
José Unpingco

Python
Programming
for Data
Analysis

Python Programming for Data Analysis

José Unpingco

Python Programming
for Data Analysis

José Unpingco
University of California
San Diego
CA, USA

ISBN 978-3-030-68951-3 ISBN 978-3-030-68952-0 (eBook)
https://doi.org/10.1007/978-3-030-68952-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-68952-0

To Irene, Nicholas, and Daniella, for all their
patient support.

Preface

This book grew out of notes for the ECE143 Programming for Data Analysis class
that I have been teaching at the University of California, San Diego, which is a
requirement for both graduate and undergraduate degrees in Machine Learning and
Data Science. The reader is assumed to have some basic programming knowledge
and experience using another language, such as Matlab or Java. The Python idioms
and methods we discuss here focus on data analysis, notwithstanding Python’s
usage across many other topics. Specifically, because raw data is typically a mess
and requires much work to prepare, this text focuses on specific Python language
features to facilitate such cleanup, as opposed to only focusing on particular Python
modules for this.

As with ECE143, here we discuss why things are the way they are in Python
instead of just that they are this way. I have found that providing this kind of
context helps students make better engineering design choices in their codes, which
is especially helpful for newcomers to both Python and data analysis. The text is
sprinkled with little tricks of the trade to make it easier to create readable and
maintainable code suitable for use in both production and development.

The text focuses on using the Python language itself effectively and then moves
on to key third-party modules. This approach improves effectiveness in different
environments, which may or may not have access to such third-party modules. The
Numpy numerical array module is covered in depth because it is the foundation
of all data science and machine learning in Python. We discuss the Numpy array
data structure in detail, especially its memory aspects. Next, we move on to Pandas
and develop its many features for effective and fluid data processing. Because data
visualization is key to data science and machine learning, third-party modules such
as Matplotlib are developed in depth, as well as web-based modules such as Bokeh,
Holoviews, Plotly, and Altair.

On the other hand, I would not recommend this book to someone with no
programming experience at all, but if you can do a little Python already and want to
improve by understanding how and why Python works the way it does, then this is
a good book for you.

vii

viii Preface

To get the most out of this book, open a Python interpreter and type-along with
the many code samples. I worked hard to ensure that all of the given code samples
work as advertised.

Acknowledgments I would like to acknowledge the help of Brian Granger and Fernando Perez,
two of the originators of the Jupyter Notebook, for all their great work, as well as the Python
community as a whole, for all their contributions that made this book possible. Hans Petter
Langtangen was the author of the Doconce [1] document preparation system that was used to
write this text. Thanks to Geoffrey Poore [2] for his work with PythonTeX and LATEX, both key
technologies used to produce this book.

San Diego, CA, USA José Unpingco
February, 2020

References

1. H.P. Langtangen, DocOnce markup language. https://github.com/hplgit/doconce
2. G.M. Poore, Pythontex: reproducible documents with latex, python, and more. Comput. Sci.

Discov. 8(1), 014010 (2015)

https://github.com/hplgit/doconce

Contents

1 Basic Programming . 1
1.1 Basic Language . 1

1.1.1 Getting Started . 2
1.1.2 Reserved Keywords . 3
1.1.3 Numbers . 3
1.1.4 Complex Numbers . 5
1.1.5 Strings . 6
1.1.6 Loops and Conditionals. 17
1.1.7 Functions . 21
1.1.8 File Input/Output . 34
1.1.9 Dealing with Errors . 36
1.1.10 Power Python Features to Master . 40
1.1.11 Generators . 43
1.1.12 Decorators . 48
1.1.13 Iteration and Iterables . 52
1.1.14 Using Python Assertions to Pre-debug Code 60
1.1.15 Stack Tracing with sys.settrace . 61
1.1.16 Debugging Using IPython . 63
1.1.17 Logging from Python . 63

2 Object-Oriented Programming . 67
2.1 Properties/Attributes . 67
2.2 Methods . 69
2.3 Inheritance . 71
2.4 Class Variables . 73
2.5 Class Functions . 74
2.6 Static Methods . 75
2.7 Hashing Hides Parent Variables from Children . 76
2.8 Delegating Functions . 76
2.9 Using super for Delegation . 77
2.10 Metaprogramming: Monkey Patching . 79

ix

x Contents

2.11 Abstract Base Classes . 80
2.12 Descriptors . 82
2.13 Named Tuples and Data Classes . 85
2.14 Generic Functions . 89
2.15 Design Patterns . 91

2.15.1 Template . 91
2.15.2 Singleton . 92
2.15.3 Observer . 93
2.15.4 Adapter . 94

References . 94

3 Using Modules . 95
3.1 Standard Library . 95
3.2 Writing and Using Your Own Modules. 96

3.2.1 Using a Directory as a Module . 98
3.3 Dynamic Importing . 98
3.4 Getting Modules from the Web . 99
3.5 Conda Package Management . 99
References . 101

4 Numpy . 103
4.1 Dtypes . 103
4.2 Multidimensional Arrays . 104
4.3 Reshaping and Stacking Numpy Arrays . 105
4.4 Duplicating Numpy Arrays . 106
4.5 Slicing, Logical Array Operations . 107
4.6 Numpy Arrays and Memory . 108
4.7 Numpy Memory Data Structures . 111
4.8 Array Element-Wise Operations . 114
4.9 Universal Functions . 114
4.10 Numpy Data Input/Output. 115
4.11 Linear Algebra . 115
4.12 Broadcasting . 116
4.13 Masked Arrays . 120
4.14 Floating Point Numbers . 121
4.15 Advanced Numpy dtypes . 125
References . 126

5 Pandas . 127
5.1 Using Series . 127
5.2 Using DataFrame . 131
5.3 Reindexing . 135
5.4 Deleting Items . 136
5.5 Advanced Indexing . 137
5.6 Broadcasting and Data Alignment . 138
5.7 Categorical and Merging . 140

Contents xi

5.8 Memory Usage and dtypes . 143
5.9 Common Operations. 146
5.10 Displaying DataFrames. 148
5.11 Multi-index. 150
5.12 Pipes . 152
5.13 Data Files and Databases . 153
5.14 Customizing Pandas . 154
5.15 Rolling and Filling Operations . 155

6 Visualizing Data . 157
6.1 Matplotlib . 158

6.1.1 Setting Defaults . 160
6.1.2 Legends . 160
6.1.3 Subplots . 161
6.1.4 Spines . 161
6.1.5 Sharing Axes . 162
6.1.6 3D Surfaces . 164
6.1.7 Using Patch Primitives . 164
6.1.8 Patches in 3D . 165
6.1.9 Using Transformations. 168
6.1.10 Annotating Plots with Text . 170
6.1.11 Annotating Plots with Arrows . 171
6.1.12 Embedding Scalable and Non-scalable Subplots 173
6.1.13 Animations . 175
6.1.14 Using Paths Directly . 177
6.1.15 Interacting with Plots Using Sliders . 179
6.1.16 Colormaps . 181
6.1.17 Low-Level Control Using setp and getp 183
6.1.18 Interacting with Matplotlib Figures . 183
6.1.19 Keyboard Events . 184
6.1.20 Mouse Events . 185

6.2 Seaborn . 186
6.2.1 Automatic Aggregation . 190
6.2.2 Multiple Plots . 194
6.2.3 Distribution Plots . 196

6.3 Bokeh. 204
6.3.1 Using Bokeh Primitives. 204
6.3.2 Bokeh Layouts . 206
6.3.3 Bokeh Widgets . 207

6.4 Altair . 213
6.4.1 Detailing Altair. 215
6.4.2 Aggregations and Transformations. 217
6.4.3 Interactive Altair . 222

6.5 Holoviews . 224
6.5.1 Dataset . 230

xii Contents

6.5.2 Image Data . 232
6.5.3 Tabular Data . 232
6.5.4 Customizing Interactivity . 235
6.5.5 Streams . 236
6.5.6 Pandas Integration with hvplot . 237
6.5.7 Network Graphs . 243
6.5.8 Holoviz Panel for Dashboards . 247

6.6 Plotly . 251
References . 259

Index . 261

Chapter 1
Basic Programming

1.1 Basic Language

Before we get into the details, it is a good idea to get a high-level orientation to
Python. This will improve your decision-making later regarding software develop-
ment for your own projects, especially as these get bigger and more complex. Python
grew out of a language called ABC, which was developed in the Netherlands in the
1980s as an alternative to BASIC to get scientists to utilize microcomputers, which
were new at the time. The important impulse was to make non-specialist scientists
able to productively utilize these new computers. Indeed, this pragmatic approach
continues to this day in Python which is a direct descendent of the ABC language.

There is a saying in Python—come for the language, stay for the community.
Python is an open source project that is community driven so there is no corporate
business entity making top-down decisions for the language. It would seem that such
an approach would lead to chaos but Python has benefited over many years from
the patient and pragmatic leadership of Guido van Rossum, the originator of the
language. Nowadays, there is a separate governance committee that has taken over
this role since Guido’s retirement. The open design of the language and the quality
of the source code has made it possible for Python to enjoy many contributions from
talented developers all over the world over many years, as embodied by the richness
of the standard library. Python is also legendary for having a welcoming community
for newcomers so it is easy to find help online for getting started with Python.

The pragmatism of the language and the generosity of the community have long
made Python a great way to develop web applications. Before the advent of data
science and machine learning, upwards of 80% of the Python community were web
developers. In the last five years (at the time of this writing), the balance is tilted to
an almost even split between web developers and data scientists. This is the reason
you find a lot of web protocols and technology in the standard library.

Python is an interpreted language as opposed to a compiled language like C
or FORTRAN. Although both cases start with a source code file, the compiler

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68952-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-68952-0_1

2 1 Basic Programming

examines the source code end-to-end and produces an executable that is linked to
system-specific library files. Once the executable is created, there is no longer any
need for the compiler. You can just run the executable on the system. On the other
hand, an interpreted language like Python you must always have a running Python
process to execute the code. This is because the Python process is an abstraction on
the platform it is running on and thus must interpret the instructions in the source
code to execute them on the platform. As the intermediary between the source
code on the platform, the Python interpreter is responsible for the platform specific
issues. The advantage of this is that source code can be run on different platforms as
long as there is a working Python interpreter on each platform. This makes Python
source codes portable between platforms because the platform specific details are
handled by the respective Python interpreters. Portability between platforms was
a key advantage of Python, especially in the early days. Going back to compiled
languages, because the platform specific details are embedded in the executable, the
executable is tied to a specific platform and to those specific libraries that have been
linked into the executable. This makes these codes are less portable than Python,
but because the compiler is able to link to the specific platform it has the option
to exploit platform- specific level optimizations and libraries. Furthermore, the
compiler can study the source code file and apply compiler-level optimizations that
accelerate the resulting executable. In broad strokes, those are the key differences
between interpreted and compiled languages. We will later see that there are many
compromises between these two extremes for accelerating Python codes.

It is sometimes said that Python is slow as compared to compiled languages,
and pursuant to the differences we discussed above, that may be expected, but it
is really a question of where the clock starts. If you start the clock to account for
developer time, not just code runtime, then Python is clearly faster, just because
the development iteration cycle does not require a tedious compile and link step.
Furthermore, Python is just simpler to use than compiled languages because so
many tricky elements like memory management are handled automatically. Pythons
quick turnaround time is a major advantage for product development, which requires
rapid iteration. On the other hand, codes that are compute-limited and must run
on specialized hardware are not good use-cases for Python. These include solving
systems of parallel differential equations simulating large-scale fluid mechanics or
other large-scale physics calculations. Note that Python is used in such settings but
mainly for staging these computations or postprocessing the resulting data.

1.1.1 Getting Started

Your primary interface to the Python interpreter is the commandline. You can type
in python in your terminal you should see something like the following,

Python 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0] :: Anaconda, Inc. on linux

1.1 Basic Language 3

Type "help", "copyright", "credits" or "license" for more
information.↪→

>>>

There is a lot of useful information including the version of Python and its
provenance. This matters because sometimes the Python interpreter is compiled to
allow fast access to certain preferred modules (i.e., math module). We will discuss
this more when we talk about Python modules.

1.1.2 Reserved Keywords

Although Python will not stop you, do not use these as variable or function names.

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

nor these neither

abs all any ascii bin bool breakpoint bytearray bytes callable
chr classmethod compile complex copyright credits delattr
dict dir display divmod enumerate eval exec filter float
format frozenset getattr globals hasattr hash help hex id
input int isinstance issubclass iter len list locals map max
memoryview min next object oct open ord pow print property
range repr reversed round set setattr slice sorted
staticmethod str sum super tuple type vars zip

For example, a common mistake is to assign sum=10, not realizing that now the
sum() Python function is no longer available.

1.1.3 Numbers

Python has common-sense number-handling capabilities. The comment character is
the hash (#) symbol.

>>> 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5.0

Note that division in Python 2 is integer-division and in Python 3 it is floating
point division with the // symbol providing integer-division. Python is dynamically

4 1 Basic Programming

typed, so we can do the following assignments without declaring the types of
width and height.

>>> width = 20
>>> height = 5*9
>>> width * height
900
>>> x = y = z = 0 # assign x, y and z to zero
>>> x
0
>>> y
0
>>> z
0
>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2 # float numerator
3.5
>>> 7/2
3.5
>>> 7 // 2 # double slash gives integer division
3

It is best to think of assignments as labeling values in memory. Thus, width is a
label for the number 20. This will make more sense later.1Since Python 3.8, the
walrus assignment operator allows the assignment itself to have the value of the
assignee, as in the following,

>>> print(x:=10)
10
>>> print(x)
10

The operator has many other subtle uses and was introduced to improve readability
in certain situations. You can also cast among the numeric types in a common-sense
way:

>>> int(1.33333)
1
>>> float(1)
1.0
>>> type(1)
<class 'int'>
>>> type(float(1))
<class 'float'>

Importantly, Python integers are of arbitrary length and can handle extremely large
integers. This is because they are stored as a list of digits internally. This means that
they are slower to manipulate than Numpy integers which have fixed bit-lengths,
provided that the integer can fit into allocated memory.

1Note http://www.pythontutor.com is a great resource for exploring how variables are assigned in
Python.

http://www.pythontutor.com

1.1 Basic Language 5

Programming Tip: IPython
The default Python interpreter is useful and you should be familiar with it
but the IPython interpretera is a useful extension that provides features like
sophisticated tab-completion and many other conveniences that make it easier
to work with Python in the terminal.

aSee http://github.com/ipython/ipython for the latest on how to get started with IPython.

1.1.4 Complex Numbers

Python has rudimentary support for complex numbers.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)
>>> a=1.5+0.5j
>>> a.real # the dot notation gets an attribute
1.5
>>> a.imag
0.5
>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can't convert complex to float
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> # the underscore character is the last evaluated result
>>> round(_, 2) # the underscore character is the last evaluated

result↪→
113.06

http://github.com/ipython/ipython

6 1 Basic Programming

We typically use Numpy for complex numbers, though.

1.1.5 Strings

String-handling is very well developed and highly optimized in Python. We just
cover the main points here. First, single or double quotes define a string and there is
no precedence relationship between single and double quotes.

>>> 'spam eggs'
'spam eggs'
>>> 'doesn\'t' # backslash defends single quote
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'

Python strings have C-style escape characters for newlinewsnewlines, tabs, etc.
String literals defined this way are by default encoded using UTF-8 instead of
ASCII, as in Python 2. The triple single (’) or triple double quote (") denotes a
block with embedded newlines or other quotes. This is particularly important for
function documentation docstrings that we will discussed later.

>>> print('''Usage: thingy [OPTIONS]
... and more lines
... here and
... here
... ''')
Usage: thingy [OPTIONS]
and more lines
here and
here

Strings can be controlled with a character before the single or double quote. For
example, see the comments (#) below for each step,

>>> # the 'r' makes this a 'raw' string
>>> hello = r"This long string contains newline characters \n, as

in C"↪→
>>> print(hello)
This long string contains newline characters \n, as in C
>>> # otherwise, you get the newline \n acting as such
>>> hello = "This long string contains newline characters \n, as

in C"↪→
>>> print(hello)
This long string contains newline characters
, as in C

1.1 Basic Language 7

>>> u'this a unicode string μ ±' # the 'u' makes it a unicode
string for Python2↪→

'this a unicode string μ ±'
>>> 'this a unicode string μ ±' # no 'u' in Python3 is still

unicode string↪→
'this a unicode string μ ±'
>>> u'this a unicode string \xb5 \xb1' # using hex-codes
'this a unicode string μ ±'

Note that a f-string evaluates (i.e., interpolates) the Python variables in the
current scope,

>>> x = 10
>>> s = f'{x}'
>>> type(s)
<class 'str'>
>>> s
'10'

Beware that an f-string is not resolved until run-time because it has to resolve
the embedded variables. This means that you cannot use f-strings as docstrings.
Importantly, Python strings are immutable which means that once a string is created,
it cannot be changed in-place. For example,

>>> x = 'strings are immutable '
>>> x[0] = 'S' # not allowed!
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

This means you have to create new strings to make this kind of change.

Strings vs Bytes In Python 3, the default string encoding for string literals is UTF-
8. The main thing to keep in mind is that bytes and strings are now distinct objects,
as opposed to both deriving from basestring in Python 2. For example, given
the following unicode string,

>>> x='Ø'
>>> isinstance(x,str) # True
True
>>> isinstance(x,bytes) # False
False
>>> x.encode('utf8') # convert to bytes with encode
b'\xc3\x98'

Note the distinction between bytes and strings. We can convert bytes to strings using
decode,

>>> x=b'\xc3\x98'
>>> isinstance(x,bytes) # True
True
>>> isinstance(x,str) # False
False
>>> x.decode('utf8')
'Ø'

8 1 Basic Programming

An important consequence is that you cannot append strings and bytes as in the
following: u"hello"+b"goodbye". This used to work fine in Python 2 because
bytes would automatically be decoded using ASCII, but this no longer works in
Python 3. To get this behavior, you have to explicitly decode/encode. For
example,

>>> x=b'\xc3\x98'
>>> isinstance(x,bytes) # True
True
>>> y='banana'
>>> isinstance(y,str) # True
True
>>> x+y.encode()
b'\xc3\x98banana'
>>> x.decode()+y
'Øbanana'

Slicing Strings Python is a zero-indexed language (like C). The colon (:) character
denotes .

>>> word = 'Help' + 'A'
>>> word
'HelpA'
>>> '<' + word*5 + '>'
'<HelpAHelpAHelpAHelpAHelpA>'
>>> word[4]
'A'
>>> word[0:2]
'He'
>>> word[2:4]
'lp'
>>> word[-1] # The last character
'A'
>>> word[-2] # The last-but-one character
'p'
>>> word[-2:] # The last two characters
'pA'
>>> word[:-2] # Everything except the last two characters
'Hel'

String Operations Some basic numerical operations work with strings.

>>> 'hey '+'you' # concatenate with plus operator
'hey you'
>>> 'hey '*3 # integer multiplication duplicates strings
'hey hey hey '
>>> ('hey ' 'you') # using parentheses without separating comma
'hey you'

Python has a built-in and very powerful regular expression module (re) for string
manipulations. String substitution creates new strings.

>>> x = 'This is a string'
>>> x.replace('string','newstring')
'This is a newstring'
>>> x # x hasn't changed
'This is a string'

1.1 Basic Language 9

Formatting Strings There are so many ways to format strings in Python, but here
is the simplest that follows C-language sprintf conventions in conjunction with
the modulo operator %.

>>> 'this is a decimal number %d'%(10)
'this is a decimal number 10'
>>> 'this is a float %3.2f'%(10.33)
'this is a float 10.33'
>>> x = 1.03
>>> 'this is a variable %e' % (x) # exponential format
'this is a variable 1.030000e+00'

Alternatively, you can just join them using +,

>>> x = 10
>>> 'The value of x = '+str(x)
'The value of x = 10'

You can format using dictionaries as in the following,

>>> data = {'x': 10, 'y':20.3}
>>> 'The value of x = %(x)d and y = %(y)f'%(data)
'The value of x = 10 and y = 20.300000'

You can use the format method on the string,

>>> x = 10
>>> y = 20
>>> 'x = {0}, y = {1}'.format(x,y)
'x = 10, y = 20'

The advantage of format is you can reuse the placeholders as in the following,

>>> 'x = {0},{1},{0}; y = {1}'.format(x,y)
'x = 10,20,10; y = 20'

And also the f-string method we discussed above.

Programming Tip: Python 2 Strings
In Python 2, the default string encoding was 7-bit ASCII. There was no
distinction between bytes and strings. For example, you could read from a
binary-encoded JPG file as in the following,

with open('hour_1a.jpg','r') as f:
x = f.read()

This works fine in Python 2 but throws a UnicodeDecodeError error in
Python 3. To fix this in Python 3, you have to read using the rb binary mode
instead of just the r file mode.

Basic Data Structures Python provides many powerful data structures. The two
most powerful and fundamental are the list and dictionary. Data structures and

10 1 Basic Programming

algorithms go hand-in-hand. If you do not understand data structures, then you
cannot effectively write algorithms and vice versa. Fundamentally, data structures
provide guarantees to the programmer that will be fulfilled if the data structures are
used in the agreed-upon manner. These guarantees are known as the invariants for
the data structure.

Lists The list is an order-preserving general container that implements the
sequence data structure. The invariant for the list is that indexing a non-empty list
will always give you the next valid element in order. Indeed, the list is Python’s
primary ordered data structure. This means that if you have a problem where order
is important, then you should be thinking about the list data structure. This will
make sense with following examples.

>>> mix = [3,'tree',5.678,[8,4,2]] # can contain sublists
>>> mix
[3, 'tree', 5.678, [8, 4, 2]]
>>> mix[0] # zero-indexed Python
3
>>> mix[1] # indexing individual elements
'tree'
>>> mix[-2] # indexing from the right, same as strings
5.678
>>> mix[3] # get sublist
[8, 4, 2]
>>> mix[3][1] # last element is sublist
4
>>> mix[0] = 666 # lists are mutable
>>> mix
[666, 'tree', 5.678, [8, 4, 2]]
>>> submix = mix[0:3] # creating sublist
>>> submix
[666, 'tree', 5.678]
>>> switch = mix[3] + submix # append two lists with plus
>>> switch
[8, 4, 2, 666, 'tree', 5.678]
>>> len(switch) # length of list is built-in function
6
>>> resize=[6.45,'SOFIA',3,8.2E6,15,14]
>>> len(resize)
6
>>> resize[1:4] = [55] # assign slices
>>> resize
[6.45, 55, 15, 14]
>>> len(resize) # shrink a sublist
4
>>> resize[3]=['all','for','one']
>>> resize
[6.45, 55, 15, ['all', 'for', 'one']]
>>> len(resize)
4
>>> resize[4]=2.87 # cannot append this way!
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range
>>> temp = resize[:3]

1.1 Basic Language 11

>>> resize = resize + [2.87] # add to list
>>> resize
[6.45, 55, 15, ['all', 'for', 'one'], 2.87]
>>> len(resize)
5
>>> del resize[3] # delete item
>>> resize
[6.45, 55, 15, 2.87]
>>> len(resize) # shorter now
4
>>> del resize[1:3] # delete a sublist
>>> resize
[6.45, 2.87]
>>> len(resize) # shorter now
2

Programming Tip: Sorting Lists
The built-in function sorted sorts lists,

>>> sorted([1,9,8,2])
[1, 2, 8, 9]

Lists can also be sorted in-place using the sort() list method,

>>> x = [1,9,8,2]
>>> x.sort()
>>> x
[1, 2, 8, 9]

Both of these use the powerful Timsort algorithm. Later, we will see more
variations and uses for these sorting functions.

Now that we have a feel for how to index and use lists, let us talk about the invariant
that it provides: as long as you index a list within its bounds, it provides the next
ordered element of the list. For example,

>>> x = ['a',10,'c']
>>> x[1] # return 10
10
>>> x.remove(10)
>>> x[1] # next element
'c'

Notice that the list data structure filled in the gap after removing 10. This is extra
work that the list data structure did for you without explicitly programming. Also,
list elements are accessible via integer indices and integers have a natural ordering
and thus so does the list. The work of maintaining the invariant does not come for
free, however. Consider the following,

>>> x = [1,3,'a']
>>> x.insert(0,10) # insert at beginning

12 1 Basic Programming

>>> x
[10, 1, 3, 'a']

Seem harmless? Sure, for small lists, but not so for large lists. This is because
to maintain the invariant the list has to scoot (i.e., memory copy) the remaining
elements over to the right to accommodate the new element added at the beginning.
Over a large list with millions of elements and in a loop, this can take a substantial
amount of time. This is why the default append() and pop() list methods work
at the tail end of the list, where there is no need to scoot items to the right.

Tuples Tuples are another general purpose sequential container in Python, very
similar to lists, but these are immutable. Tuples are delimited by commas (parenthe-
ses are grouping symbols). Here are some examples,

>>> a = 1,2,3 # no parenthesis needed!
>>> type(a)
<class 'tuple'>
>>> pets=('dog','cat','bird')
>>> pets[0]
'dog'
>>> pets + pets # addition
('dog', 'cat', 'bird', 'dog', 'cat', 'bird')
>>> pets*3
('dog', 'cat', 'bird', 'dog', 'cat', 'bird', 'dog', 'cat', 'bird')
>>> pets[0]='rat' # assignment not work!
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

It may seem redundant to have tuples which behave in terms of their indexing like
lists, but the key difference is that tuples are immutable, as the last line above shows.
The key advantage of immutability is that it comes with less overhead for Python
memory management. In this sense, they are lighter weight and provide stability for
codes that pass tuples around. Later, we will see this for function signatures, which
is where the major advantages of tuples arise.

Programming Tip: Understanding List Memory
Python’s id function shows an integer corresponding to the internal reference
for a given variable. Earlier, we suggested considering variable assignment as
labeling because internally Python works with a variable’s id, not its variable
name/label.

>>> x = y = z = 10.1100
>>> id(x) # different labels for same id
140271927806352
>>> id(y)
140271927806352
>>> id(z)
140271927806352

(continued)

1.1 Basic Language 13

This is more consequential for mutable data structures like lists. Consider the
following,

>>> x = y = [1,3,4]
>>> x[0] = 'a'
>>> x
['a', 3, 4]
>>> y
['a', 3, 4]
>>> id(x),id(y)
(140271930505344, 140271930505344)

Because x and y are merely two labels for the same underlying list, changes to
one of the labels affects both lists. Python is inherently stingy about allocating
new memory so if you want to have two different lists with the same content,
you can force a copy as in the following,

>>> x = [1,3,4]
>>> y = x[:] # force copy
>>> id(x),id(y) # different ids now!
(140271930004160, 140271929640448)
>>> x[1] = 99
>>> x
[1, 99, 4]
>>> y # retains original data
[1, 3, 4]

Tuple Unpacking Tuples unpack assignments in order as follows:,

>>> a,b,c = 1,2,3
>>> a
1
>>> b
2
>>> c
3

Python 3 can unpack tuples in chunks using the * operator,

>>> x,y,*z = 1,2,3,4,5
>>> x
1
>>> y
2
>>> z
[3, 4, 5]

Note how the z variable collected the remaining items in the assignment. You can
also change the order of the chunking,

>>> x,*y,z = 1,2,3,4,5
>>> x
1

14 1 Basic Programming

>>> y
[2, 3, 4]
>>> z
5

This unpacking is sometimes called de-structuring, or splat, in case you read this
term elsewhere.

Dictionaries Python dictionaries are central to Python because many other ele-
ments (e.g., functions, classes) are built around them. Effectively programming
Python means using dictionaries effectively. Dictionaries are general containers that
implement the mapping data structure, which is sometimes called a hash table or
associative array. Dictionaries require a key/value pair, which maps the key to the
value.

>>> x = {'key': 'value'}

The curly braces and the colon make the dictionary. To retrieve the value from the
x dictionary, you must index it with the key as shown,

>>> x['key']
'value'

Let us get started with some basic syntax.

>>> x={'play':'Shakespeare','actor':'Wayne','direct':'Kubrick',
... 'author':'Hemmingway','bio':'Watson'}

>>> len(x) # number of key/value pairs
5
>>> x['pres']='F.D.R.' # assignment to key 'pres'
>>> x
{'play': 'Shakespeare', 'actor': 'Wayne', 'direct': 'Kubrick',

'author': 'Hemmingway', 'bio': 'Watson', 'pres': 'F.D.R.'}↪→
>>> x['bio']='Darwin' # reassignment for 'bio' key
>>> x
{'play': 'Shakespeare', 'actor': 'Wayne', 'direct': 'Kubrick',

'author': 'Hemmingway', 'bio': 'Darwin', 'pres': 'F.D.R.'}↪→
>>> del x['actor'] # delete key/value pair
>>> x
{'play': 'Shakespeare', 'direct': 'Kubrick', 'author':

'Hemmingway', 'bio': 'Darwin', 'pres': 'F.D.R.'}↪→

Dictionaries can also be created with the dict built-in function,

>>> # another way of creating a dict
>>> x=dict(key='value',
... another_key=1.333,
... more_keys=[1,3,4,'one'])
>>> x
{'key': 'value', 'another_key': 1.333, 'more_keys': [1, 3, 4,

'one']}↪→
>>> x={(1,3):'value'} # any immutable type can be a valid key
>>> x
{(1, 3): 'value'}
>>> x[(1,3)]='immutables can be keys'

1.1 Basic Language 15

As generalized containers, dictionaries can contain other dictionaries or lists or other
Python types.

Programming Tip: Unions of Dictionaries
What if you want to create a union of dictionaries in one- line?

>>> d1 = {'a':1, 'b':2, 'c':3}
>>> d2 = {'A':1, 'B':2, 'C':3}
>>> dict(d1,**d2) # combo of d1 and d2
{'a': 1, 'b': 2, 'c': 3, 'A': 1, 'B': 2, 'C': 3}
>>> {**d1,**d2} # without dict function
{'a': 1, 'b': 2, 'c': 3, 'A': 1, 'B': 2, 'C': 3}

Pretty slick.

The invariant that the dictionary provides is that as long as you provide a valid key,
then it will always retrieve the corresponding value; or, in the case of assignment,
store the value reliably. Recall that lists are ordered data structures in the sense that
when elements are indexed, the next element can be found by a relative offset from
the prior one. This means that these elements are laid out contiguously in memory.
Dictionaries do not have this property because they will put values wherever they
can find memory, contiguous or not. This is because dictionaries do not rely upon
relative offsets for indexing, they rely instead on a hash function. Consider the
following,

>>> x = {0: 'zero', 1: 'one'}
>>> y = ['zero','one']
>>> x[1] # dictionary
'one'
>>> y[1] # list
'one'

Indexing both variables looks notationally the same in both cases, but the process
is different. When given a key, the dictionary computes a hash function and the
stores the value at a memory location based upon the hash function. What is a hash
function? A hash function takes an input and is designed to return, with very high
probability, a value that is unique to the key. In particular, this means that two keys
cannot have the same hash, or, equivalently, cannot store different values in the
same memory location. Here are two keys which are almost identical, but have very
different hashes.

>>> hash('12345')
3973217705519425393
>>> hash('12346')
3824627720283660249

All this is with respect to probability, though. Because memory is finite, it could
happen that the hash function produces values that are the same. This is known
as a hash collision and Python implements fallback algorithms to handle this

16 1 Basic Programming

case. Nonetheless, as memory becomes scarce, especially on a small platform, the
struggle to find suitable blocks of memory can be noticeable if your code uses many
large dictionaries.

As we discussed before, inserting/removing elements from the middle of a list
causes extra memory movement as the list maintains its invariant but this does
not happen for dictionaries. This means that elements can be added or removed
without any extra memory overhead beyond the cost of computing the hash function
(i.e., constant-time lookup). Thus, dictionaries are ideal for codes that do not need
ordering. Note that since Python 3.6+, dictionaries are ordered in the sense of the
order in which items were inserted to the dictionary. In Python 2.7, this was known
as collections.OrderedDict but has since become the default in Python
3.6+.

Now that we have a good idea of how dictionaries work, consider the inputs to
the hash function: the keys. We have mainly used integers and strings for keys, but
any immutable type can also be used, such as a tuple,

>>> x= {(1,3):10, (3,4,5,8):10}

However, if you try to use a mutable type as a key,

>>> a = [1,2]
>>> x[a]= 10
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Let us think about why this happens. Remember that the hash function guarantees
that when given a key it will always be able to retrieve the value. Suppose that it
were possible use mutable keys in dictionaries. In the above code, we would have
hash(a) -> 132334, as an example, and let us suppose the 10 value is inserted
in that memory slot. Later in the code, we could change the contents of a as in
a[0]=3. Now, because the hash function is guaranteed to produce different outputs
for different inputs, the hash function output would be different from 132334 and
thus the dictionary could not retrieve the corresponding value, which would violate
its invariant. Thus we have arrived at a contradiction that explains why dictionary
keys must be immutable.

Sets Python provides mathematical sets and corresponding operations with the
set() data structure, which are basically dictionaries without values.

>>> set([1,2,11,1]) # union-izes elements
{1, 2, 11}
>>> set([1,2,3]) & set([2,3,4]) # bitwise intersection
{2, 3}
>>> set([1,2,3]) and set([2,3,4])
{2, 3, 4}
>>> set([1,2,3]) ^ set([2,3,4]) # bitwise exclusive OR
{1, 4}
>>> set([1,2,3]) | set([2,3,4]) # OR
{1, 2, 3, 4}
>>> set([[1,2,3],[2,3,4]]) # no sets of lists

1.1 Basic Language 17

(without more work)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Note that since Python 3.6+, keys can be used as set objects, as in the following,

>>> d = dict(one=1,two=2)
>>> {'one','two'} & d.keys() # intersection
{'one', 'two'}
>>> {'one','three'} | d.keys() # union
{'one', 'two', 'three'}

This also works for dictionary items if the values are hashable,

>>> d = dict(one='ball',two='play')
>>> {'ball','play'} | d.items()
{'ball', 'play', ('one', 'ball'), ('two', 'play')}

Once you create a set, you can add individual elements or remove them as follows:,

>>> s = {'one',1,3,'10'}
>>> s.add('11')
>>> s
{1, 3, 'one', '11', '10'}
>>> s.discard(3)
>>> s
{1, 'one', '11', '10'}

Remember sets are not ordered and you cannot directly index any of the constituent
items. Also, the subset() method is for a proper subset not a partial subset. For
example,

>>> a = {1,3,4,5}
>>> b = {1,3,4,5,6}
>>> a.issubset(b)
True
>>> a.add(1000)
>>> a.issubset(b)
False

And likewise for issuperset. Sets are optimal for fast lookups in Python, as in
the following,

>>> a = {1,3,4,5,6}
>>> 1 in a
True
>>> 11 in a
False

which works really fast, even for large sets.

1.1.6 Loops and Conditionals

There are two primary looping constructs in Python: the for loop and the while
loop. The syntax of the for loop is straightforward:

18 1 Basic Programming

>>> for i in range(3):
... print(i)
...
0
1
2

Note the colon character at the end. This is your hint that the next line should be
indented. In Python, blocks are denoted by whitespace indentation (four spaces
is recommended) which makes the code more readable anyway. The for loop
iterates over items that provided by the iterator, which is the range(3) list
in the above example. Python abstracts the idea of iterable out of the looping
construction so that some Python objects are iterable all by themselves and are just
waiting for an iteration provider like a for or while loop to get them going.
Interestingly, Python has an else clause, which is used to determine whether or
not the loop exited with a break3or not.

>>> for i in [1,2,3]:
... if i>20:
... break # won't happen
... else:
... print('no break here!')
...
no break here!

The else block is only executed when the loop terminates without breaking.
The while loop has a similar straightforward construct:

>>> i = 0
>>> while i < 3:
... i += 1
... print(i)
...
1
2
3

This also has a corresponding optional else block. Again, note that the presence
of the colon character hints at indenting the following line. The while loop will
continue until the boolean expression (i.e., i<10) evaluates False. Let us consider
boolean and membership in Python.

Logic and Membership Python is a truthy language in the sense that things are
true except for the following:

• None
• False
• zero of any numeric type, for example, 0, 0L, 0.0, 0j.
• any empty sequence, for example, ”, (), [].

3There is also a continue statement which will jump to the top of the for or while loop.

1.1 Basic Language 19

• any empty mapping, for example, {}.
• instances of user-defined classes, if the class defines a __nonzero__() or

__len__() method, when that method returns the integer zero or bool value
False.

Let us try some examples,

>>> bool(1)
True
>>> bool([]) # empty list
False
>>> bool({}) # empty dictionary
False
>>> bool(0)
False
>>> bool([0,]) # list is not empty!
True

Python is syntactically clean about numeric intervals!

>>> 3.2 < 10 < 20
True
>>> True
True

You can use disjunctions (or), negations (not), and conjunctions (and) also.

>>> 1 < 2 and 2 < 3 or 3 < 1
True
>>> 1 < 2 and not 2 > 3 or 1<3
True

Use grouping parentheses for readability. You can use logic across iterables as in
the following:

>>> (1,2,3) < (4,5,6) # at least one True
True
>>> (1,2,3) < (0,1,2) # all False
False

Do not use relative comparison for Python strings (i.e., ’a’< ’b’) which is obtuse
to read. Use string matching operations instead (i.e., ==). Membership testing uses
the in keyword.

>>> 'on' in [22,['one','too','throw']]
False
>>> 'one' in [22,['one','too','throw']] # no recursion
False
>>> 'one' in [22,'one',['too','throw']]
True
>>> ['too','throw'] not in [22,'one',['too','throw']]
False

If you are testing membership across millions of elements it is much faster to use
set() instead of list. For example,

20 1 Basic Programming

>>> 'one' in {'one','two','three'}
True

The is keyword is stronger than equality, because it checks if two objects are the
same.

>>> x = 'this string'
>>> y = 'this string'
>>> x is y
False
>>> x==y
True

However, is checks the id of each of the items:

>>> x=y='this string'
>>> id(x),id(y)
(140271930045360, 140271930045360)
>>> x is y
True

By virtue of this, the following idioms are common: x is True, x is None.
Note that None is Python’s singleton.

Conditionals Now that we understand boolean expressions, we can build condi-
tional statements using if.

>>> if 1 < 2:
... print('one less than two')
...
one less than two

There is an else and elif, but no switch statement.

>>> a = 10
>>> if a < 10:
... print('a less than 10')
... elif a < 20:
... print('a less than 20')
... else:
... print('a otherwise')
...
a less than 20

There is a rare one-liner for conditionals

>>> x = 1 if (1>2) else 3 # 1-line conditional
>>> x
3

List Comprehensions Collecting items over a loop is so common that it is its own
idiom in Python. That is,

>>> out=[] # initialize container
>>> for i in range(10):
... out.append(i**2)
...
>>> out
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

1.1 Basic Language 21

This can be abbreviated as a list comprehension.

>>> [i**2 for i in range(10)] # squares of integers
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Conditional elements can be embedded in the list comprehension.

>>> [i**2 for i in range(10) if i % 2] # embedded conditional
[1, 9, 25, 49, 81]

which is equivalent to the following,

>>> out = []
>>> for i in range(10):
... if i % 2:
... out.append(i**2)
...
>>> out
[1, 9, 25, 49, 81]

These comprehensions also work with dictionaries and sets.

>>> {i:i**2 for i in range(5)} # dictionary
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
>>> {i**2 for i in range(5)} # set
{0, 1, 4, 9, 16}

1.1.7 Functions

There are two common ways to define functions. You can use the def keyword as
in the following:

>>> def foo():
... return 'I said foo'
...
>>> foo()
'I said foo'

Note that you need a return statement and the trailing parenthesis to invoke the
function. Without the return statement, the functions returns the None singleton.
Functions are first-class objects.

>>> foo # just another Python object
<function foo at 0x7f939a6ecc10>

In the early days of Python, this was a key feature because otherwise only pointers
to functions could be passed around and those required special handling. Practically
speaking, firsts-class objects can be manipulated like any other Python object—they
can be put in containers and passed around without any special handling. Naturally,
we want to supply arguments to our functions. There are two kinds of function
arguments positional and keyword.

22 1 Basic Programming

>>> def foo(x): # positional argument
... return x*2
...
>>> foo(10)
20

Positional arguments can be specified with their names,

>>> def foo(x,y):
... print('x=',x,'y=',y)
...

The variables x and y can be specified by their position as follows:,

>>> foo(1,2)
x= 1 y= 2

These can also be specified using the names instead of the positions as follows:,

>>> foo(y=2,x=1)
x= 1 y= 2

Keyword arguments allow you to specify defaults.

>>> def foo(x=20): # keyword named argument
... return 2*x
...
>>> foo(1)
2
>>> foo()
40
>>> foo(x=30)
60

You can have multiple specified defaults,

>>> def foo(x=20,y=30):
... return x+y
...
>>> foo(20,)
50
>>> foo(1,1)
2
>>> foo(y=12)
32
>>> help(foo)
Help on function foo:

foo(x=20, y=30)

Programming Tip: Documenting Functions
Whenever possible, provide meaningful variable names and defaults for your
functions along with documentation strings. This makes your code easy to
navigate, understand, and use.

1.1 Basic Language 23

Python makes it easy to include documentation for your functions using docstrings.
Thise makes the help function more useful for functions.

>>> def compute_this(position=20,velocity=30):
... '''position in m
... velocity in m/s
... '''
... return x+y
...
>>> help(compute_this)
Help on function compute_this:

compute_this(position=20, velocity=30)
position in m
velocity in m/s

Thus, by using meaningful argument and function names and including basic
documentation in the docstrings, you can greatly improve the usability of your
Python functions. Also, it is recommended to make function names verb-like (e.g.,
get_this, compute_field).

In addition to using the def statement, you can also create one-line functions
using lambda. These are sometimes called anonymous functions.

>>> f = lambda x: x**2 # anonymous functions
>>> f(10)
100

As first-class objects, functions can be put into lists just like any other Python object,

>>> [lambda x: x, lambda x:x**2] # list of functions
[<function <lambda> at 0x7f939a6ba700>, <function <lambda> at

0x7f939a6ba790>]↪→
>>> for i in [lambda x: x, lambda x:x**2]:
... print(i(10))
...
10
100

So far, we have not made good use of tuple, but these data structures become
very powerful when used with functions. This is because they allow you to separate
the function arguments from the function itself. This means you can pass them
around and build function arguments and then later execute them with one or more
functions. Consider the following function,

>>> def foo(x,y,z):
... return x+y+z
...
>>> foo(1,2,3)
6
>>> args = (1,2,3)
>>> foo(*args) # splat tuple into arguments
6

The star notation in front of the tuple unpacks the tuple into the function signature.
We have already seen this kind of unpacking assignment with tuples.

24 1 Basic Programming

>>> x,y,z = args
>>> x
1
>>> y
2
>>> y
2

This is the same behavior for unpacking into the function signature. The double
asterisk notation does the corresponding unpacking for keyword arguments,

>>> def foo(x=1,y=1,z=1):
... return x+y+z
...
>>> kwds = dict(x=1,y=2,z=3)
>>> kwds
{'x': 1, 'y': 2, 'z': 3}
>>> foo(**kwds) # double asterisks for keyword splat
6

You can use both at the same time:

>>> def foo(x,y,w=10,z=1):
... return (x,y,w,z)
...
>>> args = (1,2)
>>> kwds = dict(w=100,z=11)
>>> foo(*args,**kwds)
(1, 2, 100, 11)

Function Variable Scoping Variables within functions or subfunctions are local to
that respective scope. Global variables require special handling if they are going to
be changed inside the function body.

>>> x=10 # outside function
>>> def foo():
... return x
...
>>> foo()
10
>>> print('x = %d is not changed'%x)
x = 10 is not changed

>>> def foo():
... x=1 # defined inside function
... return x
...
>>> foo()
1
>>> print('x = %d is not changed'%x)
x = 10 is not changed

>>> def foo():
... global x # define as global
... x=20 # assign inside function scope
... return x

1.1 Basic Language 25

...
>>> foo()
20
>>> print('x = %d IS changed!'%x)
x = 20 IS changed!

Function Keyword Filtering Using **kwds at the end allows a function to
disregard unused keywords while filtering out (using the function signature) the
keyword inputs that it does use.

>>> def foo(x=1,y=2,z=3,**kwds):
... print('in foo, kwds = %s'%(kwds))
... return x+y+z
...
>>> def goo(x=10,**kwds):
... print('in goo, kwds = %s'%(kwds))
... return foo(x=2*x,**kwds)
...
>>> def moo(y=1,z=1,**kwds):
... print('in moo, kwds = %s'%(kwds))
... return goo(x=z+y,z=z+1,q=10,**kwds)
...

