape = "turtle")
>>> happy = Turtle(shape = "turtle")

The new turtle objects have the same default attributes (position, color, heading, and so
on) as the system turtle, but they are distinct objects. Most of the built-in turtle graphics
functions that you used before can now be called as methods on the new turtle objects.
For example, the next session modifies the initial settings of the two turtles and draws
some line segments:

>>> sleepy.color("blue")
>>> sleepy.goto(70, 70)
>>> happy.color("red")
>>> happy.goto(-70, 70)

The only difference between this code and the turtle functions that you have been using
thus far is that now you must refer to a particular turtle object when you want it to do
something. For example, the following code segment draws a square of length 70 at
sleepy’s current position:

>>> for count in range(4):
sleepy.forward(70)
sleepy.left(90)
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A Random Walk with Several Turtles
You learned about random walks in Chapter 3, “Control Structures: Sequencing, Iteration,
and Selection.” Now that you can create and manipulate your own turtle objects, you can
take several of them for a walk. Figure 8.1 shows four turtles at the end of their walk.

Figure 8.1
A random walk with several turtles.
© 2014 Python Software Foundation.

When you work with many objects of the same type, it’s convenient to keep them in a list.
In your new random walk program, you create an empty list and then add four new turtle
objects to it. Each turtle has a different color (not shown in Figure 8.1). After you add the
turtles to the list, you can move them simultaneously by running a loop. On each pass
through this loop, a turtle turns left a random number of degrees and moves forward a
random distance. The loop through the turtles list is nested within a loop that runs a
fixed number of times. Here is the code for the new random walk program:

"""
File: randomwalk.py
Four turtles take a random walk.
"""

from turtle import *
from random import randint, random

def randomColor():
"Returns a random RGB color."
return (randint(0, 255), randint(0, 255), randint(0, 255))

def main(iterations = 30, numTurtles = 4):

# Initialize the list of turtles
turtles = []
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for i in range(numTurtles):
t = Turtle(shape = "turtle")
t.color(randomColor())
turtles.append(t)

# Make them wander around for a fixed number of iterations
for i in range(iterations):

for t in turtles:
t.left((random() - .5) * 180)
t.forward(int((random() - .5) * 100))

if __name__ == "__main__":
main()

Note that the random number of degrees and the distance are generated a bit differently
than they were in Chapter 3. For this new program, you use a random distance between
–50 and 50. (A negative distance indicates a backward move.) You also use a random
number of degrees between –90 and 90. (A negative number of degrees indicates a right
turn.) To accomplish this, you use the function random.random, which returns a floating-
point number from 0 through 1. The expression ((random.random() - .5) * 180 multiplies
180 by a random number between –0.5 and 0.5 to produce a random number between
–90 and 90. The expression int((random.random() - .5) * 100) produces a random integer
between –50 and 50.

Note also that the main function allows you to adjust the number of iterations and the
number of turtles on different runs of the program.

A New Class: RegularPolygon
Just as you can define new functions when the built-in functions won’t do, you can define
new classes when the need arises. Classes can represent almost any types of objects you
can think of, such as geometric shapes, houses, books, or living things. All you need to
think of when you model a type of object with a class is the set of attributes it needs and
the behavior it exhibits. In the next two sections, you develop two new classes: a regular
polygon class and a menu item class.

You can draw regular polygons rather nicely with the function developed earlier, but you
can also think of regular polygons as objects in their own right. They may have other attri-
butes and behavior than their length and their capacity to draw themselves. A regular
polygon can be filled or not, can have two colors (a fill and an outline), and can have an
area and a perimeter. A regular polygon also has a position and a heading in the turtle
graphics coordinate system and can be hidden or shown. Finally, a regular polygon can
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be translated (moved given x and y distances from its current position), scaled (have its
size reduced or increased by a given factor), and rotated (turned left or right by a given
angle). Although you can define functions to represent most of this behavior, it is much
more convenient to bundle an object’s attributes and behavior in a class. You name this
new class RegularPolygon and then begin its design.

Design: Determine the Attributes
You begin by listing the attributes of a regular polygon and their default values (see
Table 8.1). The attributes of an object are usually named with nouns (such as length) or
adjectives (such as isVisible). The default values are ones these attributes have when a
new polygon is created if the programmer creating it does not provide them. Typically,
the programmer can override most of these defaults when a polygon is created.

Table 8.1 The Attributes of Regular Polygons

Attribute Default Value

turtle A new turtle

length None; the programmer must provide it

xPos None; the programmer must provide it

yPos None; the programmer must provide it

heading None; the programmer must provide it

sides 3

outlineColor "black"

fillColor "black"

fillOn False

isVisible True

Note that four of the attributes—the length, the coordinates of the polygon’s position, and
the heading—have no defaults. This means that the programmer is required to provide
her values when a new RegularPolygon object is created. Note also that the attributes
include a turtle object, which is used to draw or hide the polygon in the turtle graphics
window. The turtle object is created within the regular polygon object when it is created.
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Before you consider the behavior of a regular polygon, you’ll see how a couple of them
might be created. You create a regular polygon by using its class name to call a function.
The required arguments are the attributes with no defaults listed in Table 8.1. You can
also provide any or all of the other attributes as optional arguments. For clarity, you
should use the keyword notation when supplying arguments in this situation. In the next
session, you create a square and a hexagon with the given attributes:

>>> from regularpolygon import RegularPolygon
>>> square = RegularPolygon(length = 70, xPos = 0, yPos = 0,

heading = 45, sides = 4, outlineColor = "blue")
>>> hexagon = RegularPolygon(length = 50, xPos = 80, yPos = 80, sides = 6,

heading = 0, outlineColor = "red",
fillOn = True)

Because the default value of the isVisible attribute is True, both of these polygons appear
in the turtle graphics window as soon as they are created.

Design: Determine the Behavior
The behavior of an object consists of the actions it performs when you run its methods.
Taking a cue from your experience with a turtle object, two basic behaviors immediately
come to mind: showing and hiding the object. Other behaviors relate directly to the poly-
gon object’s attributes, such as examining or modifying its colors or changing its fillOn

attribute. Behavior also includes what happens when you create a new object. Thus, creat-
ing a regular polygon whose isVisible attribute is True immediately draws it in the turtle
graphics window. Table 8.2 lists a reasonable set of methods that capture the behavior of
RegularPolygon objects.

Table 8.2 The Methods of Regular Polygons

Method Default Value

show() Displays the polygon and sets its visibility to True.

hide() Hides the polygon and sets its visibility to False.

fillOn(value = None) If value (a Boolean) is provided, resets the fillOn attribute
to this value. Returns its current value.

outlineColor(value = None) If value (a color) is provided, resets the outlineColor
attribute to this value and redraws the polygon if it’s
visible. Returns its current value.
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fillColor(value = None) If value (a color) is provided, resets the fillColor attribute
to this value and redraws the polygon if it’s visible. Returns
its current value.

isVisible() Returns True if the polygon is shown, or False if it’s
hidden.

position() Returns a tuple (x, y) representing the coordinates of the
current position.

heading() Returns the current heading in degrees.

translate(xDist, yDist) Moves the polygon the given distance and redraws it if
it’s visible.

scale(factor) Grows or shrinks the polygon by the given factor and
redraws it if it’s visible.

rotate(degrees) Rotates the polygon by the given degrees and redraws it if
it’s visible. Positive degrees rotate to the left, and negative
degrees rotate to the right.

Note that the methods fillOn, outlineColor, and fillColor work in a similar manner to
some of the turtle methods. That is, when you supply no argument, the method returns
the value of the current setting; when you supply an argument, the method uses it to
establish a new setting and redraws the polygon if it’s visible.

The next session shows some of these methods in action with a hexagon. The
RegularPolygon class is located in a new module named regularpolygon.

>>> from regularpolygon import RegularPolygon
>>> hexagon = RegularPolygon(length = 50, xPos = 80, yPos = 80, sides = 6,

outlineColor = "red", fillOn = True)
>>> hexagon.translate(100, 0) # Move 100 pixels to the right
>>> hexagon.scale(1.5) # Increase the size by half
>>> hexagon.rotate(45) # Spin 45 degrees to the left
>>> hexagon.outlineColor()
"red"
>>> hexagon.outlineColor("blue") # Redraw outline in blue

When each of these methods runs, you should see a change in the turtle graphics window,
according to the rules of behavior specified in Table 8.2.
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Here is a short tester program that displays a radial pattern of 10 hexagons, similar to the
one shown in Chapter 3. The program creates 10 RegularPolygon objects to do so.

"""
testregularpolygon.py
A simple tester program for regular polygons.
"""

from turtle import *
from regularpolygon import RegularPolygon

def main():
"""Draws 10 hexagons in a radial pattern around the origin."""
reset()
hideturtle() # Hide the system turtle
length = 50
xPos = 0
yPos = 0
sides = 6
outline = "blue"
fill = "yellow"
for heading in range(0, 360, 36):

RegularPolygon(length, xPos, yPos, heading, sides, outline,
fill, fillOn = True)

return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Implementation: The Structure of a Class Definition
Each Python class is defined in a module file. Your Python files thus far have contained a
main function and other supporting functions. Now you are about to define a new Python
class, named RegularPolygon. By convention, this class goes in a module whose file is
named regularPolygon.py. To create this file, you open a new Integrated DeveLopment
Environment (IDLE) file window by selecting New File from the File menu.
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As always, you start the module’s text with a docstring that includes the filename and the
purpose of the module. You then list any imports for this module. Here is an example for
the regularpolygon module:

"""
File: regularpolygon.py
Defines a RegularPolygon class.
"""

from turtle import Turtle, bgcolor

Note that you do not import all the resources from the turtle module using the statement
from turtle import *. Instead, you import only those classes and functions that you need
for the module under construction. This tactic helps to prevent errors that might result
from calls to functions that you really don’t need.

The class definition follows. Its form is

class ClassName(ParentClassName):
methodDefinitions

This form is similar to that of a function definition, in which you have a header followed
by an indented body of code. But in this case, the indented body of code is a series of
method definitions.

Programmer-defined class names are usually capitalized, so you can pick them out from
variable and method names. For this class, the ParentClassName in parentheses should be
object. Here is the code for the header of the RegularPolygon class and its docstring:

class RegularPolygon(object):
"""Represents a regular polygon."""

The method definitions are listed one after the other, as you did with function definitions
earlier. But note that they must be indented one tab or four spaces to the right of the class
header (the line that begins with class).

The form of a method definition is similar to that of a function definition:

def methodName(self, otherArguments):
statements

There is one critical difference, however. The first argument in a method definition must
always be self. This word refers to the particular object on which the method is called.
You then use self to locate this object within the body of the method. Note that self

only appears as an argument in a method definition; it is omitted from the argument list
when the method is called.
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Implementation: The __init__ Method
The first method to define in a class is a special method named __init__. Note the under-
scores at the beginning and end of this name. This method is responsible for initializing
an object’s data when the programmer creates that object. Thus, when the programmer
makes the call

RegularPolygon(length = 50, xPos = 80, yPos = 80, sides = 6,
outlineColor = "red", fillOn = True)

Python automatically runs the method __init__, as defined in the RegularPolygon class.
This method assigns any supplied arguments or their defaults to the appropriate data vari-
ables within the object and automatically returns a new, initialized regular polygon object
to the caller.

The data variables that hold the values of an object’s attributes are also called instance
variables. To pick these out from argument names and temporary variables, instance vari-
able names always begin with the prefix self and by convention use a leading underscore.
Otherwise, the code for the __init__ method is much like the code for any function defi-
nition that you have seen, although you do not provide a return statement in this method.
Here is the code:

def __init__(self, length, xPos, yPos, heading, sides = 3,
outlineColor = "black", fillColor = "black",
fillOn = False, isVisible = True):

"""Sets the initial state of the polygon."""
self._turtle = Turtle(visible = False) # Always hide the turtle
self._turtle.speed(0)
self._length = length
self._xPos = xPos
self._yPos = yPos
self._heading = heading
self._sides = sides
self._outlineColor = outlineColor
self._fillColor = fillColor
self._fillOn = fillOn
self._isVisible = isVisible
if isVisible: # Display the polygon if it’s

self.show() # visible

As you can see, when you run the RegularPolygon function, you get a distinct polygon
object that contains its own data values; that’s what the __init__ method does for
each one.
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Implementation: Showing and Hiding
The next most important methods are the show and hide methods. These methods display
a polygon or hide it in the turtle graphics window. Showing the polygon is straight-
forward: you use the code from the regularPolygon function developed earlier, with
an adjustment for filling the polygon if its fillOn attribute is True. Hiding the polygon
means erasing it from the turtle graphics window. You can accomplish this by drawing
the polygon in the window’s background color. Each of these methods also adjusts the
isVisible attribute to the appropriate value.

Because both the show and hide methods draw the polygon, it is useful to develop an
auxiliary method just for drawing. You name this method _draw; the leading underscore
indicates that it’s a helper method that is not called by other users of this class. Here is
the code for this method:

def _draw(self):
"""Draws a regular polygon with the given turtle,
length and number of sides."""
interiorAngle = 360 / self._sides
self._turtle.up()
self._turtle.setheading(self._heading)
self._turtle.color(self.outlineColor(), self.fillColor())
self._turtle.goto(self._xPos, self._yPos)
self._turtle.down()
if self.fillOn():

self._turtle.begin_fill()
for count in range(self._sides):

self._turtle.forward(self._length)
self._turtle.left(interiorAngle)

if self.fillOn():
self._turtle.end_fill()

Note that you must set the turtle’s heading and colors and move it to its position before
beginning to draw. The _draw method then checks the polygon’s fillOn attribute and, if
it’s True, calls begin_fill on the turtle object. After the drawing loop finishes, the method
checks fillOn again to end the fill if necessary.

