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Introduction

This book shows how to use Python’s built-in graphics primitives (points, lines, and
arrows) to create simple or complex graphics for the visualization of two- and three-
dimensional objects, data sets, and technical illustrations. It is intended for Python
developers who want to build their own graphic images rather than be limited by
functions available in existing Python libraries.

This book shows how to create virtually any 2D or 3D object or illustration. It also
shows how to display images; use color; translate, rotate, shade, and add shadows that
are cast on other objects; remove hidden lines; plot 2D and 3D data; fit lines, curves, and
functions to data sets; display points of intersection between 2D and 3D objects; and
create digital art.

It also includes applications in a variety of sciences including astronomy, physics,
population dynamics, climate change, and resource management. These applications
are intended to illustrate graphics programming techniques by example, which is the
best way to learn a language.

Python source code is included and explained for all illustrations in the book.

Armed with Python’s primitive graphics elements and the techniques described
in this book plus core math skills, especially geometry, you will be ready to create and
customize detailed illustrations and data visualizations.

xvii



CHAPTER 1

Python Essential
Commands and Functions

In this chapter, you will learn the essential Python commands and functions you

will need to produce the illustrations shown in this book. You will learn how to use
Python'’s basic plotting functions, set up a plotting area, create a set of two-dimensional
coordinate axes, and use basic plotting primitives (the dot, the line, and the arrow),
which are the building blocks you will use to construct images throughout this book. In
Chapter 2, you will learn how to use these primitives to build two-dimensional images
and then translate and rotate them. In Chapter 3, you will extend these concepts to three
dimensions. You will also learn about colors, how to apply text to your plots, including
the use of Latex commands, and the use of lists and arrays. By the last chapter, you will
be able to create images such as those of Saturn in Figures 1-1a and 1-1b. These were
created by Program SATURN in Chapter 10 using different input angles that describe the
orientation of Saturn relative to the Sun.

Figure 1-1a. Saturn

© Bernard Korites 2023
B. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-9660-8_1
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Figure 1-1b. Saturn

Programming Style

First, a note on the programming style used in this book. We all have preferences when
it comes to style. I favor a clear, top-down, open style. Many programmers try to reduce
their code to as few lines as possible. That may be fine in practice but in an instructional
text, such as we have here, I believe it is better to proceed slowly in small, simple steps.
The intention is to keep everything open, clear, and understandable. This also makes it
easier to find errors in the Python code during development of a new program. Since I
do not know the skill level of the readers, and since I want to make this book accessible
to as wide an audience as possible, I generally start each topic from an elementary level,
although I do assume some familiarity with the Python language. If you are just learning
Python, you will benefit from the material in this first chapter. As you move through
this book, you will learn more about Python’s features. They will be explained as they
are used. Some Python developers advocate using long descriptive names for variables
such as temperature rather than T. I find excessively long variable names make the code
difficult to read. It’s a matter of preference. With relatively short programs such as we
have in this book, there’s no need for complex programming. Try to adopt a style that is
robust rather than elegant but fragile.

As you will see throughout this book, my programs usually have a similar structure.
The following shows the layout of Program DOTART, which is typical:

1 nonon
2 DOTART
3 n n n

2
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import matplotlib.pyplot as plt
import numpy as np
import random

a0 N O U1 B

-

program statements
4

52 plt.show()

The statement import matplotlib.pyplot as plt brings into the program a library
of functions that are useful in plotting. Samples can be seen in Program DOTART in lines
9-17 and elsewhere in the program. Note that each function in the body of the program
is preceded by plt which we have defined in line 5 above as shorthand for matplotlib as
inline 11 plt.axis() andline 22 plt.scatter(). The axis() and scatter() functions
are included in the matplotlib library.

The contents of the matplotlib library can be found at

https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html. There are
over 130 functions in the library. It is worthwhile browsing through them to see what is
available for you to use in your programs.

Similarly, import numpy as np brings in a library of math functions. Each function
from numpy must be preceded by np. as in line 25 for x in np.arange ().The numpy
library can be found at https://numpy.org/doc/stable/

randomis a library of random functions. When one of these functions is used in the
program, it must be preceded by random. as in Program DOTART, lines 42, 43, and 44.

A description of the Python random module can be found at www.geeksforgeeks.org/
python-random-module/.

To avoid using a prefix (i.e., plt., np., random.)in front of functions, you can import
functions directly. For example, looking at Program 4BOXES, line 7 from math import
sin(), cos, radiansimports sin, cos, and radians. When functions are imported directly
in this way;, it is not necessary to use a prefix when using them in the program. I will often
import explicitly from the math library with a statement, for example, from math import
sin, cos, radians, sqrt.ThenlI can use these functions in the program without a prefix.

After importing needed functions, I most often define the plotting area with
plt.axis([0,150,100,0]). As explained in Section 1.2, these values [0,150,100,0], where
the x axis (150) is 50% wider than the y axis (100), produce a round circle and a square


https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html
https://numpy.org/doc/stable/
http://www.geeksforgeeks.org/python-random-module/
http://www.geeksforgeeks.org/python-random-module/
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square without reducing the size of the plotting area, at least they do on my computer
and monitor with a mathematically correct description of a circle or a square. Computer
systems often differ in the spacing of horizontal and vertical rasters so you may have

to fiddle with these values on your setup. You will see plenty of examples of circles and
squares later. At this point, axes can be labeled and the plot titled if desired. Next, I
usually define parameters (such as diameters, time constants, and so on) and lists. Lists
will be discussed in Section 1.19.5. Then I define custom functions (functions you define
on your own), if any. This may not be necessary at this point since custom functions

can be defined at any time from within the program using the def function as shown

in Program LTP, lines 28, 31, 34, 38, 56, 156, and 174. Another example is in Program
PERSPECTIVE, lines 32-47, which create a function named plothouse() that plots a
house. There are 15 edges to be plotted, each of which requires one line of code. Since
the house requires plotting before and after rotation and perspective transformations,
the use of the plothouse() function saves typing 15 lines of code whereas it takes only
one line to invoke the plothouse() function once it has been defined.

Finally, in lengthy programs that employ optional inputs, I may at the bottom put
a control section that invokes the options. See Program KEYBOARDDATAENTRY, lines
115-127.

Regarding axes, these are essential as a reference for plotting. plt.axis('on")
plots the axes; plt.grid(True) plots a grid. They are very convenient options when
developing graphics. However, if I do not want the axes or grid to show in the final
output, I replace these commands with plt.axis('off') and plt.grid(False).

The syntax must be as shown here including the quotes, or lack thereof, and the
capitalization of True and False. See Section 1.10 to learn how to create your own grid
lines if you are not satisfied with Python'’s defaults.

I often begin development of a graphic by using the scatter() function, which
produces what I call scatter dots. scatter () must be imported directly, as explained
above, or used with a prefix, as explained earlier. Scatter dots are fast and easy to use
and are very useful in the development stage. If kept small enough and spaced closely
together, dots can produce acceptable lines and curves, although they can sometimes
appear a bit fuzzy. So, after I have everything working right, I will often go back and
replace the dots with short line segments using either arrows via plt.arrow() or lines
via plt.plot(). As explained in Section 1.19.3, an arrow can be converted to a line by
eliminating the parameters that define the size of the arrowhead.
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There is another aspect to the choice of dots or lines: which overplots which? You
don’t want to create something with dots and then find lines covering it up. This is
discussed in Section 1.14.

Some variants of Python require the plt.show() statement at the end of the program
to plot graphics. My setup, Anaconda with Spyder and Python 3.5 (see Appendix A for
installation instructions), does not require this but I include it anyway since it serves as
a convenient marker for the end of the program. Finally, press the F5 key or click on the
Run button at the top to see what you have created. After you are satisfied, you can save
the plot by hovering your cursor over it and right-clicking. Then specify where you want
it saved.

Regarding the use of lists, tuples, and arrays, they can be a great help, particularly
when doing graphics programming that involves a lot of data points. They are explained
in Section 1.19.5. An understanding of them, together with a few basic graphics
commands and techniques covered in this chapter, are all you need to create the
illustrations and images you see in this book.

The Plotting Area

A computer display with a two-dimensional coordinate system is shown in Figure 1-2.
In this example, the origin of the x,y coordinate axes, (x=0, y=0), is located in the center
of the screen. The positive x axis runs from the origin to the right; the y axis runs from
the origin vertically downward. As you will see shortly, the location of the origin can be
changed in your program as can the directions of the x and y axes. Also shown is a point
p at coordinates (x,y), which are in relation to the x and y axes.

0.0 X

Xyl
y

L Il /

Figure 1-2. A two-dimensional x,y coordinate system with its origin (0,0) centered
in the screen. Point p is shown at coordinates (x,y) relative to x,y
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The direction of the y axis pointing down in Figure 1-2 may seem a bit unusual.
When plotting data or functions such as y=cos(x) or y=exp(x), we usually think of y as
pointing up. But when doing technical graphics, especially in three dimensions, as you
will see later, it is more intuitive to have the y axis point down. This is also consistent with
older variants of BASIC where the x axis ran along the top of the screen from left to right
and the y axis ran down the left side. As you will see, you can still define y to point up or
down, whichever best suits what you are plotting.

Establishing the Size of the Plotting Area

The plotting area contains the graphic image. It always appears the same physical size
when displayed in the Spyder output pane. Spyder is the programming environment
(see Appendix A). However, the numerical size of the plotting area, and of the values
defining the point (scatter dot), line, and arrow definitions within the plotting area,
can be specified to be anything. Before doing any plotting, you must first establish
the area’s numerical size. This is different from the physical size on your monitor. For
example, your monitor may be 20 inches across but your graphic’s dimensions may be
thousands of miles. You must also specify the location of the coordinate system’s origin
and the directions of the coordinate axes. As an illustration, Listing 1-1 shows Program
PLOTTING_AREA, which uses the plt.axis([x1,x2,y1,y2]) function in line 8 to set up
an area running from x=-10 to +10; y=—10 to +10. The rest of the script will be explained
shortly.

Incidentally, all images in this book, such as the monitor above, have been created
using Python.

Listing 1-1. Program PLOTTING_AREA

plt.axis([x1,x2,y1,y2])

1 import numpy as np

2 import matplotlib.pyplot as plt
3

4 x1=-10

5 x2=10

6 yl=-10

7 y2=10

8

9

=]



CHAPTER 1 PYTHON ESSENTIAL COMMANDS AND FUNCTIONS

10 plt.axis('on')
11 plt.grid(True)
12

13 plt.shou()

Listing 1-1 produces the plotting area shown in Figure 1-3. It has a horizontal width
of 20 and a vertical height of 20. I could have made these numbers 200 and 200, and
the area would appear in an output pane as the same physical size but with different
numerical values on the axes. Line 13 contains the command plt. show(). The purpose
of this command is to display the program’s results in the output pane. With modern
versions of Python, it isn’t required since the plots are automatically displayed when the
program is run. With older versions, it may or may not be displayed. p1t.show() can
also be placed within a program in order to show plots created during execution. Even
though it may not be necessary, it’s a good idea to include this command at the end of
your script since it can serve as a convenient marker for the end of your program. Lines
1,2, 10, and 11 in Listing 1-1 have been discussed earlier but will be explained further in
the following sections. These commands, or variations of them, will appear in all of our
programs that create graphics.

y2 10 - - T

Y1l o |
=10 -5 0 5 10

X1 X2

Figure 1-3. Plotting area produced by Listing 1-1 with (0,0) located in the center
of the area
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Importing Plotting Commands

To review what you learned above, while Python has many built-in commands and
functions available, some math and graphics commands must be imported. Lines 1
and 2 in Listing 1-1 do this. The import numpy as np statement in line 1 imports math
functions such as sin(¢), exp(), and so on. The np in this statement is an abbreviation
that may be used when referring to a numpy function. When used in a program, these
functions must be identified as coming from numpy. For example, if you want to code
v=e%, the program statement is v=np.exp(a) where o was previously defined. You
don’t have to write out the full length numpy . exp(«) since you defined the shorthand
np for numpy in line 1. Np.numpy will do. Graphics commands are handled similarly.
The statement import matplotlib.pyplot as pltimports the library pyplot, which
contains graphics commands. plt is an abbreviation for pyplot. For example, if you
want to plot a dot at x,y you write plt.scatter(x,y). I will talk more about p1t.
scatter() shortly.

Functions may also be imported directly from numpy. The statement from numpy
import sin, cos, radians imports the sin(), cos(), and radians() functions.

When imported explicitly in this manner they may be used without the np prefix as in
x=sin(alpha). There is also a math library that operates in a similar way. For example,
from math import sin, cos, radians is equivalent to importing from numpy. You will
be using all these variations in the coming programs.

There is also a graphics library called glib that contains graphics commands. glib
uses a different syntax than pyplot. Since pyplot is used more widely, you will use it in
your work here.

Line 8 in Listing 1-1, plt.axis([x1,x2,y1,y2]), is the standard form of the
command that sets up the plotting area. This is from the pyplot library and so it is
preceded by the plt. prefix. There are attributes to this command and there are other
ways of defining a plotting area, notably the 1inspace() command, but the form in line 8
is sufficient for most purposes and is the one you will use. x1 and x2 define the values of
the left and right sides, respectively, of the plotting area; y1 and y2 define the bottom and
top, respectively. With the numeric values in lines 8-11 you get the plotting area shown
in Figure 1-3. x1, x2, y1, and y2 always have the locations shown in Figure 1-3 when
defined with the plt.axis(x1,x2,y1,y2) function as in line 8. That is, x1 and y1 always
refer to the lower left corner, y2 to the other end of the y axis, and x2 to the other end of
the x axis. Their values can change, but they always refer to these locations. They may be
negative, as shown in Figure 1-4.

8



CHAPTER 1 PYTHON ESSENTIAL COMMANDS AND FUNCTIONS

=10 ; : .

10 1 1 1
-10 -5 0 5 10

Figure 1-4. Plotting area with (0,0) located in the center, positive y direction
pointing down

Because the x and y values specified in lines 4-7 are symmetric in both the x and y
directions (i.e., —10, +10), this plotting area has the (x=0, y=0) point halfway between.
In this case, the center of the area will be the origin used as reference for plotting
coordinates. Since x1 < x2, the positive direction of the x axis will run horizontally from
left to right. Similarly, since y1 < y2, the positive direction of the y axis will go vertically
up. But earlier I said we want the positive y direction to go vertically down. You can do
that by reversing the y values to y1=10, y2=—10. In this case, you get the area shown in
Figure 1-4 where the positive x axis still goes from left to right but the positive y axis now
points down. The center is still in the middle of the plotting area.

You could move the origin of the coordinate system off center by manipulating x1,
x2,y1, and y2. For example, to move the x=0 point all the way to the left side, you could
specify x1=0, x2=20. To move the (x=0, y=0) point to the lower left corner, you could
specify x1=0, x2=20, y1=0, y2=20. But that would make the positive y direction point up;
you want it to point down, which you can do by making y2=0, y1=20. This will make the
origin appear in the upper left corner. You are free to position the (0,0) point anywhere,
and change the direction of positive x and y, and scale the numerical values of the
coordinate axes to suit the image you will be trying to create. The numerical values you
are using here could be anything. The physical size of the plot produced by Python will
be the same; only the values of the image coordinates will change.
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Displaying the Plotting Area

In line 10 of Listing 1-1 the statement plt.axis('on") displays the plotting area with its
frame and numerical values. If you omit this command, the frame will still be displayed
with numerical values. So why include this command? Because, when creating a plot it is
sometimes desirable to turn the frame off. To do that, replace plt.axis('on") with
plt.axis('off"). Having the command there ahead of time makes it easy to type 'off'
over 'on' and vice versa to switch between the frame showing and not showing. Also,
after you have finished with a plot, you may wish to use it in a document, in which case
you may not want the frame. Note that 'on' and 'off' must appear in quotes, either
single or double.

The Plotting Grid

Line 11 of Listing 1-1, plt.grid(True), turns on the dotted grid lines, which can be
an aid when constructing a plot, especially when it comes time to position textual
information. If you do not include this command, the grid lines will not be shown. To
turn off the grid lines, change the True to False. Note the first letter in True and False
is capitalized. True and False do not appear in quotations marks. As with plt.axis(),
having the plt.grid(True) and plt.grid(False) commands there makes it easy to
switch back and forth. Again, note that both True and False must have the first letter
capitalized and do not appear in quotes.

Saving a Plot

The easiest way to save a plot that appears in the output pane is to put your cursor over
it and right-click. A window will appear, allowing you to give it a name and specify where
it is to be saved. It will be saved in the .png format (Portable Network Graphics), which is
a form of raster image file. If you are planning to use it in a program such as Photoshop,
the .png format works. Some word processing and document programs may require the
.eps (Encapsulated PostScript) file. If so, save it in the .png format, open it in a program
that is able to convert file formats such as Photoshop, and resave it in the .eps format.
You can also convert to a .jpg (Joint Photographic Experts Group), a raster image type

of file. You may see this type of file referred to in different places as a .jpg or a .jpeg file.

10
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The only reason .jpg is three characters long as opposed to four is that early versions of
Windows required a three-letter extension for file names. To be safe, use .jpeg since this
form seems to now be most widely used.

Grid Color

There are some options to the plt.grid() command. You can change the color of the
grid lines with the color="color" attribute. For example, p1t.grid(True, color="b")
plots a blue grid. More color options will be defined shortly.

Tick Marks

The plt.grid(True) command will create a grid with Python’s own choice of spacing,
which may not be convenient. You can alter the spacings with the plt.xticks(xmin,
xmax, dx) and plt.yticks(ymin, ymax, dy) commands.minand max are the range of
the ticks; dx and dy are the spacing. While normally you want the tick marks to appear
over the full range of x and y, you can have them appear over a smaller range if you wish.
These commands appear in lines 23 and 24 of Listing 1-2.

Listing 1-2. Program TICK_MARKS

1 import numpy as np

2 import matplotlib.pyplot as plt
3

4 # plotting area
5 x1=-10

6 x2=140

7 y1=90

8 y2=-10

9 plt.axis([x1,x2,y1,y2])

10 plt.axis('on")

11

12 # grid

13 plt.grid(True,color="b")

14 plt.title('Tick Mark Sample')

11
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15
16 # tick marks
17 xmin=x1

18 xmax=x2

19 dx=10

20 ymin=y1

21 ymax=y2

22 dy=-5

23 plt.xticks(np.arange(xmin, xmax, dx))
24 plt.yticks(np.arange(ymin, ymax, dy))
25

26 plt.show()

The output is shown in Figure 1-5. In line 23, xmin and xmax are the beginning and
end of the range of ticks along the x axis; similarly for line 24, which controls the y axis
ticks. dx in line 19 spaces the marks 10 units apart from x1=-10 (line 5) to x2=140 (line 6).
dy in line 22 is -5. It is negative because y2=—10 (line 8) while y1=+90 (line 7). Thus, as
the program proceeds from y1 to y2, y decreases in value; hence dy must be negative.

Tick mark sample

L] L] L} L L] L] L] L]

L] L] L] L] L]

L

-5
0
5

10

15 |
20
25
30

35
40
45
50
55
60
65
70
75
80 |
85 | -

% i 4 i i 4 i i 4 i i i i i i
-10 0 10 20 30 40 S0 60 70 80 90 100 110 120 130

1] 1 I | T |
L L 1 1 1 L

1 1] 1 i | |
1 L L 1 1 L 1

Figure 1-5. User-defined tick marks
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Custom Grid Lines

The automatically generated grid that is produced by the plt.grid(True) command
is not always satisfactory, especially if you want to include text in your plot. It is often

not fine enough to accurately place text elements. But if the xtick() and ytick()

commands are used to reduce the spacing, the numbers along the axes can become

PYTHON ESSENTIAL COMMANDS AND FUNCTIONS

cluttered. The numbers can be eliminated but then you do not have the benefit of using

them to position textual information such as when labeling items on a plot. The grid

shown in Figure 1-3 would be more helpful if the increments were smaller. You can

produce your own grid lines and control them any way you want. The code in Listing 1-3

produces Figure 1-6, a plotting area with finer spacing between grid lines.

Listing 1-3. Program CUSTOM_GRID

import numpy as np
import matplotlib.pyplot as plt

1

2

3

4 X1=-5

5 x2=15

6 yl=-15

7 y2=5

8 plt.axis([x1,x2,y1,y2])
9

10 plt.axis('on")

11

12 dx=.5

13 dy=.5

14 for x in np.arange(x1,x2,dx):

15 for y in np.arange(y1,y2,dy):

16 plt.scatter(x,y,s=1,color="grey")
17

18 plt.show()

#x spacing

#y spacing

#x locations

#y locations

#plot a grey point at x,y

13
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5

-5 0 5 10 15

Figure 1-6. Plotting area with custom grid

The scatter() function in line 16 of Listing 1-3 plots a grey dot at every x,y location.
I will discuss scatter() in more depth later. Note that plt.grid(True) is not used in this
program. Lines 1-10 produce the plotting area with axes as before. This time, instead of
using the plt.grid(True) command, you produce your own custom grid in lines 12-16.
Lines 12 and 13 specify the spacing. The loop beginning at line 14 advances horizontally
from left to right in steps dx. The loop beginning at line 15 does the same in the vertical
direction. The size of the dot is specified as 1 by the s=1 attribute in line 16. This could be
changed: s=.5 will give a smaller dot and s=5 will give a larger one. The color="grey"
attribute sets the dot color to grey. You can experiment with different size dots, colors,
and spacings. Sometimes it can be beneficial to use the grid produced by Grid(True)
along with a custom grid.

Labelling the Axes

Axes can be labeled with the p1t.xlabel('label’) and plt.ylabel('label")
functions. As an example, the lines,

plt.xlabel('this is the x axis")
plt.ylabel('this is the y axis')

14
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when added to Listing 1-3 after line 10 produce Figure 1-7 where the custom grid
dots have been changed to a lighter grey by using the attribute color="1lightgrey' in the
plt.scatter() function.
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This is the X axis.

Figure 1-7. Plotting area with axis labels and custom grid

In Figure 1-8, you can see the matplotlib grid. This combination of Python’s grid plus
a custom grid makes a convenient working surface for locating elements.
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5 . T r

This is the Y axis.
I
un
T

_15 | | ]
-5 0 5 10 15

This is the X axis.

Figure 1-8. Plotting area with axis labels, the Python grid, and a custom grid

The Plot Title

Your plot can be titled easily with the plt.title('title") statement. Inserting the
following line produces Figure 1-9:

plt.title('this is my plot')

16
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This is the X axis.

Figure 1-9. Plotting area with axis labels, Python grid, custom grid, and title

Colors

As you move along in this book, you will make good use of Python’s ability to plot in
color. Some of the colors available are

"k' for black

'b' for blue

"c¢' for cyan

'g' for green

'm' for magenta
'r' forred

'y' for yellow
‘gray’ or 'grey’

'‘lightgray' or 'lightgrey’

17
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For example, the following statement will plot a green dot at coordinates x,y:
plt.scatter(x,y,color="g")

A swatch of many more colors can be found at https://matplotlib.org/examples/
color/named_colors.html.

The color attribute may be used in the scatter(), plot(), and arrow() functions
along with other attributes.

Color Mixing

Like an artist, you can mix your own hues from the primary colors of red (r), green (g),
and blue (b) with the specification color=(r,g,b) where 1,g,b are the values of red,
green, and blue in the mix, with values of each ranging from 0 to 1 (none to 100%). For
example, color=(1,0,0) gives pure red; color=(1,0,1) gives magenta, a purplish mix of
red and blue; color=(0,1,0) gives green; color(.5,0.,.1) gives more red and less blue
in the magenta; color(0,0,0) gives black; and color(1,1,1) gives white. Keeping the
,g,b values the same gives a grey progressing from black to white as the values increase.
Thatis, color=(.1,.1,.1) produces a dark grey, color(.7,.7,.7) gives a lighter grey,
and color(.5,.9,.5) gives a greenish grey. Note that when specifying 'grey"' it can also
be spelled 'gray’.

In Listing 1-4, the Program COLORS shows how to mix colors in a program. Lines 7-9
establish the fraction of each color ranging from 0-1. In this example, the red component
in line 7 depends on x, which ranges from 1-100. The x/100 factor gives a value of red
of .01 atx=1 and 1 at x=100. The green and blue components each have a value of 0 in
this mix. Line 10 draws a vertical line at x from top to bottom having the color mix
specified by the attribute color=(r,g,b). This vertical line sweeps across the plotting
area producing Figure 1-10. The hue on the left side is almost black. This is because the
amount of each color in the mix is 0 or close to it (r=.01,g=0,b=0). The hue on the right
is pure red since on that side r=1,g=0, b=0; that is, the red is full strength (r=1) and is not
contaminated by green or blue. In between are brightening shades of red.

Listing 1-4. Program COLORS

1 import numpy as np
2 import matplotlib.pyplot as plt
3

18
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plt.axis([0,100,0,10])

4
5
6 for x in np.arange(1,100,1):
7
8
9

r=x/100

g=0

b=0
10 plt.plot([x,x],[0,10],1linewidth=5,coloxr=(x,g,b))
11

12 plt.show()

10

0
0 20 40 60 80 100

Figure 1-10. Red color band produced by Listing 1-4 with r=x/100, g=0, b=0

Figure 1-11 shows the result of adding blue to the mix. Figure 1-12 shows the result
of adding green to the red. Mixing all three primary colors equally gives shades of grey
ranging from black to white, as shown in Figure 1-13.
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10

0
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Figure 1-11. Purple color band with r=x/100, g=0, b=x/100

10

0 .
0 20 40 60 80 100

Figure 1-12. Yellow color band with r=x/100, g=x/100, b=0
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10
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0 20 40 60

Figure 1-13. Grey color band with r=x/100, g=x/100, b=x/100

There are 256 values of each primary color available. Mixing them, as I did here,
gives 256° which is almost 17 million different hues.

The way an artist tones down a color, like bright red, is to add a bit of red’s
complementary color, which is green. To tone down green, add a bit of red. Similarly,
blue and yellow or orange are complements; they tone down one another. If you look
closely at the works of a painting master, you will see the shadows on an orange face are
often a tone of greenish blue. Like a painter, you are free to experiment; it’s fun.

Color Intensity

The intensity of a color can be controlled with the alpha attribute, as shown in lines
6-8 in Listing 1-5, which produced Figure 1-14. alpha can vary from 0 to 1, with 1
producing the strongest hue and 0 the weakest.

Listing 1-5. Program COLOR_INTENSITY

import numpy as np
import matplotlib.pyplot as plt

1
2
3
4 plt.axis([0,100,0,10])
5
6

plt.scatter(60,50,5=1000,color="b",alpha=1)
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7 plt.scatter(80,50,5=1000,color="b",alpha=.5)
8 plt.scatter(100,50,5=1000,color="b",alpha=.1)

9

10 plt.show()
(1) (.5) (1)

Figure 1-14. Color intensity controlled by the attribute alpha shown in Listing 1-5

Overplotting

You will normally create your graphics using the functions plt.scatter() for dots,
plt.plot() forlines, and plt.arrow() for arrows and lines (arrows without heads). It
is important to know which will overplot which. You don’t want to create an elaborate
image just to find it gets overplotted by something else. Also, it is necessary to know
about overplotting if you want a colored or dark background for your graphic, as you
have seen with the images of Saturn.

Figure 1-15 shows some examples of overplotting. In (A), a red line (1) goes first and
then a green one (2). Notice that the second line overplots the first. In (B), a blue dot (1)
is plotted first and then a red line (2). The line overplots the dot. Then another blue dot
(3) is plotted. It does not overplot the line. In (C), a red dot (1) is first plotted, then a blue
one (2), and then a yellow one (3). They overplot one another. In summary,

e New lines overplot old ones.
o Lines overplot dots.

e New dots overplot old ones.
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2 (A)
1
1 L
-9

(B)

Figure 1-15. Overplotting with lines and dots

These examples were created by the following code:

# (A)

plt.text(45,10,"'(A)")
plt.plot([20,60],[20,20],1linewidth=5,color="1")
plt.text(13,21,'1")
plt.plot([30,30],[10,30],1linewidth=5,color="g")
plt.text(28,6,'2")

# (B)

plt.text(45,75,'(B)")
plt.scatter(40,60,5=800,color="midnightblue")
plt.text(38,50,'1")
plt.plot([20,60],[60,60],linewidth=5,color="1")
plt.text(13,61,'2")
plt.scatter(60,60,s=800,color="b")
plt.text(58,50,"'3")

# (O

plt.text(108,56,'(C)")
plt.scatter(100,40,s=800,color="r")
plt.text(98,30,'1")
plt.scatter(110,40,s=800,color="b")
plt.text(108,30,'2")
plt.scatter(120,40,5=800,color="y")
plt.text(118,30,'3")

2 3

()
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Figure 1-16 shows arrows. In (A), a red line is put down first and then a green
arrow. The line overplots the arrow. Then a blue arrow is drawn. The red line still takes
precedence and covers the blue arrow. In (B), a dark blue dot is plotted first and then a
red arrow. The arrow covers the dark blue dot. Then a blue dot is drawn. The arrow still
takes precedence and covers the blue dot. In (C), a red arrow is drawn first and then a
blue one. The new blue arrow covers the old red one. As a result, we can conclude that

o Lines cover arrows even if plotted after the arrow.
e Arrows cover dots.

¢ New arrows cover old ones.

8)

Figure 1-16. Overplotting with lines, arrows, and dots

In general, we can say that lines overplot everything, even older lines; dots don't
overplot anything except older dots; and arrows overplot dots and older arrows but
not lines.

The code that produced Figure 1-16 is

# (A)
plt.plot([20,60],[20,20],1linewidth=5,color="1")

plt.text(13,21,'1")
plt.arrow(30,30,0,-20,1linewidth=5,head length=4,head width=2,color="g")
plt.text(22,10,'2")
plt.arrow(50,30,0,-20,1linewidth=5,head length=4,head width=2,color="b")
plt.text(54,10,'3")

# (B)
plt.scatter(40,60,s=800,color="midnightblue")

plt.text(39,51,'1")
plt.arrow(20,60,60,0,linewidth=5,head length=4,head width=2,color="r")
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plt.text(12,61,'2")

plt.scatter(60,60,s=800,color="b") plt.text(58,51,'3")

# (O
plt.arrow(90,40,40,0,1linewidth=5,head length=4,head width=2,color="r")
plt.text(82,41,'1")
plt.arrow(100,50,0,-20,1inewidth=5,head length=4,head width=2,color="b")
plt.text(92,29,'2")

Background Color

The preceding section offers implications for painting a background. Normally,

images are drawn on the computer screen in a color against a white background. It can
sometimes be useful to plot against a dark background, such as black or midnight blue.
Figure 1-17 shows an example taken from Chapter 6. The black background is obtained
by first covering the plotting area with black lines. The sphere is then drawn with green
lines, which overplot the black background ones. You could also have painted the
background with scatter() dots but lines take less computer processing time. If you had
chosen to draw the sphere with dots, the background lines would have covered them up.
If you did draw the sphere with dots, you could have painted the background with dots
first and the newer sphere dots would have overplotted them.

Figure 1-17. Sphere plotted against a black background
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The Plotting Area Shape

When using the plt.axis() command to set up a plotting area, it will normally appear
in the output pane as rectangular rather than square, even though the x and y axes
dimensions, as specified by the program, indicate it should be square. This is shown

in Figure 1-18, which was created by Listing 1-6 where the values in Line 7 indicate

the area should be square. This distortion may be problematic at times since it can
distort objects. For example, a mathematically correct circle may appear as an oval or a
mathematically correct square may appear as a rectangle, as shown in Figure 1-18.
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Figure 1-18. Distortion of a mathematically correct square

Listing 1-6. Program SQUARE

import numpy as np
import matplotlib.pyplot as plt

1

2

3

4 plt.grid(True)
5 plt.axis('on")
6

7

8

9

plt.axis([-10,10,10,-10])

# custom grid
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x1=-10
x2=10
y1=10
y2=-10

dx=.5
dy=-.5
for x in np.arange(x1,x2,dx):
for y in np.arange(y1,y2,dy):
plt.scatter(x,y,s=1,color="lightgray")

# square box
plt.plot([-5,5],[-5,-5],1inewidth=2,color="k")
plt.plot([5,5],[-5,5],1inewidth=2,color="k")
plt.plot([5,-5],[5,5],1inewidth=2,color="k")
plt.plot([-5,-5],[5,-5],1inewidth=2,color="k")
plt.show()

As shown in Figure 1-19, you can correct this distortion by including the command

plt.axes().set aspect('equal’)

in Listing 1-6 after line 7. This squares the box by squaring the plotting area

Unfortunately, it also shrinks the plotting area’s width. This may not be convenient

for certain images where you may want the full width of the plotting area without the

accompanying distortions.
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Figure 1-19. Distortion corrected by equalizing axes

How to Correct Shape Distortions

Figure 1-20 again illustrates the problem, this time when you try to plot a circle. You have
a plotting area with numerically equal x and y dimensions, each of which is 100 units in
extent. When you plot a mathematically correct circle, you get Figure 1-20, an ellipse.

Listing 1-7 produced Figure 1-20.

0

st .-..,.-alloon e .‘..-..'

Lo e,

20 o .
- S,

100 - - L
0 20 40 60 80 100

Figure 1-20. Distortions of a mathematically correct circle
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Listing 1-7. Program DISTORTED_CIRCLE

plt.axis([0,100,100,0])

=40
alphal=radians(0)

alpha2=radians(360)

dalpha=radians(2)

Xc=50

yc=50

plt.scatter(xc,yc,s=10,color="k")

for alpha in np.arange(alphal,alpha2,dalpha):

O 60N O U1 B W N B

=
o

11 x=xc+r*cos(alpha)
12 y=yc+r*sin(alpha)
13 plt.scatter(x,y,s=5,color="k")

Obviously, this is not going to work. You must find a way to get a true circle, not an
ellipse.

Applying a Scale Factor When Plotting

The circle in Figure 1-20 is constructed with scatter() dots. You could try to apply a
correction factor, a scale factor of sfx, to the x coordinate of each dot as it is plotted. How
do you get sfx? Using a ruler (not very elegant I admit, but it works, if you can find one),
measure on the screen of your monitor Ax and Ay, which are the x and y displayed spans
of the elliptical circle. You use a ruler for this since monitors can differ in horizontal

and vertical pixel spacing. What counts is what you see. Suppose these come out to be
Ax=7.5cm, Ay = 5cm. The scale factor to be applied to the x coordinate of each point
would be sfx=Ay/Ax=5/7.5 = .67. Replacing line 11 in Listing 1-6 with

x=xc+sfx*r*cos(alpha)

where sfx=.67, you get Figure 1-21. The problem with this method is that every x
coordinate that is to be plotted must be multiplied by sfx.
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(=]
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0 2 a0 ) 8 100
Figure 1-21. Distortion corrected by applying a scale factor to each point as it
is plotted

The Best Way: Scaling the Axes in plt.axis()

The best way to correct the distortion is to apply a scale factor to the x axis through the
plt.axis() function. Using the circle above as an example, the scale factor to be applied
to the x-axis is Ax/Ay=7.5/5=1.5. Using this in the plt.axis() function it becomes

plt.axis([0,150,100,0])

The circle code, which produced Figure 1-22, now becomes Listing 1-8.

0 T T r r T
20
40
L]
& /
100 1 L Il Il 1
0 20 40 B0 80 100 120 140

Figure 1-22. Distortion corrected by applying a scale factor to the x axis
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Listing 1-8. THE_BEST WAY_TO_CORRECT_DISTORTIONS

plt.axis([0,150,100,0])

=40
alphal=radians(0)

alpha2=radians(360)

dalpha=radians(2)

Xc=75

yc=50

plt.scatter(xc,yc,s=10,color="k")

for alpha in np.arange(alphal,alpha2,dalpha):
11 x=xc+r*cos(alpha)

12 y=yc+r*sin(alpha)

13 plt.scatter(x,y,s=5,color="k")

14

15 plt.show()

O 60N O U1 B W N B

=
o

This gives you Figure 1-22, a visually true circle. Line 1 in Listing 1-8 makes sure the
x axis is 1.5 times the y axis in numerical length (i.e., 150/100). The y axis could have any
numerical length. You will still get a true circle or a square square as long as the x axis is
1.5 times the y axis as defined by the plt.axis() function in line 1. For example,
plt.axis([0,1800,1200,0]) will work. Most of the sample programs in the book use a
standard plotting area defined by p1t.axis([0,150,100,0]). The 1.5 scaling factor may
have to be fine-tuned for your display, if you can find a ruler :)

As you will see in Chapter 12, by adjusting the arguments in the plt.axis()
function, you can shrink or magnify an image while keeping the same plotting area.

Coordinating Axes

As you have seen, to construct graphic images, points, lines, and arrows are placed

on the plotting area at coordinates that have numerical values relative to an origin at
x=0,y=0. While it is not necessary to show either the coordinate axes or their origin, they
are often an aid when creating images since they indicate the location of the (0,0) point
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and the directions of positive x and y values. Figure 1-23 shows axes that are drawn using
the plt.arrow() function in Listing 1-9, lines 23 and 24. If you prefer lines instead of
arrows, just use lines or take the heads off the arrows by making the head dimensions
equal to zero.

Sample axes

| | | Il

0 20 40 60 80 100 120 140

Figure 1-23. A convenient working surface: 150x100 plotting area, Python grid,
custom grid, frame out of the way

Listing 1-9. Program COORDINATE_AXES

import numpy as np
import matplotlib.pyplot as plt

1

2

3

4 x1=-10 #—Ax=150 this should be Ax
5 x2=140

6 y1=90 #-—-Q®y=100 this should be Ay
7 y2=-10

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on")

11 plt.grid(True)

12

13 plt.title('Sample Axes')
14
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15 # grid

16 dx=5

17 dy=-5

18 for x in np.arange(x1,x2,dx):

19 for y in np.arange(y1,y2,dy):

20 plt.scatter(x,y,s=1,color="1ightgray")
21

22 # coordinate axes

23 plt.arrow(0,0,20,0,head_length=4,head_width=3,color="k")
24 plt.arrouw(0,0,0,20,head_length=4,head_width=3,color="k")
25

26 plt.show()

Commonly Used Plotting Commands and Functions

You saw the use of several plotting commands and functions in the previous sections.
In the following sections, you will look at those commands, and others, in more depth.
You will also learn some optional attributes for those functions. Note that I won't list all
attributes available since most of them are often not used; I only include here the most
important attributes that are required to create the illustrations in this book.

Points and Dots Using scatter()

plt.scatter(x,y,s=size,color="color ')

scatter() plots a solid dot, not a circle, at coordinates x,y. size is the size of the dot:
s=.5 makes a small dot and s=10 makes a bigger one. We often use the term point to
describe a small dot. The dot’s physical size in relation to your plot will depend on the
plotting area’s scale. The best way to determine the most appropriate size of a dot is

to experiment by making it larger or smaller until you get what you want. color is the
dot’s color. There are other attributes available for scatter () but we won’t use them in
this book.

I discussed colors earlier in the section on colors; for most normal applications,
those colors should be satisfactory. For example, color="r" gives a red dot and
color="k"' gives a black one. You can also mix RGB colors, as explained earlier, with the
statement color=(r,g,b) where r=red, g=green, and b=blue.
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The values of each of these three parameters can range from 0 to 1. While colors can
sometimes be useful, much can be done with 'k' (black), 'grey’, and 'lightgrey'. As
in photography, a simple black and white image can often project more impact whereas
color can be distracting. However, as a general rule, the addition of color to a plot can be
a great aid in conveying information. But too much color can create confusion. For an
example of scatter(),

plt.scatter(40,20,s=2,color="g")

plots a green dot of size 2 at x=40,y=20, as shown in Figure 1-24. Note that these x,y
coordinates are relative to the origin of the coordinate axes.

Sample axes

Il

0 20 20 &0 80 100 120 140

Figure 1-24. Green scatter() dot at x=40,y=20

Lines Using plot()

plt.plot([x1,x2],[y1,y2],linewidth=1inewidth,
color="color ',linestyle="linestyle")

This command draws a line from x1,y1 to x2,y2. It has a width specified by 1inewidth,
a color by color, and a style by linestyle. Regarding linewidth, the appearance of a
line’s width will depend on the plot’s scale so it can best be determined by experiment.
Regarding linestyle, the ones shown in Figure 1-25 are usually sufficient.
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Line styles

||||||||||||||||||||||||||||||||||

0 20 4 & 8 100 120 140
Figure 1-25. Line styles

The lines in Figure 1-25 were created by the following code:

plt.plot([40,100],[20,20],1linewidth=2,color="1")
plt.plot([40,100],[30,30],1linewidth=4,color="g",linestyle=":")
plt.plot([40,100],[40,40],linewidth=6,color="b",linestyle="~")
plt.plot([40,100],[50,50],1linewidth=2,color="k",linestyle="-.")

There are other line styles available, which can be found with an Internet search.

Arrows

plt.arrow(x,y,Ax,Ay,line width="1inewidth",
head_length="headlength',
head width="headwidth',
color="color ")

The arrows shown in Figure 1-26 were drawn with the following commands:

plt.arrow(40,20,60,0,1linewidth=1,color="r",head length=5,
head width=3)

plt.arrow(40,30,60,0,1linewidth=1,color="g"',linestyle=":",
head length=10,head width=5)

plt.arrow(40,40,60,0,linewidth=1,color="b",linestyle="-",
head_length=8,head width=4)

plt.arrow(40,50,60,0,1linewidth=4,color="k",linestyle="-",
head length=8,head width=3)
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Sample axes
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Figure 1-26. Arrows

Ax and Ay are the changes in x and y from beginning to end of the arrow’s shaft, not
including the head length. The 1inewidth establishes the thickness of the arrow’s shaft.
The head_width specifies the width of the head; the head_length specifies its length. The
arrow’s head length adds to the overall length of the arrow. Adding the shaft length to
the head length to get the total arrow length is not much of a problem with vertical and
horizontal arrows. For example, to draw a horizontal arrow with an overall length of 10,
you can specify, for example, a Ax of 7, a head_length=3 or a Ax of 8, a head_length=2.
But it can be tricky when constructing oblique arrows that must fit within a specific
length. The best thing to do in that case is to use a trial and error approach adjusting Ax,
Ay, and head_length until it comes out right. Usually you will want head_length and
head width to remain fixed so it is Ax, Ay that usually get changed.

Arrows can also be used to draw lines. The form of data entry is sometimes more
convenient than the plt.plot([x1,x2],[y1,y2]) function. To get a line without the
arrowhead, just omit the head length and head width attributes. That is, write the
following:

plt.arrow(x,y,Ax,Ay,line_width="linewidth’,color="color")

where x,y are the coordinates of the arrow’s starting point; Ax,Ay are the projections
of the arrow’s shaft on the x,y directions.
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Text

Python considers text to be a graphic element. The way to place text on a Python plot
is to use the plt.text() function. The text samples displayed in Figure 1-27 were
produced by the code in Listing 1-10, the Program TEXT_SAMPLES. Lines 30 and 31
show how to rotate text:

plt.text(x,y, "text',color="color

CHAPTER 1 PYTHON ESSENTIAL COMMANDS AND FUNCTIONS

fontstyle="fontstyle',rotation=degrees)

L

Text Samples

-
%
L)
small text “
normal text %
large text ?:b
large bold text$ @

large bold, italic text .
large, Furple, bold italic text
I

large, light purple, bold italic text
light purple text o
&
2 b"o’
A)) =2m-3hf 2—dx ©
! >
\"'b

Figure 1-27. Text samples

0

20 40 8@ 8 100 120

Listing 1-10. Program TEXT_SAMPLES

import numpy as np

import matplotlib.pyplot as plt

X1=-10

y1=90
y2=-10

plt.axis([x1,x2,y1,y2])

1
2
3
4
5 x2=140
6
7
8
9

10 plt.axis('on")

,size="size',fontweight="fontweight
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11 plt.grid(False)

12

13 plt.title('Text Samples')

14

15

16 # text samples

17 plt.text(20,10,"'small text',size="small")

18 plt.text(20,15, 'normal text')

19 plt.text(20,20, 'large text',size="large')

20

21 plt.text(20,30, 'large bold text',size='large',fontweight="bold")

22 plt.text(20,35, 'large bold,italic

23 text',size="large',fontweight="bold",fontstyle="italic")

24 plt.text(20,40, 'large, pure, bold italic

25 text',size="large',fontweight="bold",fontstyle="italic',color=(.5,0,.5))

26 plt.text(20,45, 'large, light purple, bold italic

27 text',size="large',fontweight="bold"',fontstyle="italic",color=(.8,0,.8))

28 plt.text(20,50, 'light purple text',color=(.8,0,.8))

29

30 plt.text(100,50, 'text at 45 degrees',rotation=45,color="k")

31 plt.text(90,-3, 'text at -60 degrees',rotation=-60,color="g")

32

33 plt.text(20,65,r'$P(\lambda)=2 \pi c*{2} h
\int_{\lambda1}"{\lambda2}\frac{\lambda"{-5}\epsilon}
{e*{\frac{hc}{\lambda k t}}-1}d\lambda$',size="large")

34

35 plt.show()

The equation at the bottom of Figure 1-27 is Max Planck’s black body radiation
equation, which gives the power radiated by a black body for wavelengths from
A1 — A2. The text for this equation is plotted by line 33 in Listing 1-10. The ability of
Python to display this equation illustrates some of Python’s graphical power. Python
can plot as text much of what can be accomplished with Latex. Notice in line 33 that the
Latex text between the single quotes is preceded by the lower case r. The r in front tells
Python to treat the string as a raw string, thus keeping the backward slashes needed by
Latex. Itis matplotlib that knows it is Latex because of the dollar sign. The Latex code is
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put between dollar signs. Obviously, there is more Latex text that could be displayed. In
fact, this entire book was originally written and formatted in Latex. All the illustrations in
it have been created with Python.

Lists, Tuples, and Arrays

To draw an object such as a box with individual lines can often require a lot of typing. For
example, to draw a square box you could define each edge with

plt.plot([-20,20],[-20,-20],linewidth=2,1linestyle="-",color="1")
plt.plot([20,20],[-20,20],1linewidth=2,1inestyle="-",color="r")
plt.plot([20,-20],[20,20],linewidth=2,1inestyle="-",color="r")
plt.plot([-20,-20],[20,-20],linewidth=2,1inestyle="-",color="1")

A more efficient way is to use lists:

x=[-20,20,20,-20,-20]
y=[-20,-20,20,20,-20]
plt.plot(x,y,linewidth=2,1linestyle="-",color="g")

Each x[i],y[i] pair in these lists represents the coordinates of a point. The p1lt.
plot(x,y...) function automatically connects point x[i],y[i] with x[i+1], y[i+1]. The fifth
element in these two lists has the same coordinates as element 0. This closes the box.

Finite sequences of numbers enclosed in square brackets such as
x=[x1,x2,x3,x4,x5] and y=[y1,y2,y3,y4,y5] are called lists. Lists are very useful,
especially in computer graphics. The x,y pairs (x1,y1),(x2,y2),(x3,y3).... in these lists
substitute for the syntax ([x1,x2],[y1,y2]) in individual p1t.plot functions. You can
draw virtually any shape with them; the lines will be connected in sequence.

List elements can be defined individually as above, or they can be specified as in the
following structure:

1 x=[ ]

2 for i in range(10):

3 x.append(i*i)

4

5 print(x)

6

7 [0,1,4,9,16,25,36,49,64,81]
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Line 1 defines an empty list x, which contains no elements. The length of the list is
not specified. The loop starting at line 2 increments i from 0 to 9 (10 elements). Line 3
adds i*i to the list as an additional element every cycle through the loop starting with
element 0. Line 7 shows the results.

Another way to do this is to predefine the list elements, as in line 1 below. The
numbers in the list could be anything; they just serve to define the length of the list. Line
4 changes the value of each element to i*i in the loop starting at line 3.

1 x=[0,1,2,3,4,5,6,7,8,9]

2

3 for i in range(10):

4 x[1]=(i*1)

5

6 print(x)

7

8 [0,1,4,9,16,25,36,49,64,81]
Alist’s length can also be defined by

g=[0]*10

where the list g is defined as having 10 elements each having a value 0. To get the
length of a list, use the function

len(x)

which returns the length of list x, the length being the number of elements in the
list. For example, in the following script, the loop will process all elements of list x from
element O to the last element of x, adding 3 to each element:

X=[4)0)7:1]

for i in range(len(x)):
x[1]=x[1]+3

print(x)

[7,3,10,4]

You will use all these methods in the programs that follow so it is wise to understand

them now.
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A tuple, which is a sequence of numbers such as x=(x0,x1,x2,x3,x4), is similar to
a list. The difference is, aside from the style of brackets, the elements inside a tuple are
immutable, meaning they cannot be changed (mutated). The elements in a list, on the
other hand, can be changed. Tuples can be used without the parentheses. For example,
v=7,12 is equivalent to v=(7,12), which defines a tuple having two elements, the first
having a value of 7 and the second of 12.

The use of lists and tuples is certainly a more efficient method of coding, as opposed
to doing it the long way; that is, by using separate np.plot() lines for each leg of a figure.
On the other hand, they can sometimes be problematic. For example, if you have long x
and y lists or tuples, and your plot is not coming out right, it can be a tedious process to
find the offending element. The long way can be speeded up by using copy and paste.
Copy the first line and paste it into the code as the second, and then change the xand y
coordinate values to produce the second line segment and so on for the remaining lines.
Obviously, if you have a lot of points to deal with, you won’t want to copy and paste the
plt.plot() function over and over again, in which case a list or tuple may become a
more viable option. Whether to use lists and tuples, or do it the long way, is a personal
preference.

If you want to draw just one line segment, you can use the syntax

x=[x1,x2]

y=[y1,y2]
plt.plot(x,y)

or
plt.plot([x1,x2],[y1,y2])
To draw two line segments, you can use

x=[x1,x2,x3]

y=[y1,y2,y3]
plt.plot(x,y)

or

plt.plot([x1,x2],[y1,y2])
plt.plot([x2,x31,[y2,y3])

and so on. Each method has its advantages. You will use both in this text.
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In fact, Listing 1-11 uses both methods. It first plots a red square using individual np.

plot commands for each side and then a green one using lists. The output is shown in
Figure 1-28.

60 40 20 0 2 0 &0

Figure 1-28. Green box plotted using lists; red box plotted without lists

Listing 1-11. Program LISTS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
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import numpy as np
import matplotlib.pyplot as plt

plt.

plt.
plt.

plt.
plt.

plt.
plt.

axis([-75,75,50,-50])

axis('on")
grid(True)

arrow(0,0,20,0,head_length=4,head width=3,color="k")
arrow(0,0,0,20,head length=4,head width=3,color="k")

text(22,-3,'x")
text(-5,25,"y")

plt.
plt.
plt.

red box (long way)
plot([-20,20],[-20,-20],1linewidth=2,color="1")
plot([20,20],[-20,20],1linewidth=2,color="1")
plot([20,-20],[20,20],1linewidth=2,color="1")
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19 plt.plot([-20,-20],[-20,20],1linewidth=2,color="1")
20

21 # green box (list way)

22 x=[-30,30,30,-30,-30]

23 y=[-30,-30,30,30,-30]

24 plt.plot(x,y,linewidth=2,color="g")

25

26 plt.show()

Doing it the long way (lines 16-19) obviously requires a lot more typing than using
lists (lines 22-24).
While lists and tuples have some time-saving features, they can be tricky to use. A

common trap is to forget that in both lists and tuples the first element is not element 1, it
is element 0. For example, with a list

x=[1,2 3,4, 5]

if you were to include it in a program with the statement print('x[4])=",x[4]), you
would get 5 for an answer. If you asked for x[ 1], you would get 2. To get a 1 for an answer,
ask for x[0]. Tuples have the same idiosyncrasy. This peculiar feature is highly error-prone
and must always be kept in mind when using lists and tuples. Incidentally, when asking
for the value of an element in either a list or tuple you must use square brackets, not
round ones. For example, to get the third element in x above, which is 3, you ask for x[2].
The following is a typical array:

A=np.array([ [x0,y0,z0],[x1,y1,z1],[X2,y2,22],cceueuccce.. [xn,yn,zn] ])

array() is a numpy function and must be preceded by the np prefix unless imported
explicitly, as explained earlier. As you see, the array A above has n+1 elements, each of
which is a list containing three items. Each element could represent the x,y,z coordinates
of a point in three-dimensional space. Suppose you have an array holding the x,y,z
coordinates of three points as in

A=np°arraY([ [7:3)9]:[34:21:65]’[19:2113] ])

where each element of A represents a point. To print the x,y,z coordinates of the
second point (point 1) for example,
print(A[1])
34,21,65
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the resultisn’t 7,3,9, of course, since that is point 0. To print the z coordinate of
point 1,

print(A[1,2])
65

the 1 is point 1 (0,1,2) and the 2 is the z coordinate (x,y,z). Other operations on arrays
are similar to those used with lists. Arrays are very convenient to use when doing three-
dimensional graphics. You will be using them in later chapters.

arange( )

arange() is a numpy function. It is useful for incrementing a floating point variable
between limits. It must be used with the np. prefix unless it is imported explicitly with
from Numpy import arange.The syntaxis

for x in np.arange(start,stop,step):

This will produce values of x from start to stop in increments of step. All values are
floats. The colon must be included at the end. As an example,

for x in np.arange(1,5,2):
print(x)

What happened to the 5? Shouldn’t you be getting 1, 1+2=3, 3+2=5? The 5 is lost to
small roundoff errors within the computer. That is, when your computer adds 3+2, it may
get something very slightly larger or smaller than 5, which means you may or may not get
the 5. This illustrates one of the faults with arange(). The cure is to make the stop value
slightly larger than what you want (or slightly smaller if going in the negative direction).

for x in np.arange(1,5.1,2):
print(x)
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If you are plotting a circle by incrementing an angle from 0 to 360 degrees and you
find the circle isn’t closing but is leaving a small gap, the round-off error in the np.
arange function could be the problem.

start, stop, and step may have negative as well as positive values. If stop is less
than start, step should be negative.

range()

range() is useful, especially in loops, for incrementing an integer variable through a
range. Itis a standard Python function and does not need a prefix. The syntax is

for x in range(start,stop,step):
where all values are integers. As an example,

for x in range(1,5,1):
print(x)

A W N R

Again, what happened to the 5? Perversely, Python chooses to have range() return

values only up to one step less than stop. To get the 5, you have to extend stop by
one step.

for x in range(1,6,1):
print(x)

Ui » W N R

Aswith arange(), start, stop,and step may have negative values. If stop is less
than start, step should be negative.
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Summary

In this chapter, you reviewed basic Python commands, those fundamental to Python as
well as those specialized to graphics programming. You now have all the programming
tools you will need to understand the following chapters and produce the illustrations
shown in this book. All the graphics were created by the proper use of three fundamental
building blocks: the dot, the line, and the arrow. Once you understand how to use them
in a Python program, the main difficulties become the use of two and three-dimensional
vector math and geometry, which will be ubiquitous in the work that follows.
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CHAPTER 2

Graphics in Two
Dimensions

In this chapter, you will learn how to construct two-dimensional images using points
and lines. You learned the basic tools for creating images with Python in Chapter 1. In
this chapter, you will expand on that and learn methods to create, translate, and rotate
shapes in two dimensions. You will also learn about the concept of relative coordinates,
which will be used extensively throughout the remainder of this book. As usual, you will
explore these concepts through sample programs.

Lines from Dots

You saw how to create a line with the command
plt.plot([x1,x2],[y1,y2],attributes)

This draws a line from (x1,y1) to (x2,y2) with attributes specifying the line’s width,
color, and style. At times it may be desirable to construct a line using dots instead of
using the above line function. Figures 2-1 and 2-2 show the geometry: an inclined
line beginning at point 1 and ending at point 2. Its length is Q. Shown on the line in
Figure 2-2 is point p at coordinates x,y. To draw the line, you start at 1 and advance
toward point 2 in steps, calculating coordinates of p at each step and plotting a dot using
the scatter() function at each step as you go. This analysis utilizes vectors, which will
be used extensively later.

Note that you do not have coordinate axes in these models. This analysis is generic; it
is applicable to any two-dimensional orthogonal coordinate directions.
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Figure 2-1. Geometry for creating a line from dots (a)
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Figure 2-2. Geometry for creating a line from dots (b)

To advance from point 1 toward point 2, you must first determine the direction from
1 to 2. This will be expressed as a unit vector @ (unit vectors will be shown in bold with a
hat; full vectors in bold), as in

= uxd + uyj (2-1)

where i and i are unit vectors in the x and y directions, and ux and uy are the scalar
components of @ in the x and y directions.

ux is the cosine of the angle between @1 and the x axis; uy is the cosine of the angle
between @1 and the y axis. ux and uy are often referred to as direction cosines. It is easy to
show they are cosines: the cosine of the angle between 1 and the x axis is ux/|a|, where
[ti] is the scalar magnitude of &. Since 1 is a unit vector, |@1|=1;, the cosine of the angle is
then ux/(1)=ux. This is similar for uy.
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Itis important to remember that

(2-2)

Il
—

since this feature enables you to multiply & by a magnitude to get a position vector.
For example, as shown in Figures 2-1 and 2-2 you can create a vector from point 1 to
p, vlp, by multiplying @ by L where L is the distance from 1 to p. L gives the vector its

magnitude and 1 gives its direction. A vector from point 1 to p is then
vlp=L(uxi+uyi) (2-3)

You can calculate ux and uy from coordinate values as

ux=A/Q=(x2-x1)/Q (2-4)
uy=B/Q=(y2-y1)/Q (2-5)

where (x1,y1) and (x2,y2) are the coordinates of points 1 and 2, and

Q=y(x2-x1) +(y2-y1)’ (2-6)

Listing 2-1 gives two examples of lines drawn with dots. The results are shown in
Figure 2-3. Smaller dots and closer spacing will produce a finer line (green), which is
almost as good as the line obtained by using the p1t.plot([x1,x2],[y1,y2]) function.
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=20 0 20 40 60 80 100 120

Figure 2-3. Dot lines created by Listing 2-1

Listing 2-1. Program DOTLINE

DOTLINE

import matplotlib.pyplot as plt
import numpy as np

plt.axis([-20,130,80,-20])

O 0N O LT B W N B

=
o

plt.axis('on")
plt.grid(True)

RoR R
w N R

plt.arrow(0,0,20,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,20,head length=4,head width=3,color="k")
plt.text(15,-3,'x")
plt.text(-5,15,'y")

[ O =Y
~ o u
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

# green line
x1=20
X2=120
y1=40
y2=20

g=np.sqrt((x2-x1)**2+(y2-y1)**2)
ux=(x2-x1)/q
uy=(y2-y1)/q

for 1 in np.arange(0,q,.5):
px=x1+1*ux
py=y1+1*uy

plt.scatter(px,py,s=1,color="g")

g
i
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blue line

X1=20
X2=120
y1=45
y2=25

g=np.sqrt((x2-x1)**2+(y2-y1)**2)
ux=(x2-x1)/q
uy=(y2-y1)/q

for 1 in np.arange(0,q,2):
px=x1+1*ux
py=y1l+1l*uy

plt.scatter(px,py,s=1,color="b")

plt.show()

This program should be self-explanatory since the definitions are consistent with the

prior analysis.
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Dot Art

Interesting patterns can be created by arranging dots in a geometric pattern. Figure 2-4
shows some examples. In all three cases, the dots are arranged in a two-dimensional x,y
matrix. You can vary the size of the dots, colors, and the x and y limits of the matrix. Each
matrix is created with nested for loops, as shown in Listing 2-2, lines 20-22, 25-35, and
40-45. These nested loops sweep in the x direction then, at each x, in the y direction, thus
filling out a rectangular area. Mondrian is composed of three separate dot rectangles
plus a large red dot.

X

Seurat Mondrian
Figure 2-4. Dot art created by Listing 2-2

In line 7, you import random. This is a library of random functions that you use in
lines 42, 43, and 44 to produce random primary r,g,b color components. They are mixed
in line 45. You use random’s random. randrange(a, b, c) function to obtain the random
values. You could also use the random functions that are included in numpy, although the
syntax is a bit different. The random library is being used here to illustrate that there are
other math libraries besides numpy.

random.randrange(a,b, c) returns a random number between a and b in
increments c. Note that a, b, and c must be integers. To obtain a wide selection of
random numbers, let a=1, b=100, and c=1 in lines 42-44. But rr in line 42 must be
between 0 and 1.0 so you divide by 100 in line 42. This provides a random value for 1,
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the red component of the color mix, between 0 and 1.0. This is similar for rg and rb, the

green and blue components, in lines 43 and 44. As you can see, the results in Klee are

quite interesting.

Listing 2-2. Program DOTART

OW 60N O U1 B W N -

O O e
O N OOV AN W DN P O
++

plt.

plt.
plt.

plt.
plt.
plt.
plt.

DOTART

import matplotlib.pyplot as plt
import numpy as np
import random

axis([10,140,90,-10])

axis('off")
grid(False)

arrow(0,0,20,0,head_length=4,head width=3,color="k")
arrow(0,0,0,20,head_length=4,head width=3,color="k")
text(15,-3,'x")
text(-5,15,'y")

for

N N NN
w N B O

-plot Seurat
x in np.arange(20,40,4):
for y in np.arange(10,60,4):
plt.scatter(x,y,s=8,color="b")

N
~
+

for

N N NN
o N o Ui

for

w W N
=, O VO

plot Mondrian
x in np.arange(60,80,1):
for y in np.arange(10,40,1):
plt.scatter(x,y,s=8,color="y")

x in np.arange(60,80,1):
for y in np.arange(40,60):
plt.scatter(x,y,s=8,color="g")
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32

33 for x in np.arange(65,80,1):

34 for y in np.arange(25,30,1):

35 plt.scatter(x,y,s=8,color="b")

36

37 plt.scatter(70,30,s=50,color="r")

38

39 # plot Klee

40 for x in np.arange(100,120,2):

41 for y in np.arange(10,60,2):

42 rr=random.randrange(0,100,1)/100 #-random red O<=rr<=1
43 rg=random.randrange(0,100,1)/100 #-random green 0<=rg<=1
44 rb=random.randrange(0,100,1)/100 #-random blue 0<=rb<=1
45 plt.scatter(x,y,s=25,color=(rr,rg,rb))

46

47 # labels

48 plt.text(105,67, Klee'")

49 plt.text(60,67, Mondrian')
50 plt.text(21,67, ' Seurat"')
51

52 plt.show()

Circular Arcs from Dots

Listing 2-3 draws a circular arc using points. This is your first program dealing with
circular coordinates, angles, and trig functions. The geometry used by Listing 2-3 is
shown in Figure 2-5. The output is shown in Figure 2-6.

Lines 25-31 in Listing 2-3 plot the arc. The center of curvature is at (xc,yc) as defined
in lines 20 and 21. The radius of curvature is r in line 22. The arc starts at point 1,
which is at an angle p1 relative to the x axis. It ends at point 2, which is at an angle p2.
These angles, 20 and 70 degrees respectively, are set in lines 25 and 26 where they are
converted to radians, the units required by np.sin() and np.cos(). In later programs,
you will use the radians () function, which converts an argument from degrees to
radians. The points on the arc are spaced an angular increment dp apart, as shown in
line 27. dp is set to the total angle spanned by the arc, p2-p1, divided by 100. A wider
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spacing, say (p2-p1)/20, especially when combined with a smaller dot size, will give a
coarser arc. The loop running from line 28 to 31 advances the angle of each point by the
increment dp using the arange() function. Lines 29 and 30 calculate the coordinates

of each point relative to the global x,y system, which has its origin at (0,0). The global
coordinates are those used for plotting. xp=r*np.cos(p) and yp=r*np. (sin(p) are the
coordinates of p along the arc relative to the arc’s center of curvature at (xc,yc). These
are local coordinates. The coordinates of the center of curvature (xc,yc) must be added
to the local coordinates to obtain the global coordinates relative to x=0,y=0. This is done
in lines 29 and 30. Line 31 plots a green dot of size 1 at each location using the global
coordinates. The results are shown in Figure 2-6 and the code is shown in Listing 2-3.

:  R*cos(p)

x2,y2)\

Figure 2-5. Geometric model used for creating a circular arc with scatter() dots,
created by Listing 2-4
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X

0 1

(xc,yc)

20 | . o :

(x1,y1)
40 | !
60 |- (x2.y2) 2
80 } 2
0 20 40 60 80 100 120 140

Figure 2-6. Circular arc created with np.scatter() dots

Listing 2-3. Program PARC

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

56

PARC

import numpy as np
import matplotlib.pyplot as plt

plt.axis([-10,140,90,-10])

plt.axis('on")
plt.grid(True)

#——(shorten line so "axes" is on same line
plt.arrow(0,0,20,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,20,head length=4,head width=3,color="k")

axes
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17 plt.text(16,-3,'x")

18 plt.text(-5,17,'y")

19

20 xc=20

21 yc=20

22 1=40

23

24 # (shorten) plot arc
25 p1=20*np.pi/180

26 p2=70*np.pi/180

27 dp=(p2-p1)/100

28 for p in np.arange(p1,p2,dp):

29 x=xc+r*np.cos(p)

30 y=yc+r*np.sin(p)

31 plt.scatter(x,y,s=1,color="g")

32

33 # (shorten) labels

34 plt.text(61,34,"'(x1,y1)")

35 plt.text(16,60,"'(x2,y2)")

36 plt.scatter(xc,yc,s=10,color="k")

37 plt.text(xc+4,yc-4,"'(xc,yc)",color="k")
38

39 plt.show()

(Listing 2-4 shows the program that created Figure 2-5.)

Listing 2-4. Program PARCGEOMETRY

PARCGEOMETRY

import numpy as np
import matplotlib.pyplot as plt

plt.axis([-10,140,90,-10])

OW 60N O U1 B W N B
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44

58

plt.axis('off")
plt.grid(False)

# (shorten)—————coordinate axes
plt.arrow(0,0,20,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,20,head length=4,head width=3,color="k")

# (sjorten) labels
plt.text(16,-3,'x")
plt.text(-5,17,'y")

# (shorten)—————main arc
xc=20

yc=20

r=40

plt.scatter(xc,yc,color="b",s=5)

phi1=20*np.pi/180.

phi2=70*np.pi/180.

dphi=(phi2-phi1)/20.

for phi in np.arange(phi1,phi2,dphi):
x=xc+r*np.cos(phi)
y=yc+r*np.sin(phi)
plt.scatter(x,y,s=2,color="g")

plt.plot([xc,xc+r*np.cos(phi1)],[yc,yc+r*np.sin(phi1)],color="k")

x1=xc+(r+3)*np.cos(phi1)
x2=xc+(1+10)*np.cos(phi1)
yl=yc+(r+3)*np.sin(phi1)
y2=yc+(r+10)*np.sin(phi1)
plt.plot([x1,x2],[y1,y2],color="k")

x1=xc+(r+3)*np.cos(phi2)
x2=xc+(1+30)*np.cos(phi2)
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59
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63
64
65
66
67
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69
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71
72
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74
75
76
77
78
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yl=yc+(r+3)*np.sin(phi2)
y2=yc+(1+30)*np.sin(phi2)
plt.plot([x1,x2],[y1,y2],color="k")

plt.plot([xc,xc+r*np.cos(phi2)],[yc,yc+r*np.sin(phi2)],color="k")

phihalf=(phi1+phi2)*.5
phi3=phihalf-dphi/2
phi4=phihalf+dphi/2

plt.plot([xc,xc+r*np.cos(phi3)],[yc,yc+r*np.sin(phi3)],color="k")
plt.plot([xc,xc+r*np.cos(phi4)],[yc,yc+r*np.sin(phi4)],color="k")

x1=xc+(r+3)*np.cos(phi3)
x2=xc+(r+15)*np.cos(phi3)
yl=yc+(r+3)*np.sin(phi3)
y2=yc+(r+15)*np.sin(phi3)
plt.plot([x1,x2],[y1,y2],color="k")

x1=xc+(r+3)*np.cos(phig)
x2=xc+(r+15)*np.cos(phi4)
yl=yc+(r+3)*np.sin(phi4)
y2=yc+(r+15)*np.sin(phig)
plt.plot([x1,x2],[y1,y2],color="k")

# (shorten) P1 arc
dphi=(phi3)/100.
for phi in np.arange(0,phi1/2-3.2*np.pi/180,dphi):

x=XC+(T+5)*np.cos(phi)
y=yc+(r+5)*np.sin(phi)
plt.scatter(x,y,s=.1,color="k")

for phi in np.arange(phi1/2+3.3*np.pi/180,phi1,dphi):
x=xC+(r+5)*np.cos(phi)

y=yc+(T+5)*np.sin(phi)
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80 plt.scatter(x,y,s=.1,color="k")
81
82 # (shorten) P2 arc

83 dphi=(phi3)/100.
84 for phi in np.arange(0,phi2/2-3.2*np.pi/180,dphi):

85 x=XC+(T+25)*np.cos(phi)

86 y=yc+(r+25)*np.sin(phi)

87 plt.scatter(x,y,s=.1,color="k")
88

89 dphi=(phi3)/100.
90 for phi in np.arange(phi2/2+3.2*np.pi/180,phi2,dphi):

91 x=XC+(r+25)*np.cos(phi)

92 y=yc+(r+25)*np.sin(phi)

93 plt.scatter(x,y,s=.1,color="k")

94

95 # (shorten) P arc

96 dphi=(phi3)/100.
97 for phi in np.arange(0,phi3/2-.5*np.pi/180,dphi):

98 x=xc+(r+13)*np.cos(phi)

99 y=yc+(r+13)*np.sin(phi)

100 plt.scatter(x,y,s=.1,color="k")
101

102 dphi=(phi3)/100.
103 for phi in np.arange(phi3/2+9.*np.pi/180,phi3,dphi):

104 x=xc+(r+13)*np.cos(phi)

105 y=yc+(r+13)*np.sin(phi)

106 plt.scatter(x,y,s=.1,color="k")

107

108 # (shorten) dp arc

109 dphi=(phi3)/100.
110 for phi in np.arange(phi3+5*dphi,phi3+25*dphi,dphi):

111 x=xc+(r+13)*np.cos(phi)

112 y=yc+(r+13)*np.sin(phi)

113 plt.scatter(x,y,s=.1,color="k")
114

60



115
116
117
118
119
120
121
122
123
124
125

126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

CHAPTER 2 GRAPHICS IN TWO DIMENSIONS

plt.plot([xc,100],[yc,yc], k")
plt.plot([xc,xc],[yc,80]," k")

# (shorten) labels
plt.text(71,58, 'p2',size="small")
plt.text(66,44,'p"',size="small")

plt.text(63,29, 'p1',size="small")

plt.text(45,66, 'dp',size="small")

plt.text(41,26,'r")
plt.text(3,17," ' (xc,yc)",size="small")
plt.plot([xc+r*np.cos(phi3),xc+r*np.cos(phi3)],[yc-8,yc+r*np.
sin(phi3)], 'k:")

plt.plot([xc,xc],[yc-2,yc-8], k:")

plt.text(25,17, 'R*cos(p)',size="small")

plt.plot([xc-8,xc+r*np.cos(phi3)],[yc+r*np.sin(phi3),yc+r*np.
sin(phi3)], 'k:")

plt.plot([xc-2,xc-8],[yc,yc], 'k:")

plt.text(13,27, 'R*sin(p)',size="small',rotation=90)

plt.text(49,30,"'(x1,y1)",size="small")
plt.text(20,62,"'(x2,y2)",size="small")
plt.text(51,49,"' (xp,yp)",size="small")

++

(shorten)—————arrow heads
plt.arrow(47,79,-2,1,head length=3,head width=2,color="k")
plt.arrow(62,53,-2,2,head length=2.9,head width=2,color="k")
plt.arrow(64,31,-.9,3,head length=2,head width=2,color="k")
plt.arrow(52,63,3,-3,head length=2,head width=2,color="k")

plt.show()
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Circular Arcs from Line Segments

Instead of plotting dots with np.scatter() at points along the arc, you can create a finer
arc using straight-line segments between points. If you replace the “plot arc” routine in
Listing 2-3, beginning at line 24, with

24 # plot arc
25 p1=20*np.pi/180

26 p2=70*np.pi/180

27 dp=(p2-p1)/100

28 xlast=xc+r*np.cos(p1)

29 ylast=yc+r*np.sin(p1)

30 for p in np.arange(pi+dp,p2,dp):

31 x=xc+r*np.cos(p)

32 y=yc+r¥*np.sin(p)

33 plt.plot([xlast,x],[ylast,y],color="g")
34 xlast=x

35 ylast=y

you get the arc shown in Figure 2-7. In lines 28 and 29 of the code above you define
xlast and ylast. These are the last x and y coordinate values plotted at the end of
the previous line segment. Since you are just starting to plot the arc before the loop
begins, these are initially set equal to the arc’s starting point where p=p1. You will need
them to plot the first arc segment in line 33. Parameters p, p1, p2, and dp are the same
as before. Imagine the loop 30-35 is just starting to run. Lines 31 and 32 calculate the
global coordinates of the end of the first line segment, which is dp into the arc. Using the
previously set values xlast and ylast, which are the coordinates of the beginning of that
line segment in 28 and 29, line 33 plots the first line segment. Lines 34 and 35 update the
end coordinates of the first segment as xlast, ylast. These will be used as the beginning
coordinates of the second line segment. The loop continues to the end of the arc using
the end of the preceding segment as the beginning of the next one. Notice in line 30
the loop begins at p1+dp, the end angle of the first line segment. This isn’t actually
necessary and the beginning of the loop could be set to p1 as before, in which case the
first line segment would have zero length. The loop would continue to the end of the arc
as before.
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x
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(xc,yc)
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(x1,y1)
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Figure 2-7. Circular arc created with plt.plot() line segments

In future work, you will sometimes use curves constructed of dots instead of line
segments. Even though dots do not produce as fine results, they avoid complicating the
plotting algorithm, which can sometimes obscure the logic of the script. However, line
segments do produce superior results so you will use them as well.

