

Python Passive
Network Mapping

Chet Hosmer

Technical Editor

Gary C. Kessler

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Syngress Publishers is an Imprint of Elsevier

P2NMAP

Acquiring Editor: Chris Katsaropoulos
Editorial Project Manager: Benjamin Rearick
Project Manager: Priya Kumaraguruparan
Designer: Matthew Limbert

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or any informa-
tion storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s
permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright
by the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional
practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-802721-9

For information on all Syngress publications
visit our website at http://store.elsevier.com/

http://www.elsevier.com/permissions
http://store.elsevier.com/

To our children who inspire me every day and make me realize how
blessed I truly am. Whether you take care of the sick and injured,
you teach and inspire future generations, you care deeply and fight
to protect our environment or you simply bring unconditional love
to everyone you touch. To Kira, Tiffany, Trisha and Matty.

ix

Biography

Chet Hosmer is the Founder of Python Forensics, Inc. a non-profit organization
focused on the collaborative development of open-source investigative tech-
nologies using the Python programming language. Chet is also the founder of
WetStone Technologies, Inc. and has been researching and developing technol-
ogy and training surrounding forensics, digital investigation and steganography
for over two decades. He has made numerous appearances to discuss emerg-
ing cyber threats including National Public Radio’s Kojo Nnamdi show, ABC’s
Primetime Thursday, NHK Japan, CrimeCrime TechTV and ABC News Australia.
He has also been a frequent contributor to technical and news stories relating
to cyber security and forensics and has been interviewed and quoted by IEEE,
The New York Times, The Washington Post, Government Computer News,
Salon.com and Wired Magazine.

Chet serves as a visiting professor at Utica College where he teaches in the
Cybersecurity Graduate program. He is also an Adjunct Faculty member
at Champlain College in the Masters of Science in Digital Forensic Science Pro-
gram. Chet delivers keynote and plenary talks on various cyber security related
topics around the world each year.

Chet resides with Wife Janet, Son Matthew along with his four legged family
near Myrtle Beach, South Carolina.

Gary C. Kessler, Ph.D., CCE, CCFP, CISSP, is a Professor of Homeland Security
at Embry-Riddle Aeronautical University, a member of the North Florida ICAC
(Volusia County Sheriff’s Department), and president and janitor of Gary Kessler
Associates, a training and consulting company specializing in computer and
network security and digital forensics. He is the co-author of two professional
texts and over 70 articles, a frequent speaker at regional, national, and interna-
tional conferences, and past editor-in-chief of the Journal of Digital Forensics,
Security and Law. More information about Gary can be found at his Web site,
http://www.garykessler.net.

http://www.garykessler.net/

xi

Preface

It is Monday morning, July 6, 2015 and you have just returned from the long
holiday weekend. On your desk sits a note that reads…

A vulnerability has been discovered that may affect SCADA based networks.
We need to determine if any of our systems are potentially vulnerable or
worse have already been compromised. As you know, we cannot actively
scan our SCADA network, so we need to passively map network activity
and behaviors over the next week and then analyze the results. We need a
way to determine/verify every end point on our network, what systems they
communicate with, what countries those connections have made to and from.
I Need prelim report by noon tomorrow.

Thanks,

the CISO
P.S. we have no budget for new toys.

INTENDED AUDIENCE
This information in this book was designed to be accessible by anyone who
has a desire to learn how to leverage the Python programming language to pas-
sively monitor and analyze network activity for worthy causes. The open source
scripts and knowledge transfer are yours to use and hopefully inspire you to
advance the scripts, contribute to the community, and look at passive network
monitoring from a whole new perspective.

PREREQUISITES
Access to a computer, familiarity with an operating system (Windows, Linux
or Mac) and access to the Internet, coupled with a desire to learn. Some fa-
miliarity with programming and the Python programming language would be
helpful.

Prefacexii

READING THIS BOOK
The book is organized with the first two chapters focused on introductory ma-
terial to define what passive network mapping is, how to setup an environment
to perform passive network mapping, and to demonstrate what value passive
network mapping can bring.

Chapters 3 and 4 introduce scripts that perform passive network capture on
a Linux or Windows platform, and provides scripts that allow you to per-
form network mapping functions and mine the captured data for analysis
purposes.

Chapter 5, provides a script that can convert existing packet capture files (.pcap)
into the structure necessary to perform network mapping, analysis and OS Fin-
gerprinting. In addition, Chapter 5 develops a model and working script that
performs OS Fingerprinting using only passively observed data.

Chapter 6 then presents future predictions, observations along with a series of
challenge problems for future work.

SUPPORTED PLATFORMS
All the examples in the book are written in Python 2.7.x in order to provide the
greatest platform compatibility.

The P2NMAP-Capture.py script has been validated on Linux and Windows op-
erating systems.

The P2NMAP-Analyze.py script, P2NMAP-PCAP-Extractor.py script and
P2NMAP-OS-Fingerprint.py scripts have been validated for Linux, Windows
and Mac.

DOWNLOAD SOFTWARE
Those purchasing the book, will also have access to the open source code ex-
amples in the book for easy use, enhancement and continued research. The
scripts and text have been created for easy integration into graduate and under-
graduate classrooms, training courses and hands on lab environments.

The source code is available from the python-forensics.org web site.

COMMENTS, QUESTIONS AND CONTRIBUTIONS
I encourage you to contribute in a positive way to this initiative. Your questions,
comments and contributions to the source code library and enhanced passive OS

Preface xiii

Fingerprint dataset will benefit the whole community. www.python-forensics.org
will make these resources available to all.

Finally, I challenge you all to share your ideas, knowledge and experience.

Sincerely,

Chet Hosmer

http://www.python-forensics.org/

xv

Acknowledgments

My sincerest thanks go to:

Dr. Gary Kessler, the technical editor for this book. Gary is everything you
could want from a technical editor … not only does he find all my technical
errors, but he also brings great ideas to the table. Thank you Gary, your constant
encouragement and friendship made the process fun.

Chris Katsaropoulos, Ben Rearick, Steve Elliot, and the whole team at Elsevier
for your enthusiasm for this topic, and all the guidance, patience and support
along the way.

To Janet, for helping to make every chapter better, more consistent and always
finding just the right quote to kick off each chapter.

And to the whole team at WetStone … Carlton, Tiffany, Geoff, Amanda, Heather,
Brian and Sean for making it possible for me to begin the next chapter of my
career.

1

﻿
﻿

Introduction

CHAPTER 1

“Measure what is measurable, and make measurable what is not so.”
Galileo Galilei

CONVENTIONS USED IN THIS TEXT
I use standard typographical conventions (bold, italics, etc.), to highlight text
that stands out from the overall body of the paragraph. The font styles I will be
using throughout the text are:

Italic
Used for file and directory names and to emphasize terms

Constant width
Used for code listings and script generated output

Constant Width and Bold
Used for user input

Enterprise Networks today are complex, difficult to investigate, require spe-
cialized tools and demand exceptional and expert skills in order to properly
respond to incidents. When dealing with incidents that involve critical infra-
structure or other regulated industry environments the specialization of the
toolkits can indeed be daunting.

One of the first challenges that face incident response teams and forensic in-
vestigation units is “What does your network consist of and how is it config-
ured?” This may seem like a simple question that is easily answered by the
Information Technology group. However, when responding to incidents like
Heartbleed, Operation Shady Rat, and breaches at major retailers, the technical
information and details regarding the network map can be vital.

More specific questions may also include:

j	 What internet protocol (IP) addresses and subnets do you operate?
j	 What servers and end points are running?
j	 Are the Servers local, hosted at an external site or in the cloud?

CONTENTS

Conventions Used
in This Text.....................1
So What is a Ping Anyway?... 5

What is Python
Passive Network
Mapping or
P2NMAP?.....................10

Why Does This
Method Cast a
Larger Net?..................12

How Can Active
Network Mapping
Actually Hurt You?........13

Organization of the
Book.............................14

Review..........................14

Summary Questions....15

CHAPTER 1:   Introduction2

j	 What Operating Systems are in use? What versions and are they up-to-date?
j	 What Services (open ports) are available on each server and host?
j	 What applications and databases are in use?
j	 How is your network configured, protected and isolated?
j	 What connections are allowed between servers, hosts and Internet users?
j	 What connections have occurred recently?
j	 Are the activities from or to specific end points anomalous?
j	 Where are those connections (to and from)? If the connection include

hosts outside the internal network where are these connections
physically located in the world? Can they be pinpointed and verified?

If some or all of these questions can be answered the follow-up questions are
of course:

j	 How do you know? …and
j	 Are you sure?

Typically these answers come from the Chief Information Officer (CIO) or the
directed IT personnel responsible for the network along with the (Chief Informa-
tion Security Officer) CISO and related cyber security staff members. Each of these
groups utilize a variety of tools to assist in managing the cyber assets under their
control. These tools can range from a simple set of spreadsheets to complex asset
control inventory and management systems, or in the worst case, stored between
the ears of the staff members themselves. Don’t get me wrong, many of these folks
are very talented and have a pulse and deep understanding of the networks they

FIGURE 1-1 Enterprise Networks.

Conventions Used in This Text 3

manage. All of this information regardless of its source or form factor is important
and valuable to incident response and forensic investigation teams. They of course
have the arduous task of determining what is happening or has happened, who
is doing it, how to mitigate and remediate the damage and better defend against
future incidents. All of the data regardless of the means of collection however, is
necessary to execute a comprehensive forensic investigation.

Python Passive Network Mapping: P2NMAP - An open source solution to uncovering
nefarious network activity deals with the challenge “what does your network con-
sist of and what are identifiable or unusual behaviors?” Traditionally, network
mapping is an active process whereby IT and cyber teams utilize tools to identify
network based assets.

Nmap, (Network Mapper - a security scanner originally written by Gordon
Lyon - also known by his pseudonym Fyodor Vaskovich) used to discover hosts
and services on a computer network, works by communicating raw IP packets
to specified IP address ranges to determine:

j	 what hosts exist within the range
j	 what services are running on each of the discovered hosts
j	 what operating system are those host likely to be running

…and a plethora of other characteristics that can be tested and measured
through this active interrogation method.

By way of a quick introduction let’s take a look at the current instantiation of
Nmap for Windows using the Zenmap Graphical User Interface (GUI).

Figure 1-2 depicts the main display of Nmap running under the Zenmap GUI
version 6.47. Zenmap is a multi-platform graphical front-end that interfaces

FIGURE 1-2 Nmap Today.

CHAPTER 1:   Introduction4

with the standard command line of Nmap and then displays the results in a
more useable and interactive format.

As you can see in Figure 1-2A, I have selected a simple ping Scan with a target
selection of 192.168.0.0/24. Zenmap displays the exact Nmap command that
will be executed based on the selections that I have made. Dissecting the com-
mand reveals the specific instructions delivered to the Nmap engine.

The results of this quick scan can be seen in Figure 1-3. As you scan through the
list of computers and other devices on my local network you might find some
interesting hits and responses.

FIGURE 1-3 Summary Results of Ping Scan.

FIGURE 1-2A Ping Scan Selection.

Conventions Used in This Text 5

1.	 IP address 192.168.0.7 was identified as a Roku box used for streaming
content from the Internet.

2.	 IP address 192.168.0.7 was identified as our Bose Wave Radio.
3.	 IP address 192.168.0.13 was identified as our B-Link surveillance camera,

just in case you had thoughts about stealing the Bose wave radio. :)
4.	 IP address 192.168.0.16 identified as an Apple device, ….this could be

one of many
5.	 IP address 192.168.0.19 is a DirecTV receiver
6.	 IP address 192.168.0.185 is an Internet radio
	 Along with several other typical computers. (My wife was a computer

scientist also… thus the ‘several’!) It is important to note, that the
manufacturer identification of these devices is not based on any Nmap
magic, but rather on the OUI (Organizationally Unique Identifier)
portion of the MAC address.

	 This provides a pretty good scan of the active devices on my local
network. Of course these are the devices that responded to scan. What
about the printers and other mobile devices that were not identified?
We will be discussing this issue throughout the book.

If you are a more visual person, Figure 1-4 provides a graphical view of the
network IP addresses identified. This allows users to drill down into specific
devices and discover additional information.

So What is a Ping Anyway?
Ping is the cyber equivalent of traditional SONAR (short for SOund Naviga-
tion And Ranging), or the “pings” that are used to locate objects under water.
A cyber ping actually refers to the use of a special network protocol namely
the Internet Control Message Protocol (ICMP). It is primarily used by network
devices to send error messages indicating that specific services are unavailable
or unreachable, or to communicate and query specific status.