The show method is pretty simple by comparison. Here is the code:

def show (self):
"""Displays the polygon."""
self._draw()
self._isVisible = True
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The hide method must set things up so that the _draw method works with an outline color
and a fill color that are the same as the current background color (the color of the turtle
graphics canvas). This erases the polygon. To accomplish this, the hide method first saves
the polygon’s outline and fill colors in temporary variables so they can be restored after
drawing the polygon (the polygon’s actual colors don’t change, they’re simply hidden).
The method then sets both color attributes to the current background color and increases
the turtle’s pen size before calling _draw. Finally, after the polygon’s colors and the turtle’s
pen size are restored, its isVisible attribute is set to False. Here is the code:

def hide(self):
"""Erases the polygon."""
oldOutline = self.outlineColor() # Save the current colors
oldFill = self.fillColor()
erasingColor = bgcolor()
self._outlineColor = erasingColor # Prepare to erase
self._fillColor = erasingColor
self._turtle.pensize(3) # Make sure outline goes away
self._draw()
self._outlineColor = oldOutline # Restore the current colors
self._fillColor = oldFill
self._turtle.pensize(1)
self._isVisible = False

Implementation: Getting and Setting
Three of the polygon methods allow you to either examine or modify an attribute,
depending on whether an argument is present. For example, consider the outlineColor

method. If this method’s argument is not supplied when it is called, its value is None by
default. In that case, you just return the current outline color. But if it’s not None, the argu-
ment is present, and the method should reset the outline color to the new value and
redraw the polygon if it’s visible. Here is the code for this method:

def outlineColor(self, value = None):
"""Getter and setter for the outline color."""
if value:

self._outlineColor = value
if self.isVisible():

self.show()
return self._outlineColor

The other two methods have a similar structure and are left as exercises for you.
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Implementation: Translation, Scaling, and Rotation
Translation moves a polygon a given x distance and y distance. To implement the
translate method, you need to hide the polygon if it’s visible. You then increment the
xPos and yPos attributes by the x and y distances, respectively, and show the polygon if
it’s visible.

Scaling changes the size of a polygon by a given factor. If that factor is greater than 1, the
size increases, and if it’s less than 1, the size decreases.

Rotation turns the polygon to the left or the right by a given number of degrees. You
assume that a positive number indicates a left turn, whereas a negative number indicates
a right turn.

The completion of these methods is left as an exercise for you.

Inheritance: Squares and Hexagons as Subclasses
Suppose you’d like to provide new classes for more specific types of polygons, such as
squares and hexagons. With objects and classes, that’s easy. Instead of reinventing the
wheel and defining whole new classes, you can make the classes Square and Hexagon sub-
classes of RegularPolygon. In Python, a subclass of a given class gets to use the parent class’s
attributes and methods for free, by inheritance. Figure 8.2 shows the relationship between
the parent class RegularPolygon and two of its subclasses, Square and Hexagon.

Square Hexagon

RegularPolygon

Figure 8.2
A parent class and two of its subclasses.

The only difference between squares and regular polygons, after all, is that squares always
have four sides. Thus, to create a new Square object, you call the Square function

A New Class: RegularPolygon 171



(but without the number of sides) along with any of the other arguments that you need or
may supply for any other type of polygon. Here is an example:

square = Square(length = 70, xPos = 0, yPos = 0, heading = 45,
outlineColor = "blue")

The only method that you need to define in the new Square class is __init__, which over-
rides the default number of sides. Here is the code, followed by an explanation:

class Square(RegularPolygon):
def __init__(self, length, xPos, yPos, heading, outlineColor = "black",

fillColor = "black", fillOn = False, isVisible = True):
# Call the parent’s __init__ with 4 sides only
RegularPolygon.__init__(self, length, xPos, yPos, 4, heading,

outlineColor, fillColor, fillOn,
isVisible)

This code can appear in the same module as the code for RegularPolygon. If this code is in
a different module, you have to import RegularPolygon for it to work.

Note that the parent class in parentheses is now RegularPolygon rather than object.

Also note that the method RegularPolygon.__init__ is called, with self as an explicit first
argument, within Square’s __init__ method. This call of the same method in the parent
class takes care of setting all the square’s attributes, which already belong to it as a subtype
of RegularPolygon.

Because all the other methods are also inherited from the RegularPolygon class, your
Square class is ready to be used without further changes! The code for a Hexagon class is
similar and is left as an exercise for you.

New Class: Menu Item
Users of graphics-based programs select different commands or other options from
menus. Sometimes these selections are offered as drop-downs from a menu bar or
as items arranged on a visible palette. For example, suppose the sketching program of
Chapter 6, “User Interaction with the Mouse and the Keyboard,” allowed you to select a
color from a menu of colors. The options could be arranged in a column of colored discs
along the left margin of the window. When the user clicks the mouse on a colored disc in
this menu, the program would use that color from then on in its drawings. In this section,
you develop a new class of menu items to be used in this type of application.
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Design: Determine the Attributes and Behavior
A menu item has a position in the window, a shape, a color, and a callback function.
A callback function is triggered when a user event, such as a mouse click, occurs. You
learned in Chapter 6 how to set up the system turtle to respond to mouse click events
with the onclick function. This function receives a callback function as an argument.
From that point on, when the user clicks the mouse within the area of the turtle’s shape,
its callback function is triggered.

Because all these attributes of a menu item are also attributes of a turtle object, the best
way to proceed is to make your new MenuItem class a subclass of the Turtle class. Then
your MenuItem class gets all of a turtle’s attributes and methods for free.

Because the only thing that a menu item does is respond to a mouse click, you don’t have
to worry about defining other behavior. All the work gets done when the MenuItem object is
created. You just provide its position, its shape, its color, and a callback function as argu-
ments to the MenuItem function (and also to its __init__ method). Here is an example of a
menu item’s use:

>>> from menuitem import MenuItem
>>> MenuItem(-50, 0, "circle", "red", lambda color: print(color))

The second line of code places a red disc at position (–50, 0) in the turtle graphics window
and sets its callback function to the lambda expression. When the user clicks on the disc,
the program prints the disc’s color in the Python shell window.

Implementation and Testing
The MenuItem class consists of an import statement and the definition of the __init__

method. This method expects x and y coordinates, a shape, a color, and a callback func-
tion as arguments. Here is the code for the MenuItem class:

"""
File: menuitem.py
Defines a class for menu items.
"""

from turtle import Turtle

class MenuItem(Turtle):
"""Represents a menu item."""
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def __init__(self, x, y, shape, color, callBack):
"""Sets the initial state of a menu item."""
Turtle.__init__(self, shape = shape, visible = False)
self.speed(0)
self.up()
self.goto(x, y)
self.color(color, color)
self._callBack = callback
# Pass my color to the callback function when I’m clicked
self.onclick(lambda x, y: self._callBack(color))
self.showturtle()

Because MenuItem is a subclass of Turtle, you have to call Turtle’s __init__ method first.
You can provide the shape and initial visibility as arguments to this method. The turtle
is initially hidden, until it’s moved to its final location.

Note that self now refers to the menu item under construction, which is also a turtle. So you
pick up this menu item by calling self.up(). If you forget to use self and call the system
turtle’s function up(), you get an error message. Because you imported Turtle rather than *

from the turtle module, your code no longer has access to the system turtle’s functions. This
style of defensive programming helps to prevent logic errors at runtime.

You create a new instance variable for the callback function and call the onclick method
to register it. You should pay close attention to the following two lines of code:

self._callBack = callback
# Pass my color to the callback function when I’m clicked
self.onclick(lambda x, y: self._callBack(color))

Recall that a callback function for a click event is passed the x and y coordinates of the
mouse when a mouse click occurs. Therefore, the function passed to the onclick method
must be a function of two arguments. But the callback function that the menu item
receives from its creator is a function of one argument: a color. So you construct a
lambda expression with two arguments to keep onclick happy and hide a call of the
callback function with its color argument in the body of this lambda.

Now when the user clicks the mouse on a menu item, its callback function is triggered and
passed the mouse coordinates, which are ignored. Instead, the function saved in the
instance variable self._callback is called with the menu item’s color as an argument.
If you go back and look at the code for the callback function that was provided by the
creator of the menu item, you see that it has been set up to let the user know which
color has been selected.
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Here is a short tester program that displays a column of six menu items at the left border
of the turtle graphics window (see Figure 8.3).

Figure 8.3
Six menu items (colors not shown).
© 2014 Python Software Foundation.

Note that one callback function is passed to all the menu items when they are created.
This time, the callback changes the color of the system turtle when you click a menu
item.

"""
testmenuitem.py
A simple tester program for menu items.
"""

from turtle import *
from menuitem import MenuItem

def changePenColor(c):
"""Changes the system turtle’s color to c."""
color(c)

def createMenu(callBack):
"""Displays 6 menu items to respond to the given callback function."""
x = - (window_width() / 2) + 30
y = 100
colors = ("red", "green", "blue", "yellow", "black", "purple")
shape = "circle"
for color in colors:

MenuItem(x, y, shape, color, callBack)
y -= 30
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def main():
"""Creates a menu for selecting colors."""
reset()
shape("turtle")
createMenu(changeColor)
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Response to User Events, Revisited
The presence of multiple turtles presents some interesting opportunities and problems in
interactive turtle graphics programs. For example, you might want to allow the user to
drag regular polygon objects around in the window after they are created, or you might
want to select a polygon for removal. Because a polygon contains a turtle object, it might
not be too hard to define onclick and ondrag methods in the RegularPolygon class that
have the desired behavior. On the other hand, any program that configures objects to
respond to onclick events will have problems when it also tries to respond to
onscreenclick events, as does the sketching program discussed in Chapter 6. In this
section, you explore how to get different types of objects to respond to user events and
how to handle potentially troublesome interactions among these responses.

Whose Click Is It Anyway?
Consider the tester program for menu items presented earlier. This program changes the
color of the system turtle when the user clicks on a menu item. Now, suppose you want
the system turtle to respond to mouse events as well. For example, the user could drag the
system turtle to draw lines, as was shown in Chapter 6. There is no problem here, because
the system turtle would be the only object responding to such events in the program.
(Recall that the ondrag function targets the system turtle.)

However, suppose you also want to be able to move the system turtle, as you did in Chapter 6,
by clicking anywhere in the turtle graphics window. You must use the onscreenclick func-
tion to tell the screen to respond to a click event. All will be well, as long as you don’t try to
select a menu item with a click; the system turtle will move to the click position as desired.
However, when you try to select a menu item, the system turtle also moves to the menu
item’s position!
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Here is the code for the relevant functions in the program, so you can see why this
happens:

def changeColor(c):
"""Changes the pen’s color to c."""
color(c)

def skip(x, y):
"Moves the pen to the given location without drawing."
up()
goto(x, y)
down()

def main():
"""Creates a menu for selecting colors."""
reset()
shape("triangle")
createMenu(changePenColor)
onscreenclick(skip)
listen()
return "Done!"

When you click the mouse on a menu item, the menu item recognizes the click event, as
does the screen. Thus, both the changePenColor and skip functions are called. The first
function changes the system turtle’s color, and the second function moves the turtle to
the menu item’s position.

Fortunately, the menu item detects the mouse click and calls changeColor first, before the
screen detects the mouse click and calls skip. So, if changeColor could inform skip about
this fact, skip could simply return and do nothing.

To solve this problem, you can set up a special object, called a flag, to track when menu
item selections occur. This object contains a Boolean value. The value is True if a menu
item selection has occurred, or False otherwise. Your new object belongs to the Flag

class, which is defined as follows:

"""
File: flag.py
Defines a Flag class.
"""

class Flag(object):
"""Represents a Boolean flag."""
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def __init__(self, value = False):
"""Sets the initial state."""
self._value = value

def value(self, newValue = None):
"""Getter and setter."""
if not newValue is None:

self._value = newValue
return self._value

Now you can add a flag object to your program to enable your changeColor and skip func-
tions to communicate. You initialize the variable, named clickFlag, above the function
definitions. Because clickFlag is a module variable, both functions can locate and change
the flag. Its value is initially False because no clicks have yet occurred.

When changeColor is called, it sets the value of clickFlag to True. When skip is called
shortly thereafter, it sees that the flag’s value is True and avoids moving the system turtle.
But skip resets the flag’s value to False because the next click event might not be on a
menu item.

If a click does not occur on a menu item, changeColor is not called. In that case, the flag’s
value is guaranteed to be False, so skip moves the system turtle to the mouse coordinates.

Here is the revised code that uses the new flag object:

from flag import Flag

clickFlag = Flag() # Create a global flag, initially False

def changeColor(c):
"""Changes the pen’s color to c and sets clickFlag to True."""
clickFlag.value(True) # Menu item selected, make flag True
color(c)

def skip(x, y):
"""Moves the pen to the given location without drawing, if a menu
item has not been clicked. Otherwise, sets clickFlag to False"""
if not clickFlag.value(): # Menu item not selected, so ok to move

up()
goto(x, y)
down()

else: # Menu item selected, so reset flag to False
clickFlag.value(False)
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A Grid Class for the Game of Tic-Tac-Toe
To play the game of Tic-Tac-Toe, you first draw a 3 by 3 grid of squares. (A napkin or
even a flat area on a beach can serve as a writing surface.) You and your opponent then
take turns placing Xs and Os on the squares, until the winner lines up three of his letters
in a row, column, or diagonal. Figure 8.4 shows a sample outcome of this game in a turtle
graphics window.

Figure 8.4
A game of Tic-Tac-Toe.
© 2014 Python Software Foundation.

In this section, you develop a grid class and supporting code to play a two-person game of
Tic-Tac-Toe. In the exercises, you can then modify the program so that you can play the
game against the computer.

