Learn From 20+ Famous Games

Python Game Programming
By Example

Full Code

“Unleash Your skill Potential :
From Novice to Explorations

To Expert Mastery”

Table of Contents

1. GuessMaster: Number Adventure

Importing Libraries :
NumberGuessingGame Class :
Main Script :

Summary .

how to play GuessMaster: Number Adventure

2. Crossword Generator

how to play Crossword Generator

3. Hangman Game

HangmanGUI Class :

Main Function :

Usage :
Additional Notes :

how to play hangman game

4. Tic Tac Toe Game

How to Play Tic Tac Toe

Game Setup .

Gameplay :

Example Gameplay :
Winning Combinations :

How To Play Maze Solver Game

6. Snake Game
How To Play Snake Game

7. Memory Puzzle Game

How To Play Memory Puzzle Game

8. Quiz Game

How To Play Quiz Game

9. 2048 Game
Pygame Initialization :
Constants and Configuration :
Pygame Screen Initialization :
Grid and Tile Drawing :

Tile Colors and Themes :

Tile Movement and Animation :

Game State Management .
Main Game Loop :

Additional Features :

Running the Game :
How To Play 2048 Game

10. BlackJack Game

Import Statements .
BlackjackGame Class :

Methods .
GUI Elements :
Main Function :
Overall Flow :
How To Play Blackjack Game
11. Soduku Solver Game
How To Play Sudoku Solver Game

12. Connect Four Game

How To Play Connect Four Game

13. Flappy Bird Clone Game

How To Play Flappy Bird Clone

14. Pong Game

How To Play Pong Game

15. Word Search Generator Game

How To Play Word Search Generator
16. Battleship Game

How To Play Battleship Game

17. Space Invader Game

How To Play Space Invader Game

18. Chess Game

How To Play Chess Game

19. Roulette Simulator Game
How To Play Roulette Simulator Game

20. Mancala Game

How To Play Mancala Game

21. Tower Defense game

How To Play Tower Defense Game

22. Sokuban Game

How To Play Sokoban Game

23. Breakout Game

How To Play Breakout Game

24. Sim City Clone Game

How To Play Sim City Clone Game

25. Simon Says Game

How To Play Simon Says Game
26. Ludo Game
How To Play Ludo Game

1. GuessMaster: Number Adventure

§ Number Guessing Game = O] Y

Guess the number between 1 and 100:

Welcome to Level 1! The target number range is now 1 to 10.

Submit Guess ‘

Score: 0

import tkinter as tk
from tkinter import messagebox

import random

class NumberGuessingGame:

def _init_ (self, master):
self.master = master

self. master.title("Number Guessing Game")

self.total levels =5

self.level = 1

self.target_number = self.generate_target_number()

self guesses_left = 10

self.score =0

self.label = tk.Label(
master, text="Guess the number between 1 and 100:")
self.label.pack(pady=10)

self.entry = tk.Entry(master)
self.entry.pack(pady=10)

self level_label = tk.Label(
master, text=f"Level: {self.level}", font=("Helvetica", 16))

self.level label.pack(pady=10)

self.result_label = tk.Label(master, text="")
self.result_label.pack(pady=10)

self submit_button = tk.Button(
master, text="Submit Guess", command=self.check_guess)

self.submit_button.pack(pady=10)

self reset_button = tk.Button(

master, text="Play Again", command=self.reset_game)
self reset_button.pack(pady=10)
self.reset_button.pack_forget()

self.score_label = tk.Label(master, text={"Score: {self.score}")

self.score_label pack(pady=10)

self.start_level_message()

def generate_target_number(self):

return random.randint(1, 10 * self.level)

def start_level_message(self):
level message = {"Welcome to Level {self.level}! The target number range is now 1 to {10 * self.level}."

self.level label.config(text=level _message)

self. master.after(3000, self.clear_level message)

def clear_level message(self):

self.entry.delete(O, tk.END)

self entry.focus_set()

def check_guess(self):

user_input = self.entry.get()

if not user_input:

self.result_label.config(text="Please enter a valid guess.")

return

try:
user_guess = int(user_input)
except ValueError:
self.result_label.config(text="Please enter a valid integer.")

return

if user_guess == self.target_ number:
self - result_label.config(
text={"Congratulations! You guessed the correct number. Score: {self.calculate_score()}")
self.submit_button.config(state=tk.DISABLED)
self.reset_button.pack(pady=10)

if self level < self.total levels:

self. master.after(1000, self.next_level message)
else:
self.show_performance_feedback()
else:
self.guesses_left -= 1

if self.guesses_left == 0:

self.result_label.config(

text={"Sorry, you're out of guesses. The correct number was {self.target_number}.")
self.submit_button.config(state=tk.DISABLED)
self.reset_button.pack(pady=10)
self.show_performance_feedback()
else:
hint = "Too low. Try again!" if user_guess < self.target_number else "Too high. Try again!"
self.result_label.config(
text=f"Incorrect! {hint} Guesses left: {self.guesses_left}")

self.update_score_label()

def calculate_score(self):
score = self.guesses_left * 10 * self.level
self.score += score
self.update_score_label()

return self.score

def update_score_label(self):

self.score_label.config(text={"Score: {self.score}")

def next_level _message(self):
self.level += 1
self.target_ number = self.generate_target_number()
self. guesses_left = 10
self.submit_button.config(state=tk. NORMAL)
self.level_label.config(text=f"Level: {self.level}")

self.start_level message()

def show_performance_feedback(self):
feedback = f"All levels completed! Your total score is {self.score}."

messagebox.showinfo('Game Over", feedback)

def reset_game(self):
self level = 1
self.target_number = self.generate_target_number()
self.guesses_left = 10
self.label.config(text="Guess the number between 1 and 100:")
self.result_label.config(text="")
self.submit_button.config(state=tk. NORMAL)

self.reset_button.pack_forget()

self.score =0

self.update_score_label()

self.level label.config(text={"Level: {self.level}")

self start_level message()

if _name__=="__main
root = tk.Tk()
game = NumberGuessingGame(root)

root.mainloop()

This Python script creates a simple number guessing game using the Tkinter library for the

graphical user interface (GUI). Let's break down the code step by step :
Importing Libraries :

tkinter : This library is used for creating GUI applications .

random : This library is used for generating random numbers .
NumberGuessingGame Class:

This class represents the main functionality of the game .

Constructor (__init__):

Initializes the game parameters such as total_levels, level , target_number ,
guesses_left ,and score .

Sets up the GUI elements including labels, entry fields, buttons, etc .

Calls start_level_message () method to display a welcome message for the first level .

generate_target_number () Method :

Generates a random target number within a specific range based on the current level .

start_level_message () Method :

Displays a welcome message for the current level .

Clears the message after 3 seconds using after () method .

clear_level_message () Method :

Clears the entry field after displaying the level message .

check_guess () Method :
Checks the user's guess against the target number .
Handles cases where the input is invalid, the guess is correct, or the guess is incorrect .

Updates the GUI accordingly .
calculate_score () Method :

Calculates the score based on the remaining guesses and the current level .

Updates the total score and the score label .

update_score_label () Method :

Updates the score label with the current score .

next_level_message () Method :

Prepares for the next level by updating parameters and generating a new target number .

Displays a message for the next level .

show_performance_feedback () Method :

Shows a message box with the performance feedback when all levels are completed .
reset_game () Method :

Resets the game parameters to start a new game .

Clears the GUI elements and sets up for the first level .
Main Script :

Creates a Tkinter TK instance .

Creates an instance of NumberGuessingGame class passing the TK instance .

Starts the Tkinter event loop using mainloop () method.

Summary :

This script creates a GUI - based number guessing game where the player has to guess
a randomly generated number within a specific range. The game consists of multiple
levels, and the player's score is based on the number of guesses left and the current level .
The game interface provides feedback to the player on each guess and displays the final
performance feedback upon completing all levels . Additionally, the player can play again

after completing the game or resetting the game at any point .

how to play GuessMaster: Number Adventure

1. Launching the Game:
Run the Python script provided .

A window will appear with the title " Number Guessing Game " and the initial level

IMessage .
2. Reading the Level Message :

The level message informs you about the target number range for the currentlevel (e. g.,

" Welcome to Level 1 | The target number range is now 1to 10.").

3. Making a Guess :

Tips :

Enter your guess into the entry field .
Click the " Submit Guess " button .

4. Receiving Feedback :
If your guess is correct, you'll receive a congratulatory message and your score for that

round .

If your guess is incorrect, you'll receive a hint (too low or too high), the remaining

guesses, and your score will be updated .

5. Advancing to the Next Level :
If you guess correctly within the allowed guesses, you'll automatically advance to the

next level after a short delay .

The game will update the target number range for the new level .
6. Game Over :

The game ends when you complete all levels or run out of guesses .

If you complete all levels, a message box will appear with your total score .
7. Playing Again :

Clickthe " Play Again " button to reset the game and start from Level 1 .

- Pay attention to the level message for the updated target number range .
- Tryto guess the correct number within the given number of attempts to maximize your score .

- If you run out of guesses, the correct number will be revealed, and you can choose to play again .

2. Crossword Generator

¥ Crossword Puzzle Generator — O -
Grid Size: 10 1qd Generate Puzzle
c r o L1 5 w o r d
e X a | m P I e g
e
t n p
k e u
i r z
n 3 z
1] ¥ t h a n t t |
[o e
c o d e r r
python
crossword
puzzle
Word List: generator
tkinter
code
example

import tkinter as tk
from tkinter import messagebox

import random

class CrosswordGenerator:
def __init_ (self, root):
self.root = root

self.root.title("Crossword Puzzle Generator")

self.grid_size_label = tk.Label(root, text="Grid Size:")
self.grid_size_label.grid(row=0, column=0, padx=10, pady=10)

self.rows_entry = tk.Entry(root)

self.rows_entry.grid(row=0, column=1, padx=10, pady=10)

self.cols_entry = tk.Entry(root)

self.cols_entry.grid(row=0, column=2, padx=10, pady=10)

self.generate_button = tk.Button(

root, text="Generate Puzzle", command=self.generate_puzzle)

self.generate_button.grid(row=0, column=3, padx=10, pady=10)

self.puzzle_frame = tk.Frame(root)

self.puzzle_frame.grid(row=1, column=0, columnspan=4, padx=10, pady=10)

self.word_list_label = tk.Label(root, text="Word List:")
self.word_list_label.grid(

row=2, column=0, padx=10, pady=10, columnspan=2)

self.word_list_var = tk.StringVar()
self.word_list_display = tk.Label(

root, textvariable=self.word_list_var, wraplength=200, justify="left")
self.word_list_display.grid(

row=2, column=2, padx=10, pady=10, columnspan=2)

def generate_puzzle(self):

try:.
rows = int(self.rows_entry.get())

cols = int(self.cols_entry.get())

if rows <=0 or cols <= 0:
messagebox.showerror(
"Error", "Grid size should be positive integers.")

return

puzzle, word_list = self.create_puzzle(rows, cols)
self.display_puzzle(puzzle)
self.display_word_list(word_list)

except ValueError:
messagebox.showerror(

"Error", "Please enter valid integers for grid size.")

def create_puzzle(self, rows, cols):

puzzle = [['' for _in range(cols)] for _in range(rows)]

words = ["python", "crossword", "puzzle", "generator", "tkinter", "code", "example"]

word_list = "\n".join(words)

for word in words:
direction = random.choice(|'across', 'down'])

placed = False

for _inrange(10): # T
if direction == 'across':
row = random.randint(0, rows - 1)
col = random.randint(0, cols - len(word))
if all(puzzle[row][col + 1] =="'for i in range(len(word))):
for iin range(len(word)):
puzzle[row][col + i] = word]i]
placed = True
break
else:
row = random.randint(0, rows - len(word))
col = random.randint(0, cols - 1)
if all(puzzle[row + i][col| =="''for i in range(len(word))):
foriin range(len(word)):
puzzle[row + i][col] = word|i]
placed = True

break

if not placed:

messagebox.showwarning("Warning", {"Unable to place the word '{word}' in the puzzle.")

return puzzle, word_list

def display_puzzle(self, puzzle):

for widget in self.puzzle_frame.winfo_children():
widget.destroy()

for i, row in enumerate(puzzle):
for j, cell in enumerate(row):
label = tk.Label(self.puzzle_frame, text=cell,
width=4, height=2, relief="solid", borderwidth=1)
label.grid(row=i, column=j)

def display_word_list(self, word_list):

self. word_list_wvar.set(word_list)

it name ==" man '

root = tk.Tk()

crossword_generator = CrosswordGenerator(root)

root.mainloop()

This Python script creates a simple Crossword Puzzle Generator using the Tkinter library .
The program has a graphical user interface (GUI) with input fields to specify the grid
size and a button to generate a crossword puzzle . Let's break down the components of the
script :

1. Imports:

tkinter : The standard GUI toolkit for Python .

mes sagebox : A submodule of Tkinter used for displaying various types of message

boxes .
random : Used for generating random numbers and choices .
2. Class : CrosswordGenerator

Initialization (__init__):

m Initializes the Tkinter window (root) and sets its title .

m Creates various GUI elements such as labels, entry fields, buttons, and a frame

to display the crossword puzzle .
Method : generate_puzzle:
m Retrieves the grid size (number of rows and columns) entered by the user .
m Validates the input to ensure positive integers are provided .

m (Calls the create_puzzle method to generate a crossword puzzle and

displays it along with the word list .
Method : create_puzzle:
® Takes the number of rows and columns as input and initializes an empty grid .
®m Defines a list of words to be used in the crossword .

m Randomly selects a direction ('across* or 'dnwn‘) for each word and
attempts to place it on the grid . The placement is tried multiple times (up

to 10) if unsuccessful .
®m If a word cannot be placed, a warning message is displayed .
m Returns the generated puzzle grid and the formatted word list .

Method : display_puzzle:

m (Clears the existing widgets in the puzzle frame .

m [terates through the puzzle grid and creates Tkinter labels for each cell,

displaying the characters in a grid layout .
Method : display_word_list :

m Sets the Tkinter StringVar (word_list_var) with the formatted word

list .

3. Main Block :
Creates a Tkinter root window and an instance of the CrosswordGenerator class.
Enters the Tkinter event loop (Yoot . mainloop ()) to handle user interactions .
4. Example Words :

The script uses a predefined list of words for the crossword puzzle . You can modify the
words listinthe create_puzzle method to customize the words used .

5. Widgets and Layout :
The GUI includes labels, entry fields, and buttons organized in a grid layout to allow user

input and puzzle display .

6. Note :

The script has some basic error handling to ensure valid input and warns the user if a

word cannot be placed in the puzzle .

This script provides a simple demonstration of a crossword puzzle generator with
a graphical interface using Tkinter. You can further enhance and customize the

functionality based on your requirements .

how to play Crossword Generator

The generated crossword puzzle is not interactive in the current implementation, meaning
you can't directly interact with it by clicking on cells or typing letters. However, I can
provide you with a simple guide on how you might play a generated crossword puzzle :
1. Generate Puzzle :
Run the script and provide the desired grid size (number of rows and columns) when
prompted .
Clickthe " Generate Puzzle " button .
2. View Puzzle :

The crossword puzzle grid and word list will be displayed in the Tkinter window .

3. Understand the Display :

The puzzle grid is displayed in the Tkinter window with each cell containing a single

letter . Empty cells are represented by spaces .

The word list is displayed on the right side of the window, showing the words that need to

be found in the puzzle .

4. Manually Solve:

You can manually solve the puzzle by looking at the words in the list and entering them

into the corresponding cells in the grid .

5. Check Placement :
Crossword puzzles typically follow certain rules, such as words intersecting at a common

letter . Ensure that your entries respect these rules .
6. Verify Correctness :

Compare your filled - in puzzle with the word list to ensure you've correctly placed all the

words .

3. Hangman Game

§ Hangman Game — O X

Enter a letter:

Guess
Restart \

import tkinter as tk
from tkinter import messagebox
import random
eye_radius = 4
mouth_radius = 8
head_y=0
class HangmanGUI:

def init (self, master):

self. master = master

self. master title("Hangman Game")

self. word_list = ["python", "hangman", "programming",

"computer", "developer", "algorithm", "coding"]

self.word_to_guess =""

self.guesses = set()

self.max_attempts = 6
self.attempts_left = self. max_attempts
self.head_radius =15

self.word_label = tk.Label(self.master, text="", font=("Arial", 18))

self.word_label.pack(pady=20)

self.guess_label = tk.Label(self.master, text="Enter a letter:")

self.guess_label.pack()

self.guess_entry = tk.Entry(self.master)
self.guess_entry.pack()

self.guess_button = tk.Button(

self. master, text="Guess", command=self.make_guess)

self.guess_button.pack()

self.restart_button = tk.Button(
self. master, text="Restart", command=self.restart_game)

self.restart_button.pack()

self.draw_canwvas()

self.choose_word()

self.update_word_label()

def draw_canvas(self):

self.canvas = tk.Canvas(self.master, width=300, height=300)

self.canvas.pack()

self.canvas.create_line(150, 50, 150, 280, width=2)
self.canvas.create_line(20, 280, 280, 280, width=2) # Ba:

def choose_word(self):

self.word_to_guess = random.choice(self.word_list)

def update_word_label(self):
display ="
for letter in self.word_to_guess:
if letter in self.guesses:
display += letter +""
else:
display +="_"
self.word_label.config(text=display.strip())

def make_guess(self):

guess = self.guess_entry.get().lower()

if guess.isalpha() and len(guess) == 1:
if guess in self.guesses:
messagebox.showinfo(
"Already Guessed", f"You have already guessed the letter '{guess}'.")
else;
self.guesses.add(guess)
if guess not in self.word_to_guess:
self.attempts_left -= 1

self.draw_hangman()

self.update_word_label()

if self.attempts_left == 0O:

self.game_over()
elif"_"not in self.word_label.cget("text"):
self.game_win()
else:
messagebox.showinfo(

"Invalid Input", "Please enter a valid single letter.")

self.guess_entry.delete(0, tk.END)

def draw_hangman(self):

self.canvas.delete("all")

self.canvas.create_line(150, 50, 150, 280, width=2) ¢
self.canvas.create_line(20, 280, 280, 280, width=2)

if self.attempts_left < self.max_attempts:

rope_bottom = 280

max_head_y = rope_bottom - self.head_radius

min_head_y = 50

head_y = max(min_head_y, max_head_y -

(self.max_attempts - self.attempts_left) * 30)

self.canvas.create_line(
150, 50, 150, rope_bottom, width=2, fill="red")
self.canvas.create_oval(
150 - self.head_radius, head_y - self.head_radius, 150 + self.head_radius, head y +
self.head_radius, fill="red") ¢ |

if head_y == min_head_y:
self.guess_button.config(state=tk.DISABLED)

if head_y == min_head_y:

eye_x_left =150-8
eye_y = head_y -6
self.canvas.create_oval(

eye_x_left - eye_radius, eye_y - eye_radius,

eye_x_right =150+ 8
self.canvas.create_oval(
eye_x_right - eye_radius, eye_y - eye_radius,

eye_x_right + eye_radius, eye_y + eye_radius, fill="black")

mouth_x =150
mouth_y = head_y + 10
self.canvas.create_line(

mouth_x - mouth_radius, mouth_y,

mouth_x + mouth_radius, mouth_y, fill="black")

elif not hasattr(self, 'game_over_shown'):

self.canvas.create_oval(

150 - self . head_radius, min_head_y - self.head_radius, 150 + self.head_radius, min_head_y +
self.head_radius, fill="red")

self.game_over()

self.guess_button.config(state=tk.DISABLED)

self.game_over_shown = True

def game_over(self):

eye_x_left=150-8
eye_y = head_y-6
self.canvas.create_oval(
eye_x_left - eye_radius, eye_y - eye_radius,

eye_x_left + eye_radius, eye_y + eye_radius, fill="black") 1

eye_x_right =150+ 8
self.canvas.create_oval(

eye_x_right - eye_radius, eye_y - eye_radius,

eye_x_right + eye_radius, eye_y + eye_radius, fill="black") 4

mouth_x =150

mouth_y = head_y + 10
self.canvas.create_line(
mouth_x - mouth_radius, mouth_y,

mouth_x + mouth_radius, mouth_y, fill="black")

def game_win(self):

messagebox.showinfo("Congratulations",

"Congratulations! You guessed the word.")

def restart_game(self):

self.choose_word()

self.guesses = set()

self.attempts_left = self. max_attempts
self.guess_button.config(state=tk. NORMAL)
self.update_word_label()

self.canvas.delete("all")

self.canvas.create_line(150, 50, 150, 280, width=2) # Pol

self.canvas.create_line(20, 280, 280, 280, width=2]

def main():
root = tk.Tk()

hangman_game = HangmanGUI(root)

root.mainloop()

if _name_ =="_ main_ "

main()

The provided Python Code is an implementation of a simple Hangman game using the

Tkinter library for the graphical user interface . Let's go through the code in detail :
HangmanGUI Class :
1. Initialization (__init_ method):

The constructor initializes the main aspects of the game .

Sets up the Tkinter window and basic elements like labels, entry fields, buttons, and a

canvas for drawing .

Defines attributes such as the word list, word to guess, guessed letters, maximum

attempts, attempts left, and head radius .
2.draw_canvas Method :

Initializes and draws the static parts of the hangman (pole and base) onthe canvas .
3. choose_word Method :

Randomly selects a word from the predefined word list .

4. update_word_label Method :
Updates the word label based on the guessed letters, showing underscores for unguessed

letters .
5. make_guess Method :
Retrieves the guessed letter from the entry field .

Checks if the guess is valid (a single alphabetical character) and whether it has been

guessed before .

Updates the game state, checks for a win or loss, and handles invalid inputs .
6. draw_hangman Method :

Draws the hangman figure based on the number of attempts left .

Handles the progression of the hangman figure as incorrect guesses are made .

7. game_over Method :
Displays a game over message and draws a sad face when the player runs out of attempts .
8. game_win Method :
Displays a congratulations message when the player successfully guesses the word .
9. restart_game Method :
Resets the game state for a new round .
Clears the canvas and draws the static hangman elements .
Main Function :
Creates a Tkinter root window and initializes the HangmanGUI class .
Starts the Tkinter main loop to run the GUI .
Usage :

The player interacts with the game by entering a single letter in the entry field and clicking the " Guess "

button .
The canvas displays the hangman figure, and the word to guess is shown with underscores for unguessed

letters .

The game ends when the player either correctly guesses the word or runs out of attempts .

Additional Notes :

The game uses a predefined word list, and a new word is chosen for each round .
The maximum attempts are set to 6 by default, and the hangman figure progressively appears as

incorrect guesses are made .
The game provides options to restart and play again after a win or loss .

Make sure you have Tkinter installed (import tkinter astk) before running this code . You

can run it as a Python script to play the Hangman game in a simple GUI window .

how to play hangman game

To play the Hangman game using the provided code, follow these steps :
1. Run the Code:
Copy the provided Python Code into a Python environment or script .

Make sure you have Tkinter installed (it's usually included with Python installations).

2. Execute the Script :
Run the script .

A window will appear with the Hangman game GUI .

3. Game Start :

The game will start by choosing a random word from the predefined word list .
4. Guess a Letter :

Enter a single letter in the entry field provided .

o Clickthe " Guess" button.

5. Game Progress :

The word to guess will be displayed with underscores for unguessed letters .

The hangman figure will appear on the canvas based on incorrect guesses .
6. Continue Guessing :

Keep entering letters and clicking the " Guess " button .

The game will update the word display and hangman figure accordingly .
7. Winning :

If you correctly guess the entire word, a congratulatory message will appear .

8. Losing :
If you run out of attempts, a game over message will be displayed, and a sad face will

appear .

9. Restart:

You can restart the game by clicking the " Restart " button .
A new word will be chosen, and the game state will be reset .
10. Repeat :
- Continue playing by guessing letters and trying to guess the word .
Remember :
Only enter a single alphabetical letter as a guess .

The game tracks guessed letters, and entering the same letter again will show a message .
The maximum attempts are set to 6, and the hangman figure will progressively appear as you make

incorrect guesses .

4. Tic Tac Toe Game

§ Tic Tac Toe O
0 X
X
O X
0 X
Player 2
Player 1 Symibok X Player 2 Symbok O Reset
Player 1 Score: 0 Player 2 5core: 0

import tkinter as tk

from tkinter import messagebox

;s TicTacToe:
def _init_ (self):

self window = tk.Tk()

self window.title("Tic Tac Toe")
self . board_size = 10
self board = [|" for _in range(self.board_size)]

for _in range(self.board_size)|

self.current_player = tk.StringVar()
self.current_player.set("Player 1")
self.player1_symbol = tk.StringVar()
self.player2_symbol = tk.StringVar()
self.player1_symbol.set("X")
self.player2_symbol.set("O")
self.player1_score = 0

self.player2_score = 0

self.create_widgets()

def create_widgets(self):
foriin range(self.board_size):
for j in range(self.board_size):
btn = tk.Button(self.window, text=", font=('normal’, 12), width=5, height=2,

command=lambda row=1, col=j: self.on_button_click(row, col))

btn.grid(row=i, column=j, padx=0, pady=0, sticky="nsew")
self.board[i][j] = btn

foriin range(self.board_size):
self. window.grid_rowconfigure(i, weight=1, uniform="row")

self. window.grid_columnconfigure(i, weight=1, uniform="col")

tk.Label(self.window, textvariable=self.current_player, font=(
'nmormal’, 12)).grid(row=self.board_size, columnspan=self.board_size)

tk.Label(self.window, text="Player 1 Symbol:").grid(
row=self.board_size + 1, column=0)

tk.Entry(self.window, textvariable=self.player1l_symbol,

width=5).grid(row=self.board_size + 1, column=1)

tk.Label(self.window, text="Player 2 Symbol:").grid(

row=self.board_size + 1, column=2)
tk.Entry(self.window, textvariable=self.player2_symbol,

width=5).grid(row=self.board_size + 1, column=3)

self reset_button = tk.Button(

self. window, text="Reset", command=self.reset_board)
self.reset_button.grid(row=self.board_size + 1, column=4)
self.player1_score_label = tk.Label(

self.window, text="Player 1 Score: 0")
self.player1_score_label grid(row=self.board_size + 2, column=0)
self.player2_score_label = tk.Label(

self. window, text="Player 2 Score: 0")

self.player2_score_label.grid(row=self.board_size + 2, column=2)

def on_button_click(self, row, col):
if self.board[row][col]["text"] == ":
self.board|row]||col||"text"| = self.playerl_symbol.get(
) if self.current_player.get() == "Player 1" else self.player2_symbol.get()
if self.check_winner(row, col):
messagebox.showinfo(
"Game Over", f"{self.current_player.get()} wins!")
self.update_scores()
self.reset_board()
elif self.check draw():
messagebox.showinfo('"Game Over", "It's a draw!")
self.reset_board()
else:

self.switch_player()

def check_winner(self, row, col):

symbol = self.board|[row]|[col|["text"]

if all(self.board[row][c]["text"] == symbol for c in range(self.board_size)):
return Irue

if all(self.board|r][col]|"text"| == symbol for r in range(self.board_size)):

return True

if row == col and all(self.board|[i|[i]["text"] == symbol for i in range(self.board_size)):
return True
if row + col == self.board_size - 1 and all(self.board|i|[self.board_size - 1 - i]["text"] == symbol for 1 in
-ange(self.board_size)):
return True

return False

def check _draw(self):

foriin range(self.board_size):

for j in range(self.board_size):

if self.board|i][j]["text"] ==":
return False

return True

def switch_player(self):
self.current_player.set(

"Player 2" if self.current_player.get() == "Player 1" else "Player 1")

def update_scores(self):
if self.current_player.get() == "Player 1"
self.player1_score += 1

self.player1_score_label.config(

text=f"Player 1 Score: {self.player1_score}")
else:
self.player2_score += 1
self.player2_score_label.config(

text={"Player 2 Score: {self.player2_score}")

def reset_board(self):
for iin range(self.board_size):
for j in range(self.board_size):
self.board|i][j]["text"] ="

self.current_player.set("Player 1")

if _name__=="_main
game = TicTacToe()

game.window.mainloop()

This is a simple implementation of the classic Tic Tac Toe game using the Tkinter library in

Python . Let's break down the code and understand each component :
1. Class Definition (TicTacToe):
The TicTacToe classisinitialized with the creation of a Tkinter window .

