FEperaL CLoub
CoMPUTING

The Definitive Guide for Cloud Service Providers

 SYNGRESS

3

Matthew Metheny

Python Passive
Network Mapping

P2NMAP

Chet Hosmer

Technical Editor
Gary C. Kessler

AMSTERDAM + BOSTON « HEIDELBERG « LONDON
38

v NEW YORK ¢ OXFORD ¢ PARIS « SAN DIEGO
M TORMES SAN FRANCISCO « SINGAPORE + SYDNEY « TOKYO SYNGRESS.
ELSEVIER Syngress Publishers is an Imprint of Elsevier

Acquiring Editor: Chris Katsaropoulos
Editorial Project Manager: Benjamin Rearick
Project Manager: Priya Kumaraguruparan
Designer: Matthew Limbert

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or any informa-
tion storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s
permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright
by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional
practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-802721-9

For information on all Syngress publications
visit our website at http://store.elsevier.com/

http://www.elsevier.com/permissions
http://store.elsevier.com/

To our children who inspire me every day and make me realize how
blessed | truly am. Whether you take care of the sick and injured,
you teach and inspire future generations, you care deeply and fight
to protect our environment or you simply bring unconditional love
to everyone you touch. To Kira, Tiffany, Trisha and Matty.

Biography

Chet Hosmer is the Founder of Python Forensics, Inc. a non-profit organization
focused on the collaborative development of open-source investigative tech-
nologies using the Python programming language. Chet is also the founder of
WetStone Technologies, Inc. and has been researching and developing technol-
ogy and training surrounding forensics, digital investigation and steganography
for over two decades. He has made numerous appearances to discuss emerg-
ing cyber threats including National Public Radio’s Kojo Nnamdi show, ABC's
Primetime Thursday, NHK Japan, CrimeCrime TechTV and ABC News Australia.
He has also been a frequent contributor to technical and news stories relating
to cyber security and forensics and has been interviewed and quoted by IEEE,
The New York Times, The Washington Post, Government Computer News,
Salon.com and Wired Magazine.

Chet serves as a visiting professor at Utica College where he teaches in the
Cybersecurity Graduate program. He is also an Adjunct Faculty member
at Champlain College in the Masters of Science in Digital Forensic Science Pro-
gram. Chet delivers keynote and plenary talks on various cyber security related
topics around the world each year.

Chet resides with Wife Janet, Son Matthew along with his four legged family
near Myrtle Beach, South Carolina.

Gary C. Kessler, Ph.D., CCE, CCFP, CISSP, is a Professor of Homeland Security
at Embry-Riddle Aeronautical University, a member of the North Florida ICAC
(Volusia County Sheriff's Department), and president and janitor of Gary Kessler
Associates, a training and consulting company specializing in computer and
network security and digital forensics. He is the co-author of two professional
texts and over 70 articles, a frequent speaker at regional, national, and interna-
tional conferences, and past editor-in-chief of the Journal of Digital Forensics,
Security and Law. More information about Gary can be found at his Web site,
http://www.garykessler.net.

http://www.garykessler.net/

Preface

It is Monday morning, July 6, 2015 and you have just returned from the long
holiday weekend. On your desk sits a note that reads...

A vulnerability has been discovered that may affect SCADA based networks.
We need to determine if any of our systems are potentially vulnerable or
worse have already been compromised. As you know, we cannot actively
scan our SCADA network, so we need to passively map network activity

and behaviors over the next week and then analyze the results. We need a
way to determine/verify every end point on our network, what systems they
communicate with, what countries those connections have made to and from.
| Need prelim report by noon tomorrow.

Thanks,

the CISO
P.S. we have no budget for new toys.

INTENDED AUDIENCE

This information in this book was designed to be accessible by anyone who
has a desire to learn how to leverage the Python programming language to pas-
sively monitor and analyze network activity for worthy causes. The open source
scripts and knowledge transfer are yours to use and hopefully inspire you to
advance the scripts, contribute to the community, and look at passive network
monitoring from a whole new perspective.

PREREQUISITES

Access to a computer, familiarity with an operating system (Windows, Linux
or Mac) and access to the Internet, coupled with a desire to learn. Some fa-
miliarity with programming and the Python programming language would be
helpful.

xi

m Preface

READING THIS BOOK

The book is organized with the first two chapters focused on introductory ma-
terial to define what passive network mapping is, how to setup an environment
to perform passive network mapping, and to demonstrate what value passive
network mapping can bring.

Chapters 3 and 4 introduce scripts that perform passive network capture on
a Linux or Windows platform, and provides scripts that allow you to per-
form network mapping functions and mine the captured data for analysis
purposes.

Chapter 5, provides a script that can convert existing packet capture files (.pcap)
into the structure necessary to perform network mapping, analysis and OS Fin-
gerprinting. In addition, Chapter 5 develops a model and working script that
performs OS Fingerprinting using only passively observed data.

Chapter 6 then presents future predictions, observations along with a series of
challenge problems for future work.

SUPPORTED PLATFORMS

All the examples in the book are written in Python 2.7 x in order to provide the
greatest platform compatibility.

The P2NMAP-Capture.py script has been validated on Linux and Windows op-
erating systems.

The P2NMAP-Analyze.py script, P2NMAP-PCAP-Extractor.py script and
P2NMAP-OS-Fingerprint.py scripts have been validated for Linux, Windows
and Mac.

DOWNLOAD SOFTWARE

Those purchasing the book, will also have access to the open source code ex-
amples in the book for easy use, enhancement and continued research. The
scripts and text have been created for easy integration into graduate and under-
graduate classrooms, training courses and hands on lab environments.

The source code is available from the python-forensics.org web site.

COMMENTS, QUESTIONS AND CONTRIBUTIONS

I encourage you to contribute in a positive way to this initiative. Your questions,
comments and contributions to the source code library and enhanced passive OS

Preface m

Fingerprint dataset will benefit the whole community. www.python-forensics.org
will make these resources available to all.

Finally, I challenge you all to share your ideas, knowledge and experience.
Sincerely,

Chet Hosmer

http://www.python-forensics.org/

Acknowledgments

My sincerest thanks go to:

Dr. Gary Kessler, the technical editor for this book. Gary is everything you
could want from a technical editor ... not only does he find all my technical
errors, but he also brings great ideas to the table. Thank you Gary, your constant
encouragement and friendship made the process fun.

Chris Katsaropoulos, Ben Rearick, Steve Elliot, and the whole team at Elsevier
for your enthusiasm for this topic, and all the guidance, patience and support
along the way.

To Janet, for helping to make every chapter better, more consistent and always
finding just the right quote to kick off each chapter.

And to the whole team at WetStone ... Carlton, Tiffany, Geoff, Amanda, Heather,
Brian and Sean for making it possible for me to begin the next chapter of my
career.

XV

CHAPTER 1

Introduction

“Measure what is measurable, and make measurable what is not so.”
Galileo Galilei

CONVENTIONS USED IN THIS TEXT

I use standard typographical conventions (bold, italics, etc.), to highlight text .
that stands out from the overall body of the paragraph. The font styles I will be ~ Conventions Used

.] in This Text ..o, 1
using throughout the text are: S0 Whatis 2 Pi ng Anyway?.. 5

Italic What is Python
Used for file and directory names and to emphasize terms Passive Network
Constant wi dth Mapping or
Used for code listings and script generated output P2NMAP?...ooccovven 10
Constant Wdth and Bol d Why Does This
Used for user input Method Cast a
Larger Net?......cooe.... 12

Enterprise Networks today are complex, difficult to investigate, require spe- _

cialized tools and demand exceptional and expert skills in order to properly HZYWS?E I\A/Igtlveizn
respond to incidents. When dealing with incidents that involve critical infra- Actually Hur?%oug? 13
structure or other regulated industry environments the specialization of the

toolkits can indeed be daunting. Organization of the

BooK oo, 14
One of the first challenges that face incident response teams and forensic in- p .00 14
vestigation units is “What does your network consist of and how is it config-
ured?” This may seem like a simple question that is easily answered by the
Information Technology group. However, when responding to incidents like
Heartbleed, Operation Shady Rat, and breaches at major retailers, the technical

information and details regarding the network map can be vital.

Summary Questions ... 15

More specific questions may also include:

m What internet protocol (IP) addresses and subnets do you operate?
m What servers and end points are running?
m Are the Servers local, hosted at an external site or in the cloud? 1

- CHAPTER 1: Introduction

FIGURE 1-1 Enterprise Networks.

What Operating Systems are in use? What versions and are they up-to-date?
What Services (open ports) are available on each server and host?

What applications and databases are in use?

How is your network configured, protected and isolated?

What connections are allowed between servers, hosts and Internet users?
What connections have occurred recently?

Are the activities from or to specific end points anomalous?

Where are those connections (to and from)? If the connection include
hosts outside the internal network where are these connections
physically located in the world? Can they be pinpointed and verified?

If some or all of these questions can be answered the follow-up questions are
of course:

m How do you know? ...and
m Are you sure?

Typically these answers come from the Chief Information Officer (CIO) or the
directed IT personnel responsible for the network along with the (Chief Informa-
tion Security Officer) CISO and related cyber security staff members. Each of these
groups utilize a variety of tools to assist in managing the cyber assets under their
control. These tools can range from a simple set of spreadsheets to complex asset
control inventory and management systems, or in the worst case, stored between
the ears of the staff members themselves. Don’t get me wrong, many of these folks
are very talented and have a pulse and deep understanding of the networks they

Conventions Used in This Text _

manage. All of this information regardless of its source or form factor is important
and valuable to incident response and forensic investigation teams. They of course
have the arduous task of determining what is happening or has happened, who
is doing it, how to mitigate and remediate the damage and better defend against
future incidents. All of the data regardless of the means of collection however, is
necessary to execute a comprehensive forensic investigation.

Python Passive Network Mapping: P2NMAP - An open source solution to uncovering
nefarious network activity deals with the challenge “what does your network con-
sist of and what are identifiable or unusual behaviors?” Traditionally, network
mapping is an active process whereby IT and cyber teams utilize tools to identify
network based assets.

Nmap, (Network Mapper - a security scanner originally written by Gordon
Lyon - also known by his pseudonym Fyodor Vaskovich) used to discover hosts
and services on a computer network, works by communicating raw IP packets
to specified IP address ranges to determine:

m what hosts exist within the range
m what services are running on each of the discovered hosts
m what operating system are those host likely to be running

...and a plethora of other characteristics that can be tested and measured
through this active interrogation method.

By way of a quick introduction let’s take a look at the current instantiation of
Nmap for Windows using the Zenmap Graphical User Interface (GUI).

Figure 1-2 depicts the main display of Nmap running under the Zenmap GUI
version 6.47. Zenmap is a multi-platform graphical front-end that interfaces

Scan Tools Profile Help
Target: | 192.168.0.0/24 v| rofile: | Pingscan [v] [scan| cance

Command: .nmap ~sn 192.168.0.0/24 Intense scan
r - . - Intense scan plus UDP

IE Sevices ! Nmap Output | Ports / Huii! quorug)f! Ho§ Intense scan, all TCP ports

05 4 Host -~ Intense scan, no ping S Details
Ping scan
Quick scan k
Quick scan plus
Quick traceroute
Regular scan

Slow comprehensive scan

Filter Hosts

FIGURE 1-2 Nmap Today.

CHAPTER 1: Introduction

Zenmap =

Scan Jools Profile Help
Target: | 192.168.0.0/24 [v] profile: | ping scon [v] [se2n] Cancel

Command: :nmap -sn 192.158;&W2;1

FIGURE 1-2A Ping Scan Selection.

with the standard command line of Nmap and then displays the results in a
more useable and interactive format.

As you can see in Figure 1-2A, I have selected a simple pi ng Scan with a target
selection of 192.168.0.0/24. Zenmap displays the exact Nmap command that
will be executed based on the selections that I have made. Dissecting the com-
mand reveals the specific instructions delivered to the Nmap engine.

nmap -sn 192.168.0.0/24
| | | IP Address and range
| | specifies a simple ping scan only
| Nmap command

The results of this quick scan can be seen in Figure 1-3. As you scan through the
list of computers and other devices on my local network you might find some
interesting hits and responses.

Scan Tools Profile Help
Target: | 192.168.0.0/24 E| Profile: | Ping scan 3 (Scan] Cancel
Command: | nmap -sn 192.168.0.0/24
Hosts || Services | | Mmap Output Ports / Hosts | Topology | Host Details | scans : -
05 1 Host « nmap-sn 19216800724 Iv] = [petais
NMAD SCBN FEPOCT TOF 194.108.9.0
¥ iR Host is up (@.826s latency). kel
W 19216802 MAC Address: 00:00:4B:63:26:8E (Roku)
Nmap scan report for 192.168.9.7
ol Host is up (8.6843 latency).
W 19216804 BAC Address: 0@:8C:8A:97:9D:36 (Bose)
Nmap scan report for 192.168.0.9
W 15216805 Host is up (@.8895 latency).
BAC Address: BC:EE:7B:AS:EC:98 (Asustek Computer)
¥ e | Nmap scen report for 192.168.0.12
W 15216807 Host fs up (@.995s latency).
HAC Address: 48:02:2A4:4A:20:AE (B-Link Electronic Limited)
W 19216809 Nmap scan report for 192.168.9.13
Hest is up (@.155 latency).
W 1821880.12 MAC Address: Fa:37:B7:31:F3:84 (Apple)
W 192168013 Nmap scan report for 192.168.9.16
Hest is up (©.086s latency).
¥ 1%2.1620.18 | MAC Address: ©8:3£:8E:E8:38:49 (Hon Wai Precision Ind.Co.ltd)
Nmap scan report for 192.168.8.19
W I Hest is up (9.08s latency).
W 182068022 MAC Address: 38:65:EC:01:DF:F1 (Wistron (ChongQing))
Nmap scan report for 192.168.0.185
W 152.168.0.185 Host is up (2.80s latency).
MAC Address; 1C:C1:DE:4A:@D:3E (Hewlett-Packard Company)
Nmap scan report for 192.168.0.22
Host is up.
Nmap done: 256 IP addresses (14 hosts up) scanned in 4.24 seconds
Filter Hosts

FIGURE 1-3 Summary Results of Ping Scan.

Conventions Used in This Text _

1. IP address 192.168.0.7 was identified as a Roku box used for streaming
content from the Internet.

2. IP address 192.168.0.7 was identified as our Bose Wave Radio.

3. IP address 192.168.0.13 was identified as our B-Link surveillance camera,
just in case you had thoughts about stealing the Bose wave radio. :)

4. IP address 192.168.0.16 identified as an Apple device,this could be
one of many

5. IP address 192.168.0.19 is a DirecTV receiver

6. IP address 192.168.0.185 is an Internet radio
Along with several other typical computers. (My wife was a computer
scientist also... thus the ‘several’!) It is important to note, that the
manufacturer identification of these devices is not based on any Nmap
magic, but rather on the OUI (Organizationally Unique Identifier)
portion of the MAC address.
This provides a pretty good scan of the active devices on my local
network. Of course these are the devices that responded to scan. What
about the printers and other mobile devices that were not identified?
We will be discussing this issue throughout the book.

If you are a more visual person, Figure 1-4 provides a graphical view of the
network IP addresses identified. This allows users to drill down into specific
devices and discover additional information.

So What is a Pi ng Anyway?

Pi ng is the cyber equivalent of traditional SONAR (short for SOund Naviga-
tion And Ranging), or the “pi ngs” that are used to locate objects under water.
A cyber pi ng actually refers to the use of a special network protocol namely
the Internet Control Message Protocol (ICMP). It is primarily used by network
devices to send error messages indicating that specific services are unavailable
or unreachable, or to communicate and query specific status.

For host discovery purposes, ICMP’s Echo Request message is used to make a
request to a specific IP addresses and then wait for the associated Echo Reply
Type Message. Traditional thinking is that if you cannot obtain a response from
a host that you pi ng, other services offered are likely unavailable. In many
cases when troubleshooting connection issues pi ng is used to verify connec-
tivity to a specific IP address.

Due to increased concern and awareness of cyber security issues many network firewalls
and gateways block ICMP Echo Requests to stop unauthorized mapping of hosts on the net-
work. Unfortunately, this plays both ways as insiders that wish to add hosts to the corporate
network will configure their systems to block [CMP Echo Requests as well and therefore will
not be discoverable using this type of scan.

- CHAPTER 1: Introduction

Zenmap = =
Scan Tools Prefile Help
Target: | 192.168.0.0/24 vJ Profile: | Ping scan v| IScan| Cancel

Command: | nmap -sn 132.168.0.0/24

| Hosts || Semvices | |Mmap Output| Ports / Hosts| Topology | Host Details | Scans

05 ¢ Host “ | | Hosts Viewer _F;veyeu‘_cmrolq Save Graphic
192.168.0.1 :

19216802
e 0192_1“_091m.1m.0.1
i : @192.1680.16

[Action
[# Interpolation
Layout

[View

192.168.0.4 \
192.168.0.5 ©i9216807",
182.168.06 ™ |
192.168.0.7

192.168.0.9 .ggg 168.0.4

Q19218803

192.168.0.12
182.168.0.13
182.168.0.16

152.168.0.19 @oi6505
192.168.022

192.168.0.185 T @192168022

@79z 18809

eeeeneeee-@ 19216802

] @ 192168013
@ 19216801

019216309192 168.0.185

Fisheye onring 100 - with interest factor |2.00 3| and spread factor | 0.50 =

FIGURE 1-4 Network Map generated by Zenmap.

ICMP is part of the Internet Protocol Layer as shown in Figure 1-5 and ICMP
messages are transmitted using IP datagrams as depicted in Figure 1-6.

Application Layer

Transport Layer

Internet/Network Layer (IP)

Data Link Layer

Physical Layer

FIGURE 1-5 Example Internet Protocol Stack Layers.

Conventions Used in This Text

IP Header ICMP Message

\

8 Bit Type 8 Bit Code 16 Bit Checksum

Content (Depends on Type and Code Specified)

FIGURE 1-6 ICMP Message Contained Within and IP Datagram.

Many message types and codes exist as shown in Table 1-1 on the following
page. For our use in host discovery, the highlighted Echo Request Type 8, Code 0
and Echo Reply Type 0, Code 0 represent our primary use. However, as you can
see, ICMP has many other Types and Codes that are used by network devices.
Note ICMP is an IP Type 1 message.

To provide a quick demonstration, I configured a simple network made up of
just 4 computers as shown in Figure 1-7.

In this example, using the pi ng command, I sent ICMP Request Type Packets
from 192.168.0.5 — 192.168.0.9. IP address 192.168.0.9 responded with the
appropriate response message.

chet@PythonForensics:~$% ping 192.168.0.9

PING 192.168.0.9 (192.168.0.9) 56(84) bytes of data.

64 bytes from 192.168.0.9: icmp reg=1 ttl=64 time=279 ms
64 bytes from 192.168. : icmp_reg=2 ttl=64 time=201 ms
64 bytes from 192.168. icmp reg=3 ttl=64 time=122 ms
64 bytes from 192.168. icmp_reg=4 ttl=64 time=40.6 ms
64 bytes from 192.168. icmp reg=5 ttl=64 time=269 ms
64 bytes from 192.168. icmp reg=6 ttl=64 time=197 ms

oo o oo
WO WO W WO W

You might notice that the packet delays are timed and range from 40.6 ms to 279
ms. This mayseem unusual toyou. IchosethisspecifictargetIP address, (asshown
in Figure 1-3, this is my Bose Wave Radio), to show the response to pi ngs. As
you can see responses from this device are a bit erratic in comparison to a typical
desktop computer. Also, you may notice that each of the ICMP requests contain
a different sequence number denoted asi cnp req = 1, icnp req = 2,

i cnp req = 6. This is because the pi ng command employs a monotonically
increasing value starting at 1, since IP packets, by their definition, are unreli-
able (or, better defined, as best effort), and packets can be lost, respond out
of sequence, or be delayed. Finally, you notice that the pi ng request includes

- CHAPTER 1: Introduction

Table 1-1 ICMP Types and Codes
Type Code Description Query Error

0 0 Echo Reply (Ping Reply) 4]

3 Destination Unreachable

Network Unreachable

Host Unreachable

Protocol Unreachable

Port Unreachable

Fragmentation Error

Source Route Failure

Destination Route Failure or Unknown
Destination Host Unknown

Obsolete

Destination Network Blocked

10 Destination Host Blocked

11 Network Unreachable

12 Host Unreachable

13 Communication Filtered

14 Host Precedence Violation

15 Precedence Cutoff

Source Quench

Redirect

0 Network Redirect

1 Host Redirect

2 Type of Service Redirect based on Network
3 Type of Service Redirect based on Host
0
0
0

OCO~NOOOTh~WN—+O

NENEEEEEEEEEAEENENERREE

Echo Request Ping

Router Advertisement
10 Router Solicitation
11 Time Errors

0 Time to Live == 0 during transit

Time to Live == 0 during reassembly

12 Parameter Error
IP Header Error
Option Field Missing
Timestamp Request
Timestamp Reply
Obsolete
Obsolete
Address Mask Request
Address Mask Reply

RE X

B BEE

13
14
15
16
17
18

Y JEE

leNoNoReoR NN o]

attl value of 64, wheret t | stands for Time-To-Live and is decremented by 1
each time the packet passes through a router. Therefore the t t | value set to 64
allows the packet to route to as many as 64 network hops before the IP packet
would be discarded to avoid looping.

I also have setup 192.168.0.10 as a Linux Host running Tcpdunp. Tcpdunp is a
network monitoring program that captures and records TCP/IP data. Tcpdunp

Conventions Used in This Text _

192.168.0.22

192.168.0.5

192.168.0.10
TCP DUMP MONITOR

ICMP Request / Reply

FIGURE 1-7 Simple ICMP Test Network.

is primarily designed to capture packets, however, the program has many options
that can also assist in filtering, and performing statistical calculations and provide
users with information that can assist in determining the health of their network.

I utilized the following command line to execute the Tcpdunp session:

$ sudo tcpdunp —vv icnp

The sudo command pronounced (su “do”) allows some (or all) commands to
be executed as root provided that the user has the appropriate privilege associated
with their account. Tcpdunp is the command that we wish to execute as root. The
-VV option instructs t cpdunp to provide verbose output and finally, the i cnp
designator instructs t cpdunp to only capture i cnp packets. The following is the
abbreviated packet results captured by the t cpdunp command.

TCP Dump Output

Request 1

11:10:03.205298 IP (tos 0x0, ttl 64, id 18014, offset 0, flags
[DF], proto ICMP (1), length 84)PythonForensics.local >
192.168.0.9: ICMP echo request, id 4209, seq 1, length 64

Reply 1

11:10:03.484480 IP (tos 0x0, ttl 64, id 24829, offset 0, flags
[none], proto ICMP (1), length 84)192.168.0.9 >
PythonForensics.local: ICMP echo reply, id 4209, seq 1, length
64

m CHAPTER 1:

Introduction

Request 2

11:10:04.206413 IP (tos 0x0, ttl 64, id 18015, offset 0, flags
[DF], proto ICMP (1), length 84)PythonForensics.local >
192.168.0.9: ICMP echo request, id 4209, seq 2, length 64

Reply 2

11:10:04.407831 IP (tos 0x0, ttl 64, id 24830, offset 0, flags
[none], proto ICMP (1), length 84)192.168.0.9 >
PythonForensics.local: ICMP echo reply, id 4209, seqg 2, length
64

....... Skipped for brevity

Request 6

11:10:08.210920 IP (tos 0x0, ttl 64, id 18019, offset 0, flags
[DF], proto ICMP (1), length 84)PythonForensics.local >
192.168.0.9: ICMP echo request, id 4209, seq 6, length 64

Reply 6

11:10:08.408464 IP (tos 0x0, ttl 64, id 24834, offset 0, flags
[none], proto ICMP (1), length 84)192.168.0.9 >
PythonForensics.local: ICMP echo reply, id 4209, seqg 6, length
64

Now that we have taken a quick tour of Nmap and have a fundamental under-
standing of a basic pi ng scan we will explore where this book will take us next.

WHAT IS PYTHON PASSIVE NETWORK MAPPING
OR P2NMAP?

Simply put, P2NMAP is a method to map networks using only the Python pro-
gramming language without ever emitting a packet onto the network. In ad-
dition, we want our activities to be stealthy and not expose our investigation.
This is not for hacking or nefarious purposes as you will see, but in many cases
performing these activities without the perpetrators knowledge is important,
especially when that perpetrator is an insider.

There are several advantages and some disadvantages of this method. Table 1-2
defines some of these advantages and disadvantages.

What is Python Passive Network Mapping or P2ZNMAP? _

Table 1-2 Advantages and Dis-Advantages of PZNMAP

Advantages Disadvantages

B Zero overhead or impact on the network itself. This can be very B The time to compile a complete map of the
important especially within critical infrastructure environments, network may take longer, although providing a
where activity scanning technologies can disrupt operations. more thorough view of the environment.

B The ability to uncover hosts and services that are unknown or are W It is more difficult to identify details such as
missed by active scanning methods. specific operating systems, hardware types and

vulnerabilities.

W dentify behaviors that are potentially dangerous, hostile, nefarious
or outside of defined policies.

B P2NMAP provides a full motion video in comparison with the
snapshot approach that most active scanning methods provide.

B P2NMAP provides an extensible framework where users can add
new capabilities and extend
behaviors using one of the most popular and easy to learn

programming environments.

The Common Vulnerabilities and Exposure (CVE-2014-016) vulnerability (commonly referred
to as "Heartbleed”) may be the longest running zero day vulnerability to date. It is important
to note, that Heartbleed is NOT a vulnerability of the SSL protocol in general, but rather an
example of an implementation bug. Once discovered, it has taken months to fully identify
impacted systems, and even longer to remediate a solution. One of the reasons this is so is
because to fully identify all the impacted systems, modern vulnerability scanners have to test
every IP address and every possible port running on each of those systems. It is simply not
enough to scan for common OpenSSL ports and then test for the vulnerability. Thousands of
applications and services use OpenSSL and many do not use standard ports like 443.

When scanning for these applications and services the expectation of the scanners is that:

All the systems are powered on

The scanners have visibility and are not blocked by firewalls or guards
The scanning operations themselves won't disrupt operations

The vulnerable services are in fact running

The vulnerable services are properly responding to the probes.

g LN~

That is a lot of assumptions. In addition, if those systems are running inside a critical infra-
structure environment good luck in convincing the operators to let you start wildly scanning
every |IP address and every port. Instead a more sanguine approach is to passively monitor
these environments with zero danger in causing harm and a greater chance of identifying the
full range of systems impacted by Heartbleed. You may say this might take weeks or longer
to accomplish using a passive approach. However, ask the real operators of these environ-
ments, how long it took to actively scan these environments, how many scans were neces-
sary, how many times systems and operations were disrupted and you will find, as the saying
goes, that “discretion is the better part of valor”™.

m CHAPTER 1: Introduction

WHY DOES THIS METHOD CAST A LARGER NET?

The simple answer is that you will find important and undeniable facts about
how your network and environment is operating. By passively mapping the
behavior of your network you will know, depending upon how long you moni-
tor, every IP address that has touched the environment, what and where in the
world they have touched, how often they have communicated, and at what
time of day or night were they communicating. This can only be accomplished
by patiently mapping these behaviors over time.

Much like cartography which is described as both the art and science of
map making, network mapping requires the same discipline, patience and
consistency. Unlike cartography, however, where maps are re-drawn every
50-100 years, the maps of our digital network can change dramatically in
just days.

You can see the contrast between a modern network map and a cartographer’s
map in Figure 1-8 and Figure 1-9, respectively.

Source: Hitwise UK, October 2006.

Software Credit: Borgatti, 5.P., Everett, M.G. and Freeman L.C. 2002, Ucinet for Windows: Software for Social Network
Analysis. Harvard, MA: Analytic Technologies.

FIGURE 1-8 Social Network Map.

How Can Active Network Mapping Actually Hurt You? _

FIGURE 1-9 Fra Mauro World Map circa 1480 AD.