This means you can call any of these with an unspecified keyword as in

>>> moo(y=91,z=11,zeta_variable = 10)
in moo, kwds = {'zeta_variable': 10}
in goo, kwds = {'z': 12, 'q': 10, 'zeta_variable': 10}
in foo, kwds = {'q': 10, 'zeta_variable': 10}
218

and the zeta_variable will be passed through unused because no function uses it.
Thus, you can inject some other function in the calling sequence that does use this
variable, without having to change the call signatures of any of the other functions.
Using keyword arguments this way is very common when using Python to wrap
other codes.

Because this is such an awesome and useful Python feature, here is another
example where we can trace how each of the function signatures is satisfied and
the rest of the keyword arguments are passed through.

>>> def foo(x=1,y=2,**kwds):
... print('foo: x = %d, y = %d, kwds=%r'%(x,y,kwds))
... print('\t',)
... goo(x=x,**kwds)
...
>>> def goo(x=10,**kwds):
... print('goo: x = %d, kwds=%r'%(x,kwds))
... print('\t\t',)
... moo(x=x,**kwds)
...
>>> def moo(z=20,**kwds):
... print('moo: z=%d, kwds=%r'%(z,kwds))
...

Then,

26 1 Basic Programming

>>> foo(x=1,y=2,z=3,k=20)
foo: x = 1, y = 2, kwds={'z': 3, 'k': 20}

goo: x = 1, kwds={'z': 3, 'k': 20}

moo: z=3, kwds={'x': 1, 'k': 20}

Notice how the function signatures of each of the functions are satisfied and the rest
of the keyword arguments are passed through.

Python 3 has the ability to force users to supply keywords arguments using the *
symbol in the function signature,

>>> def foo(*,x,y,z):
... return x*y*y
...

Then,

>>> foo(1,2,3) # no required keyword arguments?
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: foo() takes 0 positional arguments but 3 were given
>>> foo(x=1,y=2,z=3) # must use keywords
4

Using *args and **kwargs provides a general interface function arguments but
these do not play nicely with integrated code development tools because the variable
introspection does not work for these function signatures. For example,

>>> def foo(*args,**kwargs):
... return args, kwargs
...
>>> foo(1,2,2,x=12,y=2,q='a')
((1, 2, 2), {'x': 12, 'y': 2, 'q': 'a'})

This leaves it up to the function to process the arguments, which makes for an
unclear function signature. You should avoid this whenever possible.

Functional Programming Idioms Although not a real functional programming
language like Haskell, Python has useful functional idioms. These idioms become
important in parallel computing frameworks like PySpark.

>>> map(lambda x: x**2 , range(10))
<map object at 0x7f939a6a6fa0>

This applies the given (lambda) function to each of the iterables in range(10) but
you have to convert it to a list to get the output.

>>> list(map(lambda x: x**2 , range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

This gives the same output as the corresponding list comprehension,

>>> list(map(lambda x: x**2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> [i**2 for i in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

1.1 Basic Language 27

There is also a reduce function,

>>> from functools import reduce
>>> reduce(lambda x,y:x+2*y,[0,1,2,3],0)
12
>>> [i for i in range(10) if i %2]
[1, 3, 5, 7, 9]

Pay attention to the recursive problem that functools.reduce solves because
functools.reduce is super-fast in Python. For example, the least common
multiple algorithm can be effectively implemented using functools.reduce,
as shown:

>>> from functools import reduce
>>> def gcd(a, b):
... 'Return greatest common divisor using Euclids Algorithm.'
... while b:
... a, b = b, a % b
... return a
...
>>> def lcm(a, b):
... 'Return lowest common multiple.'
... return a * b // gcd(a, b)
...
>>> def lcmm(*args):
... 'Return lcm of args.'
... return reduce(lcm, args)
...

Programming Tip: Beware Default Containers in Functions

>>> def foo(x=[]): # using empty list as default
... x.append(10)
... return x
...
>>> foo() # maybe you expected this...
[10]
>>> foo() # ... but did you expect this...
[10, 10]
>>> foo() # ... or this? What's going on here?
[10, 10, 10]

Unspecified arguments are usually handled with None in the function signature,

>>> def foo(x=None):
... if x is None:
... x = 10
...

The logic of the code resolves the missing items.

28 1 Basic Programming

Function Deep Dive Let us see how Python constructs the function object with an
example:

>>> def foo(x):
... return x
...

The __code__ attribute of the foo function contains the internals of the function.
For example, foo.__code__.co_argcount show the number of arguments for the
foo function.

>>> foo.__code__.co_argcount
1

The co_varnames attribute gives the name of the argument as a tuple of strings,

>>> foo.__code__.co_varnames
('x',)

Local variables are also contained in the function object.

>>> def foo(x):
... y= 2*x
... return y
...
>>> foo.__code__.co_varnames
('x', 'y')

Recall that functions can also use *args for arbitrary inputs not specified at the
time of function definition.

>>> def foo(x,*args):
... return x+sum(args)
...
>>> foo.__code__.co_argcount # same as before?
1

The argument count did not increase because *args is handled with the co_flags

attribute of the function object. This is a bitmask that indicates other aspects of the
function object.

>>> print('{0:b}'.format(foo.__code__.co_flags))
1000111

Note that the third bit (i.e., 2^2 coefficient) is 1 which indicates that the function
signature contains a *args entry. In hexadecimal, the 0x01 mask corresponds
to co_optimized (use fast locals), 0x02 to co_newlocals (new dictionary for
code block), 0x04 to co_varags (has *args), 0x08 to co_varkeywords (has
**kwds in function signature), 0x10 to co_nested (nested function scope), and
finally 0x20 to co_generator (function is a generator).

The dis module can help unpack the function object.

1.1 Basic Language 29

>>> def foo(x):
... y= 2*x
... return y
...
>>> import dis
>>> dis.show_code(foo)
Name: foo
Filename: <stdin>
Argument count: 1
Positional-only arguments: 0
Kw-only arguments: 0
Number of locals: 2
Stack size: 2
Flags: OPTIMIZED, NEWLOCALS, NOFREE
Constants:

0: None
1: 2

Variable names:
0: x
1: y

Note that constants are not compiled into byte-code, but are stored in the function
object and then referenced later in the byte-code. For example,

>>> def foo(x):
... a,b = 1,2
... return x*a*b
...
>>> print(foo.__code__.co_varnames)
('x', 'a', 'b')
>>> print(foo.__code__.co_consts)
(None, (1, 2))

where the None singleton is always available here for use in the function. Now, we
can examine the byte-code in the co_code attribute in more detail using dis.dis

>>> print(foo.__code__.co_code) # raw byte-code
b'd\x01\\\x02}\x01}\x02|\x00|\x01\x14\x00|\x02\x14\x00S\x00'
>>> dis.dis(foo)

2 0 LOAD_CONST 1 ((1, 2))
2 UNPACK_SEQUENCE 2
4 STORE_FAST 1 (a)
6 STORE_FAST 2 (b)

3 8 LOAD_FAST 0 (x)
10 LOAD_FAST 1 (a)
12 BINARY_MULTIPLY
14 LOAD_FAST 2 (b)
16 BINARY_MULTIPLY
18 RETURN_VALUE

where LOAD_CONST takes the constants previously stored in the function and
LOAD_FAST means use a local variable and the rest are self-explanatory. Functions
store default values in the __defaults__ tuple. For example,

>>> def foo(x=10):
... return x*10

30 1 Basic Programming

...
>>> print(foo.__defaults__)
(10,)

The scoping rules for functions follow the order Local, Enclosing (i.e., closure),
Global, Built-ins (LEGB). In the function body, when Python encounters a variable,
it first checks to see if it is a local variable (co_varnames)) and then checks for the
rest if it is not. Here is an interesting example,

>>> def foo():
... print('x=',x)
... x = 10
...
>>> foo()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in foo

UnboundLocalError: local variable 'x' referenced before assignment

Why is this? Let us look at the function internals:

>>> foo.__code__.co_varnames
('x',)

When Python tries to resolve x, it checks to see if it is a local variable, and it is
because it shows up in co_varnames, but there has been no assignment to it and
therefore generates the UnboundLocalError.

Enclosing for function scoping is more involved. Consider the following code,

>>> def outer():
... a,b = 0,0
... def inner():
... a += 1
... b += 1
... print(f'{a},{b}')
... return inner
...
>>> f = outer()
>>> f()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in inner

UnboundLocalError: local variable 'a' referenced before assignment

We saw this error above. Let us examine the function object,

>>> f.__code__.co_varnames
('a', 'b')

This means that the inner function thinks these variables are local to it when they
actually exist in the enclosing function scope. We can fix this with the nonlocal
keyword.

>>> def outer():
... a,b = 0,0

1.1 Basic Language 31

... def inner():

... nonlocal a,b # use nonlocal

... a+=1

... b+=1

... print(f'{a},{b}')

... return inner

...
>>> f = outer()
>>> f() # this works now
1,1

If you go back and check the co_varnames attribute, you will see that it is empty.
The co_freevars in the inner function contains the info for the nonlocal
variables,

>>> f.__code__.co_freevars
('a', 'b')

so that the inner function knows what these are in the enclosing scope. The outer
function also knows which variables are being used in the embedded function via
the co_cellvars attribute.

>>> outer.__code__.co_cellvars
('a', 'b')

Thus this enclosing relationship goes both ways.

Function Stack Frames Nested Python functions are put on a stack. For example,

>>> def foo():
... return 1
...
>>> def goo():
... return 1+foo()
...

So when goo is called, it calls foo so that foo is on top of goo in the stack.
The stack frame is the data structure that maintains program scope and information
about the state of the execution. Thus, in this example, there are two frames for each
function with foo on the topmost level of the stack.

We can inspect the internal execution state via the stack frame using the
following,

>>> import sys
>>> depth = 0 # top of the stack
>>> frame = sys._getframe(depth)
>>> frame
<frame at 0x7f939a6bcba0, file '<stdin>', line 1, code <module>>

where depth is the number of calls below the top of the stack and 0 corresponds
to the current frame. Frames contain local variables (frame.f_locals) in the
current scope and global variables (frame.f_globals) in the current module. Note
that local and global variables can also be accessed using the locals() and
globals() built-in functions. The frame object also has the f_lineno (current

32 1 Basic Programming

line number), f_trace (tracing function), and f_back (reference to prior frame)
attributes. During an unhandled exception, Python navigates backwards to display
the stack frames using f_back. It is important to delete the frame object otherwise
there is the danger of creating a reference cycle.

The stack frame also contains frame.f_code which is executable byte-code.
This is different from the function object because it does not contain the same
references to the global execution environment. For example, a code object can be
created using the compile built-in.

>>> c = compile('1 + a*b','tmp.py','eval')
>>> print(c)
<code object <module> at 0x7f939a6a5df0, file "tmp.py", line 1>
>>> eval(c,dict(a=1,b=2))
3

Note that eval evaluates the expression for the code object. The code object
contains the co_filename (filename where created), co_name (name of func-
tion/module), co_varnames (names of variables), and co_code (compiled byte-
code) attributes.

Programming Tip: Asserts in Functions
Writing clean and reusable functions is fundamental to effective Python pro-
gramming. The easiest way to vastly improve your functions’ reliability and
reusability is sprinkle assert statements into your code. These statements
raise an AssertionError if False and provide a good way to ensure that
your function is behaving as expected. Consider the following example,

>>> def foo(x):
... return 2*x
...

>>> foo(10)
20
>>> foo('x')
'xx'

If the intention of the function is work with numerical inputs, then the
foo(’x’) slipped right through, but is still valid Python. This is called fail-
through and is the most insidious byproduct of dynamic typing. A quick way
to fix this is to assert the input as in the following,

>>> def foo(x):
... assert isinstance(x,int)
... return 2*x
...
>>> foo('x')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

(continued)

1.1 Basic Language 33

File "<stdin>", line 2, in foo
AssertionError

Now, the function is restricted to work with integer inputs and will raise
AssertionError otherwise. Beyond checking types, assert statements
can ensure the business logic of your functions by checking that intermediate
computations are always positive, add up to one, or whatever. Also, there
is a command line switch on python that will allow you to turn off
assert statements, if need be; but your assert statements should not
be excessively complicated, but rather should provide a fallback position
for unexpected usages. Think of assert statements and pre-placement of
debugger breakpoints that you can use later.

Clear and expressive functions are the hallmark of solid Python programming.
Using variable and function names that are clear, with corresponding detailed
docstrings means that users of your functions (including later versions of yourself)
will thank you. A good general rule of thumb is that your docstring should
be longer than the body of your function. If not, then break up your function
into smaller chunks. For examples of outstanding Python code, check out the
networkx3project.

Lazy Evaluation and Function Signatures Consider the following function,

>>> def foo(x):
... return a*x
...

Note that the interpreter does not complain when you define this function even
though the variable a is not defined. It will only complain when you try to run the
function. This is because Python functions are lazy evaluated, which means that the
function bodies are only processed when called. Thus, the function does not know
about the missing a variable until it tries to look it up in the namespace. Although
the function bodies are lazy evaluated, the function signature is eagerly evaluated.
Consider the following experiment,

>>> def report():
... print('I was called!')
... return 10
...
>>> def foo(x = report()):
... return x
...
I was called!

Note that the foo was not called but report() was because it appears in the
function signature of foo.

3See https://networkx.org/.

https://networkx.org/

34 1 Basic Programming

1.1.8 File Input/Output

It is straightforward to read and write files using Python. The same pattern applies
when writing to other objects, like sockets. The following is the traditional way to
get file I/O in Python.

>>> f=open('myfile.txt','w') # write mode
>>> f.write('this is line 1')
14
>>> f.close()
>>> f=open('myfile.txt','a') # append mode
>>> f.write('this is line 2')
14
>>> f.close()
>>> f=open('myfile.txt','a') # append mode
>>> f.write('\nthis is line 3\n') # put in newlines
16
>>> f.close()
>>> f=open('myfile.txt','a') # append mode
>>> f.writelines(['this is line 4\n', 'this is line 5\n']) #

put in newlines↪→
>>> f=open('myfile.txt','r') # read mode
>>> print(f.readlines())
['this is line 1this is line 2\n', 'this is line 3\n', 'this is

line 4\n', 'this is line 5\n']↪→
>>> ['this is line 1this is line 2\n', 'this is line 3\n', 'this

is line 4\n', 'this is line 5\n']↪→
['this is line 1this is line 2\n', 'this is line 3\n', 'this is

line 4\n', 'this is line 5\n']↪→

Once you have the file handle, you can use methods like seek() to move the
pointer around in the file. Instead of having to explicitly close the file, the with
statement handles this automatically,

>>> with open('myfile.txt','r') as f:
... print(f.readlines())
...
['this is line 1this is line 2\n', 'this is line 3\n', 'this is

line 4\n', 'this is line 5\n']↪→

The main advantage is that the file will automatically be closed at the end of the
block, which means you do not have to remember to close it later using f.close.
Briefly, when the with block is entered, Python runs the f.__enter__ method
to open the file and then at the end of the block runs the f.__exit__ method. The
with statement works with other conformable objects that respect this protocol and
with context managers.4

Note that for writing non-text files, you should use the rb read-binary and wb
write-binary equivalents of the above. You can also specify a file encoding with the
open function.

4See the contextlib built-in module.

1.1 Basic Language 35

Programming Tip: Other I/O Modules
Python has many tools for handling file I/O at different levels of granularity.
The struct module is good for pure binary reading and writing. The mmap
module is useful for bypassing the filesystem and using virtual memory for
fast file access. The StringIO module allows read and write of strings as files.

Serialization: Saving Complex objects Serialization means packing Python
objects to be shipped between separate Python processes or separate computers,
say, through a network socket. The multiplatform nature of Python means that
one cannot be assured that the low-level attributes of Python objects (say, between
platform types or Python versions) will remain consistent.

For the vast majority of situations, the following will work.

>>> import pickle
>>> mylist = ["This", "is", 4, 13327]
>>> f=open('myfile.dat','wb') # binary-mode
>>> pickle.dump(mylist, f)
>>> f.close()
>>> f=open('myfile.dat','rb') # write mode
>>> print(pickle.load(f))
['This', 'is', 4, 13327]

Programming Tip: Serialization via Sockets
You can also serialize strings and transport them with intermediate file
creation, using sockets, or some other protocol.

Pickling a Function The internal state of a function and how it is hooked into
the Python process in which it was created makes it tricky to pickle functions. As
with everything in Python, there are ways around this, depending on your use-
case. One idea is to use the marshal module to dump the function object in
a binary format, write it to a file, and then reconstruct it on the other end using
types.FunctionType. The downside of this technique is that it may not be
compatible across different major Python versions, even if they are all CPython
implementations.

>>> import marshal
>>> def foo(x):
... return x*x
...
>>> code_string = marshal.dumps(foo.__code__)

Then in the remote process (after transferring code_string):

>>> import marshal, types
>>> code = marshal.loads(code_string)

36 1 Basic Programming

>>> func = types.FunctionType(code, globals(), "some_func_name")
>>> func(10) # gives 100
100

Programming Tip: Dill Pickles
The dill module can pickle functions and handle all these complications.
However, import dill hijacks all pickling from that point forward. For
more fine-grained control of serialization using dill without this hijacking,
do dill.extend(False) after importing dill.

import dill
def foo(x):

return x*x

dill.dumps(foo)

1.1.9 Dealing with Errors

This is where Python really shines. The approach is to ask for forgiveness rather
than permission. This is the basic template.

try:
try something

except:
fix something

The above except block will capture and process any kind of exception that is
thrown in the try block. Python provides a long list of built-in exceptions that you
can catch and the ability to create your own exceptions, if needed. In addition to
catching exceptions, you can raise your own exception using the raise statement.
There is also an assert statement that can throw exceptions if certain statements
are not True upon assertion (more on this later).

The following are some examples of the exception handling powers of Python.

>>> def some_function():
... try:
... # Division by zero raises an exception
... 10 / 0
... except ZeroDivisionError:
... print("Oops, invalid.")
... else:
... # Exception didn't occur, we're good.
... pass
... finally:
... # This is executed after the code block is run
... # and all exceptions have been handled, even
... # if a new exception is raised while handling.

1.1 Basic Language 37

... print("We're done with that.")

...
>>> some_function()
Oops, invalid.
We're done with that.
>>> out = list(range(3))

Exceptions can be very specific,

>>> try:
... 10 / 0
... except ZeroDivisionError:
... print('I caught an attempt to divide by zero')
...
I caught an attempt to divide by zero
>>> try:
... out[999] # raises IndexError
... except ZeroDivisionError:
... print('I caught an attempt to divide by zero')
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
IndexError: list index out of range

The exceptions that are caught change the code flow,

>>> try:
... 1/0
... out[999]
... except ZeroDivisionError:
... print('I caught an attempt to divide by zero but I did not

try out[999]')↪→
...
I caught an attempt to divide by zero but I did not try out[999]

The order of the exceptions in the try block matters,

>>> try:
... 1/0 # raises ZeroDivisionError
... out[999] # never gets this far
... except IndexError:
... print('I caught an attempt to index something out of

range')↪→
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

Blocks can be nested but if these get more than two layers deep, it bodes poorly for
the code overall.

>>> try: #nested exceptions
... try: # inner scope
... 1/0
... except IndexError:
... print('caught index error inside')
... except ZeroDivisionError as e:

38 1 Basic Programming

... print('I caught an attempt to divide by zero inside
somewhere')↪→

...
I caught an attempt to divide by zero inside somewhere

The finally clause always runs.

>>> try: #nested exceptions with finally clause
... try:
... 1/0
... except IndexError:
... print('caught index error inside')
... finally:
... print("I am working in inner scope")
... except ZeroDivisionError as e:
... print('I caught an attempt to divide by zero inside

somewhere')↪→
...
I am working in inner scope
I caught an attempt to divide by zero inside somewhere

Exceptions can be grouped in tuples,

>>> try:
... 1/0
... except (IndexError,ZeroDivisionError) as e:
... if isinstance(e,ZeroDivisionError):
... print('I caught an attempt to divide by zero inside

somewhere')↪→
... elif isinstance(e,IndexError):
... print('I caught an attempt to index something out of

range')↪→
...
I caught an attempt to divide by zero inside somewhere

Although you can catch any exception with an unqualified except line, that would
not tell you what exception was thrown, but you can use Exception to reveal that.

>>> try: # more detailed arbitrary exception catching
... 1/0
... except Exception as e:
... print(type(e))
...
<class 'ZeroDivisionError'>

Programming Tip: Using Exceptions to Control Function Recursion
As discussed previously, nested function calls result in more stack frames
which eventually hits a recursion limit. For example, the following recursive
function will eventually fail with large enough n.

(continued)

1.1 Basic Language 39

>>> def factorial(n):
... if (n == 0): return 1
... return n * factorial(n-1)
...

Python exceptions can be used to stop additional frames piling on the
stack. The following Recurse is a subclass of Exception and does little
more than save the arguments. The recurse function importantly raises
the Recurse exception which stops growing the stack when called. The
purpose of these two definitions is to create the tail_recursive decorator
within which the real work occurs. The decorator returns a function that
embeds an infinite while-loop that can exit only when the so-decorated
function terminates without triggering an additional recursive step. Otherwise,
the input arguments to the decorated function are passed on and the input
arguments actually hold the intermediate values of the recursive calculation.
This technique bypasses the built-in Python recursion limit and will work
as a decorator for any recursive function that uses input arguments to store
intermediate values.a

>>> class Recurse(Exception):
... def __init__(self, *args, **kwargs):
... self.args, self.kwargs = args, kwargs
...
>>> def recurse(*args, **kwargs):
... raise Recurse(*args, **kwargs)
...
>>> def tail_recursive(f):
... def decorated(*args, **kwargs):
... while True:
... try:
... return f(*args, **kwargs)
... except Recurse as r:
... args, kwargs = r.args, r.kwargs
... return decorated
...
>>> @tail_recursive
... def factorial(n, accumulator=1):
... if n == 0: return accumulator
... recurse(n-1, accumulator=accumulator*n)
...

aSee https://chrispenner.ca/posts/python-tail-recursion for in-depth discussion of this tech-
nique.

https://chrispenner.ca/posts/python-tail-recursion

40 1 Basic Programming

1.1.10 Power Python Features to Master

Using these Python built-ins indicates maturity in your Python coding skills.

The zip Function Python has a built-in zip function that can combine iterables
pair-wise.

>>> zip(range(3),'abc')
<zip object at 0x7f939a91d200>

>>> list(zip(range(3),'abc'))
[(0, 'a'), (1, 'b'), (2, 'c')]
>>> list(zip(range(3),'abc',range(1,4)))
[(0, 'a', 1), (1, 'b', 2), (2, 'c', 3)]

The slick part is reversing this operation using the * operation,

>>> x = zip(range(3),'abc')
>>> i,j = list(zip(*x))
>>> i
(0, 1, 2)
>>> j
('a', 'b', 'c')

When combined with dict, zip provides a powerful way to build Python
dictionaries,

>>> k = range(5)
>>> v = range(5,10)
>>> dict(zip(k,v))
{0: 5, 1: 6, 2: 7, 3: 8, 4: 9}

The max Function The max function takes the maximum of a sequence.

>>> max([1,3,4])
4

If the items in the sequence are tuples, then the first item in the tuple is used for the
ranking

>>> max([(1,2),(3,4)])
(3, 4)

This function takes a key argument that controls how the items in the sequence are
evaluated. For example, we can rank based on the second element in the tuple,

>>> max([(1,4),(3,2)], key=lambda i:i[1])
(1, 4)

The key argument also works with the min and sorted functions.

The with Statement Set up a context for subsequent code

>>> class ControlledExecution:
... def __enter__(self):
... #set things up

1.1 Basic Language 41

... print('I am setting things up for you!')

... return 'something to use in the with-block'

... def __exit__(self, type, value, traceback):

... #tear things down

... print('I am tearing things down for you!')

...
>>> with ControlledExecution() as thing:
... # some code
... pass
...
I am setting things up for you!
I am tearing things down for you!

Most commonly, with statements are used with files:

f = open("sample1.txt") # file handle
f.__enter__()
f.read(1)
f.__exit__(None, None, None)
f.read(1)

This is the better way to open close files that makes it harder to forget to close the
files when you are done.

with open("x.txt") as f:
data = f.read()
#do something with data

contextlib for Fast Context Construction The contextlib module makes
it very easy to quickly create context managers.

>>> import contextlib
>>> @contextlib.contextmanager
... def my_context():
... print('setting up ')
... try:
... yield {} # can yield object if necessary for 'as' part
... except:
... print('catch some errors here')
... finally:
... print('tearing down')
...

>>> with my_context():
... print('I am in the context')
...
setting up
I am in the context
tearing down
>>> with my_context():
... raise RuntimeError ('I am an error')
...
setting up
catch some errors here
tearing down

42 1 Basic Programming

Python Memory Management Earlier, we used the id function to get the unique
identifier of each Python object. In the CPython implementation, this is actually the
memory location of the object. Any object in Python has a reference counter that
keeps track of the labels that point to it. We saw this earlier in our discussion of lists
with different labels (i.e., variable names). When there are no more labels pointing
to a given object, then the memory for that object is released. This works fine except
for container objects that can generate cyclical references. For example,

>>> x = [1,2]
>>> x.append(x) # cyclic reference
>>> x
[1, 2, [...]]

In this situation, the reference counter will never count down to zero and be released.
To defend this, Python implements a garbage collector, which periodically stops
the main thread of execution in order to find and remove any such references.
The following code uses the powerful ctypes module to get direct access to the
reference counter field in the C-structure in object.h for CPython.

>>> def get_refs(obj_id):
... from ctypes import Structure, c_long
... class PyObject(Structure):
... _fields_ = [("reference_cnt", c_long)]
... obj = PyObject.from_address(obj_id)
... return obj.reference_cnt
...

Let us return to our example and see the number of references that point to the list
labeled x.

>>> x = [1,2]
>>> idx = id(x)
>>> get_refs(idx)
1

Now, after we create the circular reference,

>>> x.append(x)
>>> get_refs(idx)
2

Even deleting x does not help,

>>> del x
>>> get_refs(idx)
1

We can force the garbage collector to work with the following,

>>> import gc
>>> gc.collect()
216
>>> get_refs(idx) # finally removed!
0

1.1 Basic Language 43

So we can finally get rid of that x list. Importantly, you should not have to manually
fire the garbage collector because Python decides when to do that efficiently. A key
aspect of these algorithms is whether or not the container is mutable. Thus, from a
garbage collection standpoint, it is better to use tuples instead of lists because tuples
do not have to be policed by the garbage collector like regular lists do.

1.1.11 Generators

Generators provide just-in-time memory-efficient containers.

• Produces a stream of on-demand values
• Only executes on next()
• The yield() function produces a value, but saves the function’s state for later
• Usable exactly once (i.e., not re-usable after used the first time)

>>> def generate_ints(N):
... for i in range(N):
... yield i # the yield makes the function a generator
...
>>> x=generate_ints(3)
>>> next(x)
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

Emptying the generator raises the StopIteration exception. What is happening
in the next block?

>>> next(generate_ints(3))
0
>>> next(generate_ints(3))
0
>>> next(generate_ints(3))
0

The problem is that the generator is not saved to a variable wherein the current state
of the generator can be stored. Thus, the above code creates a new generator at every
line, which starts the iteration at the beginning for each line. You can also iterate on
these directly:

>>> for i in generate_ints(5): # no assignment necessary here
... print(i)
...
0

44 1 Basic Programming

1
2
3
4

Generators maintain an internal state that can be returned to after the yield. This
means that generators can pick up where they left off.

>>> def foo():
... print('hello')
... yield 1
... print('world')
... yield 2
...
>>> x = foo()
>>> next(x)
hello
1

>>> # do some other stuff here
>>> next(x) # pick up where I left off
world
2

Generators can implement algorithms that have infinite loops.

>>> def pi_series(): # infinite series converges to pi
... sm = 0
... i = 1.0; j = 1
... while True: # loops forever!
... sm = sm + j/i
... yield 4*sm
... i = i + 2; j = j * -1
...
>>> x = pi_series()
>>> next(x)
4.0
>>> next(x)
2.666666666666667
>>> next(x)
3.466666666666667
>>> next(x)
2.8952380952380956
>>> next(x)
3.3396825396825403
>>> next(x)
2.9760461760461765
>>> next(x)
3.2837384837384844
>>> gen = (i for i in range(3)) # List comprehension style

You can also send() to an existing generator by putting the yield on the right
side of the equal sign,

>>> def foo():
... while True:
... line=(yield)

1.1 Basic Language 45

... print(line)

...
>>> x= foo()
>>> next(x) # get it going
>>> x.send('I sent this to you')
I sent this to you

These can be daisy-chained also:

>>> def goo(target):
... while True:
... line=(yield)
... target.send(line.upper()+'---')
...
>>> x= foo()
>>> y= goo(x)
>>> next(x) # get it going
>>> next(y) # get it going
>>> y.send('from goo to you')
FROM GOO TO YOU---

Generators can also be created as list comprehensions by changing the bracket
notation to parentheses.

>>> x= (i for i in range(10))
>>> print(type(x))
<class 'generator'>

Now, x is a generator. The itertools module is key to using generators
effectively. For example, we can clone generators,

>>> x = (i for i in range(10))
>>> import itertools as it
>>> y, = it.tee(x,1) # clone generator
>>> next(y) # step this one
0
>>> list(zip(x,y))
[(1, 2), (3, 4), (5, 6), (7, 8)]

This delayed execution method becomes particularly useful when working with
large data sets.

>>> x = (i for i in range(10))
>>> y = map(lambda i:i**2,x)
>>> y
<map object at 0x7f939af36fd0>

Note that y is also a generator and that nothing has been computed yet. You can also
map functions onto sequences using it.starmap.

Yielding from Generators The following idiom is common to iterate over a
generator,

>>> def foo(x):
... for i in x:
... yield i
...

46 1 Basic Programming

Then you can feed the generator x into foo,

>>> x = (i**2 for i in range(3)) # create generator
>>> list(foo(x))
[0, 1, 4]

With yield from, this can be done in one line

>>> def foo(x):
... yield from x
...

Then,

>>> x = (i**2 for i in range(3)) # recreate generator
>>> list(foo(x))
[0, 1, 4]

There is much more that yield from can do, however. Suppose we have a
generator/coroutine that receives data.

>>> def accumulate():
... sm = 0
... while True:
... n = yield # receive from send
... print(f'I got {n} in accumulate')
... sm+=n
...

Let us see how this works,

>>> x = accumulate()
>>> x.send(None) # kickstart coroutine
>>> x.send(1)
I got 1 in accumulate
>>> x.send(2)
I got 2 in accumulate

What if you have a composition of functions and you wanted to pass sent values
down into the embedded coroutine?

>>> def wrapper(coroutine):
... coroutine.send(None) # kickstart
... while True:
... try:
... x = yield # capture what is sent...
... coroutine.send(x) # ... and pass it thru
... except StopIteration:
... pass
...

Then, we could do something like this,

>>> w = wrapper(accumulate())
>>> w.send(None)
>>> w.send(1)
I got 1 in accumulate
>>> w.send(2)
I got 2 in accumulate

1.1 Basic Language 47

Note how the sent values pass directly through to the embedded coroutine. For fun,
we can wrap this twice,

>>> w = wrapper(wrapper(accumulate()))
>>> w.send(None)
>>> w.send(1)
I got 1 in accumulate
>>> w.send(2)
I got 2 in accumulate

Now that we know how that works, the wrapper can be abbreviated as the
following

>>> def wrapper(coroutine):
... yield from coroutine
...

and everything would work the same (try it!). Additionally, this automatically
handles embedded errors with the same transparency. A useful example is the case
where you want to flatten a list of embedded containers like

>>> x = [1,[1,2],[1,[3]]]
>>> def flatten(seq):
... for item in seq:
... if hasattr(item,'__iter__'):
... yield from flatten(item)
... else:
... yield item
...
>>> list(flatten(x))
[1, 1, 2, 1, 3]

There is another syntax that is used for generators that makes it possible to simul-
taneously send/receive. One obvious problem with our previous accumulate
function is that you do not receive the accumulated value. That is remedied by
changing one line of the previous code,

>>> def accumulate():
... sm = 0
... while True:
... n = yield sm # receive from send and emit sm
... print (f'I got {n} in accumulate and sm ={sm}')
... sm+=n
...

Then, we can do,

>>> x = accumulate()
>>> x.send(None) # still need to kickstart
0

Note that it returned zero.

>>> x.send(1)
I got 1 in accumulate and sm =0
1

48 1 Basic Programming

>>> x.send(2)
I got 2 in accumulate and sm =1
3
>>> x.send(3)
I got 3 in accumulate and sm =3
6

1.1.12 Decorators

Decorators are functions that make functions out of functions. It sounds redundant,
but turns out to be very useful for combining disparate concepts. In the code
below, notice that the input to my_decorator is a function. Because we do not
know the input arguments for that function, we have to pass them through into
the new_function that is defined in the body using args and kwargs. Then,
within the new_function, we explicitly call the input function fn and pass in
those arguments. The most important line is the last line where we return the
function defined within the body of my_decorator. Because that function includes
the explicit call to fn, it replicates the functionality of fn, but we are free to do
other tasks within the body of new_function.

>>> def my_decorator(fn): # note that function as input
... def new_function(*args,**kwargs):
... print('this runs before function')
... return fn(*args,**kwargs) # return a function
... return new_function
...
>>> def foo(x):
... return 2*x
...
>>> goo = my_decorator(foo)
>>> foo(3)
6
>>> goo(3)
this runs before function
6

In the output above, notice that goo faithfully reproduces goo but with the extra
output we put into the body of new_function. The important idea is that whatever
the new functionality we built into the decorator, it should be orthogonal to the
business logic of the input function. Otherwise, the identity of the input function gets
mixed into the decorator, which becomes hard to debug and understand later. The
following log_arguments decorator is a good example of this principle. Suppose
we want to monitor a function’s input arguments. The log_arguments decorator
additionally prints out the input arguments to the input function but does not
interfere with the business logic of that underlying function.

>>> def log_arguments(fn): # note that function as input
... def new_function(*args,**kwargs):
... print('positional arguments:')

1.1 Basic Language 49

... print(args)

... print('keyword arguments:')

... print(kwargs)

... return fn(*args,**kwargs) # return a function

... return new_function

...

You can stack a decorator on top of a function definition using the @ syntax.
The advantage is that you can keep the original function name, which means that
downstream users do not have to keep track of another decorated version of the
function.

>>> @log_arguments # these are stackable also
... def foo(x,y=20):
... return x*y
...
>>> foo(1,y=3)
positional arguments:
(1,)
keyword arguments:
{'y': 3}
3

Decorators are very useful for caches, which avoid re-computing expensive function
values,

>>> def simple_cache(fn):
... cache = {}
... def new_fn(n):
... if n in cache:
... print('FOUND IN CACHE; RETURNING')
... return cache[n]
... # otherwise, call function
... # & record value
... val = fn(n)
... cache[n] = val
... return val
... return new_fn
...

>>> def foo(x):
... return 2*x
...
>>> goo = simple_cache(foo)
>>> [goo(i) for i in range(5)]
[0, 2, 4, 6, 8]
>>> [goo(i) for i in range(8)]
FOUND IN CACHE; RETURNING
FOUND IN CACHE; RETURNING
FOUND IN CACHE; RETURNING
FOUND IN CACHE; RETURNING
FOUND IN CACHE; RETURNING
[0, 2, 4, 6, 8, 10, 12, 14]

The simple_cache decorator runs the input function but then stores each output
in the cache dictionary with keys corresponding to function inputs. Then, if the

50 1 Basic Programming

function is called again with the same input, the corresponding function value is not
re-computed, but is instead retrieved from cache, which can be very efficient if the
input function takes a long time to compute. This pattern is so common it is now in
functools.lru_cache in the Python standard library.

Programming Tip: Modules of Decorators
Some Python modules are distributed as decorators (e.g., the click mod-
ule for creating commandline interfaces) to make it easy to bolt-on new
functionality without changing the source code. The idea is whatever the
new functionality that the decorator provides, it should be distinct from the
business logic of the function that is being decorated. This separates the
concerns between the decorator and the decorated function.

Decorators are also useful for executing certain functions in threads. Recall that
a thread is a set of instructions that the CPU can run separately from the parent
process. The following decorator wraps a function to run in a separate thread.

>>> def run_async(func):
... from threading import Thread
... from functools import wraps
... @wraps(func)
... def async_func(*args, **kwargs):
... func_hl = Thread(target = func,
... args = args,
... kwargs = kwargs)
... func_hl.start()
... return func_hl
... return async_func
...

The wrap function from the functools module fixes the function signature. This
decorator is useful when you have a small side-job (like a notification) that you want
to run out of the main thread of execution. Let us write a simple function that does
some fake work.

>>> from time import sleep
>>> def sleepy(n=1,id=1):
... print('item %d sleeping for %d seconds...'%(id,n))
... sleep(n)
... print('item %d done sleeping for %d seconds'%(id,n))
...

Consider the following code block:

>>> sleepy(1,1)
item 1 sleeping for 1 seconds...
item 1 done sleeping for 1 seconds
>>> print('I am here!')
I am here!
>>> sleepy(2,2)

1.1 Basic Language 51

item 2 sleeping for 2 seconds...
item 2 done sleeping for 2 seconds
>>> print('I am now here!')
I am now here!

Using the decorator, we can make asynchronous versions of this function:

@run_async
def sleepy(n=1,id=1):

print('item %d sleeping for %d seconds...'%(id,n))
sleep(n)
print('item %d done sleeping for %d seconds'%(id,n))

And with the same block of statements above, we obtain the following sequence of
printed outputs:

sleepy(1,1)
print('I am here!')
sleepy(2,2)
print('I am now here!')

I am here!
item 1 sleeping for 1 seconds...
item 2 sleeping for 2 seconds...
I am now here!
item 1 done sleeping for 1 seconds
item 2 done sleeping for 2 seconds

Notice that the last print statement in the block actually executed before the
individual functions were completed. That is because the main thread of execution
handles those print statements while the separate threads are sleeping for different
amounts of time. In other words, in the first example the last statement is blocked by
the previous statements and has to wait for them to finish before it can do the final
print. In the second case, there is no blocking so it can get to the last statement right
away while the other work goes on in separate threads.

Another common use of decorators is to create closures. For example,

>>> def foo(a=1):
... def goo(x):
... return a*x # uses `a` from outer scope
... return goo
...
>>> foo(1)(10) # version with a=1
10
>>> foo(2)(10) # version with a=2
20
>>> foo(3)(10) # version with a=2
30

In this case, note that the embedded goo function requires a parameter a that is
not defined in its function signature. Thus, the foo function manufactures different
versions of the embedded goo function as shown. For example, suppose you have
many users with different certificates to access data that are accessible via goo.
Then foo can close the certificates over goo so that every user effectively has her

52 1 Basic Programming

own version of the goo function with the corresponding embedded certificate. This
simplifies the code because the business logic and function signature of goo need
not change and the certificate will automatically disappear when goo goes out of
scope.

Programming Tip: Python Threads
Threads in Python are primarily used for making applications responsive. For
example, if you have a GUI with lots of buttons and you want the application
to react to each button as it is clicked, even though the application itself is
busy rendering the display, then threads are the right tool. As another example,
suppose you are downloading files from multiple websites, then doing each
website using a separate thread makes sense because the availability of the
content on each of the sites will vary. This is something you would not know
ahead of time.

The main difference between threads and processes is that processes
have their own compartmentalized resources. The C-language Python (i.e.,
CPython) implements a Global Interpreter Lock (GIL) that prevents threads
from fighting over internal data structures. Thus, the GIL employs a course-
grained locking mechanism where only one thread has access to resources at
any time. The GIL thus simplifies thread programming because running multi-
ple threads simultaneously requires complicated bookkeeping. The downside
of the GIL is that you cannot run multiple threads simultaneously to speed up
compute-constrained tasks. Note that certain alternative implementations of
Python like IronPython use a finer-grain threading design rather than the GIL
approach.

As a final comment, on modern systems with multiple cores, it could
be that multiple threads actually slow things down because the operating
system may have to switch threads between different cores. This creates
additional overheads in the thread switching mechanism that ultimately slows
things down. CPython implements the GIL at the level of byte-code, which
means the byte-code instructions across different threads are prohibited from
simultaneously execution.

1.1.13 Iteration and Iterables

Iterators permit finer control for looping constructs.

>>> a = range(3)
>>> hasattr(a,'__iter__')
True
>>> # generally speaking, returns object that supports iteration
>>> iter(a)

1.1 Basic Language 53

<range_iterator object at 0x7f939a6a6630>
>>> hasattr(_,'__iter__')
True
>>> for i in a: #use iterables in loops
... print(i)
...
0
1
2

The hasattr check above is the traditional way to check if a given object is
iterable. Here is the modern way,

>>> from collections.abc import Iterable
>>> isinstance(a,Iterable)
True

You can also use iter() with functions to create sentinels,

>>> x=1
>>> def sentinel():
... global x
... x+=1
... return x
...
>>> for k in iter(sentinel,5): # stops when x = 5
... print(k)
...
2
3
4
>>> x
5

You can use this with a file object f as in iter(f.readline,”) which will
read lines from the file until the end.

Enumeration The standard library has an enum module to support enumeration.
Enumeration means binding symbolic names to unique, constant values. For
example,

>>> from enum import Enum
>>> class Codes(Enum):
... START = 1
... STOP = 2
... ERROR = 3
...
>>> Codes.START
<Codes.START: 1>
>>> Codes.ERROR
<Codes.ERROR: 3>

Once these have been defined, trying to change them will raise an
AttributeError. Names and values can be extracted,

54 1 Basic Programming

>>> Codes.START.name
'START'
>>> Codes.START.value
1

Enumerations can be iterated over,

>>> [i for i in Codes]
[<Codes.START: 1>, <Codes.STOP: 2>, <Codes.ERROR: 3>]

Enumerations can be created directly with sensible defaults,

>>> Codes = Enum('Lookup','START,STOP,ERROR')
>>> Codes.START
<Lookup.START: 1>
>>> Codes.ERROR
<Lookup.ERROR: 3>

You can look up the names corresponding to a value,

>>> Codes(1)
<Lookup.START: 1>
>>> Codes['START']
<Lookup.START: 1>

You can use the unique decorator to ensure that there are no duplicated values,

>>> from enum import unique

This will raise a ValueError

>>> @unique
... class UniqueCodes(Enum):
... START = 1
... END = 1 # same value as START
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File "/mnt/e/miniconda3/lib/python3.8/enum.py", line 860, in

unique↪→
raise ValueError('duplicate values found in %r: %s' %

ValueError: duplicate values found in <enum 'UniqueCodes'>: END
-> START↪→

Type Annotations Python 3 enables type annotations, which is a way to provide
variable typing information for functions so that other tools like mypy can analyze
large code bases to check for typing conflicts. This does not affect Python’s
dynamically typing. It means that in addition to creating unit tests, type annotations
provide a supplemental way to improve code quality by uncovering defects distinct
from those revealed by unit-testing.

filename: type_hinted_001.py

def foo(fname:str) -> str:
return fname+'.txt'

foo(10) # called with integer argument instead of string

1.1 Basic Language 55

Running this through mypy on the terminal command line by doing

% mypy type_hinted_001.py

will produce the following error:

type_hinted_001.py:6: error: Argument 1 to "foo" has incompatible
type "int"; expected "str"↪→

Functions that are not annotated (i.e., dynamically typed) are allowed in the same
module as those that are annotated. The mypy might attempt to call out typing errors
against these dynamically typed functions, but this behavior is considered unstable.
You can supply both type annotations and default values, as in the following:

>>> def foo(fname:str = 'some_default_filename') -> str:
... return fname+'.txt'
...

Types are not inferred from the types of the default values. The built-in typing
module has definitions that can be used for type hinting,

>>> from typing import Iterable
>>> def foo(fname: Iterable[str]) -> str:
... return "".join(fname)
...

The above declaration says that the input is an iterable (e.g., list) of strings and
the function returns a single string as output. Since Python 3.6, you can also use
type annotations for variables, as in the following,

>>> from typing import List
>>> x: str = 'foo'
>>> y: bool = True
>>> z: List[int] = [1]

Keep in mind that these additions are ignored in the interpreter and are processed
by mypy separately. Type annotations also work with classes, as shown below,

>>> from typing import ClassVar
>>> class Foo:
... count: ClassVar[int] = 4
...