It sets the title of the window to " Tic Tac Toe " and defines the size of the game board

(10x10) and initializes the board with an empty state .

Various attributes are defined, suchas current_player (totrackthe current player) ,

player1l_symbol, player2_symbol , and scores for both players .

The create_widgets method is responsible for setting up the GUI elements,
including the game board buttons, labels, and entry fields for customizing player

symbols .

Buttons in the game board are created using nested loops, and their click events are

connected to the on_button_click method .
Labels are set up to display the current player, player symbols, and player scores .

Areset button (reset_button) is created to reset the board .

2. Event Handling (on_button_click):

-]

This method is called when a button on the game board is clicked .

Checks if the clicked button is empty; if so, it updates the button text with the current

player's symbol .

Checks for a winner using the check winner method. If a winner is found, a

message box is displayed, scores are updated, and the board is reset .

If the game is a draw (no winner and no empty spaces left) , it shows a message box and

resets the board .

If the game continues, it switches to the next player .

3. Winner Checking (check_winner):
This method checks for a winner by examining the current state of the board after each
move .

It checks rows, columns, and diagonals to see if all elements match the symbol of the

current player .

4. Draw Checking (check_draw):

This method checks for a draw by examining whether there are any empty spaces left on

the board .
5. Player Switching (switch_player):

This method switches the current player between " Player 1" and " Player 2 ."
6. Score Updating (update_scores):

This method updates the scores and the corresponding labels when a player wins .

7. Board Resetting (reset_board):
This method resets the entire game board, setting all button texts to empty and resetting

the current player to " Player 1."

8. Main Block :

An instance of the TicTacToe class is created, and the Tkinter main loop is started

with game . window . mainloop () .

Overall, this code provides a graphical user interface for playing Tic Tac Toe with

customizable player symbols and keeps track of player scores .

How to Play Tic Tac Toe

Tic Tac Toe is a simple two - player game where the players take turns marking a 3x3 grid
with their designated symbols (usually "X" and "O") with the goal of getting three of
their symbols in a row — either horizontally, vertically, or diagonally . Here's a step - by -
step guide on how to play Tic Tac Toe :

Game Setup :
1. Board Setup :
The game is played on a 3x3 grid .
Each cell in the grid represents a position where a player can place their symbol .
2. Player Assignment :

There are two players, often referred toas " Player 1" and " Player 2 ."

Player 1 typically uses " X," and Player 2 uses " O."

Gameplay :
3. Starting the Game:
The game starts with an empty board .
4. Taking Turns :
Players take turns to make a move..
Player 1 (X) goes first, followed by Player 2 (O) , and they continue alternating turns .
5. Making a Move :
On a player's turn, they choose an empty cell on the grid to place their symbol .
Click on the chosen cell to mark it with the player's symbol .
6. Winning the Game:
The game is won when a player successfully places three of their symbols in a row .
A row can be horizontal, vertical, or diagonal .
7. End of the Game:
If a player wins, the game ends, and the winning player is announced .
If the board is filled with symbols, and there is no winner, the game is a draw .

8. Starting a New Game :

After the game ends (either in a win or a draw) , players can start a new game .

Some implementations includea " Reset " button to clear the board and start over .

Example Gameplay :
Player 1 (X) makes a move by clicking on an empty cell .
Player 2 (0) takes their turn, selecting another empty cell .

Players continue taking turns until one player gets three symbols in a row, or the board is filled .

Winning Combinations :
Horizontal :

mathematica Code
X|X|X
O|O0]

|

Vertical ;

mathematica Code
X|0O|

X|O|

X\ |

Diagonal :
mathematica Code
X|O|
| X|O
| X
Tips:
Pay attention to the opponent's moves and plan ahead to block potential winning combinations .

Try to create your own winning opportunities while preventing your opponent from doing the same .

Tic Tac Toe is a game of strategy and anticipation, often enjoyed for its simplicity and quick
gameplay . It's a great introductory game for those new to strategy board games .

5. Maze Solver Game

Maze Solver — []

Solve Maze

Clear Maze

A* —

import tkinter as tk

from queue import PriorityQueue, Queue

class MazeSolver:
def __init_ (self, root, rows, cols):
self.root = root
self.rows = rows
self.cols = cols
self.canvas_size = 400
self.cell_size = self.canvas_size // max(rows, cols)
self.canvas = tk.Canvas(
root, width=self.canvas_size, height=self.canvas_size)

self.canvas.pack()
self.start = None
self.end = None

self. maze = [[0] * cols for _in range(rows)]

self.draw_grid()

self.canvas.bind("<Button-1>", self.on_click)
self.solve button = tk.Button(

root, text="Solve Maze", command=self.solve_maze)
self.solve_button.pack()
self.clear button = tk.Button(

root, text="Clear Maze", command=self.clear_maze)

self.clear button.pack()

self.algorithm_var = tk.StringVar(root)
self.algorithm_var.set("A™)
self.algorithm_menu = tk.OptionMenu(

root, self.algorithm_wvar, "A*", "Dijkstra", "BFS")

self.algorithm_menu.pack()

def draw_grid(self):
for iin range(self.rows):
for j in range(self.cols):
x1,y1 =j*self.cell_size,i” self.cell_size
x2,y2 =x1 + self.cell_size, y1 + self.cell_size
self.canvas.create_rectangle(

x1,vy1,x2,y2, fill="white", outline="black")

def on_click(self, event):

col = event.x // self.cell_size
row = event.y // self.cell_size
if not self.start:

self.start = (row, col)

self.canvas.create_rectangle(col * self.cell_size, row * self.cell_size,

(col + 1) * self.cell_size, (row + 1) * self.cell_size, fill="green")

elif not self.end:

self.end = (row, col)

self.canvas.create_rectangle(col * self.cell size, row * self.cell_size,

(col + 1) * self.cell_size, (row + 1) * self.cell size, fill="red")
else:

self.toggle_obstacle(row, col)

def toggle_obstacle(self, row, col):
if self. maze|row]|[col] ==
self. maze[row]|col] = 1
self_.canvas.create_rectangle(col * self.cell_size, row * self.cell_size,
(col + 1) * self.cell_size, (row + 1) " self.cell size, fill="black")
else:
self. maze|[row]|col] = O
self.canvas.create_rectangle(col * self.cell_size, row * self.cell_size,

(col + 1) * self.cell_size, (row + 1) * self.cell_size, fill="white")

def clear_ maze(self):
self.start = None
self.end = None
self. maze = [[0] * self.cols for _in range(self.rows)]
self canvas.delete("all")

self.draw_grid()

def solve_maze(self):

algorithm = self.algorithm_var.get()

path = self.run_algorithm(algorithm)

if path:
self highlight path(path)

def run_algorithm(self, algorithm):

if algorithm == "A*":
return self.astar()

elif algorithm == "Dijkstra":
return self.dijkstra()

elif algorithm == "BFS";
return self.bfs()

else:

raise ValueError("Unsupported algorithm")

def astar(self):
start = self.start
end = self.end
open_set = PriorityQueue()
open_set.put((0, start))

came_from = {start: None}

g_score = {start: 0}

while not open_set.empty():
current = open_set.get()[1]

if current == end:

path = (]

while current in came_from:
path.append(current)
current = came_from|[current]

return path|::-1]

for neighbor in self.get_neighbors(current):
tentative_g_score = g_score[current]| + 1
if tentative_g_score < g_score.get(neighbor, float('int")):
g score[neighbor]| = tentative_g score
f score = tentative_g_score + self.heuristic(neighbor, end)
open_set.put((f_score, neighbor))

came_from|[neighbor| = current

return None

def dijkstra(self):
start = self.start
end = self.end
open_set = PriorityQueue()
open_set.put((0, start))

came_from = {start: None}

g score = {start: 0}

while not open_set.empty():
current = open_set.get()[1]
if current == end:
path =]
while current in came_from:
path.append(current)
current = came_from|current]

return path|::-1]

for neighbor in self.get_neighbors(current):
tentative_g score = g_score|current| + 1
if tentative_g_score < g_score.get(neighbor, float('inf")):

g_score[neighbor| = tentative_g_score

open_set.put((tentative_g score, neighbor))

came_from|neighbor| = current

return None

def bfs(self):
start = self.start
end = self.end
queue = Queue()
queue.put(start)

came_from = {start: None}

while not queue.empty():
current = queue.get()
if current == end:
path = (]
while current in came_from:
path.append(current)
current = came_from|current]|

return path|::-1}

for neighbor in self.get_neighbors(current):

if neighbor not in came_from:
queue.put(neighbor)

came_from|neighbor| = current

return None

def get_neighbors(self, cell):
row, col = cell
neighbors =[]
1f row > 0 and self. maze[row - 1][col] == 0:
neighbors.append((row - 1, col))
if row < self. rows - 1 and self. maze[row + 1|[col] ==

neighbors.append((row + 1, col))

if col > 0 and self. maze|[row][col - 1] == O:
neighbors.append((row, col - 1))

if col < self.cols - 1 and self. maze|row][col + 1] == 0O:
neighbors.append((row, col + 1))

return neighbors

def heuristic(self, a, b):
return abs(al0] - b[O]) + abs(a[1]-b[1])

def highlight_path(self, path):
for cell in path:

row, col = cell

self.canvas.create_rectangle(col * self.cell_size, row * self.cell_size,

(col + 1) * self.cell_size, (row + 1) * self.cell_size, fill="yellow")

if _ " __main
root = tk.Tk()
root.title("Maze Solver")
maze_solver = MazeSolver(root, rows=10, cols=10)

root.mainloop()

This Python script uses the Tkinter library to create a simple graphical user interface (GUI)
for solving mazes. The maze - solving algorithms implemented include A*, Dijkstra's
algorithm, and Breadth - First Search (BES).
Here's a detailed breakdown of the script :
1. Imports:
tkinter : Used for creating the GUI .

Queue and PriorityQueue : Used for implementing the queue data structure for

BFS and the priority queue for A * and Dijkstra's algorithm .
2. MazeSolver Class :
Initialization (__init_):

m [Initializes the GUI components, such as the main window (root) , canvas

for drawing the maze, buttons for solving and clearing the maze, and an

option menu for selecting the algorithm .

m Sets up variables for the number of rows and columns in the maze, cell size,

and other parameters .

m [nitializes the maze grid, start and end points, and binds the left - click event

tothe on_click method.

Drawing the Grid (draw_grid):

m Drawstheinitial grid on the canvas, where each cell is a rectangle with a white

fill and black outline .

Handling Mouse Clicks (on_click):

m Determines the row and column of the clicked cell based on the mouse click
coordinates .
m Handles the placement of the start and end points and toggles obstacles when

the mouse is clicked .
Toggling Obstacles (toggle_obstacle):

m Toggles between obstacle (black) and empty (white) cells when clicking

onacell.
Clearing the Maze (clear_maze):
®m Resets the start and end points and clears the maze grid on the canvas .

Solving the Maze (solve_maze):
m Gets the selected algorithm from the option menu and runs the

corresponding maze - solving algorithm .
®m Highlights the solution path on the canvas .
Running the Algorithm (run_algorithm):

®m Chooses the appropriate algorithm based on the user's selection .

A Algorithm (astar), Dijkstra's Algorithm (dijkstra), and BFS
Algorithm (bfs):*
m Each algorithm uses a different approach to explore the maze and find the

solution path .

m A" and Dijkstra's algorithms use priority queues, while BFS uses a regular

queue .
Getting Neighbors (get_neighbors):

m Returnsalist of neighboring cells that are accessible from the current cell .
Heuristic Function (heuristic):

m Calculates a simple heuristic value (Manhattan distam:e) between two

cells .
Highlighting the Solution Path (highlight_path):
®m Draws a yellow rectangle for each cell in the solution path on the canvas .

3. Main Block (_main__):

Creates a Tkinter window (rOot), sets its title, and initializes an instance of the

MazeSolver class with a 10x10 maze .

Starts the Tkinter main event loop .

In summary, the script provides a basic interactive maze - solving application with a GUI,

allowing users to create and solve mazes using different algorithms .

How To Play Maze Solver Game

The provided Python script creates a simple maze - solving application with a graphical
user interface (GUI). While it's not explicitly designed as a game, you can follow these

steps to interact with the Maze Solver application :
1. Run the Script :
Save the provided Python script to a file, for example, maze_solver . py .
Open a terminal or command prompt and navigate to the directory containing the script .

Run the script using the command : python maze_solver . py (or the equivalent

command for your Python environment).
2. GUI Interface :

A window titled " Maze Solver " will appear .
The GUI consists of a canvas where you can create a maze, buttons for solving and

clearing the maze, and an option menu for selecting the solving algorithm .

3. Creating a Maze :

Left - click on the white cells in the canvas to create a maze . Clicking on a cell toggles it

between an empty cell and an obstacle (black cell).
To set the start and end points :
®m (Click on a white cell to set the start point (green rectangle)
m Click on another white cell to set the end point (red rectangle).
4. Selecting an Algorithm :
Choose the solving algorithm from the drop - down menu (A ¥, Dijkstra, or BES).
5. Solving the Maze :

Click the " Solve Maze" button to apply the selected algorithm and find the solution

path .
6. Viewing the Solution :

The solution path will be highlighted in yellow on the canvas .
7. Clearing the Maze :

Click the " Clear Maze " button to reset the maze, removing obstacles, start, and end

points .

8. Repeat and Experiment :
You can create different mazes, change the start and end points, and explore how

different algorithms find solutions .

6. Snake Game

¢ Snake Game — [] X

Score (0
Speed: 10
Level 1

Restart | Pause/Resume

import tkinter as tk
import random

import winsound # Fc

class SnakeGame:
def _init__ (self, master, width=400, height=400):
self. master = master
self.master.title("Snake Game")
self.canvas = tk.Canvas(self.master, width=width,
height=height, bg="black")

self.canvas.pack()

self.canvas.focus_set()

self.snake = [(100, 100), (90, 100), (80, 100)]
self.direction = "Right"

self.food = self.create_food()

selflevel =1 #1

self.obstacles = self.create_obstacles()

self.score = 0

self.high_score = 0
self.speed = 100

self.game_over_flag = False

self.paused = False

self.score_display = self.canvas.create_text(

350, 20, text="Score: 0", fill="white", font=("Helvetica", 12))
self.speed_display = self.canvas.create_text(

350, 40, text="Speed: 1\nLevel: 1", fill="white", font=("Helvetica", 12))

self button_frame = tk.Frame(self.master)

self button_frame.pack(side="bottom")

restart_button = tk.Button(
self button_frame, text="Restart", command=self.restart_game)

restart_button.pack(side="left")

pause_button = tk.Button(
self.button_frame, text="Pause/Resume", command=self.toggle_pause)

pause_button.pack(side="left")

self.canvas.bind("<Key>", self.change_direction)

self.master.after(self.speed, self.update)

self.draw() # Draw the initial state

def create_food(self):

x = random.randint(1, 39) * 10

y = random.randint(1, 39) * 10

self.canvas.create_rectangle(

X,y,x+ 10,y + 10, outline="red", fill="red", tags="food")

winsound.Beep(523, 100) # Beep sound

refurn x, y

def create_obstacles(self):

obstacles =[]

for _inrange(5 * self.level): # Adjust
x = random.randint(1, 39) * 10
y = random.randint(1, 39)* 10
self.canvas.create_rectangle(

X,y, X + 10, y + 10, outline="white", fill="white", tags="obstacle")

obstacles.append((x, v))

return obstacles

def move(self):
if self.game_over_flag or self.paused:

return

head = self.snake|0]
if self.direction == "Right":
new_head = (head|0] + 10, head|1])

elif self.direction == "Left";

new_head = (head[0] - 10, head[1])
elif self.direction == "Up":

new_head = (head|0], head|1]-10)
elif self.direction == "Down":

new_head = (head|[0], head[1] + 10)

self snake.insert(0, new_head)

if new head == self.food:
self.score += 1
self.canvas.delete("food")

self.food = self.create_food()

self.increase_speed()

self.check win() #
else:
self.canvas.delete(self.snake[-1])

self.snake.pop()

self.check collision()

def increase_speed(self):
level_thresholds =[5, 10, 15, 20, 25, 30, 35,40, 45, 50]

if self.score in level thresholds and self.level < len(level thresholds):

self level +=1
self.create_obstacles()
self.canvas.itemconfig(
self.speed_display, text={"Speed: {1000 // self.speed}\nLevel: {self.level}")
winsound.PlaySound('"level up.wav", winsound.SND_FILENAME)

if self.level == len(level thresholds):

self.display_completion_message()

def display_completion_message(self):

self.canvas.create_text(

200, 200, text="All Levels Completed!\nCongratulations!", fill="white", font=("Helvetica", 16), tags="gameover")

def check_collision(self):
head = self.snake|0]
if (
head|0] <O
or head|0] >= 400
or head[1] <0
or head[1] >= 400
or head in self.snake|[1:]

or head in self.obstacles

self.game_over()

def check _win(self):
if self.level == 4 and self.score >= 20:
self.game_over flag = True
if self.score > self.high_score:
self.high_score = self.score
self.canvas.create_text(
200, 200, text=f"Congratulations!\nYou passed all levels!\nScore: {self.score}\nHigh Score: {self.high_score}",

fill="white", font=("Helvetica", 16), tags="gameover")

winsound.PlaySound("game_win.wav", winsound.SND_FILENAME)

def game_over(self):
self.game_over flag = True
if self.score > self.high_score:
self.high_score = self.score
self.canvas.create_text(
200, 200, text=f"Game Over\nScore: {self.score}\nHigh Score: {self.high_score}",
fill="white", font=("Helvetica", 16), tags="gameover")

winsound.PlaySound("game_over.wav", winsound.SND_FILENAME)

def restart_game(self):
self.canvas.delete("all")
self.snake = [(100, 100), (90, 100), (80, 100)]

self.direction = "Right"

self.food = self.create_food()
self.obstacles = self.create_obstacles()
self.score = 0

self.level = 1

self.speed = 100

self.game_over_flag = False

self.paused = False

self.draw()
self.update()

def toggle_pause(self):

self.paused = not self.paused

def update(self):
self. move()
self.draw()
if not self.game_over_flag:

self.master.after(self.speed, self.update)

def draw(self):

self.canvas.delete("all")

self.canvas.create_rectangle(0, 0, 400, 400, outline="white")

for segment in self.snake:
self.canvas.create_rectangle(
segment[0], segment[1], segment[0] + 10, segment[1] + 10, outline="white", fill="white")
self.canvas.create_rectangle(
self.food|0], self.food[1], self.food[0] + 10, self.food|[1] + 10, outline="red", fill="red")

for obstacle in self.obstacles:
self.canvas.create_rectangle(
obstacle|0], obstacle|1], obstacle[0O] + 10, obstacle[1] + 10, outline="white", fill="white")

self.canvas.create text(
350, 20, text={"Score: {self.score}", fill="white", font=("Helvetica", 12))

self.canvas.create_text(
350, 40, text={"Speed: {1000 // self.speed}", fill="white", font=("Helvetica", 12))

self.canvas.create_text(

350, 60, text=f"Level: {self.level}", fill="white", font=("Helvetica", 12))

def change_direction(self, event):
if event keysym in ["Up", "Down", "Left", "Right"]:
if (
(event.keysym == "Up" and self.direction != "Down")
or (event.keysym == "Down" and self.direction != "Up")
or (event.keysym == "Left" and self.direction != "Right")

or (event.keysym == "Right" and self.direction != "Left")

self.direction = event.keysym

if _ " _main
root = tk.Tk()
game = SnakeGame(root)

root.mainloop()

This is a Snake Game implemented using the Tkinter library in Python . Let's break down

the code and understand each component :
1. Imports:
Python Code

import tkinter as tk

import random

import winsound
tkinter : The standard Python interface to the Tk GUI toolkit .

random : Used for generating random numbers for the initial positions of the food and

obstacles .
winsound : For playing sound effects on Windows .
2. SnakeGame Class :

Python Code

class SnakeGame :
This class represents the main game logic .
3. Initialization :
Python Code
def __init__ (self, master, width = 400, height = 400):

The constructor initializes the game with a Tkinter window (master) and sets the default

width and height of the game area .

It sets up the canvas, snake, initial direction, food, level, obstacles, score, speed, and other game -

related attributes .

The game state is displayed on the Tkinter window using labels and buttons .

4. create_food method :

Python Code
def create_food (self):

Generates random coordinates for the food and creates a red rectangle at that position on the

canvas .
Plays a beep sound when the snake eats the food .
5. create_obstacles method :

Python Code

def create_obstacles (self):
Generates a specified number of obstacles at random positions on the canvas .
Obstacles are white rectangles .
6. move method :

Python Code
def move (self):
Updates the snake's position based on the current direction .

- Handles collisions with food, updates the score, and increases the speed and level when certain

conditions are met .

Checks for collisions with obstacles or the game boundaries .
7.increase_speed method :

Python Code

defincrease_speed (self):
Increases the game speed based on the player's score and updates the level .
8. display_completion_message method :

Python Code

def display_completion_message (self):

Displays a congratulatory message when the player completes all levels .

9. check_collision method :

Python Code
def check_collision (self):

Checks for collisions with walls, snake body, and obstacles .
Callsthe game_oOVer method if a collision is detected .
10. check_win method :

Python Code
def check_win (self):

Checks if the player has won the game (reached a certain level and score)
Displays a victory message and plays a winning sound .
11. game_over method:

Python Code

def game_over (self):
Displays a game over message with the final score and high score .

Plays a game over sound .

12 restart_game method :

Python Code
def restart_game (self):

Resets the game state to its initial values and starts a new game .
13. toggle_pause method:

Python Code
def toggle_pause (self):

Pauses or resumes the game when the pause button is clicked .
14. update method :

Python Code
def update (self):

Updates the game state at regular intervals, allowing for continuous movement of the snake .
Callsthe move and draw methods .
15. draw method:

Python Code
def draw (self):

Clears the canvas and redraws the game elements (snake, food, obstacles, score, speed, level).

16. change_direction method :

Python Code

def change_direction (self, event):

Handles user input to change the direction of the snake .

17. Main Execution :
Python Code
if name =="_main__ "

root = tk. Tk ()
game = SnakeGame (root)
root . mainloop ()

Creates a Tkinter window and starts the game loop .

In summary, this Snake Game is a complete implementation with features such as
snake movement, collision detection, scoring, increasing difficulty levels, obstacles, and a
graphical user interface using Tkinter . The game also includes sound effects for various

events .

How To Play Snake Game

To play the Snake Game, follow these instructions :

1. Start the Game:

Run the Python script containing the Snake Game code .
A window will appear with the title " Snake Game ."

2. Initial Setup :

The game starts with a snake (a series of white rectangles) and a red square

representing food .
The snake initially moves to the right .
3. Control the Snake :
Use the arrow keys (Up, Down, Left, Right) to control the direction of the snake .
The snake will continuously move in the chosen direction until the game ends .
4. Objective :
The goal is to navigate the snake to eat the red food squares .
Each time the snake consumes food, it grows longer, and the player earns points .
5. Avoid Collisions :
Avoid running into the walls of the game area .

Avoid colliding with the snake's own body .

Avoid colliding with white obstacles that may appear on the screen .
6. Scoring :
The score is displayed at the top of the game window .
Each time the snake eats food, the score increases .
7. Speed and Levels :
As the player accumulates points, the game speed increases .
There are multiple levels in the game, and with each level, the difficulty increases .
The current speed, level, and score are displayed on the right side of the game window .
8. Winning :
If you reach a certain level and achieve a specific score, you win the game .
A congratulatory message is displayed, and a victory sound plays .
9. Losing :
The game ends if the snake collides with a wall, itself, or an obstacle .
A game over message is displayed with your final score, and a game over sound plays .
10. Restart or Pause:

- You can restart the game by clicking the " Restart " button at the bottom .

-The " Pause / Resume " button allows you to pause and resume the game .
11. Enjoy the Game :
- Have fun playing the Snake Game and try to achieve the highest score possible !

Remember, the key to success is strategic movement, avoiding obstacles, and growing the
snake by consuming food . As the game progresses, the challenge increases, making it an

engaging and entertaining experience .