HOW CAN ACTIVE NETWORK MAPPING
ACTUALLY HURT YOU?

Active Network Mapping has several specific impacts:

1. Active network mapping behavior mimics hostile or hacking activity and
can cause intrusion prevention systems to react to counter the actions.

2. Host based sensors can also identify these behaviors as hostile and react
to the behavior and create outages.

3. Active scanning activities place significant load on the network, servers,
routers and network devices.

4. Errors in setting up the scanners, (for example scanning improper IP
addresses ranges), can inadvertently impact adjacent networks. If the
resulting scan causes damage or outages to those networks, operators of
the scanners can be liable.

One of my favorite examples of this comes from a release by Hewlett Packard
in the midst of the discovery of the Heartbleed vulnerability:

“HP Integrated Lights-Out products (iLO, iLO 2, iLO 3, iLO 4) do not

use the OpenSSL library and are NOT exposed to the CVE-2014-0160
vulnerability (now known as "Heartbleed”) However, there is a bug in
these libraries that will cause first-generation iLO and iLO 2 devices to
enter a live lockup situation when a vulnerability scanner runs to check

m CHAPTER 1: Introduction

for the Heartbleed vulnerability.” http://h20566.www2.hp.com/portal/site/
hpsc/template.PAGE/public/kb/docDisplay?docld=emr_na-c04249852-1&ac.
admitted=1406398999314.876444892.199480143

The point is that by merely scanning these systems for the Heartbleed
vulnerability you can literally shut the lights off.

ORGANIZATION OF THE BOOK

In order to quickly address P2NMAP and get you started using, expanding and
developing new innovations in passive network mapping, I have arranged the
book to get to the point quickly. I would also like to provide detailed explana-
tion of each step, script program and method, thus leaving nothing unexplored.

I want these processes to be easily usable by novice and expert users, students,
academics, practitioners, programmers, incident response teams and those
wanting to learn about both Python and network investigation as the same
time. I always have found learning a new programming language or environ-
ment is much more fun if there is a problem to solve first.

In Chapter 2, I explain what you don’t know about your network - and more
importantly, why you need to know it and why it is important. Also, I look at
who is touching your network, and from where. Why should you be concerned
about this?

Chapter 3 focuses on how to capture network packets with Python and some
special tools. We also look at how you can efficiently store, index and manage
what you capture. Most importantly, I discuss how you can do this silently.

Chapters 4 and 5 tackle the analysis of what we have captured, how to make
sense of it and how to create an extensible toolkit. This toolkit can be freely
used, shared, evolved and also includes opportunities for you to participate in
the future expansion.

Chapter 6 takes a look at future opportunities and outlines next steps for
P2NMAP.

Finally, each chapter includes a summary of topics covered, challenge prob-
lems and review questions making the book suitable for use in college and
university academic environments.

REVIEW

In this chapter we quickly examined Nmap and the basic method of scanning
and mapping a simple network. We examined the ICMP protocol and demon-
strated how ICMP Requests and Reply make up the pi ng operation that can

http://h20566.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1%26ac.admitted=1406398999314.876444892.199480143
http://h20566.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1%26ac.admitted=1406398999314.876444892.199480143
http://h20566.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1%26ac.admitted=1406398999314.876444892.199480143

identify IP addresses on your network. Through this process we showed how
many devices not just computers are on your network and do respond to this
door-rattling exercise. Next, I provided you with a quick overview definition of
what P2NMAP is, and what some of the advantages and disadvantages to this
approach are. I also took a look at why passive mapping can be safer and more
thorough method for network mapping. Finally, we examined some ways that
active mapping can actually be dangerous.

SUMMARY QUESTIONS

1. What are the fundamental differences between active and passive
network mapping?

2. What other specific harm could active network mapping cause and/or
what regulatory policies could be impacted?

3. What advantages or disadvantages could be caused by passively
mapping networks?

4. What benefits and/or limitations do you think choosing a language like
Python might pose when applied to network mapping?

References

Nmap Security Scanner, http://nmap.org
Zenmap the official Nmap Security Scanner Graphical User Interface, http://nmap.org/zenmap/

The official web site of tcpdump, http://tcpdump.org

Summary Questions _

http://nmap.org/
http://nmap.org/zenmap/
http://tcpdump.org/

CHAPTER 2

What You DON'T Know About
Your Network

“Knowledge speaks, but wisdom listens.”
Jimi Hendrix

WHAT’S RUNNING ON YOUR NETWORK
MIGHT SURPRISE YOU

Modern environments boast massive infrastructures and sophisticated security
technologies designed to keep the bad guys out.

What if the bad guys are already in?

Today, the defensive technology mix includes traditional firewalls, application
firewalls, a demilitarized zone (DMZ), virtual private networks (VPN), anti-
virus, anti-spyware, patch management infrastructures, content filters, host and
network data leak protection (DLP), specialized privilege guards and security
event and incident management (SEIM) solutions. Unfortunately, these sys-
tems and technologies do little to protect against new threats or hidden vul-
nerabilities that exist within the environment they protect. In some cases, they
exist within the security solutions themselves!

In addition, the solutions today bear resemblance and similar weaknesses to
those created by the French Minister of War, Andre Maginot, who in the 1930’s
created fortifications to protect France from a German invasion. Much like the
Maginot line (see figure 2-1), modern cyber security solutions provide great
protection against a direct attack, but can be circumvented by insiders through
the exploitation of unknown vulnerabilities, via new attack vectors, by means
of social engineering activities and can be infiltrated due to lack of deep under-
standing of one’s own environment.

Big vs. Little
It turns out that many smaller organizations are more difficult to penetrate due
to the fact that the environment is better understood by both the Information

CONTENTS

What's Running on

Your Network Might
Surprise You................ 17
Big vs. Little ..., 17
We Care About What's

Running on Our Systems......18
Why Do We Care?................. 19

A Quick Demonstration......... 21
How to Do This in Python?....23
Sample Program Output.......29

0S Fingerprinting 30

0S Fingerprinting Using
TCP/IP Default Header
Values........coouuvvvvccccnnnniiiicen, 30
0S Fingerprinting Using

Open Port Patterns............... 32

What Open Ports or
Services Don't You

Know About?............... 32
How is This Useful?............. 33
Who's Touching Your

Network?......cccoveveeeee. 34
Review.......cocevveveena. 35

Summary Questions ...35

17

m CHAPTER 2: What You DON'T Know About Your Network

ssssssnness Wiak fortifications

— Strong fortifications

FIGURE 2-1 Map the Maginot Line.

Technology (IT) teams and the Cyber Security teams that protect them. Larger
organizations in many cases have undergone numerous mergers and acquisi-
tions along with the melding of information systems. They have also been
around longer and likely employ legacy technologies, or have systems operat-
ing throughout their network that have simply been forgotten and are running
services that are vulnerable.

The following statement is critically important....

The more you know about your environment, the better you can protect your
assets, the easier you can detect anomalous activity, and the faster you can
react to new attacks and vulnerabilities.

We Care About What’s Running on Our Systems

This might seem obvious as you read this, but you are likely to be surprised by
systems and services that are operating on your network. We tend to think only
about servers and desktop workstations, since our view of the world is that
this is where the information is created, accessed and utilized. Obviously, our
infrastructures are changing and what is running or attached to our network
is also evolving. Let's just take a look at just a small list of devices and systems

What's Running on Your Network Might Surprise You m

we need to be concerned about today (I have purposely left out Servers and
Desktop Workstations from the list):

Android phones and tablets

iOS phones and tablets

Windows phones and tablets

Blackberry phones and tablets

Printers and multifunction devices (print, scan, fax)
Copiers and Biz Centers

Voice Over Internet Protocol (VOIP) systems
Security cameras

Internet radios

Handheld personal cameras

Near Field Communication Devices (NFC)
Conference room phones

Wearable technologies (fitness, surveillance see Figures 2-2-2-4)

Why Do We Care?

At the end of the day, these are all computers at their core with access to net-
works, the Internet and possibly your corporate infrastructure and informa-
tion. The questions are:

W N =

. Can you identify them on your network?

. Do you know where they are located?

. What data do they have access to?

. Most importantly, what is the risk and potential impact they pose if
compromised?

FIGURE 2-2 Wearable Camera Glasses.

CHAPTER 2: What You DON'T Know About Your Network

FIGURE 2-3 Smart Watches.

FIGURE 2-4 Wearable Fitness Devices.

What's Running on Your Network Might Surprise You m

The other important aspect of the mobile, wireless, Bluetooth, wearables and
NFC devices is that they tend to leave very temporal footprints. Meaning that
traditional active network mapping methods may be ineffective in detecting
their presence or tracking their behaviors.

Based on this brief introduction, you can see that there are significant advantages
to having a firm understanding of the devices that should be attached to our net-
works, whether these devices are servers, workstations or mobile devices. Think
of this as home-field advantage, by understanding what should be operating on
your network it becomes easier to identify those devices that shouldn’t be there.

As I demonstrated in Chapter 1, actively identifying devices on a network using
NMAP quickly provides information about the obvious suspects. What we are
looking for here are those devices that operate either in a temporal fashion or are
purposely stealthy. Approaching the problem from a passive point view is different
in that we have to wait for devices to reveal their presence by actively participating.

Once again we will turn to tcpdump to demonstrate some of the ways to cap-
ture packets in a passive manner. You might realize that I can do the same thing
with Wireshark or a host of other proprietary toolsets. However, one of the
problems with this approach is that in order to capture packets at the kernel
level, you must be operating at a very high privilege level, and using complex
and far-reaching security tools to do so is risky business. Thus my approach
throughout the book will be to use simple well-known open-source technolo-
gies to perform operations at high levels of privilege. In this way we can limit
the need to provide root privilege to only those processes that are absolutely
necessary. Likewise our analysis tools (after we have captured the necessary
packet samples) can and should operate at a user level.

A Quick Demonstration

Let’s answer the following simple question. What computers on my network
are hitting remote web servers? To keep things simple, I want to capture only
traffic that has a destination address of Port 80. To demonstrate this, I captured
some traffic off my home network with tcpdump using the following Linux/
Unix commands:

First, I placed my ethQ adapter into promiscuous mode.
$ sudo ifconfig ethO promisc

Translating the command

sudo: Execute the command with super user privilege
ifconfig Linux ifconfig command
etho: Specify the Ethernet adapter I wish to set

promisc: SetethO in promiscuous mode

m CHAPTER 2: What You DON'T Know About Your Network

After completion of the command we can check the results by running
ifconfig. As you can see the ethO adapter is now running in promiscuous
multicast mode

$ ifconfig ethO

eth0

Link encap:Ethernet HWaddr 00:1le:8c:b7:6d:64

inet6 addr: feB80::21le:Bcff:feb7:6d64/64 Scope:Link
UP BROADCAST RUNNING PROMISC MULTICAST

MTU:1500 Metric:1

RX packets:43842 errors:0 dropped:108

overruns:0 frame:0

TX packets:33 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:4981889 (4.9 MB) TX bytes:5723 (5.7 KB)

Next, I use the tcpdump command to collect any packets originating from
source port 80.

$ sudo tcpdump —i ethO —n src port 80

Translating the command:

sudo: Run the command with super user privilege
tcpdump: The command we wish to execute at privilege

-1 ethO: Utilize the Ethernet 0 adapter to perform the capture
-n: Do not resolve IP address to name

src port 80: only capture packets that have a source port of 80

As a result the command returns a barrage of data. I have snipped out the re-
dundant entries.

16:37:06.559388 IP 50.62.120.26.80 > 192.168.0.22.48637: Flags [.], seq

1:1461, ack 5

05, win 31, length 1460

16:37:06.560713 IP 50.62.120.26.80 > 192.168.0.22.48637: Flags [.], seq

1461:2921, ack 505;

<..SNIPPED..>

win 31, length 1460

What's Running on Your Network Might Surprise You m

16:37:53.787370 IP 108.160.165.54.80 > 192.168.0.22.48532: Flags [P.], seq
380428656:380428835, ack 1424003206, win 31624, length 179

16:37:53.889243 IP 108.160.165.54.80 > 192.168.0.22.48532: Flags [.], ack
360, win 32696, length O

16:37:59.812185 IP 173.194.37.84.80 > 192.168.0.22.48644: Flags [.], ack
1424, win 361, options [nop,nop,sack 1 {1423:1424}], length 0O

<..SNIPPED..>

16:38:09.668759 IP 23.52.91.27.80 > 192.168.0.22.48660: Flags [.], ack 445,
win 490, length O

16:38:09.670682 IP 23.52.91.27.80 > 192.168.0.22.48660: Flags [.], seq
1:1461, ack 445, win 490, length 1460

16:38:09.670758 IP 23.52.91.27.80 > 192.168.0.22.48660: Flags [P.], seqg
1461:2244, ack 445, win 490, length 783

<..SNIPPED..>

This results in the following unique values from a network mapping point of
view

Table 2-1 Manually Identified Unique Values

Server IP Client IP Source Port Destination Port
50.62.120.26 192.168.0.22 80 48637
108.160.165.54 192.168.0.22 80 48532
23.52.91.27 192.168.0.22 80 48660

How to Do This in Python?

Continuing with the theme of keeping this simple with an eye on passive net-
work mapping, how might we approach this same solution in Python? I will
add the ability to automatically generate a unique list of the Server / Client
interactions over Port 443.

CHAPTER 2: What You DON'T Know About Your Network

The script has two basic parts,

1. The Main program that:

Sets up the network interface in promiscuous mode

Opens a raw socket

Listens and reads packets from the raw socket

. Calls the PacketExtractor () function to decode the packet
Updates a list with packets that meet our port criteria

Once the maximum number of packets are collected a unique list is
generated

2. The PacketExtractor () function that:

Extracts the IP Header

Extracts the TCP Header

Obtains the Source and Destination IP Addresses

. Obtains the Source and Destinations Port Numbers

Makes an educated guess as to the Server vs. Client

Returns a list containing ServerIP, ClientIP, ServerPort

e AN o

o AN T

Python Script to Map Activity on a single port
Running on Linux

Import Standard Library Modules

import socket # network interface library used for raw sockets
import os # operating system functions i.e. file I/o
import sys # system level functions i.e. exit()

from struct import * # Handle Strings as Binary Data

Constants

PROTOCOL_TCP = 6 # TCP Protocol for IP Layer

PacketExtractor

ﬁ Purpose: Extracts fields from the IP and TCP Header

ﬁ Input: packet: buffer from socket.recvfrom() method
Output: list: serverIP, clientIP, serverPort

#

def PacketExtractor (packet):

#Strip off the first 20 characters for the ip header
stripPacket = packet[0:20]

#now unpack them
ipHeaderTuple = unpack('!BBHHHBBH4s4s' , stripPacket)

What's Running on Your Network Might Surprise You m

unpack returns a tuple, for illustration I will extract

each individual values

verLen = ipHeaderTuple[0]
TOS = ipHeaderTuple[1]
packetLength = ipHeaderTuple[2]
packetID = ipHeaderTuple[3]
flagFrag = ipHeaderTuple[4]
RES = (flagFrag >> 15)
DF = (flagFrag >> 14)
MF = (flagFrag >> 13)
timeToLive = ipHeaderTuple[5]
protocol = ipHeaderTuple[6]
checkSum = ipHeaderTuple[7]
sourcelP = ipHeaderTuple[8]
destIP = ipHeaderTuple[9]

& 0x01
& 0x01
& 0x01

Calculate / Convert extracted values

version = verLen >> 4
length = verLen & 0x0F
ipHdrLength = length * 4

O e e

Field Contents

Field 0: Version and Length
Field 1: Type of Service
Field 2: Packet Length
Field 3: Identification
Field 4: Flags/Fragment QOffset
Reserved

Don't Fragment

More Fragments

Field 5: Time to Liwve (TTL)
Field 6: Protocol Number
Field 7: Header Checksum
Field 8: Source IP

Field 9: Destination IP

Upper Nibble is the version Number
Lower Nibble represents the size
Calculate the header length in bytes

covert the source and destination address to dotted notation strings

sourceAddress

socket.inet_ntoa(sourcelP);

destinationAddress = socket.inet ntoa(destIP);

if protocol == PROTOCOL_TCP:

stripTCPHeader = packet[ipHdrLength:ipHdrLength+20]

unpack returns a tuple, for illustration I will extract
each individual values using the unpack() function

tcpHeaderBuffer = unpack('!HHLLBBHHH'

, StripTCPHeader)

sourcePort = tcpHeaderBuffer[0]
destinationPort = tcpHeaderBuffer[1l]
sequenceNumber = tcpHeaderBuffer[2]
acknowledgement = tcpHeaderBuffer[3]
dataOffsetandReserve = tcpHeaderBuffer[4]
tcpHeaderLength = (dataOffsetandReserve >> 4) * {4
flags = tcpHeaderBuffer[5]
FIN = flags & 0x01

SYN = (flags >> 1) & 0x01
RST = (flags >> 2) & 0x01
PSH = (flags >> 3) & 0x01
ACK = (flags >> 4) & 0x01
URG = (flags >> 5) & 0x01
ECE = (flags >> 6) & 0x01

m CHAPTER 2: What You DON'T Know About Your Network

CWR = (flags >> 7) & 0x01
windowSize = tcpHeaderBuffer[6]
tcpChecksum = tcpHeaderBuffer[7]
urgentPointer = tcpHeaderBuffer[8]
if sourcePort < 1024:

serverlIP = sourcelAddress

clientIP = destinationAddress

serverPort = sourcePort

elif destinationPort < 1024:

serverIP = destinationAddress

clientIP = sourceAddress

serverPort = destinationPort
else:

serverlIP = "Filter"

clientIP = "Filter"

serverPort = "Filter"

return([serverIP, clientIP, serverPort], [SYN, serverIP, TOS,
timeToLive, DF, windowSizel])
else:
return(["Filter", "Filter", "Filter"], [NULL, Null, Null, Nulll)

if name == '_main__':

Note script must be run in superuser mode
i.e. sudo python ..

Enable Promiscious Mode on the NIC
Make a system call
Note: Linux Based

ret = os.system("ifconfig eth0 promisc")

If successful, then continue
if ret == 0:

print "ethO configured in promiscous mode"

create a new socket using the python socket module

AF_INET : Address Family Internet

SOCK_RAW : A raw protocel at the network layer

IPPROTO_TCP : Specifies the socket transport layer is TCP

Attempt to open the socket
Try:
mySocket = socket.socket(socket.AF INET, socket.SOCK RAW,
socket.IPPROTO_TCP)

What's Running on Your Network Might Surprise You

if successful post the result
print "Raw Socket Open"

except:
if socket fails
print "Raw Socket Open Failed"
sys.exit()

create a list to hold the results from the packet capture

We wil only save Server IP, Client IP, Server Port

for this example. Note we will be making and educated guess as to
differentiate Server vs. Client

[]
[]

ipObservations
osObservations

Capture a maximum of 500 observations
maxObservations = 500

Port filter set to port 443
TCP Port 443 is defined as the http protocol over TLS/SSL

portValue = 443

try:

while maxObservations > 0:

attempt receiwve (this call is synchronous, and will wait)
recvBuffer, addr = mySocket.recvfrom(255)

decode the received packet
call the local packet extract function above

content, fingerPrint = PacketExtractor(recvBuffer)

if content[0] !'= "Filter":
append the results to our list
if it matches our port
if content[2] == portValue:
ipObservations.append(content)
maxObservations = maxObservations - 1
if the SYN flag is set then
record the fingerprint data in osObservations
if fingerPrint[0] == 1:
osObservations.append([fingerPrint[1], \
fingerPrint[2], \
fingerPrint[31, \
fingerPrint[4], \
fingerPrint[51]1)

m CHAPTER 2: What You DON'T Know About Your Network

else:
Not our port
continue
else:
Not a valid packet
continue
except:
print "socket failure"
exit ()

Capture Complete

Disable Promiscous Mode

using Linux system call

ret = os.system("ifconfig eth0 -promisc")

Close the Raw Socket
mySocket.close()

Create unique sorted list

Next we convert the list into a set to eliminate

any duplicate entries

then we convert the set back into a list for sorting

uniqueSrc = set(map(tuple, ipCbservations))
finalList = list(uniqueSrc)
finallList.sort()

uniqueFingerprints = set(map(tuple, osObservations))
finalFingerPrintList = list(uniqueFingerprints)
finalFingerPrintList.sort ()

Print out the unique combinations

print "Unique Packets"

for packet in finallList:
print packet

print "Unigue Fingerprints"

for osFinger in finalFingerPrintList:
print osFinger

else:
print 'Promiscious Mode not Set'

What's Running on Your Network Might Surprise You m

Sample Program Output
eth0 configured in promiscuous mode
Raw Socket Open

Server Client Port
Unique Packets

('"173.194.37.62%, "192.168.0.13"; 443}
{*199.1%.156.241", *192.168.0.13",443)

('199.16.156.52', '192.168.0.13"', 443)
(123:235,39.223%,; V192:16840;13" ; 443}
{("23.253.135,79Y, '192.168.0.13", 443)
(2378213231 “192.168.0.13"; L4535
{'54.192.160.200','192.168.0.13", 443}
('64.233.185.132"','192.168.0.13"', 443)
(16d,233,185,95%,; Y192.168.0,;13" ; 443}
{'66,153.250,212","%192,168.0.13"; 443)
('66.153.250.248","192.168.0.13"; 443}
{'66.153.250.241"','192.168.0.13", 443)
{'69.172.216.111",'192.168.0.13", 443)
(PP 1251371327,V 192.:16840: 13" ; 443}
{("74.,125.196,154","192,168.0.13"; 443)

(" 74.125.186.99%, "192.168.0.13"; 443}
('93.184.216.146"',"192.168.0.13", 443)
Unique Fingerprints

Server TOS TTL DF Window Size
(723.235.39.223", 07 53; L 14480)
{(723.253.135.79", 0, .50; 1, 14480)
('64.233.185.132', 0, 42, 0, 42540)
{("64.233.185.95"%, G, 42, 0, 42540)
(766153250240, 0, -57; 0, 28960)
{166:153:250.:241% Q. 8T 0 28960)
('69.172.216.111', 0, 47, 1, 14480)
(74125187132, 0, 486, 0, 42540)

As you can see from this example, it is relatively straight forward to create a
simple controlled traffic capture Python script and begin to map simple be-
haviors on the network. This capture then can process the captured data and
identify specific hosts and services they support.

A couple special notes regarding this script.

1. This is a Linux only implementation

m CHAPTER 2: What You DON'T Know About Your Network

2. The Script needs to be run with super user privilege
$ sudo python capture443.py
3. The advantage over using tcpdump or Wireshark relates to:
a. Finer grained control over Super User activity
b. The simplicity of the operation
c. The ability to target specific results

O0S FINGERPRINTING

[wanted to introduce the concept of OS Fingerprinting up front, since much
discussion that surrounds Network Mapping attempts to identify the Operat-
ing System that is running behind a particular IP address. This process can be
more difficult using passive methods, however it is still possible to make solid
arguments for a particular OS. Our focus in the coming chapters is to craft
scripts that will ensure that we capture and interpret traffic and fill out the IP
range, observe and identify port / service activity and provide clear information
regarding what insiders and outsiders are doing.

0S Fingerprinting Using TCP/IP Default Header Values
Several well-known attributes exist for gathering information about the OS
executing behind each IP address that we are passively watching. They include:

Table 2-2 Common 0OS Fingerprinting Fields

IP Header Defined

TTL Time to Live

TOS Type of Service

DF Don’t Fragment Flag
TCP Header Defined

Window Window Size

Note, these values are only valuable when the SYN flag is set for a specific TCP packet. You
will notice in the capture443.py script, | painstakingly extracted the TTL, TOS, DF from the IP
Header and | extract Window Size from the TCP Header. | also create a unique list of the
observed fingerprinting values. This script then can be used to record these notable header
fields in order to build a more comprehensive “observed” OS fingerprints.

Based on observations from a plethora of sources, Table 2-3 provides a snapshot
of observed values that can provide insight to enable fingerprinting an OS. This
fingerprinting process is virtually the same for passive vs active mapping - the

TCP/IP Packet

Version IHL Total Length
Flags D Fragment Offset
Header Checksum
3 Source Address
8 Destination Address
& Options Padding
& Source Port Destination Port
= Sequence Number

Acknowledgement Number

Data U|A|P|R|S|F
Offset RICIS|S|Y|!
gl duirinln :
Checksum Urgent Pointer
TCP Options Padding
TCP Data

FIGURE 2-5 TCP/IP Header with Key Fingerprinting Fields Highlighted.

only difference being when observing passively, the stimulus must come from
normal network traffic, not from artificially generated stimuli.

An educated guess of the OS behind the IP address is possible by creating a
comprehensive list of the most common devices. It is important to point out
that masking these TCP/IP header fields can be accomplished by those trying
to obscure these signatures. Thus it is important to utilize multiple methods:

Table 2-3 Sampling of OS Observed Values
Time to Live Window Size

Observed OS Initial Value Typical Setting
Linux 64 5840
Open BSD 64 16,384
Solaris 255 8,760

AIX 64 16,384
Windows XP 128 65,535
Windows 2K 128 16,384
Windows 7 128 8,192
Mac OS X 64 65,535

0S Fingerprinting m

m CHAPTER 2: What You DON'T Know About Your Network

Table 2-4 Sampling of Open Port Patterns

Port Number Most Common Usage OS Fingerprint Guess
445 Microsoft Active Directory Windows
987 Microsoft Sharepoint Service Windows

1270 Microsoft System Center Opera- Windows
tions Manager (SCOM)

331 Apple OS Server Admin Mac OS X
660 Mac OS Server Admin Mac OS X

11111 Remote Configuration Interface RedHat Linux

0S Fingerprinting Using Open Port Patterns

Another common method is to take an inventory of open port patterns. This is
especially useful when collecting passive network behaviors of hosts operating
within the monitored environment. Table 2-4 lists just a few of the common
ports that can provide clues to the operating system running behind the IP.

We will explore OS Fingerprinting analysis using deductive and inductive rea-
soning in Chapter 4.

WHAT OPEN PORTS OR SERVICES
DON’'T YOU KNOW ABOUT?

As was recently seen with the OpenSSL "Heartbleed’ (CVE-2014-0160) and
Shellshock (CVE-2014-6271) vulnerabilities, the ability to know what services
are operating and on what systems is quite useful. Once again we could use
tools like NMAP to discover open ports (at least during the snapshot) with the
previously discussed risks. Standard network ports are assigned by the Internet
Assigned Numbers Authority (IANA) via the Service Name and Transport Pro-
tocol Port Number Registry. Generally (as there is debate) an agreed upon port
classification is as follows:

Service Ports: 1-1023 are considered well-known ports that represent
services that most of us agree to abide by.

Service Ports: 1024 to 49151 are recognized as registered ports. They are
assigned by IANA upon application and approval.

Service Ports: 49152-65535 are considered Dynamic, Private or Ephemeral
(i-e. lasting for a short time or transient). For example, ports in this range
are commonly used by clients making a connection to a server.

One way to leverage this knowledge of course is to detect traffic origi-
nating from, or going to one of these defined ports. By doing so we can

What Open Ports or Services Don't You Know About? m

deduce services that are running on these hosts and clients that are utiliz-
ing them.

In addition to the “agreed upon” port definitions above, organizations such
as the SANS Internet Storm Center have created lists of known malicious
ports. For example, one compiled list contains default ports utilized by
Trojans. Therefore, if you find that one these ports is being probed, it may
possibly indicate that someone is attempting to communicate with a Trojan
that is running on your network. Thus mapping both the request, and poten-
tially the response to one or more of these ports would be useful in mapping
as well.

How is This Useful?

Based on the simple capture443.py script I presented earlier in this chapter,
along with the results shown, we could deduce the following:

Local Client 192.168.0.13 has made a secure web page connection to the fol-
lowing servers:

199.16.156.201, 23.73.162.234, 66.153.250.229, 66.153.250.234,
66.153.250.238, 66.153.250.241, 74.125.137.132, 74.125.137.154,
74.125.196.99, 74.125.230.127

This deduction was made based on the following facts:

1. 1P address 192.168.0.13 is a Class C private address block.
According to RFC 1918, any Class C address in the range
192.168.0.0-192.168.255.255 (which can also be denoted
192.168.0.0/16) should be considered private and non-routable.
This means that I cannot directly address any Class C address within
that range unless I'm connected to that very same Class C physical
network.