Circles

A full circle is just a 360" arc. You can make a full circle by changing the beginning and
end angles of the arc in the previous section to p1=0 and p2=360 degrees. This is done
in lines 24 and 25 of Listing 2-5. The output is shown in Figure 2-8. Three circles and a
solid disc are plotted at different locations. They have different colors and widths. Half
the green circle is plotted with solid-line segments, the other half with dashed lines
29-37. The decision to plot a solid or dashed line is made by the if logic between lines
32 and 35. This changes the l1inestyle attribute in line 33. The blue solid disc is made
by plotting concentric circles with radii from r1=0 to the disc’s outer radius r2. You
could, of course, also make a solid disk with the np.scatter() function. You should be
able to follow the logic used here to create the various circles by examining the script in
Listing 2-5.

63



CHAPTER 2  GRAPHICS IN TWO DIMENSIONS

This program could have been shortened by the use of functions. It has been
left open for the sake of clarity by using cut and paste to reproduce sections of
redundant code.

Listing 2-5. Program CIRCLES

CIRCLES

import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,50,-50])
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plt.axis('on")
plt.grid(True)
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plt.arrow(0,0,20,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,20,head length=4,head width=3,color="k")
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plt.text(16,-3,'x")
plt.text(-5,17,'y")
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# green circle
xc=0

NN
= O

yc=0
=40

N NN
B woN

p1=0*np.pi/180

p2=360*np.pi/180

dp=(p2-p1)/100

xlast=xc+r*np.cos(p1)

ylast=yc+r*np.sin(p1)

for p in np.arange(p1,p2+dp,dp):
x=xc+r*np.cos(p)
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y=yc+r¥*np.sin(p)
if p > 90*np.pi/180 and p < 270*np.pi/180:
plt.plot([xlast,x],[ylast,y],coloxr="g',linestyle=":")
else:
plt.plot([xlast,x],[ylast,y],colox="g")
xlast=x
ylast=y

plt.scatter(xc,yc,s=15,color="g")

# (shorten)————red circle
xc=-20

yc=-20

r=10

p1=0*np.pi/180

p2=360*np.pi/180

dp=(p2-p1)/100

xlast=xc+r*np.cos(p1)

ylast=yc+r*np.sin(p1)

for p in np.arange(p1,p2+dp,dp):
x=xc+r*np.cos(p)
y=yc+r*np.sin(p)
plt.plot([xlast,x],[ylast,y],linewidth=4,color="1")
xlast=x
ylast=y

plt.scatter(xc,yc,s=15,color="r")

# (shorten)———purple circle
xc=20

yc=20

=50

p1=0*np.pi/180

65



CHAPTER 2  GRAPHICS IN TWO DIMENSIONS
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p2=360*np.pi/180

dp=(p2-p1)/100

xlast=xc+r*np.cos(p1)

ylast=yc+r*np.sin(p1)

for p in np.arange(p1,p2+dp,dp):
x=xc+r*np.cos(p)
y=yc+r*np.sin(p)
plt.plot([xlast,x],[ylast,y],linewidth=2,color=(.8,0,.8))
xlast=x
ylast=y

plt.scatter(xc,yc,color=(.5,0,.5))

# (shorten) blue disc
Xc=-53

yc=-30

r1=0

12=10

dr=1

p1=0*np.pi/180

p2=360*np.pi/180

dp=(p2-p1)/100

xlast=xc+r1*np.cos(p1)

ylast=yc+ri*np.sin(p1)

for r in np.arange(r1,r2,dr):

for p in np.arange(p1,p2+dp,dp):

x=xc+r*np.cos(p)
y=yc+r*np.sin(p)

plt.plot([xlast,x],[ylast,y],linewidth=2,color=(0,0,.8))

xlast=x
ylast=y

plt.show()
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Figure 2-8. Circles created by Listing 2-5

Dot Discs

Two discs created with different dot patterns are shown in Figure 2-9. The disc labeled
“rp” is drawn by placing dots in a traditional polar r,p array where r is the radius from
the center and p is the angle. The algorithm starts at line 21 in Listing 2-6. The script
in Listing 2-6 should be self-explanatory. The only issue with this plot is that the dots
are not uniformly spaced but are further apart as the radius increases. This may be
undesirable in some situations.
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X Program DOTDISCS

FIeess oK
s S0y i}

np equal arc

100 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 2-9. Discs created by different dot patterns in Listing 2-6 where “r,p”
contains simple polar coordinates and “equal arc” has modified polar coordinates

The “equal arc” disc, beginning in line 38, appears better visually. As with the “r,p”
disc, the dots are equally spaced in the radial direction. However, in the “equal arc” disc,
the number of dots in the circumferential direction at each radial location becomes
larger as the radius increases, thus keeping the circumferential arc spacing between
dots constant. The model used is shown in Figure 2-10. dc is the circumferential spacing
between dots a and b at rmax, the outer edge of the disk. dp is the angular spacing
between radii to a and b. To achieve more uniform spacing across the disc, you hold dc
constant at all radii. A typical radial location is shown at r=rmax/2. dc at this radius is
the same as at rmax and is equal to dc. To accommodate this spacing, the angle between
adjacent dots must increase to drp.

In line 44 of Listing 2-6, the disc’s outer radius is set to 20. The radial spacing is set
to 2 in line 45. Keeping in mind that the circumferential spacing between two points on
a circular arc is rxdp where r is the radius and dp is the angle between the points, line
46 calculates dc where you have arbitrarily set the number of dots at rmax to 40 per z
radians (80 around the complete circumference). The loop beginning at line 48 starts at
r=dr and advances in the radial direction to rmax in steps dr. At each value of 1, the angle
between dots dpr required to keep the circumferential spacing equal to dc is calculated
in line 49. The loop beginning at line 50 then places the dots circumferentially.
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Program DOTDISC model

m 1 i 1 L 1 L 1
-20 0 20 40 60 80 100 120
Figure 2-10. Model for “equal arc” disc used by Listing 2-6

Listing 2-6. Program DOTDISCS

DOTDISCS

import matplotlib.pyplot as plt
import numpy as np
import random as rnd

OW 60N O U1 B W N B

plt.axis([0,150,100,0])

[N
R O

plt.axis('off")
plt.grid(False)

N S =\
N W oN

plt.arrow(0,0,20,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,20,head length=4,head width=3,color="k")

[
o U
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plt.text(16,-3,"'x")
plt.text(-5,17,'y")

# (shorten)

pattern
Xc=40
yc=25

p1=0
p2=2*np.pi
dp=np.pi/20

rmax=20
dr=2

for r in np.arange(dr,rmax,dr):
for p in np.arange(p1,p2,dp):
x=xc+r*np.cos(p)
y=yc+r*np.sin(p)
plt.scatter(x,y,s=2,color="k")

g
i

simple 1,p

XC=40
yc=70

p1=0
p2=2*np.pi

Imax=20
dr=2
dc=np.pi*rmax/40

for r in np.arange(dr,rmax,dr):
dpr=dc/x
for p in np.arange(p1,p2,dpr):

equal arc length dot pattern
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51 X=xc+r*np.cos(p)

52 y=yc+r*np.sin(p)

53 plt.scatter(x,y,s=2,color="k")

54

55 # (shorten labels

56 plt.text(38,66,'r,p")

57 plt.text(95,66, equal arc')
58

59 plt.show()

Ellipses

Ellipses are shown in Figure 2-12. They were drawn by Listing 2-7. The model used by
Listing 2-7 is shown in Figure 2-11. This was drawn by Listing 2-8. The dimension a is
called the semi-major since it refers to half the greater width; b is the semi-minor. 2a and
2b are the major and minor dimensions.

The equation of an ellipse, which we are all familiar with, is

S . (2-7)

In the special case where a=b=r, this degenerates into a circle, as in
x+y=r (2-8)

where r is the radius.

A possible strategy to use when plotting an ellipse is to start at x=-a and advance in
the +x direction using Equation 2-7 to calculate y at each x, and then plot either a dot or
a line segment from the last step, as you have done in the past. The y coordinate is easily
derived from Equation 2-7 as

y=b1-= (2-9)
This seems easy enough. The green ellipse in Figure 2-12 was drawn this way.

However, there is a problem. Look at Listing 2-7, lines 48, 49, and 50; the square root in
Equation 2-9 and in line 48 gives uncertain results as x approaches +a and line 48 tries
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to take the square root of a number very close to zero. This is caused by roundoff errors
in Python’s calculations. The manifestation of this shows up as a gap at the +a side of the
ellipse. In the algorithm for the green ellipse, this gap is closed by lines 54 and 55. You
can get a decent ellipse this way but you have to be careful.

Another way is to use polar coordinates, as shown in Figure 2-11. You want to
determine the coordinates (xp,yp) for a point on the ellipse as a function of the angle p.
By varying p, you will have the information you need to plot the ellipse. To determine
(xp,yp) vs. p, you note that it lies on the intersection of the ellipse and the radial line. This
point is indicated by the red dot. Incidentally, the dot does not appear to lie exactly at
the intersection, as can be seen. This is because the scale factor used to adjust the x axis
values in line 8 of Listing 2-8 is a bit off. It's from a rough measurement with a ruler and
then the results of the calculation were rounded off to determine the scale factor. The
resulting slight errors are showing up here. The equation of the line can be determined
from the following:

xp=rcos(p) (2-10)
yp=rsin(p) (2-11)
Combining the above,
w0 _15i0p) i) (2-12)
xp rcos(p)
yp=xptan(p) (2-13)

You know that (xp,yp) lies at the intersection of the line and the ellipse. This is
where the equations for both the line and the ellipse are satisfied by xp and yp. You can
determine the coordinates of this point by substituting Equation 2-13 into Equation 2-7,

2 2 2
xp~ xp'tan’p
P (14)
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which works out to

1

xp = ab[b2 +a’tan’ (p)]_E (2-15)
1
b| a® + b’ ! B (2-16)
=ab| a® + -
P tan®(p)
-40 } ; ; : ]
20} ~
X
0 > 1
20 | |
(xp.yp)
40 Yv .
-60 =40 =20 0 20 40 €0

Figure 2-11. Model created by Listing 2-8 and used by Listing 2-7

Equations 2-15 and 2-16 are implemented in Listing 2-7 to draw the red ellipse
between lines 20 and 36, the green ellipse between lines 39 and 55, and the blue
ellipse in lines 58 and 69. The output is shown in Figure 2-12. When drawing the green
ellipse, the program loops from -a to +a and uses Equation 2-9 to calculate y values. As
mentioned, this can lead to roundoff errors near the extremity of the ellipse at x=+a,
which leaves a gap in the ellipse. This is corrected in lines 54 and 55, which draw short
lines to close the gap. Note that the blue ellipse is filled in. This is accomplished by line
69, which plots vertical lines from the top to the bottom of the ellipse.
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-40 }
=20 |
X
ot B
20 |
m}—
-60 -40 =20 0 20 40 60

Figure 2-12. Ellipses created by Listing 2-7

Listing 2-7. Program ELLIPSES

OW 0N O U1 B W N B

I O N =
oV A W N R O
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ELLIPSES

import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,50,-50])

plt.axis('on")
plt.grid(True)

plt.arrow(0,0,60,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,45,head length=4,head width=3,color="k")

plt.text(58,-3,'x")
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plt.text(-5,44,'y")

# (shorten) red ellipse
a=40

b=20.

p1=0

p2=180*np.pi/180

dp=.2*np.pi/180

xplast=a

yplast=0

for p in np.arange(p1,p2,dp):
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)
if p > np.pi/2:

Xp=-Xp
plt.plot([xplast,xp],[yplast,yp],color="1")
plt.plot([xplast,xp],[-yplast,-yp],color="r")
xplast=xp
yplast=yp

# (shorten) green ellipse
a=20.

b=40.

xpl=-a

Xp2=a

dx=.1

xplast=-a

yplast=0

for xp in np.arange(xp1,xp2,dx):
yp=b*(1-xp**2./a**2,)**.5
plt.plot([xplast,xp],[yplast,yp],linewidth=1,color="g")
plt.plot([xplast,xp],[-yplast,-yp],linewidth=1,color="g")
xplast=xp
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

yplast=yp

plt.plot([xplast,a],[yplast,0],1linewidth=1,color="g"
plt.plot([xplast,a],[-yplast,0],linewidth=1,color="g"

# (shorten)————blue ellipse
a=5.

b=15.

p1=0

p2=180*np.pi/180

dp=.2*np.pi/180

for p in np.arange(p1,p2,dp):
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)
if p > np.pi/2:
Xp=-Xp
plt.plot([xp,xp]l,[yp,-yp],linewidth=1,color="b")

plt.show()

(Listing 2-8 was used to create Figure 2-11.)

Listing 2-8. Program ELLIPSEMODEL

OW 60N O LT B W N B

BoR R
N RO

~
(o]

ELLIPSEMODEL

import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,50,-50])

plt.axis('on")
plt.grid(True)
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plt.arrow(0,0,60,0,head length=4,head width=3,color="k")
plt.arrow(0,0,0,40,head length=4,head width=3,color="k")

plt.text(58,-3,"'x")
plt.text(-5,40,"y")

# (shorten) —ellipse
a=50.

b=30.

p1=0.

p2=180.*np.pi/180.

dp=(p2-p1)/180.

xplast=a

yplast=0

for p in np.arange(p1,p2+dp,dp):
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)
if p > np.pi/2:

Xp=-Xp
plt.plot([xplast,xp],[yplast,yp],color="k")
plt.plot([xplast,xp],[-yplast,-yp],color="k")
xplast=xp
yplast=yp

# (shorten) line
plt.plot([0,40],[0,40],color="k")

# (shorten point
p=45.*np.pi/180.
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)
plt.scatter(xp,yp,s=20,color="r")
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47 # (shorten) labels
48 plt.text(23,-3,"'a",color="k")

49 plt.text(-5,15,'b",color="k")

50 plt.text(32,28,"'(xp,yp)")

51 plt.text(30,12,'p")

52 plt.text(10,18,'r")

53
54 # (shorten) p arc
55 p1=0

56 p2=45*np.pi/180
57 dp=(p2-p1)/180

58 1r=30

59 for p in np.arange(pi,p2,dp):

60 x=r*np.cos(p)

61 y=r*np.sin(p)

62 plt.scatter(x,y,s=.1,color="1")
63

64 plt.arrow(25,17.5,-1,1,head length=3,head width=2,color="r")
65
66 plt.show()

2D Translation

In two dimensions, an object has three independent degrees of freedom: it can rotate
around one axis direction that is perpendicular to the plane and it can translate in
two directions (x and y) within the plane. Pure translation implies the object is moved
without rotation; pure rotation implies the object is rotated without translation. The
objects in Figure 2-13 are examples of pure translation. The triangle (black) has been
translated (moved) to the right (green) without rotation and then down (red). This is a
simple thing to accomplish with Python, especially when using lists as in Listing 2-9.
For example, to move an object to the right in an amount of dx, just add dx to the

x coordinates and replot it. Similarly for the y direction, just add Ay dy to they
coordinates and replot. The small blue boxes were translated across the plotting area by
incrementing the x coordinates by 10 units in the loop beginning in line 45.
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Translation

L] ] L ] ]

Oo0o000000000o0O0

1 1 | 1 1 1

0 20 40 60 80 100 120 140

Figure 2-13. Examples of translation created by Listing 2-9

Listing 2-9. Program 2DTRANSLATION

2DTRANSLATION

import numpy as np
import matplotlib.pyplot as plt

X1=-10

X2=140

y1=90

y2=-10
plt.axis([x1,x2,y1,y2])

O 60N O VT B W N B

I = N N )
N W N R O

plt.axis('on")
plt.grid(True)

B
o wu
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plt.title('Translation")

#

x=[20,30,40,20]
y=[40,20,40,40]
plt.plot(x,y,color="k")
plt.plot(x,y,color="k")
plt.plot(x,y,color="k")

triangle

#
x=[60,70,80,60]

plt.plot(x,y,color="g")
plt.plot(x,y,color="g")
plt.plot(x,y,color="g")

#

translate triangle dx=60

y=[80,60,80,80]

plt.plot(x,y,color="r")
plt.plot(x,y,color="r")
plt.plot(x,y,color="r")

g
i

translate triangle dy=40

box

X=[O)0)5)510]
y=[55,50,50,55,55]
plt.plot(x,y,'b")

#

translate box

y=[55,50,50,55,55]

for x in np.arange(0,130,10):
X=[ X, X, X+5 ,X45,x]
plt.plot(x,y,'b")

plt.show()
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2D Rotation

So far in this chapter, you have seen how to construct images on a two-dimensional
plane using points and lines. In this section, you'll learn how to rotate a two-dimensional
planar object within its own plane. A 2D object that you might want to rotate could

be a rectangle, for example, or something more complicated, which will normally
consist of any number of points and lines. Lines, of course, are defined by their end
points or a series of points if constructed from dots. As you have seen, curves can also

be constructed from line segments or dots. If you can determine how to rotate a point,
you will then be able to rotate any planar object defined by points. In Chapter 3, you

will extend these concepts to the rotation of three-dimensional objects around three
coordinate directions.

Figure 2-14 shows three coordinate systems: the blue xg,yg system is the global
coordinate system. Its numerical size and the location of the global origin (xg=0, yg=0)
are defined by the values in the plt.axis([x1,x2,y1,y2]) statement. This is the system
you use when plotting. All plotting coordinates should relate to this system. For example,
if writing p1t.scatter(xg,yg), xg and yg should be relative to the blue xg,yg system
as shown.

(xo,yo) X9

P'(xp’.yp’)

) e e global

—— e local
e mnotated

Figure 2-14. 2D rotation model
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The black x,y system is the local system. A position (xp,yp) in the local system is
equivalent to (xc+xp, yc+yp) in the global system. You use the local system to construct
shapes by specifying the coordinates of the points that comprise them. For example, if
you want to plot a circle somewhere in the plotting area, you could place (xc,yc) at the
circle’s center, calculate the points defining the circle around it in reference to the local
(black) system, and then relate them back to the xg,yg (blue) system for plotting by
translating each point by xc and yc.

Figure 2-14 shows a point P that is rotated through a clockwise angle Rz to a new
position at P'. The red coordinate system rotates through the angle Rz. P rotates along
with it. The coordinates of P’ in the rotated system, (xp,yp), are the same as they were
in the local system. However, in the global system, they are obviously different. Your
goal now is to determine the coordinates of P’ in the local system and then in the global
system, so you can plot it.

I am using the terminology Rz for the angle because a clockwise rotation in the
x,y plane is actually a rotation about the z direction, which points into the plane of the
paper. This was illustrated in Chapter 1. It will be explained in more detail in Chapter 3.

Figure 2-14 shows point P in its unrotated position. Its coordinates in relation to the
local x,y system (black) are (xp,yp). Its location is defined by the vector P,

P =xpi+ypj (2-17)
where i and i are unit vectors in the x and y directions.

After P is rotated through the angle Rz, it reaches a new position P’ (red) at
coordinates (X,y) in relation to the x,y (black) system. P’ is defined by the vector P’
(red) as,

P =xpi+yp (2-18)

The coordinates of P in relation to the rotated X,y system are (xp,yp). The position of
P'is thus also defined by the vector

p'=xpi +ypj (2-19)

where i and j are unit vectors in the X and y directions.
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This analysis assumes the x axis points to the right, the y axis points down and the
z axis points into the screen. If the y axis point up, z would point out of the screen and a
different analysis is required. See Appendix D for clarification.

Your task now is to determine relations for i and i in relation to i and i and then
substitute them into Equation 2-19. This will give you the coordinates of P’ in relation to
the local x,y system. By simply adding xc and yc you get the coordinates of P’ in the global
system, which you need for plotting.

Four unit vectors are shown at (xc,yc). i and i point in the x and y directions; i and
i' point in the X and y directions. By examining Figure 2-14, you can see that the first j’
in Equation 2-21 should have a hat like the 1 above it.

i =cos(Rz) i+ sin(Rz) j (2-20)
\ Xcomponent \ Y component

i =sin(Rz) i+ cos(Rz) j (2-21)
‘ X com;aonent Y component

Plugging these into Equation 2-19, you get

A
.

p'= xp[cos(Rz)i + sin(Rz)ﬂ + yp[—sin(Rz)i + cos(Rz)]J (2-22)

This can be separated into x and y components,

p'=xp'i+yp] (2-23)

where
xp’:xp[cos(Rz)]+yp[—sin(Rz)] (2-24)
yp'= xp[sin(Rz)] + yp[cos(Rz)] (2-25)

These last two equations are all you need to rotate a point from (xp,yp) through the
angle Rz to new coordinates (xp’,yp’). Note that both sets of coordinates, (xp,yp) and
(xp’,yp), are in reference to the local x,y axes. They can then be easily translated by xc
and yc to get them in the global system for plotting.
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In the special case where yp=0, that is when P, before rotation, lies on the x axis at
x=xp, Equations 2-24 and 2-25 degenerate to

xp' = xp cos(Rz) (2-26)
yp' =xp sin(Rz) (2-27)
which can be easily verified from Figure 2-14. You are, of course, concerned with

rotating a generic point that initially is anywhere in the x,y plane so you need the
full formulation contained in Equations 2-24 and 2-25. These can be expressed in

{xp}:{cos(l?z) sin(RZ)}{xP} (2-28)

yp'| | sin(Rz) cos(Rz) | yp

matrix form as

which can be abbreviated as
[P']=[Rz][P] (2-29)

The [P] and [P] matrices are often termed column vectors since they contain the
components of vectors P and P’. [Rz] is a transformation matrix; it transforms the P
vector into the P’ vector, in this case by rotation through the angle Rz. These vectors are
shown in Figure 2-15 where P defines the location of the unrotated point P1 (black) and
the rotated point P’ (red) at P3. You can rewrite [Rz] as

[RZ]ZE((;?) C(LZ))} (2-30)

1) C(22
C(1,1)=cos(Rz) (2-31)
C(1,2)=—sin(Rz) (2-32)
C(2,1)=sin(Rz) (2-33)
C(2,2)=cos(Rz) (2-34)
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The definitions in Equations 2-31 through 2-34 will be used in the Python programs
that follow. They represent a rotation in the x,y plane in the clockwise direction and use a
negative value of Rz to rotate in the counterclockwise direction. Note that [Rz] is purely a
function of the angle of rotation, Rz

To convert xp” and yp' to xg and yg, you simply add xc to xp” and yc to yp’, as in

xg =xc+xp' (2-35)
yg=yc+yp (2-36)
In matrix form,
{xg} _ {m} . {C?S(RZ) —Si”(RZ)}FP} (2-37)
yg| |yc| |sin(Rz) cos(Rz) || yp

which can be abbreviated as

[Pg]=[C]+[Re][P] (2-38)
global  center local

or in vector form, as shown in Figure 2-15,

Pg=C+P' (2-39)
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p
-
P1
" -4
0 20 20 &0 80 100 120 140

Figure 2-15. Rotation of a point P1 from Rz=0" (black) to Rz=30’ (green), 60 (red),
and 90’ (grey). Vectors drawn from xg=0, yg=0 to Point 3 at Rz=60" illustrating
Equation 2-38. Plotted by Listing 2-10

As an illustration of the above concepts, Listing 2-10 rotates a point P1 about (xc,yc)
from its original unrotated location at (xp,yp)=(60,0) in 30-degree increments. Results
are shown in Figure 2-15. The coordinates of the center of rotation, (xc,yc), are set in
lines 16 and 17.

Lines 28-37 of Listing 2-10 define a function rotz(xp1,yp1,Rz), which uses the
elements of the transformation matrix [Rz] in Equations 2-31 through 2-34 and the
angle of rotation Rz to calculate and return the transformed (rotated and translated)
coordinates (xg,yg). Lines 35 and 36 in function rotz relate the local coordinates to the
xg,yg system for plotting. Note that rotz rotates each point and simultaneously translates
it by xc and yc in lines 35 and 36. This puts the coordinates in the global system ready
for plotting. You rotate the point four times: Rz=0,30,60,90. The use of the function
rotz(xp,yp,Rz) enables you to avoid coding the transformation for every point.

Lines 39 and 40 set the original coordinates of P to (60,0). It is important to note
that these coordinates are relative to the center of rotation (xc,yc). Line 43 starts the
calculation of the first point. This is at Rz=0. Line 44 converts Rz from degrees to radians.
Later, I will show how to use the radians () function to do this. Line 45 invokes the
function rotz(xp,yp,Rz). xp and yp were set in lines 39 and 40; Rz was set in line 43.
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The function returns the coordinates of the rotated point (xg,yg) in line 37. Since Rz was
zero in this first transformation, they are the same as the coordinates of the unrotated
point P1.

The plotting of point P2 begins in line 50. You set the angle of rotation to 30 degrees
in line 50. The routine is the same as before and P2 is plotted as a grey point. Sections P3
and P4 increase Rz to 60 and 90 degrees, plotting the red and final grey point.

Lines 74, 77, 80, and 83 illustrate the use of Latex in printing text on a plot. Looking at
line 74, for example,

plt.text(28,6,r'$\mathbf{C}$"',color="k")

the text starts at coordinates xg=28, yg=6. As discussed in Chapter 1, the r tells
Python to treat the string as raw. This keeps the backward slashes needed by the Latex
code between the dollar signs; in this case, $\mathbf{C}$. \mathbf{} makes whatever
is between the braces {} bold. In line 80, *{\prime} places a superscript prime next to
P. This won't work if the prefix r is not included.

Listing 2-10. Program 2DROT1

1

AL

3 2DROT1

PREREY

5 import matplotlib.pyplot as plt

6  import numpy as np

7

8 plt.axis([-10,140,90,-10])

9 plt.axis('on")

10 plt.grid(True)

11

12 # axes

13 plt.arrow(0,0,40,0,head length=4,head width=2,color="b")
14 plt.arrow(0,0,0,40,head length=4,head width=2,color="b")
15

16 xc=40

17 yc=10

18

87



CHAPTER 2  GRAPHICS IN TWO DIMENSIONS

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
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plt.plot([xc-30,xc+90],[yc,yc],linewidth=1,color="k") #=-X
plt.plot([xc,xc],[yc-5,yc+75],linewidth=1,color="k") #=-Y

plt.text(30,-2,'Xg",color="b")
plt.text(-7,33,'Yg",color="b")
plt.scatter(xc,yc,s=20,color="k")
plt.text(xc+3,yc-2,"'(xc,yc)")

# define rotation matrix rz

def rotz(xp,yp,rz): #—-xp,yp=un-rotated coordinates relative to xc,yc
cl1i=np.cos(xz)
c12=-np.sin(xz)
c21=np.sin(xz)
c22=np.cos(rz)
xpp=xp*c1i+yp*ci2 #—-xpp,ypp=rotated coordinates relative to xc,yc
ypp=xp*c21+yp*c22
Xg=Xc+xpp #--xg,yg=rotated coordinates relative to xg,yg
yg=yc+ypp
return [xg,ygl

Xp=60 #——— - coordinates of first point P1 relative to xc,yc
yp=0

# P1

xz=0

rz=rz*np.pi/180
[xg,ygl=rotz(xp,yp,rz)
plt.scatter(xg,yg,s=30,color="k" )
plt.text(xg+1,yg+6, 'P1',color="k")

# P2
rz=30

rz=rz*np.pi/180
[xg,ygl=rotz(xp,yp,rz)
plt.scatter(xg,yg,s=30,color="grey")




54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85

plt.text(xg+1,yg+6, 'P2',color="grey")

# P3
rz=60

rz=rz*np.pi/180
[xg,ygl=rotz(xp,yp,r2z)
plt.scatter(xg,yg,s=30,color="r")
plt.text(xg+1,yg+6, 'P3',color="1")
xpp3=xg #—save for later in line 76
ypp3=yg

# P4
1z=90

rz=rz*np.pi/180
[xg,ygl=rotz(xp1,yp1,1z)
plt.scatter(xg,yg,s=30,color="grey")
plt.text(xp2+1,yp2+6,'P4",color="grey")

#

CHAPTER 2

plt.arrow(0,0,xc-4,yc-1,head length=4,head width=

plt.text(28,6,r'$\mathbf{C}$"',color="k")

GRAPHICS IN TWO DIMENSIONS

plot vectors
2,color="k")

plt.arrow(0,0,xpp3-3,ypp3-3,head length=4,head width=2,color="b")
plt.text(45,50,r $\mathbf{Pg}$',color="b")

plt.arrow(xc,yc,xpp3-2-xc,ypp3-5-yc,head_length=4,head_

width=2,color="r")

plt.text(61,40,r"'$\mathbf{P*{\prime}}$',color="r")

plt.arrow(xc,yc,xp-4,yp,head length=4,head width=2,color="k")

plt.text(80,yc-2,1 $\mathbf{P}$",color="

plt.show()

k*)
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Figure 2-16. Rotation of a rectangle around its center from Listing 2-11

Next, you rotate a rectangle around its center, as shown in Figure 2-16. The center
of rotation is point c at (xc,yc). The black rectangle shows the rectangle in its unrotated
orientation. Its corners are numbered 1-4, as shown. The program plots the unrotated
rectangle and then rotates it around point c to the rotated position and displays it in red.

Since the rectangle is defined by its corner points, you can rotate it by rotating
the corners around c. The methodology is detailed in Listing 2-11. First, you plot the
unrotated rectangle (black). The local coordinates of its four corner points are specified
relative to the center of rotation c in lines 42-49. The points are labeled and plotted as
dots in lines 51-58 where the local coordinates are converted to global by adding xc and
yc in lines 55-58.

Next, you connect the corners by lines. Lines 61-68 translate the local corner
coordinates by xc and yc. These points are labeled xg and yg to indicate that they are
relative to the global plotting axes. They are set up as lists in lines 70 and 71, and then
plotted in line 73, which draws lines between sequential xg,yg pairs.

Note the sequence of coordinate pairs in lines 70 and 71. When line 73 is invoked, it
connects (xgl,ygl) to (xg2,yg2), then (xg2,yg2) to (xg3,yg3), and so on. But when it gets to
corner 4, it has to connect corner 4 back to corner 1 in order to close the rectangle; hence
you have (xg4,yg4) connected to (xgl,ygl) at the end of 70 and 71.
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The plotting of the rotated rectangle begins at line 76. Rz is the angle of rotation. It is
set to 45 degrees here and then converted from degrees to radians in line 77 (you could
have used the radians () function to do this).

The function rotz(xp,yp,Rz) is defined in lines 29-38. The elements of the rotation
transformation matrix shown in Equations 2-31 through 2-34 are evaluated in lines
30-33. xp and yp are the coordinates of an unrotated point. xpp and ypp (xp” and yp),
coordinates in the rotated system, are evaluated in lines 34 and 35 using Equations 2-24
and 2-25. xg and yg, the coordinates in the global system after rotation and translation,
are evaluated in lines 36-37 in accordance with Equations 2-35 and 2-36. Note that
these lines rotate the points and simultaneously translate them relative to point c. The
transformed coordinates are returned as a list in line 38.

Lines 80-101 transform each of the corner coordinates one by one by invoking
function rotz(xp,yp,Rz). For example, lines 80-83 transform corner 1 from local,
unrotated coordinates xp1,yp1 to global coordinates xg and yg. The remaining three
points are transformed in the same way. The lines connecting the corners are plotted in
red in lines 104-107 using lists.

Listing 2-11. Program 2DROTRECTANGLE

1

2 2DROTRECTANGLE

3 e

4

5 import matplotlib.pyplot as plt

6  import numpy as np

7

8 plt.axis([-10,150,100,-10])

9 plt.axis('on")

10 plt.grid(True)

11

12 # axes
13 plt.arrow(0,0,40,0,head length=4,head width=2,color="b")
14 plt.arrow(0,0,0,40,head length=4,head width=2,color="b")
15 plt.text(30,-3,'Xg"',color="b")

16 plt.text(-8,34,'Yg',color="b")

17
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
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xc=75 # center of rotation
yc=50

plt

plt.
plt.

.plot([xc-40,xc+60],[yc,yc],linewidth=1,color="grey') #--X
plt.
plt.
plt.

plot([xc,xc],[yc-40,yc+45],linewidth=1,color="grey") #--Y
text(127,48,'X")
text(70,90,'Y")

scatter(xc,yc,s=20,color="k"') #-plot center of rotation
text(70,49,'c")

-define function rotz

def

#

rotz(xp,yp,rz):

c11=np.cos(rz)

c12=-np.sin(rz)

c21=np.sin(rz)

c22=np.cos(rz)

xpp=xp*c11+yp*c12 #——-relative to xc,yc
ypp=xp*c21+yp*c22

xg=xc+xpp #--relative to xg,yg

yg=yc+ypp

return [xg,ygl

#

plot unrotated rectangle

xpl=
Xp2=
Xp3=
Xp4=
ypl=
yp2=
yp3=
ypa=

plt.
plt.

rectangle corner coordinates in X,Y system
-20
+20
+20
-20
-5
-5
+5
+5

text(50,45,'1") # -label

text(97,45,'2")
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
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plt.text(97,57,'3")
plt.text(50,57,'4")
plt.scatter(xpi+xc,ypl+yc,s=10,color="k")
plt.scatter(xp2+xc,yp2+yc,s=10,color="k")
plt.scatter(xp3+xc,yp3+yc,s=10,color="k")
plt.scatter(xp4+xc,yp4+yc,s=10,color="k")

# plot unrotated rectangle
-corner coordinates in Xg,Yg system

Xgl=xc+xpl #
ygl=yc+ypl
Xg2=XC+Xp2
yg2=yc+yp2
Xg3=XC+Xp3
yg3=yc+yp3
Xg4=XC+Xp4
yga=yc+yp4

xg=[xg1,xg2,xg3,xg4,xg1]
yg=[yg1,yg2,yg3,yg4,ygl]

pLt.plot((xg), (vg),color="k")

# rotate rectangle corner coordinates
rz=45
rz=rz*np.pi/180

# point 1
Xp=xp1

yp=yp1

[xg,ygl=rotz(xp,yp,12)

[xgl,yg1]=[xg,yg]

# point 2
Xp=xp2
yp=yp2
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88 [xg,ygl=rotz(xp,yp,rz)
89 [xg2,yg2]=[xg,yg]

90

91 # point 3
92 xp=xp3

93 yp=yp3

94 [xg,ygl=rotz(xp,yp,rz)
95 [xg3,yg3]=[xg,yg]

96

97 # point 4
98 xp=xp4

99 yp=yp4

100 [xg,ygl=rotz(xp,yp,rz)

101 [xg4,ygal=[xg,yg]

102

103 # plot rotated rectangle
104 xg=[xg1,xg2,xg3,xg4,xgl]

105 yg=[yg1,yg2,yg3,yg4,yg1]

106

107 plt.plot(xg,yg,color="r")

108

109 plt.show()

To summarize the procedure, you first construct the object, in this case a simple
rectangle, using points located at coordinates xp,yp in the local x,y system. This is done
by specifying the coordinates relative to the center of rotation at c. Next, you specify Rz,
evaluate the elements of the transformation matrix, transform each coordinate by Rz,
translate the rotated points by xc,yc to get everything into the global xg,yg system, and
then plot. The transformations are carried out by the function rotz(xp,yp,rz), which
simultaneously rotates and translates the coordinates into the xg,yg system for plotting.
In this case, you transformed all the coordinates first and then plotted at the end using
lists. In some programs, you will plot points or lines immediately after transforming.
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Next, you rotate a rectangle about its lower left corner. This is shown in Figure 2-17.

The program that does this (not listed) is similar to Listing 2-11 except the center of

rotation is changed to

xc =55
yc=55
and the corner coordinates are changed to

xpl=0
xp2=+50
xp3=+50

xp4=0
ypl=-10
yp2=-10
yp3=+0

yp4=+0

These dimensions are relative to the center of rotation, (xc,yc).

(2-40)

(2-41)

(2-42)
(2-43)
(2-44)
(2-45)
(2-46)
(2-47)
(2-48)

(2-49)
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Figure 2-17. Rotation of a rectangle about a corner

The center of rotation c does not have to be contiguous with the object; you could
put it anywhere as long as the corner coordinates relative to the center of rotation are
updated.

Figure 2-18 shows an example of constructing and rotating a circular object.
Obviously, without some distinctive feature, you wouldn’t be able to see if a circle had
been rotated so you make the top half of the starting circle green and the bottom half
red. You also add a bar across the diameter with dots at each end. Figure 2-19 shows the
model used by Listing 2-12 to generate Figure 2-18.

As shown in Figures 2-19 and 2-18, and referring to Listing 2-12, you construct the
starting circle with a center at xcc,ycc in program lines 41 and 42. It has a radius r=10,
which is set in line 43. The angle p starts at p1=0 and goes to p2=2z in steps dp in lines
45-47. Note that you are not using the angle definition Rz since p is a local angle about
point xcc,ycc (the center of the circle), not xc,yc, the center of rotation. Points along the
circle’s perimeter are calculated in lines 55 and 56 in local coordinates. When alpha=0,
this produces the starting circle.
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The use of alpha in the function call in line 57 illustrates that you can use any name
for the angle, even though Rz was used in the function definition in line 29. You are
passing a number from a function call to a function. It doesn’t matter what name it has
on either end; the value received by the function will be the same as in the call to that

function.

Xg

(1] S . ]

tarting circle
20 + i
C X

ol A
o] ( |
80 | ¢ _
100 L— . i " L

0 20 40 60 80 100 120 140

Figure 2-18. Circles rotated about point c from Listing 2-12
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Figure 2-19. Model used by Listing 2-12

When alpha>0, the other four circles are drawn. The alpha loop starting at line
53 moves the circle’s center (xcc,ycc) clockwise around the center of rotation in steps
dalpha, which is set in line 51. The local coordinates are transformed in line 57 by
invoking rotz. Alpha’s inclusion in the rotz function call has the effect of rotating the
circle about its own center (xcc,ycc). Lines 58-61 determine if each circumferential point
lies between p=0 and p=z. If so, the point is plotted as red, otherwise as green. Thus,
the circle’s top half is red, its bottom half is green. Lines 62-70 plot the diametrical bars
and points.

An important feature of this approach is that not only is the circle’s center rotated
around point c in steps dalpha, but each circle itself is rotated about its own center, as
can be seen from the reorientation of the red and green sectors and the diametrical bars
in the rotated circles. In the next program, you will rotate each circle’s center around
point ¢ while keeping each circle unrotated about its own center.

Why am I using circles in this demonstration? Primarily to illustrate how to construct
circular shapes at any location relative to a center of rotation and rotate them. I am also
illustrating the importance of being aware of the location of the center of rotation; it isn’t
necessarily the same as the center of the circle.
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In this case, you are rotating in the plane of the circle, which admittedly isn’t very
illuminating. But later, these concepts will become useful when I show how to rotate
objects, such as a circle, in three dimensions. In the case of a circle, when rotated out
of its plane, it produces an oval, which is essential in portraying circular and spherical
objects such as cylinders and spheres in three dimensions. Simply rotate a circle out of
plane about a coordinate direction and you get an oval.

Listing 2-12. Program 2DROTCIRCLE1

1

2 2DROTCIRCLE1

3 e

4

5 import matplotlib.pyplot as plt

6  import numpy as np

7

8 plt.axis([-10,150,100,-10])

9 plt.axis('on")

10 plt.grid(True)

11

12 # axes
13 plt.arrow(0,0,40,0,head length=4,head width=2,color="b")

14 plt.arrow(0,0,0,40,head length=4,head width=2,color="b")

15 plt.text(30,-3,'Xg",color="b")

16 plt.text(-8,34,'Yg',color="b")

17

18 xc=80 # center of rotation

19 yc=30

20 plt.plot([xc-50,xc+60],[yc,yc],linewidth=1,color="grey") #--X
21 plt.plot([xc,xc],[yc-35,yc+60],linewidth=1,color="grey") #--Y
22 plt.text(xc+50,yc-2,'X")

23 plt.text(xc-5,yc+55,'Y")

24

25 plt.scatter(xc,yc,s=20,color="k"') #-plot center of rotation
26 plt.text(xc-5,yc-3,'c")

27
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28 # define rotation matrix Rz
29 def rotz(xp,yp,rz):

30 c11=np.cos(rz)

31 c12=-np.sin(rz)

32 c21=np.sin(rz)

33 c22=np.cos(rz)

34 xpp=xp*c11+yp*c12 #--rotated coordinates relative to xc,yc
35 ypp=xp*c21+yp*c22

36 xg=xc+xpp #--rotated coordinates relative to xg,yg

37 yg=yc+ypp

38 return [xg,ygl

39

40 # plot circles
41 xcc=25 #-xcc,ycc=center of starting circle in local X,Y system
42 ycc=0

43 1=10 #-radius

44

45 p1=0 #—-p1,p2=angles around circle center
46 p2=2*np.pi

47 dp=(p2-p1)/100

48

49 alpha1l=0 #--angles around xc,yc

50 alpha2=2*np.pi

51 dalpha=(alpha2-alpha1)/5

52
53 for alpha in np.arange(alphai,alpha2,dalpha):
54 for p in np.arange(p1,p2,dp):
55 xp=xcc+r*np.cos(p) #—xp,yp=coordinates relative to local
X,Y system
56 yp=ycc+r*np.sin(p)
57 [xg,ygl=rotz(xp,yp,alpha)
58 if p < np.pi:
59 plt.scatter(xg,yg,s=1,color="r"') #—plot lower half red
60 else:
61 plt.scatter(xg,yg,s=1,color="g") #—plot upper
half green

100



CHAPTER 2 GRAPHICS IN TWO DIMENSIONS

62 xpl=xcc+r #—plot diameter bars and bar end points
63 yp1=0

64 [xgl,ygl]=rotz(xp1,ypl,alpha)

65 Xp2=XCC-T

66 yp2=0

67 [xg2,yg2]=rotz(xp2,yp2,alpha)

68 plt.plot([xg1,xg2],[ygl,yg2],color="b")

69 plt.scatter(xg1l,ygl,s=10,color="b")

70 plt.scatter(xg2,yg2,s=10,color="b")

71

72 plt.text(xc+31,yc-13, 'starting circle')

73 plt.arrow(xc+31,yc-13,-3,2,head length=2,head width=1)
74

75 plt.show()

As shown in Figure 2-20, Listing 2-13 rotates the starting circle through increments
of angle dalpha while keeping the orientation of each circle unchanged. The program is
similar to the preceding one, with the exception that only the local center of each circle
is rotated about point ¢ while the circumferential points, as defined by the starting circle,
remain unrotated. The program should be self-explanatory.

Note the difference between Listings 2-12 and 2-13. In Listing 2-12, the rotation
takes place in lines 53-70. At each angle alpha, the coordinates of each point around the
circle’s circumference are determined in lines 55 and 56. These are then transformed
in line 57 using the function rotz(xp,yp,alpha). That is, each point around the
circumference is rotated by the angle alpha. This has the effect of rotating the entire
circle, as shown in Figure 2-18. In Listing 2-13, however, the plotting is done in lines
41-68. Here only the circle’s center is rotated in lines 50 and 51. In line 55, rotz(xp, yp,0)
uses the angle p=0 in its argument. This has the effect of not rotating the circle itself, only
its center, as shown in Figure 2-20.
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Figure 2-20. Circles with centers rotated about point c from Listing 2-13

Which method of rotation should you use: that shown in Figure 2-18 or 2-20? It
depends on your application. In one, you may want the entire object, including the
points that comprise it, to rotate about a center whereas in another you may want only
the center of the object to rotate while the object retains its original orientation. See
Figure 2-21.
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Figure 2-21. Model used by Listing 2-13

Listing 2-13. Program 2DROTCIRCLE2

OW 0N O U1 B W N B

L e N =)
~ oou A W N P O

2DROTCIRCLE2

import matplotlib.pyplot as plt
import numpy as np

plt.axis([-10,150,100,-10])
plt.axis('on")

plt.grid(True)

# (shorten)

axes

plt.arrow(0,0,40,0,head length=4,head width=2,color="b")
plt.arrow(0,0,0,40,head length=4,head width=2,color="b")

plt.text(30,-3,'Xg",color="b")
plt.text(-8,34,'Yg",color="b")
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18 xc=80 # center of rotation

19 yc=30

20 plt.plot([xc-50,xc+60],[yc,yc],linewidth=1,color="grey") #--X
21 plt.plot([xc,xc],[yc-35,yc+60],linewidth=1,color="grey") #--Y
22 plt.text(xc+50,yc-2,'X")

23 plt.text(xc-5,yc+55,'Y")

24

25 plt.scatter(xc,yc,s=20,color="k"') #-plot center of rotation
26 plt.text(xc-5,yc-3,'c")

27

28 # define rotation matrix Rz
29 def rotz(xp,yp,rz):

30 c11=np.cos(rz)

31 c12=-np.sin(rz)

32 c21=np.sin(rz)

33 c22=np.cos(rz)

34 xpp=xp*c11+yp*c12 #--relative to xc,yc

35 ypp=xp*c21+yp*c22

36 xg=xc+xpp #—-relative to xg,yg

37 yg=yc+ypp

38 return [xg,yg]

39

40 # shorten plot circles
41 p1=0

42 p2=2*np.pi

43 dp=(p2-p1)/100

44

45 alphai=0

46 alpha2=2*np.pi

47 dalpha=(alpha2-alpha1)/5

48

49 for alpha in np.arange(alphal,alpha2,dalpha):
50 xcc=25%np.cos(alpha)

51 ycc=25%np.sin(alpha)

52 for p in np.arange(p1,p2,dp):
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53 xp=xcc+r*np.cos(p)

54 yp=ycc+r*np.sin(p)

55 [xg,ygl=rotz(xp,yp,0)

56 if p < np.pi:

57 plt.scatter(xg,yg,s=1,color="1")
58 else:

59 plt.scatter(xg,yg,s=1,color="g")
60 Xpl=XCC+Y

61 ypl=ycc+0

62 [xg1,ygl]=rotz(xp1,yp1,0)

63 Xp2=XCC-T

64 yp2=ycc+0

65 [xg2,yg2]=rotz(xp2,yp2,0)

66 plt.plot([xg1,xg2],[ygl,yg2],color="b")
67 plt.scatter(xg1,ygl,s=10,color="b")
68 plt.scatter(xg2,yg2,s=10,color="b")
69

70 plt.text(xc+34,yc-10, 'starting circle')

71 plt.arrow(xc+34,yc-10,-2,2,head length=1,head width=1)
72

73 plt.show()

Summary

In this chapter, you saw how to use dots and lines to construct shapes in two dimensions.
You learned the concept of relative coordinates, specifically the local system, which is
used to construct an image with coordinate values relative to a center, which in the case
of rotation may be used as the center of rotation, and the global system which is used for
plotting. You saw how local coordinates must be transformed into the global system for
plotting, the origin of the global system being defined through the plt.axes() function.
You saw how to construct lines from dots; arrange colored dots in artistic patterns; and
draw arcs, discs, circles, and ellipses using dots and line segments. Then you learned
about the concepts of translation (easy) and rotation (not so easy). You applied all this
to points, rectangles, and circles. In the next chapter, you will extend these ideas to three
dimensions.
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Graphics in Three
Dimensions

In this chapter, you will learn how to create, translate, and rotate three-dimensional
objects in a three-dimensional space. You will also learn how to project and display
them on the two-dimensional surface of your computer screen. In general, movement
of an object implies both translation and rotation. I discussed this in two dimensions in
the previous chapter. You saw that translation in two dimensions is trivial. Just add or
subtract a quantity from the x coordinates to translate in the x direction, similarly for the
y direction. In three dimensions, it is still trivial, although you are able now to translate
in the third dimension, the z direction, simply by adding or subtracting an amount to

an object’s z coordinates. Rotation is another matter, however. The analysis follows the
method you used in two dimensions but is complicated by the fact that you now are able
to rotate an object around three coordinate directions. In this chapter, I will not discuss
3D translation any further but will concentrate instead on 3D rotation.

The Three-Dimensional Coordinate System

In the previous discussion of two-dimensional rotation, you rotated two-dimensional
objects in the two-dimensional x,y plane. You now extend those concepts to three
dimensions by introducing a third axis, the z axis, as shown in Figure 3-1. Notice that the
z axis points into the screen, not out. This is not an arbitrary choice. We are following
the right-hand rule convention where the direction of positive z is found by rotating the
x axis toward the y axis through the smaller angle between them. The positive z axis

will then point in the direction that would be followed by a right-handed screw when
turned in this fashion. In this case, the screw would progress into the screen; that is then
the direction of the positive z axis. We could construct an entire mathematical theory
based on a left-handed system but the convention used most everywhere is that of a
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CHAPTER 3  GRAPHICS IN THREE DIMENSIONS

right-handed system. Some books and papers label the coordinate axes as x1,x2,x3.
Following the right-hand rule, the direction of x3 would be found by rotating x1 into x2,
as described above. In this work, we will stay with the x,y,z notation for the directions.

0.0) X

o l /

Figure 3-1. Three-dimensional coordinate axes with point P at coordinates (x,y,z)

It should be apparent now why I used the nomenclature Rz in the previous
discussion of two-dimensional rotation; it refers to rotation about the z axis. This appears
as a clockwise rotation in the xy plane when x goes to the right and y goes down. If x went
to the right and y were to go up, z would point out of the screen and a positive rotation
about the z axis would appear to go counterclockwise.

Following the methods used in this analysis of two-dimensional rotation, in the
remainder of this chapter I will discuss separate rotations around the %, y, and z axes and
then combined rotations around all three axes. Incidentally, when I say, “rotation around
the x axis,” for example, I am implying that this is equivalent to “rotation around the x
direction” and similarly for the y and z directions. While rotation around an imaginary
axis that is parallel to the x axis is not precisely the same as rotation around the x axis, the
difference is only a matter of translation, as you will see. I will use both terms “about the
x axis” and “about the x direction” interchangeably except when confusion may result.

Figure 3-2 shows the right-hand xyz system. Imagine you're standing at the origin,
looking out in the direction of the x axis. If you were to turn a right-handed screw
clockwise, it would progress in the direction of the positive x axis. The double-headed
arrow is the conventional way of indicating the direction of a right hand rotation, Rx;
similarly for Ry and Rz.
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Why have I chosen to orient the coordinate system as shown in Figure 3-2? Standard
matplotlib uses a different orientation as shown, for example, in https://matplotlin.
org/mpl_toolkits/mplot3d/tutorial.html#scatter-plots.

7

A X
v,

Rz

Rx

Figure 3-2. Three-dimensional coordinate axes showing right-hand rotation
around each coordinate direction

As explained, the orientation in Figure 3-2 is somewhat more intuitive. The object
being constructed is inside a space defined by the x, y, and z axes. In this situation, the
observer is outside the space looking in. The object may be translated and rotated at will to
give any view desired. You can look straight in at an object or view it from above or below,
as shown in the images of Saturn in Chapter 10. The matplotlib orientation, on the other
hand, is the one commonly used for data plotting and is the one you'll use for that purpose
in Chapter 9; look at Figures 9-1 through 9-5. If you prefer the standard matplotlib
system, it is easy to change to that orientation; just rotate the axes to any orientation you
want, as is done in Chapter 9 where, to get z pointing up, you rotate around the global x
direction by -100 degrees (tilts z slightly forward), the global y axis by -135 degrees, and the
global z direction by +8 degrees (see lines 191-193 in Listing 9-1). You can fine-tune the
orientation by small rotations about the global axes. After you complete this chapter, you
should find it easy to shade the background planes, as shown in matplotlib, if you want.
You can orient the axes any way you want as long as they follow the right-hand rule.
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Projections onto the Coordinate Planes

How do we display a three-dimensional object on a two-dimensional computer
monitor? We do so by projecting the object onto either of the three two-dimensional
coordinate planes (x,y; x,z; and y,z) and then plotting either of those images on the
monitor. Figure 3-3 show a three-dimensional line (black) running from A to B. Looking
down from above the plotting space onto the x,z plane, you see it as the red line, which
is the black line’s projection onto the x,z plane. Similarly, the green line shows its
projection onto the y,z plane; the blue line is its projection onto the x,y plane. I will use
only one of these projections for visualization, normally the x,y projection.

Z

(zA,xA) (zB,xB)
P ————

A (xA,yA,zA)

——» B (xB,yB,zB)

(xB,yB)

Figure 3-3. Projection of a three-dimensional line (black) onto the three
coordinate planes: red is the x,z projection, green is the y,z projection, and blue is
the x,y projection

The x,y projection is obtained simply by plotting a point’s x and y coordinates in
the x,y plane; for a line, you plot a line between those coordinates, which are line’s
endpoints. In the case of the black line, which runs from spatial coordinates (xA,yA,zA)
to (xB,yB,zB), you plot a line between xA,yA and xB,yB:

plt.plot([xA,xB],[yA,yB],color="b")

noting that z=0 in the x,y plane.
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This gives you the blue line, which is the projection onto the x,y plane as shown in
Figure 3-4. If you want to obtain the top view, you plot the black line’s z,x coordinates. If
plotting with your normal coordinate axes with x running from left to right and y running
down on the left, the y axis replaces the z axis. This is equivalent to a -90 degree rotation
about the x axis. You then plot between the line’s z and x coordinates of

plt.plot([zA,zB],[xA,xB],color="1")

to get the red line. To get the green y,z projection, you plot the z and y coordinates
using the command

plt.plot([zA,zB],[yA,yB],color="g")

(xA,yA)

'\

(xB,yB)

Y
v

Figure 3-4. Projection of a three-dimensional line onto the x,y plane

In this case, you must reorient the screen coordinate axes such that +z runs from left
to right across the top of the screen with the y axis running down the right side. This will
give a z,y view from outside of the x,y,z coordinate system.

Note that in the case of a projection onto the x,y plane, you do not use the object’s
z coordinates. But you still need them in order to carry out rotations. Similarly for the
other projections, one coordinate will not be needed for the projection but will be
needed for rotations so it must be included in the analysis.

To simplify everything, you will use the x,y projection in most of the work that
follows. As you will see, rotating an object around the three coordinate directions
and projecting the object’s (x,y) coordinates onto the x,y plane will produce a three-
dimensional view.

The projections of three-dimensional objects onto two-dimensional coordinate
planes are called isometric projections. They are commonly used in engineering and
drafting. These images do not appear as they would to the human eye or as they would in

111



CHAPTER 3  GRAPHICS IN THREE DIMENSIONS

a photograph because of the absence of what artists call foreshortening, more commonly
known as perspective. As an example of foreshortening (or perspective), if you look
down a line of telephone poles that are running off into the distance alongside railroad
tracks, the pole closest to you would look taller than those further away and the rails
would appear to merge as they near the horizon. What causes this? It happens simply
because there is more area for the eye to cover in the far distance than close up. In the
case of telephone poles, it’s because there is more vertical space in the distance so the
poles, which are all of the same height, occupy a smaller percentage of it; for the railroad
tracks, it’s the expanding horizontal space that makes the space between tracks appear
to vanish to zero. See Figure 3-5. Isometric projections do not take foreshortening into
account, but they will in Chapter 4 when I discuss perspective transformations.

-

Isometric Perspective

Figure 3-5. Isomelric vs. perspective views

While you have seen how to project a simple three-dimensional line and its
end points onto the three coordinate planes, you could have worked with a more
complicated object consisting of many points and lines. As you have seen, even a circle
can be constructed from just points (dots) or lines with any degree of refinement desired
and projected onto the coordinate planes.

While a simple example, the three-dimensional line illustrates the method you
will use in the following work: define a shape within the three-dimensional x,y,z
space in terms of points and lines having coordinates (x,y,z); operate on them by
rotating and translating; project them onto the x,y plane; and then plot them using
their x and y coordinates. Thus you are able to project a 3D object onto your computer
monitor’s screen.

To rotate a point in three dimensions implies rotating it around the x, y, and z
directions. You saw how to carry out two-dimensional rotation around the z direction,
Rz, in the previous chapter. Here, you will derive transformations in three dimensions for

rotation around the y, X, and z directions.
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Rotation Around the y Direction

Figure 3-6 shows the unit vector geometry for rotation around the y direction, Ry. This is
the view that would be seen by looking down onto the top of the x,y,z system. The y axis
runs into the plane of the paper.

Figure 3-6. Unit vectors for rotation about the y direction. This is a view looking
down on the plotting space. The y axis runs into the plane of the paper

Following the method used in Chapter 2, a point whose position is initially defined
by the vector P is rotated to P'. Vectors defining the location of P and P’ in the x,y,z

P - )

(unrotated) and x)y,z’ (rotated) systems are

P:xpi+ypi’+zpf( (3-1)
P’=xp’i+yp’i+zp'f( (3-2)
P’ :xp§’+ypi’+zpf(’ (3-3)

where i, j, and k are unit vectors in the x, y, and z directions and {’, j', and k' are
unit vectors in the X, y, and 7' directions. From Figure 3-6, you can see that

i':cos(Ry)iJr(O)i—sin(Ry)lA( (3-4)
i'=(0)i+(1)j+(0)k (3-5)
lA(':sin(Ry)i+(0)i+cos(Ry)lA( (3-6)
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Plugging them into Equation 3-3 yields

P'= xp[cos(Ry)i - sin(Ry)lA(J +ypj+ zp[sin(Ry)i + cos(Ry)lAc} (3-7)
Separating into i, j, and k components, you get
P':[xpcos(Ry) +zp sin(Ry)]i + @i + [—xp sin(Ry)+ zpcos(Ry)]lA( (3-8)
e w AY
xp'=xpcos(Ry)+zpsin(Ry) (3-9)
y'=yp (3-10)
(3-11)

zp'=—xpsin(Ry)+zp cos(Ry)

Equations 3-9 through 3-11 give the coordinates of the rotated point in the local x,y,z
system. Of course, yp’=yp in Equation 3-10 since the y coordinate doesn’t change with

rotation about the y axis.
Equations 3-9, 3-10, and 3-11 can be expressed in matrix form, as shown in

Equation 3-12:
xp cos(Ry) 0 sin(Ry) | xp

w|=| 0 10 | (3-12)
zp | |-sin(Ry) 0 cos(Ry)| zp
This can be abbreviated as
[P']=[Ry]P] (3-13)
[Ry], the transformation matrix for y axis rotation, is
Cy(L1) Cy(1,2) Cy(1,3)
(3-14)

[Ry]=| Cy(21) Cy(22) Cy(23)
Cy(31) Cy(32) Cy(3,3)
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Cy(L,1)=cos(Ry) (3-15)
Cy(1,2)=0 (3-16)
Cy(1,3)=sin(Ry) (3-17)
Cy(21)=0 (3-18)
Cy(2,2)=1 (3-19)
Cy(2,3)=0 (3-20)
Cy(3,1)=-sin(Ry) (3-21)
Cy(3,2)=0 (3-22)
Cy(3,3)=cos(Ry) (3-23)

These elements will be used in the programs that follow.

Rotation Around the x Direction

Figure 3-7 shows the unit vector geometry for rotation around the x direction.

Figure 3-7. Unit vectors for rotation around the x direction. The x axis runs into
the plane of the paper

115



CHAPTER3  GRAPHICS IN THREE DIMENSIONS
You see that
i =(1)i+(0)j+(0)k

A

j= (0)i+cos(Rx)i +sin(Rx)k

A

K =(0)i—sin(Rx)i +cos(Rx)k

Following the methods in the previous section,
P'= xpi’ +ypi'+zpf(’

A

P’ =xpi +yp[cos(Rx)i + sin(Rx)k} + zp[—sin(Rx)i + cos(Rx)lA(}

= icBi+[ypcos(Rx)—zpsin(Rx)]j+|:ypsin(Rx)+zpcos(Rx)]k

P w zp’

In matrix form, it’s
xp | |1 0 0 xp
yp |=|0 cos(Rx) -sin(Rx)| yp
zp | |0 sin(Rx) cos(Rx) | zp
which can be abbreviated as

[P']=[Rx][P]
This leads to the transformation matrix for x direction rotation of

1 0 0
[Rx]=|0 cos(Rx) —sin(Rx)
0 sin(Rx) cos(Rx)

Cx(1L1) Cx(1,2) Cx(1,3)
[Rx]=|Cx(21) Cx(2,2) Cx(2;3)
Cx(31) Cx(3,2) Cx(33)
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Cx(11)=1 (3-34)
Cx(1,2)=0 (3-35)
Cx(1,3)=0 (3-36)
Cx(2,1)=0 (3-37)
Cx(2,2)=cos(Rx) (3-38)
Cx(2,3)=—sin(Rx) (3-39)
Cx(3,1)=0 (3-40)
Cx(3,2)=sin(Rx) (3-41)
Cx(3,3)=cos(Rx) (3-42)

Rotation Around the z Direction

In Chapter 2, you derived the transformation matrix for two-dimensional rotation
around the z direction. You will now do it in three dimensions. Repeating the two-
dimensional Rz matrix (Equation 3-43) from Chapter 2:

{xp} _ {COS(RZ) —Si"(RZ)}{xP} (3-43)

yp | | sin(Rz) cos(Rz) || yp

In three dimensions, you have the following:

xp | |cos(Rz) -sin(Rz) Ol xp
yp |=| sin(Rz) cos(Rz) O] yp (3-44)
zp 0 0 1| zp
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Cz(11) Cz(12) Cz(L3)
[Rz]=| Cz(2,1) Cz(2,2) Cz(2,3) (3-45)

Cz(31) Cz(3,2) Cz(3.3)
Cz(1,1)=cos(Rz) (3-46)
Cz(1,2)=-sin(Rz) (3-47)
Cz(1,3)=0 (3-48)
Cz(2,1)=sin(Rz) (3-49)
Cz(2,2)=cos(Rz) (3-50)
Cz(2,3)=0 (3-51)
Cz(31)=0 (3-52)
Cz(3,2)=0 (3-53)
Cz(3,3)=1 (3-54)

You can extend the two-dimensional matrix equation to three dimensions in
Equation 3-44 by simply observing that in the first row xp” does not depend on zp, hence
C(1,3)=0; in the second row, yp” also does not depend on zp, hence ¢(2,3)=0; in the third
row, zp” does not depend on either xp” or yp’, hence C(3,1) and C(3,2) both equal 0.
C(3,3)=1 since the z coordinate remains unchanged after rotation about the z axis.
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The three transformations are summarized as follows:

1 0 0
0 cos(Rx) -sin(Rx)

" cos(Ry) 0 sin(Ry)
0

—

sin(Rz) cos(Rz) 0
0 0 1

Separate Rotations Around the
Coordinate Directions

Figure 3-8 shows separate rotations of a box (a) about the x, y, and z directions. The

10 sin(Rx) cos(Rx) |

| —sin(Ry) 0 cos(Ry)]

[cos(Rz) —sin(Rz) 0]

GRAPHICS IN THREE DIMENSIONS

(3-55)

(3-56)

(3-57)

figure was created using Listing 3-1. The rotations are separate, not sequential. That is,
box (b) is box (a) rotated by Rx; box (c) is (a) rotated by Ry; and box (d) is (a) rotated by
Rz. The rotations are not additive in this case, which means Ry is not added to the results

of Rx and Rz is not added to the results of Rx and Ry; they are each separate rotations of

the original box (a). The rotations take place around the center of the box.
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0 T T T T T Y T
X
20 .
40 . < . , ]
— ;
60 - “a) (b) == o
R=0 Rx=45 Ry=30 Rz=30
solY )
100 1 1 L L 1 1 i
0 20 40 60 80 100 120 140

Figure 3-8. Output from Listing 3-1. Projection (a) of an unrotated box on the x,y
plane, (b) rotated around the x direction by Rx=45°, (c) around the y direction by
Ry=30°, and (d) around the z direction by Rz=30°. Double-headed red arrows show
the direction of rotation using the right-hand rule convention. Heavy lines indicate
the top and bottom. The boxes are rotated about their center, which is indicated by
a black dot

Listing 3-1 makes use of functions and lists. Without them, the program would more
than double in size. Using them reduces the program size considerably. It could be
shortened even further by the use of arrays but the savings would be minimal and tends
to obscure the methodology.

Figure 3-9 shows the corner numbering scheme used by Listing 3-1. The corner
numbers are in blue. They are Python list numberings and start at 0. Normally we
number the corners from 1 to 8. However, in Python, the first element in a list is always 0.
We don’t have to number the first corner as 0; we could use any number but numbering
it 0 serves to remind us that the first element in a list is the Oth element. In the case of an
eight-cornered box, the last corner, the eighth, is element 7 in the list. For example, the x
coordinate of the first point is x[0], the second is x[1], and so on. It’s like numbering the
first rung of a ladder as the zeroth rung. Confusing? Yes. Blame it on the C programming
language, from which this trap is a carryover. Perhaps the best way to avoid problems
is to get in the habit of numbering things from 0 instead of 1, which is what I have done
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in Figure 3-9. I could have used a different arrangement of numbering in Figure 3-9 but
starting with the top left corner and proceeding clockwise seems logical (e.g., I could
have started the numbering at the top right-front corner instead of the top upper-left). It
doesn’t matter as long as the chosen scheme is consistent with the program.

X
0 1 13 1] L} L] L] 1}
A x=20
Ay=20 0 12 3.4 5:6 7
7§ x = {-10,-10, 10, -10,-10, -10, 10, 10] ...
y = [-10, -10, -10, -10; 10, 10, 10, 10]
z={-3, 3. 3, -3; -3, 3. 3, -3)
20} x=35 4
yc=35 1 )
Y i
=0 0 3
30 U
L
40 - -
4 2 2
7
m 1 i 1 1 L 1 L
0 10 20 30 40 50 60 70

Figure 3-9. Numbering scheme for the box’s corners in Listing 3-1. Lists at the
upper right contain the coordinate values. They are the same as the lists in

Listing 3-1, lines 14, 15, and 16. The center coordinates xc,yc,zc are not the same as
used in Listing 3-1. The z axis is not shown

The lists shown in the figure define the corner coordinates. There are eight elements
in each list because there are eight corners in the box. Corner 2, which is the third
element in the list, has coordinates x[3]=10, y[3]=-10, z[3]=3. These are local coordinates;
in other words, they are relative to the box’s center, which is the center of rotation.

Listing 3-1 starts off by defining lists for [x], [y], and [z] in lines 14-16. These lines
hold the coordinates of the box’s corners relative to its center. [xg], [yg], and [zg] in lines
18-20 will hold the global plotting coordinates after rotation transformations have been
done. Space is reserved for eight in each list since there are eight corners in the box.

Next are the definitions of the rotation functions rotx, roty, and rotz. They rotate a
point’s coordinates xp,yp,zp around the x, y, and z directions, respectively. Each function
returns a new set of coordinates, xg, yg, and zg, which are the global coordinates of the
rotated point. These coordinates will be used for plotting.
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Looking at the definition of rotx, which begins in line 23, when invoked to do a
transformation about the x direction rotx receives the box’s center coordinates xc,yc,zc,
which, in this case is the center of rotation, plus the point’s unrotated coordinates
xp,yp,zp and the angle of rotation about the x direction, Rx. The list a=[xp, yp, zp] in line
24 contains the coordinates of the unrotated point. This is, in effect, a vector that points
from the center of rotation to point xp,yp,zp. In line 25, b=[1,0,0] is a list of the first row
of the Rx transformation matrix shown in Equation 3-55. Line 26, xpp=np.inner(a,b),
forms the dot or scalar product of these lists. There is also an np.dot(a,b) function that
could be used. For simple non-complex vectors, np.inner(a,b) and np.dot(a,b) give
the same results. But for higher dimensional arrays, the results may differ.

To illustrate the calculation of ypp for rotation around the x direction, you have seen
that vector p,, is related to p, by

xpp 1 0 0 xp
ypp |=|0 cos(Rx) —sin(Rx) | yp (3-58)
zpp | |0 sin(Rx) cos(Rx) | zp

where ypp (i.e., yp’) is the y coordinate of the rotated point. Line 27 in the program
is the second row of Equation 3-57. The scalar product of a and b is formed in line 28
producing ypp (yp’). That s,

a=[xp,yp,zp] (3-59)
b=[0,cos(Rx),-sin(Rx) ] (3-60)
ypp =np.inner(a,b) (3-61)

= xp(0)+yp(cos(Rx))+zp(-sin(Rx))  (3-62)
= ypcos(Rx)—zpsin(Rx) (3-63)

which is line 28. Lines 29 and 30 repeat the process using the third row of
Equation 3-57, producing zpp (zp’). Line 31 adds xc,yc,zc, the coordinates of the
box’s center, to xpp,ypp,zpp, thus translating the rotated points relative to the origin
of the global coordinate system producing [xg,yg,zg| which are the global plotting
coordinates. roty and rotz follow the same structure using the rows of [Ry] and [Rz]
in their b lists.
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Next is the function plotbox in line 56. This plots the box using its global corner
coordinates xg, yg, and zg. The loop starting in line 57 plots the top by connecting
the first three edges (0-1, 1-2, 2-3) with lines. Line 60 closes the top by plotting a line
between corners 3 and 0. This has not been included in the loop, which was set up to
plot one corner with the next. The problem comes when you try to connect corner 3 with
0; the algorithm in the loop doesn’t work. It could be modified to handle it, but it’s easier
to just add line 60 rather than complicate the loop. The rest of plotbox up to line 68
completes the box. Line 70 plots a dot at its center.

Line 72 starts function plotboxx. This transforms the corner coordinates to get them
ready for plotting by plotbox. The loop from line 73 to 74 rotates all eight corners around
the x direction by invoking rotx. Line 76 invokes function plotbox, which does the
plotting. plotboxy and plotboxz do the same for rotations about the y and z directions.

Up to this point, you have been defining functions. You use functions in this program
since many of the operations are repetitive. If you tried to write this program using single
statements, it would be at least twice as long.

Control of the program lies between lines 91 and 116. Lines 91-95 plot the first box (a).
Since this first box (a) is unrotated, you specify Rx=0 in line 91. You use function
plotboxx with the Rx=0 parameter to do the plotting. You could use Ry=0 with plotboxy
or Rz=0 with plotboxz. It doesn’t matter since the angle of rotation is 0. Lines 92-94
specify the box’s center coordinates. Line 95 invokes plotboxx. The result is shown in
Figure 3-8 as (a). Lines 98-116 produce the rotated boxes (b), (c), and (d).

To summarize the procedure using box (b) as an example, the angle of rotation is
set in line 98; the box’s center coordinates in lines 99-101. Then, in line 102, function
plotboxx is invoked. The center coordinates and the angle Rx are passed as arguments.
plotboxx, which begins in line 72, rotates the eight corners by invoking rotx. plotboxx
doesn’t use xc, yc, and zc, but it passes them onto rotx, which needs them. rotx rotates
and translates the coordinates producing xg,yg,zg. Line 76 invokes function plotbox,
which does the plotting.