Modeling a Grid
A two-dimensional grid is laid out in rows and columns. For example, consider a grid
with three rows and three columns, where each position contains an integer. The integers
range from 0 through 8. You can easily view this grid in the Python shell by printing con-
secutive integers in each row, using the following nested loop structure:

>>> number = 0
>>> for row in range(3):

for column in range(3):
print(number, end = " ")
number = number + 1

print()
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0 1 2
3 4 5
6 7 8
>>>

If you want to store these data for later use, you can represent the grid with a list struc-
ture. The following session places the data in a list and then outputs them in two-
dimensional grid format:

>>> grid = list(range(9))
>>> index = 0
>>> for row in range(3):

for column in range(3):
print(grid[index], end = " ")
index = index + 1

print()

0 1 2
3 4 5
6 7 8
>>>

If it seems odd to model a two-dimensional structure with a linear structure like a list, you
can define your own Grid class to represent a grid more directly. You access each datum in
this structure by providing two index values: one for the row and one for the column.
Unlike the coordinate system of turtle graphics, the position (0, 0) locates the datum in
the upper-left corner of this structure. Thus, the datum in row 1, column 2 is at position
(1, 2). The row index gets larger as you move down in the grid, and the column index gets
larger as you move to the right.

The next session assumes that such a class is available in the grid module. You create a
Grid object with the required numbers of rows and columns, and then you can load this
object with data and print its contents:

>>> from grid import Grid
>>> datum = 0
>>> gryd = Grid(3, 3) # Create a 3 by 3 Grid object
>>> for row in range(3):

for column in range(3):
gryd[row][column] = datum
datum = datum + 1
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>>> for row in range(3):
for column in range(3):

print(grid[row][column], end = " ")
index = index + 1

print()

0 1 2
3 4 5
6 7 8
>>>

In the discussion that follows, you use a list structure to hold a grid’s data.

Defining a Class for a Tic-Tac-Toe Grid
Each square in Tic-Tac-Toe is either empty or contains a letter. When a player clicks on
an empty square, that player’s letter is inserted and displayed there. Thus, a square is com-
plex enough to warrant its own class definition. You call this new class TicTacToeSquare

and define it in the module tictactoesquare.py.

When you decide to define a new class, the first question you should ask yourself is, “Can
I get some data and behavior for free by subclassing an existing class?” By now, you do not
want to write all your code from scratch. You have seen two examples of subclassing in
this chapter already: Square is a subclass of RegularPolygon, and MenuItem is a subclass of
Turtle. Because you want a Tic-Tac-Toe square to respond to mouse clicks, subclassing
the Turtle class looks like a wise move.

In addition to its turtle-like attributes (shape, pen color, fill color, position, and a callback
function), a Tic-Tac-Toe square contains two other data values. The first data value is a
single-character string. This string will be empty when a square is created and will be
either X or O after a player makes a successful move. The second data value is the integer
index of the square in the grid. (Remember that you will use a list to contain the squares.)
These data are initialized when you create the square.

In addition to the __init__ method, the TicTacToeSquare class includes a text method.
This method is the getter and setter for the letter that appears within a grid square. The
Tic-Tac-Toe game uses this method to examine the letter within a square and to place a
letter in it if it’s empty.
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Here is the code for the complete definition of the TicTacToeSquare class:

"""
File: tictactoesquare.py
Defines the TicTacToeSquare class.
"""

from turtle import Turtle

class TicTacToeSquare(Turtle):
"""Represents a Tic-Tac-Toe square."""

FONT = ("Arial", 12, "bold")

def __init__(self, index, grid, length, xPos, yPos,
outlineColor = "black", fillColor = "white", text = ""):

"""Sets the initial state of the Tic-Tac-Toe square."""
Turtle.__init__(self, shape = "square", visible = False)
self.speed(0)
self.color(outlineColor, fillColor)
self.up()
self.goto(xPos, yPos)
self.resizemode("user")
self.shapesize(length / 20, length / 20)
self._text = text
self._index = index
self._grid = grid
self.onclick(lambda x, y: self._grid.makeMove(self._index))
self.showturtle()

def text(self, text = None):
"""Getter and setter for text."""
if not text is None:

self._text = text
self.write(text, align = "center", font = TicTacToeSquare.FONT)

return self._text

Using Class Variables
There is a new type of variable in the TicTacToeSquare class that you have not seen before.
The variable FONT is initialized between the class header and the first method definition.
This makes it a class variable. Unlike an instance variable, which always begins with the
prefix self and refers to data that belong to a single object, a class variable refers to data
that the entire class of objects shares in common. Because the letters in all the grid squares
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are displayed with the same font, it is not necessary to keep this font in a separate storage
area belonging to each square. That’s why you put the font in a class variable, where all
the squares can see it and use it. Because class variables usually behave like constants,
you spell them in caps.

Note also that the text method, which uses the FONT variable to write the text to the win-
dow, must use the class name as a prefix with this variable, as in TicTacToeSquare.FONT.

Stretching the Shape of a Turtle
You decided to subclass the Turtle class rather than the Square class for TicTacToeSquare

because grid squares can get more useful behavior from turtles than from squares. How-
ever, the turtle’s “square” shape is not automatically the same size as your grid square’s
shape. You don’t want the turtle to have to draw a separate square to compensate for
that; the square’s shape should be exactly the turtle’s shape in the window. More impor-
tantly, when the user clicks anywhere within the space of a square, the square/turtle
should detect and respond to that click.

To get the turtle’s shape to be the same size as the length of a square, you have to stretch
the size of the turtle’s shape with the shapesize method. The two arguments you need in
this context are the stretch width and the stretch height factors. For this application, each
of these factors should be the length of the square divided by 20. Before running
shapesize, you must run resizemode("user").

Making a Move
One of the arguments to the __init__ method of TicTacToeSquare is its grid, and another is
its index in that grid. The square needs this information to run the appropriate method
when the user clicks in the square. The following three lines of code set up the callback
function, which accomplishes this task:

self._index = index
self._grid = grid
self.onclick(lambda x, y: self._grid.makeMove(self._index))

When the user clicks in this square, the grid’s makeMove method is called with the square’s
index as an argument. From there, it is the grid’s responsibility to make the move and
update the window.

You can now turn your attention to the grid class.
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Defining a Class for the Grid
The grid class is named TicTacToeGrid, and it appears in the module tictactoegrid.py.
This class is responsible for creating the grid squares, laying them out in the window,
and managing the game logic. Here is the code for the imports and the class header:

"""
File: tictactoegrid.py
Defines the TicTacToeGrid class.
"""

from tictactoesquare import TicTacToeSquare
from turtle import goto, tracer, up, update, write

class TicTacToeGrid(object):
"""Represents a Tic-Tac-Toe grid."""

Note that you import just the functions you need from the turtle module, not everything.

Laying Out the Grid
The two main attributes of the grid are a list that contains the grid squares and a string
that represents the current player’s letter. The creator of a grid can specify the size of a
square, the position of the grid, the outline and fill colors of the squares, and the current
player’s letter. As usual, these attributes are initialized in the __init__ method. This
method also lays out the squares in the grid. Here is the code for the __init__ method:

def __init__(self, length, xPos, yPos,
outlineColor = "black", fillColor = "white",
letter = "X"):

"""Sets the initial state of the Tic-Tac-Toe grid."""
self._letter = letter
self._grid = list()
index = 0
y = yPos
tracer(False)
for row in range(3):

x = xPos
for column in range(3):

square = TicTacToeSquare(index, self, length, x, y,
outlineColor, fillColor)

self._grid.append(square)
x += length
index += 1

y -= length
update()
tracer(True)
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Nothing is unusual here; by now, you should be familiar with the nested loop pattern used
to process a grid. The index that identifies each grid square is passed along with self, the
grid, to each square as it is created. That information is used in the game logic of the other
methods in this class. Note that you call the tracer and update functions to speed up the
display of the grid at program start-up.

Defining Methods for the Game Logic
The other methods in the TicTacToeGrid class are concerned with the game logic. The
method makeMove, which you passed to each grid square when it was created, is triggered
when the user clicks in a square. This method receives the index of the target square as
an argument.

The method obtains the square where the click occurred and examines the text contained
there. If the text is the empty string, the grid’s current letter is put into the square and
then set to the other player’s letter. The method then checks the grid to see if there is a
winner and, if so, announces the outcome. Instead of writing the complex code for check-
ing for a winner here, you pass the buck onto another method, to be defined later.
(Remember: passing the buck is a programming virtue.)

Here is the code for the makeMove method:

def makeMove(self, index):
"""Responds to a user’s click in a square."""
square = self._grid[index]
if square.text() == "":

square.text(self._letter)
if self._letter == "X":

self._letter = "O"
else:

self._letter = "X"
winner = self._hasWinner()
if winner:

up()
hideturtle()
goto(-40, 110)
write(winner + " wins!", font = ("Arial", 24, "bold"))

The _hasWinner method examines the grid and, if there is a winner, returns that player’s
letter; otherwise, the method returns the empty string. The method must check each
row, each column, and each diagonal to see if one of them contains three Xs or three Os.
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To do this, the method builds nine 3-character strings from the data in the grid and com-
pares each one to the strings "XXX" or "OOO", until a match is found or none exists. If a
match is found, the corresponding letter is returned; otherwise, the empty string is
returned. Here is the code for this method:

def _hasWinner(self):
"""Returns the letter of the winner or the empty string
if there is no winner."""
row0 = self._getString(0, 1, 2)
row1 = self._getString(3, 4, 5)
row2 = self._getString(6, 7, 8)
col0 = self._getString(0, 3, 6)
col1 = self._getString(1, 4, 7)
col2 = self._getString(2, 5, 8)
dia1 = self._getString(0, 4, 8)
dia2 = self._getString(6, 4, 2)
if row0 == "OOO" or row1 == "OOO" or row2 == "OOO" or \

col0 == "OOO" or col1 == "OOO" or col2 == "OOO" or \
dia1 == "OOO" or dia2 == "OOO":
return "O"

elif row0 == "XXX" or row1 == "XXX" or row2 == "XXX" or \
col0 == "XXX" or col1 == "XXX" or col2 == "XXX" or \
dia1 == "XXX" or dia2 == "XXX":
return "X"

else:
return ""

The method _getString expects the indexes of three squares as arguments. The method
builds and returns a three-character string from the text in the squares at those
positions.

def _getString(self, one, two, three):
"""Builds and returns a string from a row, column,
or diagonal of the grid."""
return self._grid[one].text() + self._grid[two].text() + \

self._grid[three].text()

Coding the Main Application Module
The program has one other module, where the main function is defined and called. This
module is in the file tictactoeapp.py. The main function hides the system turtle, sets its
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pen color and the background color, sets the window’s title, and creates the grid. Here is
the code for this module:

"""
File: tictactoeapp.py
A Tic-Tac-Toe application.
"""

from tictactoegrid import TicTacToeGrid
from turtle import bgcolor, hideturtle, mainloop, pencolor, title

def main():
hideturtle()
bgcolor("black")
pencolor("white")
title("Tic-Tac-Toe")
TicTacToeGrid(70, -70, 70, "blue", "gray")
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

Note that you can make the grid squares larger or smaller, alter the position of the grid in
the window, or adjust the colors by supplying different arguments to TicTacToeGrid.

Play on!

Summary
n An object bundles data and operations into a single software component.

n A method is an operation that gets an object to do something.

n A class provides a blueprint for the data contained in a set of objects and the methods
they respond to.

n With the exception of the object class, each class is a subclass of another one.
Subclasses inherit all data and methods defined in their parent and other ancestor
classes.

n The __init__ method is responsible for initializing the data that belong to an object.
These data are placed in instance variables.
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n An instance variable holds data belonging to an individual object. A class variable
holds data available to all objects of that class.

n The Turtle class includes methods that allow you to target individual turtle objects
with most of the operations available in turtle graphics.

Exercises
Launch the IDLE shell, open a file window, and complete the following exercises. You
should run each program within IDLE and, when it is completed, in the terminal window.

1. Complete the code for the RegularPolygon class, and add the methods translate,
scale, and rotate. Write a tester program that exercises these methods.

2. Add a menu of colors to the freehand sketching program discussed in Chapter 6.
Be sure that mouse clicks on menu items don’t cause the system turtle to move.
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Chapter 9

Animations

Part of the fun of working with turtle graphics is that you can either move figures around
in the window with the mouse or watch them move around on their own. Self-moving
figures form the basis of computer animations, and these in turn form the basis of video
games, cartoons, and animated feature films.

In this closing chapter, you explore some of the features of animations in turtle graphics.
After this brief introduction to animations, you will be ready to explore the wider world of
computer programming.

Animating the Turtle with a Timer
Thus far in this book, your programs have moved the turtle around in the window to
draw interesting figures. With the exception of the random walk program, the movement
of the turtle has not been a subject of interest in its own right. Indeed, in many cases, you
have increased the speed of the turtle to its maximum value so you could focus on the
result of its actions, such as a fractal image or an abstract painting.

By contrast, in animations, movement becomes the main point of interest, and coordinat-
ing the movements of many objects within a frame becomes the main challenge for the
programmer. In this section, you learn to use a timer to start animating a turtle.
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Using the ontimer Function
The turtle graphics function ontimer calls a function after a delay of time. Here is its form:

ontimer(aFunctionOfNoArguments, delayInMilliseconds)

For example, suppose you want to move the turtle forward 70 pixels after a delay of
10 seconds and do that twice. Here is how you would accomplish that in a shell session:

>>> from turtle import *
>>> reset()
>>> speed(0)
>>> shape("turtle")
>>> ontimer(lambda: forward(70), 10000)
>>> ontimer(lambda: forward(70), 10000)

You should notice a slight delay between the moment that you press the Enter key and the
beginning of the turtle’s movement. Note that you use a lambda expression to wrap your
function of one argument, forward(70), in a function of no arguments to keep ontimer

happy. Finally, note that the delay has no effect on the speed of the turtle’s movement,
once it is initiated; that is governed by the speed function, as usual. Thus, other combina-
tions are possible, such as a slow movement after a brief delay.

Now, you might be wondering, “Why bother with a timer at all, when I can already con-
trol the speed of the turtle’s movements and get some animation with the speed function?”