2. Each of the other IP addresses can be geographically located. For
example, addresses 199.16.156.201 is located in the Mountain View,
California area. The IP addresses 66.153.25 are located in South
Carolina. Each of these IP addresses communicated with the client over
service port 443, which by default is the http protocol running over a
secure TLS or SSL connection.

In addition, I could infer that client 192.168.0.13 performed a web search that
provided a link to the other servers identified. I can make this inference be-
cause 1P addresses 74.125.137.x belongs to Google, and it is likely that client
192.168.0.13 performed the suggested search using Google.

CHAPTER 2: What You DON'T Know About Your Network

DEDUCTIVE VS INDUCTIVE REASONING

Deductive reasoning is based on the premise that if the predicates are true, and the logic is
sound the conclusion must be valid.

The classic example is

“All men are mortal”
“Socrates was a man”
Therefore: Socrates was mortal

Inductive reasoning, on the other hand, seeks a probable or a likely explanation. A classic
example of an inductive argument is:

“All politicians | have met are deceitful”
“I'have just met David and he is a politician”
Therefore: David must be deceitful

Much like the inductive argument that was made:

“IP 192.168.0.13 connected to Google”
“Google is the search engine that provides links to other web sites”
Therefore: the subsequent server IP addresses must have come from Google

In both of these cases the likelihood is probable, however unlike the deductive arguments
other possible conclusions exist.

In order to perform Passive Network Mapping we will be using both deductive
and inductive methods throughout the process. The quality of our arguments,
premises, observations and logic will determine how accurate our results will
be. Based on that, it will be important to craft these arguments and observa-
tions such that they can be improved with time.

Note: Active Network Mapping also uses both methods especially during the
process of OS Fingerprinting.

WHO’S TOUCHING YOUR NETWORK?

The next logical question to ask is who is actually touching your network? This
includes trusted insiders, employees, IT staff (either in-house or out-sourced),
and those outside your direct sphere of control. This doesn’t mean just hackers,
but can also mean business partners, contract employees, vendors, Internet Ser-
vice Providers (ISPs), the government, and, of course, your customers. By pas-
sively collecting, classifying, analyzing and reasoning about the network activity
and open ports, we can glean a tremendous amount of information including:

1. What IP addresses are insiders connecting to?
2. Where are the insiders and outsider located geographically?

3. How often and at what time of day are these services being used? Is this
activity normal or abnormal?

4. What IP addresses are outsiders connecting to?

5. Where are these outsiders located geographically?

As you may quickly realize, these questions are more difficult or even in some
cases impossible to answer when using active scanning methods, and force
direct interaction in response stimulation. In Chapter 4 we will provide scripts
that can collect and analyze targeted information that can assist in answering
at least some of these questions and provide the foundation for further ex-
panded development.

REVIEW

In Chapter 2, I examined the breadth of devices that may be running on your
network that are worth considering. I also discussed their associated risks. I
then setup a network capture using Linux and tcpdump to capture network
packets using promiscuous mode. By manually examining the results I extract-
ed the unique results shown. Next, I developed a Python script that would per-
form the same type of promiscuous capture, but focused on targeting network
activity associated with port 443, which is typically associated with the http
protocol over TLS/SSL.

The script also makes an educated guess and converted the typical source 1P
and destination IP into the more meaningful server vs client characterization.
This allowed me to automatically generate the unique list of client server inter-
actions occurring on port 443. Next, I examined the TCP/UDP Port mapping
and defined the ranges of well known, registered and ephemeral ports. I then
introduced the subtle differences between deductive and inductive reasoning
that will be used in future chapters and scripts. Next, I introduced a couple of
OS Fingerprinting methods that will be used in Chapter 4. And finally, we ex-
amined the additional benefits of Python Passive Network Mapping as applied
to behavior of trusted insiders and outsiders.

SUMMARY QUESTIONS

1. What additional network devices will be important to map and identify
on our networks and why?

2. How would you generalize the capture443.py script to allow for other

targeted captures?

. Expand the capture443.py script to implement these generalizations.

4. How might you expand capture443.py to create a comprehensive list of
unique observed combination of TOS, TTL, DF and Window Size? Then
implement the standalone solution.

w

Summary Questions m

m CHAPTER 2: What You DON'T Know About Your Network

5. What other OS Fingerprinting methods would be applicable to passive
mapping activities.

6. What passive network mapping operations would be best suited for
deductive reasoning?

7. What passive network mapping operations would be best suited for
inductive reasoning?

Additional Resources

SANS Intrusion Detection FAQ: http://www.sans.org/security-resources/idfaq/oddports.php
IANA - The Internet Assigned Numbers Authority: http://www.iana.org/
TCPDUMP and LIBPCAP: http://www.tcpdump.org/

Introduction to LOGIC, Seventh Edition 1986, by Irving M. Copi ISBN: 0-02-325020-8 McMillan
Publishing Company New York New York.

Might I also recommend a good TCP/IP text or two, e.g., Chappell & Tittell, Guide to TCP/IP or
Stevens, TCP/IP Illustrated, Vol. 1.1 would also offer my own “An Overview of TCP/IP Protocols
and the Internet” at http://www.garykessler.net/library/tcpip.html

http://www.sans.org/security-resources/idfaq/oddports.php
http://www.iana.org/
http://www.tcpdump.org/
http://www.garykessler.net/library/tcpip.html

CHAPTER 3

Capturing Network Packets
Using Python

“We are drowning in information, but starved for knowledge”
John Naisbitt

SETTING UP A PYTHON PASSIVE NETWORK MAPPING
ENVIRONMENT

Chapter 2 provided two initial, (yet incomplete) solutions to promiscuous
mode packet capturing. The first used the standard Linux tcpdump command
and the second a Python script that captured packets flowing to and from TCP
Port 443. The Python script developed in Chapter 2 provides a good founda-
tion for both the capture and extraction of key data from packets traversing the
network we are monitoring.

Switch Configuration for Packet Capture

At this point you might be asking how to configure an environment to begin
experimenting with packet capturing using these methods. Within most mod-
ern networking infrastructures, switches support port mirroring via a Switched
Port ANalyzer (SPAN) or Remote Switched Port ANalyzer (RSPAN). For my
experimentation and daily use, I'm using a TP-LINK 8 Port Gigabit Easy Smart
Switch TL-SG108E as shown in Figure 3-1. I have experimented with many
switches and hubs for this purpose, and for a low cost, reliable and easy to
configure device, this is the best that I have found so far.

The simplicity of the switch is based on a software application “Easy Smart
Configuration Utility”, shown in Figure 3-2, that comes with the switch. The
configuration utility allows for the configuration of all the features available
on the TL-SG108E.

For our purposes, the most important feature is the establishment of a mon-
itoring port that is usable for passively capturing network traffic. Figure 3-3
shows the configuration screen for port monitoring. In this example, I have
setup Port 8 to be the monitoring port and ports 2-7 to be monitored. This

CONTENTS

Setting up a Python
Passive Network
Mapping
Environment................ 37
Switch Configuration

for Packet Capture................ 37
Computing Resources 38
Storing Captured Data.......... 39
Storing the Captured

Packets - Python

Dictionaries............cccccouweeenn. 40
| PCbser vationDi ctionary
Class.......couwvveeveverrirrnirrnnrinn. 41
OSChservationDi ctionary
ClasS....oveerereirrrririnsriiianns 44
The Art of the Silent

Capture....ocooevvevrneenns 47

Python Source Code....48
Command Line Entry

and Execution of
P2NMAP-Capture.py............. 59

Summary Questions ...61

37

m CHAPTER 3: Capturing Network Packets Using Python

TPLINK &

FIGURE 3-1 TL-SG108E 8-Port Gigabit Switch.

means all traffic flowing in or out of ports 2-7 will be available for monitoring
on Port 8. Note, I purposely chose to leave port 1 out of the selection. I then
connect my sniffing appliance (my Linux computer in this case) to Port 8 of
the switch, and I can begin using tcpdump or the Python script developed in
Chapter 2 to silently capture network traffic and run experiments.

Computing Resources

Performing packet capture is both processor and memory intensive, so
for simple experimentation and demonstration almost any modern plat-
form will due. For the examples in this book, I focus on using Linux and

Easy Smarl Confliguration Ulility
! System | Switching Monitoring VLAN Qos Help B save & Home
£ Systemintd System Information
* IP Setting Device Description TL-SG108E
o \bis Accsont MAC Address: EB-DE-27-C6-DD-94
IP Address 192.168.0.100
Sibacoip and Reory Subnet Mask: 265.255.255.0
+ System Reboot Default Gateway: 192.166.0.1
Firmware Version: 1.1.0 Build 20140528 Rel. 33580
* Systemi Resel Hardware Version: TL-SG108E 1.0
= Firmware Upgrade
Device Description: TL-SG108E Apply

Note: The length of device description should not be more than 32 characters.

FIGURE 3-2 Easy Smart Configuration Utility.

Setting up a Python Passive Network Mapping Environment m

Ef:n:rc:ﬁ:ﬁ\ Litidity
| system Switching | Monitoring [VIAN QoS Hep _E_ Save f Home
« Port Statistics Port Mirror
Port Mirror Status: Mirroring Port: 8 .
* Cable Test Mirrored Port
* Loop Prevention Mirrored Ports: 0 | Apply

Note: If one portisin a trunk group, it can be neither mirroring port nor mirrored port

FIGURE 3-3 Port Monitoring Configuration using the Easy Smart Configuration Utility.

Windows. The scripts can be modified to run on Mac as well, but updates to
libcap, i fconfig etc. would be necessary. However, for use in real-world
environments where capturing packet data over several days or weeks will
require greater considerations, a minimum system would be configured as

follows:

m Dual Quad Core Processors 3GHz (in later chapters we will examine
multiprocessor separation threading of code)

m 64-128 GB of Memory
4 TB of Fixed Storage

10 Gbps NIC Card (if the network supports these speeds

Storing Captured Data

The next challenge that we face is the storage of the captured packets, including
the definition of what information I need to store. Python offers many internal
data structures for this purpose, and if you recall, in Chapter 2, I used Python
List Objects to store the captured data:

ipObservations =

osObservations =

m CHAPTER 3: Capturing Network Packets Using Python

Each entry of ipObservations List contains:
[serverlIP, clientlP, serverPort]

serverlP: The IP Address of the deduced Server
clientlP: The IP Address of the deduced Client
serverPort: The Port Number associated with the deduced Server

Each entry of osObservations contains a list which holds extracted TCP/IP
Header Data if the SYN flag was set for the packet. This data will be used later
as an aid to OS Fingerprinting.

[serverlP, TOS, timeToLive, DF, windowSize]

serverlP: The IP Address of the deduced Server

TOS: Type of Service Field
DF: Don’t Fragment bit; when set, a packet cannot be
fragmented

windowSize: Largest TCP receive window that the server can handle.

timeToLive: Sets the network hop limit for a packet life. TTL is
decremented by one each time it passes through a
router; once the value reaches zero, the packet is
discarded to avoid endless looping.

The nice thing about this approach it is quite simple, however, the Python List
contains duplicates, and due to the number of packets destined to be collected
we want to reduce the size of the packet information we store. So, we must be a
little more strategic. In addition, there is some additional information that will
be useful to record. Namely, the time that the packets are observed.

Storing the Captured Packets - Python Dictionaries

The question is how to do this without completely saturating the data that we
capture? Since the time of each packet would be different if we decide to store the
actually time value for each packet, we couldn’t remove duplicate serverliP,
ClientlP, serverPort packets from our captures. Thus, I have come up
with a method of retaining vital time based information regarding each packet,
without holding duplicate packets. In addition, this approach will allow for the
implementation of Python Dictionaries as the basic storage mechanism.

Python Dictionaries are built-in to the language and thus are quite useful. Fun-
damentally, Python Dictionaries are Key / Value pairs. Where the Key and Value
can be complex types such as Lists or Tuples.

What is a tuple? A tuple is a sequence of immutable Python objects. Tuples are sequences,
much like lists, however tuples can't be changed. The big benefit of tuples is that they are
hash-able objects and thus can be used as a Key within a dictionary.

Setting up a Python Passive Network Mapping Environment

Therefore, let’s create a dictionary Key / Value Pair to replace the ipObserva-
tions List.

Key = tuple(serverlP, clientlP, serverPort)
value =[0,0]

Each value entry is the number of occurrences of this combination per hour.
Note that there are 24 values representing each of the hours of the day. Here is
a code snippet that shows how to create a dictionary to do this. Obviously we
will be extracting the packet data dynamically and creating the dictionary and
key value pairs.

ipObserved = {} ¢ Create an empty dictionary
Create some fake observed key / value pairs
ipCbserved(["192.168.0.2", "129.168.0.39", 80]
ipObserved["192.168.0.2", "129.168.0.40", B0)
ipObserved["192.168.0.2", "129.168.0.41", 80]
Extract a value from a known key

value = ipObserved["192.168.0.2", "129.168.0.40", 80]

print out the wvalue

print wvalue

Script output

value = (0O, O, O, O, O, O, 5, O, O, O, O, O, O, O, O, O, 2, 0O, O, O, O, O, 9, O]

nwnn

(o,o,0,0,0,0,0,0,0,0
(0,0,0,0,0,0,5,0,0,0
(e,o0,9,9,0,0,0,0,0,0

IPObservationDictionary Class

Approaching the storage of the IP observations in this manner will allow me
to keep the size of the storage to a minimum by only recording the unique
connection observations (e.g., unique server—client connections). In addition,
I will be able to generate histograms of activities based on serverlIP, cli-
entlP and service type in future chapters based on the hour of the day.

To make this approach re-usable, I will create a class to handle the 1PObser-
vationDictionary. The class will be simple at first and will be enhanced
in later chapters when we begin to process the data collected by the Python
Capture process.

ipObservation Class Definition
and test code

import datetime # Python Standard Library date and time methods
import pickle # Python Standard Library pickle methods
#

Class: IPObservationDictionary

Desc: Handles all methods and properties
relating to the IF Observations

= %= 3k %k 3k

CHAPTER 3: Capturing Network Packets Using Python

class IPCbservationDictionary:
Constructor
def _ init (self):
#attributes of the Object
self.Dictionary = {} # Dictionary to Hold IP Chservations
Method to Add an observation
def AddOb(self, key):
Obtain the current hour

now = datetime.datetime.now()
hour = now.hour

Check to see if key is already in the dictionary
if key in self.Dictionary:

$# If yes, retrieve the current value
curValue = self.Dicticnaryl[key]

Increment the count for the current hour
curValue [hour-1] = curValuel[hour-1] + 1

Update the value associated with this key
self.Dictionary(key] = curValue

else:
if the key doesn't yet exist
Create one

curvalve = [0,0]

Increment the count for the current hour
curValue [hour-1] = curValue[hour-1] + 1

self.Dictionary[key] = curValue

Method to retrieve an obserwvation
If no observation found return None

def GetOb(self, key):

if key in self.Dictionary:
curValue = self.Dictionarylkey]
return curValue

else:
return None

Save the Current Observation Dictionary
to the specified file

Setting up a Python Passive Network Mapping Environment

def SaveCb(self, fileName):

with open(fileName, 'wb') as fp:
pickle.dump (self.Dictionary, fp)

Load in and CObservation Dictionary
from the specified file

def LoadQb(self, fileName):

with open(fileName, 'rb') as fp:
self.Dictionary = pickle.loads(fp.read())

Destructor Delete the Object

def _ del (self):
print "Closed"

End IPObservationDictionary Class

ipOB = IPObservationDictionary()

ipCB.AddOb(("192.168.0.2", "129.168.0.39", 80))
ipCB.AddCb(("192.168.0.2", "129.168.0.41", 80))
ipCOB.AddOb(("192.168.0.2", "129.168.0.41", 80))
ipOB.AddOb(("192.168.0.2", "129.168.0.41", 80))
ipOB.AddOb(("192.168.0.2", "129.168.0.41", 80))
ipOB.AddOb(("192.168.0.2", "129.168.0.39", 80))

print "Print out observed values\n"

theValue = ipOB.GetOb(("192.168.0.2", "129.168.0.41", 80))
print theValue

theValue = ipOB.GetOb(("192.168.0.2", "129.168.0.3%", 80))
print theValue

theValue = ipOB.GetOb{ ("192.168.0.2", "129.168.0.47", 80))
print theValue

Now save the observations to a file
ipOB. SaveOb ("SavedObservation.dict")

Now load the observations from a file
ipOB.LoadOb ("SavedObservation.dict")

Re-check the results are the same
print "Print out observed values after re-loading\n"

theValue = ipOB.GetOb(("192.168.0.2", "129.168.0.41", 80))
print theValue

thevValue = ipOB.GetOb(("192.168.0.2", "129.168.0.39", 80))
print theValue

theValue = ipOB.GetOb{ ("192.168.0.2", "129.168.0.47", 80))
print theValue

CHAPTER 3: Capturing Network Packets Using Python

Print out observed values

(o, o, 0, 0, o, o, 0, 0, 0, 0, 0, 0, 0o, 0o, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0]
(o, ¢, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, 2, 0, O, 0, O, 0]
None

Print out observed values after re-loading

(¢, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 0, O, O, O, 4, O, O, O, 0, Q]
[0 0, 0; 0; 0; D O0p O Q; 0, D, D0, 0; €@ @5 0, D, 0; :2; 0y 0, 0, 0, Q)
None

Closed

The example and resulting code run verifies that the Dictionary and Class are
functioning properly. We have validated each of the class methods:

init: Creates the empty dictionary

AddOb: Adds an observation to the dictionary. If the key does not
exist it will create a new entry. If the key exists it will simply
add the observation to the proper hour (time slot) for the

histogram.

GetOb: Attempts to retrieve and observation based on a key, the key
does not exist it return None.

SaveOb: Saves the current Dictionary Object to a file of our choice.

This will be useful if we which to periodically save the
Dictionary Object to a file.
LoadOb: Loads a previously saved Dictionary object.

OSObservationDictionary Class

Very similar to the IPObservationDictionaryClass, this class handles
the data storage operations of the operating system observations. These obser-
vations include:

The serverlP, TOS, timeToLive, DF, and windowSize, all of which were
defined earlier in the chapter.

OS0Observation Class Definition
and test code

import datetime # Python Standard Library date and time methods
import pickle # Python Standard Library pickle metheods
Class: OSObservationDictionary

Desc: Handles all methods and properties
relating to the OSCbservations

4= %= 3k = 3 3= 4

Setting up a Python Passive Network Mapping Environment

class 0SObservationDictionary:
Constructor
def _ init_ (self):
#Attributes of the Object
self.Dictionary = {} # Dictionary to Hold IP Observations
Method to Add an observation
def AddCb(self, key):
Obtain the current hour

now = datetime.datetime.now()
hour = now.hour

Check to see if key is already in the dictionary
if key in self.Dictionary:

If yes, retrieve the current value
curValue = self.Dictionary[key]

Increment the count for the current hour
curValue[hour-1] = curValuel[hour-1] + 1

Update the value associated with this key
self.Dictionarylkey] = curValue

else:
if the key doesn't yet exist
Create one

curvalue = [0,0]

Increment the count for the current hour
curValue[hour-1] = curValuelhour-1] + 1

self.Dictionary(key] = curValue

Method to retrieve an observation
If no cbservation found return None

def GetObiself,k key):

if key in self.Dictionary:
curValue = self.Dictionary[key]
return curValue

else:
return None

Save the Current Observation Dictionary
to the specified file

CHAPTER 3: Capturing Network Packets Using Python

En

0sOB

osCB.

o0s0B

0s0B.
osOB.

osOB

osCB.

prin

theV
prin

theVv
prin

def SaveOb(self, fileName):

with open(fileName, 'wb') as fp:
pickle.dump(self.Dictionary, fp)

Load in and Observation Dictionary
from the specified file

def LoadOb(self, fileName):

with open(fileName, 'rb'} as fp:
self.Dictionary = pickle.loads (fp.read())

Destructor Delete the Object

def del (self):
print "Closed"

d OSObservationDictionary Class

= OSObservationDictionary ()

AddOb({ ('23.235.39.223°', 0 535 Ly 14480)
.AddOb(('23.253.39.223', 0, %3, Lz 14480)
AddOb(('64.233.185.95"', 0, 42, 0, 42540)
AddOb(('64.233.185.95', 0, 4z, 0, 42540)
.AddOb(('66.153.250.240', 0, 57, 0, 28960)
AddOb({ ('66.153.250.240', 0, 57, 0, 28960)

t "Print out observed 0S values\n"

alue = 0sOB.GetOb(('23.235.39.223', 0, 53,
t theValue

alue = osOB.GetOb(('66.153.250.240', 0, 57,
t theValue

theValue = o0sOB.GetOb(('66.153.250.240', 0, 59,
t theValue

prin

Now save the observations to a file
0s0B. SaveOb ("Saved0SObservation.dict")

Now load the observations from a file
0s0B.LoadOb ("SavedOSChbservation.dict")

Re-check the results are the same

print "Print out observed values after re-loading\n"

theValue = osOB.GetOb(('23.235.38.223", 0; 535
print theValue

theValue = osOB.GetOb{ ('66.153.250.240', 0, 57,
print theValue

theValue = o0sOB.GetOb(('66.153.250.240', 0, 59,
print theValue

1,

0,

0,

14480)

28960)

28960)

14480)

28960)

28960)

)

)

)

)

)

)

The Art of the Silent Capture

Print out observed 0S5 wvalues

(o, o, o, 0, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O, O, O]
[0: U.r Ur Ur Oi’ O! UJ O.f 0: [Jt Ur Oi’ 0! (J.r Ut Ur Ur Oi’ 2! UJ Ur Ur GI U]
None

Print out observed wvalues after re-loading

(¢, ¢, 0, 0, 0, 0, O, O, O, Q,
(o, o0, 0, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O
None

Closed

o, 0, 2, 0, 0, 0, 0, 0]

THE ART OF THE SILENT CAPTURE

The next step is to enhance our primitive capture script developed in Chapter 2
with the following capabilities:

1. Allow for the capture of TCP or UDP packets specified on the command
line

2. Allow for storage of the capture packets into the newly created
IPObservationsClass

3. Allow for the storage of the Operating System Observations into the
newly created OSObservationsClass

4. Add a PrintOB method to both the IPObservation and
OSObservation classes, this will print the contents of the
observations

5. Allow the user to specify the time period of the capture

6. Save the results of capture to a file for later analysis

I have covered all of these individual steps and basic capabilities with the ex-
ception of the time period for the capture. In order to accomplish this I will
introduce the concept of signaling and raise an exception when the time expi-
ries. [will then integrate the specific exception handling operation in the main
loop of the script. This requires a few removed steps.

1. I create a class myT imeout that will propagate the exception into the
script when the handler fires

2. I create a signal handler that will catch the timeout when the set time
expires

3. I need to establish an alarm based on the duration of the capture. (Note
capture duration is represented in seconds).

4. Finally, within a try / except block, the specific timeout exception is
caught and the perpetual loop is terminated.

CHAPTER 3: Capturing Network Packets Using Python

Create timeout class to handle capture duration

class myTimeout (Exception) :
pass

Create a signal handler that raises a timeout event
when the capture duration is reached

def handler (signum, frame):
print 'timeout received', signum
raise myTimeout ()

Set the signal handler to the duraton specified by the user

signal.signal (signal.SIGALRM, handler)
signal.alarm(60) # set alarm for 60 seconds

try:
Create a perpetual loop
Inside a try / except block

while True:
do some work
a = 1+1

Catch the timeout this breaks the perpetual while loop
and allows the script to continue

except myTimeout:
pass

PYTHON SOURCE CODE

The final commented P2NMAP capture script shown here includes all the capabili-
ties defined above. I have also included a sample output from the capture script.

[will be creating the actual network map based on the results of this script in
following chapters.