In lines 91, 98, 105, and 112 you use the function radians (), which was imported
from the math library in line 7. (Note that you could have used numpy for this). It converts
an argument in degrees to one in radians, which are required by sin() and cos(). In
earlier programs, you did the conversion with np.pi/180.
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Listing 3-1. Program 4BOXES

1

2 4BOXES

3 e

4

5  import numpy as np

6  import matplotlib.pyplot as plt

7  from math import sin, cos, radiams #-or use numpy

8

9 plt.axis([0,150,100,0])

10 plt.axis('on")

11 plt.grid(True)

12

13 # lists

14  x=[-10,-10,10,10,-10,-10,10,10] #-un-rotated corner coordinates

15  y=[-10,-10,-10,-10,10,10,10,10]| #-relative to box's center

16 z=[ -3, 3, 3, -3,-3, 3, 3,-3]

17

18  xg=[0,1,2,3,4,5,6,7] #-define global coordinates

19 yg=[0,1,2,3,4,5,6,7]

20 zg=[0,1,2,3,4,5,6,7]

21

22 # function definitions

23 def rotx(xc,yc,zc,xp,yp,zp,Rx):

24 a=[xp,yp,zp]

25 b=[1,0,0] #————-[cx11,cx12,cx13]

26 xpp=np.inner(a,b) #--scalar product of
a,b=xp*cx11+yp*cx12+ zp*cx13

27 b=[0,cos(Rx),-sin(Rx)] # [cx21,cx22,cx23]

28 ypp=np.inner(a,b)

29 b=[0,sin(Rx),cos(Rx)] # [cx31,cx32,cx33]

30 zpp=np.innex(a,b)

31 [xg,y8>28]=[xpp+xc,ypp+yc,zpp+zc]

32 return[xg,yg,zg]

33
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34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58

59
60

61
62
63

64
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def roty(xc,yc,zc,xp,yp,zp,Ry):
a=[xp,yp,2p]
b=[cos(Ry),0,sin(Ry)] #
xpp=np.inner(a, b)
b=[0,1,0] # [cx21,cx22,cx23]
ypp=np.inner(a,b) # -scalar product of a,b
b=[-sin(Ry),0,cos(Ry)] # [cx31,cx32,cx33]
zpp=np.inner(a,b)
[xg,y8,28]=[xpp+xc,ypp+yc,zpp+zc]
return[xg,yg,zg]

-[cx11,cx12,cx13]

def rotz(xc,yc,zc,xp,yp,zp,Rz):
a=[xp,yp,zp]

b=[cos(Rz),-sin(Rz),0] # -[ex11,cx12,cx13]
xpp=np.inner(a, b)

b=[sin(Rz),cos(Rz),0] # [cx21,cx22,cx23]
ypp=np.inner(a,b)

b=[0,0,1] # [cx31,cx32,cx33]

zpp=np.inner(a,b) #
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

scalar product of a,b

def plotbox(xg,yg,zg): # -plots the box using its rotated coordinates

Xg,Y8,28
for i in (0,1,2): # -plot top
plt.plot([xg[i],xg[i+1]],[yg[i],yg[i+1]],linewidth=3,
color="k")

plt.plot([xg[3],xg[0]],[yg[3],yg[0]],linewidth=3, color="k")

#-close top

for i in (4,5,6): # -plot bottom
plt.plot([xg[i],xg[i+1]],[yg[i],yg[i+1]],linewidth=3,
color="k")

125



CHAPTER 3  GRAPHICS IN THREE DIMENSIONS

65 plt.plot([xg[7],xg[4]],[yg[7],yg[4]],linewidth=3,coloxr="k")
#-close bottom

66

67 for i in (0,1,2,3): # plot sides

68 plt.plot([xg[i],xg[i-4]],[yg[i],yg[i-4]],linewidth=1,

color="k")

69

70 plt.scatter(xc,yc,s=5) #-plot a dot at the center

71

72 def plotboxx(xc,yc,zc,Rx):

73 for i in (0,1,2,3,4,5,6,7): #————-rotate eight corners

74 [xg[i],ygl[i],zg[i]]=rotx(xc,yc,z¢c,x[i],y[i],2z[i],Rx)

75

76 plotbox(xg,yg,zg)

77

78  def plotboxy(xc,yc,zc,Ry):

79 for i in (0,1,2,3,4,5,6,7): #————rotate eight corners

80 [xg[i],ygli],zg[i]]=roty(xc,yc, zc,x[i],y[1],2[1],Ry)

81

82 plotbox(xg,yg,zg)

83

84  def plotboxz(xc,yc,zc,Rz):

85 for i in (0,1,2,3,4,5,6,7): #————rotate eight corners

86 [xg[i],ygli],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[1i],Rz)

87

88 plotbox(xg,yg,zg)

89

90 # R=0 box(a)

91  Rx=radians(0)

92 xc=25 # box (a) center coordinates

93  yc=40

94 zc=20

95 plotboxx(xc,yc,zc,Rx) #-since Rx=0 we could use plotboxy or plotboxz
96

97 # Rx box(b)

98 Rx=radians(45)
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99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132

Xc=55
yc=40
zc=20
plotboxx(xc,yc,zc,Rx)

#

Ry=radians(30)

xc=85

yc=40

zc=20
plotboxy(xc,yc,zc,Ry)

H

Rz=radians(30)

Xxc=115

yc=40

zc=20
plotboxz(xc,yc,zc,Rz)

#

Ry box (c)

Rz box (d)

notes

plt.text(23,63,'(a)")
plt.text(53,63,"(b)")
plt.text(83,63,"(c)")
plt.text(112,63,"'(d)")
plt.text(21,73,'R=0")

plt.text(47,73, 'Rx=45°")
plt.text(77,73, 'Ry=30°")

plt.text(107,73, 'Rz=30°")
plt.arrow(42,40,25,0,head width=2,head length=3,color="r")

#-red arrows
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plt.arrow(42,40,28,0,head width=2,head length=3,color="r")
plt.arrow(85,25,0,27,head width=2,head length=2,color="r")
plt.arrow(85,25,0,29,head width=2,head length=2,color="r")
plt.plot([8,130],[8,8],color="k") #-axes

plt.plot([8,8],[8,85],color="k")
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133 plt.text(120,6,'X")

134  plt.text(3,80,'Y")

135 plt.scatter(115,40,s=30,color="r") #—-red dot center of box (d)
136

137  plt.show()

Sequential Rotations Around
the Coordinate Directions

In Listing 3-1, you operated on a box’s initial corner coordinates defined by the lists in
lines 14, 15, and 16. The program produced separate rotations around the x, y, and z
coordinate directions. In this section, you begin with the same set of corner coordinates
but you rotate sequentially. That is, after a rotation Rx about the x direction (b), rotation
Ry is added to the results of Rx (c). Rz is then added to the results of Ry and Rx. The
rotations are thus not independent as before but are additive. You do this by replacing
the x,y, and z definitions in lines 14, 15, and 16 with a new set of coordinates following
each rotation. That is, the box’s corner coordinates are updated after each rotation so
that the next rotation starts with the updated coordinates. This is accomplished by
simply modifying functions plotboxx, plotboxy, and plotboxz between lines 72-88 in
Listing 3-1. In Listing 3-2, lines 74b, 80b, and 86b are added. They do the updating by
replacing the initial corner coordinates x,y,z with the transformed ones xg,yg,zg after
each rotation. The code replaces lines 72-88 in Listing 3-1.
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0 1]
X
20 | ]
R m—
40 - et ! ]
—— 1;
60 - (a) (b) () )
R=0 Rx=45 Ry=30 Rz=30
golY |
100 | | ] | | | |
0 20 40 60 80 100 120 140

Figure 3-10. Sequential rotations of a box. Box (a) is rotated by Rx=30°to (b),
then by an additional rotation of Ry=30°to (c), and then by an additional rotation
of Rz=15°to (d). x and y axes show direction only. Coordinate values are indicated
by the grid

Listing 3-2. Program 4BOXESUPDATE

71

72 def plotboxx(xc,yc,zc,Rx):

73 for i in (0,1,2,3,4,5,6,7): #————-rotate eight corners
74 [xglil,yglil,zg[i]]=rotx(xc,yc,zc,x[1],y[1],2[1],Rx)
74b [x[11,y[4],2[1]1=[xg[i]-xc,ygl ] -yc,2gli]-zc]

75

76 plotbox(xg,yg,zg)

77

78  def plotboxy(xc,yc,zc,Ry):

79 for i in (0,1,2,3,4,5,6,7): #————rotate eight corners
80 [xgli],ygli],zg[i]]=roty(xc,yc,zc,x[1],y[1i],2z[1],Ry)
30b [x[i],y[i],2[3]]=[xg[i] -xc,ygl]-yc,zg[4]-zc]

81

82 plotbox(xg,yg,zg)
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83

84  def plotboxz(xc,yc,zc,Rz):

85 for i in (0,1,2,3,4,5,6,7): #—————-rotate eight corners
86 [xglil,yglil,zg[i]]=rotz(xc,yc,zc,x[1],y[i],2[i],Rz)
86b [x[i],y[i],2[1]1]=[xgl1]-xc,yglil-yc,2gli]-zc]

87

88 plotbox(xg,yg,zg)

89

The transformation parameters are set in lines 91-116 by the values of rotations Rx,
Ry, and Rz and the box center coordinates xc, yc, zc.

The sequence of rotations in this program is hard-wired to produce Figure 3-10 with
(a) first, followed by (b), (c), and (d). In a general program, the sequence and values of
rotations and center coordinates could be set to anything suitable by moving sections
of code around or by entering the sequences through the keyboard. You will do both
shortly. But first, you will do sequential rotations of a circle. See Figure 3-11.

0 ] 1] 1 L L] L L}
X
20 | .
| (a) (b) © ) [
R=0 Rx=45 Ry=70 Rz=90
golY 4
100 ] 1 1 1 1 1 1
0 20 e 60 80 100 120 140

Figure 3-11. Sequential rotations of a circle created by Listing 3-3. Circle (a) is
rotated by Rx=45°to (b), then by an additional rotation of Ry=70°to (c), and then
by an additional rotation of Rz=90° to (d). Red indicates the upper half of circle.

x and y axes show direction only, not coordinate values, which are indicated by
the grid
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Listing 3-3 is similar to the preceding modified version of Listings 3-1 and 3-2 where
you did sequential rotations of a box. In that program, the box had eight corners, which
had to be transformed and updated with every rotation. Here you have a circle, which
has many more points, to transform and update.

In lines 23-38, you fill lists between lines 33 and 38 with starting values of local and
global coordinates of points around the circumference of the circle. They are spaced
dphi=5° apart as shown in line 25. The circle’s radius is 10 as shown in line 27. The empty
lists were previously defined in lines 14-20. As the loop starting at line 29 advances

around the circle with angle phi, lines 30 to 32 calculate the local coordinates of each
point. Lines 33-38 add the coordinates to the list using the append() function, which
adds elements to a list. For example, with each cycle through the loop, line 33 appends
(adds) the local value of xp at the current angle phi to the x list. Since you are just filling
the list at this point, you can use xp,yp,zp to also fill the xg, yg, and zg lists in lines 36-38.
Note that zp=0 (program line 32) in this initial definition of the circle. That is, the circle
starts off flat in the x,y plane.

Lines 41-72 define the transformation functions as before. The circle plotting
function extends from line 75-86. Lines are used to plot the circle. The plotting loop runs
from 78-82. Line 86 plots a dot at the center.

Rather than counting the number of points around the circle, you use the
range(len(x)) function to give the number of elements in the lists. You can use the
length of x as a measure since all lists have the same length. Lines 79-82 plot the top half
red and the bottom half green. Lines 83-84 update the last xg any yg global coordinates
to use when plotting the lines as before. You don’t need to include zg here since you
use only xg and yg when plotting. Lines 89-108 transform coordinates as was done in
Listings 3-1 and 3-2. The difference is here you have to deal with lists len(x) long whereas
previously you had only eight corners.

Listing 3-3. Program SEQUENTIALCIRCLES

SEQUENTIALCIRCLES

import numpy as np
import matplotlib.pyplot as plt

N oo W N R

from math import sin, cos, radians
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41

132

plt.axis([0,150,100,0])
plt.axis('on")
plt.grid(True)

# define lists

xg=[]
yg=[]
zg=[]

# fill lists with starting coordinates
phil=radians(0)

phi2=radians(360)

dphi=radians(5) #-circumferential points spaced 5 degrees

r=10 #-circle's radius

for phi in np.arange(phii,phi2+dphi,dphi): # -establish coordinates

of circumferential points
xp=r*cos(phi)
yp=r*sin(phi)

zp=0

x.append(xp) #-fill lists

y.append(yp)

z.append(zp)

xg.append(xp)

yg.append(yp)

zg.append(zp)

# define rotation functions
def rotx(xc,yc,zc,xp,yp,zp,Rx):



42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
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a=[xp,yp,zp]

b=[1,0,0] #———-[cx11,cx12,cx13]
xpp=np.inner(a,b) #--scalar product of
a,b=xp*cx11+yp*cx12+ zp*cx13

b=[0,cos(Rx),-sin(Rx)] # [cx21,cx22,cx23]
ypp=np.inner(a,b)
b=[0,sin(Rx),cos(Rx)] # [cx31,cx32,cx33]

zpp=np.inner(a,b)
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

def roty(xc,yc,zc,xp,yp,zp,Ry):

a=[xp,yp,zp]

b=[cos(Ry),0,sin(Ry)] # -[cx11,cx12,cx13]
xpp=np.inner(a, b)
b=[0,1,0] # [cx21,cx22,cx23]

ypp=np.inner(a,b) #
b=[-sin(Ry),0,cos(Ry)] #
zpp=np.inner(a,b)
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

-scalar product of a,b
[cx31,cx32,cx33]

def rotz(xc,yc,zc,xp,yp,zp,Rz):

a=[xp,yp,zp]

b=[cos(Rz),-sin(Rz),0] # -[ex11,cx12,cx13]
xpp=np.inner(a, b)

b=[sin(Rz),cos(Rz),0] # [cx21,cx22,cx23]
ypp=np.inner(a,b)

b=[0,0,1] # [cx31,cx32,cx33]

zpp=np.inner(a,b) #
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

scalar product of a,b

define circle plotting function

def plotcircle(xg,yg,zg):
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76
77
78
79
80

81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

134

lastxg=xg[o]
lastyg=yg[o]
for i in range(len(x)): #—1len(x)=length of all lists
if i < len(x)/2: #—half green
plt.plot([lastxg,xg[i]],[1lastyg,yg[i]],
linewidth=1,color="g")
else:
plt.plot([lastxg,xg[i]],[1lastyg,yg[i]],
linewidth=1,coloxr="r")
lastxg=xg[i]
lastyg=yg[i]

plt.scatter(xc,yc,s=5) #-plot a dot at the center

# transform coordinates and plot

def plotcirclex(xc,yc,zc,Rx): # -transform & plot Rx circle
for i in range(len(x)): #-for i in range(len(x)): ok too
[xglil,ygli],zg[i]]=rotx(xc,yc,zc,x[1],y[i],z[1],Rx)

[x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zC]

plotcircle(xg,yg,zg) # plot
def plotcircley(xc,yc,zc,Ry):
for i in range(len(x)): #
[xg[il,ygli],zg[i]]=roty(xc,yc,zc,x[i],y[1],2[1],Ry)
[x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

-transform & plot Ry circle

plotcircle(xg,yg,zg)

def plotcirclez(xc,yc,zc,Rz):

for i in range(len(x)): #
[xg[il,ygli],zg[i]]=rotz(xc,yc,zc,x[1],y[i],z[1],Rz)
[x[il,y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

-transform & plot Rz circle

plotcircle(xg,yg,zg)
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109
110 # plot circles
111  Rx=radians(0)

112 xc=25 #

circle (a) center coordinates

113 yc=40

114 zc=20

115  plotcirclex(xc,yc,zc,Rx) #-since R=0 we could use plotcircley or
plotcirclez

116

117 # Rx circle (b)

118  Rx=radians(45)

119 Xc=55

120 yc=40

121 zc=20

122 plotcirclex(xc,yc,zc,Rx)

123

124 # Ry circle (c)

125 Ry=radians(70)

126 xc=85

127  yc=40

128  zc=20

129  plotcircley(xc,yc,zc,Ry)

130

131 # Rz circle (d)

132 Rz=radians(90)

133 Xc=115

134 yc=40

135  zc=20

136  plotcirclez(xc,yc,zc,Rz)

137

138 # notes

139  plt.text(23,63,'(a)")
140  plt.text(53,63,'(b)")
141 plt.text(83,63,'(c)")
142 plt.text(112,63,'(d)")
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143
144
145
146
147

148
149
150
151
152
153
154
155
156
157

plt
plt
plt
plt
plt
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.text(21,73,'R=0")

.text(47,73, 'Rx=45°")
.text (77,73, 'Ry=70°")
.text(107,73, 'Rz=90°")

.arrow(42,40,25,0,head width=2,head length=3,color="

#-red arrows

plt
plt

plt.

.arrow(42,40,28,0,head width=2,head length=3,color="
.arrow(85,25,0,27,head width=2,head length=2,color="
plt.
plt.
plt.
plt.
plt.
plt.

arrow(85,25,0,29,head width=2,head length=2,color=
plot([8,130],[8,8],color="k") #-axes
plot([8,8],[8,85],color="k")

text(120,6, 'X")

text(3,80,'Y")

scatter(115,40,s=30,color="r") #—-red dot center

show()

Matrix Concatenation

Comparing Figure 3-12 with 3-11, you can see that, although Rx, Ry, and Rz have the

of box (d)

same values in both figures, the resulting orientations of the circle in (c) and (d) are

different. This is because the order of the rotation in Figure 3-11 is Rx,Ry,Rz while in

Figure 3-12 it is Rx,Rz,Ry. Clearly the order of rotations is important.
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Figure 3-12. Circle (a) is rotated sequentially by Rx=45°to (b), then by an
additional rotation of Rz=90° to (c), followed by an additional rotation of Ry=70
to (d). Red indicates the upper half of circle. x and y axes show direction only, not
coordinate values, which are indicated by the grid

You can demonstrate this yourself. Take a book and place it flat on the edge of your
desk front side up, top facing to the right. Imagine the desk’s edge is the x direction going
from left to right. Next, rotate the book 90 degrees around the x direction, followed by 90
degrees around the z direction. This is RzRx. The book will be upside down with the front
facing you. Then lay the book flat again as before, reverse the order by rotating around
the z direction first followed by the x direction. This is RxRz. As you can see, you get a
different final orientation of the book in the two cases. The RzZRx and RxRz mayj, at first,
look like the x and z should be reversed. But the form used here is correct; in the case of
RzRx, this indicates Rx operates on the image first, followed by Rz, the reverse for RxRz.

While you have carried out sequential rotations by ordering them and updating
rotated coordinates in the program’s code, mathematically it amounts to a multiplication
of matrices. For example, the following equation produces a rotation Rx of vector [P]
followed by a rotation Rz. The two rotations produce the vector [P’]. Note, in Equation
(3-64), Rx operates on P first.

[P']=[Rz][Rx][P] (3-64)
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[Rx] operates on the vector [P], [Rz] then operates on the result of [Rx|[P]. To rotate
by Rz followed by Rx,

[P']=[Rx][Rz] P] (3-65)

In general,

[Rx][Rz]#[Rz] Rx] (3-66)

I used the rotating book example before. I can also show this by a simple example
using two-dimensional matrices. Consider two matrices, A and B, where

a b
[A]:L d} (3-67)
e/
[B]—L, h} (3-68)
AB:{a b}{e f}:[ae%bg af+bh} (3-69)
c d|lg h ce+dg cf +dh
BA:{e f}{a b}z{aeJrcf be+df} (3-70)
g hic d| |ag+ch bg+dh
- AB+BA (3-71)

For only three rotations around three different coordinate directions, there are six

combinations of possible transformation sequences:

RxRyRz (3-72)
RxRzRy (3-73)
RyRxRz (3-74)
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RyRzRx (3-75)
RzRxRy (3-76)
RzRyRx (3-77)

Each of these combinations involves three separate rotations. You could multiply the
three transformation matrices shown in Equations 3-55, 3-56, and 3-57 to get a single
transformation matrix for each of these combinations. You could then write a program
that would execute each of these combinations: select one combination, input the three
angles, and then get the final rotation. But what if you wanted more than three rotations,
such as RyRzRxRyRz? That would require a lot of matrix multiplying! Clearly it’s much
easier to incorporate the sequencing by coding it into the Python program and updating
coordinates after each transformation, as you have learned how to do here.

To produce Figure 3-12, lines 110-136 of Listing 3-3 were replaced with the code in
Listing 3-4.

Listing 3-4. Program SEQUENTIALCIRCLESUPDATE

109
110 # plot circles
111  Rx=radians(0)

112 xc=25 #

circle (a) center coordinates

113 yc=40

114 zc=20

115  plotcirclex(xc,yc,zc,Rx) #-since R=0 we could use plotcircley or
plotcirclez

116

117 # Rx circle (b)

118  Rx=radians(45)

119  xc=55

120 yc=40

121 zc=20

122 plotcirclex(xc,yc,zc,Rx)

123

124 # Rz circle (d)
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125 Rz=radians(90)

126 xc=85

127  yc=40

128  zc=20

129  plotcirclez(xc,yc,zc,Rz)
130

131 # Ry circle (c)
132  Ry=radians(70)

133  xc=115

134  yc=40

135 zc=20

136  plotcircley(xc,yc,zc,Ry)
137

Here you have performed the operation RxRzRy, reversing the order of the last two
transformations. Circle (a) is plotted as before with Rx=0 in line 111. Also as before,
circle (b) is plotted next with Rx=45 degrees in line 118. The difference is in lines 124-136
where the rotations Ry and Rz are reversed and Rz is plotted before Ry. The angles
have the same values as before. Rearranging the order of plotting is easy; just cut and
paste sections of the code. But be sure to update the center coordinates xc, yc, and
zc. You could make the program a lot more user-friendly by introducing the input()
function, which will give you the ability to input the order of transformations through
the keyboard. You could then enter the rotations Rx, Ry, or Rz and the amount and the
center coordinates in any order. You will do that next.

Keyboard Data Entry with Functional
Program Structure

Asyou saw in the discussion of matrix concatenation, rearranging the order of rotations
in a program can be a useful option. However, as you will see in this section, entering data
via the keyboard is much more satisfactory. You will also use a functional programming
structure where a few lines of code control various predefined functions that carry out the
various operations. This will give you great flexibility in controlling the program.

Listing 3-5 produced the results shown in Figures 3-13 through 3-16. The first figure
shows a circle rotated around the x direction by 0°; the second around the y direction by
60°; the third around the x direction by 45°; and the fourth around the z direction by 90°.
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All rotations are added to the previous orientation of the circle. The axis of rotation and
the amount were entered through the keyboard. The sequence of rotation directions did
not matter, nor did the number of rotations.

Referring to Listing 3-5, lines 111-113 specify the circle’s center coordinates. All
circles have the same center coordinates. The while True: statementin line 115 keeps
the data entry loop running so you can do an unlimited number of sequential rotations.
Line 116 asks you to specify the axis of rotation in the Spyder output pane. Enterx, y,
or z in lowercase letters. To exit the loop, press the Enter key. (Important: If you are
using the Spyder console, be sure to click the mouse with the cursor in the output pane
before entering anything. If you forget and leave it in the program pane, you are liable
to get an unwanted x, y, or zimbedded somewhere in the program. If this happens, go
to the top of the screen and open a new console. This essentially starts the program
over.). If you enter x (lowercase), line 118 asks for the angle of rotation Rx. Enter it as a
positive or negative angle in degrees. The input() function returns a string. The float
command converts it to a float. Line 119 then invokes function plotcirclex(), which
plots the rotated circle. Ry and Rz rotations are carried out in a similar way. Note there is
no restriction on the sequence or the number of rotations. Line 126 checks to see if you
entered a blank for axis, in which case line 127 exits the program. All circles are rotated
around the same center, xc,yc,zc. If you want to be able to move the centers of each
circle, just add input() lines for the center coordinates between lines 115 and 116.

Lines 89-108 rotate and update the coordinates of the circle’s circumferential
points as was done in Listing 3-3. In function plotcircle(), lines 71-86 do the plotting.
Each time this function is invoked, the axes and grid are replotted. Line 86 shows the
latest plot.

This program is an important illustration of program control. Just the few lines
between 115 and 127 control the entire operation of the program and give great flexibility
in controlling the sequence of operations and the data used. In other programming
languages, such as Basic and Fortran, this is referred to as fop-down programming.

In those languages subroutines, which are the equivalents of Python functions, are
generally placed at the bottom, while the controlling code is put at the top. In Python,
you normally put the functions at the top with the control at the bottom, a style called
bottom-up programming. Whether control is at the top or the bottom, this program
structure is called functional programming since the controlling code uses functions to
carry out the various operations. Since controlling data is input through the keyboard, it
offers considerable flexibility.
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Figure 3-14. The previous circle is rotated around the x axis by 60°
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Figure 3-15. The previous circle is rotated around the y axis by 45°

100 Il L 1 1 L 1 Il
0 20 40 €0 80 100 120 140

Figure 3-16. The previous circle is rotated around the z axis by 90°
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Listing 3-5. Program KEYBOARDDATAENTRY

1

2 KEYBOARDDATAENTRY

3 we

4

5 import numpy as np

6  import matplotlib.pyplot as plt

7  from math import sin, cos, radians

8

9 # define lists

10 x=[]

11 y=[]

12 z=[]

13

14 xg=[]

15 yg=[]

16 zg=[]

17

18 # fill lists with starting coordinates

19  phil=radians(0)

20 phi2=radians(360)

21  dphi=radians(5) #-circumferential points spaced 5 degrees

22

23 radius=15 #-circle's radius

24

25 for phi in np.arange(phi1,phi2+dphi,dphi): #-establish coordinates of
circumferential points

26 xp=radius*cos(phi)

27 yp=radius*sin(phi)

28 zp=0

29 x.append(xp) #-fill lists

30 y-append(yp)

31 z.append(zp)

32 xg.append(xp)

33 yg-append(yp)
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35
36
37
38
39
40

41
42
43
44
45
46
47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
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zg.append(zp)

# define rotation functions
def rotx(xc,yc,zc,xp,yp,zp,Rx):
a=[xp,yp,zp]
b=[1,0,0] #——— - [cx11,cx12,cx13]
xpp=np.inner(a,b) #--scalar product of
a,b=xp*cx11+yp*cx12+ zp*cx13

b=[0,cos(Rx),-sin(Rx)] # [cx21,cx22,cx23]
ypp=np.inner(a,b)
b=[0,sin(Rx),cos(Rx)] # [cx31,cx32,cx33]

zpp=np.inner(a,b)
[xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]
return[xg,yg,zg]

def roty(xc,yc,zc,xp,yp,zp,Ry):
a=[xp,yp,zp]
b=[cos(Ry),0,sin(Ry)] #
xpp=np.inner(a, b)
b=[0,1,0] # [cx21,cx22,cx23]
ypp=np.inner(a,b) # -scalar product of a,b
b=[-sin(Ry),0,cos(Ry)] # [cx31,cx32,cx33]
zpp=np.inner(a,b)
[xg,y8,28]=[xpp+xc,ypp+yc,zpp+zc]
return[xg,yg,zg]

-[cx11,cx12,cx13]

def rotz(xc,yc,zc,xp,yp,zp,Rz):
a=[xp,yp,zp]

b=[cos(Rz),-sin(Rz),0] # -[ex11,cx12,cx13]
xpp=np.inner(a, b)

b=[sin(Rz),cos(Rz),0] # [cx21,cx22,cx23]
ypp=np.inner(a,b)

b=[0,0,1] # [cx31,cx32,cx33]

zpp=np.inner(a,b) #
[xg,yg,2g]=[xpp+xc,ypp+yc, zpp+zc]

scalar product of a,b
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68
69
70
71
72
73
74
75
76

77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
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return[xg,yg,zg]

# define circle plotting function
def plotcircle(xg,yg,zg):
lastxg=xg[0]
lastyg=yg[0]
for i in range(len(x)): #-for i in range(len(x)): ok too
if i < len(x)/2: #—half green
plt.plot([lastxg,xg[i]],[lastyg,yg[i]],
linewidth=1 ,color='g")
else:
plt.plot([lastxg,xg[i]],[lastyg,yg[i]],
linewidth=1 ,color="r")
lastxg=xg[i]
lastyg=yg[i]

plt.scatter(xc,yc,s=5,color="k") #-plot a dot at the center
plt.axis([0,150,100,0]) #-replot axes and grid
plt.axis('on")

plt.grid(True)

plt.show() #-plot latest rotation

# transform coordinates and plot
def plotcirclex(xc,yc,zc,Rx): #——-transform and plot Rx circle
for i in range(len(x)):
[xgli],ygli],zg[i]]=Totx(xc,yc,zc,x[i],y[i],z[i],Rx)
[x[i],y[i],z[1]]=[xg[1]-xc,yg[i]-yc,zg[i]-zc]

plotcircle(xg,yg,zg) #——plot

def plotcircley(xc,yc,zc,Ry):
for i in range(len(x)): #——transform and plot Ry circle
[xglil,ygli],zg[i]]=roty(xc,yc,zc,x[1],y[i],z[1],Ry)
[x[i],y[i],z[1]]=[xg[1]-xc,yg[i]-yc,zg[i]-zc]
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plotcircle(xg,yg,zg)

def plotcirclez(xc,yc,zc,Rz):

for i in range(len(x)): #
[xg[il,yglil,zg[i]]=rotz(xc,yc,zc,x[1],y[i],z[1i],Rz)
[x[il,y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

-transform and plot Rz circle

plotcircle(xg,yg,zg)

# plot circles
xc=75 #-center coordinates

yc=50

zc=50

while True:
axis=input('x, y or z?: ') #-input axis of rotation (lower case)
if axis == 'x': #-if x axis
Rx=radians(float(input('Rx degrees?: ')))
plotcirclex(xc,yc,zc,Rx) #-call function plotcirclex
if axis == 'y':
Ry=radians(float(input('Ry degrees?: ')))
plotcircley(xc,yc,zc,Ry)
if axis == 'z":
Rz=radians(float(input('Rz degrees?: ')))
plotcirclez(xc,yc,zc,Rz)
if axis == ":
break
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Summary

In this chapter, you learned how to construct three-dimensional coordinate axes and
three-dimensional shapes and how to rotate and translate them around the three
coordinate directions. This involved derivation of rotation transformations around the
three coordinate directions. You saw the difference between rotating an object once from
its original orientation and rotating it in sequential steps where each subsequent rotation
uses the object’s coordinates from the prior rotation as the starting point. You explored
the idea that the sequence of rotations is important; Rx,Ry,Rz does not produce the same
results as Rx,Rz,Ry. This was shown by a book analogy and by matrix concatenation.

You learned how to use the append() function to add elements to a list. You also learned
how to use the range(len(x)) function, which returns the number of elements in a lists.
Finally, you developed a program where sequential rotations could be entered through
the keyboard as opposed to specifying them in the program. All of this work involved the
use of lists.
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Perspective

I mentioned the difference between isometric and perspective views in the previous
chapter. Now you will develop a transformation that will automatically produce a
perspective view. It operates much like a camera where rays are traced from the various
points that comprise an object onto a plane that you might think of as a film plane.
Figure 4-1 shows the geometry. The object is a three-dimensional box in the x,y,z space.
The x,y plane represents the film plane, so-called because it is analogous to the location
of the film in an older camera. There’s also a focal point that is outside the x,y,z space in
front of the x,y plane. Imaginary rays are traced from the box’s corners to the focal point.
By connecting the points where the rays hit the film plane, which is the same as the xy
plane, you can construct a perspective view of the box.

- ga%

Focal point Y Image projected
on the X.Y plane

Figure 4-1. Geometry used to project a perspective image of an object on the
x,y plane

As shown in Figure 4-2, a primitive camera can be constructed by putting a small
hole in an opaque sheet. This is called a pinhole camera. Rays from an object passing
through this hole will produce a photographic-like perspective image on a film plane.
The film captures this image. The perspective transformation you will be producing in
this chapter will operate in a somewhat similar manner, except you will be tracing the
image on your computer screen instead of on a sheet of film.
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Pinhole Computer
Object Object
//_pinhole " ’Ggg',gggef
. — :
[\ .- /™ Image
Film plane \z'
Image Focal point

Figure 4-2. Pinhole camera vs. computer projection geometry

The camera obscura has been used by artists since the time of Vermeer (C 1650). It
consisted of a box large enough for the artist to sit in. Its inner walls were painted black
and care was taken to ensure no light leaked in from the outside. A small hole was drilled
in one wall. This hole faced whatever scene the artist was interested in. Light would
come in from the scene, pass through the hole and be projected onto a canvas or sheet of
paper attached to the opposite wall, creating a perspective view similar to what we see in
Figure 4-1. The image could be easily traced or painted directly on the canvas or paper.
The pinhole didn’t produce a very good image and was eventually replaced by a lens. A
Dutch microbiologist named Antonie van Leeuwenhoek was a contemporary of Vermeer
and lived not too far from him in Delft. He did a lot of experimenting with lenses and
optics and is reported to have built the first microscope to help him with his studies of
microbiology. Some ascribe the first microscope to spectacle maker Zacharias Janssen,
born in 1585. It is suspected Vermeer might have availed himself of Leeuwenhoek’s and
Janssen’s work in optics to produce his beautifully detailed works, which show perfect
perspective.

The geometry of the camera obscura is similar to our computer model except that
the pinhole geometry produces a reversed image. If the focal point is moved far back
in the -z direction, the rays from the object become almost parallel and the perspective
effect is lost; the image becomes flattened. This phenomenon is well known to
photographers when shooting with a long focal length lens. Things get magnified but
flattened. The Austrian painter Gustav Klimt liked to paint scenes of distant objects.

But his scenes appear flattened. He is thought to have painted while looking through a
telescope that probably had a long focal length lens.
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Figures 4-3 and 4-4 show the geometry you will use to construct your transformation.
Figure 4-3 shows a three-dimensional object inside the x,y,z space. The focal point is
outside the space at global coordinates (xfp,yfp,zfp). It can be anywhere in front of (-z
direction) the x,y plane. Different locations will produce different views of the object,
much as a camera will produce different images when photographing an object from

different locations.

0)\ > Object
d;‘ Image
\,f// " Hit point

(xh,yh,zh)

Focal point
Y (xfp, yfp, zfp)

Figure 4-3. Perspective image projection geometry

L
Hit point
(xh.yh,0) Object point
/ (2

'.“-"/4
Focal point :

" - XY plane
(xfpyfpzfp) | Izfpl ——

- lzfpl + z -

Yy

Figure 4-4. Perspective image projection geometry side view

Imaginary rays emanating from the corners of the box pass through the x,y plane,
which you can imagine is your computer screen. Each ray hits the x,y plane at a kit point
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(xh,yh,zh=0) on its way to the focal point of zh=0 since the x,y plane is at z=0. Connecting
the hit points produced by the rays coming from the points comprising the object will
produce a perspective image.

A typical point on the object is located at (x,y,z). Referring to Figures 4-3 and 4-4,
the distance between the point and the focal point is Q. Qh is the distance from the focal
point to the hit point. |zfp|+z is the horizontal distance from the focal point to the object
point. |z| is the horizontal distance from the focal point to the hit point. @ is a unit vector
pointing from the focal point toward the object point. Using this geometry, you can
derive the following relations:

a=x—xfp (4-1)
b=y-yfp (4-2)
c=z+ |zfp| (4-3)

Since, in Equation 4-3, zfp is negative (it lies in front of the x,y plane), you use its
absolute value |zfp| because it adds to z to give the total z-direction distance between the
focal point and the object point. You could, of course, write Equation 4-3 as c=z-zfp, which
is equivalent, but the use of the absolute value |zfp| makes the following analysis more
understandable. Also, it won’t matter if you forget and enter a positive z value for zfp.

O=4d +b" +c (4-4)

ux=alQ (4-5)
uy=b/0 (4-6)
uz=c/Q (4-7)
o d ¢k (15)
o2 (4-9)

z+ |zfp|
xh=uxQh+ xfp (4-10)
yh=uyQh+ yfp (4-11)
zh=0 (4-12)
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You can show zh=0 (i.e., the hit point lies on the x,y plane, as it should) by the

following:

|zh = uzQh ~|zfp| (4-13)
—Son-lz 4-14
QQ |2/p| (4-14)
=(Z+|Zﬁ9l)%—|2ﬁ9| (4-15)

(z+|z]) Oz
= —lz 4-16
0 (o) P (1
=|2fp|~|zp| (4-17)
=0 (4-18)

The negative sign in Equation 4-13 is because |zfp| is always positive while you know
that the focal point is always in the -z position.

Listing 4-1 illustrates the use of the above model. It enables you to construct an
object, rotate it, and then view it in perspective. The object, in this case a house, is
defined in lines 14-29. Lines 14-16 establish corner coordinates x,y,z in local coordinates;
that is, in relation to a point xc,yc,zc, which is set in lines 18-20. This is at the center of the
house and it will be the center of rotation. Lines 22-29 convert x,y,z to global coordinates
xg,yg,zg by adding elements to the empty lists set in lines 22-24. Lines 31-47 plot the
house by connecting the corner points with lines.

Lines 50-63 define a function that rotates the local coordinates about xc,yc,zc,
saving the results as xg,yg,zg. It uses function roty, which is defined in lines 54-63. This
function was used in prior programs. It is the only rotation function in this program,
which means you can only rotate around the y direction. Next is the perspective
transformation perspective(xfp,yfp,zfp); itimplements Equations 4-1 through 4-12,
developed above. The loop beginning in line 67 calculates the coordinates of the hit
point for rays that go to the focal point from each of the object’s corner points. The hit
points, in terms of global coordinates, are saved in lines 79-81.
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Control of the program takes place in lines 83-95. Lines 83-85 define the
location of the focal point; lines 87-89 define the house’s center point. Ry in line
91 specifies the angle of rotation about the y direction. Line 93 then invokes
function plothouse(xc,yc,zc,Ry), which rotates the house. Line 94 invokes
perspective(xfp,yfp,zfp), which performs the perspective transformation. Line 95
plots the house. This could have been incorporated in the function perspective but it
has been placed here to illustrate the sequence of operations.

Listing 4-1. Program PERSPECTIVE

PERSPECTIVE

1
2
3
4
5 import matplotlib.pyplot as plt
6  import numpy as np

7  from math import sin, cos, radians

8

9 plt.axis([0,150,100,0])

10

11 plt.axis('on")

12 plt.grid(True)

13

14

x=[ -20,-20,20,20,-20,-20,20,20,-20,20] #—object local corner coordinates
15 y=[-10,-10,-10,-10,10,10,10,10,-20,-20]

16 z=[5,-5,-5,5,5,-5,-5,5,0,0]

17

18 xc=30 # object center coordinates
19 yc=50

20 zc=10

21

22 xg=[ ] # object global coordinates
23 yg=[ ]

24 zg=[ ]

25
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26 for i in np.arange(len(x)):

27 xg.append(x[i]+xc)
28 yg.append(y[i]+yc)
29 zg.append(z[i]+zc)
30

31 # -plot object

32 def plothouse(xg,yg,zg):

CHAPTER 4  PERSPECTIVE

33 plt.plot([xg[o],xg[3]],[ygl0],yg[3]],color="k")
34 plt.plot([xgl1],xgl[2]],[ygl[1],ygl[2]],color="k")
35 plt.plot([xgl[4],xg[7]1],[ygl4],ygl7]],color="k")
36 plt.plot([xg[5],xg[6]],[yg[5],ygl6]],color="k")
37 plt.plot([xg[8],xg[9]],[yg[8],yg[9]],color="k")
38 plt.plot([xg[4],xg[0]],[yg[4],yg[0]],color="k")
39 plt.plot([xg[5],xg[1]],[yg[5],yg[1]],color="k")
40 plt.plot([xgl[6],xg[2]],[ygl6],yg[2]],color="r")
41 plt.plot([xg[7],xg[31],[ygl7],yg[3]],color="1")
42 plt.plot([xg[o],xg[8]],[ygl0],yg[8]],color="k")
43 plt.plot([xg[1],xg[8]],[ygl1],ygl[8]],color="k")
44 plt.plot([xg[2],xg[9]],[yg[2],yg[9]],color="1")
45 plt.plot([xg[3],xg[9]],[yg[3],yg[9]],color="1")
46 plt.plot([xg[4],xgl5]],[ygl4],ygl[5]],color="k")
47 plt.plot([xg[6],xg[7]],[ygl6],yg[7]],color="1")
48

49 # rotate object about the Y direction
40 def plothousey(xc,yc,zc,Ry):

51 for i in range(len(x)): # rotate 10 corners
52 [xg[i],ygli],zg[i]]=roty(xc,yc,zc,x[1],y[1i],z[i],Ry)
53

54 def roty(xc,yc,zc,x,y,z,Ry):

55 a=[x,y,z]

56 b=[cos(Ry),0,sin(Ry)]

57 xpp=np.inner(a,b)

58 b=[0,1,0]

59 ypp=np.inner(a,b)

60 b=[-sin(Ry),0,cos(Ry)]
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61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
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zpp=np.inner(a,b)
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return [xg,yg,zg]

# perspective transformation
def perspective(xfp,yfp,zfp):
for i in range(len(x)):
a=xg[i]-xfp
b=yg[i]-yfp
c=zg[i]+abs(zfp)
g=np.sqrt(a*a+b*b+c*c)
ux=a/q
uy=b/q
uz=c/q
gh=q*abs(zfp)/(zg[i]+abs(zfp))
xh=ux*gh+xfp
yh=uy*gh+yfp

zh=0

xg[i]=xh

yg[i]=yh

zg[i]=zh
xfp=80 # focal point coordinates
yfp=50
zfp=-100
xc=80 # redefine center coordinates
yc=50
zc=50
Ry=radians(45) # angle of rotation
plothousey(xc,yc,zc,Ry) #—-rotate
perspective(xfp,yfp,zfp) #—-transform
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95 plothouse(xg,yg,zg) #—-rotate
96
97 plt.show()

Figures 4-5 through 4-8 show output from Listing 4-1. Figure 4-5 shows the
house in its unrotated (Ry=0) orientation. The right side is red. The focal point is at
xc=80,yc=50,-100. This is in line with the house’s center but 100 in front of the x,y plane.
Figure 4-6 shows the house rotated 45 degrees around the y direction. The perspective
effect is apparent. Figure 4-7 shows the house with the same settings but with the focal
point moved back from zfp=-100 to zfp=-600. You can see how the image is flattened
and the perspective effect is mostly lost. Figure 4-8 shows the house with some random
settings. By following the procedure in Listing 4-1, you should be able to create a more
elaborate scene quite easily.

Figure 4-5. Perspective image with Ry=0, zfp=-100

Figure 4-6. Perspective image with Ry=45, zfp=-100

Figure 4-7. Perspective image with Ry=45, zfp=-600

Figure 4-8. Perspective image with Ry=-60, zfp=-100, xc=40, yc=70,
xfp=100, zfp=-80
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You will get a more dramatic perspective effect if you put the focal point closer
to the xy plane, say z=-70. The question is, where to place the focal point? If you're
projecting the image onto the x,y plane, clearly it should be in front of that plane (i.e.,
i the -z direction). But what about the x,y coordinates of the focal point? The best
results, most like what would be seen by the human eye, would be to place it at the
same x,y coordinates as the house’s center. Of course, if there are many objects in the
model, such as more houses and trees, it is not obvious where to place the focal point.
All photographers and painters face this dilemma: what gives the most appealing
view? The best results will often be obtained by situating it in front of the x,y plane at
the coordinates that correspond to the approximate center of the model. This is akin
to aiming a camera at the center of a scene to be photographed. Vermeer chose this
structure in many of his paintings. In fact, in some of his canvases art historians have
found a nail hole in the canvas at the vanishing point where all parallel lines such as
room corners and floor tiles converge. The nail hole is in the approximate center of the
scene. It is believed he tied a string to a nail hammered into a wood support behind the
canvas and used it to trace the converging lines, much as you have used lines in your
algorithm. You can see this structure in many of Vermeer’s interior paintings.

Summary

In this chapter, you learned how to construct a perspective view. The geometry is based
on a simple box camera. You had the perspective image projected onto the x, y plane.
You could have used any of the other coordinate planes, for example the x, z plane; the
geometry would be similar. You explored the question of where to place the focal point,
which corresponds to the observation point of a viewer or a camera. The answer is,
unless you are looking for an unusual image, place it at the same, or approximately the
same, X, y coordinates as the center of the model. This was the structure used by Vermeer
in many of his paintings. It draws your eye into the center of the painting.
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CHAPTER 5

Intersections

In this chapter, you will develop algorithms that will tell you where lines and planes
intersect a variety of objects. The techniques you will develop will be useful later when
you remove hidden lines and trace shadows cast by objects. You will also learn how to
show the intersection of lines and planes with a sphere. As you will see, there is no one
magic algorithm that will satisfy all situations; each requires its own methodology. While
you may never need some of these algorithms, such as a line intersecting a circular
sector, the procedures, which rely on vector-based geometry, are interesting and should
give you the tools you will need when you encounter different situations.

Instead of using vectors, many of these solutions could be derived analytically. For
example, the solution for a line intersecting a sphere can be obtained by combining the
equation of a line with that of a sphere. The result is a quadratic equation that, when
solved, yields the entrance and exit points. Such an approach can be fast and simple,
provided you are dealing with objects that can be represented by simple equations.
However, the vector-based procedures, while they may seem more complex, are actually
quite simple and intuitive. They can also be much more versatile and adaptable to
unusual situations. They are the ones you will use here.

Line Intersecting a Rectangular Plane

Figure 5-1 shows a line intersecting a rectangular plane. You will develop an algorithm
and a program to find the point of intersection, called the hit point. Here you are
stipulating that the plane is finite, but it doesn’t have to be. After going through the
analysis, you will see there is nothing here that requires the plane be finite. You also start
off by assuming the plane is rectangular. It doesn’t have to be rectangular but, for now, it
is easier to keep it finite and rectangular.
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CHAPTER 5

INTERSECTIONS

Hit Point”~

5

Figure 5-1. Geometry of a line intersecting a rectangular plane

The plane has corners at 0, 1, 2, and 3. They have local coordinates of (x0,y0,z0) -
(x3,y3,z3) relative to the center of rotation at (xc,yc,zc). The line starts at x[4],y[4],z[4] and
ends at x[5],y[5],z[5]. It intersects the plane at the hit point.

There are three unit vectors at corner 0; i, v, and n . Unit vector v points from
corner 0 to 1; & from 0 to 3. n is normal to the plane. 1 is a unit vector pointing along the
line from 4 to 5. Qs is the distance from 4 to 5. Q ;, is the distance from 4 to the hit point.
Q ,is the perpendicular distance from 4 to the plane. Your quest is to determine the
location of the hit point (xh,yh,zh). Using vector geometry, you can write the following

relations:
Distance 4 — 5:

160

a=x[5]-x[4]
b=y[5]-y[4]
c=z[5]-z[4]

_ 2 2 2
Qs=Va +b’ +c

(5-1)

(5-2)

(5-3)

(5-4)
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Unit vector 4 — 5:

Ix=— (5-5)
Q45
b
ly= (5-6)
Qs
c
lz=— (5-7)
Q45
1="0d +byj+lzk (5-8)
Distance 0 — 3:
a=x[3]-x[0] (5-9)
b=y[3]-y[0] (5-10)
c=z[3]-z[0] (5-11)
Q, =Va’ +b* +c* (5-12)
Unit vector 0 — 3:
a
Ux =— (5-13)
Q03
b
uy=—o (5-14)
Q03
c
uz=— (5-15)
Qys
{1 = wd + uyj + uzk (5-16)
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Distance 0 — 1:

a=x[1]-x[0]
b=y[1]-y[o]

c=z[1]-z[0]

Q, =Va’+b* +c*
Unit vector 0 — 1:

a

Ty

(229

b

vy=—o
QO]

c

0y

vz

vV =vxi +vyj +vzk

Unit vector n :

=>
Il
=>
X
<>

=lux uy uz

vx vy vz

n= f(uy-vz —uzvy)+ j’(uz-vx —uxvz)+k(

J

UX-VY — Uy-UX)

nx ny

n =nxi +nyj + nzk
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(5-17)

(5-18)

(5-19)

(5-20)

(5-21)

(5-22)

(5-23)

(5-24)

(5-25)

(5-26)

(5-27)

(5-28)



nx =uy-vz —uz-vy
ny =Uz-vx —ux-vz
Nz =Ux-vy —uy-vx
Vector 0 — 4:

A

V,, = vxmf + vyo4} +vz,,k
vx,, =x[4]-x[0]
vyo = y[4]-y[0]
vz,, =z[4]-2[0]

Perpendicular distance 4 to plane:

Qn = |‘/O4ﬁ

Hit point:

Q, =Q, cos(p) =vxy,nx +vy,ny +vz,nz

cos(p)= I-n
=lx-nx+lyny+iznz
xh=x[4]+Q,lx
yh=y[4]+Q,ly

zh=z[4]+Q,lz

CHAPTER 5

INTERSECTIONS
(5-29)
(5-30)

(5-31)

(5-32)

(5-33)

(5-34)

(5-35)

(5-36)

(5-37)

(5-38)

(5-39)

(5-40)

(5-41)

(5-42)

(5-43)

Equations 5-41, 5-42, and 5-43 give the coordinates of the hit point relative to point 0.
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You can test to see if the hit point lies within the boundaries of the plane. Figure 5-2
shows the geometry. Vector VOh runs from corner 0 to the hit point h. up and vp are the
projections of VOh on the 03 and 01 directions, respectively. To test for an in-bound or
out-of-bound hit,

ifup <0 orup >Q03 hit is out of bounds
ifvp<0orvp > Q01 hit is out of bounds

With xh, yh, and zh being the coordinates of the hit point h, you can calculate up and
vp as follows:

a=xh—x[0] (5-44)
b=yh-y|[0] (5-45)
c=zh—z[0] (5-46)
VOh = ai + bj + ck (5-47)

Figure 5-2. Out-of-bounds geometry

To find up, you project VOh onto the 03 direction. To do that, you take the dot
product of VOh with t:

up =a-ux +b-uy+cuz (5-48)

To find vp, you take the dot product of VOh with v :
vp=auvx+buvy+cvz (5-49)
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If you regard the line from 4 to 5 as being finite, you can test to see if it is long enough
to reach the plane. From Figure 5-1,

a=xh—-x[4] (5-50)
b=yh-y[4] (5-51)
c=zh—z[4] (5-52)

Q4h=+a®+b*+c* (5-53)

if Q45 < Qh LINE TOO SHORT, NO HIT

All of this has been incorporated in Listing 5-1, which has the same structure as
Listing 3-5 in Chapter 3, although some of the functions and operations have been
altered. As in that program, rotation directions and amounts are entered through the
keyboard. Rotations are additive; for example, if the system is rotated first by Rx=40
degrees, followed by Rx=10, the total angle is 50 degrees. Ry and Rz operate similarly.

Some data is hard-wired in Listing 5-1, such as definitions of the rectangular plane
and the line intersecting it. They are shown in the lists in lines 18-20. There are six
elements in each list numbered [0]-[5]: [0]-[3] are the four corners of the plane while [4]
and [5] are the beginning and end of the line. They are coordinated with the diagrams
in Figures 5-1 and 5-2. To modify the plane and line, just put new numbers in the lists.
For example, item [5] is the end of the line. To drop it down in the +y direction, increase
y[5]. The numbers in the lists are in local coordinates relative to the center of rotation
(xc,yc,zc), which is at the center of the plane. The values are shown in Lines 14-16.

It takes only three points to define a plane. Here you have a four-corner rectangular
plane. If you alter the plane’s corner coordinates, be sure they lie in the same plane.
The easiest way to do so is to start off with a plane that lies in or is parallel to one of the
coordinate planes. It can be rotated out of that coordinate plane later. In line 19, the first
four elements of the y list are all zero. That describes a flat plane parallel to the x,z plane
aty=0. Also, if altering the [x] or [z] lists, be sure the plane remains rectangular since the
calculations of the hit point in this analysis assume that is the case.

165



CHAPTER 5  INTERSECTIONS

Rotation functions rotx, roty, and rotz, which rotate coordinates around the
coordinate directions, are included in lines 28-35. They are the same as used in prior
programs so they have not been listed.

Line 45 plots a dot at the hit point (xhg,yhg) where the line intersects the plane. If
the hit point lies within the plane’s boundaries, the color of the dot is red; if it’s outside,
itis blue. If the line from [4] to [5] is too short and never reaches the plane, the color
is changed to green and a dot is placed at [5], the end of the line. This is illustrated in
Figure 5-5. The calculation of the hit point is carried out by function hitpoint(x,y,z),
which begins in line 53. The program follows the analysis above in Equations 5-1
through 5-49 and should be self-explanatory.

Data input takes place in lines 154-166. This is similar to Listing 3-5. Samples of the
output are shown in Figures 5-3, 5-4, and 5-5. Parameters are included in the captions.

Figure 5-3. Line intersecting the plane defined by a rectangle. The hit point lies
within the plane’s boundaries: y[5]=+5, Rx=45°, Ry=45°, Rz°=20

Figure 5-4. Line intersecting the plane defined by a rectangle. The hit point lies
outside the rectangle’s boundaries: y[5]=-5, Rx=45°, Ry=45°, Rz°=20

166



CHAPTER 5  INTERSECTIONS

Figure 5-5. Example of a line too short, in which case a green dot appears at
coordinate [5]: x[4]=-40, y[4]=-20, z[4]=15, x[5]=-20, y[5]=-10, z[5]=0, Rx=30°,
Ry=45°, Rz°=20

Listing 5-1. Program LRP

O 60N O U1 &~ W N B

N NN R R R R R R R R R R
N B O W O ~N O U A WN R O

LRP

import numpy as np
import matplotlib.pyplot as plt
from math import sin, cos, radians,sqrt

+

fill lists with starting coordinates

< X
O‘OO‘EOQ
— o
—_

N

xc=80 #————center coordinates
yc=40
zc=40

x=[-40,-40,40,40,-40,50] #-system (plane and line geometry)
y=[0:0:0:01'20)3]

z=[-10,10,10,-10,15,-10]

for i in range(len(x)):
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23 xg.append(x[1i]+xc)

24 yg-append(y[i]+yc)

25 zg.append(z[i]+zc)

26

27 # define rotation functions

28 def rotx(xc,yc,zc,xp,yp,zp,Rx):

29 (same as in prior programs)

30

31 def roty(xc,yc,zc,xp,yp,zp,Ry):

32 (same as in prior programs)

33

34 def rotz(xc,yc,zc,xp,yp,zp,Rz):

35 (same as in prior programs)

36

37 # -plot plane, line and hit point

38 def plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor):

39 plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k") #——plot plane
40 plt.plot([xgl1],xgl2]],[ygl[1],ygl[2]],color="k")
41 plt.plot([xgl[2],xg[3]],[ygl2],yg[3]],color="k")
42 plt.plot([xg[3],xgl0]],[yg[3],yg[0]],color="k")
43 plt.plot([xg[4],xg[5]1],[yg[4],yg[5]],color="b") #—plot line
44

45 if hitcolor="g"': # plot hit point at [5]

46 plot.scatter(xg[5],yg[5],5=20,color=hitcolor)
47 else: # plot hit point at h

48 plt.scatter(xhg,yhg,s=20,color=hitcolor)
49

50 plt.axis([0,150,100,0]) #—replot axes and grid
51 plt.axis('on")

52 plt.grid(False)

53 plt.show() #—plot latest rotation

54

55 #————find hit point coordinates and color
56 def hitpoint(x,y,z):

57 a=x[5]-x[4]

58 b=y[5]-y[4]
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

c=2[5]-2[4]

CHAPTER 5

045=sqrt(a*a+b*b+c*c) #—distance point 4 to 5

1x=a/Q45 #—unit vector components point 4 to 5

ly=b/045
1z=c/Q45

a=x[3]-x[0]
b=y[3]-y[0]
c=z[3]-z[0]
Q03=sqrt(a*a+b*b+c*c) #—distance 0 to 3

ux=a/003 #—unit vector 0 to 3
uy=b/Q03
uz=c/Q03

a=x[1]-x[0]
b=y[1]-y[0]
c=z[1]-z[0]
Qo1=sqrt(a*a+b*b+c*c) #——distance 0 to 1

vx=a/Q01 #—unit vector 0 to 1
vy=b/Q01
vz=c/Q01

nx=uy*vz-uz*vy #—normal unit vector
ny=uz*vx-ux*vz
nz=ux*vy-uy*vx

vx1b=x[4]-x[0] #—vector components 0 to 4

vy1b=y[4]-y[0]
vzib=z[4]-z[0]

INTERSECTIONS

On=(vx1b*nx+vylb*ny+vzib*nz) #—perpendicular distance 4 to plane
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94 cosp=1x*nx+ly*ny+lz*nz #—cos of angle p
95 Qh=abs(Qn/cosp) #—-distance 4 to hit point
96

97 xh=x[4]+Qh*1x #—nhit point coordinates
98 yh=y[4]+Qh*1y

99 zh=z[4]+Qh*1z

100

101 xhg=xh+xc #—global hit point coordinates
102 yhg=yh+yc

103 zhg=zh+zc

104

105 # out of bounds check

106 a=xh-x[0] #—components of vector Voh

107 b=yh-y[0]

108 c=zh-z[0]

109

110 up=a*ux+b*uy+c*uz #—dot products

111 vp=a*vx+b*vy+c*vz

112

113 hitcolor="r' #——if inbounds plot red hit point
114 if up<0: #——-change color to blue if hit point out of bounds
115 hitcolor="b'

116

117 if up>Q03:

118 hitcolor="b'

119

120 if vp<o:

121 hitcolor="b'

122

123 if vp>Qo1:

124 hitcolor="b'

125

126 a=x[5]-x[4]

127 b=y[5]-y[4]

128 c=z[5]-z[4]

129 045=sqrt(a*a+b*b+c*c)
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130

131 if 045 < 0h:

132 hitcolor="g'

133

134 return xh,yh,xhg,yhg,hitcolor

135

136 # transform coordinates and plot

137 def plotx(xc,yc,zc,Rx): #—rtransform & plot Rx system
138 for i in range(len(x)):

139 [xglil,yglil,zg[i]]=rotx(xc,yc,zc,x[1],y[1],2[1],Rx)
140 [x[1],y[i],z[1]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

141

142 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z) #—returns xh,yh,xhg,yhg
143

144 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor) #—plot

145

146 def ploty(xc,yc,zc,Ry): #—transform & plot Ry system

147 for i in range(len(x)):

148 [xg[il,ygli],zg[i]]=roty(xc,yc,zc,x[1i],y[i],z[i],Ry)
149 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

150

151 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

152

153 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

154

155 def plotz(xc,yc,zc,Rz): #—transform & plot Rz system
156 for i in range(len(x)):

157 [xg[il,ygli],zg[i]]=rotz(xc,yc,zc,x[i],y[i],2[i],Rz)
158 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

159

160 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

161

162 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

163

164 # -input data and plot system
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165 while True:

166 axis=input('x, y or z?: ') #—input axis of rotation (lower case)
167 if axis == 'x': #-if x axis

168 Rx=radians(float(input('Rx Degrees?: '))) #—input degrees
169 plotx(xc,yc,zc,Rx) #-call function plotx

170 if axis == "y':

171 Ry=radians(float(input('Ry Degrees?: '))) #—input degrees
172 ploty(xc,yc,zc,Ry)

173 if axis == 'z':

174 Rz=radians(float(input('Rz Degrees?: '))) #—input degrees
175 plotz(xc,yc,zc,Rz)

176 if axis == ":

177 break #-quit the program

Line Intersecting a Triangular Plane

Almost any flat surface can be formed by an array of triangular planes, and a curved
surface can also be approximated by triangular planes (think of a geodesic dome), hence
our interest in triangular planes.

Figure 5-6 shows the geometry for a line intersecting a triangular plane. The
algorithms used in Listing 5-3 are mostly the same as in Listing 5-1. One difference is
that the lengths of the list are, of course, shorter since the triangle has one less corner.
Another is that the check on whether the hit point lies within the triangle or is out of
bounds is different.

4

Figure 5-6. Geometry of a line intersecting a triangular plane
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Before going on to Listing 5-3, you will develop a simple way to determine if a hit
point lies within a triangle or outside of it. Figure 5-7 shows the geometry used for
the out-of-bounds calculation. Listing 5-2 produces the output shown in Figure 5-8
and, with modification to the lists defining the coordinates of point 3, in Figure 5-9. In
Figure 5-8, the hit is out of bounds; in Figure 5-9, it is within the triangle.

Figure 5-7 shows three triangles. The black one, defined by points 0, 1, and 2, is the
base triangle, the one you are concerned with. It has area A. The triangle defined by
points 0, 1, and 3 (the hit point) has area Al. The third triangle between point 0, 3, and 2
has area A2. It is easy to see that if A1+A2>A, the hit point is out of bounds; if A1+A2<A,
itis in bounds. If you can calculate the areas of the three triangles, you will have an easy
way to determine if the hit point is within or outside of the base triangle. To do so, you
rely on a simple expression for determining the area of a triangle:

s=(a+b+c)/2 (5-54)

Az\/s(s—a)(s—b)(s—c) (5-55)

where a, b, and c are the lengths of the three sides of the triangle and A is its area.
This is known as Heron’s formula, named after Heron of Alexandria, a Greek engineer
and mathematician circa 10 AD - 70 AD.

This relation is put to use in Listing 5-2 and later in Listing 5-3. In Listing 5-2, most
of the program is concerned with evaluating the lengths of the lines shown in Figure 5-7.
Heron’s formula is then used to calculate the three areas: A, Al, and A2. The decision
whether the hit point is inside or outside of the base triangle is made in lines 114-117
of Listing 5-2. It produces Figure 5-8. Program THT2 (not shown) is the same as THT1
(Listing 5-2) but has the lists adjusted to put the hit point within the triangle. It produces
Figure 5-9. The adjusted lists are

x=[40,30,80,55]
y=[60,10,60,45]

2=[0,0,0,0]
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0 L] L L] L] L L] L]

100 1 1 1 1

0 20 40 60 80 100 120 140
Figure 5-7. Model for out-of-bounds test

0 L] L L] L] L] L] L
20 -
40 A= 1000
Al= 975
A2= 400
Al+A2=1375
60 |- OUT, NOHIT
w -
100 1 1 1 | Il 1 1
0 20 40 60 80 100 120 140

Figure 5-8. Out of bounds, no hit produced by Listing 5-2
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0 T T T T T T T
20 + -
40 |- A= 1000 A
Al= 450
A2= 300
Al+A2= 750
60 | IN, HIT pensey
\ A
80 | N
100 1 L 1 | 1 1 |
0 20 40 60 80 100 120 140

Figure 5-9. In bounds, hit produced by modified Listing 5-2
Asyou can see from these lists, the hit point has been moved to (55,45,0).

Listing 5-2. Program THT1

THT1

import matplotlib.pyplot as plt
import numpy as np
from math import sin, cos, radians, sqrt

O 60N O LT B W N B

plt.axis([0,150,100,0])

[N
[ )

plt.axis('on")
plt.grid(True)

[ = O =\
N W oN

x=[40,30,80,75] #—plane
y=[60,10,60,40]

=
vl
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16 z=[0,0,0,0]

17

18 plt.plot([x[0],x[21]],[y[0],y[21]],color="k") #—plot plane A
19 plt.plot([x[1],x[2]],[y[1],y[2]],color="k")
20 plt.plot([x[2],x[0]],[y[2],y[0]],color="k")

21 plt.scatter(x[3],y[3],s=20,
22

23 plt.plot([x[0],x[3]],[y[0],y[3]],1inestyle=":",color="r") #plot planes
24 plt.plot([x[21],x[3]],[y[2],y[3]],1inestyle=":",color="1")
25 plt.plot([x[2],x[3]1],[y[2],y[3]],1linestyle=":",color="1")
26

27 plt.text(35,63,'0") #—label corners

28 plt.text(25,10,'1")

29 plt.text(83,63,'2")

30 plt.text(x[3]+2,y[3],'3")

31

32 a=x[1]-x[0] #—calculate dimensions

33 b=y[1]-y[0]

34 c=z[1]-z[0]

35 Qo1=sqrt(a*a+b*b+c*c)

36

37 a=x[2]-x[1]

38 boy[2]-y[1]

39 c=z[2]-z[1]

40 Q12=sqrt(a*a+b*b+c*c)

41

42 a=x[2]-x[0]

43 bey[2]-y[0]

44 c=z[2]-z[0]

45 Q02=sqrt(a*a+b*b+c*c)

46

47 a=x[1]-x[3]

48 b=y[1]-y[3]

49 c=z[1]=z[3]

50 Q13=sqrt(a*a+b*b+c*c)

51
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
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a=x[2]-x[3]
b=y[2]-y[3]
c=z[2]-z[3]
023=sqrt(a*a+b*b+c*c)

a=x[0]-x[3]
b-y[0]-y[3]
c=z[0]-2[3]
Q03=sqrt(a*a+b*b+c*c)

s=(001+Q12+Q02)/2 #—calculate areas A, A1 and A2
A=sqrt(s*(s-001)*(s-Q12)*(s-Q02))

$1=(001+Q03+Q13)/2
Al=sqrt(s1*(s1-001)*(s1-003)*(s1-013))

s2=(002+023+Q03)/2
A2=sqrt(s2*(s2-002 )*(s2-023)*(s2-Q03))

INTERSECTIONS

plt.arrow(70,55,10,15,1inewidth=.5,color="grey") #—label area A

plt.text(82,73,"'A",color="k")

plt.text(100,40,'A=") #—plot output
dle="%7.0f'% (A)

dls=str(dle)

plt.text(105,40,dls)

plt.text(100,45, 'A1=",color="1")
dle="%7.0f'% (A1)

dls=str(dle)
plt.text(105,45,dls)

plt.text(100,50,"'A2=",color="1")
dle="%7.0f'% (A2)
dls=str(dle)
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87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
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plt.text(105,50,dls)

plt.text(91,55, A1+A2=",color="1r")
dle="%7.0f'% (A1+A2)

dls=str(dle)

plt.text(106,55,dls)

plt.text(100,40, 'A=")
dle="%7.0f'% (A)
dls=str(dle)
plt.text(105,40,dls)

plt.text(100,45,"'A1=",color="1")
dle="%7.0f'% (A1)

dls=str(dle)
plt.text(105,45,dls)

plt.text(100,50,"'A2=",color="1")
dle="%7.0f'% (A2)

dls=str(dle)
plt.text(105,50,dls)

plt.text(91,55, A1+A2=",color="r")
dle="%7.0F'% (A1+A2)

dls=str(dle)

plt.text(106,55,dls)

if A1+A2 > A:

plt.text (100,63, '0UT, NO HIT')
else:

plt.text(100,63,"IN, HIT")

plt.show()
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Listing 5-3 plots the hit point between a line and a triangle. It is similar to Listing 5-1
except it uses the inside or outside test developed above. Examples of output are shown
in Figures 5-10, 5-11, and 5-12. One difference worth noting is in the calculation of the
unit vector n, which is perpendicular to the plane of the triangle. In Listing 5-1, this was
found by taking the cross product of @ with v. Since the angle between &t and v was 90,
this produced a unit vector that was normal to both of them, which implies normal to
the plane, and of magnitude 1. This is because |ﬁ X 13| = |ﬁ||ﬁ|sin(a) where a is the angle

uxv|=(1)(1)(1)=1.

0 L] L L] L] L] L] L]

between i and v. When a equals 90,

100 1 I 1 | 1 1 |
0 20 40 60 80 100 120 140

Figure 5-10. In-bounds hit. x[3]=-60, x[4]=70, y[3]=-20, y[4]=20, z[3]=15, z[4]=0,
Rx=-90, Ry=45, Rz=20 (produced by Listing 5-3)
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0

100 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 5-11. Out-of-bounds hit. x[3]=-60, x[4]=40, y[3]=-20, y[4]=5, z[3]=15,
z[4]=0, Rx=-90, Ry=45, Rz=20 (produced by Listing 5-3)

100 | 1 1 | 1 1 1
0 20 40 60 80 100 120 140

Figure 5-12. Line too short, no hit. x[3]=-40, x[4]=-10, y[3]=-20, y[4]=-5, z[3]=15,
z[4]=0, Rx=0, Ry=0, Rz=0 (produced by Listing 5-3)
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However, with a general non-right angle triangle, the angle is not 90° so the vector
resulting from the cross product, while normal to the plane, does not have a value of 1;
in other words, it is not a unit vector. The algorithm between lines 88 and 91 makes the
correction by normalizing n’s components. It does this by dividing each of them by
the magnitude of f . In line 88, magn is the magnitude of n before normalization of the
vector’s components. Depending on the angle q, its value will be somewhere between 0
and 1. Dividing each component of n by magn makes n a unit vector.

Listing 5-3. Program LTP

1

2 LTP

3w

4

5 import numpy as np

6  import matplotlib.pyplot as plt

7  from math import sin, cos, radians,sqrt
8

9 # fill lists with starting coordinates
10 xg=[ ]

11 yg=[ ]

12 zg=[ ]

13

14 xc=80 #————center coordinates
15 yc=40

16 zc=40

17

18 x=[-10,-30,20,-40,-10]

19 y=[0,0,0,-20,-5]

20 z=[0,30,0,15,0]

21

22 for i in range(len(x)):

23 xg.append(x[1i]+xc)

24 yg-append(y[i]+yc)

25 zg.append(z[i]+zc)

26
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27 # define rotation functions

28 def rotx(xc,yc,zc,xp,yp,zp,Rx):

29 (same as in prior programs)

30

31 def roty(xc,yc,zc,xp,yp,zp,Ry):

32 (same as in prior programs)

33

34 def rotz(xc,yc,zc,xp,yp,zp,Rz):

35 (same as in prior programs)

36

37 # -define system plotting functions

38 def plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor):

39 plt.plot([xg[o],xg[1]],[yg[o],ygl[1]],color="k") # plot plane

40 plt.plot([xg[1],xg[2]],[ygl[1],yg[2]],color="k")

41 plt.plot([xg[2],xg[0]],[ygl[2],ygl[0]],color="k")

42 plt.plot([xg[3],xg[4]],[ygl[3],ygl4]],color="g") #—plot line

43 plt.scatter(xc,yc,s=10,color="k") #—plot center of rotation

44

45 if hitcolor=="g":

46 plt.scatter(xg[4],yg[4],s=20,color=hitcolor)

47 else:

48 plt.scatter(xhg,yhg,s=20,color=hitcolor) # plot
hit point

49

50 plt.axis([0,150,100,0]) #—replot axes and grid

51 plt.axis('on")

52 plt.grid(True)

53 plt.show() #—plot latest rotation

54

55 #————-calculate hit point coordinates and color

56 def hitpoint(x,y,z):

57 a=x[4]-x[3]

58 b=y[4]-y[3]

59 c=z[4]-z[3]

60 034=sqrt(a*a+b*b+c*c) #—distance point 3 to 4

61
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62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

++

CHAPTER 5

1x=a/Q34 #—unit vector components point 3 to 4

ly=b/Q34
1z=c/Q34

a=x[2]-x[0]
b=y[2]-y[0]
c=z[2]-z[0]
Q02=sqrt(a*a+b*b+c*c) #—distance 0 to 3

ux=a/002 #—unit vector 0 to 3
uy=b/Q02
uz=c/Q02

a=x[1]-x[0]
b=y[1]-y[0]
c=z[1]-z[0]
Qo1=sqrt(a*a+b*b+c*c) #—distance 0 to 1

vx=a/Q01 #—unit vector 0 to 1
vy=b/Q01
vz=c/Q01

nx=uy*vz-uz*vy #—normal unit vector
ny=uz*vx-ux*vz
nz=ux*vy-uy*vx
-correct magnitude of unit vector 'n
magn=sqrt (nx*nx+ny*ny+nz*nz)
nx=nx/magn
ny=ny/magn
nz=nz/magn

a=x[3]-x[0] #—vector components 0 to 3

b=y[3]-y[0]
c=z[3]-z[0]

INTERSECTIONS
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97 On=(a*nx+b*ny+c*nz) #—perpendicular distance 3 to plane
98

99 cosp=1x*nx+ly*ny+1z*nz #——-cos of angle p
100 Qh=abs(Qn/cosp) #—distance 4 to hit point
101

102 xh=x[3]+Qh*1x #—hit point coordinates
103 yh=y[3]+0h*1y

104 zh=z[3]+Qh*1z

105

106 xhg=xh+xc #—global hit point coordinates
107 yhg=yh+yc

108 zhg=zh+zc

109

110 # out of bounds check

111 a=x[1]-x[2]

112 b=y[1]-y[2]

113 c=z[1]-z[2]

114 Q12=sqrt(a*a+b*b+c*c)

115

116 a=x[1]-xh

117 b=y[1]-yh

118 c=z[1]-zh

119 Q1h=sqrt(a*a+b*b+c*c)

120

121 a=x[2]-xh

122 b=y[2]-yh

123 c=z[2]-zh

124 Q2h=sqrt(a*a+b*b+c*c)

125

126 a=x[0]-xh

127 b=y[0]-yh

128 c=z[0]-zh

129 Qoh=sqrt(a*a+b*b+c*c)

130

131 s=(001+Q12+Q02)/2 #-area A
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A=sqrt(s*(s-Q01)*(s-012)*(s-002))

s1=(Q01+Q0h+Q1h)/2 #—area Al
Al=sqrt(s1*(s1-Q01)*(s1-Qoh)*(s1-Q1h))

s2=(002+Q2h+Q0h)/2 #-area A2
A2=sqrt(s2*(s2-Q02)*(s2-Q2h)*(s2-Qoh))

hitcolor="r' #—if within bounds plot red hit point

if A1+A2 > A: #—if out of bounds plot blue hit point
hitcolor="b'

a=x[4]-x[3]
b-y[4]-y[3]
c=z[4]-z[3]
034=sqrt(a*a+b*b+c*c)

if 034 < Qh: #—if line too short plot green at end of line
hitcolor="g'

return xh,yh,xhg,yhg,hitcolor

transform coordinates and plot

def plotx(xc,yc,zc,Rx):  #—transform & plot Rx system

for i in range(len(x)):
[xgli],ygli],zg[i]]-Totx(xc,yc,zc,x[1],y[i],2[i],Rx)
[x[i],y[i],z[i]]=[xg[1i]-xc,yg[i]-yc,zg[i]-zc]

xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z) #—returns xh,yh,xhg,yhg

plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor) #—plot plane, line,
hit point

def ploty(xc,yc,zc,Ry): #—rtransform & plot Ry system
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166 for i in range(len(x)):

167 [xg[il,ygl[i],zg[i]]=roty(xc,yc,zc,x[i],y[1],z[i],Ry)

168 [x[1],y[i],2z[1]]=[xg[1i]-xc,yg[i]-yc,zg[i]-zc]

169

170 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

171

172 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

173

174 def plotz(xc,yc,zc,Rz): #—transform & plot Rz system

175 for i in range(len(x)):

176 [xg[i],ygl[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

177 [X[i1,y[i],2[i]1-[xgli]-xc,ygli]-yc,zg[1]-zc]

178

179 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

180

181 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

182

183 # input data and plot system

184 while True:

185 axis=input('x, y or z?: ') #—input axis of rotation

(lower case)

186 if axis == 'x': #-if x axis

187 Rx=radians(float(input('Rx Degrees?: ")))
#—1input degrees of rotation

188 plotx(xc,yc,zc,Rx) #-call function plotx

189 if axis == 'y':

190 Ry=radians(float(input('Ry Degrees?: ")))
#—1input degrees of rotation

191 ploty(xc,yc,zc,Ry)

192 if axis == 'z':

193 Rz=radians(float(input('Rz Degrees?: ")))
#—1input degrees of rotation

194 plotz(xc,yc,zc,Rz)

195 if axis == ":

196 break #——quit the program
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Line Intersecting a Circle

The determination of whether the hit point of a line intersecting the plane of a circle is
within the circle is trivial. As shown in Figure 5-13, if the distance from the circle’s center
to the hit point is greater than the circle’s radius, it lies outside the circle:

ifrh>r NO HIT

0 L] L L] L] L] L] L]

Hit point

100 1 I 1 | 1 1 |
0 20 40 60 80 100 120 140

Figure 5-13. Model for out-of-bound:s test for a circle

Iwon’t bother writing a separate program to demonstrate this. You should be able to
do that yourself by modifying Listing 5-1 or Listing 5-3. Simply fill the x[ ], y[ ], and
z[ ] lists with the points defining the circle’s perimeter and the line coordinates and
modify the functions plotsystemand hitpoint.