7. Memory Puzzle Game

'} Memory Puzzle = | e

Pmyﬂgnn|

import tkinter as tk
from tkinter import messagebox

import random

class MemoryPuzzle:;
def _ init_ (self, root, rows=6, columns=6):

self.root = root

self.root.title("Memory Puzzle")

self.rows = rows
self.columns = columns
self .tiles = [i foriin range(1, (rows * columns) // 2 + 1)]* 2

random.shuffle(self.tiles)

self.buttons =[]

self.create_buttons()

self first click = None

self. moves =0

self.initial_width = 350
self.initial_height = 350

self.center window()

def create_buttons(self):
for iin range(self.rows):

for j in range(self.columns):
index = 1" self.columns +j
button = tk.Button(self.root, text="", width=5, height=2,

command=lambda idx=index: self flip_tile(idx))

button.grid(row=1i, column=j, padx=5, pady=5)
self.buttons.append(button)

play_again_button = tk.Button(

self root, text="Play Again", command=self.reset_game)

play_again_button.grid(row=self.rows, column=self.columns // 2)

def flip_tile(self, index):
if self.buttons|[index|["state"] == tk. NORMAL:

self_ buttons|index].config(
text=str(self.tiles[index]), state=tk.DISABLED)

if self.first_click is None:
self first_click = index

else:
self. moves += 1

self root.after(

1000, lambda idx=1ndex, first_click=self first_click: self.check match(idx, first_click))
self first_click = None

def check_match(self, index, first_click):

1f self.tiles|first click| == self.tiles[index]:
messagebox.showinfo("Match", "You found a match!")
self.buttons|first_click].config(state=tk.DISABLED)
self buttons|index|.config(state=tk. DISABLED)

else:
self.buttons|first_click].config(text="", state=tk. NORMAL)
self buttons|index|.config(text="", state=tk. NORMAL)

if all(self.buttons]i]["state"] == tk. DISABLED for i in range(self.rows * self.columns)):

self.show_game_over message()

def reset_game(self):

self.root.destroy()
new_root = tk.Tk()
new_game = MemoryPuzzle(new_root, rows=6, columns=6)

new_root.mainloop()

def show_game_over_message(self):

messagebox.showinfo(

"Game Over", {'"Congratulations! You won in {self.moves} moves.")
def center_window(self):

screen_width = self.root.winfo_screenwidth()
screen_height = self.root.winfo_screenheight()
X_position = (screen_width - self.initial_width) // 2

y_position = (screen_height - self.initial_height) // 2

self.root.geometry(

f"{self.initial width|x{self.initial height}+{x_position}+{y_position}")

if _name__=="_main
root = tk.Tk()
game = MemoryPuzzle(root, rows=6, columns=6)

root.mainloop()

This Python script uses the Tkinter library to create a simple memory puzzle game . Let's

go through the code step by step :
1. Importing Libraries :

Python Code

import tkinter as tk

from tkinter import messagebox

import random
tkinter : GUI library used for creating the graphical interface .
messagebox : Part of Tkinter for displaying dialog boxes .
random : Used for shuffling the tiles in the memory puzzle .

2. MemoryPuzzle Class :
Python Code
class MemoryPuzzle :
def __init_ (self, root, rows = 6, columns = 6):
Initialization method for the MemoryPuzzle class .

Takes the Tkinter root window and optional rows and columns
parameters .

Initialize the Tkinter root window .
self . root = root
self . root . title (" Memory Puzzle ")

Set the number of rows and columns in the game grid .

self . rows = rows

self . columns = columns

Create a list of tile values and shuffle it .
self . tiles =[iforiinrange (1, (rows * columns)// 2+ 1)]* 2
random . shuffle (self. tiles)

Initialize lists to store buttons and other variables .
self . buttons =[]

self . first_click = None

self . moves = O

Set the initial form width and height, and center the window .
self . initial width = 350
self . initial_height = 350

self . center_window ()

Create buttons and the " Play Again " button.

self . create_buttons ()

Other methods (create_buttons, flip_tile, check_match, reset_game,

show_game_over_message, center_window) are defined within the class .

__Init__: Initializes the MemoryPuzzle object . Sets up the game grid, buttons, and other

parameters .
create_buttons : Creates buttons for the game grid and the " Play Again" button .
ﬂip_tile : Handles the click event for each tile, flipping it and checking for matches .
check_match : compares the values of two clicked tiles and updates the game accordingly .
reset_game : Destroys the current window and creates a new one to reset the game .
show _game_over_message . Displays a message box when the game is completed .
CEHtEI'_WiI‘ldOW . Centers the Tkinter window on the screen .

3. Main Section :

Python Code

if name =="_main_ "
root = tk.Tk()
game = MemoryPuzzle (root, rows = 6, columns = 6)
root . mainloop ()

Checks if the script is being run as the main module .
Creates the Tkinter root window and initializes the MemoryPuzzle game .

Starts the Tkinter main event loop .

4. Execution :
The script creates a Tkinter window with a 6x6 grid of buttons, representing the memory

puzzle .
Each button has a hidden value that is revealed when clicked .

The goal is to find matching pairs by clicking on two buttons with the same value .

The game provides feedback on successful matches and displays a " Game Over "

message when all pairs are found .

Note : The game window is initially centered on the screen, and the " Play Again " button
allows the player to restart the game after completing it .

How To Play Memory Puzzle Game

The Memory Puzzle game is a classic memory matching game where the player needs to
find matching pairs of tiles. Here's a step - by - step guide on how to play the Memory

Puzzle game :

1. Objective :
The goal of the game is to match all pairs of tiles .

2. Game Setup :
When you start the game, a grid of face - down tiles is displayed on the screen .
Each tile has a hidden value .

3. Game Mechanics :
Click on a tile to reveal its value .
Then, click on another tile to reveal its value .
If the values of the two revealed tiles match, they stay face - up, and you score a point .
If the values do not match, the tiles are flipped face - down again .

4. Remembering the Tiles :

Pay attention to the values of the tiles when they are revealed .

Try to remember the locations of matching pairs .
5. Strategy :
The key to success is to remember the positions of the tiles and match them efficiently .
Use your memory to recall where different values are located in the grid .
6. Game Progress :
The game keeps track of the number of moves you make .
Try to complete the game with the fewest moves possible .
7. Winning the Game :
Continue revealing and matching pairs until all tiles are face - up .

Once all pairs are matched, a " Game Over" message will be displayed, showing the

number of moves it took to complete the game .

8. Restarting the Game :

If you want to play again, you can click the " Play Again" button at the bottom of the

game window .

This will reset the game, shuffle the tiles, and allow you to start a new game .

9. Have Fun:

Enjoy the process of testing and improving your memory skills .

Remember, the Memory Puzzle game is not only entertaining but also a great exercise for

your memory and concentration . Good luck, and have fun playing !

8. Quiz Game

f Quiz Game =]) 4
Question 5

What is the capital of Japan?

Time left: 8 seconds

[E——
" Beijing
" Seoul
* Tokyo
" Bangkok

Next

import tkinter as tk
from tkinter import messagebox
from tkinter import ttk

import time

class QuizGame:
def __init_ (self, root):
self.root = root
self.root.title("Quiz Game")
self.root.geometry("600x450")

self.root.attributes('-topmost’, True)

self.current_question = 0
self.score =0
self.timer_seconds =10

self.timer_label = None

self.progress_bar = None

self.questions = |
"question": "What is the capital of France?",
"options": ["Berlin", "Madrid", "Paris", "Rome"],
“correct_answer"; "Paris"

5

"question": "Which planet is known as the Red Planet?",
"options": ["Mars", "Venus", "Jupiter”, "Saturn"|,

"correct answer": "Mars"

"question": "What is the largest mammal in the world?",

"options": ["Elephant", "Blue Whale", "Giraffe", "Hippopotamus"],

"correct answer": "Blue Whale"

"question": "Which programming language is this quiz written in?",
"options": ["Python", "Java", "C++", "JavaScript"|,

"correct_answer": "Python"

"question": "What is the capital of Japan?",
"options": ["Beijing", "Seoul", "Tokyo", "Bangkok"],

"correct_answer": "Tokyo"

self.create_widgets()

def center window(self):
self root.update_idletasks()

window_width = self.root.winfo_width()

window_height = self.root.winfo_height()

position_left = int(
self. root.winfo_screenwidth() / 2 - window_width / 2)
position_top = int(self.root.winfo_screenheight() /
2 - window_height / 2)

self.root.geometry({"+{position_left}+{position_top}")

def create_widgets(self):
self.title_label = tk.Label(
self root, text="Quiz Game", font=("Helvetica", 18, "bold"))

self.title_label.pack(pady=10)

self.label_question = tk.Label(
self.root, text="", font=("Helvetica", 12))

self.label_question.pack(pady=10)

self.var option = tk.StringVar()

self.option_buttons = []

for option in self.questions|self.current_question|["options"|:
radio_button = tk.Radiobutton(

self.root, text=option, variable=self.var_option, value=option, font=("Helvetica", 10))

self.option_buttons.append(radio_button)
radio_button.pack()

self.btn_next = tk.Button(

self.root, text="Next", command=self.next_question, font=("Helvetica", 12))
self.btn_next.pack(side=tk.BOTTOM, pady=20)

self timer_label = tk.Label(
self.root, text=1"Time left: {self.timer seconds} seconds", font=("Helvetica", 10))

self.timer_label.pack()

self.progress_bar = ttk.Progressbar(
self root, length=200, mode="determinate")

self.progress_bar.pack(pady=10)

self.update_gquestion()

self start_timer()

def next_question(self):

user_answer = self.var_option.get()

if user_answer == self.questions|self.current_question||["correct_answer"|:

self.score += 1

self.current_question += 1

if self.current_question < len(self.questions):

self.update_question()
else:

self.show_result()

def update_question(self):
self.title_label.config(text={"Question {self.current_question + 1}")
self.label_question.config(

text=self.questions|self.current_question]["question"|)

self.var_option.set(None)
for button in self.option_buttons:

button.destroy/()

self.option_buttons = []
for option in self.questions|self.current_question|["options"]:
radio_button = tk.Radiobutton(
self.root, text=option, variable=self.var_option, value=option, font=("Helvetica", 10))
self.option_buttons.append(radio_button)
radio_button.pack()

self.timer seconds =10

self.start_timer()

def start_timer(self):

self.timer_label.config(text=f"Time left: {self.timer_seconds} seconds")

self.progress_bar|["value"] = 100 # Resef

self.update_timer()

def update_timer(self):
if self.current_question < len(self.questions):
self.timer_seconds -= 1
self timer_label.config(text={"Time left: {self.timer_seconds} seconds")

self.progress_bar|'"value"| = (self.timer_seconds / 10)* 100

if self timer seconds >=0:

self.root.after(6000, self.update_timer)
else:

self next_question()

def show_result(self):
result_text = f"You scored {self.score} out of {len(self.questions)}!"

messagebox.showinfo("Quiz Completed", result_text)

if _name___=="_main
root = tk.Tk()
app = QuizGame(root)

app.center_window()

root.mainloop()

This is a simple quiz game implemented using the Tkinter library in Python . Let's break

down the code and understand each part in detail :
1. Importing Libraries :
Python Code
import tkinter as tk
from tkinter import messagebox

from tkinter import ttk

import time

tkinter : This is the standard GUI (Graphical User Interface) toolkit that comes with

Python .

messagebox : Provides a set of convenience functions for creating standard modal dialogs .

ttk : Themed Tkinter, which provides access to the Tk themed widget set .
time : Used for handling time - related functionality .
2. QuizGame Class :

Python Code

class QuizGame :
This class encapsulates the entire quiz game .
3. Initializer (__init_):

Python Code
def __init__ (self, root):

Initializes the QuizGame class with the given YOOt Tkinter window .
4. Window Configuration :
Sets up the basic configuration for the Tkinter window, including title, size, and position .

Initializes variables like current_question, score, timer_seconds,

timer_label , and progress_bar .
5. List of Questions :

Python Code

self . questions =[...]

Contains a list of dictionaries, where each dictionary represents a question with its options and

correct answer .

6. create_widgets Method :

Configures and creates various widgets (GUI compunents) such as labels, radio

buttons, buttons, timer label, and progress bar .

calls update_question and start_timer to initialize the first question and start

the timer .
7.center_window Method :

Centers the Tkinter window on the screen .
8. next_question Method :

Handles the logic for moving to the next question .

Checks if the user's answer is correct, updates the score, and moves to the next question .

If there are no more questions, it calls the Show_result method .
9.update_question Method :

- Updates the GUI with the current question and its options .
Resets the timer for each question .

Calls start_timer to initiate the timer countdown .

10. start_timer Method :
« Initializes and starts the timer, updating the timer label and progress bar .
1.1. update_timer Method :
- Updates the timer label and progress bar based on the remaining time .
- Calls itself recursively with a delay using after method until the timer reaches zero .
12. show_result Method :
- Displays a message box with the quiz result, showing the user's score .
13. Main Block (_main__):
- Creates a Tkinter root window and initializes the QuizGame class.
- Centers the window and starts the Tkinter event loop .

This implementation provides a simple interactive quiz game with a countdown timer
for each question and a final score display at the end . Players can answer questions by

selecting options, and the game keeps track of their score .

How To Play Quiz Game

To play the quiz game, follow these steps :

1. Run the Python Script :
Save the provided Python script with the quiz game code in a file (e.g.,
quiz_game . py).
Open a terminal or command prompt .
Navigate to the directory containing the script .

Run the script by executing the command :

Code
python quiz_game . py

2. This will launch the quiz game window .

3. Answering Questions :
The quiz game window will display the first question and multiple - choice options .
Click on the radio button next to the answer you think is correct .

4. Next Question :
Clickthe " Next" button to move to the next question .

The timer will reset for each question .

5. Timer Countdown :

Pay attention to the timer label and progress bar .
You have a limited time to answer each question (default is 10 seconds).
6. Scoring :
- Your score increases when you select the correct answer .
The total score is displayed at the end of the quiz .
7. End of Quiz :

After answering all the questions, a message box will appear with your final score .

8. Close the Game :

You can close the quiz game window after viewing your score .

9. Note :

The quiz game has a set of predefined questions and answers . If you want to customize

the quiz content, you can modify the self . questions listin the script .

9. 2048 Game

2048 Game —= il] X
&

import pygame

import random

pygame.init()

GRID_SIZE = 4

TILE_SIZE = 100

GRID_MARGIN = 10

SCREEN_SIZE = (GRID_SIZE * TILE_SIZE + (GRID_SIZE + 1) * GRID_MARGIN,
GRID_SIZE * TILE_SIZE + (GRID_SIZE + 1) * GRID_MARGIN)

BACKGROUND_COLOR = (187, 173, 160)

GRID_COLOR = (205, 193, 180)

FONT_COLOR = (255, 255, 255)

screen = pygame.display.set_mode(SCREEN_SIZE)

pygame.display.set_caption("2048 Game")

font = pygame.font.Font(None, 36)

TILE_COLORS = {
0: (205, 193, 180),
2:(238,228,218),
4:(237,224,200),
8:(242,177,121),
16: (245,149, 99),
32:(246, 124, 95),
64: (246,94, 59),
128:(237,207,114),
256:(237,204,97),
512: (237,200, 80),
1024: (237,197, 63),
2048: (237,194, 46),

ANIMATION_SPEED = 10
GAME_WIN_TILE = 2048
CUSTOM_GRID_SIZES = [4, 5, 6]
COLOR_THEMES = {
'default’: TILE_COLORS,
'dark": {
0: (60, 60, 60),
2:(100, 100, 100),

4:(120, 120, 120),
8:(140, 140, 140),

16: (160, 160, 160),
32:(180, 180, 180),
64: (200, 200, 200),
128: (220, 220, 220),
256: (240, 240, 240),
512:(255, 255, 255),
1024: (255, 255, 255),
2048: (255,255, 255),

def draw_grid():
for row in range(GRID_SIZE):
for col in range(GRID_SIZE):

pygame.draw.rect(screen, GRID_COLOR, |
(GRID_MARGIN + TILE_SIZE) * col + GRID_MARGIN,
(GRID_MARGIN + TILE_SIZE) * row + GRID_MARGIN,
TILE_SIZE,
TILE_SIZE

def draw_tiles(grid):
for row in range(GRID_SIZE):
for col in range(GRID_SIZE):
value = grid[row][col]
if value != O:
pygame.draw.rect(screen, TILE_COLORS|value], |
(GRID_MARGIN + TILE_SIZE) * col + GRID_MARGIN,
(GRID_MARGIN + TILE_SIZE) * row + GRID_MARGIN,
TIEE SIZE,
i R0 5 A e =

)
text = font.render(str(value), True, FONT_COLOR)

text_rect = text.get_rect(center=(
(GRID_MARGIN + TILE_SIZE) * col +
GRID_MARGIN + TILE_SIZE // 2,
(GRID_MARGIN + TILE_SIZE)*
row + GRID_MARGIN + TILE_SIZE // 2
))

screen.blit(text, text_rect)

def generate_tile(grid):
empty_cells = [(row, col) for row in range(GRID_SIZE)
for col in range(GRID_SIZE) if grid[row][col] == O]
if empty_cells:
row, col = random.choice(empty_cells)

grid[row][col] = random.choice([2, 4])

def move_tiles(grid, direction):

if direction == "left":

grid = [list(row) for row in zip(*grid)]
elif direction == 'up"

grid = [list(col) for col in grid[::-1]]
elif direction == 'down":

grid = [list(col[::-1]) for col in grid]
for row in range(GRID_SIZE):

non_zeros = [val for val in grid[row] if val = O]

for col in range(len(non_zeros) - 1):
if non_zeros|col| == non_zeros|col + 1]:
non_zeros|col] *= 2
non_zeros|col+ 1| =0

non_zeros = [val for val in non_zeros if val I= 0]

grid|row| = non_zeros + |0| * (GRID_SIZE - len(non_zeros))

if direction == "left":

grid = [list(row) for row in zip(*grid)]

elif direction == "up"
grid = [list(col[::-1]) for col in grid|[::-1]]
elif direction == 'down":

grid = [list(col) for col in grid|[::-1]]

return grid

defis_game_over(grid):

for row in grid.:

if 0 in row or any(row(i] == row[i + 1] foriin range(GRID_SIZE - 1)):
return False
for col in zip(*grid):
if any(col[i] == col[i + 1] for i in range(GRID_SIZE - 1)):
return False

return True

def game_over_screen():

screen.fill(BACKGROUND_COLOR)
game_over_text = font.render("Game Over!", True, FONT_COLOR)
text_rect = game_over_text.get_rect(

center=(SCREEN_SIZE[0] // 2, SCREEN_SIZE[1] // 2 - 30))
screen.blit(game_over_text, text_rect)
restart_text = font.render("Press R to Restart", True, FONT_COLOR)
text_rect = restart_text.get_rect(

center=(SCREEN_SIZE[0] // 2, SCREEN_SIZE[1] // 2 + 30))
screen.blit(restart_text, text_rect)

pygame.display.flip()

def display_score(score):

score_text = font.render(f"Score: {score}", True, FONT_COLOR)
screen.blit(score_text, (GRID_MARGIN, SCREEN_SIZE|[1]- GRID_MARGIN - 30))

def display_high_score(high_score):
high_score_text = font.render(
f'"High Score: {high_score}", True, FONT_COLOR)
screen.blit(high_score_text, (GRID_MARGIN,
SCREEN_SIZE[1] - GRID_MARGIN - 60))

def game_win_screen():
screen.fill(BACKGROUND_COLOR)
game_win_text = font.render("You Win!", True, FONT_COLOR)

text_rect = game_win_text.get_rect(

center=(SCREEN_SIZE[0] // 2, SCREEN_SIZE[1] // 2 - 30))
screen.blit(game_win_text, text_rect)
restart_text = font.render("Press R to Restart", True, FONT_COLOR)
text_rect = restart_text.get_rect(

center=(SCREEN_SIZE[0] // 2, SCREEN_SIZE[1] // 2 + 30))
screen.blit(restart_text, text_rect)

pygame.display.flip()

def draw_animated_tiles(grid, animation_progress):
for row in range(GRID_SIZE):
for col in range(GRID_SIZE):
value = grid[row][col]

if value I= O:
X = (GRID_MARGIN + TILE_SIZE) * col + GRID_MARGIN
y = (GRID_MARGIN + TILE_SIZE) * row + GRID_MARGIN
target_x = x + (TILE_SIZE + GRID_MARGIN) * animation_progress

target_y =y + (TILE_SIZE + GRID_MARGIN) * animation_progress

pygame.draw.rect(screen, TILE_COLORS|value], |
target_x,
target_y,
TILE SECE,
TILE SIZE
)
text = font.render(str(value), True, FONT_COLOR)
text_rect = text.get_rect(center=(
target_x + TILE_SIZE // 2,

target_y + TILE_SIZE // 2
)

screen.blit(text, text_rect)

def move_animated_tiles(grid, direction, animation_progress):
if direction == 'left":
grid = [list(row) for row in zip(*grid)]
elif direction == "up"
grid = [list(col) for col in grid[::-1]]

elif direction == 'down":

grid = [list(col[::-1]) for col in grid]

for row in range(GRID_SIZE):
non_zeros = [val for val in grid[row] if val != O]
for col in range(len(non_zeros) - 1):
if non_zeros|[col] == non_zeros|col + 1]
non_zeros|col] *= 2

non_zeros|col+ 1] =0

non_zeros = [val for val in non_zeros if val I= 0]

grid[row] = non_zeros + [0] * (GRID_SIZE - len(non_zeros))

if direction == 'left":
grid = [list(row) for row in zip(*grid)]

elif direction == "up"

grid = [list(col[::-1]) for col in grid|[::-1]]

elif direction == 'down":

grid = [list(col) for col in grid|::-1]]

draw_animated_tiles(grid, animation_progress)
pygame.display.flip()
pygame.time.delay(ANIMATION_SPEED)

return grid

def animate_tile_movement(prev_grid, current_grid, direction, score, high_score):
foriin range(l, ANIMATION_SPEED + 1):
animation_progress =i/ ANIMATION_SPEED
screen. fill(BACKGROUND COLOR)
draw_grid()
draw_animated_tiles(prev_grid, 1 - animation_progress)
draw_animated_tiles(current_grid, animation_progress)
display_score(score)

display_high_score(high_score)

pygame.display.flip()

return current_grid

def undo_move(state_stack):
if len(state_stack) > 1:
state_stack.pop() #
prev_grid, prev_score, prev_high_score = state_stack.pop()
screen. fill(BACKGROUND COLOR)
draw_grid()
draw_tiles(prev_grid)

display_score(prev_score)

display_high_score(prev_high_score)
pygame.display.flip()
pygame.time.delay(ANIMATION_SPEED)

return prev_grid, prev_score, prev_high_score
else:

return state_stack|[0] # I

grid = [[0] * GRID_SIZE for _ in range(GRID_SIZE)]
generate_tile(grid)
generate_tile(grid)

running = True
game_over = False
game_won = False
score = 0

high score=0

state_stack = [(|[row][:] for row in grid], score, high_score)]

while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame. KEYDOWN:
if not game_over and not game_won:
if event.key == pygame.K_LEFT:
state_stack.append(
([rowl[:] for row in grid], score, high_score))

grid = move_animated_tiles(grid, 'left', 0)

grid = move_tiles(grid, 'left’)

if grid != state_stack[-1][O]:
generate_tile(grid)

score += calculate_score(state_stackl-1][0], grid)
grid = animate_tile_movement(
state_stack|-1][0], grid, 'left’, score, high_score)
elif event.key == pygame.K_RIGHT:
state_stack.append(
(lrow]:] for row in grid|, score, high_score))
grid = move_animated_tiles(grid, 'right', 0)
grid = move_tiles(grid, 'right’)
if grid != state_stack|-1]|0}:
generate_tile(grid)
score += calculate_score(state_stack|-1][0], grid)
elif event.key == pygame.K_UP:
state_stack.append(
([row|:] for row in grid], score, high_score))
grid = move_animated_tiles(grid, ‘up', 0)
grid = move_tiles(grid, 'up')
if grid != state_stack(-1][O]:
generate_tile(grid)
score += calculate_score(state_stack|-1][0], grid)
elif event.key == pygame.K_DOWN:
state_stack.append(

(lrow]:] for row in grid|, score, high_score))

grid = move_animated_tiles(grid, 'down’, 0)

grid = move_tiles(grid, 'down')

if grid != state_stack|-1][0]:
generate_tile(grid)
score += calculate_score(state_stack[-1][0], grid)
elif event.key == pygame.K_r:
grid = [[0] * GRID_SIZE for _ in range(GRID_SIZE)]
generate_tile(grid)

generate_tile(grid)

game_over = False
game_won = False
if score > high_score:
high_score = score
score = O
state_stack = |
([row|:] for row in grid], score, high_score)]
elif event.key == pygame.K_u and len(state_stack) > 1:

grid, score, high_score = undo_move(state_stack)

game_over = False

game_won = False

elif game_over or game_won:
if event.key == pygame.K_r:
grid = [[0] * GRID_SIZE for _ in range(GRID_SIZE)]
generate_tile(grid)

generate_tile(grid)

game_over = False

game_won = False

if score > high_score:
high_score = score

score = 0

state_stack = |

([rowl:] for row in grid], score, high_score)]

if not game_over and not game_won:
screen.fill(BACKGROUND_COLOR)
draw_grid()

draw_tiles(grid)

display_score(score)
display_high_score(high_score)
pygame.display.flip()

if is_game_over(grid):
game_over = True
if score > high_score:
high score = score

game_over_screen()

if GAME_WIN_TILE in [tile for row in grid for tile in row|:

game_won = True
game_win_screen()

running = False

pygame.quit()

def calculate_score(prev_grid, current_grid):
score =0
foriin range(GRID_SIZE):
for j in range(GRID_SIZE):
if current_grid[i][j] > 0 and current_grid[i][j] != prev_grid[i][j]:
score += current_grid|i]j]

return score

S mam

This Python script implements a simple version of the popular game " 2048 " using the
Pygame library. The game involves sliding numbered tiles on a 4x4 grid, merging tiles
with the same number when they collide, and aiming to reach the tile with the number
2048 .

Let's break down the key components and functionalities of the script :

Pygame Initialization :

The script starts by importing the Pygame library and initializing it .

Python Code
import pygame
Constants and Configuration :

Various constants and configurations are set for the game, including grid size, tile size, colors, fonts,

animation speed, winning condition, and color themes .

Python Code

GRID_SIZE = 4

TILE_SIZE = 100

GRID_MARGIN = 10

SCREEN_SIZE = (GRID_SIZE * TILE_SIZE + (GRID_SIZE + 1)* GRID_MARGIN,
GRID_SIZE * TILE_SIZE + (GRID_SIZE + 1)* GRID_MARGIN)

BACKGROUND_COLOR =(187,173,160)

GRID_COLOR =(205,193,180)

FONT_COLOR = (255,255,255)

... other constants ..

Pygame Screen Initialization :

The Pygame screen is initialized with the specified size and a caption .

Python Code
screen = pygame . display. set_mode (SCREEN_SIZE)
pygame . display . set_caption (" 2048 Game ")

Grid and Tile Drawing :

Functions for drawing the grid and tiles on the screen are defined .

Python Code
def draw_grid ():
Draws the grid on the screen

def draw_tiles (grid):

Draws the tiles on the screen based on the provided grid

Tile Colors and Themes :

Colors for each tile value and different color themes are defined .

Python Code
TILE_COLORS = {
... tile colors based on their values ...

}

COLOR_THEMES = {
'default' : TILE_COLORS,
'dark’: {

... colors for a dark theme ...