For host discovery purposes, ICMP’s Echo Request message is used to make a
request to a specific IP addresses and then wait for the associated Echo Reply
Type Message. Traditional thinking is that if you cannot obtain a response from
a host that you ping, other services offered are likely unavailable. In many
cases when troubleshooting connection issues ping is used to verify connec-
tivity to a specific IP address.

Due to increased concern and awareness of cyber security issues many network firewalls
and gateways block ICMP Echo Requests to stop unauthorized mapping of hosts on the net-
work. Unfortunately, this plays both ways as insiders that wish to add hosts to the corporate
network will configure their systems to block ICMP Echo Requests as well and therefore will
not be discoverable using this type of scan.

CHAPTER 1:   Introduction6

ICMP is part of the Internet Protocol Layer as shown in Figure 1-5 and ICMP
messages are transmitted using IP datagrams as depicted in Figure 1-6.

FIGURE 1-5 Example Internet Protocol Stack Layers.

FIGURE 1-4 Network Map generated by Zenmap.

Conventions Used in This Text 7

Many message types and codes exist as shown in Table 1-1 on the following
page. For our use in host discovery, the highlighted Echo Request Type 8, Code 0
and Echo Reply Type 0, Code 0 represent our primary use. However, as you can
see, ICMP has many other Types and Codes that are used by network devices.
Note ICMP is an IP Type 1 message.

To provide a quick demonstration, I configured a simple network made up of
just 4 computers as shown in Figure 1-7.

In this example, using the ping command, I sent ICMP Request Type Packets
from 192.168.0.5 → 192.168.0.9. IP address 192.168.0.9 responded with the
appropriate response message.

You might notice that the packet delays are timed and range from 40.6 ms to 279
ms. This may seem unusual to you. I chose this specific target IP address, (as shown
in Figure 1-3, this is my Bose Wave Radio), to show the response to pings. As
you can see responses from this device are a bit erratic in comparison to a typical
desktop computer. Also, you may notice that each of the ICMP requests contain
a different sequence number denoted as icmp req = 1, icmp req = 2, …
icmp req = 6. This is because the ping command employs a monotonically
increasing value starting at 1, since IP packets, by their definition, are unreli-
able (or, better defined, as best effort), and packets can be lost, respond out
of sequence, or be delayed. Finally, you notice that the ping request includes

FIGURE 1-6 ICMP Message Contained Within and IP Datagram.

CHAPTER 1:   Introduction8

a ttl value of 64, where ttl stands for Time-To-Live and is decremented by 1
each time the packet passes through a router. Therefore the ttl value set to 64
allows the packet to route to as many as 64 network hops before the IP packet
would be discarded to avoid looping.

I also have setup 192.168.0.10 as a Linux Host running Tcpdump. Tcpdump is a
network monitoring program that captures and records TCP/IP data. Tcpdump

Table 1-1  ICMP Types and Codes

Type Code Description Query Error

0 0 Echo Reply (Ping Reply)

3 Destination Unreachable
0 Network Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation Error
5 Source Route Failure
6 Destination Route Failure or Unknown
7 Destination Host Unknown
8 Obsolete
9 Destination Network Blocked
10 Destination Host Blocked
11 Network Unreachable
12 Host Unreachable
13 Communication Filtered
14 Host Precedence Violation
15 Precedence Cutoff

4 0 Source Quench
5 Redirect

0 Network Redirect
1 Host Redirect
2 Type of Service Redirect based on Network
3 Type of Service Redirect based on Host

8 0 Echo Request Ping

9 0 Router Advertisement
10 0 Router Solicitation
11 Time Errors

0 Time to Live == 0 during transit
1 Time to Live == 0 during reassembly

12 Parameter Error
0 IP Header Error
1 Option Field Missing

13 0 Timestamp Request
14 1 Timestamp Reply
15 0 Obsolete
16 0 Obsolete
17 0 Address Mask Request
18 0 Address Mask Reply

Conventions Used in This Text 9

is primarily designed to capture packets, however, the program has many options
that can also assist in filtering, and performing statistical calculations and provide
users with information that can assist in determining the health of their network.

I utilized the following command line to execute the Tcpdump session:

$ sudo tcpdump –vv icmp

The sudo command pronounced (su “do”) allows some (or all) commands to
be executed as root provided that the user has the appropriate privilege associated
with their account. Tcpdump is the command that we wish to execute as root. The
–vv option instructs tcpdump to provide verbose output and finally, the icmp
designator instructs tcpdump to only capture icmp packets. The following is the
abbreviated packet results captured by the tcpdump command.

TCP Dump Output

Request 1

Reply 1

FIGURE 1-7 Simple ICMP Test Network.

CHAPTER 1:   Introduction10

Request 2

Reply 2

……. Skipped for brevity

Request 6

Reply 6

Now that we have taken a quick tour of Nmap and have a fundamental under-
standing of a basic ping scan we will explore where this book will take us next.

WHAT IS PYTHON PASSIVE NETWORK MAPPING
OR P2NMAP?
Simply put, P2NMAP is a method to map networks using only the Python pro-
gramming language without ever emitting a packet onto the network. In ad-
dition, we want our activities to be stealthy and not expose our investigation.
This is not for hacking or nefarious purposes as you will see, but in many cases
performing these activities without the perpetrators knowledge is important,
especially when that perpetrator is an insider.

There are several advantages and some disadvantages of this method. Table 1-2
defines some of these advantages and disadvantages.

What is Python Passive Network Mapping or P2NMAP? 11

The Common Vulnerabilities and Exposure (CVE-2014-016) vulnerability (commonly referred
to as “Heartbleed”) may be the longest running zero day vulnerability to date. It is important
to note, that Heartbleed is NOT a vulnerability of the SSL protocol in general, but rather an
example of an implementation bug. Once discovered, it has taken months to fully identify
impacted systems, and even longer to remediate a solution. One of the reasons this is so is
because to fully identify all the impacted systems, modern vulnerability scanners have to test
every IP address and every possible port running on each of those systems. It is simply not
enough to scan for common OpenSSL ports and then test for the vulnerability. Thousands of
applications and services use OpenSSL and many do not use standard ports like 443.

When scanning for these applications and services the expectation of the scanners is that:

1.	 All the systems are powered on
2.	 The scanners have visibility and are not blocked by firewalls or guards
3.	 The scanning operations themselves won’t disrupt operations
4.	 The vulnerable services are in fact running
5.	 The vulnerable services are properly responding to the probes.

That is a lot of assumptions. In addition, if those systems are running inside a critical infra-
structure environment good luck in convincing the operators to let you start wildly scanning
every IP address and every port. Instead a more sanguine approach is to passively monitor
these environments with zero danger in causing harm and a greater chance of identifying the
full range of systems impacted by Heartbleed. You may say this might take weeks or longer
to accomplish using a passive approach. However, ask the real operators of these environ-
ments, how long it took to actively scan these environments, how many scans were neces-
sary, how many times systems and operations were disrupted and you will find, as the saying
goes, that “discretion is the better part of valor”.

Table 1-2  Advantages and Dis-Advantages of P2NMAP

Advantages Disadvantages

j  �Zero overhead or impact on the network itself. This can be very

important especially within critical infrastructure environments,

where activity scanning technologies can disrupt operations.

j  �The time to compile a complete map of the

network may take longer, although providing a

more thorough view of the environment.

j  �The ability to uncover hosts and services that are unknown or are

missed by active scanning methods.

j  �It is more difficult to identify details such as

specific operating systems, hardware types and

vulnerabilities.

j  �Identify behaviors that are potentially dangerous, hostile, nefarious

or outside of defined policies.

j  �P2NMAP provides a full motion video in comparison with the

snapshot approach that most active scanning methods provide.

j  �P2NMAP provides an extensible framework where users can add

new capabilities and extend

behaviors using one of the most popular and easy to learn

programming environments.

CHAPTER 1:   Introduction12

WHY DOES THIS METHOD CAST A LARGER NET?
The simple answer is that you will find important and undeniable facts about
how your network and environment is operating. By passively mapping the
behavior of your network you will know, depending upon how long you moni-
tor, every IP address that has touched the environment, what and where in the
world they have touched, how often they have communicated, and at what
time of day or night were they communicating. This can only be accomplished
by patiently mapping these behaviors over time.

Much like cartography which is described as both the art and science of
map making, network mapping requires the same discipline, patience and
consistency. Unlike cartography, however, where maps are re-drawn every
50-100 years, the maps of our digital network can change dramatically in
just days.

You can see the contrast between a modern network map and a cartographer’s
map in Figure 1-8 and Figure 1-9, respectively.

FIGURE 1-8 Social Network Map.

How Can Active Network Mapping Actually Hurt You? 13

HOW CAN ACTIVE NETWORK MAPPING
ACTUALLY HURT YOU?
Active Network Mapping has several specific impacts:

1.	 Active network mapping behavior mimics hostile or hacking activity and
can cause intrusion prevention systems to react to counter the actions.

2.	 Host based sensors can also identify these behaviors as hostile and react
to the behavior and create outages.

3.	 Active scanning activities place significant load on the network, servers,
routers and network devices.

4.	 Errors in setting up the scanners, (for example scanning improper IP
addresses ranges), can inadvertently impact adjacent networks. If the
resulting scan causes damage or outages to those networks, operators of
the scanners can be liable.

One of my favorite examples of this comes from a release by Hewlett Packard
in the midst of the discovery of the Heartbleed vulnerability:

“HP Integrated Lights-Out products (iLO, iLO 2, iLO 3, iLO 4) do not
use the OpenSSL library and are NOT exposed to the CVE-2014-0160
vulnerability (now known as ”Heartbleed”) …. However, there is a bug in
these libraries that will cause first-generation iLO and iLO 2 devices to
enter a live lockup situation when a vulnerability scanner runs to check

FIGURE 1-9 Fra Mauro World Map circa 1480 AD.

CHAPTER 1:   Introduction14

for the Heartbleed vulnerability.” http://h20566.www2.hp.com/portal/site/
hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1&ac.
admitted=1406398999314.876444892.199480143

The point is that by merely scanning these systems for the Heartbleed
vulnerability you can literally shut the lights off.

ORGANIZATION OF THE BOOK
In order to quickly address P2NMAP and get you started using, expanding and
developing new innovations in passive network mapping, I have arranged the
book to get to the point quickly. I would also like to provide detailed explana-
tion of each step, script program and method, thus leaving nothing unexplored.

I want these processes to be easily usable by novice and expert users, students,
academics, practitioners, programmers, incident response teams and those
wanting to learn about both Python and network investigation as the same
time. I always have found learning a new programming language or environ-
ment is much more fun if there is a problem to solve first.

In Chapter 2, I explain what you don’t know about your network - and more
importantly, why you need to know it and why it is important. Also, I look at
who is touching your network, and from where. Why should you be concerned
about this?

Chapter 3 focuses on how to capture network packets with Python and some
special tools. We also look at how you can efficiently store, index and manage
what you capture. Most importantly, I discuss how you can do this silently.

Chapters 4 and 5 tackle the analysis of what we have captured, how to make
sense of it and how to create an extensible toolkit. This toolkit can be freely
used, shared, evolved and also includes opportunities for you to participate in
the future expansion.

Chapter 6 takes a look at future opportunities and outlines next steps for
P2NMAP.

Finally, each chapter includes a summary of topics covered, challenge prob-
lems and review questions making the book suitable for use in college and
university academic environments.

REVIEW
In this chapter we quickly examined Nmap and the basic method of scanning
and mapping a simple network. We examined the ICMP protocol and demon-
strated how ICMP Requests and Reply make up the ping operation that can

http://h20566.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1%26ac.admitted=1406398999314.876444892.199480143
http://h20566.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1%26ac.admitted=1406398999314.876444892.199480143
http://h20566.www2.hp.com/portal/site/hpsc/template.PAGE/public/kb/docDisplay?docId=emr_na-c04249852-1%26ac.admitted=1406398999314.876444892.199480143

Summary Questions 15

identify IP addresses on your network. Through this process we showed how
many devices not just computers are on your network and do respond to this
door-rattling exercise. Next, I provided you with a quick overview definition of
what P2NMAP is, and what some of the advantages and disadvantages to this
approach are. I also took a look at why passive mapping can be safer and more
thorough method for network mapping. Finally, we examined some ways that
active mapping can actually be dangerous.

SUMMARY QUESTIONS
1.	 What are the fundamental differences between active and passive

network mapping?
2.	 What other specific harm could active network mapping cause and/or

what regulatory policies could be impacted?
3.	 What advantages or disadvantages could be caused by passively

mapping networks?
4.	 What benefits and/or limitations do you think choosing a language like

Python might pose when applied to network mapping?