Line Intersecting a Circular Sector

In this section, you develop a procedure to determine if the hit point of a line intersecting
the plane of a sector of a circle is inside or outside the sector. Figure 5-14 shows the
sector. It has a center at point 0 and a radius r. The hit point is at 3. rh is the distance

from 0 to the hit point. Your goal is to determine if the hit point lies inside or outside the
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sector. (We will not be developing a full three-dimensional program here; you'll just see
how the inside or outside algorithm works.) It could be easily incorporated into any of
the preceding programs, such as Listing 5-3.

0 L] L L] L] L] L] L

100 | I 1 | 1 1 L
0 20 40 60 80 100 120 140

Figure 5-14. Model for determining whether a line intersecting a circular sector is
in or out of bounds. 3=hit point

There are five unit vectors at point 0: & points from 0 to 2; v points from 0 to 1; and
h from 0 to the hit point at 3. i is a unit vector normal to the plane of the sector. It is not
shown since it points up and out of the plane. uxn is the result of the cross product of &
with n; nxv is from the cross product of n with v.

Your strategy is to first determine if Rh>1, in which case the hit point is outside the
sector in the radial direction. Then, recalling that the dot product of two vectors gives the
projection of one on the other, you take the dot product of h with @x i . This gives the
projection of u on uAxnA. If positive, they point in the same direction; if negative, they
point in the opposite direction. If the result is positive, the hit point is outside the sector
on the 0-2 side. Then, on the other side of the sector, you take the dot product of h with
nxv. Ifitis positive, the hit point is out of bounds on the 0-1 side.

In Listing 5-4, the local coordinates (relative to point 0) are defined in the lists in lines
14-16. The last element in the lists defines the coordinates of the hit point, point 3. xc, yc,
and zc in lines 18-20 are the global coordinates of point 0. The hit test algorithm begins in
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line 23. Most of it should be self-explanatory based on the previous discussion. Attention
is called to lines 52-58. This is where the normal vector n is evaluated by taking the cross
product of i with v . As explained earlier, this produces a unit vector (magnitude 1) only
iftiand v are perpendicular to one another. Since the angle between them in a general
sector will not necessarily be 90 degrees, the vector must be normalized. That takes place
in lines 55-58. The dot product of txf with h takes place in line 64, fixv with hin line
70. Line 72 assumes the hit color is red, which means the hit is within the sector. If A is
positive, it lies outside the sector, in which case the hit color is changed to blue in line

74. Lines 76 and 77 perform the same test for the other side of the sector. Lines 79 and 80
check for the hit point lying outside the sector in the radial direction. Figures 5-15 and
5-16 show two sample runs. You can move the hit point around yourself by changing the
coordinates of point 3 in the lists in lines 14-15. You change only the x and y coordinates
of the hit point since it is assumed to lie in the z=0 plane, as does the sector.

0 L] ] i J ] ]

20 -

100 1 Il Il Il 1 1
0 20 40 €0 80 100 120 140

Figure 5-15. In-bounds or out-of-bounds test produced by Listing 5-4: red=in,
blue=out
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0 L] L L] L] L] L] L]

100 1 L 1 | 1 1 |
0 20 40 60 80 100 120 140

Figure 5-16. In-bounds or out-of-bounds test produced by Listing 5-4: red=in,
blue=out

Listing 5-4. Program LCSTEST

LCSTEST

import matplotlib.pyplot as plt
import numpy as np
from math import sin, cos, radians, degrees, sqrt, acos

OW 60 N O U1 & W N P

plt.axis([0,150,100,0])

RN
L O

plt.axis('on")
plt.grid(True)

[ O =X
N W N

x=[0,20,40,5]
y=[0,'35;0:'25]

=
Vi
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39
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42
43
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45
46
47
48
49
50
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Z=[0:0:0:0]

Xc=40
yc=60
zc=0

# hit test
a=x[3]-x[0]

b=y[3]-y[0]

c=z[3]-z[0]
rh=sqrt(a*a+b*b+c*c)

a=x[3]-x[0]

b=y[3]-y[0]

c=z[3]-z[0]

00h=sqrt(a*a+b*b+c*c)

hx=a/Qoh #—unit vector 0 to hit point
hy=b/Q0h

hz=c/Qoh

a=x[2]-x[0]

b-y[2]-yl[o]

c=z[2]-z[0]
002=sqrt(a*a+b*b+c*c)

ux=a/Q02 #—unit vector 0 to 3
uy=b/0Q02

uz=c/Q02

a=x[1]-x[0]

b-y[1]-y[o0]

c=z[1]-z[0]
001=sqrt(a*a+b*b+c*c)

vx=a/Q01 #—unit vector 0 to 1
vy=b/Q01

vz=c/Q01
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51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

192

a=uy*vz-uz*vy #——vector u xv normal to plane
b=uz*vx-ux*vz

c=ux*vy-uy*vx

Quxv=sqrt(a*a*b*b+c*c) #—mnormalize u xv
nx=a/Quxv

ny=b/Quxv

nz=c/Quxv

uxnx=uy*nz-uz*ny #—unit vector u xv
uxny=uz*nx-ux*nz

uxnz=ux*ny-uy*nx

A=uxnx*hx+uxny*hy+uxnz*hz #——dot product u xv with h
nxvx=ny*vz-nz*vy #—unit vector u xv
nxvy=nz*vx-nx*vz

nxvz=nx*vy-ny*vx

B=nxvx*hx+nxvy*hy+nxvz*hz #——dot product u xv with h

hitcolor="r"

if A>0: #-out
hitcolor="b'

if B>0: #t—out
hitcolor="b"

if rh>r: #-out
hitcolor='b"'

plt.scatter(x[3]+xc,y[3]+yc,s=20,color=hitcolor)

++

plot arc
=40
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86 phi1=0

87 phi2=-radians(60)

88 dphi=(phi2-phi1)/180

89 xlast=xc+r

90 ylast=yc+0

91 for phi in np.arange(phii,phi2,dphi):

92 x=xc+r*cos(phi)

93 y=yc+r*sin(phi)

94 plt.plot([xlast,x],[ylast,y],color="k")
95 xlast=x

96 ylast=y

97

98

99 #—— - labels

100 print('rh=",rh)

101 print('r=",r)

102 plt.arrow(xc,yc,40,0)

103 plt.arrow(xc,yc,20,-35,1inewidth=.5,color="k")
103 plt.text(33,61,'0")

104 plt.text(52,27,'1")

105 plt.text(82,65,'2")

106

107 plt.show()

Line Intersecting a Sphere

Figure 5-17, output from Listing 5-5, shows a line intersecting a sphere. The entrance and
exit points are shown in red. Figure 5-18 shows the model used by Listing 5-5. The line
begins at B and ends at E.
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Vi

[ LV

WAL | /]

Figure 5-17. Line intersecting a sphere, produced by Listing 5-5

Figure 5-18. Model for a line intersecting a sphere

To find the entrance hit point, you start at B and move a point p incrementally along
the line toward E. At each step, you calculate Qpc, the distance between p and c. If it is
less than or equal to the sphere’s radius rs, you have made contact with the sphere and
ared dot is plotted. You continue moving p along the line inside the sphere without
plotting anything (you could plot a dotted line), calculating Qpc as you go, until Qpc
becomes equal to or greater than rs. At that point, p leaves the sphere and another red
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dot is plotted. p continues moving along the line to E, plotting black dots along the way.
Instead of plotting the line with dots, you could have used short line segments as was
done in prior programs.

To move p along the line, you use parameter t, which is the distance from B to p. To
get the coordinates of p, you construct unit vector @, which points along the line

a=xe—xb (5-56)
b=ye—yb (5-57)
c=ze—zb (5-58)
Qbe=+\a*+b*+c* (5-59)
ux=a/Qbe (5-60)
uy=b/Qbe (5-61)
uz=c/Qbe (5-62)

where Qbe is the distance along the line from B to E and ux, uy, and uz are the
components of . The coordinates of p are thus

xp = xb + uxt (5-63)
yp =yb+uyt (5-64)
zp =zb+uzt (5-65)
Qpc is easy to determine:
a=xc—xp (5-66)
b=yc—yp (5-67)
c=zc—zp (5-68)

Qpc=Va’+b*+c* (5-69)
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In Listing 5-5, the sphere’s center coordinates are set in lines 18-20. The sphere is
composed of longitudinal (vertical) lines and latitudinal (horizontal) lines. The lists in
lines 10-16 contain the local and global coordinates of the longitudes. The initial filling
of these lists takes place in lines 25-38, which creates a half circle in the z=0 plane. As
shown in Figure 5-19, point p lies on the circumference at coordinates xp, yp, zp where

xp =rscos(¢) (5-70)
yp =rssin(¢) (5-71)
zp=0 (5-72)

They are set in lines 30-32. ¢ is the angle around the z direction. It runs from -90°
to +90°. You don’t need the back half of the longitudes so they are not plotted. This half
circle will be rotated around the y direction to create the oval longitudes. They are 10°
apart as set in line 74. Since they are rotated around the y direction only, the program
contains just the rotation function roty: rotx and rotz are not needed in this model.
Plotting of the longitudes takes place in lines 72-77.

The latitudes are plotted in lines 80-97. Figure 5-21 shows a front view of the sphere
looking into the x,y plane. Each latitude is essentially a circle having radius rl where

xl=rscos(¢) (5-73)

This is calculated in line 89 of the program. When viewed from the front, the latitude
appears as a straight line since you are not rotating the sphere in this program.

The ¢ loop beginning at line 88 ranges ¢ from -90"to + 90" in 10" increments. At each
increment a new latitude is plotted. It will have a radius given by Equation 5-73 above.
The a loop beginning at line 92 sweeps across the front of the circular latitude from a=0"
to 180°in 10" increments. This is illustrated in Figure 5-22, which shows the top view

looking down on the x,z plane.
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. _Longitude at Ry=0

Y

INTERSECTIONS

Figure 5-19. x,y view of sphere longitude shown at starting position Ry=0.
Rotation around the y direction in 10° increments will produce longitudes

Figure 5-20.

Y

X,y view of sphere longitude rotated by Ry=60°

Latitude ~ ™

Y

Figure 5-21. Sphere latitude, x,y view
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Latitude

Figure 5-22. Sphere latitude, x,z view

Listing 5-5. Program LS

LS

import numpy as np
import matplotlib.pyplot as plt
from math import sin, cos, radians, sqrt

OW 60N O LT B W N -

lists

= =
0O ~N OV~ W N R O
N < X
COOEOQ
L B e B |
) ed ]

xc=80 #—sphere center
yc=50
zc=0

N N
= O W
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rs=40 #—sphere radius
# fill longitude lists
phil=radians(-90)
phi2=radians(90)
dphi=radians(10)
for phi in np.arange(phi1,phi2,dphi):

xp=rs*cos(phi)

yp=rs*sin(phi)

zp=0

x.append(xp)

y-append(yp)

z.append(zp)

xg.append(xp)

yg-append(yp)

zg.append(zp)
#::::::::::::::::::::::::::::::::::::::::::::::define Iotation {unction

def roty(xc,yc,zc,xp,yp,zp,Ry):
a=[xp,yp,zp]

b=[cos(Ry),0,sin(Ry)] # [cx11,cx12,cx13]
xpp=np.inner(a, b)
b=[0,1,0] # [cx21,cx22,cx23]

ypp=np.inner(a,b) #
b=[-sin(Ry),0,cos(Ry)] #
zpp=np.inner(a,b)
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

-scalar product of a,b
[cx31,cx32,cx33]

def plotsphere(xg,yg,zg):
lastxg=xg[0]

lastyg=yg[O]
for i in range(len(x)):

199



CHAPTER 5

57
58

59
60

61
62
63

64 #::::

INTERSECTIONS

if i < len(x)/2:
plt.plot([lastxg,xg[i]],[lastyg,yg[i]],linewidth=1,
color="k")
else:
plt.plot([lastxg,xg[i]],[lastyg,yg[i]],linewidth=1,
color="k")
lastxg=xg[i]
lastyg=yg[i]

::::::::::::::::::::::::::::::::::::::::::::transform Coordinates

65 def plotspherey(xc,yc,zc,Ry):

66
67
68

for i in range(len(x)): #
[xg[i],ygli],zg[i]]=roty(xc,yc,zc,x[1],y[i],2[1],Ry)

transform and plot Ry sphere

69 plotsphere(xg,yg,zg) #—plot rotated coordinates

70
71 #

plot longitudes

72 Ryi=radians(0)
73 Ry2=radians(180)
74 dRy=radians(10)

75

76 for Ry in np.arange(Ry1,Ry2,dRy):

77
78

plotspherey(xc,yc,zc,Ry)

79 #

plot latitudes

80 alphai=radians(0)
81 alpha2=radians(180)
82 dalpha=radians(10)

83

84 phil=radians(-90)
85 phi2=radians(90)
86 dphi=radians(10)

87

88 for phi in np.arange(phii,phi2,dphi):

89
90
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yplast=yc+rs*sin(phi)
for alpha in np.arange(alphal,alpha2,dalpha):
xp=xc+r*cos(alpha)

yp=yplast
plt.plot([xplast,xp],[yplast,yp],color="k")
xplast=xp
yplast=yp

# line and hit points

xb=-60 #-line beginning

yb=-30

zb=-20

xe=60 #—1line end
ye=30
ze=-40

a=xe-xb

b=ye-yb

c=ze-zb

Qbe=sqrt(a*a+b*b+c*c) #—1ine length
ux=a/Qbe #-unit vector

uy=b/Qbe

uz=c/Qbe

dt=1

for t in np.arange(0,Qbe,dt):
xp=xb+ux*t
yp=yb+uy*t
zp=zb+uz*t
Qpc=sqrt(xp*xp+yp*yp+zp*zp)
if Qpc > rs:

plt.scatter(xp+xc,yp+yc,s=5,color="k")
if Qpc <= rs:
plt.scatter(xp+xc,yp+yc,s=80,color="r")

INTERSECTIONS
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126 tlast=t

127 break

128

129 for t in np.arange(tlast,Qbe,dt):
130 xp=xb+ux*t

131 yp=yb+uy*t

132 zp=zb+uz*t

133 Qpc=sqrt(xp*xp+yp*yp+zp*zp)
134 if Qpc >= rs:

135 plt.scatter(xp+xc,yp+yc,s=80,color="r")
136 tlast=t

137 break

138

139 for t in np.arange(tlast,Qbe,dt):
140 xp=xb+ux*t

141 yp=yb+uy*t

142 zp=zb+uz*t

143 Qpc=sqrt(xp*xp+yp*yp+zp*zp)
144 if Qpc >= rs:

145 plt.scatter(xp+xc,yp+yc,s=5,color="k")
146

147 plt.axis([0,150,100,0]) #-plot axes and grid
148 plt.axis('off")

149 plt.grid(False)

150

151 plt.show()

Plane Intersecting a Sphere

In this section, you will work out a technique for plotting a flat rectangular plane
intersecting a sphere. Figure 5-23 shows the output of Listing 5-6; Figure 5-24 shows the
model used by that listing.

The strategy here is to use the algorithms developed in the previous section for a
line intersecting a sphere as your basic element. By representing the plane as a series of
parallel lines, you can easily find the intersection of a plane with a sphere. Figure 5-23
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shows unit vector @ at corner 1. As before, this points from the beginning to end of the
first line. There is also unit vector v at corner 1. This points to corner 3. By advancing
along the line from 1 to 3 in small steps, you can construct lines running parallel to the
first one from 1 to 2. Advancing down each of these lines in small increments of t, you
can find the coordinates of points across the plane. To advance in the v direction, you
introduce parameter s, which is the distance from corner 1 to the beginning of the new
line. To get the coordinates of the end of that line, you perform the same operation
starting at point 2 using vand s, as in

Xe =Xx2+vx-s (5-74)
ye=yr+uvy-s (5-75)
ze=2z2+0z-§ (5-76)

where xe, ye, and ze are the coordinates of the end of the line; x2, y2, and z2 are the
coordinates of point 2; and vx, vy, and vz are the components of unit vector v .

Incrementing down and across the plane with parameters t and s allows you to
sweep across the surface of the plane. At each point p you calculate the distance from p
to the center of the sphere. If it is equal to or less than the sphere’s radius, you have a hit.

I'won'’t list the entire program that produced Figure 5-23 since it is mostly similar to
Listing 5-5, except for the addition of an s loop that sweeps in the v direction. Control
of the program begins at line 27. Lines 27-37 define the coordinates of plane corners
1, 2, and 3. The unit vectors i and Vv are established in lines 39-53. Lines 55 and 56 set
the scan increments in dt and ds. The loop 57-64 scans in the v direction, establishing
the beginning and end coordinates of each line. Function plane, which begins at line 1,
determines if there is a hit with each line and the sphere. For each s, the loop beginning
atline 3 advances down the line in the @ direction, calculating the coordinates xp,yp,zp
of each point p along the line. Line 10 calculates the distance of p from the sphere’s
center. Line 11 says, if the distance is greater than the sphere’s radius, plot a black dot. If
itis less than or equal to the radius, line 18 plots a colorless dot. The rest of the logic up
to line 24 determines if the line has emerged from the sphere, in which case plotting of
black dots resumes. Results are shown in Figure 5-23.
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/ AN

Figure 5-23. Plane intersecting a sphere produced by Listing 5-6

Figure 5-24. Model for Listing 5-6

Listing 5-6. Program PS

PS

import numpy as np
import matplotlib.pyplot as plt
from math import sin, cos, radians, sqrt
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(similar to Program LS)

# ==============================================plane
1 def plane(xb,yb,zb,xe,ye,ze,012,dt):
2 hit="off'
3 for t in np.arange(0,Q012,dt): #—B to hit
4 xp=xb+ux*t
5 yp=yb+uy*t
6 zp=zb+uz*t
7 XPE=XC+XP
8 ypg=yc+yp
9 Zpg=zC+zp
10 Qpc=sqrt(xp*xp+yp*yp+zp*zp)
11 if Qpe>=rs:
12 plt.scatter(xpg,ypg,s=.5,color="k")
13 if Qpc=rs:
14 if hit=="off":
15 hit="on'
16 if Qpc<rs:
17 if hit=="on':
18 plt.scatter(xpg,ypg,s=10,color=")
19 if Qpc>=1s:
20 if hit=="on':
21 hit="off'
22 if Qpe>rs:
23 if hit=="off":
24 plt.scatter(xpg,ypg,s=.5,color="k")
25
26 # scan across plane
27 X1=-40
28 y1=-30
29 z1=-20
30
31 x2=60
32 y2=25

INTERSECTIONS
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33 z2=-35

34

35 x3=-65

36 y3=-20

37 z3=-50

38

39 a=x2-x1

40 b=y2-y1

41 c=z2-71

42 Q12=sqrt(a*a+b*b+c*c)

43 ux=a/012

44 uy=b/Q12

45 uz=c/Q12

46

47 a=x3-x1

48 b=y3-y1

49 cc=z3-z1

50 Q13=sqrt(a*a+b*b+c*c)

51 vx=a/Q13

52 vy=b/Q13

53 vz=c/Q13

54

55 dt=.7 #—————scan increment
56 ds=.7

57 for s in np.arange(0,013,ds):
58 sbx=x1+s*vx

59 sby=y1+s*vy

60 sbz=z1+s*vz

61 sex=x2+s*vx

62 sey=y2+s*vy

63 sez=z2+s*vz

64 plane(sbx,sby,sbz,sex,sey,sez,012,dt)
65

66 plt.axis([0,150,100,0]) #-replot axes and grid
67 plt.axis('off")
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68 plt.grid(False)
69
70 plt.show() #-plot latest rotation

Summary

In this chapter, you learned how to predict whether a three-dimensional line or plane
will intersect a three-dimensional surface or solid object. Why bother with this? Because
itis fundamental to removing hidden lines, as you will see in Chapter 6. When plotting

a surface A, which may be behind another surface or object B, you may not want to
display the hidden parts of A. To accomplish this task, which I call hidden line removal,
you do so by plotting A with scatter dots or short line segments at each step. If a point

on A is hidden by B, you do not plot it or you could substitute dot of a different color or

a dashed line. To determine if it is hidden from view, you draw an imaginary line from
the point on A to the observer (i.e., in the -z direction). If you can determine if that line
from A intersects a surface or object B in front of it, then you will know whether or not
itis hidden. While you cannot develop hidden line algorithms for every conceivable
situation (you did rectangular planes, triangular planes, circular sectors, circles, and
spheres here), by understanding how it is done for these objects you should, with a bit
of creativity, be able to develop your own hidden line algorithms for other surfaces and
objects. Perhaps the line-triangular plane is most useful since complex surfaces and
objects can often be approximated by an assembly of triangles. Let’s say you approximate
surface B with n triangular planes. You would check each dot or line segment in A
against each of the n triangles in B. You will see more about this in Chapter 6.
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Hidden Line Removal

Most of the models used in the previous chapters were essentially stick figures
constructed of dots and lines. When such objects are viewed in three dimensions, it is
possible to see the lines on the back side, as if the objects are transparent. This chapter
is concerned with removing the lines, which are normally hidden, from objects so they
appear solid.

This chapter will cover two types of situations. The first is called intra-object hidden
line removal. This refers to removing hidden lines from a single object, such as a box. We
assume that most objects are constructed of flat planes; examples are a box, a pyramid,
and a spherical surface that can be approximated by planes, either rectangular or
triangular. The technique you will use relies on determining whether a particular plane
faces toward the viewer, in which case it is visible and is plotted, or faces away from the
viewer, in which case it is not visible and is not plotted.

Inter-object hidden line removal, on the other hand, refers to a system of more than
one object, such as two planes, one behind the other. Here the general approach is to
use some of the ray tracing techniques that were developed in the previous chapter
to find intersections between lines and surfaces. You start by drawing the back object
using dots or short line segments. At each point you construct a line (ray) going toward
the observer, who is in the -z direction, and see if it intersects with the front object. If it
does, that point on the back object is hidden and is not plotted or it could be plotted in a
different color if you want to show it while indicating it is hidden.

Box

As an example of intra-object hidden line removal, let’s start off with a simple box, as
shown in Figures 6-1 and 6-2. They were drawn by Listing 6-1. Figures 6-3, 6-4, and 6-5
show the model used by the program.
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In Figure 6-3, you see that the box has eight corners, numbered 0 to 7. At corner 0,
there are two vectors: V01, which goes from corner 0 to 1, and V03, which goes from 0
to 3. Looking at the 0,1,2,3 face first, as the box is rotated, the strategy is to determine
ifit is tilted toward or away from an observer who situated is in the -z direction. If it is
facing toward the observer, the edges of the face are plotted. If it is facing away from the
observer, they are not plotted. How do you determine if the face is facing the observer?
The cross (vector) product VO3xV01 gives a vector N, which is normal to the 0,1,2,3 face,

V03 =V 03xi +V03yj+V03zk (6-1)
VO1=V0Lxd+V0lyj+V0lzk (6-2)
V03x =x[3]-x[0] (6-3)
Vo3y=y[3]-y[0] (6-4)
V03z=z2[3]-z[0] (6-5)
V0lx=x[1]-x[0] (6-6)

voly =y[1]-y[o] (6-7)
V0lz=2[1]-2[0] (6-8)

i j k

N=V03xV0l=|V03x VO03y V03z (6-9)

V0lx VO0ly VOlz

N = Nxi + Nyj + Nzk (6-10)

N=i[V03y-V01z-V03z-V0ly]+ j[V03zV0lx-V03x-V0lz]
. 6-11
+k[V03x-V01ly—V03y-VO0lx] (6-11)

Nz
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You can determine if the plane is facing toward or away from the observer by the
value of Nz, N’s z component. Figures 6-4 and 6-5 show a plane (blue) relative to an
observer. This is the side view of one of the faces of téhe box shown in Figure 6-3. The
observer is on the right side of the coordinate system looking toward the +z direction.
Referring to Figure 6-4, if the z component of N, Nz in Equation 6-11, is < 0 (i.e., pointing
in the -z direction), the plane is facing the observer, it is visible to the observer, and it is
plotted. If Nz is positive (i.e., pointing in the +z direction), as shown in Figure 6-5, the
face is tilted away from the observer, in which case it is not seen by the observer and is
not plotted. Note that you can use the full vector V rather than a unit vector since you are
only concerned with the sign of Nz.

What about the other faces? The 4,5,6,7 face is parallel to 0,1,2,3 so its outward
pointing normal vector is opposite to that of face 0,1,2,3. You do a similar check on
whether its normal vector is pointing in the +z (don’t plot) or -z (plot) direction.

The remaining faces are handled in a similar fashion. The normal to 1,2,6,5 is
opposite to that of 0,3,7,4; the normal to 3,2,6,7 is opposite to that of 0,1,5,4.

0 1 1 ] 1 i L ]

100 1 1 1 L] ] 1 1
0 20 40 60 80 100 120 140

Figure 6-1. Box with hidden lines removed: Rx=45°, Ry=45°, Rz=30° (produced by
Listing 6-1)
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0 L] L L] L] L] L] L]

100 1 1 1 | 1 1 |
0 20 40 60 80 100 120 140

Figure 6-2. Box with hidden lines removed: Rx=30°, Ry=-60°, Rz=30° (produced by
Listing 6-1)

4 N=V03xV01

7

Figure 6-3. Model for hidden line removal of a box used by Listing 6-1. N not
to scale
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0
Figure 6-4. Model for hidden line removal of a box used by Listing 6-1
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Figure 6-5. Model for hidden line removal of a box used by Listing 6-1
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Listing 6-1 produced Figures 6-1 and 6-2. The lists in lines 9, 10, and 11 define the
coordinates of the unrotated box relative to its center, which is set in lines 124-126. Lines
13-15 fill the global coordinate lists with zeroes. These lists have the same length as list x
(also lists y and z) and are set by the len(x) function.

Lines 124-140 accept keyboard input as in previous programs. As an example of
the sequence of operations, suppose you enter x in line 129 followed by an angle in
degrees. Line 132 calls the function plotboxx, which begins at line 102. Lines 103-105
rotate the corner points and update the local and global coordinate lists. Line 107
calls function plotbox, which begins in line 40. This function plots the box in its new
rotated orientation using the lists xg, yg, and zg. Starting with the 0,1,2,3 face, lines 41-47
calculate Nz, the z component of the normal vector N in line 47 using the above analysis.
If Nz<=0, the 0,1,2,3 face is plotted in lines 49-52. If it is not visible (i.e., Nz>0), then you
know the opposing face of 4,5,6,7 must be visible and it is plotted in lines 54-57. The
other faces are processed in a similar manner.

Listing 6-1. Program HLBOX

1

2 HLBOX

3 e

4

5 import numpy as np

6  import matplotlib.pyplot as plt

7  from math import sin, cos, radians

8 # define lists

9 x=[-20,20,20,-20,-20,20,20,-20]

10 y=[-10,-10,-10,-10,10,10,10,10]

11 z=[5,5,-5,-5,5,5,-5,-5]

12

13 xg=[0]*1len(x) #—fill xg,yg,zg lists with len(x) zeros
14 yg=[0]*1en(x)

15 zg=[0]*1en(x)

16

17 #===================================================Y0tation functions
18 def rotx(xc,yc,zc,xp,yp,zp,Rx):

19 Xpp=Xp
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

def

ypp=yp*cos(Rx)-zp*sin(Rx)
zpp=yp*sin(Rx)+zp*cos(Rx)
[xg,y8,28]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

roty(xc,yc,zc,xp,yp,zp,Ry):
xpp=xp*cos(Ry)+zp*sin(Ry)

ypp=yp

zpp=-xp*sin(Ry)+zp*cos(Ry)
[xg,yg,28]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

def rotz(xc,yc,zc,xp,yp,zp,Rz):

xpp=xp*cos(Rz)-yp*sin(Rz)
ypp=xp*sin(Rz)+yp*cos(Rz)

zpp=zp
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

CHAPTER 6  HIDDEN LINE REMOVAL

#::::============================================box plotting {unction
def plotbox(xg,yg,zg):

voix=x[1]-x[0] #—0,1,2,3 face
voly=y[1]-y[0]

v01z=z[1]-z[0]

v03x=x[3]-x[0]

vo3y=y[3]-y[0]

v03z=z[3]-z[0]
nz=v03x*v0o1y-v03y*voix

if nz<=0 :

plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k",linewidth=2)
plt.plot([xg[1],xg[2]],[ygl1],yg[2]],color="k",linewidth=2)
[xg[2]

[
[
plt.plot([xg[
[

else: #--plot the other side

[

[
2],xg[31],[ygl2
plt.plot([xg[3],xg[0]],[yg[3],

3]],color="k',linewidth=2)
0]],color="k",linewidth=2)

plt.plot([xg[4],xg[5]],[ygl4],ygl[5]],color="k",1linewidth=2)
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55 plt.plot([xg[5],xg[6]1],[ygl5],ygl6]],color="k",linewidth=2)
56 plt.plot([xg[6],xg[7]],[ygl6],yg[7]],color="k",linewidth=2)
57 plt.plot([xg[7],xg[4]],[ygl[7],ygl4]],color="k",linewidth=2)
58

59 v04x=x[4]-x[0] #—0,3,7,4 face

60 vo4y=y[4]-y[0]

61 v04z=z[4]-z[0]

62 v03x=x[3]-x[0]

63 vo3y=y[3]-y[0]

64 v03z=z[3]-z[0]

65 nz=v04x*v03y-v04y*v03x

66 if nz<=0 :

67 plt.plot([xg[o],xg[3]],[yg[0],ygl[3]],color="k",linewidth=2)
68 plt.plot([xg[3],xg[7]1],[ygl3],ygl[7]],color="k",linewidth=2)
69 plt. plot([xg[7] xg[4]],[yg[7]1,yg[4]],color="k",linewidth=2)
70 plt.plot([xg[4],xg[0]],[yg[4],yg[0]],color="k",linewidth=2)
71 else: #——plot the other side

72 plt.plot([xg[1],xg[2]],[ygl1],yg[2]],color="k",linewidth=2)
73 plt.plot([xg[2],xg[6]],[yg[2],yg[6]],color="k",linewidth=2)
74 plt.plot([xg[6],xg[5]],[yg[6],yg[5]],color="k",linewidth=2)
75 plt.plot([xg[5],xg[1]],[ygl5],yg[1]],color="k",linewidth=2)
76

77 voix=x[1]-x[0] #-0,1,5,4 face

78 voly=y[1]-y[0]

79 v01z=z[1]-z[0]

80 v04x=x[4]-x[0]

81 vo4y=y[4]-y[0]

82 v04z=z[4]-z[0]

83 nz=v01x*v04y-v01y*v04x

84 if nz<=0 :

85 plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k",linewidth=2)
86 plt.plot([xg[1],xg[5]],[ygl1],yg[5]],color="k",linewidth=2)
87 plt.plot([xg [5] xg[4]],[ygl[5],yg[4]],color="k",linewidth=2)
88 plt.plot([xg[4],xg[0]],[yg[4],yg[0]],color="k",linewidth=2)
89 else: #—plot the other side

90 plt.plot([xg[3],xg[2]],[ygl3],yg[2]],color="k",linewidth=2)
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91 plt.plot([xg[2],xg[6]],[yg[2],ygl[6]],color="k",linewidth=2)
92 plt.plot([xg[6],xg[7]1],[ygl6],yg[7]],color="k",linewidth=2)
93 plt.plot([xg[7],xg[3]1]1,[ygl7],ygl[3]],color="k",linewidth=2)
94

95 plt.scatter(xc,yc,s=5,color="k"') #-plot a dot at the center

96 plt.axis([0,150,100,0]) #-replot axes and grid

97 plt.axis('on")

98 plt.grid(True)

99 plt.show() #-plot latest rotation

100

101 #==============================transform coordinates and plot functions
102 def plotboxx(xc,yc,zc,Rx): # transform & plot Rx box

103 for i in range(len(x)):

104

[xg[i],ygli],zg[i]]=rotx(xc,yc, zc,x[i],y[1],2[1],Rx)

105 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

106

107 plotbox(xg,yg,zg) # plot

108

109 def plotboxy(xc,yc,zc,Ry):

110 for i in range(len(x)): # transform & plot Ry box

111 [xgl[il,ygli],zg[i]]=roty(xc,yc,zc,x[1i],y[i],z[i],Ry)

112 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

113

114 plotbox(xg,yg,zg)

115

116 def plotboxz(xc,yc,zc,Rz):

117 for i in range(len(x)): # transform & plot Rz box

118 [xg[i],ygli],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

119 [x[i1,y[i],2[1]1-[xgli]-xc,ygli]-yc,zg[1]-zc]

120

121 plotbox(xg,yg,zg)

122

123 # plot box

124 xc=75 #-center coordinates

125 yc=50
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126 zc=50

127

128 while True:

129 axis=input('x, y or z?: ') #—input axis of rotation (lower case)
130 if axis == 'x': #-if x axis

131

Rx=radians(float(input('Rx Degrees?: '))) #—input degrees of rotation
132 plotboxx(xc,yc,zc,Rx) #—call function plotboxx

133 if axis == "y':

134

Ry=radians(float(input('Ry Degrees?: '))) #—input degrees of rotation
135 plotboxy(xc,yc,zc,Ry)

136 if axis == "'z':

137

Rz=radians(float(input('Rz Degrees?: '))) #—input degrees

138 plotboxz(xc,yc,zc,Rz)

139 if axis == ":

104 break

Pyramid

Listing 6-2 was used to plot Figures 6-6 and 6-7. The model used is shown in Figure 6-8.
The analysis is similar to that used for the box in the previous section. The difference is
there are four faces to contend with and none of them are parallel, as they were with the
box, so you must process each face independently to see if it is facing toward or away
from an observer. The hidden lines are plotted as dots in program lines 54-56, 67-69,
and 77-79. To remove the dots, replace “:” with “” in these lines. The code in Listing 6-2
should be self-explanatory.
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100 1 ] 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 6-6. Pyramid with hidden lines removed: Rx=30", Ry=45", Rz=0" (produced
by Listing 6-2)

100 1 1 1 Il 1 1 1
0 20 40 €0 80 100 120 140

Figure 6-7. Pyramid with hidden lines removed: Rx=30", Ry=45", Rz=-90’
(produced by Listing 6-2)
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N=VY01 < V02

Vo1

2

Figure 6-8. Model for Listing 6-2. N not to scale

Listing 6-2. Program HLPYRAMID

HLPYRAMID

import matplotlib.pyplot as plt
from math import sin, cos, radians
# define lists
x=[0,-10,0,10]

10 y=[-20,0,0,0]

11 z=[0,10,-15,10]

12

13 xg=[0]*1en(x)

14 yg=[0]*len(x)

15 zg=[0]*1en(x)

1
2
3
4
5 import numpy as np
6
7
8
9

16

17 #============================================define rotation function
18 def rotx(xc,yc,zc,xp,yp,zp,Rx):

19 Xpp=xp

20 ypp=yp*cos(Rx)-zp*sin(Rx)

21 zpp=yp*sin(Rx)+zp*cos(Rx)

22 [xg,yg,zgl=[xpp+xc,ypp+yc,zpp+zc]

23 return[xg,yg,zg]

24

25 def roty(xc,yc,zc,xp,yp,zp,Ry):
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xpp=xp*cos(Ry)+zp*sin(Ry)

ypp=yp

zpp=-xp*sin(Ry)+zp*cos(Ry)
[xg,yg,28]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

def rotz(xc,yc,zc,xp,yp,zp,Rz):
xpp=xp*cos(Rz)-yp*sin(Rz)
ypp=xp*sin(Rz)+yp*cos(Rz)
zpp=zp
[xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]
return[xg,yg,zg]

#::::==================================define pyramid plotting {unction

def plotpyramid(xg,yg,zg):

voix=x[1]-x[0] #—0,1,2 face

voly=y[1]-y[0]

v01z=z[1]-z[0]

v02x=x[2]-x[0]

vo2y=y[2]-y[0]

v02z=z[2]-z[0]

nz=v01x*v02y-v01y*v02x

if nz<=0 :
plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k",linewidth=2)
plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color="k",linewidth=2)
plt.plot([xg[2],xg[0]],[yg[2],yg[0]],color="k",linewidth=2)

else:
plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k",linestyle=":")
plt.plot([xg[1],xg[2]1],[ygl1],yg[2]],color="k",linestyle=":")
plt.plot([xg[2],xg[0]],[yg[2],yg[0]],color="k",linestyle=":")

vo3x=x[3]-x[0] #-0,2,3 face

vo3y=y[3]-y[0]
v03z=z[3]-z[0]
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61 nz=v02x*v03y-v02y*v03x

62 if nz<=0 :

63 plt.plot([xg[o],xg[2]],[yg[0],ygl[2]],color="k",linewidth=2)
64 plt.plot([xg[o],xg[3]],[yg[0],yg[3]],color="k",linewidth=2)
65 plt.plot([xg[2],xg[3]],[yg[2],yg[3]],color="k",linewidth=2)
66 else:

67 plt.plot([xg[o],xg[2]],[yg[0],yg[2]],color="k",linestyle=":")
68 plt.plot([xg[o],xg[3]],[yg[0],yg[3]],color="k",linestyle=":")
69 plt.plot([xg[2],xg[3]1],[yg[2],yg[3]],color="k",linestyle=":")
70

71 nz=v03x*v01ly-v03y*v0ix #-0,2,3 face

72 if nz<=0 :

73 plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k",linewidth=2)
74 plt.plot([xg[o],xg[3]],[yg[0],yg[3]],color="k",linewidth=2)
75 plt.plot([xg[1],xg[3]1],[ygl1],ygl[3]],color="k",linewidth=2)
76 else:

77 plt.plot([xg[o],xg[1]],[yg[0],yg[1]],color="k",linestyle=":")
78 plt.plot([xg[o],xg[3]1],[yg[0],yg[3]],color="k",linestyle=":")
79 plt.plot([xg[1],xg[3]],[ygl1],yg[3]],color="k",linestyle=":")
80

81 v21x=x[1]-x[2] #—1,2,3 face

82 v21y=y[1]-y[2]

83 v21z=z[1]-z[2]

84 v23x=x[3]-x[2]

85 v23y=y[3]-y[2]

86 v23z=z[3]-z[2]

87 nz=v21x*v23y-v21y*v23x

88 if nzjo:

89 pLt.plot([x[2],x[1]], [y[2],y[1]])

90 pLt.plot([x[1],x[31], [y[1],y[3]])

91 plt.plot([x[3],x[2]],[y[3],y[2]])

92

93 plt.scatter(xc,yc,s=5,color="k"') #—plot a dot at the center

94 plt.axis([0,150,100,0]) #—replot axes and grid

95 plt.axis('on")
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96 plt.grid(True)

97 plt.show() #-plot latest rotation

98

99 ff========================transform coordinates and plotting fucntions
100 def plotpyramidx(xc,yc,zc,Rx): # transform & plot Rx pyramid
101 for i in range(len(x)):

102

[xgli],ygli],zg[i]]=rotx(xc,yc,zc,x[1],y[i],2[i],Rx)

103

[x[i],y[i],z[i]]=[xg[1]-xc,yg[i]-yc,zg[i]-zc]

104

105 plotpyramid(xg,yg,zg) # plot

106

107 def plotpyramidy(xc,yc,zc,Ry):

108 for i in range(len(x)): # transform & plot Ry pyramid
109 [xg[il,ygli],zg[i]]=roty(xc,yc,zc,x[1i],y[i],z[i],Ry)
110 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

111

112 plotpyramid(xg,yg,zg)

113

114 def plotpyramidz(xc,yc,zc,Rz):

115 for i in range(len(x)): # transform & plot Rz pyramid
116 [xg[i],ygl[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)
117 [x[i],y[1],2[1]]=[xg[i]-xc,ygl1]-yc, zg[i]-zc]

118

119 plotpyramid(xg,yg,zg)

120

121 # plot pyramids

122 xc=75 #—center coordinates

123 yc=50

124 zc=50

125

126 while True:

127 axis=input('x, y or z?: ') #—input axis of rotation (lower case)
128 if axis == 'x': #—if x axis
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129

Rx=radians(float(input('Rx Degrees?: '))) #—input degrees of rotation
130 plotpyramidx(xc,yc,zc,Rx) #—-call function plotpyramidx
131 if axis == "y':

132

Ry=radians(float(input('Ry Degrees?: '))) #—input degrees of rotation
133 plotpyramidy(xc,yc,zc,Ry)

134 if axis == 'z':

135

Rz=radians(float(input('Rz Degrees?: '))) #—input degrees of rotation
136 plotpyramidz(xc,yc,zc,Rz)

137 if axis == ":

138 break

Planes

Next is an example of inter-object hidden line removal. Figure 6-9 shows two planes, (a)
and (b); Figure 6-10 shows the same two planes partially overlapping. As you will see
shortly, plane (b) is actually beneath the plane (a) and should be partially obscured.
Figures 6-11 shows the planes with the hidden lines of plane (b) removed. Figure 6-12
shows another example. Figure 6-13 shows an example with plane (a) rotated.

In this simple model, the two planes are parallel to the x,y plane with plane (b) taken
to be located behind plane (a) (i.e., further in the +z direction). You do not need to be
concerned with the z component of the planes’ coordinates since you won'’t be rotating
them out of plane, (i.e., around the x or y directions), although you will be rotating plane
(a) in its plane around the z direction, but for this you do not need z coordinates.

Figure 6-14 shows the model used by Listing 6-3. Plane (a) is drawn in black, plane
(b) in blue. Unit vectors i and j are shown at corner 0 of plane (a). You use a ray tracing
technique to remove the hidden lines when plane (b) or part of it is behind (a) and not
visible. You do so line by line beginning with edge 0-1 of plane (b). Starting at corner
0 of plane (b), you imagine a ray emitting from that point traveling to an observer who
is located in the -z direction and looking in onto the x,y plane. If plane (a) does not
interfere with that ray (i.e., does not cover up that point), the dot is plotted. If plane
(a) does interfere, it is not plotted. The problem thus becomes one of intersections:
determining if a ray from a point on an edge of plane (b) intersects plane (a).
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The edges of plane (b) are processed one at a time. Starting with corner 0, you
proceed along edge 0-1 to corner 1 in small steps. Vector H shows the location of a point
h on edge 0-1. Listing 6-3 determines the location of this point and whether or not it lies
beneath plane (a) (i.e., if a ray emanating from h strikes plane (a)). If it does not, point p
is plotted; if it does, p is not plotted.

In Listing 6-3, lines 14-18 establish the coordinates of the two planes in global
coordinates, ready for plotting. Lines 21-32 define function dlinea that plots the edge
lines of plane (a). It does so one edge line at a time. dlinea does not do a hidden line
check on the edges of plane (a) since you are stipulating that plane (a) lies over plane (b).
The calling arguments x1, x2, y1, y2 are the beginning and end coordinates of the edge
line. q in line 22 is the length of that line; uxa and uya are the x and y components of a
unit vector that points along the edge line from x1, y1 to x2, y2. The loop in lines 27-32
advances the point along the line from x1, y1 to x2, y2 in steps of .2 as set in line 27. hx
and hy in lines 28 and 29 are the coordinates of point h along the line. hxstart and hystart
permit connecting the points by short line segments, giving a finer appearance than if
the points were plotted as dots.

Lines 35-38 plot the edges of plane (a) by calling function d1inea with the beginning
and end coordinates of each of the four edges. Lines 40-42 establish the distance qa03
from corner 0 of plane (a) to corner 3. uxa and uya in lines 43 and 44 are the xand y
components of unit vector @, which points from corner 0 to corner 3. Similarly, lines
46-50 give the components of V a unit vector pointing from corner 0 to 1. They will be
required to do the intersection check, as was done in the preceding chapter with line/
plane intersections.

Function dlineb is similar to d1inea except the calling arguments now include
agx[0] and agy[0], the coordinates of corner 0 of plane (a). Also, this function includes
the interference check, which is between lines 64 and 71. This is labelled the inside/
outside check. In line 64, a is the distance between the x coordinate of point h and the
x coordinate of corner 0 of plane (a); b in line 65 is the y distance. These are essentially
the x and y components of vector H. In line 66, the dot (scalar) product of H with unit
vector 1 gives up. This is the projection of H on the 0-3 side of plane (a). Similarly, the
dot product of H with unit vector v in line 67 gives vp, the projection of H on the 0-1 side
of plane (a). The interference check is then straightforward and is summarized in line 68.
If all questions in line 68 are true, the point is plotted in line 69 in white, which means it
is invisible. If any the questions in line 68 are false, which means the point is not blocked
by plane (a), line 71 plots it in black.
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But why use this elaborate vector analysis? Why not just check each point’s x and
y coordinates as shown in Figure 6-14 against the horizontal and vertical boundaries
of plane (a)? You could do that if both planes remain aligned with the x and y axes as
shown. But by using the vector approach, you enable either one of the planes to be
rotated about the z direction as shown in Figure 6-13.

I have simplified this model a bit by specifying that plane (b) lie under (a). In general,
you may not know which plane is closer to the observer and which should be (a) and
which (b). This can be accomplished by a simple check on z coordinates. In principle,
the hidden line removal process would be similar to what you have done here, although
the programming can get complicated trying to keep track of a large assemblage of
objects.

(@) (b)

100 ] 1 1 1 | ]
0 20 40 60 80 100 120 140

Figure 6-9. Two planes
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Figure 6-10. Two planes, one partially overlapping the other, hidden lines not
removed. Plane (b) is beneath (a)
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Figure 6-11.
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Two planes overlapping, hidden lines removed by Listing 6-3
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0 T r .

100 ] 1 1 1 | | |
0 20 e 60 80 100 120 140

Figure 6-12. Two planes, one overlapping the other, hidden lines removed by
Listing 6-3

100 ] 1 1 1 | 1 i
0 20 S 60 80 100 120 140

Figure 6-13. Two planes, one at an angle and overlapping the other, hidden lines
removed by Listing 6-3
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Figure 6-14. Model for Listing 6-3

Listing 6-3. Program HLPLANES

OW 0N O U1 B W N B

e e S O = S =
N~ oUW N PR O

HLPLANES

import numpy as np
import matplotlib.pyplot as plt
from math import sqrt, sin, cos, radians

plt.axis([0,150,100,0])
plt.axis('off")
plt.grid(False)

# -define lists
axg=[40,80,80,40]
ayg=[20,20,60,60]

bxg=[20,120,120,20]

140
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18 byg=[30,30,55,55]

19

20 {f{================================================(efine function dlinea
21 def dlinea(x1,x2,y1,y2):

22 g=sqrt((x2-x1)**2+(y2-y1)**2)

23 uxa=(x2-x1)/q

24 uya=(y2-y1)/q

25 hxstart=x1

26 hystart=y1

27 for 1 in np.arange(0,q,.2):

28 hx=x1+1*uxa #——global hit coordinates along the line
29 hy=y1+1*uya

30 plt.plot([hxstart,hx],[hystart,hy],color="k")

31 hxstart=hx

32 hystart=hy

33

34 # plane (a)

35 dlinea(axg[0],axg[1],ayg[0],ayg[1]) #—plot plane (a)
36 dlinea(axg[1],axg[2],ayg[1],ayg[2])

37 dlinea(axg[2],axg[3],ayg[2],ayg[3])

38 dlinea(axg[3],axg[0],ayg[3],ayg[0])

39

40 a=axg[3]-axg[0] #—unit vector u plane (a)
41 b=ayg[3]-ayg[0]

42 qao03=sqrt(a*a+b*b)

43 uxa=a/qa03

44 uya=b/qa03

45

46 a=axg[1]-axg[0] #—unit vector v plane (a)
47 b=ayg[1]-ayg[o]

48 qao0l=sqrt(a*a+b*b)

49 vxa=a/qa01

50 vya=b/qa01

51
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52 #==========================s=====s=====s=s====ss=====s============1ineb( )
53 def dlineb(x1,x2,y1,y2,ax0,ay0):

54 a=x2-x1 #—unit vector line

55 b=y2-y1

56 gl=sqrt(a*a+b*b)

57 uxl=a/ql

58 uyl=b/ql

59 hxglast=x1

60 hyglast=y1

61 for 1 in np.arange(0,ql,.5):

62 hxg=x1+1*uxl

63 hyg=y1+1*uyl

64 a=hxg-ax0 #—inside/outside check

65 b=hyg-ay0

66 up=a*uxa+b*uya

67 vp=a*vxa+b*vya

68 if 0<up<ga03 and 0<vp<qa0l: #—is it inside (a)?

79 plt.plot([hxglast,hxg], [hyglast,hyg],color="white’)
70 else:

71 plt.plot([hxglast,hxg],[hyglast,hyg],color="k”)
72 hxglast=hxg

73 hyglast=hyg

74

75 # plot plane (b)

76 dlineb(bxg[o],bxg[1],byg[0],byg[1],axg[0],ayg[0])

77 dlineb(bxg[1],bxg[2],byg[1],byg[2],axg[0],ayg[0])

78 dlineb(bxg[2],bxg[3],byg[2],byg[3],axg[0],ayg[0])

79 dlineb(bxg[3],bxg[0],byg[3],byg[0],axg[0],ayg[0])

80
81 plt.show()
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Sphere

In Chapter 5, you drew a sphere but did not rotate it. The planes defined by the lines

on the back side were overlapped by those on the front and thus were not visible, so
removing hidden lines was not an issue: it was easy to determine which lines were on
the back side so just don’t plot them. In this chapter, you will draw a sphere and rotate it
while removing hidden lines on the back side.

Figures 6-15 and 6-18 show examples of the output from Listing 6-4, which plots
a sphere with hidden lines removed. The vertical lines in Figures 6-15 and 6-16, the
longitudes, are drawn in green; the horizontal latitudes are drawn in blue. The program
uses a hidden line removal scheme much like the one you used before with boxes
and pyramids. If the z component of a vector perpendicular to a point is positive (i.e.,
pointing away from an observer who is located in the -z direction), the point is not
drawn; otherwise it is drawn.

In Listing 6-4, line 14 sets the length of the list g[ ] to 3. This will be used to return
global coordinates xg,yg, and zg from the rotation functions rotx, roty, and rotz,
which are defined in lines 24-40 (they are the same as the functions used in previous
programs). The longitudes are plotted in lines 55-79. The model is the same as used in
Listing 5-5 in Chapter 5. The algorithm between lines 55 and 79 calculates the location of
each point on a longitude, one at a time, and rotates it. That is, each point is established
and rotated separately; lists are not used other than the g[ ] list. The alpha loop starting
in line 55 sweeps the longitudes from a = 0 to « = 360 in six-degree steps as set in lines
47-49. At each a step a longitude is drawn by the ¢ loop, which starts at -90 degrees and
goes to +90 in six-degree steps. The geometry in lines 57-59 is taken from Listing 5-5. The
coordinates of a point before rotation (Rx=0, Ry=0, Rz=0) are xp,yp,zp as shown in lines
57-59. This point is located on the sphere’s surface at spherical coordinates «, ¢. Line 60
rotates the point about the x direction by an angle Rx. This produces new coordinates
Xp, Yp, zp in lines 61-63. Line 64 rotates the point at these new coordinates around the
y direction. Line 68 rotates it around the z direction. This produces the final location of
the point.

Next, you must determine whether or not the point is on the back side of the sphere
and hidden from view. If true, it is not plotted. Lines 73-79 perform this function. First,
in lines 73-75, you establish the starting coordinates of the line that will connect the first
point to the second. You use lines to connect the points rather than dots since lines give
a finer appearance. Line 73 asks if phi equals phil, the starting angle in the phi loop. If
it does, the starting coordinates xpglast and ypglast are set equal to the first coordinates
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calculated by the loop. Next, in line 76, you ask if nz, the z component of a vector from
the sphere’s center to the point, is less than 0. nz is calculated in line 72. If true, you know
the point is visible to an observer situated in the -z direction; the point is then connected
to the previous one by line 77.

The plt.plot() function in line 77 needs two sets of coordinates: xpglast,ypglast and
xpg,ypg. During the first cycle through the loop, the starting coordinates xpglast,ypglast
are set equal to xpg,ypg, meaning the first point is connected to itself so the first line
plotted will have zero length. After that, the coordinates of the previous point are set in
lines 78-79. Line 73 determines if it is the first point. If nz is greater than zero in line 76,
the point is on the back side of the rotated sphere and is not visible so it is not plotted.
The coordinates xpglast and ypglast must still be updated and this is done in lines 78-79.
The latitudes are processed in much the same way, although the geometry is different,
as described in Listing 5-5. The colors of the longitudes and latitudes can be changed by
changing the color="color' values in lines 77 and 104.

When running this program, remember that the rotations are not additive as in some
of the previous programs. The angles of rotation specified in lines 51-53 are the angles
the sphere will end up at; they are not added to any previous rotations. To rotate the
sphere to another orientation, change the values in lines 51-53.

As mentioned in the discussion on concatenation, the sequence of rotations is
important. Rx followed by Ry does not give the same results as Ry followed by Rx. This
program has the sequence of function calls, Rx,Ry,Rz, as specified in lines 60, 64, and 68
for longitudes and 87, 91, and 95 for latitudes. To change the order of rotation, change
the order of these function calls.

The spheres shown in Figures 6-17 and 6-18 have a black background. To achieve
this, insert the following lines in Listing 6-4 before any other plotting commands, for
example after line 12:

# paint the background
for y in np.arange(1,100,1):
plt.plot([0,150],[y,y],linewidth=4,color="k")

This plots black lines across the plotting window from x=0 to x=150 and down from
y=1 to y=100. This fills the area with a black background. The color can be changed
to anything desired. The 1inewidth has been set to 4 in order to prevent gaps from
appearing between the horizontal lines. The background must be painted before
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constructing the sphere since you are using line segments to do that. New lines overplot
old ones, so with this order the sphere line segments will overplot the background lines;
otherwise the background lines would overplot the sphere.

In Figures 6-15 and 6-16, the sphere’s line widths in program lines 77 and 104 is
set to .5. This gives good results on a clear background but the lines are too subdued
when the background is changed to black. So, along with inserting the two lines of code
above, the line widths in Listing 6-4 should be changed to something greater such as 1.0.
The color shown in Figures 6-17 and 6-18 is ' lightgreen'. Some colors don'’t plot well
against a black background but color="1lightgreen' seems to work; you just have to

experiment.

Listing 6-4. Program HLSPHERE

1

2 HLSPHERE

3 e

4

5 import numpy as np

6  import matplotlib.pyplot as plt
7  from math import sin, cos, radians, sqrt
8

9 plt.axis([0,150,100,0])

10 plt.axis('off")

11 plt.grid(False)

12

13 # lists

14 g=[0]*3

15

16 # parameters
17 xc=80 #——sphere center

18 yc=50

19 zc=0

20

21 1s=40 #—sphere radius

22

23 #=========================================================
24 def rotx(xc,yc,zc,xp,yp,zp,Rx):
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25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

g[0]=xp+xc
g[1]=yp*cos(Rx)-zp*sin(Rx)+yc
g[2]=yp*sin(Rx)+zp*cos(Rx)+zc
return[g]

def roty(xc,yc,zc,xp,yp,zp,Ry):
g[0]=xp*cos(Ry)+zp*sin(Ry)+xc
gl1]=yp+yc
g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc
return[g]

def rotz(xc,yc,zc,xp,yp,zp,Rz):
g[0]=xp*cos(Rz)-yp*sin(Rz)+xc
g[1]=xp*sin(Rz)+yp*cos(Rz)+yc
gl2]=zp+zc
return[g]

# -longitudes and latitudes
phil=radians(-90)

phi2=radians(90)

dphi=radians(6)

alphal=radians(0)
alpha2=radians(360)
dalpha=radians(6)

Rx=radians(45)
Ry=radians(-20)
Rz=radians(40)

for alpha in np.arange(alphai,alpha2,dalpha):

for phi in np.arange(phi1,phi2,dphi):
xp=rs*cos(phi)*cos(alpha)
yp=rs*sin(phi)
zp=-rs*cos(phi)*sin(alpha)

CHAPTER6  HIDDEN LINE REMOVAL

#—1longitudes
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60 rotx(xc,yc,zc,xp,yp,zp,Rx)
61 xp=g[0]-xc

62 yp=g[1]-yc

63 zp=g[2]-zc

64 roty(xc,yc,zc,xp,yp,zp,Ry)
65 xp=g[0]-xc

66 yp=g[1]-yc

67 zp=g[2]-zc

68 rotz(xc,yc,zc,xp,yp,zp,Rz)
69 xpg=g[0]

70 ypg=g[1]

71 zpg=g[2]

72 nz=zpg-zc

73 if phi == phii:

74 xpglast=xpg

75 ypglast=ypg

76 if nz < 0:

77
plt.plot([xpglast,xpgl,[ypglast,ypg],linewidth=.5,
color="g")

78 xpglast=xpg

79 ypglast=ypg

80

81 for phi in np.arange(phii,phi2,dphi): # latitudes
82 r=rs*cos(phi)

83 for alpha in np.arange(alphai,alpha2+dalpha,dalpha):
84 xp=r*cos(alpha)

85 yp=rs*sin(phi)

86 zp=-rs*cos(phi)*sin(alpha)
87 rotx(xc,yc,zc,xp,yp,zp,Rx)
88 xp=g[0]-xc

89 yp=g[1]-yc

90 zp=g[2]-zc

91 roty(xc,yc,zc,xp,yp,zp,Ry)
92 xp=g[0]-xc
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93 yp=g[1]-yc

94 zp=g[2]-zc

95 rotz(xc,yc,zc,xp,yp,zp,Rz)
96 xpg=g[0]

97 ypg=g[1]

98 zpg=g[2]

99 nz=zpg-zc

100 if alpha == alpha1:
101 xpglast=xpg
102 ypglast=ypg
103 if nz < 0:

104

plt.plot([xpglast,xpg],[ypglast,ypg],linewidth=.5,
color="b")

105 xpglast=xpg
106 ypglast=ypg
107

108 plt.show()

CHAPTER6  HIDDEN LINE REMOVAL

Figure 6-15. Rotated sphere with hidden lines removed: Rx=55°, Ry=-20°, Rz=-40°

(produced by Listing 6-4)
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Figure 6-16. Rotated sphere with hidden lines removed: Rx=40", Ry=-20", Rz=40’
(produced by Listing 6-4)

Figure 6-17. Rotated sphere with hidden lines removed: Rx=40", Ry=-20", Rz=40’,
black background (produced by Listing 6-4)
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Figure 6-18. Rotated sphere with hidden lines removed: Rx=60", Ry=20", Rz=10,
black background (produced by Listing 6-4)

Summary

In this chapter, you learned how to remove hidden lines from single objects and between
objects. In the case of single objects, such as the box, the pyramid, and the sphere, you
were able to construct algorithms without much trouble. When removing hidden lines
from separate objects, such as two planes, you relied on the technique of constructing
one of the objects, the hidden or partially hidden one, using dots or short line segments
that go from one dot to another. In either case, you were still dealing with dots. From a
dot on one plane, you drew an imaginary line, a ray, to an observer who is positioned
in the -z direction. Then you checked to see if the ray intersected the other plane. You
used the line-plane intersection algorithm developed in Chapter 5. If it did intersect,
the dot was hidden and it, or a line segment connected to it, was not drawn. You used
two planes to explore this technique. You could have used any of the other shapes you
worked with in Chapter 5. For example, you could have easily removed hidden lines
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from a plane beneath a circular segment by constructing the plane from dots and using
the intersection algorithm from Chapter 5. However, you might not know ahead of time
which object covers which. You could do a rough check to answer this question. For
example, in the case of two planes, if the z coordinates of all four corners of one plane are
less than the other, it is closer to the observer, in which case it may cover part of the other
plane. In this case, the other plane should be checked for hidden lines.
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Shading

In this chapter, you will learn how to shade three-dimensional objects. Shading produces
a much more realistic look and enhances the perception of three-dimensionality. The
general idea is to first establish the direction of light rays impacting the object being
illuminated and then determine the shading effect the light has on the object’s surface.
In the case of a box, which I will discuss next, six flat planes comprise the surface of the
box. The orientation of these planes relative to the direction of the light will determine
the degree of shading on each plane. To simulate shading, the planes can be filled with
dots or lines. Different intensities of shading can be obtained by changing the intensity of
the color of the dots or lines and by color mixing.

Normally an object being plotted will appear on a white background. If a background
color is used, such as in Figure 7-13, dots or lines may be used to paint the background.
Recall from Chapter 1 that new dots overplot old dots and new lines always overplot dots
and old lines. This means that whether the shading is constructed of dots or lines, they will
overplot the background color if it is painted with dots. The disadvantage of using dots for
background color is it takes a lot of time to fill the background with dots. Lines are a better
alternative in this regard and are preferred if the object can be constructed of lines. If you
must use dots to shade your object, then you must use dots for your background color.

The heart of a shading program is the intensity function, which relates the amount
of shading of a plane to the plane’s orientation relative to the direction of the incoming
light. You do not specify the position of a light source; you specify the direction of the
light rays impacting the object from that source. For example, suppose the program
calculates that the angle between a plane and the incoming light rays is 50 degrees. The
intensity function converts this angle into a shading intensity, which is used to alter the
color intensity of the lines or dots.

A considerable amount of research has been carried out on theories of shading in
an effort to produce more lifelike computer-drawn images. These images often have a
separate shading function for each of the primary colors (r,g,b) and take into account the
color of the incident light and the reflectivity and physical characteristics of the surface
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material. Smooth surfaces will be highly reflective while rough, textured surfaces will
scatter the incoming light, producing a higher degree of diffusivity. In your work here,
you will keep it simple and use just one shading function and ignore the differences in
surface features that can affect the surface’s reflectivity and diffusivity, although they
could easily be introduced into the program. Also, you assume the shading of a surface
is dependent on only the orientation of that surface relative to the light source and not
on its orientation relative to the observer who, as usual, you take to be located in the -z
direction.

Shading a Box

Figures 7-1 through 7-7 show samples of output from Listing 7-1. They show a box
rotated to different orientations with shading on its surfaces. They are shaded in
monochrome black at different intensities ranging from black to grey to white.

Figure 7-1. Shaded box produced by Listing 7-1, [0=.8

Figure 7-2. Shaded box produced by Listing 7-1, lo=1.0

<>

Figure 7-3. Shaded box produced by Listing 7-1, lo=1.0
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Figure 7-4. Shaded box produced by Listing 7-1, lo=1.0

Figure 7-5. Shaded box produced by Listing 7-1,10=.8

Figure 7-6. Shaded box produced by Listing 7-1, [o=.6

Figure 7-7. Shaded box produced by Listing 7-1, lo=.4
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Figure 7-9 shows the model used by Listing 7-1. The light source is shown at the
upper left. You do not explicitly state its location, only the direction of the light rays
emanating from it. You do that by specifying Ix, ly, and 1z, the components of a unit
vector 1, which is aligned with the light rays. Keep in mind that 1 is a unit vector so the
following relation between its components must be observed:

VI + +1z° =1 (7-1)

Looking at the top plane of the box defined by corners 0,1,2,3, you can see a unit
normal vector n at corner 0. This points outward from the plane. You shade the box
by drawing lines, shown in blue, which extend across the width of the plane from B to
E. These lines are drawn from edge 0,1 to 3,2 and then down the plane, thus shading it.
The lines on each face will have an intensity that depends on the orientation of n with 1.
You get this orientation by taking the dot product of n with 1.If n is facing 1, the dot
product will be negative and the intensity of the lines will be less, which means the tone
will be lighter; if n is facing away from 1, the dot product will be positive, the intensity
will be greater, and the tone will be darker.

This is illustrated by Figure 7-10, which shows the shading intensity, I, vs. n-1. This
is a linear relation. As you will see in the next section, better results can be obtained with
anon-linear relation and by mixing r,g,b colors. You can get an equation for this linear
intensity function by inspection:

=fo fog (7-2)
2 2
I =I?0(1+ﬁ-i) (7-3)

Note the parameter Io. It gives control over the degree of darkness in the shaded
areas by increasing or decreasing the intensity of the color. The lines from B to E are
plotted with the p1t.plot() function, which includes the attribute alpha. By letting
alpha=Iyou can control the intensity of the color. Higher values of alpha increase the
intensity, making shaded areas appear darker; lower values of alpha decrease it, thus
creating areas that appear lighter. Note that alpha may take on values from 0 to 1, hence
Iis limited to the same range of values. From Equation 7-3, this means that Io can
have a maximum value of 1. Io=1 will give the darkest, most intense hues. To soften the
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image with more subtle hues, lower Io to something less than 1. To modify the function
even more, the left side could be raised, which would darken the lights. If the function
were horizontal, all shading would be uniform. To see the effect of Io on the shading,
Figures 7-2 through 7-4 have Io=1.0. Figures 7-1, 7-5, 7-6, and 7-7 have [0=.8, .8, .6,

and .4, respectively. Colors do not have to be black or primaries; they can be mixed.
Figure 7-8 shows the result of using color=(r,g,b) with r=.5, g=0, b=.5,

color =(.5,0,.5) (7-4)

which is a purple mix of equal amount of red and blue. Recall that red, green, and
blue in an r,g,b mix must each have values between 0 and 1.

You have been applying your shading intensity, I, to monochrome colors. Even if
you use 1,g,b color mixing, it is still a monochrome shade, although not a primary color.
An extension of this method would be to apply separate intensities to each of the three
primary colors. For example, when an artist paints a portrait, they might render the light
side of the face a light pink. To darken the shaded side, they would normally add green,
the compliment of red, to the mix. If you look closely at the portraits of an accomplished
artist, you will see this is usually how it is done. Rarely would one add black to the mix to
darken it. In fact, many painters do not even keep a black pigment on their pallet; they
achieve darker colors by mixing the hues with their compliment. The compliment of red
is green; of yellow it is violet. Color mixing in painting isn’t quite that simple, of course,
but that is the fundamental idea. To accomplish this in your programming, suppose you
are shading a red box using an r,g,b color mix. Rather than applying an intensity factor
to the red to increase its intensity, thus simulating a darkening, you apply the intensity
factor to the green, increasing its contribution in the r,g,b mix, thus darkening the red.
For the present, in Listing 7-1 you will keep things simple and simulate shading by
increasing the intensity of the color in the dark areas rather than using color mixing. This
works well with a monochrome black image, although it has limitations with colored
objects.

The definition of the box in Listing 7-1 is contained in the lists in lines 10, 11, and
12. Lines 14, 15, and 16 open lists for the global coordinates, which are returned by the
rotation functions rotx, roty, and rotz. They have the same lengths as the x,y,z lists as
specified by len(x).

A new function called shade() is defined in Listing 7-1, lines 54-84. The arguments
received by shade() in line 54 are shown in Figure 7-11. When shade() is invoked for
a specific plane, the box’s corners must follow the order shown in Figure 7-11. As an
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example, the ordering for plane 1,5,6,2 is shown in Figure 7-12. Some visual gymnastics
can be required to orient the six planes of the box such that they conform to the ordering
in Figure 7-11. Each of the six planes are drawn and shaded separately by six calls to
function shade (). They are listed in lines 88-93. The arguments of the calls are the x,y,z
coordinates of points a,b,c,d, respectively. Function shade() calculates the components
of unit vector t in lines 55-61 and v in lines 62-68. Components of unit vector n are
calculated in lines 69-71. The dot product on n with the incoming light ray unit vector

1 , the components of which were specified in lines 23-25, is calculated in line 72 as
ndotl; the shading intensity in line 73. If nz<=0 (i.e., n is pointing toward the observer
who is in the -z direction), the edges of the face are plotted in lines 75-78 and the face is
shaded in loop 79-84. Line 79 ranges h, shown in Figure 7-11, from 0 to qad, the distance
from corner a to d, which was calculated in line 58, in steps of 1. Lines 80-81 calculate
the x and y coordinates of the beginning of the line; lines 82 and 83 get the coordinates
of the end of the line. Line 84 plots the line. In line 84, alpha is equal to the intensity of
the shading that was determined in line 73. The box’s color is equal to clr, which was
specified in line 27; for example, color="k" will give a black box. An alternative would
be to mix primary colors as shown in line 28. This produces the purple box shown in
Figure 7-8. To get this color, just remove the #, which indicates a comment, in line 28;
otherwise, the shading will be done in black. I will discuss color mixing in more detail in
the next section. The maximum intensity Io is specified in line 29. This can be anything
between 0 and 1. If nz>0 (i.e., n is pointing away from the observer), the face is not
plotted. The remainder of Listing 7-1 should be familiar.

Figure 7-8. Shaded box produced by Listing 7-1, (1,8 b)=(.5,0.,5) color
mixing, Io=1.0
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Figure 7-12. Plane 1,5,6,2

Listing 7-1. Program SHADEBOX
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SHADEBOX

import numpy as np
import matplotlib.pyplot as plt
from math import sin, cos, radians, sqrt

# lists
x=[-20,20,20,-20,-20,20,20,-20]
y=[-10,-10,-10,-10,10,10,10,10]
z=[5,5,-5,-5,5,5,-5,-5]

xg=[0]*1en(x)
yg=[0]*1en(x)
zg=[0]*1en(x)

# parameters
xc=75 #———center coordinates

yc=50

zc=50

Ix=.707 #—1light ray unit vector components
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define rotation

24 ly=.707

25 1z=0

26

27 clr="k' #—use this for black monochrome images, or use another color
28 #clr=(.5,0,.5) #—use this to mix colors, this mix produces purple
29 Io=.8 #—max intensity, must be 0 < 1

30

31
S S —
functions

32 def rotx(xc,yc,zc,xp,yp,zp,Rx):

33 Xpp=xp

34 ypp=yp*cos(Rx)-zp*sin(Rx)

35 zpp=yp*sin(Rx)+zp*cos(Rx)

36 [xg,yg,zg]=[xpp+xc,ypp+yc, zpp+zc]

37 return[xg,yg,zg]

38

39 def roty(xc,yc,zc,xp,yp,zp,Ry):

40 xpp=xp*cos (Ry)+zp*sin(Ry)

41 ypp=yp

42 zpp=-xp*sin(Ry)+zp*cos(Ry)

43 [xg,Y8,28]=[xpp+xc,ypp+yc,zpp+zc]

44 return[xg,yg,zg]

45

46 def rotz(xc,yc,zc,xp,yp,zp,Rz):

47 xpp=xp*cos(Rz)-yp*sin(Rz)

48 ypp=xp*sin(Rz)+yp*cos(Rz)

49 Zpp=zp

50 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

51 return[xg,yg,zg]

52

53 {#{==============================================================shading
54 def shade(ax,ay,az,bx,by,bz,cx,cy,cz,dx,dy,dz):

55 a=dx-ax

56 b=dy-ay
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57 c=dz-az

58 qad=sqrt(a*a+b*b+c*c)

59 ux=a/qad

60 uy=b/qad

61 uz=c/qad

62 a=bx-ax

63 b=by-ay

64 c=bz-az

65 qab=sqrt(a*a+b*b+c*c)

66 vx=a/qab

67 vy=b/qab

68 vz=c/qab

69 nx=uy*vz-uz*vy

70 ny=uz*vx-ux*vz

71 nz=ux*vy-uy*vx

72 ndotl=nx*1x+ny*ly+nz*1z

73 I=.5*Io*(1+ndotl)

74 if nz<=0:

75 plt.plot([ax,bx],[ay,by],color="k",linewidth=1)
76 plt.plot([bx,cx],[by,cy],color="k",linewidth=1)
77 plt.plot([cx,dx],[cy,dy],color="k",linewidth=1)
78 plt.plot([dx,ax],[dy,ay],color="k",linewidth=1)
79 for h in np.arange(0,qad,1):

80 x1s=ax+h*ux

81 yls=ay+h*uy

82 xle=bx+h*ux

83 yle=by+h*uy

84

plt.plot([xls,xle],[yls,yle],linewidth=2,alpha=I,

color=clr)

85

86 #=============================================================
87 def plotbox(xg,yg,zg):

88

shade(xg[0],yg[0],zg[0],xg[1],yg[1],2zg[1],xg[2],yg[2],2g[2],xg[3],yg[3],2g[3])
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89
shade(xg[7],yg[7],2g[7],xg[6],yg[6],2g[6],xg[5],ygl5],28[5],xg[4],ygl4],
zg[a])

90
shade(xg[o],yg[o],zg[0],xg[3],yg[3],28[3],xg[7],yel7],28[7],xg[4],ygl4],
zg[4])

91
shade(xg[1],yg[1],2g[1],xg[5],yg[5],2z8[5],xgl6],ygl6],28[6],xg[2],yg[2],
zg[2])

92
shade(xg[3],yg[3],2g[3],xg[2],yg[2],2g[2],xg[6],ygl6],28[6],xg[7],yg[7],
zg[7])

93
shade(xg[4],yg[4],zg[4],xg[5],yg[5],28[5],xgl1],ygl[1],2g[1],xg[0],yg[0],
zg[o])

94

95 plt.axis([0,150,100,0]) #—plot axes and grid

96 plt.axis('off")

97 plt.grid(False)

98 plt.show() #—plot latest rotation

99

100 #============================================================

101 def plotboxx(xc,yc,zc,Rx): # transform and plot Rx

102 for i in range(len(x)):

103

[xgli],ygli],zg[i]]=rotx(xc,yc,zc,x[1],y[1],2[i],Rx)

104 [X[i1,y[1],2[1]]=[xg[i]-xc,ygl1]-yc, zg[ i]-zc]

105

106 plotbox(xg,yg,zg) # plot

107

108 def plotboxy(xc,yc,zc,Ry):

109 for i in range(len(x)): # transform and plot Ry

110 [xg[i],ygli],zgli]]=roty(xc,yc,zc,x[1],y[1i],z[i],Ry)

111 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

112
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113 plotbox(xg,yg,zg)
114
115 def plotboxz(xc,yc,zc,Rz):

116 for i in range(len(x)): # transform and plot Rz
117 [xg[i],ygli],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)
118 [x[1],y[i],2z[1]]=[xg[1i]-xc,yg[i]-yc,zg[i]-zc]
119

120 plotbox(xg,yg,zg)

121

122 # input

123 while True:

124 axis=input('x, y or z?: ') #—input axis of rotation (lower case)
125 if axis == 'x': #-if x axis

126

Rx=radians(float(input('Rx Degrees?: '))) #—input degrees
127 plotboxx(xc,yc,zc,Rx) #—call function plotboxx
128 if axis == "y':

129

Ry=radians(float(input('Ry Degrees?: '))) #—input degrees
130 plotboxy(xc,yc,zc,Ry)

131 if axis == 'z':

132

Rz=radians(float(input('Rz Degrees?: '))) #—input degrees
133 plotboxz(xc,yc,zc,Rz)

134 if axis == ":

135 break

Shading a Sphere

In the previous section, you shaded a box using a simple linear relation for the shading
function where the intensity of the shading, I, was linearly related to the dot product n 1.
In this section, you will be mixing the three primary colors and controlling the intensity
of each with a non-linear shading function. Results are shown in Figure 7-13, which was
produced by Listing 7-2.
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Figure 7-13. Shading a sphere by color mixing with a non-linear intensity
function (produced by Listing 7-2)

Nonlinear shading functions are shown as the red, green, and blue curves in
Figure 7-14; the linear one is black. The non-linear functions give more control over the
shading and can produce more realistic effects. They allow you to control the shading
by amplifying and extending the lighter shaded areas while more rapidly increasing
the transition of intensity into the darker areas. The linear shading function is similar
to the one used in Listing 7-1, except that it now starts at I=IA where IA may be greater
than zero. The curves begin at I=IA and terminate at I=IB where n 1 =+1.1Aand IB
are parameters that can be adjusted in Listing 7-2. IA>0 will darken the lights. This is
sometimes necessary since the tones, when I=0 or close to it, may not transition well to
higher regions of I; discontinuities can sometimes be observed. To correct this, start the
intensity function at some small value of IA greater than 0. Increasing IA can also be a
technique for reducing the brightness of light areas.