1,

Tile Movement and Animation :
Functions for moving tiles in different directions, generating new tiles, and handling animations are
defined .

Python Code

def move_tiles (grid, direction):

Moves the tiles in the specified direction

def generate_tile (grid):

Generates anew tile (2 or 4) in an empty cell

def draw_animated_tiles (grid, animation_progress):
Draws tiles with animation based on the animation progress
Game State Management:

Functions for checking game over conditions, displaying game over screens, and managing the game

state are defined .

Python Code
defis_game_over (grid):

Checks if the game is over

def game_over_screen ():

Displays the game over screen

def display_score (score):

Displays the current score on the screen
Main Game Loop :

The main game loop handles user input, updates the game state, and continuously redraws the screen .

Python Code
def main ():

The main game loop

Additional Features :
The script includes additional features such as undoing moves, calculating scores, and displaying a win

screemn .

Python Code
def undo_move (state_stack):
Undoes the last move

def calculate_score (prev_grid, current_grid):

Calculates the score based on changes in the grid

Running the Game:

The script is executed when the file is run, starting the game .

Python Code

if name ==

1]

main ()

Overall, this script provides a functional implementation of the 2048 game with basic
features and Pygame for handling graphics and user input . Players can move tiles, merge

them, achieve a winning condition, and restart the game .

How To Play 2048 Game

The 2048 game is a single - player sliding puzzle game where the goal is to combine
matching tiles to reach the tile with a value of 2048 . The game is played on a 4x4 grid, and
tiles with the same value can be merged by moving them in a specific direction . Here's a
detailed breakdown of how to play the 2048 game based on the provided Python Code :

1. Game Initialization :

2. Controls :

The game starts with an empty 4x4 grid .

Two tiles with a value of either 2 or 4 are randomly placed on the grid .

You can control the movement of tiles using the arrow keys on your keyboard .
Press the left arrow key to move all tiles to the left .

Press the right arrow key to move all tiles to the right .

Press the up arrow key to move all tiles upwards .

Press the down arrow key to move all tiles downwards .

Press the R key to restart the game at any time .

3. Gameplay :

Tiles with the same value can be merged into a single tile by moving them towards each

other.

When you make a move, a new tile with a value of 2 or 4 will appear in an empty spot .
The goal is to keep merging tiles to create larger values and reach the tile with a value of

2048 .

The game continues until you either reach the 2048 tile (winning the game) orthe grid

is full with no more moves possible (losing the game).
4.Scoring :
Your score is based on the values of the tiles you merge .

Each time two tiles are merged, the value of the resulting tile is added to your score .

5. Special Features :
The game includes a winning condition where reaching the 2048 tile displays a victory

screen .

There is an undo feature (press the U key) that allows you to undo your last move .

However, it has limitations and can't be used indefinitely .

The game tracks and displays your current score and the highest score achieved in the

session .
6. Game Over :

The game ends when you reach the 2048 tile, displaying a victory screen .
If the grid is full and no more moves are possible, the game ends, and a game over screen

is displayed .

You can restart the game at any time by pressing the R key .

7. High Score :

The game keeps track of the highest score achieved during the session .

8. Additional Details :
The grid and tiles are displayed using the Pygame library, and the game provides a

graphical interface .
Overall, the 2048 game involves strategic thinking, planning your moves, and aiming to
create the largest possible tiles to achieve the highest score . It's a simple yet challenging

puzzle game that requires both skill and a bit of luck .

10. BlackJack Game

f Blakjuck = a

import tkinter as tk
from tkinter import messagebox
from PIL import Image, ImageTk

import random

class BlackjackGame:
def __init_ (self, master):
self. master = master

self.master.title("Blackjack")

self.deck = self.get_deck()
self.player_hand = [}
self.dealer_hand =[]
self.player_balance = 1000 #

self.player_card_images =[] #

self.dealer_card_images =[] # Track

self.create_widgets()

def get_deck(self):

suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades']

ranks =['2','3', '4",'5",'6','7"
2,191,109, Q. K, A

r

deck = [{'suit": suit, 'rank': rank}
for suit in suits for rank in ranks|

random.shuffle(deck)

return deck

def deal_card(self, hand):
card = self.deck.pop()
hand.append(card)

return card

def calculate_score(self, hand):
score = sum(self.get_card_value(card) for card in hand)
1f score > 21 and 'A' in [card|'rank’] for card in hand]:
score -= 10 # Deduct]

return score

def get_card_value(self, card):
if card|'rank'] in '], 'Q’, 'K']:

return 10

elif card|'rank'| =="A":
returnl1l
else:

return int(card|'rank'])

def player_hit(self):
self hit_button.config(state=tk.DISABLED)
self.deal_card(self.player_hand)
self.update_display()

player_score = self.calculate_score(self.player_hand)
if player_score > 21:

self.end_game("You went over. You lose!")

self.end_game("Blackjack! You win!")

elif player_score <= 21:

self_hit_button.config(state=tk. NORMAL)

def end_game(self, message):
1f "You lose!" in message:
self.player_balance -= 100

self.update_score() +

messagebox.showinfo("Game Over", message +

f"\nYour balance: ${self.player_balance}")

self.update_score() # Add parenthe:

def dealer_play(self):
while self.calculate_score(self.dealer hand) < 17:

self.deal card(self.dealer hand)
self.update_display()

player_score = self.calculate_score(self.player_hand)

dealer_score = self.calculate_score(self.dealer_hand)

1f dealer_score > 21 or dealer_score < player_score:
self.end_game("You win!")
self.player_balance += 100
elif dealer_score > player_score:
self.end _game("You lose!")
self.player_balance -= 100
else:

self.end_game("It's a draw!")

def restart_game(self):
self.deck = self.get_deck()
self.player_hand.clear()

self.dealer hand.clear()
self.player_canvas.delete("all")

self.dealer_canvas.delete("all")

self.player_hand.extend(|self.deal_card(self.player_hand), self.deal card(self.player_hand)|)
self.dealer_hand.extend([self.deal_card(self.dealer_hand), self.deal_card(self.dealer_hand)])

self.player_balance = 1000

self hit_button|"state"] = "normal"

self stand_button|"state"] = "normal"

self.update_score()

self.update_display()

def _display_card(self, img_path, x, y, canvas, card_images=None):
img_path = img_path.lower()

image = Image.open(img_path)

image = image.resize((100, 150), Image. ANTIALIAS)

photo = ImageTk Photolmage(image)

canvas.create_image(x, y, anchor=tk.W, image=photo)

canvas.image = photo

if card_images is not None:

card_images.append(photo)

def update_display(self):
self.update_player_hand()
self.update_dealer_hand()

self.update_score() # Update scor

def update_player_hand(self):
self.player_canvas.delete("all")
for card in self.player_hand:
img_path = f'C:/Users/Suchat/Playing Cards/Playing Cards/PNG-cards-1.3/{card['rank']}_of_{card['suit']}.png"

self._display_card(img_path, 50, 200, self.player_canvas, self.player_card_images)

def update_dealer_hand(self):

self.dealer canvas.delete("all")

for card in self.dealer_hand:
img path = {"C:/Users/Suchat/Playing Cards/Playing Cards/PNG-cards-1.3/{card|'rank']}_of_{card|'suit']}.png"

self._display_card(img_path, 50, 50, self.dealer_canvas, self.dealer_card_images)

def update_score(self):

self.score_label.config(text=f"Balance: ${self.player_balance}")

def create_widgets(self):
self.player_hand = [self.deal_card(
self.player_hand), self.deal_card(self.player_hand)]
self.dealer_hand = [self.deal_card(
self.dealer_hand), self.deal_card(self.dealer_hand)]

self.player_canvas = tk.Canvas(
self.master, width=600, height=300, bg="green")

self.player_canvas.pack()

self.dealer_canvas = tk.Canvas(

self.master, width=600, height=300, bg="green")

self.dealer_canvas.pack()

self hit_button = tk.Button(

self.master, text="Hit", command=self.player hit)
self.hit_button.pack(side=tk.LEFT, padx=10)

self . stand_button = tk.Button(
self. master, text="Stand", command=self.dealer_play)
self.stand_button.pack(side=tk.RIGHT, padx=10)

self restart_button = tk.Button(
self. master, text="Restart", command=self.restart_game)

self.restart_button.pack(side=tk.BOTTOM, pady=10)

self.score_label = tk.Label(

self.master, text={"Balance: ${self.player_balance}")
self.score_label.pack(side=tk.BOTTOM)

self.update_display()

def main():
root = tk.Tk()
game = BlackjackGame(root)

root.mainloop()

if name ==" main

main()

This Python script uses the tkinter library to create a simple graphical user interface (GUI)
for a Blackjack game . Let's go through the details of the script :

Import Statements :

Python Code

import tkinter as tk

from tkinter import messagebox
from PIL import Image, ImageTk

import random
tkinter : The main library for creating the GUI .
messagebox . A submodule of tkinter for displaying message boxes .
Image and ImageTk from the PIL (Pillow) library for working with images .
random : Used for shuffling the deck .
BlackjackGame Class:
Python Code

class BlackjackGame :
def __init__ (self, master):
Initialization method
Initialize the main window and set the title
self . master = master

self . master . title (" Blackjack ")

Initialize the deck and player - related attributes
self . deck = self. get_deck ()
self . player_hand =[]

self . dealer_hand =[]
self . player_balance = 1000

Track card images for player and dealer
self . player_card_images =[]
self . dealer_card_images =[]

Create GUI widgets

self . create_widgets ()

...(more methods explained below)

Methods :
1

2.

3

8.
9.

. get_deck : Creates and shuffles a standard deck of 52 playing cards .

deal_card : Deals a card from the deck and adds it to the specified hand .

.calculate_score : Calculates the total score of a hand, considering the value of
Aces.
. get_card_value : Returns the numerical value of a card .

.player_hit : Handles the logic when the player clicks the " Hit" button .

.end_game : Displays a message box when the game ends, updating the player's

balance.

.dealer_play : Simulates the dealer's turn, continuing to draw cards until the

scoreis 17 or higher .

restart_game : Resets the game state, allowing the player to start a new round .
_display_card : Displays a card image on a canvas at specified coordinates .

10. update_display : Updates the display after each player action .

11. update_player_hand : Updates the player's hand display on the GUI.
12. update_dealer_hand : Updates the dealer's hand display on the GUI .

13. update_score : Updates the displayed player balance .
14. create_widgets : Creates and configures the GUI elements .
GUI Elements :
player_canvas and dealer_canvas : Canvas widgets for displaying player and dealer cards .
hit_button and stand_button : Buttons for player actions .
restart_button : Button to restart the game .

score_label : Labelto display the player's balance .

Main Function :

Python Code
def main ():
root = tk. Tk ()
game = BlackjackGame (root)

root . mainloop ()

if riamia ==" mam ™

main ()
Creates the main Tkinter window and initializes the BlackjackGame instance .
Starts the Tkinter event loop .
Overall Flow :

1. The game starts with an initial deck, player hand, and dealer hand .

2. GUI elements are created and displayed .

3. Player actions (hit, stand) are handled through button clicks .

4. The game state and GUI are updated accordingly .

5. When the game ends, a message box is displayed with the result .

6. Player can restart the game for a new round .

The game combines basic Blackjack logic with a simple GUI for user interaction .

How To Play Blackjack Game

The provided code is a simple implementation of a Blackjack game using the Python
Tkinter library for the graphical user interface (GUI). Let's break down the key
components and explain how to play the game :

1. Initialization :

The game starts by creating an instance of the BlackjackGame class in the main

function .

The game window is created using Tkinter .

Python Code
root = tk. Tk ()
game = BlackjackGame (root)

root . mainloop ()
2. Card Deck and Initialization :
The get_deck method creates a standard deck of 52 playing cards, shuffles it, and
returns the deck .

The player and dealer hands are initialized with two cards each .

Python Code

self . deck = self. get_deck ()

self . player_hand = [self . deal_card (self . player_hand),
self . deal_card (self. player_hand)]

self . dealer_hand = [self . deal_card (self . dealer_hand),
self . deal_card (self . dealer_hand)]

3. Game Logic:

The deal _card method deals a card from the deck to a specified hand .

The calculate_score method calculates the total score of a given hand, considering the

special case of Aces .
The get_card_value method assigns numerical values to cards .

The player_hit method handles player actions when they choose to hit, updating the

display and checking for win / loss conditions .

Python Code
def player_hit (self):
... (disabled hit button during execution)
self . deal_card (self . player_hand)
self . update_display ()
player_score = self. calculate_score (self . player_hand)
if player_score > 21 :
self . end_game (" You went over . Youlose !")
... (checking for blackjack)
elif player_score < = 21 :

... (enabled hit button after execution if the score is still under 21)

4. End Game Conditions :

The end_game method updates the player's balance based on win / loss conditions and

displays a message box with the outcome .

Python Code
def end_game (self, message):

...(deduct 100 from balance when losing)

messagebox . showinfo (" Game Over", message + f"\nYour balance: §
{self . player_balance} ")

self . update_score ()
5. Dealer's Turn :

The dealer_play method handles the dealer's turn, drawing cards until their score is at

least 17 .

It compares the final scores of the player and dealer to determine the game outcome .

Python Code
def dealer_play (self):
... (dealer draws cards until scoreis at least 17)
if dealer_score > 21 or dealer_score < player_score :
self . end_game (" You win !")

self . player_balance += 100

elif dealer_score > player_score :
self . end_game (" You lose !")

self . player_balance -= 100

else :
self . end_game (" It's a draw !")

6. Restarting the Game :

The restart_game method resets the game state, including the deck, hands, and player

balance .

Python Code
def restart_game (self):
...(resetting game state)

self . update_display ()
7. GUI Elements :

The GUI elements include two canvases for displaying player and dealer cards, " Hit" and
"Stand" buttons for player actions, a " Restart " button, and a label showing the player's

balance .

Python Code

self . player_canvas = tk. Canvas (self . master, width = 600, height = 300, bg =" green ")
... (similarly for dealer_canvas, hit_button, stand_button, restart_button, score_label)

8. Card Display :
The _display_card method handles the display of card images on the canvases .

Python Code

def _display_card (self, img_path, x, y, canvas, card_images = None):

... (opens and resizes the image, creates a Tkinter PhotoIlmage, and displays it on the

canvas)

9. Updating the Display :

The update_display method updates the player and dealer hands, as well as the score

label after each action.

Python Code

def update_display (self):
self . update_player_hand ()
self . update_dealer_hand ()

self . update_score ()

10. Card Images :
The card images are loaded from PNG files, and their paths are generated based on the

card's rank and suit .

Python Code
img_path = f"C:/Users/ Suchat /Playing Cards/Playing Cards/PNG-cards-1.3/
{card ['rank'] }_of {card['suit']}.png"

To play the game :
Run the script .
The initial player balance is $1000 .
Click the " Hit " button to draw additional cards .
Clickthe " Stand " button to end the player's turn and let the dealer play .
The game automatically determines the winner and updates the balance .
Clickthe " Restart " button to start a new game with a fresh deck .

Note : Ensure that the file paths for the card images are correct, and the image files are

available in the specified directory .

11. Soduku Solver Game

!? Sudoku Solver

2 3 4 P 6 [/ B8 8

1

2 3

1

2 3 4 5 6

4 5 6 7 8 9
/7 8 9

2

1

4 3 ©6 S5 8 9 |7

1

1

3 6 P 8 9 |7 [2
8 9 |7 |2

O

4 3 6 5

1

6 4 2 9 7 8

1

3

1

g
4

6 4 2 9 |/ B8 P

9 (7 8 5 |3

6

1

Solve

Clear

Generate ‘

class SudokuSolverGUI:
def __init_ (self, master):
self. master = master
self. master.title("Sudoku Solver")
self.grid_size = 9
self.cells = [[tk.StringVar() for _ in range(self.grid_size)]

for _in range(self.grid_size)]

for iin range(self.grid_size):

for j in range(self.grid_size):
cell_entry = tk.Entry(master, width=3, font=(
‘Arial', 16), textvariable=self.cells|i][j])
cell_entry.grid(row=1, column=j)
cell_entry.bind('<KeyRelease>',lambda event,

i=i, j=j: self.update_entry_color(event, i, j))

solve_button = tk.Button(master, text="Solve",
command=self.solve_sudoku)

solve_button.grid(row=self.grid_size, columnspan=self.grid_size)

clear_button = tk.Button(master, text="Clear", command=self.clear _grid)

clear_button.grid(row=self.grid_size + 1, columnspan=self.grid_size)

generate_button = tk.Button(
master, text="Generate", command=self generate_board)

generate_button.grid(row=self.grid_size + 2, columnspan=self.grid_size)
def on_key_press(self, event):

if event.char.isdigit() and int(event.char) in range(1, 10):
event.widget.delete(0, tk.END)

event.widget.insert(0, event.char)

row, col = self.get_cell_position(event.widget)

num = int(event.char) if event.char.isdigit() else O

if not self.1s_valid_move(row, col, num):
event.widget.config(fg='red’)

else:

event.widget.config(fg='black’)

def clear grid(self):

foriin range(self.grid_size):
for j in range(self.grid_size):
self.cells[i][j].set(")
self.get_entry_widget(i, j).config(
fg='black') # Reset text color

def solve_sudoku(self):

board = [|0] * self.grid_size for _in range(self.grid_size)|
foriin range(self.grid_size):
for j in range(self.grid_size):
value = self.cells|i][j].get()
if value.isdigit() and int(value) in range(1, 10):

board[i][j] = int(value)

if self.solve_sudoku_backtracking(board):

for iin range(self.grid_size):
for j in range(self.grid_size):
self.cells[i][j].set(str(board[i][j]))

self.get_entry_widget(i, j).config(

fg="'black') # Reset text
else:

print("No solution found.")
def update_entry_color(self, event, i, j):

num = int(self.cells|i][j].get()
) if self.cells]i][j].get().isdigit() else O
if not self.is_valid_move(self.cells, i, j, num):
self.get_entry_widget(i, j).config(fg="red")
else:

self.get_entry_widget(i, j).config(fg='black’)

def get_entry_widget(self, i, j):

widgets_in_row = self.master.grid_slaves(row=1)
for widget in widgets_in_row:
if int(widget.grid_info()|"column"]) == j:
return widget

return None

defis_valid_move(self, board, row, col, num):
return not (

self.used_in_row_backtracking(board, row, num) or

self.used_in_col backtracking(board, col, num) ox
self.used_in_box_backtracking(

board, row - row % 3, col - col % 3, num)

def get_cell position(self, widget):

for iin range(self.grid_size):
for jin range(self.grid_size):
if self.get_entry_widget(i, j) == widget:
returni, j

return-1, -1

def find_unassigned _location(self, board):
foriin range(self.grid_size):
for j in range(self.grid_size):
if board|i][j] == O:
returni, j

return None

def solve_sudoku_backtracking(self, board):

empty_cell = self.find_unassigned_location(board)

if not empty_cell:

return True
row, col = empty_cell
for num in range(1, 10):
if self.is_valid_move(board, row, col, num):

board|row][col] = num

if self.solve_sudoku_backtracking(board):

return True

board|[row]|col] = 0

return False

defused_in_row_backtracking(self, board, row, num):

return num in board|row]|

defused_in_col_backtracking(self, board, col, num):

return num in |board[row]|[col] for row in range(self.grid_size)]

defused_in_box_backtracking(self, board, start_row, start_col, num):

return any(num == board[row][col] for row in range(start_row, start_row + 3) for col in range(start_col, start_col +

3))

def generate_board(self):

self.clear_grid() # Cl
self.generate_sudoku_puzzle()

foriin range(self.grid_size):
for j in range(self.grid_size):
value = self.cells|i][j].get()
if value.isdigit() and int(value) != O:
self.get_entry_widget(i, j).config(
fg="black’) # Reset text colo

def generate_sudoku_puzzle(self):

self.clear grid()

solved_board = [[0] * self.grid_size for _in range(self.grid_size)]

self.solve_sudoku_backtracking(solved_board)

board_copy = [row|:| for row in solved_board]

cells to_remove = random.randint(12, 30)
for _in range(cells_to_remove):
row, col = random.randint(0, 8), random.randint(0, 8)
while board_copy|row|[col| ==
row, col = random.randint(0, 8), random.randint(0, 8)

board_copy|row][col] ="

foriin range(self.grid_size):
for j in range(self.grid_size):
self.cells|i][j].set(str(board_copylil[j]))

if _name__
root = tk.Tk()
app = SudokuSolverGUI(root)

root.mainloop()

let's go through the code line by line :
Python Code

import tkinter as tk

import random
import tkinter as tk : Thisimports the Tkinter module and renames it as tK for easier reference .

import random : This imports the random module, which will be used for generating random

numbers later in the code .
Python Code

class SudokuSolverGUI :
def __init__ (self, master):

self . master = master

self . master. title (" Sudoku Solver ")

self . grid_size = 9

self . cells =[[tk. StringVar () for _in range (self. grid_size)]

for _inrange (self. grid_size)]
class SudokuSolverGUI : : This defines a class named SudokuSolverGUI .

def __init__ (self, master): : Thisisthe constructor method for the class . Itinitializes the class

instance with the given master widget (typically the root window of the GUI).

self . master = master : This stores a reference to the master widget .

self . master. title (" Sudoku Solver ") : This sets the title of the master widget to " Sudoku

Solver ".

self . grid_size = 9 : This sets the grid size for the Sudoku board to 9x9 .

self . cells = [[tk.StringVar() for _ in range (self. grid_size)] for _ in

range (self. grid_size)] : This creates a 2D list of StringVar objects, which will be used to

represent the individual cells of the Sudoku grid .

Python Code
Create the GUI grid
foriinrange (self. grid_size):
forjin range (self. grid_size):

cell_entry = tk.Entry (master, width = 3, font =(
'‘Arial’, 16), textvariable = self . cells [i][]])

cell_entry. grid (row =i, column =j)

cell_entry. bind ('<KeyRelease>', lambda event,

i=1,j=j: self.update_entry_color (event,i,j))

This loop iterates over each cell in the Sudoku grid and creates an Entry widget for each cell .

tk . Entry (master, width = 3, font =('Arial', 16), textvariable = self. cells[1i]
[]]) : This creates an Entry widget with a width of 3 characters, using the Arial font with size 16, and
associates it with a corresponding StringVar object from the self . cells list.

cell_entry. grid (row =1, column = j) : This places the Entry widget in the grid layout at the
specified row and column .

cell_entry. bind ('<KeyRelease>', lambda event, i=1i, j=j:
self . update_entry_color (event, i, j)): This binds the <KeyRelease> event to the

update_entry_color method, passing the event object as well as the row (1) and column (])

indices as arguments .

Python Code
Create Solve button
solve_button = tk.Button (master, text =" Solve ",
command = self . solve_sudoku)
solve_button . grid (row = self . grid_size, columnspan = self . grid_size)
This creates a " Solve " button widget using the tK . Button class, which calls the solve_sudoku

method when clicked .

solve_button . grid (row = self . grid_size, columnspan = self. grid_size) : This
places the Solve button in the grid layout, spanning across the entire bottom row of the grid .
Python Code
Create Clear button
clear_button = tk.Button (master, text =" Clear ", command = self. clear_grid)
clear_button . grid (row = self . grid_size + 1, columnspan = self. grid_size)

This creates a " Clear" button widget using the tk . Button class, which calls the clear_grid
method when clicked .

clear_button . grid (row = self. grid_size + 1, columnspan = self. grid_size) :
This places the Clear button in the grid layout, below the Solve button, spanning across the entire bottom

row of the grid .

Python Code
Create Generate button
generate_button = tk. Button (
master, text =" Generate ", command = self . generate_board)
generate_button . grid (row = self . grid_size + 2, columnspan = self . grid_size)

This creates a " Generate" button widget using the tk.Button class, which calls the

generate_board method when clicked .

generate_button . grid (row = self. grid_size + 2,
columnspan = self . gridﬁsize) : This places the Generate button in the grid layout, below the

Clear button, spanning across the entire bottom row of the grid .

This covers the initialization and setup of the GUI components in the SudokuSolverGUI

class.

How To Play Sudoku Solver Game

To play the Sudoku Solver game, follow these steps :
1. Run the Code:
Make sure you have Python installed on your system .

Copy the provided Python Code into a file, save it with a . Py extension, and run the

script .
This will open a graphical window with the Sudoku Solver game .

2. Understanding the GUI :

The GUI consists of a 9x9 grid of Entry widgets, where you can input numbers .

The numbers represent the initial Sudoku puzzle, and you can edit them by clicking on

the respective cells and typing in a digit from 1to 9 .

3. Solving the Puzzle:
If you have a Sudoku puzzle you'd like to solve, input the initial numbers into the grid .

Clickthe " Solve " button to let the program solve the puzzle . The solved puzzle will be

displayed in the same grid .
4. Clearing the Grid :

To clear the entire grid, click the " Clear " button . This allows you to start with a blank

grid or input a new puzzle .
5. Generating a Puzzle :

Clickthe " Generate " button to create anew Sudoku puzzle . The program will generate

a new puzzle for you to solve .

6. Input Validation :

The program validates your input . If you enter an invalid number (e. g ., anumber
outside the range of 1 to 9) or if the entered number violates the rules of Sudoku, the
text color will turn red to indicate an error .

7. Error Highlighting :
As you input numbers, the program checks for errors and highlights the text in red if

there's a conflict in the current row, column, or 3x3 box .

8. Closing the Game:
Close the game window when you're done playing .

Remember, the Sudoku Solver game is designed to allow you to solve existing puzzles, clear
the grid to create new ones, and enjoy the process of solving Sudoku puzzles interactively .
You can experiment with different puzzles and observe how the backtracking algorithm

efficiently solves them .