References
Nmap Security Scanner, http://nmap.org

Zenmap the official Nmap Security Scanner Graphical User Interface, http://nmap.org/zenmap/

The official web site of tcpdump, http://tcpdump.org

http://nmap.org/
http://nmap.org/zenmap/
http://tcpdump.org/

17

﻿
﻿

What You DON’T Know About
Your Network

CHAPTER 2

“Knowledge speaks, but wisdom listens.”
Jimi Hendrix

WHAT’S RUNNING ON YOUR NETWORK
MIGHT SURPRISE YOU
Modern environments boast massive infrastructures and sophisticated security
technologies designed to keep the bad guys out.

What if the bad guys are already in?

Today, the defensive technology mix includes traditional firewalls, application
firewalls, a demilitarized zone (DMZ), virtual private networks (VPN), anti-
virus, anti-spyware, patch management infrastructures, content filters, host and
network data leak protection (DLP), specialized privilege guards and security
event and incident management (SEIM) solutions. Unfortunately, these sys-
tems and technologies do little to protect against new threats or hidden vul-
nerabilities that exist within the environment they protect. In some cases, they
exist within the security solutions themselves!

In addition, the solutions today bear resemblance and similar weaknesses to
those created by the French Minister of War, Andre Maginot, who in the 1930’s
created fortifications to protect France from a German invasion. Much like the
Maginot line (see figure 2-1), modern cyber security solutions provide great
protection against a direct attack, but can be circumvented by insiders through
the exploitation of unknown vulnerabilities, via new attack vectors, by means
of social engineering activities and can be infiltrated due to lack of deep under-
standing of one’s own environment.

Big vs. Little
It turns out that many smaller organizations are more difficult to penetrate due
to the fact that the environment is better understood by both the Information

CONTENTS

What’s Running on
Your Network Might
Surprise You.................17
Big vs. Little...........................17
We Care About What’s
Running on Our Systems.......18
Why Do We Care?...................19
A Quick Demonstration..........21
How to Do This in Python?.....23
Sample Program Output........29

OS Fingerprinting........30
OS Fingerprinting Using
TCP/IP Default Header
Values.....................................30
OS Fingerprinting Using
Open Port Patterns................32

What Open Ports or
Services Don’t You
Know About?................32
How is This Useful?...............33

Who’s Touching Your
Network?......................34

Review..........................35

Summary Questions....35

CHAPTER 2:   What You DON’T Know About Your Network18

Technology (IT) teams and the Cyber Security teams that protect them. Larger
organizations in many cases have undergone numerous mergers and acquisi-
tions along with the melding of information systems. They have also been
around longer and likely employ legacy technologies, or have systems operat-
ing throughout their network that have simply been forgotten and are running
services that are vulnerable.

The following statement is critically important….

The more you know about your environment, the better you can protect your
assets, the easier you can detect anomalous activity, and the faster you can
react to new attacks and vulnerabilities.

We Care About What’s Running on Our Systems
This might seem obvious as you read this, but you are likely to be surprised by
systems and services that are operating on your network. We tend to think only
about servers and desktop workstations, since our view of the world is that
this is where the information is created, accessed and utilized. Obviously, our
infrastructures are changing and what is running or attached to our network
is also evolving. Let’s just take a look at just a small list of devices and systems

FIGURE 2-1 Map the Maginot Line.

What’s Running on Your Network Might Surprise You 19

we need to be concerned about today (I have purposely left out Servers and
Desktop Workstations from the list):

j	 Android phones and tablets
j	 iOS phones and tablets
j	 Windows phones and tablets
j	 Blackberry phones and tablets
j	 Printers and multifunction devices (print, scan, fax)
j	 Copiers and Biz Centers
j	 Voice Over Internet Protocol (VOIP) systems
j	 Security cameras
j	 Internet radios
j	 Handheld personal cameras
j	 Near Field Communication Devices (NFC)
j	 Conference room phones
j	 Wearable technologies (fitness, surveillance see Figures 2-2–2-4)

Why Do We Care?
At the end of the day, these are all computers at their core with access to net-
works, the Internet and possibly your corporate infrastructure and informa-
tion. The questions are:

1.	 Can you identify them on your network?
2.	 Do you know where they are located?
3.	 What data do they have access to?
4.	 Most importantly, what is the risk and potential impact they pose if

compromised?

FIGURE 2-2 Wearable Camera Glasses.

CHAPTER 2:   What You DON’T Know About Your Network20

FIGURE 2-4 Wearable Fitness Devices.

FIGURE 2-3 Smart Watches.

What’s Running on Your Network Might Surprise You 21

The other important aspect of the mobile, wireless, Bluetooth, wearables and
NFC devices is that they tend to leave very temporal footprints. Meaning that
traditional active network mapping methods may be ineffective in detecting
their presence or tracking their behaviors.

Based on this brief introduction, you can see that there are significant advantages
to having a firm understanding of the devices that should be attached to our net-
works, whether these devices are servers, workstations or mobile devices. Think
of this as home-field advantage, by understanding what should be operating on
your network it becomes easier to identify those devices that shouldn’t be there.

As I demonstrated in Chapter 1, actively identifying devices on a network using
NMAP quickly provides information about the obvious suspects. What we are
looking for here are those devices that operate either in a temporal fashion or are
purposely stealthy. Approaching the problem from a passive point view is different
in that we have to wait for devices to reveal their presence by actively participating.

Once again we will turn to tcpdump to demonstrate some of the ways to cap-
ture packets in a passive manner. You might realize that I can do the same thing
with Wireshark or a host of other proprietary toolsets. However, one of the
problems with this approach is that in order to capture packets at the kernel
level, you must be operating at a very high privilege level, and using complex
and far-reaching security tools to do so is risky business. Thus my approach
throughout the book will be to use simple well-known open-source technolo-
gies to perform operations at high levels of privilege. In this way we can limit
the need to provide root privilege to only those processes that are absolutely
necessary. Likewise our analysis tools (after we have captured the necessary
packet samples) can and should operate at a user level.

A Quick Demonstration
Let’s answer the following simple question. What computers on my network
are hitting remote web servers? To keep things simple, I want to capture only
traffic that has a destination address of Port 80. To demonstrate this, I captured
some traffic off my home network with tcpdump using the following Linux/
Unix commands:

First, I placed my eth0 adapter into promiscuous mode.

$ sudo ifconfig eth0 promisc

Translating the command

sudo:	 Execute the command with super user privilege
ifconfig	 Linux ifconfig command
eth0:	 Specify the Ethernet adapter I wish to set
promisc:	 Set eth0 in promiscuous mode

CHAPTER 2:   What You DON’T Know About Your Network22

After completion of the command we can check the results by running
ifconfig. As you can see the eth0 adapter is now running in promiscuous
multicast mode

Next, I use the tcpdump command to collect any packets originating from
source port 80.

$ sudo tcpdump –i eth0 –n src port 80

Translating the command:

sudo:	 Run the command with super user privilege
tcpdump:	 The command we wish to execute at privilege
-i eth0:	 Utilize the Ethernet 0 adapter to perform the capture
-n:	 Do not resolve IP address to name
src port 80:	 only capture packets that have a source port of 80

As a result the command returns a barrage of data. I have snipped out the re-
dundant entries.

What’s Running on Your Network Might Surprise You 23

This results in the following unique values from a network mapping point of
view

How to Do This in Python?
Continuing with the theme of keeping this simple with an eye on passive net-
work mapping, how might we approach this same solution in Python? I will
add the ability to automatically generate a unique list of the Server / Client
interactions over Port 443.

Table 2-1  Manually Identified Unique Values

Server IP Client IP Source Port Destination Port

50.62.120.26 192.168.0.22 80 48637

108.160.165.54 192.168.0.22 80 48532

23.52.91.27 192.168.0.22 80 48660

CHAPTER 2:   What You DON’T Know About Your Network24

The script has two basic parts,

1.	 The Main program that:
a.	 Sets up the network interface in promiscuous mode
b.	 Opens a raw socket
c.	 Listens and reads packets from the raw socket
d.	 Calls the PacketExtractor() function to decode the packet
e.	 Updates a list with packets that meet our port criteria
f.	 Once the maximum number of packets are collected a unique list is

generated
2.	 The PacketExtractor() function that:

a.	 Extracts the IP Header
b.	 Extracts the TCP Header
c.	 Obtains the Source and Destination IP Addresses
d.	 Obtains the Source and Destinations Port Numbers
e.	 Makes an educated guess as to the Server vs. Client
f.	 Returns a list containing ServerIP, ClientIP, ServerPort

What’s Running on Your Network Might Surprise You 25

CHAPTER 2:   What You DON’T Know About Your Network26

What’s Running on Your Network Might Surprise You 27

CHAPTER 2:   What You DON’T Know About Your Network28

What’s Running on Your Network Might Surprise You 29

Sample Program Output

As you can see from this example, it is relatively straight forward to create a
simple controlled traffic capture Python script and begin to map simple be-
haviors on the network. This capture then can process the captured data and
identify specific hosts and services they support.

A couple special notes regarding this script.

1.	 This is a Linux only implementation

CHAPTER 2:   What You DON’T Know About Your Network30

2.	 The Script needs to be run with super user privilege
$ sudo python capture443.py

3.	 The advantage over using tcpdump or Wireshark relates to:
a.	 Finer grained control over Super User activity
b.	 The simplicity of the operation
c.	 The ability to target specific results

OS FINGERPRINTING
I wanted to introduce the concept of OS Fingerprinting up front, since much
discussion that surrounds Network Mapping attempts to identify the Operat-
ing System that is running behind a particular IP address. This process can be
more difficult using passive methods, however it is still possible to make solid
arguments for a particular OS. Our focus in the coming chapters is to craft
scripts that will ensure that we capture and interpret traffic and fill out the IP
range, observe and identify port / service activity and provide clear information
regarding what insiders and outsiders are doing.

OS Fingerprinting Using TCP/IP Default Header Values
Several well-known attributes exist for gathering information about the OS
executing behind each IP address that we are passively watching. They include:

Note, these values are only valuable when the SYN flag is set for a specific TCP packet. You
will notice in the capture443.py script, I painstakingly extracted the TTL, TOS, DF from the IP
Header and I extract Window Size from the TCP Header. I also create a unique list of the
observed fingerprinting values. This script then can be used to record these notable header
fields in order to build a more comprehensive “observed” OS fingerprints.

Based on observations from a plethora of sources, Table 2-3 provides a snapshot
of observed values that can provide insight to enable fingerprinting an OS. This
fingerprinting process is virtually the same for passive vs active mapping - the

Table 2-2  Common OS Fingerprinting Fields

IP Header Defined

TTL Time to Live

TOS Type of Service

DF Don’t Fragment Flag

TCP Header Defined

Window Window Size

OS Fingerprinting 31

only difference being when observing passively, the stimulus must come from
normal network traffic, not from artificially generated stimuli.

An educated guess of the OS behind the IP address is possible by creating a
comprehensive list of the most common devices. It is important to point out
that masking these TCP/IP header fields can be accomplished by those trying
to obscure these signatures. Thus it is important to utilize multiple methods:

Table 2-3  Sampling of OS Observed Values

Time to Live Window Size
Observed OS Initial Value Typical Setting

Linux 64 5840
Open BSD 64 16,384
Solaris 255 8,760
AIX 64 16,384
Windows XP 128 65,535
Windows 2K 128 16,384
Windows 7 128 8,192
Mac OS X 64 65,535

FIGURE 2-5 TCP/IP Header with Key Fingerprinting Fields Highlighted.

CHAPTER 2:   What You DON’T Know About Your Network32

OS Fingerprinting Using Open Port Patterns
Another common method is to take an inventory of open port patterns. This is
especially useful when collecting passive network behaviors of hosts operating
within the monitored environment. Table 2-4 lists just a few of the common
ports that can provide clues to the operating system running behind the IP.

We will explore OS Fingerprinting analysis using deductive and inductive rea-
soning in Chapter 4.

WHAT OPEN PORTS OR SERVICES
DON’T YOU KNOW ABOUT?
As was recently seen with the OpenSSL ’Heartbleed’ (CVE-2014-0160) and
Shellshock (CVE-2014-6271) vulnerabilities, the ability to know what services
are operating and on what systems is quite useful. Once again we could use
tools like NMAP to discover open ports (at least during the snapshot) with the
previously discussed risks. Standard network ports are assigned by the Internet
Assigned Numbers Authority (IANA) via the Service Name and Transport Pro-
tocol Port Number Registry. Generally (as there is debate) an agreed upon port
classification is as follows:

Service Ports: 1-1023 are considered well-known ports that represent
services that most of us agree to abide by.
Service Ports: 1024 to 49151 are recognized as registered ports. They are
assigned by IANA upon application and approval.
Service Ports: 49152–65535 are considered Dynamic, Private or Ephemeral
(i.e. lasting for a short time or transient). For example, ports in this range
are commonly used by clients making a connection to a server.