Because type -hinting can become elaborate, especially with complex object pat-
terns, type annotations can be segregated into pyi files. At this point, however, my
feeling is that we have entered into a point of diminishing returns as the complexity
burden is likely to overwhelm the benefits of maintaining such type checking. In
the case of critical code that is maintained as separate functions utilizing primarily
built-in Python types, then this additional burden may be warranted, but otherwise,
and at least until the tooling required to aid the development and maintenance of
type -annotations matures further, it is probably best to leave this aside.

Pathlib Python 3 has a new pathlib module that makes it easier to work with
filesystems. Before pathlib, you had to use os.walk or another combination

56 1 Basic Programming

of directory searching tools to work with directories and paths. To get started, we
import Path from the module,

>>> from pathlib import Path

The Path object itself provides useful information,

>>> Path.cwd() # gets current directory
PosixPath('/mnt/d/class_notes_pub')
>>> Path.home() # gets users home directory
PosixPath('/home/unpingco')

You can give the object a starting path,

>>> p = Path('./') # points to current directory

Then, you can search the directory path using its methods,

>>> p.rglob('*.log') # searches for log file extensions
<generator object Path.rglob at 0x7f939a5ecc80>

which returns a generator you can iterate through to obtain all log files in the named
directory. Each returned element of the iteration is a PosixPath object with its
own methods

>>> item = list(p.rglob('*.log'))[0]
>>> item
PosixPath('altair.log')

For example, the stat method provides the file metadata,

>>> item.stat()
os.stat_result(st_mode=33279, st_ino=3659174697287897, st_dev=15,

st_nlink=1, st_uid=1000, st_gid=1000, st_size=52602,
st_atime=1608339360, st_mtime=1608339360,
st_ctime=1608339360)

↪→
↪→
↪→

The pathlib module can do much more such as creating files or processing
elements of individual paths.

Asyncio We have seen that generators/coroutines can exchange and act upon data
so long as we manually drive this process. Indeed, one way to think about coroutines
is as objects that require external management in order to do work. For generators,
the business logic of the code usually manages the flow, but async simplifies this
work and hides the tricky implementation details for doing this at large scale.

Consider the following function defined with the async keyword,

>>> async def sleepy(n=1):
... print(f'n = {n} seconds')
... return n
...

We can start this like we would a regular generator

>>> x = sleepy(3)
>>> type(x)
<class 'coroutine'>

1.1 Basic Language 57

Now, we get an event loop to drive this,

>>> import asyncio
>>> loop = asyncio.get_event_loop()

Now the loop can drive the coroutine,

>>> loop.run_until_complete(x)
n = 3 seconds
3

Let us put this in a synchronous blocking loop.

>>> from time import perf_counter
>>> tic = perf_counter()
>>> for i in range(5):
... sleepy(0.1)
...
<coroutine object sleepy at 0x7f939a5f7ac0>
<coroutine object sleepy at 0x7f939a4027c0>
<coroutine object sleepy at 0x7f939a5f7ac0>
<coroutine object sleepy at 0x7f939a4027c0>
<coroutine object sleepy at 0x7f939a5f7ac0>
>>> print(f'elapsed time = {perf_counter()-tic}')
elapsed time = 0.0009255999993911246

Nothing happened! If we want to use the sleepy function inside other code, we
need the await keyword,

>>> async def naptime(n=3):
... for i in range(n):
... print(await sleepy(i))
...

Roughly speaking, the await keywords means that the calling function should be
suspended until the target of await has completed and control should be passed
back to the event loop in the meantime. Next, we drive it as before with the event
loop.

>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(naptime(4))
n = 0 seconds
0
n = 1 seconds
1
n = 2 seconds
2
n = 3 seconds
3

Without the await keyword, the naptime function would just return the sleepy
objects instead of the outputs from those objects. The function bodies must have
asynchronous code in them or they will block. Python modules are developing that
can play with this framework, but that is ongoing (e.g., aiohttp for asynchronous
web access) at this time.

58 1 Basic Programming

Let us consider another example that shows how the event loop is passed control
for each of the asynchronous functions.

>>> async def task1():
... print('entering task 1')
... await asyncio.sleep(0)
... print('entering task 1 again')
... print('exiting task 1')
...
>>> async def task2():
... print('passed into task2 from task1')
... await asyncio.sleep(0)
... print('leaving task 2')
...
>>> async def main():
... await asyncio.gather(task1(),task2())
...

With all that set up, we have to kick this off with the event loop,

>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(main())
entering task 1
passed into task2 from task1
entering task 1 again
exiting task 1
leaving task 2

The await asyncio.sleep(0) statement tells the event loop pass control
to the next item (i.e., future or coroutine) because the current one is going to be busy
waiting so the event loop might as well execute something else in the meantime. This
means that tasks can finish out of order depending on how long they take when the
event loop gets back to them. This next block demonstrates this.

>>> import random
>>> async def asynchronous_task(pid):
... await asyncio.sleep(random.randint(0, 2)*0.01)
... print('Task %s done' % pid)
...
>>> async def main():
... await asyncio.gather(*[asynchronous_task(i) for i in

range(5)])↪→
...

>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(main())
Task 0 done
Task 1 done
Task 2 done
Task 3 done
Task 4 done

This is all well and good from within the ecosystem of asyncio, but what to do for
existing codes that are not so configured? We can use concurrent.futures to
provide futures we can fold into the framework.

1.1 Basic Language 59

>>> from functools import wraps
>>> from time import sleep
>>> from concurrent.futures import ThreadPoolExecutor
>>> executor = ThreadPoolExecutor(5)
>>> def threadpool(f):
... @wraps(f)
... def wrap(*args, **kwargs):
... return asyncio.wrap_future(executor.submit(f,
... *args,
... **kwargs))
... return wrap
...

We can decorate a blocking version of sleepy as shown next and use
asyncio.wrap_future to fold the thread into the asyncio framework,

>>> @threadpool
... def synchronous_task(pid):
... sleep(random.randint(0, 1)) # blocking!
... print('synchronous task %s done' % pid)
...
>>> async def main():
... await asyncio.gather(synchronous_task(1),
... synchronous_task(2),
... synchronous_task(3),
... synchronous_task(4),
... synchronous_task(5))
...

With the following output. Note the non-ordering of the results.

>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(main())
synchronous task 3 done
synchronous task 5 done
synchronous task 1 done
synchronous task 2 done
synchronous task 4 done

Debugging and Logging Python The easiest way is to debug Python is on the
command line,

% python -m pdb filename.py

and you will automatically enter the debugger. Otherwise, you can put
import pdb; pdb.set_trace() source file where you want breakpoints. The
advantage of using the semi-colon to put this all on one line is that it makes it easier
to find and delete that one line later in your editor.

A cool trick that will provide a fully interactive Python shell anywhere in the
code is to do the following:

import code; code.interact(local=locals());

Since Python 3.7, we have the breakpoint function, which is essentially the same
as the import pdb; pdb.set_trace() line above but which allows for using the
PYTHONBREAKPOINT environment variable to turn the breakpoint off or on, as in

60 1 Basic Programming

% export PYTHONBREAKPOINT=0 python foo.py

In this case because the environment variable is set to zero, the breakpoint line
in the source code of foo.py is ignored. Setting the environment variable to one
will do the opposite. You can also choose your debugger using the environment
variable. For example, if you prefer the ipdb IPython debugger, then you can do
the following,

export PYTHONBREAKPOINT=ipdb.set_trace python foo.py

Using this environment variable, you can also have breakpoint run custom code
when invoked. Given the following function,

filename break_code.py
def do_this_at_breakpoint():

print ('I am here in do_this_at_breakpoint')

Then, given we have breakpoint set in the foo.py file, we can do the
following,

% export PYTHONBREAKPOINT=break_code.do_this_at_breakpoint python
foo.py↪→

and then the code will be run. Note that because this code is not invoking a debugger,
the execution will not stop at the breakpoint. The breakpoint function can
also take arguments,

breakpoint('a','b')

in your source code and then the invoking function will process those inputs, as in
the following,

filename break_code.py
def do_this_at_breakpoint(a,b):

print ('I am here in do_this_at_breakpoint')
print (f'argument a = {a}')
print (f'argument b = {b}')

Then, the value of those variables at runtime will be printed out. Note that you can
also explicitly invoke the debugger from within your custom breakpoint function
by including the usual import pdb; pdb.set_trace() which will stop the code
with the built-in debugger.

1.1.14 Using Python Assertions to Pre-debug Code

Asserts are a great way to provide sanity checks for your code. Using these is the
quickest and easiest way to increase the reliability of your code! Note you can turn
these off by running python on the command line with the -O option.

1.1 Basic Language 61

>>> import math
>>> def foo(x):
... assert x>=0 # entry condition
... return math.sqrt(x)
...
>>> foo(-1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in foo

AssertionError

Consider the following code,

>>> def foo(x):
... return x*2
...

Any input x that understands the multiply operator will pass through. For example,

>>> foo('string')
'stringstring'
>>> foo([1,3,'a list'])
[1, 3, 'a list', 1, 3, 'a list']

which may not be what you want. To defend foo from this effect and enforce
numeric input, you can do the following:

def foo(x):
assert isinstance(x,(float,int,complex))
return x*2

Or, even better, using abstract data types,

import numbers
def foo(x):

assert isinstance(x,numbers.Number)
return x*2

There is a philosophical argument about using assert in this situation because
Python’s duck-typing is supposed to reconcile this, but sometimes waiting for the
traceback to complain is not feasible for your application. Assertions do much more
than input type-checking. For example, suppose you have a problem where the
sum of all the items in an intermediate list should add up to one. You can use
assert in the code to verify this is true and then assert will automatically raise
AssertionError if it is not.

1.1.15 Stack Tracing with sys.settrace

Although the pdb debugger is great for general purpose work, sometimes it ’is too
painstaking to step through a long complicated program to find bugs. Python has
a powerful tracing function that makes it possible to report every line of code that

62 1 Basic Programming

Python executes and also filter those lines. Save the following code into a file and
run it.

filename: tracer_demo.py
demo tracing in python

def foo(x=10,y=10):
return x*y

def goo(x,y=10):
y= foo(x,y)
return x*y

if __name__ =="__main__":
import sys
def tracer(frame,event,arg):

if event=='line': # line about to be executed
filename, lineno = frame.f_code.co_filename,

frame.f_lineno↪→
print(filename,end='\t') # filename
print(frame.f_code.co_name,end='\t')# function name
print(lineno,end='\t') # line number in

filename↪→
print(frame.f_locals,end='\t') # local variables
argnames =

frame.f_code.co_varnames[:frame.f_code.co_argcount]↪→
print(' arguments:',end='\t')
print(str.join(', ',['%s:%r' % (i,frame.f_locals[i]) for

i in argnames]))↪→
return tracer # pass function along for next time

sys.settrace(tracer)
foo(10,30)
foo(20,30)
goo(33)

The key step is feeding the tracer function into sys.settrace which will run
the tracer function on the stack frames and report out specified elements. You
can also use the built-in tracer like

% python -m trace --ignore-module=sys --trace filename.py >
output.txt↪→

This will dump a lot of material so you probably want to use the other flags for
filtering.

Programming Tip: Pysnooper
The tracing code above is helpful and a good place to start but the
pynsooper module available on Pypi makes tracing extremely easy to
implement and monitor and is highly recommended!

1.1 Basic Language 63

1.1.16 Debugging Using IPython

You can also use IPython from the command line as in

% ipython --pdb <filename>

You can also do this in the source code if you want to use the IPython debugger
instead of the default.

from IPython.core.debugger import Pdb
pdb=Pdb() # create instance
for i in range(10):

pdb.set_trace() # set breakpoint here
print (i)

This provides the usual IPython dynamic introspection. This is compartmentalized
into the ipdb package from PyPI. You can also invoke an embedded IPython shell
by doing:

import IPython
for i in range(10):

if i > 7:
IPython.embed() # this will stop with an embedded IPython

shell↪→
print (i)

This is handy when embedding Python in a GUI. Your mileage may vary otherwise,
but it is a good trick in pinch!

1.1.17 Logging from Python

There is a powerful built-in logging package that beats putting print statements
everywhere in your code, but it takes some setting up.

import logging, sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.debug("debug message") # no output
logging.info("info message") # output
logging.error("error") # output

Note that the numerical values of the levels are defined as

>>> import logging
>>> logging.DEBUG
10
>>> logging.INFO
20

so when the logging level is set to INFO, only INFO and above messages are
reported. You can also format the output using formatters.

64 1 Basic Programming

import logging, sys
logging.basicConfig(stream=sys.stdout,

level=logging.INFO,
format="%(asctime)s - %(name)s -

%(levelname)s - %(message)s")↪→

logging.debug("debug message") # no output
logging.info("info message")
logging.error("error")

So far, we have been using the root logger, but you can have many layers of
organized logging based on the logger’s name. Try running demo_log1.py in a
console and see what happens

top level program

import logging, sys
from demo_log2 import foo, goo

log = logging.getLogger('main') #name of logger
log.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)

filehandler = logging.FileHandler('mylog.log')
formatter = logging.Formatter("%(asctime)s - %(name)s -

%(funcName)s - %(levelname)s - %(message)s") # set format↪→

handler.setFormatter(formatter) # setup format
filehandler.setFormatter(formatter) # setup format
log.addHandler(handler) # read to go
log.addHandler(filehandler) # read to go

def main(n=5):
log.info('main called')
[(foo(i),goo(i)) for i in range(n)]

if __name__ == '__main__':
main()

subordinate to demo_log1

import logging
log = logging.getLogger('main.demo_log2')

def foo(x):
log.info('x=%r'%x)
return 3*x

def goo(x):
log = logging.getLogger('main.demo_log2.goo')
log.info('x=%r'%x)
log.debug('x=%r'%x)
return 5*x**2

def hoo(x):
log = logging.getLogger('main.demo_log2.hoo')

1.1 Basic Language 65

log.info('x=%r'%x)
return 5*x**2

Now, try changing the name of the main logger in demo_log1.py and see what
happens. The logging in the demo_log2.py will not log unless it is subordinate to
the main logger. You can see how embedding this in your code makes it easy to
turn on various levels of code diagnosis. You can also have multiple handlers for
different log levels.

Chapter 2
Object-Oriented Programming

Python is an object-oriented language. Object-oriented programming facilitates
encapsulation of variables and functions and separates the various concerns of the
program. This improves reliability because common functionality can be focused
into the same code. In contrast with C++ or Java, you do not have to write custom
classes in order to interact with Python’s built-in features because object-oriented
programming is not the only programming style that Python supports. In fact, I
would argue that you want to wire together the built-in objects and classes that
Python already provides as opposed to writing to own classes from scratch. In this
section, we build up the background so you can write your own custom classes, if
need be.

2.1 Properties/Attributes

The variables encapsulated by an object are called properties or attributes. Every-
thing in Python is an object. For example,

>>> f = lambda x:2*x
>>> f.x = 30 # attach to x function object
>>> f.x
30

We have just hung an attribute on the function object. We can even reference it from
within the function if we wanted.

>>> f = lambda x:2*x*f.x
>>> f.x = 30 # attach to x function object
>>> f.x
30
>>> f(3)
180

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0_2

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68952-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-68952-0_2

68 2 Object-Oriented Programming

For safety reasons this arbitrary attaching of attributes to objects is blocked for
certain built-in objects (c.f., __slots__), but you get the idea. You can create
your own objects with the class keyword. The following is the simplest possible
custom object,

>>> class Foo:
... pass
...

We can instantiate our Foo object by calling it with parenthesis like a function in
the following,

>>> f = Foo() # need parenthesis
>>> f.x = 30 # tack on attribute
>>> f.x
30

Note that we can attach our properties one-by-one as we did earlier with the built-in
function object but we can use the __init__ method to do this for all instances of
this class.

>>> class Foo:
... def __init__(self): # note the double underscores
... self.x = 30
...

The self keyword references the so-created instance. We can instantiate this object
in the following,

>>> f = Foo()
>>> f.x
30

The __init__ constructor builds the attributes into all so-created objects,

>>> g = Foo()
>>> g.x
30

You can supply arguments to the __init__ function that are called upon instantia-
tion,

>>> class Foo:
... def __init__(self,x=30):
... self.x = x
...
>>> f = Foo(99)
>>> f.x
99

Remember that the __init__ function is just another Python function and follows
the same syntax. The surrounding double underscores indicate that the function has
a special low-level status.

2.2 Methods 69

Programming Tip: Private vs. Public Attributes
Unlike many object-oriented languages, Python does not have to implement
private versus public attributes as part of the language. Rather, these are
managed by convention. For example, attributes that start with a single
underscore character are (only by convention) considered private, although
nothing in the language provides them special status.

2.2 Methods

Methods are functions that are attached to objects and have access to the internal
object attributes. They are defined within the body of the class definition,

>>> class Foo:
... def __init__(self,x=30):
... self.x = x
... def foo(self,y=30):
... return self.x*y
...
>>> f = Foo(9)
>>> f.foo(10)
90

Note that you can access the variables that were attached in self.x from within
the function body of foo with the self variables. A common practice in Python
coding is to pack all the non-changing variables in the attributes in the __init__

function and the set up the method so that the frequently changing variables are
then function variables, to be supplied by the user upon invocation. Also, self
can maintain state between method calls so that the object can maintain an internal
history and change the corresponding behavior of the object methods.

Importantly, methods always have at least one argument (i.e., self). For
example, see the following error,

>>> f.foo(10) # this works fine
90
>>> f.foo(10,3) # this gives an error
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: foo() takes from 1 to 2 positional arguments but 3
were given

It looks like the method legitimately takes one argument for the first line, but why
does the error message say this method takes two arguments? The reason is that
Python sees f.foo(10) as Foo.foo(f,10) so the first argument is the instance
f which we referenced as self in the method definition. Thus, there are two
arguments from Python’s perspective. This can be confusing the first time you see
it.

70 2 Object-Oriented Programming

Programming Tip: Functions and Methods
Access to the attributes of the object is the distinction between methods and
functions. For example, we can create a function and tack it onto an existing
object, as in the following,

>>> f = Foo()
>>> f.func = lambda i:i*2

This is a legitimate function, and it can be called like a method f.func(10)
but that function has no access to any of the internal attributes of f and must
get all its arguments from the invocation.

Not surprisingly, methods can call other methods in the same object as long as they
are referenced with the prefix self. Operations like the plus (+ operator) can be
specified as methods.

>>> class Foo:
... def __init__(self,x=10):
... self.x = x
... def __add__(self,y): # overloading "addition" operator
... return self.x + y.x
...
>>> a=Foo(x=20)
>>> b=Foo()
>>> a+b
30

The operators module has a list of implemented operators.

Programming Tip: Calling Objects as Functions
Functions are objects in Python and you can make your class callable like a
function by adding a __call__ method to your class. For example,

>>> class Foo:
... def __call__(self,x):
... return x*10
...

Now we can do something like,

>>> f = Foo()
>>> f(10)
100

The advantage of this technique is that now you can supply additional
variables in the __init__ function and then just use the object like any other
function.

2.3 Inheritance 71

2.3 Inheritance

Inheritance facilitates code-reuse. Consider the following,

>>> class Foo:
... def __init__(self,x=10):
... self.x = x
... def compute_this(self,y=20):
... return self.x*y
...

Now, let us suppose Foo works great except that we want to change the way
compute_this works for a new class. We do not have to rewrite the class, we can
just inherit from it and change (i.e., overwrite) the parts we do not like.

>>> class Goo(Foo): # inherit from Foo
... def compute_this(self,y=20):
... return self.x*y*1000
...

Now, this gives us everything in Foo except for the updated compute_this

function.

>>> g = Goo()
>>> g.compute_this(20)
200000

The idea is to reuse your own codes (or, better yet, someone else’s) with inheritance.
Python also supports multiple inheritance and delegation (via the super keyword).

As an example, consider inheritance from the built-in list object where we
want to implement a special __repr__ function.

>>> class MyList(list): # inherit from built-in list object
... def __repr__(self):
... list_string = list.__repr__(self)
... return list_string.replace(' ','')
...
>>> MyList([1,3]) # no spaces in output
[1,3]
>>> list([1,3]) # spaces in output
[1, 3]

Programming Tip: The Advantages of a Good __repr__
The repr built-in function triggers the __repr__ method, which is how
the object is represented as a string. Strictly speaking, repr is supposed to
return a string, when evaluated with the built-in eval() function, returns
the an instance given object. Practically speaking, repr returns a string
representation of the object and is an excellent opportunity to add useful
psychologically advantageous notation to your objects, which makes your

(continued)

72 2 Object-Oriented Programming

objects easier to reason about in the interactive interpreter or debugger. Here’s
an example of an object at represents an interval on the real line, which may
be open or closed.

>>> class I:
... def __init__(self,left,right,isopen=True):
... self.left, self.right = left, right # edges of interval
... self.isopen = isopen
... def __repr__(self):
... if self.isopen:
... return '(%d,%d)'%(self.left,self.right)
... else:
... return '[%d,%d]'%(self.left,self.right)
...
>>> a = I(1,3) # open-interval representation?
>>> a
(1,3)
>>> b = I(11,13,False) # closed interval representation?
>>> b
[11,13]

Now it is visually obvious whether or not the given interval is open or
closed by the enclosing parenthesis or square brackets. Providing this kind
of psychological hint to yourself will make it much easier to reason about
these objects.

Once you can write your own classes, you can reproduce the behavior of other
Python objects, like iterables, for instance,

>>> class Foo:
... def __init__(self,size=10):
... self.size = size
... def __iter__(self): # produces iterable
... self.counter = list(range(self.size))
... return self # return object that has next() method
... def __next__(self): # does iteration
... if self.counter:
... return self.counter.pop()
... else:
... raise StopIteration
...
>>> f = Foo()
>>> list(f)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> for i in Foo(3): # iterate over
... print(i)
...
2
1
0

2.4 Class Variables 73

2.4 Class Variables

So far, we have been discussing properties and methods of objects as instances. You
can specify variables tied to a class instead of an instance using class variables.

>>> class Foo:
... class_variable = 10 # variables defined here are tied to

the class not the particular instance↪→
...
>>> f = Foo()
>>> g = Foo()
>>> f.class_variable
10
>>> g.class_variable
10
>>> f.class_variable = 20
>>> f.class_variable # change here
20
>>> g.class_variable # no change here
10
>>> Foo.class_variable # no change here
10
>>> Foo.class_variable = 100 # change this
>>> h = Foo()
>>> f.class_variable # no change here
20
>>> g.class_variable # change here even if pre-existing!
100
>>> h.class_variable # change here (naturally)
100

This also works with functions, not just variables, but only with the @classmethod
decorator. Note that the existence of class variables does not make them known to
the rest of the class definition automatically. For example,

>>> class Foo:
... x = 10
... def __init__(self):
... self.fx = x**2 # x variable is not known
...

will result in the following error: NameError: global name ’x’ is not
defined. This can be fixed by providing the full class reference to x as in the
following,

>>> class Foo:
... x = 10
... def __init__(self):
... self.fx = Foo.x**2 # full reference to x
...

Although, it is probably best to avoid hard-coding the class name into the code,
which makes downstream inheritance brittle.

74 2 Object-Oriented Programming

2.5 Class Functions

Functions can be attached to classes also by using the classmethod decorator.

>>> class Foo:
... @classmethod
... def class_function(cls,x=10):
... return x*10
...
>>> f = Foo()
>>> f.class_function(20)
200
>>> Foo.class_function(20) # don't need the instance
200
>>> class Foo:
... class_variable = 10
... @classmethod
... def class_function(cls,x=10):
... return x*cls.class_variable #using class_variable
...
>>> Foo.class_function(20) # don't need the instance, using the

class_variable↪→
200

This can be useful if you want to transmit a parameter to all class instances after
construction. For example,

>>> class Foo:
... x=10
... @classmethod
... def foo(cls):
... return cls.x**2
...
>>> f = Foo()
>>> f.foo()
100
>>> g = Foo()
>>> g.foo()
100
>>> Foo.x = 100 # change class variable
>>> f.foo() # now the instances pickup the change
10000
>>> g.foo() # now the instances pickup the change
10000

This can be tricky to keep track of because the class itself holds the class variable.
For example:

>>> class Foo:
... class_list = []
... @classmethod
... def append_one(cls):
... cls.class_list.append(1)
...

>>> f = Foo()
>>> f.class_list

2.6 Static Methods 75

[]
>>> f.append_one()
>>> f.append_one()
>>> f.append_one()
>>> g = Foo()
>>> g.class_list
[1, 1, 1]

Notice how the new object g got the changes in the class variable that we made by
the f instance. Now, if we do the following:

>>> del f,g
>>> Foo.class_list
[1, 1, 1]

Note that the class variable is attached to the class definition so deleting the class
instances did not affect it. Make sure this is the behavior you expect when you set
up class variables this way!

Class variables and methods are not lazy evaluated. This will become apparent
when we get to dataclasses. For example,

>>> class Foo:
... print('I am here!')
...
I am here!

Notice that we did not have to instantiate an instance of this class in order to
execute the print statement. This has important subtleties for object-oriented
design. Sometimes platform-specific parameters are inserted as class variables so
they will be set up by the time any instance of the class is instantiated. For example,

>>> class Foo:
... _setup_const = 10 # get platform-specific info
... def some_function(self,x=_setup_const):
... return 2*x
...
>>> f = Foo()
>>> f.some_function()
20

2.6 Static Methods

As opposed to class methods, a staticmethod is attached to the class definition
but does not need access to the internal variables. Consider the following:

>>> class Foo:
... @staticmethod
... def mystatic(x,y):
... return x*y
...

76 2 Object-Oriented Programming

The staticmethod does not have access to the internal self or cls that a
regular method instance or classmethod has, respectively. It is just a way to
attach a function to a class. Thus,

>>> f = Foo()
>>> f.mystatic(1,3)
3

Sometimes you will find these in mix-in objects, which are objects that are designed
to not touch any of the internal self or cls variables.

2.7 Hashing Hides Parent Variables from Children

By convention, methods and attributes that start with a single underscore character
are considered private but those that start with a double underscore are internally
hashed with the class name,

>>> class Foo:
... def __init__(self):
... self.__x=10
... def count(self):
... return self.__x*30
...

Note that the count function utilizes the double underscored variable self.__x.

>>> class Goo(Foo): # child with own .__x attribute
... def __init__(self,x):
... self.__x=x
...
>>> g=Goo(11)
>>> g.count() # won't work
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in count

AttributeError: 'Goo' object has no attribute '_Foo__x'

This means that the __x variable in the Foo declaration is attached to the Foo class.
This is to prevent a potential subclass from using the Foo.count() function with
a subclass’s variable (say, self._x, without the double underscore).

2.8 Delegating Functions

In the following, try to think through where the abs function is originating from in
the chain of inheritance below.

>>> class Foo:
... x = 10

2.9 Using super for Delegation 77

... def abs(self):

... return abs(self.x)

...
>>> class Goo(Foo):
... def abs(self):
... return abs(self.x)*2
...
>>> class Moo(Goo):
... pass
...
>>> m = Moo()
>>> m.abs()
20

When Python sees m.abs() it first checks to see if the Moo class implements
the abs() function. Then, because it does not, it reads from left to right in the
inheritance and finds Goo. Because Goo does implement the abs() function it
uses this one but it requires self.x which Goo gets from its parent Foo in order
to finish the calculation. The abs() function in Goo relies upon the built-in Python
abs() function.

2.9 Using super for Delegation

Python’s super method is a way to run functions along the class’ Method
Resolution Order (MRO). A better name for super would be next-method-in-
MRO. In the following, both classes A and B inherit from Base,

>>> class Base:
... def abs(self):
... print('in Base')
... return 1
...
>>> class A(Base):
... def abs(self):
... print('in A.abs')
... oldval=super(A,self).abs()
... return abs(self.x)+oldval
...
>>> class B(Base):
... def abs(self):
... print('in B.abs')
... oldval=super(B,self).abs()
... return oldval*2
...

With all of that set up, let us create a new class that inherits from both A and B with
the inheritance tree in Fig. 2.1,

>>> class C(A,B):
... x=10
... def abs(self):

78 2 Object-Oriented Programming

... return super(C,self).abs()

...
>>> c=C() # create an instance of class C
>>> c.abs()
in A.abs
in B.abs
in Base
12

What happened? As shown in Fig. 2.1, the method resolution looks for an abs
function in the class C, finds it, and then goes to the next method in the order of the
inheritance (class A). It finds an abs function there and executes it and then moves
on to the next class in the MRO (class B) and then also finds an abs function there
and subsequently executes it. Thus, super basically daisy-chains the functions
together.

Now let us see what happens when we change the method resolution order by
starting at class A as in the following:

>>> class C(A,B):
... x=10
... def abs(self):
... return super(A,self).abs()
...
>>> c=C() # create an instance of class C
>>> c.abs()
in B.abs
in Base
2

Fig. 2.1 Method resolution
order

Fig. 2.2 Method resolution
order

2.10 Metaprogramming: Monkey Patching 79

Notice that it picks up the method resolution after class A (see Fig. 2.2). We can
change the order of inheritance and see how this affects the resolution order for
super.

>>> class C(B,A): # change MRO
... x=10
... def abs(self):
... return super(B,self).abs()
...
>>> c=C()
>>> c.abs()
in A.abs
in Base
11

>>> class C(B,A): # same MRO, different super
... x=10
... def abs(self):
... return super(C,self).abs()
...
>>> c=C()
>>> c.abs()
in B.abs
in A.abs
in Base
22

To sum up, super allows you to mix and match objects to come up with different
usages based upon how the method resolution is resolved for specific methods. This
adds another degree of freedom but also another layer of complexity to your code.

2.10 Metaprogramming: Monkey Patching

Monkey Patching means adding methods to classes or instances outside of the
formal class definition. This makes it very hard to debug, because you do not know
exactly where functions have been hijacked. Although highly inadvisable, you can
monkey patch class methods also:

>>> import types
>>> class Foo:
... class_variable = 10
...
>>> def my_class_function(cls,x=10):
... return x*10
...
>>> Foo.my_class_function = types.MethodType(my_class_function,

Foo)↪→
>>> Foo.my_class_function(10)
100
>>> f = Foo()
>>> f.my_class_function(100)
1000

80 2 Object-Oriented Programming

This can be useful for last-minute debugging

>>> import types
>>> class Foo:
... @classmethod
... def class_function(cls,x=10):
... return x*10
...
>>> def reported_class_function():
... # hide original function in a closure
... orig_function = Foo.class_function
... # define replacement function
... def new_class_function(cls,x=10):
... print('x=%r' % x)
... return orig_function(x)# return using original function
... return new_class_function # return a FUNCTION!
...
>>> Foo.class_function(10) # original method
100
>>> Foo.class_function = types.MethodType(reported_class_
function(), Foo)
>>> Foo.class_function(10) # new verbose method
x=10
100

Programming Tip: Keep It Simple
It is easy to get fancy with Python classes, but it is best to use classes and
object-oriented programming where they conceptually simplify and unify
codes, avoid code redundancy, and maintain organizational simplicity. To see
a perfect application of Python object-oriented design, study the Networkx
[2] graph module.

2.11 Abstract Base Classes

The collections module contains Abstract Base Classes which serve two
primary functions. First, they provide a way to check if a given custom object has
a desired interface using isinstance or issubclass. Second, they provide a
minimum set of requirements for new objects in order to satisfy specific software
patterns. Let us consider a function such as g = lambda x:x**2. Suppose we
want to test if g is a callable. One way to check this is to use the callable
function as in

>>> g = lambda x:x**2
>>> callable(g)
True

Alternatively, using Abstract Base Classes, we can do the same test as in the
following:

2.11 Abstract Base Classes 81

>>> from collections.abc import Callable
>>> isinstance(g,Callable)
True

The Abstract Base Classes extend this capability to the given interfaces as described
in the main Python documentation. For example, to check whether or not a custom
object is iterable, we can do the following:

>>> from collections.abc import Iterable
>>> isinstance(g,Iterable)
False

Beyond this kind of interface checking, Abstract Base Classes also allow object
designers to specify a minimum set of methods and to get the remainder of the
methods that characterize a particular Abstract Base Class. For example, if we
want to write a dictionary-like object, we can inherit from the MutableMapping
Abstract Base Class and then write the __getitem__, __setitem__, __delitem__,
__iter__, __len__ methods. Then, we get the other MutableMapping methods
like clear(), update(), etc. for free as part of the inheritance.

ABCMeta Programming The machinery that implements the above metaclasses
is also available directly via the abc module. Abstract Base Classes can also enforce
subclass methods by using the abc.abstractmethod decorator. For example,

>>> import abc
>>> class Dog(metaclass=abc.ABCMeta):
... @abc.abstractmethod
... def bark(self):
... pass
...

This means that all the subclasses of Dog have to implement a bark method or
TypeError will be thrown. The decorator marks the method as abstract.

>>> class Pug(Dog):
... pass
...
>>> p = Pug() # throws a TypeError
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Pug with abstract

methods bark↪→

So you must implement the bark method in the subclass,

>>> class Pug(Dog):
... def bark(self):
... print('Yap!')
...
>>> p = Pug()

Then,

>>> p.bark()
Yap!

82 2 Object-Oriented Programming

Besides subclassing from the base class, you can also use the register method
to take another class and make it a subclass, assuming it implements the desired
abstract methods, as in the following:

>>> class Bulldog:
... def bark(self):
... print('Bulldog!')
...
>>> Dog.register(Bulldog)
<class '__console__.Bulldog'>

Then, even though Bulldog is not written as a subclass of Dog, it will still act that
way:

>>> issubclass(Bulldog, Dog)
True
>>> isinstance(Bulldog(), Dog)
True

Note that without the bark method, we would not get an error if we tried to
instantiate the Bulldog class.

Even though the concrete implementation of the abstract method is the responsi-
bility of the subclass writer, you can still user super to run the main definition in
the parent class. For example,

>>> class Dog(metaclass=abc.ABCMeta):
... @abc.abstractmethod
... def bark(self):
... print('Dog bark!')
...
>>> class Pug(Dog):
... def bark(self):
... print('Yap!')
... super(Pug,self).bark()
...

Then,

>>> p= Pug()
>>> p.bark()
Yap!
Dog bark!

2.12 Descriptors

Descriptors expose the internal abstractions inside of the Python object-creation
technology for more general usage. The easiest way to get started with descriptors
is to hide input validation in an object from the user. For example:

>>> class Foo:
... def __init__(self,x):
... self.x = x
...

2.12 Descriptors 83

This object has a simple attribute called x. There is nothing stopping the user from
doing the following:

>>> f = Foo(10)
>>> f.x = 999
>>> f.x = 'some string'
>>> f.x = [1,3,'some list']

In other words, nothing is stopping the attribute x from being assigned to all of
these different types. This might not be what you want to do. If you want to ensure
that this attribute is only ever assigned an integer, for example, you need a way to
enforce that. That is where descriptors come in. Here is how:

>>> class Foo:
... def __init__(self,x):
... assert isinstance(x,int) # enforce here
... self._x = x
... @property
... def x(self):
... return self._x
... @x.setter
... def x(self,value):
... assert isinstance(value,int) # enforce here
... self._x = value
...

The interesting part happens with the property decorator. This is where we
explicitly change how Python deals with the x attribute. From now on, when we
try to set the value of this attribute instead of going directly to the Foo.__dict__,
which is the object dictionary that holds all of the attributes of the Foo object,
the x.setter function will be called instead and the assignment will be handled
there. Analogously, this also works for retrieving the value of the attribute, as shown
below with the x.getter decorator:

>>> class Foo:
... def __init__(self,x):
... assert isinstance(x,int) # enforce here
... self._x = x
... @property
... def x(self):
... return self._x
... @x.setter
... def x(self,value):
... assert isinstance(value,int) # enforce here
... self._x = value
... @x.getter
... def x(self):
... print('using getter!')
... return self._x
...

The advantage of this @getter technique is that now we can return a computed
value every time the attribute is accessed. For example, we could do something like
the following:

84 2 Object-Oriented Programming

@x.getter
def x(self):

return self._x * 30

So now, unbeknownst to the user, the attribute is computed dynamically. Now, here
comes the punchline: the entire descriptor machinery can be abstracted away from
the class definition. This is really useful when the same set of descriptors have to
be reused multiple times within the same class definition and rewriting them one-
by-one for every attribute would be error-prone and tedious. For example, suppose
we have the following class for FloatDescriptor and then another class that
describes a Car.

>>> class FloatDescriptor:
... def __init__(self):
... self.data = dict()
... def __get__(self, instance, owner):
... return self.data[instance]
... def __set__(self, instance, value):
... assert isinstance(value,float)
... self.data[instance] = value
...

>>> class Car:
... speed = FloatDescriptor()
... weight = FloatDescriptor()
... def __init__(self,speed,weight):
... self.speed = speed
... self.weight = weight
...

Note that FloatDescriptor appears as class variables in the class definition of Car.
This will have important ramifications later, but for now let us see how this works.

>>> f = Car(1,2) # raises AssertionError
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in __init__
File "<stdin>", line 7, in __set__

AssertionError

This is because the descriptor demands float parameters.

>>> f = Car(1.0,2.3) # no AssertionError because FloatDescriptor
is satisfied↪→

>>> f.speed = 10 # raises AssertionError
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 7, in __set__

AssertionError
>>> f.speed = 10.0 # no AssertionError

Now that we have abstracted away the management and validation of the
attributes of the Car class using FloatDescriptor and we can then reuse
FloatDescriptor in other classes. However, there is a big caveat here because
we had to use FloatDescriptor at the class level in order to get the descriptors

2.13 Named Tuples and Data Classes 85

hooked in correctly. This means that we have to ensure that the assignment of the
instance attributes is placed on the correct instance. This is why self.data is
a dictionary in the FloatDescriptor constructor. We are using the instance
itself as the key to this dictionary in order to ensure that the attributes get placed on
the correct instance, as in the following: self.data[instance] = value.
This can fail for classes that are non-hashable and that therefore cannot be used
as dictionary keys. The reason the __get__ has an owner argument is that these
issues can be resolved using metaclasses, but that is far outside of our scope.

To sum up, descriptors are the low-level mechanism that Python classes use
internally to manage methods and attributes. They also provide a way to abstract the
management of class attributes into separate descriptor classes that can be shared
between classes. Descriptors can get tricky for non-hashable classes and there are
other issues with extending this pattern beyond what we have discussed here. The
book Python Essential Reference [1] is an excellent reference for advanced Python.

2.13 Named Tuples and Data Classes

Named tuples allow for easier and more readable access to tuples. For example,

>>> from collections import namedtuple
>>> Produce = namedtuple('Produce','color shape weight')

We have just created a new class called Produce that has the attributes color,
shape, and weight. Note that you cannot have Python keywords or duplicated
names in the attributes specification. To use this new class, we just instantiate it like
any other class,

>>> mango = Produce(color='g',shape='oval',weight=1)
>>> print (mango)
Produce(color='g', shape='oval', weight=1)

Note that we can get at the elements of the tuple by using the usual indexing,

>>> mango[0]
'g'
>>> mango[1]
'oval'
>>> mango[2]
1

We can get the same by using the named attributes,

>>> mango.color
'g'
>>> mango.shape
'oval'
>>> mango.weight
1

Tuple unpacking works as with regular tuples,

86 2 Object-Oriented Programming

>>> i,j,k = mango
>>> i
'g'
>>> j
'oval'
>>> k
1

You can get the names of the attributes also,

>>> mango._fields
('color', 'shape', 'weight')

We can create new namedtuple objects by replacing values of the existing attributes
with the _replace method, as in the following,

>>> mango._replace(color='r')
Produce(color='r', shape='oval', weight=1)

Under the hood, namedtuple automatically generates code to implement the
corresponding class (Produce in this case). This idea of auto-generating code to
implement specific classes is extended with dataclasses in Python 3.7+.

Data Classes In Python 3.7+, dataclasses extend the code generation idea
beyond namedtuple to more generic data-like objects.

>>> from dataclasses import dataclass
>>> @dataclass
... class Produce:
... color: str
... shape: str
... weight: float
...
>>> p = Produce('apple','round',2.3)
>>> p
Produce(color='apple', shape='round', weight=2.3)

Do not be tricked into thinking that the given types are enforced,

>>> p = Produce(1,2,3)
>>> p
Produce(color=1, shape=2, weight=3)

We get many additional methods for free using the dataclass decorator,

>>> dir(Produce)
['__annotations__', '__class__', '__dataclass_fields__',
'__dataclass_params__', '__delattr__', '__dict__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__init_subclass__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__']

The __hash__() and __eq__() are particularly useful for allowing these objects
to be used as keys in a dictionary but you have to use the frozen=True keyword
argument as shown,

2.13 Named Tuples and Data Classes 87

>>> @dataclass(frozen=True)
... class Produce:
... color: str
... shape: str
... weight: float
...
>>> p = Produce('apple','round',2.3)
>>> d = {p: 10} # instance as key
>>> d
{Produce(color='apple', shape='round', weight=2.3): 10}

You can also use order=True if you want the class to order based on the tuple of
inputs. Default values can be assigned as in the following,

>>> @dataclass
... class Produce:
... color: str = 'red'
... shape: str = 'round'
... weight: float = 1.0
...

Unlike namedtuple, you can have custom methods,

>>> @dataclass
... class Produce:
... color : str
... shape : str
... weight : float
... def price(self):
... return 0 if self.color=='green' else self.weight*10
...

Unlike namedtuple, dataclass is not iterable. There are helper functions
that can be used. The field function allows you to specify how certain declared
attributes are created by default. The example below uses a list factory to avoid
all the instances of the class sharing the same list as a class variable.

>>> from dataclasses import field
>>> @dataclass
... class Produce:
... color : str = 'green'
... shape : str = 'flat'
... weight : float = 1.0
... track : list = field(default_factory=list)
...

Thus, two different instances of Produce have different mutable track lists. This
avoids the problem of using a mutable object in the initializer. Other arguments for
dataclass allow you to automatically define an order on your objects or make
them immutable, as in the following.

>>> @dataclass(order=True,frozen=True)
... class Coor:
... x: float = 0
... y: float = 0

88 2 Object-Oriented Programming

...
>>> c = Coor(1,2)
>>> d = Coor(2,3)
>>> c < d
True
>>> c.x = 10
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 4, in __setattr__

dataclasses.FrozenInstanceError: cannot assign to field 'x'

The asdict function easily converts your dataclasses to regular Python dictionar-
ies, which is useful for serialization. Note that this will only convert the attributes
of the instance.

>>> from dataclasses import asdict
>>> asdict(c)
{'x': 1, 'y': 2}

If you have variables that are dependent on other initialized variables, but you do
not want to auto-create them with every new instance, then you can use the field
function, as in the following,

>>> @dataclass
... class Coor:
... x : float = 0
... y : float = field(init=False)
...
>>> c = Coor(1) # y is not specified on init
>>> c.y = 2*c.x # added later
>>> c
Coor(x=1, y=2)

That is a little cumbersome and is the reason for the __post_init__ method.
Remember that the __init__ method is auto-generated by dataclass.

>>> @dataclass
... class Coor:
... x : float = 0
... y : float = field(init=False)
... def __post_init__(self):
... self.y = 2*self.x
...
>>> c = Coor(1) # y is not specified on init
>>> c
Coor(x=1, y=2)

To sum up, dataclasses are new and it remains to be seen how they will ultimately fit
into common workflows. These dataclasses are inspired by the third-party attrs
module, so read up on that module to understand if their use cases apply to your
problems.

2.14 Generic Functions 89

2.14 Generic Functions

Generic functions are those that change their implementations based upon the types
of the inputs. For example, you could accomplish the same thing using the following
conditional statement at the start of a function as shown in the following,

>>> def foo(x):
... if isinstance(x,int):
... return 2*x
... elif isinstance(x,list):
... return [i*2 for i in x]
... else:
... raise NotImplementedError
...

With the following usage,

>>> foo(1)
2
>>> foo([1,2])
[2, 4]

In this case, you can think of foo as a generic function. To put more reliability
behind this pattern, since Python 3.3, we have functools.singledispatch.
To start, we need to define the top level function that will template-out the individual
implementations based upon the type of the first argument.

>>> from functools import singledispatch
>>> @singledispatch
... def foo(x):
... print('I am done with type(x): %s'%(str(type(x))))
...

With the corresponding output,

>>> foo(1)
I am done with type(x): <class 'int'>

To get the dispatch to work we have to register the new implementations with
foo using the type of the input as the argument to the decorator. We can name the
function _ because we do not need a separate name for it.

>>> @foo.register(int)
... def _(x):
... return 2*x
...

Now, let us try the output again and notice that the new int version of the function
has been executed.