12. Connect Four Game

Connect Four = L] X

Current Player: Player 1
Scores:0-0

Restart

import tkinter as tk
from tkinter import messagebox

import random

class ConnectFour:
def _ init_ (self, vs_ai=False):

self. window = tk.Tk()
self.window.title("Connect Four")
self.player_names = ["Player 1", "Player 2"]
self.scores = [0, O]
self.vs_ai = vs_ai
self.board = [[0] * 7 for _ in range(6)]

self.current_player = 1

self.create_widgets()

self. window.mainloop()

def create_widgets(self):

self.buttons = [[None]* 7 for _in range(6)]

for row in range(6):
for col in range(7):
self.buttons[row][col] = tk.Button(self.window, text="", width=5, height=2,

command=lambda r=row, c=col; self.drop_piece(r, c))

self.buttons[row|[col].grid(row=row, column=col)

self.player_label = tk.Label(
self.window, text={"Current Player: {self.player names|self.current_player-1]}{")

self.player_label.grid(row=6, columnspan=7)

self.score_label = tk.Label(
self.window, text=f"Scores: {self.scores[0]} - {self.scores[1]}")

self.score_label.grid(row=7, columnspan=7)

restart_button = tk.Button(
self. window, text="Restart", command=self.reset_game)

restart_button.grid(row=8, columnspan=7)

def drop_piece(self, row, col):
if self.board|row]|[col] == O:
self.board|row]|col] = self.current_player
self.update_button_text(row, col)
if self.check_winner(row, col):
messagebox.showinfo(

"Winner!", f'"Player {self.current_player} wins!")

self.scores[self.current_player - 1] += 1

self.update_score_label()

self.reset_game()

else:
if not self.vs_ai:
self.switch_player()
else:
self.al_drop_piece()
self.switch_player()

def update_button_text(self, row, col):
player_symbol = "X" if self.current_player == 1 else "O"

self.buttons|row][col].config(text=player_symbol, state=tk.DISABLED)

def check_winner(self, row, col):

directions = [(0, 1),(1,0),(1, 1), (-1, 1)]

for dr, dc in directions:

count = 1 # Numbe

foriinrange(l, 4):

r,c=row+1*dr,col +1*dc

if0<=r<6and0 <=c < 7 and self.board|r][c] == self.current_player:
count +=1

else:

break

foriin range(1, 4):

r,c=row-1*dr,col-1i*dc

if0<=r<6andO0 <=c < 7 and self.board|r][c| == self.current_player:
count +=1
else:

break

if count >= 4:

return True

return False

def switch_player(self):
self.current_player = 3 - self.current_player # Switch player
self.player_label.config(

text={"Current Player: {self.player _names|self.current_player-1]}")

def reset_game(self):

for row in range(6):
for col in range(7):

self.buttons|row][col|.config(text="", state=tk. NORMAL)

self . board|row][col] = 0
self.current_player = 1
self.player_label.config(

text={"Current Player: {self.player_names|self.current_player-1|}")

def update_score_label(self):
self.score_label.config(

text=f"Scores: {self.scores[0]} - {self.scores[1]}")

def ai_drop_piece(self):
valid_moves = [(r, ¢) for r in range(6)
for ¢ in range(7) if self.board|r][c] == 0]
if valid_moves:
row, col = random.choice(valid_moves)
self.board[row][col] = self.current_player
self.update_button_text(row, col)
if self.check_winner(row, col):
messagebox.showinfo(
"Winner!", {"Player {self.current_player} wins!")
self.scores|self.current_player-1|+=1

self.update_score_label()

self.reset_game()

main

ConnectFour(vs_ai=True)

Let's go through the Connect Four game code line by line :
Python Code
import tkinter as tk

from tkinter import messagebox

import random

These lines import the necessary modules for creating a graphical user interface (GUI) with Tkinter,

handling message boxes, and generating random numbers .

Python Code
class ConnectFour :

def __init_ (self, vs_ai = False):

Defines a class named ConnectFour that represents the Connect Four game. The Vs_al
parameter is optional and set to False by default, indicating whether the game should be played

againstan Al .
Python Code
self . window = tk. Tk ()

self . window . title (" Connect Four ")

Creates the main window for the game using Tkinter, with the title " Connect Four ".

Python Code
self . player_names =["Player 1", " Player 2 "]

self . scores =] 0,0]

Initializes a list of player names and a list to store the scores .

Python Code

self . vs_al = vs_ai

Stores the value of VS_al in the class instance, determining whether the game is played against an Al

or another player .

Python Code
self . board =[[0]* 7 for _inrange (6)]

Initializes a 6x7 game board represented as a list of lists, where each element is initialized to O .

Python Code

self . current_player = 1

Sets the initial player to Player 1 .

Python Code
self . create_widgets ()

self . window . mainloop ()

Calls the CI‘EELtE_WidgEtS method to set up the GUI components and starts the Tkinter event loop .

Python Code
def create_widgets (self):

Defines a method to create the GUI components of the game .

Python Code
self . buttons =[[None |* 7 for _inrange (6)]

Initializes a 2D list self . buttons to store the button widgets in the GUI .

Python Code
for row in range (6):
for col in range (7):
self . buttons [row][col | = tk . Button (self . window, text =", width = 5,
height = 2,
command = lambdar = row, c =col:
self . drop_piece (1, ¢c))

self . buttons [row][col]. grid (row = row, column = col)

Creates a 6x7 grid of buttons, where each button is associated with the drop_piece method using the

command parameter . The buttons are displayed in the Tkinter window using the grid method .

Python Code
self . player_label = tk. Label (
self . window, text = f " Current Player :

{self . player_names | self . current_player-1]}")

self . player_label . grid (row = 6, columnspan = 7)

Creates a label to display the current player's turn and places it at the bottom of the window .

Python Code
self . score_label = tk. Label (
self . window, text = f " Scores : {self.scores[0]}- {self.scores[1]}")

self . score_label . grid (row = 7, columnspan = 7))

Creates a label to display the scores and places it below the player label .

Python Code
restart_button = tk. Button (
self . window, text =" Restart ", command = self . reset_game)

restart_button . grid (row = 8, columnspan = 7)

Creates a restart button and associates it with the reset_game method .
Python Code
def drop_piece (self, row, col):
Defines the drOp_piECE method, which is called when a player clicks a button to drop a game piece .
Python Code
if self . board [row][col | ==

self . board [row][col | = self. current_player

self . update_button_text (row, col)

Checks if the selected cell is empty, then updates the game board and button text with the current

player's move .

Python Code
if self . check_winner (row, col):
messagebox . showinfo (
"Winner !", f " Player {self . current_player} wins !"
self . scores [self . current_player - 1]+= 1
self . update_score_label ()
self . reset_game ()

Checks if the current move results in a win . If so, displays a message box, updates the scores, and resets
the game .
Python Code
else:
if not self . vs_ai:
self . switch_player ()
else:
self . ai_drop_piece ()
self . switch_player ()

If the game is not against an Al, switches to the next player . Otherwise, the Al makes a move, and then

the player is switched .

Python Code

def update_button_text (self, row, col):

Defines a method to update the button text with the player's symbol .
Python Code
player_symbol =" X "if self. current_player == 1else"O"
self . buttons [row][col |. config (text = player_symbol, state = tk . DISABLED)

Determines the player's symbol based on the current player and updates the button text . Disables the

button to prevent further moves in that cell .

Python Code
def check_winner (self, row, col):
Defines the check_winner method to determine if a player has won the game .
Python Code
directions =[(0,1), (1,0), (1,1), (-1, 1)]

Defines four possible directions to check for winning combinations : right, down, diagonal right, and

diagonal left .

Python Code
for dr, dc in directions :

count = 1 # Number of consecutive pieces in the current direction

Iterates through each direction and initializes a counter for consecutive pieces .

Python Code
foriinrange (1,4):
r,c = row + 1 *dr,col +1* dc

if0O<=r<6and0<=c<7andself.board[r][c]== self. current_player:

count += 1

else :
break

Checks for consecutive pieces in the positive direction of the current direction .
Python Code
foriinrange (1,4):

r,c = row -1 *drcol -1*dc

ifO<=r<6and0<= c<7andself.board[r][c]== self.current_player:

count += 1

else :
break

Checks for consecutive pieces in the negative direction of the current direction .

Python Code
ifcount > = 4:

return True

If there are four or more consecutive pieces in any direction, the player wins .

Python Code

return False

If no winning combination is found, returns False .

Python Code
def switch_player (self):

Defines the switch_player method to switch between players .

Python Code
self . current_player = 3 - self. current_player # Switch player between 1 and 2
self . player_label . config (
text = f " Current Player : {self. player_names [self. current_player-1]}")

Toggles between players 1 and 2 and updates the player label accordingly .

Python Code
def reset_game (self):

Defines the reset_game method to reset the game board and player turns .

Python Code
for row inrange (6):
for colin range (7):
self . buttons [row][col |. config (text =", state = tk . NORMAL)
self . board [row][col] = O
self . current_player = 1
self . player_label . config (
text = f " Current Player : {self. player_names [self. current_player-1]1}")
Clears the button texts, enables the buttons, resets the game board, sets the current player to 1, and

updates the player label .

Python Code
def update_score_label (self):

Defines the update_score_label method to update the displayed scores .

Python Code
self . score_label . config (

text = f " Scores : {self.scores[0]}- {self.scores[1]}")

Updates the score label with the current scores .

Python Code
def ai_drop_piece (self):
Defines the ai_drc:p_piece method for the Al to make a move .

Python Code
valid_moves =[(r,c) forrinrange (6)
forcinrange (7) ifself.board[r][c]== 0]

Creates a list of valid moves (empty cells) for the Al to choose from .

Python Code
if valid_moves :
row, col = random . choice (valid_moves)
self . board [row][col | = self. current_player
self . update_button_text (row, col)

If there are valid moves, the Al randomly selects a move, updates the game board, and updates the button

text .

Python Code
if self . check_winner (row, col):

messagebox . showinfo (

"Winner !" , f " Player {self . current_player} wins !")
self . scores [self . current_player - 1]+= 1
self . update_score_label ()
self . reset_game ()

Checks if the Al move results in a win and handles the game outcome accordingly .

Python Code
if _name__ =="__main__":
ConnectFour (vs_ai = True)

If the script is run as the main program, it creates an instance of the ConnectFour class with Al mode

enabled .

How To Play Connect Four Game

Connect Four is a two - player strategy game where the objective is to connect four of
your own game pieces in a row, either horizontally, vertically, or diagonally, before your

opponent does . Here's a step - by - step guide on how to play Connect Four :

1. Setup:
The game is typically played on a 6x7 grid, though the size can vary .
Each player is assigned a color (commonly red and yellow) orasymbol (like " X" and "0").
The game starts with an empty grid .

2 . Starting Player :

Players decide who goes first . This can be done through a coin toss, rock - paper - scissors, or any other

agreed - upon method .
3 . Taking Turns:
Players take turns dropping one of their pieces into any of the seven columns on the grid .

The piece will fall to the lowest available space in the chosen column .

4. Goal:

The goal is to be the first to connect four of your pieces in a row, either horizontally, vertically, or

diagonally .

5. Winning :
The game ends as soon as one player successfully connects four of their pieces in a row .
The winning player should announce their victory, and the game concludes .

6. Draw:

If the entire grid is filled without any player achieving four in a row, the game is a draw .
7 . Restarting :
After a game concludes, players may decide to play again by resetting the board .
8 . Strategies:
Pay attention to your opponent's moves to block potential winning combinations .
Plan ahead and consider creating multiple opportunities to win simultaneously .
Be cautious not to create opportunities for your opponent to win .
9 . Variant : AI Mode (if applicable):
If playing against an Al, the computer will make its moves based on its programmed strategy .

Follow the same rules, but be prepared for strategic decisions from the Al opponent .

10. Enjoyment :

Connect Fouris a fun and quick game . Focus on enjoying the strategic aspects and friendly competition .
Remember that Connect Four is a game of skill and strategy, and with practice, you can
improve your ability to anticipate and block your opponent's moves while creating winning

opportunities for yourself .

13. Flappy Bird Clone Game

& Flappy Bird Clone ~ X

import pygame
import sys

import random

pygame.init()

WIDTH, HEIGHT = 600, 400
GRAVITY =1.0
JUMP_HEIGHT = 10
PIPE_WIDTH = 50
PIPE_HEIGHT = 200
PIPE_GAP =250

WHITE = (255, 255, 255)
BLACK = (0, 0,0)

screen = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption("Flappy Bird Clone")

bird_image = pygame.image.load("bird.png")
background_image = pygame.image.load("background.png")

pipe_image = pygame.image.load("pipe.png")

bird_image = pygame.transform.scale(

bird_image, (30, 30))
pipe_image = pygame.transform.scale(pipe_image, (PIPE_WIDTH, PIPE_HEIGHT))

clock = pygame.time.Clock()

class Bird:
def _init_ (self):
self.x = 100
self.y = HEIGHT // 2
self.width = 30 # Adjus
self.height = 30 # Adjust
self.velocity = O

def jump(self):
self.velocity = -JUMP_HEIGHT

def update(self):
self.velocity += GRAVITY
self.y += self.velocity

if self.y < O:

self.y =0
if self.y > HEIGHT - self height:
self.y = HEIGHT - self.height

def draw(self):

screen.blit(bird_image, (self x, self.y))

class Pipe:
def _init_ (self, x):
self.x =x
self.gap_top = random.randint(50, HEIGHT - PIPE_GAP - 50)

def update(self):

self.x-=5

def draw(self):
screen.blit(pipe_image, (self.x, 0))
lower_pipe_top = self.gap_top + PIPE_GAP

screen.blit(pipe_image, (self.x, lower_pipe_top))

ird()

while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
elif event.type == pygame. KEYDOWN:
if event.key == pygame.K_SPACE:
bird.jump()

bird.update()
for pipe in pipes:

pipe.update()

if len(pipes) == 0 or pipes|-1].x < WIDTH - 200:
pipes.append(Pipe(WIDTH))

pipes = [pipe for pipe in pipes if pipe.x > -PIPE_WIDTH]|

for pipe in pipes:
bird_rect = pygame.Rect(bird.x, bird.y, bird.width, bird.height)
upper_pipe_rect = pygame.Rect(pipe.x, 100, PIPE_WIDTH, pipe.gap_top)
lower_pipe_top = pipe.gap_top + PIPE_GAP
lower_ pipe_rect = pygame.Rect(

pipe.x, lower_pipe_top+5, PIPE_. WIDTH, HEIGHT - lower_pipe_top)

if bird_rect.colliderect(upper_pipe_rect) or bird_rect.colliderect(lower_pipe_rect):
print("Game Over")
bird = Bird() # Reset the birc
pipes = ||
pygame.time.delay(1000) # Pause for :

screen fill(WHITE)
screen.blit(background_image, (0, 0))

bird.draw()
for pipe in pipes:

pipe.draw()

pygame.display.flip()

clock.tick(FPS)

let's go through the provided code line by line to understand its functionality :

Python Code

import pygame

import sys

import random

These lines import the necessary libraries for the game : pygame for game development,
sys for system - related functionality, and random for generating random numbers .
Python Code

Initialize Pygame

pygame . init ()

This line initializes the Pygame library .

Python Code

Constants

WIDTH, HEIGHT = 600, 400

FPS = 30 # Adjust the frame rate

GRAVITY = 1.0 # Adjust the gravity
JUMP_HEIGHT = 10 # Adjust the jump height
PIPE_WIDTH = 50

PIPE_HEIGHT = 200

PIPE_GAP = 250 # Adjust the gap between pipes

Here, various constants are defined, such as the width and height of the game window,
frame rate (FPS), gravity for the bird's movement, jump height, and dimensions for the
pipes .

Python Code

Colors

WHITE = (255, 255,255)

BLACK =(0,0,0)

These lines define color constants using RGB values .

Python Code

Create the game window

screen = pygame . display. set_mode ((WIDTH, HEIGHT))
pygame . display . set_caption (" Flappy Bird Clone ")

These lines create the game window with the specified width and height and set the
window caption .

Python Code

Load images

bird_image = pygame .image . load (" bird . png ")

background_image = pygame . image .load (" background . png")

pipe_image = pygame .image . load (" pipe.png")

These lines load the images for the bird, background, and pipe from files .

Python Code

Scale images

bird_image = pygame . transform . scale (bird_image, (30,30)) # Adjust the bird size
pipe_image = pygame . transform . scale (pipe_image, (PIPE_WIDTH, PIPE_HEIGHT))

The images are scaled to the desired dimensions .

Python Code

Clock to control the frame rate

clock = pygame . time . Clock ()
A clock object is created to control the frame rate .

Python Code
class Bird :
def _init__ (self):

self. x = 100
self .y = HEIGHT // 2
self . width = 30 # Adjust the bird's width
self . height = 30 # Adjust the bird's height
self . velocity = 0

def jump (self):
self . velocity =- JUMP_HEIGHT

def update (self):
self . velocity += GRAVITY
self .y += self. velocity

Keep the bird within the screen bounds

ifself.y<O0:
self .y = O
if self. y > HEIGHT - self. height:
self . y = HEIGHT - self. height

def draw (self):
screen . blit (bird_image, (self. x, self.y))

A class Bird is defined to represent the player - controlled bird. It has methods for

jumping, updating its position based on gravity, and drawing the bird on the screen .

Python Code

class Pipe:
def __init_ (self, x):
self . x = x

self . gap_top = random . randint (50, HEIGHT - PIPE_GAP - 50)

def update (self):
self. x -= 5

def draw (self):
screen . blit (pipe_image, (self.x,0))

lower_pipe_top = self. gap_top + PIPE_GAP
screen . blit (pipe_image, (self. x, lower_pipe_top))
A class Pipe is defined to represent the pipes in the game . Pipes are initialized with a

random gap position, and they move from right to left (update method) as the game

progresses . The draw method is responsible for rendering the upper and lower pipes on
the screen .

Python Code
Create objects
bird = Bird ()
pipes =]
Instances of the Bird and an empty list for pipes are created .
Python Code
Main game loop
while True:
for event in pygame . event . get ():

if event . type == pygame . QUIT :

pygame . quit ()
sys . exit ()

elif event . type == pygame . KEYDOWN :
if event . key == pygame . K_SPACE :
bird . jump ()
The main game loop begins, which continuously checks for events such as quitting the
game or pressing the space key to make the bird jump .
Python Code
Update objects
bird . update ()
for pipe in pipes :
pipe . update ()
The positions of the bird and pipes are updated in each iteration of the game loop .

Python Code
Create new pipes
if len (pipes) == Oorpipes|[-1]. x< WIDTH - 200:
pipes . append (Pipe (WIDTH))
New pipes are created if there are no pipes or if the last pipe's x - coordinate is beyond a
certain threshold .

Python Code

Remove off - screen pipes
pipes = [pipe for pipe in pipes if pipe . x > - PIPE_WIDTH |
Pipes that have moved off - screen are removed from the list .

Python Code

Collision detection

for pipe in pipes :
bird_rect = pygame . Rect (bird . x, bird . y, bird . width, bird . height)
upper_pipe_rect = pygame . Rect (pipe . x, 100, PIPE_WIDTH, pipe . gap_top)
lower_pipe_top = pipe. gap_top + PIPE_GAP
lower_pipe_rect = pygame . Rect (

pipe . x, lower_pipe_top + 5, PIPE_WIDTH, HEIGHT - lower_pipe_top)

Check for collision with upper and lower pipes
if bird_rect . colliderect (upper_pipe_rect) or
bird_rect . colliderect (lower_pipe_rect):
print (" Game Over ")
bird = Bird () # Reset the bird position
pipes =[] # Reset the pipes

pygame . time . delay (1000) # Pause for a moment before restarting

Collision detection is performed to check if the bird collides with the upper or lower pipes .
If a collision occurs, the game prints " Game Over, " resets the bird's position, clears the
pipes, and introduces a delay before restarting .
Python Code
Draw background

screen . fill (WHITE)

screen . blit (background_image, (0,0))
The background is filled with the WHITE color, and the background image is drawn on the

SCreerm .

Python Code
Draw objects
bird . draw ()
for pipe in pipes :
pipe . draw ()
The bird and pipes are drawn on the screen .
Python Code
Update display
pygame . display . flip ()

The display is updated .
Python Code

Control the frame rate
clock . tick (FPS)

The frame rate is controlled to match the specified FPS.

This code creates a simple Flappy Bird clone using the Pygame library, with a bird that can
jump and avoid pipes. The game loop continuously updates the game state, checks for
collisions, and handles user input .

How To Play Flappy Bird Clone

To play the Flappy Bird clone you've provided, follow these steps :
1. Run the Code :

Make sure you have Python and Pygame installed on your system .

Save the provided code in a Python file, for example, " flappy_bird_clone . py ".

Open a terminal or command prompt, navigate to the directory containing the Python

file, and run it using python flappy_bird_clone . py .

2. Game Controls :

Press the Spacebar to make the bird jump .
3. Game Objective :
Navigate the bird through the gaps between the pipes without hitting them .
4. Game Mechanics :
The bird will fall due to gravity, and you must use the spacebar to make it jump .

The pipes move from right to left, and new pipes are generated periodically .
The goal is to keep the bird flying and pass through as many gaps between pipes as
possible .

5. Game Over:
The game ends if the bird collides with the pipes .

When a collision occurs, the game will print " Game Over," reset the bird's position,

clear existing pipes, and pause for a moment before restarting .
6. Repeat :

The game will continue to run in a loop, allowing you to play again after each Game Over .
7. Adjustments :

You can modify constants in the code (such as GRAVITY, JUMP_HEIGHT,
FPS ,etc.) tochange the difficulty or behavior of the game .

Remember that Flappy Bird is known for its challenging and addictive gameplay . Try to
beat your high score by maneuvering the bird through the pipes with well - timed jumps .

Good luck and have fun playing your Flappy Bird clone !

14. Pong Game

=y Pong Game

import pygame
import sys

import random

pygame.init()

WIDTH, HEIGHT = 600, 400

BALL_RADIUS = 10

PADDLE_WIDTH, PADDLE_HEIGHT = 10, 60
FPS = 60

WHITE =(255, 255, 255)

screen = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption("Pong Game")

player_paddle = pygame.Rect(

50, HEIGHT // 2 - PADDLE_HEIGHT // 2, PADDLE_WIDTH, PADDLE_HEIGHT)
opponent_paddle = pygame.Rect(

WIDTH - 50 - PADDLE_WIDTH, HEIGHT // 2 - PADDLE_HEIGHT // 2, PADDLE_WIDTH, PADDLE_HEIGHT)
ball = pygame.Rect(WIDTH // 2 - BALL_RADIUS // 2, HEIGHT //

2 - BALL_RADIUS // 2, BALL_RADIUS, BALL_RADIUS)

ball_speed_x = 3 * random.choice([1, -1])

ball _speed_y = 3 * random.choice([1, -1])
player_speed = 0
opponent_speed = 2 {

player_score =0

opponent_score =0

def reset_ball():
ball.x = WIDTH // 2 - BALL_RADIUS // 2
ball.y = HEIGHT // 2 - BALL_RADIUS // 2

clock = pygame.time.Clock()

while True:

for event in pygame.event.get():

if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
elif event.type == pygame. KEYDOWN:
if event.key == pygame.K_UP:
player_speed = -3
elif event.key == pygame.K_DOWN:
player_speed = 3

elif event.key == pygame.K_r:

player_score = 0
opponent_score =0
player_paddle.y = HEIGHT // 2 - PADDLE_HEIGHT // 2
reset_ball()
ball_speed_x = 3 *random.choice([1,-1])
ball_speed_y = 3 *random.choice([1, -1])
elif event.type == pygame.KEYUP:
if event.key == pygame.K_UP or event.key == pygame. K_DOWN:
player_speed =0

player_paddle.y += player_speed

player_paddle.y = max(0, min(player_paddle.y, HEIGHT - PADDLE_HEIGHT))

ball.x += ball_speed_x
ball.y +=ball_speed_y

1f ball.top <= 0 or ball.bottom >= HEIGHT:
ball_speed_y = -ball_speed_y

if ball.colliderect(player_paddle):

ball_speed_x = abs(ball_speed_x) #
elif ball.colliderect(opponent_paddle):

ball_speed_x = -abs(ball_speed_x) # Change dire

if ball.left <= 0:
opponent_score +=1 # Inci
reset_ball()

elif ball.right >= WIDTH:
player_score += 1 # Incr
reset_ball()

if opponent_paddle.centery < ball.centery:

opponent_paddle.y += min(opponent_speed,
ball.centery - opponent_paddle.centery)
elif opponent_paddle.centery > ball.centery:
opponent_paddle.y -= min(opponent_speed,
opponent_paddle.centery - ball.centery)

screen.fill((0, O, 0))

pygame.draw.rect(screen, WHITE, player_paddle)
pygame.draw.rect(screen, WHITE, opponent_paddle)
pygame.draw.ellipse(screen, WHITE, ball)

pygame.draw.aaline(screen, WHITE, (WIDTH // 2, 0), (WIDTH // 2, HEIGHT))

font = pygame.font.Font(None, 36)

player_text = font.render(str(player_score), True, WHITE)

opponent_text = font.render(str(opponent_score), True, WHITE)
screen.blit(player text, (WIDTH // 4, 20))
screen.blit(opponent_text, (3 * WIDTH // 4 -

opponent_text.get_width(), 20))

pygame.display.flip()

clock.tick(FPS)

let's go through the code line by line to understand each part :

Python Code

import pygame

1mport sys

import random

Here, the code imports the necessary modules : pygame for creating the game, sys for
handling system - related operations, and random for generating random numbers .
Python Code

pygame . init ()

This line initializes the Pygame library .

Python Code

Constants

WIDTH, HEIGHT = 600, 400
BALL_RADIUS = 10

PADDLE_WIDTH, PADDLE_HEIGHT = 10, 60

FPS = 60

WHITE ={255, 255,255)

These lines define constants for the game window dimensions, ball and paddle sizes,
frames per second, and the color white in RGB format .

Python Code

Create screen

screen = pygame . display. set_mode ((WIDTH, HEIGHT))

pygame . display . set_caption (" Pong Game ")

These lines create the game window with the specified width and height and set the

window caption.

Python Code

Create paddles and ball

player_paddle = pygame.Rect(50, HEIGHT // 2 - PADDLE_HEIGHT // 2,

PADDLE_WIDTH, PADDLE_HEIGHT)
opponent_paddle = pygame.Rect (WIDTH - 50 - PADDLE_WIDTH, HEIGHT // 2 -
PADDLE_HEIGHT // 2, PADDLE_WIDTH, PADDLE_HEIGHT)

ball = pygame.Rect(WIDTH // 2 - BALL_RADIUS // 2, HEIGHT // 2 -
BALL_RADIUS // 2, BALL_RADIUS, BALL_RADIUS)

These lines create rectangles representing the player's paddle, opponent's paddle, and the
ball . The initial positions and sizes are specified .

Python Code

Initialize velocities

ball_speed_x = 3* random .choice ([1, -1])

ball_speed_y = 3* random . choice ([1, -1])

player_speed = O

opponent_speed = 2 # Adjust opponent's paddle speed

Velocity variables for the ball and paddles are initialized . The ball starts with a random
speed in both x and y directions. The player's and opponent's paddle speeds are also
initialized .

Python Code

Initialize score

player_score = 0

opponent_score = 0

Initial scores for the player and opponent are set to zero .

Python Code

Function to reset the ball's position

def reset_ball ():
ball . x = WIDTH // 2 - BALL_RADIUS // 2
ball .y = HEIGHT // 2 - BALL_RADIUS // 2

This function resets the ball's position to the center of the screen .