(BN

Copyright (c) 2015 Chet Hosmer, cdh@python-forensics.org

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and permit persons to whom the Software is

furnished to do so, subject the following condition.
The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

[

Python Source Code

Python Packet Capture Script
Python Script to record IP and OS Observations
For Linux and Windows Platforms

Import Standard Library Modules

import argparse
import socket
import signal

import os

from struct import *
import datetime
import time

import pickle

import platform
import sys

Python Standard Library - Parser for command-line options, arguments
network interface library used for raw sockets

generation of interrupt signals i.e. timeout

operating system functions i.e. file I/o

Handle Strings as Binary Data

Python Standard Library date and time methods

Python Standard Library time methods

Python Standard Library pickle methods

Python Standard Library platform

Python Standard Library System Module

S oS S e e oSe Se e Se S

CONSTANTS
PROTOCOL_TCP = 6
PROTOCOL_UDP = 17
Name: ValDirWrite

Desc: Function that will validate a directory path as
existing and writable. Used for argument validation only

Input: a directory path string

Actions:
if walid will return the Directory String

if invalid it will raise an ArgumentTypeError within argparse
which will inturn be reported by argparse to the user

= S e S e e S SE S de S e Se Se

def ValDirWrite(theDir):

Validate the path is a directory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError ('Directory does not exist')

Validate the path is writable
if os.access(theDir, os.W_CK):
return theDir
else:
raise argparse.ArgumentTypeError ('Directory is not writable')

#End ValDirWrite

Create timeout class to handle capture duration

class myTimeout (Exception):
pass

Create a signal handler that raises a timeout event
when the capture duration is reached

m CHAPTER 3: Capturing Network Packets Using Python

def handler(signum, frame):
if VERBOSE:
print 'Capture Complete', signum
print

raise myTimeout (}

#
Class: IPObservationDictionary

Desc: Handles all methods and properties
relating to the IPOservations

e e W N W

class IPObservationDictionary:
Constructor
def init_ (self):
#attributes of the Object
self.Dictionary = {} # Dictionary to Hold IP Observations
Method to Add an observation
def AddOb(self, key):

Obtain the current hour

now = datetime.datetime.now ()
hour = now.hour

Check to see if key is already in the dictionary
if key in self.Dictionary:

If yes, retrieve the current value
curValue = self.Dictionary[key]

Increment the count for the current hour
curValue[hour=1] = curValuel[hour-1] + 1

Update the value associated with this key
self.Dictionaryl[key] = curValue

else:
if the key doesn't yet exist
Create one

curvalve = [0,0]

Increment the count for the current hour
curValue [hour-1] = curValue[hour-1] + 1

self.Dictionarylkey] = curValue

Method to retrieve an observation
If no observation found return None

def GetOb(self,key):

Python Source Code m

if key in self.Dictionary:
curValue = self.Dictiocnary[key]
return curValue

else:
return None

Print the Contents of the Dictionary
Print the Contents of the Dictionary
def PrintOb(self):
print "\nIP Observations"
print "Unique Combinations: ", str(len(self.Dictionary))

print

Print Heading

print ' t,
e b e S Hourly Observations ——-————————=—=—-
"
print '%16s' % "Server",
print '$16s' % "Client",
print '%7s' % "Port"™,
print '%5s' & "Type",
for i in range(0, 24):
print ' ',
print '%02d' % i,
print

Print Contents
for keys,values in self.Dictionary.items():

print '%16s' % keys[0],
print '$16s' % keys[1],
print '%7s' % strikeys([2]},
print '%5s' % keys[3],

for i in range(0, 24):
print '%4s' % str(values[i]),
print

Save the Current Observation Dictionary
to the specified file

def SaveOb(self, fileName):

with open(fileName, 'wb') as fp:
pickle.dump{self.Dictionary, £fp)

Load in and Observation Dictionary
from the specified file

def LoadOb(self, fileName):

with open(fileName, 'rb') as fp:
self.Dictionary = pickle.loads (fp.read())

Destructor Delete the Object
def _ del (self):

if VERBOSE:
print "Closed"

m CHAPTER 3: Capturing Network Packets Using Python

End IPObservationClass
#
Class: OSObservationDictionary

Desc: Handles all methods and properties
relating to the 0SCbservations

e

class OSCbservationDictionary:
Constructor
def _ init_ (self):
#attributes of the Object
self.Dictionary = {} # Dictionary to Hold IP Observations
Method to Add an observation
def AddOb(self, key):
Obtain the current hour

now = datetime.datetime.now()
hour = now.hour

Check to see if key is already in the dicticnary
if key in self.Dictionary:

If yes, retrieve the current value
curValue = self.Dicticnarylkey]

Increment the count for the current hour
curValue[hour-1] = curValue[hour-1] + 1

Update the value associated with this key
self.Dictionarylkey] = curValue

else:
if the key doesn't yet exist
Create one

curValve = [0,0]

Increment the count for the current hour
curValue[hour-1] = curValue[hour-1] + 1

self.Dictionary[key] = curValue

Method to retrieve an observation
If no observation found return None

def GetOb(self, key):

if key in self.Dictionary:
curValue = self.Dictionary[key]

return curValue

else:
return None

Print the Contents of the Dictionary

def PrintOb(self):

print "\n0S Observations"

print "Unique Combinations:

print

Print Heading

", str{len(self.Dictionary)

print °'

print ™|—=
___________________________________ "

print '%16s' % "Server",

print '%4s' % "TOS",

print '%4s' % "TTL",

print '%6s' % "DF",

print '%7s' % "Window",

for i in range(0, 24):

print " ',

print '%024' % i,

print

Print Contents

for keys,values in

self.Dictionary.items():

keys[0],

strikeys[1l]),
str(keys[2]),
str(keys[3]),
str(keys([4]),

% str(values[il),

print '$les' %

print '%4s' %

print '%4s' %

print 'ses' %

print '$7s' %

for i in range(0, 24):
print '%4s’

print

Save the Current Observation Dictionary
to the specified file

def SaveOb(self, fileName):

with open(fileName,

'wb') as fp:

pickle.dump{self.Dictionary,

Load in and Observation Dictionary

from the specified file

def LoadOb(self, fileName):

with open(fileName,
self.Dictionary = pickle.loads{fp.read()})

'rth') as fp:

Destructor Delete the Object

def del (self):
if VERBOSE:

print "Closed"

End OSObservationClass

fp)

Python Source Code m

Hourly Observations ---—--——-——-—-—--

CHAPTER 3: Capturing Network Packets Using Python

#
#
#
#
#
#
#

Qutput:

PacketExtractor
Purpose: Extracts fields from the IP and TCPF Header

buffer from socket.recvfrom() method
serverIP, clientIP, serverPort

Input: packet:

list:

def PacketExtractor (packet):

if PLATFORM == "LINUX":
ETH_LEN = 14 # ETHERNET HDR LENGTH
IP_LEN =20 # IP HEADER LENGTH
UDP_LEN = 8 # UPD HEADER LENGTH

elif PLATFORM

]

= "WINDOWS":

ETH_LEN =0 # ETHERNET HDR LENGTH

IP LEN = 20 # IP HEADER LENGTH

UDP_LEN = 8 # UPD HEADER LENGTH
else:

print "Platform not supported"

quit()

ethernetHeader=packet [0:IP_LEN]

#Strip off the first 20 characters for the ip header
ipHeader = packet[ETH LEN:ETH_LEN+IP LEN]

#now unpack them

ipHeaderTuple = unpack('!BBHHHBBH4s4s' , ipHeader)

unpack returns a tuple, for illustraticon I will extract

each individual values

Field Contents
verLen = ipHeaderTuple[0] # Field 0: Version and Length
TOS = ipHeaderTuple[1] # Field 1: Type of Service
packetLength = ipHeaderTuple[2] # Field 2: Packet Length
packetID = ipHeaderTuple[3] # Field 3: Identification
flagFrag = ipHeaderTuple[4] # Field 4: Flags and Fragment Offset
RES = (flagFrag >> 15) & 0x01 # Reserved
DF = (flagFrag >> 14) & 0x01 # Don't Fragment
MF = (flagFrag >> 13) & 0x01 # More Fragments
timeToLive = ipHeaderTuple[5] # Field 5: Time to Live (TTL)
protocol = ipHeaderTuple[6] # Field 6: Protocol Number
checkSum = ipHeaderTuple[7] # Field 7: Header Checksum
sourcelP = ipHeaderTuple[8] # Field B: Source IP
destIP = ipHeaderTuple[9] # Field 9: Destination IP
Calculate / Convert extracted values
version = verLen >> 4 # Upper Nibble is the version Number
length = verLen & OxOF # Lower Nibble represents the size
ipHdrLength = length * 4 # Calculate the header length in bytes

covert the

sourcelddress
destinationAddress =

socket.inet ntoa(sourcelP);
socket.inet_ntoa(destIP);

if protocol == PROTOCOL_TCP:

source and destination address to typical dotted notation string:

Python Source Code m

stripTCPHeader = packet [ETH LEN+ipHdrLength:ipHdrLength+ETH_LEN+IP LEN]

unpack returns a tuple, for illustration I will extract
each individual values using the unpack() function

tcpHeaderBuffer = unpack('!HHLLBBHHH' , stripTCPHeader)

sourcePort = tcpHeaderBuffer[0]
destinationPort = tcpHeaderBuffer[1]
sequenceNumber = tgpHeaderBuffer[2]
acknowledgement = tcpHeaderBuffer[3]
dataOffsetandReserve = tcpHeaderBuffer([4]
tcpHeaderLength = (dataOffsetandReserve >> 4) * 4
flags = tcpHeaderBuffer([5]
FIN = flags & 0x01
SYN = (flags >> 1) & Ox01
RST = (flags >> 2) & 0x01
PSH = (flags >> 3) & 0x01
ACK = (flags >> 4) & 0x01
URG = (flags >> 5) & 0x01
ECE = (flags »> 6) & 0x01
CWR = (flags >> 7) & 0x01
windowSize = tcpHeaderBuffer[6]
tocpChecksum = tcpHeaderBuffer[7]
urgentPointer = tcpHeaderBuffer (8]
if sourcePort <= 1024: # Assume server IP is server
serverlP = sourcelAddress
clientIP = destinationAddress
serverPort = sourcePort
status = True
elif destinationPort <= 1024: # Assume destination IP is server
serverIP = destinationAddress
clientIP = sourcelddress

serverPort = destinationPort
status = True
elif sourcePort <= destinationPort: # Assume server IF is server
serverlP = sourcelddress
clientIP destinationAddress
serverPort = sourcePort
status = True
elif sourcePort > destinationPort: # Assume distinatin IP is server
serverlP = destinationAddress
clientIP = sourcelddress
serverPort = destinationPort
status = True
else: # Should never get here
serverlP = "FILTER"
clientIP = "FILTER"
serverPort = "FILTER"
status = False

return(status, (serverIP, clientlIP, serverPort, "TCP"), [SYN, serverIP, TOS, timeToLive,
DF, windowSize])

elif protocol == PROTOCOL_UDP:
stripUDPHeader = packet [ETH LEN+ipHdrLength:ETH_LEN+ipHdrLength+UDP_ LEN]

unpack returns a tuple, for illustration I will extract
each individual wvalues using the unpack() function

udpHeaderBuffer = unpack('!HHHH' , stripUDPHeader)

m CHAPTER 3: Capturing Network Packets Using Python

sourcePort = udpHeaderBuffer[0]

destinationPort = udpHeaderBuffer[1l]

udpLength = udpHeaderBuffer([2]

udpChecksum = udpHeaderBuffer[3]

if sourcePort <= 1024: # Assume server IP is server
serverIP = sourcelddress
clientIP = destinationAddress

serverPort = spurcePort
status = True

elif destinationPort <= 1024: # Assume destination IP is server
serverlP = destinationAddress
clientIP = sourcehddress

serverPort = destinationPort
status = True
elif sourcePort <= destinationPort: # Assume server IP is server
serverlIP = sourcelAddress
clientIP = destinationAddress
serverPort = sourcePort
status = True
elif sourcePort > destinationPort: # Assume distinatin IP is server
serverIP = destinationAddress
clientIP sourcelddress
serverPort = destinationPort
status = True
else: # Should never get here
serverlIP = "FILTER"
clientIP = "FILTER"
serverPort = "FILTER"
status = False

return(status, (serverIP, clientIP, serverPort, "UDP"),
["FILTER", "FILTER", "FILTER", "FILTER", "FILTER", "FILTER"]]}
else:
return{ False, ("Filter", "Filter", "Filter", "FILTER"),

[*"FILTER", "FILTER", "FILTER", "FILTER", "FILTER", "FILTER"])

#

Class Spinner

#

Used to display a spinning character on the screen to show progress
#

#

class Spinner:
Constructor
def _ init (self):

self.symbols

- [I |I’ n /l' Al A" L} \\l' Al I!' L} \\l' n _!’ IENDI]
self.curSymbol =

0

sys.stdout.write("\b\b\b%s " % self.symbols[self.curSymbol])
sys.stdout.flush()

def Spin(self):
if self.symbols[self.curSymbol] == 'END':
self.curSymbol = 0

sys.stdout.write ("\b\b\b%s " % self.symbols[self.curSymbol])
sys.stdout.flush ()
self.curSymbol += 1

Python Source Code

End Spinner Class
Main Program Starts Here
if _name == "'__main_':
Setup Argument Parser Object
parser = argparse.ArgumentParser ('F2NMAP-Capture')
parser.add_argument('-v', '--verbose', help="Display packet details", action='store_true')
parser.add argument('-m', '--minutes', help='Capture Duration in minutes', type=int)
parser.add argument('-p', '--outPath', type= ValDirWrite, required=True, help="Qutput
Directory")

theArgs = parser.parse_args()

VERBOSE = theArgs.verbose

Calculate capture duration
captureDuration = theArgs.minutes * &0

try:

Note script must be run in superuser mode
i.e. sudo python ..

if platform.system() == "Linux":
PLATFORM = "LINUX"
Enable Promiscuous Mode on the NIC
Make a system call
Note: Linux Based
ret = os.system("ifconfig eth0 promisc")
if ret != 0:
print 'Promiscuous Mode not Set'

gquit ()

create a new socket using the python socket module

PF_PACKET : Specifies Protocol Family Packet Level

SOCK_RAW : Specifies A raw protocol at the network layer

socket.htons (0x0800) : Specifies all headers and packets

: Ethernet and IP, including TCF/UDP etc

Attempt to open the socket for capturing raw packets
rawSocket=socket.socket (socket.PF PACKET, socket.SOCK RAW,socket.htons (0x0800))
Set the signal handler to the duraton specified by the user

signal.signal (signal.SIGALRM, handler)
signal.alarm(captureDuration)

elif platform.system() == "Windows":
PLATFORM = "WINDOWS"
For the Windows Platform the setup is also different
Retreive our our IP Address to bind to

hostname = socket.gethostname ()
host = socket.gethostbyname (hostname)

m CHAPTER 3: Capturing Network Packets Using Python

Create a rawSocket

rawSocket = socket.socket (socket.AF INET, socket.SOCK_RAW, socket.,IPPROTO IP)
Set the socket Options

rawSocket.setsockopt (socket.IPPROTO_IP, socket.IP HDRINCL, 1)

Bind to our host

rawSocket.bind((host,0))

Set socket to receive all packets

rawSocket.ioctl (socket.SI0O_RCVALL, socket.RCVALL_ON)

startTime = time.time()

endTime = startTime + captureDuration
else:
print "Platform not supported”
quit ()
except:
print "Socket Error"
quit ()
if VERBOSE:

print "Network : Promiscuous Mode"
print "Sniffer : Ready: \n"

Create a Spinner Object for displaying progress
obSPIN = Spinner ()

Create IP and 0S5 observation dicticnaires

ipOB IPObservationDictionary ()
0s0B = OSObservationDictionary()

Create a perpetual loocp, we will be
interrupted by the timeout walue only

packetsCaptured = 0
try:
while True:

attempt to recieve (this call is synchronous, thus it will wait)
receivedPacket=rawSocket.recv(65535)

packetsCaptured += 1 # Count the captured packets

if VERBOSE:
Update the Display
obSPIN.Spin()

decode the received packet
call the local packet extract function above

status, osContent, fingerPrint = PacketExtractor (receivedPacket)

If status returns true
we can process the results

if status:

Add content to ipObservations
ipOB.AddOb (osContent)

if fingerPrint([0] == 1:
osContent = tuple(fingerPrint[l:])
0s0B.AddOb (osContent)

else:
Not a valid packet
continue

if PLATFORM == "WINDOWS":
if time.time() > endTime:
raise myTimeout

except myTimeout:
pass

Capture Complete
if VERBOSE:

print "\nTotal Packets Captured: ", str{packetsCaptured)
print

ipOB.PrintOb()
0sOB.PrintOb ()

print "\nSaving Observations ext: .ipDict and .osDict"

ipOutFile = datetime.datetime.now() .strftime ("$¥Y¥m%d-%HEMES")+".ipDict"
osQutFile = datetime.datetime.now() .strftime ("%$Y%méd-$HEMES")+",08Dict"

ipOutput = os.path.join(theArgs.outPath, ipQutFile)
osOutput = os.path.join(theArgs.outPath, osOutFile)

ipOB. SaveOb (ipOutput)
0sOB.SaveOb (osOutput)

if PLATFORM == "LINUX":
Disable Promiscuous Mode on the NIC

Make a system call
Note: Linux Based

ret = os.system("ifconfig eth0 -promisc")

elif PLATFORM == "WINDOWS":
rawSocket.ioctl (socket.SIO_RCVALL, socket.RCVALL OFF)

else:
print "Platform not supported"
quit (}

Close the Raw Socket
rawSocket.close ()

Command Line Entry and Execution of
P2NMAP-Capture.py

Windows: (note the command prompt must be launched with Administrator
Rights:

pyt hon P2NMAP- Capture.py -v -m2 —p ./

Linux:

sudo python P2NMAP-Capture.py -v —-m 2 —-p ./

Python Source Code m

(%)
X
>
=
1
m
P
w

Network : Promiscuous Mode
Sniffer : Ready:

Total Packets Captured: 2195

IP Observations

O

[}

-]

~

c

=

3

(=]

Unique Combinations: 33 2

(1]

| Hourly Observations | ~

Server Client Port Type 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17, 18 19 20 21 22 23 i

192.168.0.255 192.168.0.6 8612 UDP 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 o

91.189.92.152 192.168.0.19 80 TCP 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 =

1275020551 127502051 53 UDP 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 Py

192.168.0.11 255.255.255.255 17500 upP 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 L]

192.168.0.11 239.255.255.250 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 '™

91..189..92.191 192.168.0.19 80 TCP 0 [¢] 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 a

255.255.255.255 192.168.0.14 8611 UDP 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 =

0.0.0.0 255.255.255.255 68 UDP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)

192.168.0.11 192.168.0.255 137 UDP 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 —

239.255.255.250 192.168.0.12 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 (7]

209.18.47.61 192.168.0.19 53 UDP 0] 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 c
192.168.0.5 224.0.0.251 5353 UDP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

224.0.0.1 192.168.0.6 8612 UDP 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 E.

255.255.255.255 192.168.0.14 8612 UDP 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 =

239.255.255.250 192.168.0.13 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 (=]
169.254.7.79 224.0.144.1 52613 UDP 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0

192.168.0.14 255.255.255.255 17500 UDP 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 3

192.168.0.6 192.168.0.255 17500 UDP 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 ‘f-

192.168.0.14 192.168.0.255 138 UDP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 =/

239.255.255.250 192.168.0.4 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 =)

209.18.47.62 192.168.0.19 53 UDP 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 =1
91.189.91.24 192.168.0.19 80 TCP 0 0 0 0 0 0 0 0 0 0 0 1340 0 0 0 0 0 0 0 0 0 0 0 0
192.168.0.11 192.168.0.255 17500 UDP 0] 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
91.189.91.14 192.168.0.19 80 TCP 0 0 0 0 0 0 0 0 0 0 0 596 0 0 0 0 0 0 0 0 0 0 0 0
255.255.255.255 192.168.0.11 1947 UDP 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
224.0.0.252 192.168.0.11 5355 UDP 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
239.255.255.250 169.254.7.79 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
192.168.0.6 255.255.255.255 17500 UDP 0] 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
239.255.255.250 192.168.0.18 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
239.255.255.250 192.168.0.14 1900 UDP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
127.0.0.1 127:0:20":1: 41637 TCP 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
192.168.0.14 192.168.0.255 17500 UDP 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
192.168.0.255 192.168.0.11 1947 UDP 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0S Observations

Unique Combinations: 4
=== Hourly Observations |
Server TOS TTL DF Window 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
91.189.91.14 40 50 1 14480 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0 Q 0 0 0 0 0 0 0 0
91.189.92.152 0 48 1 14480 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
91.189.92.191 0 49 i 5792 0 0 0 0 0 0 0 0 0 0 0 d. 0 0 0 0 0 0 0 0 0 0 0 0
91.189.91.24 40 47 1 28960 0 0 Q 0 0 0 0 0 0 0 0 1 0 0 0 Q 0 0 0 0 0 0 0 0

Saving Observations ext: .ipDict and .osDict
Closed
Closed

REVIEW

In Chapter 3, we examined the rules of thumb necessary to setup a packet
capture environment, including the discussion of switch selection and con-
figuration along with system hardware considerations. Next, we examined the
“kind-of” information that is required to collect from network packets that
will eventually aid in the passive mapping of a network and operating system
fingerprinting. I then considered different Python data types that could dy-
namically store the packet results, and the Python Dictionary was chosen as the
data storage type. Special consideration was given to the construction of these
dictionaries in order to eliminate duplicate observations. In addition, I devised
a method for including a basic histogram of similar packet occurrence for each
unique combination of Server 1P, Server Port and Client IP. At
this point I designed two classes: 1PObservationsDictionary and 0S-
ObservationDictionary that handle creation, adding, reading, loading,
saving and printing of the associated Dictionary. I then revealed the concept
of signaling to handle a time based capture of packets. Finally, I combined all
these capabilities into a single script to perform packet capture and storage.

SUMMARY QUESTIONS

1. What additional information might be useful for network mapping or
OS Fingerprinting to store about each packet without disrupting the
reduction of duplicate entries?

2. For packets with both source IP and Destination IP addresses above
1024, what method could be developed to better establish server vs.
client identity.

3. How might we filter out specific packet types or IP ranges from our
capture in order to reduce the storage requirements?

Additional Resource

O’Connor, T.J., 2013. Violent Python: A Cookbook for Hackers, Forensic Analysts, Penetration
Testers and Security Engineers. Elsevier, ISBN-13: 978-1597499576, Chapter 4, Network Traf-
fic Analysis with Python.

Summary Questions _

CHAPTER 4

Packet Capture Analysis

“All great truths are simple in final analysis, and easily understood; if they
are not, they are not great truths.”
Napoleon Hill

PACKET CAPTURE ANALYSIS

Now that we have “P2NMAP-Capture.py” in hand, a Python Packet Capture
Tool that performs well on both Windows and Linux platforms, along with
creating a dictionary of time collected results, we now can perform some useful
analysis of the collected data.

As you observed in Chapter 3, the tool produces two output files:

02/06/2015 01:24 PM 10,737 20150206-132401.1ipDict

02/06/2015 01:24 PM 6,906 20150206-132438.0sDict

20150206-132401.ipDict contains the Internet Protocol Observations Diction-
ary, and 20150206-132438.0sDict contains the Operating System Observations
Dictionary. In this chapter I focus on the analysis of the .ipDict observations.

A key aspect of the P2NMAP approach is to passively monitor network traffic
and record the results without ever placing a packet on the network. A second
key is to collect data over a period of time, measured in at least hours - if not
days. This approach is in direct contrast with active mapping methods that
probe network devices, and there are advantages and disadvantages to both
methods.

One of the key advantages of the passive approach is to be able to observe the
behavior of network devices over the course of days or even weeks and map
behaviors of both servers and clients over the period.

CONTENTS

Packet Capture
Analysis......ccoervineenen. 63
Setting up Options for
Analysis........cccoeveninn b4
Loading an Observation
L 65
Direct Program

OUEPUL oo 6
Specifying the Host Lookup
OPtION covoveerrvssrieiiie 68
Specifying the Country

Lookup Option............ccouee.. 69

Performing Analysis ... 71
Printing Observations All......72

Printing the Observed
SEIVEIS..ovvvermsrreiissrresnssseens T4
Printing the Observed

CUENES oo, 76
Printing the Observed Server
to Client Connections............ 77
Printing a Histogram of
0bServations................ou. 80
Final P2NMAP-Anaysis.py
Script Complete Source

COUE ..o 84
RevView ..., 97

Summary Questions ... 97

63

m CHAPTER 4: Packet Capture Analysis

Yet another important aspect of the technical approach is the development
of the i pCbservati onDi cti onary Class. Using a class for this purpose
allows us to re-use the class as a starting point for the development of the
analysis methods. For example, the class already contains methods to save
and load IP Dictionary Files, along with methods to print out the Internet
Protocol observations stored in the currently loaded dictionary. By extend-
ing the capabilities of the class and the resulting instantiated objects, we can
provide a straight-forward method to advance the analysis capabilities now
and in the future.

The initial set of methods that are to be added to the i pCbser vati onDi c-
ti onary Class over the capture period include:

Load an Observation File

Print out all the recorded observations

Print the unique list of identified servers along with ports in use
Print the unique list of identified clients

Print the unique connection list (servers to client) with port details
Print 24 hour histogram of activity for each unique server / client
connections

AN e

In addition, to this base set of analysis items, I have also provided three special
lookups to provide additional information for the analyst. They include:

1. Port Number to Port Name Conversion

2. Host Name Lookup based on IP Address (note this requires Internet
Access)

3. Country Location based on the IP Address

To access these capabilities I have created a simple menu driven script,
P2NMAP-Analyze.py to perform the defined analysis operations. Figure 4-1
depicts the P2NMAP-Analyze.py menu.

In the following sections, I will discuss the operation, implementation and
rationale for each menu operation.

SETTING UP OPTIONS FOR ANALYSIS

Before we begin to execute the analysis methods themselves, several options
are necessary to set within the interface. They include:

1. Loading an Observation File

2. Directing the Program Output

3. Specifying the Host Lookup Option

4. Specifying the Country Lookup Option

=zzzzzzzz= P2NMAP Analysis Menu

Setting up Options for Analysis m

Stdout)
Host Lookup Off)
Country Lookup Off)

Current Observation File: test.ipdict
[L] Load Observation File for Analysis
[0] Direct Output to File (Current =
[H] Turn On Host Lookup (Current =
[C] Turn On Country Lookup (Current =
[1] Print Observations (AaLL)

[2] Print Servers (Unique)
[3] Print Clients (Unique)
[4] Print Connections (Unique by

[5] Print Histogram
[X] Exit P2NMAP Analysis

Enter Selection:

FIGURE 4-1 P2NMAP Analysis Menu.

Loading an Observation File

Server)

Loading an observation file is quite straight-forward. During the capture pro-
cess I saved the ipDict file using Python’s built in Pickle Module. The Python
Standard Library module, pickle provides the ability to pickle and un-pickle an
object, where pickling converts any Python object such as a list, set, dictionary
or any other object into a character stream. The character stream contains all
the information that would be necessary to reconstruct the object within an-
other Python script. This is exactly what we wanted to do as I have de-coupled
the capture and analysis capabilities of P2NMAP. Since I wanted to provide a
completely Python-based solution for Passive Network Mapping, I separated

the operations in this manner.

script that will accomplish this process.

If you wanted to use a .pcap file or other packet capture method, you would simply extract
data from the .pcap file and create a Python dictionary object. Then the P2ZNMAP-Analysis.py
script could then be applied to the resulting pickled dictionary file. Note: See Chapter 5 for a

The only two methods that are necessary to accomplish this are:

pickle.dump (self.Dictionary, £fp)

self.Dictionary = pickle.loads (fp.read())

Write the Object out to a File

Read the Object in from a File

where sel f. Di cti onary is the Dictionary object I wish to save or load. The

object f p is the File Pointer to either the output or input file.

m CHAPTER 4: Packet Capture Analysis

I added the following method to the class | PCbservati onDi cti onary as
shown below:

Load in an Observation Dictionary

from the specified file

def LoadOb(self, fileName):
try:
with open(fileName, 'rb') as fp:

self.Dictionary = pickle.loads (fp.read())

self.observationFileName = fileName
self.observationsLoaded = True
except:
print "Loading Observations - Failed"

self.observationsLoaded = False

WA

self.observationFileName =

If the method is successful it sets the object attributes:

m sel f.observati onsLoaded to True
m sel f.observationFi | eNane to the file name that was loaded.

These two attributes are used by other methods within the class | PCbser va-
tionDictionary.

However, if the load fails, the sel f. observati onsLoaded attribute is set
to False and the sel f. observati onFi | eNane is set to blank. In addition
an error message is displayed to the user.

As you will see during the operation of the script, no other operations will be
available to the user until a valid observation file is successfully loaded.

Direct Program Output

One of the questions that I get quite often is: How do I use the same print
statement to direct output to either ‘standard out’ or to a file. The problem with
using the redirect symbol, * > " as shown here....

$ pyt hon P2NVAP- Anal ysi s.py > results.txt

....is that all messages are sent to the results file including prompts, informational
and warning messages. This can be solved using the following method in Python:

Setting up Options for Analysis

[create a variable named OUT and set it equal to the result of an open method
such as the one shown below. I then preface every print message with pri nt
>> QUT, and whatever follows is then written directly to the output file, re-
gardless of the complexity. This will ensure that the output file will look exactly
like the output that would have been displayed on the screen using ‘standard
out..

OUT = open("results.txt", 'w+')

print >> QUT, “This is a message”
The question then becomes, how do I then direct the output to ‘standard out’?

That turns out to be the easy part if you know your way around the Python
Standard Library module. If the QUT variable is global, then by allowing the
user to change the variable, the output will be directed to the proper output, in
this case either standard out or the file results.txt.

OUT = sys.stdout
print >> QUT, “This is a message”

To implement this in the module, I create a toggle allowing the user to change
the output direction between ‘standard out’ and a file. This way, the analyst
can review the output on the screen and then once they are satisfied with the
results they can toggle and have the function output directed to the file. Note,
this is a good technique to use within any forensic related script. Here is the
code excerpt that performs the toggle when the user selects the ‘O’ output op-
tion from the menu. Notice that I perform the close method, OUT. cl ose()
when switching from file output back to STDOUT. This ensures that the file
will be closed and all data will be written to the file. Also, I open the output file
using “w+”, meaning that data will be appended to the results.txt file.

elif menuSelection == '0':
if PRINT_ STDOUT:
PRINT STDOUT = False
QUT = open("results.txt", 'wt+')
else:
PRINT_STDOUT = True
OUT.close()

OUT = sys.stdout

m CHAPTER 4: Packet Capture Analysis

Specifying the Host Lookup Option

One of the important aspects of passive network capture is the mapping of IP
addresses to Host Names. This is done using network address translation, in
this case from IP address to Host Name. In the spirit of this book (so far), I
want to perform this lookup using native Python code and Python Standard
Libraries. It turns out that this is quite simple to do, but just a word of warn-
ing this will take time and Internet access to accomplish. Once again I will
use the toggle method within the menu system to provide the user with the
option of turning Host Lookup on or off, with the default being Host Lookup
is off.

elif menuSelection == 'H':

if HOST LOOKUP:

HOST_LOOKUP = False
else:
HOST_LOOKUP = True

The HOST_LOOKUP variable is then evaluated by each of the analysis methods.
If the HOST_LOOKUP is true, then the analysis methods will translate the IP
address into the related host name. The code to perform this lookup utilizes
the Python Standard Library Module, socket and only requires a single socket
call to accomplish this:

tey:
1f caller requested hostname lookup
perform the lookup, else set name to blank

if HOST_ LOOKUP:

hostName = socket.gethostbyaddr (serverIP)
else:
hostName = ["", "", ""]
except:
hostName = ""

continue

Setting up Options for Analysis m

It is important to note that the socket . get host byaddr () returns a triple.