One way to leverage this knowledge of course is to detect traffic origi-
nating from, or going to one of these defined ports. By doing so we can

Table 2-4  Sampling of Open Port Patterns

Port Number Most Common Usage OS Fingerprint Guess

445 Microsoft Active Directory Windows
987 Microsoft Sharepoint Service Windows

1270 Microsoft System Center Opera-
tions Manager (SCOM)

Windows

331 Apple OS Server Admin Mac OS X
660 Mac OS Server Admin Mac OS X

11111 Remote Configuration Interface RedHat Linux

What Open Ports or Services Don’t You Know About? 33

deduce services that are running on these hosts and clients that are utiliz-
ing them.

In addition to the “agreed upon” port definitions above, organizations such
as the SANS Internet Storm Center have created lists of known malicious
ports. For example, one compiled list contains default ports utilized by
Trojans. Therefore, if you find that one these ports is being probed, it may
possibly indicate that someone is attempting to communicate with a Trojan
that is running on your network. Thus mapping both the request, and poten-
tially the response to one or more of these ports would be useful in mapping
as well.

How is This Useful?
Based on the simple capture443.py script I presented earlier in this chapter,
along with the results shown, we could deduce the following:

Local Client 192.168.0.13 has made a secure web page connection to the fol-
lowing servers:

199.16.156.201, 23.73.162.234, 66.153.250.229, 66.153.250.234,
66.153.250.238, 66.153.250.241, 74.125.137.132, 74.125.137.154,
74.125.196.99, 74.125.230.127

This deduction was made based on the following facts:

1.	 IP address 192.168.0.13 is a Class C private address block.
According to RFC 1918, any Class C address in the range
192.168.0.0-192.168.255.255 (which can also be denoted
192.168.0.0/16) should be considered private and non-routable.
This means that I cannot directly address any Class C address within
that range unless I’m connected to that very same Class C physical
network.

2.	 Each of the other IP addresses can be geographically located. For
example, addresses 199.16.156.201 is located in the Mountain View,
California area. The IP addresses 66.153.25 are located in South
Carolina. Each of these IP addresses communicated with the client over
service port 443, which by default is the http protocol running over a
secure TLS or SSL connection.

In addition, I could infer that client 192.168.0.13 performed a web search that
provided a link to the other servers identified. I can make this inference be-
cause IP addresses 74.125.137.x belongs to Google, and it is likely that client
192.168.0.13 performed the suggested search using Google.

CHAPTER 2:   What You DON’T Know About Your Network34

In order to perform Passive Network Mapping we will be using both deductive
and inductive methods throughout the process. The quality of our arguments,
premises, observations and logic will determine how accurate our results will
be. Based on that, it will be important to craft these arguments and observa-
tions such that they can be improved with time.

Note: Active Network Mapping also uses both methods especially during the
process of OS Fingerprinting.

WHO’S TOUCHING YOUR NETWORK?
The next logical question to ask is who is actually touching your network? This
includes trusted insiders, employees, IT staff (either in-house or out-sourced),
and those outside your direct sphere of control. This doesn’t mean just hackers,
but can also mean business partners, contract employees, vendors, Internet Ser-
vice Providers (ISPs), the government, and, of course, your customers. By pas-
sively collecting, classifying, analyzing and reasoning about the network activity
and open ports, we can glean a tremendous amount of information including:

1.	 What IP addresses are insiders connecting to?
2.	 Where are the insiders and outsider located geographically?

DEDUCTIVE VS INDUCTIVE REASONING
Deductive reasoning is based on the premise that if the predicates are true, and the logic is
sound the conclusion must be valid.

The classic example is

“All men are mortal”
“Socrates was a man”
Therefore: Socrates was mortal

Inductive reasoning, on the other hand, seeks a probable or a likely explanation. A classic
example of an inductive argument is:

“All politicians I have met are deceitful”
“I have just met David and he is a politician”
Therefore: David must be deceitful

Much like the inductive argument that was made:

“IP 192.168.0.13 connected to Google”
“Google is the search engine that provides links to other web sites”
Therefore: the subsequent server IP addresses must have come from Google

In both of these cases the likelihood is probable, however unlike the deductive arguments
other possible conclusions exist.

Summary Questions 35

3.	 How often and at what time of day are these services being used? Is this
activity normal or abnormal?

4.	 What IP addresses are outsiders connecting to?
5.	 Where are these outsiders located geographically?

As you may quickly realize, these questions are more difficult or even in some
cases impossible to answer when using active scanning methods, and force
direct interaction in response stimulation. In Chapter 4 we will provide scripts
that can collect and analyze targeted information that can assist in answering
at least some of these questions and provide the foundation for further ex-
panded development.

REVIEW
In Chapter 2, I examined the breadth of devices that may be running on your
network that are worth considering. I also discussed their associated risks. I
then setup a network capture using Linux and tcpdump to capture network
packets using promiscuous mode. By manually examining the results I extract-
ed the unique results shown. Next, I developed a Python script that would per-
form the same type of promiscuous capture, but focused on targeting network
activity associated with port 443, which is typically associated with the http
protocol over TLS/SSL.

The script also makes an educated guess and converted the typical source IP
and destination IP into the more meaningful server vs client characterization.
This allowed me to automatically generate the unique list of client server inter-
actions occurring on port 443. Next, I examined the TCP/UDP Port mapping
and defined the ranges of well known, registered and ephemeral ports. I then
introduced the subtle differences between deductive and inductive reasoning
that will be used in future chapters and scripts. Next, I introduced a couple of
OS Fingerprinting methods that will be used in Chapter 4. And finally, we ex-
amined the additional benefits of Python Passive Network Mapping as applied
to behavior of trusted insiders and outsiders.

SUMMARY QUESTIONS
1.	 What additional network devices will be important to map and identify

on our networks and why?
2.	 How would you generalize the capture443.py script to allow for other

targeted captures?
3.	 Expand the capture443.py script to implement these generalizations.
4.	 How might you expand capture443.py to create a comprehensive list of

unique observed combination of TOS, TTL, DF and Window Size? Then
implement the standalone solution.

CHAPTER 2:   What You DON’T Know About Your Network36

5.	 What other OS Fingerprinting methods would be applicable to passive
mapping activities.

6.	 What passive network mapping operations would be best suited for
deductive reasoning?

7.	 What passive network mapping operations would be best suited for
inductive reasoning?

Additional Resources
SANS Intrusion Detection FAQ: http://www.sans.org/security-resources/idfaq/oddports.php

IANA – The Internet Assigned Numbers Authority: http://www.iana.org/

TCPDUMP and LIBPCAP: http://www.tcpdump.org/

Introduction to LOGIC, Seventh Edition 1986, by Irving M. Copi ISBN: 0-02-325020-8 McMillan
Publishing Company New York New York.

Might I also recommend a good TCP/IP text or two, e.g., Chappell & Tittell, Guide to TCP/IP or
Stevens, TCP/IP Illustrated, Vol. 1. I would also offer my own “An Overview of TCP/IP Protocols
and the Internet” at http://www.garykessler.net/library/tcpip.html

http://www.sans.org/security-resources/idfaq/oddports.php
http://www.iana.org/
http://www.tcpdump.org/
http://www.garykessler.net/library/tcpip.html

37

﻿
﻿

Capturing Network Packets
Using Python

CHAPTER 3

“We are drowning in information, but starved for knowledge”
John Naisbitt

SETTING UP A PYTHON PASSIVE NETWORK MAPPING
ENVIRONMENT
Chapter 2 provided two initial, (yet incomplete) solutions to promiscuous
mode packet capturing. The first used the standard Linux tcpdump command
and the second a Python script that captured packets flowing to and from TCP
Port 443. The Python script developed in Chapter 2 provides a good founda-
tion for both the capture and extraction of key data from packets traversing the
network we are monitoring.

Switch Configuration for Packet Capture
At this point you might be asking how to configure an environment to begin
experimenting with packet capturing using these methods. Within most mod-
ern networking infrastructures, switches support port mirroring via a Switched
Port ANalyzer (SPAN) or Remote Switched Port ANalyzer (RSPAN). For my
experimentation and daily use, I’m using a TP-LINK 8 Port Gigabit Easy Smart
Switch TL-SG108E as shown in Figure 3-1. I have experimented with many
switches and hubs for this purpose, and for a low cost, reliable and easy to
configure device, this is the best that I have found so far.

The simplicity of the switch is based on a software application “Easy Smart
Configuration Utility”, shown in Figure 3-2, that comes with the switch. The
configuration utility allows for the configuration of all the features available
on the TL-SG108E.

For our purposes, the most important feature is the establishment of a mon-
itoring port that is usable for passively capturing network traffic. Figure 3-3
shows the configuration screen for port monitoring. In this example, I have
setup Port 8 to be the monitoring port and ports 2-7 to be monitored. This

CONTENTS

Setting up a Python
Passive Network
Mapping
Environment.................37
Switch Configuration
for Packet Capture.................37
Computing Resources...........38
Storing Captured Data...........39
Storing the Captured
Packets – Python
Dictionaries............................40
IPObservationDictionary
Class......................................41
OSObservationDictionary
Class......................................44

The Art of the Silent
Capture........................47

Python Source Code.....48
Command Line Entry
and Execution of
P2NMAP-Capture.py..............59

Review..........................61

Summary Questions....61

CHAPTER 3:   Capturing Network Packets Using Python38

means all traffic flowing in or out of ports 2-7 will be available for monitoring
on Port 8. Note, I purposely chose to leave port 1 out of the selection. I then
connect my sniffing appliance (my Linux computer in this case) to Port 8 of
the switch, and I can begin using tcpdump or the Python script developed in
Chapter 2 to silently capture network traffic and run experiments.

Computing Resources
Performing packet capture is both processor and memory intensive, so
for simple experimentation and demonstration almost any modern plat-
form will due. For the examples in this book, I focus on using Linux and

FIGURE 3-2 Easy Smart Configuration Utility.

FIGURE 3-1 TL-SG108E 8-Port Gigabit Switch.

Setting up a Python Passive Network Mapping Environment 39

Windows. The scripts can be modified to run on Mac as well, but updates to
libcap, ifconfig etc. would be necessary. However, for use in real-world
environments where capturing packet data over several days or weeks will
require greater considerations, a minimum system would be configured as
follows:

j	 Dual Quad Core Processors 3GHz (in later chapters we will examine
multiprocessor separation threading of code)

j	 64-128 GB of Memory
j	 4 TB of Fixed Storage
j	 10 Gbps NIC Card (if the network supports these speeds

Storing Captured Data
The next challenge that we face is the storage of the captured packets, including
the definition of what information I need to store. Python offers many internal
data structures for this purpose, and if you recall, in Chapter 2, I used Python
List Objects to store the captured data:

FIGURE 3-3 Port Monitoring Configuration using the Easy Smart Configuration Utility.

CHAPTER 3:   Capturing Network Packets Using Python40

Each entry of ipObservations List contains:

[serverIP, clientIP, serverPort]

serverIP:	 The IP Address of the deduced Server
clientIP:	 The IP Address of the deduced Client
serverPort:	 The Port Number associated with the deduced Server

Each entry of osObservations contains a list which holds extracted TCP/IP
Header Data if the SYN flag was set for the packet. This data will be used later
as an aid to OS Fingerprinting.

[serverIP, TOS, timeToLive, DF, windowSize]

serverIP:	 The IP Address of the deduced Server
TOS:	 Type of Service Field
DF:	� Don’t Fragment bit; when set, a packet cannot be

fragmented
windowSize:	 Largest TCP receive window that the server can handle.
timeToLive:	� Sets the network hop limit for a packet life. TTL is

decremented by one each time it passes through a
router; once the value reaches zero, the packet is
discarded to avoid endless looping.

The nice thing about this approach it is quite simple, however, the Python List
contains duplicates, and due to the number of packets destined to be collected
we want to reduce the size of the packet information we store. So, we must be a
little more strategic. In addition, there is some additional information that will
be useful to record. Namely, the time that the packets are observed.

Storing the Captured Packets – Python Dictionaries
The question is how to do this without completely saturating the data that we
capture? Since the time of each packet would be different if we decide to store the
actually time value for each packet, we couldn’t remove duplicate serverIP,
ClientIP, serverPort packets from our captures. Thus, I have come up
with a method of retaining vital time based information regarding each packet,
without holding duplicate packets. In addition, this approach will allow for the
implementation of Python Dictionaries as the basic storage mechanism.

Python Dictionaries are built-in to the language and thus are quite useful. Fun-
damentally, Python Dictionaries are Key / Value pairs. Where the Key and Value
can be complex types such as Lists or Tuples.

What is a tuple? A tuple is a sequence of immutable Python objects. Tuples are sequences,
much like lists, however tuples can’t be changed. The big benefit of tuples is that they are
hash-able objects and thus can be used as a Key within a dictionary.