There are three reasons why timers are useful:

1. A timer can schedule actions at regular intervals. You need to do that for animations
that run on their own. Using a timer thus enables you to sustain turtle movements
for an indefinite amount of time.

2. Using a timer also allows you to control the intervals between actions in a machine-
independent manner. Although the speed of the turtle might vary with the speed of
your hardware, the interval of the delay that you pass to the ontimer function will be
the same number of milliseconds, no matter how fast or slow your hardware is.

3. Finally, by introducing a delay into a turtle’s sequence of actions, you allow other
turtles to perform their actions while a given turtle is “resting” during its delay.

Scheduling Actions at Regular Intervals
You are ready to learn how to use a timer to schedule repeated actions. You will recall the
process of drawing a circle described in Chapter 5, “Defining Functions,” where the turtle
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turns left and moves forward by small increments until it completes a circuit. Now you
can schedule these actions with a timer.

In the first experiment, you instruct the turtle to turn left and move forward, after a delay
of a given number of milliseconds. You then repeat this process, forever. The turtle
appears to rotate in a circular pattern (without drawing the circle). To quit the program,
you click the mouse in the turtle graphics window.

Here is the code for this program, in the file animate1.py.

"""
animate1.py
Animates the turtle using the ontimer function.
"""

from turtle import *

def act():
"""Move forward and turn a bit, forever."""
left(2)
forward(2)
ontimer(act, 1)

def main():
"""Start the timer with the move function.
The user’s click exits the program."""
reset()
shape("turtle")
speed(0)
up()
exitonclick() # Quit the program when the user clicks the mouse
listen()
ontimer(act, 1)
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

The act function turns the turtle left, moves it forward, and calls ontimer with the act

function and a delay of 1 millisecond as arguments. This looks a bit like a recursive func-
tion, but it’s indirect—ontimer calls act, which calls ontimer again. This recursion is also
infinite, because there is no check for a base case condition and no return.
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The process starts in the main function, where ontimer is called with the act function and a
delay of 1 millisecond and continues forever. Fortunately, before this process starts, the
exitonclick function is called to let turtle graphics know to quit when the user clicks in
the window.

As you can see, the pattern for running code with a timer is a bit like registering a func-
tion to handle a mouse or keyboard event. In the case of a timer, the act function is the
event handler for a single timing event: the tick of the system clock after a given delay.
The call of ontimer within the act function allows the process to go on indefinitely.

The next example uses this pattern to produce a more interesting animation. In this pro-
gram, the turtle bounces back and forth between the edges of the window until the user
clicks the mouse to exit. Here is the code:

"""
animate2.py
The turtle turns 180 degrees when it reaches the window edges.
"""
from turtle import *

def act():
"""Bounce back and forth, forever."""
if window_height() // 2 - 20 <= abs(ycor()) or \

window_width() // 2 - 20 <= abs(xcor()):
left(180)

forward(4)
ontimer(act, 1)

def main():
"""Start the timer with the move function.
A user click exits the program."""
reset()
shape("turtle")
speed(0)
up()
exitonclick() # Quit the program when the user clicks the mouse
listen()
ontimer(act, 1)
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()
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When you run this program, you can grow or shrink the window’s width with your
mouse, and the turtle will continue to bounce merrily on its way. Note that the distance
of each move is 4, which gives the turtle a fairly quick pace but still allows its movement
to appear smooth.

Animating Many Turtles
The design pattern just used in animating a turtle works well for the single system turtle,
but if you want to animate several turtles, you have to resort to a pattern of objects and
classes, as discussed in Chapter 8, “Objects and Classes.” In this section, you develop a
new class, named AnimatedTurtle, that supports the animation of many turtles at once.

What Is an Animated Turtle?
The AnimatedTurtle class is a subclass of the Turtle class. Thus, an animated turtle has all
the features of a regular turtle. In addition, an animated turtle has three attributes that
support its animation:

n Time interval—This is the number of milliseconds that elapse between each action
performed during the animation process. The default value is 1 millisecond.

n Animated—This is a Boolean flag that determines whether to pause or continue the
turtle’s animation. A value of False pauses the animation; a value of True continues it.
The default value is True.

n Callback—This is a function of one argument. This function is called when the delay
on the turtle’s timer expires. When called, this function is passed the turtle as its
argument. The default value is a function that returns False.

To create an animated turtle, you run the AnimatedTurtle function with the optional/
keyword arguments shown in Table 9.1.

Table 9.1 Optional Initial Arguments for AnimatedTurtle

Keyword Default Value

shape "turtle"

xPos 0

yPos 0

(Continued )
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Table 9.1 Optional Initial Arguments for AnimatedTurtle (Continued )

Keyword Default Value

heading 0

outlineColor "black"

fillColor "black"

timeInterval 1

animated True

callback lambda t: False

The behavior of an animated turtle is like that of a regular turtle, because the
AnimatedTurtle class inherits all the Turtle methods. In addition, an animated turtle recog-
nizes the methods described in Table 9.2.

Table 9.2 The AnimatedTurtle Methods

Method What It Does

act() If the turtle is animated, calls the callback function with
the turtle as an argument, and then calls ontimerwith the
act method and the time interval as arguments.

animated(flag = None) Setter and getter for the turtle’s animated attribute.
If flag is absent, the turtle’s animated state is returned.
Otherwise, flag is either True or False, and this state
is reset.

callback(f = None) Setter and getter for the callback attribute. If f is absent,
the current callback function is returned. Otherwise, f is a
function of one argument, and the callback attribute is
set to this function.

timeInterval(t = None) Setter and getter for the timeInterval attribute. If t is
absent, the current time interval is returned. Otherwise,
t is a nonnegative number, and the time interval is reset.

194 Chapter 9 n Animations



You can examine or change any of the three specific attributes of an animated turtle, even
while its animation is in progress. For example, you can increase or decrease the time
interval or pause or resume the animation with a shell command. Alternatively, you can
access these attributes within the callback function, which takes the turtle as an argument.

Using an Animated Turtle in a Shell Session
In keeping with the practice of trying out new resources in the shell, you can enter a few
simple commands to animate a turtle that moves in a circular pattern. You assume that
the AnimatedTurtle class is defined in a module named animatedturtle.py, in the current
working directory. Then you enter this code in the shell:

>>> from animatedturtle import AnimatedTurtle
>>> from turtle import hideturtle, listen, onscreenclick
>>> def moveAndTurn(t):

t.forward(2)
t.left(2)

>>> hideturtle()
>>> sleepy = AnimatedTurtle(animated = False, callback = moveAndTurn)
>>> onscreenclick(lambda x, y: sleepy.animated(not sleepy.animated()))
>>> listen()
>>> sleepy.animated(True)

When you create this turtle, you set its animated flag to False, so it won’t start acting right
away. You also pass it a callback function, which turns it and moves it when the anima-
tion begins.

You then register a function for screen clicks; this function pauses or resumes the anima-
tion. Note the code for this function:

lambda x, y: sleepy.animated(not sleepy.animated())

The x and y arguments are ignored. The animated method is called twice—first as getter
and then as setter—to reset the value of this attribute to its logical negation. This pauses
when the animation is underway or resumes when the animation is paused.

Defining the AnimatedTurtle Class
The AnimatedTurtle class is a subclass of the Turtle class. In addition to the turtle’s state,
this class maintains a time interval and a callback function to be used when the turtle is
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animated. A Boolean flag determines whether the animation is currently paused or under-
way. Here is the code:

"""
File: animatedturtle.py
Defines an animated turtle class.
Includes a time interval and a callback function for the timer.
Also includes a Boolean flag to pause or resume the animation.
"""

from turtle import Turtle, ontimer

class AnimatedTurtle(Turtle):
"""Represents an animated turtle."""

def __init__(self, shape = "turtle", xPos = 0, yPos = 0, heading = 0,
outlineColor = "black", fillColor = "black",
timeInterval = 1, animated = True,
callback = lambda t: False):

Turtle.__init__(self, shape, visible = False)
self.speed(0)
self.color(outlineColor, fillColor)
self.up()
self.goto(xPos, yPos)
self.setheading(heading)
self._timeInterval = timeInterval
self._animated = animated
self._callback = callback
showturtle()
self.act()

def timeInterval(self, t = None):
"""Getter and setter for time interval."""
if not t is None:

self._timeInterval = t
return self._timeInterval

def animated(self, flag = None):
"""Getter and setter for the animated flag. If set to True,
starts or resumes the animation."""
if not flag is None:

self._animated = flag
self.act()

return self._animated
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def callback(self, fun = None):
"""Getter and setter for the callback function. If flag is True,
also starts or resumes the animation."""
if not fun is None:

self._callback = fun
return self._callback

def act(self):
"""Performs the next callback action if the turtle is animated."""
if not self.animated():

return
self._callback(self)
ontimer(lambda: self.act(), self._timeInterval)

There are two things to note about this code:

The __init__ method calls the act method in its last step because the default state of this
type of turtle is to be animated. Thus, by default, the animation begins as soon as the tur-
tle is created.

If the animated state is False, the act method simply returns. This logic allows you to
pause or resume the animation by calling the animated method with an argument of
False or True, respectively. You can also create a turtle whose animation is initially off by
overriding the default value of the animated attribute.

The act method implements the logic of the timer that you saw in earlier examples. In this
logic, an action is performed, and then ontimer waits for a given time interval before per-
forming that action again. In AnimatedTurtle.act, the callback function is called with self

(the turtle) as an argument. This function can perform whatever actions you want. A call
of the act method is then bundled in a function that is passed to ontimer for the next cycle
of the animation.

Sleepy and Speedy as Animated Turtles
Your last experiment recasts sleepy and speedy as animated turtles. In this short program,
sleepy bounces back and forth in the window, while speedy revolves in a circular pattern.
Here is the code for the program:

"""
File: animate3.py
Creates two animated turtles. One bounces back and forth, while
the other revolves in a circular pattern.
"""
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from animatedturtle import AnimatedTurtle
from turtle import hideturtle, listen, mainloop, onscreenclick
from turtle import window_height, window_width
from random import randint

def pauseOrResume(turtles):
"""Pauses or resumes the animation."""
for t in turtles:

t.animated(not t.animated())

def rebound(aTurtle):
"""Callback function that fires on each timer event.
Moves forward until an edge is encountered, then turns
about face."""
if window_height() // 2 - 20 <= abs(aTurtle.ycor())or \

window_width() // 2 - 20 <= abs(aTurtle.xcor()):
aTurtle.left(180)

aTurtle.forward(4)

def twirl(aTurtle):
"""Callback function that fires on each timer event.
Turns and moves forward, as in a circle."""
aTurtle.left(8)
aTurtle.forward(8)

def randomColor():
"""Returns a random RGB value."""
return (randint(0, 255), randint(0, 255), randint(0, 255))

def main():
hideturtle()
sleepy = AnimatedTurtle(heading = 0, fillColor = randomColor(),

callback = rebound)
speedy = AnimatedTurtle(heading = 90, fillColor = randomColor(),

callback = twirl)
turtles = (sleepy, speedy)
onscreenclick(lambda x, y: pauseOrResume(turtles))
listen()
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()
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The logic of the animation is buried in the two callback functions, rebound and twirl. You
saw the logic of both of these types of movement in earlier examples. You can easily
change this logic to get the turtles to do other things during the animation.

The pauseOrResume function is triggered on a screen click. The logic in this function is
similar to what you saw earlier. In this case, however, the logic is applied to a list of ani-
mated turtles.

When you run this program, you should be able to pause or resume the animation by
clicking in the window. Be careful to pause before trying to resize the window.

Creating Custom Turtle Shapes
There are several built-in shapes to choose from in turtle graphics, and as you learned in
Chapter 2, “Getting Started with Turtle Graphics,” you can load a shape from an image
file on disk. As you write more sophisticated animations, however, you’ll want to create
some shapes of your own under program control. In this section, you explore how to cre-
ate custom shapes in turtle graphics.

Creating Simple Shapes
A quick way to create a simple shape is to get the system turtle to do the work for you. To
do so, you use the functions begin_poly, end_poly, and get_poly to create a polygon. These
functions are described in Table 9.3.

Table 9.3 Functions to Create a Polygon

Method What It Does

begin_poly() Starts to record the turtle’s movements.

end_poly() Ends the recording of the turtle’s movements.

get_poly() Returns a tuple containing the vertices of a polygon
created by the turtle’s movements.

The first two functions operate much like the functions begin_fill and end_fill do for
filling a shape. But instead of filling a shape, begin_poly and end_poly “record” the turtle’s
movements in a set of vertices, which you can obtain after ending the recording. After
calling begin_poly, you run some code that draws a polygon, with the pen up. You then
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call end_poly to finish the recording. At that point, you can call get_poly to retrieve the set
of the vertices. The next session shows these functions in action:

>>> from turtle import *
>>> hideturtle()
>>> up()
>>> begin_poly()
>>> for count in range(5): # Record the vertices of a pentagon

forward(20)
left(360 / 5)

>>> end_poly()
>>> get_poly()
((0.00,0.00), (20.00,0.00), (26.18,19.02), (10.00,30.78), (-6.18,19.02), (0.00,0.00))

At this point, you can use the set of vertices to register a new shape and then create a tur-
tle with it, as follows:

>>> addshape("pentagon", get_poly())
>>> sleepy = Turtle(shape = "pentagon")

The result is shown in Figure 9.1.

Figure 9.1
Creating a new turtle shape with a polygon.
© 2014 Python Software Foundation.

Note that the pentagon seems a bit off-kilter from the pentagons you drew in Chapters 3
through 5 (the bottom side should be parallel to the x-axis). To correct this problem, you
can rotate the turtle’s shape without altering its heading by calling the tilt method, as
follows:

>>> sleepy.tilt(90)
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The next example is a short tester program that defines a function to create shapes that
are regular polygons. This function, named makeShape, expects the length, number of
sides, and shape name as arguments. It calls the regularPolygon function to draw the
shape while recording it, and then it registers the new shape under its name. The main

function creates two turtles with different shapes and allows the user to drag them around
with the mouse. Here is the code (in the file testpoly.py):

"""
testpoly.py
Illustrates the use of begin_poly, end_poly, and get_poly to
create custom turtle shapes.