Note the difference between n- ip and n-1 in Figure 7-14. To get a relation for I vs.
n-l , you let the function be of the form

I=C, +C, (ﬁ-ip)" (7-5)
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where C, and C, are constants and n is a parameter. n can be changed in the
program. Noting that I=IA at n-1lp =0,

IA=C, +C,(0)" (7-6)
C =Ia (7-7)

At a-lp =+2, (A1 =+1), I=IB,
IB=1A+C,(2)" (7-8)
c,- IB—n A (7.9)

2
With a-lp=n-1+1,

I=IA+(IB—IA)(ﬁ'i2+1Jn (7-10)

Equation 7-10 is your intensity function, I(ﬁ . i) . You thus have three parameters
with which to adjust I: TA, which regulates the intensity of the lightest areas; IB, which
adjusts the darkest areas; and n, which adjusts the transition from light to dark. Higher
values of n will produce a more rapid transition. Figure 7-14 shows curves for n=1, 2, 3,
and 4. When n=1, the curve becomes linear. There are no definite values for n, IA, and
IB; they should be adjusted by trial and error to give visually appealing results.

Regarding colors, the background shown in Figure 7-13 is 'midnightblue’. A
good source for color samples is #https://matplotlib.org/examples/color/named
colors.html.

Listing 7-2 creates a sphere by plotting longitudes and latitudes as you did in
Listing 6-4. In Listing 6-4, these were spaced six degrees apart. To carry out the shading
in Listing 7-2, you will space the longitudes and latitudes closer together, two degrees
apart. This creates 180x180=32,400 surface patches between the longitudes and
latitudes. Assume each patch is flat. The intensity of color of each patch will depend on
the angle between a local unit vector normal to the patch n and the light source unit
vector 1 at each point on the surface. This will then be used to control the relative ,g,b
contributions to the color mix. As before, you establish this relation by taking the dot
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product n 1. h ateach point is determined quite simply by obtaining a vector from the
sphere’s center to the point in question on the sphere’s surface and then dividing by the
sphere’s radius, rs. For example, suppose you are at a point p on the sphere’s surface with
coordinates xp,yp,zp. A vector Vp from the sphere’s center at xc,yc,zc to p is

Vp:(xp—xc)i+(yp—yc)§+(zp—zc)f( (7-11)

Vp is normal to the surface at p. A unit normal vector, n, is then

(o (e (o -

rs rs rs

where rs is the sphere’s radius. Taking the dot product of n in Equation 7-12
with the incoming light unit vector | gives n 1 , which you need to determine I from
Equation 7-10.

In Listing 7-2, lines 22-24 set the components of the incoming light’s unit vector.
Lines 26-28 set the intensity function parameters. These values produce Figure 7-13.
Lines 37-39 paint the background with dots. Lines 61-101 plot the longitudes. Note in
lines 69 and 70 that dalpha and dphi have been added to alpha2 and phi2 since roundoff
errors in the np.arange() function can sometimes fail to close the sphere; this assures
it closes. Lines 86-92 determine the components of the n at the current values of alpha
and phi. Line 93 calculates the dot product n 1 ; line 94 calculates the intensity.

In line 99, the attribute 1inewidth has been increased to 4. When combined with
the angular spacing of two degrees in lines 63 and 67, this ensures there are no gaps
in the surface. Also in line 99, the color statement shows red at 100 percent, green at
80 percent, and blue at 40. The (I-1) factor reflects the impact of the shading function.
Recall that when the color mix is (0,0,0), black is produced; conversely, when the mix is
(1,1,1), white is produced. Since you want darks where I is close to or equal to 1 (facing
away from the light source), the (I-1) factor accomplishes this since it equals 0 when I=1
producing black. If you did not include the (I-1) factor, the mix (1,.8,.45) would simply
produce an unshaded round rusty orange disc.

Raising B or lowering A in Figure 7-14 will increase the visual appearance of shading.
Doing the reverse will decrease it.
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Figure 7-14. Nonlinear shading function

Listing 7-2. Program SHADESPHERE

SHADESPHERE

import numpy as np
import matplotlib.pyplot as plt
from math import sin, cos, radians, sqrt

O 0N O LT B W N B

plt.axis([0,150,100,0])
plt.axis('off")
plt.grid(False)

[ Y
N P O

# lists
g=[0]*3

P N
o v MW
++

parameters
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17 xc=80 #——sphere center
18 yc=50
19 zc=0
20 1s=35 #——sphere radius

22 1x=.707 #—1light ray unit vector components
23 ly=.707
24 1z=0

26 IA=.01 #——define curve
27 IB=1
28 n=2.°

30 clrbg="midnightblue' #—background color
32 Rx=radians(-15) #—sphere angles of rotation

33 Ry=radians(0)
34 Rz=radians(30)

35

36 # paint background color

37 for x in np.arange(0,150,1):

38 for y in np.arange(0,100,1):

39 plt.scatter(x,y,s=10,color="clrbg")
40

41
S ————
functions

42 def rotx(xc,yc,zc,xp,yp,zp,Rx):

43 g[0]=xp+xc

44 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc

45 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc

46 return[g]

47

48 def roty(xc,yc,zc,xp,yp,zp,Ry):

49 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc

rotation

SHADING
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50
51
52
53
53
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

258

gl1]=yp+yc
g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc
return[g]

def rotz(xc,yc,zc,xp,yp,zp,Rz):
g[0]=xp*cos(Rz)-yp*sin(Rz)+xc
g[1]=xp*sin(Rz)+yp*cos(Rz)+yc
g[2]=zp+zc
return[g]

# longitudes
phil=radians(-90)
phi2=radians(90)
dphi=radians(2)

alphal=radians(0)
alpha2=radians(360)
dalpha=radians(2)

for alpha in np.arange(alphai,alpha2+dalpha,dalpha):
for phi in np.arange(phi1,phi2+dphi,dphi):
xp=rs*cos(phi)*cos(alpha)
yp=rs*sin(phi)
zp=-rs*cos(phi)*sin(alpha)
rotx(xc,yc,zc,xp,yp,zp,Rx)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xc,yc,zc,xp,yp,zp,Ry)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xc,yc,zc,xp,yp,zp,Rz)
xpg=g[0]
ypg=g[1]
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85 zpg=g[2]

86 a=xpg-xc

87 b=ypg-yc

88 c=zpg-zc

89 gp=sqrt(a*a+b*b+c*c)

90 nx=a/qp

91 ny=b/qp

92 nz=c/qp

93 ndotl=nx*1x+ny*ly+nz*1z
94 I=IA+(IB-IA)*((1+ndotl)/2)**n
95 if phi == phi1:

96 xpglast=xpg

97 ypglast=ypg

98 if nz ¢ 0:

99

plt.plot([xpglast,xpgl],[ypglast,ypg],linewidth=4,
color=((1-I),.8%(1-I),.45%(1-I))

100 xpglast=xpg

101 ypglast=ypg

102

103 # latitudes

104 for phi in np.arange(phii,phi2+dphi,dphi):
105 r=rs*cos(phi)

106 for alpha in np.arange(alphai,alpha2+dalpha,dalpha):
107 xp=r*cos(alpha)

108 yp=rs*sin(phi)

109 zp=-rs*cos(phi)*sin(alpha)

110 rotx(xc,yc,zc,xp,yp,zp,Rx)

111 xp=g[0]-xc

112 yp=g[1]-yc

113 zp=g[2]-zc

114 roty(xc,yc,zc,xp,yp,zp,Ry)

115 xp=g[0]-xc

116 yp=g[1]-yc

117 zp=g[2]-zc

SHADING
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118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

rotz(xc,yc,zc,xp,yp,zp,Rz)

xpg=g[0]

ypg=g[1]

zpg=g[2]

a=Xxpg-Xc

b=ypg-yc

c=zpg-zc

gp=sqrt(a*a+b*b+c*c)

nx=a/qp

ny=b/qp

nz=c/qp

ndotl=nx*1x+ny*ly+nz*1z

textbfI=IA+(IB-IA)*((1+ndotl)/2)**n

if alpha == alpha1:
xpglast=xpg
ypglast=ypg

if nz < 0:

plt.plot([xpglast,xpgl],[ypglast,ypg],linewidth=4,
color=((1-I),.8%(1-I),.45%(1-I)))

136
137
138

139 plt.show( )

Summary

While adding a background color can greatly enhance the visual appearance of an
object, shading can also be quite effective. In this chapter, you learned techniques for
shading an object. Shading implies the presence of an illuminating light source. In your
model, you used the direction of the light rays coming from a source but you did not
specify the position of the source. In Listing 7-1, you explored the concept of a shading
function as shown in Figure 7-10 and how it determines the intensity of shading on

a plane. This depends on the orientation of the plane relative to the direction of the
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incoming light rays, which is determined by taking the dot product of a unit vector
normal to the surface, n, with a unit vector pointing in the direction of the light rays, 1.
In Listing 7-2, you performed the same shading operations on a sphere. The sphere was
assumed to be composed of 32,400 flat planes. However, you improved on the shading
function. Whereas in Listing 7-1 you used a simple linear relation between the shading
intensity and the dot product n- i, in Listing 7-2 you used a nonlinear relation, as
shown in Figure 7-14. This greatly improves the appearance of the shading. Changing
the vertical positions of A and B in Figure 7-14 will increase or decrease the degree of
shading. You can adjust these to obtain whatever degree of shading you prefer.

261



CHAPTER 8

2D Data Plotting

In this chapter, you will look at styles and techniques for plotting two-dimensional data.
You will start with some simple plots and then progress to those that include multiple
sets of data on the same plot. While Python contains specialized built-in functions that
can be quite efficient at this, usually requiring only a few lines of code, you will find that
you can embellish your plots by taking a more hands-on approach and being creative
by supplementing the specialized Python functions with simple Python commands.
For example, the plot in Figure 8-1 requires only three lines of specialized code after
the setup and data has been entered. Figure 8-5, on the other hand, can be a challenge
to create using just specialized Python commands, but that is how it has been done by
Listing 8-5. The use of simple commands, plus a little creativity, can often make the job
much easier and produce better results. Following simple data plots, you will move on
to linear regression where you fit a straight line to a data set. You will then see how to fit
non-linear mathematical functions to the data. The last thing you explore is splines.

A spline is a smooth curve that passes through each data point.

Figure 8-1 shows a plot of a mathematical function. This plot was created by
Listing 8-1. In it, line 13 sets the numerical range of the x axis, which in this case goes
from 0 to 150 in steps of 1. This means the function will be plotted over that range. The
axis definition in line 8 has the same limits, but they could be different. For example,
ifline 8 was plt.axis([0,200,0,100]), the width of the plotting area would be 200
but the function would still be plotted from 0 to 150. This combination would position
the function plot toward the left side of the plotting area. The limit of the y axis, as
specified in line 8, is 100. As explained in Chapter 1, in the past we wanted the range of
the x axis to be 150% that of the y axis. This was to ensure a square appeared as a square
and not a rectangle and a circle appeared as a round circle and not an ellipse. But with
data plotting, where there are usually no squares or circles, that may not be necessary.
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The function being plotted is defined in line 14. This is a simple exponential function
of yl vs. x. Line 17 plots it in blue and attaches the label y1, which will be used by the
legend() function in line 20. In line 20, loc equals the location of the legend, which
can be any combination of upper, middle, lower combined with left, center, right. Here
you are using 'upper left'.Ifyou specify 'best’, Python will determine the best
location for it. As you can see, lines 13, 14, and 17 comprise essentially the entire plotting

operation.

100 . T T T T . T
— Temperature

0 1 | 1 | 1 1 L
0 20 40 60 80 100 120 140

Figure 8-1. Data plot produced by Listing 8-1

Listing 8-1. Program DATAPLOT1

DATAPLOT1
import numpy as np

plt.axis([0,150,0,100])

1
2
3
4
5 import matplotlib.pyplot as plt
6
7
8
9 plt.axis('on")
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10 plt.grid(True)

11

12 #————define function y1 vs x
13 x=np.arange(0,150,1)

14 y1=10+np.exp(.035%x)

15

16 #—— plot y1 vs x

17 plt.plot(x, y1,'b’',label="y1')
18

19 #——-plot the legend
20 plt.legend(loc="upper left')
21

22 plt.show()

In Listing 8-2, you plot two functions, y1 and y2, on the same plot. Lines 18 and 19
do the plotting. You add the labels Temperature and Pressure, which will be used by the
legend() function. In line 25, you add marker="s", which plots a square at each data
point of the temperature curve; marker="*" in line 26 plots a star at each point of the
pressure curve. There are other marker styles available at https://matplotlib.org/
api/markers_api.html.

In Figure 8-2, note that the horizontal range of the data plots (20-140) is smaller than
the x axis plotting width (0-150). Having the data not bump into the edges of the plot can
sometimes make it more readable. To have the data plots span the entire width of the
plot, simply change line 8 to plt.axis([20,140,0,100]). Similarly, the range of the y
values can be changed.
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100 . : . T . T

— Temperature
— Pressure

0 1 1 1 1 L
0 20 40 60 80 100 120

Figure 8-2. Data plot produced by Listing 8-2

Listing 8-2. Program DATAPLOT2

DATAPLOT2

import numpy as np

plt.axis([0,150,0,100])
plt.axis('on")

10 plt.grid(True)

11

12 # define data points

13 x=[20,40,60,80,100,120,140]

14 y1=[30,50,30,45,70,43,80]

15 y2=[45,35,40,60,60,55,70]

16

1
2
3
4
5 import matplotlib.pyplot as plt
6
7
8
9
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17 # plot lines with labels
18 plt.plot(x,y1,'b’',label='Temperature')
19 plt.plot(x,y2,'r',label="Pressure’)

20

21 #=————1legend

22 plt.legend(loc="upper left')
23

24 #————————add markers

25 plt.scatter(x,y1,color="b',marker="s")

26 plt.scatter(x,y2,color="r",marker="*",s=50)
27

28 plt.show()

In Listing 8-2, you display two functions, temperature and pressure, against one
y axis. This assumes, of course, the values on the y axis are appropriate for both T and p.
But what if the values of pressure were either much larger or much smaller than
temperature? The plot of pressure might go off the chart or be too small to be discernible.
What you need are two vertical scales, one for temperature and another for pressure.

In Listing 8-3, you lower the pressure values as shown in line 14. If plotted against
the same vertical scale used for temperature, they would appear too low on the plot. You
can remedy this by introducing a second vertical axis with Temperature on the left side
and Pressure on the right. Lines 17-20 plot the temperature data. Line 20 allows you to
change the color of the vertical tick marks to any color, red in this case. Line 21 plots a
legend in the upper left corner. Lines 24-27 plot a second scale on the right side of the
plot. Line 24 establishes a “twin” plotting axis. This twin includes the already established
horizontal x axis plus a new vertical y axis on the right side. The rest of the commands in
this group refer to this second y axis. Line 26 labels this axis as Pressure. Line 27 changes
the tick marks and numbers to blue. Line 28 plots a second legend at the upper right.

If you try to plot a single legend for both temperature and pressure, you find the results
depend on where in the code you place the legend() function. If you use two separate
legends(), as you are doing here, and locate them at the same position, say upper left,
one will overwrite the other. If you try using just one legend() at the end of the code, it
displays a legend with only the pressure shown. See Figure 8-3. In the next program, you
will see a way around this problem.
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100 ' ' Téstﬂfsuns

T T

— Temperature — Pressure

LN

Temperature

0 1 1 1

20 40 60 80 100 120
Time

Figure 8-3. Data plot produced by Listing 8-3

Listing 8-3. Program DATAPLOT3

DATAPLOT3

import numpy as np

plt.axis([0,140,0,100])

plt.axis('on")
10 plt.grid(True)
11
12 t=[20,40,60,80,100,120,140] #—Time
13 T=[30,33,37.5,44,55,70,86] #—Temperature
14 p=[1.8,2.3,3,4,5.4,7.3,9.6] #—Pressure
15
16 #

1
2
3
4
5 import matplotlib.pyplot as plt
6
7
8
9

Plot T vs t in red on the left vertical axis.
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plt.plot(t,T,color="r",label="Temperature")
plt.xlabel('Time")
plt.ylabel('Temperature',color="r")
plt.tick} params(axis="y',labelcolor="r")
plt.legend(loc="upper left")

# Plot P vs t in blue on the right vertical axis.
plt.twinx()

plt.plot(t,p,color="b",label="Pressure")
plt.ylabel('Pressure', color='b")

plt.tick params(axis="y', labelcolor='b")
plt.legend(loc="upper right")

# title the plot
plt.title('Test Results')

plt.show()

In Listing 8-4, you try to resolve the legend() issue you encountered in the previous

program. Line 12 sets up a plot called ax1 that will include a subplot. Line 14 plots a grid.

Lines 8-10 set up the data lists. Line 16 labels the x axis. Line 18 plots the Temperature

curve in red and names it 11. Line 20 sets the scale limits on the left vertical axis, which

will range from 0 to 100. Line 21 labels it in red. Line 23 sets up a twin() second vertical

axis (which includes the x axis) as ax2. Line 25 plots it in blue as the curve 12. Line 27 sets

the scale limits to 0-10. Line 28 labels it. Lines 30 and 31 specify the curves that are to

appear in the legend. Line 32 plots the legend. The syntax looks a bit cryptic but it works,

asyou can see in Figure 8-4.
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100 . Test F)ata

— Temperature

— Pressure

Temperature (*K)

0 1 1 1 1 1 0
0 20 40 €0 80 100 120

Time (hrs)

Figure 8-4. Data plot produced by Listing 8-4

Listing 8-4. Program DATAPLOT4

DATAPLOT4

import matplotlib.pyplot as plt
import numpy as np

t=[0,20,40,60,80,100,120]
T=[28)30,35)43)55)70,85]
p=[108,2'3)3)4)5.4,7'3,906]

O 0N O LT B W N B

[ Y
N P O

fig, ax1 = plt.subplots() #—set up a plot ax1 with subplots

[N
B~ W

plt.grid(True) #—-draw grid

[N
o wu

axl.set xlabel('Time (hrs)') #—1label X axis of axi

=
~
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18 l1=plt.plot(t,T,'r',label="Temperature') #—plot temperature in red as
curve 11

19

20 ax1.set ylim([0,100]) #—set Y axis limits of ax1

21 ax1.set ylabel(r'Temperature (° K)', color="r') #—1abel Y axis of ax1

22

23 ax2 = axl.twinx() #—set up ax2 as twin of ax1

24

25 12=plt.plot(t, p, 'b',label='Pressure') #—plot pressure in blue as
curve 12

26

27 ax2.set_ylim([0,10]) #—set Y axis limits of ax2

28 ax2.set_ylabel('Pressure (psi)', color="b') #—1label Y axis of ax2

29

30 linel,=plt.plot([1],label="Temperature',color="r') #—1Iline 1 of legend

31 line2,=plt.plot([2],label="Pressure’,color="b") #

—1line 2 of legend

32 plt.legend(handles=[1ine1,1ine2],loc="upper left') #—plot legend

33

34 plt.title('Test Data')

In Listing 8-5, you plot multiple curves while giving each its own vertical scale. Lines
12-14 define lists for time, temperature, and pressure data. In line 15, you introduce a
third dependent variable, volume v. Line 17 opens a new list called pp=[ |, which will be
used to vertically scale the pressure data. You could simply scale and replace the items
in p=[ | but then you would destroy the original values. That would not be a problem in
this program but it’s good practice to leave them unchanged in case you want to modify
them later. Lines 18-19 scale the original Pressure values contained in p by a factor of
10 and append them to pp. The same is done for v in lines 21-23 where volume data is
scaled by a factor of 100. Lines 25-28 plot the curves and plot a legend. Lines 30-33 plot
the pressure scale on the right y-axis in blue. Lines 35-37 label the three axes. Lines 39-43
plot the volume scale values in green. Lines 45-46 plot the vertical green axis. This is
accomplished by plotting the character | as text up the right side. Normally you would
want to plot a single line from the vertical volume axis from top to bottom but Python
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does not permit plotting lines or scatter dots outside the main plotting area. It does,
however, allow text. So you construct a vertical line from a series of | marks. You could
add more vertical axes in this manner if you wished. See Figure 8-5.

The approach used in this program is more hands-on than before. Previous
programs relied mostly on specialized Python syntax. The advantage to this approach
is that it works, it’s quite flexible, and it doesn’t require many more lines of code. This
blend of Python syntax along with a creative use of hands-on techniques is actually quite
powerful. Sometimes it pays to think outside the box.

100 ‘ (Eompres‘sDn Teslt Resultls . 00 _10
—e Temperature
o | =—8 Pressure |80 _08
+— Volume
) = —
I I ]608 |-06 E
v 60 "--——__‘__‘__‘_ % ~
= 5 ¥
® 2 5
v n =)
% 40 | 40 E -Vs 5
L1
}_.
20 | 120 -0.2
o L L [ | 1 | DO - C O
0 20 40 60 80 100 120 140

Time (hrs)

Figure 8-5. Data plot produced by Listing 8-5

Listing 8-5. Program DATAPLOT5

DATAPLOT5S

import matplotlib.pyplot as plt
import numpy as np

plt.axis([0,140,0,100])
plt.axis('on")
10 plt.grid(True)

O 00 N O U1 &~ W N P
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t=[20,40,60,80,100,120] #—time
T=[30,35,43,55,70,85] #—temperature
p=[2,3,4,5.3,7.3,9.6] #—pressure
v=[.6,.58,.54,.46,.35,.2] #—volume

pp=[ ] #—1ist for scaled pressure for plotting
for i in np.arange(0,len(p),1):
pp.append(p[i]*10) #—scale p by 10

vv=[ ] #—1list for scaled volume for plotting
for i in np.arange(0,len(v),1):
vv.append(v[i]*100) #—scale volume by 100

plt.plot(t,T,color="r",label="Temperature',marker="0") #—plot
temperature

plt.plot(t,pp,color="b",label="Pressure’,marker="s"') #—plot scaled
pressure

plt.plot(t,vv,color="g",label="Volume',marker="d") #—plot

scaled volume

plt.legend(loc="upper left')

for y in np.arange(0,100+1,20): #—plot pressure scale values
a=y/10
a=str(a) #—convert to string for plotting as text
plt.text(142,y,a,color="b")

plt.xlabel('Time (hrs)') #—1abel axes
plt.ylabel('Temperature °K',color="r")
plt.text(151,65, 'Pressure (psi)',rotation=90,color="b")

for y in np.arange(100,-1,-20): #—plot volume scale values
a=y/100
a=str(a)
plt.text(162,y,a,color="g")
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43 plt.text(159,y+2,' ',color="'g")
44

45 for y in np.arange(1,99,3):

46 plt.text(157,y, '-',color="g")
47

48 plt.text(170,65,r'Volume (cm3)',rotation=90,color="g") #—1abel
volume scale

49

50 plt.title('Compression Test Results') #-title

51

52 plt.show()

Linear Regression

Linear regression is the process of fitting a best straight line to a set of data points.
Best in this context means the line has minimum error with the data points. Referring
to Figures 8-6 and 8-7, the objective is to determine the parameters A and B of a
straight line,

y=Ax+B (8-1)

that result in a best fit to the data points. B is the y axis intercept of the line and A is
its slope. Each data point i has coordinates x,, y;. Each has error e; with respect to the line.
The best fit of the line to the data points will be the one where A and B result in

Zeiz = minimum (8-2)

i=1

where e(i) is the vertical deviation of data point i from the regression line as shown
in Figure 8-7, n is the number of data points. This is equivalent to bringing the RMS error
to a minimum. e; is squared in Equation 8-2 to account for negative values of e,. It can be
shown that Equation 8-2 is satisfied when

4G -nC G, (8:3)
C,-nCC,
B=C, - AC, (8-4)
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C = thl. (8-5)
n n=1

C, =3, (8-6)
n n=1 '

Cy=>wt, (8-7)
n=l1

C, =1, (8-8)
n=1

In Listing 8-6, the regression routine has been added to Listing 8-5 beginning at
line 52. It fits a regression line to the green Volume curve. Lines 55-60 calculate the
coefficients C1-C4 defined above. np.sum() in line 55 sums the elements in list t.
np.multiply() inline 57 multiplies the elements in lists v and t element by element,
producing the list a. Line 58 then adds the elements in a. Lines 62 and 63 calculate A and
B in accordance with Equations 8-3 and 8-4. Lines 65-68 plot the regression line using
scatter dots; line 66 calculates values of v vs. t as vp, the plotting value of v; line 67 scales
vp by 100 for plotting; line 68 does the plotting.

Equation 8-2 states that minimizing e(7)? is equivalent to minimizing the RMS value.
The RMS value is

1

RMS = M (8-9)

n

This is calculated in lines 71-76. e(i) is calculated in line 73. It is squared in line 74
as ee and then summed in line 75 as sumee, producing the numerator in Equation (8-9).
RMS is calculated in line 76 in accordance with Equation 8-9. It’s obvious that
minimizing Xe(i)? is equivalent to minimizing the RMS value.

The remainder of the program places labels and values on the plot. Line 83 reduces
the number of digits of vp1, the beginning value of the regression line; line 84 plots it.
Lines 86-88 plot the end value. A and B (Ap and Bp) are similarly plotted in lines 90-96.

There are other ways in Python to reduce the number of digits besides the syntax
used in line 83. However, if the number being shortened is negative, the minus sign may
not appear on the output. This could be a problem with some versions of Python.
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Figure 8-6. Straight line fit to the volume curve produced by Listing 8-6

Find A, B to minimize 3 ¢’

Figure 8-7. Model used by Listing 8-6 showing data points 1,2,3,4...i with straight
line fit. e=error from straight line for data point i

Listing 8-6. Program REGRESSION1

1 mmon
2 REGRESSION1
3 nun

#t———  same as DATAPLOTS
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55
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58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
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# straight line fit to Volume v vs t
n=len(v)

ci=np.sum(t)/n #—sum values of list t and divide by n, =average of t
c2=np.sum(v)/n #—sum values of list v and divide by n, =average of v
a=np.multiply(v,t) #—multiply list v by t element by element = list a
c3=np.sum(a) #—sum elements of a
a=np.multiply(t,t) #—multiply list t by t element by element = list a
c4=np.sum(a) #—sum elements of a

A=(c3-n*c1*c2)/(c4-n*c1*c1) #—1ine parameters A and B
B=c2-A*c1

for tp in np.arange(t[o0],t[5],2): #—plot line with scatter dots
vp=A*tp+B
vp=vp*100 #—scale vp for plotting
plt.scatter(tp,vp,color="g"',s=1)

# calculate RMS error
sumee=0
for i in range(len(t)):
e=(v[i]-(A*t[i]+B))
ee=e*e
sumee=sumee+ee
rms=np.sqrt(sumee/n)

# labels
plt.text(60,28, 'v=At+B',color="g")
plt.arrow(78,30,6,6,head length=3,head width=1.5,color="g",linewidth=.5)

vpl=A*t[0]+B #
vpl="%7.4f"%(vpl) # reduce the number of decimal places
plt.text(2,64,vpl,color="g"') #—plot

beginning v value of line
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85

86 vp2=A*t[5]+B #
87 vp2="%7.4f'%(vp2)

88 plt.text(122,25,vp2,color="g")

89

90 Ap="%7.5F"'%(A)

91 plt.text(65,18, 'A=",color="g")

92 plt.text(72,18,Ap,color="g") #—print value of A

93

94 Bp="%7.5'%(B)

95 plt.text(65,12,'B=",color="g")

96 plt.text(73,12,Bp,color="g"') #—print value of B

97

98 rms="%7.3f"%(xms)

99 plt.text(95,3, 'RMS error=",color="g")

100 plt.text(123,3,rms,color="g"') #—print RMS error
101

102 plt.show()

end v value of line

Function Fitting

In Listing 8-6, you plotted a straight line to fit data points that represented measurements
of volume vs. time. You were fortunate that there was an analytic solution to this problem
represented by Equations 8-2, 8-3, and 8-5. In this section, you will fit an arbitrary
function to the same data set. The function is user-defined; that is, you can specify any
function you want, whatever you think will give a good fit. In Listing 8-7, you will try the
relation

v=Ax>+B (8-10)

As in the previous section, your task is to find the values of A and B that produce the
best fit of this function to the data points. Since you want to be able to use any arbitrary
function, it would obviously not be time-effective to derive a closed-form mathematical
solution to the problem for every function you wish to try. Here you will use a brute
force approach that involves calculating the values of the parameters A and B in
Equation 8-10 for many values of A and B within the expected range of both that results
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in minimum RMS error. This is a hands-on approach; some insight into the problem
is required. For example, inspection of the v(t) curve in Figure 8-8 and Equation 8-10
indicates that parameter B in Equation 8-10, which is the V axis (green) intercept at
t=t[0], should lie somewhere between .5 and .7. Similarly, you can assume that A will
be very small since Equation 8-10 involves squares of t, which have values as large as
t[5]=120. You can also see by inspection that A should be negative. So you can try a range
for A of -.001 to 0. Calculate the error for many combinations of values of B between .5
and .7 and A between -.001 and 0. This will give you the A and B corresponding to the
almost lowest error between those ranges. I say the “almost” lowest error because, when
cycling between the expected ranges of A and B, you do so in small steps. The finer
those steps are, the more accurate your final solution will be. While there are automatic
iteration techniques that you could use, the process described here is simpler to code
but requires hands-on iteration by the user. It works as follows: after guessing initial
ranges for A and B, when you get the results, you can make another run with refined
values by either closing, opening, or shifting the ranges. You can also change the search
increments dB (line 61) and dA (line 64). With just a few of these manual iterations you
should be able to get a solution to whatever accuracy you need.

Referring to Listing 8-7, most of it is the same as Listing 8-6. Lines 59-64 define the
limits of the search routine B1 and B2, which are the start and end of the B range; Al
and A2 of the A range. dB and dA are the increments. Smaller increments will give more
accurate results but will require more processing time. The two nested loops beginning
in lines 70 and 71 search first through the B range and then, for each value of B, through
the A range. At each combination of A and B the loop starting at line 73 cycles through
all the data points, len(t) (=len(v)). Line 74 calculates the error between each data point
and the assumed function Equation 8-10; line 75 squares it and line 76 sums the square
of the errors in accordance with Equation 8-2. The sum was initially set to zero in line 72.
Line 77 says, if the sum of the squares produced by the current combination of A and B
is less that the previously calculated sum, then you replace that value with the present
one and set the current values of A and B to Amin and Bmin, the values that correspond
to the current lowest error. When the A and B loops are first cycled, eemin in line 76 is
unknown. It is set to a very high value in line 56. This ensures that the first eemin will be
less. After the first cycle, it will take on the value corresponding to the latest combination
of A and B that produces the lowest value of sumee. The end result of all this is the values
of A and B that produce the lowest error between the data points and the assumed
function. They are Amin and Bmin. Lines 86-89 plot the function using Amin and Bmin
in line 87. Lines 92-97 calculate the corresponding RMS error.
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Figure 8-6 shows a straight-line approximation to v(t) and the RMS error of .042, as
can be seen printed on that plot. With the non-linear function Ax*>+B, the RMS error is
.0132, which is considerably lower.

The remainder of the program places labels on the plot. As you can see from
Figure 8-8, the limits of A and B that were set in lines 59-64 are printed in black on the
plot as A1, A2, B1, and B2. The values found by the program that result in the lowest error
are printed in green as Amin and Bmin. With the assumed values of A1, A2, B1, and B2 in
this example, Amin and Bmin fall within the assumed range so you can be confident that
you have found the near best values. But let’s suppose one of the parameters, say B1, was
chosen incorrectly. That is, suppose you had chosen B1=.65 with B2=.7. The result for
Bmin calculated by the program would be B1=.65; that is, it would bump up against the
lower B limit. That would tell you that B1 is too high and you should lower it for the next
run. Similarly, if you had chosen B1=.5 with B2=.6, Bmin would bump up against the
upper limit for B, indicating that you should raise B2.

There are other curve-fitting functions available similar to the one you are
developing here; go to https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.curve_fit.html. Others can be found with an Internet search. The one
you are developing here has the advantage of being open, simple, and easy to use, plus
you have control over it.

100 ' (?ompresls'.lon Tes't Resultls : 100 _10
o—e Temperature| a1=.0.001000
g || #® Pressure 2= 0.000000 80 |-08
— Bl= 0.500000
B Volume B2= 0.700000
” 0.618 5 £
. I N J608& [-06 5
E 60 "* -L-‘..R_h? E =)
E g v=At‘+8B a E
s " S
g_ 40 40 E 04 8
b
[
.. 0215 20 0.2
20} Amin=-0:000029 . e
Bmin= 0630000
o : : : . R".“S err'o.f—_O 0132 0.0 0.0
0 20 40 60 80 100 120 140

Time (hrs)

Figure 8-8. Function fit to volume curve produced by Listing 8-7
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Listing 8-7. Program REGRESSION2

REGRESSION2
52 #————same as REGRESSION1
53
54 # parabolic fit to v vs t
55 n=1len(v)

56 eemin=10**10 #——starting value of eemin, deliberately set very large
57

58 #——————loop parameters

59 B1=.5

60 B2=.7

61 dB=.001

62 Al1=-.001

63 A2=0.

64 dA=.0000001

65

66 # loop through all combinations of A and B
67 # within ranges defined by loop parameters
68 # searching for Amin, Bmin that produce

69 # best fit of function to data points

70 for B in np.arange(B1,B2,dB):
71 for A in np.arange(A1,A2,dA):

72 sumee=0

73 for i in range(len(t)):

74 e=(v[i]-(A*t[i]*t[i]+B)) #—err0r Of data point i at A, B
75 ee=e*e #—error squared

76 sumee=sumee+ee f#—sum of error squared

77 if sumee < eemin: #—if sum < present minimum eemin then
78 eemin=sumee #——set new minimum = sumee

79 Amin=A #—set new Amin = A

80 Bmin=B #—set new Bmin = B

81

82 # Amin, Bmin above will produce best fit
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83

84 #————— -plot best fit function with scatter dots
85 #———— - from t[0] to t[5] in steps=2

86 for tp in np.arange(t[0],t[5],2):

87 vp=Amin*tp*tp+Bmin

88 vp=vp*100 #-scale to plot

89 plt.scatter(tp,vp,color="g",s=1)

90

91 # calculate RMS Error

92 sumee=0

93 for i in range(len(v)):

94 e=(v[i]-(Amin*t[i]*t[i]+Bmin)) #——error at each data point
95 ee=e*e #—error squared

96 sumee=sumee+ee #——sum of squared errors

97 rms=np.sqrt(sumee/n) #—RMS error

98

99 # labels

100 plt.text(100,50, 'v=At+B',color="g")

101 plt.arrow(99,50,-6.5,-6.5,head length=3,head width=1.5,color="g",
linewidth=.5)

102

103 A=Amin

104 B=Bmin

105

106 vpil=A*t[0]*t[0]+B

107 vp1="%7.3f"%(vp1)

108 plt.text(2,63,vp1l,color="g")

109

110 vp2=A*t[5]*t[5]+B

111 vp2="%7.3f'%(vp2)

112 plt.text(119,22,vp2,color="g")

113

114 Ap="%8.6F'%(A)

115 plt.text(59,18, 'Amin=",color="g")

116 plt.text(74,18,Ap,color="'g")
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117

118 Bp="%8.6F"'%(B)

119 plt.text(59,12,'Bmin=",color="g")
120 plt.text(75.2,12,Bp,color="g")
121

122 rms="%7.4f"'%(xms)

123 plt.text(95,3, 'RMS error=',color="'g")
124 plt.text(120,3,rms,color="g")
125

126 A1="%8.6T'%(A1)

127 plt.text(60,90, 'A1=")

128 plt.text(69,90,A1)

129

130 A2="%8.6F"'%(A2)

131 plt.text(60,85, A2=")

132 plt.text(70.2,85,A2)

133

134 B1="%8.6T"'%(B1)

135 plt.text(60,75, 'B1=")

136 plt.text(70.2,75,B1)

137

138 B2='%8.6'%(B2)

139 plt.text(60,70,'B2=")

140 plt.text(70.2,70,B2)

141

142 plt.show()

Splines

The curves shown in Figure 8-9 are called splines. They are characterized by the fact that
they pass through their respective data points, which are shown as dots. Each curve is
also a “natural” spline since there is no twisting at the ends. In the parlance of calculus,
the second derivative is zero at the end points.
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100 ‘ ' . Spline

1
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X

Figure 8-9. Spline curves produced by Listing 8-8

Splines constructed of thin slats of wood were at one time commonly used in
shipbuilding where it was necessary to produce hull shapes that were smooth. In the
lofting room, workers would drive nails into the floor and then bend thin strips of
wood around them. The shape of the bent strip was then traced onto paper or plywood
beneath. This shape was used to cut full-scale molds that were used in the construction
process. The word “spline” is thought to derive from the Danish splind or North Frisian
splinj, both ancient boat-building regions. After World War II, the usage of mechanical
splines was replaced by mathematically derived curves in both shipbuilding and aircraft
design and construction.

The mathematical relation for a spline that you will use here is called a cubic spline.
It has the form of

x = Axq’ + Bxq” + Cxq + Dx (8-11)
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Since each point on a spline curve is defined by two coordinates x and y, you need
two versions of Equation 8-11:

x = Axq’ + Bxq® + Cxq + Dx (8-12)

y=Ayq’ + Byq® + Cyq + Dy (8-13)

Your task is to determine the coefficients Ax — Cx and Ay — Cy. Once you have
them, you will be able to plot the spline curve. To do this, you fit a separate equation for
x and y within segments, that is, between adjacent data points. For example, the region
between points 2 and 3 is a segment; between 3 and 4 is another segment. You also use
information about the data points to the right and left of each segment.

Figure 8-10 shows a set of data points and the numbering scheme. nop in line 21 is
the number of data points. There are six data points so nop=6. There are five inter-point
segments. You will use lists to keep track of everything. Remember, Python wants to
begin lists with the [0]” element. At point [3], which is the fourth data point, i=3, you see
the length q[2] to the left and q[3] to the right. Each of these is a chord length, the straight
line distance from one point to the next.

100 ! ' Sp!me mO(:'!eI

nop=06  i=5=nop-1

0 20 20 &0 80 00 120 140
Figure 8-10. Model used by Listing 8-8
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Referring now to just the x equation in Equation 8-12, you can define a “slope” at
point [3], mx[3] as

mx[a]z["m‘x[z] ﬁ[“]‘x[ﬂ}.s an

q[2] q[3]

This is an average at point [3] of the left “slope” and the right. I put “slope” in quotes
to emphasize it is not a slope in the traditional sense such as Ay/Ax but is instead each
Ax (delta x) divided by a chord length q[ ]. For any point [i],

mx[i]:[x[i]—x[i—l]+x[i+1]—x[i]}<‘5 (8-15)

qli-1] q[i]

The equation for my[i] is similar. Because mx[i] and my]i] rely on coordinate values
preceding and following i, separate equations are required for the first and last points,
mx[0] and mx[nop-1]:

mx{0]= (x[1]-x[0])/ 4[] (316
my[0]=([1]-»[0])/ 4[0] (8-17)
mx[nop —1]=(x[nop —1] - x[nop —2]) / ¢[nop - 2] (8-18)
my[nop—1]=(y[nop—1]—- y[nop—2])/ q[nop 2] (8-19)

With these definitions, it can be shown that

dx[i]=x[i] (8-20)
dy[i]=»li] (8-21)
ex|[i] = mx[i] (8-22)
ey[i]=myli] (8-23)

bx[i]= (3x[i +1]-2cx[i]q[i]-3dx[i]— mx[i + l]q[i]) /qli]q[i] (8-24)
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byli]=(3y[i+1]-2cy[i]q[i]-3ay[i]-my[i+1]q[i])/ q[i]q[i] ~ (8-25)

ax[i] = (mx[i+1]-2bx[i]q[i] - ex[i]/ 3q[i]q[i] (8-26)
ay[i]= (my[i+1]-2by[i]q[i]-ev[i]/ 3q[i]q[i] (8-27)

These coefficients are based on the requirement that, at the intersection of spline
segments at a data point, the locations of the splines and their slopes must match from
one section to the next. Also, the rate of change of the slopes (second derivative) must
match; otherwise there would be angular discontinuities in the shape of the spline. At
the beginning point of the spline where i=0, there is no adjacent segment so you require
that the rate of change of slope (second derivative of deflection) at that point be zero.
This means that if the spline were to continue off to the left side of the first point, it
would be a straight line having the same slope as the spline segment at that point. In the
mechanics of beams, a bending moment called M produces a rate of change of slope
y; that is, d*y/dx*~ M. The moment M would bend the spline at that point producing a
change in slope. Since there is nothing at either end of the spline to produce a bending
moment, d*y/dx? = 0 and the slope will not be changed. This is intuitive; if a boat builder
is fitting a wooden spline to a set of nails hammered into the floor, and they use a strip
of wooden spline that is too long, the extra length would trail off the end straight at the
same angle as the end of the spline at the last nail. This same argument holds for the
end of the spline at i=nop-1; there is no constraint on its slope so the second derivative
is 0. This provides a “natural” spline. You could specify other end conditions, such as
clamped or twisted, in which case the coefficients above would be different.

The following equations locate a point xp,yp along the spline between points [i |
and [i+1]:

xp =ax[ilqq’ + bx[i]qq” + cx[i]qq + dx]i] (8-28)
vp =ay[i]qq3 +by[i]qq2 +cy[i]qq+dy[i] (8-29)

where qq is the length of chord i.

When Listing 8-8 plots the spline, it does so segment by segment starting with
point [0] and proceeding to point [nop-1]. Referring again to Figure 8-10, if i=3, the
above equations would plot the spline segment from point [3] to point [4]. To plot the
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entire spline from point [0] to [5], the program plots individual segments starting at [0]
and going to [nop-1]. That is, the program automatically plots segments from [0] — [1],
1] = [2],.....[5] = [6].

Referring to Listing 8-8, the calculations and plotting are carried out by function
spline beginning in line 17. In the function’s arguments, x and y are in a list that is
defined in line 73 and 74. Each x,y pair are the coordinates of a data point. clr is the
color of the spline and 1s is the line style. The data points are plotted in line 19. nop in
line 21 is the number of data points. Lines 23-33 are zero lists of length nop. You fill these
lists by calculating values item by item. You could have defined empty lists to begin with
and appended elements later. By defining the list lengths now, you avoid appending.
Either way will work; it’s just a matter of preference.

Lines 35-38 calculate the chord lengths q[i]. Line 40 and 41 calculate the slopes at
the beginning of the spline. Lines 43-45 calculate the average slopes at O<i<nop-1. Line
47-48 calculate the slope at the end of the spline. Lines 51-59 evaluate the coefficients in
Equations 8-28. Lines 62-70 plot the spline as line segments.

Control of the program takes place in lines 73-83. Here you are plotting two splines.
The set of data points for the first spline are contained in the lists in lines 73 and 74. The
color and line style desired are set in lines 75 and 76. Line 77 invokes function spline.
The second spline is created in a similar manner in lines 79-83. More splines could be
added by adding more of these routines.

It’s an easy matter to print out the x,y values within the range of a spline segment. For
example, suppose you want the coordinates of points within the segment between points
[2] and [3]. Insert the following lines at line 71:

if i==2:
print(xp,yp)

This will print the coordinate’s values up to point [3] where i will then become
equal to 3.

Listing 8-8. Program SPLINE2D

1

2 SPLINE2D
3 e
4

5

import matplotlib.pyplot as plt
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import numpy as np
from math import sqrt

plt.axis([0,140,0,100])
plt.axis('on")
plt.grid(True)

plt.xlabel('x")
plt.ylabel('y")
plt.title('2D Splines")

def spline(x,y,clr,ls):
plt.scatter(x,y,s=30,color=clr)
nop=1en(x)

q=[0]*nop
mx=[ 0] *nop
my=[0]*nop
cx=[0]*nop
cy=[0]*nop
dx=[0]*nop
dy=[0]*nop
bx=[0]*nop
by=[0]*nop
ax=[0]*nop
ay=[0]*nop

for i in range(1,nop): #——-chords q(i)
a=x[i]-x[i-1]
by[4]-y[i-1]
q[i-1]=sqrt(a*a+b*b)

mx[0]=(x[1]-x[0])/q[0]

CHAPTER 8
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41 my[o]=(y[1]-y[0])/q[o0]

42

43 for i in range(1,nop-1): #—average m[i]

44 mx[i]=((x[i]-x[i-1])/q[i-1]+(x[i+2]-x[i])/q[i])*.5

45 my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+a]-y[i])/q[i])*.5

46

47 mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2]

48 my[nop-1]=(y[nop-1]-y[nop-2])/q[nop-2]

49

50 #——————-calculate coefficients

51 for i in range(0,nop-1):

52 dx[i]=x[1i]

53 dy[i]=y[i]

54 ex[i]=mx[i]

55 cy[i]=my[i]

56 bx[i]=(3*x[i+1]-2*cx[i]*q[i]-3*dx[i]-mx[i+2]*q[i])/(q[i]*q[i])

57 by[i]=(3*y[i+1]-2*cy[i]*q[i]-3*dy[i]-my[i+2]*q[i])/(q[i]*q[i])

58 ax[i]=(mx[ i+1]-2*bx[i]*q[] -cx[1])/(3*ql]*q[i])

59 ay[i]=(my[i+1]-2*by[i]*q[i]-cy[i])/(3*qli]*ali])

60

61 #————  plot the spline

62 xplast=x[0]

63 yplast=y[o0]

64 for i in range(0,nop-1):

65 for qq in np.arange(0,q[i],4):

66 xp=ax[i]*qq*qq*qq+bx[i]*qq*qq+cx[i]*qq+dx[i]

67 yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[i]*qq+dy[i]

68 plt.plot([xplast,xp],[yplast,yp],linewidth=1,color=clr,
linestyle=1s)

69 xplast=xp

70 yplast=yp

71

72 # control

73 x=[20,40,60,80,100,120]
74 y=[80,35,70,30,60,40]
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75
76
77
78
79
80
81
82
83
84
85

clr="b'
1S=l_l
spline(x,y,clr,1s)

x=[20,40,60,80,100,120]
y=[30,45,18,65,50,80]
clr="g'

1s="-"

spline(x,y,clr,1s)

plt.show()

Summary

This chapter covered a range of data plotting techniques: plotting simple points and
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functions, multiple functions on the same plot, labeling axes with multiple functions,

linear regression where you fit a straight line to a data set, function fitting where you fit a

user-defined function to a data set, and splines where you fit a smooth curve that passes

through each data point. While there are many data plotting routines available within

the Python community, which you can find with an Internet search, the approach here

has been more hands-on. By understanding how to do it yourself, with a little creativity

you can produce plots customized to your own needs. In Chapter 9, you will extend what

you have done here to three dimensions.
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Extrapolating the techniques developed in Chapter 8, which were used to produce

two dimensional splines, to three dimensions is easy: all you need to do is add a few
lines to the program. These lines are the bold highlighted lines in Listing 9-1, Program
SPLINE3D, particularly those in function plotspline() from lines 89 to 161. They
introduce the z coordinate in a syntax that is essentially the same as used for the xand y
coordinates.

Control of Listing 9-1 begins at line 175. The first set of data points are defined by
lists %, y, and z in lines 175-177. These have been nullified with the # symbol but are left
in place should you want to use them. They produce Figure 9-1. The active lists in lines
179-181 produce Figures 9-2 through 9-4. nop in line 183 is the number of data points.
This equals len(x) which, of course, equals 1len(y) and len(z). The list g in line 85
holds the values returned by the rotation functions rotx(), roty(), and rotz(). The
coordinates of the center of rotation xc, yc, and zc are defined in lines 187-189.

The angles of rotation Rxd, Ryd, and Rzd in lines 191-193 could use some
explanation. Referring to Figure 9-5, the coordinate system on the right defines the
data points and the spline in their rotated (Rxd,Ryd,Rzd) and translated (xc,yc,zc)
orientations. The system on the left shows the global coordinate system, which is the
one that should be used when specifying rotations. The x and y directions are defined
by the plt.axis() function in line 9. Since this is a right-handed coordinate system, the
+z direction points out of the screen. As an example, a positive rotation around the z
direction, Rzd, would rotate the figure on the right in the counter-clockwise direction.

Grid lines are shown on the plot primarily as an aid in location for xc,yc,zc. When
axes such as the x and z axes in Figure 9-4 lie in the plotting plane, they can be used as a
measure of data point and spline coordinate values. However, when the plot is rotated,
as in Figure 9-3, they do not give true measures but may be used as an aid when locating
the center, xc,yc,zc.
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Lines 200-210 plot the axes that define the data points and the spline by invoking
function plotaxis() that goes from line 33 to 43. Each is 30 units long. The list g in line
43 holds the coordinates of the end of each axis. Line 202 plots the x axis; similarly for the
y and z axes.

Without rotation (i.e., Rxd=Ryd=Rzd=0) the axes will appear as on the left side of
Figure 9-5. When plotting data, we normally think of z as being a function of x and y (i.e.,
z=z(x,y)) and we prefer the z axis to point up. To accomplish this, we must rotate the
coordinate system such that z points up. As an example, in Figure 9-4, Rx=-90,Ry=0,Rz=0.
These values are shown in the upper right corner of the plot. This takes the +z axis,
which pointed out of the screen in the unrotated position, and turns it counter-clockwise
around the x axis so that it now points upward. +y now points into the screen. This is a
good starting orientation. Subsequent rotations around this orientation can give a three-
dimensional view. Keep in mind, however, that this program has been hard-wired to give
rotations in the sequence Rx,Ry,Rz. For example, in function plotdata(), which begins
at line 46, line 51 does the Rx rotation. The Ry rotation is next in line 55, and then Rz in
line 59.

The data points are plotted in line 213, which invokes function plotdata(). This
function is straightforward. Each data point is rotated amount Rx, then Ry, and then
Rzinlines 51, 55, and 59. Each point is plotted as a green scatter dot in line 66. Line 64
plots the first point in red. Lines 68-86 plot grey lines from each point down to the x,y
plane. The top of each line has the same global plotting coordinates as the data point
g[0],g[1]. The z coordinate g[3] is not needed for plotting. The local coordinate of each
line’s bottom has the same local x,y coordinates as the data point, but now the local z
coordinate is zero as specified in line 72. You need these local coordinates to rotate the
bottom point of each line. Lines 73, 77, and 81 do the rotations. Line 83 plots the first
point in red; line 86 plots the remainder of the points in black with the lines plotted
in grey.

Next, the spline is plotted in line 217, which invokes function plotspline(). The
color is set in line 216. This function is identical to the spline plotting algorithm used in
the previous chapter with the exception of the addition of the z axis lines set in bold in
the program listing.

The bottoms of the vertical lines are next connected by a spline by invoking function
plotbottomspline() inline 221. The color is set in line 220. plotbottomspline() opens
lists for the x, y, and z coordinates of each point: xbottom[ ], ybottom|[ ], and zbottom[ |.
The items in each are initially set to zero. They are equated to the x and y data point
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coordinates in lines 168-171. Since the z coordinate lies in the x,y plane, it is set equal to
zero in line 171. These are all local coordinates. Line 172 invokes function plotspline(),
which was used to plot the main spline, with the arguments being the local coordinates
of the bottom points. As before, plotspline() will perform the rotations and will plot
the spline. The remainder of the program prints data and labels on the plot.

Listing 9-1. Program SPLINE3D

1

2 SPLINE3D

3 e

4

5 import matplotlib.pyplot as plt

6  import numpy as np

7  from math import sqrt, radians, sin, cos
8

9 plt.axis([0,150,0,100])

10 plt.axis('on")

11 plt.grid(True)

12

13
f#=================================================yotation transformations
14 def rotx(xp,yp,zp,Rx):

15 g[0]=xp+xc

16 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc
17 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc
18 return[g]

19

20 def roty(xp,yp,zp,Ry):

21 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc
22 gl1]=yp+yc

23 g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc
24 return[g]

25

26 def rotz(xp,yp,zp,Rz):

27 g[0]=xp*cos(Rz)-yp*sin(Rz)+xc
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28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

296

g[1]=xp*sin(Rz)+yp*cos(Rz)+yc
gl[2]=zp+zc
return[g]

#::::======================================================plot aXiS

def

plotaxis(xp,yp,zp,Rx,Ry,Rz):
rotx(xp,yp,zp,Rx) #-Rx rotation
xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

roty(xp,yp,zp,Ry) #-Ry rotation
xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

rotz(xp,yp,zp,Rz) #-Rz rotation
return[g]

plotdata(x,y,z,Rx,Ry,Rz):

for i in range(0,nop):
xp=x[1i]
yp=y[i]
zp=z[1i]
rotx(xp,yp,zp,Rx)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xp,yp,zp,Ry)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xp,yp,zp,Rz)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc

plot data points



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

87
88
89
90
91
92
93
94
95
96
97
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if i==0: #—plot first point red
plt.scatter(g[o],g[1],s=25,color="1")

else:
plt.scatter(g[o],g[1],s=25,color="g")

#

xt=g[0]

yt=g[1]

xp=x[i] #-coords of line bottom (zp=0) before rotation)

yp=y[i]

zp=0

rotx(xp,yp,zp,Rx) #—rotate bottom coords

xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

roty(xp,yp,zp,Ry)

xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

rotz(xp,yp,zp,Rz)

if i==0: # plot first bottom point red
plt.scatter(g[o],g[1],s=25,color="1")

else:
plt.scatter(g[o],g[1],s=25,color="k")

plt.plot([xt,g[0]],[yt,g[1]],color="grey') #—plot line

#====================================================plot spline
def plotspline(x,y,z,Rx,Ry,Rz,clr):

q=[0]*nop

mx=[0]*nop

my=[0]*nop

mz=[ 0] *nop

cx=[0]*nop

cy=[0]*nop

cz=[0]*nop

dx=[0]*nop

plot vertical lines from data points to the x,y plane
#-global line top coords=rotated data point coords
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98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
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dy=[0]*nop
dz=[0]*nop
bx=[0]*nop
by=[0]*nop
bz=[0]*nop
ax=[0]*nop
ay=[0]*nop
az=[0]*nop

for i in range(1,nop): #—-chords q(i)
a=x[i]-x[i-1]
b-y[i]-y[i-1]
c=z[i]-z[i-1]
q[i-1]=sqrt(a*a+b*b+c*c) #—mnop=6 gives q[5]

mx[0]=(x[1]-x[0])/q[0] #—mx[O

]
my[0]=(y[1]-y[0])/q[0] #—my[O]
mz[0]=(z[1]-z[0])/q[0] #—mx[0O]

for i in range(1,nop-1): #—average m[i]
mx[1]=((x[1]-x[1-1])/q[i-1]+(x[i+1]-x[i])/q[i])*.5
my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+1]-y[i])/q[i])*.5
mz[i]=((z[i]-z[i-1])/q[i-1]+(z[i+2]-2[])/qli])*.5

mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2] #-mx[nop-1]

my[nop-1]=(y[nop-1]-y[nop-2])/q[nop-2] #-my[nop-1]
mz[nop-1]=(z[nop-1]-z[nop-2])/q[nop-2] #-mz[nop-1]

#———calculate coefficients
for i in range(0,nop-1):

dx[i]=x[i]

dy[i]=y[i]

dz[i]=z[i]

cx[i]=mx[i]

cy[i]=my[i]

cz[i]=mz[i]



134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
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bx[1]=(3*x[i+1]-2*cx[1]*q[1]-3*dx[i]-mx[i+1]*q[i])/(q[i]*q[i])
by[i]=(3*y[i+1]-2*cy[i]*q[1]-3*dy[i]-my[i+1]*q[i])/(q[i]*q[i])
bz[i]=(3*z[i+1]-2*cz[i]*q[i]-3*dz[i]-mz[i+1]*q[i])/(q[i]*q[i])

[

[

[

Q

x[1]=(mx[i+1]-2*bx[i]*q[i]-cx[1])/(3*q[1]*q[i])
y[i]=(my[i+1]-2*by[i]*q[i]-cy[i])/(3*q[i]*q[i])
az[i]=(mz[i+1]-2*bz[i]*q[i]-cz[i])/(3*q[i]*q[i])

<)

#———plot spline between data points
for i in range(0,nop-1):
for qq in np.arange(0,q[i],2):
xp=ax[1]*qq*qq*qq+bx[1]*qq*qq+cx[1]*qg+dx[1]
yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[i]*qg+dy[i]
zp=az[i]*qq*qq*qq+bz[i]*qq*qq+cz[i] *qq+dz[i]
rotx(xp,yp,zp,Rx) #—~Rx rotation
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xp,yp,zp,Ry) #—Ry rotation
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xp,yp,zp,Rz) #—Rz rotation
if qq==0: #-plot first point red
xplast=g[0]
yplast=g[1]
plt.plot([xplast,g[o0]],[yplast,g[1]],linewidth=.7,
color=clr)
xplast=g[0]
yplast=g[1]

==:::::::::::::::::::::::::::::::::::::::::::plot bottom Spline

164 def plotbottomspline(x,y,z,Rx,Ry,Rz,clr):

165
166
167

xbottom=[0]*nop
ybottom=[0]*nop
zbottom=[0]*nop
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168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

300

for i in range(0,nop):

xbottom[i]=x[1]

ybottom[i]=y[i]

zbottom[i]=0
plotspline(xbottom,ybottom,zbottom,Rx,Ry,Rz, clr)

H========o====ccommzzoommzzzzoozzzzoozz=zzza======control
#x=[20,40,60,80] #-LOCAL coords-Fig(3D Spline 1)
ty=[30,30,30,30]

#z=[15,33,28,17]

x=[10,30,65,60,80,95,130,140 #-LOCAL coordinates-Figs
(3D Splines 2,3 and 4)

y=[ 20,35,50,32,60,50,65,60]
z=[42,30,22,28,45,55,55,55]

nop=len(x) #-number of data points
g=[0]*3 #-global plotting coords returned by rotx, roty and rotz

xc=80 #-origin of X,Y,Z coordinate system
yc=20
zc=10

Rxd=-100 #-rotations of X,Y,Z system degrees
Ryd=-135
Rzd=8

Rx=radians(Rxd) #—rotations of X,Y,Z system radians
Ry=radians(Ryd)
Rz=radians(Rzd)

# plot X,Y,Z axes
plotaxis(30,0,0,Rx,Ry,Rz) #-plot X axis
plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color="k")



202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
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plt.text(g[o]-5,g[1]-1,'X")

plotaxis(0,30,0,Rx,Ry,Rz) #-plot Y axis
plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color="k")
plt.text(g[o],g[1]-5,"Y")

plotaxis(0,0,30,Rx,Ry,Rz) #-plot Z axis
plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color="k")
plt.text(g[o]-2,g[1]+3,'Z")

# plot data
plotdata(x,y,z,Rx,Ry,Rz)

# plot spline
clr="g' #————-spline color
plotspline(x,y,z,Rx,Ry,Rz,clr)

# plot bottom spline
clr="b' #————bottom spline color
plotbottomspline(x,y,z,Rx,Ry,Rz,clr)

# labels
plt.text(120,90, 'Rx=")

Rxd="%7.1f"%(Rxd)
plt.text(132,90,Rxd)

plt.text(120,85, 'Ry=")
Ryd="%7.1f"'%(Ryd)
plt.text(132,85,Ryd)

plt.text(120,80, 'Rz=")
Rzd="%7.1f'%(Rzd)
plt.text(132,80,Rzd)

3D DATA PLOTTING

301



CHAPTER9 3D DATA PLOTTING

236 plt.text(90,90, 'xc=")
237 xc="%7.1f"%(xc)

238 plt.text(100,90,xc)
239

240 plt.text(90,85, 'yc=")
241 yc="%7.1f"%(yc)

242 plt.text(100,85,yc)
243

244 plt.text(90,80,'zc=")
245 zc="%7.1f"%(zc)

246 plt.text(100,80,zc)
247

248 plt.text(4,90,'x")
249 plt.text(7,90,x)

250 plt.text(4,85,'y")
251 plt.text(7,85,y)

252 plt.text(4,80,'z")
253 plt.text(7,80,z)

254

255 plt.title('3D Spline 4")
256

257 plt.show()
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- | ‘ .BD Spllrlle 1 ‘ . .
x[20, 40, 60, 80] xc= 110 Rx= -110
¥[30, 30, 30, 30] y=34 Ry= 190
8o | Z[15, 33, 28, 17] z=.10 Rz= 3 2
F
60 | i
40 | i
20 | Y i
0 | 1 | | | | 1
0 20 40 60 80 100 120 140
Figure 9-1. Spline produced by Listing 9-1
. | ‘ .BD Spllrlle 2 ‘ . .
x[10, 30, 65, 60, 80, 95,130, 140] xc= 140 Rx= -110
¥[20, 35, 50, 32, 60, 50, 65, 60] y=34 Ry= 190
80 | Z[42, 30, 22, 28, 45, 55, 55, 55] z=10 Rz= 3 =
60 |
40 |
20 s
0 | 1 | | | | 1
0 20 40 60 80 100 120 140

Figure 9-2. Spline produced by Listing 9-1
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100 . . G Sposs . . .
x[10, 30, 65, 60, 80, 95, 130, 140]  xc= 90 Rx= -110
¥[20, 35, 50, 32, 60, 50, 65, 60] yc= 37 Ry= -135
80 | z[42, 30, 22, 28, 45, 55, 55, 55] =10 Rz= 14
4
60 |-
40 |
20
0 L | L 1
0 20 40 60 80 100 120 140
Figure 9-3. Spline produced by Listing 9-1
100 . . s sl b S , .
x[10, 30, 65, 60, 80, 95,130, 140] xc=5 Rx= 90
¥[20, 35, 50, 32, 60, 50, 65, 60] yc=5 Ry= 0
80 | Z[42, 30, 22, 28, 45, 55, 55, 55] z=10 Rz= 0
60 |
Otz
20 I
olX
0

Figure 9-4. Spline produced by Listing 9-1
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3D Spline model

100 T - r T T
x[10, 30, 65, 60, 80, 95, 130, 140] xc= 120 Rx= -100
¥[20, 35, 50, 32, 60, 50, 65, 60] yc= 20 Ry= -130
g0 | 2[42, 30, 22, 28, 45, 55, 55, 55] z=10 Rz= 8 1
60 -
Y
40 + 4
20 | Z X .
0 | 1 ] 1 1
0 20 40 60 80 100 120 140

Figure 9-5. Rotation model used by Listing 9-1

3D Surfaces

In the previous section, you saw how to connect data points with splines in three
dimensions. In this section, you will use those techniques to create a three-dimensional
surface. Figure 9-6 shows a surface z=z(x,y). It is defined by 16 data points in the x,y,z
space. To give the appearance of a surface, these points are connected to one another
by splines. The green splines connect the points in the y direction and the blue ones
connect in the x direction. Since you already know how to create splines in three
dimensions, the problem becomes one of arranging the data points in the proper order.

Listing 9-2 is similar to Listing 9-1 although some of the features of that program
have been deleted for simplicity; you do not draw vertical lines from the data points to
the x,y plane and you do not plot the projection of the splines on the x,y plane.

The essence of Listing 9-2 is contained in the “control” section beginning in line 140.
The 16 data points shown in Figure 9-6 are defined by the lists in lines 168-182. The first
group of points in the lists in lines 168-170 defines the data points shown in the first

305



CHAPTER9 3D DATA PLOTTING

y-direction spline (green). This spline lies in the y,z plane where x=0. The points x1[ ],
y1[],z1[ ] refer to the four points within this spline; x2[ |,y2[ ],z2[ ] refer to the points
within the second spline, and so on. The first point in the first spline lies at 0,0,0. These
coordinates are specified as x1{0],y1[0],z1[0] in lines 168-170. The second point in this
first spline lies at 0,10,43. These coordinates are specified as x1[1],y1[1],z1[1]. Similarly,
x1[2],y1[2],z1[2] and x1(3],y1[3],z1[3] refer to the third and fourth points in the first
y-direction spline. Lines 187-190 plot the data points with these lists as arguments by
invoking function plotdata(). Lines 194-197 invoke the function plotspline(), again
with these lists as arguments, which plots the first y-direction spline. Lines 172-174 along
with lines 188 and 195 plot the data points and the second green spline at x=20 and so
on for the remaining two splines at x=40 and x=60. To plot the x-direction splines, you do
the same thing, only you must first redefine the coordinate lists. This takes place in lines
200-214. The blue splines are plotted in lines 218-221.

Of course, the coordinate lists could each contain more than four items. The data
points defined in the lists in lines 170-184 all lie in a grid. They don’t have to.

While it works, the methodology used here to arrange the data for plotting is very
cumbersome. It also requires a lot of coding. It is being done this way here to illustrate
the procedure used. It could be shortened quite a bit by the use of arrays, which you will

use in the next section.

3D Surface
100 T r T T T ; r
7z Rx= -100.0
Ry= -135.0
80 } Rz= 8.0
60 | J
40 | d
20 L . -
Py
0 | | | | [ | |
0 20 40 60 80 100 120 140

Figure 9-6. Surface produced by Listing 9-2
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1

2 SURFACE3D

3 e

4

5 import matplotlib.pyplot as plt

6  import numpy as np

7  from math import sqrt, radians, sin, cos
8

9 plt.axis([0,150,0,100])

10 plt.axis('on")

11 plt.grid(True)

12

13
fi===================================================
transformations

14 def rotx(xp,yp,zp,Rx):

15 g[0]=xp+xc

16 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc
17 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc
18 return[g]

19

20 def roty(xp,yp,zp,Ry):

21 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc
22 gl1]=yp+yc

23 g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc
24 return[g]

25

26 def rotz(xp,yp,zp,Rz):

27 g[0]=xp*cos(Rz)-yp*sin(Rz)+xc
28 g[1]=xp*sin(Rz)+yp*cos(Rz)+yc
29 gl2]=zp+zc

30 return[g]

31

32 ff=======s==sosososoosososoooososoooosooooooosososoooooos

3D DATA PLOTTING

plot axis
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33 def plotaxis(xp,yp,zp,Rx,Ry,Rz):

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
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rotx(xp,yp,zp,Rx) #—Rx rotation
xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

roty(xp,yp,zp,Ry) #—Ry rotation
xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

rotz(xp,yp,zp,Rz) #—Rz rotation
return[g]

plotdata(x,y,z,Rx,Ry,Rz):

for i in range(0,nop):
xp=x[1]
yp=y[i]
zp=z[1i]
rotx(xp,yp, 2p,Rx)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xp,yp,zp,Ry)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xp,yp,zp,Rz)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc

plt.scatter(g[o],g[1],s=25,color="g")

plot data

#::::=:==:========:==:========:==:=======================p10tspline( )
def plotspline(x,y,z,Rx,Ry,Rz,clr):

q=[0]*nop



68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

CHAPTER9 3D DATA PLOTTING

for i in range(1,nop): #-chords q(i)
a=x[i]-x[i-1]

by[4]-y[i-1]

c=z[i]-z[i-1]

q[i-1]=sqrt(a*a+b*b+c*c) #-nop=6 gives q[5]

mx[0]=(x[1]-x[0])/q[0] #-mx[0]

my[0]=(y[1]-y[0])/q[0] #-my[0]
mz[0]=(z[1]-z[0])/q[0] #-mx[0]

for i in range(1,nop-1): #-average m[i]

mx[1]=((x[i]-x[i-1])/q[i-1]+(x[i+1]-x[1])/q[i])*.5
my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+1]-y[i])/q[i])*.5
mz[i]=((z[i]-z[i-1])/q[i-1]+(z[i+1]-2[i])/q[i])*.5

mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2] #-mx[nop-1]

my [nop-1]=(y[nop-1]-y[nop-2])/q[nop-2] #-my[nop-1]
mz[nop-1]=(z[nop-1]-z[nop-2])/q[nop-2] #-mz[nop-1]
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103
104
105
106
107
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109
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126
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131
132
133
134
135
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H

calculate coefficients

™

for

++

i in range(0,nop-1):

dx[1]=x[1]
dy[i]=y[i]
dz[i]=z[i]
cx[i]=mx[i]
cy[i]=my[i]
cz[i]=mz[i]
bx[1]=(3*x[1i+1]-2*cx[1]*q[1]-3*dx[1]-mx[i+1]*q[1])/(q[1i]*q[1])
by[i]=(3*y[i+1]-2*cy[i]*q[i]-3*dy[i]-my[i+1]*q[i])/(q[1i]*q[1])
bz[i]=(3*z[i+1]-2*cz[i]*q[i]-3*dz[i]-mz[i+1]*q[i])/(q[i]*q[i])
ax[1]=(mx[i+1]-2*bx[1]*q[1]-cx[1])/(3*q[1]*q[1])
ay[i]=(my[i+1]-2*by[i]*q[i]-cy[1i])/(3*q[1i]*q[1])
az[i]=(mz[i+1]-2*bz[i]*q[i]-cz[1])/(3*q[1i]*q[1])

for

plot splines between data points
i in range(0,nop-1):
for qq in np.arange(0,q[i],2):
xp=ax[1]*qq*qq*qq+bx[i]*qq*qq+cx[1]*qq+dx[1]
yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[1i]*qq+dy[1]
zp=az[1i]*qq*qq*qq+bz[i]*qq*qq+cz[1i]*qq+dz[1]
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xp,yp,zp,Ry) #-Ry rotation
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xp,yp,zp,Rz) #-Rz rotation
if qg==0:
xplast=g[0]
yplast=g[1]
plt.plot([xplast,g[o]],[yplast,g[1]],linewidth=.7,color=clr)
xplast=g[0]
yplast=g[1]
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139 #==================================================Control
140 g=[0]*3 #-global plotting coords returned by rotx, roty and rotz
141

142 xc=80 #-origin of X,Y,Z coordinate system

143 yc=20

144 zc=10

145

146 Rxd=-100 #-rotations of X,Y,Z system degrees

147 Ryd=-135

148 Rzd=8

149

150 Rx=radians(Rxd) #-rotations of X,Y,Z system radians
151 Ry=radians(Ryd)

152 Rz=radians(Rzd)

153

154 # plot X,Y,Z axes

155 plotaxis(60,0,0,Rx,Ry,Rz) #-plot X axis

156 plt.plot([xc,g[o0]],[yc,g[1]],1linewidth=2,color="k")
157 plt.text(g[o]-5,g[1]-1,'X")

158

159 plotaxis(0,60,0,Rx,Ry,Rz) #-plot Y axis

160 plt.plot([xc,g[o0]],[yc,g[1]],1inewidth=2,color="k")
161 plt.text(g[o],g[1]-5,'Y")

162

163 plotaxis(0,0,60,Rx,Ry,Rz) #-plot Z axis

164 plt.plot([xc,g[o]],[yc,g[1]],1inewidth=2,color="k")
165 plt.text(g[o]-2,g[1]+3,'Z")

166

167 #—————-define 4 sets of data points at different values of X
168 x1=[0,0,0,0] #—LOCAL coords

169 y1=[0,10,20,30]

170 z1=[50,43,30,14]

171

172 x2=[20,20,20,20]

173 y2=y1
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174 z2=[25,23,19,12]

175

176 x3=[40,40,40,40]

177 y3=y1

178 z3=[14,15,13,9]

179

180 x4=[60,60,60,60]

181 y4=y1

182 z4=[7,10,10,9]

183

184 nop=len(x1) #—mnumber of data points
185

186 # plot data points
187 plotdata(x1,y1,z1,Rx,Ry,Rz)

188 plotdata(x2,y2,z2,Rx,Ry,Rz)

189 plotdata(x3,y3,z3,Rx,Ry,Rz)

190 plotdata(x4,y4,z4,Rx,Ry,Rz)

191
192 # plot Y direction splines
193 clr="g' #———spline color

194 plotspline(x1,y1,z1,Rx,Ry,Rz,clr)
195 plotspline(x2,y2,z2,Rx,Ry,Rz,clr)
196 plotspline(x3,y3,z3,Rx,Ry,Rz,clr)
197 plotspline(x4,y4,z4,Rx,Ry,Rz,clr)
198

199 #——————redefine the data points at different values of y
200 xx1=[0,20,40,60]

201 yya=[y1[3],y2[3],y3[3],yal3]]

202 zz1=[z1[3],22[3],23[3],z4[3]]

203

204 xx2=xx1

205 yy2=[ya[2],y2[2],y3[2],y4[2]]

206 zz2=[z1[2],z2[2],23[2],24[2]]

207

208 xx3=xx1

209 yy3=[y1[1],y2[1],y3[1],ya[1]]
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zz3=[21[1],22[1],23[1],z4[1]]

XX4=xx1

yya=[y1[o],y2[0],y3[0],ya[0]]
224=[z1[0],22[ 0] ,23[ 0] ,24[0] ]

# plot X direction splines
clr="b' #——spline color
plotspline(xx1,yy1,zz1,Rx,Ry,Rz,clr)
plotspline(xx2,yy2,zz2,Rx,Ry,Rz,clr)
plotspline(xx3,yy3,zz3,Rx,Ry,Rz,clr)

plotspline(xx4,yy4,zz4,Rx,Ry,Rz,clr)
# labels
plt.text(120,90, 'Rx=")

Rxd="%7.1f"%(Rxd)
plt.text(130,90,Rxd)

plt.text(120,85, 'Ry=")
Ryd="%7.1f"%(Ryd)
plt.text(130,85,Ryd)
plt.text(120,80, 'Rz=")
Rzd="%7.1f ' %(Rzd)
plt.text(130,80,Rzd)
plt.title('3D Surface')

plt.show()

3D Surface Shading

In the previous section, you constructed a surface by connecting data points with

CHAPTER 9

3D DATA PLOTTING

splines. You did not use arrays but relied on a cumbersome system of numbering.