Setting up a Python Passive Network Mapping Environment 41

Therefore, let’s create a dictionary Key / Value Pair to replace the ipObserva-
tions List.

Key = tuple(serverIP, clientIP, serverPort)
Value =[0,0]

Each value entry is the number of occurrences of this combination per hour.
Note that there are 24 values representing each of the hours of the day. Here is
a code snippet that shows how to create a dictionary to do this. Obviously we
will be extracting the packet data dynamically and creating the dictionary and
key value pairs.

IPObservationDictionary Class
Approaching the storage of the IP observations in this manner will allow me
to keep the size of the storage to a minimum by only recording the unique
connection observations (e.g., unique server–client connections). In addition,
I will be able to generate histograms of activities based on serverIP, cli-
entIP and service type in future chapters based on the hour of the day.

To make this approach re-usable, I will create a class to handle the IPObser-
vationDictionary. The class will be simple at first and will be enhanced
in later chapters when we begin to process the data collected by the Python
Capture process.

CHAPTER 3:   Capturing Network Packets Using Python42

Setting up a Python Passive Network Mapping Environment 43

CHAPTER 3:   Capturing Network Packets Using Python44

The example and resulting code run verifies that the Dictionary and Class are
functioning properly. We have validated each of the class methods:

init:	 Creates the empty dictionary
AddOb:	� Adds an observation to the dictionary. If the key does not

exist it will create a new entry. If the key exists it will simply
add the observation to the proper hour (time slot) for the
histogram.

GetOb:	� Attempts to retrieve and observation based on a key, the key
does not exist it return None.

SaveOb:	� Saves the current Dictionary Object to a file of our choice.
This will be useful if we which to periodically save the
Dictionary Object to a file.

LoadOb:	 Loads a previously saved Dictionary object.

OSObservationDictionary Class
Very similar to the IPObservationDictionaryClass, this class handles
the data storage operations of the operating system observations. These obser-
vations include:

The serverIP, TOS, timeToLive, DF, and windowSize, all of which were
defined earlier in the chapter.

Setting up a Python Passive Network Mapping Environment 45

CHAPTER 3:   Capturing Network Packets Using Python46

The Art of the Silent Capture 47

THE ART OF THE SILENT CAPTURE
The next step is to enhance our primitive capture script developed in Chapter 2
with the following capabilities:

1.	 Allow for the capture of TCP or UDP packets specified on the command
line

2.	 Allow for storage of the capture packets into the newly created
IPObservationsClass

3.	 Allow for the storage of the Operating System Observations into the
newly created OSObservationsClass

4.	 Add a PrintOB method to both the IPObservation and
OSObservation classes, this will print the contents of the
observations

5.	 Allow the user to specify the time period of the capture
6.	 Save the results of capture to a file for later analysis

I have covered all of these individual steps and basic capabilities with the ex-
ception of the time period for the capture. In order to accomplish this I will
introduce the concept of signaling and raise an exception when the time expi-
ries. I will then integrate the specific exception handling operation in the main
loop of the script. This requires a few removed steps.

1.	 I create a class myTimeout that will propagate the exception into the
script when the handler fires

2.	 I create a signal handler that will catch the timeout when the set time
expires

3.	 I need to establish an alarm based on the duration of the capture. (Note
capture duration is represented in seconds).

4.	 Finally, within a try / except block, the specific timeout exception is
caught and the perpetual loop is terminated.

CHAPTER 3:   Capturing Network Packets Using Python48

PYTHON SOURCE CODE
The final commented P2NMAP capture script shown here includes all the capabili-
ties defined above. I have also included a sample output from the capture script.

I will be creating the actual network map based on the results of this script in
following chapters.

Python Source Code 49

CHAPTER 3:   Capturing Network Packets Using Python50

Python Source Code 51

CHAPTER 3:   Capturing Network Packets Using Python52

Python Source Code 53

CHAPTER 3:   Capturing Network Packets Using Python54

Python Source Code 55

CHAPTER 3:   Capturing Network Packets Using Python56

Python Source Code 57

CHAPTER 3:   Capturing Network Packets Using Python58

Python Source Code 59

Command Line Entry and Execution of
P2NMAP-Capture.py
Windows: (note the command prompt must be launched with Administrator
Rights:

python P2MAP-Capture.py –v –m 2 –p ./

Linux:

sudo python P2MAP-Capture.py –v –m 2 –p ./

C
H

A
P

T
E

R
 3

: 
C

aptu
rin

g N
etw

ork P
ackets U

sin
g P

yth
on

60

Summary Questions 61

REVIEW
In Chapter 3, we examined the rules of thumb necessary to setup a packet
capture environment, including the discussion of switch selection and con-
figuration along with system hardware considerations. Next, we examined the
“kind-of” information that is required to collect from network packets that
will eventually aid in the passive mapping of a network and operating system
fingerprinting. I then considered different Python data types that could dy-
namically store the packet results, and the Python Dictionary was chosen as the
data storage type. Special consideration was given to the construction of these
dictionaries in order to eliminate duplicate observations. In addition, I devised
a method for including a basic histogram of similar packet occurrence for each
unique combination of Server IP, Server Port and Client IP. At
this point I designed two classes: IPObservationsDictionary and OS-
ObservationDictionary that handle creation, adding, reading, loading,
saving and printing of the associated Dictionary. I then revealed the concept
of signaling to handle a time based capture of packets. Finally, I combined all
these capabilities into a single script to perform packet capture and storage.

SUMMARY QUESTIONS
1.	 What additional information might be useful for network mapping or

OS Fingerprinting to store about each packet without disrupting the
reduction of duplicate entries?

2.	 For packets with both source IP and Destination IP addresses above
1024, what method could be developed to better establish server vs.
client identity.

3.	 How might we filter out specific packet types or IP ranges from our
capture in order to reduce the storage requirements?

Additional Resource
O’Connor, T.J., 2013. Violent Python: A Cookbook for Hackers, Forensic Analysts, Penetration

Testers and Security Engineers. Elsevier, ISBN-13: 978-1597499576, Chapter 4, Network Traf-
fic Analysis with Python.

63

﻿
﻿

Packet Capture Analysis

CHAPTER 4

“All great truths are simple in final analysis, and easily understood; if they
are not, they are not great truths.”

Napoleon Hill

PACKET CAPTURE ANALYSIS
Now that we have “P2NMAP-Capture.py” in hand, a Python Packet Capture
Tool that performs well on both Windows and Linux platforms, along with
creating a dictionary of time collected results, we now can perform some useful
analysis of the collected data.

As you observed in Chapter 3, the tool produces two output files:

20150206-132401.ipDict contains the Internet Protocol Observations Diction-
ary, and 20150206-132438.osDict contains the Operating System Observations
Dictionary. In this chapter I focus on the analysis of the .ipDict observations.

A key aspect of the P2NMAP approach is to passively monitor network traffic
and record the results without ever placing a packet on the network. A second
key is to collect data over a period of time, measured in at least hours - if not
days. This approach is in direct contrast with active mapping methods that
probe network devices, and there are advantages and disadvantages to both
methods.

One of the key advantages of the passive approach is to be able to observe the
behavior of network devices over the course of days or even weeks and map
behaviors of both servers and clients over the period.

CONTENTS

Packet Capture
Analysis........................63

Setting up Options for
Analysis........................64
Loading an Observation
File...65
Direct Program
Output....................................66
Specifying the Host Lookup
Option.....................................68
Specifying the Country
Lookup Option........................69

Performing Analysis....71
Printing Observations All.......72
Printing the Observed
Servers...................................74
Printing the Observed
Clients....................................76
Printing the Observed Server
to Client Connections............77
Printing a Histogram of
Observations..........................80
Final P2NMAP-Anaysis.py
Script Complete Source
Code.......................................84

Review..........................97

Summary Questions....97

CHAPTER 4:   Packet Capture Analysis64

Yet another important aspect of the technical approach is the development
of the ipObservationDictionary Class. Using a class for this purpose
allows us to re-use the class as a starting point for the development of the
analysis methods. For example, the class already contains methods to save
and load IP Dictionary Files, along with methods to print out the Internet
Protocol observations stored in the currently loaded dictionary. By extend-
ing the capabilities of the class and the resulting instantiated objects, we can
provide a straight-forward method to advance the analysis capabilities now
and in the future.

The initial set of methods that are to be added to the ipObservationDic-
tionary Class over the capture period include:

1.	 Load an Observation File
2.	 Print out all the recorded observations
3.	 Print the unique list of identified servers along with ports in use
4.	 Print the unique list of identified clients
5.	 Print the unique connection list (servers to client) with port details
6.	 Print 24 hour histogram of activity for each unique server / client

connections

In addition, to this base set of analysis items, I have also provided three special
lookups to provide additional information for the analyst. They include:

1.	 Port Number to Port Name Conversion
2.	 Host Name Lookup based on IP Address (note this requires Internet

Access)
3.	 Country Location based on the IP Address

To access these capabilities I have created a simple menu driven script,
P2NMAP-Analyze.py to perform the defined analysis operations. Figure 4-1
depicts the P2NMAP-Analyze.py menu.

In the following sections, I will discuss the operation, implementation and
rationale for each menu operation.

SETTING UP OPTIONS FOR ANALYSIS
Before we begin to execute the analysis methods themselves, several options
are necessary to set within the interface. They include:

1.	 Loading an Observation File
2.	 Directing the Program Output
3.	 Specifying the Host Lookup Option
4.	 Specifying the Country Lookup Option

Setting up Options for Analysis 65

Loading an Observation File
Loading an observation file is quite straight-forward. During the capture pro-
cess I saved the ipDict file using Python’s built in Pickle Module. The Python
Standard Library module, pickle provides the ability to pickle and un-pickle an
object, where pickling converts any Python object such as a list, set, dictionary
or any other object into a character stream. The character stream contains all
the information that would be necessary to reconstruct the object within an-
other Python script. This is exactly what we wanted to do as I have de-coupled
the capture and analysis capabilities of P2NMAP. Since I wanted to provide a
completely Python-based solution for Passive Network Mapping, I separated
the operations in this manner.

If you wanted to use a .pcap file or other packet capture method, you would simply extract
data from the .pcap file and create a Python dictionary object. Then the P2NMAP-Analysis.py
script could then be applied to the resulting pickled dictionary file. Note: See Chapter 5 for a
script that will accomplish this process.

The only two methods that are necessary to accomplish this are:

where self.Dictionary is the Dictionary object I wish to save or load. The

object fp is the File Pointer to either the output or input file.

FIGURE 4-1 P2NMAP Analysis Menu.

CHAPTER 4:   Packet Capture Analysis66

I added the following method to the class IPObservationDictionary as
shown below:

If the method is successful it sets the object attributes:

j	 self.observationsLoaded to True
j	 self.observationFileName to the file name that was loaded.

These two attributes are used by other methods within the class IPObserva-
tionDictionary.

However, if the load fails, the self.observationsLoaded attribute is set
to False and the self.observationFileName is set to blank. In addition
an error message is displayed to the user.

As you will see during the operation of the script, no other operations will be
available to the user until a valid observation file is successfully loaded.

Direct Program Output
One of the questions that I get quite often is: How do I use the same print
statement to direct output to either ‘standard out’ or to a file. The problem with
using the redirect symbol, ‘ > ’ as shown here….

$ python P2NMAP-Analysis.py > results.txt

….is that all messages are sent to the results file including prompts, informational
and warning messages. This can be solved using the following method in Python:

Setting up Options for Analysis 67

I create a variable named OUT and set it equal to the result of an open method
such as the one shown below. I then preface every print message with print
>> OUT, and whatever follows is then written directly to the output file, re-
gardless of the complexity. This will ensure that the output file will look exactly
like the output that would have been displayed on the screen using ‘standard
out’.

The question then becomes, how do I then direct the output to ‘standard out’?

That turns out to be the easy part if you know your way around the Python
Standard Library module. If the OUT variable is global, then by allowing the
user to change the variable, the output will be directed to the proper output, in
this case either standard out or the file results.txt.

To implement this in the module, I create a toggle allowing the user to change
the output direction between ‘standard out’ and a file. This way, the analyst
can review the output on the screen and then once they are satisfied with the
results they can toggle and have the function output directed to the file. Note,
this is a good technique to use within any forensic related script. Here is the
code excerpt that performs the toggle when the user selects the ‘O’ output op-
tion from the menu. Notice that I perform the close method, OUT.close()
when switching from file output back to STDOUT. This ensures that the file
will be closed and all data will be written to the file. Also, I open the output file
using “w+”, meaning that data will be appended to the results.txt file.