According to the Python Standard Library Reference: “The Triple (hostname, aliaslist, ipad-
drlist) where hostname is the primary host name responding to the given ip_address, aliaslist
is a [possibly empty] list of alternative host names for the same address, and ipaddrlist is a
list of IPv4/v6 addresses for the same interface on the same host (most likely containing only
a single address).”

For our application we are only interested in the first element of the triple,
the name of the host. If exceptions occur during the call (in other words, the
host name could not be associated with a specific IP address), I fill the triple
with blanks so when those elements are accessed in the code, they are simply
printed as blanks.

Specifying the Country Lookup Option

When investigating server and client IP addresses, one of the typical questions
that arises is “Where is the IP located geographically?” In some cases this is
difficult to confirm if the server or client are attempting to anonymize their
locations, however for most cases the mapping of IP address to a general geo-
graphic region is possible.

To handle this specific lookup I'm going to use a Python 3rd Party Library and
dataset. The 3rd Party Library is pygeoi p.

To install the pygeoi p library within your Python Environment you can use
pip. Pip is the most popular Python package management system, and is used
to install and manage 3rd party packages written in Python. The pygeoi p
library is installed from the command line; note that the pip package manage-
ment system must already be installed.

$ pip install pygeoip
Or

C:\> pip install pygeoip

Once pygeoi p is installed, you must also download the latest database from
MAXMIND developer website at: http://dev.maxmind.com/geoip/legacy/geolite/

For the examples in this chapter I downloaded the GeoLite Country Binary/
Gzip Version as shown in Figure 4-2. I then unzipped and placed the geo.dat
file in my source directory for easy access. Note, I changed the name to geo.dat
as the unzip generates GeolP.dat, this way when I download updates I can keep
track of new vs old.

http://dev.maxmind.com/geoip/legacy/geolite/

CHAPTER 4: Packet Capture Analysis

Downloads

Database

Geolite Country

Geolite Country IPvG Download
Geolite City Download
Geolite City IPv6 (Beta) Download
Geolite ASN Download
Geolite ASN IPv6 Download

Binary f xz
Gzip only
Gzip only
Download
Gzip only
Gzip only

Gzip only

CsV [gzip
Zip only
Download

Zip and xz only
Download

Zip only

Zip only

CSV [zip
Download
Gzip only
Download
Gazip only
Download

Download

The Geolite Legacy databases may also be downloaded and updated with our GeolF Update program.

FIGURE 4-2 MAXMIND GeoLite Country Database Binary/Gzip Version.

Following the instructions on the MAXMIND web site, I included the state-

G5V /xz
Zip only
Gzip only
Download
Gzip only
Zip only

Zip only

ment as required when importing the 3 Party Library as shown below.

3rd Party Libraries

import pygeoip # 3rd Party Geo IP Lookup

to install geoipy from the command line: pip install pygeoip

This product includes Geclite data created by MaxMind, available from

http://www.maxmind.com:

Now that the pygeoi p library and associated database geo.dat are installed,
I can use them to associate an IP Address with a country. I created a simple
function to call and return the country name. If no country can be associated

with the given IP address a blank string is returned.

#
Country Lookup
#

def GetCountry(ipAddr):

geo.dat downleoad from http://dev.maxmind.com/geoip/legacy/geolite/

gi = pygeoip.GeoIP('geo.dat')

return gi.country name by addr (ipAddr)

End GetCountry Function

As with the Host Lookup Method, I provide a toggle that will either set the
COUNTRY_LOOKUP variable to True or False depending upon the current state.
This is accomplished by the user specifying ‘C’ option as shown here:

elif menuSelection == 'C':
h i B COUNTRY LOOKUP:

COUNTRY LOOKUP

False

else:

COUNTRY LOOKUP True

Then anywhere in the code where inclusion of the Country Name would
be appropriate the COUNTRY_LOCKUP variable is interrogated and used
accordingly.

if Country Lookup is selected

perform the lookup, else set Country to blank

if COUNTRY LOOKUP:

countryName = GetCountry(serverIP)

else:

"

countryName =

PERFORMING ANALYSIS

Now that the perfunctory setup is complete, we can execute the individual
analysis operations. They include:

. Printing all observations contained within the loaded observation file
. Printing the Observed Server List

. Printing the Observed Client List

. Printing the Observed Server to Client Connections

. Printing the Histogram of Observations

U W N~

Performing Analysis _

CHAPTER 4: Packet Capture Analysis

Printing Observations All

The printing out of all the Observations simply requires extracting each
dictionary entry and printing out the contents. This includes the Server IP
Address, Client IP Address, Server Port Number, Port Type (TCP or UDP)
along with the number of observations of this unique combination occur-
ring during each hourly period. The method to perform this operation is
shown below.

Print the Contents of the Dictionary

def PrintOb(self):
print >> QUT, “\nIP Observations"
print >> OUT, "Unique Combinations: ", str(len{self.Dicticnary)})
print >> OUT

print Heading

print >> OUT, " P
PNt DTS Bt s e e e e e R e Hourly Observations --------

print >> OQUT, '%$16s' % "Server",
print >> OUT, '%l6s' % "Client",
print >> OUT, '$7s" % "Port",
print >> OUT,'%5s' & "Type",

for i in range(0, 24):

print >> OUT;"' ',

print >> OUT,'%024d' % i,
print >> OUT

Print Contents
for keys,values in self.Dictionary.items():

print >> OUT, '%16s' % keys[SERVER],
print >> OUT, '%16s' % keys[CLIENT],
print >> OUT, "%7s' % str(keys[PORT]),
print >> QUT,'%5s' % keys|[TYPE],

for i in range(0, 24):

print >> OUT, '%4s' % str(values[i]),
print >> OUT

Executing this code produces the following (abbreviated) result

IP Observations

Unique Combinations: 3358
| Hourly Observations
Server Client Port Type
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
107.22.247.75 192.168.0.10 80 TCP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0
63.245.217.162 192.168.0.19 443 TCP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0
64.34.191.25 192.168.0.10 80 TCP 0 L 0 0
54.236.165.101 192.168.0.10 80 TCP 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0
Abbreviated

54.85.196.104 192.168.0.10 80 TCP 0 0 0 64 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
192.168.0.8 192.168.0.1 3893 TCP 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 12 0
192.168.0.8 192.168.0.1 4431 TCP 0 0 0 0 0 10 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P2NMAP Analysis Menu

CHAPTER 4: Packet Capture Analysis

Printing the Observed Servers

The next analysis function will iterate through the dictionary and provide a
sorted list of observed servers. For each server a list of observed service ports
supported by the server are also listed. In addition, details such as geolocation
(i.e. country), host name and port description will be included based upon the
settings specified by the user. The method developed to extract these details
from the observations dictionary is shown below.

PrintUniqueServer List

Method to Print to Standard Out each Server IP
Options include: lookupHost and lookupCountry

If selected, they will perform the respective lookups
and report data received

A= A A e A G H3e a3

def PrintServers (self):

print >> OUT, "\nUnigue Server List\n"
print >> OUT, "——————— e e e e e e e — -

Create "set" of server IP addresses
from the Dictionary

self.servers = set()
for keys,values in self.Dictionary.items():
self.servers.add(keys [SERVER])

Convert Set to List and Sort
This method will ensure unique sorted list

serverList = list(self.servers)
serverList.sort ()

¢ Process Each Server IP in the sorted list
for serverIP in serverList:

if Country Lookup is selected
perform the lookup, else set Country to blank
if COUNTRY LOOKUP:
countryName = GetCountry(serverlIP)
else:
countryName = ""

Set a Try / Except Loop in case of network error.

try:
if caller requested hostname lookup
perform the lockup, else set name to blank
if HOST LOCKUE:
hostName = socket.gethostbyaddr (serverIP)

else:
hOStName - [Il ll’ " II"I " ll]
except:
hostName = ""
pass

Print out formatted results

print >> QOUT,' %15s ' % serverlP,

print >> OUT,' %15s ' % countryName,

print >> OUT,"' %60s ' % hostName [HOST NAME]

self.ports = set()

for keys,values in self.Dictionary.items():
if keys[SERVER] == serverlPF:
self.ports.add((keys[PCORT], keys[TYPE]) |

portlist = list(self.ports)
portList.sort()

for port in portLlist:
print >> OUT,"' %27s ' % str(port[0]),
print >> QUT,' %5s ' % port[l],

print >> OUT, '%40s' % self.portOB.Lookup(port[0],port[1l])

Performing Analysis

print SHifll; e e e e e S S e

print >> OUT, "\n\n"

End PrintUnigqueServer List

Executing this code produces the following (abbreviated) result

Unique Server List

0.0.0.0
68 upe Bootstrap Protocol Client
103.31.6.36 Australia
80 TCP World Wide Web HTTP

104.130.251.189

United States
80 TCP

World Wide Web HTTP

104.130.53.116

United States

20 TCP World Wide Web HTTP
.. Abbreviated
192.168.0.1
&7 upp Bootstrap Protoceol Server
1027 upp Unknown
1900 UDFE UPnP SSDP
192.168.0.10
68 upp Bootstrap Protocol Client
137 4]8) NETBIOS Name Service
5353 upp Unknown
8612 upe Unknown
17500 upP Unknown
192.168.0.100
29808 4]0) Unknown
192.168.0.11
5353 4]8) Unknown
192.168.0.12
68 UDP Bootstrap Protocol Client
137 0] NETBIOS Name Service
161 UDFP SNMP
427 upe Server Location
3910 TCP Unknown
8612 4] Unknown
9100 TCP HP JetDirect
43041 upp Unknown
43528 UpP Unknown
192.168.0.13
5353 upe Unknown

CHAPTER 4: Packet Capture Analysis

192.168.0.14
68 UDP Bootstrap Protocol Client
5353 uDP Unknown
192.168.0.15
8612 uDP Unknown
192.168.0.19
68 UDP Bootstrap Protocol Client
123 4]] 3 Network Time Protocol
137 UDP NETBIOS Name Service
138 uDP NETBIOS Datagram Service
5353 UDP Unknown
8elz2 upp Unknown
16403 UDP Unknown
17500 UDP Unknown
192.168.0.255
137 upp NETBIOS Name Service
1947 upp hlserver
8el2 upP Unknown

Printing the Observed Clients

Extracting and printing the list of observed clients is accomplished in the same
manner as that of the observed servers. Once again the output will include de-
tails such as geolocation (i.e. country) and host name if they are specified to be
included by the user. The method developed to extract these details from the
observations dictionary is shown below. One question you might ask is why is
the client port not specified?

Why is the client port not included? Eliminating the client port (which would typically be an
ephemeral port, and not useful to us] significantly reduces the size of our dictionary. If we
were to include the ephemeral ports in the dictionary key, virtually every server client con-
nection would be unique.

Print Unigque Client List

Method to Print each Client IP.

Options include: lookupHost and lookupCountry

If selected, they will perform the respective loockups
and report data received

£ e R

def PrintClients(self):
print >> OUT,"\nUnique Client List\n"
self.clients = set ()
for keys,values in self.Dictionary.items():

self.clients.add(keys[1l])

clientList = list(self.clients)
clientList.sort()

Process Each Server IP in the sorted list

Performing Analysis

for clientIP in clientList:

if Country Lookup is selected
perform the lookup, else set Country to blank

if COUNTRY LOOKUP:

countryName = GetCountry(clientIP)
else:

countryName = ""

Set a Try / Except Loop in case of network error.

ey
if caller requested hostname lookup
perform the lookup, else set name to blank
if HOST_LOOKUP:
hostName = socket.gethostbyaddr (clientIP)
else:
hOStName = [Itll, Itllil PI‘I]
except:
hOStNamE - [Illtf!l'l,‘l‘l]
pass

Print out formatted results
print >> OUT,' %155 ' % clientIP,
print >> QUT,' %15s ' % countryName,

print >> OUT,"' %60s ' % hostName [HOST NAME]

End PrintUniqueClient List

Executing this method produces the following (abbreviated) result:

Unigue Client List

118.98.104.21 Indonesia 21.subnet118-98-104.astinet.telkom.net.id
127.0.0.1 Lenovo-UpStairs
141.212.122.34 United States researchscan289.eecs.umich.edu
141.212.122.35% United States researchscan294.eecs.umich.edu
169.229.3.91 United States researchscanl.EECS.Berkeley.EDU
.. Abbreviated

37.247.36.11% Netherlands
41.218.92.89 Namibia westair-schneider-int.cust.na.afrisp.net
46.4.7.155 Germany plesksolutions.com
50.17.79.135 United States ec2-50-17-79-135, compute-1.amazonaws.com

Printing the Observed Server to Client Connections
Another interesting way to view the results of the observation, is to list each
server and include all client connections made to that server. This provides the

CHAPTER 4: Packet Capture Analysis

comprehensive server / client connection list. This method is slightly more
complex, since the dictionary must first generate the list of observed servers,
and then generate a list of clients that connected over any port to that server.
The method developed to extract these details from the observations diction-
ary is shown below.

B

Print Detailed Server List

#

Method to Print to Standard Out

Unigque Server / Client Interactions
i

def PrintServerDetails(self):

Create "set" of server IP addresses
from the Dictionary

self.servers = set()

for keys,values in self.Dictionary.items():
self.servers.add (keys[SERVER])
Convert Set to List and Sort
This method will ensure unigque sorted list

Now create a sorted list of unique servers
serverList = list(self.servers)
serverList.sort()

Now Iterate through the server list
finding all the matching server connections
and provide connection details

for serverlIP in serverList:

if Country Lookup is selected
perform the lookup, else set Country to blank
if COUNTRY_ LOOKUP:
countryName = GetCountry(serverIP)
else:
countryName = ""

Set a Try / Except Loop in case of network error.

try:
if caller reguested hostname lookup
perform the lookup, else set name to blank
if HOST LOOKUP:
hostName = socket.gethostbyaddr (serverIP)
else:
hOStName - ["N ¥ "n . "]
except:
hostName = ""

continue

Performing Analysis

Print out formatted results

print >> QUT,"\n ====== "
print >> OUT,"Server: ",

print >> OUT,' %15s ' % serverlP,

print >> OUT,' %15s ' % countryName,

print »> OUT,' %60s ' % hostName[HOST NAME]

print >> OUT,"

print >> OUT,'%$1l6s' % "Client",

print >> OUT, '¥7s' % "Port",

print >> OUT, '%40s' % "Port Description",
print >> OUT, '%#5s' % "Type"”,

print >> OUT

for keys,values in self.Dictionary.items():

If server matches current
print out the details:

if keys[SERVER] == serverlP:
print >> OUT, '$16s' % keys[CLIENT],
print >> OUT,'%$7s' % str(keys[PORT]),
print >> OUT, '%40s' % self.portOB.Lookup(keys[PORT], keys[TYPE]),
print >> OUT, '$5s' % keys|[TYPE]

End PrintUniqueServer List

Executing this method produces the following (abbreviated) result:

Unigque Server Client Connection List

Server: 0.0.0.0
Client Port Port Description Type
255.255.255.255 68 Bootstrap Protocol Client UDP
Server: 103.31.6.36 Bustralia
Client Port Port Description Type
192.168.0.10 80 World Wide Web HTTP TCP
Server: 104.130.251.189 United States
Client Fort Port Description Type
192.168.0.10 80 World Wide Web HTTP TCP
Server: 104.130.53.116 United States
Client Port Fort Description Type
192.168.0.10 80 World Wide Web HTTP TCP
.. Abbreviated Output
Server: 96.6.113.90 United States

m CHAPTER 4: Packet Capture Analysis

Client Port Port Description Type
192.168.0.10 80 World Wide Web HTTP TCP
Server: 98.137.170.33 United States
Client Port Port Description Type
192.168.0.10 80 World Wide Web HTTP TCP
Server: 98.139.225.168 United States
Client Port Port Description Type
192.168.0.10 443 HTTP protocol over TLS/SSL TCP
192.168.0.10 80 World Wide Web HTTP TCP
Server: 88.139.225.35 United States
Client Port Port Description Type
192.168.0.15 80 World Wide Web HTTP TCP

Printing a Histogram of Observations

The final extraction will add to the detailed server / client connection list and
provide a histogram of activities for each server and client interaction. The
Histogram produced is for a 24 hour time table. If the P2NMAP-Capture script
is run for multiple days the activities for each hour will be cumulative. This
allows the investigator to quickly observe activities occurring at unusual times
of the day, activities that occur only a small number of times, or possibly only
once. This can potentially indicate a heartbeat or beacon generated by a ma-
licious application. The method developed to extract these details from the
observations dictionary is shown below.

B

Print Capture Histogram
il

Method to Print a

Histogram for each Entry
#

def PrintHistogram(self):

Create "set" of server IP addresses
from the Dictionary

print >> OUT, "\nHourly Histogram\n"

self.servers = set()

for keys,values in self.Dictionary.items():
self.servers.add (keys[SERVER])

Convert Set to List and Sort
This method will ensure unique sorted list

Performing Analysis m

Now create a sorted list of unique servers
serverlist = list(self.servers)
serverlList.sort ()

Now Iterate through the server list
finding all the matching server connections

and provide connection details

for serverIP in serverList:

if Country Lookup is selected
perform the lookup, else set Country to blank

if COUNTRY LOCKUP:

countryName = GetCountry(serverlIP)
else:

countryName = ""

Set a Try / Except Loop in case of network error.

Erv:
if caller requested hostname lookup
perform the lookup, else set name to blank
if HOST LOCKUP:
hostName = socket.gethostbyaddr (serverIP)

else:
hOStName = [‘I " P nn ¥ nn]
except:
hostName = ["", "", ""]
continue

Print out formatted results

print 2> OUT, "\=msmmsrsmr s e T T T T ST T T P
print >> QUT,"Server: ",

print >> QUT,' %15s ' % serverIP,

print >> OUT,' %15s ' % countryName,

print >> OUT,' %60s ' % hostName [HOST NAME]

print >> OUT," g

for keys,values in self.Dicticnary.items():

If server matches current
print out the histogram

if keys[SERVER] == serverlIP:
if keys[SERVER] == serverIP:
print >> OUT, '%16s' % "Client",

print >> OUT, '$7s' & "Port",
print >> QOUT, '%40s' % "Port Description",
print >> OUT, '%5s' % "Type",

print >> QUT

print >> OUT,'%16s' % keys[CLIENT],

print >> OUT,'%7s' & str(keys[PORT]),

print >> OUT, '%40s' % self.portOB.Lookup(keys[PORT], keys[TYPE]),
print >> OUT, '$5s' % keys[TYPE]

print >> OUT

print >> OUT,"HR "

self.Histogram(values)

End Histogram Qutput

Executing this method produces the following (abbreviated) result

Hourly Histogram

Server: 0.0.0.0

Client Port Port Description Type
255.255.255.255 11} Bootstrap Protocol Client UDP

HR

ileh
0l:
02:
03z

* 13
.
.
04 = (2}
.
-

121
(31

05;
0&:
073
08:
091 {518}
10: seessssssies (GE)

111 ¢ (5)

12: % (@)

13: * (B)

1ds *+ {12)

15+ = (2)

16: * ()

Iy {Lxy

18z * (2}

151 (2)

203+ (2)
215+ (3
22: * 2y
23z % (B)

Server: 103.31.6.36 Australia

Client Port Port Deseription Type
192,168.0.10 a0 Warld Wide Web HTTP TCP

1dp 4eesresihsdrsibniisirisrerirndanrdisiradinrtriiardisdinibaniarbraienis ansan +e [30)

21:
22z
23:

Servers 104,130.251.189 United Statas

Cliant Part Port Descriptlon Type
192.168.0.10 80 World Wide Web HTTP TCP

00:
01
02
03:
04z
05z
06e
072
08
09:
10:
11:
12:

14z
15: {17}
162
17:

18:
19:
20z
21z
22z
23z

- Abbroviated

Sarver: 23.218.114.120 United States

Client Port Port Descriptlon Type
192.168.0.10 80 World Wide Web HTTP TCP

HR

00:

01z

02:

03:

£ §] f1e}

053 (17)

06 115)

07: 17}

0g: * *Q19)

09:

10: 1281
1;1 24
12%

15; += reus ves
B T L =3

15: (15)
163 it 114)

: (24)

18s (300
20z 21

21: i by {19)

22z

T T T S b1

Server: 23,218.114.211 United States

Clisnt Port Port Descriptlon Type
192,168.0.10 443 HTTP protocel over TLS/SSL TCP

{44]

e dhsasine sheadben

sasban bessssessdiansiiasisaaiis (33)

14z}

18:
19:
20z

21y swew wean bbby

22:
23:

Server: 23.218.121.55 United States

Client Port Port Description Type
192.168.0.10 g0 World Wide Web HTTP TCP

00t

01z

02:

[3g #weswssin s (107)
04 (68}

05:

06

07:

Og:

oa:

sesashe (56)

sesdransisaranaies (70

CHAPTER 4: Packet Capture Analysis

#

Final P2NMAP-Anaysis.py Script Complete Source Code

The final P2NMAP-Analysis.py script is shown here. Note that the entire script
is a single Python file and requires no arguments to execute. However, there are
a couple of assumptions.

1. The “geo.dat” file must be included in the source directory
2. The pygeoip 3" Party Library has been installed using:
$ pip install pygeoip
or
C\> pip install pygeoip
3. You have a populated IP dictionary file that was generated by the
P2NMAP-Capture script.

P2NMA-Analyze.py Script

i

Perform analysis of previously capture .ipdict files

#

import
import
import
import
import
import

argparse
0s
datetime
pickle
socket
5YS

Python Standard Library - Parser for command-line options, arguments
operating system functions i.e. file I/o

Python Standard Library date and time methods

Python Standard Likrary pickle methods

Eython Standard Library Low Level Networking

Python Standard Library Low Level System Methods

B S o

3rd Party Libraries

import

pygeoip

3rd Party Geo IP Lookup

pip install pygeoip

This product includes Geolite data created by MaxMind, available from
http://www.maxmind.com.

S 3= 3 9

import matplotlib.pyplot as plt # Import 3rd Party Plotting Library

DEFINE PSUEDQ CONSTANTS

SERVER = 0
CLIENT =1
PORT =2
TYPE = 3
HOST NAME = 0

= 3R 3R O IR

Note these are

Server key index

Client key index

Port key index

Type key index ("TCP" or "UDP")

HOST NAME index return from gethostbyaddr

set by menu selection

Performing Analysis m

HOST LOOKUP False # gethostbyaddr({} will obtain Host Name
COUNTRY_LOCKUP = False # Country Name wil be associated with IP
PRINT STDOUT = True # If True, all output and menu selections directed

If False, all ocutput directed to a file except menu

ouT = sys.stdout # Default Output to Standard Out
0S0B_LOADED = False # OS Observations Loaded Flag

#

Country Lookup

B

def GetCountry (ipAddr):
download from http://dev.maxmind.com/geoip/legacy/geolite/
gi = pygeoip.GeoIP('geo.dat')
return gi.country name by addr(ipAddr)

End GetCountry Function

Name: ValFileRead

Desc: Function that will validate a file exists and is readable
Used for argument validation only

Input: a file Path

Actions:
if valid will return a full file path

if inwvalid it will raise an ArgumentTypeError within argparse
which will inturn be reported by argparse to the user

I IEIIE I I I I I

def ValFileRead(theFile):

Validate the path is a File
if not os.path.exists(theFile):
raise argparse.ArgqumentTypeError('File does not exist')

Validate the path is Readable
if os.access(theFile, os.R _OK):
return theFile
else:
raise argparse.ArgumentTypeError('File is not readable')

#End ValFileRead
#

Port Lookup Class
#

class PortsClass:

Constructor

def _ init__ (self, portTextFile):

m CHAPTER 4: Packet Capture Analysis

#Attributes of the Object
self.portDictionary = {}

Open the PortList Text File
with open(portTextFile, 'r'} as infile:

Process EachLine
for nextLine in infile:

linelist = nextLine.split/(}
Make sure we have a valid input line

if len(linelList) >= 3:
Split the line into parts

lineList[0] == PortType (TCP or UDP)
lineList[1] == PortNumber

Determine how many parts we have after type and port

#portDescList = linelList[2:]
portDesc = ' '.join(lineList[2:])

Now create a dictionary entry
key = Port,Type

Value = Description

self.portDictionary[(lineList([1], lineList([0])] = portDesc
else:

Skip this line

continue

def Lookup(self, portNumber, portType):

try:

portDesc = self.portDicticnary[str({portNumber), portTypel]
except:

portDesc = "Unknown"

return portDesc

End PortsClass Definition

#

Class: IPQObservationDictionary

#

Desc: Handles all methods and properties
relating to the IPOservations

#

#

class IPCbservationDictionary:
Constructor

def init (self):

Performing Analysis

#Attributes of the Object

Dictionary to Hold IP Observations
self.Dictionary = {}
self.observationsLoaded = False
self.observationFileName "

Instantiate the PortsClass Object

Creates and object that can be used
to lookup port descriptions

i

self.port0OB = PortsClass("PortList.txt")
Method to Add an observation
def AddOb(self, key):

Obtain the current hour

now = datetime.datetime.now()
hour = now.hour

Check to see if key is already in the dictionary
if key in self.Dictionary:

If yes, retrieve the current value
curValue = self.Dictionary[key]

Increment the count for the current hour
curValue[hour-1] = curValuehour-1] + 1

Update the value associated with this key
self.Dictionary[key] = curValue

else:

if the key doesn't yet exist
Create one

curValue = [0,0]

Increment the count for the current hour
curValue [hour-1] = curValuelhour-1] + 1

self.Dictionaryl[key] = curValue

Method to retrieve an observation
If no observation found return None

def GetOb(self, key):

if key in self.Dictionary:
curValue = self.Dictionary[key]
return curValue

else:
return None

Print the Contents of the Dictionary

CHAPTER 4: Packet Capture Analysis

def PrintOb(self):

print >> OUT,
print >> OUT,

print >> OUT

print Heading

print >> oUT, '

print >> QUT,"|

"\nlP Observations"
"Unique Combinations:

", str(len(self.Dictionary))

Hourly Observations

print >> OUT,'%lés' % "Server",
print >> OUT,'%1l6s' % "Client",
print >> OUT,'%$7s' % "Port",
print >> OUT,'%$5s' % "Type"
print >> OUT,"’
print >> OUT,"' Ny
for i in range(0, 24):
print >> OUT,"' ',

print >> OUT, '%02d4' % i,
print >> OUT

Print Contents

for keys,values in self.

print >>
print >>
print >>
print >>

for i in

print >> OUT, '%4s' % str(values[i]),

OUT, '$16s' % keys[SERVER],
OUT, '%16s' % keys([CLIENT],
ouT, '%7s' &% str(keys([PORT]},
OUT, '$55' % keys|[TYPE],

range (0, 24):

print >> OUT

print >> OUT,

"\nEnd Print Observations\n"

def Histogram(self, observations):

won

Histogram data to stdout

LLRLA L

largest

scale

= max (observations)

100.