>>> foo(1)
2

We can tack on more type-based implementations by using register again with
different type arguments,

90 2 Object-Oriented Programming

>>> @foo.register(float)
... def _(x):
... return 3*x
...
>>> @foo.register(list)
... def _(x):
... return [3*i for i in x]
...

With the corresponding output,

>>> foo(1.3)
3.9000000000000004
>>> foo([1,2,3])
[3, 6, 9]

Existing functions can be attached using the functional form of the decorator,

>>> def existing_function(x):
... print('I am the existing_function with %s'%(str(type(x))))
...
>>> foo.register(dict,existing_function)
<function existing_function at 0x7f9398354a60>

With the corresponding output,

>>> foo({1:0,2:3})
I am the existing_function with <class 'dict'>

You can see the implemented dispatches using foo.registry.keys(), as in
the following,

>>> foo.registry.keys()
dict_keys([<class 'object'>, <class 'int'>, <class 'float'>,
<class 'list'>, <class 'dict'>])

You can pick out the individual functions by accessing the dispatch, as in the
following,

>>> foo.dispatch(int)
<function _ at 0x7f939a66b5e0>

These register decorators can also be stacked and used with Abstract Base
Classes.

Programming Tip: Using Slots to Cut Down Memory
The following class definition allows arbitrary addition of attributes.

>>> class Foo:
... def __init__(self,x):
... self.x=x
...

(continued)

2.15 Design Patterns 91

>>> f = Foo(10)
>>> f.y = 20
>>> f.z = ['some stuff', 10,10]
>>> f.__dict__
{'x': 10, 'y': 20, 'z': ['some stuff', 10, 10]}

This is because there is a dictionary inside Foo, which creates memory
overhead, especially for many such objects (see prior discussion of garbage
collection). This overhead can be removed by adding __slots__ as in the
following,

>>> class Foo:
... __slots__ = ['x']
... def __init__(self,x):
... self.x=x
...
>>> f = Foo(10)
>>> f.y = 20
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'Foo' object has no attribute 'y'

This raises AttributeError because __slots__ prevents Python from
creating an internal dictionary for each instance of Foo.

2.15 Design Patterns

Design Patterns are not as popular in Python as opposed to Java or C++ because
Python has such a wide-ranging and useful standard library. Design Patterns
represent canonical solutions to common problems. The terminology derives from
architecture. For example, suppose you have a house and your problem is how to
enter the house while carrying a bag of groceries. The solution to this problem is
the door pattern, but this does not specify the shape or size of the door, its color, or
whether or not it has a lock on it, etc. These are known as implementation details.
The main idea is that there are canonical solutions for common problems.

2.15.1 Template

The Template Method is a behavioral design pattern that defines the skeleton of an
algorithm in the base class but lets subclasses override specific steps of the algorithm
without changing its structure. The motivation is to break an algorithm into a series
of steps where each step is has an abstract implementation. Specifically, this means

92 2 Object-Oriented Programming

that the implementation details of the algorithm are left to the subclass while the
base class orchestrates the individual steps of the algorithm.

>>> from abc import ABC, abstractmethod
>>> # ensures it must be subclassed not directly instantiated
>>> class Algorithm(ABC):
... # base class method
... def compute(self):
... self.step1()
... self.step2()
... # subclasses must implement these abstractmethods
... @abstractmethod
... def step1(self):
... 'step 1 implementation details in subclass'
... pass
... @abstractmethod
... def step2(self):
... 'step 2 implementation details in subclass'
... pass
...

Python throws a TypeError if you try to instantiate this object directly. To use the
class, we have to subclass it as in the following,

>>> class ConcreteAlgorithm(Algorithm):
... def step1(self):
... print('in step 1')
... def step2(self):
... print('in step 2')
...
>>> c = ConcreteAlgorithm()
>>> c.compute() # compute is defined in base class
in step 1
in step 2

The advantage of the template pattern is that it makes it clear that the base class
coordinates the details that are implemented by the subclasses. This separates the
concerns clearly and makes it flexible to deploy the same algorithm in different
situations.

2.15.2 Singleton

Singleton is a creational design pattern to guarantee that a class has only one
instance. For example, there can be many printers but only one printer spooler. The
following code hides the singular instance in the class variable and uses the __new__

method to customize object creation before __init__ is called.

>>> class Singleton:
... # class variable contains singular _instance
... # __new__ method returns object of specified class and is
... # called before __init__

2.15 Design Patterns 93

... def __new__(cls, *args, **kwds):

... if not hasattr(cls, '_instance'):

... cls._instance = super().__new__(cls, *args, **kwds)

... return cls._instance

...
>>> s = Singleton()
>>> t = Singleton()
>>> t is s # there can be only one!
True

Note that there are many ways to implement this pattern in Python, but this is one
of the simplest.

2.15.3 Observer

Observer is a behavioral design pattern that defines communication between objects
so that when one object (i.e., publisher) changes state, all its subscribers are
notified and updated automatically. The traitlets module implements this
design pattern.

>>> from traitlets import HasTraits, Unicode, Int
>>> class Item(HasTraits):
... count = Int() # publisher for integer
... name = Unicode() # publisher for unicode string
...
>>> def func(change):
... print('old value of count = ',change.old)
... print('new value of count = ',change.new)
...
>>> a = Item()
>>> # func subscribes to changes in `count`
>>> a.observe(func, names=['count'])
>>> a.count = 1
old value of count = 0
new value of count = 1
>>> a.name = 'abc' # prints nothing but not watching name

With all that set up, we can have multiple subscribers to published attributes

>>> def another_func(change):
... print('another_func is subscribed')
... print('old value of count = ',change.old)
... print('new value of count = ',change.new)
...
>>> a.observe(another_func, names=['count'])
>>> a.count = 2
old value of count = 1
new value of count = 2
another_func is subscribed
old value of count = 1
new value of count = 2

94 2 Object-Oriented Programming

Additionally, the traitlets module does type-checking of the object attributes
that will raise an exception if the wrong type is set to the attribute, implementing the
descriptor pattern. The traitlets module is fundamental to the interactive
web-based features of the Jupyter ipywidgets ecosystem.

2.15.4 Adapter

The Adapter patterns facilitate reusing existing code by impersonating the relevant
interfaces using classes. This permits classes to interoperate that otherwise could not
due to incompatibilities in their interfaces. Consider the following class that takes a
list,

>>> class EvenFilter:
... def __init__(self,seq):
... self._seq = seq
... def report(self):
... return [i for i in self._seq if i%2==0]
...

This returns only the even terms as shown below,

>>> EvenFilter([1,3,4,5,8]).report()
[4, 8]

But now we want to use the same class where the input seq is now a generator
instead of a list. We can do this with the following GeneratorAdapter class,

>>> class GeneratorAdapter:
... def __init__(self,gen):
... self._seq = list(gen)
... def __iter__(self):
... return iter(self._seq)
...

Now we can go back and use this with the EvenFilter as follows:

>>> g = (i for i in range(10)) # create generator with
comprehension↪→

>>> EvenFilter(GeneratorAdapter(g)).report()
[0, 2, 4, 6, 8]

The main idea for the adapter pattern is to isolate the relevant interfaces and
impersonate them with the adapter class.

References

1. D.M. Beazley, Python Essential Reference (Addison-Wesley, Boston, 2009)
2. A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics, and function

using NetworkX, in Proceedings of the 7th Python in Science Conference (SciPy2008),
Pasadena, CA, August 2008, pp. 11–15

Chapter 3
Using Modules

Modules allow for code-reuse and portability. It is generally better to use widely
used and heavily tested code than to write your own from scratch. The import
statement is how modules are loaded into the current namespace. Behind the scenes,
importing is a complex process. Consider the following import statement:

import some_module

To import this module, Python will search for a valid Python module in the order
of the entries in the sys.path directory list. The items in the PYTHONPATH
environment variable are added to this search path. How Python was compiled
affects the import process. Generally speaking, Python searches the filesystem
for modules, but certain modules may be compiled into Python directly, meaning
that it knows where to load them without searching the filesystem. This can have
massive performance consequences when starting thousands of Python process on
a shared filesystem because the filesystem may cause significant startup delays as it
is pounded during searching.

3.1 Standard Library

Python is a batteries included language, meaning that lots of excellent modules
are already included in the base language. Due to its legacy as a web programming
language, most of the standard libraries deal with network protocols and other topics
important to web development. The standard library modules are documented on the
main Python site. Let us look at the built-in math module,

>>> import math # Importing math module
>>> dir(math) # Provides a list of module attributes
['__doc__', '__file__', '__loader__', '__name__', '__package__',
'__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees',

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0_3

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68952-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-68952-0_3

96 3 Using Modules

'dist', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial',
'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf',
'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'ldexp',
'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'perm',
'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh',
'sqrt', 'tan', 'tanh', 'tau', 'trunc']
>>> help(math.sqrt)
Help on built-in function sqrt in module math:

sqrt(x, /)
Return the square root of x.

>>> radius = 14.2
>>> area = math.pi*(radius**2)
>>> area # Using a module variable
633.4707426698459
>>> a = 14.5; b = 12.7
>>> c = math.sqrt(a**2+b**2) # Using a module function
>>> c
19.275372888740698

Once a module is imported, it is included in the sys.modules dictionary. The
first step of import is to check this dictionary for the desired module and not
re-import it again. This means that doing import somemodule multiple times
in your interpreter is not reloading the module. This is because the first step in
the resolution protocol import is to see if the desired module is already in the
sys.modules dictionary and then to not import it if it already there.

Sometimes you just need a specific function from a given module. The from
<module> import <name> syntax handles that case,

>>> # will overwrite existing definitions in the namespace!
>>> from math import sqrt
>>> sqrt(a) # shorter to use
3.8078865529319543

Note that you have to use the importlib.reload function to re-import modules
into the workspace. Importantly, importlib.reload will not work with the
from syntax used above. Thus, if you are developing code and constantly reloading
it, it is better to keep the top level module name so you can keep reloading it with
importlib.reload.

There are many places to hijack the import process. These make it possible to
create virtual environments and to customize execution, but it is best to stick with
the well-developed solutions for these cases (see conda below).

3.2 Writing and Using Your Own Modules

Beyond using the amazingly excellent standard library, you may want to share your
codes with your colleagues. The easiest way to do this is to put your code in a file
and send it to them. When interactively developing code to be distributed this way,

3.2 Writing and Using Your Own Modules 97

you must understand how your module is updated (or not) in the active interpreter.
For example, put the following code in a separate file named mystuff.py:

def sqrt(x):
return x*x

and then return to the interactive session

>>> from mystuff import sqrt
>>> sqrt(3)
9
>>> import mystuff
>>> dir(mystuff)
['__builtins__', '__cached__', '__doc__',

'__file__','__loader__','__name__', '__package__',
'__spec__', 'sqrt']

↪→
↪→
>>> mystuff.sqrt(3)
9

Now, add the following function to your mystuff.py file:

def poly_func(x):
return 1+x+x*x

And change your previous function in the file:

def sqrt(x):
return x/2.

and then return to the interactive session

mystuff.sqrt(3)

Did you get what you expected?

mystuff.poly_func(3)

You have to importlib.reload in order to get new changes in your file
into the interpreter. A directory called __pycache__ will automatically appear in
the same directory as mystuff.py. This is where Python stores the compiled
byte-codes for the module so that Python does not have to re-compile it from
scratch every time you import mystuff.py. This directory will automatically be
refreshed every time you make changes to mystuff.py. It is important to never
include the __pycache__ directory into your Git repository because when others
clone your repository, if the filesystem gets the timestamps wrong, it could be that
__pycache__ falls out of sync with the source code. This is a painful bug because
others may make changes to the mystuff.py file and those changes will not be
implemented when mystuff module is imported because Python is still using the
version in __pycache__. If you are working with Python 2.x, then the compiled
Python byte-codes are stored in the same directory without __pycache__ as .pyc
files. These should also never be included in your Git repository for the same reason.

98 3 Using Modules

Programming Tip: IPython Automated Reloading
IPython provides some autoreloading via the %autoreload magic, but it
comes with lots of caveats. Better to explicitly use importlib.reload.

3.2.1 Using a Directory as a Module

Beyond sticking all your Python code into a single file, you can use a directory to
organize your code into separate files. The trick is to put a __init__.py file in
the top level of the directory you want to import from. The file can be empty. For
example,

package/
__init__.py
moduleA.py

So, if package is in your path, you can do import package. If __init__.py
is empty, then this does nothing. To get any of the code in moduleA.py, you have
to explicitly import it as import package.moduleA, and then you can get the
contents of that module. For example,

package.moduleA.foo()

runs the foo function in the moduleA.py file. If you want to make foo
available upon importing package, then you have to put from .moduleA
import foo in the __init__.py file. Relative import notation is required in
Python 3. Then, you can do import package and then run the function as
package.foo(). You can also do from package import foo to get foo
directly. When developing your own modules, you can have fine-grained control of
which packages are imported using relative imports.

3.3 Dynamic Importing

In case you do not know the names of the modules that you need to import ahead
of time, the __import__ function can load modules from a specified list of module
names.

>>> sys = __import__('sys') # import module from string argument
>>> sys.version
'3.8.3 (default, May 19 2020, 18:47:26) \n[GCC 7.3.0]'

3.5 Conda Package Management 99

Programming Tip: Using __main__
Namespaces distinguish between importing and running a Python script.

if __name__ == '__main__':
these statements are not executed during import
do run statements here

There is also __file__ which is the filename of the imported file. In addition
to the __init__.py file, you can put a __main__.py file in the top level of
your module directory if you want to call your module using the -m switch on
the commandline. Doing this means the __init__.py function will also run.

3.4 Getting Modules from the Web

Python packaging has really improved over the last few years. This had always been
a sore point, but now it is a lot easier to deploy and maintain Python codes that rely
on linked libraries across multiple platforms. Python packages in the main Python
Package Index support pip.

% pip install name_of_module

This figures out all the dependencies and installs them, too. There are many flags
that control how and where packages are installed. You do not need root access to
use this. See the --user flag for non-root access. Modern Python packaging relies
on the so-called wheel files that include fragments of compiled libraries that the
module depends on. This usually works, but if you have problems on the Windows
platform, there is a treasure trove of modules for Windows in the form of wheel files
at Christoph Gohlke’s lab at UCI.1

3.5 Conda Package Management

You should really use conda whenever possible. It soothes so many package
management headaches, and you do not need administrator/root rights to use it
effectively. The anaconda toolset is a curated list of scientific packages that is
supported by the Anaconda company. This has just about all the scientific packages
you want. Outside of this support, the community also supports a longer list of
scientific packages as conda-forge. You can add conda-forge to your usual
repository list with the following:

1See https://www.l.uci.edu/~gohlke/pythonlibs..

https://www.l.uci.edu/~gohlke/pythonlibs.

100 3 Using Modules

Terminal> conda config --add channels conda-forge

And then you can install new modules as in the following:

Terminal> conda install name_of_module

Additionally, conda also facilitates self-contained sub-environments that are a
great way to safely experiment with codes and even different Python versions.
This can be key for automated provisioning of virtual machines in a cloud-
computing environment. For example, the following will create an environment
named my_test_env with the Python version 3.7.

Terminal> conda create -n my_test_env python=3.7

The difference between pip and conda is that pip will use the requirements
for the desired package to ensure that to install any missing modules. The conda
package manager will do the same but will additionally determine if there are any
conflicts in the versions of the desired packages and its dependencies versus the
existing installation and provide a warning beforehand.2 This avoids the problem of
overwriting the dependencies of a pre-existing package to satisfy a new installation.
The best practice is to prefer conda when dealing with scientific codes with many
linked libraries and then rely on pip for the pure Python codes. Sometimes it is
necessary to use both because certain desired Python modules might not yet be
supported by conda. This can become a problem when conda does not know how
to integrate the new pip installed packages for internal management. The conda
documentation has more information and bear in mind that conda is also under
constant development.

Another way to create virtual environments is with the venv (or virtualenv),
which comes with Python itself. Again, this is a good idea for pip installed
packages and particularly for pure Python codes, but conda is a better alternative
for scientific programs. Nonetheless, virtual environments created with venv or
virtualenv are particularly useful for segregating commandline programs that
may have odd dependencies that you do not want to carry around or have interfere
with other installations.

Programming Tip: Mamba Package Manager
The mamba package manager is multiple times faster than conda because
of its more efficient satisfiability solver, and is an excellent replacement for
conda.

The following are listed in the Bibliography as excellent books for learning more
about Python: [1–4, 4–13, 13–15].

2To resolve conflicts, conda implements a satisfiability solver (SAT), which is a classic
combinatorial problem.

References 101

References

1. D.M. Beazley, Python Essential Reference (Addison-Wesley, Boston, 2009)
2. D. Beazley, B.K. Jones, Python Cookbook: Recipes for Mastering Python 3 (O’Reilly Media,

Newton, 2013)
3. N. Ceder, The Quick Python Book. (Manning Publications, Shelter Island, 2018)
4. D. Hellmann, The Python 3 Standard Library by Example Developer’s Library (Pearson

Education, London, 2017)
5. C. Hill, Learning Scientific Programming With Python (Cambridge University Press, Cam-

bridge, 2020)
6. D. Kuhlman, A Python Book: Beginning Python, Advanced Python, and Python Exercises

(Platypus Global Media, Washington, 2011)
7. H.P. Langtangen, A Primer on Scientific Programming With Python. Texts in Computational

Science and Engineering (Springer, Berlin, Heidelberg, 2016)
8. M. Lutz, Learning Python: Powerful Object-Oriented Programming. Safari Books Online

(O’Reilly Media, Newton, 2013)
9. M. Pilgrim, Dive Into Python 3. Books for Professionals by Professionals (Apress, New York,

2010)
10. K. Reitz, T. Schlusser, The Hitchhiker’s Guide to Python: Best Practices for Development

(O’Reilly Media, Newton, 2016)
11. C. Rossant, Learning IPython for Interactive Computing and Data Visualization (Packt

Publishing, Birmingham, 2015)
12. Z.A. Shaw, Learn Python the Hard Way: Release 2.0. Lulu.com (2012)
13. M. Summerfield, Python in Practice: Create Better Programs Using Concurrency, Libraries,

and Patterns (Pearson Education, London, 2013)
14. J. Unpingco, Python for Signal Processing: Featuring IPython Notebooks (Springer Interna-

tional Publishing, Cham, 2016)
15. J. Unpingco, Python for Probability, Statistics, and Machine Learning, 2nd edn. (Springer

International Publishing, Cham, 2019)

Chapter 4
Numpy

Numpy provides a unified way to manage numerical arrays in Python. It consoli-
dated the best ideas from many prior approaches to numerical arrays in Python. It is
the cornerstone of many other scientific computing Python modules. To understand
and to be effective with scientific computing and Python, a solid grasp on Numpy is
essential!

>>> import numpy as np # naming convention

4.1 Dtypes

Although Python is dynamically typed, Numpy permits fine-grained specification
of number types using dtypes,

>>> a = np.array([0],np.int16) # 16-bit integer
>>> a.itemsize # in 8-bit bytes
2
>>> a.nbytes
2
>>> a = np.array([0],np.int64) # 64-bit integer
>>> a.itemsize
8

Numerical arrays follow the same pattern,

>>> a = np.array([0,1,23,4],np.int64) # 64-bit integer
>>> a.shape
(4,)
>>> a.nbytes
32

Note that you cannot tack on extra elements to a Numpy array after creation,

>>> a = np.array([1,2])
>>> a[2] = 32

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0_4

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68952-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-68952-0_4

104 4 Numpy

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: index 2 is out of bounds for axis 0 with size 2

This is because the block of memory has already been delineated and Numpy will
not allocate new memory and copy data without explicit instruction. Also, once you
create the array with a specific dtype, assigning to that array will cast to that type.
For example,

>>> x = np.array(range(5), dtype=int)
>>> x[0] = 1.33 # float assignment does not match dtype=int
>>> x
array([1, 1, 2, 3, 4])
>>> x[0] = 'this is a string'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'this is a

string'↪→

This is different from systems like Matlab because the copy/view array semantics
are so fundamentally different.

4.2 Multidimensional Arrays

Multidimensional arrays follow the same pattern,

>>> a = np.array([[1,3],[4,5]]) # omitting dtype picks default
>>> a
array([[1, 3],

[4, 5]])
>>> a.dtype
dtype('int64')
>>> a.shape
(2, 2)
>>> a.nbytes
32
>>> a.flatten()
array([1, 3, 4, 5])

The maximum limit on the number of dimensions depends on how it is configured
during the Numpy build (usually thirty-two). Numpy offers many ways to build
arrays automatically,

>>> a = np.arange(10) # analogous to range()
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a = np.ones((2,2))
>>> a
array([[1., 1.],

[1., 1.]])
>>> a = np.linspace(0,1,5)
>>> a

4.3 Reshaping and Stacking Numpy Arrays 105

array([0. , 0.25, 0.5 , 0.75, 1.])
>>> X,Y = np.meshgrid([1,2,3],[5,6])
>>> X
array([[1, 2, 3],

[1, 2, 3]])
>>> Y
array([[5, 5, 5],

[6, 6, 6]])
>>> a = np.zeros((2,2))
>>> a
array([[0., 0.],

[0., 0.]])

You can also create Numpy arrays using functions,

>>> np.fromfunction(lambda i,j: abs(i-j)<=1, (4,4))
array([[True, True, False, False],

[True, True, True, False],
[False, True, True, True],
[False, False, True, True]])

Numpy arrays can also have fieldnames,

>>> a = np.zeros((2,2), dtype=[('x','f4')])
>>> a['x']
array([[0., 0.],

[0., 0.]], dtype=float32)
>>> x = np.array([(1,2)], dtype=[('value','f4'),
... ('amount','c8')])
>>> x['value']
array([1.], dtype=float32)
>>> x['amount']
array([2.+0.j], dtype=complex64)
>>> x = np.array([(1,9),(2,10),(3,11),(4,14)],
... dtype=[('value','f4'),
... ('amount','c8')])
>>> x['value']
array([1., 2., 3., 4.], dtype=float32)
>>> x['amount']
array([9.+0.j, 10.+0.j, 11.+0.j, 14.+0.j], dtype=complex64)

Numpy arrays can also be accessed by their attributes using recarray,

>>> y = x.view(np.recarray)
>>> y.amount # access as attribute
array([9.+0.j, 10.+0.j, 11.+0.j, 14.+0.j], dtype=complex64)
>>> y.value # access as attribute
array([1., 2., 3., 4.], dtype=float32)

4.3 Reshaping and Stacking Numpy Arrays

Arrays can be stacked horizontally and vertically,

>>> x = np.arange(5)
>>> y = np.array([9,10,11,12,13])

106 4 Numpy

>>> np.hstack([x,y]) # stack horizontally
array([0, 1, 2, 3, 4, 9, 10, 11, 12, 13])
>>> np.vstack([x,y]) # stack vertically
array([[0, 1, 2, 3, 4],

[9, 10, 11, 12, 13]])

There is also a dstack method if you want to stack in the third depth dimension.
Numpy np.concatenate handles the general arbitrary-dimension case. In some
codes (e.g., scikit-learn), you may find the terse np.c_ and np.r_ used to
stack arrays column-wise and row-wise:

>>> np.c_[x,x] # column-wise
array([[0, 0],

[1, 1],
[2, 2],
[3, 3],
[4, 4]])

>>> np.r_[x,x] # row-wise
array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4])

4.4 Duplicating Numpy Arrays

Numpy has a repeat function for duplicating elements and a more generalized
version in tile that lays out a block matrix of the specified shape,

>>> x=np.arange(4)
>>> np.repeat(x,2)
array([0, 0, 1, 1, 2, 2, 3, 3])
>>> np.tile(x,(2,1))
array([[0, 1, 2, 3],

[0, 1, 2, 3]])
>>> np.tile(x,(2,2))
array([[0, 1, 2, 3, 0, 1, 2, 3],

[0, 1, 2, 3, 0, 1, 2, 3]])

You can also have non-numerics like strings as items in the array

>>> np.array(['a','b','cow','deep'])
array(['a', 'b', 'cow', 'deep'], dtype='<U4')

Note that the ’U4’ refers to string of length 4, which is the longest string in the
sequence.

Reshaping Numpy arrays Numpy arrays can be reshaped after creation,

>>> a = np.arange(10).reshape(2,5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

For the truly lazy, you can replace one of the dimensions above by negative one (i.e.,
reshape(-1,5)), and Numpy will figure out the conforming other dimension.
The array transpose method operation is the same as the .T attribute,

4.5 Slicing, Logical Array Operations 107

>>> a.transpose()
array([[0, 5],

[1, 6],
[2, 7],
[3, 8],
[4, 9]])

>>> a.T
array([[0, 5],

[1, 6],
[2, 7],
[3, 8],
[4, 9]])

The conjugate transpose (i.e., Hermitian transpose) is the .H attribute.

4.5 Slicing, Logical Array Operations

Numpy arrays follow the same zero-indexed slicing logic as Python lists and strings:

>>> x = np.arange(50).reshape(5,10)
>>> x
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])

The colon character means take all along the indicated dimension

>>> x[:,0]
array([0, 10, 20, 30, 40])
>>> x[0,:]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x = np.arange(50).reshape(5,10) # reshaping arrays
>>> x
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])

>>> x[:,0] # any row, 0th column
array([0, 10, 20, 30, 40])
>>> x[0,:] # any column, 0th row
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:3,4:6]
array([[14, 15],

[24, 25]])
>>> x = np.arange(2*3*4).reshape(2,3,4) # reshaping arrays
>>> x
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

108 4 Numpy

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> x[:,1,[2,1]] # index each dimension
array([[6, 5],

[18, 17]])

Numpy’s where function can find array elements according to specific logical
criteria. Note that np.where returns a tuple of Numpy indices,

>>> np.where(x % 2 == 0)
(array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]),
array([0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2]),
array([0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2]))
>>> x[np.where(x % 2 == 0)]
array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22])
>>> x[np.where(np.logical_and(x % 2 == 0,x < 9))] # also

logical_or, etc.↪→
array([0, 2, 4, 6, 8])

Additionally, Numpy arrays can be indexed by logical Numpy arrays where only
the corresponding True entries are selected,

>>> a = np.arange(9).reshape((3,3))
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> b = np.fromfunction(lambda i,j: abs(i-j) <= 1, (3,3))
>>> b
array([[True, True, False],

[True, True, True],
[False, True, True]])

>>> a[b]
array([0, 1, 3, 4, 5, 7, 8])
>>> b = (a>4)
>>> b
array([[False, False, False],

[False, False, True],
[True, True, True]])

>>> a[b]
array([5, 6, 7, 8])

4.6 Numpy Arrays and Memory

Numpy uses pass-by-reference semantics so that slice operations are views into
the array without implicit copying, which is consistent with Python’s semantics.
This is particularly helpful with large arrays that already strain available memory.
In Numpy terminology, slicing creates views (no copying) and advanced indexing
creates copies. Let us start with advanced indexing.

If the indexing object (i.e., the item between the brackets) is a non-tuple sequence
object, another Numpy array (of type integer or boolean), or a tuple with at least

4.6 Numpy Arrays and Memory 109

one sequence object or Numpy array, then indexing creates copies. For the above
example, to extend and copy an existing array in Numpy, you have to do something
like the following:

>>> x = np.ones((3,3))
>>> x
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> x[:,[0,1,2,2]] # notice duplicated last dimension
array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.]])

>>> y=x[:,[0,1,2,2]] # same as above, but do assign it to y

Because of advanced indexing, the variable y has its own memory because the
relevant parts of x were copied. To prove it, we assign a new element to x and
see that y is not updated:

>>> x[0,0]=999 # change element in x
>>> x # changed
array([[999., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> y # not changed!
array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.]])

However, if we start over and construct y by slicing (which makes it a view) as
shown below, then the change we made does affect y because a view is just a
window into the same memory:

>>> x = np.ones((3,3))
>>> y = x[:2,:2] # view of upper left piece
>>> x[0,0] = 999 # change value
>>> x # see the change?
array([[999., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> y
array([[999., 1.],

[1., 1.]])

Note that if you want to explicitly force a copy without any indexing tricks, you can
do y=x.copy(). The code below works through another example of advanced
indexing versus slicing:

>>> x = np.arange(5) # create array
>>> x
array([0, 1, 2, 3, 4])
>>> y=x[[0,1,2]] # index by integer list to force copy
>>> y
array([0, 1, 2])
>>> z=x[:3] # slice creates view

110 4 Numpy

>>> z # note y and z have same entries
array([0, 1, 2])
>>> x[0]=999 # change element of x
>>> x
array([999, 1, 2, 3, 4])
>>> y # note y is unaffected,
array([0, 1, 2])
>>> z # but z is (it's a view).
array([999, 1, 2])

In this example, y is a copy, not a view, because it was created using advanced
indexing, whereas z was created using slicing. Thus, even though y and z have the
same entries, only z is affected by changes to x. Note that the flags.ownsdata
property of Numpy arrays can help sort this out until you get used to it.

Overlapping Numpy Arrays Manipulating memory using views is particularly
powerful for signal and image processing algorithms that require overlapping
fragments of memory. The following is an example of how to use advanced Numpy
to create overlapping blocks that do not actually consume additional memory,

>>> from numpy.lib.stride_tricks import as_strided
>>> x = np.arange(16).astype(np.int32)
>>> y=as_strided(x,(7,4),(8,4)) # overlapped entries
>>> y
array([[0, 1, 2, 3],

[2, 3, 4, 5],
[4, 5, 6, 7],
[6, 7, 8, 9],
[8, 9, 10, 11],
[10, 11, 12, 13],
[12, 13, 14, 15]], dtype=int32)

The above code creates a range of integers and then overlaps the entries to create a
7x4 Numpy array. The final argument in the as_strided function are the strides,
which are the steps in bytes to move in the row and column dimensions, respectively.
Thus, the resulting array steps four bytes in the column dimension and eight bytes
in the row dimension. Because the integer elements in the Numpy array are four
bytes, this is equivalent to moving by one element in the column dimension and by
two elements in the row dimension. The second row in the Numpy array starts at
eight bytes (two elements) from the first entry (i.e., 2) and then proceeds by four
bytes (by one element) in the column dimension (i.e., 2,3,4,5). The important
part is that memory is re-used in the resulting 7x4 Numpy array. The code below
demonstrates this by reassigning elements in the original x array. The changes show
up in the y array because they point at the same allocated memory:

>>> x[::2] = 99 # assign every other value
>>> x
array([99, 1, 99, 3, 99, 5, 99, 7, 99, 9, 99, 11, 99, 13, 99,

15],↪→
dtype=int32)

>>> y # the changes appear because y is a view
array([[99, 1, 99, 3],

4.7 Numpy Memory Data Structures 111

[99, 3, 99, 5],
[99, 5, 99, 7],
[99, 7, 99, 9],
[99, 9, 99, 11],
[99, 11, 99, 13],
[99, 13, 99, 15]], dtype=int32)

Bear in mind that as_strided does not check that you stay within memory block
bounds. So, if the size of the target matrix is not filled by the available data, the
remaining elements will come from whatever bytes are at that memory location.
In other words, there is no default filling by zeros or other strategy that defends
memory block bounds. One defense is to explicitly control the dimensions as in the
following code:

>>> n = 8 # number of elements
>>> x = np.arange(n) # create array
>>> k = 5 # desired number of rows
>>> y = as_strided(x,(k,n-k+1),(x.itemsize,)*2)
>>> y
array([[0, 1, 2, 3],

[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6],
[4, 5, 6, 7]])

4.7 Numpy Memory Data Structures

Let us examine the following data structure typedef in the Numpy source code:

typedef struct PyArrayObject {
PyObject_HEAD

/* Block of memory */
char *data;

/* Data type descriptor */
PyArray_Descr *descr;

/* Indexing scheme */
int nd;
npy_intp *dimensions;
npy_intp *strides;

/* Other stuff */
PyObject *base;
int flags;
PyObject *weakreflist;

} PyArrayObject;0

Let us create a Numpy array of 16-bit integers and explore it:

>>> x = np.array([1], dtype=np.int16)

112 4 Numpy

We can see the raw data using the x.data attribute,

>>> bytes(x.data)
b'\x01\x00'

Notice the orientation of the bytes. Now, change the dtype to unsigned two-byte
big-endian integer,

>>> x = np.array([1], dtype='>u2')
>>> bytes(x.data)
b'\x00\x01'

Again notice the orientation of the bytes. This is what little/big endian means
for data in memory. We can create Numpy arrays from bytes directly using
frombuffer, as in the following. Note the effect of using different dtypes,

>>> np.frombuffer(b'\x00\x01',dtype=np.int8)
array([0, 1], dtype=int8)
>>> np.frombuffer(b'\x00\x01',dtype=np.int16)
array([256], dtype=int16)
>>> np.frombuffer(b'\x00\x01',dtype='>u2')
array([1], dtype=uint16)

Once a ndarray is created, you can re-cast it to a different dtype or change the
dtype of the view. Roughly speaking, casting copies data. For example,

>>> x = np.frombuffer(b'\x00\x01',dtype=np.int8)
>>> x
array([0, 1], dtype=int8)
>>> y = x.astype(np.int16)
>>> y
array([0, 1], dtype=int16)
>>> y.flags['OWNDATA'] # y is a copy
True

Alternatively, we can re-interpret the data using a view,

>>> y = x.view(np.int16)
>>> y
array([256], dtype=int16)
>>> y.flags['OWNDATA']
False

Note that y is not new memory, it is just referencing the existing memory and re-
interpreting it using a different dtype.

Numpy Memory Strides The strides of the typedef above concern how Numpy
moves between and across arrays. A stride is the number of bytes to reach the
next consecutive array element. There is one stride per dimension. Consider the
following Numpy array:

>>> x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int8)
>>> bytes(x.data)
b'\x01\x02\x03\x04\x05\x06\x07\x08\t'
>>> x.strides
(3, 1)

4.7 Numpy Memory Data Structures 113

Thus, if we want to index x[1,2], we have to use the following offset:

>>> offset = 3*1+1*2
>>> x.flat[offset]
6

Numpy supports C-order (i.e., column-wise) and Fortran-order (i.e., row-wise). For
example,

>>> x = np.array([[1, 2, 3], [7, 8, 9]], dtype=np.int8,order='C')
>>> x.strides
(3, 1)
>>> x = np.array([[1, 2, 3], [7, 8, 9]], dtype=np.int8,order='F')
>>> x.strides
(1, 2)

Note the difference between the strides for the two orderings. For C-order, it takes 3
bytes to move between the rows and 1 byte to move between columns, whereas for
Fortran-order, it takes 1 byte to move between rows, but 2 bytes to move between
columns. This pattern continues for higher dimensions:

>>> x = np.arange(125).reshape((5,5,5)).astype(np.int8)
>>> x.strides
(25, 5, 1)
>>> x[1,2,3]
38

To get the [1,2,3] element using byte offsets, we can do the following:

>>> offset = (25*1 + 5*2 +1*3)
>>> x.flat[offset]
38

Once again, creating views by slicing just changes the stride!

>>> x = np.arange(3,dtype=np.int32)
>>> x.strides
(4,)
>>> y = x[::-1]
>>> y.strides
(-4,)

Transposing also just swaps the stride,

>>> x = np.array([[1, 2, 3], [7, 8, 9]], dtype=np.int8,order='F')
>>> x.strides
(1, 2)
>>> y = x.T
>>> y.strides # negative!
(2, 1)

In general, reshaping does not just alter the stride but may sometimes make copies
of the data. The memory layout (i.e., strides) can affect performance because of
the CPU cache. The CPU pulls in data from main memory in blocks so that if
many items can consecutively be operated on in a single block then that reduces
the number of transfers needed from main memory that speeds up computation.

114 4 Numpy

4.8 Array Element-Wise Operations

The usual pairwise arithmetic operations are element-wise in Numpy:

>>> x*3
array([[3, 6, 9],

[21, 24, 27]], dtype=int8)
>>> y = x/x.max()
>>> y
array([[0.11111111, 0.22222222, 0.33333333],

[0.77777778, 0.88888889, 1.]])
>>> np.sin(y) * np.exp(-y)
array([[0.09922214, 0.17648072, 0.23444524],

[0.32237812, 0.31917604, 0.30955988]])

Programming Tip: Beware Numpy in-place Operations
It is easy to mess up in-place operations such as x -= x.T for Numpy arrays
so these should be avoided in general and can lead to hard-to-find bugs later.

4.9 Universal Functions

Now that we know how to create and manipulate Numpy arrays, let us consider how
to compute with other Numpy features. Universal functions (ufuncs) are Numpy
functions that are optimized to compute Numpy arrays at the C-level (i.e., outside
the Python interpreter). Let us compute the trigonometric sine:

>>> a = np.linspace(0,1,20)
>>> np.sin(a)
array([0. , 0.05260728, 0.10506887, 0.15723948, 0.20897462,

0.26013102, 0.310567 , 0.36014289, 0.40872137, 0.45616793,
0.50235115, 0.54714315, 0.59041986, 0.63206143, 0.67195255,
0.70998273, 0.74604665, 0.78004444, 0.81188195, 0.84147098])

Note that Python has a built-in math module with its own sine function:

>>> from math import sin
>>> [sin(i) for i in a]
[0.0, 0.05260728333807213, 0.10506887376594912,
0.15723948186175024, 0.20897462406278547, 0.2601310228046501,
0.3105670033203749, 0.3601428860007191, 0.40872137322898616,
0.4561679296190457, 0.5023511546035125, 0.547143146340223,
0.5904198559291864, 0.6320614309590333, 0.6719525474315213,
0.7099827291448582, 0.7460466536513234, 0.7800444439418607,
0.8118819450498316, 0.8414709848078965]

The output is a list, not a Numpy array, and to process all the elements of a, we
had to use the list comprehensions to compute the sine. This is because Python’s

4.11 Linear Algebra 115

math function only works one at a time with each member of the array. Numpy’s
sine function does not need these extra semantics because the computing runs in the
Numpy C-code outside of the Python interpreter. This is where Numpy’s 200–300
times speed-up over plain Python code comes from. So, doing the following:

>>> np.array([sin(i) for i in a])
array([0. , 0.05260728, 0.10506887, 0.15723948, 0.20897462,

0.26013102, 0.310567 , 0.36014289, 0.40872137, 0.45616793,
0.50235115, 0.54714315, 0.59041986, 0.63206143, 0.67195255,
0.70998273, 0.74604665, 0.78004444, 0.81188195, 0.84147098])

entirely defeats the purpose of using Numpy. Always use Numpy ufuncs whenever
possible!

>>> np.sin(a)
array([0. , 0.05260728, 0.10506887, 0.15723948, 0.20897462,

0.26013102, 0.310567 , 0.36014289, 0.40872137, 0.45616793,
0.50235115, 0.54714315, 0.59041986, 0.63206143, 0.67195255,
0.70998273, 0.74604665, 0.78004444, 0.81188195, 0.84147098])

4.10 Numpy Data Input/Output

Numpy makes it easy to move data in and out of files:

>>> x = np.loadtxt('sample1.txt')
>>> x
array([[0., 0.],

[1., 1.],
[2., 4.],
[3., 9.],
[4., 16.],
[5., 25.],
[6., 36.],
[7., 49.],
[8., 64.],
[9., 81.]])

>>> # each column with different type
>>> x = np.loadtxt('sample1.txt',dtype='f4,i4')
>>> x
array([(0., 0), (1., 1), (2., 4), (3., 9), (4., 16), (5.,

25),↪→
(6., 36), (7., 49), (8., 64), (9., 81)],

dtype=[('f0', '<f4'), ('f1', '<i4')])

Numpy arrays can be saved with the corresponding np.savetxt function.

4.11 Linear Algebra

Numpy has direct access to the proven LAPACK/BLAS linear algebra code. The
main entryway to linear algebra functions in Numpy is via the linalg submodule,

116 4 Numpy

>>> np.linalg.eig(np.eye(3)) # runs underlying LAPACK/BLAS
(array([1., 1., 1.]), array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]]))

>>> np.eye(3)*np.arange(3) # does this work as expected?
array([[0., 0., 0.],

[0., 1., 0.],
[0., 0., 2.]])

To get matrix row–column products, you can use the matrix object,

>>> np.eye(3)*np.matrix(np.arange(3)).T # row-column multiply,
matrix([[0.],

[1.],
[2.]])

More generally, you can use Numpy’s dot product,

>>> a = np.eye(3)
>>> b = np.arange(3).T
>>> a.dot(b)
array([0., 1., 2.])
>>> b.dot(b)
5

The advantage of dot is that it works in arbitrary dimensions. This is handy for
tensor-like contractions (see Numpy tensordot for more info). Since Python 3.6,
there is also the @ notation for Numpy matrix multiplication

>>> a = np.eye(3)
>>> b = np.arange(3).T
>>> a @ b
array([0., 1., 2.])

4.12 Broadcasting

Broadcasting is incredibly powerful, but it takes time to understand. Quoting from
the Guide to NumPy by Travis Oliphant [1]:

1. All input arrays with ndim smaller than the input array of largest ndim have 1’s
pre-pended to their shapes.

2. The size in each dimension of the output shape is the maximum of all the input
shapes in that dimension.

3. An input can be used in the calculation if it is the shape in a particular dimension
either matches the output shape or has value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that
dimension will be used for all calculations along that dimension. In other words,
the stepping machinery of the ufunc will simply not step along that dimension
when otherwise needed (the stride will be 0 for that dimension).

4.12 Broadcasting 117

An easier way to think about these rules is the following:

1. If the array shapes have different lengths, then left-pad the smaller shape with
ones.

2. If any corresponding dimension does not match, make copies along the 1-
dimension.

3. If any corresponding dimension does not have a one in it, raise an error.

Some examples will help. Consider these two arrays:

>>> x = np.arange(3)
>>> y = np.arange(5)

and you want to compute the element-wise product of these. The problem is that
this operation is not defined for arrays of different shapes. We can define what this
element-wise product means in this case with the following loop,

>>> out = []
>>> for i in x:
... for j in y:
... out.append(i*j)
...
>>> out
[0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8]

But now we have lost the input dimensions of x and y. We can conserve these by
reshaping the output as follows:

>>> out=np.array(out).reshape(len(x),-1) # -1 means infer the
remaining dimension↪→

>>> out
array([[0, 0, 0, 0, 0],

[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])

Another way to think about what we have just computed is as the matrix outer
product,

>>> from numpy import matrix
>>> out=matrix(x).T * y
>>> out
matrix([[0, 0, 0, 0, 0],

[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])

But how can you generalize this to handle multiple dimensions? Let us consider
adding a singleton dimension to y as

>>> x[:,None].shape
(3, 1)

We can use np.newaxis instead of None for readability. Now, if we try this
directly, broadcasting will handle the incompatible dimensions by making copies
along the singleton dimension:

118 4 Numpy

>>> x[:,None]*y
array([[0, 0, 0, 0, 0],

[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])

and this works with more complicated expressions:

>>> from numpy import cos
>>> x[:,None]*y + cos(x[:,None]+y)
array([[1. , 0.54030231, -0.41614684, -0.9899925 , -0.65364362],

[0.54030231, 0.58385316, 1.0100075 , 2.34635638, 4.28366219],
[-0.41614684, 1.0100075 , 3.34635638, 6.28366219, 8.96017029]])

But what if you do not like the shape of the resulting array?