CHAPTER 4:   Packet Capture Analysis68

Specifying the Host Lookup Option
One of the important aspects of passive network capture is the mapping of IP
addresses to Host Names. This is done using network address translation, in
this case from IP address to Host Name. In the spirit of this book (so far), I
want to perform this lookup using native Python code and Python Standard
Libraries. It turns out that this is quite simple to do, but just a word of warn-
ing …. this will take time and Internet access to accomplish. Once again I will
use the toggle method within the menu system to provide the user with the
option of turning Host Lookup on or off, with the default being Host Lookup
is off.

The HOST_LOOKUP variable is then evaluated by each of the analysis methods.
If the HOST_LOOKUP is true, then the analysis methods will translate the IP
address into the related host name. The code to perform this lookup utilizes
the Python Standard Library Module, socket and only requires a single socket
call to accomplish this:

Setting up Options for Analysis 69

It is important to note that the socket.gethostbyaddr() returns a triple.

According to the Python Standard Library Reference: “The Triple (hostname, aliaslist, ipad-
drlist) where hostname is the primary host name responding to the given ip_address, aliaslist
is a (possibly empty) list of alternative host names for the same address, and ipaddrlist is a
list of IPv4/v6 addresses for the same interface on the same host (most likely containing only
a single address).”

For our application we are only interested in the first element of the triple,
the name of the host. If exceptions occur during the call (in other words, the
host name could not be associated with a specific IP address), I fill the triple
with blanks so when those elements are accessed in the code, they are simply
printed as blanks.

Specifying the Country Lookup Option
When investigating server and client IP addresses, one of the typical questions
that arises is “Where is the IP located geographically?“ In some cases this is
difficult to confirm if the server or client are attempting to anonymize their
locations, however for most cases the mapping of IP address to a general geo-
graphic region is possible.

To handle this specific lookup I’m going to use a Python 3rd Party Library and
dataset. The 3rd Party Library is pygeoip.

To install the pygeoip library within your Python Environment you can use
pip. Pip is the most popular Python package management system, and is used
to install and manage 3rd party packages written in Python. The pygeoip
library is installed from the command line; note that the pip package manage-
ment system must already be installed.

Once pygeoip is installed, you must also download the latest database from
MAXMIND developer website at: http://dev.maxmind.com/geoip/legacy/geolite/

For the examples in this chapter I downloaded the GeoLite Country Binary/
Gzip Version as shown in Figure 4-2. I then unzipped and placed the geo.dat
file in my source directory for easy access. Note, I changed the name to geo.dat
as the unzip generates GeoIP.dat, this way when I download updates I can keep
track of new vs old.

http://dev.maxmind.com/geoip/legacy/geolite/

CHAPTER 4:   Packet Capture Analysis70

Following the instructions on the MAXMIND web site, I included the state-
ment as required when importing the 3rd Party Library as shown below.

Now that the pygeoip library and associated database geo.dat are installed,
I can use them to associate an IP Address with a country. I created a simple
function to call and return the country name. If no country can be associated
with the given IP address a blank string is returned.

FIGURE 4-2 MAXMIND GeoLite Country Database Binary/Gzip Version.

Performing Analysis 71

As with the Host Lookup Method, I provide a toggle that will either set the
COUNTRY_LOOKUP variable to True or False depending upon the current state.
This is accomplished by the user specifying ‘C’ option as shown here:

Then anywhere in the code where inclusion of the Country Name would
be appropriate the COUNTRY_LOOKUP variable is interrogated and used
accordingly.

PERFORMING ANALYSIS
Now that the perfunctory setup is complete, we can execute the individual
analysis operations. They include:

1.	 Printing all observations contained within the loaded observation file
2.	 Printing the Observed Server List
3.	 Printing the Observed Client List
4.	 Printing the Observed Server to Client Connections
5.	 Printing the Histogram of Observations

CHAPTER 4:   Packet Capture Analysis72

Printing Observations All
The printing out of all the Observations simply requires extracting each
dictionary entry and printing out the contents. This includes the Server IP
Address, Client IP Address, Server Port Number, Port Type (TCP or UDP)
along with the number of observations of this unique combination occur-
ring during each hourly period. The method to perform this operation is
shown below.

Executing this code produces the following (abbreviated) result

P
erform

in
g A

n
alysis

73

CHAPTER 4:   Packet Capture Analysis74

Printing the Observed Servers
The next analysis function will iterate through the dictionary and provide a
sorted list of observed servers. For each server a list of observed service ports
supported by the server are also listed. In addition, details such as geolocation
(i.e. country), host name and port description will be included based upon the
settings specified by the user. The method developed to extract these details
from the observations dictionary is shown below.

Performing Analysis 75

Executing this code produces the following (abbreviated) result

CHAPTER 4:   Packet Capture Analysis76

Printing the Observed Clients
Extracting and printing the list of observed clients is accomplished in the same
manner as that of the observed servers. Once again the output will include de-
tails such as geolocation (i.e. country) and host name if they are specified to be
included by the user. The method developed to extract these details from the
observations dictionary is shown below. One question you might ask is why is
the client port not specified?

Why is the client port not included? Eliminating the client port (which would typically be an
ephemeral port, and not useful to us) significantly reduces the size of our dictionary. If we
were to include the ephemeral ports in the dictionary key, virtually every server client con-
nection would be unique.

Performing Analysis 77

Executing this method produces the following (abbreviated) result:

Printing the Observed Server to Client Connections
Another interesting way to view the results of the observation, is to list each
server and include all client connections made to that server. This provides the

CHAPTER 4:   Packet Capture Analysis78

comprehensive server / client connection list. This method is slightly more
complex, since the dictionary must first generate the list of observed servers,
and then generate a list of clients that connected over any port to that server.
The method developed to extract these details from the observations diction-
ary is shown below.

Performing Analysis 79

Executing this method produces the following (abbreviated) result:

CHAPTER 4:   Packet Capture Analysis80

Printing a Histogram of Observations
The final extraction will add to the detailed server / client connection list and
provide a histogram of activities for each server and client interaction. The
Histogram produced is for a 24 hour time table. If the P2NMAP-Capture script
is run for multiple days the activities for each hour will be cumulative. This
allows the investigator to quickly observe activities occurring at unusual times
of the day, activities that occur only a small number of times, or possibly only
once. This can potentially indicate a heartbeat or beacon generated by a ma-
licious application. The method developed to extract these details from the
observations dictionary is shown below.

Performing Analysis 81

CHAPTER 4:   Packet Capture Analysis82

Executing this method produces the following (abbreviated) result

Performing Analysis 83

CHAPTER 4:   Packet Capture Analysis84

Final P2NMAP-Anaysis.py Script Complete Source Code
The final P2NMAP-Analysis.py script is shown here. Note that the entire script
is a single Python file and requires no arguments to execute. However, there are
a couple of assumptions.

1.	 The “geo.dat” file must be included in the source directory
2.	 The pygeoip 3rd Party Library has been installed using:

$ pip install pygeoip

or

C:\> pip install pygeoip

3.	 You have a populated IP dictionary file that was generated by the
P2NMAP-Capture script.

Performing Analysis 85

CHAPTER 4:   Packet Capture Analysis86

Performing Analysis 87

CHAPTER 4:   Packet Capture Analysis88

Performing Analysis 89

CHAPTER 4:   Packet Capture Analysis90

Performing Analysis 91

CHAPTER 4:   Packet Capture Analysis92

Performing Analysis 93

CHAPTER 4:   Packet Capture Analysis94

Performing Analysis 95

CHAPTER 4:   Packet Capture Analysis96

Now you are ready to execute P2NMAP-Analysis.py

$ python P2NMAP-Analysis.py

or

C:\> python P2NMAP-Analysis.py

This will yield the following menu selections and you can start experimenting
with the differing modes of operation and analysis functions.

Summary Questions 97

REVIEW
In Chapter 4, I leveraged the .ipdict file created in Chapter 3 using the P2NMAP-
Capture Script. This file contains the complete dump of the IP observations dic-
tionary. By utilizing this observations dictionary, I created several key methods
within the ipObservationsDictionary Class. These methods perform
operations including: Printing the complete IP Observations Dictionary, Gen-
erating a Comprehensive Server and Client List, Generating a detailed Server /
Client Connection List and a detailed histogram of the observation data. In ad-
dition, I extrapolated key information from the observed data including Host
Name based on the Observation IP Address, Detailed Port Descriptions based
on the server ports in use and geographic location of many of the observed
servers and clients. Finally, I created a simple menu driven interface that can be
used to experiment with the newly created analysis methods.

SUMMARY QUESTIONS
1.	 What additional analysis methods could be created from the observed

data?
2.	 What filters could be created that would reduce the output and allow

the analyst to focus in on targeted data? For example, “Generate a
Histogram of any connections that occur less than n times during
the observations. Or generate a server / client list for those devices
operating outside the U.S.

Additional Resource
Seitz, Justin, 2015. Black Hat Python, Python Programming for Hackers and Pentesters. No Starch

Press, San Francisco, California, ISBN: 13-978-1-59327-590-7.

99

﻿
﻿

PCAP Extractor and OS Fingerprinting

CHAPTER 5

“It is by doubting that we come to investigate, and by investigating that we
recognize the truth.”

Peter Abelard

PCAP EXTRACTION
When performing incident response activities, mapping a network or perform-
ing penetration testing, you are likely to run in to situations where packet cap-
tures have already occurred. This could be in response to an event, or in today’s
world, more often as a routine practice. Either way, the packet capture (pcap)
files can provide valuable information that we can examine and report on us-
ing P2NMAP-Analzer.py, which was developed in Chapter 4.

In order to accomplish this, I needed to develop a script that would extract the
pertinent data from an existing pcap file and create both an .ipDict and .osDict
file that can be processed. In other words, we need to interpret the pcap file to
generate the same output files that P2NMAP-Capture.py does.

A number of years ago, Dug Song produced the Python Module dpkt (among
many others) that is ideally suited for processing existing packet captures such
as pcap files. I have tested the module extensively, and it is a nice addition
to your core library within Python. One criticism of the library is the lack of
documentation, however our use of the library is pretty straight-forward and
my script will hopefully clear up the usage for at least our use case.

Installing dpkt as with most 3rd party Python packages is quite simple: The
following command lines work just fine on Windows, Linux and Mac.

Windows:

pip install dpkt

Linux/Mac:

sudo pip install dpkt

CONTENTS

PCAP Extraction...........99
Review of P2NMAP-
Capture................................101
Utilizing the dptk Package....102
P2NMAP-PCAP-
Extractor.py Script...............104
Executing P2NMAP-
PCAP-Extractor...................112

Passive OS
Fingerprinting............116
OS Fingerprinting
Truth Table...........................116
Truth Table Python Class.....118
P2NMAP-OS-Fingerprint
Script....................................123
Executing P2NMAP-
OS-Fingerprint.....................131

Review........................134

Summary Questions...135

CHAPTER 5:   PCAP Extractor and OS Fingerprinting100

Whenever I install a new package/module within Python, I run a quick veri-
fication that it is working. To do this, I can launch a Python shell from either
the Windows or Linux command prompt. Below I show this from a Windows
session. I then use the built-in Python import command to load the package.
Once the package has been successfully imported you can then use the built-in
Python dir() function to print the attributes associated with the package. For
even more information you can also use the built-in help() function.

Note, if the import functions fails, it would indicate that the dpkt package is
not properly installed.

PCAP Extraction 101

Review of P2NMAP-Capture
As you know from the development of the P2NMAP-Capture.py script for net-
work mapping and OS Fingerprinting, we only require a few key pieces of data.
We organize that data within an efficient data structure that both minimizes
the size and also allows fast processing of the resulting data.

The core data we need from the pcap records in order to properly generate .ip-
Dict and .osDict files are as follows:

CHAPTER 5:   PCAP Extractor and OS Fingerprinting102

General:

j	 Packet Timestamp
j	 .ipdict
j	 Source IP
j	 Destination IP
j	 Source Port
j	 Destination Port
j	 Protocol (TCP or UDP)
j	 .osDict
j	 Source IP
j	 Destination IP
j	 Source Port
j	 Destination Port
j	 SYN Flag
j	 DF Flag
j	 TTL (Time to live value)
j	 TOS (Type of service value)
j	 Window Size

Utilizing the dptk Package
The Code to extract the necessary data from the pcap files is isolated here (note:
to simplify the code, I left out the exception processing, which is in the full
version of the script). Minus the comment line, less than 20 lines of code are
required to obtain the fields we require.