Python Code
Game loop
clock = pygame . time . Clock ()
while True:
for event in pygame . event . get ():

Event handling code

The game loop begins here. It continuously checks for events, such as user input or
quitting the game..

Python Code

Move paddles and ball

player_paddle .y += player_speed

player_paddle .y = max (0, min (player_paddle . y, HEIGHT - PADDLE_HEIGHT))

ball . x += ball_speed_x
ball.y += ball_speed_y

These lines update the positions of the player's paddle and the ball based on their respective
velocities . The player's paddle movement is restricted to stay within the game window .
Python Code
Ball collisions with walls
if ball.top < = O orball. bottom > = HEIGHT :

ball_speed_y = - ball_speed_y
This checks if the ball hits the top or bottom walls, reversing its vertical direction if a

collision occurs .

Python Code

Ball collisions with paddles

if ball . colliderect (player_paddle):
ball_speed_x = abs (ball_speed_x)

elif ball . colliderect (opponent_paddle):
ball_speed_x = - abs (ball_speed_x)

These lines check for collisions between the ball and the player's or opponent's paddles . If
a collision occurs, the ball's horizontal direction is reversed .

Python Code
Check if the ball passed the paddles
ifball.left<= 0:
opponent_score += 1
reset_ball ()
elif ball . right > = WIDTH :
player_score += 1
reset_ball ()

These lines check if the ball has passed the left or right sides of the window . If so, the
opponent or player scores are increased, and the ball is reset to the center .

Python Code
Opponent Al
if opponent_paddle . centery < ball . centery :

opponent_paddle .y += min (opponent_speed, ball . centery -
opponent_paddle . centery)
elif opponent_paddle . centery > ball . centery :

opponent_paddle.y -= min (opponent_speed, opponent_paddle. centery -
ball . centery)

This implements a simple Al for the opponent paddle, making it follow the ball vertically .

Python Code

Draw everything

Draw scores

Update the display
Cap the frame rate

These lines handle the drawing of paddles, ball, scores, and the middle line . The display is

updated, and the frame rate is capped to maintain a consistent speed .

This concludes the explanation of the Pong game code . It covers the setup, game loop, user

input, ball and paddle movement, collision detection, scoring, and opponent Al .

How To Play Pong Game

To play the Pong game, you control a paddle on one side of the screen, and your goal is to hit
the ball past your opponent's paddle on the opposite side . Here's a step - by - step guide on
how to play :

1. Launch the Game:

Run the Python script with the provided Pong code .

The game window will appear, displaying the paddles, the ball, and the scores .
2. Controls:

Use the up arrow key to move your paddle up .

Use the down arrow key to move your paddle down .

Press the 'R' key to restart the game if needed .

3. Game Objective:
Your objective is to prevent the ball from passing your paddle while trying to hit the ball

past your opponent's paddle .
4. Paddle Movement :

Move your paddle up and down to position it for hitting the ball .

Be strategic in your movements to intercept the ball and send it towards your opponent's

side .
5. Ball Movement :

The ball will bounce off the top and bottom walls, as well as the paddles .

If the ball passes your opponent's paddle on the left side or your paddle on the right side,

your opponent or you score a point, respectively .

6. Scoring :

The scores are displayed at the top of the screen .
If the ball passes your opponent's paddle, your opponent scores a point .
If the ball passes your paddle, you score a point .

7. Game Over :
The game continues indefinitely until you decide to close the window or exit the game

manually .
You can also press the 'R’ key to restart the game at any time .

8. Opponent Al :
The opponent paddle has its own Al to follow the ball vertically, making the game more

challenging .
9. Enjoy the Game:
Have fun playing Pong ! Sharpen your reflexes and aim to outscore your opponent .

Remember, Pong is a classic and straightforward game, making it easy to pick up and play .
The more you play, the better you'll become at predicting the ball's movements and scoring

against your opponent.

15. Word Search Generator Game

f Word Search Generator

= M D < . M © -« O

T - "™ O D Z S r O -

O

Enter words (comma-separated):

computer

Generate Word Search |

Mark Words

Clear Markings I
D €C R C R
U H L C B
E K C T U
¥ 5 S8]S
A | U|m]|H
M S W|p|Z
L Wwim|]*
® K %) w
F € Ejle K
X Q@ ClE]jL

N =5 B B & B B MM OR e

> 0O X OO oL o T rr O W

X

XD X TN « T X T O = m

import tkinter as tk

import random

class WordSearchGenerator:
def __init_ (self, root):
self.root = root

self.root.title("Word Search Generator")

self.word_list label = tk.Label(
root, text="Enter words (comma-separated):")
self.word_list_label.pack()

self.word_list_entry = tk.Entry(root)

self.word_list_entry.pack()

self.generate_button = tk.Button(
root, text="Generate Word Search", command=self.generate_word_search)

self.generate_button.pack()

self. mark button = tk.Button(

root, text="Mark Words", command=self. mark_words)

self. mark_button.pack()

self.clear_button = tk.Button(

root, text="Clear Markings", command=self.clear_ markings)

self.clear_button.pack()

self.word_search_canvas = tk.Canvas(
root, width=300, height=300, bg="white")

self. word_search_canvas.pack()

def clear_markings(self):
if hasattr(self, 'word_search_canvas'):

self.word_search_canvas.delete("markings")

def generate_word_search(self):

self.clear_canvas()
words = self.word_list_entry.get().split(,’)
self. word_search = self.create_word_search(words)

self.display_word_search(self.word_search)

def mark_words(self):
if hasattr(self, 'word_search'):
words_to_mark = self.word_list_entry.get().split(',)
foriin range(len(self.word_search)):
for j in range(len(self.word_searchli])):

for word in words to mark:

if self.word_searchli][j;j + len(word)] == list(word):

self. mark_rectangle(i, j, len(word), "horizontal")

1f 1 + len(word) <= len(self.word_search) and all(self.word_searchli + k|[j| == word|k] for kin range(len(word))):

self. mark _rectangle(i, j, len(word), "vertical")

if 1 + len(word) <= len(self.word_search) and j + len(word) <= len(self.word_searchl|i]) and

all(self.word_searchli + k|[j + k] == word|k] for k in range(len(word))):

self.mark_diagonal(i, j, len(word), "diagonal1")

if i + len(word) <= len(self.word_search) and j - len(word) >= -1 and all(self.word_searchli + k][j - k] == word|k]
for k in range(len(word))):

self. mark_diagonal(j, j, len(word), "diagonal2")

def mark_diagonal(self, start_row, start_col, length, direction):

cell size =30

1f direction == "diagonall":
self.word_search_canvas.create_rectangle(start_col * cell_size, start_row * cell_size,
(start_col + length) *

cell size, (start_row +

length) * cell_size,
outline="red", width=2, tags="markings")
elif direction == "diagonal2":
self.word_search_canvas.create_rectangle((start_col - length + 1) * cell_size, start_row * cell_size,
(start_col+1)*
cell size, (start row +
length) * cell_size,

outline="red", width=2, tags="markings")

def mark_rectangle(self, start_row, start_col, length, direction):
cell_size = 30

i1f direction == "horizontal":

self.word_search_canvas.create_rectangle(start_col * cell_size, start_row * cell_size,

(start_col + length) *
cell size, (start row +
1) * cell_size,
outline="red", width=2, tags="markings")
elif direction == "vertical":
self.word_search_canvas.create_rectangle(start_col * cell_size, start_row * cell_size,
(start_col+1)*
cell size, (start_row +
length) * cell_size,
outline="red", width=2, tags="markings")

elif direction == "diagonal";

self.word_search_canvas.create_rectangle(start_col * cell _size, start_row * cell_size,
(start_col + length) *

cell_size, (start_row +

length) * cell_size,

outline="red", width=2, tags="markings")

def clear_canvas(self):

self. word_search_canvas.delete("all")

def display_word_search(self, word_search):
cell_size = 30
for iin range(len(word_search)):
for j in range(len(word_searchli])):
self.word_search_canvas.create_text(j * cell_size + cell _size // 2,1* cell_size + cell_size // 2,
text=word_searchl|i][j], font=("Helvetica", 10, "bold"))

def create_word_search(self, words):
word_search_size = 10
word_search = [|'' for _in range(word_search_size)]|

for _in range(word_search_size)]

for word in words:
placed = False

attempts =0

while not placed and attempts < 100:
direction = random.choice(
['horizontal', 'vertical', 'diagonal'|)

start_row = random.randint(0, len(word_search) - 1)

start_col = random.randint(0, len(word_search[0]) - 1)

if direction == 'horizontal' and start_col + len(word) <= word_search_size:
foriin range(len(word)):
word_search|start row]|start_col + i| = word|i]

placed = True

elif direction == 'vertical' and start_row + len(word) <= word_search_size:
for1in range(len(word)):
word_search|start_row + i][start_col] = word|i]

placed = True

elif direction == 'diagonal' and start_row + len(word) <= word_search_size and start_col + len(word) <=
word_search_size:
foriin range(len(word)):
word_search|start_row + i][start_col + 1] = word|i]

placed = True

attempts +=1

foriin range(word_search_size):
for jin range(word_search_size):
if word_searchli][j] ==""

word_searchli]|j] = chr(random.randint(65, 90))

return word_search

if name_ =="_ main
root = tk.Tk()
app = WordSearchGenerator(root)

root.mainloop()

let's go through the code line by line to understand its functionality :

Python Code

import tkinter as tk

import random
Import the tKkinter library for GUI and random for generating random numbers .

Python Code

class WordSearchGenerator :

def __init_ (self, root):
self . root = root
self . root . title (" Word Search Generator ")

Define a class WordSearchGenerator with an __init__ method. It takes the YOOt as a
parameter, representing the Tkinter root window . Sets the title of the root window to " Word Search

Generator .

Python Code
self . word_list_label = tk. Label (
root, text =" Enter words (comma - separated):")
self . word_list_label . pack ()

Create a Tkinter label for instructing the user to enter words . The label is added to the root window .

Python Code
self . word_list_entry = tk.Entry (root)
self . word_list_entry. pack ()
Create a Tkinter entry widget for users to input words (comma - separated) It is added to the root

window .

Python Code
self . generate_button = tk. Button (

root, text =" Generate Word Search ", command = self . generate_word_search)
self . generate_button . pack ()

Create a button labeled " Generate Word Search" with a command to «call the
generate_word_search method when clicked . The button is added to the root window .
Python Code
self . mark_button = tk. Button (

root, text =" Mark Words ", command = self . mark_words)
self . mark_button . pack ()

Create a button labeled " Mark Words " with a command to call the mark_words method when

clicked . The button is added to the root window .
Python Code
self . clear_button = tk . Button (
root, text =" Clear Markings " , command = self . clear_markings)
self . clear_button . pack ()
Create a button labeled " Clear Markings " with a command to call the clear_markings method
when clicked . The button is added to the root window .
Python Code

self . word_search_canvas = tk. Canvas (

root, width = 300, height = 300, bg =" white ")

self . word_search_canvas . pack ()

Create a Tkinter canvas for displaying the word search grid . It is given a size of 300x300 pixels and a

white background . The canvas is added to the root window .

Python Code
def clear_markings (self):
if hasattr (self, 'word_search_canvas'):
self . word_search_canvas . delete (" markings ")

Define a method clear_markings to clear any marked rectangles on the canvas . It checks if the

canvas attribute exists before attempting to delete markings .

Python Code
def generate_word_search (self):
self . clear_canvas ()
words = self. word_list_entry. get (). split (',')
self . word_search = self. create_word_search (words)

self . display_word_search (self . word_search)

Define a method generate_word_search to generate a new word search grid. It first clears
the canvas, then retrieves the words from the entry widget . It generates a word search using the

create_word_search method and displays it using display_word_search .

Python Code
def mark_words (self):
if hasattr (self, 'word_search'):
words_to_mark = self. word_list_entry. get (). split (',')
foriinrange (len (self . word_search)):
forjinrange (len (self. word_search [1])):
for word in words_to_mark :

Check horizontally
if self. word_search [i][j:j + len (word)] == list (word):

self . mark_rectangle (i,j,len (word), " horizontal ")

Check vertically
if 1 + len(word) <= len(self.word_search) and
all (self.word_search[i1 + k][j]== word [k] forkinrange (len (word))):

self . mark_rectangle (i,j, len (word), " vertical ")

Check diagonally (top - left to bottom - right)

ifi + len (word) < = len (self. word_search) andj + len (word)
<= len (self.word_search[i]) and all (self.word_search[i + k][] + k] == word[k]
for kin range (len (word))):

self . mark_diagonal (1i,j, len (word), " diagonall ")

Check diagonally (top - right to bottom - left)
ifi + len (word) < = len (self. word_search) andj - len (word)
> =-1andall (self. word_search[i + k][j - k]== word [k] forkinrange (len (word))):
self . mark_diagonal (1i,j,len (word), " diagonal2 ")

Define a method mark_words to mark the specified words on the word search grid . It checks
for each word in different directions (huriznntal, vertical, and diagﬂnals) and marks rectangles

accordingly using mark_rectangle and mark_diagonal methods ,

Python Code
def mark_diagonal (self, start_row, start_col, length, direction):

cell size = 30

if direction =="diagonall ":
self . word_search_canvas . create_rectangle (start_col * cell_size, start_row *
cell_size,
(start_col + length)*
cell_size, (start_row +

length) * cell_size,

outline ="red ", width = 2,
tags =" markings ")
elif direction =="diagonal2 "
self . word_search_canvas . create_rectangle ((start_col - length + 1) *

cell_size, start_row * cell_size,
(start_col + 1)*
cell_size, (start_row +

length) * cell_size,

outline ="red ", width = 2,
tags =" markings ")
Define a method mark_diaganal to mark a diagonal rectangle on the canvas. The direction

determines the diagonal orientation .

Python Code
def mark_rectangle (self, start_row, start_col, length, direction):
cell_size = 30
if direction ==" horizontal ":
self . word_search_canvas . create_rectangle (start_col * cell_size, start_row *
cell_size,
(start_col + length)*
cell_size, (start_row +
1)* cell_size,
outline =" red ", width = 2,
tags =" markings ")
elif direction ==" vertical ":

self . word_search_canvas . create_rectangle (start_col * cell_size, start_row *
cell_size,

(start_col + 1)*
cell_size, (start_row +
length) * cell_size,
outline ="red ", width = 2,
tags =" markings ")
elif direction =="diagonal ":
self . word_search_canvas . create_rectangle (start_col * cell_size, start_row *
cell_size,
(start_col + length)*
cell_size, (start_row +
length) * cell_size,
outline ="red ", width = 2,
tags =" markings ")
Define a method mark_rectangle to mark a rectangle on the canvas. The direction parameter

determines if it's horizontal, vertical, or diagonal .

Python Code
def clear_canvas (self):

self . word_search_canvas . delete (" all ")

Define a method clear__canvas to clear the entire canvas .

Python Code
def display_word_search (self, word_search):
cell_size = 30
foriinrange (len (word_search)):
forjin range (len (word_search [1i])):
self . word_search_canvas . create_text (j * cell_size + cell_size // 2,1 *
cell_size + cell_size // 2,
text = word_search [i][j],

font =(" Helvetica", 10, "bold "))

Define a method display_word_s earch to display the generated word search on the canvas . It

uses Create_text to place each character in the appropriate cell .

Python Code
def create_word_search (self, words):
word_search_size = 10
word_search =[[''for _inrange (word_search_size)]

for _in range (word_search_size)]

for word in words :
placed = False
attempts = 0

while not placed and attempts < 100 :
direction = random . choice (
| 'horizontal', 'vertical’, 'diagonal’])
start_row = random . randint (O, len (word_search)- 1)

start_col = random . randint (O, len (word_search [0])- 1)

if direction == ‘'horizontal' and start col + len(word) <
word_search_size :
foriinrange (len (word)):
word_search [start_row || start_col + i]= word [1]

placed = True

elif direction == ‘'vertical! and startrow + len(word) <
word_search_size :
foriin range (len (word)):

word_search [start_row + 1][start_col]= word|[1i]

placed = True

elif direction == ‘'diagonal' and start row + len(word) <-=
word_search_size and start_col + len (word) < = word_search_size :
foriin range (len (word)):
word_search [start_row + 1][start_col + i]= word|[1]

placed = True
attempts += 1

Fill in the remaining spaces with random letters
foriinrange (word_search_size):
forjin range (word_search_size):
if word_search [i][j]=="":

word_search [i][j]= chr (random . randint (65,90))

return word_search

Define amethod create_word_search to generate a word search grid based on the input words . It

randomly places the words in different directions and fills the remaining spaces with random letters .

Python Code

if _name__ =="__main__ "
root = tk. Tk ()
app = WordSearchGenerator (root)

root . mainloop ()
If the script is run as the main program, create a Tkinter root window and instantiate the

WordSearchGenerator class, starting the Tkinter event loop with root . mainloop () .

How To Play Word Search Generator

To play the Word Search Generator, follow these steps :
1. Launch the Application :
Run the Python script containing the Word Search Generator code .

The graphical user interface (GUI) will appear, featuring an entry field, buttons, and a

canvas .

2. Enter Words :

In the " Enter words (comma - separated):" entry field, type the words you want to

search for in the word search grid . Separate the words with commas .

3. Generate Word Search :

Click the " Generate Word Search " button . This will create a word search grid using

the entered words and display it on the canvas .

4. Mark Words :

After generating the word search, you can mark specific words on
the grid . Enter the words you want to mark in the entry field again .

. Clickthe " Mark Words " button . The application will search for the
entered words horizontally, vertically, and diagonally on the grid . It

will mark the found words with red rectangles on the canvas .

5. Clear Markings :

If you want to clear the marked rectangles from the canvas, click the " Clear Markings "

button .

6. Explore the Word Search :
Explore the word search grid visually . The marked words will be highlighted, making
them easier to locate .

7. Additional Features :
You can modify the word list, generate a new word search, mark different words, and

clear markings as many times as you want .
8. Close the Application :
Close the application window when you're finished playing .

Enjoy playing the Word Search Generator, and have fun finding the hidden words in the

generated grids !

16. Battleship Game

§ Battleship Game = [] X

Battleship Game

Click on the buttons to find the battleships!
Score: 1
Turns left: 0
High Score: 2.0

Reset

import tkinter as tk
from random import randint

import time

class BattleshipGame:
def _init_ (self, root):
self.root = root

self.root title("Battleship Game")

self.board_size =5
self.ship_size = 3

self. max_turns =10
self.turns_left = self. max_turns
self.score = 0

self.board = [[0] * self.board_size for _ in range(self.board_size)]

self.ships =[]

self.load_high_score()
self.create_info_panel()
self.create_board()

self.place_ships()

self.start_time = time.time()

reset_button = tk.Button(
self -root, text="Reset", command=self.reset_game)
reset_button.grid(row=self.board_size + 6, column=0,

columnspan=self.board_size)

defload_high_score(self):
try:
with open("high_score.txt", "r") as file:
high_score_str = file.read().strip()

if high_score_str.lower() == "Inf":

self-high_score = float('inf")

else:
self.high score = float(high_score_str)
except FileNotFoundError:

self.high_score = float('inf")

def save_high_score(self):
with open("high_score.txt", "w") as file:
if self.high_score == float('inf"):
file. write("inf")
else:

file.write(f"{self.high_score:.2{}")

def create_info_panel(self):
info_label = tk.Label(
self.root, text="Battleship Game", font=("Helvetica", 16, "bold"))

info_label.grid(row=0, column=0, columnspan=self.board_size)

instruction_label = tk.Label(

self.root, text="Click on the buttons to find the battleships!", font=("Helvetica", 12))

instruction_label.grid(row=1, column=0, columnspan=self.board_size)

score_label = tk.Label(
self.root, text={"Score: {self.score}", font=("Helvetica", 12))

score_label.grid(row=2, column=0, columnspan=self.board_size)

turns_label = tk.Label(
self.root, text=1"Turns left: {self.turns_left}", font=("Helvetica", 12))

turns_label grid(row=3, column=0, columnspan=self.board_size)

high_score_label = tk.Label(
self.root, text={"High Score: {'inf" if self.high score == float('inf') else round(self.high_score, 2)}", font=("Helvetica",
12))

high_score_label.grid(row=4, column=0, columnspan=self.board_size)

def create_board(self):

foriin range(self.board_size):

for j in range(self.board_size):
btn = tk.Button(self.root, text="", width=5, height=2,

command=lambda i=i, j=j: self.click_cell(j, j))

btn.grid(row=1 + 5, column=j)

def place_ships(self):
for _in range(self.ship_size):

ship_row = randint(0, self.board_size- 1)

ship_col = randint(0, self.board_size-1)

while self.board|ship_row|[ship_col] == 1:
ship_row = randint(0, self.board_size- 1)
ship_col = randint(0, self.board_size- 1)

self.ships.append((ship_row, ship_col))

self.board|[ship_row]|[ship_col] = 1

def update_info_panel(self):

self.root.grid_slaves(row=2, column=0)[0].config(

text={"Score: {self.score}")
self.root.grid_slaves(row=3, column=0)[0].config(

text=1{"Turns left: {self.turns_left}")
self.root.grid_slaves(row=4, column=0)|0].config(

text=f"High Score: {'inf’ if self.high_score == float('inf") else round(self.high_score, 2)}")

def display_message(self, message):

message_label = tk.Label(
self root, text=message, font=("Helvetica", 14, "bold"))
message_label.grid(row=1, column=0, columnspan=self.board_size)

self.root.after(2000, message_label.destroy)

def reset_game(self):

if self.score > O:

if self.score < self.high_score:
self.high_score = self.score
self.save_high_score()
self.root.grid_slaves(row=4, column=0)|0].config(

text={"High Score: {round(self.high_score, 2)}")

self.score = 0

self turns_left = self. max_turns

self.ships =[]

self.board = |[0] * self.board_size for _ in range(self.board_size)]

self.update_info_panel()

default_bg color = self.root.cget("bg")

for iin range(self.board_size):

for jin range(self.board_size):

btn = self.root.grid_slaves(row=1 + 5, column=j)[0]
btn.config(state=tk. NORMAL, bg=default_bg_color, text="")

if self.turns_left > 0:
self.place_ships()

self start_time = time.time()

def click_cell(self, row, col):
if self.turns_left > O:
self . root.grid_slaves(

row=row + 5, column=col)|0].config(state=tk.DISABLED)

if (row, col) in self.ships:

self.score += 1

self.root.grid_slaves(

row=row + 5, column=col)[0].config(bg="red")
else:
self.root.grid_slaves(

row=row + 5, column=col)|0].config(bg="blue")

self.turns_left-=1

self.update_info_panel()

if self.score == self.ship_size:
elapsed_time = round(time.time() - self.start_time, 2)
self display_message(
{("Congratulations! You sunk all the battleships in {elapsed_time} seconds.")
if elapsed_time < self.high_score:

self.high_score = elapsed_time

self.save_high_score()

self.root.grid_slaves(row=4, column=0)[0].config(
text={"High Score: {"'inf' if self.high_score == float('inf") else round(self.high_score, 2)}")
self.reset_game() # Reset
elif self.turns_left == 0:
self.display_message("Game Over. You ran out of turns.")

1d self.score < self.ship_size:

if self.score > self.high_score:
self.high_score = self.score
self.save_high_score()
self root.grid_slaves(row=4, column=0)|0].config(

text={"High Score: {round(self.high_score, 2)}")

if name ==" main
root = tk.Tk()

game = BattleshipGame(root)

root.mainloop()

let's go through the code line by line to understand each part :

Python Code

import tkinter as tk

from random import randint

import time

This section imports the necessary modules for creating a graphical user interface (GUI)

with Tkinter, generating random numbers with randint, and handling time - related
functions with time.

Python Code
class BattleshipGame :
def __init__ (self, root):

Here, a class BattleshipGame is defined . The __init method serves as the constructor

for the class . It takes an argument root , which is the Tkinter root window .

Python Code
self . root = root
self . root . title (" Battleship Game ")

This initializes the root attribute with the provided root window and sets the window title
to " Battleship Game ."

Python Code
self . board_size = 5
self . ship_size = 3
self . max_turns = 10
self . turns_left = self. max_turns
self . score = O

These lines define several game - related parameters, such as the board size, ship size,
maximum number of turns, current turns left, and the player's score .
Python Code

self . board =[[O]|* self. board_size for _in range (self. board_size)]
self . ships =]

Here, the board is a 2D list initialized with zeros, representing the game board . The ships
list will store the coordinates of the ships on the board .

Python Code
self . load_high_score ()

self . create_info_panel ()

self . create_board ()

self . place_ships ()

These lines call methods to load the high score from a file, create the information panel in
the GUI, create the game board buttons, and place the ships randomly on the board .
Python Code

self . start_time = time . time ()
This records the starting time of the game using the time module.

Python Code
reset_button = tk. Button (
self . root, text =" Reset ", command = self . reset_game)
reset_button . grid (row = self. board_size + 6, column = 0O,

columnspan = self . board_size)

This creates a "Reset" button in the GUI, which calls the reset_game method when
clicked .

Python Code
defload_high_score (self):

This method loads the high score from a file ("high_score.txt") and initializes the

high_score attribute with the retrieved value .
Python Code
def save_high_score (self):

This method saves the current high score to the same file .

Python Code

def create_info_panel (self):

This method creates labels in the GUI to display information such as the game title,

instructions, score, turns left, and high score .

Python Code
def create_board (self):

This method creates buttons in the GUI to represent the game board. Each button is

associated with the click cell method when clicked .

Python Code
def place_ships (self):

This method randomly places ships on the game board and updates the ships list.
Python Code

def update_info_panel (self):
This method updates the information panel in the GUI to reflect the current score, turns
left, and high score .
Python Code

def display_message (self, message):
This method displays a temporary message on the GUI for 2 seconds. It is used for
congratulatory and game - over messages .
Python Code

def reset_game (self):
This method resets the game, saving the current score as the high score if it's better . It also
resets the game board, score, turns left, and ships .
Python Code

def click_cell (self, row, col):
This method is called when a game board button is clicked . It disables the button, updates
the score, turns left, and checks for game completion conditions .
Python Code

if name ==" main ™

This block checks if the script is the main module, and if so, it creates an instance of the

BattleshipGame class and starts the Tkinter main loop .
Python Code
root = tk. Tk ()

game = BattleshipGame (root)
root . mainloop ()

Here, a Tkinter root window is created, and the BattleshipGame instance is instantiated
with this root window . The Tkinter main loop (root.mainloop ()) is then started,
allowing the GUI to be displayed and interacted with .

How To Play Battleship Game

1. Run the Script : Execute the Python script that contains the Battleship game

code . This will open a graphical user interface (GUI) window .
2. Game Layout :
The game board consists of a grid of buttons .

The title " Battleship Game " is displayed at the top of the window .