"""
from turtle import *

def regularPolygon(length, numSides):
"""Draws a regular polygon.
Arguments: the length and number of sides."""
interiorAngle = 360 / numSides
for count in range(numSides):

forward(length)
left(interiorAngle)

def makeShape(length, numSides, shapeName):
"""Creates and registers a new turtle shape with the given name.
The shape is a regular polygon with the given length and number
of sides.
Arguments: the length, number of sides, and shape name."""
up()
goto(0, 0)
setheading(0)
begin_poly()
regularPolygon(length, numSides)
end_poly()
shape = get_poly()
addshape(shapeName, shape)

def main():
"""Creates two turtles with custom shapes and allows you
to drag them around the window."""
hideturtle()
speed(0)
makeShape(40, 5, "pentagon")
makeShape(20, 8, "octagon")

Creating Custom Turtle Shapes 201



sleepy = Turtle(shape = "pentagon")
sleepy.color("brown", "green")
sleepy.up()
sleepy.goto(100, 50)
sleepy.tilt(90)
happy = Turtle(shape = "octagon")
happy.color("blue", "pink")
happy.up()
sleepy.ondrag(lambda x, y: sleepy.goto(x, y))
happy.ondrag(lambda x, y: happy.goto(x, y))
listen()
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Creating Compound Shapes
Sometimes a simple polygon won’t do for a turtle’s shape. Consider the shape of even just
a simple rocket. It has a rectangular fuselage in the middle, a triangular nose cone at one
end, and two tail fins at the other end, as shown in Figure 9.2.

Figure 9.2
A simple rocket shape.
© 2014 Python Software Foundation.
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As you can see, this shape consists of a rectangle and three triangles. Python’s Shape class
allows you to create compound shapes from several polygons. To do so, you obtain a new
compound shape object by running the following code:

>>> from turtle import *
>>> shape = Shape("compound")

You then create representations of the four polygons and add them to the shape, as
follows:

>>> fuselage = ((0,0), (25, 0), (25, 10), (0, 10))
>>> noseCone = ((25, 0), (35, 5), (25, 10))
>>> fin1 = ((0, 10), (-5, 30), (10, 10))
>>> fin2 = ((0, 0), (-5, -20), (10, 0))
>>> shape.addcomponent(noseCone, "pink", "black")
>>> shape.addcomponent(fuselage, "red", "black")
>>> shape.addcomponent(fin1, "green", "black")
>>> shape.addcomponent(fin2, "green", "black")

Note that you can include optional fill and outline colors for each polygon as you add it to
the shape.

Finally, you can register the new shape with a name, create a turtle with that shape, and
tilt and turn it so it’s ready to lift off:

>>> addshape("rocket", shape)
>>> Mercury = Turtle(shape = "rocket")
>>> Mercury.tilt(90)
>>> Mercury.left(90)

Unfortunately, turtles with compound shapes don’t appear to detect mouse events; but
other than that, they’re good to go!

That’s it. Hopefully you have had fun developing your code, viewing the results, and inter-
acting with your Python programs. Now you are a competent Python programmer, ready
to move on to the next level. Play on!

Summary
n An animation uses a timer to schedule a sequence of actions at regular intervals.

n The ontimer function takes two arguments: a function of no arguments and a number
of milliseconds. The ontimer function sets a timer to run for the given number of
milliseconds. When that time expires, the function argument is called.
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n The begin_poly and end_poly functions are used to record the turtle’s drawing of a
polygon. The get_poly function returns a tuple of the coordinates of the recorded
polygon’s vertices.

n The addshape function can be used to register a new turtle shape. This function
expects two arguments: a shape name and a shape. The shape can be a GIF filename
or a tuple containing the vertices of a polygon.

n The Shape class is used to create a compound shape from several polygons. The
instance method addcomponent expects a tuple of polygon vertices as an argument and
adds this information to the shape. You can use a shape object to register a new turtle
shape.

Exercises
Launch the IDLE shell, open a file window, and complete the following exercises. You
should run each program within IDLE and, when it is completed, in the terminal window.

1. Redo the program in animate3.py so that the two animated turtles do a random walk.
Now, you can pause or resume the walk with a mouse click. When a turtle
encounters an edge, it should head back into the window on a line perpendicular
to that edge. You should incorporate the four specific edge detection functions
discussed in Chapter 5.

2. Redo the program in animate3.py to use the shape creation technique to give the
turtles the shape of rockets. You should see one rocket moving in a circular pattern
and the other rocket rebounding from the edges of the window.
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Appendix A

Turtle Graphics Commands

This appendix brings together in one place a reference for the Python turtle graphics
commands used in this book, along with a few others. For the commands not
listed here, and for the most current documentation on all the features and com-
mands of turtle graphics, visit Python’s website at http://docs.python.org/3/library/
turtle.html#module-turtle.

Turtle Functions
All the functions listed in this section are functions in the turtle module. Most of them are
also methods in the Turtle class. When called as a function, the operation acts on the single
system turtle. When called as a method, the operation acts on the turtle object associated
with the call. Many of the functions have synonyms; consult Python’s documentation
for details.

Turtle Motion
The functions in Table A.1 move the turtle and manipulate various aspects of the turtle’s
state.
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Table A.1 Moving and Drawing

Method What It Does

backward(distance) Moves the turtle the given distance in the
opposite direction from its current heading.

circle(radius, extent = None,
steps = None)

Draws a circle with the given radius. extent, if
present, is the number of degrees in an arc. steps,
if present, is the number of steps that the turtle
moves to draw the circle.

clear() Deletes the drawings from the canvas. Does not
affect the drawings of other turtles.

forward(distance) Moves the turtle the given distance in the
direction of its current heading.

goto(x, y) Moves the turtle to the given position.

home() Moves the turtle to position (0, 0).

left(angle) Turns the turtle counterclockwise by the given
number of degrees. If angle is negative, turns the
turtle clockwise.

reset() Deletes the drawings from the canvas, sends the
turtle home, and resets its state to the default
values.

right(angle) Turns the turtle clockwise by the given number of
degrees. If angle is negative, turns the turtle
counterclockwise.

setx(x) Sets the turtle’s x coordinate to x and moves the
turtle to the new position.

sety(y) Sets the turtle’s y coordinate to y and moves the
turtle to the new position.

setheading(angle) Sets the turtle’s heading to angle and turns the
turtle if necessary.

speed(speed = None) If the argument is absent, returns the turtle’s
current speed as an integer. Otherwise, the
argument can be a number or a string. Speed
numbers range from 0 (the fastest setting)
through 10 (the slowest). Strings can be
"fastest", "fast", "normal", "slow", and
"slowest".
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undo() Undoes the turtle’s most recent action.

write(arg, move = False,
align = "left",
font = ("Arial", 8, "normal")

Writes the string representation of arg to the
canvas. align specifies the alignment of the string
with respect to the turtle’s initial position
("center" and "right" are the other options).
move specifies whether the turtle moves as a result
of writing the string.

The functions in Table A.2 examine the turtle’s state.

Table A.2 Examine the Turtle’s State

Method What It Does

distance(x, y) Returns the distance from the turtle’s current position to the
position (x, y).

heading() Returns the turtle’s current heading in degrees.

position() Returns a tuple, (x, y), that represents the turtle’s current
position.

towards(x, y) Returns the angle of the line segment running from the
turtle’s current position to the position (x, y).

xcor() Returns the x coordinate of the turtle’s current position.

ycor() Returns the y coordinate of the turtle’s current position.

Pen Control
The functions in Table A.3 examine or adjust the state of the turtle’s pen.

Table A.3 Pen Placement and Size

Method What It Does

down() Places the turtle’s pen on the canvas, ready to draw.

isdown() Returns True if the turtle’s pen is down or False
otherwise.

(Continued )
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Table A.3 Pen Placement and Size (Continued )

Method What It Does

pensize(width = None) If width is absent, returns the turtle’s current pen size.
Otherwise, resets the pen’s size to the given width.

up() Picks up the turtle’s pen from the canvas, to move without
drawing.

The functions in Table A.4 examine or adjust the pen color, fill color, and window’s back-
ground color.

Table A.4 Color

Method What It Does

color(*args) Can take zero, one, or two arguments. If there are no
arguments, returns a tuple containing the current pen color
and fill color. A single argument must be a color value, and
both the pen color and the fill color are set to this value.
Otherwise, the two arguments must be color values, which
are used to set the pen color and the fill color, respectively.
Arguments can have the form colorString (such as "red" or
"#AA0000") or (r, g, b). If RGB values are used, they must be
integers in the range from 0 through 255.

colormode(cmode = None) If the argument is absent, returns the current color mode.
Otherwise, sets the color mode to cmode, which must be
either 1 or 255. A color mode of 1 allows the use of basic
colors only; a color mode of 255 allows the use of RGB
values.

fillcolor(*args) If there are no arguments, returns the turtle’s current fill
color. Otherwise, resets the turtle’s fill color. Arguments can
have the form colorString (such as "red" or "#AA0000"),
(r, g, b), or r, g, b. If RGB values are used, they must be
integers in the range from 0 through 255.

pencolor(width = None) If there are no arguments, returns the turtle’s current pen
color. Otherwise, resets the turtle’s pen color. Arguments
can have the form colorString (such as "red" or "#AA0000"),
(r, g, b), or r, g, b. If RGB values are used, they must be
integers in the range from 0 through 255.
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The functions in Table A.5 are used to fill shapes.

Table A.5 Filling Shapes

Method What It Does

begin_fill() Should be called just before drawing a shape to be filled.

end_fill() Should be called just after drawing a shape to be filled.

filling() Returns True if the turtle has started a fill but not ended a
fill, or False otherwise.

Turtle State
The functions in Table A.6 examine or modify additional aspects of the turtle’s state.

Table A.6 Appearance

Method What It Does

resizemode(rmode = None) If the argument is absent, returns the turtle’s current
resize mode. Otherwise, sets the resize mode to rmode.
The resize mode can be "auto", "user", or "noresize".
The "auto" mode adapts the size of the turtle to its pen
size. The "noresize" mode does not do this. The "user"
mode adapts the size of the turtle to the stretch factors
and outline width as set by the shapesize function.

shape(name = None) If the argument is absent, returns the turtle’s current
shape name. Otherwise, resets the turtle’s shape to the
shape with this name. The name and shape must be
registered in the screen’s shape dictionary.

shapesize(stretch_wid = None,
stretch_len = None,
outline = None)

If the arguments are absent, returns a tuple containing
the current shape size factors. Otherwise, resets these
factors to the given values, which must be positive
numbers.

tilt(angle = None) If the argument is absent, returns the turtle’s tilt angle.
Otherwise, rotates the turtle’s shape to point in the
direction of the given angle. Does not change the turtle’s
heading.
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The functions in Table A.7 are used to show or hide the turtle.

Table A.7 Visibility

Method What It Does

hideturtle() Makes the turtle invisible.

isvisible() Returns True if the turtle is visible, or False otherwise.

showturtle() Makes the turtle visible.

Event Handling
The functions in Table A.8 register functions that handle events on the turtle.

Table A.8 Functions to Register Event-Handling Functions

Method What It Does

onclick(fun, btn=1, add=None) Registers fun as a function to be triggered when the
mouse is clicked on the turtle’s shape. fun should be
a function of two arguments: the x and y coordinates
of the mouse click. Optional btn values are 1 (left
button) and 2 (right button). When add is True, the
existing event-handing functions are not removed.

ondrag(fun, btn=1, add=None) Registers fun as a function to be triggered when
the mouse is dragged on the turtle’s shape. fun
should be a function of two arguments: the x and y
coordinates of the mouse click. Optional btn values
are 1 (left button) and 2 (right button). When add is
True, the existing event-handing functions are not
removed.

onrelease(fun, btn=1, add=None) Registers fun as a function to be triggered when the
mouse button is released on the turtle’s shape. fun
should be a function of two arguments: the x and y
coordinates of the mouse click. Optional btn values
are 1 (left button) and 2 (right button). When add is
True, the existing event-handing functions are not
removed.

210 Appendix A n Turtle Graphics Commands



Functions Related to the Window and Canvas
These functions examine or modify various aspects of the canvas or window.

Window Functions
The functions in Table A.9 examine or modify various attributes of the turtle graphics
window.

Table A.9 Functions Related to the Window

Method What It Does

addshape(name, shape = None) If shape is absent, namemust be the name of a GIF file
on disk. Otherwise, shape must be an object of type
Shape, or a tuple containing the vertices of a
polygon. Registers the shape under the name in the
screen’s shape dictionary.

bgcolor(*args) If the argument is absent, returns the canvas’s
current color. Otherwise, resets the canvas color.
Arguments can have the form colorString (such as
"red" or "#AA0000"), (r, g, b), or r, g, b. If RGB
values are used, they must be integers in the range
from 0 through 255.

bgpic(picname = None) If picname is a filename (must be a GIF file), display
the corresponding image as the canvas background.
If picname is "nopic", delete the background image,
if present. If picname is None, return the filename of
the current background image.

exitonclick() Quits the running program when the user clicks the
mouse in the window.

getshapes() Returns a list of the currently registered shape
names.

onscreenclick(fun, btn=1,
add=None)

Registers fun as a function to be triggered when the
mouse is clicked on the canvas. fun should be a
function of two arguments, the x and y coordinates
of the mouse click. Optional btn values are 1 (left
button) or 2 (right button). When add is True, the
existing event-handing functions for screen clicks are
not removed.

ontimer(fun, t = 0) Calls fun after a delay of t milliseconds.