PCAP Extraction 103

The rest of the script uses the previously created classes:

class IPObservationDictionary:
class OSObservationDictionary:

.. along with the same packet processing code that was developed during the
P2NMAP-Capture.py script. The full script is included here:

CHAPTER 5:   PCAP Extractor and OS Fingerprinting104

P2NMAP-PCAP-Extractor.py Script

PCAP Extraction 105

CHAPTER 5:   PCAP Extractor and OS Fingerprinting106

PCAP Extraction 107

CHAPTER 5:   PCAP Extractor and OS Fingerprinting108

PCAP Extraction 109

CHAPTER 5:   PCAP Extractor and OS Fingerprinting110

PCAP Extraction 111

CHAPTER 5:   PCAP Extractor and OS Fingerprinting112

Executing P2NMAP-PCAP-Extractor
Executing the PCAP-Extractor is done from the command line (again, Win-
dows command shell along with Linux / Mac Shells all operate the same).

PCAP Extraction 113

Executing the script with the –h option only, provides the argument list. Only
3 arguments are available:

j	 -v (optional) which will provide a verbose output from the application
j	 –i which is the input file and specifies the pcap file to extract from
j	 –o which specifies the output directory where the resulting .ipDict and.

osDict files will be written with the familiar timestamp filename

When the script is executed with the verbose argument the following sample
output is also generated on screen. (note: this output has been abridged to
save space).

CHAPTER 5:   PCAP Extractor and OS Fingerprinting114

Now you can utilize the resulting files from this run:

20150303-151016.ipDict
20150303-151016.osDict

Now that we have generated the extracted ipDict and osDict files we can utilize
P2NMAP-Analyze.py or P2NMAP-OS-Fingerprint.py to perform the requisite
analysis. Note the P2NMAP-OS.Fingerpring.py script will be discussed in the
next section.

Where do you find .pcap files to experiment with? You can obviously perform a Google search
and you will find quite a few potential sources. However, three sources that I used heavily
during experimentation include:

WireShark Samples Captures: http://wiki.wireshark.org/SampleCaptures

Tcpreplay: http://tcpreplay.appneta.com/wiki/captures.html

NETRESEC: http://www.netresec.com/?page=PcapFiles

Shown in Figure 5-1, Figure 5-2 and Figure 5-3

http://wiki.wireshark.org/SampleCaptures
http://tcpreplay.appneta.com/wiki/captures.html
http://www.netresec.com/?page=PcapFiles

PCAP Extraction 115

FIGURE 5-1 Wireshark Samples Captures Web Page.

FIGURE 5-2 Tcpreplay Sample Captures.

CHAPTER 5:   PCAP Extractor and OS Fingerprinting116

PASSIVE OS FINGERPRINTING
As many people are painfully aware, performing passive OS fingerprinting is
a significant challenge. However, in this section I will provide the building
blocks for identifying at least the general OS that is executing on the associated
server platforms. The actual missing-link is a comprehensive dataset of rules
that would more accurately map OS behaviors. This method is not meant to
compete with the active methods of fingerprinting generated from the NMAP
community, SAINT developers, McAfee/Intel Foundstone labs and other main-
stream vendors. Rather the solution is presented to encourage expansion of the
method, especially the painstaking task of developing signatures that will work
during passive based examinations.

OS Fingerprinting Truth Table
During the passive collection of packet data (whether using P2NMAP-Capture.
py or extracting packet data using P2NMAP-PCAP-Extractor.py) several key ini-
tial parameters were collected from observed packets. These IP packet values
include Type of Service, Time to Live, Don’t Fragment (DF) and Window Size.
These values were only collected when the IP packet contained a TCP segment

FIGURE 5-3 NETRESEC Sample Captures.

Passive OS Fingerprinting 117

with the SYN flag set. This set of values allows for the creation of a Truth Table
that would generate possible OS Fingerprinting when all four of the table val-
ues match the observed values.

Truth Tables provide a method of defining all possible values that can exist for a certain set of
facts, variables or functions. These tables contains multiple rows and columns, with the top
row representing the category values along with a final column that contains the conclusion
based on the values specified in that row.

Table 5-1 shows a sample table with a few sample entries.

In order to improve on the basic concept, I wanted a bit more flexibility in the
table. First, the Time to Live observations are impacted by the number of rout-
er hops that the packets take between the source and destination. Thus even if
the packet starts out at 128, the value we observe is likely to be less than 128,
therefore I will make this a range of values instead of a fixed number. Secondly,
for certain known fingerprint signatures only 2 of the values may be required
for an accurate identification.

For example, we may have knowledge that a certain CISCO network device has
a starting TTL value of 255 and a Window Size of 4128, but the Type of Ser-
vice and DF flags are not relevant, unknown or unreliable. In this case I would
like to ignore the DF and TOS fields during the comparison (by using wild
cards). Finally, for ease of parsing the table, the TTL and Window Size fields
will always contain a range. The resulting truth table would then look like that
in Table 5-2.

Table 5-1  Basic Truth Table

Time to Live Type of Service DF Flag Window Size OS Identified

128 0 Y 5000-9000 Window NT
64 16 N 17520 Open BSD
128 0 Y 32000-32768 Netware

Table 5-2  Improved Truth Table

Time to Live Type of Service DF Flag Window Size OS Identified

65-128 0 Y 5000-9000 Window NT
33-64 16 N 17520-17520 Open BSD
65-128 0 Y 32000-32768 Netware

129-255 * * 4128-4128 Cisco IOS

CHAPTER 5:   PCAP Extractor and OS Fingerprinting118

A sample flat file truth table file is shown here, with the syntax being strict space
delimited columns to make parsing the file simple. The file can be expanded
to contain additional values as more known observations become available or
the fingerprint data improves.

Truth Table Python Class
To handle the processing of the truth table, I create a simple class that will per-
form three basic functions:

1.	 Load the truth table and process the range values
2.	 Accept a known set (TTL, TOS, DF and Window Size) as input and

return the first matching OS Fingerprint from the loaded truth table.
3.	 Print the truth table for convenience and verification

Passive OS Fingerprinting 119

CHAPTER 5:   PCAP Extractor and OS Fingerprinting120

Passive OS Fingerprinting 121

CHAPTER 5:   PCAP Extractor and OS Fingerprinting122

Now that we can load and process the truth table, all that is left to do is build
a menu driven script that can:

1.	 Load a previously generated .osDict file
2.	 Load and process and user defined truth table
3.	 Generate the OS fingerprint results

In addition, I have provided similar support functions as with the P2NMAP-
Analyze script to allow directing the output to a file, along with the ability to
print the contents of the .osDict observations and the truth table contents.

Passive OS Fingerprinting 123

P2NMAP-OS-Fingerprint Script

CHAPTER 5:   PCAP Extractor and OS Fingerprinting124

Passive OS Fingerprinting 125

CHAPTER 5:   PCAP Extractor and OS Fingerprinting126

Passive OS Fingerprinting 127

CHAPTER 5:   PCAP Extractor and OS Fingerprinting128

Passive OS Fingerprinting 129

CHAPTER 5:   PCAP Extractor and OS Fingerprinting130

Passive OS Fingerprinting 131

Executing P2NMAP-OS-Fingerprint
Operating P2NMAP-OS-Fingerprint.py, requires no command line arguments
as the user is prompted for all necessary input.

Before processing and generating the OS Fingerprints a valid observation file
and a valid truth table must be provided: Once this is accomplished successful-
ly, the menu will change to allow for the execution of the remaining options:

1.	 Print truth table
2.	 Print observations
3.	 Print probable OS fingerprint

CHAPTER 5:   PCAP Extractor and OS Fingerprinting132

Selecting Option 1, produces the following truth table output, (Current
Loaded Fingerprint Truth Table).

Passive OS Fingerprinting 133

Selecting Option 2, produces the familiar (abridged) OS Observations result

Finally, Selecting Option 3, produces the (abridged) Probable OS Fingerprint
Result

CHAPTER 5:   PCAP Extractor and OS Fingerprinting134

REVIEW
I tackled extracting key data from pcap files to convert them into the .ipDict
and .osDict format in Chapter 5. This provides a direct way of handling cap-
tured network traffic from sources other than P2NMAP-Capture.py developed
in Chapter 3. This was critical since more and more organizations are routinely
collecting, preserving and retaining pcap files in their normal course of busi-
ness. To extract the data, we used the 3rd Party Python Library dpkt, and were
able to accomplish this core extraction process in less than 20 lines of code. I
then wrapped this process into a script to automatically perform the functions.

Next, for the first time we used the contents of the .osDict file to make use
of the observed TTL, TOS, DF and Window Size to predict the OS Type of
the server in question. I defined a method using a truth table to perform this

Summary Questions 135

operation, and provided a baseline for further expansion of the truth table to
improve the accuracy of the fingerprint identification. Next, I created the com-
plete script, P2NMAP-OS-Fingerprint.py, to experiment with this new method
of OS identification.

I also provided sample script execution for both P2NMAP-PCAP-Extractor and
P2NMAP-OS-Fingerprint.

SUMMARY QUESTIONS
1.	 Challenge Problem 1: Develop experiments that generate observed

behavior of a variety of operating systems under normal operation.
Use that data to improve the truth table and ultimately the accuracy of
Passive OS Fingerprint identification.

2.	 Challenge Problem 2: Utilize the ipDict result and the port values
obtained to further improve OS Fingerprint identification by creating
a truth table that provides association of known ports with the most
operating system most probably in use.

3.	 Challenge Problem 3: Modify both P2NMAP-Capture.py and P2NMAP-
PCAP-Extractor.py to collecting TTL, TOS, DF and Window Size
observations for protocols other than TCP/UDP.

Additional Resources
Song Dug, dptk Python Package, https://pypi.python.org/pypi/dpkt

Silverman Jeffery, dptk documentation, http://www.commercialventvac.com/dpkt.html

https://pypi.python.org/pypi/dpkt
http://www.commercialventvac.com/dpkt.html

137

﻿
﻿

Future Considerations and
Challenge Problems

CHAPTER 6

“There are two levers for moving men: interest and fear.”
Napoleon Bonaparte

AUTHOR OBSERVATIONS
Developing this text and the associated scripts has been quite enjoyable. At the
outset, my goal was to develop a text and scripts written in Python to perform
the foundation of passive network mapping. This foundation has many uses
and my hope is that it will continue to evolve.

In a world where we need to strike an achievable balance between security and
privacy, I believe the concepts shared in this book provide the beginnings and
underpinnings of that balance. None of the scripts or methods provided here
analyze or expose the contents of network packets, rather they only focus on
the end-to-end connections and key header information.

According to 18 U.S. Code § 3121 “a government agency authorized to
install and use a pen register or trap and trace device under this chapter or
under State law shall use technology reasonably available to it that restricts
the recording or decoding of electronic or other impulses to the dialing,
routing, addressing, and signaling information utilized in the processing and
transmitting of wire or electronic communications so as not to include the
contents of any wire or electronic communications”

I wanted to make sure that the P2NMAP scripts met these requirements for two
basic reasons:

1.	 I wanted the scripts to be usable in a wide range of lawful situations
both by law enforcement and within corporate environments.

2.	 I wanted to demonstrate that staying within these limits could provide
a useful and extensible toolset. The results of this first step may generate
enough probable cause to generate a warrant that would then allow the
examination of content.

CONTENTS

Author Observations....137

Author Predictions.....138

Challenge Problems....140

More Information.......141

CHAPTER 6:   Future Considerations and Challenge Problems138

Additionally, my goal was to create a full open source solution in order to:

1.	 Provide a baseline for other researchers, developers, academics and
students, allowing them to advance the scripts to suit their specific needs.

2.	 Demonstrate that it was possible to create a Python-only source code solution
for the capture, analysis and OS Fingerprinting of observed network traffic.

3.	 Provide a solution that could be safely deployed in environments
where it could be dangerous to perform active network mapping, where
damage to, or shutdown of critical information systems could occur,
(e.g. SCADA environments).

4.	 Provide a Python-only solution where the resulting scripts would be
portable across a wide range of computing platforms.

5.	 Finally, to allow the review by others to ensure that what has been
presented meets these goals and objectives.

AUTHOR PREDICTIONS

Due to the combination of….

j	 strengthening security controls
j	 mobile device integration

FIGURE 6-1 Future Predictions.

Author Predictions 139

j	 the broad acceptance of Bring Your Own Device (BYOD) models
j	 the entrée of wearable networked devices
j	 the movement toward the Internet of Things (IOT) philosophies
j	 the increased use of data leak prevention systems
j	 the improved application of firewalls, content filters
j	 the widespread deployment of intrusion prevention apparatus within

corporate infrastructures
j	 and the continued reduction in the cost of data storage devices

…. the following predictions seem reasonable:

1.	 Monitoring (in other words, continuous passive network capture) will
increase dramatically. As the devices we utilize each day become more
transient players in the networks we control, our ability to actively scan
or map these activities will become almost impossible.

2.	 Our ability to track devices and the humans attached to them is
already quite elusive, and will continue to become more difficult as the
explosive nature of these devices we carry or wear expands.