While this kept the procedure open and easy to understand, it led to too many lines of
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code. In this section, you will use the same data set but with two differences: first, you
will connect the data points by straight lines; second, you will use arrays to organize
your plotting. When you see how simple and elegant the use of arrays can be, you may
question which method is the easiest to code and to follow.

Using the same three-dimensional data set as you used in the previous section, the
array that defines the data is,

A[0]=point0 A[l]=point1 Ali]=pointi
— ——
A=np.array([ [0,0,50], [0,10,43], [0,20,30], [0,30,14],
[ 20,0,25],[20,10,23],20,20,19],[20,30,12], (9-1)

[40,0,14], [40,10,15],{40,20,13],[40,30,9],
[60,0,7], [60,10,10],[60,20,10], [60,30,9] ])

This array is used by Listing 9-3 to produce Figure 9-7. The numbering scheme used
to relate A to the surface points is shown in Figure 9-8.

Shaded 3D surface

100 - . - T
Rx=-100.0
Ry=-135.0
8o | Rz= 80 .
Ix= 0.000
ly= -0.700
60 | lz= 0.000 |
1A= 0.010
IB= 1.000
40 | = 2800 |
20 | i .
i
0 Il 1 L L Il 1 L
0 20 40 60 80 100 120 140

Figure 9-7. Shaded 3D surface produced by Listing 9-3
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- | | |3D Surﬁace | | ‘
o Rx= -100.0
Ry= -135.0
80 | Rz=_ 80. .
o A0l
0 |- d
40 | N
20 | -
0 Il 1 L L Il 1 L
0 20 40 60 80 100 120 140

Figure 9-8. Data point numbering scheme used in Listing 9-3

Each element in A is a list. There are 16 lists: A[0] through A[15]. List i is referenced as
Ali] where i=0—15. For example, A[3]=[0,30,14]. Each list i defines the x,y,z coordinates
of data point i. That is

Ali1]=x(i) (9-2)
Ali2]=y(i) (9-3)
Ali,3]=z(i) (9-4)

For example, the first point, point 0, has coordinates

A[0,1]=x(0)=0 (9-5)
A[0,2]=y(0)=0 (9-6)
A[0,3]=2(0)=50 (9-7)

This method replaces the list numbering system used in the previous section.
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Referring to Figure 9-8, to get the z coordinate of the fourth data point, which is
numbered 3, you access the third element of the fourth list of array A by letting i=3, j=2.
As with lists, the numbering of elements within arrays begins at 0 so the coordinates of
the fourth data point are contained in list i=3. The z component is the third element in
that list, j=2. Thus the z coordinate of the fourth data point is A[3,2], so

print(A[3,2])
14

The numbering scheme in Figure 9-8 starts at point 0, which is at the upper corner of
the surface at x=0, y=0, z=50, and proceeds in the y direction for a total of 4 data points.

It then advances to a new value of x for another grouping of 4 y-direction points. This
gives a total of 16 data points. Other numbering schemes could be used. You could, for
example, have started at the same point but proceeded in the x direction first rather than
the y direction. Or you could have started at a different corner of the surface. As you

will see, whatever numbering scheme is chosen, it will have an impact on subsequent
operations on that data.

The surface is composed of quadrangles, which are called patches. You will be
shading these patches. Each patch is defined by four data points. Since they are located
in three-dimensional space, the patches will, in general, not be flat. Also, since the sides
can have arbitrary lengths, the patches will not necessarily be rectangular. The basic
shading techniques used in previous chapters (i.e., coloring the patches by drawing lines
across them) will be used but the technique must be modified.

Figure 9-9 shows the model. This is a generic oblique patch defined by four corners
numbered 0 — 3. q03 and q12 are the lengths of the sides from 0 — 3 and 1 — 2. As
mentioned, these sides are three-dimensional and are not necessarily parallel. As was
done in previous chapters on shading, you fill in the patch with color by drawing lines
across the quadrangle. The blue lines shown are examples. As shown in Figures 9-10 and
9-11, the algorithm you will be developing here will work with any quadrilateral.

To plot the lines, all you have to do is determine the starting position S of each line
along side 0,3 and the end position E alongside 1,2. Since these sides may have different
lengths, the distance q of S from point 0 alongside 0,3 is not the same as the distance of E
from point 1 down along side 1,2. The starting point of the lines S begin at the top of the
patch (corner 0) at =0 and proceed to the bottom at q=q03. To get the corresponding
position of E down side 1,2, you ratio the distance q by q12/q03. A line is then drawn
between S and E. The blue lines shown in Figure 9-9 are 70%, 80%, and 90% of the way
down both sides of the patch.
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The unit vector n shown in Figure 9-9 is not required for the line drawing but will be
needed when you determine the intensity of coloring. This is done as before by taking
the dot product of n with a light source unit vector 1.

In Listing 9-3, the numbers of the generic patch corners, 0—3 in Figure 9-9, are
replaced by the appropriate numbers for each patch on the surface from array A. The
array is defined in the control section in lines 164-167. Line 169 gives the number of
data points in A, which is equal to the number of lists, each list defining the location of
a point. In this case, nop=16. The data points are plotted in lines 172-194. This simple
routine, which illustrates a benefit of using arrays, replaces the data plotting function
used in prior programs. Lines 178-185 connect the four y direction points by lines of
color clr specified in line 177. Function plotline() does the line plotting. Lines 188-194
do the same in the x direction.

q*(ql2/q03)

Figure 9-9. Patch model used in Listing 9-3

The patches are shaded in lines 197-205 by invoking function shade(), which begins
in line 65. The arguments are arranged to conform to the generic patch corners shown in
Figure 9-9. Lines 197-199 shade the first row of patches in the y direction. The first patch
has its upper left corner at A[0,0], the second patch at A[1,0], and so on. In the first cycle
through the loop, with i=0, lines 198 and 199 give the following patch corner coordinates,
which are used as parameters in the call to function shade:

A[0, 0] = x[0] =x0 = 0 corner 0
Al0, 1] =y[0] =y0=0

A[0, 2] = z[0] = z0 = 50

A[1, 0] =x[1] =x1 =0 corner1

AL, 2]=y[1] =yl =10
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A[l,3]=2[1]=2z1=43
A5, 0] = x[5] = x2 = 0 corner 2
A[5, 1] =y[5] =y2 =20
A[5,2] =z[5] =22 =30
Al4, 0] = x[4] =x3 =0 corner 3
Al4,1]=y[4] =y3 =30
Al4,2] =z[4] =23 =14

In function shade(), the arguments in line 65 coincide with the above patch corners
0,1,2and 3,

Alo] Al A2] Al3]

x0, y0, z0,x1, yl, z1,x2, y2, z2,x3, y3, z3,

corner 0 corner 1 corner 2 corner 3

When i=1, these same program lines give the corner coordinates for the next patch in
the y direction, which has corners 1, 2, 6, and 5. These correspond to the generic patch
corners 0, 1, 2, and 3. The remaining cycles of the loop shade the remaining two patches
in the y direction. Lines 200-202 and 203-205 advance in the x direction and perform the
same operation, thus shading all nine patches.

You may be wondering why the for loop in line 197, for i in range(0,3):, uses
the index 3 instead of 2. After all, there are only three y direction patches to shade; 0
— 3 would seem to give four. It has to do with the workings of the range () function. In
general, the syntax is range(start, stop, step).Ifno step is specified, it is assumed to
be 1. Range will start at start, go to stop in steps of step, but it will not return the value
at stop. Inline 197, 0 is the start value and 3 is the stop value. This will return i=0, 1,
and 2, but not 3. This was explained in Chapter 1. You can try this for yourself:

for i in range(0,3):
print(i)
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It is tempting to think of stop as the number of values to be returned, but it isn’t. For
example,

for i in range(1,3):
print(i)

If the start value is not specified, it is automatically set to 0:

for i in range(3):
print(i)

In this text, I usually included the start value for clarity but I do not usually specify
the step value unless it is different from 1.

In function shade(), lines 66-92 evaluate the unit vectors a, v, w,and n

Lines 94-96 specify the components of 1 , the incoming light direction unit vector,
as was done in prior shading programs. Line 98 takes the dot product of n with 1.Line
100-103 defines the shading function and establishes the light intensity, I, impacting the
patch. Line 105 mixes the r,g,b colors. Lines 107-115 plot the lines across the patch. Line
117 plots the lines. Note that the lines have the color established in line 105.
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100

Shaded oblique patch

0
0

Figure 9-10.
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Shaded oblique patch

Shaded oblique patch

120
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20 40

100

Figure 9-11. Shaded oblique patch
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Listing 9-3. Program SHADEDSURFACE3D

1

2 SHADEDSURFACE3D

3w

4

5 import matplotlib.pyplot as plt

6  import numpy as np

7  from math import sqrt, radians, sin, cos

8

9 plt.axis([0,150,0,100])

10 plt.axis('on")

11 plt.grid(True)

12

13 #=========================================yotation transformations
14

15 #————same as Listing 9-2, Program SURFACE3D

16

17 #========================================================plot axes
18

19 # same as Listing 9-2, Program SURFACE3D

20

21 #=======================================================plot point
22 def plotpoint(xp,yp,zp,Rx,Ry,Rz,clr):

23 rotx(xp,yp,zp,Rx)

24 xp=g[0]-xc

25 yp=g[1]-yc

26 zp=g[2]-zc

27 roty(xp,yp,zp,Ry)

28 xp=g[0]-xc

29 yp=g[1]-yc

30 zp=g[2]-zc

31 rotz(xp,yp,zp,Rz)

32 plt.scatter(g[o],g[1],s=10,color=clr)

33

34 f#=================================s=ss=s===s=s=s=s=s============plotline
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35 def plotline(xb,yb,zb,xe,ye,ze,Rx,Ry,Rz,clr):

36 rotx(xb,yb,zb,Rx) #—rotate line beginning coordinates
37 xb=g[0]-xc

38 yb=g[1]-yc

39 zb=g[2]-zc

40 roty(xb,yb,zb,Ry)
41 xb=g[0]-xc

42 yb=g[1]-yc

43 zb=g[2]-zc

44 rotz(xb,yb,zb,Rz)
45 xb=g[0]

46 yb=g[1]

47 zb=g[2]

48

49 rotx(xe,ye,ze,Rx) #—rotate line end coordinates
50 xe=g[0]-xc

51 ye=g[1]-yc

52 ze=g[2]-zc

53 roty(xe,ye,ze,Ry)
54 xe=g[0]-xc

55 ye=g[1]-yc

56 ze=g[2]-zc

57 rotz(xe,ye,ze,Rz)
58 xe=g[0]

59 ye=g[1]

60 ze=g[2]

61

62 plt.plot([xb,xe],[yb,ye],linewidth=.7,color=clr)

63

64 {#================================================5hade

65 def shade(xo,yo0,z0,x1,y1,2z1,x2,y2,22,x3,y3,23,Rx,Ry,Rz,clr):
66 a=x3-x0

67 b=y3-yo0
68 c=23-20
69 q03=np.sqrt(a*a+b*b+c*c)
70 ux=a/qo3
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uy=b/qo03
uz=c/qo03

a=x1-x0

b=y1-yo

c=z1-2z0
q02=sqrt(a*a+b*b+c*c)
vx=a/q02

vy:b/qoz

vz=c/q02

a=x2-x1

b=y2-y1

c=22-21
q12=np.sqrt(a*a+b*b+c*c)
wx=a/q12

wy=b/q12

wz=c/q12

nx=uy*vz-uz*vy
ny=uz*vx-ux*vz
nz=ux*vy-uy*vx

1x=0
1y='o7
1z=0

ndotl=nx*1x+ny*ly+nz*1z
IA=.01

IB=1

n=208

I=IA+(IB-IA)*((1-ndotl)/2)**n

clr=(1-I,.4*(1-I),.6%(1-I))

3D DATA PLOTTING
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I=q12/q03
dq=q03/50
for q in np.arange(0,q03+1,dq):
xb=x0+ux*q
yb=yo+uy*q
zb=z0+uz*q
xe=x1+wx*q*r
ye=yluwy*q*r
ze=zl+wz*q*r

plotline(xb,yb,zb,xe,ye,ze,Rx,Ry,Rz,clr)

plt.text(121,70,"'1x=")
1x="%7.3f'%(1x)
plt.text(130,70,1x)

plt.text(121,65,'ly=")
ly="%7.3f'%(1y)
plt.text(130,65,1y)

plt.text(121,60,'1z=")
1z="%7.3f'%(1z2)
plt.text(130,60,1z)

plt.text(121,50, 'IA=")
IA="%7.3F'%(IA)
plt.text(130,50,IA)

plt.text(121,45,"'IB=")
IB="%7.3f'%(IB)
plt.text(130,45,1B)

plt.text(121,40, 'n=")
n="%7.3f"%(n)
plt.text(130,40,n)
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#::::::::::::::::::::::::::::::::::::::::::::::::::::::COntrol

g=[0]*3 #—global plotting coords returned by rotx, roty and rotz

xc=80 #—origin of X,Y,Z coordinate system

yc=20

zc=10

Rxd=-100 #—-rotations of X,Y,Z system degrees

Ryd=-135

Rzd=8

Rx=radians(Rxd) #—rotations of X,Y,Z system radians

Ry=radians(Ryd)

Rz=radians(Rzd)

# plot X,Y,Z axes

#—————same as Listing 9-2, Program SURFACE3D

# define data point array A

A=np.array([ [0,0,50], [0,10,43], [0,20,30], [0,30,14],
[20,0,25], [20,10,23], [20,20,19], [20,30,12],
[40,0,14], [40,10,15], [40,20,13], [40,30,9],
[60,0,7], [60,10,10], [60,20,10], [60,30,9] ])

nop=len(A) #—mnumber of data points

# plot data points

clr="k'

for i in range(0,16):

plotpoint(A[i,0],A[i,1],A[i,2],Rx,Ry,Rz,clr)
# connect data points in Y direction
clr="k" #=—————1ine color
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for i in range(0,3):
plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],
Rx,Ry,Rz,clr)

for i in range(4,7):
plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],Rx,Ry,
Rz,clr)

for i in range(8,11):
plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],
Rx,Ry,Rz,clr)

for i in range(12,15):
plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],
Rx,Ry,Rz,clr)

# connect data points in X direction

clr="k" #————1ine color

for i in range(0,4):
plotline(A[i,0],A[i,1],A[i,2],A[i+4,0],A[i+4,1],A[i+4,2],
Rx,Ry,Rz,clr)

for i in range(4,8):
plotline(A[i,0],A[i,1],A[i,2],A[i+4,0],A[i+4,1],A[i+4,2],
Rx,Ry,Rz,clr)

for i in range(8,12):
plotline(A[i,0],A[i,1],A[i,2],A[i+4,0],A[i+4,1],A[i+4,2],
Rx,Ry,Rz,clr)

# shade patches
for i in range(0,3):
shade(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],A[i+5,0],
A[i+5,1],A[i+5,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)
for i in range(4,7):
shade(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],A[i+5,0],
A[i+5,1],A[i+5,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)
for i in range(8,11):
shade(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],A[i+5,0],
A[i+5,1],A[i+5,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)
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207 # labels
208 plt.text(121,90, 'Rx=")

209 Rxd="%7.1f"'%(Rxd)

210 plt.text(130,90,Rxd)

211

212 plt.text(121,85, 'Ry=")

213 Ryd="%7.1f'%(Ryd)

214 plt.text(130,85,Ryd)

215

216 plt.text(121,80, 'Rz=")

217 Rzd="%7.1f'%(Rzd)

218 plt.text(130,80,Rzd)

219

220 plt.title('Shaded 3D Surface')
221

222 plt.show()

Summary

In this chapter, you saw how to plot data in three dimensions. To do so, you changed

the usual orientation of your axes with z pointing into the screen to z pointing up; x

and y are in the horizontal plane. This is the common way of displaying data where
Pz=f(Px,Py) and Px, Py, and Pz are the coordinates of a data point. In Listing 9-1, you
connected the data points by splines. As an aid to visualization, you projected the spline
down onto the x,y plane. It could be projected onto the other coordinate planes without
much difficulty. The 3D spline algorithm you used is an extrapolation of the 2D spline
presented in Chapter 8. In Listing 9-2, you constructed a surface by connecting points by
splines in the x and y directions. Then you shaded the three-dimensional surface. This
required connecting the data points by straight lines rather than splines. The result was
an assemblage of oblique patches, which are not necessarily planar; each of them may
be twisted out of plane. You learned how to shade the surface by shading each patch.
This required the development of an algorithm capable of shading a non-planar oblique
quadrilateral. The shading was carried out by plotting lines across the surface of each
patch; the intensity of the color was determined by the orientation of the patch with
respect to the direction of the illuminating light rays.
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Demonstration Saturn

In this chapter, you will apply some of the techniques developed in previous chapters
to produce some interesting images of the planet Saturn. They should give you some
idea of the things that can be accomplished with Python graphics plus a bit of creative
geometry.

Saturn

Saturn is famous for its rings. While Jupiter, Uranus, and Neptune also have rings,
Saturn’s are the largest, brightest, and most well-known in our solar system. They
consist of particles as small as dust up to boulder-sized objects. The rings are thought to
have originated when a comet or a large asteroid collided with one of Saturn’s moons,
shattering both into small pieces. Saturn has been known from ancient times but in 1610
Galileo was the first to observe it with a telescope. The planet is named after Saturn, the
Roman god of agriculture, as is our sixth day, Saturday, Saturn’s Day.

Listing 10-1 builds on an earlier program, SHADESPHERE from Listing 7-2 from
Chapter 7. That program is left mostly intact here except for the introduction of
algorithms that construct Saturn’s rings and the shadow of the planet that is cast on the
rings. The model that creates the rings is shown in Figure 10-6.

Figures 10-1 through 10-5 show images produced by Listing 10-1. They are at
different angles of orientation, which are listed in the captions. Also listed are the unit
vector components of the incoming light rays. For example, Ix=+.707, ly=+.707, 1z=0
indicates the light is coming from a light source in the upper left quadrant; if Ix were
negative, such as Ix=-1, ly=0, 1z=0, this would indicate a light source coming from the
right. When specifying Ix, ly, and 1z, be sure they conform to a unit vector as mentioned
earlier.
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In the images, please notice the shadow cast by the planet on the rings, especially in
Figure 10-5, which shows the curvature of the planet’s body. The geometry that does that
is shown in Figure 10-7.

Figure 10-8 shows how easily an image can be magnified. With the change of just a
few lines of code, you can create a telescopic image.

For comparison, a photographic image of Saturn, courtesy of Jet Propulsion Lab
and NASA, can be found at www.jpl.nasa.gov/spaceimages/?search=saturndcategor
y=#submit.

Figure 10-1. Saturn with rings and shadow 1: Rx=-20, Ry=0, Rz=-10, Ix=1, ly=0,
lz=0 (produced by Listing 10-1)
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Figure 10-2. Saturn with rings and shadow 2: Rx=-8, Ry=0, Rz=30, Ix=.707,
ly=.707, Iz=0 (produced by Listing 10-1)

Figure 10-3. Saturn with rings and shadow 3, Rx=-20, Ry=0, Rz=25, Ix=.707,
ly=.707, Iz=0 (produced by Listing 10-1)
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Figure 10-4. Saturn with rings and shadow 4: Rx=-10, ry=0, Rz=25, Ix=-.707,
ly=-.707, Iz=0 (produced by Listing 10-1)

Figure 10-5. Saturn with rings and shadow 5: Rx=20, Ry=0, Rz=30, Ix=-1, ly=0,
Iz=0 (produced by Listing 10-1)
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Figure 10-6 shows the model used to construct the rings. In Chapter 7, you
developed the shaded sphere algorithm by first creating an upright sphere. That is, the
longitudes were vertical and the latitudes were horizontal (i.e., parallel to the x,z plane).
From this starting orientation, you rotated the sphere around the x, y, and z axes. You do
a similar thing here for the rings. You create horizontal rings, which are parallel to the
x,Z plane, and then rotate them through the same angles along with the spherical planet
body. The rings lie in a plane that passes through the sphere’s center so both the sphere
and the rings have the same center of rotation. The rings are, in a sense, attached to the
body of the planet and both rotate as one object.

24

Figure 10-6. Rings model: top view of planet and rings looking down on the x,z
plane with Rx=0, Ry=0, Rz=0

The ring band is drawn as a series of adjacent concentric circles, each of which is
composed of short line segments. Referring to Figure 10-6 and Listing 10-1, program
lines 42 and 43 set the inner and outer radii of the rings. Line 44 sets the distance
between circles. The rings are divided into seven annular bands (not shown in
Figure 10-6) to accommodate different colors; their width is deltar in line 45.

The bands are composed of short line segments. Each line segment is rotated and
plotted separately. Line 48 starts a radial direction loop from r1 to r2 plotting the circle
segments. Line 49 starts a loop plotting in the circumferential direction. Lines 50-61 do
the rotating producing global plotting coordinates xpg and ypg in lines 62 and 63. The
rotation functions rotx, roty, and rotz are the same as in previous programs.

Next, you set the colors of the segments. The rings are arranged in bands of different
colors, which are a result of their physical composition as seen in the NASA image.

This is done in lines 66-75. The first band, which goes from r=r1 to r1+deltar, has color
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clr=(.63,.54,.18) and so on for the remaining bands. You omit the fifth band, which
is empty; the background color shows through. The sixth band is twice as wide as the
others. This provides the colors for the seven bands.

For a given light direction, in most orientations, the planet’s body will cast a shadow
on the rings. Referring to Figure 10-7, your objective is to determine if a point on the
band, p, lies inside or outside the planet’s shadow zone. The spherical planet casts
a circular shadow. The shadow’s diameter will equal the size of the planet, or more
precisely, the sphere’s “great circle.” This is the largest circle that can be obtained by
cutting a sphere with a plane through its center. It’s like cutting an orange in half; what
you see is the orange’s great circle. In Figure 10-7, the shadow could also be caused by a
circular disk of this size as by the spherical planet; the shadow will have the same size in
either case. The side view of Saturn’s great circle is shown as the heavy line that passes
through the plane’s center. From the geometry in Figure 10-7, you can see that if p lies
in a position such that |[B| > rs, where rs is Saturn’s radius, it is outside the shadow zone;
if |B| <rs, p is inside the shadow zone. Once you determine where p is, if it is inside the
shadow zone, when you plot the rings you will color that point grey. If it is outside, you
will give it one of the band colors set in lines 66-75.

Great circle side view Shadow zone

Figure 10-7. Shadow model

Your job now is to get |B| for a given position of p. You see from Figure 10-7 that

|B|=| V|sin(¢) (10-1)
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You know that

an:‘VHa‘sin(d)) (10-2)

A A

i =-1 1. Combining the above equations with | @ |=1

B=Vxu (10-3)

[B|=|vxu

(10-4)

In Listing 10-1, line 78 establishes the length of the incident light vector, 1.

This should equal 1, but it may not if the components entered in lines 23-25 do not
compute to 1 (i.e., /x> + /> + 1> #1). Lines 79-81 then reestablish the components if
necessary by scaling them up or down. Lines 82-84 establish the components of vector
V. Lines 85-87 compute components of B. Line 88 gives its magnitude magB=|B|. Line
89 determines if p lies within the shadow zone. If it does, line 90 is executed. This is the
dot product of V with 1 1.Itdetermines whether p lies on the side of the planet that is
toward the light source, in which case it is opposite the dark side of the planet and not in
the shadow zone. This is necessary since the shadow algorithm in lines 78-89 does not
make this distinction. If p does lie on the dark side and is within the shadow zone, the
color is set to a medium grey in line 91.

You will notice in the images above that there is a dark band within the rings. This
is because Saturn’s rings have a void in that band: there are no particles there to reflect
light; what you see is the background color, 'midnightblue’, showing through. This
creates a problem since the shadow color will overplot the background color in that void.
Lines 93 and 94 reestablish it as 'midnightblue’.

Now that the band colors have been established, you can plot the rings. This is done by
plotting short line segments. Lines 97-99 compute the starting location of the first segment.
Referring to Figure 10-6, lines 100-101 determine if the segment is in front of the planet, in
which case it is plotted. Lines 103-108 determine if it is behind the planet, in which case it
is not plotted. This is done by calculating the distance c of the point’s global coordinates
from the planet’s center. Line 107 says if c is greater than the sphere’s radius times 1.075,
then plot the segment. The factor of 1.075 is included to prevent the line segments from
nibbling into the sphere’s edges. But sometimes it can create too large a gap so you can

335



CHAPTER 10  DEMONSTRATION SATURN

reduce this if necessary. It is necessary to go through the above logic; otherwise the front
visible segments, which are within the radius of the sphere, won’t be plotted.

Two things can be noted regarding the above images produced by Listing 10-1.
First is the color. The NASA photographic image shows a greyish hue, almost devoid of
color. But many observers of Saturn have described it as having a golden hue, hence
my choice of colors. As any photographer knows, capturing an object’s true colors in a
photographic image is difficult; so much depends on the color of the incident light and
the image-capturing medium. Perhaps it is best to rely on the observations of stargazers.
If you do not agree with the colors in the images produced by Listing 10-1, you can tinker
with them by altering the clr definitions in the program. The second thing to notice is
the curvature of the shadow that follows the planet’s curvature in Figure 10-5. It shows
that the shading algorithm works as expected.

Regarding use of the program, you can change the direction of the incident light in
lines 23-25 and the angles of rotation in lines 31-33. Listing 10-1 takes a while to run so
be patient.

Listing 10-1. Program SATURN

1

2 SATURN

3w

4

5 import numpy as np

6  import matplotlib.pyplot as plt
7  from math import sin, cos, radians, sqrt
8

9 plt.axis([0,150,100,0])

10 plt.axis('off")

11 plt.grid(False)

12

13 print('running')

14 # parameters

15 g=[0]*3

16

17 xc=80 #——sphere center

18 yc=50
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49

51
52
53
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zc=0
rs=25 #—sphere radius
1x=-1 #—1ight ray unit vector components
ly=0
1z=0
TA=0
IB=.8
n=2
Rx=radians(-20)
Ry=radians(0)
Rz=radians(30)
#}——————same as SHADESPHERE——-
# rings
alphal=radians(-10)
alpha2=radians(370)
dalpha=radians(.5)
r1=1rs*1.5
12=15%2.2
dr=rs*.02
deltar=(r2-r1)/7 #—ring band width
#————————rotate ring point p which is at r, alpha

for r in np.arange(r1,r2,dr):
for alpha in np.arange(alphai,alpha2,dalpha):
xp=r*cos(alpha)
yp=0
zp=-r*sin(alpha)
rotx(xc,yc,zc,xp,yp,zp,Rx)
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
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xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc
roty(xc,yc,zc,xp,yp,zp,Ry)
xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc
rotz(xc,yc,zc,xp,yp,zp,Rz)
xpg=g[0]

ypg=g[1]

if

if

if

if

if

select ring band color
1l <= 1 < ri1+l*deltar:
clr=(.63,.54,.18)

ri+i*deltar <= r <= ri+2*deltar:
clr=(.78,.7,.1)

ri+2*deltar <= r <= ri+3*deltar:
clr=(.95,.85,.1)

ri+3*deltar <= r <= ri+4*deltar:
clr=(.87,.8,.1)

ri+5*deltar <= r <= ri+7*deltar:
clr=(.7,.6,.2)

shadow

magu=sqrt(1x*1x+1ly*ly+1z*1z)

ux=-1x/magu

uy=-ly/magu
uz=-1z/magu

VX=
vy=
vz=
Bx=
By=

XC-Xpg
yc-ypg
zc-zpg
uy*vz-uz*vy
uz*vx-ux*vz



87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

++
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Bz=ux*vy-uy*vx
magB=sqrt (Bx*Bx+By*By+Bz*Bz)
if magB < rs: #=———if in the shadow region
if vx*1x+vy*ly+vz*1lz <= 0: #—if v points toward light source
clr=(.5,.5,.2) #—shadow color

if ri+4*deltar <= r <= ri1+5*deltar: #—overplot empty band
clr="midnightblue' #—with background color

plot line segment

if alpha == alpha1:
xstart=xpg
ystart=ypg

if zpg <= zc: #-front (z axis points into the screen)
plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr)

if zpg >= zc: #-back
a=xpg-Xc
b=ypg-yc
c=sqrt(a*a+b*b)
if ¢ > rs*1.075: #—plot only the visible portion of rings
plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr)
xstart=xpg

ystart=ypg

112 plt.show()

Figure 10-8 shows an image of Saturn magnified and shifted off-center. This is easily

done by changing a few lines of input specifications in Listing 10-1. Figures 10-1 through

10-5 were done with various values of angles of rotation Rx, Ry, and Rz in Listing 10-1.

Also, the center of Saturn was placed at approximately the center of the plotting area.

The light direction specified by Ix, ly, and 1z in lines 23-25 comes from the right. So how

did we get the magnified telescopic image shown in Figure 10-8 with the center of the

planet off-center?
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Figure 10-8. Saturn magnified: Rx=20, Ry=0, Rz=30, Ix=-1, ly=0, 1z=0 (produced
by Listing 10-1 with modifications as shown in the script below)

It only required changing a few lines in Listing 10-1. These are shown in bold below.
In line 9, the values in the plt.axis function have been changed to ([0,75,50,0]).In
the previous images of Saturn they were equal to ([0,150,100,0]); here they are half
what they were before. The p1t.axis() function determines the numerical size of the
plotting area (i.e., the lengths of the x and y axes). It does not change the physical size
of the plotting area that appears on your monitor. By cutting these axes numerically in
half, you are essentially doubling the size of the image inside. This assumes, of course,
that the numbers that define the image within the plotting area remain unchanged. Note
that in line 9 the length of the x-axis, which is 75, is 50% greater than that of the y-axis,
which is 50. This retains the ratio of 150%, which eliminates distortions, giving you a
round sphere instead of an ellipse. This was discussed in Section 1.17.2. You can see in
lines 23-25 that the light direction goes from right to left, in the negative x direction. The
radius of Saturn’s body is rs=25 in line 21. You can see that if you reduce the numerical
values of the x and y axes, as you have done, a sphere that keeps its numerical value of
the radius at 25 will appear larger. Rs is unchanged from the previous images of Saturn.
The center of the planet has been moved off-center in lines 17 and 18. Obviously,
there are parts of the image that lie outside the plotting area but are clipped off by the
boundaries of the plotting area. Fortunately, Python does not plot or worry about things
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that lie outside the plotting area so, while a program may call for something to be plotted
out-of-bounds, Python will ignore it. The program takes a few minutes to run so, if you're
as impatient as I am, then line 13 lets you know it is running. There are a few other notes
that are printed as the different operations are initiated. When the program is finished,
the image of Saturn will pop up on the screen (see Figure 10-9). If you want to create a
different degree of magnification, just change line 9; reduce the numbers to increase the
magnification and increase the numbers to decrease the magnification, which will give a

more distant view. Remember to keep x at 150% of y in line 9.

9 plt.axis([o0,75,50,0])
10 plt.axis('off")
11 plt.grid(False)

12

13 print('running')

14 # parameters

15 g=[0]*3

16

17 xc=80 #—sphere center

18 yc=50

19 zc=0

20

21 1s=25 #—sphere radius

22

23 1x=-1 #—1light ray unit vector components
24 ly=0

25 1z=0

26 # ———same as SHADESPHERE——-
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Figure 10-9. Python enjoys the view from Enceladus, Saturn’s sixth largest moon.
Enceladus is covered by a layer of pure ice, making it one of the most reflective
bodies in our solar system. Beneath the ice there is thought to be water, making this
moon of great interest to the scientific community. This image was produced by
Listing 10-2

Listing 10-2 uses code that was developed in previous chapters. Saturn is the same
as before except it is positioned off-center and the axes definitions have been changed
(increased) to produce a more distant view. Earth in the distance is just a large, light blue
scatter dot. Enceladus uses the same sphere-producing algorithm as Saturn but without
the rings. The distant stars are just white scatter dots placed and sized at random. Every
time the program is run, the pattern will change. The section of code that produced them is

for ns in np.arange(1,20): L 20 stars
x = random.randint(0,300) #oemm - random x position of
each star
y = random.randint(0,175) #ommmmm-- random y position of
each star
t=[.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5] #------- size picked at

random from this list
ss = random.choice(t)
plt.scatter(x,y,s=ss,color="white")

The green Python was produced using splines as shown in Chapter 8. The spline is
set up and then a line passes through points that have been specified. The line thickness
equals 7. This produces a reasonably smooth curve.
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Listing 10-2. Saturn From Enceladus

R kit Saturn From Enceladus
import numpy as np

import matplotlib.pyplot as plt

from math import sin, cos, radians, sqrt
import random

plt.axis([0,300,200,0])
plt.axis('off")
plt.grid(False)

print('running")

xc=250 #---sphere center

1s=25 #---sphere radius

1x=1 #---light ray unit vector components

Rx=radians(-20)
Ry=radians(0)
Rz=radians(-20)

#--background color
print(' background color")

for x in range(0,300,4):
for y in range(0,200,4):
plt.scatter(x,y,s=50,color="k")

DEMONSTRATION SATURN
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R distant Earth, stars
plt.scatter(60,40,s=100,color="1lightblue")

#====================r0tation functions

def rotx(xc,yc,zc,xp,yp,zp,Rx):
g[o]=xp+xc
g[1]=yp*cos(Rx)-zp*sin(Rx)+yc
g[2]=yp*sin(Rx)+zp*cos(Rx)+zc
return(g]

def roty(xc,yc,zc,xp,yp,zp,Ry):
g[0]=xp*cos(Ry)+zp*sin(Ry)+xc
gl1]=yp+yc
g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc
return(g]

def rotz(xc,yc,zc,xp,yp,zp,Rz):
g[o]=xp*cos(Rz)-yp*sin(Rz)+xc
g[1]=xp*sin(Rz)+yp*cos(Rz)+yc
g[2]=zp+zc
return(g]

Hommmmmm o longitudes
print(' Saturn longitudes")

phil=radians(-92)
phi2=radians(92)
dphi=radians(2)

alphal=radians(0)
alpha2=radians(360)
dalpha=radians(.5)

for alpha in np.arange(alphai,alpha2+dalpha,dalpha):

for phi in np.arange(phi1,phi2+dphi,dphi):
xp=rs*cos(phi)*cos(alpha)
yp=rs*sin(phi)
zp=-rs*cos(phi)*sin(alpha)
rotx(xc,yc,zc,xp,yp,zp,Rx)
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print(’

for phi in np.arange(phi1,phi2+dphi,dphi):

CHAPTER 10

xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

roty(xc,yc,zc,xp,yp,zp,Ry)

xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

rotz(xc,yc,zc,xp,yp,zp,Rz)

xpg=g[0]

ypg=g[1]

zpg=g[2]

a=xpg-Xc

b=ypg-yc

c=zpg-zc

gp=sqrt(a*a+b*b+c*c)

nx=a/qp

ny=b/qp

nz=c/qp

ndotl=nx*1x+ny*ly+nz*l1z

I=IA+(IB-IA)*((1+ndotl)/2)**n

if phi == phi1:
xpglast=xpg
ypglast=ypg

if nz < 0:

DEMONSTRATION SATURN

plt.plot([xpglast,xpgl,[ypglast,ypgl,linewidth=4,color=(.80%*(1-

I),.75%(1-I),.1%(1-1)))
xpglast=xpg

ypglast=ypg
Saturn latitudes")

r=rs*cos(phi)

for alpha in np.arange(alphai,alpha2+dalpha,dalpha):

xp=r*cos(alpha)
yp=rs*sin(phi)

#----latitudes
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zp=-rs*cos(phi)*sin(alpha)

rotx(xc,yc,zc,xp,yp,zp,Rx)

xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

roty(xc,yc,zc,xp,yp,zp,Ry)

xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc

rotz(xc,yc,zc,xp,yp,zp,Rz)

xpg=g[0]

ypg=g[1]

zpg=g[2]

a=Xpg-xc

b=ypg-yc

c=zpg-zc

gp=sqrt(a*a+b*b+c*c)

nx=a/qp

ny=b/qp

nz=c/qp

ndotl=nx*1x+ny*ly+nz*1z

I=IA+(IB-IA)*((1+ndotl)/2)**n

if alpha == alpha1:
xpglast=xpg
ypglast=ypg

if nz < 0:
plt.plot([xpglast,xpg],[ypglast,ypg],linewidth=4,color=(.80*(1-
I),.75%(1-1),.1*(1-1)))

xpglast=xpg

ypglast=ypg

oo rings and shadows
print(' Saturn rings and shadow")

alphal=radians(-10)
alpha2=radians(370)
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dalpha=radians(.5)

r1=rs*1.5
12=15%2.2
dr=rs*.02
deltar=(r2-11)/7

for r in np.arange(r1,r2,dr):
for alpha in np.arange(alphai,alpha2,dalpha):

xp=r*cos(alpha)
yp=0
zp=-r*sin(alpha)
rotx(xc,yc,zc,xp,yp,zp,Rx)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xc,yc,zc,xp,yp,zp,Ry)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xc,yc,zc,xp,yp,zp,Rz)
xpg=g[0]
ypg=g[1]
zpg=g[2]

#------- ring colors

if r1 <= r < ri+1*deltar:
clr=(.63,.54,.18)

if ri+i1*deltar <= r <= ri+2*deltar:
clr=(.78,.7,.1)

if ri+2*deltar <= r <= ri+3*deltar:
clr=(.95,.85,.1)

if ri+3*deltar <= r <= ri+4*deltar:
clr=(.87,.8,.1)

if ri+5*deltar <= r <= ri+7*deltar:
clr=(.7,.6,.2)
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magu=sqrt(1x*1x+1ly*ly+1z*1z)
ux=-1x/magu

uy=-1ly/magu

uz=-1z/magu

VX=XC-XPg

Vy=yc-ypg

Vz=2C-2pg

Bx=uy*vz-uz*vy
By=uz*vx-ux*vz
Bz=ux*vy-uy*vx

magB=sqrt (Bx*Bx+By*By+Bz*Bz)

if magB < rs: #H---------- if in the shadow region
if vx*1x+vy*ly+vz*lz <= 0: #---if v pointing toward
light source
clr=(.4,.4,.1) #---shadow color

if ri+4*deltar <= r <= ri+5*deltar: #---overplot with
background color
clr="k'

----plot line segment
if alpha == alphai:
xstart=xpg
ystart=ypg
if zpg <= zc: #---front
plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr)
if zpg >= zc: #--back
a=xpg-xc
b=ypg-yc
c=sqrt(a*a+b*b)
if ¢ > rs*1.090: #----- plot only visible part of ring
plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr)
xstart=xpg

ystart=ypg
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e LR LT Moon

xc=50 #---sphere center
yc=400

zc=50

15=240 #---sphere radius

Rx=radians(-20)
Ry=radians(0)
Rz=radians(-20)

Hommmmmmee e Enceladus longitudes
print(' Moon longitudes")

phil=radians(-92)
phi2=radians(92)
dphi=radians(2)

alphal=radians(0)
alpha2=radians(360)
dalpha=radians(.5)

for alpha in np.arange(alphai,alpha2+dalpha,dalpha): #----Enceladus
longitudes
for phi in np.arange(phi1,phi2+dphi,dphi):

xp=rs*cos(phi)*cos(alpha)
yp=rs*sin(phi)
zp=-rs*cos(phi)*sin(alpha)
rotx(xc,yc,zc,xp,yp,zp,Rx)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
roty(xc,yc,zc,xp,yp,zp,Ry)
xp=g[0]-xc
yp=g[1]-yc
zp=g[2]-zc
rotz(xc,yc,zc,xp,yp,zp,Rz)
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xpg=g[0]

ypg=g[1]

zpg=g[2]

a=Xxpg-Xc

b=ypg-yc

c=zpg-zc

gp=sqrt(a*a+b*b+c*c)

nx=a/qp

ny=b/qp

nz=c/qp

ndotl=nx*1x+ny*ly+nz*1z

I=IA+(IB-IA)*((1+ndotl)/2)**n

if phi == phi1:
xpglast=xpg
ypglast=ypg

if nz < 0:
plt.plot([xpglast,xpgl,[ypglast,ypg],linewidth=4,
color=(.90*(1-1),.9*%(1-1),.9*%(1-1)))

xpglast=xpg

ypglast=ypg

#----Moon latitudes

print("

Moon latitudes')

for phi in np.arange(phi1,phi2+dphi,dphi):  #----latitudes

350

r=rs*cos(phi)
for alpha in np.arange(alphai,alpha2+dalpha,dalpha):

xp=r*cos(alpha)
yp=rs*sin(phi)
zp=-rs*cos(phi)*sin(alpha)
rotx(xc,yc,zc,xp,yp,zp,Rx)
xp=g[0]-xc

yp=g[1]-yc

zp=g[2]-zc
roty(xc,yc,zc,xp,yp,zp,Ry)
xp=g[0]-xc
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yp=g[1]-yc

zp=g[2]-zc

rotz(xc,yc,zc,xp,yp,zp,Rz)

xpg=g[0]

ypg=g[1]

zpg=g[2]

a=Xxpg-Xc

b=ypg-yc

c=zpg-zc

gp=sqrt(a*a+b*b+c*c)

nx=a/qp

ny=b/qp

nz=c/qp

ndotl=nx*1x+ny*ly+nz*1z

I=IA+(IB-IA)*((1+ndotl)/2)**n

if alpha == alphai:
xpglast=xpg
ypglast=ypg

if nz < 0:
plt.plot([xpglast,xpgl,[ypglast,ypg],linewidth=4,
color=(.90*(1-1),.9*%(1-1),.9*%(1-1)))

xpglast=xpg

ypglast=ypg

#lListing 8-8. SPLINE2D

def spline(x,y,clr,1ls):
nop=len(x)
plt.scatter(x,y,s=5,color=clr)
q=[0]*nop
mx=[0]*nop
my=[0]*nop
cx=[0]*nop
cy=[0]*nop
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dx=[0]*nop
dy=[0]*nop
bx=[0]*nop
by=[0]*nop
ax=[0]*nop
ay=[0]*nop

for i in range(1,nop): #---chords q(i); nop=6 gives q[5]
a=x[i]-x[i-1]
b=y[i]-y[i-1]
q[i-1]=sqrt(a*a+b*b)

mx[0]=(x[1]-x[0])/q[0] #---mx[0]

my[0]=(y[1]-y[0])/q[0] #---my[0]

for i in range(1,nop-1): #---average m[i]
mx[1]=((x[1]-x[i-1])/q[i-1]+(x[i+1]-x[1])/q[i])*.5
my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+1]-y[i])/q[i])*.5

mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2] --mx[nop-1]

my[nop-1]=(y[nop-1]-y[nop-2])/qlnop-2]  #---my[nop-1]

#----calculate coefficients
for i in range(0,nop-1):
dx[i]=x[1]
dy[i]=y[i]
cx[i]=mx[i]
cy[i]=my[i]
bx[i]=(3*x[i+1]-2*cx[1]*q[1]-3*dx[1i]-mx[i+1]*q[1])/(q[1i]*q[1i])
by[i]=(3*y[i+1]-2*cy[i]*q[i]-3*dy[i]-my[i+1]*q[i])/(q[i]*q[i])
ax[i]=(mx[i+1]-2*bx[i]*q[i]-cx[1])/(3*q[1]*q[1])
[ [

ay[i]=(my[i+1]-2*by[i]*q[i]-cy[i])/(3*q[i]*q[i])

Hommmmm e - plot the spline
xplast=x[0
yplast=y[0
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for i in range(0,nop-1):
for qq in np.arange(0,q[i],2):
xp=ax[1]*qq*qq*qq+bx[1]*qq*qq+cx[1]*qq+dx[i]
yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[i]*qq+dy[i]
plt.plot([xplast,xp],[yplast,yp],linewidth=7,color="#698B69",1lin
estyle=1s)
xplast=xp
yplast=yp
if i==2:
print(i,xp,yp)

plt.scatter(52,160,5=10,color="#698B69")
plt.scatter(94,143,s=5,color="#698B69")

plt.plot([43,40],[156,168],1inewidth=2,color="#698B69")
plt.plot([46,40],[156,168],1inewidth=2,color="#698B69")
plt.plot([44,40],[156,168],linewidth=2,color="'#698B69")

#plt.plot([70,80],[165,165],1linewidth=1,color="g")

plt.scatter(59,154,s=37,color="#698B69")
plt.scatter(44,156,s=24,color="#698B69")

Booomeeeee control
x=[60,65,75,80,85,85,94]
y=[155,161,164,163,164,145,143]
clr="g'

spline(x,y,clr,1s="--")

print(' stars')

for ns in np.arange(1,20):
x = random.randint(0,300)
y = random.randint(0,175)
t=[.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5]
ss = random.choice(t)
plt.scatter(x,y,s=ss,color="white")
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R showing
print(' showing (wait)"')
plt.show()

print(" almost done")

Summary

In this chapter, you learned a bit about the planet Saturn and how its rings were formed.
You saw how to construct Saturn’s body and shade it as you did earlier in Program
SHADESPHERE in Chapter 7 (Listing 7-2). Adding the rings was easy; you created them
from annular rings whose plane passes through the planet's body’s center. With all
angles of rotation equal to zero, you started off by creating the rings such that they lie
parallel to the x,z plane. When you rotated or translated the planet’s body, you rotated
and translated the rings along with it. In a sense, the body and the rings acted as one
unit. Then, using simple geometry, you constructed an algorithm that showed the
shadow cast on the rings by Saturn’s body. You also learned how to easily magnify or
shrink an image by simply changing a few numbers in the plt.axis() function. This
changes the definition of the numerical scale of the axes while the numerical values that
describe Saturn and its rings remain unchanged. This has the effect of magnifying the
image as shown in Figure 10-8, making it look closer. The image can be made smaller
by doing the opposite, in which case it would look further away as in Figure 10-9. In
Listing 10-2, you used random functions to position the distant stars and you used
splines, discussed in Chapter 8, to create Python enjoying the view from Enceladus.
Enceladus was created from the same algorithm that was used to create Saturn although
the position of the center of the moon (out of the plotting area) and the moon’s radius
and color were chosen to give the icy grey image seen.
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Electrons, Photons
and Hydrogen

Why are we concerned with electrons, photons, and hydrogen? As you will see here and
in Chapter 12, the Sun is composed mostly of hydrogen whose electrons produce the
photons that strike our planet, heating it (sometimes more than we would like). We need
to understand how electrons generate photons and how they give photons the different
frequencies that comprise the spectrum of electromagnetic energy. You saw some of this
in Chapter 10 where you looked at Max Planck’s spectrum. For this discussion of atomic
activity, we will use as our model the hydrogen atom, which is the simplest of all atoms,
is the most abundant element in the universe; is the lightest element; and has been
well studied over the years. In addition, hydrogen comprises most of the Sun’s mass. Its
photon-producing electrons are responsible for virtually all of the Sun’s energy output.

We all know basically what atoms look like; or do we? An atom consists of a nucleus,
which is surrounded by electrons. Hydrogen (H) has only one electron. The nucleus of
hydrogen contains one proton and no neutrons. All other atomic nuclei contain both
protons and neutrons. The atomic number is the number of protons in the nucleus.
Since H has only one proton, its atomic number is 1. The mass number of an atom is the
number of protons plus neutrons in the nucleus. Since H has no neutrons in its nucleus,
only one proton, its mass number is equal to 1. Its atomic number is also 1.

Protons and neutrons are composed of gluons and quarks; both are assumed to be
indivisible. If you are wondering where the name “quark” came from, it can be attributed
to a line from James Joyce’s novel Finnegan's Wake:

“Three quarks for Muster Mark.”

The nucleus is held together in a tightly bound packet by strong intramolecular
nuclear forces of attraction. It is now believed that all atomic particles (protons,
neutrons, electrons, and all the rest) are not simple point masses but exhibit both
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particle and wave properties, known as wave-matter. The region between the nucleus
and the surrounding electrons is empty space.

The pictures of atoms many of us remember seeing in textbooks are usually wrong
in the way they depict the size of the nucleus relative to the overall size of the atom.

The nucleus is usually shown to be too big. If we could enlarge an atom to the size of a
football stadium, the nucleus would be about as large as a marble in the center of the
playing field. Almost all the mass of an atom is concentrated in its nucleus, which has an
immense density on the order of 10'” kg/m3. This is not its total mass, of course; it is its
density in mass per unit volume. To put this in human terms, the nucleus would have the
same density if we compressed 6 billion 4,000 pound automobiles into a box one foot on
a side. The old concept of electrons being like little moons orbiting the nucleus is also
wrong, as you will see.

Human investigation into the structure of matter has gone through numerous

iterations beginning with Greek philosophers in 450-550 BC up to our present
understanding of the atom which is called the Standard Model. Many dedicated and
highly skilled researchers have participated in this evolution over several centuries.
It is difficult to pin down exactly when some breakthrough occurred and who was
responsible for it since oftentimes their work overlapped. Throughout this journey,
much interest has been focused on the electron since this is the particle that is
responsible for chemical reactions and the production of photons that give us light
and heat.

The following is a brief timeline of atomic research:

e Inabout the year 450 BC, a Greek philosopher named Democritus
thought all matter was made up of small, indivisible particles, which
he called atomos and we now call atoms.

e Ahundred years later, Aristotle thought Democritus’ idea of an
atomos was incorrect. He believed that the universe was divided
into two parts: the terrestrial region on our planet and the celestial
region of space. He thought all matter in the universe was composed
of a continuum of substances. In the terrestrial region, all matter was
made of a combination of four substances: earth, fire, air, and water;
in the outer regions of the universe he thought everything was made
of a fifth substance he called quintessence. Aristotle’s ideas persisted
for another 1,000 years.
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In the early years of the 17th century, a British scientist named John
Dalton based on his research into chemical compounds and the
behavior of gases, brought back the notion of the atom. There was

no other concept that could explain what he was observing in the
laboratory. However, his idea that atoms are small, solid particles was
flawed. We now know, of course, they are not.

In the late 17th century, another British physicist named

J. J. Thompson discovered the electron, which he named. He realized
that, since atoms are electrically neutral, there must be something
there to cancel out the negative charge of the electrons. His idea was
that an atom was a spherical mass of positively charged matter in
which were located small negatively charged electrons, like plums

in a pudding. Not surprisingly, this is known as the Plum Pudding
Model. Thompson also discovered that electricity is the flow of
negatively charged particles. This was important at the time since the
prevailing thought was that electric current was similar to light.

By the late 1800s, scientists realized atoms were so small they could
not be observed optically. Using the laws of thermodynamics,
about which much was known at that time, they concluded that the
approximate diameter of an atom is about 1x10°8 cm.

In 1861, Scottish physicist and mathematician James Clerk Maxwell
published an early form of his famous equations which describe
electric and magnetic fields. These equations form the foundation
of classical field theory, also known as electrodynamics. While

an important set of equations, they were later shown to be an
approximation of theories developed through quantum mechanics.

In 1888, a Swedish physicist named Johannes Rydberg developed

a formula that matched the observed wavelengths of the spectral
lines of alkali metals. His formulation involved a constant called the
Rydberg Constant that calibrated his formula to the observed lines
very accurately.
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o In 1899, New Zealand physicist Ernest Rutherford eliminated
Thompson’s plum pudding model with his discovery of the nucleus.
He did this by irradiating a thin film of gold with positively charged
particles, which he called alpha particles. He discovered that most of
the alpha particles passed right through the foil while some of them
bounced back. This led to his idea that most of the atom is empty
space, a positively charged nucleus surrounded by small negatively
charged electrons. He predicted the existence of the neutron but
never discovered it. He thought electrons revolved around the
nucleus in random circular orbits, like planets orbiting a sun.
Rutherford’s model is known as the Planetary Model. We now know
that this model was simplistic; there is a lot more to it.

e On December 14, 1900, Max Planck, a German physicist, presented
his theory of black-body radiation, something that had confounded
scientists up until that time. Planck’s equation, which you will see
more of in Chapter 12, describes the power spectrum of light and
other forms of electromagnetic radiation. It is based on the idea that
light is not a continuum, as Maxwell had asserted, but is composed
of photons, individual packets of energy having the characteristics
of both a particle and a wave. As you will see shortly, photons are
produced by electrons changing their energy state.

o In 2013, the Higgs Boson, also known as the Higgs particle, or simply
the Higgs, was discovered at CERN (near Geneva in Switzerland). The
Higgs is thought to give the other particles their mass.

Where are we now in our understanding of the atom? At this time we are left with
the Standard Model. While it works well and gives good agreement with experiments,
it still does not answer all questions. At times it gives strange results. It seems a bit too
convoluted, too fragile, too patched together. You don’t have to be a professional particle
physicist to get the feeling something is not quite right with it.

The Standard Model is not fully accepted by many physicists as being the final
answer. Paul Dirac, Nobel Prize-winning physicist known for his contributions to
quantum mechanics and quantum electrodynamics said, “we have not yet solved the
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problem.” On the other hand, Carlo Rovelli, one of the founders of the loop gravity
theory, says of the Standard Model, "it may not be very elegant, but it works. Perhaps it is
we who have not yet learned to look at it from just the right point of view.”

While the subject is fascinating, it is not necessary for us to worry about the details
of the Standard Model. We need only be concerned with the atom as far as it is involved
with the production of light and heat and other forms of electromagnetic radiation and
that comes down to understanding the electron, its energy states, and its role in the
production of photons.

In 1925, Erwin Schrodinger, addressing the wave side of the matter-wave duality,
derived a partial differential equation that describes a wave function that is central to the
wave nature of all atomic particles. This equation is a fundamental postulate of quantum
mechanics and has played a central role in the development of our understanding of the
electron and of all atomic particles.

His equation is based on the idea that electrons are actually standing matter-waves
that encircle the nucleus. Imagine a piano string: the lowest harmonic, the string’s
fundamental natural frequency, has the longest wavelength. Now imagine an atomic
scale piano string wrapped around the nucleus. Its fundamental wave would simulate
the lowest frequency, the ground state of its energy. The fundamental wave has the
lowest energy. Higher harmonics of vibration correspond to higher notes on the piano
wire which, if wrapped around the nucleus, would simulate higher energy levels. Only
waves having the correct wavelength can fit evenly around the nucleus. This means the
harmonics, and thus the energy levels, can have only discrete values.

Schrodinger’s waves are not strings like piano wires but are three-dimensional
waves that surround the nucleus. The solutions to his wave equation, which are called
eigenfunctions, define these standing waves. There is more than one solution to the
equation, hence more than one eigenfunction is possible. Each defines a quantum state.
These waves are in constant motion so we cannot say where an electron is at any specific
time. All we can determine is the probability that it is at a certain place at a certain time.

Schrodinger’s proposal that an electron exists in the form of a wave was later
interpreted by Max Born as a probability amplitude whose square is equal to a
probability density. This gave rise to the term probability cloud. This is not to say that
the electron is a cloud; we are saying the probability of finding an electron at a specific
point in space resembles a cloud pictorially. We cannot say exactly where an electron is
within that cloud at any particular instant. All we can say is it is in there somewhere.
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Figure 11-1 shows a hydrogen atom with its nucleus (red). In this image, the nucleus
is depicted as much larger than it should be. Surrounding it is its one electron traveling
around within its probability cloud (grey) in its lowest energy state which is called the
ground state. This is called the 1s orbital, the “s” indicating it is spherical and 1 indicates
itis in the first and lowest energy state. The electron lives within this probability cloud. It
will spend about 90 percent of its time here, most of it closer to the nucleus. The darker
areas are where the electron spends most of its time; that is, the probability of finding it
within the darker region is higher than in the lighter-shaded areas further away from the
nucleus. This makes sense since the nucleus carries a positive charge while the electron
is negative so they attract one another. The code in Listing 11-1 drew Figure 11-1.

Figure 11-1. A hydrogen atom with its one electron in its 1s energy state, called the
ground state, the lowest

1s orbital

Listing 11-1. Program 1s orbital

e program 1s orbital
import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,-50,50])

plt.axis('off")
plt.grid(False)

plt.scatter(0,0,s=25,color="1") #------- nucleus

r1=3

12=16

dr=1

phi1=0
phi2=360.*np.pi/180.
dphi=2.*np.pi/180.
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for r in np.arange(r1,r2,dr):
for phi in np.arange(phi1,phi2,dphi):
x=r*np.cos(phi)
y=r*np.sin(phi)
clr=(r-r1)/(r2-r1) #intensity decreases linearly
#from the nucleus
plt.scatter(x,y,s=5,color=(clr,clr,clr))

plt.text(20,20,"'1s orbital')
plt.show()

In Listing 11-1, in the scatter() function, the r,g,b colors are equally mixed as the
variable CLR. They are all zero when r=r1, which gives black; when they all equal 1, they
produce white. (See the section on color mixing in Chapter 1). The distribution of probability
shown is linear from the nucleus. It is depicted that way here for pictorial purposes.

Figure 11-2 shows the orbital of the next higher energy state. This is the 2s level,
which means it is spherical and in the second energy level. It extends further from the
nucleus than the 1s state. Notice it is still spherical, as indicated by the s in the label, but
is further from the nucleus due to its higher energy. This was drawn by Listing 11-2.

25 orbital

Figure 11-2. A hydrogen atom with one 2s energy electron. It is similar to the

1s but the probability cloud is larger due to its higher energy. The listing that
produced this is similar to Listing 11-1 except the definition of CLR is different; the
radius of the outer limit of the probability cloud has been increased

There are 3s, 4s, and higher spherical electron states possible with increasingly
higher energy levels associated with each. The further the electron is from the nucleus,
the higher its energy. An analogy is that a brick that is 10 feet off the ground has more
potential energy than one 2 feet high. It takes energy to lift a brick 10 feet high. As you
will see, in our atom, if we think of an electron as being a brick, the energy to raise its
energy will be supplied by impacting photons.
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It is important to recognize that an energy state’s probability cloud, as depicted in
Figures 11-1, 11-2, and 11-3 is not an electron; it is an available energy state, an orbital
probability cloud. It simply shows where it is most probable to find an electron if it were
to occupy that energy state. The various probability clouds show the states that are
available to the electron as its energy is raised.

If we think in terms of energy shells, the first shell has one available energy state,
the 1s orbital, as shown in Figure 11-1. The second has four; the 2s orbital is shown in
Figure 11-2 plus three (x,y,z) p orbitals shown in Figure 11-3 (if we include the z-axis
orbital which is not shown). This doesn’t mean that hydrogen’s one electron will occupy
all four possible orbitals at one time; it merely means these four orbitals are available
to the electron if it has the proper energy. If an electron in the 1s ground state acquires
enough additional energy, it might flip into the 2s orbital or into one of the three p
orbitals. It’s as if you were checking into a hotel that has four rooms available on the
second floor. You only need one of them.

You might ask, how many energy levels are there available to an electron? The
answer: there is theoretically no limit. That doesn’t mean, of course, that there could
be as many as an infinite number of electrons in a hydrogen atom. We are talking about
possible energy states that are available to the hydrogen atom’s one electron if it is
pushed up into higher energy levels. In reality, if an electron acquires enough energyj, it
may break away from its host nucleus. As shown in Figure 11-5, this is called the break-
free energy and gives rise to the photoelectric effect.

We might expect the differences between the energy levels of states to be equal, but
they are not. Atlow energy levels, the only orbital available to an electron is the 1s state,
the ground state. As its energy increases, the 2s, 3s, 4s, and higher spherical orbitals
become available to it. But at the 2 energy level, the p orbitals also become available.
Shown in Figure 11-3 are two energy level 2 p orbitals, abbreviated as 2p (2 indicating the
energy level and p the configuration).
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2p orbitals

Figure 11-3. px and py orbitals produced by Listing 11-2. These are both

2p orbitals indicating they are at the second energy level and are in the p
configuration. A third pz orbital is available at this energy level but is not shown.
This was produced by Listing 11-2

Listing 11-2. Program 2p Orbital

e 2p orbitals
import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,50,-50])

plt.axis('off")
plt.grid(False)
plt.scatter(0,0,s=40,color="1") #--------------- nucleus

e e L e bottom orbital

xpl=-a
xp2=a
dx=.2

for xp in np.arange(xp2,xp1,-dx):
ypl=b*(1-xp**2./a**2.)** 5
yp2=-ypl
for yp in np.arange(yp2,yp1,dx):
clr=1-(-yp+b+4)/(2*b+4)
plt.scatter(xp,yp+b+5,s=60,color=(clr,clr,clr))
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e L EE L L P top orbital
a=4.

b=15.

xpl=-a

xp2=a

dx=.2

for xp in np.arange(xp2,xp1,-dx):
ypl=b*(1-xp**2./a**2.)** 5
yp2=-yp1
for yp in np.arange(yp2,yp1,dx):
cl=1-(yp+b+4)/(2*b+4)
plt.scatter(xp,yp-b-5,s=60,color=(cl,cl,cl))

e s left orbital

for xp in np.arange(xp1,xp2,dx):
ypl=b*(1-xp**2./a**2.)**.5
yp2=-yp1
for yp in np.arange(yp1,yp2,-dx):
clr=1-(xp+a+4.)/(2.*a+4.)
plt.scatter(xp-a-5.,yp,s=60,color=(clr,clr,clr,clr))

R et e T right orbital

for xp in np.arange(xp2,xp1,-dx):
ypl=b*(1-xp**2./a**2.)** 5
yp2=-yp1
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for yp in np.arange(yp2,yp1,dx):
clr=(xp+a+4.)/(2.*a+4.)
plt.scatter(xp+a+5.,yp,s=60,color=(clr,clr,clr))

plt.arrow(37,0,10,0)
plt.arrow(0,37,0,10)
plt.text(42,-3,'x")
plt.text(3,43,'y")

plt.text(20,-30,'2p orbitals")
plt.show()

pz orbitals can also exist along with the py and px orbitals. They will align themselves
with the z axis but are not shown in the illustration. Electrons flow into the lowest energy
orbitals, which are closest to the nucleus, first. Then they fill the higher orbitals as their
energy increases.

The orbitals shown here are called principal quantum and are designated by the
letter n. There are other orbitals: orbital angular momentum, 1, and magnetic quantum,
m. They all have energy states and will release a photon when an electron drops from
one energy state to a lower one.

As energy levels increase, orbital configurations get very complicated very quickly.
The situation gets even more complicated when dealing with multi-atom molecules.
The main points to be made here are the following: electrons are depicted in probability
clouds or states; the clouds themselves are not electrons, just probability clouds, and
these clouds have different shapes as energies increase; the differences between energy
states are not constant but decrease with energy, as shown in Figure 11-5.

The number of electrons orbiting a nucleus always has an integer value (i.e., 1,2,3,...).
Electrons can jump between energy states. If an existing electron is struck by a single
photon, it may jump up to the next state and the incoming photon is annihilated, its
energy going into pushing the existing electron up to a higher energy level, as shown in
Figure 11-4 (b), in keeping with the principle of conservation of energy.

Electron energy states can decrease as well as increase. When an electron drops to a
lower energy state, it emits a photon that will have the same energy, which is equal to
the difference between the energy level the electron had and the one it drops to. See
Listing 11-3. This is shown in Figure 11-4 (a).
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— n+1
+—P - +—P

(a) (b)

Figure 11-4. In (a), an electron drops to a lower energy level and emits a photon.
The energy lost by the electron goes into the emitted photon. In (b), an incoming
photon strikes an electron bumping it up to the next higher energy level. The
photon’s energy goes into the electron. The photon is annihilated

Listing 11-3. Emission and Absorption of a Photon

D T program emission (a) and absorption (b)
of a photon

import numpy as np
import matplotlib.pyplot as plt

plt.axis([-150,150,-100,100])
plt.axis('off")
plt.grid(False)

e o (a) energy levels
plt.arrow(-100,66,75,0)
plt.arrow(-100,60,75,0)
plt.arrow(-100,50,75,0)
plt.arrow(-100,35,75,0)
plt.arrow(-100,15,75,0)
plt.arrow(-100,-15,75,0)

S (b) energy levels
plt.arrow(25,66,75,0)

plt.arrow(25,60,75,0)

plt.arrow(25,50,75,0)

plt.arrow(25,35,75,0)

plt.arrow(25,15,75,0)

plt.arrow(25,-15,75,0)
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Homommmmo oo (a) electron dropping one energy state
plt.scatter(-62.5,35,5=50,color="k")
plt.scatter(-62.5,35,5s=40,color="white")
plt.scatter(-62.5,15,s=50,color="k")
plt.scatter(-62.5,15,5=40,color="b")

Bommmmmme e (b) electron rising one energy state
plt.scatter(62.5,35,5=50,color="k")
plt.scatter(62.5,35,5=40,color="b")
plt.scatter(62.5,15,s=50,color="k")
plt.scatter(62.5,15,5=40,color="white")

e s arrows and labels
plt.scatter(-100,25,s=39,color="r")
plt.arrow(-100,25,-20,0,head length=4,head width=5,color="r")

plt.scatter(100+15,25,5=39,color="r")
plt.arrow(100+15,25,-20,0,head length=4,head width=5,color="r")

plt.text(-10,35,"'n+1")
plt.text(-4,15,'n")

plt.arrow(-62.5,30,0,-7,head length=4,head width=5,color="r")
plt.arrow(62.5,17,0,7,head length=6,head width=5,color="1")

plt.text(-69,-50,"'(a)")
plt.text(59,-50,"(b)")

plt.show()

Figure 11-4 is drawn by Listing 11-3. The listing should be easy to understand. One
feature is worth noting, however. The empty white circles representing electrons at their
initial state were drawn by first placing a black scatter() dot and then over that a white
one of slightly smaller diameter. This leaves a black ring surrounding the white dot. In
Chapter 1, you learned that new dots overplot old ones so this is an easy way to have a
white dot visible against a white background.

Electrons can occupy only certain stable orbits called stationary states. Each orbit
has an energy associated with it called its energy state. The lowest energy state is the
ground state. When an electron has an energy higher than the ground state it is said to be
excited. When an electron drops from one energy state, n having energy En, to a lower
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one, n-1 having energy En-1, it emits a quantum of energy AE=En-En-1, which is equal
to the difference in energies. This packet of energy becomes a photon and is emitted by
the atom as a unit of electromagnetic energy. This is shown in Figure 11-4 (a). This was
anticipated by Max Planck in 1900 and by Einstein in 1905. Conversely, when an electron
is hit by a photon having exactly the correct energy, it jumps to a higher energy state, as
shown in Figure 11-4 (b).

Conservation of energy requires that the energy of the ejected photon must be
the same as the change in energy of the electron as it drops from one state to another.
Conversely, when struck by a photon, the increase in energy of the electron equals
that of the incoming photon, which is annihilated in the process. In accordance with
Einstein’s equivalence of mass and energy through the famous equation E=Mc?, the
striking photon’s mass M is converted into the energy required to bump the electron up
to the next energy level.

Occasionally an electron may get hit hard enough by a photon that pushes it beyond
the break-free energy. This may cause the electron to break free from its host nucleus. In
that case, the electron’s excess energy is converted into kinetic energy, forcing it to fly
away from its host nucleus. This gives rise to the photoelectric effect.

The electron energy levels are not uniformly spaced. As shown in Figure 11-5,
the spacings become smaller at higher energies. This is because the relation between
energies is given by

E === (11-1)

Where E,_, = -13.6, the ground state. Thus we have the following:

Quantum number Energy
1 E, =-13.6/1 -13.6
2 E, =-13.6/4 -3.4

3 E; ==-13.6/9 -1.5

4 E,=-13.6/16 -.85

6 Es =-13.6/25 -.54

368



CHAPTER 11 ELECTRONS, PHOTONS AND HYDROGEN

You can see, for example, the energy of a photon produced by an electron that drops
from state 3 to state 2 is (-1.5)-(-3.4) = 1.9 ev where 1 ev (electron volt) equals

6x1019] (11-2)

This equation is based on the work of Johannes Rydberg 1n 1888 and Niels Bohr.

10

-.54
o ]....Breakfree energy gl ==
-1.51

-3.4

[ ]

Now o

23|33

Hydrogen electron ground state 136 nwil

=20 T T T T
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Figure 11-5. Energy level of a hydrogen atom’s electron showing the ground state
and the break-free energy. This figure was produced by Listing 11-4

Listing 11-4. Energy of a Hydrogen Atom’s Electron

et e e T T Ty Figure 11-6
import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,100,-20,10])
plt.axis('on")

plt.grid(True)

T e T T hydrogen ground state
plt.arrow(20,-13.6,60,0)

o m e e e higher energy states

plt.arrow(25,-3.4,55,0)
plt.arrow(30,-1.511,50,0)
plt.arrow(35,-.85,45,0)
plt.arrow(40,-.544,40,0)
plt.arrow(45,-.378,35,0)
plt.arrow(50,-.278,30,0)
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plt.text(82,-13.6,'-13.6 n=1")
plt.text(82,-3.4,"'-3.4 n=2")
plt.text(82,-1.51,'-1.51 n=3")

plt.text(82,1.," -.85 n=4")
plt.text(82,2.5," -.54 n=5')
plt.arrow(80,2.3,2,0)
plt.arrow(80,2.3,-10,-2.3)

plt.text(23,-13," hydrogen electron ground state')

plt.arrow(0,0,40,0,color="b",linewidth=2,1linestyle=":")
plt.text(8,.6, 'break free energy"')

plt.plot([0,0],[-20,10],1linewidth=3,color="k")
plt.plot([0,100],[10,10],1inewidth=3,color="k")
plt.plot([100,100],[10,-20],1linewidth=3,color="k")
plt.plot([100,0],[-20,-20],1linewidth=3,color="k")
plt.show()

What about the frequency of an emitted photon? This is responsible for the color of
the light we see as well as for the “colors” we can’t see such as UV and infrared. We can
calculate the wavelength (equivalent to the frequency) of the photon that is emitted by
an electron that drops from one energy level to another as in

y="r (11-3)

where h is Planck’s Constant.

The units of wavelength are typically nanometers (1 nm = 10 m). So you see that
the energy of a photon is dependent on the energy that an electron gives up when it
drops from one state to another. This is, of course, a consequence of the principle of
conservation of energy. You also see that the emitted photon’s wavelength (or frequency)
is also dependent on the electron’s energy drop.
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Summary

You learned about the hydrogen atom, atomic structure and how photons are generated,
and where photons get their energy and their frequency. You also saw how to use Python
graphics to produce images of electron probability clouds. You can probably guess where
all this is leading. In Chapter 12, you will see how photons emitted by the Sun due to
changes in the energy state of its immense number of hydrogen atoms and electrons are
what produces the Sun’s solar power that irradiates the Earth.
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Demonstration: The Sun

This chapter demonstrates how you can use Python to plot and label curves that
represent mathematical functions. Our focus of interest will be the Sun. We will plot Max
Planck’s spectrum of radiation, which will be used to represent the energy spectrum
emitted by the Sun. Then we will calculate the Sun’s total power output and the amount
that reaches Earth, which is called the solar constant. The scientific aspects of this
section are quite interesting, as is the history of their development. The major benefit
from a Python programming aspect is seeing how Python can be used to set up plots,
perform numerical integration, display numerical data, and put labels and notes on the
plots. Plus you will learn some interesting facts about solar physics. Much of this chapter
relates to photons, which were discussed in Chapter 11. All illustrations in this chapter

were produced using Python.

The Earth-Sun Model

Listing 12-1 was used to produce Figure 12-1.
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Figure 12-1. The Earth-Sun model produced by Listing 12-1. AU, the distance
Jfrom the Earth to the Sun, is known as an Astronomical Unit. Ap is an imaginary
circular disk having the same diameter as the Earth. It is used to determine the
amount of the Sun’s energy that is received by the Earth

Listing 12-1. Program EARTHSUN

EARTHSUN
import matplotlib.pyplot as plt
import numpy as np
from math import radians, sin, cos, sqrt
plt.axis([-100,150,-100,150])
plt.grid(False)
plt.axis('off")
sfx=2.5/3.8
# background
for x in range(-100,150,2):
for y in range(-100,150,2):
plt.scatter(x,y,s=40,color="midnightblue")
phimin=0.

phimax=2.*np.pi
dphi=phimax/100.
15=40.
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re=20.

ys=15.

ye=2.