Below the title, there are instructions guiding you to click on the buttons to find the

battleships .

The score, turns left, and high score are displayed in the information panel .
3. Click Buttons :
To uncover battleships, click on the buttons in the grid .
Each button represents a cell on the game board .
4. Gameplay :
The game starts with battleships randomly placed on the board .
Clicking a button reveals whether a battleship is present in that cell .
If you hit a battleship (click on a cell containing a battleship) , your score increases .
If you miss a battleship, the clicked button turns blue .
You have a limited number of turns to find and sink all the battleships .
5. Game Over :

The game ends when you run out of turns .
A message will be displayed, indicating that the game is over, and you've exhausted all

turns .
6. Congratulations :

» If you successfully sink all the battleships within the allowed turns, a congratulatory

message will be displayed .

The elapsed time to complete the game is also shown in seconds .
7. Reset the Game :
After the game concludes, you can reset the game by clicking the " Reset " button .

If you achieved a high score during the game, it will be saved .

8. High Score :

The high score is displayed in the information panel .
The goal is to complete the game in the shortest time possible to achieve a lower high

score .
9. Closing the Game :
You can close the game window at any time .
10. Restarting the Game:
- To play again, run the script or restart the Python program .

Enjoy playing Battleship and try to beat your high score by sinking all the battleships in the

shortest time !

17. Space Invader Game

¢ Space Invaders

Score: 0 Level: 1

import pygame
import sys

import random

pygame.init()

WIDTH, HEIGHT = 600, 400
FPS = 30

WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

player_size = 50
player_speed = 5

enemy_size = 30

enemy_speed = 2
initial_enemy_spawn_rate = 25

min_enemy_spawrn_rate = 5 ;

screen = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption("Space Invaders")

player_image = pygame.image.load("player.png")
enemy_image = pygame.image.load("enemy.png")

bullet_image = pygame.image.load("bullet.png")

explosion_sound = pygame.mixer.Sound("explosion.wav")

shooting sound = pygame.mixer.Sound("shooting.wav")

clock = pygame.time.Clock()

class Player(pygame.sprite.Sprite):

def _init_ (self):
super().__init_ ()

self.image = pygame.transform.scale(

player_image, (player_size, player_size))
self.rect = self.image.get_rect()
self.rect.centerx = WIDTH // 2
self.rect.bottom = HEIGHT - 10

def update(self):
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT] and self.rect.left > O:
self.rect.x -= player_speed
if keys[pygame.K_RIGHT]| and self.rect.right < WIDTH:

self.-rect.x += player_speed

class Enemy(pygame.sprite.Sprite):
def __init_ (self):
super().__init_ ()

self.image = pygame.transform.scale(

enemy_image, (enemy_size, enemy_size))
self.rect = self.image.get_rect()
self.rect.x = random.randint(0, WIDTH - enemy_size)

self.rect.y = random.randint(-HEIGHT, 0)

def update(self):

self.rect.y += enemy_speed
if self.rect.top > HEIGHT:
self.rect.x = random.randint(0, WIDTH - enemy_size)

self.rect.y = random.randint(-HEIGHT, 0)

class Bullet(pygame.sprite.Sprite):
def _ init_ (self, x,y):
super().__init_ ()
self.image = pygame.transform.scale(bullet_image, (10, 20))
self.rect = self.image.get_rect()
self.rect.centerx = x

self.rect.bottom =y

def update(self):
self.rect.y -= bullet_speed
if self.rect.bottom < O:
self kill()

all_sprites = pygame.sprite.Group()

enemies = pygame.sprite.Group()

bullets = pygame.sprite.Group()

player = Player()

font = pygame.font.Font(None, 36)

game_over = False

while True:

for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
elif event.type == pygame. KEYDOWN:
if not game_over:

if event.key == pygame.K_SPACE:

bullet = Bullet(player.rect.centerx, player.rect.top)
all_sprites.add(bullet)
bullets.add(bullet)
shooting_sound.play()
else:

if event.key == pygame.K r:

all_sprites.empty()

enemies.empty()
bullets.empty()

player = Player()
all_sprites.add(player)

score =0

level = 1

enemy_speed = 2

initial enemy_spawn_rate = 25
min_enemy_spawn_rate = 5

game_over = False
if not game_over:
if random.randint(1, initial enemy_spawn_rate) == 1:

enemy = Enemy()

all_sprites.add(enemy)

enemies.add(enemy)
all_sprites.update()

hits = pygame.sprite.groupcollide(enemies, bullets, True, True)
for hit in hits:

score += 10

explosion_sound.play()

enemy = Enemy/()

all_sprites.add(enemy)

enemies.add(enemy)

hits = pygame.sprite.spritecollide(player, enemies, False)
if hits:

game_over = True

screen. fill(BLACK)

all_sprites.draw(screen)

score_text = font.render(f"Score: {score}!", True, WHITE)

level text = font.render(f"Level: {level}", True, WHITE)
screen.blit(score_text, (10, 10))
screen.blit(level_text, (WIDTH - 150, 10))

1f game_over:

white_rect = pygame.Rect(WIDTH // 2 - 220, HEIGHT // 2 - 40, 440, 80)

pygame.draw.rect(screen, WHITE, white_rect)

game_over_text = font.render(

"Game Over, Press R to Restart", True, (0, 0, 255)) # Yel
text_rect = game_over_text.get_rect(center=white_rect.center)

screen.blit(game_over_text, text_rect.topleft)

pygame.display.flip()

if not game_over and score >= level * 100:
level +=1

enemy_speed +=0.001

initial enemy_spawn_rate -= 1 # Decrease the spa:

initial_enemy_spawn_rate = max(

initial enemy_spawn_rate, min_enemy_spawn_rate)

clock.tick(FPS)

let's go through the code line by line and explain what each part does :

Python Code

import pygame

1mport sys

import random

Here, you're importing the necessary modules : pygame for creating the game, sys for
interacting with the system, and random for generating random numbers .

Python Code

pygame . init ()

This initializes Pygame .

Python Code

Constants

WIDTH, HEIGHT = 600, 400

EPS = 30

WHITE =(255,255,255)

BLACK =(0,0,0)

These lines define some constants used throughout the game, such as the screen width and
height, frames per second, and colors .
Python Code

Player

player_size = 50

player_speed = 5

Defines properties for the player character, such as its size and movement speed .

Python Code

Enemy

enemy_size = 30

enemy_speed = 2

initial_enemy_spawn_rate = 25

min_enemy_spawn_rate = 5 # Minimum spawn rate

Defines properties for the enemy characters, such as size, speed, and spawn rate .
Python Code

Bullet

bullet_speed = 7

Defines the speed of the bullets fired by the player .
Python Code

Initialize the screen
screen = pygame . display. set_mode ((WIDTH, HEIGHT))
pygame . display . set_caption (" Space Invaders ")

Initializes the game window with the specified width and height and sets the window

caption .

Python Code

Load images

player_image = pygame . image . load (" player. png")

enemy_image = pygame .image . load (" enemy. png")

bullet_image = pygame .image . load (" bullet . png")

Loads the images for the player, enemy, and bullet from their respective image files .
Python Code

Load sounds

explosion_sound = pygame . mixer. Sound (" explosion . wav ")

shooting_sound = pygame . mixer. Sound (" shooting . wav ")
Loads the sound effects for explosions and shooting .

Python Code
Clock for controlling the frame rate
clock = pygame . time . Clock ()

Creates a Clock object to control the frame rate of the game..

The next section defines classes for the player, enemy, and bullet sprites, each with their

respective properties and methods .

The main game loop begins with a while loop that continuously runs until the game is

exited .
Inside the game loop, events such as quitting the game or pressing keys are handled .

If the game is not over, enemies are spawned randomly, sprites are updated, collisions are

checked, and the screen is drawn accordingly .
If the gameis over,a " Game Over " message is displayed .
Python Code
Update display
pygame . display . flip ()
Updates the display to show the changes made during this iteration of the game loop .
Python Code
Increase difficulty with levels
if not game_over and score > = level * 100:
level += 1
enemy_speed += 0.001

initial_enemy_spawn_rate -= 1 # Decrease the spawn rate
Ensure it doesn't go below min rate

initial_enemy_spawn_rate = max (

initial_enemy_spawn_rate, min_enemy_spawn_rate)

Checksif the gameis not over and if the score has reached a multiple of 100 . If so, increases

the level, enemy speed, and decreases the spawn rate of enemies .

Python Code
Cap the frame rate
clock . tick (FPS)

Limits the frame rate to the specified FPS value, ensuring the game runs at a consistent
speed across different devices .

This is a high - level overview of the code structure and functionality. Each part

contributes to creating a simple space invaders game using Pygame .

How To Play Space Invader Game

To play the Space Invader game, follow these instructions :
1. Controls :
Move your player left : Press the left arrow key .
Move your player right : Press the right arrow key .

Shoot bullets . Press the spacebar.

2. Objective :

Your goal is to shoot down the descending enemy ships (Space Invaders) while

avoiding collisions with them .

3. Player Movement :
- Use the left and right arrow keys to move your player spaceship horizontally across the

bottom of the screen .

4. Shooting :

Press the spacebar to shoot bullets upward from your player spaceship .

5. Enemy Ships:
Enemy ships will spawn at the top of the screen and move downward towards your
player .
Your objective is to shoot down these enemy ships before they reach the bottom of the

screen .

6. Scoring :
You earn points for each enemy ship you successfully shoot down .
The score is displayed on the screen .

7. Levels :

As your score increases, you will progress through levels .

Each level may bring increased difficulty, such as faster enemy ships .

8. Game Over :
- The game ends if an enemy ship collides with your player spaceship .
If you want to restart after a game over, press the 'R' key .
9. Restarting the Game :

If you see the " Game Over " message, press the 'R' key to restart the game and play
again .

10. Enjoy and Have Fun :
- Have fun playing Space Invaders! Try to achieve the highest score and reach higher
levels .

Remember, the game's difficulty increases as you progress through levels, so stay alert,

dodge enemy fire, and aim accurately to succeed !

18. Chess Game

import pygame
import sys

Import os

pygame.init()

WIDTH, HEIGHT = 600, 600
BOARD_SIZE = 8

SQUARE_SIZE = WIDTH // BOARD_SIZE
WHITE = (255, 255, 255)

BLACK

s el L o R LAY o

ppppppppl

e g qree e A [TLII
!

"]
",
*l,
L

v wpit upw]

screen = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption("Chess Game")

pieces = {}
for color in |'w', 'b'|:

for piecein |1, 'n','b', 'q!, 'Kk, 'p'l:

img_path = os.path.join("images", f'{color}{piece.lower()}.png")

pieces[color + piece] = pygame.transform.scale(
pygame.image.load(img_path), (SQUARE_SIZE, SQUARE_SIZE))

selected_piece = None
selected_row = None

selected col = None

defis_valid_move(piece, start, end, board):
row_start, col_start = start

row_end, col_end = end

if piece ==""

return False # Nop

1f not (0 <=row_start < 8 and O <=col_start < 8 and 0 <=row_end < 8 ¢ 0 <= col_end < 8):

return False ¢

if (piece.islower() and row_end <= row_start) or (piece.isupper() and row_end >= row_start):

return False 1

if board[row_end][col_end] !="" and piece.islower() == board[row_end][col_end].islower():

return False #

if piece[0].lower() == "p":

1f col_start == col_end and board[row_end][col_end] =="":

if abs(row_end - row_start) == 1:

return True

elif abs(row_end - row_start) == 2 and row_start in (1, 6) and board|row_start + (1 if piece.islower() else -1)]
[col_start] ==""
return True

elif abs(row_end - row_start) == 1 and abs(col_end - col_start) == 1:

if board[row_end][col_end]|!="" and piece.islower() != board[row_end||col_end].islower():

return True

return False
if piece[0].lower() == 'r"

return row_start == row_end or col_start == col_end and not is_obstructed(start, end, board)
if piece[O].lower() == 'n":

return (abs(row_end - row_start) == 2 and abs(col_end - col _start) == 1) or (abs(row_end - row_start) ==
abs(col_end - col_start) == 2)

if piece[0].lower() == 'b":

return abs(row_end - row_start) == abs(col_end - col_start) and not is_obstructed(start, end, board)

if piece[O].lower() =='q":

return (row_start == row_end or col_start == col_end or abs(row_end - row_start) == abs(col_end - col_start)) and

not is_obstructed(start, end, board)

if piece|O].lower() == 'k"

return abs(row_end - row_start) <= 1 and abs(col_end - col_start) <=1

return False

def is_obstructed(start, end, board):
row_start, col_start = start

row_end, col_end = end

delta_row = 1 if row_end > row_start else -1 if row_end < row_start else O

delta_col = 1 if col_end > col_start else -1 if col _end < col_start else O

current_row, current_col = row_start + delta_row, col_start + delta_col

while (current_row, current_col) != (row_end, col_end):
if board|current_row]||[current_col] = "":
return True # T
current_row += delta_row

current_col += delta_col

return False

defis_in_check(board, color):
for row in range(8):

for col in range(8):

piece = board[row][col]
if piece and piece.isupper() != (color == 'w'):
king_position = find_king(board, color)
if is_valid_move(piece, (row, col), king_position, board):
return True

return False

def find_king(board, color):
for row in range(8):
for col in range(8):

if board[row][col] == f'K' if color == 'w' else 'k":

return row, col

defis_in_checkmate(board, color):

return False

def is_en_passant(board, start, end):
row_start, col_start = start

row_end, col_end = end

if board[row_start][col_start].lower() == 'p' and abs(row_end - row_start) == 2:

if col_end > 0 and board[row_end][col_end - 1].lower() == 'p' and board[row_end|[col_end - 1].isupper():

return True
elif col_end < 7 and board|[row_end]||col end + 1].lower() == 'p' and board|row_end||col _end + 1].isupper():

return True

return False

def pawn_promotion(piece, end_position):

row, col = end_position

promotion_piece = input(

"Choose a piece for promotion (Q, R, N, B): ").upper()

promotion_piece = input(

"Invalid choice. Choose Q, R, N, or B: ").upper()

return promotion_piece

refurn piE‘CE‘

running = True
while running and not is_in_checkmate(chess_board, 'w') and not is_in_checkmate(chess_board, 'b"):

selected_piece_available_moves = []

foriin range(8):

for j in range(8):

move_valid = i1s_valid _move(
selected_piece, (selected_row, selected_col), (i, j), chess_board)
if move_valid;

selected_piece_available_moves.append((i, j))

for event in pygame.event.get():

if event.type == pygame.QUIT:

running = False
elif event.type == pygame.MOUSEBUTTONDOWN:
pos = pygame.mouse.get_pos()
col = pos[0] // SQUARE_SIZE
row = pos|[1] // SQUARE_SIZE

if selected_piece and (row, col) in selected_piece_available_moves:

if is_en_passant(chess_board, (selected_row, selected_col), (row, col)):

chess_board|[row - 1 if selected_piece.islower()
elserow + 1]|col] =""
else:

chess_board|row]||col] = pawn_promotion(

selected_piece, (row, col))

chess_board|selected_row]||selected_col] =""
selected_piece = None
selected_row = None
selected_col = None

elif chess_board|row][col] I= """

selected_piece = chess_board|[row]|col]

selected_row, selected_col = row, col

screen.fill((255, 255, 255))

for row in range(8):
for col in range(8):
color = WHITE if (row + col) % 2 == 0 else BLACK
pygame.draw.rect(screen, color, (col * SQUARE_SIZE,
row * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE))
piece = chess_board|[row]|col]

if piece:

color_prefix = "w" if piece.isupper() else "b"
piece_key = color_prefix + piece.lower()
if piece_key not in pieces:

print(f'Piece not found: {piece_key}")

continue

plece_image = pieces|piece_key]
screen.blit(

piece_image, (col * SQUARE_SIZE, row * SQUARE_SIZE))

if selected_piece:

pygame.draw.rect(screen, (0, 255, 0), (selected_col * SQUARE_SIZE,

selected_row * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE), 4)

pygame.display.flip()

if is_in_checkmate(chess_board, 'w'):
print("Checkmate! Player B wins!")
elifis_in_checkmate(chess_board, 'b'):

print("Checkmate! Player W wins!")

pygame.quit()

sys.exit()

let's go through the provided Python Code line by line :
Python Code

import pygame
import sys
1mport os
The code starts by importing the necessary libraries: pygame for game development, SYS for

system - related operations, and OS for interacting with the operating system .

Python Code
pygame . init ()

Initializes the pygame library . This must be called before using any pygame functions .

Python Code
WIDTH, HEIGHT = 600, 600
BOARD_SIZE = 8
SQUARE_SIZE = WIDTH // BOARD_SIZE
WHITE =(255, 255,255)
BLACK =(0,0,0)
Sets up some constants for the dimensions of the game window, the size of the chessboard, the size of

each square on the chessboard, and color constants .

Python Code
chess_board =]

[11 I n L] I n 1]] I 1] I n (1] I] n
L r ! n ! b ? q !} k ' b ! n r r !

1]

1]

I] I |1]

L p ! P ’ p r p ¥ P } } p ! p !
RITI i 1T i [T mn 1] N

! ! ! ! ! ! r !
RITI i 1] e nm n nn 1

! ! ! ! ! ! r !
C1nin i inn i 1] ini 1] i

! ! ! ! ! ! !]
R i 1T {11 nn i nn 1R

! ! ! ! ! 1 r !

:"P"; nPrl, ”P”, "P”, ”P”; ”P”, ”P”, “P”],
:”R”, "N”, ”B”, "Q”, “K”; 'IIBrI? IINIII HRII],

Initializes the chessboard as a list of lists representing the initial configuration of chess pieces .

Python Code

screen = pygame . display . set_mode ((WIDTH, HEIGHT))
pygame . display . set_caption (" Chess Game ")

Creates the game window with the specified dimensions and sets the window caption .
Python Code

pleces

for colorin|['w','b']:
for piecein|['r','n','b’,'q, 'k, 'p' I:
img_path = os.path.join ("images",f " {color}{piece.lower () } . png")
pieces [color + piece | = pygame . transform . scale (
pygame . image . load (img_path), (SQUARE_SIZE, SQUARE_SIZE))
Loads chess piece images from files located in the " images " directory and scales them to match the size

of a chessboard square . The images are stored in the pieces dictionary with keys like " wr" for a

white rook .

Python Code
selected_piece = None
selected_row = None

selected_col = None

Initializes variables to keep track of the currently selected chess piece and its position on the board .
The code then defines several functions: is_valid_move, is_obstructed, is_in_check,
find_king, is_in_checkmate, is_en_passant , and pawn_promotion. These functions are
responsible for checking various conditions related to chess moves and game state .
The code then enters a game loop using a while statement, where it continuously updates

the game state and checks for user input and events .

The game loop includes logic for handling mouse clicks, updating the display, and checking
for checkmate conditions. The loop continues until the game is either closed or a
checkmate is detected .

Finally, after exiting the game loop, the code prints a message indicating the winner (if
any), closes the pygame window, and exits the program .

How To Play Chess Game

To play a chess game using the provided code, follow these general steps :
1. Run the Code :
Make sure you have Python installed on your system .

Save the codeinafilewitha . Py extension (e. g., ChESS_gELmE! - PV).

Open a terminal or command prompt, navigate to the directory containing the file, and

run the script using python chess_game . py.

2. Chessboard Display :

The code will open a window displaying the chessboard and pieces .

3. Selecting and Moving Pieces :

Click on a piece to select it (highlighted by a green border)

Click on a valid square to move the selected piece .
If the move is valid, the piece will be moved to the new position .

4. Pawn Promotion :
If a pawn reaches the opposite end of the board, you will be prompted to choose a piece for

promotion (Queen, Rook, Knight, Bishop)

Enter the corresponding letter (Q,R,N,B) to promote the pawn .
5. Check and Checkmate :

The game checks for check and checkmate conditions after each move .

If a king is in check, the board will display a message indicating the check .

If a checkmate occurs, the game will end, and the winner will be announced .
6. Quit the Game :

Close the game window to exit the program .

7. Observing Rules :
The code enforces standard chess rules, including valid moves for each piece, castling, en

passant, and pawn promotion .

8. Customizing the Game :

You can modify the initial chessboard configuration or create your own custom

configurations .

Images of chess pieces are expected to be in the " images " directory . Make sure you

have the necessary images for each piece (e.g., Wr. pPng for a white rook ;

Keep in mind that this code provides a basic interface for playing chess, and it's meant for
educational purposes . It doesn't include features like an AI opponent, saving games, or
advanced graphical elements . If you're looking for a more user - friendly and feature - rich

chess - playing experience, consider using dedicated chess software or online platforms .

19. Roulette Simulator Game
i’ Roulette Simulator _] %

Place Your Bet

=]

Bet Amount: 5 _
Deposit Money

Deposit Amount: | 100000(] Deposit |

o

Guessing Number: 3

Bet Type: Odd —

Number
Red .
Black {>pin ‘ Congratulations! You win $50.0!
Odd
Result: Even [he result is: 17 ﬂ’

Money Balance: $999585.00

import tkinter as tk
from tkinter import messagebox

import random

class RouletteSimulator:

def _init_ (self, master):
self.master = master

self. master.title("Roulette Simulator")

window_width = 500

window_height = 350

screen_width = self. master.winfo_screenwidth()
screen_height = self. master.winfo_screenheight()
X_position = (screen_width - window_width) // 2
y_position = (screen_height - window_height) // 2
self. master.geometry(

f"{window_width}x{window_height}+{x_position}+{y_position}")
self. money_balance = 1000 # Starting m
self . bet_label frame = tk.LabelFrame(master, text="Place Your Bet")
self.bet_label frame.grid(

row=0, column=0, padx=10, pady=10, sticky="w")

self.bet_amount_label = tk.Label(

self.bet_label frame, text="Bet Amount:")

self.bet_amount_label.grid(row=0, column=0, pady=5)

self bet_amount_var = tk.StringVar()
self.bet_amount_entry = tk.Entry(
self.bet_label frame, textvariable=self.bet_amount_var, width=10)

self.bet_amount_entry.grid(row=0, column=1, pady=5)
self.bet_ number _label = tk.Label(
self.bet_label frame, text="Guessing Number:")

self.bet_number label.grid(row=1, column=0, pady=5)

self.bet_number_var = tk.StringVar()

self.bet_number_entry = tk.Entry(

self .bet_label frame, textvariable=self.bet_number_war, width=10)

self.bet_number entry.grid(row=1, column=1, pady=5)

self.bet_type_label = tk.Label(self.bet_label frame, text="Bet Type:")
self.bet_type_label.grid(row=2, column=0, pady=5)

self.bet_type_var = tk.StringVar()
self.bet_type_var.set("Number")
bet_types = ["Number", "Red", "Black", "Odd", "Even"|
self.bet_type_menu = tk.OptionMenu(

self.bet_label frame, self.bet_type_var, *bet_types)
self.bet_type_menu.grid(row=2, column=1, pady=5)

self.deposit_label frame = tk.LabelFrame(master, text="Deposit Money")

self.deposit_label_frame.grid(
row=0, column=1, padx=10, pady=10, sticky="w")

self.deposit_label = tk.Label(
self.deposit_label_frame, text="Deposit Amount:")

self.deposit_label.grid(row=0, column=0, pady=5)

self.deposit_var = tk.StringVar()
self.deposit_entry = tk.Entry(
self.deposit_label_frame, textvariable=self.deposit_var, width=10)

self.deposit_entry.grid(row=0, column=1, pady=5)

self.deposit_button = tk.Button(
self.deposit_label frame, text="Deposit", command=self.deposit_money)

self.deposit_button.grid(row=0, column=2, pady=5, padx=(10, 0))

self.spin_button = tk.Button(
master, text="Spin", command=self.start_spin, width=20, state='disabled’)

self.spin_button.grid(row=1, column=0, columnspan=2, pady=15)

self . result_label = tk.Label(
master, text="Result:", font=("Helvetica", 10, "bold"))

self.result_label.grid(row=2, column=0, pady=(5, 0), sticky="w")

self.result_var = tk.StringVar()
self . result _wvalue label = tk.Label(
master, textvariable=self.result_var, font=("Helvetica", 16))

self.result_value_label.grid(row=2, column=1, pady=(5, 0), sticky="w")

self .balance_label = tk.Label(

master, text="Money Balance: ${self. money_balance:.2f}", font=("Helvetica", 12, "bold"))

self.balance_label.grid(row=3, column=0, columnspan=2, pady=(10, 0))

self.is_spinning = False
self.spin_interval = 100 # millisecc
self spin_count =0

self.stop_spin_count = 10

self bet_amount_var.trace('w', self.check _bet_amount)

self.bet_ number wvar.trace('w’, self.check bet_amount)

def deposit_money(self):
try:
deposit_amount = float(self.deposit_var.get())
if deposit_amount <= 0:
messagebox.showerror(
"Error", "Deposit amount must be greater than zero.")
return
except ValueError:
messagebox.showerror(
"Error", "Invalid deposit amount. Please enter a valid number.")

return

self. money_balance += deposit_amount

self.update_balance_label()

def start_spin(self):

if not self.is_spinning:

self.spin_count = 0
self.is_spinning = True

self.spin()

def spin(self):

if self.is_spinning:

result = random.choice(range(37))
self.result_wvar.set(result)

self.spin_count += 1

if self.spin_count < self.stop_spin_count:
self.master.after(self.spin_interval, self.spin)
else:
self.is_spinning = False

self.process_spin_result(result)

def process_spin_result(self, result):
try:

bet_amount = float(self.bet_amount_var.get())

bet_number = self.bet_number_var.get()

if bet_amount <= 0 or bet_amount > self. money_balance or not bet_number:
messagebox.showerror(
"Error", "Invalid bet amount or guessing number. Please enter valid values.")
return
except ValueError:
messagebox.showerror(
"Error", "Invalid bet amount. Please enter a valid number.")

return

bet_type = self.bet_type_var.get()

self result_wvar.set(f"The result is: {result}")

win_amount = self.check _win(bet_type, result, bet_amount, bet_number)
self. money_balance += win_amount - bet_amount

self.update_balance_label()

if win_amount > O:
self.show_outcome_message(
f"Congratulations! You win ${win_amount - bet_amount}!")

else:

self.show_outcome_message("You lose!")

def show_outcome_message(self, message):
outcome_window = tk.Toplevel(self.master)
outcome_window.title("Outcome")
outcome_window.geometry(

"+9%d+%d" % (self.master.winfo_x() + 500, self. master.winfo_y() + 130))
outcome_label = tk.Label(
outcome_window, text=message, font=("Helvetica", 12))

outcome_label.pack(padx=20, pady=10)

ok _button = tk.Button(outcome_window, text="0K",

command=outcome_window.destroy)

ok_button.pack(pady=10)

def check_win(self, bet_type, result, bet_amount, bet_number):
1f bet_type == "Number":
try:
selected_number = int(bet_number)
except ValueError:
messagebox.showerror(
"Error", "Invalid bet number. Please enter a valid number.")
return 0
if selected_number == result:
return bet_amount * 36 # Winning on a specif
else:
return O
elif bet_type =="Red"and resultin|1,3,5,7,9,12,14,16,18, 19, 21,23, 25,27, 30,32, 34, 36]:
return bet_amount * 2 # Winning on red
elif bet_type == "Black"and resultin [2,4, 6, 8,10,11,13,15,17, 20,22, 24, 26, 28,29,31, 33, 35].
return bet_amount * 2 # Winning on black
elif bet_type =="0dd" and result % 2 != 0:

return bet amount* 2 # V

elif bet_type =="Even" and result % 2 == O:

return bE‘t_E.ITlDllﬂt 2 #

else:

return O

def update_balance_label(self):
self.balance_label.config(

text="Money Balance: ${self. money_balance:.2f}")

def check_bet_amount(self, *args):
try:
bet_amount = float(self.bet_amount_var.get())
bet_number = self.bet_number_var.get()
if bet_amount <= 0 or bet_amount > self. money_balance or not bet_number:
self.spin_button['state'] = 'disabled'
else:
self.spin_button|'state'| = 'normal’
except ValueError:
self.spin_button['state'] = 'disabled'
if_name_ =="__main_ "
root = tk.Tk()
app = RouletteSimulator(root)

root.mainloop()

let's go through the code line by line :

.import tkinter as tk : Thisimportsthe Tkinter module, which provides a toolkit
for creating graphical user interfaces .