/ largest

for hr, datum in enumerate(ocbservations):

bar =

nan

* int({datum * scale)

if bar == "" and datum > 0:
bar = "*"

print >> OUT,

elif datum != 0:

print >> OUT, "%02d: %s (%d)" % (hr,

else:
print >> OUT, "%02d:" % hr
print >> OUT,

B

Il\nll

PrintUniqueServer List

#

Method to Print to Standard Out each Server IP

Dictionary.items(}):

"$02d: %s (%d)" % (hr,

Options include: lookupHost and lookupCountry
If selected, they will perform the respective lookups
and report data received

def PrintServers(self):

print >> OUT, "\nUnique Server List\n"

Performing Analysis m

print >> OOUT, '--—————————————— ===

Create "set" of server IP addresses
from the Dictionary

self.servers = set()
for keys,values in self.Dictionary.items():
self.servers.add (keys [SERVER])

Convert Set to List and Sort
This method will ensure unique sorted list

serverList = list(self.servers)
serverList.sort ()

Process Each Server IP in the sorted list
for serverIP in serverList:

if Country Lookup is selected
perform the lookup, else set Country to blank
if COUNTRY LOOKUP:
countryName = GetCountry(serverlIP)
else:
countryName = ""

Set a Try / Except Loop in case of network error.

try:
if caller requested hostname lookup

perform the lookup, else set name to blank

if HOST_ LOCKUP:

hostName = socket.gethostbyaddr(serverIP)

else:
hostName = ["", "", ""]
except:
hostName = ""
pass

Print out formatted results

print >> OUT,' %15s ' % serverlpP,

print >> OUT,' %15s ' $ countryName,

print >> OUT,' %60s ' % hostName [HOST_ NAME]

self.ports = set|()
for keys,values in self.Dictionary.items():

if keys[SERVER] == serverlP:
self.ports.add((keys[PORT], keys[TYPE])

)

m CHAPTER 4: Packet Capture Analysis

portlList = list(self.ports)
portList.sort()

for port in portList:
print >> OUT,' %27s ' % str(port[0]),
print >> OUT,' %5s ' % port[l],
print >> OUT, '%40s' % self.portOB.Lookup(port[0],port(1l])
P 8 DI, R e e e e e e e

print >> OUT
print >> OUT, "End Print Servers\n"
print >> OUT, "\n\n"

Eid

End PrintUniqueServer List

Print Detailed Server List

Method to Print to Standard Out
Unique Server / Client Interactions

EE R S

def PrintServerDetails(self):

Create "set" of server IP addresses
from the Dictionary
print >> OUT, "\nUnique Server Client Connection List\n"

print >> OUT, '——————————m— e

self.servers = set()

for keys,values in self.Dictionary.items():
self.servers.add(keys[SERVER])
Convert Set to List and Sort
This method will ensure unique sorted list

Now create a sorted list of unique servers
serverList = list(self.servers)
serverList.sort ()

Now Iterate through the server list
finding all the matching server connections
and provide connection details

for serverIP in serverlist:

if Country Lookup is selected
perform the lookup, else set Country to blank
if COUNTRY_LOOKUP:
countryName = GetCountry(serverlP)
else:
countryName

wn

[]

Set a Try / Except Loop in case of network error.
try:

Performing Analysis m

1f caller requested hostname lookup
perform the lookup, else set name to blank
if HOST LOOKUP:
hostName = socket.gethostbyaddr (serverlP)
else:
hOStName = [" Il' " l|’ " I!]
except:
hostName = ""
continue

Print out formatted results

print >> OUT,"\n L
print >> OUT,"Server: ",

print >> OUT,' %15s ' % serverlP,

print >> OUT,' %15s ' % countryName,

print >> OUT,' %60s ' % hostName[HOST NAME]

print >> OUT, "s=ssss==ss=ss====ss==ss=ss==s=ss==s===ss======s===s============ "
print >> OUT, '$les' % "Client",

print >> QUT,'%7s' % "Port",

print >> OUT,'%40s' $§ "Port Description",

print >> OUT, '$5s' % "Type",

print >> OUT

for keys,values in self.Dictionary.items():

If server matches current
print out the details:

if keys[SERVER] == serverIP:
print >> OUT, '%16s' % keys[CLIENT],
print >> OQUT, '%7s' % str(keys[PORT]),
print >> OUT, '%40s' % self.portOB.Lookup(keys[PORT], keys[TYPFE]),
print >> OUT, '%5s' % keys[TYPE]
print >> OUT
print >> OUT, "End Print Server Details\n"

$=

End PrintUniqueServer List

Print Capture Histogram

Method to Print a
Histogram for each Entry

e

def PrintHistogram(self):

Create "set" of server IP addresses
from the Dictionary

print >> OUT, "\nHourly Histogram\n"

self.servers = set()

for keys,values in self.Dictionary.items():
self.servers.add (keys[SERVER])
Convert Set to List and Sort
This method will ensure unique sorted list

m CHAPTER 4: Packet Capture Analysis

Now create a sorted list of unigue servers
list (self.servers)
serverList.sort()

serverList =

Now Iterate through the server list
finding all the matching server connections
and provide connection details

for serverIP in serverList:

1if Country Lookup is selected
perform the lookup, else set Country to blank

if COUNTRY LOOCKUP:

countryName = GetCountry(serverIP)

else:

countryName = ""

Set a Try / Except Loop in case of network error.

toy:

if caller reguested hostname lookup
perform the lookup, else set name to blank
if HOST_ LOOKUP:

hostName =

else:
hostName = [""
except:
hostName = [""
continue

’

r

l'l!l' !ll’l]

H‘I' ‘I'I]

Print out formatted results

print
print
print
print
print
print

>
>
==
g
==
>

socket.gethostbyaddr (serverlIP)

OUT, "\n

OUT, "Server:
ouT, ' %15s
ouT, ' %15s

"
r

% serverlP,
% countryName,
OUT, ' %60s ' % hostName[HOST NAME]

OUT, " emmmmm e e e e s "

for keys,values in self.Dictionary.items():

If server matches current

print out the histogram

if keys[SERVER] == serverlIP:
if keys[SERVER] == serverlIP:
print >> OUT, '$1l6s' % "Client",
print >> OUT,'$7s' % "Port",
print >> OUT, '$40s' % "Port Description",
print >> OUT, '$5s' & "Type",
print >> OUT
print >> OUT, '$16s' % keys[CLIENT],
print >> OUT,'%7s' % str(keys[PORT]),
print >> OUT, '%40s' % self.portOB.Lookup(keys[PORT], keys[TYPE]),
print >> OUT, '$5s' % keys[TYPE]
print >> OUT
print >> QUT,"HR "

self.Histogram(values)

Performing Analysis m

print >> OUT
print >> QUT, "End Print Histogram\n"

End Histogram Output

Print Unique Client List

Method to Print Out each Client IP

Options include: lookupHost and lockupCountry

If selected, they will perform the respective lookups
and report data received

o= o o ok ok o

def PrintClients(self):
print >> OUT,"\nUnique Client List\n"

self.clients = set()
for keys,values in self.Dicticonary.items():
self.clients.add(keys[1])

clientList = list(self.clients)
clientList.sort()

Process Each Server IP in the sorted list
for clientIP in clientList:

if Country Lookup is selected
perform the lookup, else set Country to blank
if COUNTRY_ LOOKUP:
countryName = GetCountry(clientIP)
else:
countryMName = ""

Set a Try / Except Loop in case of network error.

try:
if caller requested hostname lookup
perform the lookup, else set name to blank
if HOST_ LOOKUP:
hostName = socket.gethostbyaddr(clientIP)
else:
hostName = ["","",""]
except:
hQStName = [l] l" " l!' " l!}
pass

Print out formatted results

print >> OUT,' %15s ' % clientIP,

print >> OUT,' %15s ' $ countryName,

print >> QUT,' %60s ' % hostName[HOST NAME]

print >> OUT, "\nEnd Print Client List\n"

CHAPTER 4: Packet Capture Analysis

End PrintUniqueClient List

Save the Current Observation Dictionary
to the specified file

def SaveOb(self, fileName):

with open(fileName, 'wb') as fp:
pickle.dump(self.Dictionary, fp)

Load in and Observation Dictionary
from the specified file

def LoadCb(self, fileName):
try:
with open(fileName, 'rb') as fp:
self.Dictionary = pickle.loads(fp.read())
self.observationFileName = fileName

self.observationsloaded = True
except:
print "Loading Observaticons - Failed"
self.observationsLoaded = False

self.observationFileName = fileName
def PrintIPAnalysisMenu(self):
print "========== P2NMAP Analysis Menu ==========\n"
if self.observationsLoaded:
print "Current Observation File: ", self.observationFileName
print

print "[L] Load Observation File for Analysis"

if self.observationsLoaded:
if PRINT STDOUT:

print "[O] Direct Output to File (Current = Stdout)"
61331;>rint "[0] Direct Output to Stdout (Current = results.txt)"
if HOST_LOOKUP:

print "[H] Turn Off Host Lookup (Current = Host Lookup Onj)"
EISe£:u:int "[H] Turn On Host Lookup (Current = Host Lookup Off)"

if COUNTRY LOOKUP:

print "[C] Turn Off Country Lookup (Current = Country Lookup On)"
else:

print "[C] Turn On Country Lockup (Current = Country Lookup Off)"
print " 1
print "[1] Print Observations (ALL)"
print "[2] Print Servers (Unique)"
print "[3] Print Clients (Unique) "
print "[4] Print Connections (Unigue by Server)"
print "[5] Print Histogram"
print

print "[X] Exit P2NMAP Analysis"

print
Destructor Delete the Object
def del (self):
if VERBOSE:
print >> OUT,"Closed"

End IPObservationClass

Main Program Starts Here
H#

1t

if _name == '__main_":
Set VERBOSE to True
VERBOSE = True

Create an ip observation object

ipOB = IPObservationDictionary()

while True:
ipOB.PrintIPAnalysisMenu()

menuSelection = raw_input ("Enter Selection: ").upper()

if menuSelection == 'L':
fileName = raw_input("Enter IP Capture File: ")
ipOB. LoadOb (fileName)
print

elif menuSelection == '0':
if PRINT_STDOUT:
PRINT STDOUT = False
QUT = open("results.txt", 'w+')
else:
PRINT STDOUT = True
OUT.closel()
OUT = sys.stdout
elif menuSelecticn == 'H':
if HOST_LOOKUP:
HOST_LOOKUP = False
else:
HOST_LOOKUP = True

elif menuSelection == 'C':
if COUNTRY_ LOOKUP:
COUNTRY_LOOKUP = False
else:
COUNTRY LOOKUP = True
elif menuSelection == "1':
ipOB. PrintOb ()
elif menuSelection == '2':

ipOB.PrintServers()

Performing Analysis m

m CHAPTER 4: Packet Capture Analysis

elif menuSelection == '3':
ipOB. PrintClients ()

elif menuSelection == '4':
ipOB. PrintServerDetails ()

elif menuSelection == '5':
ipOB. PrintHistogram()

elif menuSelection == '¥':
break

else:
print "Entry not recognized"
continue

QUT.flush()

print >> OUT, "End P2NMAP"

Now you are ready to execute P2NMAP-Analysis.py
$ python P2NMAP- Anal ysi s. py

or

C.\ > pyt hon P2NMVAP- Anal ysi s. py

This will yield the following menu selections and you can start experimenting
with the differing modes of operation and analysis functions.

[L]
[X]

Load Observation File for Analysis
Exit P2NMAP Analysis

Enter Selection: 1
Enter IP Capture File: test.ipDict

Current Observation File:

[L]
[O]
[H]
[C]

== P2NMAP Analysis Menu ==========
test.ipDict

Load Observation File for Analysis

Direct Output to File (Current = Stdout)

Turn On Host Lookup (Current = Host Lookup Off)
Turn On Country Lookup (Current = Country Lookup Off)

(1]
[2]
[3]
[4]
[5]

[X]

Print Observations (ALL)
Print Servers (Unique)
Print Clients (Unique)

Print Connections
Print Histogram

(Unigque by Server)

Exit P2NMAP Analysis

Enter Selection:

REVIEW

In Chapter 4, I leveraged the .ipdict file created in Chapter 3 using the P2NMAP-
Capture Script. This file contains the complete dump of the IP observations dic-
tionary. By utilizing this observations dictionary, I created several key methods
within the i pCbservati onsDi cti onary Class. These methods perform
operations including: Printing the complete IP Observations Dictionary, Gen-
erating a Comprehensive Server and Client List, Generating a detailed Server /
Client Connection List and a detailed histogram of the observation data. In ad-
dition, I extrapolated key information from the observed data including Host
Name based on the Observation IP Address, Detailed Port Descriptions based
on the server ports in use and geographic location of many of the observed
servers and clients. Finally, I created a simple menu driven interface that can be
used to experiment with the newly created analysis methods.

SUMMARY QUESTIONS

1. What additional analysis methods could be created from the observed
data?

2. What filters could be created that would reduce the output and allow
the analyst to focus in on targeted data? For example, “Generate a
Histogram of any connections that occur less than n times during
the observations. Or generate a server / client list for those devices
operating outside the U.S.

Additional Resource

Seitz, Justin, 2015. Black Hat Python, Python Programming for Hackers and Pentesters. No Starch
Press, San Francisco, California, ISBN: 13-978-1-59327-590-7.

Summary Questions

CHAPTER 5

PCAP Extractor and OS Fingerprinting

“It is by doubting that we come to investigate, and by investigating that we

recognize the truth.”
Peter Abelard

PCAP EXTRACTION

When performing incident response activities, mapping a network or perform-
ing penetration testing, you are likely to run in to situations where packet cap-
tures have already occurred. This could be in response to an event, or in today’s
world, more often as a routine practice. Either way, the packet capture (pcap)
files can provide valuable information that we can examine and report on us-
ing P2NMAP-Analzer.py, which was developed in Chapter 4.

In order to accomplish this, I needed to develop a script that would extract the
pertinent data from an existing pcap file and create both an .ipDict and .osDict
file that can be processed. In other words, we need to interpret the pcap file to
generate the same output files that P2NMAP-Capture.py does.

A number of years ago, Dug Song produced the Python Module dpkt (among
many others) that is ideally suited for processing existing packet captures such
as pcap files. I have tested the module extensively, and it is a nice addition
to your core library within Python. One criticism of the library is the lack of
documentation, however our use of the library is pretty straight-forward and
my script will hopefully clear up the usage for at least our use case.

Installing dpkt as with most 3™ party Python packages is quite simple: The
following command lines work just fine on Windows, Linux and Mac.

Windows:

pip install dpkt

Linux/Mac:

sudo pip install dpkt

CONTENTS

PCAP Extraction.......... 99

Review of P2NMAP-

Capturecoeveevevvvversrrreennne, 101
Utilizing the dptk Package... 102
P2NMAP-PCAP-

Extractor.py Script 104
Executing PZNMAP-
PCAP-Extractor 112
Passive 0S
Fingerprinting............ 116
0S Fingerprinting

Truth Tableccovveovrvreern. 116

Truth Table Python Class.... 118

Yol] S 123
Executing PZNMAP-

0S-Fingerprint.................... 131
Review.......covcrvieien, 134

Summary Questions.. 135

99

m CHAPTER 5: PCAP Extractor and 0S Fingerprinting

Whenever I install a new package/module within Python, I run a quick veri-
fication that it is working. To do this, I can launch a Python shell from either
the Windows or Linux command prompt. Below I show this from a Windows
session. I then use the built-in Python i nport command to load the package.
Once the package has been successfully imported you can then use the built-in
Python di r () function to print the attributes associated with the package. For
even more information you can also use the built-in hel p() function.

Note, if the import functions fails, it would indicate that the dpkt package is
not properly installed.

Microsoft Windows [Version 6.3.9600]
(c) 2013 Microsoft Corporation. All rights reserved.

C:\Users\Chet>python

Python 2.7.7 ({(default, Jun 1 2014, 14:17:13) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> import dpkt

>>> dir (dpkt)

['Error', 'NeedData', 'PackError', 'Packet', 'UnpackError', '__ author_ ', '_ builtins_ ',
' _copyright ', ' _doc_ ', '_file ', '_ license ', '__name__ ', ' package ', '__path_ '
e '_url ', ' wversion_ ', 'ah', 'aim', 'ace', ‘aceata'’, 'acecfg', 'arp', 'array', 'asnl', 'bgp’',

'edp', 'copy', 'crec32ec', 'dhep', 'diameter', 'dns', 'dpkt', 'dtp', 'esp', 'ethernet

', 'gre', 'gzip', 'h225', 'hexdump', 'hsrp', 'http', 'icmp', 'icmpé', 'ieeeB0211', 'igmp',

'in _cksum', 'in_cksum add', 'in_cksum_done', 'ip', 'ip6', 'ipx', 'itertools', 'llc', 'loopb
ack', 'mrt', 'netbiocs', 'netflow', 'ntp', 'ospf', 'pcap', 'pim’', 'pmap', 'ppp', 'PPpeoe', 'gqg',
'radiotap', 'radius'; 'rfb'; 'rip'; 'rpe!, 'ctp', 'rx', 'scep'; ‘sctp', 'sip's 'sll'; !

smb', 'socket', 'ssl', 'ssl_ciphersuites', 'stp', 'struct', 'stun', 'tcp', 'telnet', 'tftp’,
'tns', 'tpkt', 'udp', 'vrrp', 'yahoo']

>>> help (dpkt)
Help on package dpkt:

NAME
dpkt - fast, simple packet creation and parsing.

FILE
c:\python27\1lib\site-packages\dpkt\ init .py

PACKAGE CONTENTS
ah
aim
aoe
aoeata
acecfqg
arp
asnl
bgp
cdp
crc32c
dhcp
diameter
dns
dpkt
dtp
esp
ethernet
gre
gzip
h225

hsrp
http
icmp
icmp6
ieeeB0211
igmp

ip

ip6

ipx

lle
loopback
mrt
netbios
netflow
ntp

ospf
pcap

pim

pmap

radiotap
radius
rfb
rip
rpc
rtp

rx
scecp
sctp
sip
sll
smb
snoop
ssl
ssl_ciphersuites
stp
stun
tcp
telnet
tftp
tns
tpkt
udp
vrrp
yahoo

DATA
__author__ = 'Dug Song <dugsong@monkey.org>'
__copyright = "Copyright (c) 2004 Dug Song'
__license__ = 'BSD'
_url = 'http://dpkt.googlecode.com/'
__version__ = 'l.8.6'

VERSION
1.8.¢

AUTHOR
Dug Scong dugsong@monkey.org

Review of P2NMAP-Capture

As you know from the development of the P2NMAP-Capture.py script for net-
work mapping and OS Fingerprinting, we only require a few key pieces of data.
We organize that data within an efficient data structure that both minimizes
the size and also allows fast processing of the resulting data.

The core data we need from the pcap records in order to properly generate .ip-

Dict and .osDict files are as follows:

PCAP Extraction m

m CHAPTER 5: PCAP Extractor and 0S Fingerprinting

General:

Packet Timestamp
.Aipdict

Source IP

Destination IP

Source Port
Destination Port
Protocol (TCP or UDP)
.osDict

Source IP

Destination IP

Source Port
Destination Port

SYN Flag

DF Flag

TTL (Time to live value)
TOS (Type of service value)
Window Size

Utilizing the dptk Package

The Code to extract the necessary data from the pcap files is isolated here (note:
to simplify the code, I left out the exception processing, which is in the full
version of the script). Minus the comment line, less than 20 lines of code are
required to obtain the fields we require.

import dpkt # 3rd Party Packet Parsing Module
from dpkt.udp import UDP # Import specific objects from DPKT for convience
from dpkt.tcp import TCP i

Use dpkt and setup a pcapReader Object
pcapReader = dpkt.pcap.Reader(file(inFile, "rb"))

Using the pcapReader Object process the
the contents of the selected pcap file

each interation through the loop will return
1) packet timestamp
2) packet raw data

for timeStamp, pckData in pcapReader:

Next I retrieve the etherNet packet contents

PCAP Extraction m

etherNet = dpkt.ethernet.Ethernet (pckData)
Verify that this ethernet packet carries an IP Packet
if etherNet.type == dpkt.ethernet.ETH TYPE IP:

get the ip data and extract the source and destination ip addresses
use the socket module to convert them to dot notational form

Decode the source and destination IP Address
ip = etherNet.data

sourceAddress = socket.inet_ntoa(ip.src)
destinationAddress = socket.inet ntoa(ip.dst)

Check Packet Type (either TCP or UDP and process accordingly)
if type(ip.data) == TCP

Extract and Decode the Ports in use
tcp = ip.data

Obtain Data for 0S Fingerprinting

SYN Flag

SYN = (tcp.flags & dpkt.tcp.TH _SYN) != 0
DF Flag

DF = (tcp.flags & dpkt.tcp.TH URG) != 0

Window Size
WINDOW SIZE = tcp.win

Time to Live and Type of Service wvalues
TTL = ip.ttl
TOS = ip.tos

Now obtain the Source and Destination Port

sourcePort = tcp.sport
destinationPort = tcp.dport

The rest of the script uses the previously created classes:

cl ass | PQoservati onbDi ctionary:
cl ass OSoservationDictionary:

.. along with the same packet processing code that was developed during the
P2NMAP-Capture.py script. The full script is included here:

CHAPTER 5: PCAP Extractor and OS Fingerprinting

P2NMAP-PCAP-Extractor.py Script

[N

Copyright (c) 2015 Chet Hosmer, cdh@python-forensics.org

Permission is hereby granted, free of charge, to any person cbtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software,; and permit persons to whom the Software is
furnished to do so; subject the following condition.

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

[N

#

Process .pcap files

Create .ipdict and .osDict result files

suitable for analysis with P2NMAP-Analyze

and P2NMAP-0S5-Fingerprint

import support functions

import argparse
import os
import sys
import socket
import time
import datetime
import pickle

Python Standard Library Parsing Module
Python Standard Library 0S module
Python Standard Library SYS Module
Python Standard Library socket module
Python Standard Library time module
Python Standard Library datetime module
Python Standard Library pickling module

e e e e e e e

import dpkt # 3rd Party Packet Parsing Module
pip install dptk to intall the module
from dpkt.udp import UDP # Import specific objects from DPKT for convience
from dpkt.tcp import TCP #
CONSTANTS
HOUR_INDEX = 3 # Index of the Hour value in the Time Structure

Name: ValDirWrite

Desc: Function that will validate a directory path as
existing and writable. Used for argument validation only

Input: a directory path string

Actions:
if walid will return the Directory String

if invalid it will raise an ArgumentTypeError within argparse
which will inturn be reported by argparse to the user

EE S B

def ValDirWrite(theDir):

Validate the path is a directory
if not os.path.isdir (theDir):
raise argparse.ArgumentTypeError ('Directory does not exist')

Validate the path is writable
if os.access(theDir, os.W_OK):
return theDir
else:
raise argparse.ArgumentTypeError ('Directory is not writable')

#End ValDirWrite

Name: ValidateFileRead Functicn
Desc: Function that will wvalidate that a file exists and is readable
Input: A file name with full path

Actions:
if valid will return path

if inwvalid it will raise an ArgumentTypeError within argparse
which will inturn be reported by argparse to the user

e L .

def ValFileRead(theFile):

Validate the path is a wvalid
if not os.path.exists{theFile):
raise argparse.ArgumentTypeError('File does not exist')

Validate the path is readable
if os.access(theFile, os.R_OK):
return theFile
else:
raise argparse.ArgumentTypeError('File is not readable')

#End ValidateFileRead

#
Class: IPObservationDictionary

Desc: Handles all methods and properties
relating to the IPOservations

e W e

class IPObservationDictionary:
Constructor
def _ init_ (self):
#Attributes of the Object
self.Dictionary = (} # Dictionary to Hold IP Observations
Method to Add an observation
def AddCb(self, key, hour):

Check to see if key is already in the dictionary

m CHAPTER 5: PCAP Extractor and OS Fingerprinting

if key in self.Dictionary:

If yes,

retrieve the current value

curValue = self.Dictionarylkey]

Increment the count for the current hour

curValue[hour-1] = curValuel[hour-1] + 1

¢ Update the walue associated with this key

self.Dictionary[key] = curValue

else:

if the key doesn't yet exist

Create one

curValue = [0,0]

Increment the count for the current hour

curValue [hour-1] = curValue[hour-1] + 1

self.Dictionary[key] = curValue

Print the Contents of the Dictionary

def PrintOb(self):
print "\nIP Observations"

print "Unique Combinations:

print

Print Heading

print !

Print M| =mmm e e e

print '%lés'
print '%1l6s'
print '&7s’
print '&5s!

for i in range(0,

print

of @f of of

[
’

"Server",
"Client",
"Port" i
"Typeil ™

24):

print "%024' % i,

print

sorted = self.Dictionary.items()
sorted.sort ()

Print Contents

for keys,values in

print
print
print
print

"§l6s'
"%16s"
'§7s"
$5s"

%
%
%
%

sorted:

keys([0],
keys([1],
strikeysl[2]),
keys([3],

for i in range(0, 24):
print '%4s' % str(values(i]),

print

Save the Current Observation Dicticnary

to the specified file

", str(len(self.Dictiocnary))

[
.