3.	 The line between broadband and land based networks will continue to
blur. Even today our devices automatically switch seamlessly from one
wireless network, to another, to broadband and back again even when
we don’t leave our homes!

4.	 Our ability to mine this data and make sense of it will become vital, if
we wish to solve crimes, ferret out malicious insiders, stop the leakage
of personal or corporate information and one day pre-empt nefarious
acts instead of just reacting to them once they become the latest New
York Times headline. We obviously must change our tactics.

FIGURE 6-2 New York Times Technology Headline 2-5-2015.

CHAPTER 6:   Future Considerations and Challenge Problems140

Of course privacy concerns continue to expand as the digital footprint that we
leave with every click, post, tweet, music/video download, App purchase or
now even every time we start our car or open our fridge expands. These actions
become fodder for government monitoring, commercial gains and potential
criminal activity.

CHALLENGE PROBLEMS
Several key challenge problems exist that are logical next steps. These can be
approached by individuals, graduate and undergraduate students (with as-
sistance) and by organizations wishing to participate in the evolution of the
P2NMAP technologies.

Challenge 1: Passive OS Fingerprints – The development a complete truth
table or other decision making model for a wide variety of operating
signatures is essential. This requires both an initial effort to develop the
current baseline (moving back in time) as well as methods to measure
new versions.
Challenge 2: IPv6 – The challenge of evolving P2NMAP scripts to support
IPv6 environments is two-fold. First, in order to perform the same level
of capture and analysis that is currently supported for IPv4. Second, to
examine/analyze and observe IPv6 headers to identify key data elements
that would improve OS Fingerprinting.
Challenge 3: Wireless Passive Network Mapping – P2NMAP today will
capture connections from WiFi devices as they flow in and out of current
network switches. However, providing the ability to passively capture
and analyze wireless connection in the air and mapping their temporal
behaviors would be beneficial.
Challenge 4: IP Activity Mapping – The current capture and analysis
capabilities of P2NMAP provide the fundamental data necessary to map
behavior by specific IP addresses (clients or servers). However, sorting,
filtering and visualizing this behavior would add significant value to
investigators.
Challenge 5: Cross IP Link Analysis – It is likely that multiple P2NMAP
captures or PCAP files collected from multiple network vantages points or
even geographically separated networks is likely. The ability to combine,
process and analyze a set of captures would provide a more global
perspective for investigators.
Challenge 6: Python 3.3x – Porting P2NMAP-Capture, P2NMAP-Analyze,
P2NMAP-OS-Fingerprint and P2NMAP-PCAP-Extractor should prove to
be fairly straight-forward. This is the reason I minimized the use of 3rd
party packages which is typically the most difficult aspect relating to the
port.

More Information 141

Challenge 7: GUI vs Command Line – Finally, the current P2NMAP
scripts are command line based in order to focus on core details of
passive capture, analysis and OS fingerprinting. However, there are
certainly benefits to wrapping the core scripts into a GUI for ease of
use, configuration, management of captures, reporting and general
visualization.

MORE INFORMATION
For additional information, the latest source code downloads, updated truth
tables and other P2NMAP information:

Visit:

www.python-forensics.org/

To contact the author directly:

cdh@python-forensics.org

http://www.python-forensics.org/
mailto:cdh@python-forensics.org

143

Subject Index

A
Active network map, 13, 15, 21, 34,

138
Active scanning, 11, 13, 35
Application firewalls, 17
argparse, 48, 84, 104, 123

B
Bose wave radio, 5, 7
Bring your own device (BYOD)

models, 139
BYOD. See Bring your own device

(BYOD) models

C
Captured data, 29

storing of, 39
Cartography, 12

Fra Mauro world map, 13
social network map, 12

Chief information officer (CIO), 2
Chief information security officer

(CISO), 2, 117, 118, 132
CIO. See Chief information officer

(CIO)
CISCO network device, 117
CISO. See Chief information security

officer (CISO)
Class C physical network, 33
Class C private address block, 33
Code snippet, 41
Command line entry, 59
Commercial gains, 140
Common vulnerabilities and

exposure (CVE), 11
Computing resources, 38
Content filters, 17, 139
Conventions, use of, 1

bold, 1
italic, 1

Country lookup option, specifying
of, 64, 69

Critical infrastructure, 1, 11
Cross IP link analysis, 140
CVE. See Common vulnerabilities

and exposure (CVE)
Cyber assets, 2
Cyber ping command, 5
Cyber security, 2, 5, 17

D
Data leak protection (DLP), 17
Data storage operations, 44
datetime, 41, 44, 48, 59, 84, 104, 112
Deductive reasoning, 34
Demilitarized zone (DMZ), 17
DF flags, 117
Dictionary, 41, 44, 63–65, 72, 76,

80, 84
Direct program output, 66
DLP. See Data leak protection (DLP)
DMZ. See Demilitarized zone (DMZ)
Dptk package, utilizing of, 102

E
Easy smart configuration utility, 38
Enterprise networks, 1, 2

F
Fra Mauro world map, 13

G
Graphical user interface (GUI), 3,

141
GUI. See Graphical user interface

(GUI)

H
Hackers, 34
Heartbleed, 1, 11, 13, 32
Histogram of observations, printing

of, 71, 80
Host based sensors, 13
Host lookup option, specifying of,

64, 68
HOST_LOOKUP variable, 68, 77
Host name lookup, 64
Host names, 64, 68, 69, 74, 76

I
IANA. See Internet assigned numbers

authority (IANA)
ICMP. See Internet control message

protocol (ICMP)
ifconfig, 22, 25, 59
Incident response teams, 1, 14
Inductive reasoning, 34

example of, 34
Information technology (IT), 17

devices, 18–20
related incidents, 1

heartbleed, 1
operation shady rat, 1

sample program output, 29
Internal data structures, 39
Internet assigned numbers authority

(IANA), 32
service name, 32
transport protocol port number

registry, 32
Internet control message protocol

(ICMP), 5–7, 9, 14
echo reply type message, 5
echo request message, 5
message types, 7, 8

Subject Index144

request type packets, 7
test network, 9

Internet of things (IOT)
philosophies, 139

Internet protocol (IP)
activity mapping, 140
addresses, 1
datagrams, 6, 7
layer, 6
observation dictionary, 41, 63

class methods, 44
clientIP, 41
serverIP, 41

Internet service providers (ISP), 34
IOT. See Internet of things (IOT)

philosophies
IP. See Internet protocol (IP)
.ipDict observations, 63, 99, 113
IpObservationDictionary class, 47,

64, 66
IPv6, 140
ISP. See Internet service providers

(ISP)
IT. See Information technology (IT)

L
Linux commands, 21
Linux tcpdump command, 37
Lyon, Gordon, 3

M
Maginot line, 17, 18
MAXMIND geolite country database

binary/gzip version, 69, 70

N
Near field communication devices

(NFC), 19
NETRESEC sample captures, 116
Network mapper (Nmap), 3
Network mapping, 3, 12, 23, 30, 101

active, 21, 34, 138
passive, 23, 34, 65, 137
python passive, 3, 10, 37
wireless passive, 140

Network privacy, 140
Network related predictions, 139

New York Times technology
headline 2-5-2015, 139

Network traffic, 30, 37, 63, 134,
138

NFC. See Near field communication
devices (NFC)

Nmap. See Network mapper (Nmap)

O
Observation file, loading of, 64, 65
Observations, printing of, 71, 72

client IP address, 72
port type, 72
server IP address, 72
server port number, 72

Observed client list, 71, 76
Observed server list, 74
Observed server to client

connections, 71, 77
OpenSSL, 11, 13, 32
Operation Shady Rat, 1
Organizationally unique identifier

(OUI), 5
OS, 2

fingerprinting, 30
observed values, 31
open port patterns, 32
TCP/IP default header values,

30, 31
passive fingerprinting, 116
truth table fingerprinting, 116

OSObservationsClass, 47
OUI. See Organizationally unique

identifier (OUI)

P
Packet capture (PCAP), 63, 99

analysis performing methods, 71
histogram of observations,

printing of, 71
observations, printing of, 71
observed client list, printing

of, 71
observed server list, printing

of, 71
observed server to client

connections, printing of, 71
extraction, 99

.ipDict file, 99

.osDict file, 99
extractor, executing of, 112, 118
passive approach, 63
setting up options for, 64

country lookup option,
specifying of, 64

host lookup option, specifying
of, 64

observation file, loading of, 64
program output, directing of, 64

technical approach, 64
Packet capturing, 37
Packet data, 41, 116

capturing of, 38
Passive network mapping, 23, 137
Passive OS fingerprints, 140
Patch management infrastructures,

17
PCAP. See Packet capture (PCAP)
Pcap files, 65, 99, 102, 140
Pickle module, 65
Ping, 4, 5
Ping scan selection, 4

pip, 69, 70, 84, 99, 104
platform, 3, 38, 48, 63, 116, 138
results of, 4

P2NMAP. See Python passive network
mapping (P2NMAP)

analysis menu, 64, 65
extractor, executing of, 112
scripts, 137
technologies, 140

cross IP link analysis, 140
Graphical user interface vs

command line, 141
IP activity mapping, 140
IPv6, 140
passive OS fingerprints, 140
python 3.3x, 140
wireless passive network

mapping, 140
P2NMAP-Analysis.py script, 84
P2NMAP-Analzer.py, 99
P2NMAP-capture.py, 63

execution of, 59
script, review of, 101

network mapping, 101
OS fingerprinting, 101

P2NMAP-Capture script, 80
P2NMAP-OS-fingerprint script, 123

execution of, 131
Port mirroring switch supported, 37

remote switched port analyzer
(RSPAN), 37

switched port analyzer (SPAN), 37
Port monitoring, 37

configuration of, 39
Port name conversion, 64
Port number, 24, 32, 40, 64, 72
Potential criminal activity, 140
Primitive capture script, 47
promisc, 21, 25, 48

Internet control message protocol
(ICMP) (cont.)

Subject Index 145

Pygeoip library, 69, 70
Python code, 68
Python dictionaries, 40

clientIP, 40
duplicate serverIP, 40
lists, 40
serverPort, 40
tuples, 40

Python dir function, 100
Python import command, 100
Python module dpkt, 99
Python-only solution, 138
Python-only source code

solution, 138
Python package management

system, 69
Python packet capture tool, 63
Python passive network mapping

(P2NMAP), 3, 10
advantages and disadvantages,

10, 11
environment, setting up of, 37

Python P2NMAP-Analysis.py, 96
Python programming language, 10
Python script, 29, 37
Python shell, 100
Python source code, 48
Python standard libraries, 68

module, 65, 67, 68
reference, 69

Python 3.3x, 140
P2NMAP-Analyze, 140
P2NMAP-Capture, porting of, 140
P2NMAP-OS-Fingerprint, 140
P2NMAP-PCAP-Extractor, 140

R
Remote switched port analyzer

(RSPAN), 37
Roku box, 5

Routers, 8, 13, 40, 117
RSPAN. See Remote switched port

analyzer (RSPAN)

S
SANS internet storm center, 33
SCADA environments, 138
Security event and incident

management (SEIM), 17
Servers, 1, 13, 18, 21, 33, 63, 74, 78,

140
Services, 2, 5, 11, 18, 29, 32, 35
SEIM. See Security event and incident

management (SEIM)
self.observationFileName, 66
self.observationsLoaded attribute,

66
Signal, 48
Social network map, 12
socket, 24–29, 48, 69, 74, 77, 80, 84,

100, 103, 123
SONAR. See Sound navigation and

ranging (SONAR)
Sound navigation and ranging

(SONAR), 5
SPAN. See Switched port analyzer

(SPAN)
struct, 24, 48, 100
Sudo command, 9
Switched port analyzer (SPAN), 37
sys, 24, 25, 48, 67, 84, 104, 123

T
TCP, 8, 30, 40
Tcpdump command, 9
Tcpdump network monitoring

program, 8
Tcpreplay sample captures, 115
Time-to-live (ttl) value

observations, 117
value, 7

T L-SG108E 8-Port Gigabit Switch,
37, 38

Trojan, in network, 33
Truth table, 117

basic, 117
improved, 117
python class, 118

basic functions, 118
menu driven script, building

of, 122
ttl. See Time-to-live (ttl) value

U
UDP, 35, 47, 72
Unix commands, 21

V
Vaskovich, Fyodor, 3
Virtual private networks (VPN), 17
Voice over internet protocol (VOIP)

systems, 19
VOIP. See Voice over internet

protocol (VOIP) systems
VPN. See Virtual private networks

(VPN)

W
Warning messages, 66
Web servers, 21
Window size, 117
Wireless passive network mapping,

140
Wireshark samples captures web

page, 115

Z
Zenmap, 3, 4