>>> x*y[:,None] # change the placement of the singleton dimension
array([[0, 0, 0],

[0, 1, 2],
[0, 2, 4],
[0, 3, 6],
[0, 4, 8]])

Now, let us consider a bigger example

>>> X = np.arange(2*4).reshape(2,4)
>>> Y = np.arange(3*5).reshape(3,5)

where you want to element-wise multiply these two together. The result will be a 2
x 4 x 3 x 5 multidimensional matrix:

>>> X[:,:,None,None] * Y
array([[[[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],

[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]],

[[0, 2, 4, 6, 8],
[10, 12, 14, 16, 18],
[20, 22, 24, 26, 28]],

[[0, 3, 6, 9, 12],
[15, 18, 21, 24, 27],
[30, 33, 36, 39, 42]]],

[[[0, 4, 8, 12, 16],
[20, 24, 28, 32, 36],
[40, 44, 48, 52, 56]],

[[0, 5, 10, 15, 20],
[25, 30, 35, 40, 45],

4.12 Broadcasting 119

[50, 55, 60, 65, 70]],

[[0, 6, 12, 18, 24],
[30, 36, 42, 48, 54],
[60, 66, 72, 78, 84]],

[[0, 7, 14, 21, 28],
[35, 42, 49, 56, 63],
[70, 77, 84, 91, 98]]]])

Let us unpack this one at a time and see what broadcasting is doing with each
multiplication,

>>> X[0,0]*Y # 1st array element
array([[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])

>>> X[0,1]*Y # 2nd array element
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> X[0,2]*Y # 3rd array element
array([[0, 2, 4, 6, 8],

[10, 12, 14, 16, 18],
[20, 22, 24, 26, 28]])

We can sum the items along any dimension with the axis keyword argument,

>>> (X[:,:,None,None]*Y).sum(axis=3) # sum along 4th dimension
array([[[0, 0, 0],

[10, 35, 60],
[20, 70, 120],
[30, 105, 180]],

[[40, 140, 240],
[50, 175, 300],
[60, 210, 360],
[70, 245, 420]]])

Abbreviating Loops with Broadcasting
Using broadcasting, compute the number of ways a quarter (i.e., 25 cents) can
be split into pennies, nickels, and dimes:

>>> n=0 # start counter
>>> for n_d in range(0,3): # at most 2 dimes
... for n_n in range(0,6): # at most 5 nickels
... for n_p in range(0,26): # at most 25 pennies
... value = n_d*10+n_n*5+n_p
... if value == 25:
... print('dimes=%d, nickels=%d, pennies=%d'%(n_d,

n_n,n_p))
... n+=1

(continued)

120 4 Numpy

...
dimes=0, nickels=0, pennies=25
dimes=0, nickels=1, pennies=20
dimes=0, nickels=2, pennies=15
dimes=0, nickels=3, pennies=10
dimes=0, nickels=4, pennies=5
dimes=0, nickels=5, pennies=0
dimes=1, nickels=0, pennies=15
dimes=1, nickels=1, pennies=10
dimes=1, nickels=2, pennies=5
dimes=1, nickels=3, pennies=0
dimes=2, nickels=0, pennies=5
dimes=2, nickels=1, pennies=0
>>> print('n = ',n)
n = 12

This can be done in one line with broadcasting:

>>> n_d = np.arange(3)
>>> n_n = np.arange(6)
>>> n_p = np.arange(26)
>>> # matches n above
>>> (n_p + 5*n_n[:,None] + 10*n_d[:,None,None]==25).sum()
12

This means the nested for loops above are equivalent to Numpy broadcasting
so whenever you see this nested loop pattern, it may be an opportunity for
broadcasting.

4.13 Masked Arrays

Numpy also allows for masking sections of Numpy arrays. This is very popular in
image processing:

>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
>>> x
array([2., 1., 3., nan, 5., 2., 3., nan])
>>> np.mean(x)
nan
>>> m = np.ma.masked_array(x, np.isnan(x))
>>> m
masked_array(data=[2.0, 1.0, 3.0, --, 5.0, 2.0, 3.0, --],

mask=[False, False, False, True, False, False,
False, True],

fill_value=1e+20)
>>> np.mean(m)
2.6666666666666665
>>> m.shape
(8,)
>>> x.shape

4.14 Floating Point Numbers 121

(8,)
>>> m.fill_value=9999
>>> m.filled()
array([2.000e+00, 1.000e+00, 3.000e+00, 9.999e+03, 5.000e+00,
2.000e+00,

3.000e+00, 9.999e+03])

Making Numpy Arrays from Custom Objects
To make custom objects compatible with Numpy arrays, we have to define the
__array__ method:

>>> from numpy import arange
>>> class Foo():
... def __init__(self): # note the double underscores
... self.size = 10
... def __array__(self): # produces numpy array
... return arange(self.size)
...
>>> np.array(Foo())
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

4.14 Floating Point Numbers

There are precision limitations when representing floating point numbers on a
computer with finite memory. For example, the following shows these limitations
when adding two simple numbers,

>>> 0.1 + 0.2
0.30000000000000004

Why is the output not 0.3? The issue is the floating point representation of the two
numbers and the algorithm that adds them. To represent an integer in binary, we just
write it out in powers of 2. For example, 230 = (11100110)2. Python can do this
conversion using string formatting,

>>> '{0:b}'.format(230)
'11100110'

To add integers, we just add up the corresponding bits and fit them into the allowable
number of bits. Unless there is an overflow (the results cannot be represented with
that number of bits), then there is no problem. Representing floating point is trickier
because we have to represent these numbers as binary fractions. The IEEE 754
standard requires that floating point numbers to be represented as ±C × 2E , where
C is the significand (mantissa) and E is the exponent.

To represent a regular decimal fraction as a binary fraction, we need to compute
the expansion of the fraction in the following form a1/2 + a2/22 + a3/23... In other
words, we need to find the ai coefficients. We can do this using the same process we

122 4 Numpy

would use for a decimal fraction: just keep dividing by the fractional powers of 1/2
and keep track of the whole and fractional parts. Python’s divmod function can do
most of the work for this. For example, to represent 0.125 as a binary fraction,

>>> a = 0.125
>>> divmod(a*2,1)
(0.0, 0.25)

The first item in the tuple is the quotient and the other is the remainder. If the
quotient was greater than 1, then the corresponding ai term is one and is zero
otherwise. For this example, we have a1 = 0. To get the next term in the expansion,
we just keep multiplying by 2, which moves us rightward along the expansion to
ai+1 and so on. Then,

>>> a = 0.125
>>> q,a = divmod(a*2,1)
>>> (q,a)
(0.0, 0.25)
>>> q,a = divmod(a*2,1)
>>> (q,a)
(0.0, 0.5)
>>> q,a = divmod(a*2,1)
>>> (q,a)
(1.0, 0.0)

The algorithm stops when the remainder term is zero. Thus, we have that 0.125 =
(0.001)2. The specification requires that the leading term in the expansion be one.
Thus, we have 0.125 = (1.000) × 2−3. This means the significand is 1 and the
exponent is -3.

Now, let us get back to our main problem 0.1+0.2 by developing the
representation 0.1 by coding up the individual steps above:

>>> a = 0.1
>>> bits = []
>>> while a>0:
... q,a = divmod(a*2,1)
... bits.append(q)
...
>>> ''.join(['%d'%i for i in bits])
'0001100110011001100110011001100110011001100110011001101'

Note that the representation has an infinitely repeating pattern. This means that we
have (1.1001)2×2−4. The IEEE standard does not have a way to represent infinitely
repeating sequences. Nonetheless, we can compute this:

∞∑

n=1

1

24n−3
+ 1

24n
= 3

5

Thus, 0.1 ≈ 1.6 × 2−4. Per the IEEE 754 standard, for float type, we have
24 bits for the significand and 23 bits for the fractional part. Because we cannot
represent the infinitely repeating sequence, we have to round off at 23 bits,

4.14 Floating Point Numbers 123

10011001100110011001101. Thus, whereas the significand’s representation
used to be 1.6, with this rounding, it is now

>>> b = '10011001100110011001101'
>>> 1+sum([int(i)/(2**n) for n,i in enumerate(b,1)])
1.600000023841858

Thus, we now have 0.1 ≈ 1.600000023841858 × 2−4 = 0.10000000149011612.
For the 0.2 expansion, we have the same repeating sequence with a different expo-
nent, so that we have 0.2 ≈ 1.600000023841858 × 2−3 = 0.20000000298023224.
To add 0.1+0.2 in binary, we must adjust the exponents until they match the
higher of the two. Thus,

0.11001100110011001100110
+1.10011001100110011001101

10.01100110011001100110011

Now, the sum has to be scaled back to fit into the significand’s available bits so the
result is 1.00110011001100110011010 with exponent -2. Computing this in
the usual way as shown below gives the result:

>>> k='00110011001100110011010'
>>> ('%0.12f'%((1+sum([int(i)/(2**n)
... for n,i in enumerate(k,1)]))/2**2))
'0.300000011921'

which matches what we get with numpy

>>> import numpy as np
>>> '%0.12f'%(np.float32(0.1) + np.float32(0.2))
'0.300000011921'

The entire process proceeds the same for 64-bit floats. Python has fractions and
decimal modules that allow more exact number representations. The decimal
module is particularly important for certain financial computations.

Round-off Error Let us consider the example of adding 100,000,000 and 10
in 32-bit floating point.

>>> '{0:b}'.format(100000000)
'101111101011110000100000000'

This means that 100, 000, 000 = (1.01111101011110000100000000)2 × 226.
Likewise, 10 = (1.010)2 × 23. To add these, we have to make the exponents match
as in the following:

1.01111101011110000100000000
+0.00000000000000000000001010

1.01111101011110000100001010

Now, we have to round off because we only have 23 bits to the right of the decimal
point and obtain 1.0111110101111000010000, thus losing the trailing 10
bits. This effectively makes the decimal 10 = (1010)2 we started out with become
8 = (1000)2. Thus, using Numpy again,

124 4 Numpy

>>> format(np.float32(100000000) + np.float32(10),'10.3f')
'100000008.000'

The problem here is that the order of magnitude between the two numbers was so
great that it resulted in loss in the significand’s bits as the smaller number was right-
shifted. When summing numbers like these, the Kahan summation algorithm (see
math.fsum()) can effectively manage these round-off errors:

>>> import math
>>> math.fsum([np.float32(100000000),np.float32(10)])
100000010.0

Cancellation Error Cancellation error (loss of significance) results when two
nearly equal floating point numbers are subtracted. Let us consider subtracting
0.1111112 and 0.1111111. As binary fractions, we have the following:

1.11000111000111001000101 E-4
-1.11000111000111000110111 E-4

0.00000000000000000011100

As a binary fraction, this is 1.11 with exponent -23 or (1.75)10 × 2−23 ≈
0.00000010430812836. In Numpy, this loss of precision is shown in the following:

>>> format(np.float32(0.1111112)-np.float32(0.1111111),'1.17f')
'0.00000010430812836'

To sum up, when using floating point, you must check for approximate equality
using something like Numpy allclose instead of the usual Python equality
(i.e., ==) sign. This enforces error bounds instead of strict equality. Whenever
practicable, use fixed scaling to employ integer values instead of decimal fractions.
Double precision 64-bit floating point numbers are much better than single precision
and, while not eliminating these problems, effectively kick the can down the road
for all but the strictest precision requirements. The Kahan algorithm is effective for
summing floating point numbers across very large data without accruing round-off
errors. To minimize cancellation errors, re-factor the calculation to avoid subtracting
two nearly equal numbers.

Programming Tip: decimal Module
Python has a built-in decimal module that uses a different method to
manage floating point numbers, especially for financial calculations. The
downside is that decimal is much slower than the IEEE standard for floating
point described here.

4.15 Advanced Numpy dtypes 125

4.15 Advanced Numpy dtypes

Numpy dtypes can also help read structured sections of binary data files. For
example, a WAV file has a 44-byte header format:

Item Description
------------------- ---------------------------------------
chunk_id "RIFF"
chunk_size 4-byte unsigned little-endian integer
format "WAVE"
fmt_id "fmt"
fmt_size 4-byte unsigned little-endian integer
audio_fmt 2-byte unsigned little-endian integer
num_channels 2-byte unsigned little-endian integer
sample_rate 4-byte unsigned little-endian integer
byte_rate 4-byte unsigned little-endian integer
block_align 2-byte unsigned little-endian integer
bits_per_sample 2-byte unsigned little-endian integer
data_id "data"
data_size 4-byte unsigned little-endian integer

You can open this test sample file off the web using the following code to get the
first four bytes of the chunk_id:

>>> from urllib.request import urlopen
>>> fp=urlopen('https://www.kozco.com/tech/piano2.wav')
>>> fp.read(4)
b'RIFF'

Reading the next four little-endian bytes gives the chunk_size:

>>> fp.read(4)
b'\x04z\x12\x00'

Note that there is an issue of the endianness of the returned bytes. We can get next
four bytes as follows:

>>> fp.read(4)
b'WAVE'

Continuing like this, we could get the rest of the header, but it is better to use the
following custom dtype:

>>> header_dtype = np.dtype([
... ('chunkID','S4'),
... ('chunkSize','<u4'),
... ('format','S4'),
... ('subchunk1ID','S4'),
... ('subchunk1Size','<u4'),
... ('audioFormat','<u2'),
... ('numChannels','<u2'),
... ('sampleRate','<u4'),
... ('byteRate','<u4'),
... ('blockAlign','<u2'),
... ('bitsPerSample','<u2'),
... ('subchunk2ID','S4'),
... ('subchunk2Size','u4'),
...])

126 4 Numpy

Then, we start all over and do the following but with urlretrieve, which writes
the temporary file that Numpy needs:

>>> from urllib.request import urlretrieve
>>> path, _ = urlretrieve('https://www.kozco.com/tech/piano2.wav')
>>> h=np.fromfile(path,dtype=header_dtype,count=1)
>>> print(h)
[(b'RIFF', 1210884, b'WAVE', b'fmt ', 16, 1, 2, 48000, 192000, 4,
16, b'data', 1210848)]

Note that the output neatly encapsulates the individual bytes with their correspond-
ing endian issues. Now that we have the header that tells us how many bytes are in
the data, and we can read the rest of the data and process it correctly using the other
header fields.

Formatting Numpy Arrays
Sometimes Numpy arrays can get very dense to view. The
np.set_printoptions function can help reduce the visual clutter by
providing custom formatting options for the different Numpy data types.
Keep in mind that is a formatting issue and none of the underlying data is
changed. For example, to change the representation of floating point Numpy
arrays to %3.2f, we can do the following:

np.set_printoptions(formatter={'float':lambda i:'%3.2f'%i}

References

1. T.E. Oliphant, A Guide to NumPy (Trelgol Publishing, Austin, 2006)

Chapter 5
Pandas

Pandas is a powerful module that is optimized on top of Numpy and provides a set of
data structures particularly suited to time-series and spreadsheet-style data analysis
(think of pivot tables in Excel). If you are familiar with the R statistical package, then
you can think of Pandas as providing a Numpy-powered DataFrame for Python.
Pandas provides a DataFrame object (among others) built on a Numpy platform
to ease data manipulation (especially for time-series) for statistical processing.
Pandas is particularly popular in quantitative finance. Key features of Pandas include
fast data manipulation and alignment, tools for exchanging data between different
formats and between SQL databases, handling missing data, and cleaning up messy
data.

5.1 Using Series

The easiest way to think about Pandas Series objects is as a container for two Numpy
arrays, one for the index and the other for the data. Recall that Numpy arrays already
have integer-indexing just like regular Python lists.

>>> import pandas as pd
>>> x = pd.Series([1,2,30,0,15,6])
>>> x
0 1
1 2
2 30
3 0
4 15
5 6
dtype: int64

This object can be indexed in plain Numpy style,

>>> x[1:3] # Numpy slicing
1 2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0_5

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68952-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-68952-0_5

128 5 Pandas

2 30
dtype: int64

We can also get the Numpy arrays directly,

>>> x.values # values
array([1, 2, 30, 0, 15, 6])
>>> x.values[1:3]
array([2, 30])
>>> x.index # index is Numpy array-like
RangeIndex(start=0, stop=6, step=1)

Unlike Numpy arrays, you can have mixed types,

>>> s = pd.Series([1,2,'anything','more stuff'])
>>> s
0 1
1 2
2 anything
3 more stuff
dtype: object
>>> s.index # Series index
RangeIndex(start=0, stop=4, step=1)
>>> s[0] # The usual Numpy slicing rules apply
1
>>> s[:-1]
0 1
1 2
2 anything
dtype: object
>>> s.dtype # object data type
dtype('O')

Beware that mixed types in a single column can lead to downstream inefficiencies
and other problems. The index in the pd.Series generalizes beyond integer-
indexing. For example,

>>> s = pd.Series([1,2,3],index=['a','b','cat'])
>>> s['a']
1
>>> s['cat']
3

Because of its legacy as a financial data (i.e., stock prices) processing tool, Pandas
is really good at managing time-series

>>> dates = pd.date_range('20210101',periods=12)
>>> s = pd.Series(range(12),index=dates) # explicitly assign index
>>> s # default is calendar-daily
2021-01-01 0
2021-01-02 1
2021-01-03 2
2021-01-04 3
2021-01-05 4
2021-01-06 5
2021-01-07 6

5.1 Using Series 129

Fig. 5.1 Quick plot of Series object

2021-01-08 7
2021-01-09 8
2021-01-10 9
2021-01-11 10
2021-01-12 11
Freq: D, dtype: int64

You can do some basic descriptive statistics on the data (not the index!) right away

>>> s.mean()
5.5
>>> s.std()
3.605551275463989

You can also plot (see Fig. 5.1) the Series using its methods:

>>> s.plot(kind='bar',alpha=0.3) # can add extra matplotlib
keywords↪→

Data can be summarized by the index. For example, to count the individual days of
the week for which we had data:

>>> s.groupby(by=lambda i:i.dayofweek).count()
0 2
1 2
2 1
3 1

130 5 Pandas

4 2
5 2
6 2
dtype: int64

Note that the convention 0 is Monday, 1 is Tuesday, and so forth. Thus, there was
only one Sunday (day 6) in the dataset. The groupby method partitions the data
into disjoint groups based on the predicate given via the by keyword argument.
Consider the following Series,

>>> x = pd.Series(range(5),index=[1,2,11,9,10])
>>> x
1 0
2 1
11 2
9 3
10 4
dtype: int64

Let us group it in the following according to whether the elements in the values are
even or odd using the modulus (%) operator,

>>> grp = x.groupby(lambda i:i%2) # odd or even
>>> grp.get_group(0) # even group
2 1
10 4
dtype: int64
>>> grp.get_group(1) # odd group
1 0
11 2
9 3
dtype: int64

The first line groups the elements of the Series object by whether or not the index
is even or odd. The lambda function returns 0 or 1 depending on whether or not
the corresponding index is even or odd, respectively. The next line shows the 0 (i.e.,
even) group and then the one after shows the 1 (odd) group. Now that we have
separate groups, and we can perform a wide variety of summarizations on each to
reduce it to a single value. For example, in the following, we get the maximum value
of each group:

>>> grp.max() # max in each group
0 4
1 3
dtype: int64

Note that the operation above returns another Series object with an index
corresponding to the [0,1] elements. There will be as many groups as there are
unique outputs of the by function.

5.2 Using DataFrame 131

5.2 Using DataFrame

While the Series object can be thought of as encapsulating two Numpy arrays
(index and values), the Pandas DataFrame is an encapsulation of group of
Series objects that share a single index. We can create a DataFrame with
dictionaries as in the following:

>>> df = pd.DataFrame({'col1': [1,3,11,2], 'col2': [9,23,0,2]})
>>> df

col1 col2
0 1 9
1 3 23
2 11 0
3 2 2

Note that the keys in the input dictionary are now the column headings (labels) of the
DataFrame, with each corresponding column matching the list of corresponding
values from the dictionary. Like the Series object, the DataFrame also has an
index, which is the [0,1,2,3] column on the far left. We can extract elements
from each column using the iloc, which ignore the given index and return to
traditional Numpy slicing,

>>> df.iloc[:2,:2] # get section
col1 col2

0 1 9
1 3 23

or by directly slicing or by using the dot notation as shown below:

>>> df['col1'] # indexing
0 1
1 3
2 11
3 2
Name: col1, dtype: int64
>>> df.col1 # use dot notation
0 1
1 3
2 11
3 2
Name: col1, dtype: int64

Programming Tip: Spaces in Column Names
As long as the names of the columns in the DataFrame do not contain
spaces or other eval-able syntax like hyphens, you can use the dot notation
attribute-style access to the column values. You can report the column names
using df.columns.

Subsequent operations on the DataFrame preserve its column-wise structure as in
the following:

132 5 Pandas

>>> df.sum()
col1 17
col2 34
dtype: int64

where each column was totaled. Grouping and aggregating with the DataFrame is
even more powerful than with Series. Let us construct the following DataFrame,

>>> df = pd.DataFrame({'col1': [1,1,0,0], 'col2': [1,2,3,4]})
>>> df

col1 col2
0 1 1
1 1 2
2 0 3
3 0 4

In the above DataFrame, note that the col1 column has only two distinct entries.
We can group the data using this column as in the following:

>>> grp=df.groupby('col1')
>>> grp.get_group(0)

col1 col2
2 0 3
3 0 4
>>> grp.get_group(1)

col1 col2
0 1 1
1 1 2

Note that each group corresponds to entries for which col1 was either of its two
values. Now that we have grouped on col1, as with the Series object, we can also
functionally summarize each of the groups as in the following:

>>> grp.sum()
col2

col1
0 7
1 3

where the sum is applied across each of the dataframes present in each group. Note
that the index of the output above is each of the values in the original col1.

The DataFrame can compute new columns based on the existing columns
using the eval method as shown below:

>>> df['sum_col']=df.eval('col1+col2')
>>> df

col1 col2 sum_col
0 1 1 2
1 1 2 3
2 0 3 3
3 0 4 4

Note that you can assign the output to a new column to the DataFrame as shown.
We can group by multiple columns as shown below:

5.2 Using DataFrame 133

>>> grp = df.groupby(['sum_col','col1'])

Doing the sum operation on each group gives the following:

>>> res = grp.sum()
>>> res

col2
sum_col col1
2 1 1
3 0 3

1 2
4 0 4

This output is much more complicated than anything we have seen so far, so let us
carefully walk through it. Below the headers, the first row 2 1 1 indicates that for
sum_col=2 and for all values of col1 (namely, just the value 1), the value of col2
is 1. For the next row, the same pattern applies except that for sum_col=3, there are
now two values for col1, namely 0 and 1, which each have their corresponding two
values for the sum operation in col2. This layered display is one way to look at the
result. Note that the layers above are not uniform. Alternatively, we can unstack
this result to obtain the following tabular view of the previous result:

>>> res.unstack()
col2

col1 0 1
sum_col
2 NaN 1.0
3 3.0 2.0
4 4.0 NaN

The NaN values indicate positions in the table where there is no entry. For
example, for the pair (sum_col=2,col2=0), there is no corresponding value in the
DataFrame, as you may verify by looking at the penultimate code block. There
is also no entry corresponding to the (sum_col=4,col2=1) pair. Thus, this shows
that the original presentation in the penultimate code block is the same as this one,
just without the above-mentioned missing entries indicated by NaN.

Let us continue with indexing dataframes.

>>> import numpy as np
>>> data=np.arange(len(dates)*4).reshape(-1,4)
>>> df = pd.DataFrame(data,index=dates,
... columns=['A','B','C','D'])
>>> df

A B C D
2021-01-01 0 1 2 3
2021-01-02 4 5 6 7
2021-01-03 8 9 10 11
2021-01-04 12 13 14 15
2021-01-05 16 17 18 19
2021-01-06 20 21 22 23
2021-01-07 24 25 26 27
2021-01-08 28 29 30 31
2021-01-09 32 33 34 35
2021-01-10 36 37 38 39

134 5 Pandas

2021-01-11 40 41 42 43
2021-01-12 44 45 46 47

Now, you can access each of the columns by name, as in the following:

>>> df['A']
2021-01-01 0
2021-01-02 4
2021-01-03 8
2021-01-04 12
2021-01-05 16
2021-01-06 20
2021-01-07 24
2021-01-08 28
2021-01-09 32
2021-01-10 36
2021-01-11 40
2021-01-12 44
Freq: D, Name: A, dtype: int64

Or, using a quicker attribute-style notation

>>> df.A
2021-01-01 0
2021-01-02 4
2021-01-03 8
2021-01-04 12
2021-01-05 16
2021-01-06 20
2021-01-07 24
2021-01-08 28
2021-01-09 32
2021-01-10 36
2021-01-11 40
2021-01-12 44
Freq: D, Name: A, dtype: int64

Now, we can do some basic computing and indexing.

>>> df.loc[:dates[3]] # unlike the Python convention, this
includes endpoints!↪→

A B C D
2021-01-01 0 1 2 3
2021-01-02 4 5 6 7
2021-01-03 8 9 10 11
2021-01-04 12 13 14 15
>>> df.loc[:,'A':'C'] # all rows by slice of column labels

A B C
2021-01-01 0 1 2
2021-01-02 4 5 6
2021-01-03 8 9 10
2021-01-04 12 13 14
2021-01-05 16 17 18
2021-01-06 20 21 22
2021-01-07 24 25 26
2021-01-08 28 29 30
2021-01-09 32 33 34

5.3 Reindexing 135

2021-01-10 36 37 38
2021-01-11 40 41 42
2021-01-12 44 45 46

5.3 Reindexing

A DataFrame or Series has an index that can align data using reindexing,

>>> x = pd.Series(range(3),index=['a','b','c'])
>>> x
a 0
b 1
c 2
dtype: int64
>>> x.reindex(['c','b','a','z'])
c 2.0
b 1.0
a 0.0
z NaN
dtype: float64

Note how the newly created Series object has a new index and fills in missing
items with NaN. You can fill in by other values by using the fill_value keyword
argument in reindex. It is also possible to do back-filling and forward-filling
(ffill) of values when working with ordered data as in the following:

>>> x = pd.Series(['a','b','c'],index=[0,5,10])
>>> x
0 a
5 b
10 c
dtype: object
>>> x.reindex(range(11),method='ffill')
0 a
1 a
2 a
3 a
4 a
5 b
6 b
7 b
8 b
9 b
10 c
dtype: object

More complicated interpolation methods are possible, but not directly using reindex.
Reindexing also applies to dataframes, but in either or both of the two dimensions.

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C','D'],
... data = np.arange(3*4).reshape(3,4))

136 5 Pandas

>>> df
A B C D

a 0 1 2 3
b 4 5 6 7
c 8 9 10 11

Now, we can reindex this by the index as in the following:

>>> df.reindex(['c','b','a','z'])
A B C D

c 8.0 9.0 10.0 11.0
b 4.0 5.0 6.0 7.0
a 0.0 1.0 2.0 3.0
z NaN NaN NaN NaN

Note how the missing z element has been filled in as with the prior Series object.
The same behavior applies to reindexing the columns as in the following:

>>> df.reindex(columns=['D','A','C','Z','B'])
D A C Z B

a 3 0 2 NaN 1
b 7 4 6 NaN 5
c 11 8 10 NaN 9

Again, we have the same filling behavior, now just applied to the columns. The same
back-filling and forward-filling works with ordered columns/indices as before.

5.4 Deleting Items

Returning to our previous Series object,

>>> x = pd.Series(range(3),index=['a','b','c'])

To get rid of the data at the ’a’ index, we can use the drop method that will return
a new Series object with the specified data removed,

>>> x.drop('a')
b 1
c 2
dtype: int64

Bear in mind this is a new Series object unless we use the inplace keyword
argument or explicitly using del,

>>> del x['a']

The same pattern applies to DataFrames.

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C','D'],
... data = np.arange(3*4).reshape(3,4))
>>> df.drop('a')

A B C D
b 4 5 6 7
c 8 9 10 11

5.5 Advanced Indexing 137

Or, along the column dimension,

>>> df.drop('A',axis=1)
B C D

a 1 2 3
b 5 6 7
c 9 10 11

Again, the same comments regarding using del and inplace also apply for
DataFrames.

5.5 Advanced Indexing

Pandas provides very powerful and fast slicing,

>>> x = pd.Series(range(4),index=['a','b','c','d'])
>>> x['a':'c']
a 0
b 1
c 2
dtype: int64

Note that unlike regular Python indexing, both endpoints are included here when
slicing with labels. This can also be used to assign values as in the following:

>>> x['a':'c']=999
>>> x
a 999
b 999
c 999
d 3
dtype: int64

Analogous behavior applies to DataFrames.

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C','D'],
... data = np.arange(3*4).reshape(3,4))
>>> df['a':'b']

A B C D
a 0 1 2 3
b 4 5 6 7

You can pick out individual columns without the colon (:).

>>> df[['A','C']]
A C

a 0 2
b 4 6
c 8 10

Mixing label-based slices with Numpy-like colon slicing is possible using loc,

138 5 Pandas

>>> df.loc['a':'b',['A','C']]
A C

a 0 2
b 4 6

The idea is that the first argument to loc indexes the rows and the second indexes
the columns. Heuristics allow for Numpy-like indexing without worrying about the
labels. You can go back to plain Numpy indexing with iloc.

>>> df.iloc[0,-2:]
C 2
D 3
Name: a, dtype: int64

5.6 Broadcasting and Data Alignment

The main thing to keep in mind when operating on one or more Series or
DataFrame objects is that the index always aligns the computation.

>>> x = pd.Series(range(4),index=['a','b','c','d'])
>>> y = pd.Series(range(3),index=['a','b','c'])

Note that y is missing one of the indices in x, so when we add them,

>>> x+y
a 0.0
b 2.0
c 4.0
d NaN
dtype: float64

Note that because y was missing one of the indices, it was filled in with a NaN. This
behavior also applies to dataframes,

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C','D'],
... data = np.arange(3*4).reshape(3,4))
>>> ef = pd.DataFrame(index=list('abcd'),
... columns=list('ABCDE'),
... data = np.arange(4*5).reshape(4,5))
>>> ef

A B C D E
a 0 1 2 3 4
b 5 6 7 8 9
c 10 11 12 13 14
d 15 16 17 18 19
>>> df

A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
>>> df+ef

A B C D E

5.6 Broadcasting and Data Alignment 139

a 0.0 2.0 4.0 6.0 NaN
b 9.0 11.0 13.0 15.0 NaN
c 18.0 20.0 22.0 24.0 NaN
d NaN NaN NaN NaN NaN

Note that the non-overlapping elements are filled in with NaN. For simple opera-
tions, you can specify the fill value using the named operation. For example, in the
last case,

>>> df.add(ef,fill_value=0)
A B C D E

a 0.0 2.0 4.0 6.0 4.0
b 9.0 11.0 13.0 15.0 9.0
c 18.0 20.0 22.0 24.0 14.0
d 15.0 16.0 17.0 18.0 19.0

>>> s = df.loc['a'] # take first row
>>> s
A 0
B 1
C 2
D 3
Name: a, dtype: int64

When we add this Series object with the full DataFrame, we obtain the following:

>>> s + df
A B C D

a 0 2 4 6
b 4 6 8 10
c 8 10 12 14

Compare this to the original DataFrame,

>>> df
A B C D

a 0 1 2 3
b 4 5 6 7
c 8 9 10 11

This shows that the Series object was broadcast down the rows, aligning with the
columns in the DataFrame. Here is an example of a different Series object that is
missing some of the columns in the DataFrame,

>>> s = pd.Series([1,2,3],index=['A','D','E'])
>>> s+df

A B C D E
a 1.0 NaN NaN 5.0 NaN
b 5.0 NaN NaN 9.0 NaN
c 9.0 NaN NaN 13.0 NaN

Note that the broadcasting still happens down the rows, aligning with the columns,
but fills in the missing entries with NaN.

Here is a quick Python test that uses regular expressions to test for relatively
small prime numbers,

140 5 Pandas

>>> import re
>>> pattern = r'^1?$|^(11+?)\1+$'
>>> def isprime(n):
... return (re.match(pattern, '1'*n) is None) #*
...

Now, we can find which column label has the most prime numbers in it

>>> df.applymap(isprime)
A B C D

a False False True True
b False True False True
c False False False True

The booleans are automatically cast in the sum below:

>>> df.applymap(isprime).sum()
A 0
B 1
C 1
D 3
dtype: int64

This just scratches the surface of the kinds of fluid data analysis that are almost
automatic using Pandas.

Programming Tip: Pandas Performance
Pandas groupby, apply, and applymap are flexible and powerful, but
Pandas has to evaluate them in the Python interpreter and not in the optimized
Pandas code, which results in significant slowdown. Thus, it is always best to
use the functions that are built into Pandas itself instead defining pure Python
functions to feed into these methods.

5.7 Categorical and Merging

Pandas supports a few relational algebraic operations like table joins.

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C'],
... data = np.arange(3*3).reshape(3,3))
>>> df

A B C
a 0 1 2
b 3 4 5
c 6 7 8
>>> ef = pd.DataFrame(index=['a','b','c'],
... columns=['A','Y','Z'],
... data = np.arange(3*3).reshape(3,3))
>>> ef

5.7 Categorical and Merging 141

A Y Z
a 0 1 2
b 3 4 5
c 6 7 8

The table join is implemented in the merge function.

>>> pd.merge(df,ef,on='A')
A B C Y Z

0 0 1 2 1 2
1 3 4 5 4 5
2 6 7 8 7 8

The on keyword argument says to merge the two DataFrames where they have
matching corresponding entries in the A column. Note that the index was not
preserved in the merge. To make things more interesting, let us make the ef
DataFrame different by dropping one of the rows,

>>> ef.drop('b',inplace=True)
>>> ef

A Y Z
a 0 1 2
c 6 7 8

Now, let us try the merge again.

>>> pd.merge(df,ef,on='A')
A B C Y Z

0 0 1 2 1 2
1 6 7 8 7 8

Note that only the elements of A that match both DataFrames (i.e., are in the
intersection of both) are preserved. We can alter this by using the how keyword
argument.

>>> pd.merge(df,ef,on='A',how='left')
A B C Y Z

0 0 1 2 1.0 2.0
1 3 4 5 NaN NaN
2 6 7 8 7.0 8.0

The how=left keyword argument tells the join to keep all the keys on the left
DataFrame (df in this case) and fill in with NaN wherever missing in the right
DataFrame (ef). If ef has elements along A that are absent in df, then these would
disappear,

>>> ef = pd.DataFrame(index=['a','d','c'],
... columns=['A','Y','Z'],
... data = 10*np.arange(3*3).reshape(3,3))

>>> ef
A Y Z

a 0 10 20
d 30 40 50
c 60 70 80

142 5 Pandas

>>> pd.merge(df,ef,on='A',how='left')
A B C Y Z

0 0 1 2 10.0 20.0
1 3 4 5 NaN NaN
2 6 7 8 NaN NaN

Likewise, we can do how=right to use the right DataFrame keys,

>>> pd.merge(df,ef,on='A',how='right')
A B C Y Z

0 0 1.0 2.0 10 20
1 30 NaN NaN 40 50
2 60 NaN NaN 70 80

We can use how=outer to get the union of the keys,

>>> pd.merge(df,ef,on='A',how='outer')
A B C Y Z

0 0 1.0 2.0 10.0 20.0
1 3 4.0 5.0 NaN NaN
2 6 7.0 8.0 NaN NaN
3 30 NaN NaN 40.0 50.0
4 60 NaN NaN 70.0 80.0

Another common task is to split continuous data into discrete bins.

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> bins = [0,5,10]
>>> cats = pd.cut(a,bins)
>>> cats
[NaN, (0.0, 5.0], (0.0, 5.0], (0.0, 5.0], (0.0, 5.0], (0.0, 5.0],
(5.0, 10.0], (5.0, 10.0], (5.0, 10.0], (5.0, 10.0]]
Categories (2, interval[int64]): [(0, 5] < (5, 10]]

The pd.cut function takes the data in the array and puts them into the categorical
variable cats.

>>> cats.categories
IntervalIndex([(0, 5], (5, 10]],

closed='right',
dtype='interval[int64]')

The half-open intervals indicate the bounds of each category. You can change the
parity of the intervals by passing the right=False keyword argument.

>>> cats.codes
array([-1, 0, 0, 0, 0, 0, 1, 1, 1, 1], dtype=int8)

The -1 above means that the 0 is not included in either of the two categories
because the interval is open on the left. You can count the number of elements in
each category as shown next,

>>> pd.value_counts(cats)
(0, 5] 5
(5, 10] 4
dtype: int64

5.8 Memory Usage and dtypes 143

Descriptive names for each category can be passed using the labels keyword
argument.

>>> cats = pd.cut(a,bins,labels=['one','two'])
>>> cats
[NaN, 'one', 'one', 'one', 'one', 'one', 'two', 'two', 'two',

'two']↪→
Categories (2, object): ['one' < 'two']

Note that if you pass an integer argument for bins, it will automatically split into
equal-sized categories. The qcut function is very similar except that it splits on
quartiles.

>>> a = np.random.rand(100) # uniform random variables
>>> cats = pd.qcut(a,4,labels=['q1','q2','q3','q4'])
>>> pd.value_counts(cats)
q4 25
q3 25
q2 25
q1 25
dtype: int64

5.8 Memory Usage and dtypes

You will find yourself processing a lot of data with Pandas. Here are some tips to do
that efficiently. First, we need the Penguins dataset from Seaborn,
>>> import seaborn as sns
>>> df = sns.load_dataset('penguins')
>>> df.head()

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 Male
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 Female
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 Female
3 Adelie Torgersen NaN NaN NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 Female

This is not a particularly big dataset, but it will suffice. Let us examine the dtypes
of the DataFrame,

>>> df.dtypes
species object
island object
bill_length_mm float64
bill_depth_mm float64
flipper_length_mm float64
body_mass_g float64
sex object
dtype: object

144 5 Pandas

Notice that some of these are marked object. This is usually means inefficiency
because this generalized dtype may consume an inordinate amount of memory.
Pandas comes with a simple way to assess the memory consumption of your
DataFrame,

>>> df.memory_usage(deep=True)
Index 128
species 21876
island 21704
bill_length_mm 2752
bill_depth_mm 2752
flipper_length_mm 2752
body_mass_g 2752
sex 20995
dtype: int64

Now, we have an idea of our memory consumption for this DataFrame, and we
can improve it by changing the dtypes. The categorical type we discussed previously
can be specified as a new dtype for the sex column,

>>> ef = df.astype({'sex':'category'})
>>> ef.memory_usage(deep=True)
Index 128
species 21876
island 21704
bill_length_mm 2752
bill_depth_mm 2752
flipper_length_mm 2752
body_mass_g 2752
sex 548
dtype: int64

This results in almost a 40 times reduction in memory for this, which may be
significant if the DataFrame had thousands of rows, for example. This works
because there are many more rows than distinct values in the sex column. Let us
continue using category as the dtype for the species and island columns.

>>> ef = df.astype({'sex':'category',
... 'species':'category',
... 'island':'category'})
>>> ef.memory_usage(deep=True)
Index 128
species 616
island 615
bill_length_mm 2752
bill_depth_mm 2752
flipper_length_mm 2752
body_mass_g 2752
sex 548
dtype: int64

5.8 Memory Usage and dtypes 145

To compare, we can put these side-by-side into a new DataFrame,

>>> (pd.DataFrame({'df':df.memory_usage(deep=True),
... 'ef':ef.memory_usage(deep=True)})
... .assign(ratio= lambda i:i.ef/i.df))

df ef ratio
Index 128 128 1.000000
species 21876 616 0.028159
island 21704 615 0.028336
bill_length_mm 2752 2752 1.000000
bill_depth_mm 2752 2752 1.000000
flipper_length_mm 2752 2752 1.000000
body_mass_g 2752 2752 1.000000
sex 20995 548 0.026101

This shows a much smaller memory footprint for the columns that we changed
to categorical dtype. We can also change the numerical types from the default
float64, if we do not need that level of precision. For example, the
flipper_length_mm column is measured in millimeters and there is no fractional
part to any of the measurements. Thus, we can change that column as the following
dtype and save four times the memory,

>>> ef = df.astype({'sex':'category',
... 'species':'category',
... 'island':'category',
... 'flipper_length_mm': np.float16})
>>> ef.memory_usage(deep=True)
Index 128
species 616
island 615
bill_length_mm 2752
bill_depth_mm 2752
flipper_length_mm 688
body_mass_g 2752
sex 548
dtype: int64

Here is the summary again,

>>> (pd.DataFrame({'df':df.memory_usage(deep=True),
... 'ef':ef.memory_usage(deep=True)})
... .assign(ratio= lambda i:i.ef/i.df))

df ef ratio
Index 128 128 1.000000
species 21876 616 0.028159
island 21704 615 0.028336
bill_length_mm 2752 2752 1.000000
bill_depth_mm 2752 2752 1.000000
flipper_length_mm 2752 688 0.250000
body_mass_g 2752 2752 1.000000
sex 20995 548 0.026101

Thus, by changing the default object dtype to other smaller dtypes can result in
significant savings and potentially speed up downstream processing for dataframes.
This is particularly true when scraping data from the web directly into dataframes

146 5 Pandas

using pd.read_html, which, even though the data looks numerical on the webpage,
will typically result in the unnecessarily heavy object dtype.

5.9 Common Operations

A common problem is how to split a string column into components. For example,

>>> df = pd.DataFrame(dict(name=['Jon Doe','Jane Smith']))
>>> df.name.str.split(' ',expand=True)

0 1
0 Jon Doe
1 Jane Smith

The key step is the expand keyword argument that converts the result into
a DataFrame. The result can be assigned into the same DataFrame using the
following,

>>> df[['first','last']]=df.name.str.split(' ',expand=True)
>>> df

name first last
0 Jon Doe Jon Doe
1 Jane Smith Jane Smith

Note that failing to use the expand keyword argument results in an output list
instead of a DataFrame

>>> df.name.str.split(' ')
0 [Jon, Doe]
1 [Jane, Smith]
Name: name, dtype: object

This can be fixed by using apply on the output to convert from a list into a
Series object as shown,1

>>> df.name.str.split(' ').apply(pd.Series)
0 1

0 Jon Doe
1 Jane Smith

The apply method is one of the most powerful and general DataFrame
methods. It operates on the individual columns (i.e., pd.Series) objects of
the DataFrame. Unlike the applymap method that leaves the shape of the
DataFrame unchanged, the apply method can return objects of a different
shape. For example, doing something like df.apply(lambda i:i[i>3])
on a DataFrame with numeric rows will return a small truncated NaN-filled
DataFrame. Further, the df.apply(raw=True) keyword argument speeds

1There are many other Python string methods in the .str submodule such as rstrip, upper,
and title.

5.9 Common Operations 147

up the method by operating directly on the underlying Numpy array in the
DataFrame columns. This means that the ’apply’ method processes the Numpy
arrays directly instead of the usual ’pd.Series’ objects.

The transform method is closely related to apply but must produce an
output DataFrame of the same dimensions. For example,

>>> df = pd.DataFrame({'A': [1,1,2,2], 'B': range(4)})
>>> df

A B
0 1 0
1 1 1
2 2 2
3 2 3

We can group by ’A’ and reduce using the usual aggregation,

>>> df.groupby('A').sum()
B

A
1 1
2 5

But by using .transform() we can broadcast the results to their respective
places in the original DataFrame.

>>> df.groupby('A').transform('sum')
B

0 1
1 1
2 5
3 5

The describe DataFrame method is useful for summarizing a given
DataFrame, as shown below,

>>> df = pd.DataFrame(index=['a','b','c'], columns=['A','B','C'],
data = np.arange(3*3).reshape(3,3))↪→

>>> df.describe()
A B C

count 3.0 3.0 3.0
mean 3.0 4.0 5.0
std 3.0 3.0 3.0
min 0.0 1.0 2.0
25% 1.5 2.5 3.5
50% 3.0 4.0 5.0
75% 4.5 5.5 6.5
max 6.0 7.0 8.0

It is often useful to get rid of accidental duplicated entries.

>>> df = pd.DataFrame({'A': [1,1,2,2,2,3], 'B': range(6)})
>>> df.drop_duplicates('A')

A B
0 1 0
2 2 2
5 3 5

The keep keyword argument decides which of the duplicated entries to retain.

148 5 Pandas

5.10 Displaying DataFrames

Pandas has the set_option method to change the visual display of DataFrames
while not altering the corresponding data elements.

>>> pd.set_option('display.float_format','{:.2f}'.format)

Note that the argument is a callable that produces the formatted string. These
custom settings can be undone with reset_option, as in

pd.reset_option('display.float_format')

The chop option is handy for trimming excessive display precision,

>>> pd.set_option('display.chop',1e-5)

Within the Jupyter Notebook, formatting can utilize HTML elements with the
style.format DataFrame method. For example, as shown in Fig. 5.2,

>>> from pandas_datareader import data
>>> df=data.DataReader("F", 'yahoo', '20200101',

'20200110').reset_index()↪→

>>> (df.style.format(dict(Date='{:%m/%d/%Y}'))
... .hide_index()
... .highlight_min('Close',color='red')
... .highlight_max('Close',color='lightgreen')
...)
<pandas.io.formats.style.Styler object at 0x7f9376a22460>

formats the resulting table with the minimum closing price highlighted in red and
the maximum closing price highlighted in green. Providing these kinds of quick
visual cues is critically important for picking out key data elements. Note that the
parenthesis above is for using the newlines to separate the dot methods, which
is a style inherited from the R DataFrame. The key step is to expose the style
formatting with format() and then use its methods to style the resulting HTML

Fig. 5.2 HTML-highlighted items in DataFrame

5.10 Displaying DataFrames 149

Fig. 5.3 Custom color gradients for HTML DataFrame rendering

Fig. 5.4 Customized background barcharts for DataFrame

table in Jupyter Notebook. The following changes the color-wise visual gradient of
the Volume column as in Fig. 5.3.