Hourly Observations

def SaveOb(self, fileName):

with open(fileName, 'wb') as fp:
pickle.dump(self.Dictionary, fp)

Destructor Delete the Object
def _ del (self):

if VERBOSE:
print "Closed"

End IPObservationClass

#
Class: OSObservationDictionary

Desc: Handles all methods and properties
relating to the OSObservations

A e ae W W

class OSObservationDictionary:
Constructor
def _ init (self):
#Attributes of the Object
self.Dictionary = {} # Dictionary to Hold IP Cbservations
Method to Add an observation
def AddOb({self, key, hour):
Check to see if key is already in the dictionary
if key in self.Dictionary:
If yes, retrieve the current value
curValue = self.Dictionarylkey]
Increment the count for the current hour

curValue[hour-1] = curValuelhour-1] + 1

Update the wvalue associated with this key
self.Dictionarylkey] = curValue

else:
if the key doesn't yet exist
Create one

curvalue = [0,0]

Increment the count for the current hour
curValue[hour-1] = curValuelhour-1] + 1

self.Dictionary[key] = curValue

Method to retrieve an cbservation
If no observation found return None

def GetOb(self, key):

m CHAPTER 5: PCAP Extractor and OS Fingerprinting

if key in self.Dictionary:
curValue = self.Dictionary[key]
return curValue

else:
return None

Print the Contents of the Dictionary
def PrintOb(self):

print "\nOS Observations"
print "Unique Combinations: ", str(len(self.Dictionary))
print

Print Heading
print ' o
2 o e Hourly Observations —-—-===========-

print '%lés' % "Server",
print '%4s' % "TOS",
print '%4s' % "TTL",
print '%6s' % "DF",
print '%7s' % "Window",

for i in range(0, 24):

print v ¥y
print '%02d' % i,
o ol £ T o A e B e

sorted = self.Dictionary.items()
sorted.sort ()

Print Contents

for keys,values in sorted:
print '%16s' % keys[O0],
print '%4s' % str(keys[1l]),
print '%4s' % strikeysl[2]),
print '%6s' % strikeys[3]),
print '%7s' % strikeys[4]),

for i in range(0, 24):
print '%4s' % str(values[i]),
print
End Print OS Observations
Save the Current Observation Dicticnary
to the specified file
def SaveCb(self, fileName):

with open(fileName, 'wb') as fp:
pickle.dump(self.Dictionary, fp)

Destructor Delete the Object

End OSCbservationClass

def _ del (self):
if VERBOSE:
print "Closed"

#
Main Program Starts Here
#
if name == "' main ':
Setup Argument Parser Object
parser = argparse.ArgumentParser ('P2NAMP PCAP Extractor')
parser.add argument('-v', '--verbose', help="Provide Progress Messages",
parser.add argument('-o', '--outPath', type= ValDirWrite, required=True,
Directory")
parser.add argument('-i', '--inFile' , type= ValFileRead, required=True,

File - Full Path")

#process the command arguments
cmdArgs = parser.parse_args()

convert arguments to simple local variables

VERBOSE = cmdArgs.verbose

inFile = cmdArgs.inFile

outPath = cmdArgs.outPath

if VERBOSE:
print "Packet Parsing Algorithm, wversion 1.0"
print

print "Opening Capture File: "+ inFile
print

Create 1P observation dictionary object
ipOB = IPObservationDictionary()
0s0B = 0OSObservationDictionary()

Loop through all the packets found in the pcap file
Obtain the timestamp and packet data

if VERBOSE:
print "Processing PCAP, please wait ...\n"

Use dpkt and setup a pcapReader Object
try:
Create pcapReader Object
pcapReader = dpkt.pcap.Reader(file(inFile, "rb"})

except:
Error Reading pcap
print "Error importing: ", infile
quit ()

Using the pcapReader Object process the
the contents of the selected pcap file

PCAP Extraction m

action='store true')
help="0Output

help="PCAP input

m CHAPTER 5: PCAP Extractor and OS Fingerprinting

each interation through the loop will return
1) packet timestamp
2) packet raw data

for timeStamp, pckData in pcapReader:

Next 1 retrieve the etherNet packet contents
and verify that it is an ethernet packet

etherNet = dpkt.ethernet.Ethernet (pckData)
Verify that this ethernet packet carries an IP Packet
if etherNet.type == dpkt.ethernet.ETH_TYPE_ IP:

get the ip data and extract the source and destination ip addresses
use the socket module to convert them to dot notaticnal form

Decode the source and destination IP Address
ip = etherNet.data

sourcefddress = socket.inet ntoa(ip.src)
destinationAddress = socket.inet ntoa(ip.dst)

Check Packet Type (either TCP or UDP and process accordingly)
if typel(ip.data) == TCP :

Extract and Decode the Ports in use
tcp = ip.data

Obtain Data for 05 Fingerprinting

SYN Flag
SYN = (tecp.flags & dpkt.tep.TH SYN) != 0
DF Flag
DF = (tecp.flags & dpkt.tcp.TH URG) != 0

Window Size
WINDOW SIZE = tcp.win

Time to Live and Type of Service wvalues
TTL = ip.ttl
TOS = ip.tes

Now obtain the Source and Destination Port
sourcePort = tcp.sport
destinationPort = tcp.dport

if sourcePort <= 1024: # Assume server IF is server
serverlIP = sourceAddress
clientIF = destinationAddress

serverPort = sourcePort
status = True

elif destinationPort <= 1024: # Assume destination IP is server
serverlIP = destinationAddress
clientIP = sourceAddress

serverPort = destinationPort
status = True
elif sourcePort <= destinationPort: # Assume server IP is server
serverIP = sourcelddress
clientIP = destinationAddress

serverPort = sourcePort
status = True

elif sourcePort > destinationPort: # Assume distinatin IP is server
serverlIP = destinationAddress
clientIP = sourcelAddress

serverPort = destinationPort
status = True

else: # Should never get here
serverIP = "FILTER"
clientIP = "FILTER"
serverPort = "FILTER"

status = False

Convert the timestamp (epoch wvalue)
into a time structure
timeStruct = time.gmtime (timeStamp)

extract the hour the packet was captured
theHour = timeStruct [HOUR_ INDEX]

if status:
Add a new IP cbservation and the hour
ipOB.AddOb ((serverIP, clientIP, serverPort, "TCP"), theHour)

If SYN is set also add a new OS Observation
if SYN:
0sOB.AddOb ((serverlP, TOS, TTL, DF, WINDOW SIZE), theHour)

elif type(ip.data) == UDP :

Extract and Decode the Ports in use
udp = ip.data

sourcePort = udp.sport
destinationPort = udp.dport

if sourcePort <= 1024: # Assume server IP is server
serverIP = sourceAddress
clientIP = destinationAddress

serverPort = sourcePort
status = True

elif destinationPort <= 1024: # Assume destination IP is server
serverIP = destinationAddress
clientIP = sourcelAddress

serverPort = destinationPort
status = True
elif sourcePort <= destinationPort: # Assume server IP is server
serverlP = sourcelddress
clientIP = destinationiAddress
serverPort = sourcePort
status = True
elif sourcePort > destinationPort: # Assume distinatin IP is server
serverlP = destinationAddress
clientIP = sourceBddress
serverPort = destinationPort
status = True

else: # Should never get here
serverlP = "FILTER"
clientIP = "FILTER"
serverPort = "FILTER"

status = False

PCAP Extraction

m CHAPTER 5: PCAP Extractor and 0S Fingerprinting

Convert the timestamp (epoch wvalue)
into a time structure

timeStruct = time.gmtime (timeStamp)
theHour = timeStruct[3]

if status:
Add a new ocbservation and the hour
ipOB.RAddOb ((serverIP, clientIP, serverPort,

"UDP"}, theHour)

else:

else:

Skip the Packet NOT TCP or UDP
continue

skip this packet NOT Ethernet Type

continue

Once all packets are processed
Print out Results

if VERBOSE:

ipOB.PrintOb()
0sOB.PrintOb()

print "\nSaving Observations ext:

.ipDict and .osDict"

Save observations in our compatible format

ipOutFile
ipOutput

osOutFile
osOutput

datetime.datetime.now() .strftime ("3Y¥YEmtd-%HEMES")+".ipDict"
os.path.join{outPath, ipOutFile)

datetime.datetime.now().strftime ("%Ytm3d-%HEMES")+" .osDict”
os.path.join{outPath, osOutFile)

ipOB.SaveOb (ipOutput)
0s0B. SaveCb (osOutput)

print

'Processing Complete'

Executing P2NMAP-PCAP-Extractor
Executing the PCAP-Extractor is done from the command line (again, Win-
dows command shell along with Linux / Mac Shells all operate the same).

C:\CH5>python P2NMAP-PCAP-Extractor.py -h

usage:

P2ZNAMP PCAP Extractor [-h]

[-v] -o OUTPATH -i INFILE

optional arguments:

-h, —--help show this help message and exit
-v, —--verbose Provide Progress Messages
-0 OUTPATH, --outPath OUTPATH
Output Directory
—-i INFILE, --inFile INFILE

PCAP input File - Full Path

PCAP Extraction “

C:\CH5>python P2NMAP-PCAP-Extractor.py -v -i ./PCAP/test.pcap -o ./OUT/

Packet Parsing Algorithm, version 1.0

Opening Capture File: ./PCAP/test.pcap

Processing PCAP, please wait ...

Executing the script with the -h option only, provides the argument list. Only
3 arguments are available:

-v (optional) which will provide a verbose output from the application
-i which is the input file and specifies the pcap file to extract from

m -0 which specifies the output directory where the resulting .ipDict and.
osDict files will be written with the familiar timestamp filename

When the script is executed with the verbose argument the following sample
output is also generated on screen. (note: this output has been abridged to
save space).

Packet Parsing Algorithm, version 1.0
Opening Capture File: ./PCAP/test.pcap

Processing PCAP, please wait ...

IP Observations

Unique Combinations: 3984
| _____________________________
Hourly Observabions soserssmsmosmmm i i e s s s i s ot e o S e iy o |
Server Client Port Type 00 01 02 03 04 05

10 11 12 13 14 15 16 17 18 19 20

0.0.0.0 255.255.255.255 68 uDP 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0
107.20.103.220 172.18.133.26 443 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 663 0 0
107.20.158.52 172:16.133.153 8080 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 708 0 0
107.20.161.243 172.16.133.48 443 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 57 0 0
107.20.170.67 172.16.133.63 443 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 40 0 0
107.20.203.158 172.16.133.121 B8O TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 20 0 0
107.20.206.100 172.16.133.54 80 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 36 0 0
107.20.217.22 172.16.133.93 80 TCP: 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 6 0 0
107.20.231.134 172.16.133.16 80 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 9 0 0
107.20.232.172 172.16.133.132 B0 TCP 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 24 0 0

CHAPTER 5: PCAP Extractor and 0S Fingerprinting

Output Abridged

0S5 Observations

Unique Combinations:

2477
jrmmm s e e e T e e e e Hourly
___ [
TTL DF Window 0o o1 02 03 04 05 06 07 08 09 10
16 17 18 19 20 21 22 23
128 False 8192 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
44 False 5840 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
128 False 8192 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0
42 False 5840 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0
128 False 8192 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
42 False 14600 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0

Observations
Server TOS
11 12 13 14
107.20.103.220 0
0 0 0 0 0
107.20.103.220 2
4] 0 0 0 0
107.20.161.243 0
0 0 0 0 0
107.20.161.243 2
0 0 0 0 0
107.20.170.867 0
0 0 0 0 0
107.20.170.67 2
0 0 0 0 0

Saving Cbservations ext:

Processing Complete

.ipDict and .osDict

Now you can utilize the resulting files from this run:

20150303-151016.ipDict
20150303-151016.0sDict

Now that we have generated the extracted ipDict and osDict files we can utilize
P2NMAP-Analyze.py or P2NMAP-OS-Fingerprint.py to perform the requisite
analysis. Note the P2NMAP-OS.Fingerpring.py script will be discussed in the
next section.

Where do you find .pcap files to experiment with? You can obviously perform a Google search
and you will find quite a few potential sources. However, three sources that | used heavily
during experimentation include:

WireShark Samples Captures: http://wiki.wireshark.org/SampleCaptures
Tepreplay: http://tcpreplay.appneta.com/wiki/captures.html
NETRESEC: http://www.netresec.com/?page=PcapFiles

Shown in Figure 5-1, Figure 5-2 and Figure 5-3

http://wiki.wireshark.org/SampleCaptures
http://tcpreplay.appneta.com/wiki/captures.html
http://www.netresec.com/?page=PcapFiles

PCAP Extraction m

DS « s~ - C

€ | & wikiwireshark.org/SampleCaptures

(‘i Login
WIS V1@ SampleCaptures

FrontPage RecentChanges FindPage HelpContents

Immutable Page Info Attachments | More Actions: v

Contents

1. Sample Captures
2. How to add a new Capture File
3. Other Sources of Capture Files
4. General / Unsorted
5. ADSL CPE
6. Viruses and worms
7. Crack Traces
8. PROTOS Test Suite Traffic
9, Specific Protocols and Protocol Families
1. AirTunes
2. ARP/RARP
3. Spanning Tree Protocol
4. Bluetooth
5. UDP-Lite
6. NF5 Protocol Family
7. Server Message Block (SMB)/Commeon Internet File System (CIFS)
8. SMB-Direct
9. Parallel Virtual File System (PVFS)
10. HyperText Transport Protocol (HTTF)
11. Telnet

FIGURE 5-1 Wireshark Samples Captures Web Page.

cache captured client devicesan .. edn
Tc preplay home features ﬁle firewall flow includes ips tayer
network ... packets
pcap performance replay send
P— — — server suite SUppoOrt
|9 Tweet | 10| tcprep Iathprewrile test. traffic

Sample Captures

» Overview
o smallFlows.pcap
o bigFlows.pcap
o test.pcap

* Contributions

FIGURE 5-2 Tcpreplay Sample Captures.

m CHAPTER 5: PCAP Extractor and 0S Fingerprinting

Experts in network security monitoring and nemwork forensics

@PETRESEC

PCAPF

Publicly available PCAP files

This is a list of public packet capture repositories, which are freely available on the Internet.
Most of the sites listed below share Full Packet Capture (FPC) files, but some do unfortunately only have

Computer Defence Exercises (CDX)

This category includes network traffic from exercises and competitions, such as Cyber Defense Exercises (CDX)
and red-team/blue-team competitions.

MACCDC - Pcaps from National CyberWartch Mid-Arlantic Collegiate Cyber Defense Competition
hittp: { fwww.netresec.com/fpage=MACCDC

Captures from the 2009 Inter-Service Academy Cyber Defense Competition™ served by Infe
Technology Operations Center {ITOC), United States Military Academy
hugps: /iwww,itocusma.edu/research /dataser/

Capture the Flag Competitions (CTF)

PCAP files from capture-the-flag (CTF) competitions and challenges.

DEFCON Capture the Flag Contest traces {from DEF CON &, 10 and 11)
hitp:/ fectf.shmoo.com/

)d dVOd dVOd

FIGURE 5-3 NETRESEC Sample Captures.

PASSIVE 0OS FINGERPRINTING

As many people are painfully aware, performing passive OS fingerprinting is
a significant challenge. However, in this section I will provide the building
blocks for identifying at least the general OS that is executing on the associated
server platforms. The actual missing-link is a comprehensive dataset of rules
that would more accurately map OS behaviors. This method is not meant to
compete with the active methods of fingerprinting generated from the NMAP
community, SAINT developers, McAfee/Intel Foundstone labs and other main-
stream vendors. Rather the solution is presented to encourage expansion of the
method, especially the painstaking task of developing signatures that will work
during passive based examinations.

0S Fingerprinting Truth Table

During the passive collection of packet data (whether using P2NMAP-Capture.
py or extracting packet data using P2NMAP-PCAP-Extractor.py) several key ini-
tial parameters were collected from observed packets. These IP packet values
include Type of Service, Time to Live, Don't Fragment (DF) and Window Size.
These values were only collected when the IP packet contained a TCP segment

Passive OS Fingerprinting

with the SYN flag set. This set of values allows for the creation of a Truth Table
that would generate possible OS Fingerprinting when all four of the table val-

ues match the observed values.

based on the values specified in that row.

Truth Tables provide a method of defining all possible values that can exist for a certain set of
facts, variables or functions. These tables contains multiple rows and columns, with the top
row representing the category values along with a final column that contains the conclusion

Table 5-1 shows a sample table with a few sample entries.

In order to improve on the basic concept, I wanted a bit more flexibility in the
table. First, the Time to Live observations are impacted by the number of rout-
er hops that the packets take between the source and destination. Thus even if
the packet starts out at 128, the value we observe is likely to be less than 128,
therefore I will make this a range of values instead of a fixed number. Secondly,
for certain known fingerprint signatures only 2 of the values may be required

for an accurate identification.

For example, we may have knowledge that a certain CISCO network device has
a starting TTL value of 255 and a Window Size of 4128, but the Type of Ser-
vice and DF flags are not relevant, unknown or unreliable. In this case [would
like to ignore the DF and TOS fields during the comparison (by using wild
cards). Finally, for ease of parsing the table, the TTL and Window Size fields
will always contain a range. The resulting truth table would then look like that

in Table 5-2.

Table 5-1 Basic Truth Table
Time to Live Type of Service DF Flag

128 0 Y
64 16 N
128 0 Y

Window Size

5000-9000
17520
32000-32768

OS Identified

Window NT
Open BSD
Netware

Table 5-2 Improved Truth Table
Time to Live Type of Service DF Flag

65-128 0 Y
33-64 16 N
65-128 0 Y
129-255 * *

Window Size

5000-9000
17520-17520
32000-32768

4128-4128

OS Identified

Window NT
Open BSD
Netware
Cisco I0S

m CHAPTER 5: PCAP Extractor and 0S Fingerprinting

A sample flat file truth table file is shown here, with the syntax being strict space
delimited columns to make parsing the file simple. The file can be expanded
to contain additional values as more known observations become available or
the fingerprint data improves.

17-32 0 N 8192-8192 Windows
65-128 0 Y 5000-9000 Windows
65-128 0 Y 17000-18000 Windows
65-129 0 Y 32000-32768 Netware
33-64 16 N 17520-17520 OpenBSD
33-64 0 N 5804-5840 HP
33-64 0 N 24820-24280 8CO
33-64 16 Y 17520-17520 FreeBSD
33-64 16 N 17520 17520 Linux
33-64 0 Y 24280-24280 Solaris
65-128 0 N 65535-65535 CISCO
33-60 0 Y 16000-16100 AIX43
33-60 0 N 16000-16100 AIX43
65-128 0 Y 5000-8000 Windwos
127-255 192 N 3800-5000 Cisco
33-64 * * 5720-5840 Linux
33-64 * * 65535-65535 BSD
65-128 * * 8§192-8192 Windows
129-255 * * 4128-4128 CISCO

Truth Table Python Class
To handle the processing of the truth table, I create a simple class that will per-
form three basic functions:

1. Load the truth table and process the range values

2. Accept a known set (TTL, TOS, DF and Window Size) as input and
return the first matching OS Fingerprint from the loaded truth table.

3. Print the truth table for convenience and verification

class FingerPrint:
Constructor

def _ init__ (self):

self.classificationList = []

self.osObservationsloaded = False
self.osObservationFileName = ""
self.osTruthTableLoaded = False
self.osTruthTableFileName = ™"

Passive 0S Fingerprinting m

Load in the TruthTable from the userdefined text file
def LoadTruthTable(self, truthTable):
String Index Values

TTL_RANGE
TOS

DF =
WINDOW_SIZE
0s -
CHK_FLD
tableErrors = False

[]]
ol Wb o

try:
Process the User Defined Input Table

with open(truthTable, "r") as fileContents:
for eachlLine in fileContents:
values = eachLine.split()

Make sure we have the proper number of fields
in this line

if len(values) == CHK FLD:
convert the text ttl and winsize into low and high integers
unless wild card specified
if values[TTL_RANGE] != '*':
ttllow, ttlHigh = self.convertRange (values[TTL RANGE])

else:

ttlLow = -1

ttlHgh = -1
if values[WINDOW SIZE] != '*':

winLow, winHigh = self.convertRange (values [WINDOW_SIZE])
else:

winLow = -1
winHigh = -1

Convert TOS to an integer, unless wild card

if values[TOS] == '*';:
tosval = '*!
else:
try:
tosVal = int(values[TOS])
except:

invalid TOS value
skip this line
tableErrors = True
continue

Convert DF to True or False or wild card

if values|[DF] .upper() == "y":
dfVal = True
elif values|[DF].upper(} == "N":

dfVal = False
elif values[DF] == '*':
dfval = "*"»

m CHAPTER 5:

else:
invalid DF value
skip this line

tableErrors = True
continue
if ttlLow != None and winLow

self.classificationList.append (

winLow, winHigh, walues[0S5]])

else:
tableErrors = True
self.osTruthTableLoaded = True
self.osTruthTableFileName = truthTable

except:

PCAP Extractor and OS Fingerprinting

!= None:
[ttlLow,

print "#%**¥ Joading Truth Table - Failed #ax*sn

self.osTruthTableLoaded = False
self.osTruthTableFileName = ""

Return to caller with errors flag
True = Errors Found in Text File
False = All Rows Loaded Properly
return tableErrors

End LoadTruthTable Method

Convert Range Method
Used to Convert range values 123-456
into two integer values

def convertRange (self, theString):

lowStr = ""
hghStr = ""
parse the low value
for x in range(0,len(theString)):
if theString[x].isdigit():
lowStr += theString[x]
else:
break

Skip the delimeters usually comma or dash

for s in range(x, len(theString)):
if theString[s].isdigit():
break
else:
continue

If we are not at the end
if s < len(theString):
parse the high wvalue
for y in range(s, len(theString)):
if theString(y].isdigit(}:
hghStr += theString[y]
else:
break
else:
return None, None

If we have two strings, then convert to

ints

tt1lHigh,

tosVal,

dfval,

Passive 0S Fingerprinting m

if len(lowStr) > 0 and len(hghStr) > 0:
lowVal = int(lowStr)
hghVal = int (hghStr)

else:
return None, None

Finally,
If we have a proper low high relationship return the ints
if lowVal <= hghVal:
return lowVal, hghVal
else:
return None, None

End convertRange Method

GetOSClassification Searches the Loaded Truth Table
for a match, it will return on the first successful match
if no match is found it will return the string "UNDEFINED"

def GetOSClassification(self, ttl, tos, df, winSize):
List Index

TTL_LOW =
TTL_HGH
TOS_VAL
DF_VAL =
WIN_ LOW =
WIN_ HGH =
0OS_VAL =6

Search the classificationList (TruthTable}

I

(S-SR S]

for entry in self.classificationList:

First Check the TTL Value, if in Range continue

if ((entry[TTL_LOW] <= ttl and entry[TTL_HGH] >= ttl) or (entry[TTL LOW] == '*')):
Mext Check the Type of Service Value, if Match Continue
if entry[TOS_VAL] == tos or entry[TOS_VAL] == "*":

Next Check the DF Flag, if Match Continue
if entry([DF_VAL] == df or entry[DF VAL] == "*":
Finally, check the Window Size, if in Range Continue
if ((entry[WIN LOW] <= winSize and entry[WIN HGH] >= winSize) or
(entry[WIN LOW] == '*')):
BReturn the 0S5 Value Found
return entry[0S_VALI]

If none of the rules result in a match
return "UNDEFINED"

End GetOSClassification Method

PrintTruthTable Method
Print out the currently loaded Truth Table

m CHAPTER 5:

def

End PrintTruthTable Method

PCAP Extractor and OS Fingerprinting

PrintTruthTable (self):

TTL_LOW =0

TTL_ HGH 1

TOS VAL . 2

DF_VAL 3

WIN_LOW = 4

WIN_ HGH =35

0S_VAL =6

print >> OUT, '\nCurrent Loaded Fingerprint Truth Table\n'

print >> OUT, '%10s ' % 'TTL RANGE',

print >> OUT,'%4s ' % 'TOS',

print >> OUT,'%5s ' % ' DF ',

print >> OUT, '%16s ' % 'WIN RANGE',

print >> OUT,'%22s ' % 'OS Fingerprint'

print >> OUT, '===== === e e e et SESSSSSSsSSSSSSsEs ¥

for entry in self.classificationlList:
print >> QUT,'%3s ' % str{entry[TTL LOW]),
print »> OUT, "M,
print >> OUT, '$3s ' % str(entry[TTL_HGH]),
print >> QUT, "%4s ' % str(entry[TO5_VAL]),
print >> OUT,'%5s ' % str(entry[DF_VAL]),
print >> OUT, '%6s ' % str(entry[WIN LOW]),
print >> QUT, "-",
print >> OUT,'%6s ' % str(entry[WIN_HGH]),
print >> OUT,' %20s '% entry[OS_VAL]

print >> OUT, '\n\n'

Now that we can load and process the truth table, all that is left to do is build
a menu driven script that can:

1. Load a previously generated .osDict file
2. Load and process and user defined truth table
3. Generate the OS fingerprint results

In addition, I have provided similar support functions as with the P2NMAP-
Analyze script to allow directing the output to a file, along with the ability to
print the contents of the .osDict observations and the truth table contents.

Passive 0S Fingerprinting m

P2NMAP-0S-Fingerprint Script

[

Copyright (c) 2015 Chet Hosmer, cdh@python-forensics.org

Permission is hereby granted, free of charge, to any person cbtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restrictioen,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and permit persons to whom the Software is
furnished to do so, subject the following condition.

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

[N

#

PZNMA-Analyze.py Script

#

Perform analysis of previously capture .ipdict files
#

#

Version 1.0 February 17-2015

import argparse # Python Standard Library - Parser for command-line options, arguments
import os # operating system functions i.e. file I/o
import datetime # Python Standard Library date and time methods
import pickle # Python Standard Library pickle methods
import socket # Python Standard Library Low Level Networking
import sys # Python Standard Library Low Level System Methods
PSUEDC CONSTANTS
PRINT_ STDOUT = True # If True, all output and menu selections directed
If False, all ocutput directed to a file except menu
ouT = sys.stdout # Default Output to Standard Cut
#
Class: 0SObservationDictionary
B
Desc: Handles all methods and properties
relating to the 0SObservations
#
B

class 0OSObservationDictionary:
Constructor
def init (self):
#Attributes of the Object
self.Dicticnary = {} # Dictionary to Hold IP Observations

self.osCbservationFileName = ™"
self.osObservationsLoaded = False

CHAPTER 5: PCAP Extractor and OS Fingerprinting

def LoadOb(self, fileName):

try:

with open(fileName,
self.Dictionary

except:

print "Loading OS Observations File - Failed"

'rb') as

= pickle.loads (fp.read())
= fileName

self.cbservationFileName
self.observationsLoaded

self.osObservationsLoaded =
self.osObservationFileName =

fp:

= True

False

wn

Method to retrieve an observation

If no observation found return None

def GetOb(self, key):

if key in self.Dictionary:
curValue = self.Dictionary[key]
return curValue

else:

return None

def GetAllObservations (self):

observationList = []

sorted = self.Dictionary.items()
sorted.sort ()

for k, v
observationList.append (k)

in sorted:

return observationList

def PrintOb(self):

print >> OUT,
print >> OUT,

print >> OUT

Print Heading
print >> OUT, '
print >> QUT, "[====-=

"\n0OS Observations"
"Uniqgue Combinations:

"
’

print
print
print
print
print

for i

>>
>>
>>
>>
>>

in

QUT, '%16s’'
ouT, '%4s'
ouT, '%4s'
OUT, '%6s'
ouT, '%7s!
range (0, 24)

print >> outr, !

print >> OUT,

%
%
3
%
%

L}

"Server",
nTosy,
IITTL " T
I’IDF!I ¥
"Window",

'$02d' % i,

str(len(self.Dictionary))

B e O, O R e R e e R e S SR s

sorted = self.Dictionary.items()
sorted.sort()

Passive 0S Fingerprinting m

Print Contents

for keys,values in sorted:
print >> OUT, '%16s' % keys[0],
print >> OUT, '%4s' % str(keysl[1]),
print >> OUT, '%4s' & str(keys[2]),
print >> OUT, '%6s' & str(keysl[31),
print >> OUT, '%7s' &% str(keysl[4]),

for i in range (0, 24):
print >> OUT, '%4s' % str(values[il)},
print >> OUT

End Print 0S Observations

Load in and Observation Dicticnary
from the specified file

def LoadOb(self, fileName):

try:
with open(fileName, 'rb') as fp:
self.Dictionary = pickle.loads(fp.read())
self.osObservationFileName = fileName
self.osObservationsloaded = True
except:
print "Loading Observations - Failed"
self.osObservationsLoaded = False
self.osObservationFileName = ""

Destructor Delete the Object

def del (self):
print >> OUT, "OS Observation Dictionary Closed"

End 0OSObservationClass

class FingerPrint:
Constructor

def init_ (self):

self.classificationlist = []
self.osObservationslLoaded = False
self.osObservationFileName = ""
self.osTruthTablelLoaded = False
self.osTruthTableFileName = ""

Load in the TruthTable from the userdefined text file

def LoadTruthTable(self, truthTable):

String Index Values

TTL_RANGE =0
TOS =1
DF =2
WINDOW SIZE = 3

m CHAPTER 5: PCAP Extractor and OS Fingerprinting

oy

0s =
CHK_FLD =5

tableErrors = False

try:
Process the User Defined Input Table

with open({truthTable, "r") as fileContents:
for eachline in fileContents:
values = eachLine.split ()

Make sure we have the proper number of fields
in this line

if len(values) == CHK_FLD:
convert the text ttl and winsize into low and high integers
unless wild card specified

if values|[TTL_RANGE] != '*':

ttlLow, ttlHigh = self.convertRange (values|[TTL_ RANGE])
else:

ttlLow = -1

ttlHgh = -1
if values[WINDOW_SIZE] != '*':

winLow, winHigh = self.convertRange(values[WINDOW_SIZE])
else:

winLow = -1

winHigh = -1

Convert TOS to an integer, unless wild card
if values[TQS] == '*';
tosVal = '*?
else:
try:
tosVal = int (values[TOS])
except:
invalid TOS value
skip this line
tableErrors = True
continue

Convert DF to True or False or wild card

if wvalues|[DF] .upper|{) m— YN
dfvVal = True

elif values|[DF].upper() == "N":
dfVal = False

elif values[DF] == '*';
dfval = "*"

else:
invalid DF value
skip this line
tableErrors = True
continue

if ttlLow != None and winLow != None:
self.classificationList.append({ [ttlLow, ttlHigh, tosVal, dfVval,
winLow, winHigh, walues[0S]])
else:
tableErrors = True

self.osTruthTableLoaded = True
self.osTruthTableFileName = truthTable

except:
print "e**** Loading Truth Table - Failed #**%%*»
self.osTruthTableLoaded = False
self.osTruthTableFileName = ""

Return to caller with errors flag
True = Errors Found in Text File
False = All Rows Loaded Properly
return tableErrors

End LoadTruthTable Method

Convert Range Method

Used to Convert range values 123-456
into two integer wvalues

=

def convertRange (self, theString):

lowStr = "*
hghStr = ""

parse the low value
for x in range(0,len(theString)):
if theString([x].isdigit():
lowStr += theString[x]
else:
break
Skip the delimeters usually comma or dash
for s in range(x, len(theString)):
if theString[s].isdigit():
break
else:
continue

If we are not at the end
if 5 < len(theString):
parse the high wvalue
for y in range(s, len(theString)):
if theStringly].isdigit():
hghStr += theStringl[y]
else:
break
else:
return None, None

If we have two strings, then convert to ints

if len({lowStr) > 0 and len(hghStr) > 0:
lowVal = int(lowStr)
hghVal = int (hghStr)

else:
return None, None

Finally,
If we have a proper low high relationship return the ints
if lowVal <= hghVal:
return lowVal, hghVal
else:
return None, None