(Continued )
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Table A.9 Functions Related to the Window (Continued )

Method What It Does

screensize(canvwidth = None,
canvheight = None,
bg = None)

If the arguments are absent, returns a tuple
containing the current dimensions of the canvas.
Otherwise, sets the dimensions and color of the
canvas to the given values.

title(titlestring) Sets the title in the window’s title bar to
titlestring.

tracer(n = None, delay = None) If the arguments are absent, returns the current
value of n. Otherwise, if n is False, turns turtle
animation off until the next update is called. If n is
True, resumes animation without calls of update. If n
is a positive integer, this specifies that only the nth
regular screen update is performed. delay specifies a
delay of an update in milliseconds.

turtles() Returns a list of all the currently existing turtles.

update() Forces a screen update. Should only be used when
the tracer is off.

window_height() Returns the current height of the window.

window_width() Returns the current width of the window.

Input Functions
The functions in Table A.10 perform text and numeric input.

Table A.10 Input Functions

Method What It Does

numinput (title, prompt,
default = None,
minval = None,
maxval = None)

Pops up a dialog for numeric input. Returns None if the
user cancels, or a floating-point number if the user clicks
OK. If default is a number, displays that number in the
entry field when the dialog pops up. If minval and/or
maxval are numbers, uses them to constrain the input
number to a range.

textinput (title, prompt) Pops up a dialog for string input. Returns None if the user
cancels or a string if the user clicks OK.
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Appendix B

Solutions to Exercises

Exercise Solutions for Chapter 1

Exercise 1
import math
radius = 45.6
circleArea = math.pi * radius ** 2
sphereSurfaceArea = 4 * circleArea
sphereVolume = 4 / 3 * math.pi * radius ** 3

Exercise 2
name = "Kenneth Lambert"
name[8:]

Exercise Solutions for Chapter 2

Exercise 1
from turtle import *
pensize(2)
y = 40
offset = 20
leftX = -60
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rightX = 60
up()
goto(leftX, y)
down()
goto(leftX - offset, y + offset)
up()
goto(leftX - offset, y - offset)
down()
goto(leftX, y)
goto(rightX, y)
goto(rightX + offset, y + offset)
goto(rightX, y)
goto(rightX + offset, y - offset)

y = -40
up()
goto(leftX, y)
down()
goto(leftX + offset, y + offset)
up()
goto(leftX + offset, y - offset)
down()
goto(leftX, y)
goto(rightX, y)
goto(rightX - offset, y + offset)
goto(rightX, y)
goto(rightX - offset, y - offset)
hideturtle()

Exercise 2
from turtle import *
speed(0)
hideturtle()
length = 40
angle = 90
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
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length = 50
angle = 72
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
length = 60
angle = 60
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
length = 80
angle = 45
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
forward(length)
left(angle)
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Exercise Solutions for Chapter 3

Exercise 1
from turtle import *
reset()
speed(0)
for count in range(360):

forward(1)
left(1)

You can increase the size of the circle by increasing the distance that the turtle moves
forward.

Exercise 2
from turtle import *
reset()
speed(0)
distance = 1
for count in range(360):

forward(distance)
left(4)
distance = distance + .05

Exercise Solutions for Chapter 4

Exercise 1
"""
stopsign.py
Draw a stop sign
"""

from turtle import *

def main():
reset()
speed(0)
hideturtle()
color("black", "red")
begin_fill()
for count in range(6):
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forward(70)
left(60)

end_fill()
color("white", "white")
up()
goto(5, 45)
write("STOP", font = ("Arial", 24, "bold"))
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

Exercise 2
"""
samplepattern.py
Draws a pattern using a shape.
Command-line arguments can be number of sides,
outline color, and fill color.
"""

from turtle import *
import sys

def main():
args = sys.argv
[numSides, outline, fill] = [6, "blue", "yellow"] # Default values
if len(args) == 4:

[name, numSides, outline, fill] = args # Sides and both colors
elif len(args) == 3:

[name, numSides, outline] = args # Sides and outline color
elif len(args) == 2:

[name, numSides] = args # Just the sides
numSides = int(numSides)
reset()
speed(0)
pensize(2)
hideturtle()
color(outline, fill)
angle = 360 / numSides
begin_fill()
for count in range(10): # Draw 10 shapes

for count in range(numSides): # Draw each shape
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forward(70)
left(angle)

left(36) # Rotate them evenly
end_fill()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

Exercise Solutions for Chapter 5

Exercise 1
"""
pythagoras.py
Compute the hypotenuse of a right triangle.
"""

from math import sqrt

def hypo(side1, side2):
"""Arguments: the two smaller sides of a right triangle.
Returns: the hypotenuse."""
sumOfSquares = side1 ** 2 + side2 ** 2
return sqrt(sumOfSquares)

def main():
sides = ((2, 3), (3, 4), (5, 6))
for (side1, side2) in sides:

hypotenuse = hypo(side1, side2)
print("Side1: ", side1)
print("Side2: ", side2)
print("Hypotenuse:", hypotenuse)

if __name__ == "__main__":
main()

Exercise 2
"""
testcircle.py
Draws a circle using the regularPolygon function.
"""
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from turtle import *

def regularPolygon(length, numSides):
"""Draws a regular polygon.
Arguments: the length and number of sides."""
interiorAngle = 360 / numSides
for count in range(numSides):

forward(length)
left(interiorAngle)

def myCircle(radius):
"""Draws a circle of the given radius."""
# Using a length of 1, you get a circle of radius 57.5
regularPolygon(radius / 57.5, 360)

def main():
"""Draw the circle with myCircle in black, then check it
by drawing the same circle with circle, in red."""
reset()
speed(0)
hideturtle()
myCircle(100)
pencolor("red")
circle(100)
pencolor("black")
myCircle(25)
pencolor("red")
circle(25)

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

Exercise Solutions for Chapter 6

Exercise 1
"""
samplepattern.py
Draws a pattern using a polygon whose length, number of sides,
pen color, and fill color are inputs obtained from dialogs.
"""

from turtle import *
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def regularPolygon(length, numSides):
"""Draws a regular polygon.
Arguments: the length and number of sides."""
interiorAngle = 360 / numSides
for count in range(numSides):

forward(length)
left(interiorAngle)

def radialPattern(length, numSides):
"""Draws a series of 10 polygons by rotating around a center point.
Arguments: The length and number of sides of a polygon."""
for count in range(10):

regularPolygon(length, numSides)
left(36)

def main():
reset()
speed(0)
pensize(2)
hideturtle()

# Take the inputs via dialogs
length = int(numinput("Input Dialog", "Enter the length of a side",

default = 70, minval = 1))
numSides = int(numinput("Input Dialog", "Enter the number of sides",

default = 3, minval = 1))
pColor = textinput("Input Dialog", "Enter the pen color")
fColor = textinput("Input Dialog", "Enter the fill color")

# Use default pen or fill color if it is not present
if not pColor:

pColor = "black"
if not fColor:

fColor = "black"
color(pColor, fColor)

# Draw the pattern
begin_fill()
radialPattern(length, numSides)
end_fill()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
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Exercise 2
"""
drawcircle.py
Draws a circle whose center point is the position of the first mouse click and
whose circumference contains the position of the second mouse click.

"""

from turtle import *

# Used to store the position of the first mouse click.
positionHistory = []

def respondToClick(x, y):
"""Responds to consecutive mouse clicks by using their positions to draw a circle.
Arguments: the coordinates of the mouse click."""
if len(positionHistory) == 1:

# This is the second click, so get the center point from the history,
# compute the radius, and draw the circle.
(centerX, centerY) = positionHistory.pop()
up()
goto(centerX, centerY)
radius = distance(x, y)
setheading(270)
forward(radius)
setheading(0)
down()
circle(radius)

else:
# This is the first click, so save the position.
positionHistory.append((x, y))

def main():
reset()
speed(0)
pensize(2)
hideturtle()
onscreenclick(respondToClick)
listen()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
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Exercise Solutions for Chapter 7

Exercise 1
"""
File: factorial.py
Define and test a recursive factorial function.
"""

def factorial(n):
"""Returns the factorial of n.
Assumes that n must be >= 1."""
if n <= 1:

return 1
else:

return n * factorial (n - 1)

def main(upper = 9):
for n in range(1, upper):

print("The factorial of", n, "is", factorial(n))

if __name__ == "__main__":
main()

Exercise 2
"""
Program file: mondrian.py

Draws an abstract painting after the style of Piet Mondrian.
"""

from turtle import *
from random import randint

def randomColor():
"Returns a random RGB color."
return (randint(0, 255), randint(0, 255), randint(0, 255))

def drawRectangle(x1, y1, x2, y2):
"""Draws a rectangle with the given corner points
using a random color."""
(red, green, blue) = randomColor()
pencolor(red, green, blue)
fillcolor(red, green, blue)
begin_fill()
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up()
goto(x1, y1)
down()
goto(x2, y1)
goto(x2, y2)
goto(x1, y2)
goto(x1, y1)
end_fill()

def mondrian(x1, y1, x2, y2, level):
"""Draws a Mondrian-like painting at the given level."""
if level > 0:

drawRectangle(x1, y1, x2, y2)
vertical = randint(1, 2)
splitFactor = randint(1, 2)
if vertical == 1: # Vertical split

if splitFactor == 1: # Do 1/3 and 2/3
mondrian(x1, y1, (x2 - x1) / 3 + x1, y2,

level - 1)
mondrian((x2 - x1) / 3 + x1, y1, x2, y2,

level - 1)
else: # Do 2/3 and 1/3

mondrian(x1, y1, 2 * (x2 - x1) / 3 + x1, y2,
level - 1)

mondrian(2 * (x2 - x1) / 3 + x1, y1, x2, y2,
level - 1)

elif splitFactor == 1: # Horizontal split with 1/3 and 2/3
mondrian(x1, y1, x2, y1 - (y1 - y2) / 3,

level - 1)
mondrian(x1, y1 - (y1 - y2) / 3, x2, y2,

level - 1)
else: # Do 2/3 and 1/3

mondrian(x1, y1, x2, y1 - 2 * (y1 - y2) / 3,
level - 1)

mondrian(x1, y1 - 2 * (y1 - y2) / 3, x2, y2,
level - 1)

def main():
# Obtain the level from the user.
level = numinput("Input Dialog", "Enter the level",

default = 1, minval = 1)
if not level:

level = 1
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paintingWidth = window_width() // 2
paintingHeight = window_height() // 2
hideturtle()
speed(0)
pensize(2)

# Delay drawing if level is greater than 6.
if level > 6:

tracer(False)
mondrian(-paintingWidth, paintingHeight,

paintingWidth, -paintingHeight, level)
# Draw now if level is greater than 6.
if level > 6:

update()

if __name__ == "__main__":
main()

Exercise Solutions for Chapter 8

Exercise 1
"""
File: regularpolygon.py
Defines a RegularPolygon class.
"""

from turtle import Turtle, bgcolor

class RegularPolygon(object):
"""Represents a regular polygon."""

def __init__(self, length, xPos, yPos, heading, sides = 3,
outlineColor = "black", fillColor = "black",
fillOn = False, isVisible = True):

"""Sets the initial state of the polygon."""
self._turtle = Turtle(visible = False)
self._turtle.speed(0)
self._heading = heading
self._length = length
self._xPos = xPos
self._yPos = yPos
self._sides = sides
self._outlineColor = outlineColor
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self._fillColor = fillColor
self._fillOn = fillOn
self._isVisible = isVisible
if isVisible: # Display the polygon if it’s

self.show() # visible

def _draw(self):
"""Draws a regular polygon with the given turtle,
length and number of sides."""
interiorAngle = 360 / self._sides
self._turtle.up()
self._turtle.setheading(self.heading())
self._turtle.color(self._outlineColor, self._fillColor)
self._turtle.goto(self._xPos, self._yPos)
self._turtle.down()
if self.fillOn():

self._turtle.begin_fill()
for count in range(self._sides):

self._turtle.forward(self._length)
self._turtle.left(interiorAngle)

if self.fillOn():
self._turtle.end_fill()

def show (self):
"""Displays the polygon."""
self._draw()
self._isVisible = True

def hide(self):
"""Erases the polygon."""
oldOutline = self.outlineColor() # Save the current colors
oldFill = self.fillColor()
erasingColor = bgcolor()
self._outlineColor = erasingColor # Prepare to erase
self._fillColor = erasingColor
self._turtle.width(3) # Make sure outline goes away
self._draw()
self._outlineColor = oldOutline # Restore the current colors
self._fillColor = oldFill
self._turtle.width(1)
self._isVisible = False

def outlineColor(self, value = None):
"""Getter and setter for the outline color."""
if value:

self._outlineColor = value
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if self.isVisible():
self.show()

return self._outlineColor

def fillColor(self, value = None):
"""Getter and setter for the fill color."""
if value:

self._fillColor = value
if self.isVisible():

self.show()
return self._fillColor

def fillOn(self, value = None):
"""Getter and setter for the fill on."""
if not value is None:

self._fillOn = value
return self._fillOn

def isVisible(self):
"""Getter for visibility."""
return self._isVisible

def position(self):
"""Getter for the position."""
return (self._xPos, self._yPos)

def heading(self):
"""Getter for the heading."""
return self._heading

def translate(self, xDist, yDist):
"""Adjusts the position by the given distances."""
if self.isVisible():

self.hide()
self._xPos += xDist
self._yPos += yDist
if self.isVisible:

self.show()

def scale(self, factor):
"""Adjusts the size by the given factor."""
if self.isVisible():

self.hide()
self._length *= factor
if self.isVisible:

self.show()
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def rotate(self, angle):
"""Adjusts the heading by the given angle."""
if self.isVisible():

self.hide()
self._heading += angle
if self.isVisible:

self.show()