>>> (df.style.format(dict(Date='{:%m/%d/%Y}'))
... .hide_index()
... .background_gradient(subset='Volume',cmap='Blues')
...)
<pandas.io.formats.style.Styler object at 0x7f9376a8a0d0>

Background barcharts can also be embedded in the table representation in Jupyter
Notebook, as in the following (see Fig. 5.4),

>>> (df.style.format(dict(Date='{:%m/%d/%Y}'))
... .hide_index()
... .bar('Volume',color='lightblue',align='zero')
...)
<pandas.io.formats.style.Styler object at 0x7f9374711f70>

150 5 Pandas

5.11 Multi-index

We encountered the Pandas MultiIndex when using groupby with multiple
columns, but these can be created separately:

>>> idx = pd.MultiIndex.from_product([['a','b'],[1,2,3]])
>>> data = 10*np.arange(6).reshape(6,1)
>>> df = pd.DataFrame(data=data,index=idx,columns=['A'])
>>> df

A
a 1 0

2 10
3 20

b 1 30
2 40
3 50

which is more compact than the following,

>>> df.reset_index()
level_0 level_1 A

0 a 1 0
1 a 2 10
2 a 3 20
3 b 1 30
4 b 2 40
5 b 3 50

But recall that we did not give the index a name when we created it, which explains
the uniformative headers, level_0 and level_1. We can swap the two levels of the
index in the DataFrame,

>>> df.swaplevel()
A

1 a 0
2 a 10
3 a 20
1 b 30
2 b 40
3 b 50

The pd.IndexSlice makes it much easier to index the DataFrame using the
loc accessor,

>>> ixs = pd.IndexSlice
>>> df.loc[ixs['a',:],:]

A
a 1 0

2 10
3 20

>>> df.loc[ixs[:,2],:]
A

a 2 10
b 2 40

5.11 Multi-index 151

Note that there can be many more levels to a multi-index. These can also go in the
column index,

>>> rx = pd.MultiIndex.from_product([['a','b'],[1,2,3]])
>>> cx = pd.MultiIndex.from_product([['A','B','C'],[2,3]])
>>> data=[[2, 3, 9, 3, 4, 1],
... [9, 5, 9, 7, 2, 1],
... [9, 4, 4, 3, 2, 1],
... [1, 0, 4, 5, 5, 5],
... [5, 8, 1, 6, 1, 7],
... [0, 8, 9, 2, 1, 9]]
>>> df = pd.DataFrame(index=rx,columns=cx,data=data)
>>> df

A B C
2 3 2 3 2 3

a 1 2 3 9 3 4 1
2 9 5 9 7 2 1
3 9 4 4 3 2 1

b 1 1 0 4 5 5 5
2 5 8 1 6 1 7
3 0 8 9 2 1 9

You can use pd.IndexSlice for both the columns and rows,

>>> df.loc[ixs['a',:],ixs['A',:]]=1
>>> df

A B C
2 3 2 3 2 3

a 1 1 1 9 3 4 1
2 1 1 9 7 2 1
3 1 1 4 3 2 1

b 1 1 0 4 5 5 5
2 5 8 1 6 1 7
3 0 8 9 2 1 9

It is helpful to add names to the levels of the index,

>>> df.index = df.index.set_names(['X','Y'])
>>> df

A B C
2 3 2 3 2 3

X Y
a 1 1 1 9 3 4 1

2 1 1 9 7 2 1
3 1 1 4 3 2 1

b 1 1 0 4 5 5 5
2 5 8 1 6 1 7
3 0 8 9 2 1 9

Even with these complicated multi-indices on the rows/columns, the groupby
method still works, but with a full specification of the particular column as
(’B’,2),

>>> df.groupby(('B',2)).sum()
A B C
2 3 3 2 3

152 5 Pandas

(B, 2)
1 5 8 6 1 7
4 2 1 8 7 6
9 2 10 12 7 11

To understand how this works, take the column slice and examine its unique
elements. This explains the values in the resulting row index of the output.

>>> df.loc[:,('B',2)].unique()
array([9, 4, 1])

Now, we have to examine the partitions that are created in the DataFrame by each
of these values such as:

>>> df.groupby(('B',2)).get_group(4)
A B C
2 3 2 3 2 3

X Y
a 3 1 1 4 3 2 1
b 1 1 0 4 5 5 5

and then summing over these groups produces the final output. You can also use
the apply function on the group to calculate non-scalar output. For example, to
subtract the minimum of each element in the group we can do the following,

>>> df.groupby(('B',2)).apply(lambda i:i-i.min())
A B C
2 3 2 3 2 3

X Y
a 1 1 0 0 1 3 0

2 1 0 0 5 1 0
3 0 1 0 0 0 0

b 1 0 0 0 2 3 4
2 0 0 0 0 0 0
3 0 7 0 0 0 8

5.12 Pipes

Pandas implements method-chaining with the pipe function. Even though this
is un-Pythonic, it is easier than composing functions together that manipulate
dataframes from end-to-end.

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C'],
... data = np.arange(3*3).reshape(3,3))
>>> df.pipe(lambda i:i*10).pipe(lambda i:3*i)

A B C
a 0 30 60
b 90 120 150
c 180 210 240

5.13 Data Files and Databases 153

Suppose we need to find the cases for which the sum of the columns is an odd
number. We can create an intermediate throw-away variable t using assign and
then extract the corresponding section of the DataFrame as in the following,

>>> df.assign(t=df.A+df.B+df.C).query('t%2==1').drop('t',axis=1)
A B C

a 0 1 2
c 6 7 8

The assign method takes either a function whose argument is the DataFrame
itself or the named DataFrame. The query method then filters the intermediate
result according to the oddness of t and the final step is to remove the t variable
that we no longer need in the output.

5.13 Data Files and Databases

Pandas has powerful I/O utilities for manipulating Excel and CSV spreadsheets.

>>> df.to_excel('this_excel.file.xls')

You will find that the given spreadsheet has the dates formatted according to Excel’s
internal date representation.

If you have PyTables installed, you can write to HDFStore. You can also
manipulate HDF5 directly from PyTables.

>>> df.to_hdf('filename.h5','keyname')

You can later read this using

>>> dg=pd.read_hdf('filename.h5','keyname')

to get your data back. You can create a SQLite database right away because SQLite
is included with Python itself.

>>> import sqlite3
>>> cnx = sqlite3.connect(':memory:')
>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C'],
... data = np.arange(3*3).reshape(3,3))
>>> df.to_sql('TableName',cnx)

Now, we can reload from the database using the usual relational algebra

>>> from pandas.io import sql
>>> p2 = sql.read_sql_query('select * from TableName', cnx)
>>> p2

index A B C
0 a 0 1 2
1 b 3 4 5
2 c 6 7 8

154 5 Pandas

5.14 Customizing Pandas

Since Pandas 0.23, we have extensions.register_dataframe_accessor, which
allows for easy extension of Pandas Dataframes/Series without subclassing.

>>> df = pd.DataFrame(index=['a','b','c'],
... columns=['A','B','C','D'],
... data = np.arange(3*4).reshape(3,4))
>>> df

A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11

The following code defines a custom accessor that behaves as if it is a native
DataFrame method.

>>> @pd.api.extensions.register_dataframe_accessor('custom')
... class CustomAccess:
... def __init__(self,df): # receives DataFrame
... assert 'A' in df.columns # some input validation
... assert 'B' in df.columns
... self._df = df
... @property # custom attribute
... def odds(self):
... 'drop all columns that have all even elements'
... df = self._df
... return df[df % 2==0].dropna(axis=1,how='all')
... def avg_odds(self): # custom method
... 'average only odd terms in each column'
... df = self._df
... return df[df % 2==1].mean(axis=0)
...

Now, with that established, we can use our new method prefixed with the custom
namespace, as in the following,

>>> df.custom.odds # as attribute
A C

a 0 2
b 4 6
c 8 10
>>> df.custom.avg_odds() # as method
A nan
B 5.00
C nan
D 7.00
dtype: float64

Importantly, you can use any word you want besides custom. You just have to
specify it in the decorator. The analogous register_series_accessor does the

5.15 Rolling and Filling Operations 155

same thing for Series objects and the register_index_accessor for Index
objects.2

5.15 Rolling and Filling Operations

Due to Pandas’ legacy in quantitative finance, many rolling time-series calculations
are easy to compute. Let us load some stock price data.

>>> from pandas_datareader import data
>>> df=data.DataReader("F", 'yahoo', '20200101',

'20200130').reset_index()↪→
>>> df.head()

Date High Low Open Close Volume Adj Close
0 2020-01-02 9.42 9.19 9.29 9.42 43425700.00 9.26
1 2020-01-03 9.37 9.15 9.31 9.21 45040800.00 9.06
2 2020-01-06 9.17 9.06 9.10 9.16 43372300.00 9.01
3 2020-01-07 9.25 9.12 9.20 9.25 44984100.00 9.10
4 2020-01-08 9.30 9.17 9.23 9.25 45994900.00 9.10

We can compute the mean over the trailing three elements,

>>> df.rolling(3).mean().head(5)
High Low Open Close Volume Adj Close

0 nan nan nan nan nan nan
1 nan nan nan nan nan nan
2 9.32 9.13 9.23 9.26 43946266.67 9.11
3 9.26 9.11 9.20 9.21 44465733.33 9.05
4 9.24 9.12 9.18 9.22 44783766.67 9.07

Note that we only get valid outputs for a fully filled trailing window. Whether
or not the endpoints of the window are used in the calculation is determined by
the closed keyword argument. Besides the default rectangular window, other
windows such as Blackman and Hamming are available. The df.rolling()
function produces a Rolling object with methods such as apply, aggregate,
and others. Similar to rolling, exponentially weighted windowed calculations
can be computed with the ewm() method,

>>> df.ewm(3).mean()
High Low Open Close Volume Adj Close

0 9.42 9.19 9.29 9.42 43425700.00 9.26
1 9.39 9.17 9.30 9.30 44348614.29 9.14
2 9.30 9.12 9.21 9.24 43926424.32 9.08
3 9.28 9.12 9.21 9.24 44313231.43 9.09
4 9.29 9.14 9.22 9.25 44864456.98 9.09
5 9.29 9.15 9.24 9.25 46979043.75 9.10
6 9.31 9.18 9.25 9.25 44906738.44 9.10
7 9.30 9.16 9.25 9.25 45919910.43 9.09
8 9.31 9.17 9.24 9.26 45113266.20 9.10

2The third-party data-cleaning module pyjanitor utilizes this approach extensively.

156 5 Pandas

9 9.30 9.18 9.25 9.24 47977202.99 9.09
10 9.30 9.17 9.24 9.22 47020077.94 9.07
11 9.28 9.16 9.23 9.21 45632324.49 9.05
12 9.27 9.14 9.21 9.21 46637216.86 9.05
13 9.26 9.15 9.21 9.20 44926124.49 9.04
14 9.24 9.09 9.19 9.18 52761475.78 9.03
15 9.21 9.06 9.17 9.14 56635156.17 8.98
16 9.14 8.99 9.10 9.07 57676520.00 8.92
17 9.11 8.96 9.06 9.05 64587200.41 8.90
18 9.07 8.93 9.01 9.00 63198880.10 8.89
19 9.01 8.88 8.96 8.96 58089908.44 8.88

We have barely scratched the surface of what Pandas is capable of and we have
completely ignored its powerful features for managing dates and times. There is
much more to learn and the online documentation and tutorials at the main Pandas
site are great for learning more.

Chapter 6
Visualizing Data

The following sections discuss visualizing data using key Python modules, but
before we get to that, it is important to grasp specific principles of data visualization
because these modules can handle the how of plotting but not the what.

Before building a data visualization, the main thing is to put yourself in the
position of the viewer. This part is easy to get wrong because you (as the author)
typically have a larger visual vocabulary than the viewer, and, combined with your
familiarity with the data, makes you prone to overlook many points of confusion
from the viewer’s perspective.

To make this worse, human perception is mainly a figment of the imagination,
driven to compensate for the limitations of our physical visual hardware. This means
that it is not just beauty that is in the eye of the beholder, but so is your data
visualization! Good data science strives to communicate dispassionate facts but
our emotional response to visuals is pre-cognitive, meaning that we have already
responded to the presentation far before we are consciously aware of doing so.
Viewers later justify their initial emotional impressions of the presentation after the
fact, rather than seriously coming to a reasoned conclusion. Thus the visualization
author must constantly be on guard for such problems.

Nothing we are discussing here is new and the visual presentation of quantitative
information is a well-established field, worthy of study in its own right. At a
minimum, you should be familiar with the perceptual properties of data graphics
as a hierarchy in terms of communication accuracy. At the top (i.e., most accurate)
is using position to represent data (i.e., scatter plots) because our human visual
cognition is very good at picking out clusters of points in the distance. Thus,
whenever possible, strive to use position to communicate the most important aspect
of your visual. Next in order is length (i.e., barcharts) because we can easily
distinguish differences in length, insofar as everything else in the graphic is aligned.
After length is angle, which explains why cockpits in airplanes have gauges that all
point in the same direction, allowing the pilot to instantly detect when a gauge is
amiss because of the angular deflection of the needle. Next is area and then volume,

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0_6

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68952-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-68952-0_6

158 6 Visualizing Data

and then density. It is difficult for us to detect whether two circles have the same
area unless one is significantly larger than the other. Volume is the worst as it is
strongly influenced by shape. If you have every tried to pour a jug of water into a
square pan, then you know how hard that is to judge. Color is also hard because
color comes with strong emotional baggage that can be distracting, notwithstanding
issues of color-blindness.

Thus, the protocol is to figure out what the main message of the data visualization
is and then to use the graphical hierarchy to encode that message using position,
whenever possible. Collateral messages are then relegated to items further down the
hierarchy like angle or color. Then, remove everything else from the visualization
that does not contribute to your messages, including default colors, lines, axes, text,
or anything else that gets in the way. Keep in mind that the Python visualization
modules come with their own defaults, which may not be conducive to your
particular desired message.

6.1 Matplotlib

Matplotlib is the primary visualization tool for scientific graphics in Python. Like
all great open-source projects, it originated to satisfy a personal need. At the time of
its inception, John Hunter primarily used Matlab for scientific visualization, but
as he began to integrate data from disparate sources using Python, he realized
he needed a Python solution for visualization, so he wrote the initial version of
Matplotlib. Since those early years, Matplotlib has displaced the other competing
methods for two-dimensional scientific visualization and today is a very actively
maintained project, even without John Hunter, who sadly passed away in 2012.
Further, other projects like seaborn leverage Matplotlib primitives for specialized
plotting. In this way, Matplotlib has soaked into the infrastructure of visualization
for the Scientific Python community. The key and enduring strength of Matplotlib
is its completeness—just about any kind of two-dimensional scientific plot you can
think of can be generated, in full publication quality, using Matplotlib, as can be
seen with the John Hunter Excellence in Plotting Contest.

There are two main conceptual pieces for Matplotlib: the canvas and artists. The
canvas can be thought of as the target for the visualization and the artists draw
on the canvas. To create a canvas in Matplotlib, you can use the plt.figure
function shown below. Then, the plt.plot function puts Line2D artists onto the
canvas that draw Fig. 6.1 and are returned as output in a Python list. Later, we will
manipulate these returned artists.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> plt.figure() # setup figure
<Figure size 640x480 with 0 Axes>
>>> x = np.arange(10) # Create some data
>>> y = x**2
>>> plt.plot(x,y)

6.1 Matplotlib 159

Fig. 6.1 Basic Matplotlib plot

[<matplotlib.lines.Line2D object at 0x7f9373184850>]
>>> plt.xlabel('This is the xlabel') # apply labels
Text(0.5, 0, 'This is the xlabel')
>>> plt.ylabel('This is the ylabel')
Text(0, 0.5, 'This is the ylabel')
>>> plt.show() # show figure

Note that if you execute the above in a plain Python interpreter, the process will
freeze (or, block) at the last line. This is because Matplotlib is preoccupied with
rendering the GUI window, which is the ultimate target of the resulting graphic.
The plt.show function triggers the artists to render upon the canvas. The reason
this comes last is so that the artists can be mustered to render all at once.

Although using these functions is the traditional way to use Matplotlib, the
object-oriented interface is more organized and compact. The following re-does the
above using the object-oriented style:

>>> from matplotlib.pylab import subplots
>>> fig,ax = subplots()
>>> ax.plot(x,y)
>>> ax.set_xlabel('this is xlabel')
>>> ax.set_ylabel('this is ylabel')

Note that the key step is to use the subplots function to generate objects for the
figure window and the axes. Then, plotting commands are thereby attached to the
respective ax object. This makes it easier to keep track of multiple visualizations
overlaid on the same ax.

160 6 Visualizing Data

6.1.1 Setting Defaults

You can set the defaults for plotting using rcParams dictionary

>>> import matplotlib
>>> matplotlib.rcParams['lines.linewidth']=2.0 # all plots with

have this linewidth↪→

Alternatively, you could have set the linewidth on a per-line basis using keyword
arguments,

plot(arange(10),linewidth=2.0) # using linewidth keyword

6.1.2 Legends

Legends identify the lines on the plot (see Fig. 6.2) and loc indicates the position
of the legend.

>>> fig,ax=subplots()
>>> ax.plot(x,y,x,2*y,'or--')
>>> ax.legend(('one','two'),loc='best')

Fig. 6.2 Multiple lines on the same axes with a legend

6.1 Matplotlib 161

Fig. 6.3 Multiple subplots in the same figure

6.1.3 Subplots

The same subplots function permits multiple subplots (see Fig. 6.3) with each
axis indexed like a Numpy array,

>>> fig,axs = subplots(2,1) # 2-rows, 1-column
>>> axs[0].plot(x,y,'r-o')
>>> axs[1].plot(x,y*3,'g--s')

6.1.4 Spines

The rectangle that contains the plots has four so-called spines. These are managed
with the spines object. In the example below, note that the axs contains a slice-
able array of individual axes objects (see Fig. 6.4). The subplot on the top left
corresponds to axs[0,0]. For this subplot, the spine on the right is made invisible
by setting its color to ’none’. Note that for Matplotlib, the string ’none’ is
handled differently than the usual Python None. The spine at the bottom is moved
to the center using set_position and the positions of the ticks are assigned with
set_ticks_position.

>>> fig,axs = subplots(2,2)
>>> x = np.linspace(-np.pi,np.pi,100)
>>> y = 2*np.sin(x)
>>> ax = axs[0,0]
>>> ax.set_title('centered spines')

162 6 Visualizing Data

>>> ax.plot(x,y)
>>> ax.spines['left'].set_position('center')
>>> ax.spines['right'].set_color('none')
>>> ax.spines['bottom'].set_position('center')
>>> ax.spines['top'].set_color('none')
>>> ax.xaxis.set_ticks_position('bottom')
>>> ax.yaxis.set_ticks_position('left')

The next subplot on the bottom left, axes[1,0] has the bottom spine moved to
the ’zero’ position of the data.

>>> ax = axs[1,0]
>>> ax.set_title('zeroed spines')
>>> ax.plot(x,y)
>>> ax.spines['left'].set_position('zero')
>>> ax.spines['right'].set_color('none')
>>> ax.spines['bottom'].set_position('zero')
>>> ax.spines['top'].set_color('none')
>>> ax.xaxis.set_ticks_position('bottom')
>>> ax.yaxis.set_ticks_position('left')

The next subplot on the top right, axes[0,1] has the bottom spine moved to the
0.1 position of the axes coordinate system with the left spine at the 0.6 position
of the axes coordinate system (more about coordinate systems later).

>>> ax = axs[0,1]
>>> ax.set_title('spines at axes (0.6, 0.1)')
>>> ax.plot(x,y)
>>> ax.spines['left'].set_position(('axes',0.6))
>>> ax.spines['right'].set_color('none')
>>> ax.spines['bottom'].set_position(('axes',0.1))
>>> ax.spines['top'].set_color('none')
>>> ax.xaxis.set_ticks_position('bottom')
>>> ax.yaxis.set_ticks_position('left')

6.1.5 Sharing Axes

The subplots function also allows sharing of individual axes between plots using
sharex and sharey (see Fig. 6.5) which is particularly helpful for aligning time-
series plots.

>>> fig, axs = subplots(3,1,sharex=True,sharey=True)
>>> t = np.arange(0.0, 2.0, 0.01)
>>> s1 = np.sin(2*np.pi*t)
>>> s2 = np.exp(-t)
>>> s3 = s1*s2
>>> axs[0].plot(t,s1)
>>> axs[1].plot(t,s2)
>>> axs[2].plot(t,s3)
>>> ax.set_xlabel('x-coordinate')

6.1 Matplotlib 163

Fig. 6.4 Spines refer to the frame edges and can be moved within the figure

Fig. 6.5 Multiple subplots can share a single x-axis

164 6 Visualizing Data

6.1.6 3D Surfaces

Matplotlib is primarily a two-dimensional plotting package, but it has some limited
three-dimensional capabilities that are primarily based on projection mechanisms.
The main machinery for this is in the mplot3d submodule. The following code
draws Fig. 6.6. The Axes3D object has the plot_surface method for drawing the
three-dimensional graphic while the cm module has the colormaps.

>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm
>>> fig = plt.figure()
>>> ax = Axes3D(fig)
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet)
<mpl_toolkits.mplot3d.art3d.Poly3DCollection object at
0x7f9372d6b5b0>

6.1.7 Using Patch Primitives

You can plot circles, polygons, etc. using primitives available in the matplotlib.
patches module (see Fig. 6.7).

Fig. 6.6 Three-dimensional
surface plot

6.1 Matplotlib 165

Fig. 6.7 Matplotlib patches
draw graphic primitives onto
the canvas

>>> from matplotlib.patches import Circle, Rectangle, Ellipse
>>> fig,ax = subplots()
>>> ax.add_patch(Circle((0,0), 1,color='g'))
>>> ax.add_patch(Rectangle((-1,-1),
... width = 2, height = 2,
... color='r',
... alpha=0.5)) # transparency
>>> ax.add_patch(Ellipse((0,0),
... width = 2, height = 4, angle = 45,
... color='b',
... alpha=0.5)) # transparency
>>> ax.axis('equal')
(-1.795861705, 1.795861705, -1.795861705, 1.795861705)
>>> ax.grid(True)

You can use cross-hatches instead of colors as well (see Fig. 6.8).

>>> fig,ax = subplots()
>>> ax.add_patch(Circle((0,0),
... radius=1,
... facecolor='w',
... hatch='x'))
>>> ax.grid(True)
>>> ax.set_title('Using cross-hatches',fontsize=18)

6.1.8 Patches in 3D

You can also add patches to 3D axes. The three-dimensional axis is created by
passing the subplot_kw keyword argument the {'projection':'3d'} dictionary.
The Circle patches are created in the usual way and then added to this axis.
The pathpatch_2d_to_3d method from the art3d module changes the viewer’s

166 6 Visualizing Data

Fig. 6.8 Cross-hatching
instead of colors

Fig. 6.9 Matplotlib patch
primitives can be drawn in
three dimensions also

perspective to each patch along the indicated direction. This is what creates the
three-dimensional effect (see Fig. 6.9).

>>> import mpl_toolkits.mplot3d.art3d as art3d
>>> fig, ax = subplots(subplot_kw={'projection':'3d'})
>>> c = Circle((0,0),radius=3,color='r')
>>> d = Circle((0,0),radius=3,color='b')
>>> ax.add_patch(c)
>>> ax.add_patch(d)
>>> art3d.pathpatch_2d_to_3d(c,z=0,zdir='y')
>>> art3d.pathpatch_2d_to_3d(d,z=0,zdir='z')

Two-dimensional graphs can also be stacked in three dimensions (see Fig. 6.10). The
paths of the individual closed polygons of the plots are extracted using get_paths

6.1 Matplotlib 167

Fig. 6.10 Custom patch
primitives can be created
from other Matplotlib
renderings

Fig. 6.11 Graphical
elements in different
coordinate systems appear on
the same figure

and then used to create the PathPatch objects are added to the axis. As before, the
final step is to set the perspective view on each patch using pathpatch_2d_to_3d.

>>> from numpy import pi, arange, linspace, sin, cos
>>> from matplotlib.patches import PathPatch
>>> x = linspace(0,2*pi,100)
>>> # create polygons from graphs
>>> fig, ax = subplots()
>>> p1=ax.fill_between(x,sin(x),-1)
>>> p2=ax.fill_between(x,sin(x-pi/3),-1)
>>> path1=p1.get_paths()[0] # get closed polygon for p1
>>> path2=p2.get_paths()[0] # get closed polygon for p2
>>> ax.set_title('setting up patches from 2D graph')
>>> fig, ax = subplots(subplot_kw={'projection':'3d'})

168 6 Visualizing Data

>>> pp1 = PathPatch(path1,alpha=0.5) # need to assign this for
later↪→

>>> pp2 = PathPatch(path2,color='r',alpha=0.5) # need to assign
this for later↪→

>>> # add patches
>>> ax.add_patch(pp1)
>>> ax.add_patch(pp2)
>>> # transform patches
>>> art3d.pathpatch_2d_to_3d(pp1,z=0,zdir='y')
>>> art3d.pathpatch_2d_to_3d(pp2,z=1,zdir='y')

6.1.9 Using Transformations

One of Matplotlib’s underappreciated strengths is how it manages multiple coordi-
nate systems as it creates data visualizations. These coordinate systems provide the
scale mappings between the data and the space of the rendered visualization. The
data coordinate system is the coordinate system of the data points whereas
the display coordinate system is the system of the displayed figure. The
ax.transData method converts the data coordinates (5, 5) into coordinates
in the display coordinate system (see Fig. 6.11).

>>> fig,ax = subplots()
>>> # line in data coordinates
>>> ax.plot(np.arange(10), np.arange(10))
>>> # marks the middle in data coordinates
>>> ax.plot(5,5,'o',markersize=10,color='r')
>>> # show the same point but in display coordinates
>>> print(ax.transData.transform((5,5)))
[2560. 1900.8]

If we create axes with different sizes using the figsize keyword argument, then
the transData method returns different coordinates for each axis, even though
they refer to the same point in data coordinates.

>>> fig,ax = subplots(figsize=(10,4))
>>> ax.transData.transform((5,5))
array([4000., 1584.])
>>> fig,ax = subplots(figsize=(5,4))
>>> ax.transData.transform((5,5))
array([2000., 1584.])

Furthermore, if you plot this in a GUI window (not in the Jupyter notebook)
and resize the figure using the mouse and do this again, you also get different
coordinates depending on how the window was resized. As a practical matter, you
rarely work in display coordinates. You can go back to data coordinates
using ax.transData.inverted().transform.

The axes coordinate system is the unit box that contains the axes. The
transAxes method maps into this coordinate system. For example, see Fig. 6.12
where the transAxes method is used for the transform keyword argument,

6.1 Matplotlib 169

Fig. 6.12 Elements can be
fixed to positions in the figure
regardless of the data
coordinates using the axes
coordinate system

>>> from matplotlib.pylab import gca
>>> fig,ax = subplots()
>>> ax.text(0.5,0.5,
... 'Middle of plot',
... transform = ax.transAxes,
... fontsize=18)
>>> ax.text(0.1,0.1,
... 'lower left',
... transform = ax.transAxes,
... fontsize=18)
>>> ax.text(0.8,0.8,
... 'upper right',
... transform = ax.transAxes,
... fontsize=18)
>>> ax.text(0.1,0.8,
... 'upper left',
... transform = ax.transAxes,
... fontsize=18)
>>> ax.text(0.8,0.1,
... 'lower right',
... transform = ax.transAxes,
... fontsize=18)

This can be useful for annotating plots consistently irrespective of the data. You can
combine this with the patches to create a mix of data coordinate and axes coordinate
items in your graphs as in Fig. 6.13, from the following code:

>>> fig,ax = subplots()
>>> x = linspace(0,2*pi,100)
>>> ax.plot(x,sin(x))
>>> ax.add_patch(Rectangle((0.1,0.5),
... width = 0.5,
... height = 0.2,
... color='r',
... alpha=0.3,
... transform = ax.transAxes))
>>> ax.axis('equal')

170 6 Visualizing Data

(-0.3141592653589793, 6.5973445725385655,
-1.0998615404412626, 1.0998615404412626)

6.1.10 Annotating Plots with Text

Matplotlib implements a unified class for text which means that you can manipulate
text the same way anywhere it appears in a visualization. Adding text is straightfor-
ward with ax.text (see Fig. 6.14):

>>> fig,ax = subplots()
>>> x = linspace(0,2*pi,100)
>>> ax.plot(x,sin(x))
>>> ax.text(pi/2,1,'max',fontsize=18)
>>> ax.text(3*pi/2,-1.1,'min',fontsize=18)
>>> ax.text(pi,0,'zero',fontsize=18)
>>> ax.axis((0,2*pi,-1.25,1.25))
(0.0, 6.283185307179586, -1.25, 1.25)

We can also use bounding boxes to surround text as in the following Fig. 6.15
by using the bbox keyword argument,

>>> fig,ax = subplots()
>>> x = linspace(0,2*pi,100)
>>> ax.plot(x,sin(x))
>>> ax.text(pi/2,1-0.5,'max',
... fontsize=18,
... bbox = {'boxstyle':'square','facecolor':'yellow'})

Fig. 6.13 Matplotlib patch primitives can be used in different coordinate systems

6.1 Matplotlib 171

Fig. 6.14 Text can be added
in the figure

Fig. 6.15 Bounding boxes
can be added to text

6.1.11 Annotating Plots with Arrows

Plots can be annotated with arrows using ax.annotate as in the following
(Fig. 6.16):

>>> fig,ax = subplots()
>>> x = linspace(0,2*pi,100)
>>> ax.plot(x,sin(x))
>>> ax.annotate('max',
... xy=(pi/2,1), # where to put arrow endpoint
... xytext=(pi/2,0.3), # text position in data coordinates
... arrowprops={'facecolor':'black','shrink':0.05},
... fontsize=18,
...)
>>> ax.annotate('min',
... xy=(3/2.*pi,-1), # where to put arrow endpoint
... xytext=(3*pi/2.,-0.3), # text position in data coordinates
... arrowprops={'facecolor':'black','shrink':0.05},
... fontsize=18,
...)

172 6 Visualizing Data

Fig. 6.16 Arrows call
attention to points on the
graph

We can also specify the text coordinate using textcoords system, as we
discussed previously (see Fig. 6.17) where the coordinate system is specified with
the string ’axes fraction’ instead of using ax.transAxes.

>>> fig,ax = subplots()
>>> x = linspace(0,2*pi,100)
>>> ax.plot(x,sin(x))
>>> ax.annotate('max',
... xy=(pi/2,1), # where to put arrow endpoint
... xytext=(0.3,0.8), # text position in axes coordinates
... textcoords='axes fraction',
... arrowprops={'facecolor':'black',
... 'shrink':0.05},
... fontsize=18,
...)
>>> ax.annotate('min',
... xy=(3/2.*pi,-1), # where to put arrow endpoint
... xytext=(0.8,0.2), # text position in data coordinates
... textcoords='axes fraction',
... arrowprops={'facecolor':'black',
... 'shrink':0.05,
... 'width':10,
... 'headwidth':20,
... 'headlength':6},
... fontsize=18,
...)

Sometimes, you just want the arrow and not the text as in Fig. 6.18, where xytext
coordinates are for the tail of the arrow and connectionstyle specifies the
curve of the arc.

>>> fig,ax = subplots()
>>> x = linspace(0,2*pi,100)
>>> ax.set_title('Arrow without text',fontsize=18)
>>> ax.annotate("", # leave the text-string argument empty
... xy=(0.2, 0.2), xycoords='data',
... xytext=(0.8, 0.8), textcoords='data',

6.1 Matplotlib 173

Fig. 6.17 The representation
of arrows can be carefully
detailed

Fig. 6.18 Arrow without the
text

... arrowprops=dict(arrowstyle="->",

... connectionstyle="arc3,rad=0.3",

... linewidth=2.0),

...)

As arrows are important for pointing to graphical elements or for representing
complicated vector fields (e.g., wind-speeds and directions), Matplotlib provides
many customization options.

6.1.12 Embedding Scalable and Non-scalable Subplots

Embedded subplots can scale or not scale with the rest of the plotted data. The
following embedded circles in Fig. 6.19 will not change even if other data are
plotted within the same figure via AnchoredDrawingArea. Note that we artists

174 6 Visualizing Data

Fig. 6.19 Embedded
subplots can be independent
of scaling data in the same
figure

are added to the anchored drawing area, their dimensions are in pixel coordinates,
even if the transform keyword argument is set for the artist.

>>> from mpl_toolkits.axes_grid1.anchored_artists import
AnchoredDrawingArea
>>> fig,ax = subplots()
>>> fig.set_size_inches(3,3)
>>> ada = AnchoredDrawingArea(40, 20, 0, 0,
... loc=1, pad=0.,
... frameon=False)
>>> p1 = Circle((10, 10), 10)
>>> ada.drawing_area.add_artist(p1)
>>> p2 = Circle((30, 10), 5, fc="r")
>>> ada.drawing_area.add_artist(p2)
>>> ax.add_artist(ada)
<mpl_toolkits.axes_grid1.anchored_artists.AnchoredDrawingArea
object at 0x7f939833e760>

This is different from AnchoredAuxTransformBox which will facilitate scal-
ing with data coordinates in Fig. 6.20 where the embedded ellipse scales with ax,

>>> from matplotlib.patches import Ellipse
>>> from mpl_toolkits.axes_grid1.anchored_artists import
AnchoredAuxTransformBox

>>> fig,ax = subplots()
>>> box = AnchoredAuxTransformBox(ax.transData, loc=2)
>>> # in data coordinates
>>> el = Ellipse((0,0),
... width=0.1,
... height=0.4,
... angle=30)
>>> box.drawing_area.add_artist(el)
>>> ax.add_artist(box)
<mpl_toolkits.axes_grid1.anchored_artists.AnchoredAuxTransformBox
object at 0x7f9372f5dbe0>

Adding plots to this will leave the circles unchanged.

6.1 Matplotlib 175

Fig. 6.20 As opposed to
Fig. 6.19, this subplot will
change with the scaling of
other data graphics in this
figure

6.1.13 Animations

Matplotlib provides flexible animations that utilize all of the other graphical
primitives. One way to create animations is to generate a sequences of artists in
an iterable and then animate them (see Fig. 6.21).

>>> import matplotlib.animation as animation
>>> fig,ax = subplots()
>>> x = np.arange(10)
>>> frames = [ax.plot(x,x,x[i],x[i],'ro',ms=5+i*10)
... for i in range(10)]
>>> # You must assign in the next line!
>>> g=animation.ArtistAnimation(fig,frames,interval=50)

This works fine for relatively few frames, but you can also dynamically create
frames on the fly (see Fig. 6.22):

>>> import matplotlib.animation as animation
>>> x = np.arange(10)
>>> linewidths =[10,20,30]
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> line, = ax.plot(x,x,'-ro',ms=20,linewidth=5.0)
>>> def update(data):
... line.set_linewidth(data)
... return (line,)
...
>>> ani = animation.FuncAnimation(fig, update, x, interval=500)
>>> plt.show()

To get these to animate in a Jupyter notebook you have to convert them to
corresponding JavaScript animations using to_jshtml. For example, in one cell,
do the following (see Fig. 6.23):

>>> fig,ax = subplots()
>>> frames = [ax.plot(x,x,x[i],x[i],'ro',ms=5+i*10)

176 6 Visualizing Data

Fig. 6.21 Matplotlib animations utilize the other graphical primitives

Fig. 6.22 Animations can be
generated dynamically with
functions

... for i in range(10)]
>>> g=animation.ArtistAnimation(fig,frames,interval=50)

and in the next cell, do the following:

from IPython.display import HTML
HTML(g.to_jshtml())

6.1 Matplotlib 177

Fig. 6.23 Animations in the Jupyter notebook can be played in the browser using to_jshtml

6.1.14 Using Paths Directly

Further low-level access to plotting is available in Matplotlib by using paths, which
you can think of as programming a stylus that is drawing on the canvas. For
example, patches are made of paths. Paths have vertices and corresponding
draw commands. For instance, for Fig. 6.24, this draws a line between two points

>>> from matplotlib.path import Path
>>> vertices=[(0,0),(1,1)]
>>> codes = [Path.MOVETO, # move stylus to (0,0)
... Path.LINETO] # draw line to (1,1)
>>> path = Path(vertices, codes) #create path
>>> fig, ax = subplots()
>>> # convert path to patch
>>> patch = PathPatch(path,linewidth=10)
>>> ax.add_patch(patch)
>>> ax.set_xlim(-.5,1.5)
(-0.5, 1.5)
>>> ax.set_ylim(-.5,1.5)
(-0.5, 1.5)
>>> plt.show()

Paths can also use quadratic and cubic Bezier curves to connect points, as in
Fig. 6.25,

>>> vertices=[(-1,0),(0,1),(1,0),(0,-1),(-1,0)]
>>> codes = [Path.MOVETO, # move stylus to (0,0)
... Path.CURVE3, # draw curve
... Path.CURVE3, # draw curve
... Path.CURVE3, # draw curve

178 6 Visualizing Data

Fig. 6.24 Paths draw on the canvas using specific pen-like instructions

Fig. 6.25 Paths can have Bezier curves

... Path.CURVE3,]
>>> path = Path(vertices, codes) #create path
>>> fig, ax = subplots()
>>> # convert path to patch
>>> patch = PathPatch(path,linewidth=2)
>>> ax.add_patch(patch)
>>> ax.set_xlim(-2,2)
(-2.0, 2.0)
>>> ax.set_ylim(-2,2)

6.1 Matplotlib 179

Fig. 6.26 Arrows tangent to
the curve

(-2.0, 2.0)
>>> ax.set_title('Quadratic Bezier Curve Path')
>>> for i in vertices:
... _=ax.plot(i[0],i[1],'or')# control points
... _=ax.text(i[0],i[1],'control\n

point',horizontalalignment='center')↪→
...

Arrows and plots can be combined into a single figure to show the directional
derivative at points on the curve (see Fig. 6.26),

>>> x = np.linspace(0,2*np.pi,100)
>>> y = np.sin(x)
>>> fig, ax = subplots()
>>> ax.plot(x,y)
>>> u = []
>>> # subsample x
>>> x = x[::10]
>>> for i in zip(np.ones(x.shape),np.cos(x)):
... v=np.array(i)
... u.append(v/np.sqrt(np.dot(v,v)))
...
>>> U=np.array(u)
>>> ax.quiver(x,np.sin(x),U[:,0],U[:,1])
>>> ax.grid()
>>> ax.axis('equal')
(-0.3141592653589793, 6.5973445725385655, -1.0998615404412626,
1.0998615404412626)

6.1.15 Interacting with Plots Using Sliders

The Matplotlib GUI widget (Qt or other backend) can have callbacks to respond to
key or mouse movements. This makes it easy to add basic interactivity plots in the

180 6 Visualizing Data

Fig. 6.27 Interactive widgets can be attached to the Matplotlib GUI backend

GUI window. These are also available in matplotlib.widgets from within the
Jupyter notebook. The widgets are attached to the callback update function using
on_changed or on_clicked and changes to the specific widgets trigger the callback
(see Fig. 6.27) where the Slider , RadioButtons and Button widgets are
attached to callbacks.

>>> from matplotlib.widgets import Slider, Button, RadioButtons
>>> from matplotlib.pylab import subplots_adjust, axes
>>> fig, ax = subplots()
>>> subplots_adjust(left=0.25, bottom=0.25)
>>> # setup data
>>> t = arange(0.0, 1.0, 0.001)
>>> a0, f0 = 5, 3
>>> s = a0*sin(2*pi*f0*t)
>>> # draw main plot
>>> l, = ax.plot(t,s, lw=2, color='red')
>>> ax.axis([0, 1, -10, 10])
(0.0, 1.0, -10.0, 10.0)
>>> axcolor = 'lightgoldenrodyellow'
>>> # create axes for widgets
>>> axfreq = axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)
>>> axamp = axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor)
>>> sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0)
>>> samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0)
>>> def update(val):
... amp = samp.val
... freq = sfreq.val
... l.set_ydata(amp*sin(2*pi*freq*t))
... draw()
...
>>> # attach callbacks to widgets
>>> sfreq.on_changed(update)

6.1 Matplotlib 181

0
>>> samp.on_changed(update)
0
>>> resetax = axes([0.8, 0.025, 0.1, 0.04])
>>> button = Button(resetax, 'Reset', color=axcolor,

hovercolor='0.975')↪→
>>> def reset(event):
... sfreq.reset()
... samp.reset()
...
>>> # attach callback to button
>>> button.on_clicked(reset)
0
>>> rax = axes([0.025, 0.5, 0.15, 0.15], facecolor=axcolor)
>>> radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0)
>>> def colorfunc(label):
... l.set_color(label)
... draw()
...
>>> # attach callback to radio buttons
>>> radio.on_clicked(colorfunc)
0

6.1.16 Colormaps

Matplotlib provides many useful colormaps. The imshow function takes an input
array and plots the cells in that array with color corresponding to the value of each
entry (see Fig. 6.28).

>>> fig, ax = subplots()
>>> x = np.linspace(-1,1,100)
>>> y = np.linspace(-3,1,100)
>>> ax.imshow(abs(x + y[:,None]*1j)) # use broadcasting

Matplotlib colors are organized in the matplotlib.colors submodule and
the matplotlib.pylab.cm module has the colormaps in a single interface.
For every named colormap in cm, there is a reversed colormap. For example,
cm.Blues and cm.Blues_r. We can use this colormap with imshow as in
Fig. 6.28 to create Fig. 6.29 with the cmap keyword argument.

>>> fig, ax = subplots()
>>> ax.imshow(abs(x + y[:,None]*1j),cmap=cm.Blues)

Because colors have a strong perceptual impact for understanding data visually,
Matplotlib are organized in terms of cyclic, sequential, diverging, or qualitative,
each tailored for specific kinds of numerical, categorical, or nominal data.

182 6 Visualizing Data

Fig. 6.28 Matplotlib
imshow displays matrix
elements as colors

Fig. 6.29 Same as Fig. 6.28
but with the cm.Blues
colormap

6.1 Matplotlib 183

Fig. 6.30 Matplotlib
elements’ attributes can be
discovered and changed using
getp and setp

6.1.17 Low-Level Control Using setp and getp

Because there are so many Matplotlib elements and so many corresponding
attributes, the getp and setp functions make it easier to discover and change
the attributes of any particular element (see Fig. 6.30).

>>> from matplotlib.pylab import setp, getp
>>> fig, ax = subplots()
>>> c = ax.add_patch(Circle((0,0),1,facecolor='w',hatch='-|'))
>>> # set axes background rectangle to blue
>>> setp(ax.get_children()[-1],fc='lightblue')
[None]
>>> ax.set_title('upper right corner is axes background')
>>> ax.set_aspect(1)
>>> fig.show()

6.1.18 Interacting with Matplotlib Figures

Matplotlib provides several underlying callback mechanisms to expand interactive
use of the figure window using the Qt or other GUI backend. These work with the
Jupyter notebook using the ipympl module and the %matplotlib widget cell
magic.

184 6 Visualizing Data

6.1.19 Keyboard Events

The Matplotlib GUI figure window is capable of listening and responding to
keyboard events (i.e., typed keystrokes) when the figure window has focus. The
mpl_connect and mpl_disconnect functions attach listeners to the events in the
GUI window and trigger the corresponding callback when changes are detected.
Note the use of the sys.stdout.flush() to clear the standard output.

import sys
fig, ax = plt.subplots()
disconnect default handlers
fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)
ax.set_title('Keystroke events',fontsize=18)
def on_key_press(event):

print (event.key)
sys.stdout.flush()

connect function to canvas and listen
fig.canvas.mpl_connect('key_press_event', on_key_press)
plt.show()

Now, you should be able to type in keys in the figure window and see some output in
the terminal. We can make the callback interact with the artists in the figure window
by referencing them, as in the following example:

fig, ax = plt.subplots()
x = np.arange(10)
line, = ax.plot(x, x*x,'-o') # get handle of Line2D object
ax.set_title('More Keystroke events',fontsize=18)
def on_key_press(event):

If event.key is one of shorthand color notations, set line
color↪→

if event.key in 'rgb':
line.set_color(event.key)
fig.canvas.draw() # force redraw

disconnect default figure handlers
fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)
connect function to canvas and listen
fig.canvas.mpl_connect('key_press_event', on_key_press)
plt.show()

You can also increase the marker size using this same technique by tacking on
another callback as in the following example:

def on_key_press2(event):
If the key is one of the shorthand color notations,
set the line color
if event.key in '123':

val = int(event.key)*10
line.set_markersize(val)
fig.canvas.draw() # force redraw

fig.canvas.mpl_connect('key_press_event', on_key_press2)

6.1 Matplotlib 185

You can also use modifier keys like alt, ctrl, shift.

import re
def on_key_press3(event):

'alt+1,alt+2, changes '
if re.match('alt\+?',event.key):

key,=re.match('alt\+(.?)',event.key).groups(0)
val = int(key)/5.
line.set_mew(val)
fig.canvas.draw() # force redraw

fig.canvas.mpl_connect('key_press_event', on_key_press3)
plt.show()

Now, you can use the given numbers, letters, and modifiers in your keystrokes to
alter the embedded line. Note that there is also a on_key_press_release event if
you want to hook into multiple letters or have a noisy keyboard.