End convertRange Method

Passive 0S Fingerprinting

m CHAPTER 5: PCAP Extractor and OS Fingerprinting

GetOSClassification Searches the Loaded Truth Table
for a match, it will return on the first successful match
if no match is found it will return the string "UNDEFINED"

def GetOSClassification(self, ttl, tos, df, winSize):
List Index

TTL_LOW =
TTL_HGH =
TOS_VAL =
DF_VAL =
WIN_LOW e
WIN_HGH =
0S_VAL =

oW o

Search the classificationList (TruthTable)
for entry in self.classificationlList:

First Check the TTL Value, if in Range continue

if ({entry[TTL_LOW] <= ttl and entry[TTL_HGH] >= ttl) or (entry[TTL_LOW] == '*')
Next Check the Type of Service Value, if Match Continue
if entry[TO5_VAL] == tos or entry[TOS_VAL] == "*":
f# Next Check the DF Flag, if Match Continue
if entry[DF_VAL] == df or entry[DF_VAL] == "#*":
Finally, check the Window Size, if in Range Continue
if ((entry[WIN LOW] <= winSize and entry[WIN HGH] >= winSize) or
(entry[WIN LOW] == '*')):

Return the 0S8 Value Found
return entry[0S VAL]

If none of the rules result in a match
return "UNDEFINED"

End GetOSClassification Method
PrintTruthTable Method
Print out the currently loaded Truth Table

def PrintTruthTable(self):

TTL _LOW =0
TTL HGH =1
TOS VAL =2
DF VAL =3
WIN LOW =4
WIN HGH =5
0S_VAL =6

print >> OUT, '\nCurrent Loaded Fingerprint Truth Table\n'
print >> OUT,'%10s ' % 'TTL RANGE',

print »> OUT,'%4s ' % 'TOS',
print >> OUT,'%5s ' % * DF ',

print >> OUT,'%16s ' % 'WIN RANGE',

print >> OUT,'%22s ' % '0S5 Fingerprint'
print >> OUT, '===== m————— = mm——— e ——— e ————— e ————— mr——— e

Passive 0S Fingerprinting m

for entry in self.classificationList:
print >> OUT,'%3s ' % str(entry[TTL _LOW]),
print >> oUT, "-",
print >> OUT,'%3s ' % str(entry[TTL_HGH]),

print >> OUT, '%4s ' % str(entry[TOS_VAL]),
print >> OUT,'%5s ' % str(entry[DF_VAL]),

print >> OUT,'%6s ' % str(entry[WIN_LOW]),
print >> out, "-",
print >> OUT,'%6s ' % str(entry[WIN HGH]),
print >> OUT,' %20s '% entry[OS_VAL]
print >> OUT, "\n\n'

End PrintTruthTable Method

Print the OS Fingerprint Analysis Menu

def PrintOSAnalysisMenu(self, osState, osFile):

print "\p========== PZNMAP 0S5 Fingerprint Analyze Menu ====s=====\p"

if osState:

print "Current Observation File: ", osFile
if self.osTruthTableLoaded:
print "Current OS5 Truth Table: ", self.osTruthTableFileName
print
print "[L] Load Observation File for Analysis"
print "[T) Load Observation Truth Table"

if osState and self.osTruthTableLoaded:

if PRINT_STDOUT:

print "[O] Direct Qutput to File {Current = Stdout)"
else:
print "[0O] Direct Qutput to Stdout (Current = results.txt)"
print " "
print "[1] Print Truth Table"
print "[2] Print Observations"
print "[3] Print Prcobable 0S5 Fingerprint "
print
print "“[X] Exit P2ZNMAF Fingerprint Analysis"

print

End FingerPrint Class

#
Main Program Starts Here
4

m CHAPTER 5: PCAP Extractor and OS Fingerprinting

if _name_ == '__main_':

Local Psuedo Constants

IP =0
TCS = 1
TTL = 2
DF =3
WIN = 4

Instantiate the FingerPrint and OSObservationDictionary Objects
fpOB = FingerPrint ()
0sOB = 0OSObservationDictionary()

Process User Input

while True:
fpOB.Print0SAnalysisMenu (0sOB.osObservationsLoaded, osOB.osObservationFileName)

menuSelection = raw_input ("Enter Selection: ").upper()

Attempt teo Load the 0S Capture File

if menuSelection == 'L':
fileName = raw_input ("Enter OS Capture File: ")
0s0OB.LoadOb (fileName)

print
Attempt to Load a Truth Table
elif menuSelection == 'T':
fileName = raw_input("Enter Truth Table File: ")

rowErrors = fpOB.LoadTruthTable (fileName)

If Table Loaded, then check for row errors
if fpOB.osTruthTablelLoaded:
If rowError then inform the user
if rowErrors:
print >> QUT, "Table Loaded but with Errors, Check Truth Table Input”
elae:
print >> OUT, "Truth Table Loaded"
print

Toggle the Current Output State
elif menuSelection == 'O':
if PRINT STDOUT:
PRINT STDOUT = False
OUT = open({"results.txt", 'w+')
else:
PRIN’I‘_STDOUT = True
QUT.close()
OUT = sys.stdout

Print OCut the Current Truth Table

elif menuSelection == '1':
fpOB.PrintTruthTable ()

Print out the Current Observation List
elif menuSelection == '2':
os0B.PrintOb()

Process the Observation List and

Print out Server Type

By matching the observed value list with
the loaded Truth Table

Passive OS Fingerprinting m

elif menuSelection == '3':
obList = o0s0B.GetAllObservations ()

print >> OUT

print >> OUT, '%$1l6s ' % 'IP Address',

print >> OUT,'%25s ' % 'Fingerprint 0S5 Type'
print >> QUT, "=s=====s=======ss======s=s=s====s==s====s==s===ss====s=========

for entry in obList:
osType = fpOB.GetOSClassification({entry[TTL], entry[TOS], entry[DF], entry[WIN])
print >> QUT, '%16s ' % entry[IP],
print >> OUT, '%25s ' % osType

elif menuSelection == 'X':
break
else:
print "Entry not recognized"
continue
OUT.flush{()

print "done"

Executing P2NMAP-0S-Fingerprint
Operating P2NMAP-OS-Fingerprint.py, requires no command line arguments
as the user is prompted for all necessary input.

C:\CH5>python P2NMAP-OS-FingerPrint.py

[L] Load Observation File for Analysis
[T] Load Observation Truth Table
[X] Exit P2NMAP Fingerprint Analysis

Enter Selection:

Before processing and generating the OS Fingerprints a valid observation file
and a valid truth table must be provided: Once this is accomplished successful-
ly, the menu will change to allow for the execution of the remaining options:

1. Print truth table
2. Print observations
3. Print probable OS fingerprint

m CHAPTER 5: PCAP Extractor and 0S Fingerprinting

Current Observation File: testl.osDict

Current 0OS Truth Table: tpEE.Ext

[L] Load Observation File for Analysis

[T] Load Observation Truth Table

[0] Direct Output to File (Current = Stdout)
[1] Print Truth Table

[2] Print Observations

[3] Print Probable 0S Fingerprint

[X] Exit PZNMAP Fingerprint Analysis

Enter Selection: 1

Selecting Option 1, produces the following truth table output, (Current
Loaded Fingerprint Truth Table).

TTL RANGE TOS DF WIN RANGE 0S Fingerprint
17 = 32 0 False 8192 - 8192 Windows
65 - 128 0 True 5000 - 9000 Windows
65 - 128 0 True 17000 - 18000 Windows
6h - 129 0 True 32000 - 32768 Netware
33 - 64 16 False 17520 - 17520 OpenBSD
33 - 64 0 False 5804 - 5840 HP
33 - 64 16 True 17520 - 17520 FreeBSD
33 - 64 0 True 24280 - 24280 Solaris
65 -~ 128 0 False 65535 - 65535 CISCO
33 - 60 0 True 16000 - 16100 AIX43
33 - 60 0 False 16000 - 16100 AIX43
65 - 128 0 True 5000 - 9000 Windwos

127 - 255 192 False 3800 - 5000 Cisco
33 - 64 * * 5720 - 5840 Linux
33 - 64 * * 65535 - 65535 BSD
65 - 128 o % 8192 - 8192 Windows

129 - 255 * * 4128 - 4128 CISCO

Passive 0S Fingerprinting m

Selecting Option 2, produces the familiar (abridged) OS Observations result

Current Observation File: testl.osDict

Current 0OS Truth Table: fptt.txt

[L] Load Observation File for Analysis

[T] Load Observation Truth Table

[O] Direct Output to File (Current = Stdout)
[1] Print Truth Table

(2 Print Observations

[3] Print Probable 0S Fingerprint

[X] Exit P2NMAP Fingerprint Analysis

Enter Selection: 2

0S Observations

Unique Combinations: 2477
| === e Hourly
ObServations —rroorTres T T s s T T e T e e e I
Server TOS TTL DF Window 00 01 02 03 04 05 06 07 08 09 10

11 12 13 14 15 16 17 18 19 20 21 22 23

107.20.103.220 0 128 False 8192 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0
107.20.161.243 0 128 False 8192 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0
107.20.170.67 0 128 False 8192 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0
107.20.170.67 32 42 False 14600 0 0 0 0 0 0 0 0 0 0 0

0 0 4] 0 0 0 0 0 0 0 2 0 0

Finally, Selecting Option 3, produces the (abridged) Probable OS Fingerprint
Result

CHAPTER 5: PCAP Extractor and 0S Fingerprinting

Current Observation File: testl.osDict

Current 0OS Truth Table: fptt.txt

[L] Load Observation File for Analysis

[T] Load Observation Truth Table

[O] Direct Output to File (Current = Stdout)
(1] Print Truth Table

[2] Print Observations

[3] Print Probable 0S Fingerprint

[X] Exit PZNMAP Fingerprint Analysis

Enter Selection: 3

IP Address Fingerprint 0S Type
107 20.003.220 Linux
10720061 243 Linux
107.20.170.67 Windows
98.,139.51.,132 BSD
98.142.99.171 Linux
99.61.13.155 Windows
REVIEW

I tackled extracting key data from pcap files to convert them into the .ipDict
and .osDict format in Chapter 5. This provides a direct way of handling cap-
tured network traffic from sources other than P2NMAP-Capture.py developed
in Chapter 3. This was critical since more and more organizations are routinely
collecting, preserving and retaining pcap files in their normal course of busi-
ness. To extract the data, we used the 3™ Party Python Library dpkt , and were
able to accomplish this core extraction process in less than 20 lines of code. I
then wrapped this process into a script to automatically perform the functions.

Next, for the first time we used the contents of the .osDict file to make use
of the observed TTL, TOS, DF and Window Size to predict the OS Type of
the server in question. I defined a method using a truth table to perform this

operation, and provided a baseline for further expansion of the truth table to
improve the accuracy of the fingerprint identification. Next, I created the com-
plete script, P2NMAP-OS-Fingerprint.py, to experiment with this new method
of OS identification.

I also provided sample script execution for both P2NMAP-PCAP-Extractor and
P2NMAP-OS-Fingerprint.

SUMMARY QUESTIONS

1. Challenge Problem 1: Develop experiments that generate observed
behavior of a variety of operating systems under normal operation.
Use that data to improve the truth table and ultimately the accuracy of
Passive OS Fingerprint identification.

2. Challenge Problem 2: Utilize the ipDict result and the port values
obtained to further improve OS Fingerprint identification by creating
a truth table that provides association of known ports with the most
operating system most probably in use.

3. Challenge Problem 3: Modify both P2NMAP-Capture.py and P2NMAP-
PCAP-Extractor.py to collecting TTL, TOS, DF and Window Size
observations for protocols other than TCP/UDP.

Additional Resources

Song Dug, dptk Python Package, https://pypi.python.org/pypi/dpkt

Silverman Jeffery, dptk documentation, http://www.commercialventvac.com/dpkt.html

Summary Questions m

https://pypi.python.org/pypi/dpkt
http://www.commercialventvac.com/dpkt.html

CHAPTER 6

Future Considerations and
Challenge Problems

“There are two levers for moving men: interest and fear.”
Napoleon Bonaparte

AUTHOR OBSERVATIONS

Developing this text and the associated scripts has been quite enjoyable. At the _

outset, my goal was to develop a text and scripts written in Python to perform Author Observations... 137
the foundation of passive network mapping. This foundation has many uses Author Predictions.... 138
and my hope is that it will continue to evolve. Challenge Problems... 140

In a world where we need to strike an achievable balance between security and Mgre Information 141
privacy, I believe the concepts shared in this book provide the beginnings and

underpinnings of that balance. None of the scripts or methods provided here

analyze or expose the contents of network packets, rather they only focus on

the end-to-end connections and key header information.

According to 18 U.S. Code § 3121 “a government agency authorized to
install and use a pen register or trap and trace device under this chapter or
under State law shall use technology reasonably available to it that restricts
the recording or decoding of electronic or other impulses to the dialing,
routing, addressing, and signaling information utilized in the processing and
transmitting of wire or electronic communications so as not to include the
contents of any wire or electronic communications”

[wanted to make sure that the P2NMAP scripts met these requirements for two
basic reasons:

1. I wanted the scripts to be usable in a wide range of lawful situations
both by law enforcement and within corporate environments.

2. I wanted to demonstrate that staying within these limits could provide
a useful and extensible toolset. The results of this first step may generate
enough probable cause to generate a warrant that would then allow the

examination of content.
137

m CHAPTER 6: Future Considerations and Challenge Problems

Additionally, my goal was to create a full open source solution in order to:

1.

Provide a baseline for other researchers, developers, academics and
students, allowing them to advance the scripts to suit their specific needs.

. Demonstrate that it was possible to create a Python-only source code solution

for the capture, analysis and OS Fingerprinting of observed network traffic.

. Provide a solution that could be safely deployed in environments

where it could be dangerous to perform active network mapping, where
damage to, or shutdown of critical information systems could occur,
(e.g. SCADA environments).

. Provide a Python-only solution where the resulting scripts would be

portable across a wide range of computing platforms.

. Finally, to allow the review by others to ensure that what has been

presented meets these goals and objectives.

AUTHOR PREDICTIONS

L

.
‘ [
i

€
¥
$
P
3
¥
$
£
€
¥

FIGURE 6-1 Future Predictions.

Due to the combination of....

m strengthening security controls
m mobile device integration

the broad acceptance of Bring Your Own Device (BYOD) models

the entrée of wearable networked devices

the movement toward the Internet of Things (IOT) philosophies

the increased use of data leak prevention systems

the improved application of firewalls, content filters

the widespread deployment of intrusion prevention apparatus within
corporate infrastructures

and the continued reduction in the cost of data storage devices

.. the following predictions seem reasonable:

1.

Monitoring (in other words, continuous passive network capture) will
increase dramatically. As the devices we utilize each day become more
transient players in the networks we control, our ability to actively scan
or map these activities will become almost impossible.

. Our ability to track devices and the humans attached to them is

already quite elusive, and will continue to become more difficult as the
explosive nature of these devices we carry or wear expands.

. The line between broadband and land based networks will continue to

blur. Even today our devices automatically switch seamlessly from one
wireless network, to another, to broadband and back again even when
we don't leave our homes!

. Our ability to mine this data and make sense of it will become vital, if

we wish to solve crimes, ferret out malicious insiders, stop the leakage
of personal or corporate information and one day pre-empt nefarious
acts instead of just reacting to them once they become the latest New

York Times headline. We obviously must change our tactics.

Ehe New Pork Times

TECHNOLOGY

8 Recent Cyberattacks Against Big Businesses

By KEVIN GRANVILLE FEB. 5, 2015

Cyberattacks have become an ever-increasing threat. The F.B.I. now ranks

B el cybercrime as one of its top law enforcement activities, and President
Obama’s recently proposed budget would sharply increase spending on

K share cybersecurity, to $14 billion. Here are some of the major attacks on United
States businesses in recent years.

W Tweet

@ Save

FIGURE 6-2 New York Times Technology Headline 2-5-2015.

Author Predictions m

m CHAPTER 6: Future Considerations and Challenge Problems

Of course privacy concerns continue to expand as the digital footprint that we
leave with every click, post, tweet, music/video download, App purchase or
now even every time we start our car or open our fridge expands. These actions
become fodder for government monitoring, commercial gains and potential
criminal activity.

CHALLENGE PROBLEMS

Several key challenge problems exist that are logical next steps. These can be
approached by individuals, graduate and undergraduate students (with as-
sistance) and by organizations wishing to participate in the evolution of the
P2NMAP technologies.

Challenge 1: Passive OS Fingerprints — The development a complete truth
table or other decision making model for a wide variety of operating
signatures is essential. This requires both an initial effort to develop the
current baseline (moving back in time) as well as methods to measure
new versions.

Challenge 2: IPv6 - The challenge of evolving P2NMAP scripts to support
IPv6 environments is two-fold. First, in order to perform the same level
of capture and analysis that is currently supported for IPv4. Second, to
examine/analyze and observe IPv6 headers to identify key data elements
that would improve OS Fingerprinting.

Challenge 3: Wireless Passive Network Mapping - P2NMAP today will
capture connections from WiFi devices as they flow in and out of current
network switches. However, providing the ability to passively capture

and analyze wireless connection in the air and mapping their temporal
behaviors would be beneficial.

Challenge 4: IP Activity Mapping - The current capture and analysis
capabilities of P2NMAP provide the fundamental data necessary to map
behavior by specific IP addresses (clients or servers). However, sorting,
filtering and visualizing this behavior would add significant value to
investigators.

Challenge 5: Cross IP Link Analysis - It is likely that multiple P2NMAP
captures or PCAP files collected from multiple network vantages points or
even geographically separated networks is likely. The ability to combine,
process and analyze a set of captures would provide a more global
perspective for investigators.

Challenge 6: Python 3.3x — Porting P2NMAP-Capture, P2NMAP-Analyze,
P2NMAP-OS-Fingerprint and P2NMAP-PCAP-Extractor should prove to
be fairly straight-forward. This is the reason I minimized the use of 3™
party packages which is typically the most difficult aspect relating to the
port.

Challenge 7: GUI vs Command Line - Finally, the current P2NMAP
scripts are command line based in order to focus on core details of
passive capture, analysis and OS fingerprinting. However, there are
certainly benefits to wrapping the core scripts into a GUI for ease of
use, configuration, management of captures, reporting and general
visualization.

MORE INFORMATION

For additional information, the latest source code downloads, updated truth
tables and other P2NMAP information:

Visit:
www.python-forensics.org/

To contact the author directly:

cdh@python-forensics.org

More Information m

http://www.python-forensics.org/
mailto:cdh@python-forensics.org

Subject Index

A

Active network map, 13, 15, 21, 34,
138

Active scanning, 11, 13, 35

Application firewalls, 17

argparse, 48, 84, 104, 123

Bose wave radio, 5, 7

Bring your own device (BYOD)
models, 139

BYOD. See Bring your own device
(BYOD) models

C

Captured data, 29
storing of, 39
Cartography, 12
Fra Mauro world map, 13
social network map, 12
Chief information officer (CIO), 2
Chief information security officer
(CISO), 2, 117, 118, 132
CIO. See Chief information officer
(CIO)
CISCO network device, 117
CISO. See Chief information security
officer (CISO)
Class C physical network, 33
Class C private address block, 33
Code snippet, 41
Command line entry, 59
Commercial gains, 140
Common vulnerabilities and
exposure (CVE), 11
Computing resources, 38
Content filters, 17, 139
Conventions, use of, 1

bold, 1
italic, 1
Country lookup option, specifying
of, 64, 69
Critical infrastructure, 1, 11
Cross IP link analysis, 140
CVE. See Common vulnerabilities
and exposure (CVE)
Cyber assets, 2
Cyber ping command, 5
Cyber security, 2, 5, 17

D

Data leak protection (DLP), 17

Data storage operations, 44

datetime, 41, 44, 48, 59, 84, 104, 112

Deductive reasoning, 34

Demilitarized zone (DMZ), 17

DF flags, 117

Dictionary, 41, 44, 63-65, 72, 76,
80, 84

Direct program output, 66

DLP. See Data leak protection (DLP)

DMZ. See Demilitarized zone (DMZ)

Dptk package, utilizing of, 102

E

Easy smart configuration utility, 38
Enterprise networks, 1, 2

F

Fra Mauro world map, 13

G

Graphical user interface (GUI), 3,
141

GUI. See Graphical user interface
(GUI)

H

Hackers, 34

Heartbleed, 1, 11, 13, 32

Histogram of observations, printing
of, 71, 80

Host based sensors, 13

Host lookup option, specifying of,
64, 68

HOST_LOOKUP variable, 68, 77

Host name lookup, 64

Host names, 64, 68, 69, 74, 76

IANA. See Internet assigned numbers
authority (IANA)
ICMP. See Internet control message
protocol (ICMP)
ifconfig, 22, 25, 59
Incident response teams, 1, 14
Inductive reasoning, 34
example of, 34
Information technology (IT), 17
devices, 18-20
related incidents, 1
heartbleed, 1
operation shady rat, 1
sample program output, 29
Internal data structures, 39
Internet assigned numbers authority
(IANA), 32
service name, 32
transport protocol port number
registry, 32
Internet control message protocol
(ICMP), 5-7, 9, 14
echo reply type message, 5
echo request message, 5
message types, 7, 8

143

m Subject Index

Internet control message protocol
(ICMP) (cont.)
request type packets, 7
test network, 9
Internet of things (IOT)
philosophies, 139
Internet protocol (IP)
activity mapping, 140
addresses, 1
datagrams, 6, 7
layer, 6
observation dictionary, 41, 63
class methods, 44
clientIP, 41
serverlP, 41
Internet service providers (ISP), 34
IOT. See Internet of things (IOT)
philosophies
IP. See Internet protocol (IP)
.ipDict observations, 63, 99, 113
IpObservationDictionary class, 47,
64, 66
IPvo, 140
ISP. See Internet service providers
(ISP)
IT. See Information technology (IT)

L

Linux commands, 21
Linux tcpdump command, 37
Lyon, Gordon, 3

M

Maginot line, 17, 18
MAXMIND geolite country database
binary/gzip version, 69, 70

Near field communication devices
(NFC), 19
NETRESEC sample captures, 116
Network mapper (Nmap), 3
Network mapping, 3, 12, 23, 30, 101
active, 21, 34, 138
passive, 23, 34, 65, 137
python passive, 3, 10, 37
wireless passive, 140
Network privacy, 140
Network related predictions, 139
New York Times technology
headline 2-5-2015, 139
Network traffic, 30, 37, 63, 134,
138

NFC. See Near field communication

devices (NFC)

Nmap. See Network mapper (Nmap)

0
Observation file, loading of, 64, 65
Observations, printing of, 71, 72
client IP address, 72
port type, 72
server IP address, 72
server port number, 72
Observed client list, 71, 76
Observed server list, 74
Observed server to client
connections, 71, 77
OpenSSL, 11, 13, 32
Operation Shady Rat, 1
Organizationally unique identifier
(our), 5
oS, 2
fingerprinting, 30
observed values, 31
open port patterns, 32
TCP/IP default header values,
30, 31
passive fingerprinting, 116
truth table fingerprinting, 116
OSObservationsClass, 47
OUL. See Organizationally unique
identifier (OUI)

P
Packet capture (PCAP), 63, 99
analysis performing methods, 71
histogram of observations,
printing of, 71
observations, printing of, 71
observed client list, printing
of, 71
observed server list, printing
of, 71
observed server to client
connections, printing of, 71
extraction, 99
.ipDict file, 99
.osDict file, 99
extractor, executing of, 112, 118
passive approach, 63
setting up options for, 64
country lookup option,
specifying of, 64
host lookup option, specifying
of, 64

observation file, loading of, 64
program output, directing of, 64
technical approach, 64
Packet capturing, 37
Packet data, 41, 116
capturing of, 38
Passive network mapping, 23, 137
Passive OS fingerprints, 140
Patch management infrastructures,
17
PCAP. See Packet capture (PCAP)
Pcap files, 65, 99, 102, 140
Pickle module, 65
Ping, 4, 5
Ping scan selection, 4
pip, 69, 70, 84, 99, 104
platform, 3, 38, 48, 63, 116, 138
results of, 4
P2NMAP. See Python passive network
mapping (P2NMAP)
analysis menu, 64, 65
extractor, executing of, 112
scripts, 137
technologies, 140
cross IP link analysis, 140
Graphical user interface vs
command line, 141
IP activity mapping, 140
IPvo, 140
passive OS fingerprints, 140
python 3.3x, 140
wireless passive network
mapping, 140
P2NMAP-Analysis.py script, 84
P2NMAP-Analzer.py, 99
P2NMAP-capture.py, 63
execution of, 59
script, review of, 101
network mapping, 101
OS fingerprinting, 101
P2NMAP-Capture script, 80
P2NMAP-OS-fingerprint script, 123
execution of, 131
Port mirroring switch supported, 37
remote switched port analyzer
(RSPAN), 37
switched port analyzer (SPAN), 37
Port monitoring, 37
configuration of, 39
Port name conversion, 64
Port number, 24, 32, 40, 64, 72
Potential criminal activity, 140
Primitive capture script, 47
promisc, 21, 25, 48

Pygeoip library, 69, 70
Python code, 68
Python dictionaries, 40
clientIP, 40
duplicate serverIP, 40
lists, 40
serverPort, 40
tuples, 40
Python dir function, 100
Python import command, 100
Python module dpkt, 99
Python-only solution, 138
Python-only source code
solution, 138
Python package management
system, 69
Python packet capture tool, 63
Python passive network mapping
(P2NMAP), 3, 10
advantages and disadvantages,
10, 11
environment, setting up of, 37
Python P2NMAP-Analysis.py, 96
Python programming language, 10
Python script, 29, 37
Python shell, 100
Python source code, 48
Python standard libraries, 68
module, 65, 67, 68
reference, 69
Python 3.3x, 140
P2NMAP-Analyze, 140
P2NMAP-Capture, porting of, 140
P2NMAP-OS-Fingerprint, 140
P2NMAP-PCAP-Extractor, 140

R

Remote switched port analyzer
(RSPAN), 37
Roku box, 5

Routers, 8, 13, 40, 117
RSPAN. See Remote switched port
analyzer (RSPAN)

S

SANS internet storm center, 33

SCADA environments, 138

Security event and incident
management (SEIM), 17

Servers, 1, 13, 18, 21, 33, 63, 74, 78,
140

Services, 2, 5, 11, 18, 29, 32, 35

SEIM. See Security event and incident
management (SEIM)

self.observationFileName, 66

self.observationsLoaded attribute,
66

Signal, 48

Social network map, 12

socket, 24-29, 48, 69, 74, 77, 80, 84,
100, 103, 123

SONAR. See Sound navigation and
ranging (SONAR)

Sound navigation and ranging
(SONAR), 5

SPAN. See Switched port analyzer
(SPAN)

struct, 24, 48, 100

Sudo command, 9

Switched port analyzer (SPAN), 37

sys, 24, 25, 48, 67, 84, 104, 123

T

TCP, 8, 30, 40

Tcpdump command, 9

Tcpdump network monitoring
program, 8

Tcpreplay sample captures, 115

Time-to-live (ttl) value

Subject Index [Fil43

observations, 117
value, 7
T L-SG108E 8-Port Gigabit Switch,
37,38
Trojan, in network, 33
Truth table, 117
basic, 117
improved, 117
python class, 118
basic functions, 118
menu driven script, building
of, 122
ttl. See Time-to-live (ttl) value

ubDP, 35, 47, 72
Unix commands, 21

'/

Vaskovich, Fyodor, 3

Virtual private networks (VPN), 17

Voice over internet protocol (VOIP)
systems, 19

VOIP. See Voice over internet
protocol (VOIP) systems

VPN. See Virtual private networks
(VPN)

w

Warning messages, 66

Web servers, 21

Window size, 117

Wireless passive network mapping,
140

Wireshark samples captures web
page, 115

y4

Zenmap, 3, 4