X0s=50.

yos=0.

z0s=0.

# Sun's core
plt.scatter(xos,yos,s=4300,color="yellow")
# Sun horizontals

rx=radians(20)
for ys in np.arange(-rs,rs,5):
for phi in np.arange(phimin,phimax,dphi):
rp=np.sqrt(rs*rs-ys*ys)
xp=rp*np.sin(phi)
yp=ys
zp=rp*np.cos(phi)
px=xos +stx*xp*1. +yp*0. +zp*0.
py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)
pz=z0s +xp*0. +yp*np.sin(rx) +zp*np.cos(rx)
if pz>o0:
plt.scatter(px,py,s=1,color="red")
# Sun verticals
alphamin=0.

alphamax=2.*np.pi

dalpha=alphamax/30.

for alpha in np.arange(alphamin,alphamax,dalpha):

for phi in np.arange(phimin,phimax,dphi):
xp=rs*np.sin(phi)*np.sin(alpha)
yp=rs*np.cos(phi)
zp=rs*np.sin(phi)*np.cos(alpha)
px=xo0s +sfx*(xp*1. +yp*0. +zp*0.)
py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)
pz=z0s +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)
if pz > 0 :
plt.scatter(px,py,s=1,color="red")
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# Earth's clouds
xoe=-50.
yoe=20.
zoe=-10.

plt.scatter(xoe,yoe,s=800,color="white")

# Earth horizontals
rx=20.*np.pi/180.
dphi=phimax/100.
for ys in np.arange(-re,re,2):
for phi in np.arange(phimin,phimax,dphi):
rp=np.sqrt(re*re-ys*ys)
xp=rp*np.sin(phi)
yp=ys
zp=rp*np.cos(phi)
px=xoe +sfx*(+xp*1. +yp*0. +zp*0.)
py=yoe +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)
pz=zoe +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)
if pz > o0 :
plt.scatter(px,py,s=.1,color="#add8e6")
# Earth verticals
alphamin=0.

alphamax=2.*np.pi
dalpha=alphamax/30.
for alpha in np.arange(alphamin,alphamax,dalpha):
for phi in np.arange(phimin,phimax,dphi):
xp=re*np.sin(phi)*np.sin(alpha)
yp=re*np.cos(phi)
zp=re*np.sin(phi)*np.cos(alpha)
px=xoe +sfx*(xp*1. +yp*0. +zp*0.)
py=yoe +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)
pz=zoe +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)
if pz > 0 :
plt.scatter(px,py,s=.1,color="#add8e6")
plt.arrow(xos-rs*sfx-3,yos+2,xoe-(xos-rs*sfx)+re+3,yoe-yos-6.2,color="r",
head_length=4.,head width=3.)
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plt.text(-14,16,"'1 AU',color="white")
plt.text(80,-29,"'Sun',color="white")
plt.text(-84,10, 'Earth',color="white")
# front orbit
deltamin=0.*np.pi/180.
deltamax=195.*np.pi/180.
ddelta=deltamax/60.
for delta in np.arange(deltamin,deltamax,ddelta):

r=108./sfx

xp=r*np.cos(delta)

yp=0.

zp=r*np.sin(delta)

px=x0s +sfx*(xp*1. +yp*0. +zp*0.)
py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)
pz=z0s +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)
plt.scatter(px,py,s=1,color="white")
# back orbit
deltamin=220.*np.pi/180.
deltamax=360.*np.pi/180.
for delta in np.arange(deltamin,deltamax,ddelta):
r=108./sfx
xp=r*np.cos(delta)
yp=0.
zp=r*np.sin(delta)

px=x0s +stx*xp*1. +yp*0. +zp*0.
py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)
pz=z0s +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)
plt.scatter(px,py,s=1,color="white")

# Ap disc

xoc=xoe+re*sfx

yoc=yoe-2.5

zoc=zoe

rc=.83*re
phii=0
phi2=2*np.pi
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dphi=(phi2-phi1)/200
Ty=-25%np.pi/180
for phi in np.arange(phi1,phi2,dphi):

XC=X0C

yc=rc*np.sin(phi)

zc=rc*np.cos(phi)

px=xoc+zc*np.sin(ry)

py=yoc+yc

pz=zoc+zc*np.cos(ry)

plt.scatter(px,py,s=.03 ,color="white")
plt.scatter(xoe+re*sfx,yoe-2,s=6,color="white")
plt.arrow(-20,60, (xoe+re*sfx)+24, (yoe+re/2)-60-2,color="white’,

linewidth=.5,head width=2.,head length=3)

plt.text(-18,60,"'Ap',color="white")
plt.show()

Facts About the Sun

The Sun’s diameter is roughly 1392x10° kilometers or about 865,000 miles. By
comparison, Earth’s average diameter is 12,742 km or 7,918 miles, about 109 times
smaller. We use the term average diameter since the Earth is not a perfect sphere. It is
flattened out a bit from the North Pole to the South Pole due to centrifugal force caused
by the Earth’s rotation about its axis. This makes the equatorial diameter 12,756 km or
7,926 miles while its polar diameter is 12,714 km or 7,898 miles. On a volume basis, the
Sunis 1,303,782 times larger than Earth.

The Sun is about 93,000,000 miles from Earth, which is shown in Figure 12-1. At the
speed of light, which is about 186,000 miles per second, radiation emitted by the Sun
takes about 500 seconds or 8 minutes to reach Earth.

The Sun is a star, but it is not the largest star out there. Red giants have diameters
10 to 40 times that of our Sun. There are stars that are one-tenth its size. If the Sun was
hollow, we could to fit 64,000,000 of our Moons inside it.

Our Sun, as well as other stars, is composed mostly of hydrogen. There is a lot of
hydrogen in our Sun: 4.4 followed by 30 zeros pounds of it. Hydrogen is the lightest
element in the periodic table and is the most abundant chemical substance in the
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Universe. Most active stars, such as our Sun, are composed primarily of hydrogen in
the plasma state. Plasma, one of the most common forms of matter in the universe, is
a strange electrically neutral medium of unbound positively and negatively charged
particles swirling around in a soupy stew.

At the Sun’s center is a plasma core. This is a result of the tremendous pressure
exerted by the gravitational attraction of the surrounding hydrogen, which pulls the mass
inward toward the center. Every second, deep inside the core where temperatures are
about 15 million degrees Kelvin and higher, and pressures are a million times greater
than on the surface of the Earth, 600 million tons of this plasma are being converted
into helium through a multi-step proton-proton fusion chain reaction, which produces
helium plus a tremendous amount of heat and energy. The core extends out from the
center to about 25% of the Sun’s radius. At the surface, temperatures are about 5800°K.

The tremendous heat within the core causes the particles to emit photons. Each
photon travels a short distance, about one micrometer, before it is absorbed by another
molecule. This creates an increase in the energy of that molecule, which stimulates the
release of another photon, and so on. When a photon migrates about 20% of the way to
the Sun’s surface, it is transported the rest of the way mostly by convection. It takes about
100,000 years of emissions and absorptions for the original photon to migrate to the
surface where it escapes and is finally radiated off into space.

The Sun’s radiation is not constant. Solar flares can occur, which eject clouds of
electrons, ions, and atoms into space. The energy released in a burst is of the order of
160,000,000,000 megatons of TNT. These clouds can reach Earth one or two days later,
disrupting radio and tv transmissions and, some believe, contributing to global warming
and climate change.

Photons and the Sun

The Sun, like all radiating bodies, emits electromagnetic energy in the form of
photons. We know that photons are emitted at different frequencies or, equivalently,
wavelengths—a wavelength being inversely proportional to frequency, as in

A=2m (12-1)
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where / is the wavelength, s,, is the speed of light within the medium, and v is the
frequency of a wave traveling in that medium. Since we are concerned primarily with
light traveling through empty space (i.e., from the Sun to Earth), s,,=c where c is the
speed of light in empty space, Equation 12-1 thus becomes

=< (12-2)
\%

A function such as solar power, when represented over a range of frequencies or
wavelengths, is called a spectrum. In the case of electromagnetic radiation, we are mostly
concerned with the power of light at different frequencies, or equivalently, wavelengths.
This is called a power spectrum. An example is the curve shown in Figure 12-2 where
the power spectral density, often called simply the power spectrum, S(1), is plotted vs.
wavelength 1. This curve originated from Equation 12-3.

Max Planck’s Solar Spectrum
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Figure 12-2. Max Planck’s Solar Spectrum produced by Listing 12-3’s Program
PLANCK’SSOLARSPECTRUM

Most of the frequencies emitted by the Sun, which range from high frequency, short
wavelength ultraviolet (UV) to low frequency, long wavelength infrared, are invisible to
our human eyes. We are able to see only a small range of the spectrum which, fortunately
for us, lies near the peak of the Sun’s emitted power spectrum. This must have pleased
our hunter-gatherer ancestors since it enabled them to hunt and gather earlier and later
in the day. While we can thank the shape of the Sun’s power spectrum for this, it is also
a characteristic of our eyes’ biology which, if we believe Charles Darwin, likely evolved
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through natural selection to be optimized at the frequencies near the Sun’s maximum
power output. Our eyes have also evolved to see the different frequencies as colors.
The only animal that cannot see colors is a fish called a skate, a flat fish that lives on the
bottom of oceans. This is because it has no cones in its eyes.

Max Planck’s Black Body Radiation

As you have seen, light is photons. But what is a photon? We know that photons are
quantized forms of electromagnetic energy. But in the late 19th century, that was still

a mystery. There were many attempts to explain the light spectrum that was emitted
from heated materials. For example, when we heat up an iron poker, at first we don’t
see any change in color but then, after a certain temperature is reached, we visually
observe it glowing through a progression of colors: dull red, brighter red, orange,
yellow, white, blue, and then violet. These colors correspond to different frequencies

of the electromagnetic radiation emitted by the object. Early attempts to explain this
phenomenon were based on the classical theory at that time called Maxwell’s Equations.
They describe an electromagnetic field where the electromagnetic energy is assumed to
be a smooth continuum. Despite many attempts, this approach failed to explain what
was being observed.

Many scientists at the time struggled with this problem. Then in 1900, Max Planck,

a German physicist, sent a postcard to a colleague. On the back he had written an
equation that accurately described the spectrum. Plank’s breakthrough was to assume,
contrary to the prevailing theories at the time, that the electromagnetic field was not a
continuum of energy. Rather, he guessed that electromagnetic energy exists in discrete
packets and not as a continuous field, as was assumed by Maxwell’s equations. This led
to his breakthrough formulation, shown in Equation 12-3. He presented his idea to the
German Physical Society on December 14, 1900, a date that has become known as the
birth of quantum mechanics. His equation is known as the blackbody radiation formula.
You will see more of it later.

In 1901, Planck published his results in an article in Annalen der Physik in which he
hypothesized that electromagnetic energy could only be released by a source, such as
the Sun, or by a hot iron poker, in the form of discrete packets of energy rather than as
continuous waves. Since it was known that light exhibits wave characteristics, in 1905
Albert Einstein extended this idea by suggesting Planck’s discrete “packets” could only
exist as discrete “wave-packets.” He called such a packet a Lichtquant or “light quantum.”
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Later, in 1928, Arthur Compton used the term “photon” which derives from Phos, the
Greek word for light. Phos was also the Greek god of Venus, which is the brightest planet
in the early morning sky before the Sun rises to dim it. General Custer’s Native American
scouts called him “The Son of the Morning Star,” probably because of his predilection for
attacking at sunrise while Venus was still visible in the early morning sky.

Planck also assumed that the source of the wave packets are thermally excited
charges, each emitting a packet of electromagnetic energy, a photon, at a particular
frequency. The more charges emitting photons at the same frequency, the greater the
power of the emitted light at that frequency. He further theorized that the energy of a
wave packet could only occur at specific fixed energy levels or states.

Where do photons come from? An atom has a nucleus, which is surrounded by
electrons. The electrons exist in discrete energy states. When an electron drops to a state
having lower energy, for whatever reason, the atom emits a photon. Because of the law of
conservation of energy, the energy lost to the atom by the change of state of the electron
is manifested by the emission of the energy of the photon.

Returning to 1900, the equation Planck wrote on the back of a postcard, which
predicts the power spectrum of light S(1) emitted by a black body, is

2
$(2)= A

elkT _ 1

JIslm =W /Im (12-3)

where c is the speed of light (m/s), h is Planck’s Constant (J-s), 1 is the wavelength
(m), k is Boltzman’s Constant (J/K), T is the temperature (K), and ¢ is the emissivity of
the radiating body’s surface. ¢ is essentially a measure of the effectiveness of a surface’s
radiating ability. It can range from 0 to 1. As you might imagine, there was a lot of
thought behind the development of this equation.

Over the past 100+ years, this relation has withstood the test of time and gives very
accurate results. Displayed in Figure 12-2, it is often referred to as Planck’s black body
radiation formula. It applies equally well to all radiating bodies as well as the Sun.
Even though the Sun certainly does not look like a black body, as far as its radiation
characteristics are concerned it behaves like one—a very hot one. As an analogy, you
might think of the Sun as being a very hot (about 5800°K) black stove glowing very
brightly.
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Figure 12-2 shows the solar output spectrum (red curve) of the Sun as predicted by
Equation 12-3. This is called a power spectral density, or simply a power spectrum. Each
point on the curve gives the power density S(1) at a corresponding wavelength 1. The
green band shown in Figure 12-2 will be explained later.

The Sun’s Total Power Output

The quantity S(4) displayed in Figure 12-2 is a power density. What is a power density
and how does it differ from a simple power? Notice in Equation 12-3 that the units of
S(4) are power per cubic volume. These are the units of a density. You might think of this
“density” as analogous to mass density, which has units of mass per cubic volume. In the
case of S(1) you are dealing with a power density J/s/m?* = W/m?.

The feature of Equation 12-3 that makes the power spectrum resemble the Sun’s
output, and not that of any other black body, is the temperature T. For the Sun, T is
approximately 5800°K. To get the power emitted by the Sun, P(1), over a bandwidth 4,
to A,, it is necessary to sum S(4) across that band. In calculus, this amounts to taking the
integral of S vs. 4, which is equivalent to finding the area under the S(1) curve between
these limits.

2
P = IS(?L)d/l JI/slm*=W/|m (12-4)
A’l

With Equation 12-3 this becomes

27
P, =2xCh|S——dA JIs/m’=W/m’ (12-5)

A elkT _1

Equation 12-5 gives the power emitted by the Sun over the bandwidth 4, to 4,. It
equals the integral of S(1) times the infinitesimally small bandwidth d4 across that range.
In other words, if you pick a point along the S(1) curve, as shown in Figure 12-3, and
multiply it by d4 and then sum (integrate) all those values from 4, to 1,, you get the total
electromagnetic power emitted by the wavelengths in the waveband 4, to 4,. This is the
area under the S(A) curve from 4, to 4,.
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To get the power generated by the entire solar spectrum, you integrate
Equation 12-5 from wavelengths beginning at 1=0 and extending to A=c0. For those who
prefer to integrate Equation 12-5 mathematically, I show how to do so in Appendix B:
Planck’s Radiation Law and the Stefan-Boltzmann Equation. The Stefan-Boltzmann
Equation is a closed-form solution to the integration of Planck’s Equation (12-3) from
zero to infinity. Integration is simply finding the area under the S(4) curve.

To carry out the integration numerically, replace the infinitesimally small wave band
d4 with a small band of finite width A/ and replace the integral with a summation, as in

i=N
P(A)=22ChS - —E AL T lsimt =W Inr (12-6)
i=l Y T
e -1

where i refers to the i band centered at 4; and N is the number of bands of width A1
between 4; and Ay. A typical band of width A4 is illustrated in Figure 12-3. The width of
the band shown is exaggerated for illustrative purposes. In reality, it should appear much
narrower.

Max Planck’s Solar Spectrum - Band Integral

s())

‘:;’ g e=10
=
= g —— S, =1164e+07 MW/m~3
T W0
=
£
@ 5 Al= 1000e-08 m o
= 1000e-02 um

power,=1164e-01 MW/m~2

10 12 14 A=15 16 18 20
Wavelength A (um)

Figure 12-3. Numerical integration of power S(1)dA emitted by spectrum band,
across a .01 um bandwidth at 2,=1.5 (produced by Listing 12-2)

Equation 12-6 is an approximation to Equation 12-5 because it assumes the value
of S(A) is constant across the width of each band Al. However, if A/ is chosen small
enough, the curve S(4; — A1 /2) — S(4; + A4 /2) can be approximated by the constant
value S(/;) across the bandwidth A4, in which case the results can be quite accurate. With
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this simple integration scheme, the power in the band equals the band’s rectangular
area. While there are more sophisticated integration schemes you could use, this one is
simple, easy to program, and adequate for our purposes.

Let’s calculate the power P(1) emitted by the wavelengths across the small band AA.
Figure 12-3 shows an enlargement of the band shown in Figure 12-2 centered at 1=1.5
um. This might be considered a typical band in Equation 12-4. Listing 12-2 evaluates
the power generated by the wavelengths across this bandwidth. The curve S(1) has been
generated according to Equation 12-3. According to this simplified integration scheme,
the power generated by this band, which is just its rectangular area, is given by

P(A)=S(A)AL  J/sIm’ =W /m’ (12-7)

In Listing 12-2, which plots Figure 12-3, the area of the band is calculated according
to Equation 12-7. The magnitude of A/ is arbitrary. In the program, it is the parameter
dla, which is set to .01x107¢ meters or .01 ym. Whether A/ is large or small, the power
it emits will be the power radiated by the wavelengths across that bandwidth. Wider
bandwidths will generate proportionally more power, narrower ones less. Later, when
you do a numerical integration of the area under the entire S(1) curve to get the total
power radiated by the Sun across its entire spectrum, choosing a small value of A1 will
lead to more accurate results.

In Figure 12-3, the band is shown centered at A=1.5 um. The corresponding value of
S, as calculated by the program, is 1.164x10" MW/m?. With a bandwidth of .01 ym, which
equals 1.0x10-% meters, the power generated by this band is (1.164x107)x(1x10-%)=.1164
MW/m?, about what a small power plant produces.

Note that the units of S(1) will be consistent with those of the input parameters:
speed of light, Planck’s Constant, Boltzman’s Constant, and wavelength 1. The units of
these parameters should be consistent with one another. To avoid confusion, in this work
you will keep all of these quantities in the spatial dimension of meters when evaluating
Equation 12-3. S(1) will then have the units (J/s)/m?, which is the same as W/m?®. If the
output is needed in another power dimension, such as kW or MW, the conversion can
be done after S(1) has been evaluated by multiplying S(1) in watts by 103 to get kilowatts
or 107° to get megawatts. When calculating power emitted across a waveband, the
width of that band A/ should also be in meters. For example, 1.54m should be specified
as 1.5x107*m. Conversion from meters back to micrometers ym for display or other
purposes later can be done by multiplying 4 meters by 10*°. This is shown in Listing 12-2
in the section plot s curveinline lag=1a*10**6.

385



CHAPTER 12 DEMONSTRATION: THE SUN

In Figure 12-3, S; is shown with a value of 1.164x10” MW/m?®. The S(4) axis indicates a
value of 11.64 MW/m?3x10-%, which indicates that the value of 11.64 has been multiplied
by 10-¢ for display purposes. This would make its actual value 11.64x10*%, which equals
the value calculated by the program. This is displayed on the plot as 1.164x10*” MW/m?.

In Listing 12-2, which created Figure 12-3, the section plot S curve solves
Equation 12-3 for values of wavelength la, which go from la=lamin to lamax in
increments dla. The comments within the code trace the evolution of the units of S. As
given by Equation 12-3, when the parameters are as indicated in section establish
parameters, the units of S start off as Joules/second per cubic meter (remember S(1)
is a density). Since one Joule per second defines the watt, the units are watts per cubic
meter. These are converted to megawatts per cubic meter and then scaled to be plotted
against the vertical axis in the units (MW/m?®)x107° as the variable sg. The 107 factor
indicates the actual values have been multiplied by that amount. Next, the green band
is plotted and the values of temperature and emissivity are displayed.

The value of S(1) at A=1.5 is calculated using Equation 12-3, converted to MW/m?,
and then multiplied by the bandwidth dl=.01x107° to get pl MW/m?, the power within
that bandwidth. The remainder of the program displays the data and cleans up the plot.

Listing 12-2. Program BANDINTEGRAL

BANDINTEGRAL

import numpy as np

import matplotlib.pyplot as plt
b L L LR Y set up axes
ymax=20

plt.axis([1.,2.,0,ymax])

plt.xlabel('Wavelength $\lambda$ ($\mu$m)')

plt.ylabel('S($\lambda$) (MW/m$~{3}$) x 10$"{-6}$")

plt.grid(True)

plt.title('Max Planck's Solar Spectrum - Band Integral')
e e P P e establish parameters
€=2.9979*(10.**8) # speed of light in a vacuum m/s
h=6.63*(10.%*-34) # Planck's Constant J.s

kb=1.38*(10**-23) # Boltzmann's Constant J/K
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t=5800. # temperature K

e=1.0 # emissivity
lamin=.01*10**-6 # starting wavelength m
lamax=2.*10**-6 # ending wavelength m
dla=.01*10**-6 # incremental wavelength m
# plot s curve

for la in np.arange(lamin,lamax,dla):
al=2.*np.pi*c*c*h/(la**5.)
a2=h*c/(la*kb*t)

sl=e*a1/(np.exp(a2)-1.) # 3/s/m*3 = W/m"3
sl=s1*10**-6 # MW/m"3

slg=s1*10**-6 # scale plot at 10"-6 scale
lag=1a*10**6 # scale to plot at 1076 scale

plt.scatter(lag,slg,s=1,color="r")
# - plot band
plt.plot([1.495,1.495],[0.,11.64],color="g")
plt.plot([1.4975,1.4975],[0.,11.64],color="g")
plt.plot([1.5,1.5],[0,11.64],color="g")
plt.plot([1.5025,1.5025],[0.,11.64],color="g")
plt.plot([1.5005,1.505],[0.,11.64],color="g")
# plot temperature and emissivity
d=str(t)
plt.text(1.6,15,'T=")
plt.text(1.65,15,d)
plt.text(1.6,14,'e=")
d=str(e)
plt.text(1.65,14,d)
# calculate s and band power pl at lambda=1.5
la=1.5%10**-6
al=2.*np.pi*c*c*h/(la**5.)
a2=h*c/(la*kb*t)
sl=e*a1/(np.exp(a2)-1.) # J/s/m*3 = W/m"3

sl=s1*10**-6 # MW/m”3
dl=.01*10**-6 # bandwidth m
pl=sl*dl
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# plot results and labels
plt.plot([1.53,1.59],[11.6,11.6], k")

plt.text(1.6,11.5,"'si=")

d="%7.3e'%(s1)

plt.text(1.65,11.5,d)

plt.text(1.83,11.5, 'MW/m*3")
plt.arrow(1.4,5,.085,0,head width=.5,head length=.01,linewidth=.2)
plt.arrow(1.6,5,-.085,0,head width=.5,head length=.01,linewidth=.2)
plt.text(1.15,5, '$\Delta \lambda$=")

dle="%7.3e'% (dl)

dls=str(dle)

plt.text(1.18,5,dls)

plt.text(1.35,5,'m")")

plt.text(1.145,4,'=")

dl=d1*10**6

dle="%7.3e'%(dl)

dls=str(dle)

plt.text(1.18,4,dls)

plt.text(1.35,4,"'um")

plt.text(1.35,16.5, s($\lambda$)")
plt.text(1.52,2.5, power$ {i}$=")

pl="%7.3e'%(pl)

pl=str(pl)

plt.text(1.65,2.5,pl)

plt.text(1.823,2.5, MW/m"2")

plt.text(1.45,-1.1, '$\lambda_{i}$=1.5")

plt.show()

Next, let’s look at Max Planck’s entire black body spectrum as shown in Figure 12-2.

It's titled “Max Planck’s Solar Spectrum” since the temperature used is that of the Sun,

approximately 5800° K.

The program that produced this plot, Listing 12-3, follows the logic in the preceding

program, Listing 12-2, but here you sum the individual band powers from 1=.01x10"° to

10.x10-% meters (.01xm to 10.xm) (1000 bands) to get the area under the entire (almost)

S(4) curve. The band you looked at in Listing 12-2 is shown at A=1.5 um.
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The process used here is to simply advance along wavelengths, calculate the value
of S(4) at each wavelength, multiply it by A4 to get the power within that band, and then
sum the power generated by each band in accordance with Equation 12-6. This will give
you the total power emitted by all wavelengths.

You extend the range of integration to 10x10~® meters in order to get a more accurate
measure of the total power under the S(1) curve. This will be the approximate total
spectral power emitted by each square meter of the Sun’s surface. Then you multiply that
by the Sun’s spherical surface area to get the total power emitted by the Sun, which is
known as the solar luminosity. In Figure 12-3, it is called the total solar output. As shown
on the plot, its value as calculated by the program is 3.816x10% watts. This is in close
agreement with published values. An Internet search finds values ranging from 3.83x10%
to 3.85x10% watts. Your value of 3.81 is 1% less than the 3.83 value. Presumably, this is
because you truncated your numerical integration without going closer to infinity with
the wavelength. The further out you go, the larger your number will be.

Many researchers use e=1.0 for emissivity, which is an idealization that assumes
the Sun is a perfect radiator (you can assume it isn’t). Here you use an emissivity of
e=.984. When you use Planck’s spectrum to calculate the solar constant, which has
been measured by satellite, you must either reduce the temperature of the Sun in your
calculations or lower its emissivity to less than 1.0 in order to get the results to agree with
the measured values. If you choose to stay with a Sun temperature of 5800°K, then you
must lower the emissivity to .984 in order to obtain agreement. Another option, as you
will see, is to keep e=1.0 and lower the Sun’s temperature to 5777° K.

Listing 12-3. Program PLANCKSSOLARSPECTRUM

PLANCKSSOLARSPECTRUM

import numpy as np
import matplotlib.pyplot as plt

# set up axes
ymax=100

plt.axis([0,3,0,ymax])

plt.xlabel('Wavelength  (_m)")

plt.ylabel('S(1) (MW/m*{3}) x 10"-6")

plt.grid(True)
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plt.title('Max Planck's Solar Spectrum')

# establish parameters

in a vacuum m/s

Boltzmann's Constant J/K

s curve to zero

€=2.9979*(10.**8) # speed of light
h=6.63*(10.%*-34) # Planck's Constant J.s
kb=1.38*(10%*-23) #

e=.984 # emissivity

t=5800. # K

lamin=.01*10**-6 #m

lamax=10.*10**-6 #m

dla=.01*10**-6 #m

st=0. # set area under

# plot s curve

for la in np.arange(lamin,lamax,dla):
al=2.*np.pi*c*c*h/(la**5.)
a2=h*c/(la*kb*t)
sl=e*a1/(np.exp(a2)-1.)
sl=s1*10**-6
bandarea=s1*dls
st=st+bandarea
slg=s1*10**-6
lag=1a*10**6
plt.scatter(lag,slg,s=1,color="r")

H oH H B H =

and calculate area

W/m"3

MW/m”3

band area MW/m"2

sum band areas MW/m"2
scale to plot

scale to plot

# multiply the Sun's surface area
ds=1.39*10**9 # Sun's diameter m

spas=np.pi*ds**2. # Sun's spherical area m"2

to=spas*st # Sun's total output MW

to=to*10**6 # Sun's total output W

.

g

plt.text(.8,58.,'5800")
plt.text(1.05,58, '°K")
plt.plot([.39,.39],[-0.,100.], 'b-")
plt.plot([.7,.7],[-0.,100.],"b-")
plt.text(.3,-10,"'.390")
plt.text(.6,-10,"'.700")
plt.text(.15,90.,"'UV")
plt.text(.8,90.,"'long wave infrared')
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plt.arrow(1.75,91.,.8,0.,head width=1.,head length=.1,color="1")
plt.text(1.2,40., "total solar output =")

so="dd=str(so)

plt.text(2.1,40,dd)

plt.text(2.7,40,'W")

plt.text(1.2,34, "emissivity =")

e=str(e)

plt.text(1.8,34,e)

plt.text(.5,75.,'v")

plt.text(.53,70.,'i")

plt.text(.5,65.,'s")

plt.text(.53,60.,'1")

plt.text(.5,55.,'b")

plt.text(.53,50.,'1")

plt.text(.5,45.,"'e")

plt.plot([1.49,1.49],[0.,11.61],color="g")
plt.plot([1.5,1.5],[0.,11.61],color="g")
plt.plot([1.51,1.51],[0.,11.61],color="g")

# calculate s at 1la=1.5x10"-6 m and band power pband
laband=1.5*10**-6

al=2.*np.pi*c*c*h/(laband**5.)

a2=h*c/(laband*kb*t)

sband=a1/(np.exp(a2)-1.)

sband=sband*10**-12

pband=sband*dla # MW/sq meter

pband=pband*10**6 # W/sq meter

# plot band
plt.plot([1.55,1.7],[12.5,15.],color="k")

plt.text(1.72,14.," p=")

pband="pband=str (pband)

plt.text(1.9,14,pband)

plt.text(2.4,14, 'MA/m*2")

plt.arrow(1.35,5,.1,0,head width=1, head length=.05, ec="k', fc="k")
plt.arrow(1.65,5,-.1,0,head width=1, head length=.05, ec="k', fc="k")
plt.text(.82,4.9," AL = :01um" )

plt.show()
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Earth’s Irradiance

Figure 12-4 shows the spectrum of solar radiation that reaches Earth. Figure 12-1 shows
the Earth orbiting the Sun. This is the model used to calculate the amount of the Sun’s
total power output that is intercepted by Earth, the solar constant. The distance between
the two orbs is an average of 1 AU, about 93,000,000 miles. It varies during an orbit. The
circular disk labeled A, has an area equal to the Earth'’s cross-section. The solar power
intercepted by A, is what irradiates the Earth and is responsible for heating the Earth.

Max Planck’s Earth's Solar Irradiance
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Figure 12-4. Spectrum of solar power reaching Earth, the Earth’s solar irradiance,
produced by Listing 12-3, which has been modified by inclusion of the inverse
square law shown in Equation 12-10

Notice how much lower the values are than in Figure 12-2. This is because the power
intensity of the Sun’s output that reaches Earth and is intercepted by A, diminishes over
the distance from Sun to Earth according to the inverse square law of

P, =p, (Lj (12-8)

v,

es

where p; is the intensity of power at the Sun’s surface, p, is the intensity intercepted
by A,, r,is the radius of the Sun, and r,, is the distance from the Sun to the Earth. The
total power intercepted by A, is thus
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P =4p, (12-9)

2
A
P,=4,p, [—] (12-10)

es

When Equations (12-8) through (12-10) are included in Listing 12-3’s Program
PLANCKSSOLARSPECTRUM, the spectrum reduces to Figure 12-4. Again, notice how
much lower the values are than in Figure 12-2 as a result of the inverse square law.

P,, which is the solar power reaching the top of the Earth’s atmosphere, is called
the solar constant. It is not really a constant, though, because the orbit of the Earth
around the Sun is elliptical, not circular, so the Earth-to-Sun distance is not constant.
Everything is averaged to arrive at a number for the solar constant. Its value as measured
by satellite is about 1361 W/m?. This is equivalent to about 13 100W light bulbs per
square meter. Note that this is at satellite altitude, well above Earth’s atmospheric effects.
About 30% of this is reflected off the Earth’s surface and atmosphere by albedo effects
such as snow, ice, clouds, and water. A lot simply reflects off, especially near Earth’s
poles. The remainder is absorbed by the Earth. But much of that is reradiated back
into space, allowing the planet to reach a thermal equilibrium (like the Sun, the Earth
is also a hot (warm) body and exhibits its own thermal radiation out into space). But
some of what should be reradiated back into space is blocked by greenhouse gasses
including CO2, methane, and water vapor. That has always been the case. If it was not,
the Earth would be a very cold place. It is the greenhouse gasses that keep the Earth
at a livable temperature. The problem is, these gasses have been increasing in recent
years, producing an increase in Earth’s global temperature. All this is, as we know, being
actively investigated by climate researchers.

Summary

In this chapter, you learned about the Sun, the physics of energy production within the
Sun, photons, solar radiation, Max Planck’s black body radiation equation, numerical
integration, and Python’s ability to construct technical illustrations. Of special note are
the techniques used to scale variables for plotting. You also learned about the Sun’s
irradiation of Earth and its impact on the warming of our planet. You learned how to
build images such as Figures 12-1 and 12-2.
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Climate Change

This topic brings to mind a line from William Shakespeare’s Julius Caesar,

“The fault, dear Brutus, is not in the stars, but in ourselves”

As you saw in Chapter 12, the Earth is continually being irradiated and warmed
by the Sun. This is, of course, a good thing. Without a sustained influx of solar
radiation, which provides the heat energy necessary to maintain our planet at a livable
temperature, our Earth would quickly cool down to an unlivable temperature. Life on
this planet would cease. We would become just another cold rock drifting through space.
So when we talk about excessive “global warming” we should remember it isn’t totally
the Sun’s fault; it’s the changes in our atmosphere, which are presumably man-made,
that are causing too much of the Sun’s energy to become trapped by greenhouse gasses.
This, in turn, is leading to increases in global temperatures, changes in our climate, rising
sea levels, and other undesirable effects. Our goal is to understand this phenomenon
and what is causing it.

First, we must recognize that there are many people who dispute the idea that global
warming is being caused by human activity, whether it is the result of solar activity, or
whether it is in fact warming all. Even if it is warming, some say, not to worry, the climate
has changed drastically many times in the past. So let’s examine some historic evidence
and some contemporary facts and see where they take us.

First, let’s discuss global cooling. The Earth has cooled in the past, which is
indisputable. Nobody disputes the “Little Ice Age” that occurred during the Middle
Ages when temperatures dropped by as much as two degrees Celsius, or 3.6 degrees
Fahrenheit. This occurred during the Middle Ages, extending to as late as the 1800s.

It was responsible for trapping the Vikings in Greenland and Iceland where many
perished from the effects of the cold. There is plenty of other scientific and anecdotal
evidence that shows the Earth has experienced periods of cooling before. But most of
these periods have been relatively short-term, on the order of years rather than decades.
They were caused largely by aerosols that were injected into the atmosphere by volcanic
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activity and forest fires. Aerosols are small particles of contaminants and ash that reflect
incoming solar radiation back out into space, like many tiny mirrors. The result is a
lowering of temperatures.

On the other hand, there is certainly plenty of evidence that the Earth has warmed
in the past and is likely still warming. Much of this is anthropogenic, the result of human
activity, mostly the burning of massive amounts of carbon-based fuels.

Where does the energy in carbonaceous fuels come from, the energy sources that
we have been so eagerly mining and drilling? Imagine this planet 500 million years ago,
when the first plant life began to grow, probably in the form of pond scum. Animal life
is thought to have begun about the same time. Imagine the Sun is shining in the sky and
its photons are irradiating the leaves of the plants and the pond scum in the water and
other organic life forms. Focusing on a leaf as a typical form of vegetation, during the
day, the Sun’s photons strike the leaf, pumping up the energy of the organic molecules
that comprise it. At night, after the Sun has set, the leaf is still warm, maybe even hot; but
gradually the energy in its molecules dissipates and so it cools. In the morning it returns
almost to the state it had the previous morning. But it retains some of the solar energy it
acquired the day before, mostly in chemical form. This cycle is repeated, day after day,
year after year. The energy of the organic molecules continues to increase. After the leaf
dies, its remains contain the solar energy accumulated over its lifetime. Now multiply this
cycle for decades, centuries, tens of thousands of years until the residue of that leaf, and
an uncountable number of leaves like it, is covered by silt, mud, lava, or whatever material
forms our Earth’s outer layers, compressing our leaves and other energetic plant life under
hundreds and thousands of feet of mud, dirt, rocks, and sedimentary materials at high
temperature and pressure, until they turn into oil, combustible gasses, and coal, which
we drill and mine and burn. Basically, we are drilling, mining, and burning off, in just a
few centuries, hundreds of thousands of years of solar energy. Much of the byproducts of
that burning-CO2, methane, and other greenhouse gasses-have been accumulating in our
planet’s atmosphere since the Industrial Revolution began around 1740.

It’s difficult to believe that pumping huge amounts of carbonaceous materials into
the atmosphere over all the years since 1740 isn’t having some effect on our planet’s
temperature. You might think that’s ok, we have cooling from volcanic eruptions and
forest fire aerosols and warming from greenhouse gases, so what'’s the problem? Don't
they tend to balance out? No, they do not. The problem is aerosols return to Earth after
only a few years of floating in the atmosphere while greenhouse gases stay aloft and
persist for decades. Also, a volcanic eruption, or a major forest fire, is usually a one-time
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short-term event whereas emissions of greenhouse gases (GHGs) are continual and they
build up in the atmosphere causing ever-increasing levels of GHGs with increasing levels
of global warming. They can stay in the atmosphere for many decades.

An important factor in this discussion is the Earth’s albedo. The etymology of the
word is that it comes from the Late Latin C. 19th century word “albus,” which means
“whiteness.” In the context of climate studies, it refers to the Earth’s ability to reflect solar
irradiation back into space. It is a cooling factor.

Climate Cooling

Let’s review some factors that cause climate cooling. The Sun’s energy, in the form of
photons, travels across the 93 million miles that separate Earth from the Sun. It reaches
the outer extremities of our atmosphere. Some of that energy bounces off various
features of the atmosphere, especially clouds. The remainder reaches the Earth’s surface.
Some of that is absorbed, largely by the oceans, while some is reflected back into space
by albedo effects. The total percentage reflected is about 30 percent of the energy that
reaches the outer atmosphere. If the albedo was greater, more would be reflected away
into space; this would lead to a cooling effect.

Albedo

Albedo refers to the “whiteness” or reflecting ability of various features on Earth.

Table 13-1 lists some typical sources and values of albedo. It should be noted that
features affecting the albedo at the north and south polar extremities (snow, ice, sea
surface) have less effect on the planetary albedo since the incoming solar radiation
impacts these regions at a shallower angle; the energy mostly glances off. Changes

in surface albedos in these regions, such as the melting of ice, have less effect on the
planetary albedo for the same reason. While some of the values in Table 13-1 appear

to be large, their effect on the planetary albedo may be relatively small because they
cover less surface area or they are near the poles. To calculate the planetary albedo from
these figures, we need to know the surface area covered by each of these features and
the angle of incidence of the Sun’s rays. Any significant increase in the albedo of any of
these features could lead to climate cooling, especially if it occurred in regions near the
equator. On the other hand, a decrease could lead to warming.
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Table 13-1. Albedo of various surface features

Feature Albedo %
Fresh snow 42-83

Ice 32-38
Sand 21-43
Water 6-8

Soil 7-34
Forest 5-14
Desert 27-29
Clouds 36-78
Vegetation 11-24

Sunspots

Sunspots are another possible source of climate change. They are dark regions on the
Sun'’s surface that appear and disappear in cycles averaging about 11 years in duration.
The number of sunspots that appear correlates with periods of heightened solar activity
and solar flares. At low points in the 11-year cycle about six sunspots will typically
appear, sometimes none. At high points, a large number may appear. The question is, do
sunspots themselves affect the Earth’s climate or are they harbingers of some other solar
activity that does?

For hundreds of years, even up to this time, people have tried to establish a correlation
between sunspot activity and such things as the movement of stock and commodity
prices. It would seem logical to conclude that large, dark sunspots should decrease the
amount of radiation leaving the Sun, akin to painting a dark spot on the side of a light
bulb. It would seem this would partially block some radiation and would correlate with
cold periods of the Earth’s climate. For the investment-minded, this should correlate with
low crop yields and higher commodity prices. Conversely, if this hypothesis is correct,
one would think a lack of sunspots would allow more radiation to escape from the Sun,
which should correlate with warm periods on Earth. Surprisingly, however, during the 61-
year period between 1639 and 1700, no sunspots were reported by observers yet this was
during one of the coldest periods in recent history, the Little Ice Age, which lasted roughly
from 1300 to 1850. This spell of no sunspot activity was reported by astronomers E.W
Maunder and EG Sporer and is known as The Maunder Minimum.
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On the other hand, radiocarbon dating of tree rings, which measures the amount
of Carbon 14 (14C), does correlate well with past solar activity. 14C is produced in the
Earth’s atmosphere by cosmic rays. It is a radioactive isotope of carbon. Its presence in
organic materials is the basis of a radiocarbon dating method. This is affected by solar
activity. When sunspots are at a maximum, some cosmic rays are blocked, leading to
lower levels of 14C. Conversely, during times of low sunspot activity, we would expect
to find an increase in the production of atmospheric 14C and its appearance in tree
rings. And that is, in fact, the case. During the Medieval Warm Period, from about
1110-1250AD, which preceded the onset of the Little Ice Age by only 50 years, levels of
14C in tree rings fell, implying there was an increase in sunspot and solar activity during
that time. Oddly, while the light-blocking black-spot-on-a-light-bulb theory would
predict a drop in temperatures, just the opposite happened. During the period from AD
1100 to 1710, the level of 14C found in tree rings varies considerably, reaching a peak
in 1690, well within the time span of the 1639-1700 Maunder Minimum, a period of
low sunspot activity. According to the light-blocking theory, we would have expected a
warming period but again, just the opposite happened: the Little Ice Age.

It may be that sunspots, as harbingers of increased solar activity, do, in fact, indicate
a coming change in Earth’s climate. But these effects may be delayed by a period of time.
For example, cold periods may lead to more sea ice, which then drifts south, cooling
local climates, but this takes time. Or warm periods can melt polar ice, the cold water
then flowing south, upsetting climates and diverting ocean currents. This also takes time.
The impact of these time delays complicates attempts to understand past and present
climate changes. These are all topics of active research.

Figure 13-1 shows a new monster sunspot named AR2529, several times larger
than Earth. It appeared in the spring of 2016. This photo was taken by the Heliospheric
Observatory (SOHO). Could this sunspot predict a new period of increasing solar activity
and be the start of a new period of climate change? When you see the size of a sunspot,
even a monster like this, it is hard to believe that by itself it could have much impact on
our climate.
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Figure 13-1. Sunspot AR2529. It is barely visible but the sunspot is there at about
2:30, halfway from the center. It is difficult to imagine something that small could
affect our climate

So do sunspots affect our climate? While we have seen through historic records
of 14C a correlation between the two, we must remember that correlation does not
necessarily imply causation. There may be some relationship but it may be dwarfed by
other influences, especially in our modern age with measurable global warming being
caused by CO2, water vapor, and methane.

Aerosols

Table 13-1 showed that the Earth’s planetary albedo is affected by planetary surface
features such as ice, sand, water, and vegetation. It is also affected by aerosols, which are
small particles of soot, smoke, dust, and ash in the atmosphere that increase the Earth’s
reflectivity and hence its albedo. Aerosols act like micro-mirrors that reflect incoming
sunlight back into space. Typical sources are the burning of biomass, such as forest
fires; windblown dust from dry, arid regions, such as deserts; and industrial pollution
primarily from the burning of fossil fuels. The oceans are also a source of atmospheric
aerosols in the form of bubbles that rise from the water’s surface. As the water evaporates
in the atmosphere, small particles of salt are left suspended in the atmosphere. Another
very large contribution comes from volcanic eruptions.

The amount of aerosols in the atmosphere varies with location. City air may contain
160,000 particles per cubic meter, mostly soot. Clean air over a landmass may hold 3,000
pcm. Levels in the atmosphere can go as low as 300 pcm. Volcanoes are a major source
of aerosols. The massive amounts that are spewed into the air from an erupting volcano
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can have a very strong effect on climate. They spread more or less uniformly around the
globe in a matter of months.

Vivid displays of color caused by atmospheric aerosols can also occur from
anthropogenic sources such as pollutants over cities. In the late 1800s, coal was a
principal source of heat and energy fueling the Industrial Revolution. Claud Monet was
an astute observer of atmospheric effects as can be seen in his 1899 painting Charing
Cross Bridge, The Thames. His painting of colorful, pea soup fog over London shows the
effect of smog particles that were produced by the incomplete combustion of coal.

While producing dramatic local effects, aerosols of this type tend to remain close to
their source before being rained out of the atmosphere and returning to the ground and
thus do not contribute much to cooling on a global scale. Looking at Monet’s sunlight
struggling to penetrate the gloom, it’s easy to see how aerosols can shield us from solar
radiation. Who would have thought coal smog could be beautiful?

When particulate aerosols rise into the troposphere they can act as condensation
sites for water vapor. These droplets, when viewed from above, have a whitish hue.
These lighter-toned aerosols also increase the albedo but primarily over that local area,
which can lead to local cooling. Darker-toned particulates, however, can do the opposite,
absorbing solar irradiation and leading to local warming. The interplay between aerosols
(their color, altitude in the atmosphere, cloud formation, local albedo changes, local
production of water vapor, etc.) is very complex. There is little consensus as to their net
effect on climate change on a global basis. The exception to this is the aerosols released
from volcanic eruptions since these produce enormous volumes of particles that tend to
rise high into the atmosphere where they are carried great distances across the globe by
high-altitude winds.

Most aerosols do not remain in the atmosphere for more than a few years. With
the exception of volcanic gases and ash, their effect on the climate is mostly local and
transient. Volcanic eruptions, on the other hand, may have been responsible for some
of the more dramatic cooling periods witnessed in the past. A major eruption can have
climate consequences lasting for five years or longer. If several volcanoes erupt one after
another, the combined effects can last for decades.

Volcanoes

Volcanic eruptions have injected enormous amounts of aerosols high into the
atmosphere in the past and have been major causes of global atmospheric disruption
over the history of the planet. For example, a volcanic eruption by Iceland’s Laki volcano
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in 1783 caused the temperatures in the eastern United States to drop 4.8°C, which was
below the 225-year average. These extreme temperature drops are believed to have been
the result of the large amount of haze-producing SO, that was released. The sulfur in the
SO, combines with water vapor in the stratosphere to form dense clouds of sulfuric acid
droplets. These act as micro-mirrors, reflecting solar irradiation back into space. These
aerosols can take several years to settle out. In the meanwhile, they decrease the global
mean temperature by increasing the Earth’s albedo.

In 1815, Mount Tambora on the island of Sumbawa in the Dutch East Indies (present-
day Indonesia) erupted in a massive explosion, producing what is believed to be the
largest volcanic eruption in the last 10,000 years. There were 92,000 casualties. The
eruption earned a rating of 7.0 on the Volcanic Explosivity Index (VEI), which is an open-
ended measure of the explosive strength of an eruption. The scale is logarithmic so every
incremental jump in value means a 10-fold increase. After the Mount Tambora event, global
temperatures decreased by an average of 0.53°C, resulting in widespread crop failures and
what is known as “the year without a summer” in the eastern U.S. and Europe. The following
year, 1816, was the second coldest year on record in New Hampshire since the 1400s.

On June 15, 1991, Mount Pinatubo in the Philippines erupted with a VEI of 6.0. A
month later Mount Hudson in southern Chile erupted with a VEI of 5+. Alaska’s Mount
Spurr next decided to erupt with a VEI of 4.0 followed by Mount Lascar in Chile also with
a VEI of 4.0. The aerosol plumes from these eruptions spread around the globe. Over
the first half of 1991, the level of stratospheric aerosols rose sharply, producing a global
mean temperature drop of almost 1°C.

In 1452-1453, Kuwae in Vanuatu erupted, then Billy Mitchel around 1580, followed
by Huaynaputima in 1600. Normally the cooling effect of a volcanic eruption perturbs
the global climate for only a few years. But during the 150-year period from 1452 to
the early 1600s, the long-term cold spell caused by these eruptions occurring one after
another allowed sea ice in the North Atlantic to develop and drift south. This is thought
to have maintained cold oceanic and climate conditions long after the volcanic aerosols
had become depleted, thus contributing to the cooling at that time.

These events may have been what produced the Little Ice Age, which was a dramatic
cooling during the Middle Ages. It was severe enough to have driven the Vikings from
Greenland and Iceland. Crop failures caused by the extreme cold combined with sea
ice drifting and packing against the coast of Greenland are thought to have been factors
in the decline of the Viking population. Ships from Europe couldn’t break through the
newly formed sea ice to bring supplies and rescue.
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A number of theories have been proposed to account for the Little Ice Age including
variations in Earth’s orbit around the Sun, changes in the Sun’s solar activity, changes in
ocean current flow, persistence and movement of sea ice, and volcanic activity. It would
appear that all these events may have combined and been responsible, to one extent or
another, for the dramatic cooling during that time. Nature can be complicated.

Along with cooling, aerosols can produce dramatic visual changes in the appearance
of the atmosphere, especially brilliant sunsets. Landscape painters have captured
many of these in regions far from the volcanic eruption. The explosive eruption of
Krakatoa in 1883, one of the largest volcanic eruptions ever, spewed a massive amount
of aerosols into the atmosphere. The event was followed by deep red sunsets throughout
Europe and the Western Hemisphere. It is believed to have been the inspiration for
Edvard Munch'’s painting Der Schrei der Natur (The Scream of Nature), which was later
shortened to The Scream.

Munch writes in his diary in 1892,

“One evening I was walking along a path, the city was on one side and the
Jjord below. I was tired and ill. I stopped and looked out over the fjord, the
Sun was setting, and the clouds turning blood red. I sensed a scream pass-
ing through nature; it seemed to me that I heard a scream. I painted this
picture, painted the clouds as actual blood. The color shrieked. This became

r”

“The Scream.

The Krakatoa eruption was so violent that it ruptured the eardrums of sailors aboard
ships 40 miles away in the Sunda Strait. It could be heard 3,000 miles away. It released
approximately 20 million tons of sulfur into the atmosphere, producing a global winter.
Temperatures were lowered by an average of 1.2°C for five years. The energy released
is estimated to have been the equivalent of 200 megatons of TNT (Nagasaki was 15
kilotons). The ensuing pressure wave was recorded by gauges around the world. The
volcanic ash released was thrust into the atmosphere to an estimated height of 80km
(50 miles).
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Climate Warming

You have seen evidence of climate cooling, primarily from volcanic aerosols. Now you
will see some facts about climate warming.

While atmospheric aerosols, primarily from volcanic eruptions, have been shown
to produce atmospheric cooling, unless several eruptions occur back to back, they have
generally had a short-term effect, on the order of months or years. On the other hand,
the accumulation of greenhouse gases in the atmosphere that cause global warming can
persist for decades and possibly centuries. Although there are other greenhouse gases
besides CO2, we focus on CO2 because it is the one we have the most control over.

Why do CO,, methane, and other GHGs store so much energy while other simpler
atoms such as hydrogen do not? It’s because they are larger, more complex molecules;

a passing photon rising from the Earth’s surface has a larger target. Also, when a photon
hits a molecule such as methane, the more complex structure of the methane molecule

has more mechanisms to store the energy, primarily from the various atoms comprising
the molecule straining and vibrating against their intramolecular bonds.

An important feature of the rise in global temperatures vs. CO2 correlation is that,
unlike the short-term effects of cooling from aerosols, CO2 and global temperature
increases are a long-term problem because atmospheric CO2 doesn’t go away for
decades, possibly centuries. Here are more facts:

e The eight warmest global temperatures recorded have occurred since
2014. The warmest year ever recorded was 2016.

o Itis estimated that the temperature of the layer of atmosphere closest
to the Earth'’s surface, the bottom of the troposphere, rose almost .3°C
from 1960 to the late 1980s. This is startling when one compares it to
a total global warming of 5°C since the last ice age.

e Aclimatologist at NOAA said, “Either my data set is full of
holes or something drastic is going on, It’s so dramatic, it’s
unbelievably warm.”

o Thelevel of CO2 in the atmosphere is only about 421 pp or .0004%.
But it is generally recognized that GHG has caught the most
attention. We continue to produce it in immense quantities. Other
GHGs such as oxides of nitrogen, methane, ozone, and CFC also
contribute but for now, CO2 is getting most of the attention.
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e In May of 2016, India recorded it highest temperature ever, 124°F.

e During the summer of 2016, a phenomenon occurred in the Midwest
part of the United States called a heat dome. Many believe this can be
attributed to corn sweat. What is corn sweat? Plants, like corn, absorb
groundwater through their roots. This is pulled up through the
plant by capillary action where it contributes to the plant’s growth.
Much of that water escapes from the plant’s leaves and goes into
the atmosphere through a process called transpiration. This adds
to the local atmospheric water vapor, which is a strong GHG, along
with evaporation from lakes and rivers, and other water surfaces.
These processes, taken together, are called evapotranspiration. As an
illustration of the magnitude of this effect, one acre of corn plants,
which are ubiquitous in the Midwest, can sweat off 3,000 to 4,000
gallons of water each day. This adds to humidity levels, increasing the
dew point by as much as 5 to 10 degrees F. This increases the misery
level for people living in the area during hot summer months. The
corn sweat causes a form of local heat-trapping called a heat dome.

Measuring Climate Data

There is an army of people around the world gathering data to study climate change.
Just to mention a few in the United States, we have observatories like Mona Lao on
the Big Island in Hawaii; ice cores being taken in the Northern and Southern oceans;
sediment cores being taken in oceans, seas, and lakes everywhere; and institutions
and organizations such as NOAA, Scripps in California, Woods Hole Oceanographic in
Massachusetts, Lamont-Doherty Earth Observatory in New York, and NASA.

One of the more interesting and surprising observatories is a small Icelandic
container ship that normally you wouldn'’t give a second thought about. This is the
M.V. Skogafoss, shown in Figure 13-2.
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Figure 13-2. The Icelandic container ship M.V. Skogafoss southbound in the Cape
Cod Canal. From a painting by the author.

The Skogafoss is a small Icelandic container ship that has been designed to service
small ports along the Canadian Maritimes and the East Coast of the United States. She
was named after a waterfall, the Skogafoss, on the Skoga River in Iceland. Notice on
the port side the cranes that are used to load and unload containers in small ports that
do not have container handling facilities. Starting at her home port in Reykjavik, she
travels south as far as Florida, probably distributing Icelandic fish along the way down
and returning to Reykjavik full of fruits and vegetables. Then she repeats the cycle, over
and over. The reason for our interest in her is that she is outfitted with an extensive array
of scientific equipment that measures environmental parameters of interest to climate
scientists. As Skogafoss travels, this data is sent in real time to NOAA. Since she normally
travels the same route, her measurements are of special importance since they allow the
detection of changes in the environment over time. Very smart. We can assume there are
other ships, probably aircraft as well, gathering data for NOAA.

The Piston Corer

Core samples of marine sediment are important to climate scientists since they can
reveal events far back in the past. The standard piston corer is an important tool for
capturing and retrieving cores in the benthic environment. It is reliable, inexpensive,
and easy to use if you have the shipboard machinery capable of lowering it over the side
and to the bottom, even in rough weather, and then pulling it out of the sediment and
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back to the ship where the core sample is removed for later examination. In the ocean
environment, a substantial ship is usually required.

As icebergs float along the coasts of Canada, occasionally they run aground and
sever an underwater communications or utility cable. The John Cabot, a Canadian
ice-breaker-cable-repair ship, has a large wheel on her bow and powerful winches.
She dredges up the severed ends of the broken cable and splices them back together.
Because of her capabilities, she was chartered by Woods Hole Oceanographic Institution
to help scientists attempt to take the world’s longest core sample in sediment in the
North Atlantic. The author served as Chief Engineer on the expedition. Sediment cores
give us the opportunity to essentially look back in time; the longer the core, the further
back you can look.

Cable to ship

Tripping
mechanism Water
Weight
Barrel
Piston
Sediment surface Caorer barrel
filled with
s=diment

Figure 13-3. Operation of a piston corer produced by Listing 13-1

Shown in Figure 13-3 is a typical piston corer. It is a simple but effective device,
lowered to the bottom by a cable that is tied to a ship above. As shown on the left, before
penetrating the sediment a clamp holds the corer to the cable in this position. The piston
inside the barrel is near the tip. When the corer hits the bottom, a tripping mechanism
releases the clamp holding it to the cable and it falls. The weight inside the box above
pushes the barrel into the sediment, filling it with sediment. Because the piston is held
in place by the cable at the top of the sediment, it stays at the surface, creating a vacuum
inside the falling barrel. This draws the sediment into the barrel rather than pushing
it aside. After retrieving the corer, the sediment sample inside, which is held inside a
plastic liner in the barrel, is removed and cut in half, exposing the core for various types
of tests and examinations.
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Listing 13-1 draws Figure 13-4.

Listing 13-1. Operation of a Piston Corer

R R e PP PP Listing 13-1, piston corer
import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,50,-50])

plt.axis('off")
plt.grid(False)

for x in np.arange(-65,65,3):
plt.scatter(x,20,s=5,color="g")

plt.arrow(-30,0,0,-10) #-------------- weight
plt.arrow(-20,0,0,-10)
plt.arrow(-30,-10,10,0)
plt.arrow(-30,0,10,0)

plt.arrow(-27,0,0,20) #----------------- barrel
plt.arrow(-23,0,0,20)

plt.plot([-26.5,-24],[17,17],1linewidth=3,color="k"') #--piston

plt.arrow(-25,-10,0,-40,1linewidth=.5) #------------- cable
plt.arrow(-25,-10,0,27,1linewidth=.5,1inestyle=":")

plt.arrow(-25,-10,-10,-5) #----- tripping mechanism
plt.plot([-35,-35],[-15,17],color="k")
plt.scatter(-35.04,17,s=20,color="k")

plt.text(-20,-40,"'cable to ship')#----- labels
plt.text(-18, -5, 'weight")

plt.text(-20,9, 'barrel’)

plt.text(-20,18, 'piston’)

plt.text(-64,-18, 'tripping")
plt.text(-64,-13, 'mechanism")
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.arrow(30,20,0,-10) #-------------- weight
.arrow(40,20,0,-10)

plt.
.arrow(30,20,10,0)

arrow(30,10,10,0)

.arrow(33,20,0,20,linewidth=4,head length=0) #----------------- barrel
.arrow(37,20,0,20,linewidth=4,head length=0)

plot([33.5,36],[21,21],1inewidth=3,color="k"') #--piston

arrow(35,10,0,-60,linewidth=.5) #------------- cable
arrow(35,10,0,30,linewidth=.5,1inestyle=":")

y in np.arange(23,40,1): #------------- fill barrel with sediment
plt.plot([33.5,36],[y,y],linewidth=3,color="g")

plt.text(44,25, " corer barrel')
plt.text (44,30, filled with')
plt.text (44,35, sediment")

plt.text(45,-10, 'water', color='b")
plt.text(-65,25, sediment surface',color="g")

---------------------------------------- labels

.arrow(-25,-10,-10,-5) #----- tripping mechanism
.plot([-35,-35],[-15,17],color="k")
.scatter(-34.9,s=20,color="k")

text(-20,-40, 'cable to ship')#----- labels

text(-20,9, 'barrel")
text(-20,18, 'piston’)
text(-64,-18, "tripping")
text(-64,-13, 'mechanism")

show()
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The Global Energy Balance

Figure 13-4 shows the basics of the Earth’s global energy balance. Proceeding from left to
right, irradiation q from the Sun strikes the Earth. When it hits the top of the atmosphere,
itis equal to the solar constant, q, about 1.37x10° W/m?. As it passes through the
atmosphere and strikes the Earth, aerosols and clouds plus various albedo features of
the Earth’s surface reflect about 30% of q back into space. The remaining 70% heats the
Earth. The Earth, being a warm/hot body, reradiates some of its thermal energy in the
form of infrared radiation, IR. The influx of energy to the Earth is thus,

Incident JReflected
solar solar 3 Top of th h
radiation radiation o L L
qW/sqm galbedo} )
3q IR escaping
to space

----------------
................
----------------
ooooooooooooo
ooooooooooooo

IR radiated
by Earth

Earth's surface

Figure 13-4. The global energy balance
INFLUX =7a’q(1-A) (13-1)

where a=.637x107 meters is the mean radius of Earth, A=.3 is the average albedo,
and q=1.37x10° W/m?. A is a function of the light-reflecting properties of the Earth’s
atmosphere and surface reflecting properties. For example, clouds, dust, and other
aerosols in the atmosphere may reflect or absorb light depending on their specific
characteristics. Surface ice and snow reflect it, dark jungles absorb it, and so on.
Table 13-1 shows values for various surface features. Taken together, the net effect is

that about 30% of the incoming light is reflected back into space. This number has been
confirmed by satellite.
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For the Earth’s average temperature to remain more or less constant, the influx in
Equation 13-1 must be balanced by an equal amount of outgoing thermal radiation.
According to the Stefan-Boltzmann Law, the thermal radiation emitted by the planet is

OUTFLUX = 4na’cT! (13-2)

where ¢ is the Stefan-Boltzmann Constant = 5.67x10-%(Watts/m?K*) and T, is the
Earth’s surface temperature.

In Equation 13-1, wa? is the cross-sectional area of Earth. This is the area facing the
Sun and is what captures the Sun’s radiation. In Equation 13-2, 4xa? is the total global
surface area of Earth; this is what radiates thermal energy out into space.

Since INFLUX = OUTFLUX at thermal equilibrium, combining Equations 13-1
and 13-2,

na’q(1-A)=4na’cT, (13-3)
After rearranging,
T = (M) (13-4)
‘ 40

With the values of g, 6 and A stated above, Equation 13-4 gives a value for Earth’s
equilibrium temperature T,=255°K. This is -18°C, well below freezing. However, the
observed global temperature averaged over time and surface area is about +14°C or
287°K. This is 32°C greater than predicted above. The difference is due to the greenhouse
effect. Without it we would all have frozen long ago. Also, note that the greenhouse gases
in the atmosphere are more transparent to the frequencies of light which comprise the
incoming solar radiation than to the outgoing thermal infrared (IR) radiation.

As you can see with the simple model displayed in Figure 13-1, if there were no
greenhouse gases or clouds or aerosols in the atmosphere, the IR would pass out into
space and the Earth would reach a thermal equilibrium temperature lower than what
is today. But the GHGs capture some of the IR energy that is trying to leave. A smaller
amount thus passes through the GHGs and escapes to outer space. The part captured by
the GHGs excites their molecules, allowing them to store the energy, like little glowing
light bulbs which shine some of that energy back at Earth. This is the mechanism by
which some of the energy is reradiated back to Earth. There have always been GHGs in
the atmosphere. It’s the excess amount, produced mostly during the past century, that
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has been creating an excess amount of IR returning to Earth. This is what causes global
warming. It results in an amount of heating reaching the Earth’s surface that is above
what has been necessary to sustain global equilibrium temperatures in the past.

Listing 13-2 draws Figure 13-5.

In Figure 13-5, the words identifying the arrows are right justified when they appear
to the left of an arrow while those appearing to the right are left justified. The left-justified
lines are easy. But how do we do the right justified ones? In the “text” section in the script

. n

below, the bold lines show how. The “s” says what is to be justified; the “rjust” says to the

right, the number in the parentheses says how much space to leave.

Listing 13-2. Draws Figure 13-5

s="incident'
plt.text(-74,-40,s.xjust(10))

Bom o global energy balance
import numpy as np
import matplotlib.pyplot as plt

plt.axis([-75,75,50,-50])

plt.axis('off")
plt.grid(False)

for x in np.arange(-75,75,3):
for y in np.arange(-30,47,2):
plt.scatter(x,y,s=50,color="1lightblue")

for x in np.arange(-75,75,3):
for y in np.arange(50,47,-2):
plt.scatter(x,y,s=50,color="#A52A2A")

R E PP e PR PR PR PR greenhouse gases
for x in np.arange(-75,75,3):
for y in np.arange(0,-10,-2):
plt.scatter(x,y,s=50,color="lightgreen")
for x in np.arange(-75,75,3):
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for y in np.arange(0,-10,-2):
plt.scatter(x,y,s=1,color="green")

e L EE L L PP PP e arrows
plt.arrow(-50,-50,0,91,1linewidth=5,head length=3,head width=2,color="r")
plt.arrow(-30,48,0,-85,1inewidth=1,head length=3,head width=2,color="r")
plt.arrow(-0,48,0,-45,1inewidth=1,head length=3,head width=2,color="r")
plt.arrow(-0,-10,0,-25,1inewidth=1,head length=3,head width=2,color="r")
plt.arrow(30,0,0,20,linewidth=1,head length=3,head width=2,1linestyle=":",color="r")

plt.text(20,-33, top of the atmosphere')
plt.text(10,-3, " 'GreenHouse Gases')
plt.text(30,45, 'Earths surface')
s="incident'
plt.text(-74,-40,s.rjust(10))

s="solar’

plt.text(-74,-35,s.xrjust(12))
s="radiation’
plt.text(-74,-30,s.rjust(10))
plt.text(-74,-25,'q W/sq m")

plt.text(-28,-40, reflected')
plt.text(-28,-35,"'solar")
plt.text(-28,-30, 'radiation')
plt.text(-28,-25, " (albedo)")
plt.text(-28,-20,"'.3q")

plt.text(3,30,"'IR radiated')
plt.text(3,35, by Earth")

plt.text(32,10,"'IR reflected')
plt.text (32,15, 'by GHGs")

plt.text(2,-20, IR escaping")
plt.text(2,-15,"'to space')

plt.show()
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The Rising Oceans

Will the melting of floating icebergs cause ocean water levels to rise? No, it will not.
Floating icebergs have already displaced the water; when they melt, they just go from ice
back to liquid. The berg’s ice projecting above the water surface just compensates for the
lighter density of ice vs. water. When the berg melts, it will shrink by the amount of ice
projecting above the surface. It will not add any volume to the water. The real problem is
the melting of ice that is not floating in the oceans but is supported by land as ice sheets
and glaciers. Another significant contributor to rising sea levels is the thermal expansion
of water as its temperature increases. In this section, you will assess how much we can
expect the sea level to rise due to the thermal expansion of the seawater.

T ——
ah @ Water surface __VWVater temperature _
—
h >.-—-< s !
< 4 Thermocline M'xm?_fir_'_e...l
'~ 18°C(64°F)
= !
5 !
E i
L'
= ]
o .
] ]
. -
= l
!
F - '
Ocean bottom | - 4°C(39°F)

S

Figure 13-5. Water column with thermocline showing the rise in water level Ah
caused by an increase in water temperature. Drawn by Listing 13-3

Shown in Figure 13-5 is what oceanographers refer to as a water column. This is an
imagined column of water from the sea surface to the bottom. The red portion is the
part above the thermocline, which is the depth of rapid transition from warmer to colder
water. What creates the thermocline? Because of its lower density, warmer water rises to
the top of the water column. This is called the mixing zone since wave action and surface
currents mix the water in this zone. It is mostly separated from the water below by its
lower density. Also, the mixing effect of wave action and surface currents only influences
the water close to the surface. As water temperature increases in the mixing zone, the
water in this zone will expand. This will cause the water level at the surface to rise. The

question is, how much will it rise?
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We will assume that only the water above the thermocline will be affected. This
is a major question in climate science; to what depth is the water affected by global
warming and how much will it warm? We will assume for now that only the water above
the thermocline is affected although thermocline depths can change and vary widely
depending on location.

The coefficient of volumetric thermal expansion of water, , gives the amount a volume
of water will increase with temperature. It is not a constant but increases with temperature.
This means that as the water gets warmer, its rate of swelling will also increase. The
coefficient of thermal expansion for seawater is about 2.3x10*/°C at an average water
temperature of 18°C. It will be greater for temperatures above 18°C. This value of §, which
is for seawater, is somewhat higher than for freshwater due to the presence of salt ions that
are dissolved in the water. They tend to repel one another and increase f.

Before heating, the volume of water above the thermocline is

Vo =Ah (13-5)

where Vo is the unheated volume of the water above the thermocline, A is the
cross-sectional area of the water column, and h is the depth from the surface to the
thermocline. After heating, the volume is Vo+AV where AV is the change in volume. The
change in volume is

AV =BVoAT = BAhAT (13-6)

where AV is the change in volume and AT is the change in temperature. Since the
water in the water column is constrained by the surrounding water (it’s all expanding),
AV has nowhere to go but up, so the change in height, Ah, is

an=2" 1
= (13-7)
Ah = BhAT (13-8)
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Inserting f=2.3x10/°C and AT=1.0°C into Equation 13-8 we get the following values
for the rise in sea level for different values of thermocline depth h:

Assumed Thermocline Depth h (m)  Ocean Surface Rise Ah (cm) for AT=1.0°C

75 1.7
200 4.6
1000 230

There isn’t much uncertainty in this model or this calculation; it’s quite
straightforward. The only question is the depth we assume for the thermocline. It seems
unlikely that we will see the oceans warming a full degree C to a depth of 1000 meters
(6000 feet) any time soon. So if we expect a warming of 1°C to a depth of 200 meters, we
are looking at a sea level rise of about 4.6 cm. If we expect a temperature increase to the
thermocline of about 2°C, we may be looking at a sea level rise of 9-10 cm sometime in
the future caused by swelling of the ocean’s waters.

Before we forget, we still have to cope with one of the most critical effects of climate
change: the melting of land-supported ice and snow and its runoff into the oceans.
Greenland looks to be an especially problematic area in this regard. According to the
National Snow and Ice Data Center (NSIDC.org), at its thickest point, the Greenland Ice
Sheet measures over 3 kilometers (1.9 miles) thick and contains about 2.9 million cubic
kilometers (696,000 cubic miles) of ice. If the entire Greenland Ice Sheet melted and the
water found its way to the oceans, sea levels would rise about 7.4 meters (24 feet).

Listing 13-3. The Rising Oceans

plt.text(43,-22,r'18%$*\circ$C (64%$"\circ$F)',color="1")

Mcirc is the temperature symbol. This line says 18°C (64°F)
plt.text(-42,20, 'water column',rotation=90,weight="bold",color="b")
The rotation=90 attribute rotates the text 90 degrees.

The weight=bold attribute makes the text bold.
plt.text(-70,-40, '\u0394h’', weight="bold")
The \u0394 is Unicode for A

et e E L e Listing 13-11 The
Rising Oceans
import numpy as np
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import matplotlib.pyplot as plt
plt.axis([-75,75,50,-50])

plt.axis('off")
plt.grid(False)

a=20

b=5

p1=0
p2=180*np.pi/180
dp=.2*np.pi/180

bt el Ellipse

yplast=0

for p in np.arange(p1,p2,dp):
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p))**2.)**-.5)
if p>np.pi/2.:

Xp=-Xp
plt.plot([xplast-40,xp-40],[yplast-40,yp-40],color="r")
plt.plot([xplast-40,xp-40],[-yplast-40,-yp-40],color="1")
xplast=xp
yplast=yp

et Ellipse

xplast=a

yplast=0

for p in np.arange(p1,p2,dp):
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p))**2.)**-.5)
if p>np.pi/2.:

Xp=-Xp
plt.plot([xplast-40,xp-40],[yplast-40+10,yp-40+10],color="b")
plt.plot([xplast-40,xp-40], [-yplast-40+10, -yp-40+10] ,color="b")
xplast=xp
yplast=yp
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plt.plot([-60,-60],[-40,-30],color="1")
plt.plot([-20,-20],[-40,-30],color="1")

et Ellipse
xplast=a
yplast=0
for p in np.arange(p1,p2,dp):
xp=np.abs (a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p))**2.)**-.5)
if p>np.pi/2.:

Xp=-Xp
plt.plot([xplast-40,xp-40],[yplast+40,yp+40],color="b")
plt.plot([xplast-40,xp-40],[-yplast+40,-yp+40],color="b")
xplast=xp
yplast=yp

plt.plot([-60,-60],[-30,40],color="b")
plt.plot([-20,-20],[-30,40],color="b")

plt.plot([-60,-60],[-30,40],color="b")
plt.plot([-20,-20],[-30,40],color="b")

Hom o Ellipse

yplast=0

for p in np.arange(p1,p2,dp):
xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)
yp=np.abs(a*b*(a*a+b*b/(np.tan(p))**2.)**-.5)
if p>np.pi/2.:

Xp=-Xp
plt.plot([xplast-40,xp-40],[yplast-43,yp-43],linestyle="-.",color="r")
plt.plot([xplast-40,xp-40],[-yplast-43,-yp-43],1linestyle="-.",color="r")
xplast=xp
yplast=yp

plt.plot([-60,-60],[-30,40],color="b")
plt.plot([-20,-20],[-30,40],color="b")
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D e L e e Temperature axis
plt.plot([20,20],[-40,40],color="k")
plt.arrow(20,-40,50,0,head length=3,head width=2,color="k")
et Thermocline
plt.plot([60,60],[-40,-30],linestyle="-.",color="1"
plt.plot([60,30],[-30,-25],1linestyle="-.",color="1")
plt.plot([30,25],[-25,40],1linestyle="-.",color="b")
e e E L L PR PP labels
plt.text(25,-42, 'water temperature',color="k")
plt.text(-15,-41, 'water surface')

plt.text(25,-32, 'mixing zone',weight="bold"',color="r")
plt.text(-16,41, "ocean bottom")

plt.text(43,-22,r"18$"\circ$C (64$*\circ$F)',color="r")
plt.text(29,40,1'4$"\circ$C (39$"\circ$F)',color="b")
plt.text(-42,20, 'water column',rotation=90,weight="bold"',color="b")
plt.text(-14,-29, 'thermocline’,weight="bold"', color="k")
plt.text(-67,-33,'h", weight="bold")

plt.text(-70,-40, '\u0394h', weight="bold")

plt.show()

The Global Climate Model

The simple global climate model shown in Figure 13-6 represents the Earth as a lumped

mass having a uniform temperature and uniformly distributed thermal properties. Even

though we know these are not uniformly distributed, it is a fair representation if we take

them to be effective global averages. We assume the Earth has reached a state of thermal

equilibrium and its temperature is not changing under the influence of whatever GHGs

are present in the atmosphere. But how much will Earth’s temperature change if the

GHGs change? We can write the following equation:

AT
t
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Aq feedbacl\ A GHGs

C, AT

Figure 13-6. A simple global climate model

Cis the Earth’s heat capacity; AQ is the additional heating caused by a change
in GHGs; AT is the temperature change caused by AQ; and AAT is the influence of
albedos. Equation 13-10 is saying the increase in heating, AQ, caused by a change in
GHGs is going into heating the Earth plus albedo effects. I highlight the word change to
emphasize that, in the above equation, we are concerned with changes in atmospheric
levels of GHG and T. Rewriting (13-10)

AT
C—= 40247 (13-10)

The quantity AAT is a feedback term. It represents the albedo processes that occur
in response to AQ. When A is positive, we see from Equation 13-11 that the term AAT
subtracts from AQ, providing less heating and a cooling effect.