6.1.20 Mouse Events

You can also tap into mouse movement and clicks in the figure window using a
similar mechanism. These events can respond with figure/data coordinates and an
integer ID of the button (i.e., left/middle/right) pressed.

fig, ax = plt.subplots()
disconnect default handlers
fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)

def on_button_press(event):
button_dict = {1:'left',2:'middle',3:'right'}
print ("clicked %s button" % button_dict[event.button])
print ("figure coordinates:", event.x, event.y)
print ("data coordinates:", event.xdata, event.ydata)
sys.stdout.flush()

fig.canvas.mpl_connect('button_press_event', on_button_press)
plt.show()

Here is another version that puts points at every click point.

fig, ax = plt.subplots()
ax.axis([0,1,0,1])
disconnect default handlers
fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id)

o=[]
def on_button_press(event):

button_dict = {1:'left',2:'middle',3:'right'}
ax.plot(event.xdata,event.ydata,'o')
o.append((event.xdata,event.ydata))
sys.stdout.flush()
fig.canvas.draw()

186 6 Visualizing Data

fig.canvas.mpl_connect('button_press_event', on_button_press)
plt.show()

In addition to clicks, you can also position the mouse over an artist on the canvas
and click on it to access that artist. This is known as the pick event.

fig, ax = plt.subplots()
ax.axis([-1,1,-1,1])
ax.set_aspect(1)
for i in range(5):

x,y= np.random.rand(2).T
circle = Circle((x, y),radius=0.1 , picker=True)
ax.add_patch(circle)

def on_pick(event):
artist = event.artist
artist.set_fc(np.random.random(3))
fig.canvas.draw()

fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()

By clicking on the circles in the figure, you can randomly change their correspond-
ing colors. Note that you have to set the picker=True keyword argument when
the artist is instantiated. You can also do help(plt.connect) to use other
events.

6.2 Seaborn

Seaborn facilitates specialized plots that make it quick and easy to visually assess
statistical aspects of data. Because Seaborn is built on top of Matplotlib, it can target
any output that Matplotlib supports. Seaborn is extraordinarily well-written with
fantastic documentation and easy-to-read source code. We can import Seaborn in
the usual way, noting that we also want to load the traditional plt interface to
Matplotlib.

>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns

Seaborn comes with many interesting datasets,

>>> tips = sns.load_dataset('tips')
>>> tips.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

6.2 Seaborn 187

Fig. 6.31 Scatterplot for
tips dataset

We can easily investigate relations between pairs of variables using sns.
relplot() in Fig. 6.31,

>>> sns.relplot(x='total_bill',y='tip',data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f9370b261c0>

Although we could easily re-create this plot in plain Matplotlib using scatter,
the Seaborn practice is to pass in the Pandas dataframe tips and reference the
columns to be plotted with the x and y keyword arguments. Then, other dataframe
columns can be assigned to other graphical roles in the rendering that permit layers
of graphical concepts onto a single figure. Further, the background and frame
are stylistically different than the Matplotlib defaults. Importantly, the resulting
object returned is a seaborn.axisgrid.FacetGrid instance so if we want to
retrieve the native Matplotlib elements, we have to extract them from FacetGrid
as the attributes, fig and ax, for example.

By assigning the hue role to the smoker column of the dataframe, the resulting
plot is the same as before except the individual circles are colored by the smoker
categorical column of the dataframe, as in Fig. 6.32,

>>> sns.relplot(x='total_bill',hue='smoker',y='tip',data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f9370c3f400>

Instead of changing the color for each smoker category, we can assign the smoker
column to the style role, which changes the shape of the marker in Fig. 6.33,

>>> sns.relplot(x='total_bill',y='tip',
... style='smoker', # different marker shapes
... data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f9372fe1700>

188 6 Visualizing Data

Fig. 6.32 Individual data
points colored using the
categorical column smoker

Fig. 6.33 Instead of color,
different markers can be used
with the categorical smoker
column

You can also specify any valid Matplotlib marker type for each of the two categorical
values of the smoker column in Fig. 6.34 by specifying the markers keyword
argument,

>>> sns.relplot(x='total_bill',y='tip',
... style='smoker',
... markers=['s','^'],data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f9376c6c310>

The size column of the input dataframe can be used to scale each of the markers
in Fig. 6.35,

6.2 Seaborn 189

Fig. 6.34 Custom markers
can be specified for individual
data points using the
categorical smoker column

Fig. 6.35 The size
categorical column in the
tips dataset can scale the
individual points

>>> sns.relplot(x='total_bill',y='tip',
... size='size', # scale markers
... data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f93713bd310>

This is discrete because of the unique values of that column in the dataframe,

>>> tips['size'].unique()
array([2, 3, 4, 1, 6, 5])

These sizes can be scaled between bounds specified by the sizes keyword
argument, such as sizes=(5,10). Note that supplying a continuous numerical

190 6 Visualizing Data

Fig. 6.36 Options such as
transparency (i.e., alpha
value) that are not used by
Seaborn can be passed down
to the Matplotlib renderer as
keyword arguments

column like total_bill for the size keyword argument will bin that column
automatically, instead of allowing for a continuous range of marker sizes. The
transparency value of each point is specified by the alpha keyword argument
which is passed down to Matplotlib to render. This means Seaborn does not use
it to filter the options that flow down to Matplotlib scatter as in Fig. 6.36.

>>> sns.relplot(x='total_bill',y='tip',alpha=0.3,data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f937127b640>

Further, because Seaborn processes the size keyword argument it is not possible
to push the scatter size keyword argument through to the final Matplotlib
rendering. Thus, the trade-off is that Seaborn makes specific editorial changes on
the appearance of the resulting graphic that may be hard to tweak outside of Seaborn
semantics. The scatter plot is the default kind for relplot() but a line plot
can be used instead with the kind=’line’ keyword argument.

6.2.1 Automatic Aggregation

If a dataset has multiple x values with different y-values, then Seaborn will
aggregate these values to produce a containing envelope for the resulting line.

>>> fmri = sns.load_dataset('fmri')
>>> fmri.head()

subject timepoint event region signal
0 s13 18 stim parietal -0.02

6.2 Seaborn 191

1 s5 14 stim parietal -0.08
2 s12 18 stim parietal -0.08
3 s11 18 stim parietal -0.05
4 s10 18 stim parietal -0.04

There are fifty-six signal values for each of the timepoint values,

>>> fmri['timepoint'].value_counts()
18 56
8 56
1 56
2 56
3 56
4 56
5 56
6 56
7 56
9 56
17 56
10 56
11 56
12 56
13 56
14 56
15 56
16 56
0 56
Name: timepoint, dtype: int64

Here are some statistics on the timepoint=0 group,

>>> fmri.query('timepoint==0')['signal'].describe()
count 56.00
mean -0.02
std 0.03
min -0.06
25% -0.04
50% -0.02
75% 0.00
max 0.07
Name: signal, dtype: float64

Because of this multiplicity, Seaborn will plot the mean of each of the points
as shown with the marker=’o’ with confidence intervals above and below
specifying the 95% confidence interval of the mean estimate as in Fig. 6.37,

>>> sns.relplot(x='timepoint', y='signal', kind='line',data=fmri,
marker='o')↪→

<seaborn.axisgrid.FacetGrid object at 0x7f93709c5df0>

The downside is that the estimate is computed using bootstrapping, which can
be slow for large datasets and can be turned off using the ci=None keyword
argument or replaced with ci=’sd’, which will instead use the easier-to-compute
standard deviation. The estimator=None keyword argument will make this
stop altogether. As with kind=’scatter’, additional dataframe columns can be

192 6 Visualizing Data

Fig. 6.37 Data containing
multiple x-values for
differing y-values can be
automatically aggregated
with bootstrapped estimate of
confidence intervals

recruited to distinguish the resulting graphic. The following uses hue=’event’
to draw distinct line plots for each of the categories of fmri.event,

>>> fmri.event.unique()
array(['stim', 'cue'], dtype=object)

Now, we have distinct line plots for each fmri.event categorical as in Fig. 6.38,

>>> sns.relplot(x='timepoint', y='signal',
... kind='line', data=fmri,
... hue='event', marker='o')
<seaborn.axisgrid.FacetGrid object at 0x7f93709c5df0>

If the hue column is numerical instead of categorical, then the colors will be
scaled over a continuous interval. Consider the following dataset and corresponding
Fig. 6.39:

>>> dots = sns.load_dataset('dots').query('align == "dots"')
>>> dots.head()

align choice time coherence firing_rate
0 dots T1 -80 0.00 33.19
1 dots T1 -80 3.20 31.69
2 dots T1 -80 6.40 34.28
3 dots T1 -80 12.80 32.63
4 dots T1 -80 25.60 35.06
>>> sns.relplot(x='time', y='firing_rate',
... hue='coherence', style='choice',
... kind='line', data=dots)
<seaborn.axisgrid.FacetGrid object at 0x7f9370883cd0>

There are two different line styles because there are two different unique values in
the choice column. The lines are colored according to the numerical coherence

6.2 Seaborn 193

Fig. 6.38 The categorical
event column can color
each dataset differently

Fig. 6.39 When columns are
numerical instead of
categorical, the colors can be
scaled along a continuous
range

column. Seaborn is particularly strong with color palettes. The following generates
a colormap over n_colors:

>>> palette = sns.color_palette('viridis', n_colors=6)

Then, re-drawing the same plot in Fig. 6.40 makes the individually colored lines
somewhat more distinct, especially with a slightly thicker line width,

>>> sns.relplot(x='time', y='firing_rate',palette=palette,
... hue='coherence', style='choice',
... kind='line', data=dots, linewidth=2)
<seaborn.axisgrid.FacetGrid object at 0x7f937085a130>

194 6 Visualizing Data

Fig. 6.40 Same as Fig. 6.39
except with different colors

6.2.2 Multiple Plots

Because relplot returns a FacetGrid object, it is straightforward to create
multiple subplots be specifying the row and col keyword arguments. The follow-
ing Fig. 6.41 stacks the two subplots side-by-side in two columns because there are
two unique values for the time column in the dataframe.

>>> tips.time.unique()
['Dinner', 'Lunch']
Categories (2, object): ['Dinner', 'Lunch']

>>> sns.relplot(x='total_bill', y='tip', hue='smoker',
... col='time', # columns for time
... data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f9370704ee0>

Multiple gridded plots can be generated along multiple rows and columns. The
col_wrap keyword argument keeps the following Fig. 6.42 from filling very wide
graph and instead puts each of the subplots into separate rows,

>>> sns.relplot(x='timepoint', y='signal', hue='event',
... style='event',
... col='subject', col_wrap=5,
... height=3, aspect=.75, linewidth=2.5,
... kind='line',
... data=fmri.query('region == "frontal"'))
<seaborn.axisgrid.FacetGrid object at 0x7f9370895be0>

6.2 Seaborn 195

Fig. 6.41 Matplotlib subplots are called facets in Seaborn

Fig. 6.42 Facets support complex tilings

196 6 Visualizing Data

Fig. 6.43 Seaborn supports
histograms

6.2.3 Distribution Plots

Visualizing data distributions is fundamental to any statistical analysis as well
as to diagnosing problems with machine learning models. Seaborn is particularly
strong at providing well-thought-out options for visualizing data distributions. The
simplest univariate data distribution visualization technique is the histogram,

>>> penguins = sns.load_dataset("penguins")
>>> penguins.head()

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
0 Adelie Torgersen 39.10 18.70 181.00 3750.00 Male
1 Adelie Torgersen 39.50 17.40 186.00 3800.00 Female
2 Adelie Torgersen 40.30 18.00 195.00 3250.00 Female
3 Adelie Torgersen nan nan nan nan NaN
4 Adelie Torgersen 36.70 19.30 193.00 3450.00 Female

Seaborn’s displot draws a quick histogram in Fig. 6.43,

>>> sns.displot(penguins, x="flipper_length_mm")
<seaborn.axisgrid.FacetGrid object at 0x7f9370951b20>

The width of the bins in the histogram can be selected with the binwidth keyword
argument and the number of bins can be selected with the bins keyword argument.
For categorical data with a few distinct values, bins can be selected as a sequence of
distinct values, like bins=[1,3,5,8]. Alternatively, Seaborn can automatically
handle this with the discrete=True keyword argument.

Other columns can be used to create overlapping semi-transparent histograms as
in the following Fig. 6.44:

>>> sns.displot(penguins, x="flipper_length_mm", hue="species")
<seaborn.axisgrid.FacetGrid object at 0x7f9363c04f70>

6.2 Seaborn 197

Fig. 6.44 Multiple
histograms can be overlaid
using colors and transparency

Fig. 6.45 Same as Fig. 6.44
except with no distracting
vertical lines

Seaborn intelligently selects the bins to match for each respective histogram, which
is hard to do with Matplotlib’s default hist() function.

Sometimes the vertical lines of the histogram can become distracting. These can
be removed with the element=’step’ keyword argument in Fig. 6.45,

>>> sns.displot(penguins, x='flipper_length_mm',
... hue='species',
... element='step')
<seaborn.axisgrid.FacetGrid object at 0x7f9363b01f70>

Instead of layering using transparency, histograms can be stacked on top of each
other (see Fig. 6.46) but this can be hard to reconcile with many histograms and a
few dominant histograms that may overwhelm or obscure the others.

>>> sns.displot(penguins, x="flipper_length_mm",
... hue="species",

198 6 Visualizing Data

Fig. 6.46 Multiple
histograms can be stacked

... multiple="stack")
<seaborn.axisgrid.FacetGrid object at 0x7f9372f6fbb0>

Alternatively, if there are few histograms, the bars can be narrowed enough to fit
side-by-side using the multiple=’dodge’ keyword argument. For histograms
to be used as estimates of legitimate probability density functions, they have to be
scaled appropriately and this is done via the stat=’probability’ keyword
argument.

Histograms approximate the univariate probability density function with rect-
angular functions but Gaussian functions can be used to create smoother Kernel
Density Estimates (KDE) of same the probability density function in Fig. 6.47 by
using the kind keyword argument.

>>> sns.displot(penguins, x="flipper_length_mm", kind="kde")
<seaborn.axisgrid.FacetGrid object at 0x7f936398f3d0>

The smoothness of the resulting plot is determined by the KDE bandwidth parameter
which is available as the bw_adjust keyword argument. Keep in mind that
even though smoothness may be visually pleasing, it may be mis-representing
discontinuities or suppressing features in the data that may be important.

Beyond univariate probability density functions, Seaborn provides powerful
visualization tools for bivariate probability density functions (see Fig. 6.48).

>>> sns.displot(penguins, x="bill_length_mm", y="bill_depth_mm")
<seaborn.axisgrid.FacetGrid object at 0x7f9363635730>

Figure 6.48 shows the two-dimensional grid which tallies the number of data points
in each with corresponding color scale for these counts. Using the kind=’kde’
keyword argument works with bivariate distributions also. If there is not a lot of
overlap between the bivariate distributions, then these can be plotted in different
colors using the hue keyword argument (see Fig. 6.49). Different bin-widths for

6.2 Seaborn 199

Fig. 6.47 Seaborn also
supports Kernel Density
Estimates (KDEs)

Fig. 6.48 Bivariate
histogram

200 6 Visualizing Data

Fig. 6.49 Multiple bivariate
histograms can be drawn
together with different colors

each coordinate dimension can be selected using the binwidth keyword argument
but with a tuple defining the bin width for each coordinate dimension. The cbar
keyword argument draws the corresponding color scale but when combined with the
hue keyword argument, it will draw multiple color scales (one for each category
encoded with hue), which makes the resulting Fig. 6.49 very crowded.

>>> sns.displot(penguins, x='bill_length_mm',
... y='bill_depth_mm', hue='species')
<seaborn.axisgrid.FacetGrid object at 0x7f93632f2040>

Plotting the marginal distributions of a bivariate distribution is very helpful and
Seaborn makes that easy with the jointplot as in Fig. 6.50.

>>> sns.jointplot(data=penguins,
... x="bill_length_mm",
... y="bill_depth_mm")
<seaborn.axisgrid.JointGrid object at 0x7f9362f25670>

The jointplot returns a JointGrid object which allows for drawing the
marginals separately using the plot_marginals() method for Fig. 6.51,

>>> g = sns.JointGrid(data=penguins,
... x="bill_length_mm",
... y="bill_depth_mm")
>>> g.plot_joint(sns.histplot)
<seaborn.axisgrid.JointGrid object at 0x7f93632e8f10>
>>> g.plot_marginals(sns.kdeplot,fill=True)
<seaborn.axisgrid.JointGrid object at 0x7f93632e8f10>

Note that the marginals are now KDE plots instead of box plots. Unused keyword
arguments in plot_marginals() are passed down to the function argument
(fill=True for sns.kdeplot in this case). Beyond jointplot, Seaborn
provides pairplot which will produce a jointplot for all pairs of columns
in the input dataframe.

6.2 Seaborn 201

Fig. 6.50 Marginal
distributions corresponding to
bivariate distributions can be
drawn along the
horizontal/vertical axes

Fig. 6.51 Customized
marginal distributions can
also be drawn

202 6 Visualizing Data

Fig. 6.52 Discrete
distributions along
categorical variables

Seaborn provides many options for visualizing categorical plots. Whereas we
have been mainly using categories to provide distinct colors or overlay plots,
Seaborn provides specialized visualizations specifically for categorical data. For
example, the following jittered plot in Fig. 6.52 shows the scatter of the total_bill

based on the day of the week.

>>> sns.catplot(x="day", y="total_bill", data=tips)
<seaborn.axisgrid.FacetGrid object at 0x7f93623c2610>

Importantly, the individual points are randomly scattered along the horizontal
direction to avoid overlaying and obscuring the points. This can be turned off using
the jitter=False keyword argument.

An interesting method instead of using jitter to avoid obscuring data is to use a
swarmplot by using the kind=’swarm’ keyword argument in Fig. 6.53,

>>> sns.catplot(data=tips,
... x="day",
... y="total_bill",
... hue="sex",
... kind="swarm")
<seaborn.axisgrid.FacetGrid object at 0x7f93623cb220>

The extent of the extended Christmas tree-like arms in Fig. 6.53 replaces the random
positioning due to jitter. One fascinating aspect of this plot is the clustering effect
it produces which automatically draws your attention to certain features that would
be hard to ascertain beforehand. For example, Fig. 6.53 seems to show that the total
bill for males is greater than for females on Saturday, and, in particular, is around
total_bill=20. Using Seaborn’s displot, we can verify that quickly with the
following code for Fig. 6.54:

6.2 Seaborn 203

Fig. 6.53 Same as Fig. 6.52
but using a swarm plot

Fig. 6.54 Histogram shows
details of swarm plot

>>> sns.displot(tips.query('day=="Sat" and sex=="Male"'),
... x='total_bill')
<seaborn.axisgrid.FacetGrid object at 0x7f9362021a90>

Colors, lines, and general presentation of Seaborn graphics can be controlled
with sns.set_theme() on a global level or on a figure-specific level by using a
context manager like with sns.axes_style("white"), for example. Finer-grain
control of fonts and other details are available with the set() function. Sequences
of colors for discrete data or clear distinguishable colors for continuous data are

204 6 Visualizing Data

strongly supported in Seaborn, as we have seen previously with color_palette .
The human perceptual system responds strongly to colors and many of the common
pitfalls have been reconciled in Seaborn’s approach to managing colors for data.

6.3 Bokeh

The combination of web-based visualization technologies and Python opens up a
wide-range of possibilities for web-based interactive visualization using modern
Javascript frameworks. This makes it possible to deploy Python data visualizations
with users interacting via modern web browsers such as Google Chrome or Mozilla
Firefox (not Internet Explorer!). Bokeh is an open-source Python module that makes
it much easier to develop and deploy such interactive web-based visualizations
because it provides primitives that sidestep writing low-level Javascript.

6.3.1 Using Bokeh Primitives

Here is a quick example that generates Fig. 6.55:

from bokeh.plotting import figure, output_file, show
prepare some data
x = range(10)
y = [i**2 for i in x]
create a new plot with a title and axis labels
p = figure(title="plot the square", # title of figure

x_axis_label='x',
y_axis_label='y',
width= 400, # figure width
height = 300) # figure height

add a line renderer with legend and line thickness
p.line(x, y,

legend=r"x^2", # text that appears in legend
line_width=2) # width of line

show the results
show(p)

Bokeh follows the same philosophy as Matplotlib in terms of layering the graphical
elements on the canvas. Because Bokeh can render to multiple endpoints (including
Jupyter notebooks), we choose the endpoint as an output html file with the
output_file function. Once that is settled, the main step is to create a figure
canvas with the figure function and supply parameters for the figure like the
x_axis_label and width. Then, we add the line with the line method on the
figure object include line parameters like line_width. Finally, the show function
actually writes the HTML to the file specified in output_file. Thus, the key

6.3 Bokeh 205

Fig. 6.55 Basic Bokeh plot

benefit of Bokeh is that it allows staging the interactive visualization in Python while
rendering the necessary Javascript into the HTML output file.

On the right margin of the figure, we have the default tools for the figure. The
pan tool at the top drags the line around with the figure frame. The zoom tool is
just below that. These tools are embedded in the HTML as Javascript functions that
are run by the browser. This means that Bokeh created both the static HTML and
the embedded Javascript. The data for the plot is also likewise embedded in the
so-rendered HTML document. Like Matplotlib, Bokeh provides low-level control
of every element that is rendered on the canvas. Simultaneously, this means you
can create powerful and compelling graphics using the primitives in the toolkit at
the cost of programming every element in the graphic. Like Matplotlib, Bokeh also
supports a gallery1of detailed example graphics you can use as starting points for
your own visualizations.

You can specify the individual properties of a graphical element (i.e., glyph)
when it is added to the canvas. The next line adds red circles of a specified radius to
mark each of the data points (Fig. 6.56):

p.circle(x,y,radius=0.2,fill_color='red')

You can also add properties after the fact by saving the individual object as in the
following:

c = p.circle(x,y)
c.glyph.radius= 0.2
c.glyph.fill_color = 'red'

1https://docs.bokeh.org/en/latest/docs/gallery.html.

https://docs.bokeh.org/en/latest/docs/gallery.html

206 6 Visualizing Data

Fig. 6.56 Plot with customized markers for each data point

To add multiple glyphs to your figure, use the figure object methods (e.g.,
p.circle(), p.line(), p.square()). The main documentation [1] has
a comprehensive list of available primitives. It is just a matter of learning the
vocabulary of available glyphs and assigning their properties

6.3.2 Bokeh Layouts

Analogous to the subplots function in Matplotlib, Bokeh has the row and
column functions that arrange individual figures on the same canvas. The next
example uses the row function to put two figures side-by-side (Fig. 6.57).

from bokeh.plotting import figure, show
from bokeh.layouts import row, column
from bokeh.io import output_file
output_file('bokeh_row_plot.html')
x = range(10)
y = [i**2 for i in x]
f1 = figure(width=200,height=200)
f1.line(x,y,line_width=3)
f2 = figure(width=200,height=200)
f2.line(x,x,line_width=4,line_color='red')
show(row(f1,f2))

In this example, we created the individual figure objects and then used the
show() method on the row() function to create the side-by-side layout of the
two f1 and f2 figures. This can be combined with the column function to create
grid layouts as in the following (Fig. 6.58):

6.3 Bokeh 207

Fig. 6.57 Bokeh row plot

from bokeh.plotting import figure, show
from bokeh.layouts import row, column
from bokeh.io import output_file

output_file('bokeh_row_column_plot.html')

x = range(10)
y = [i**2 for i in x]
f1 = figure(width=200,height=200)
f1.line(x,y,line_width=3)
f2 = figure(width=200,height=200)
f2.line(x,x,line_width=4,line_color='red')
f3 = figure(width=200,height=200)
f3.line(x,x,line_width=4,line_color='black')
f4 = figure(width=200,height=200)
f4.line(x,x,line_width=4,line_color='green')
show(column(row(f1,f2),row(f3,f4)))

Note that because the individual figures are treated separately, they have their own
set of tools. This can be alleviated using bokeh.layouts.gridplot or the
more general bokeh.layouts.layout function.

6.3.3 Bokeh Widgets

Interactive widgets allow the user to interact and explore the Bokeh visualization.
The main site has the inventory of available widgets. These are primarily based on
the Bootstrap JavaScript library. All widgets have the same two-step implementation
pattern. The first step is to create the widget as it will be laid out on the canvas. The
second step is to create the callback that will be triggered when the user interacts
with the widget.

208 6 Visualizing Data

Fig. 6.58 Bokeh row-column plot

Here is where things get tricky. Given that the callback specifies some kind of
action based on the widget, where is that action going to take place? If the output is
a HTML file that is rendered by the browser, then that action must be handled via
Javascript and run in the browser. The complications start when that interaction is
driven by or dependent upon objects in the Python workspace. Remember that after
the HTML file has been created, there is no more Python. If you want callbacks that
utilize a Python process, you have to use bokeh serve to host that application
(Fig. 6.59).

Let us start with the callbacks that are handled by Javascript in the static HTML
output, as in the following:

from bokeh.io import output_file, show
from bokeh import events
from bokeh.models.widgets import Button
from bokeh.models.callbacks import CustomJS
output_file("button.html")
cb = CustomJS(args=dict(),code='''

alert("ouch!");
''')

button = Button(label='Hit me!') # create button object

6.3 Bokeh 209

Fig. 6.59 JavaScript callback
for button widget Hit me!

Fig. 6.60 JavaScript callback
for drop-down widget

button.js_on_event(events.ButtonClick, cb)
show(button)

The key step here is the CustomJS function which takes the embedded string
of valid Javascript and packages it for the static HTML file. The button widget
does not have any arguments so the args variable is just an empty dictionary. The
next important part is the js_on_event function which specifies the event (i.e.,
ButtonClick) and the callback that is assigned to handle that event. Now, when
the output HTML file is created and you render the page in the browser and then
click on the button named Hit me! you will get a popup from the browser with the
text ouch in it.

Following this structure, we can try something more involved, as in the following
(Fig. 6.60):

from bokeh.io import output_file, show
from bokeh.models.callbacks import CustomJS
from bokeh.layouts import widgetbox
from bokeh.models.widgets import Dropdown
output_file("bokeh_dropdown.html")
cb = CustomJS(args=dict(),code='alert(cb_obj.value)')
menu = [("Banana", "item_1"),

("Apple", "item_2"),
("Mango", "item_3")]

dropdown = Dropdown(label="Dropdown button", menu=menu,callback=cb)
show(widgetbox(dropdown))

In this example, we are using the DropDown widget and populating it with the
items in the menu. The first element of the tuple is the string that will appear in the
dropdown and the second element is the Javascript variable that is associated with
it. The callback is the same alert as before except now with the cb_obj variable.
This is the callback object that is automatically passed into the Javascript function
when it is activated. In this case, we specified the callback in the callback
keyword argument instead of relying on the event types as before. Now, after
the pages rendered in the browser and you click and pulldown on an element in the
menu, you should see the popup window.

The following example combines the pulldown and the line graph we created
earlier. The only new element here is passing the line object into the CustomJS
function via the args keyword argument. Once inside the Javascript code, we can
change the embedded line_color of the line glyph based on the value selected
in the pulldown via the cb_obj.value variable. This allows us to have a widget
control the color property of the line. Using the same approach, we can alter other

210 6 Visualizing Data

Fig. 6.61 Javascript callback
updates line color

properties of other objects as long as we pass them in via the args keyword
argument to the CustomJS function (Fig. 6.61).

from bokeh.plotting import figure, output_file, show
from bokeh.layouts import column
from bokeh.models.widgets import Dropdown
from bokeh.models.callbacks import CustomJS
output_file("bokeh_line_dropdown.html")
make some data
x = range(10)
y = [i**2 for i in x]
create the figure as usual
p = figure(width = 300, height=200, # figure width and height

tools="save,pan", # only these tools
x_axis_label='x', # label x and y axes
y_axis_label='y')

add the line,
line = p.line(x,y, # x,y data

line_color='red',# in red
line_width=3) # line thickness

elements for pulldown
menu = [("Red", "red"),("Green", "green"),("Blue", "blue")]
pass the line object and change line_color based on pulldown

choice↪→
cb = CustomJS(args=dict(line=line),

code='''
var line = line.glyph;
var f = cb_obj.value;
line.line_color = f;
''')

assign callback to Dropdown
dropdown = Dropdown(label="Select Line Color",

menu=menu,callback=cb)↪→
use column to put Dropdown above figure
show(column(dropdown,p))

6.3 Bokeh 211

Fig. 6.62 Javascript callback
updates graph sine wave
frequency

The last example shows how to manipulate line properties using browser-
executed callback. Bokeh can go deeper by altering the data itself and then letting
the embedded figure react to those changes. The next example is very similar to
the last example except here we use the ColumnDataSource object to ferry data
into the browser from Python. Then, in the embedded Javascript code, we unpack the
data and then change the data array based on the action in the pulldown. The crucial
part is to trigger the data update and draw using the source.change.emit()
function (Fig. 6.62).

from bokeh.plotting import figure, output_file, show
from bokeh.layouts import row, column
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import Dropdown
from bokeh.models.callbacks import CustomJS
import numpy as np
output_file("bokeh_ColumnDataSource.html")
make some data
t = np.linspace(0,1,150)
y = np.cos(2*np.pi*t)
create the ColumnDataSource and pack the data in it
source = ColumnDataSource(data=dict(t=t, y=y))
create the figure as usual
p = figure(width = 300, height=200, tools="save,pan",

x_axis_label='time (s)',y_axis_label='Amplitude')
add the line, but now using the ColumnDataSource
line = p.line('t','y',source=source,line_color='red')
menu = [("1 Hz", "1"), ("5 Hz", "5"), ("10 Hz", "10")]
cb = CustomJS(args=dict(source=source),

code='''
var data = source.data;
var f = cb_obj.value;
var pi = Math.PI;
t = data['t'];
y = data['y'];

212 6 Visualizing Data

for (i = 0; i < t.length; i++) {
y[i] = Math.cos(2*pi*t[i]*f)

}
source.change.emit();
''')

dropdown = Dropdown(label="Select Wave Frequency",
menu=menu,callback=cb)↪→

show(column(dropdown,p))

The advantage of this approach is that it creates a self-contained HTML file that
no longer needs Python. On the other hand, it could be that the callback requires
active Python computation that is not possible for in-the-browser JavaScript. In this
case, we can use the bokeh server as in

Terminal> bokeh serve bokeh_ColumnDataSource_server.py

which will run a small server and open a web page pointing to the local page.
The web page contains basically the same content as the last example, although
you may notice that the page is less responsive than the last example. This is
because the interaction has to round-trip back to the server process and then
back to the browser instead of updating in the browser itself. The contents of
bokeh_ColumnDataSource_server are shown below

from bokeh.plotting import figure, show, curdoc
from bokeh.layouts import column
from bokeh.models import ColumnDataSource, Select
from bokeh.models.widgets import Dropdown
import numpy as np
make some data
t = np.linspace(0,1,150)
y = np.cos(2*np.pi*t)
create the ColumnDataSource and pack the data in it
source = ColumnDataSource(data=dict(t=t,y=y))

create the figure as usual
p = figure(width = 300, height=200, tools="save,pan",

x_axis_label='time (s)',y_axis_label='Amplitude')
add the line, but now using the ColumnDataSource
line = p.line('t','y',source=source,line_color='red')
menu = [("1 Hz", "1"),

("5 Hz", "5"),
("10 Hz", "10")]

def cb(attr,old,new):
f=float(freq_select.value)
d = dict(x=source.data['t'],y=np.cos(2*np.pi*t*f))
source.data.update(d)

freq_select = Select(value='1 Hz', title='Frequency (Hz)',
options=['1','5','10'])
freq_select.on_change('value',cb)
curdoc().add_root(column(freq_select,p))

Note the Select element takes the place of the DropDown menu. The
freq_select.on_change('value',cb) is how the pulldown selection is commu-
nicated to the Python server process. Importantly, the options keyword argument
takes a sequence of strings [’1’,’5’,’10’] even though we have to convert the
strings back to float in the callback.

6.4 Altair 213

freq_select = Select(value='1 Hz',
title='Frequency (Hz)',
options=['1','5','10'])

The final key step is to include curdoc().add_root(column(freq_select,p))

which creates an oriented column that is attached to the document and that will
respond to the callback. Note there are many configuration options for deploying a
bokeh server, including using Tornado as a backend and running multiple threads
(see main documentation for details). Bokeh also has many integration options with
Jupyter notebook.

Bokeh is under active development and the overall design and architecture of
Bokeh is well thought-out. The combination of JavaScript and Python visualizations
vended through web browsers is a topic of incredible growth in the open-source
community. Bokeh represents just one (and arguably the best) of many implementa-
tions of this joint strategy. Stay tuned for further development and features from the
Bokeh team, but bear in mind that in contrast to Matplotlib, Bokeh is less mature.

6.4 Altair

Another project in the space of web-based scientific visualizations is Altair
which is a declarative visualization module. Declarative means the data elements
are assigned a visual role that Altair implements; in contrast to Matplotlib wherein
all the details of the construction have to be specified (i.e., imperative visualization).
Altair implements the Vega-Lite JSON graphical grammar for visualization. This
means that the low-level rendered graphics are actually implemented in JavaScript
via Vega. The best way to work with Altair is via Jupyter notebooks as creating
stand-alone visualizations takes a number of additional steps, details of which are
on the main documentation site. When using Jupyter Notebook, you may have to
enable the Altair renderer,

import altair as alt

The main Altair object is the Chart object.

>>> import altair as alt
>>> from altair import Chart
>>> import vega_datasets
>>> cars = vega_datasets.data('cars')
>>> chart = Chart(cars)

Importantly, data input to Chart should be a Pandas dataframe, altair.Data
object, or a URL referencing a CSV or JSON file in so-called tidy format, which
basically means that the columns are variables and the rows of the dataframe are
observations of those variables. To create the Altair visualization, you have to
decide on a mark (i.e., glyph) for the data values. Doing chart.mark_point()

will just draw a circle in the Jupyter notebook. To draw a plot, you have to specify

214 6 Visualizing Data

Fig. 6.63 One-dimensional
Altair chart

0 50 100 150 200 250 300 350 400 450 500
Displacement

Fig. 6.64 Two-dimensional
Altair chart

0
0

5

10

15

20

25

50 100 150 200 250 300 350 400 450 500

Displacement

A
cc

el
er

at
io

n

channels for the other elements of the dataframe as in the following corresponding
to Fig. 6.63:

>>> chart.mark_point().encode(x='Displacement')
alt.Chart(...)

which creates a one-dimensional scatterplot using the Displacement column of
the input dataframe. Conceptually, encode means create a mapping between the
data and its visual representation. Using this pattern, to create a two-dimensional
X-Y plot, we need to specify an additional channel for the y-data as in the following
(see Fig. 6.64):

>>> chart.mark_point().encode(x = 'Displacement',
... y = 'Acceleration')
alt.Chart(...)

This creates a two-dimensional plot of acceleration versus displacement. Note that
the chart object has access to the column names in the input dataframe so that
we can access them by their string names as keyword arguments to the encode
method. Because each row has a corresponding categorical name, we can use that as
the color dimension in the so-created X-Y plot using the color keyword argument
as in the following Fig. 6.65:

>>> chart.mark_point().encode(x='Displacement',
... y='Acceleration',
... color='Origin')
alt.Chart(...)

The key to using Altair is to realize that it is a thin layer that leverages the
Vega-Lite JavaScript visualization library. Thus, you can build any kind of Vega-

6.4 Altair 215

0
0

50 100 150 200 250 300 350 400 450 500

Origin

Displacement

Europe

Japan
USA

5

10

15

20

25

A
cc

el
er

at
io

n

Fig. 6.65 The color of each maker is determined by the Origin column in the input dataframe

lite visualization in Altair and connect it to Pandas dataframes or other Python
constructs without having to write the JavaScript yourself. If you want to change
the individual colors or line widths of the glyphs, then you have to use the Vega
editor and then pull the Vega-lite specification back into Altair, which is not difficult,
but involves multiple steps. The point is that this kind of customization is not what
Altair is good for. As a declarative visualization module, the idea is to leave those
details to Altair and concentrate on mapping the data to visual elements.

6.4.1 Detailing Altair

Controlling the individual elements of the visual presentation in Altair can be
accomplished using the family of configure_ top level functions as in Fig. 6.66.

>>> (chart.configure_axis(titleFontSize=20,
... titleFont='Consolas')
... .mark_point()
... .encode(x='Displacement',
... y='Acceleration',
... color='Origin')
...)
alt.Chart(...)

Note that the titleFontSize for the titles on each of the axes has increased
and the corresponding font family has been updated. Instead of taking the default
column names as the title labels, we can use the alt.X() and alt.Y() objects
to customize these as in the following Fig. 6.67:

>>> (chart.configure_axis(titleFontSize=20,
... titleFont='Consolas')

216 6 Visualizing Data

0
0

50 100 150 200 250 300 350 400 450 500

Origin

Displacement

Europe
Japan
USA

5

10

15

20

25

A
cc

el
er

at
io

n

Fig. 6.66 The title font family and size can be set with configure_axis

0
0

50 100 150 200 250 300 350 400 450 500

Origin

Displacement (m)

Europe
Japan
USA

5

10

15

20

25

A
cc

el
er

at
io

n
 (

m
 /

s)

Fig. 6.67 With alt.X and alt.Y, the labels on each axis can be changed

... .mark_point()

... .encode(x=alt.X('Displacement',

... title='Displacement (m)'),

... y=alt.Y('Acceleration',

... title='Acceleration (m/s)'),

... color='Origin')

...)
alt.Chart(...)

Note that each of the labels has units. If we wanted to control the vertical
axis, we could have specified configure_axisLeft and only that axis would
have been affected by these changes. There are also configure_axisTop and

6.4 Altair 217

O
ri

g
in

Europe

Japan

USA

0 20 40 60 80 100 120 140 160 180 200 220 240

Horse power

Fig. 6.68 Barcharts are generated by mark_bar on the named x and y columns in the dataframe

configure_axisRight , configure_axisX, configure_axisY also. The labeling
of the tick marks on the axis is controlled via the labelFontSize and other
related parameters.

Barcharts are generated following the same pattern except with mark_bar, as in
the following Fig. 6.68:

>>> chart.mark_bar().encode(y='Origin',x='Horsepower')
alt.Chart(...)

Likewise, area plots are generated using mark_area and so forth. You can stick
interactive() at the end of the call to make the plot zoomable with the mouse-
wheel. Charts can be automatically saved into PNG and SVG formats but these
require additional browser automation tools or altair_saver. Charts can also be
saved into HTML files with the requisite JavaScript embeddings.

6.4.2 Aggregations and Transformations

Altair can perform certain aggregations on data elements from a dataframe. This
saves you from having to add the aggregations into another separate dataframe that
would have to be passed as input (see Fig. 6.69).

>>> cars = vega_datasets.data('cars')
>>> (alt.Chart(cars).mark_point(size=200,
... filled=True)
... .encode(x='Year:T',
... y='mean(Horsepower)')
...)
alt.Chart(...)

The text mean in the string means that the average of the Horsepower will be used
for the y-value (see Fig. 6.69). The suffix :T means that the Year column in the
dataframe should be treated as a timestamp. The arguments to the mark_point

function control the size and fill properties of the point markers.
In the prior Fig. 6.69, we computed the mean of the Horsepower but included

all vehicle origins. If we wanted to include only US-made vehicles, then we can use
the transform_filter method, as in the following Fig. 6.70:

>>> (alt.Chart(cars).mark_point(size=200,filled=True)
... .encode(x='Year:T',

218 6 Visualizing Data

160

140

120

100

80

60

40

20

0
1970 1972 1974 1976

Year

M
ea

n
 o

f
H

o
rs

ep
o

w
er

1978 1980 1982

Fig. 6.69 Aggregations like taking the mean are available via Altair

160

180

140

120

100

80

60

40

20

0
1970 1972 1974 1976

Year

M
ea

n
 o

f
H

o
rs

ep
o

w
er

1978 1980 1982

Fig. 6.70 Filters can be used in the aggregations with transform_filter

... y='mean(Horsepower)',

...)

... .transform_filter('datum.Origin=="USA"')

...)
alt.Chart(...)

The filter transformation ensures that only the US vehicles are concluded in the
mean calculation. The word datum is how Vega-lite refers to its data elements. In

6.4 Altair 219

10

30

40

50

70

80

90

100

60

20

0

1970 1972 1974 1976

Year

M
ea

n
 o

f
H

o
rs

ep
o

w
er

1978 1980 1982

Fig. 6.71 The alt.FieldRangePredicate filters a range of values

addition to expressions, Altair provides predicate objects that can perform advanced
filtering operations. For example, using the FieldRangePredicate, we can
select out a range of values from a continuous variable as in the following Fig. 6.71:

>>> (alt.Chart(cars).mark_point(size=200,filled=True)
... .encode(x='Year:T',
... y='mean(Horsepower)',
...)
... .transform_filter(alt.FieldRangePredicate('Horsepower',
... [75,100]))
...)
alt.Chart(...)

This means that only Horsepower values between 75 and 100 will be considered
in the calculation and the resulting Altair chart (Fig. 6.72).

>>> (alt.Chart(cars).mark_point(size=200,
... filled=True)
... .encode(x='Year:T',
... y=alt.Y('mean(Horsepower)',
... scale=alt.Scale(domain=[60,110])),
...)
... .transform_filter(alt.FieldRangePredicate('Horsepower',
... [75,100]))
... .properties(width=300,height=200)
...)
alt.Chart(...)

Note that the scale limits of the resulting figure have been adjusted using
alt.Scale with the domain keyword. Predicates can be combined using logical
operations like LogicalNotPredicate and others.

220 6 Visualizing Data

1970

110

100

90

80

70

60
1972 1974 1976

Year

M
ea

n
 o

f
H

o
rs

ep
o

w
er

1978 1980 1982

Fig. 6.72 The axis limits can be adjusted using alt.Scale

The transform_calculate method allows basic expressions to be applied to
data elements. For example, to calculate the square of the horsepower, we can do
the following Fig. 6.73:

>>> from altair import datum
>>> h1=(alt.Chart(cars).mark_point(size=200,
... filled=True)
... .encode(x='Year:T',
... y='sqh:Q')
... .transform_calculate(sqh =

datum.Horsepower**2)↪→
...)

Note that the type of the resulting calculation has to be specified using the :Q (for
quantitative) in reference to the resultant.

We can also use the transform_aggregate method to use the resulting sqh
variable from the previous transform_calculate method to compute the mean
over the squares as shown below while grouping over the Year as in Fig. 6.74,

>>> h2=(alt.Chart(cars).mark_point(size=200,
... filled=True,
... color='red')
... .encode(x='Year:T',
... y='msq:Q')
... .transform_calculate(sqh =

datum.Horsepower**2)↪→
... .transform_aggregate(msq='mean(sqh)',
... groupby=['Year'])
...)

These two charts can be overlaid using the + operator (Fig. 6.75),

>>> h1+h2
alt.LayerChart(...)

6.4 Altair 221

1970 1972

55,000

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

1974 1976

Year

sq
h

1978 1980 1982

Fig. 6.73 Embedded calculations are implemented with transform_calculate

1970

110

100

90

80

70

60
1972 1974 1976

Year

M
ea

n
 o

f
H

o
rs

ep
o

w
er

1978 1980 1982

Fig. 6.74 Transform and aggregations compute intermediate items in Altair visualizations

There are other functions in the transform_* family including transform_lookup,
transform_window, and transform_bin. The main documentation site has
details.

222 6 Visualizing Data

1970 1972

55,000

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0
1974 1976

Year

sq
h

 ,
m

sq

1978 1980 1982

Fig. 6.75 Charts can be overlaid with the plus operator

6.4.3 Interactive Altair

Altair has interactive features that are inherited from Vega-lite. These are expressed
as tools that can be easily assigned to Altair visualizations. The core compo-
nent of interactions is the selection object. For example, the following creates a
selection_interval() object (see Fig. 6.76),

>>> brush = alt.selection_interval()

Now, we can attach the brush to an Altair chart (Fig. 6.76).