"""
testregularpolygon.py
A simple tester program for regular polygons.
"""

from turtle import *
from regularpolygon import RegularPolygon

def main():
"""Draws a pentagon, translates it, scales it, and rotates it."""
reset()
hideturtle() # Hide the system turtle
p = RegularPolygon(20, 0, 0, 0, 5)
p.translate(-50, -50)
p.scale(2)
p.rotate(45)

return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Exercise 2
"""
File: flag.py
Defines a Flag class.
"""

class Flag(object):
"""Represents a Boolean flag."""

def __init__(self, value = False):
"""Sets the initial state."""
self._value = value

def value(self, newValue = None):
"""Getter and setter."""
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if not newValue is None:
self._value = newValue

return self._value

"""
File: menuitem.py
Defines a class for menu items.
"""

from turtle import Turtle

class MenuItem(Turtle):
"""Represents a menu item."""

def __init__(self, x, y, shape, color, callBack):
"""Sets the initial state of a menu item."""
Turtle.__init__(self, shape = shape, visible = False)
self.speed(0)
self.up()
self.goto(x, y)
self.color(color, color)
self._callBack = callBack
# Pass my color to the callback function when I’m clicked
self.onclick(lambda x, y: self._callBack(color))
self.showturtle()

"""
sketching.py
Simple drawing by dragging the mouse; also allows movement by clicking.
Also allows change of color by click on menu item.
"""

from turtle import *
from flag import Flag

from menuitem import MenuItem

clickFlag = Flag()

def changeColor(c):
"""Changes the system turtle’s color to c and sets clickFlag to True."""
clickFlag.value(True) # Menu item selected, make flag True
color(c)

def createMenu(callBack):
"""Displays 6 menu items to respond to the given callback function."""
x = - (window_width() / 2) + 30
y = 100
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colors = ("red", "green", "blue", "yellow", "black", "purple")
shape = "circle"
for color in colors:

MenuItem(x, y, shape, color, callBack)
y -= 30

def skip(x, y):
"""Moves the pen to the given location without drawing, if a menu
item has not been clicked. Otherwise, sets clickFlag to False"""
if not clickFlag.value(): # Menu item not selected, so ok to move

up()
goto(x, y)
down()

else: # Menu item selected, so reset flag to False
clickFlag.value(False)

def main():
createMenu(changeColor)
shape("circle")
width(2)
speed(0)
pencolor("blue")
ondrag(goto)
onscreenclick(skip)
listen()
return "Done!"

if __name__ == "__main__":
msg = main()
print(msg)
mainloop()

Exercise Solutions for Chapter 9

Exercise 1
"""
File: randomwalk.py
Creates two animated turtles for a random walk.
"""

from animatedturtle import AnimatedTurtle
from turtle import hideturtle, listen, mainloop, onscreenclick
from turtle import window_height, window_width
from random import randint, random
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def pauseOrResume(turtles):
"""Pauses or resumes the animation."""
for t in turtles:

t.animated(not t.animated())

def atTopEdge(aTurtle):
"""Returns True if the turtle is at the top edge of the window,
or False otherwise."""
return aTurtle.ycor() > window_height() / 2 - 20

def atBottomEdge(aTurtle):
"""Returns True if the turtle is at the bottom edge of the window,
or False otherwise."""
return aTurtle.ycor() < -(window_height() / 2) + 20

def atLeftEdge(aTurtle):
"""Returns True if the turtle is at the left edge of the window,
or False otherwise."""
return aTurtle.xcor() > window_width() / 2 - 20

def atRightEdge(aTurtle):
"""Returns True if the turtle is at the right edge of the window,
or False otherwise."""
return aTurtle.xcor() < -(window_width() / 2) + 20

def rebound(aTurtle):
"""Callback function that fires on each timer event.
Moves forward until an edge is encountered, then turns
about face."""
if atTopEdge(aTurtle):

aTurtle.setheading(270)
elif atBottomEdge(aTurtle):

aTurtle.setheading(90)
elif atLeftEdge(aTurtle):

aTurtle.setheading(180)
elif atRightEdge(aTurtle):

aTurtle.setheading(0)
else:

aTurtle.left((random() - .5) * 180)
aTurtle.forward(int((random() - .5) * 90))

def randomColor():
"""Returns a random RGB value."""
return (randint(0, 255), randint(0, 255), randint(0, 255))
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def main():
hideturtle()
sleepy = AnimatedTurtle(heading = 90, fillColor = randomColor(),

callback = rebound, animated = False)
sleepy.speed(1)
speedy = AnimatedTurtle(heading = 90, fillColor = randomColor(),

callback = rebound, animated = False)
sleepy.speed(3)
turtles = (sleepy, speedy)
onscreenclick(lambda x, y: pauseOrResume(turtles))
listen()
pauseOrResume(turtles)
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()

Exercise 2
"""
File: testrockets.py
Creates two animated turtles. One bounces back and forth, while
the other revolves in a circular pattern.
Each turtle’s shape is a rocket.
"""

from animatedturtle import AnimatedTurtle
from turtle import hideturtle, listen, mainloop, onscreenclick
from turtle import register_shape, Shape, window_height, window_width

def makeRocketShape():
"""Creates and registers a new turtle shape for
a rocket."""
fuselage = ((0,0), (25, 0), (25, 10), (0, 10))
noseCone = ((25, 0), (35, 5), (25, 10))
fin1 = ((0, 10), (-5, 30), (10, 10))
fin2 = ((0, 0), (-5, -20), (10, 0))
shape = Shape("compound")
shape.addcomponent(noseCone, "pink", "black")
shape.addcomponent(fuselage, "red", "black")
shape.addcomponent(fin1, "green", "black")
shape.addcomponent(fin2, "green", "black")
register_shape("rocket", shape)
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def pauseOrResume(turtles):
"""Pauses or resumes the animation."""
for t in turtles:

t.animated(not t.animated())

def rebound(aTurtle):
"""Callback function that fires on each timer event.
Moves forward until an edge is encountered, then turns
about face."""
if window_height() // 2 - 20 <= abs(aTurtle.ycor()) or \

window_width() // 2 - 20 <= abs(aTurtle.xcor()):
aTurtle.left(180)

aTurtle.forward(4)

def twirl(aTurtle):
"""Callback function that fires on each timer event.
Turns and moves forward, as in a circle."""
aTurtle.left(8)
aTurtle.forward(8)

def main():
hideturtle()
makeRocketShape()
sleepy = AnimatedTurtle(heading = 0, callback = rebound,

animated = False, shape = "rocket")
speedy = AnimatedTurtle(heading = 90, callback = twirl,

animated = False, shape = "rocket")
sleepy.tilt(90)
speedy.tilt(90)
turtles = (sleepy, speedy)
onscreenclick(lambda x, y: pauseOrResume(turtles))
listen()
pauseOrResume(turtles)
return "Done!"

if __name__ == ’__main__’:
msg = main()
print(msg)
mainloop()
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INDEX

Symbols
== comparison operator, 61
+ (concatenation operator), 16–17
{} (curly braces), 25
\ (escape character), 13
!= (not equal to operator), 61
* operation, 6
** operator, 6
+ operator, 6
- operator, 6
/ operator, 6
// operator, 6
_ (underscore), 8

A
- A operation, 5
A % B operation, 5
A * B operation, 5
A ** B operation, 5
A + B operation, 5
A - B operation, 5
A / B operation, 5
A // B operation, 5
abstraction, 93
act function, 191–192
act method, 194
addshape function, 41, 211
analysis stage (program development), 75–76
animated method, 194
AnimatedTurtle class
attributes, 193
defining the, 195–197

methods, 194
optional/initial arguments, 193–194
pauseOrResume function, 199
rebound function, 199
in shell session, 195
twirl function, 199

animation
AnimatedTurtle class, 193–199
ontimer function, 190
scheduled actions and regular intervals,

190–193
turtle shapes, 199–204
turtle with timer, 189–193

anonymous function, 102
append method, 21
applications software, 89
argument
command-line, 83–85
default, 98
function, 9
functions as, 101
keyword, 99
optional, 98

arithmetic operations, 4–6
arrow shape, 40
assignment and variables, 6
AtEdge function, 108
attributes
AnimatedTurtle class, 193
MenuItem class, 173
RegularPolygon class, 163–164
turtle graphics, 33
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B
background color, 43
backward function, 36, 206
base case, 138
begin_fill function, 45–46, 209
begin_poly function, 199
behavior
MenuItem class, 173
object, 165–167

bgcolor function, 43, 46, 211
bgpic function, 211
binary digits (bits), 86
binary search of lists, 145–146
bits (binary digits), 86
blank shape, 40
body, composing programs, 79
Boole, George, 61
Boolean expressions
basic description of, 60
comparison operators, 61
False value, 61
logical operations, 61–63
True value, 61
values, 61

buttons, mouse, 128–133
byte code, 90

C
call diagram, 136
callback function, 173, 193–194
canvas function, 49–50, 211–212
capitalization, class, 167
c-curve, 153–156
cCurve function, 156
central processing unit (CPU), 86–87
changeProperties variable, 132–133
circle function, 94–95, 206
circle shape, 40
circles, drawing, 46–48
classes
AnimatedTurtle, 193–199
basic description of, 159
capitalization, 167
class definition structure, 166–167
getting and setting methods, 170
Grid, 179–187
inheritance, 171–172
_init_ method, 168
MenuItem, 172–174, 176–178

programmer-defined, 167
RegularPolygon, 162–172
rotate method, 171
scale method, 171
Shape, 202–203
show and hide methods, 169–170
subclasses, 171–172
translate method, 171
Turtle, 160
variables, 182–183

classic shape, 40
clear function, 39, 206
clickonscreen function, 118
clicks, mouse events, 118–119
code fragment, running, 2
coding stage (program development), 76
color
background, 43
filled shapes, 45–46
functions related to, 46
how computers represent, 43–44
pen, 43
RGB value, 44

color function, 208
colormode function, 208
ColorPicker site, 44
command-line arguments, 83–85
comments, end-of-line, 79
compilation stage (program development), 76
compilers, 89–90
composing programs, 77–81
compound shapes, 202–203
computer hardware, 86–88
computer programs, 75. See also programs
computer software, 88–90
concatenation operator (+), 16–17
configuration file, turtle graphics, 51, 81
content based methods, 21
control structures
Boolean expressions, 60–63
exercise, 74
iteration, 55–60
iteration control, 55
selection, 55
selection statements, 63–68
sequencing, 55

Copy command, 77
CPU (central processing unit), 86–87
curly braces ({}), 25
Cut command, 77
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D
data functions, string, 16–18
default argument, 98
definite loop, 56
dependent variable, 103
design
recursive function, 137–139
top-down, 135–137

design stage (program development), 76
development process, program, 75–76
dialog-based input, 115–118
dict function, 26
dictionaries
commonly used operations, 27
key, 25
literals, 25–26
loops with, 59–60
methods and operators, 26–27

distance function, 207
docstrings, 79, 95
domain, functions, 103
down function, 207
downloading Python, 1–2
dragging mouse, 120–122
drawing
circles, 46–48
equilateral triangle, 38–39
freehand drawing by dragging mouse, 120–122
squares, 36–38
text, 48–49

drawLine function, 156
drawRectangle function, 149

E
edge-detection, 108
edits, program, 77–78
elif clause, 68
else keyword, 65, 68
end_fill function, 45–46, 209
end-of-line comments, 79
end_poly function, 199–200
equation
linear, 104
quadratic, 104

errors
detecting, 11–12
logic, 12
runtime, 143

semantic, 12
syntax, 12

escape character (\), 13
event-handling functions, 118, 210
exercise
animation, 204
composing, saving, and running programs, 91
control structure, 74
defining functions, 112–113
dialog-based input, 134
expression and assignment, 29
mouse event, 134
object and class, 188
recursion, 158
turtle graphics, 52–53

exitonclick function, 192, 211
exponential rate of growth, 153
expressions, 6, 9
external memory, 87

F
False value, 61
file systems, 88
files, saving programs to, 78
fill color attribute, 33
fillColor function, 45–46, 163, 165, 194, 208
filling function, 209
fillOn method, 163–165
Find command, 77
float function, 14
floating-point numbers, 4
for loop, 56–59
forward function, 36–37, 206
fractal object, 153–157
fractional part, real numbers, 4
functions. See also methods
abstraction, 93
act, 191–192
addshape, 41, 211
anonymous, 102
argument, 9, 98–99
as arguments, 101
atEdge, 108
backward, 36, 206
base case, 138
begin_fill, 45–46, 209
begin_poly, 199
bgcolor, 43, 46, 211
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functions (Continued )
bgpic, 211
building with lambda expressions, 102
callback, 173, 193
canvas, 49–50, 211–212
cCurve, 156
circle, 94–95, 206
clear, 39, 206
color, 208
color related, 46
colormode, 208
definitions, 94–95
dict, 26
distance, 207
domain, 103
down, 207
drawLine, 156
drawRectangle, 149
end_fill, 45–46, 209
end_poly, 199–200
event-handling, 118, 210
exitonclick, 192, 211
expressions, 9
fillcolor, 45–46, 208
filling, 209
float, 14
forward, 36–37, 206
as general solutions to problems, 99–104
get_poly, 199–200
getshapes, 40, 211
goto, 36–38, 118, 206
graphing, 103–106
heading, 42, 207
help, 4
hideturtle, 210
home, 36, 206
input, 15–16
int, 14–15
isdown, 42
isvisible, 42, 210
join, 23
left, 36–37, 206
len, 14, 26
listen, 118–119
main, 79–80, 150–151
mainloop, 81
in mathematics, 103–104
modules as libraries of, 103
mondrain, 148–153

myIn, 146
numinput, 116–117, 212
onclick, 119, 128, 176, 210
ondrag, 120, 128, 176, 210
onkeypress, 123
onkeyrelease, 123
onrelease, 128, 210
onscreen, 128
onscreenclick, 211
ontimer, 190–192, 211
pauseOrResume, 199
pen control, 207–209
pencolor, 43, 46, 208
pensize, 40, 208
plot, 105–106
poly, 42
position, 42, 207
positionHistory, 126–127
print, 15
rand.int, 66–67
random.choice, 24
randomForward, 109
random.randint, 71
random.shuffle, 24
randomTurn, 108–109
range, 23, 58–59, 103
rebound, 199
refactoring programs with, 106–111
reset, 36–37, 39, 206
resizemode, 209
return statement, 96
right, 36, 206
screensize, 49–50, 212
setheading, 36, 206
setup, 50
setVertex, 126
setx, 206
sety, 206
shape, 40–42, 209
shapesize, 209
showturtle, 33, 210
speed, 42
square, 94–95
str, 14
summation, 137–139
tail-recursive, 141
testing, 97–98
textinput, 116–117, 212
tilt, 209
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title, 212
topEdge, 108
towards, 207
tracer, 152, 212
trigonometric, 10
turtle motion, 205–207
turtle state, 209–210
turtles, 212
twirl, 199
undo, 39, 207
up, 208
update, 152, 212
window, 211–212
window_height, 50, 212
window_width, 212
write, 48–49
xcor, 207
ycor, 207