If we restrict this discussion to CO, being the only GHG that will change, then
regarding vegetation, an increase in CO, in the atmosphere would result in additional
growth of vegetation, which absorbs CO,, This would decrease CO, levels and subtract
from the greenhouse effect (positive A, negative feedback). If A is negative, it will add to
the heating. For example, the melting of reflective snow and ice exposes darker material
beneath such as tundra. This has a warming effect (negative A, positive feedback). The
total A is a summation of IR radiation and albedos,

A=A, +A

IR vegetation growth + }\’cloud cover + A‘mclting of snow and ice +.... ( 13' 1 1)

Table 13-2 shows some albedos. These numbers should be considered rough
estimates, useful for illustrative purposes. They will presumably be refined and more will
be known with further research.
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Table 13-2. Albedos

Feature IR Radiation (W/m?)/°K Albedo )\ (W/m?)/°K
IR emission into space +3.7

Water vapor -1.3 -.24

Cloud cover unknown Unknown

Cloud top height unknown Unknown

Melting Ice and snow unknown -.26

Vegetation growth unknown Unknown

Total +2.4 -5

Why isn’t the IR emission into space that arises from the additional heating caused
by an increase in GHGs larger? After all, 30% of the Sun’s irradiation is reradiated back
into space by Earth’s albedos. Why is the IR reradiation from the temperature increase
caused by GHG so small? It is because as the IR rises from Earth’s surface, some of it is
reflected back down by the GHGs; they reflect some of their additional stored heat back
to the Earth’s surface where it is reradiated back into the GHGs and so on. This reduces
the amount of heat that leaves Earth.

Data about albedo effects is scattered. As an example, the albedo of vegetation
growth depends on the type of vegetation, where it is growing, the season of the year, and
other factors. Perhaps it is too soon to give it an average number for such an albedo on a
global scale. The same is true for ice and snow.

Earth’s heat capacity C is also uncertain. Earth stores energy in the atmosphere, the
ground, and in water, mainly the oceans. Here are some numbers:

Component C (Watt-years)/(m?°K)
Ground to 3 meters .04

Atmosphere 3

Oceans: surface to 45 meters 4.0

Oceans: 45-450 meters 40

Oceans: 450-bottom meters 300
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The role played by the oceans in storing energy is very important and overwhelms
the other components. And this is strongly a function of the depth of water we assume is
storing the energy. As explained earlier, most heating of seawater takes place above the
thermocline. If we assume this is at a depth of 45 meters, we will take 4.0 as the figure to
use for that component. The value of C we will use is therefore

C=.04+3+4.0=434 (13-12)

Next we will turn our attention to AQ, the additional atmospheric heating caused
by an increase in the level of CO, in the atmosphere. The units of AQ are Watts/m?. In
1990, the level of CO, was 350 ppm. It is estimated to increase to 600 ppm sometime
between 2030 and 2080. If we take 2055 as the year that level is reached, we can write the
following relation for CO, vs t in years:
CoO, (t)z350+%t=350+3.84t (13-13)

where t is the time in years from 1990. Thus we see that, with the above estimates,
the rate of increase of CO, in the atmosphere will be about 3.84 ppm per year. It is known
that the additional heat trapped In the atmosphere increases logarithmically with CO,,

co, (1)
Co,(t=0)

AQ=4=Aln( ]:Aln(2) (13-14)

where A is a constant. It is also calculated that increases in CO, add about 4 Watts/m?
to AQ for every doubling of CO,. Thus,

4=Aln(2) (13-15)
A=577 (13-16)

Combing the above, Equation 13-15 becomes

350 +3.84¢
AQ =577 ln(—j (13-17)
350
AQ=5.771In(1+.011t) (13-18)
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Rewriting Equation (13-10),

AT A A0
— AT =— (13-19)
di C c
With Equation (13-19),
dAT 2 5.77
— +— AT =—"—1In(1+.011t) (13-20)
dt C c

Over a time span of 100 years the function In(1+.011t) on the right side of
Equation (13-21) is almost linear. It can be approximated by

In(1+.011t)=.00742t (13-21)

Inserting (13-22) into (13-21),

dAT 2
ey Yy (13-22)
d C C

This equation is easily solved by Laplace transforms. Transforming both sides,

A .0428 1
SAT(S)_AT(0)+EAT(S):TS_2 (13-23)

AT(0) is the temperature change at time=0 (1990), which we are taking as our
reference point, so

AT(0)=0 (13-24)
Rearranging (3-24) gives us

AT(s

(5)= 2005 (s+1/C) (13.25)

Taking the inverse of (13-26) by partial fractions

—=(1-¢") } (13-26)

T

.04287* {

(-2
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where = C/)\ is the time constant (years). T is a measure of how fast or slowly the
system responds to an input. A larger value of T implies a larger thermal inertia. For
example, if there is a surge in GHG heating at time t=0, the resulting temperature change
AT will reach 63.2% of its full value when t=t. If 7 is larger, the system will take longer to
reach that amount. In our model, which is represented by Equation 13-26, t=C/A. The
larger the Earth’s heat capacity, the longer it will take AT to reach its final value since
more of the heat input caused by the surge in GHG is being absorbed by Earth, mostly
by the oceans. Choosing a greater depth for the thermocline gives a larger C and a larger
time constant.

Equation (13-27)
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Figure 13-7. Solution of Equation 13-26, produced by Listing 13-4

Figure 13-7 shows the solution of Equation 13-26, produced by Listing 13-4. C is the
Earth’s heat capacity (watt-years/m?-°K). A=1.9 is the sum of the Earth’s albedos (watts/
m?-°K). It is assumed there occurs a doubling of CO, in the atmosphere at time t=0. This
increase in CO, adds about 4 Watts/m? of additional global warming which produces a
global temperature increase AT as shown above for various values of C. For example, the
value C=4 corresponds to a change in the heating of the oceans to a thermocline depth of
45 meters. After 20 years’ time, the Earth’s global average temperature would be expected
to rise by about .40°C above the temperature at t=0. As expected, for greater values of
C, the Earth’s temperature change responds more slowly. Heat capacity C thus acts as a
thermal inertia; it slows things down. It is emphasized that this analysis and the results
shown are very uncertain due to the lack of reliable data for almost all the parameters
involved. This analysis is presented to show a simple methodology for making climate
predictions. See Listing 13-4.

424



CHAPTER 13 CLIMATE CHANGE
Listing 13-4. Display of Equation 13-26

G e LT Listing 13-12 display of equation 13-26
import numpy as np
import matplotlib.pyplot as plt

plt.axis('on")
plt.grid(True)

plt.axis([0,100,0,2])

et T LG L L L L e solution
lam=1.9 #----lambda

for ¢ in np.arange(4,200,20): #---c=Earth's heat capacity
tau=c/lam #------------------ tau-time constant
for t in np.arange(0,100,1): #----t=time
dt=(.0428*tau*tau/c)*((t/tau)-(1.0-np.exp(-t/tau)))
#-temperature change
plt.scatter(t,dt,s=5,color="1r")

e e E L L PR PP e labels
plt.xlabel('time (years)")

plt.ylabel('temperature change \u0394T ($"\circ$C)")
plt.text(7,1.60,r'$\lambda$=1.9")

plt.title('Equation (13-27)")
plt.text(60,.24,"'C=200")
plt.text(29,.8,'C=4")

plt.show()
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Summary

You reviewed the history of Earth’s temperature fluctuations—the heatings and the
coolings. You saw evidence of this in paintings of artists of the past. You also saw how
environmental data is collected today. You learned that the most troubling threat posed
by global warming is Greenland with its 1.9 mile thick icesheet. What happens when it
melts and we have to cope with a sea level rise of 24 feet? We can learn as much as we
can, but what are we going to do about it? The cause of this problem is undisputable; it
is anthropogenic. It looks like the solution will also have to be anthropogenic. Reducing
greenhouse gases rising into the atmosphere may be one solution, but what about all
the CO,, methane, and all the other GHGs that are already up there? Electric vehicles
will help, but the electricity has to come from somewhere. Windmills and solar panels
will help but what happens when the wind doesn’t blow and the Sun doesn’t shine?
There has to be a backup system for such an event, or a lot of batteries, which means
we will have to have parallel energy systems of renewables and fuel-powered. This will
cause electricity to be much more expensive, radically changing our lifestyle. Or, and
this may be inevitable, we may have to go back to nuclear power. As the problem is
anthropogenic, the solution will likely have to be anthropogenic as well.
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Population Dynamics

This chapter contains several programs that simulate population dynamics in
population biology and ecology. It could be a population of people, whales, or aphids,
any population that experiences growth that occurs in discrete steps or in a continuous

process.

Sequential Growth

Program GGROWTH plots the change in size of a population that follows a sequential
growth process. The change in size of the population from one generation to the next
occurs in discrete steps, in a sequence, and there is no overlap between generations.
The human population of the United State, for example, is not an example of sequential
growth since the overall size of the population is changing continuously. Populations
of perennial plants are an example of sequential growth since each generation grows
during a well-defined growing season, the time between generations being one year.
Equation 14-1 (a geometric equation) is an elementary model that can be used to
describe this type of growth process:

N(i) =(ggr)N(i-1) (14-1)

This says the size of the population in the ith generation is simply a multiple of the
size of the preceding (i-1) generation. The quantity ggr is called the geometric growth
rate. It equals the difference between births and deaths from one generation to the next:

ggr = births - deaths (14-2)
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Equations 14-1 and 14-2 form an elementary model since they assume
e The growth rate does not depend on the size of the population.
e The growth rate does not depend on the population’s age structure.

e The size of generation (i) depends only on ggr and the size of
generation (i-1). The delayed effects of generations more than one
year previous are ignored. See Figure 14-1.

1000 7
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Figure 14-1. Population vs. generations for 10 geometric growth rates ranging
Jrom .2 - 2.0 in steps of .2. The starting population is 500. When GGR=1, there is no
change in the population with generations since we have defined GGR according
to Equation 14-1. If GGR < 1, each successive generation will be smaller than

the preceding one so the population will eventually go extinct. For GGR > 1, the
population will increase indefinitely. As can be seen from the GGR=2 curve, with
GGR=2 the population doubles in one generation going from 500 to 1000. This
graphic was produced by Listing 14-1

In the section “Lists” below, the generation gen[ ] and population pop[ ] lists are
defined. gen has 11 elements including the initial o™ one. They are defined sequentially
as 0, 1, 2......10. The pop list has the same number of elements but the values shown are
dummies; they just serve to define the number of elements in the pop list and will be
replaced. The first loop cycles the geometric growth rate, ggr, from .2 to 2 in steps of .2.
The value shown in the for ggr loop in section “Lists” is 2.01, not 2.0, because Python
rounds off errors and that final value will be missed without the .01 added to 2.0. pop[0]
is the starting population. Lists, including plotting with lists, are discussed in Chapter 1.
The heart of this program is the equation pop[i]=pop[i-1]*ggr, which takes the
population from one generation to the next.
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Listing 14-1. Geometric Growth Rate

et Listing GGR
import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,10,0,1000])
plt.axis('on")
plt.grid(True)

gen=[0)1)2)3)4J5)6)7)8)9)10]
P°P=[0)1,2:3:4:5,6,7,8,9:10]

for ggr in np.arange(.2,2.01,.2): #pop vs gen for 10 GGRs
pop[0]=500 #--initial population
for i in np.arange(1,11): #-calculate POP for 11 gen's
pop[i]=pop[i-1]*ggr GaREER Eqn (14-1)

plt.plot(gen,pop) #--plot pop vs gen for 11 values of GGR

LR L PR PP labels
plt.xlabel('GENeration")
plt.ylabel('POPulation")
plt.text(4.5,515, 'GGR=1")
plt.text(.2,30, 'GGR=.2")
plt.text(.2,900,'2.0")

plt.show()

Plants

Plant growth is an example of sequential growth with age dependence. Program PLANTS

plots the change in the population of perennial plants which come up every year.
The growth model here includes the influences of the past two generations including
differences in seed production, survival, and germination rates. This concept could
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easily be extended to include more than two generations or other types of populations
that follow a sequential growth model with more elaborate age-dependent properties.

Each summer the growing season produces a new generation of plants. Starting
with a population N(0), the following summer you will have N(1) plants. During the next
summer, you will have N(2) plants and so on such that during the ith growing season you
will have N(i) plants. These will all be elements of the N[] list.

At the end of each summer, the population leaves behind spr, seeds per plant.

Spr is called the seed production rate. During the following winter, a quantity of these
seeds will die from the weather and other environmental factors such as disease and
predation. The fraction of seeds that survive the winter is wsr, the winter survival rate.
During the following spring only a fraction of these surviving seeds will germinate and
produce new plants. These are “one-year seeds.” They germinate at the rate of grl plants
per seed. Some of these seeds will survive two years. These are called “two-year seeds”
and they germinate and produce new plants at the rate gr2 plants per seed. (Assume
seeds more than two years old do not germinate.)

Program PLANTS plots the growth or decline in the plant population for specified
values of the above parameters. It also plots the number of seeds available for
germination at the beginning of each summer growing season.

Equation 14-3 is the growth model for this process. It expresses the relation between
the number of plants during the ith growing season, N(i), and the number during the
preceding two seasons, N(i-1) and N(i-2):

N(i) = (gr1)(wsr)(spr)N(i-1) + (gr2)(wsr)(1-grl)(wsr)(sprin(i-2)
= (contribution of 1 year seeds) + (contribution of 2 year seeds) (14-3)

While Equation 14-3 looks complicated, it can be easily understood by examining
the two terms on the right side. The first is the contribution of one-year seeds (those
dropped in the soil in year (i-1)) to the plant population in growing season i. The
second is the contribution of two-year seeds (those dropped in year (i-2). Table 14-1
explains this.
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Table 14-1. Explaining the Equation

(spr)N(i-1)

(wsr)(spr)N(i-1)

(gr1)(wsr)(spr)N(i-1)

(sprN(i-2)
(wsr)(spr)N(i-2)
(1-gr1)(wsr)(spr)N(i-2)

(wsr)(1-gr1)(wsr)(spr)N(i-2)

(gr2)(wsr)(1-gr1)(wsr)(spr)N(i-2)

Number of seeds produced by plants at the end of the previous
growing season

Number of seeds that survived the previous winter
(one-year seeds)

Number of one-year seeds that germinate to produce new plants
during the ith growing season

Number of seeds produced two seasons ago
Number that survived the winter two winters ago

Number that survived the winter two winters ago and did not
germinate the following growing season

Number of these that survived the following winter
(two-year seeds)

Number of two-year seeds that germinated to produce new
plants during the ith growing season

Spr (seed production rate) and wsr (winter survival rate) are assumed to be the same

for both generations (i-1) and (i-2). Germination rates grl and gr2 are different since you

would expect older gr2 seeds to have a lower rate of germination. See Figure 14-2.
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PLANTS
1200
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600 1

number of plants
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Figure 14-2. The growth in a population of plants for three different seed
production rates (spr). Winter survival rate wsr=.8, germination rate for the
previous generation grl=.5, for the second previous generation gr2=.25. Curves
show that for a spr = .25, the population will quickly die out; for spr = 1.8, it will
eventually die out; and for spr = 3, the population will grow. These curves are
dependent on the winter survival rate (wsr) and growth rates for the two previous
generations (grl and gr2). Produced by Listing 14-2, PLANTS

Listing 14-2. Program PLANTS

B PLANTS
import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,10,0,1200])
plt.axis('on")
plt.grid(True)

Wwsr=.8

gri=.5
gr2=.25

8en=[0;1:2:3:4:5:6;7:8:9:10]
N=[O)1)2:3:4:5:6)7)8:9:10]
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spr=.25

N[0]=100

N[1]=spr*wsr*gr1*N[0]

N[2]=spr*wsr*gri*N[1]+spr*wsr*wsr*gr2*(1-gr1)*N[0]

for i in np.arange(3,11,1):
N[i]=spr*wsr*gri*N[i-1]+spriwsr*wsr* gr2*(1-gri)*N[i-2]

plt.plot(gen,N, color="g")

spr=1.8

N[0]=100

N[1]=spr*wsr*gr1*N[0]

N[2]=spr*wsr*gri*N[1]+spr*wsr*wsr*gr2*(1-gr1)*N[0]

for i in np.arange(3,11,1):
N[i]=spr*wsr*gri*N[i-1]+spriwsr*wsr* gr2*(1-gri)*N[i-2]

plt.plot(gen,N, color="g")

N[1]=spr*wsr*gr1*N[0]

N[2]=spr*wsr*gri*N[1]+spr*wsr*wsr*gr2*(1-gr1)*N[0]

for i in np.arange(3,11,1):
N[i]=spr*wsr*gri*N[i-1]+spriwsr*wsr* gr2*(1-gri)*N[i-2]

plt.plot(gen,N, color="g")

plt.xlabel('Years")

plt.ylabel('N = number of plants')
plt.text(6,515, " 'spr=3")
plt.text(4,90, spr=1.8")
plt.text(1.1,13, " 'spr=.25")
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plt.text(1,1000, 'wsr=.8")
plt.text(1,900, 'gri=.5")
plt.text(1,800, " 'gr2=.25")

plt.title('PLANTS')

plt.show()

Insects

In this section, you consider the case of a population that follows a sequential growth
model where the net growth rate (births-deaths) is not constant but is dependent on the
size of the population. As the size increases, there will be increased competition for food
between the members of the population, improved efficiency of predators, and so on,
causing the death rate to increase and the birth rate to decrease. As a result, the net birth
rate will decrease. As an example, consider a population of aphids that follows a growth
model of the following form:

N(i+1)=g[N(i) |N(i) (14-4)
gr[ N(i) ]=a-bN(i) (14-5)

where gr[N(i)] is the net growth rate (births-deaths) and a and b are constants.

If there is no effect of population size on the growth rate gr, b will be zero and a will
be equivalent to ggr, the geometric growth rate as defined in Listing 14-1. That is the
intrinsic growth rate that occurs when there is no influence on the growth rate from
population size. The parameter b in Equation 14-5, which accounts for the influence of
population size on growth rate, will normally be greater than zero, implying that the net
growth rate decreases as the population size increases. If b is negative, the rate of growth
will increase with population size, a condition you could define as explosive growth. b
will normally be much smaller than a since it is multiplied by N(i) in Equation 14-5 and
N(i) is normally a large number. Inserting Equation 14-5 into Equation 14-4 gives the
growth model

N(i+1)=[ a—bN(i) |N(i) (14-6)
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Example 1 is shown in Figure 14-3.

INSECTS
1000 6
a=35 b= 0035 N[0] = 500

800 1 [

g -4
£ 600 2
‘6 g
] 3
o =
E o
3 400 ]

= 2

200 1 1

0 T T T T 0

0 2 4 B 8 10

Generations

Figure 14-3. This plot shows the population of insects that follow the growth
model Equations 14-5 and 14-6. It was produced by Listing 14-3. The population
starts off at 500. As it increases to the first generation, the growth rate gr in
Equation 14-5 decreases such that after the first generation the population
decreases. The population size N is shown in green and the growth rate gr is shown
inred. As N decreases, the growth rate increases. Then the population recovers and
the cycle starts again

Of interest in this listing is the method of setting up and labeling dual vertical axes.
The relevant lines are shown in bold.

Listing 14-3. Program INSECTS

B e oo oo INSECTS
import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,10,0,1000])
plt.axis('on")
plt.grid(True)

8en=[0)1:2:3:4:5:6)7:8:9:10]
N=[O)1)2:3:4:5:6)7)8:9:10]
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8I=[0,1,2,3:4,5:6,7,8,9,10]

a=3.5
b=.0035
N[0]=500

gr[0]=a-b*N[0]
N[1]=gr[o]*N[0]
gr[1]=a-b*N[1]
N[2]=gr[1]*N[1]

plt.xlabel('Generations")

for i in np.arange(2,11,1):
gr(i-1]=a-b*N[i-1]
N[i]=gr[i-1]*N[i-1]

print(i, 'gr[i-1]=",gr[i-1],N[1i])

gr[10]=a-b*N[10]

plt.ylabel('N = number of insects', color='g')

plt.plot(gen,N,coloxr="g")

plt.twinx()

plt.ylabel('Growth Rate',color="r")

plt.axis(ymax=6)
plt.plot(gen,gr,color="r")

plt.title('INSECTS")
plt.show()

Example 2:

Try another run but this time with the following numbers:

N[0] = 100

a=3.25
b=.0034

Except for the size of the initial population N[0], these numbers are the same as

before but they produce a much different response. See Figure 14-4.
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INSECTS
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Figure 14-4. The nature of the response has changed from oscillatory to one
that exhibits a rapid rise to almost a steady state in only two generations. It
then continues on as oscillatory. Since parameters a and b in this example are
almost the same as in Example 1, you can infer that you are near some sort of a
transition point

Example 3:
Here you extend the number of generations to 50 and look at the response for a =2.7,
3.0, 3.3, and 3.5. See Figures 14-4 through 14-8.
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INSECTS
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Figure 14-5. Here a=2.7. The response starts off oscillatory but dies out to a steady
state; the growth rate decreases to a steady state of 1. As you would expect in the
steady state, the population neither increases nor decreases

INSECTS
1000 ]
a=3.0
b=.0034 | 5
%00 N[0] = 100
g -4
< 60 5
[=] -4
i 3
§ 00 &
Py 2
=
200 0
0 T T T T 0
(] 10 20 30 40 50
Generations

Figure 14-6. Here a=3.0. The population rises to slight oscillations around a
steady state of about 590
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Figure 14-7. Here a=3.3. The population rises to a steady state of about 680 and
then changes into violent oscillations

INSECTS
1000 6
a=3.5
b=.0035 | 5
- 600 N[0] = 100
g L4
< 60 5
[=] -4
i 3
€ a00 &
Y 2
=
200 L1
0 T T T T V]
0 10 20 30 40 50
Generations

Figure 14-8. Here both the population and the growth rate gradually build up to
increasing oscillations

It appears that slight changes in population size interact with the size-dependent
growth rate to induce oscillations in the population. In fact, it can be shown that a value
of a=3.0 is the transition point. When a is above 3.0, oscillations or chaotic behavior
will result. When a is less than 3.0, oscillations may not occur or, if they do, they will
eventually die out.
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Whales

The following analysis and data are taken from Mathematical Biology by J.D. Murray
(Springer-Verlag, New York; 1989). The International Whaling Commission models the
population dynamics of the baleen whale by the following equation:

N(t)=(1-mr)N(t-1)+R[N(t-TD)]t (14-7)

where N(t) is the population of sexually mature whales at time t, mr is the mortality
rate, and (1-mr)N(t-1) is the fraction of whales that survive from year to year. Note that
N(t) is not the entire population of baleen whales; it is the population of only the sexually
mature ones. It takes several (TD) years for newborn whales to reach maturity. The
second term on the right is the number of whales who were born TD years earlier and
who are just reaching maturity and contributing to the population of adults at time t.
This term, which introduces a time delay TD into the dynamics, is

R[N(t-TD)] :%(1—mr)m N(t-TD) P+Q[ 1—( @ ] ] (14-8)

The quantity

e (2] ]

is the fecundity (number of offsprings produced per adult female) of female whales
at time t-TD. K is the equilibrium population that would result with no harvesting and P
is the equilibrium fecundity that occurs when N(t-TD) = K. Q and z are parameters that
account for the changes in fecundity with change in population. The fecundity decreases
when the population rises above the equilibrium value of K and increases when
populations fall below equilibrium. It reaches a maximum when the population falls to
very low values.
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The fecundity is multiplied by the number of adult females in the population of adult
whales at time t-TD. Assuming there are as many females as males, this is N(t-TD)/2.
Thus the quantity

N(t;TD) P+Q[ 1_{ N(tI;TD) j ] (140

is the number of offspring produced in the year t-TD. Since these baby whales
must survive TD years in order to reach maturity at time t, you multiply the above by
(1-mr)™ to get the number of baby whales that survive to maturity and contribute to the
population in year t.

Typical numbers for the parameters are

mr =.04

TD=6

K=600,000

Q=.9

P is notindependent but is related to mr and TD since, at equilibrium

N(t)=N(t-1)=K (14-11)

Inserting Equation 14-11 into Equation 14-7 with Equation 14-8 gives

P= 2mr( 1- mlr)fTD (14-12)

Using the values above you get

P=.102 (14-13)

Listing 14-4 calculates P automatically using Equation 14-12. See Figure 14-9.
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WHALES
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Figure 14-9. This figure was drawn by Listing 14-4. It shows the growth in the
population of baleen whales that have reached sexual maturity after TD=6 years. N
is the population of sexually mature whales. In this figure, you assume their numbers
are unchanged while they grow to maturity. This is the horizontal line from 0 to

TD, which is six years in Listing 14-4. After that time, they join the rest of the whale
population and contribute to its growth. The parameters Q and z determine the
fecundity, the number of offspring produced per adult female whale, of the adult
whale population. The response is quite sensitive to z as shown above where the
growth curves transition from smooth (green and blue) to oscillatory (red and
purple) as z increases. This is to be expected since z is a strong parameter in Equation
14-10, which gives the number of offspring produced in the year t-TD

Listing 14-4. Program WHALES

e WHALES
import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,100,0,1200])
plt.axis('on")
plt.grid(True)
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i in range(101):
gen.append(i)
n.append(i)
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e L E LT parameters

.axis([0,100,0,1200])
.axis('on")
.grid(True)

i in range(0,6,1):
gen[i]=1i
n[i]=nstart

starting values

et e analysis
p=2*mr*(1-mr)**-TD

z=.25

for

plt.

i in np.arange(TD,101,1):

a=(1-mr)*n[i-1]
b=.5*n[i-TD]*(1-mr)**TD
c=p+Q*(1-(n[i-TD]/K)**z)
n[i]=a+b*c

gen[i]=1i
plot(gen,n,color="g")

z=.50

for

i in np.arange(TD,101,1):

a=(1-mr)*n[i-1]
b=.5*n[i-TD]*(1-mr)**TD
c=p+Q*(1-(n[i-TD]/K)**z)
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n[i]=a+b*c
gen[i]=1i
plt.plot(gen,n,color="b")

z=.75

for i in np.arange(TD,101,1):
a=(1-mr)*n[i-1]
b=.5*n[i-TD]*(1-mr)**TD
c=p+Q*(1-(n[i-TD]/K)**z)
n[i]=a+b*c
gen[i]=1

plt.plot(gen,n,color="1")

z=1.25

for i in np.arange(TD,101,1):
a=(1-mr)*n[i-1]
b=.5*n[i-TD]*(1-mr)**TD
c=p+Q*(1-(n[i-TD]/K)**z)
n[i]=a+b*c
gen[i]=1i

plt.plot(gen,n,color="purple")

ettt L L T labels
plt.title('WHALES")

plt.xlabel('years")

plt.ylabel('N (population size)")

plt.text(24,1100,'z"',size="1large",fontweight="bold",color="k")
plt.text(22,1000,'0.25"', fontweight="bold',color="g")
plt.text(22,925,'0.50"', fontweight="bold',color="b")
plt.text(22,850,'0.75', fontweight="bold',color="r")
plt.text(22,775,"'1.25", fontweight="bold',color="brown")

plt.show()
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Summary

In this chapter, you learned how to model and plot the growth of a population. Four
Python programs were developed: GGROWTH plots the change in size of a population
that follows a sequential growth process; PLANTS charts growth according to a
sequential growth process with age dependence; INSECTS concerns where the growth
rate is dependent on the size of the population; and WHALES covers where the growth
rate of a population of baleen whales follows dynamics specified by the International
Whaling Commission. You also saw how to plot population dynamics on charts having
two vertical axes.
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CHAPTER 15

Resource Management

This chapter is about the development of programs that simulate various principles and
techniques for the management of resources that are subject to harvesting. Examples are
fisheries, wildlife, and so on. All programs assume logistic growth of the population.

Program LG: Logistic Growth with No Harvesting

This program plots the change in size of a population that follows a logistic growth
process. There is no harvesting in this model. Growth is assumed to proceed in a
continuous fashion rather than in discrete steps. Such a process is representative of
populations where generations overlap as opposed to those where reproduction takes
place only at distinct time intervals. The equation for this process is

dN N
E:RN(I—Esz(N) (15-1)

where t is time, N is the population size in units of the species (such as number of
trees, acres of biomass, number of fish, etc.), R is the net intrinsic growth rate (births
minus deaths), and K is the carrying capacity of the environment.

Program LG plots the solution N vs t from Equation (15-1). It also plots f(N)=dN/dt,
the growth rate function, vs. N. See Figure 15-1.
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Figure 15-1. Plots of the logistic growth rate function f(N) vs N (green) and
population N vs. time t (red)

Figure 15-1 was drawn by Listing 15-1, Program LG. There is no harvesting (i.e.,
H=0 in Listing 15-2, Program CHR). As you will see in the next section, Program CHR
does incorporate harvesting. Parameters here are R=2, K=600, and Nstart=100. N grows
to a steady state value of 600, which is where f(IN) equals 0. f(N)=0 implies there is no
further growth either up or down. The N vs. t curve (red) has an inflection point at about
N=300. This is consistent with the transition of the f(N) vs. the N curve (green) from a
positive slope to a negative one at N=300.

Listing 15-1. Program LG - Logistic Growth, No Harvesting

e e e T Listing LG
import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,600,0,400])

plt.axis('on")

plt.grid(True)
R=2. #----population growth rate
K=600. #----carrying capacity of the environment

for N in np.arange(0,600,1):
f=R*N*(1-N/K) e growth rate function f(N)
plt.scatter(N,f,s=1,color="g")
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plt.title('LG")
plt.ylabel('f (N)")
plt.xlabel('N")

plt.show()
R N vs t (time)
plt.axis([0,6,0,1000])

plt.axis('on")
plt.grid(True)

Nstart=100. Bommmmmmemeeeee starting size of the population
dt=.01 LT time increment

tmax=10. e EE maximum time

f=R*Nstart*(1-Nstart/K) #------ starting value of growth rate
function

N=Nstart+f*dt et population size at time dt

for t in np.arange(dt,tmax,.01):
f=R*N*(1- (N)/K)
N=N+f*dt
plt.scatter(t,N,s=3,color="r")

plt.title('LG")
plt.ylabel('population N")
plt.xlabel('time t")

plt.show()

Program CHR: Logistic Growth with Constant
Rate Harvesting

Figure 15-2 shows plots of growth rate function f(N) vs. N (green) and population N vs.
time t (red) with a constant rate of harvesting equal to 100 as shown by the horizontal red
line in the fvs. N plot. Parameters are R=2, K=600, and Nstart=100. This was drawn by the
code in Listing 15-2 called Program CHR.
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Figure 15-2. Drawn by Listing 15-2

What is a constant rate of harvesting? Think of a fishing boat, or a fleet of boats,
catching codfish on Georges Bank, a relatively shallow area of the Continental Shelf
between Cape Cod and Sable Island. If the fleet caught fish cumulatively at a more or
less constant rate, that would be constant rate harvesting. Notice the population N does
not reach K=600, the carrying capacity of the environment, as it did in the previous
section where there was no harvesting. Figure 15-3 shows this program with Nstart=120,
which is less than H, which equals 200. You can see the population goes quickly to 0.
This is because the population never has the size necessary to overcome the harvesting
rate H=200.

In the figure of f(N) vs. N, the black dots show the intersection of the growth function,
which is a parabola, and the harvesting line H. This is a graphical solution to the
equation

N
RN(]—Esz (15-2)

where the left side is a parabola and the right side is a horizontal line. Equation 15-2
can be rewritten as a quadratic equation:

KH
NZ-KN+?R=0 (15-3)

This equation has two roots, N1 and N2. They are calculated in the program and
used to plot the two black dots, which indicate the two solutions. They represent
harvesting equilibrium points. Notice in the N vs. time curve that the population
stabilizes at about N=545. This is consistent with the second equilibrium point, N2.

450



CHAPTER 15  RESOURCE MANAGEMENT

The net growth rate is the intrinsic growth rate minus the harvesting rate:

Net Growth Rate = RN( 1- %j -H (15-4)

The net growth rate is the difference between the green parabola and the harvesting
line shown in red. For a starting population level Nstart, which equilibrium point will be
reached depends on the initial population level’s value and the value of H. If it starts off
below the left equilibrium point, the net growth rate will be negative and the population
will decrease to zero. If it is above that level, the net growth rate will be positive and the
population will grow to the equilibrium point on the right. The left equilibrium point is
unstable since it doesn’t matter how much the population is below or above that point,
it will drop to extinction or grow to the right equilibrium point. The right point is stable
since even small perturbations about it will cause the population to return to it. This
can be seen from Equation 15-4 where the net growth rate can be positive depending
on the relative values of the intrinsic growth rate and the harvesting rate. If positive, N
will increase; if negative, it will decrease. If positive or negative, N will always go to the
second equilibrium point. In Listing 15-2, parameters H and Nstart have been changed
to produce the plots shown in Figure 15-3. N1 and N2 indicate the position of the
equilibrium points along the N axis.

Figures 15-3 and 15-4 illustrate the instability of the first equilibrium point;

Figures 15-5 and 15-6 indicate the stability of the second. Perturbation in N or H about
the first equilibrium point will result in either extinction or growth of the population to
the second equilibrium point. Perturbations about the second point result in a return of
the population to that equilibrium.

451



CHAPTER 15  RESOURCE MANAGEMENT

CHR CHR
400 1000
350
800
300
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1 /\2 g 500
Z 200 s
= H=200.0 3
150 K=£00.0 g 400
R=20
100 Nstart=120.0
N1=126 200
50 N2=473 \
0 . : . . , 0 v v . - -
0 100 200 00 400 500 600 0 1 2 3 4 5 6
N time t

Figure 15-3. N1=126is the N location of point 1, the left equilibrium point and
N2=473 of the right equilibrium point. These values were calculated within the
program. Let Nstart = 120, just below N1 (i.e., to the left of point 1). According to
the above discussion, you see on the right that the population goes to extinction as
expected

CHR CHR
400 1000
350
800 1
300
250 =
Z 200 =
i H=200.0 2
150 K=800.0 g 400 4
R=20
100 Nstart=130.0
N1=126 200
50 N2=473
] T T T T T 0 T T T T T
0 100 200 300 400 500 600 0 1 2 3 4 5 [
N time t

Figure 15-4. Here Nstart is just to the right of N1 (i.e., greater than N1), the first
equilibrium point. As expected, in the right plot the population is growing toward
the second equilibrium point at N2=473
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CHR CHR
400 1000
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B00
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Figure 15-5. Here you shift your attention to the second equilibrium point, which
has a population value of N2=473. You start at Nstart=440, less than N2, the N
value of the second equilibrium point. As expected, N vs. t shows the population
initially trying to make up the difference and move from Nstart=440 toward the
equilibrium value of 473

CHR CHR
400 1000
350
800 1
300
250 =
1 /‘_\2 Z 01
£ 200 : r——
- H=200.0 3
150 K=6800.0 g 400 1
R=20
100 Nstart= 500.0
N1=126 200 1
S0 N2=473
0 T T T T T 0 T T T T T
0 100 200 300 400 S00 €00 0 1 2 3 4 5 6
N time t

Figure 15-6. Here you start at Nstart=500, just greater than the N value of the
second equilibrium point. As expected, N vs. t shows the population decreasing
and again moving toward the second point

As a personal anecdote, if you have ever seen Penobscot Bay in Maine, which is 40
miles long and 20 miles wide, you would expect it must be full of fish. In the summer, there
are plenty of migratory fish (mackerel, bluefish, and stripers) but there are no bottom fish
(no cod, no haddock, and no flounder). I once spent a day bottom fishing there, among
the rocks and islands. Caught nothing, not a bite, not even a nibble. The place seemed to
be dead, beautiful but dead. A few years later I was aboard a schooner sailing down the
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Bay in a pleasant summer southwest breeze. I asked the captain, why are there no fish in
Penobscot Bay? He answered, “because the place was fished out years ago. The fish are
gone, the habitat went next, and neither ever came back.” Plenty of lobstahs though.
Regarding the side-by-side layout of the above plots, it was not done with the use of
subplots. Subplots do not always give satisfactory results and they can be difficult to use.
Doing it the old-fashioned way is often easier and gives good results. In the side-by-sides
here, each pair was produced by one program, either LG or CHR. Python prints the two
plots vertically, one over the other. Each one was saved separately as a file. To do this,
right-click one of the plots, select Save, and specify a file name. This is done for each
of the two plots and they are saved with separate file names. Then load MS Word or a
similar word processing program. This entire book has been composed with MS Word.
In Word, put your cursor where you want the plots to appear and click. Select Insert
and then Table. Select the two boxes on the upper left of the dialog matrix. This gives
a one-row, two-column table. Two empty boxes will appear on your Word page. Click
one of them. Then click Insert again and select one of the two plots you saved. After it
pops up in the frame box, adjust its size with the frame that appears around it, usually by
dragging one of the corners. Then do the same to put the second plot in the second box.
Finally, if you want to remove the frame lines, click the icon at the upper left of the table
and select whatever you want to do with the frame lines.
Parameters Nstart and H have been changed to produce the various images above.
Lines N1 and N2 in the listing solve the quadratic Equation 15-3 for N1 and N2. To try a
different set of parameters, change their value in the program.

Listing 15-2. Logistic Growth - Constant Rate Harvesting

R e aE e LR P e Listing CHR
import numpy as np

import matplotlib.pyplot as plt

import math

plt.axis([0,600,0,400])

plt.axis('on")
plt.grid(True)
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R=2.

K=600.
H=200.
Nstart=500.

for N in np.arange(0,600,1):
F=R*N*(1-N/K)
plt.scatter(N,f,s=1,color="g")

plt.text(103,223,"'1",fontweight="bold")
plt.text(475,223,"'2",fontweight="bold")

oo mm e harvesting line
plt.plot([0,600],[H,H],color="1")

a=1

b=-K

c=K*H/R

Ni=(-b-(b*b-4*a*c)**.5)/(2*a) #o-mm - see Equation (15-3)
N2=(-b+(b*b-4*a*c)**.5)/(2*a)

Ni=math.trunc(N1) #----- trunc() is part of the math library that was
imported above.

N2=math.trunc(N2) #----- trunc() removes the decimal places.

plt.scatter(N1,H,s=40,color="k")
plt.scatter(N2,H,s=40,color="k")

et it labels
plt.title('CHR")

plt.ylabel('f (N)")

plt.xlabel('N")

 CEE P Print parameters on the plot

plt.text(200,170,"'H=")

plt.text(227,170,str(H)) #----the str() function converts
#----the numeric H to a string enabling it to
be plotted on the plot.
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plt.text(200,145,'K=")
plt.text(227,145,str(K))

plt.text(200,120,'R=")
plt.text(227,120,str(R))

plt.text(200,95, 'Nstart=")
plt.text(275,95,str(Nstart))

plt.text(200,70,"'N1=")
plt.text(238,70,str(N1))

plt.text(200,45, 'N2=")
plt.text(238,45,str(N2))

plt.show()

e LR N vs t (time)
plt.axis([0,6,0,1000])

plt.axis('on")
plt.grid(True)

dt=.01
tmax=6.

f=R*Nstart*(1-Nstart/K)

N=Nstart+f*dt

for t in np.arange(0,tmax,dt):
F=R*N*(1-N/K) -H
N=N+f*dt
plt.scatter(t,N,s=3,color="r")

e labels
plt.title('CHR")

plt.ylabel('population N")

plt.xlabel('time t')

plt.show()
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Summary

This chapter is about the development of programs that simulate various principles and
techniques for the management of resources that are subject to harvesting. Examples
are fisheries and wildlife. All programs assume logistic growth of the population. Two
Python programs were developed. Program LG plots the change in size of a population
that follows a logistic growth process. There is no harvesting in this model. Growth is
assumed to proceed in a continuous fashion rather than in discrete steps. Such a process
is representative of populations where generations overlap as opposed to those where
reproduction takes place only at distinct time intervals. Program CHR plots the change
in size of a population that follows a logistic growth process but is subject to a constant
rate of harvesting. It shows how in this model there are two equilibrium points: one is
unstable and the other is stable. Small perturbations about the unstable one can drive
the population to extinction or to the stable point while perturbation about the stable
point drive the population back to that point. These are important conditions that must
be understood when setting harvesting policies.
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CHAPTER 16

Ecological Diversity
and Butterflies

What is ecological diversity? There are two components to ecological diversity. The first
is species richness, which is simply the number of different species that are present in

a community or population. In a population of butterflies, for example, these species
might be Monarchs, Black Swallowtails, or Painted Ladies. Each is considered to be a
separate species. The more species that are present in a particular environment, the
richer the diversity of species within that environment. The second component of
ecological diversity is relative abundance, which refers to the number of individuals
that comprise each of the species present. Ten Monarch butterflies mean the species
Monarch butterfly has an abundance of ten. Richness and abundance are terms
frequently encountered in the study of ecological diversity.

Many studies of ecological diversity indices are concerned with only the species
richness (i.e., the number of different species present in the population). A healthy
environment could be expected to support a rich community, one where a wide variety
of species are present. An environment that is harsh, on the other hand, whether due
to extreme conditions such as extremely low or high temperatures, lack of moisture, or
pollution, may be able to support only a few hardy species.

Butterflies are an important component of our ecology. They can be an important
indicator of our ecosystem’s health, changes within an ecosystem that may be due
perhaps to local development, changes in atmospheric conditions, or climate change.
Butterflies are also pollinating insects responsible, along with honeybees, for producing
a third of the world’s crops. They are also relatively abundant in the right places, easy
to observe and identify, and are usually well-described in readily available field guides.
Butterfly stalking makes a great hobby (at least Vladimir Nabakov, a noted lepidopterist,
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thought so). And if you have never seen a chrysalis, a fat, ugly, green, snail-like creature,
morph into a beautiful Monarch butterfly right before your eyes, you are in for a treat. It's
almost unbelievable. First, out of the slime pops a fully-formed wing, then....

In this chapter, you develop a program called RANK-ABUNDANCE that displays the
results of a sampling in terms of the richness and abundance found. These quantities are
representative of the environment’s diversity. The term diversity, as it relates to ecology,
refers to (1) the number of different species in a community, called the richness, and (2)
the relative abundance of each species, or the way in which the population of individuals
is distributed among the species. In some communities, a few dominant species may
contain most of the individuals while in others a more even or equitable distribution
may be the case.

As an example, consider a freshwater pond. Assume a period of sampling the fish
in the pond produces 50 smallmouth bass and 5 trout. Even though they are all fish,
the bass and trout represent different species. We would say the population of fish in
that pond is not very rich since only two species, bass and trout, were found. We would
also say the relative abundance of the species is not very diverse since the number of
bass far outweighs the number of trout. A richer and more diverse population would
be 50 bass, 40 trout, 40 sunfish, 45 perch, and 20 pickerel. In this example, we would
have five species with a more equitable distribution of the number of fish between the
species groups.

The rank of a species does not necessarily mean its number. It could be its biomass,
the area of ground covered, the number of shellfish per acre, oak trees per acre,
and such.

The RANK-ABUNDANCE program plots the number of species and their abundance
in descending rank order based on their sample size. The sample size is a loosely defined
variable that refers to sampling effort such as the number of trees sampled, acres of land,
the length of time a trap is left open, the number of Black Swallowtail butterflies found,
and so on. In the pond example above, we might have spent one day dragging the pond
with a net to come up with the number of fish cited. If we had spent two days, we would
presumably have netted more fish and the distribution of the species among the total
pond population would likely have changed.
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Rank-Abundance
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Figure 16-1. Typical rank abundance chart

Figure 16-1 might result from a morning field trip to a local meadow to find
butterflies of different species and to count the number of each species found. On the
horizontal axis, the numbers refer to the species in descending rank order. That is,
number 1, the most abundant species, might represent Monarchs. It has rank 1 since
more Monarchs were found than any other species. Looking at the first green dot on the
left and the vertical axis on the right, 9 Monarchs were found. Each green dot represents,
in descending order, the other species found. As can be seen from the horizontal axis,

a total of 10 different species of butterflies were found. The total number of butterflies
found on this trip was 52. The blue data points represent the normalized abundance;
all abundance values are divided by the maximum, in this case by 9, the number of
Monarchs. The program finds the most abundant species, automatically normalizes the
other data, and plots the chart.

What can we infer from this chart? Without doing any statistical analysis, we can
see there is moderately good richness; 10 species were found during a morning walk.

If only 3 were found, the richness would be questionable. The abundance is not bad
either; the total abundance of 52 is reasonably well-proportioned among the 10 species.
In general, we could say that if the normalized abundance curve (blue) dropped off
steeply, the abundance would not be equitably distributed among the species since most
of the total abundance of 52 would be taken up by only a few species. If the curve was
nearly horizontal, that would approach near-perfect distribution of abundance since
there would be nearly an equal number of each species, similarly for the un-normalized
green data.
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There are various indices in use that serve as measures of ecological diversity,
such as Margalef’s Index and Menhinick’s Index. While they will give a number, more
information can perhaps be gleaned at a glance from a simple Rank-Abundance chart
as above.

There are other charting programs in use. A popular one is Whittaker’s Rank-
Abundance chart. This is similar to our Rank-Abundance chart except it does not plot the
raw abundance data and its plot of normalized data is logarithmic.

Program RANK-ABUNDANCE is shown as Listing 16-1. The plt.axis([ .5,10.5,-
.1,1.1 ]) defines the range of the horizontal and left vertical axes. The horizontal x
axis, which is the Species Rank axis, defines the number of species being considered; it
is set 10 here. Suppose you want to visit your meadow more than once, say for 10 days in
arow. You will likely discover more species than the 10 found the first day so you might
want to double the number of ranks to 20. The abundance of each species will also likely
increase but that won't affect the normalized abundance since the maximum will always
be one. But it will likely affect the vertical green scale on the right, which shows the
abundance of each species.

The lists hold the raw input data and the sorted and normalized data. If you add
more data, you will have to increase the size of these lists. R=[ ] holds the species ranks
(horizontal axis); A=[ ] holds the abundance data (right green vertical); SA=[ ] is the
sorted species abundance; and NSA=[ ] is the normalized sorted abundance data (left
blue vertical). These will be the A[ ] data sorted into reverse (high to low) rank order
with the statement SA=sorted (A, reverse=True) then normalized by finding the
maximum in the list with the operator maxa=max(A) and dividing all elements
in SA by maxa to get NSA[ ].

These lists are set to each hold 10 values. For larger samples, they will have to be
increased. Rather than typing lots of zeros to define the list sizes, it is easier to use
the structure A[ 0] *20, for example, which establishes the size of A to 20 and fills it

with zeros.

Listing 16-1. Rank Abundance

e LR e Rank-Abundance
import numpy as np

import matplotlib.pyplot as plt

import math
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plt.axis([.5,10.5,-.1,1.1])

plt.axis('on")

plt.grid(True)

plt.xticks(np.arange(1,11,1))
plt.xlabel('Species Rank")
plt.ylabel('Normalized Abundance',color="b")

e R E LR PR lists
R=[1,2,3,4,5,6,7,8,9,10] #----------onou--- Species Rank
A=[5,8,1,5,5,7,3,9,8,1] #H---------cmmmmmmeeee Species Abundance
SA=[0,0,0,0,0,0,0,0,0,0] #------------------ sorted species abundance
NSA=[o,0,0,0,0,0,0,0,0,0] #------- normalized sorted species abundance
e sort Abundance descending order
SA=sorted(A,reverse=True) #--------------c---——-o--—- reverse order
maxa=max(A) #-----------ccmm oo find maximum Abundance
for i in range(0,10,1):

NSA[i]=SA[i]/maxa #-------------------- normalize sorted abundance
for i in range(0,10,1): #H-------mmmmmm oo plot

plt.scatter(R[i],NSA[i],color="b")
plt.plot(R,NSA,color="b",linestyle=":")

oo plot abundance on the right vertical axis
plt.twinx()
plt.ylabel('Abundance',color="g")

for i in range(0,10,1):
plt.scatter(R[i],SA[i],color="g")
plt.plot(R,SA,color="g")

e L EE L L PP LT total abundance
TA=sum(A)

TA=str(TA)

plt.text(2,2, "total abundance = ',color="g", fontweight="bold")
plt.text(5.1,2,TA,color="g",fontweight="bold")
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plt.title('Rank-Abundance")
plt.xlabel('Species Rank")

plt.show()

Summary

With this brief excursion into the field of ecological diversity, you have learned about
the importance of rank and abundance. You have seen how to construct a plot with two
vertical axes; how to get the sum of the elements in a list using sum(A); how to convert
anumeric variable such as TA to a string using TA=str (TA) so that it can be plotted;

and how to sort a string such as A into ascending rank order using SA=sorted(A) or

into descending rank order using SA=sorted(A, reverse=True). You have also learned
something about butterflies and their importance to our environment both as indicators
of our environment’s health and for their role, along with bees, in pollination. Like
Vladimir Nabakov, you might decide to try butterfly collecting. We don’t pin them to
boards anymore, we capture their image with our phones.
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Where to Get Python

There are several places on the Internet where you can download various versions of
Python. I use Anaconda with Spyder? and Python 3.5. This is available for download from
Continuum Analytics at https://docs.continuum.io/anaconda/install.

It’s free and easy; just follow the instructions. While I use Python 3.5, I recommend
using the latest version.

An icon should appear on your desktop. If it doesn’t, look in your list of installed
programs and drag it to the desktop. Double-click it to get the environment to run. You
will be entering Python script in the left pane. After entering code for a program, click
the Run button at the top or press the F5 key on your keyboard. You may be told to open
anew console. Click the Consoles button at the top then select the “Open an IPython
console” option to do so. Try to run it again. Results should appear in the pane at the
lower right.

There is a pane at the upper right that shows the state of variables. I never use it; in
fact, I close it to allow more room for output. If I want to see what a particular variable is
doing, I usually put a print statement in the program. The variable’s history will appear
in the output pane.

If you find your program is doing unexpected things, it can sometimes help to open a
new console and rerun the program.

465
© Bernard Korites 2023

B. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-9660-8


https://docs.continuum.io/anaconda/install
https://doi.org/10.1007/978-1-4842-9660-8

APPENDIX B

Planck’s Radiation Law
and the Stefan-Boltzmann
Equation

In Chapter 10, you were introduced to Max Planck’s famous equation of black body

radiation:
2
so=2""_ & pisimtewm® (B-1)
e T 1

The power emitted by a surface over a bandwidth 1, > 4, is

xz
P, = [S()ar J/s/m* =W /m* (B-2)
M
With Equation B-1, this becomes

A e

Ay
B, =2rc’h| dn J/s/m*=w/m’ (B-3)

M eMT _1

In Chapter 10, you numerically integrated Equation B-3. Here you will mathemati-
cally integrate it and show that it can be used to derive the Stefan-Boltzmann Law of

black-body radiation:

57.4
_e2nky

= B-4
P 15h%c? (B-4)

467

© Bernard Korites 2024
B. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-9660-8


https://doi.org/10.1007/978-1-4842-9660-8
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where T is the surface’s absolute temperature, p is power radiated per unit area, k; is
Boltzmann'’s Constant, h is Planck’s Constant, c is the speed of light, and ¢ is the surface’s
emissivity. The power radiated from a surface of area A is then

P=pA=¢AcT’ (B-5)

where

c :%:5.669&108 W/m*/K* (B-6)
o is known as the Stefan-Boltzmann Constant. Equation B-4 relates power intensity
radiated by a surface to the fourth power of its temperature, T. This equation is
commonly used in science and engineering.

To carry out the integration that results in Equation B-4, you start with
Planck’s radiation equation:

2rhe* €
S(A)= "R (B-7)
e?»KBT -1

You want to integrate this from 1=0 to 1= to get the total power per unit area

p radiated by all wavelengths. Letting C,=¢2zhc® and C, = kBTT, you get

T AdA
p=C |— (B-8)
0 ea 1
If you make the following substitutions,
x=C,A, dx=C,dA (B-9)
After a little fussing around, you have
dx (B-10)

p:CIC;J‘—l
" x° (ex —1]
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Using the well-known :) relation

o0 d 4
| T =z (B-11)
5[ 1 ) 15
x| e*—1
and substituting C, and C, into Equation B-10, you get
e2n’ky
= B-12
P = lsnc? (B-12)

which is the same as Equation B-4 above.
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Graphics and Math
Functions Commonly Used
in Graphics Programming
with Examples

import math plt.scatter(x,y,attributes)

import numpy as np s=size

import matplotlib.pyplot as plt color="color")

from numpy import sin, cos, alpha=0-1 (intensity)

radians.... plt.scatter(2,7,s=10,color="k", alpha=.7)

from math import log, logl0, e, 1t plot([x1,x2],[y1,y2],attributes)

exp, pow, sqrt linewidth = width 1,2,3,4,5,6,7,8....
log(n)= log of n to the base e  Ccolor’ ="k, 'r’, 'g’, " b'.......

linestyle =:, -., -
log10(n)=log of n to the base 10 plt.plot([2,3],[9,6],linewidth=5,

e=Euler's number=2.718 "LINE STYLE" = ":',color="k")

exp(n)=e to the nth power=e"
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WITH EXAMPLES

pow(a,b)=a to the power b:
pow(a,b)=a®

sqrt(n)=square root of n = n**

abs(y) absolute value of y.
It is a built-in Python

function and does not
need to be imported

plt.axis([x1,x2,y1,y2])
plt.axis([2,3,0,9])

horizontal axis goes from
2 to 3
vertical axis goes from 0
to 9

plt.axis ('on")

plt.axis('off")

plt.grid(True,attributes) T must

be upper case
plt.grid(True,color="b")

plt.grid(False) F mustbe upper case

plt.arrow(x,y,dx,dy,attributes)
linewidth=width
head_length=Iength
head width=width
color="color'
plt.arrow(4,5,7,7,linewidth=4,head
length=4, head width=2,color="r")

color="k" black

color="b" blue

color="r' red

color="c"' cyan

color="g"' green

color="m" magenta

color="y"' yellow

color="grey' or 'gray' gray
color="lightblue' 1Ilightblue
color="midnightblue' midnight blue

SA=sorted(A) sorts listA low to high. Gives new list SA.
SA=sorted(A,reverse=True) sorts list A high to low gives
a new list SA.
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WITH EXAMPLES
plt.title('title") ta=sum(A) sums elements in list A
plt.title('title',color="color"') sa=str(a) converts numeric a to a string for plotting
plt.title('this is my chart a=57
title',color="y") sa=str(a)

. plt.text(3,7,sa,color="k",fontweight="bold")
plt.xlabel('x axis label')

plt.xlabel('this is my x axis X=[x1,x2,x3]
label',color="g") Y=[y1,y2,y3]
plt.ylabel('y axis label') plt.plot(x,y,attributes)
Connects x1,y1 to x2,y2 to x3,y3 with lines.
Both lists must have the same number of elements

plt.xticks(xmin,xmax,dx) If numpy has been imported as
plt.xticks(0,70,10,color="1") " import numpy as np" then
plt.yticks(ymin,ymax,dy) x=np.radians(y)
. Converts y in degrees to x in
plt.xticks(np. .
] radians
arange(xmin,xmax, dx)
plt.yticks(np. If radians has been imported as
arange(ymin,ymax,dy) "from numpy import radians" then

x=radians(Y)

x=np.inner(A,B)
A and B are lists (vectors) of length n
X=the scalar or dot product or the two
lists
=A[0]*B[O]+A[1]*B[1]+A[2]*B[2]+......
Aln]*B[n]
It is a Numpy function
P1t.show() g=[0]*10 opens list g having 10 elements
each equal to 0
g=[0,0,0,0,0,0,0,0,0,0] does the same

x=len(g) x=the length of list g
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APPENDIX D

Setting up the Plotting
Axes with plt.axis()

Problems can arise if the definitions of directions of the plotting axes specified by the
plt.axis() function are not compatible with the definitions of directions in your
analyses and Python program. Recall that the x,y,z directions of the axes must follow
the right-hand rule. Rotate x into y through the smaller angle between the two and the
z direction will be in the direction that would be taken by a right-handed screw turned
clockwise. That is normally what you would be careful to do in your mathematical
analyses and in your plotting commands. However, you must take care to see that the
directions of the axes on Python’s plotting screen follow the same directions as in your
analysis and program. If they do not, problems can arise such as figures appearing
upside-down, or right to left when they should be left to right, and rotations turning
the wrong way. Regarding rotations, this is a particularly common problem with
rotations about the z-axis direction.

Screen axes directions are normally specified through the plt.axis([x1,x2,y1,y2])
function. For example, with plt.axis([-75,+75,-50,+50]), this will put the 0,0
coordinate in the center of the plotting area; the x-axis will go from left to right; the y-axis
will go up. If you had set up the graphics commands in your Python program assuming
the y-axis points down (following the right-hand rule this makes the z-axes go into the
screen), your image will appear upside down. This is because you had set up the screen
y-axis to point up in the plt.axis() function, which is opposite to what you had
assumed in your program.

With rotations, let’s assume you had, as above, set up the plt.axis() function to
have the screen x-axis point from left to right while the y-axis points up (the z-axis points
out of the screen) but in your analysis and in your Python program your y-axis points
down (z-axis points into the screen). If you now specify in your program a rotation in the
+Rz direction (i.e., a rotation about the z-axis which follows the right-hand rule) with
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APPENDIXD  SETTING UP THE PLOTTING AXES WITH PLT.AXIS()

the z-axis pointing out of the screen, the rotation would appear to go counter-clockwise
while with the z-axis pointing into the screen, it will go clockwise. There’s nothing wrong
with rotations going clockwise or counterclockwise, as long as that is what you intend.

Normally, x would go from left to right, y would go down, and z would go into the
screen. To get a clockwise Rz rotation with a positive number for Rz specified, use the
following transformation in two dimensions:

Xp = xp*cos(Rz) yp*[-sin(Rz)]
Yp = xp*sin(Rz) yp*cos(Rz)

where xp and yp are the coordinates of the unrotated point p, which is located at the
outer end of the line; Xp and Yp are the rotated coordinates. Figures D-1 and D-2 show
rotating the coordinates of point p at the end of the line.

40
2 + »P
/
!/
01 X fr—
-20 pit.axis([-75.75.-50,50])
Z axis pointing out of screen
—40 - Rz=+60 degrees

60 40 20 0 20 4 &
Figure D-1. The black line starts out horizontal. After applying a positive rotation
Rz, the line (dotted) rotates in the counter-clockwise direction. This is because, as

defined in the plt.axis() function, the Y axis points up; this causes Z to point out of
the screen making a positive Rz appear to turn counter-clockwise.
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APPENDIXD  SETTING UP THE PLOTTING AXES WITH PLT.AXIS()

i1 plt.axis([-75.75,450.-50])
Z axis pointing into the screen
-20 Rz=+60 degrees
X
0 4
+Y ;
20 1 ‘ P
40 4
60 -40 -20 0 20 40 €0

Figure D-2. Here the +Y axis points down. Z, therefore, points into the screen;
a +Rz rotation turns the line clockwise in accordance with the right-hand-rule.

So you see that the direction of rotation seen on the screen is dependent not only
on the mathematical analysis and on the programming but also on the directions of
the coordinate axes as specified in the plt.axis() function. They must agree with one
another.

Both Figures D-1 and D-2 were produced by Listing D-1.

Listing D-1. Code for Figures D1 and D2

R LR PR Listing D-1
import numpy as np

import matplotlib.pyplot as plt

from math import sin, cos, cos, radians

oo Figure (D-1)
plt.axis([-75,75,-50,50]) #-----------mmmmmmmmmmmm- +Y goes up
plt.axis('on")

plt.grid(True)

xc=0
yc=0

Xp=20
yp=0
Rz=60
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Rz=radians(Rz)

plt.arrow(xc,yc,20,0,color="k")

xg=cos(Rz)*xp -sin(Rz)*yp

yg=sin(Rz)*xp +cos(Rz)*yp

Xg=Xg+XC

yg=yg+yc
plt.arrow(xc,yc,xg,yg,color="k"',linestyle=":")
plt.text(-40,-20, "plt.axis([-75,75,-50,50])")

plt.arrow(-60,0,20,0,head length=4,head width=2,color="r")
plt.arrow(-60,0,0,20,head length=4,head width=2,color="r")
plt.text(-57,15,"'+Y",color="1")
plt.text(-45,-5,'X",color="r")

plt.text(-40,-30,'Z axis pointing out of screen")
plt.text(-40,-40, 'Rz=+60 degrees')

plt.show()

plt.axis([-75,75,50,-50]) #--------mmmmmmmmmmmmmeeeooo +Y goes down
plt.axis('on")
plt.grid(True)

plt.arrow(xc,yc,20,0,color="k")

xg=cos(Rz)*xp -sin(Rz)*yp

yg=sin(Rz)*xp +cos(Rz)*yp

Xg=Xg+XC

yg=ygtyc
plt.arrow(xc,yc,xg,yg,color="k",linestyle=":")
plt.text(-40,-40, 'plt.axis([-75,75,+50,-50])")

plt.arrow(-60,0,0,20,head length=4,head width=2,color="r")
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plt.text(-40,-30,'Z axis pointing into the screen')
plt.text(-40,-20, 'Rz=+60 degrees")

plt.text(-57,17,"+Y",color="r")
plt.text(-45,-3,'X",color="r")

plt.show()

As explained, the appearance of a rotation about the z-axis appears different in the
two cases even though everything is the same in the program except the plt.axis()
function. This illustrates the importance of being attentive to the directions specified in
the plt.axis() function.
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Index

A

Aerosols, 395, 396, 400-404, 410, 411
Albedo, 393, 397, 398, 400-402, 410, 420,
421, 424

B

Butterflies
components, 459
See also Ecological diversity/butterflies

C

Climate cooling
aerosols, 396, 400, 401
albedo, 397, 398
carbonaceous fuels, 396
carbonaceous materials, 396
Earth, 395
evapotranspiration, 405
features, 397
global climate model
albedos, 421
atmospheric levels, 420
components, 422
constant, 422
equation, 419, 423
feedback term, 420
IR radiation/albedos, 420
Laplace transforms, 423
program code, 424, 425
representation, 420-425

© Bernard Korites 2023

solution, 424
global energy balance, 410-413
global warming, 395, 404, 405
greenhouse gases (GHGs), 397, 404
heat dome, 405
interesting/surprising observatories,

405, 406
ocean water levels, 414-419
organic molecules, 396
piston corer, 406-409
rising oceans, 416-421
Skogafoss, 406
sunspots, 398-400
temperatures vs. CO, correlation, 404
thermal equilibrium, 411
thermal infrared (IR) radiation, 411
thermocline, 414
transpiration, 405
volcanoes, 401-403
volumetric thermal expansion, 415
Constant rate harvesting (CHR)

definition, 450
equilibrium point, 450-453
graphical solution, 450
instability/stability, 451
intrinsic growth rate, 451
migratory fish, 453
Nstart parameters, 454
parameters, 449
program code, 454-456
quadratic equation, 450
Word page, 454
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INDEX

D

Data plotting (2D)
exponential function, 264
fitting function, 278-283
hands-on approach, 263
legend() function, 265
linear regression, 274-278
mathematical function, 263
plotting operation, 264, 265
pressure values, 267-269
program code, 266-268
splines, 283-291
temperature curve, 269-271
test results, 272-275
Data plotting (3D)
grid lines, 293
plotdata() function, 294
plotspline() function, 293, 295
program prints data/labels, 295-303
rotation functions, 293
rotation model, 305
shading surface
array data, 314
differences, 313
generic oblique patch, 316
numbering scheme, 314, 315
patches, 316
patch model, 317
program code, 321-328
range() function, 318
shade() function, 317, 318
spline model, 303, 304
surfaces, 305-313

E,F
Encapsulated PostScript (.eps), 10
Earth-Sun model, 373-378

482

Ecological diversity/butterflies

components, 459

program code, 462-464

rank abundance chart, 461, 462

RANK-ABUNDANCE program,
460, 462

raw input data, 462

sampling effort, 460

statistical analysis, 461

Electrons/photons/hydrogen

atomic/mass numbers, 355

atomic research, 356-358

break-free energy, 368, 369

chemical compounds, 357

definition, 355

electrodynamics, 358

electromagnetic radiation, 359

energy level, 361, 362, 365-368, 370

human investigation, 356

nanometers, 370

orbital angular momentum/magnetic
quantum, 365

orbitals, 362

piano string, 359

Planck’s equation, 358

planetary model, 358

plum pudding model, 357, 358

principal quantum, 365

probability cloud, 359

program code, 363, 364, 369, 370

px/py orbitals, 363

quantum state, 359

quintessence, 356

scatter() function, 361

standard model, 356, 358

stationary/energy states, 367

Sun, 382

thermodynamics, 357



G

Graphics
Saturn, 329
three-dimensional
objects, 107
two-dimensional images, 47

H

Heliospheric
Observatory (SOHO), 399
Hidden line removal
box
HLBOX program, 214-218
len(x) function, 214
vectors, 209, 211-214
dots/short line segments, 209
planes, 224-231
pyramid, 219-225
ray tracing techniques, 209
sphere
concatenation, 233
definition, 232
HLSPHERE
program, 234-237
latitudes/longitudes, 232
plotting commands, 233
plt.plot() function, 233
rotation, 237-239
Hydrogen (H)
electrons (see Electrons/photons/
hydrogen)
ground state, 360
program code, 360
spherical electron
states, 361
Sun, 378

INDEX

Intersection, see Line intersection
Intra-object hidden line removal,
see Hidden line removal
Isometric projections
perspective views, 112
three-dimensional objects, 111

J

Joint Photographic Experts Group (.jpg), 10

K

Krakatoa eruption, 403

L

Lichtquant (light quantum), 381
Linear regression
data points, 276
definition, 274
program code, 276-278
regression routine, 275
RMS error, 274
test results, 275
Line intersection
circle, 187
circular sector
in-bounds/out-of-bounds test,
189, 190
inside/outside sector, 187
LCSTEST program, 190-193
local coordinates, 188
unit vectors, 188
rectangular plane
functions/operations, 165
geometry, 159
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INDEX

Line intersection (cont.) Pinhole camera vs. computer
LRP program, 167-173 projection geometry, 150
out-of-bounds geometry, 164 primitive camera, 149
parameters, 166 program code, 154-158
rotation functions, 166 projection geometry, 151
unit vectors, 160, 161, 163 relations, 152
vector geometry, 160 z-direction distance, 152, 153

sphere, 193-202 See also Isometric projections
triangular planes Photons
geometry, 172 electrons (see Electrons/photons/
Heron'’s formula, 173 hydrogen)
in-of-bounds calculation, 175 Planck’s black body radiation, 381-383
inside/outside test, 179, 180 Sun, 379-381
LTP program, 181-186 Planck’s black body radiation, 38,
non-right angle triangle, 181 382-384, 393
out-of-bounds calculation, 173, 174 Plane intersections
THT1 program, 175-179 edges, 225
Logistic growth (LG) process function/arguments, 225
CHR (see Constant rate global coordinates, 225
harvesting (CHR)) HLPLANES program, 229-232
harvesting model, 447-449 line (see Line intersection)
program code, 448, 449 overlapping, 224-227
rate function, 448 sphere, 202-207

vector analysis, 226
Plotting area

Ma N, o axes labels, 14-16
Maxwell’s equations, 381 background color, 25
Monarch butterflies, 459, 460 colors

features, 17
intensity, 21, 22

P, Q mixing, 18-21

Portable Network Graphics (.png), 10 program code, 18

Perspective views, 112, 149 scatter(), plot(), and arrow()
camera obscura, 150 functions, 18
dramatic effect, 158 commands/functions, 8, 9, 33
geometry, 149 arange() function, 44, 45
local/global coordinates, 151, 153 arrows, 36, 37
photographers, 150 line styles, 35
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lists/tuples/arrays, 39-44
points/dot’s color, 33, 34
range() function, 45
scatter() function, 34
text, 37-39
coordinate axes, 31-33
coordinate system, 5, 6
frame/numerical values, 10
functions/commands, 1
graphics library (glib), 8
grid layout
color options, 11
CUSTOM_GRID, 13, 14
plt.grid(True)/plt.grid(False), 10
save option, 10
scatter() function, 14
linspace() command, 8
overplotting, 22-25
plothouse() function, 4
programming style, 2-5
scatter() function, 4
shape distortions
DISTORTED_CIRCLE
program, 28, 29
plt.axis() function, 30, 31
scale factor, 29, 30
source code, 6, 7
Spyder, 6
square, 26-28
TICK_MARKS program, 11, 12
title statement, 16, 17
user-defined tick marks, 12
Plotting data
2D (see Data plotting (2D))
3D (see Data plotting (3D))
Population dynamics, 427
equilibrium fecundity, 440
generations, 428

INDEX

insects
geometric/intrinsic growth rate, 434
growth model, 434
oscillations, 438, 439
program code, 435, 436
responses, 437
sequential growth model, 434-439
plant growth, 429-434
sequential growth process, 427-429
whales, 440-444
Protons
atomic particles, 355
gluons and quarks, 355
neutrons, 355
wave-matter, 356
Python programming
commands/functions, 1
logistic growth process, 457
Saturn, 2, 329
Sun, 373

R

Resource management, see Logistic
growth (LG) process

Rotation model (2D)
circles, 96, 97, 102
clockwise direction, 85
column vectors, 84, 86
coordinate systems, 81
corner coordinates, 95, 96
cylinders and spheres, 99
2DROT1 program, 87-90
2DROTCIRCLE] program, 99-102
2DROTCIRCLE2 program, 103-106
2DROTRECTANGLE program, 91-95
equations, 83
local system, 82
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INDEX

Rotation model (2D) (cont.) SHADEBOX program, 248-252
location definition, 82 shade() function, 245-248
original coordinates, 86 computer-drawn images, 241
points/lines, 81 dots/lines, 241
rotz function, 98 features, 242
transformation matrix, 86 intensity function, 241
unit vectors, 83 sphere

Rutherford’s model, 358 components, 255

constants, 254
intensity function, 254
linear function, 253

S

Saturn, 1 non-linear function, 252, 256
components, 335 parameters, 253
enceladus, 342-354 plotting longitudes/latitudes, 254
equations, 335 SHADESPHERE program, 256-260
horizontal rings, 333 unit vector, 255
line segments, 335 Spline segments
magnification, 341-343 calculations, 288
magnified telescopic image, 339 coefficients, 287
NASA photographic image, 336 curves, 283
numerical/physical size, 340 definitions, 286
photographic image, 330-332 equations, 287
program code, 336-339 mathematical relation, 284
rings model, 333 numbering scheme, 285
shadow model, 334 program code, 288-291
solar system, 329 shipbuilding/aircraft design, 284
unit vector components, 329 slope equation, 286
Sequential growth process, 427-429 Stefan-Boltzmann Equation, 384, 467-469
Shading program Sun
box rotation diameter, 378, 379
color mixing, 245 Earth’s irradiates, 392, 393
components, 244, 246 Earth-Sun model, 374-378
definition, 245 electromagnetic energy, 381-383
increasing/decreasing plot, 244 gravitational attraction, 379
intensity function, 244 Maxwell’s equations, 381
linear relation, 244 photons, 379-381
monochrome colors, 245 power density
output process, 242, 243 BANDINTEGRAL program, 386-388
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equation, 383

features, 383

input parameters, 385

integration, 389

numerical integration, 384

parameters, 386

PLANCKSSOLARSPECTRUM
program, 389-391

simplified integration scheme, 385

solar luminosity, 389

solar spectrum, 388

Stefan-Boltzmann Equation, 384

total solar output, 389

wavelengths, 384

power spectrum, 380

solar constant, 373, 393

spectrum, 380

thermal equilibrium, 393

ultraviolet (UV), 380

wave packets, 382
Sunspots, 398-400

INDEX

matplotlib
system, 109
matrix concatenation, 136-140
plot (see Plotting data (3D))
projections, 110-112
rotation
numbering scheme, 121
plotbox function, 123
projection, 120
separate rotations, 119-128
sequential rotations, 129-137
transformation functions, 131
x direction, 115-117
y direction, 113-115
shading, 241
Two-dimensional images, 47
circles, 63-67
data (see Data plotting (2D))
discs, 67-71
dots
arange() function, 55
art creation, 52-54
attributes, 47

T, U
Three-dimensional objects, 107
coordinate system, 107-109
foreshortening/perspective, 112
functional programming
structure, 140-147
isometric vs. perspective views, 112
keyboard data entry
bottom-up/top-down
programming, 141
functional programming, 141-144

circular arcs, 54-61
discs, 67-71
geometric model, 55
lines, 47-51
np.scatter() dots, 56
orthogonal coordinate
directions, 47
PARCGEOMETRY program, 57
PARC program, 56
radians() function, 54
scalar components, 48

input() function, 141

KEYBOARDDATAENTRY
program, 144-148

Spyder console, 141

ellipses, 71-78

line segments, 62, 63

rotation (see Rotation model (2D))
translation, 78-80
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VW X, Y Z

Volcanic z direction, 82, 107-109, 112, 113, 117-121,
eruptions, 396, 401-404 123,137, 140, 150-152, 158, 196,

Volcanic Explosivity 207, 209-211, 224, 226, 232, 233,
Index (VEI), 402 239, 242, 246, 293, 475
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