>>> chart.mark_point().encode(y='Displacement',
... x='Horsepower')\
... .properties(selection=brush)
alt.Chart(...)

From within the web browser, you can drag the mouse in the chart and you will
see a rectangular selection box appear, but nothing will change because we have not
attached the brush selector to an action on the chart. To change the color of the
so-selected objects on the chart, we can use the alt.condition method in the
encode method (Fig. 6.77),

>>> (chart.mark_point().encode(y='Displacement',
... x='Horsepower',
... color=alt.condition(brush,
... 'Origin:N',
... alt.value('lightgray')))
... .properties(selection=brush)
...)
alt.Chart(...)

6.4 Altair 223

Horsepower

500

450

400

350

300

250

200

150

100

50

0
0 20 40 60 80 100 120 140 160 180 200 220 240

D
is

p
la

ce
m

en
t

Fig. 6.76 Interactive selection can be enabled with alt.selection_interval

Horsepower

0 20 40 60 80 100 120 140 160 180 200

Origin

220 240

Europe
Japan
USA

500

450

400

350

300

250

200

150

100

50

0

D
is

p
la

ce
m

en
t

Fig. 6.77 Selecting elements in the chart triggers alt.Condition, which changes how the
elements are rendered

224 6 Visualizing Data

The condition means that if the items in the brush selection is True, then the points
are colored according to their Origin values and otherwise set to lightgray
using the alt.value, which sets the value to use for the encoding.

Selectors can be shared across charts, as in the following (Fig. 6.78):

>>> chart = (alt.Chart(cars)
... .mark_point()
... .encode(x='Horsepower',
... color=alt.condition(brush,
... 'Origin:O',
... alt.value('lightgray')))
... .properties(selection=brush)
...)
>>> chart.encode(y='Displacement') & chart.encode(y='Acceleration')
alt.VConcatChart(...)

A number of subtle things have happened here. First, note that the chart variable
only has the x coordinate defined and that the cars data is embedded. The vertical
ampersand & symbol stacks the two vertically. It is only on the last line that the y
coordinate for each chart is selected. The selector is used for both charts so that
selecting using the mouse in either one of them will cause the selection (via the
alt.condition) to highlight on both charts. This is a complicated interaction
that took very few lines of code!

The other selection objects like alt.selection_multi and alt.selection_single

allow for individual item selection using mouse click or mouse hover
actions (e.g., alt.selection_single(on='mouseover')). Selections for
alt.selection_multi require mouse-clicking while holding down the shift key.

Altair is a novel and smart take on the fast-changing visualization landscape. By
piggy-backing on Vega-lite, the module has ensured that it can keep up with that
important body of work. Altair brings new visualizations that are not part of the
standard Matplotlib or Bokeh vocabulary into Python. Still, Altair is far less mature
than either Matplotlib or Bokeh. Vega-lite itself is a complicated package with its
own JavaScript dependencies. When something breaks, it is hard to fix because
the problem may be too deep and spread out in the JavaScript stack for a Python
programmer to reach (or even identify!).

6.5 Holoviews

Holoviews provide a means for annotating data to facilitate downstream visualiza-
tion using Bokeh, Plotly, or Matplotlib. The key concept is to provide semantics to
the data elements that enable construction of data visualizations. This a declarative
approach similar to Altair but it is agnostic with respect to the downstream
visualization construction whereas altair has a fixed downstream target of Vega-
Lite.

>>> import numpy as np
>>> import pandas as pd

6.5 Holoviews 225

Horsepower

500

450

400

350

300

250

200

150

100

50

0
0 20 40 60 80 100 120 140 160 180 200 220 240

Horsepower

A
cc

el
er

at
io

n

0 20 40

25

20

15

10

5

0
60 80 100 120 140 160 180 200 220 240

D
is

p
la

ce
m

en
t

Origin
Europe
Japan
USA

Fig. 6.78 Interactive selectors can be shared across Altair charts

>>> import holoviews as hv
>>> from holoviews import opts
>>> hv.extension('bokeh')

The hv.extension part declares that Bokeh should be used as the downstream
visualization constructor. Let us create some data,

>>> xs = np.linspace(0,1,10)
>>> ys = 1+xs**2
>>> df = pd.DataFrame(dict(x=xs, y=ys))

To visualize this dataframe with Holoviews we have to decide on what we want
to render and how we want to render it. One way to do that is using a Holoviews
Curve (see Fig. 6.79).

226 6 Visualizing Data

Fig. 6.79 Plotting data using
Holoviews Curve

>>> c=hv.Curve(df,'x','y')
>>> c
:Curve [x] (y)

The Holoviews Curve object declares that the data is from a continuous function
that maps x into y columns in the dataframe. To render this plot, we use the built-in
Jupyter display,

>>> c
:Curve [x] (y)

Note that the Bokeh widgets are already included in the plot. The Curve object
still retains the embedded dataframe which can be manipulated via the data
attribute. Note that we could have supplied Numpy arrays, Python lists, or a Python
dictionary instead of the Pandas dataframe.

>>> c.data.head()
x y

0 0.00 1.00
1 0.11 1.01
2 0.22 1.05
3 0.33 1.11
4 0.44 1.20

We can choose Holoviews Scatter instead of Curve if we want to not fill line
segments between the data points (see Fig. 6.80),

>>> s = hv.Scatter(df,'x','y')
>>> s
:Scatter [x] (y)

We can combine these two plots side-by-side in Fig. 6.81 using the overloaded +
operator,

6.5 Holoviews 227

Fig. 6.80 Plotting use
Holoviews Scatter

Fig. 6.81 Side-by-side layouts via the addition operator

>>> s+c # notice how the Bokeh tools are shared between plots and
affect both↪→

:Layout
.Scatter.I :Scatter [x] (y)
.Curve.I :Curve [x] (y)

These can be overlaid using the overloaded * operator (Fig. 6.82),

>>> s*c # overlay with multiplication operator
:Overlay

.Scatter.I :Scatter [x] (y)

.Curve.I :Curve [x] (y)

Options like width and height on the figure can be sent directly as shown in
Fig. 6.83

>>> s.opts(color='r',size=10)
:Scatter [x] (y)

228 6 Visualizing Data

Fig. 6.82 Overlaid plots with
multiplication operator

Fig. 6.83 Visualization dimensions can be set using width and height in the options
method

>>> s.options(width=400,height=200)
:Scatter [x] (y)

You can also use the %opts magic within the Jupyter notebook to manage these
options. While this is a very well organized approach, it only works within the
Jupyter notebook. To reset the title as shown in Fig. 6.84, we use the relabel
method.

>>> k = s.redim.range(y=(0,3)).relabel('Ploxxxt Title') # put a title
>>> k.options(color='g',size=10,width=400,
... height=200,yrotation=88)
:Scatter [x] (y)

There are many other options for plotting as shown in the reference gallery.
Figure 6.85 is an example using Bars. Note the use of the to method to create
the Bars object from the Scatter object. The xrotation alters the orientation
of the x-axis ticklabels.

6.5 Holoviews 229

Fig. 6.84 Visualization titles are set using relabel on the Holoviews object

Fig. 6.85 Barplots are available in Holoviews

>>> options = (opts.Scatter(width=400,
... height=300,
... xrotation=70,
... color='g',
... size=10),
... opts.Bars(width=400,
... height=200,
... color='blue',
... alpha=0.3)
...)
>>> (s.to(hv.Bars)*s).redim.range(y=(0,3)).options(*options)
:Overlay

.Bars.I :Bars [x] (y)

.Scatter.I :Scatter [x] (y)

Data can be sliced from the Holoviews object where the indexing is based on the x
coordinate and None means until the end of the x data. Recall that the plus operator
combines the plots into Fig. 6.86,

>>> s[0:0.5] + s.select(x=(0.5,None)).options(color='b')
:Layout

.Scatter.I :Scatter [x] (y)

.Scatter.II :Scatter [x] (y)

230 6 Visualizing Data

Fig. 6.86 The underlying data in Holoviews graphs can be sliced and automatically rendered

Holoviews references key dimensions and kdims and value dimensions as vdims.
These categorize which elements are to be considered independent or dependent
variables (respectively) in the plot.

>>> s.kdims,s.vdims
([Dimension('x')], [Dimension('y')])

6.5.1 Dataset

A Holoviews Dataset is not built-in metadata that enables visualization. Rather,
a Dataset is a way of creating a set of dimensions that will later be inherited by
the downstream visualizations that are created from the Dataset. In the following,
only the key dimensions need to be specified. The other columns are inferred to be
value dimensions (vdims), which can later be grouped using groupby.

>>> economic_data = pd.read_csv('macro_economic_data.csv')
>>> edata = hv.Dataset(data=economic_data,
... kdims=['country','year'])

>>> edata.groupby('year')
:HoloMap [year]

:Dataset [country] (growth,unem,capmob,trade)
>>> edata.groupby('country')
:HoloMap [country]

:Dataset [year] (growth,unem,capmob,trade)

Note that the groupby output shows the independent variable (i.e., key dimen-
sion) year or country that corresponds to any of the other value dimensions

6.5 Holoviews 231

Fig. 6.87 Holoviews can group and plot data in one step

Fig. 6.88 Holoviews automatically chooses the slider widget based on the type of data in the
remaining dimension

(dependent variables). In Fig. 6.87, the to method creates a corresponding pulldown
widget for country.

>>> edata.to(hv.Curve,
... 'year',
... 'unem',
... groupby='country').options(height=200)
:HoloMap [country]

:Curve [year] (unem)

We can also group by and other key dimension with a corresponding slider for year
as shown in Fig. 6.88. Note that the type of widget was inferred from the type
of the key dimension (i.e., slider for continuous year and pulldown for discrete
country).

>>> (edata.sort('country')
... .to(hv.Bars,'country','unem',groupby='year')
... .options(xrotation=45,height=300))
:HoloMap [year]

:Bars [country] (unem)

In Fig. 6.89, we do not use any of the declared key dimensions so that they both go
into corresponding widgets.

232 6 Visualizing Data

Fig. 6.89 Holoviews chooses widgets based on key dimensions

>>> edata.sort('country').to(hv.Bars,'growth','trade')
:HoloMap [country,year]

:Bars [growth] (trade)

6.5.2 Image Data

Holoviews elements can handle two-dimensional tabular or grid-based data, such as
images (see Fig. 6.90).

>>> x = np.linspace(0, 10, 500)
>>> y = np.linspace(0, 10, 500)
>>> z = np.sin(x[:,None]*2)*y

>>> image = hv.Image(z)
>>> image
:Image [x,y] (z)

We can get a useful histogram in Fig. 6.91 of the image colors using the hist
method

>>> image.hist()
:AdjointLayout

:Image [x,y] (z)
:Histogram [z] (z_count)

6.5.3 Tabular Data

>>> economic_data= pd.read_csv('macro_economic_data.csv')
>>> economic_data.head()

6.5 Holoviews 233

Fig. 6.90 Holoviews creates
heatmap images

Fig. 6.91 Histograms added to images

country year growth unem capmob trade
0 United States 1966 5.11 3.80 0 9.62
1 United States 1967 2.28 3.80 0 9.98
2 United States 1968 4.70 3.60 0 10.09
3 United States 1969 2.80 3.50 0 10.44
4 United States 1970 -0.20 4.90 0 10.50

Grouping the elements is possible by specifying the vdims as a list of column
names and providing the Holoviews object with the color_index column name and
a color from the color palettes available (hv.Palette.colormaps.keys()).
Note that specifying the hover tool means the data for each element is shown when
hovering over it with the mouse (see Fig. 6.92). Be careful that all of the legend
items will not appear unless the figure is tall enough to accommodate it.

234 6 Visualizing Data

Fig. 6.92 holoviews014

>>> options = opts.Scatter(tools=['hover'],
... legend_position='left',
... color_index='country',
... width=800,height=500,
... alpha=0.5,
... color=hv.Palette('Category20'),
... size=10)
>>> c =

hv.Scatter(economic_data,'year',['trade','country','unem'])↪→
>>> c.redim.range(trade=(0,180)).options(options)
:Scatter [year] (trade,country,unem)

Using Dataset also works for two-dimensional visualizations like heatmaps.
Hovering the mouse over Fig. 6.93 shows the corresponding data for each cell.

>>> options = opts.HeatMap(colorbar=True,
... width=600,
... height=300,
... xrotation=60,
... tools=['hover'])

>>>
edata.to(hv.HeatMap,['year','country'],'growth').options(options)↪→

:HeatMap [year,country] (growth)

6.5 Holoviews 235

Fig. 6.93 Holoviews Dataset supports two-dimensional visualizations

6.5.4 Customizing Interactivity

DynamicMap adds interactivity to Holoviews visualizations. The angle key
dimension is supplied by the slider widget. The named function is lazily evaluated
(Fig. 6.94).

>>> def dynamic_rotation(angle):
... radians = (angle / 180) * np.pi
... return (hv.Box(0,0,4,orientation=-radians).
options(color='r',line_width=3)
... * hv.Ellipse(0,0,(2,4), orientation=radians)
... * hv.Text(0,0,'{0}º'.format(float(angle))))
...
>>> hv.DynamicMap(dynamic_rotation,
... kdims=['angle']).redim.range(angle=(0, 360),
... y=(-3,3),
... x=(-3,3))
:DynamicMap [angle]

Figure 6.95 is another example using corresponding slider widgets. Note that by
declaring the slider widget variables ranges as floats, we obtain more resolution on
the slider movement for the function.

>>> def sine_curve(f=1,phase=0,ampl=1):
... xi = np.linspace(0,1,100)
... y = np.sin(2*np.pi*f*xi+phase/180*np.pi)*ampl
... return hv.Curve(dict(x=xi,y=y)).redim.range(y=(-5,5))
...
>>> hv.DynamicMap(sine_curve,
... kdims=['f','phase','ampl'])\
... .redim.range(f=(1,3.),
... phase=(0,360),
... ampl=(1,3.))
:DynamicMap [f,phase,ampl]

236 6 Visualizing Data

Fig. 6.94 Holoviews automatically builds widgets for specified key dimensions

Fig. 6.95 Automatically created Holoviews widgets derive from the types of the plotted dimen-
sions

6.5.5 Streams

Holoviews use streams to feed data into containers or elements instead of
(for example) using the sliders for inputs. Once the stream is defined, then
hv.DynamicMap can draw them in Fig. 6.96,

>>> from holoviews.streams import Stream
>>> F = Stream.define('Freq',f=3)
>>> Phase = Stream.define('phase',phase=90)
>>> Amplitude = Stream.define('amplitude ',ampl=1)
>>> dm=hv.DynamicMap(sine_curve,streams = [F(f=1),
... Phase(phase=0),
... Amplitude(ampl=1)])
>>> dm
:DynamicMap []

The streaming is triggered by sending the event,

6.5 Holoviews 237

Fig. 6.96 Holoviews
DynamicMap processes
streams

>>> # running causes the plot to update
>>> dm.event(f=2,ampl=2,phase=30)

We can also use the nonblocking .periodic() method,

>>> dm.periodic(0.1,count=10,timeout=8,param_fn=lambda
i:{'f':i,'phase':i*180})↪→

6.5.6 Pandas Integration with hvplot

Holoviews can be integrated with Pandas dataframes to accelerate common plotting
scenarios by putting additional plotting options on the Pandas DataFrame object.

>>> import hvplot.pandas

Recall the following dataframe,

>>> df.head()
x y

0 0.00 1.00
1 0.11 1.01
2 0.22 1.05
3 0.33 1.11
4 0.44 1.20

Plots can be generated directly from the dataframe hvplot() method (see
Fig. 6.97),

>>> df.hvplot() # now uses Bokeh backend instead of matplotlib
:NdOverlay [Variable]

:Curve [index] (value)

238 6 Visualizing Data

Fig. 6.97 Holoviews plots generated directly from Pandas dataframes using hvplot

Fig. 6.98 Holoviews barcharts using groupby

Here is a grouping created using Pandas and drawn with Holoviews. Notice that
there is no y-label on the graph. This is because the intermediate object created by
the grouping is a Series object without a labeled column. The horizontal barchart
(barh()) is shown in Fig. 6.98.

>>> economic_data.groupby('country')['trade'].sum().hvplot.barh()
:Bars [country] (trade)

Note the type of the intermediate output,

>>> type(economic_data.groupby('country')['trade'].sum())
<class 'pandas.core.series.Series'>

One way to fix the missing y-label is to cast the intervening Series object as
a dataframe using to_frame() with a labeled column for the summation (see
Fig. 6.99).

>>> (economic_data.groupby('country')['trade'].sum()
... .to_frame('trade

(units)')↪→

6.5 Holoviews 239

Fig. 6.99 The column names of the Pandas dataframe set labels in the visualization

Fig. 6.100 Barcharts can be ordered using Pandas sort_values() method

... .hvplot.barh()

...)
:Bars [country] (trade (units))

We can also use Pandas to order the bars by value using sort_values() as shown
in Fig. 6.100.

>>> (economic_data.groupby('country')['trade'].sum()
... .sort_values()
... .to_frame('trade(units)')
... .hvplot.barh()
...)
:Bars [country] (trade(units))

Unstacking the grouping gives Fig. 6.101,
>>> # here is an unstacked grouping
>>> (economic_data.groupby(['year','country'])['trade']
... .sum()
... .unstack()

240 6 Visualizing Data

Fig. 6.101 holoviews025

... .head()

...)
country Austria Belgium Canada Denmark ... Sweden United Kingdom United States West Germany
year ...
1966 50.83 73.62 38.45 62.29 ... 44.79 37.93 9.62 37.89
1967 51.54 74.54 40.16 58.78 ... 43.73 37.83 9.98 38.81
1968 50.88 73.59 41.07 56.87 ... 42.46 37.76 10.09 39.51
1969 51.63 78.45 42.77 56.77 ... 43.52 41.93 10.44 41.40
1970 55.52 84.38 44.17 57.01 ... 46.28 42.80 10.50 43.07

[5 rows x 14 columns]

The barchart is missing colors for each country. Note that we have to supply the
hv.Dimension to get the y-label scaling fixed but the label does not show.
We also used the rot keyword argument to change the tick label orientation. The
legend is also too tall (see Fig. 6.102).

>>> (economic_data.groupby(['year','country'])['trade']
... .sum()
... .unstack()
... .hvplot.bar(stacked=True,rot=45)
... .redim(value=hv.Dimension('value',label='trade',
range=(0,1000)))...)
:Bars [year,Variable] (value)

These can be fixed in Fig. 6.103 using the cell magic with the Variable as the
color_index because the dataframe does not supply a corresponding name for the
values in the cells of the dataframe. The y-label is still not accessible but using
relabel, at least we can get a title near the y-axis.

6.5 Holoviews 241

Fig. 6.102 More control for axes and labels comes from hv.Dimension

Fig. 6.103 Holoviews can draw stacked barcharts with few lines of code

>>> options = opts.Bars(tools=['hover'],
... legend_position='left',
... color_index='Variable',
... width=900,
... height=400)

>>> (economic_data.groupby(['year','country'])['trade']
... .sum()
... .unstack()
... .hvplot.bar(stacked=True,rot=45)
... .redim(value=hv.Dimension('value',label='trade',range=(0,1000)))
... .relabel('trade(units)').options(options)
...)
:Bars [year,Variable] (value)

242 6 Visualizing Data

Fig. 6.104 Holoviews visualizations can be sliced like Numpy arrays

The x-range of the bars can be selected via slicing the resulting holoviews object, as
shown below showing only years beyond 1980 (Fig. 6.104).

>>> options = opts.Bars(tools=['hover'],
... legend_position='left',
... color_index='Variable',
... width=900,
... height=400)

>>> (economic_data.groupby(['year','country'])['trade']
... .sum()
... .unstack()
... .hvplot.bar(stacked=True,rot=45)
... .redim(value=hv.Dimension('value',
... label='trade',
... range=(0,1000)))
... .relabel('trade(units)').options(options)[1980:]
...)
:Bars [year,Variable] (value)

The main problem with the labeling with hvplot is that the reduce operation in
the groupby does not have a name that holoviews can grab, which makes it hard to
apply labels. The next block re-shapes the data into the format that holoviews
prefers (see Fig. 6.105).

>>> options = opts.Bars(tools=['hover'],
... legend_position='left',
... color_index='country',
... width=900,
... stacked=True,
... fontsize=dict(title=18,
... ylabel=16,
... xlabel=16),
... height=400)

>>> k=(economic_data.groupby(['year','country'])['trade']

6.5 Holoviews 243

Fig. 6.105 Holoviews uses the names of Pandas columns and indices for labels

... .sum().

... to_frame().T

... .melt(value_name='trade'))

>>> (hv.Bars(k,kdims=['year','country'])
... .options(options)
... .relabel('Trade').redim.range(trade=(0,1200)))
:Bars [year,country] (trade)

6.5.7 Network Graphs

Holoviews provides tools to make network graphs and integrates nicely with
networkx. Here are some handy defaults,

>>> import networkx as nx

>>> defaults = dict(width=400, height=400, padding=0.1)
>>> hv.opts.defaults(opts.EdgePaths(**defaults),
... opts.Graph(**defaults),
... opts.Nodes(**defaults))

We can use networkx to create Fig. 6.106. Note that by hovering on the circles,
you can get info about the nodes that are embedded in the graph. Note that the hover
also shows the index of the node.

>>> G = nx.karate_club_graph()
>>> hv.Graph.from_networkx(G,
...

nx.layout.circular_layout).opts(tools=['hover'])↪→
:Graph [start,end]

Let us create the Holoviews graph separately so we can inspect it. Note that nodes
and edgepaths are how Holoviews internally represents the graph. The nodes

244 6 Visualizing Data

Fig. 6.106 Holoviews
supports drawing network
graphs

show the independent variables in the graph in brackets and the dependent variables
in parentheses. In this case it means that club is a node-attribute of the graph. The
edgepaths are the positions of the individual nodes that are determined by the
nx.layout.circular_layout call.

>>> H=hv.Graph.from_networkx(G, nx.layout.circular_layout)
>>> H.nodes
:Nodes [x,y,index] (club)
>>> H.edgepaths
:EdgePaths [x,y]

Let us add some edge weights to the networkx graph and then rebuild the
corresponding Holoviews graph in Fig. 6.107,

>>> for i,j,d in G.edges(data=True):
... d['weight'] = np.random.randn()**2+1
...
>>> H=hv.Graph.from_networkx(G, nx.layout.circular_layout)
>>> H
:Graph [start,end] (weight)

Note that hovering over the edges now displays the edge weights, but you can no
longer inspect the nodes themselves, as in the previous rendering. Also note that the
edge is highlighted upon hovering.

>>> H.opts(inspection_policy='edges')
:Graph [start,end] (weight)

You can at least color the edges based upon their weight values and choose the
colormap.

6.5 Holoviews 245

Fig. 6.107 Edge weights
added to Holoviews network
graphs

>>> H.opts(inspection_policy='nodes',
... edge_color_index='weight',
... edge_cmap='hot')
:Graph [start,end] (weight)

It is inelegant, but you can overlay two graphs using the multiplication operator with
different inspection policies to get hover info on the nodes and edges (Figs. 6.108
and 6.109).

>>> H.opts(inspection_policy='edges', clone=True) * H
:Overlay

.Graph.I :Graph [start,end] (weight)

.Graph.II :Graph [start,end] (weight)

You can further change the thickness of the edges using hv.dim.

>>> H.opts(edge_line_width=hv.dim('weight'))
:Graph [start,end] (weight)

You can use the Set1 colormap to color the nodes based upon the club values in
the graph.

>>> H.opts(node_color=hv.dim('club'),cmap='Set1')
:Graph [start,end] (weight)

We can inspect a minimum spanning tree for this graph using what we have learned
so far about Holoviews graphs in Fig. 6.110.

246 6 Visualizing Data

Fig. 6.108 Holoviews
inspection policies control
what the mouse hover shows

Fig. 6.109 Holoviews
network graphs can have
different edge thicknesses

6.5 Holoviews 247

Fig. 6.110 Holoviews
network graphs can have
colored nodes

>>> t = nx.minimum_spanning_tree(G)
>>> T=hv.Graph.from_networkx(t, nx.layout.kamada_kawai_layout)
>>> T.opts(node_color=hv.dim('club'),cmap='Set1',
... edge_line_width=hv.dim('weight')*3,
... inspection_policy='edges',
... edge_color_index='weight',edge_cmap='cool')
:Graph [start,end] (weight)

Saving Holoviz Objects Holoviews provides a hv.save() method for saving the
rendered graphics into an HTML file. As long as there are no server-dependent call-
backs, the so-generated HTML is a static file that is easy to distribute (Fig. 6.111).

6.5.8 Holoviz Panel for Dashboards

Panel makes dashboards with dynamically updated elements.

>>> import panel as pn
>>> pn.extension()

Similar to ipywidgets, Panel has an interact for attaching a Python callback
to a widget. The following example shows how to report a value based on a slider
(see Fig. 6.112):

>>> def show_value(x):
... return x
...

248 6 Visualizing Data

Fig. 6.111 Holoviews
network graph shows a
minimum spanning tree

Fig. 6.112 Panel
interact connects
callbacks to widgets

>>> app=pn.interact(show_value, x=(0, 10))
>>> app
Column

[0] Column
[0] IntSlider(end=10, name='x', value=5, value_throttled=5)

[1] Row
[0] Str(int, name='interactive07377')

The object returned by pn.interact is index-able and can be re-oriented. Note
that the text appears on the left instead of at the bottom (as shown in Fig. 6.113).

>>> print(app)
Column

[0] Column
[0] IntSlider(end=10, name='x', value=5, value_throttled=5)

[1] Row
[0] Str(int, name='interactive07377')

>>> pn.Row(app[1], app[0]) # text and widget oriented row-wise
instead of default column-wise↪→

Row
[0] Row

[0] Str(int, name='interactive07377')
[1] Column

[0] IntSlider(end=10, name='x', value=5, value_throttled=5)

Panel Component Types There are three main types of components in Panel:

• Pane: A Pane wraps a view of an external object (text, image, plot, etc.).
• Panel: A Panel lays out multiple components in a row, column, or grid.

6.5 Holoviews 249

Fig. 6.113 Holoviews panel supports markdown text

Fig. 6.114 The panel depends decorator connects callbacks to widgets

• Widget: A Widget provides input controls to add interactive features to your
Panel.

The following shows a pn.panel object rendering markdown (excluding Math-
JaX):

>>> pn.panel('### This is markdown **text**')
Markdown(str)

You can also have raw HTML as a Panel element,

>>> pn.pane.HTML('<marquee width=500>Breaking News: some
news.</marquee>')↪→

HTML(str)

The main layout mechanism for panes is pn.Row and pn.Column. There is also
pn.Tabs and pn.GridSpec for more complicated layouts.

>>> pn.Column(pn.panel('### This is markdown **text**'),
... pn.pane.HTML('<marquee width=500>Breaking News:

some news.</marquee>'))↪→
Column

[0] Markdown(str)
[1] HTML(str)

We can use a widget and connect to the panes. One way to do this is with
the @pn.depends decorator, which connects the inputbox’s input string to the
title_text callback function (Fig. 6.114). Note that you have to hit ENTER to
update the text.

>>> text_input = pn.widgets.TextInput(value='cap words')

>>> @pn.depends(text_input.param.value)
... def title_text(value):
... return '## ' + value.upper()
...
>>> app2 = pn.Row(text_input, title_text)
>>> app2

Here is a neat autocompletion widget. Note that you have to type at least two
characters (Figs. 6.115 and 6.116).

>>> autocomplete = pn.widgets.AutocompleteInput(
... name='Autocomplete Input',

250 6 Visualizing Data

Fig. 6.115 Panel
autocompletion widget

Fig. 6.116 Panel supports dashboards with embedded Holoviews visualizations

... options=economic_data.country.unique().tolist(),

... placeholder='Write something here and <TAB> to complete')

>>> pn.Column(autocomplete,
... pn.Spacer(height=50)) # the spacer adds some

vertical space↪→
Column

[0] AutocompleteInput(name='Autocomplete
Input',options=['United States', ...], placeholder='Write
something h...)

↪→
↪→

[1] Spacer(height=50)

Once you are satisfied with your app, you can annotate it with servable(). In
the Jupyter notebook, this annotation has no effect, but running the panel serve
command with the Jupyter notebook (or plain Python file) will create a local Web
server with the annotated dashboard.

We can create a quick dashboard of our economic_data by using these elements.
Note the decorator parameters on the barchart function. You can set the extremes
of the IntRangeSlider and then move the interval by dragging the middle of
the indicated widget.

>>> pulldown = (pn.widgets.Select(name='Country',
... options=economic_data.country
... .unique()
... .tolist())

6.6 Plotly 251

...)

>>> range_slider = pn.widgets.IntRangeSlider(start=1966,
... end=1990,
... step=1,
... value=(1966,1990))

>>> @pn.depends(range_slider.param.value,pulldown.param.value)
... def barchart(interval, country):
... start,end = interval
... df=

economic_data.query('country=="%s"'%(country))[['year','trade']]↪→
... return (df.set_index('year')
... .loc[start:end]
... .hvplot.bar(x='year',y='trade')
... .relabel(f'Country: {country}'))
...
>>> app=pn.Column(pulldown,range_slider,barchart)
>>> app
Column

[0] Select(name='Country', options=['United States', ...],
value='United States')

[1] IntRangeSlider(end=1990, start=1966, value=(1966, 1990),
value_throttled=(1966, 1990))

[2] ParamFunction(function)

Note that the callback is Python so it requires a backend Python server to update the
plot.

6.6 Plotly

Plotly is a web-based visualization library that is easiest to use with plotly_

express. The key advantage of plotly_express over plain plotly is that it is
far less tedious to create common plots. Let us consider the following dataframe:

>>> import pandas as pd
>>> import plotly_express as px
>>> gapminder = px.data.gapminder()
>>> gapminder2007 = gapminder.query('year == 2007')
>>> gapminder2007.head()

country continent year lifeExp pop gdpPercap iso_alpha iso_num
11 Afghanistan Asia 2007 43.83 31889923 974.58 AFG 4
23 Albania Europe 2007 76.42 3600523 5937.03 ALB 8
35 Algeria Africa 2007 72.30 33333216 6223.37 DZA 12
47 Angola Africa 2007 42.73 12420476 4797.23 AGO 24
59 Argentina Americas 2007 75.32 40301927 12779.38 ARG 32

The scatter function draws the plot in Fig. 6.117.

>>> fig=px.scatter(gapminder2007,
... x='gdpPercap',
... y='lifeExp',
... width=400,height=400)

’

252 6 Visualizing Data

Fig. 6.117 Basic Plotly
scatter plot

The dataframe’s columns that are to be drawn are selected using the x and y
keyword arguments. The width and height keywords specify the size of the plot.
The fig object is a package of Plotly instructions that are passed to the browser
to render using Plotly Javascript functions that include an interactive toolbar of
common graphic functions like zooming, etc.

As with Altair, you can assign dataframe columns to graphic attributes. The
following Fig. 6.118 assigns the categorical continent column to the color in
the figure.

>>> fig=px.scatter(gapminder2007,
... x='gdpPercap',
... y='lifeExp',
... color='continent',
... width=900,height=400)

Figure 6.119 assigns the ’pop’ dataframe column to the size of the marker in the
figure and also specifies the figure’s size with the width and height keyword
arguments. The size and size_max ensure the marker sizes fit neatly in the plot
window.

>>> fig=px.scatter(gapminder2007,
... x='gdpPercap',
... y='lifeExp',
... color='continent',
... size='pop',
... size_max=60,
... width=900,height=400)

In the browser, hovering the mouse over the data marker will trigger a popup note
with the country name in Fig. 6.120.

6.6 Plotly 253

Fig. 6.118 Same scatterplot as Fig. 6.117 but now the respective countries are colored separately

Fig. 6.119 Same as Fig. 6.118 with population value scaling the marker sizes

>>> fig=px.scatter(gapminder2007,
... x='gdpPercap',
... y='lifeExp',
... color='continent',
... size='pop',
... size_max=60,
... hover_name='country')

Subplots in Matplotlib are known as facets in Plotly. By specifying the facet_col,
the scatter plot can be split into these facets as shown in Fig. 6.121, where log_x

changes the horizontal scale to logarithmic.

>>> fig=px.scatter(gapminder2007,
... x='gdpPercap',
... y='lifeExp',

254 6 Visualizing Data

Fig. 6.120 Same as Fig. 6.119 but with hover tool tips on the markers and new plot size

... color='continent',

... size='pop',

... size_max=60,

... hover_name='country',

... facet_col='continent',

... log_x=True)

Plotly can also build animations. The animation_frame argument indicates
the animation should increment of the year column in the data frame. The
animation_group argument triggers the given groups to be re-rendered at each
animation frame. When building animations, it is important to keep the axes fixed
so that the motion of the animation is not confusing. The range_x and range_y

arguments ensure the axes (Fig. 6.122).

>>> fig=px.scatter(gapminder,
... x='gdpPercap',
... y='lifeExp',
... size='pop',
... size_max=60,
... color='continent',
... hover_name='country',
... log_x=True,
... range_x=[100,100_000],
... range_y=[25,90],
... animation_frame='year',
... animation_group='country',
... labels=dict(pop='Population',
... gdpPercap='GDP per Capita',
... lifeExp='Life Expectancy'))

6.6 Plotly 255

Fig. 6.121 Plotly facets are roughly equivalent to Matplotlib subplots

Common statistical plots are easy with plotly_express. Consider the following
data:

>>> tips = px.data.tips()
>>> tips.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

The histogram of the sum of the tips partitioned by smoker status is shown in
Fig. 6.123

>>> fig=px.histogram(tips,
... x='total_bill',
... y='tip',
... histfunc='sum',
... color='smoker',
... width=400, height=300)

Everything Plotly needs to render the graphic in the browser is contained in the fig
object; so to change anything in the plot, you have to change the corresponding
item in this object. For example, to change the color of one of the histograms in

256 6 Visualizing Data

Fig. 6.122 Plotly can animate complex plots with the animation_frame keyword argument

Fig. 6.123 Plotly histogram
categorized by smoker
status

6.6 Plotly 257

Fig. 6.124 Same as
Fig. 6.123 but with color
change

Fig. 6.123, we access and update the fig.data[0].marker.color object
attribute. The result is shown in Fig. 6.124

>>> fig=px.histogram(tips,
... x='total_bill',
... y='tip',
... histfunc='sum',
... color='smoker',
... width=400, height=300)
>>> # access other properties from variable
>>> fig.data[0].marker.color='purple'

Plotly can draw other statistical plots like the notched boxplot shown in
Fig. 6.125. The orientation keyword argument lays out the boxplots horizon-
tally.

>>> fig=px.box(tips,
... x='total_bill',
... y='day',
... orientation='h',
... color='smoker',
... notched=True,
... width=800, height=400,
... category_orders={'day': ['Thur', 'Fri', 'Sat',

'Sun']})↪→

Violin plots are an alternative way to display one-dimensional distributions (see
Fig. 6.126).

>>> fig=px.violin(tips,
... y='tip',
... x='smoker',
... color='sex',
... box=True, points='all',
... width=600,height=400)

Marginal plots can be included using the marginal_x and marginal_y keyword
arguments as shown in Fig. 6.127. The trendline keyword argument means that

258 6 Visualizing Data

Fig. 6.125 Boxplots can be either horizontally or vertically oriented

Fig. 6.126 Plotly supports violin plots for one-dimensional probability density function visualiza-
tions

the ordinary least-squares fit should be used to draw the trend line in the middle
subplot.

>>> fig=px.scatter(tips,
... x='total_bill',
... y='tip',
... color='smoker',
... trendline='ols',
... marginal_x='violin',
... marginal_y='box',
... width=600,height=700)

References 259

Fig. 6.127 Plots in the margins of a central graphic are possible using the marginal_x and
marginal_y keyword arguments

This short section just scratches the surface of what Plotly is capable of. The
main documentation site is the primary resource for emerging graphical types. Plotly
express makes it much easier to generate the complex Plotly specifications that are
rendered by the Plotly Javascript library, but the full power of Plotly is available
using the bare plotly namespace.

References

1. Bokeh Development Team. Bokeh: Python library for interactive visualization (2020)

Index

A
Altair, 213

Aggregations and Transformations, 217
FieldRangePredicate, 218

Asserts, 32
Asyncio, 56

B
Bokeh, 204

Layouts, 206
Widgets, 207

C
Conditionals, 20
Context managers, 40

D
Data structures, 9
Debugging, 59

breakpoint, 60
IPython, 63
settrace, 61

Debugging and Logging, 59
Decorators, 48

Caches, 49
Closures, 51
Threads, 52

Design Patterns
Adapter, 94
Observer, 93

Singleton, 92
Template, 91

Dictionaries, 14

E
Enumeration, 53
Enumerations, 53
Error handling, 36

F
f-string, 7
File Input/Output, 34
Floating-point numbers, 121
For loop, 17
Formatting strings, 9
Functional Programming Idioms, 26
Functions, 21

Keyword arguments, 22
keyword filtering, 25
Lazy Evaluation, 33
Positional arguments, 21
recursion, 38
scoping rules, 30
serialization, 35
Stack Frames, 31
Variable Scoping, 24

G
Generators, 43

coroutines, 46
yield from, 46

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. Unpingco, Python Programming for Data Analysis,
https://doi.org/10.1007/978-3-030-68952-0

261

https://doi.org/10.1007/978-3-030-68952-0

262 Index

H
Hash function, 15
Holoviews, 224

Curve, 225
Dataset, 230, 234
DynamicMap, 235
groupby, 230
hvplot, 237
Images, 232
Network Graphs, 243
relabel, 228
Scatter, 226
slicing, 229
Streams, 236
Tabular Data, 232

I
IEEE 754, 121
Iterables, 52

L
Lists, 10

Comprehensions, 20
memory, 12

Logging, 63
Logic and Membership, 18

M
Matplotlib, 158

3D Patches, 165
3D Surfaces, 164
Animations, 175
Annotating Plots, 170
Arrows, 171
Colormaps, 181
Embedding subplots, 173
Keyboard Events, 184
Legends, 160
Mouse Events, 185
Patch Primitives, 164
Paths, 177
Setting defaults, 160
Sharing Axes, 162
Sliders, 179
Spines, 161
Subplots, 161
Transformations, 168

Memory Management, 42
Modules, 95

Modules
__init__, 98

Modules
__main__, 98

conda, 99
Dynamic Importing, 98
import, 95
Mamba, 100
pip, 99
reload, 97
sys.modules, 96
virtualenv, 100

N
Numpy, 103

Arrays and Memory, 108
Broadcasting, 116
dtypes, 103, 125
Duplicating arrays, 106
I/O, 115
Linear algebra, 115
Masked arrays, 120
Memory, 111
Memory strides, 112
Multidimensional arrays, 104
Overlapping arrays, 110
Reshaping and stacking, 105
Slicing, 107
Universal Functions, 114

O
Object-oriented programming, 67

Abstract Base Classes, 80
Class Functions, 74
Class Variables, 73
Descriptors, 82
Design Patterns, 91
Generic functions, 89
Hashing, 76
Inheritance, 71
Methods, 69
Monkey Patching, 79
namedtuple, 85
Static methods, 75
super, 77

OrderedDict, 16

P
Pandas, 127

Advanced Indexing, 137
Broadcasting, 138
Categoricals, 140
Customizing, 154

Index 263

Databases, 153
DataFrame, 131
Displaying DataFrames, 148
Memory Usage, 143
merge, 141
MultiIndex, 150
Pipes, 152
Reindexing, 135
Rolling and Filling, 155
Series, 127

Panel, 247
Pathlib, 55
Plotly, 251
PYTHONPATH, 95

S
Seaborn, 186

aggregation, 190
Distribution plots, 196
FacetGrid, 194

Serialization, 35
Sets, 16
Slicing, 8

T
Tuple unpacking, 13
Tuples, 12
Type Annotations, 54
Type annotations, 54

U
Unicode, 7

W
Walrus assignment, 4
While loop, 18

	Preface
	References

	Contents
	1 Basic Programming
	1.1 Basic Language
	1.1.1 Getting Started
	1.1.2 Reserved Keywords
	1.1.3 Numbers
	1.1.4 Complex Numbers
	1.1.5 Strings
	1.1.6 Loops and Conditionals
	1.1.7 Functions
	1.1.8 File Input/Output
	1.1.9 Dealing with Errors
	1.1.10 Power Python Features to Master
	1.1.11 Generators
	1.1.12 Decorators
	1.1.13 Iteration and Iterables
	1.1.14 Using Python Assertions to Pre-debug Code
	1.1.15 Stack Tracing with sys.settrace
	1.1.16 Debugging Using IPython
	1.1.17 Logging from Python

	2 Object-Oriented Programming
	2.1 Properties/Attributes
	2.2 Methods
	2.3 Inheritance
	2.4 Class Variables
	2.5 Class Functions
	2.6 Static Methods
	2.7 Hashing Hides Parent Variables from Children
	2.8 Delegating Functions
	2.9 Using super for Delegation
	2.10 Metaprogramming: Monkey Patching
	2.11 Abstract Base Classes
	2.12 Descriptors
	2.13 Named Tuples and Data Classes
	2.14 Generic Functions
	2.15 Design Patterns
	2.15.1 Template
	2.15.2 Singleton
	2.15.3 Observer
	2.15.4 Adapter

	References

	3 Using Modules
	3.1 Standard Library
	3.2 Writing and Using Your Own Modules
	3.2.1 Using a Directory as a Module

	3.3 Dynamic Importing
	3.4 Getting Modules from the Web
	3.5 Conda Package Management
	References

	4 Numpy
	4.1 Dtypes
	4.2 Multidimensional Arrays
	4.3 Reshaping and Stacking Numpy Arrays
	4.4 Duplicating Numpy Arrays
	4.5 Slicing, Logical Array Operations
	4.6 Numpy Arrays and Memory
	4.7 Numpy Memory Data Structures
	4.8 Array Element-Wise Operations
	4.9 Universal Functions
	4.10 Numpy Data Input/Output
	4.11 Linear Algebra
	4.12 Broadcasting
	4.13 Masked Arrays
	4.14 Floating Point Numbers
	4.15 Advanced Numpy dtypes
	References

	5 Pandas
	5.1 Using Series
	5.2 Using DataFrame
	5.3 Reindexing
	5.4 Deleting Items
	5.5 Advanced Indexing
	5.6 Broadcasting and Data Alignment
	5.7 Categorical and Merging
	5.8 Memory Usage and dtypes
	5.9 Common Operations
	5.10 Displaying DataFrames
	5.11 Multi-index
	5.12 Pipes
	5.13 Data Files and Databases
	5.14 Customizing Pandas
	5.15 Rolling and Filling Operations

	6 Visualizing Data
	6.1 Matplotlib
	6.1.1 Setting Defaults
	6.1.2 Legends
	6.1.3 Subplots
	6.1.4 Spines
	6.1.5 Sharing Axes
	6.1.6 3D Surfaces
	6.1.7 Using Patch Primitives
	6.1.8 Patches in 3D
	6.1.9 Using Transformations
	6.1.10 Annotating Plots with Text
	6.1.11 Annotating Plots with Arrows
	6.1.12 Embedding Scalable and Non-scalable Subplots
	6.1.13 Animations
	6.1.14 Using Paths Directly
	6.1.15 Interacting with Plots Using Sliders
	6.1.16 Colormaps
	6.1.17 Low-Level Control Using setp and getp
	6.1.18 Interacting with Matplotlib Figures
	6.1.19 Keyboard Events
	6.1.20 Mouse Events

	6.2 Seaborn
	6.2.1 Automatic Aggregation
	6.2.2 Multiple Plots
	6.2.3 Distribution Plots

	6.3 Bokeh
	6.3.1 Using Bokeh Primitives
	6.3.2 Bokeh Layouts
	6.3.3 Bokeh Widgets

	6.4 Altair
	6.4.1 Detailing Altair
	6.4.2 Aggregations and Transformations
	6.4.3 Interactive Altair

	6.5 Holoviews
	6.5.1 Dataset
	6.5.2 Image Data
	6.5.3 Tabular Data
	6.5.4 Customizing Interactivity
	6.5.5 Streams
	6.5.6 Pandas Integration with hvplot
	6.5.7 Network Graphs
	6.5.8 Holoviz Panel for Dashboards

	6.6 Plotly
	References

	Index