G
get_poly function, 199–200
getshapes function, 40, 211
getter method, 170
goto function, 36–38, 118, 206
graphical user interface (GUI), 88
graphics operations. See also turtle graphics
graphing functions, 103–106
Grid class (Tic-Tac-Toe game)
class variables, 182–183
defining a class, 181–182
defining class for grid, 184
game logic methods, 185–186
grid layout, 184–185
main application module, 186–187
making a move, 183
modeling a grid, 179–181
shape size, 183

GUI (graphical user interface), 88

H
hardware, computer, 86–88
heading
composing programs, 79
loop structure, 56

heading attribute, 33, 163, 194
heading function, 42, 165, 207
help function, 3–4, 11

hexagon, 57
Hexagon class, 171–172
hide method, 164, 169–170
hideturtle function, 210
home function, 36, 206
home position, 33

I
IDLE shell, launching, 2–3
IDLE window, running programs from,

82–83
idle3 command, 83
if statement
composing programs, 80–81
multiway, 67–68
one-way, 63–64
two-way, 65

if-else statement, 65
immutable lists, 24–25
import statement, 33, 79
indefinite loop, 68
independent variables, 103
index method, 143
indexing operator, 16–17
infinite recursion, 142–143
inheritance, class, 171–172
_init_ method, 168
input devices, 86
input, dialog-based, 115–118
input dialogs
for numbers, 117–118
for text, 117
in turtle graphics, 116

input function, 15–16
insert method, 20–21
installing Python, 1–2
instance variables, 168
int function, 14–15
integers, 4
interpreter, 89
isdown function, 42, 207
isVisible function, 42, 163, 165, 210
items, list, 19
items method, 26
iteration control
defined, 55
for loop, 56–57
nested loops, 57–58
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J–K
join function, 23

key, 25
keyboard events
onkey function, 123–124
responding to, 122–124
retro drawing program, 124

keys method, 26
key/value pairs, 25–26
keyword argument, 99

L
lambda expressions, 102
launching
IDLE shell, 2–3
terminal window, 2

left function, 36–37, 206
left-click mouse button events, 128–129
len function, 14, 26
length attribute, 163
length, string, 14
linear equation, 104
linear running time, 145
Linux
computer software description, 88
launching terminal window, 2

listen function, 118–119
lists
binary search of, 145–146
building from range of numbers, 23
building from strings, 22–23
commonly used operations, 22
content-based method, 21
immutable, 24–25
items, 19
literals and operators, 19–20
loops with, 59–60
methods, 20–21
pattern matching, 20
and random module, 23–24
sequential search of, 143–144
sorting, 21

literals
dictionary, 25–26
list, 19
string, 12

loaders, 88
logarithmic running time, 146

logic errors, 12
logical operations
logical conjunction, 62–63
logical disjunction, 62–63
logical negation, 61–62
truth tables, 62–63

loops
definite, 56
for, 56–59
heading, 56
indefinite, 68
nested, 57–58
recursive functions and, 140–142
with strings, lists, and dictionaries,

59–60
while, 69–70

M
machine code, 88
Macs
computer software description, 88
launching terminal window, 2

magnetic storage media, 87
main function
composing programs, 79–80
recursive patterns in art, 150–151

mainloop function, 81
makeMove method, 183, 185
makeShape method, 201
margin operand, 140
math module, 9–11
mathematics functions, 103–104
memory, 86–87
MenuItem class, 172
attributes and behavior, 173
implementation and testing, 173–176
user event response, 176

methods. See also functions
AnimatedTurtle class, 194
append, 21
basic description of, 159
content based, 21
dictionary, 26–27
fillColor, 165
fillOn, 164–165
getter, 170
heading, 165
hide, 164, 169–170
index, 143
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_init_, 168
insert, 20–21
isVisible, 165
items, 26
keys, 26
list, 20–21
makeMove, 183, 185
makeShape, 201
outlineColor, 164–165
pop, 20–21
position, 165
RegularPolygon class, 164–166
remove, 21
reverse, 21
rotate, 165, 171
scale, 165, 171
setter, 170
show, 164, 169–170
sort, 21
split, 23
string, 18–19
tilt, 200
translate, 165, 171
Turtle class, 160
values, 26

module variables
initializing, 125–126
tracking history of turtle positions, 126–128

modules
composing programs, 80
as libraries of functions, 103
math, 9–11
sys, 83–85
variable, 80

mondrian function, 148–153
mouse events
clicks, 118–119
event-handling, 120
freehand drawing by dragging mouse, 120–122
responding to, 118–122
right-click events, 128–133

movement operations, 34–39
multiway if statement, 67–68
myIn function, 146

N
\n (newline character), 13
negative numbers, 6
nested loops, 57–58

newline character (\n), 13
not equal to operator (!=), 61
numbers
arithmetic operations, 4–6
error detection, 11–12
floating-point, 4
functions, 9
input dialogs for, 117–118
integers, 4
math module, 9–11
negative, 6
real, 4
variables and assignment, 6–8

numinput function, 116–117, 212

O
objects
basic description of, 159
behavior, 165–167

onclick function, 119, 128, 176, 210
ondrag function, 120, 128, 176, 210
one-way if statement, 63–64
onkey function, 123–124
onkeypress function, 123
onkeyrelease function, 123
onrelease function, 128, 210
onscreen function, 128
onscreenclick function, 211
ontimer function, 190–192, 211
operating systems, 88
operations
comparison, 61
dictionary, 26–27
list, 19–20
logical, 61
string, 16–17

optical storage media, 87
outlineColor method, 163–165, 194
output devices, 86
output functions, 15–16

P
Paste command, 77
pattern matching, 20
pauseOrResume function, 199
pen control functions, 207–209
pencolor function, 33, 43, 46, 208
pensize function, 40, 208
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performance tracking, 148–149
pixels, 40
plot function, 105–106
poly function, 42
polygons
creating shapes, 199–202
regular, 99–100

pop method, 20–21
position function, 33, 42, 165, 207
positionHistory function, 126–127
precedence rules, 5–6
primary memory, 87
print function, 15
probability, 66–67, 109–110
problem decomposition, 135–136
processors, 87
programmer-defined class, 167
programming languages, 89
programs
analysis stage, 75–76
coding stage, 76
compilation stage, 76
composing, 77–81
design stage, 76
development process, 75–76
docstrings, 79
edits, 77–78
end-of-line comments, 79
how Python runs, 85–90
import statements, 79
main function, 79–80
mainloop function, 81
module, 80
running, 81–85
saving to files, 78
structure, 78–79
testing stage, 76

properties variable, 132
pseudocode, 58
PVM (Python virtual machine), 90
.py extension, 78
Python, downloading and installing, 1–2
Python virtual machine (PVM), 90
python3 module, 83

Q–R
quadratic equation, 104

RAM (random access memory), 87
rand.int function, 66–67

random access memory (RAM), 87
random module, 23–24
random walks, 70–73, 107–108, 111
random.choice function, 24
randomForward function, 109
random.randint function, 71
random.shuffle function, 24
randomTurn function, 108–109
range function, 23, 58–59, 103
real numbers, 4
rebound function, 199
recursion
base case, 138
binary search of lists, 145–146
fractal object, 153–157
infinite, 142–143
and loops, 140–142
recursive call, 138
recursive function call tracing, 139–140
recursive function design, 137–139
recursive patterns in art, 147–153
recursive patterns in nature, 153–157
sequential search of lists, 143–144
tail-recursive functions, 141
top-down design, 135–137

refactoring programs with functions,
106–111

regular polygons, 99–100
RegularPolygon class, 162
attributes, 163–164
class definition structure, 166–167
getter and setter methods, 170
Hexagon subclass, 171–172
_init_ method, 168
methods, 164–166
rotate method, 171
scale method, 171
show and hide methods, 169–170
Square subclass, 171–172
translate method, 171

remove method, 21
repeated actions, 190–193
Replace command, 77
reset function, 36–37, 39, 206
resizemode function, 209
return statement, 96
reverse method, 21
RGB color value, 44
right associative operators, 6
right function, 36, 206
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right-click mouse button events, 128–133
rotate method, 165, 171
running code fragments, 2
running programs
how Python runs, 85–90
from IDLE window, 82–83
sys module and command-line arguments,

83–85
from terminal window, 83
using turtle graphics configuration file, 81–82

runtime error message, 143
runtime system, 89

S
saving programs to files, 78
scale method, 165, 171
screensize function, 49–50, 212
searches
binary, 145–146
sequential, 143–144

secondary memory, 87
selection condition, 55
selection statements
if-else, 65
multiway if statement, 67–68
one-way if statement, 63–64
rand.int function, 66–67
two-way if statement, 65

self value, 167
semantic errors, 12
semiconductor storage media, 87
sequence, control structures, 55
sequential search of lists, 143–144
setheading function, 36, 206
setter method, 170
setup function, 50
setVertex function, 126
setx function, 206
sety function, 206
shape
compound, 202–203
polygon, 199–202
size, 183
turtle graphics, 34, 199–203

shape attribute, 33, 193
Shape class, 202–203
shape function, 40–42, 209
shapesize function, 209

shell, launching, 2–3
shell session, AnimatedTurtle class in, 195
shell window, 2–3
show method, 164, 169–170
showturtle function, 33, 210
sides attribute, 163
software, computer, 88–90
sort method, 21
sorting lists, 21
speed function, 33, 42
split method, 23
Square class, 171–172
square function, 94–95
squares, drawing, 36–38
stacks, 142
state, turtle graphics, 40–42
statements
import, 33, 79
selection, 63–67

stats value, 148–149
stepwise refinement, 136
storage media, 87
str function, 14
strings
building lists from, 22–23
concatenation operator, 16–17
data structures, 16–18
docstrings, 79, 95
enclosed in single, double, and triple quotes, 13
examples, 13
float function, 14
indexing operator, 16–17
input and output functions, 15–16
int function, 14
len function, 14
length, 14
literals, 12
loops with, 59–60
methods, 18–19
slice operation, 17–18
str function, 14

structure, program, 78–79
subclasses, 171–172
subscript operator, 16–17
summation function, 137–139, 141
syntax errors, 12
sys module, 83–85
system software, 88
system turtle, 160
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T
\t (Tab character), 13
Tab character (\t), 13
tail-recursive functions, 141
terminal window
launching, 2
running programs from, 83

terminal-based interface, 88
testing
functions, 97–98
MenuItem class, 173–176

testing stage (program development), 76
text
drawing, 48–49
input dialogs for, 117

text processing. See strings
textinput function, 116–117, 212
Tic-Tac-Toe game (Grid class)
class variables, 182–183
defining a class, 181–182
defining class for grid, 184
game logic methods, 185–186
grid layout, 184–185
main application module, 186–187
making a move, 183
modeling a grid, 179–181
shape size, 183

tilt function, 200, 209
time interval, 193
timeInterval method, 194
timer, 189–192
title function, 212
top-down design, 135–137
topEdge function, 108
towards function, 207
tracer function, 152, 212
translate method, 165, 171
triangle, drawing, 38–39
triangle shape, 40
trigonometric functions, 10
True value, 61
truth table
for logical conjunction, 63
for logical disjunction, 63
for logical negation, 62

tuples, 24–25
turtle attribute, 163
Turtle class, 160

turtle graphics
attributes, 33
clearing, 39
color representation, 43–46
configuration file, 51, 81
drawing circles, 46–48
drawing equilateral triangle, 38–39
drawing squares, 36–38
drawing text, 48–49
exercise, 52–53
graphing functions in, 105
home position, 33
input dialogs in, 116
movement operations, 34–39
moving and changing direction, 35–36
random walks, 70–73
resetting, 39
shape, 34
state, 40–42
tracking history of turtle positions, 126–127
turtle module demonstration, 34
two-dimensional coordinate system, 31–32
undoing, 39
window, 32–33
window and canvas functions, 49–50
x-axis, 31–32
y-axis, 31–32

turtle motion functions, 205–207
turtle shapes, 199–203
turtle state functions, 209–210
turtles function, 212
twirl function, 199
two-dimensional coordinate system, 31–32
two-dimensional grid, 179–180
two-way if statement, 65

U
underscore (_), 8
undo function, 39, 207
up function, 208
update function, 152, 212
user interfaces, 88

V
values, Boolean expression, 61
values method, 26
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variables
and assignment, 6–8
changeProperties, 132–133
class, 182–183
dependent, 103
independent, 103
instance, 168
module, 80, 125–128
properties, 132

virtual machine, 89–90

W
walk movement, 70–73
while loop, 69–70
window and canvas functions, 49–50, 211–212
window, turtle graphics, 32–33
window_height function, 50, 212

Windows computer
computer software description, 88
launching terminal window, 2

window_width function, 212
write function, 48–49

X
x-axis, 31–32
xcor function, 207
xPos attribute, 163, 193

Y–Z
y-axis, 31–32
ycor function, 207
yPos attribute, 163, 193
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