. from tkinter import messagebox : This imports the messagebox module from
Tkinter, which is used to display pop - up message boxes .

.import random: This imports the random module, which is used for
generating random numbers .

.class RouletteSimulator:: Defines a class named RouletteSimulator to

encapsulate the functionality of the roulette simulator .

.def __init__(self, master):: Initializes the class. The master parameter is
a Tkinter root window or another Tkinter widget that serves as the main

window .

.self . master = master: Stores the reference to the Tkinter root window or

main widget .

. self . master. title (" Roulette Simulator "): Sets the title of the main window .
. Window Geometry Configuration :

window_ width = 500 : Setsthe initial width of the window .

window_height = 350 : Setstheinitial height of the window .

Calculates the position to center the window on the screen .

self . master . geometry (...) : Setsthe window size and position .

9. self . money_balance = 1000 : Initializes the starting money balance.

10.

1.1.

Bet Controls Section :
.self . bet_label frame : Creates alabeled frame for bet - related controls .

.self . bet_amount_label , self . bet_number_label,

self . bet_type_label : Labels for bet amount, guessing number, and bet type .

-self . bet_amount_var, self.bet_number_var, self.bet_type_var:

StringVars to store user inputs .

-self . bet_amount_entry, self.bet_number_entry: Entry widgets for

entering bet amount and guessing number .
-self . bet_type_menu : OptionMenu for selecting the bet type .
Deposit Controls Section :

-self . deposit_label_frame: Creates a labeled frame for deposit - related

controls .
-self . deposit_label : Label for deposit amount .

-self . deposit_var . StringVar to store deposit amount .

-self . deposit_entry : Entry widget for entering deposit amount .

.self . deposit_button : Button to trigger the deposit process .
12. Spin Button :

-self . spin_button . Button for spinning the roulette wheel . Initially disabled .
13, Result and Balance Labels :

-self . result_label, self.result_value_label: Labels for displaying the

result .
-self . balance_label : Label for displaying the money balance .
14. Spin - related variables :
-self . is_spinning, self . spin_interval , self . spin_count,
self . stop_spin_count : Variables for controlling the spinning process .

15. Trace changes in bet amount and bet number to enable / disable the

Spin Button .

16. defdeposit_money (self):: Method for handling the deposit of money .
17. def start_spin (self):: Method to initiate the spinning process .

18. def spin (self):: Method for simulating the spinning of the roulette

wheel .

19. def process_spin_result (self, result):: Method for processing the spin
result and updating the balance.

20. def show_outcome_message (self, message):: Method for displaying
an outcome message in a separate window .

21. def check_win (self, bet_type, result, bet_amount, bet_number)::
Method to check if the user won and calculate the winning amount .

22. defupdate_balance_label (self):: Method to update the money balance
label .

23. def check_bet_amount (self, * args):: Method to check the validity of
the bet amount and enable / disable the Spin Button .

24, Main block :
» Creates a Tkinter root window .
- Instantiates the RouletteSimulator class.

- Enters the Tkinter main event loop .

How To Play Roulette Simulator Game

To play the Roulette Simulator game :

1. Launch the Game:

Run the Python script to launch the game .
The game window will appear with various controls for placing bets, depositing money,

and spinning the roulette wheel .
2. Place Your Bet :

Inthe " Place Your Bet " section, enter the amount you want to bet in the " Bet Amount "

entry .

Choose the type of bet you want to place using the " Bet Type" dropdown menu .

Options include :
m Number : Bet on a specific number (0to 36).
®m Red: Betonrednumbers.
m Black: Bet onblack numbers .
® (Odd: Betonodd numbers.
m Even: Betoneven numbers.

Depending on the selected bet type, additional input may be required (e. g. , guessing

a specific number)

3. Deposit Money :

Inthe " Deposit Money " section, enter the amount you want to depositin the " Deposit

Amount " entry .
Click the " Deposit " button to add money to your balance .
4. Spin the Wheel :
- Once you've placed your bet and deposited money, the " Spin " button becomes enabled .

Clickthe " Spin" button to start the roulette wheel .

5. View the Result :

The roulette wheel will spin, and after a few moments, the result will be displayed in the

" Result" section .
The outcome will show whether you won or lost and the specific result .
6. Outcome Message :
A pop - up window will appear with a message indicating whether you won or lost .
If you won, it will also display the amount you won .

7. Repeat or Adjust :

» You can repeat the process by placing new bets, changing bet types, or depositing more

money .

Adjust your bets and strategy based on the outcomes and your remaining balance .

8. Quit the Game:

Close the main window to exit the game .
Remember that this is a simplified roulette simulator, and the goal is to enjoy the
experience of betting and spinning the wheel without real money involved . Have fun

exploring different bet types and strategies !

20. Mancala Game

E? Mancala Game = L] X

4 4| 4| 4| 4 4 4 4 4

4, 5| 5| 5| 0| 4 4 4

Player 1 Score: 32 Player 2 Score: 32

Reset Game

import tkinter as tk
from tkinter import ttk, messagebox

from ttkthemes import ThemedStyle

class MancalaGame:;
def _ init_ (self, master):

self. master = master

self. master.title("Mancala Game")

self. board = [4]|* 16

self.p1_pits = [tk.Button(master, text=str(self.board[i]), command=lambda i=i: self.move(i), font=('Arial’, 10))

foriin range(8)]

self.p2_pits = [tk.Button(master, text=str(self.board[i]), command=lambda i=i: self.move(i), font=('Arial’, 10))

foriinrange(8, 16)|

self.p1_mancala = tk.Label(

master, text="0", font=('Arial’, 12, 'bold"))
self.p2_mancala = tk.Label(

master, text="0", font=_'Arial’, 12, 'bold"))

self.score_label_p1 = tk.Label(
master, text="Player 1 Score:", font=('Arial’, 10, 'italic"))
self.score_label_p2 = tk.Label(

master, text="Player 2 Score:", font=('Arial’, 10, 'italic'))

self . reset_button = tk.Button(

master, text="Reset Game", command=self.reset_game, font=('Arial’, 10, 'bold"))
self.create_layout()

self.current_player = 1

self extra turn = False

def create_layout(self):
style = ThemedStyle(self.master)

style.set_theme("plastik") # Y

foriin range(8):
self.p2_pits|i].grid(row=1, column-=1, padx=5, pady=5)
self.p2_mancala.grid(row=1, column=9, padx=10, pady=5)

foriin range(8):

self.p1_pits[i].grid(row=2, column=7-i, padx=5, pady=>5)
self.p1_mancala.grid(row=2, column=0, padx=10, pady=5)

self.score_label p1.grid(
row=3, column=0, padx=10, pady=5, columnspan=4)
self.score_label_p2._grid(

row=3, column=5, padx=10, pady=5, columnspan=4)

self.reset_button.grid(row=4, column=0, columnspan=10, pady=10)

def move(self, pit_index):
if self.current_player == 1 and pit_index < 8:
self.make_move(pit_index)
elif self.current_player == 2 and 8 <= pit_index <= 15:
self. make_move(pit_index)
else:

messagebox.showinfo("Invalid Move", "It's not your turn!")

def make_move(self, pit_index):
stones = self.board|pit_index|

self.board|pit_index| =0

while stones > 0:
pit_index = (pit_index + 1) % 16
if self.current_player == 1 and pit_index == 15:

continue # skip or

elif self.current_player == 2 and pit_index == 8:

continue # sk

self.board|pit_index| += 1

stones -= 1
self.update_gui()
self.check_extra_turn(pit_index)

self.check end_game()

if not self.extra_turn:

self.current_player = 3 - self.current_player

def update_gui(self):

foriin range(8):

self.p1_pits|i]["text"] = str(self.board|i])

self.p1_mancala|"text"] = str(self.board|8])

foriinrange(8, 16):

self.p2_pits|i-8]|"text"] = str(self.board|i])

self.p2_mancala["text"] = str(self.board[15])

self.score_label pl["text"] = f"Player 1 Score: {sum(self.board|:8])}"

self.score_label p2["text"] = f"Player 2 Score: {sum(self.board|[8:16])}"

def check_extra_turn(self, last_pit_index):

if self.current_player == 1 and O <= last_pit_index < 8 and self.board|last_pit_index| == 1:
self.extra_turn = True

elif self.current_player == 2 and 8 <= last_pit_index < 15 and self.board|last_pit_index| == 1:

self.extra turn = True
else:

self.extra turn = False

def check_end_game(self):

if all(pit == O for pit in self . board[:8]) or all(pit == O for pit in self.board|8:16]):
self.end_game()

def end_game(self):
pl_score = sum(self.board[:8])
p2_score = sum(self.board|8:16])

if p1_score > p2_score:
winner = "Player 1"
elif p1_score < p2_score:
winner = "Player 2"
else:

winner = "It's a tie!"

messagebox.showinfo('"Game Over", f'"The game is over!\n{winner} wins!")
def reset_game(self):

self. board = [4]|* 16

self.current_player = 1

self.extra_turn = False

self.update_gui()

main
root = tk.Tk()
mancala_game = MancalaGame(root)

root.mainloop()

Let's go through the code line by line to understand its functionality :
Python Code

import tkinter as tk
from tkinter import ttk, messagebox

from ttkthemes import ThemedStyle

Here, the code imports the necessary modules from the tkinter library for creating a

graphical user interface (GUI), including themed styling .
Python Code

class MancalaGame:

def __init_ (self, master):

self . master = master

self . master. title (" Mancala Game ")

A class MancalaGame is defined to encapsulate the Mancala game . The __init__ method

initializes the game, setting up the main window (master) and setting its title .
Python Code
Mancala board representation

8 pits for each player + 2 mancalas for each player
self . board =[4]* 16

The Mancala board is represented as a list (self. board) containing 16 pits - 8 pits for
each player and 2 mancalas for each player . The initial configuration is set with 4 stonesin
each pit .
Python Code
Player 1's side

self . p1_pits = | tk . Button (master, text = str (self . board [1]),

command = lambdai =i: self. move (1), font =('Arial’, 10))
foriin range (8)]

A list of 8 buttons (self. pl_pits) is created for Player 1's side, representing the pits. The
buttons display the number of stones in each pit, and the command parameteris set to the

self . move method with the current pit index .
Python Code
Player 2's side

self . p2_pits = [tk . Button (master, text = str (self . board [1]),
command = lambdai =1: self. move (i), font =('Arial’, 10))

foriinrange (8,16)]
Similarly, a list of 8 buttons (self. p2_pits) is created for Player 2's side .
Python Code

Mancalas
self . p1_mancala = tk. Label (
master, text =" 0", font =('Arial’, 12, 'bold'))
self . p2_mancala = tk. Label (
master, text =" 0", font =('Arial’, 12, 'bold"))
Labels are created to represent the mancalas for both players . They initially display the
number O .
Python Code
Score labels
self . score_label_p1 = tk. Label (

master, text =" Player 1 Score :", font =('Arial’, 10, 'italic'))
self . score_label_p2 = tk. Label (
master, text =" Player 2 Score :", font =('Arial’, 10, 'italic'))
Labels are created to display the scores for Player 1 and Player 2 .
Python Code

Reset button
self . reset_button = tk. Button (

master, text =" Reset Game ", command = self . reset_game, font =('Arial’, 10,
'bold'))

A button (self.reset_button) is created to reset the game, and its command is set to the
self . reset_game method .
Python Code
Create the GUI layout
self . create_layout ()
The create_layout method is called to organize and place the widgets on the GUI.
Python Code
Track the current player
self . current_player = 1
self . extra_turn = False
Variables self. current_player and self.extra_turn are initialized to track the current
player and whether an extra turn is granted .
Python Code
def create_layout (self):

style = ThemedStyle (self . master)
style . set_theme (" plastik ") # You can choose other available themes

The create_layout method sets the theme for the GUI using the ThemedStyle from the
ttkthemes library .
Python Code
Player 2's pits and mancala
foriinrange(8):
self . p2_pits[1i]. grid (row = 1, column =1,padx = 5,pady = 5)
self . p2_mancala . grid (row = 1, column = 9, padx = 10, pady = 5)
The buttons representing Player 2's pits and the mancala are placed on the GUI grid .
Python Code
Player 1's pits and mancala
foriinrange (8):
self . pl_pits[i]. grid (row = 2,column =7 -1,padx = 5,pady =5)
self . p1_mancala. grid (row = 2, column = 0, padx = 10, pady = 5)
Similarly, the buttons representing Player 1's pits and the mancala are placed on the GUI
grid .
Python Code
Score labels

self . score_label_p1 . grid (

row = 3, column = 0, padx = 10, pady = 5, columnspan = 4)
self . score_label_p2 . grid (
row = 3, column = 5, padx = 10, pady = 5, columnspan = 4)
The labels displaying the scores for both players are placed on the GUI grid .
Python Code
Reset button

self . reset_button . grid (row = 4, column = 0, columnspan = 10, pady = 10)

The reset button is placed on the GUI grid .

Python Code
def move (self, pit_index):
if self . current_player == 1 and pit_index < 8 :
self . make_move (pit_index)
elif self . current_player == 2 and 8< = pit_index<= 15:
self . make_move (pit_index)
else:
messagebox . showinfo (" Invalid Move ", " It's not your turn !")
The move method is called when a pit button is clicked . It checks whether the move is
valid for the current player and calls the make_move method.

Python Code
def make_move (self, pit_index):
stones = self. board [pit_index |
self . board [pit_index | = O

while stones >0 :
pit_index = (pit_index + 1)% 16
if self . current_player == 1 and pit_index == 15:

continue # skip opponent's mancala

elif self . current_player == 2 and pit_index ==

continue # skip opponent's mancala

self . board [pit_index] += 1
stones -= 1

self . update_gui ()
self . check_extra_turn (pit_index)

self . check_end_game ()

if not self . extra_turn:
Switch player only if there is no extra turn
Switch between player 1 and player 2

self . current_player = 3 - self. current_player

The make_move method handles the logic of distributing stones in the pits after a move is

made . It updates the GUI, checks for an extra turn, and checks if the game has ended .

Python Code
def update_gui (self):
Update Player 1's side

foriinrange (8):

self . p1_pits[i]["text "] = str (self.board [1i])
self . p1_mancala [" text "] = str (self. board [8 |)

Update Player 2's side
foriinrange (8,16):
self . p2_pits[i- 8 |["text"] = str (self.board[1i])

self . p2_mancala [" text "] = str (self. board [15])

Update scores
self . score_label pl1 ["text"] = f " Player 1 Score: {sum (self. board[:8]) }"
self . score_label p2 ["text"] = f " Player 2 Score: {sum (self. board[8:16])}"

The update_gui method updates the text on the buttons and labels to reflect the current
state of the game .

Python Code
def check_extra_turn (self, last_pit_index):
if self.current_player == 1 and O<= last pitindex < 8 and
self . board [last_pit_index | == 1:

self . extra turn = True

elif self.current_player == 2 and 8<= last pit.index < 15 and
self . board [last_pit_index] == 1:
self . extra_turn = True
else :
self . extra_turn = False
The check_extra_turn method determines whether an extra turn is granted based on the

last pit index where a stone was placed .

Python Code
def check_end_game (self):
if all(pit == 0O for pit in self.board[:8]) or all(pit == 0 for pit in

self . board[&8:16]):

self . end_game ()

The check_end_game method checks if the game has ended by examining whether all pits

on one side are empty .

Python Code
def end_game (self):
pl_score = sum (self. board [: 8])
p2_score = sum (self .board[8:16])

if pl_score > p2_score:
winner =" Player 1"

elif p1_score < p2_score :
winner =" Player 2 "

else :
winner ="It's atie!"

messagebox . showinfo (" Game Over ", f " The game is over ! \n{winner} wins !")

The end_game method displays a message box announcing the end of the game and the

winner or a tie.

Python Code
def reset_game (self):
self . board =[4]* 16
self . current_player = 1
self . extra_turn = False

self . update_gui ()
The reset_game method resets the game state by setting the board to its initial

configuration, resetting the current player and extra turn variables, and updating the GUI .

Python Code
if name =="_main_ "
root = tk. Tk ()
mancala_game = MancalaGame (root)

root . mainloop ()

The script creates a Tkinter root window, initializes an instance of the MancalaGame class,
and starts the main event loop using root . mainloop (). This loop keeps the GUI responsive

to user interactions .

How To Play Mancala Game

Mancalais a two - player strategy board game that involves capturing stones or seeds in pits
on the game board . The game typically starts with a certain number of stones or seeds in

each pit . Here's a basic guide on how to play Mancala :
Objective : The goal of Mancala is to capture more stones or seeds than your opponent .

Setup:
1. The Mancala board consists of two rows of six pits each, for a total of 12 pits, and each player controls one

row of six pits .

2. Atthe ends of the board, each player has a larger pit called the " Mancala ."

3. Place an equal number of stones or seeds in each of the 12 smaller pits. A common starting

configuration is four stones in each pit .
Starting the Game:
1. Players sit opposite each other, facing the board, with their Mancalas on their right - hand side .

2. Decide who goes first . Players may use a coin toss, rock - paper - scissors, or any other method to

determine the starting player .
Gameplay :

1. On aplayer's turn, they select one of the pits from their row that contains stones or seeds .

2. The player then picks up all the stones or seeds from the chosen pit and distributes them, one by one,
in a counterclockwise direction into the succeeding pits, including their own Mancala but skipping the

opponent's Mancala .

3. If the last stone or seed is dropped into the player's Mancala, they get another turn . If the last stone

lands in an empty pit on their side, the player captures that stone and any stones in the opponent's pit

directly opposite . These captured stones are placed in the player's Mancala .
4. The game continues with players taking turns until one side of the board is empty .

Ending the Game : The game ends when one player no longer has stones or seeds in their
pits . The remaining stones on the opposite side of the board are captured by the other

player . The player with the most stones or seeds in their Mancala is declared the winner .

Winning : The player with the most stones or seeds in their Mancala at the end of the game

is the winner . If the Mancalas have an equal number of stones or seeds, the gameis atie.
Tips :

Pay attention to the number of stones or seeds in each pit to plan strategic moves .

Think about capturing your opponent's stones by landing the last stone in an empty pit on your side .

Mancala is a game that combines skill and strategy, making each move crucial to the
outcome . Enjoy playing and have fun !

21. Tower Defense game

g'.g Tower Defense Garme =
Score: 0 .
High Score: 0

iImport pygame

import sys

import random

pygame.init()

WIDTH, HEIGHT = 800, 600
FPS = 60

WHITE = (255, 255, 255)
RED = (255, 0, 0)

BLUE = (0, 128, 255)
YELLOW = (255, 255, 0)

screen = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption("Tower Defense Game")

clock = pygame.time.Clock()

player_size = 50

player pos = [WIDTH // 2 - player_size // 2, HEIGHT - player_size * 2|
player_color = BLUE

player_speed = 5

can_shoot = True

ower size = 30

tower_color = (0, 255, 0)

towers = ||

bullet_size = 10
bullet_color = YELLOW
bullets =[]
bullet_speed = 8

enemy_size = 30
enemy_color = RED
enemy_speed = 3

enemies =[]

score =0
high_score =0

font = pygame.font.Font(None, 36)

game_over = False

restart_message = font.render("Game Over! Restart Please Press R", True, RED)

restart_message_rect = restart_mes SHgE.gEt_IECt(

center=(WIDTH // 2, HEIGHT // 2))

pause = False
pause_message = font.render("Game Paused. Press P to Resume", True, BLUE)

pause_message_rect = pause_message.get_rect(center=(WIDTH // 2, HEIGHT // 2))

while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
elif event.type == pygame. KEYDOWN:

if event.key == pygame.K_r and game_over:

game_over = False
enemies.clear()
bullets.clear()
score =0

elif event.key == pygame.K_SPACE and not game_over:

bullet_pos = [player_pos|0] + player_size // 2, player_pos|1]]
bullets.append(bullet_pos)

elif event.key == pygame.K_p and not game_over:
o J g
pause = not pause

keys = pygame.key.get_pressed()

if not pause and not game_over: # Ch

if keys[pygame.K_LEFT] and player_pos|0] > O:

player_pos|0] -= player_speed
if keys|pygame.K_RIGHT]| and player_pos|[0] < WIDTH - player_size:
player_pos|0] += player_speed

if not game_over and not pause:
for enemy in enemies:

enemy|1] += enemy_speed

bullets = [[bullet[0], bullet[1] - bullet_speed] for bullet in bullets]
bullets = [bullet for bullet in bullets if O < bullet|1] < HEIGHT]

for bullet in bullets|:]:
for enemy in enemies|:|:
if (
enemy|0] < bullet|0] < enemy[0] + enemy_size

and enemy]|1] < bullet[1] < enemy|[1] + enemy_size

bullets.remove(bullet)
enemies.remove(enemy)
score += 10

break

for enemy in enemies:
if (
player_pos|0] < enemy|0] + enemy_size
and player_pos|0] + player_size > enemy|0|
and player_pos[1] < enemy]|1]| + enemy_size

and player_pos|1] + player_size > enemy|1]

game_over = True
if score > high score:
high_score = score

break

if random.randint(0, 100) < 5:
enemy_pos = [random.randint(0, WIDTH - enemy_size), O]

enemies.append(enemy_pos)

enemies = [enemy for enemy in enemies if enemy|1] < HEIGHT]

screen.fill(WHITE)

pygame.draw.rect(screen, player_color,

(player_pos|0|, player_pos|1], player_size, player_size))

for tower in towers:
pygame.draw.rect(screen, tower_color,

(tower|0], tower| 1], tower_size, tower_size))

for bullet in bullets:
pygame.draw.circle(screen, bullet_color, (int(
bullet[0]), int(bullet[1])), bullet_size)

for enemy in enemies:
pygame.draw.rect(screen, enemy_color,

(enemy|0], enemy[1], enemy_size, enemy_size))

score_text = font.render({"Score: {score}", True, (0, 0, 0))

screen.blit(score_text, (10, 10))

high_score_text = font.render(f"High Score: {high_score}", True, (0, 0, 0))

screen.blit(high_score_text, (10, 50))

if game_over:

screen.blit(restart_message, restart_message_rect)

elif pause:

screen.blit(pause_message, pause_message_rect)

pygame.display.flip()
clock.tick(FPS)

Let's go through the code line by line to understand its functionality :
Python Code

import pygame
1mport sys
import random
The code begins by importing the necessary modules . pygame for game development, SYS for

system - specific parameters and functions, and random for generating random numbers .

Python Code

Initialize Pygame

pygame . init ()

Pygame is initialized to set up the gaming environment .

Python Code

Constants

WIDTH, HEIGHT = 800, 600

FPS = 60

WHITE =(255, 255,255)

RED =(255,0,0)

BLUE =(0,128,255)

YELLOW =(255,255,0)
Constants are defined, including the game window dimensions (WIDTH and HEIGHT) , frames
per second (FPS), and various color constants in RGB format .

Python Code

Set up the game window

screen = pygame . display. set_mode ((WIDTH, HEIGHT))

pygame . display . set_caption (" Tower Defense Game ")

clock = pygame . time . Clock ()

The game window is initialized using Pygame . A caption is set, and a clock object is created to control

the frame rate .

Python Code
Player
player_size = 50
player_pos = [WIDTH // 2 - player_size // 2, HEIGHT - player_size * 2]
player_color = BLUE
player_speed = 5
can_shoot = True
Player - related variables are defined, such as size, initial position, color, speed, and a flag

(can_shoot) indicating whether the player can shoot .

Python Code
Towers
tower_size = 30
tower_color =(0,255,0)
towers =[]
Tower - related variables are defined, including size, color, and an empty list (towers) tostore tower

positions .

Python Code
Bullets

bullet_size = 10
bullet_color = YELLOW
bullets =[]
bullet_speed = 8

Bullet - related variables are defined, including size, color, an empty list (bullets) to store bullet

positions, and the speed of bullets .

Python Code

Enemies
enemy_size = 30
enemy_color = RED
enemy_speed = 3

enemies =[]

Enemy - related variables are defined, including size, color, speed, and an empty list (enemies) to

store enemy positions .

Python Code
Score
score = 0O

high_score = 0

font = pygame . font. Font (None, 36)

Score - related variables are defined, including the current score, high score, and a font object for

rendering text .

Python Code

Game state

game_over = False

restart_message = font . render (" Game Over ! Restart Please PressR", True, RED)
restart_message_rect = restart_message . get_rect (center =(WIDTH // 2, HEIGHT //

2))
The game state is initialized, starting with game_oOVer setto False. A message for restarting after

game over is created, and its position is set at the center of the screen .

Python Code
Pause state

pause = False
pause_message = font . render (" Game Paused . Press P to Resume ", True, BLUE)

pause_message_rect = pause_message . get_rect (center =(WIDTH // 2, HEIGHT // 2))

The pause state is initialized, starting with pause setto False . A message for pausingiscreated, and

its position is set at the center of the screen .

Python Code
Game loop

while True :

The main game loop begins .

Python Code
for event in pygame . event . get ():
if event . type == pygame . QUIT :
pygame . quit ()
sys . exit ()
elif event . type == pygame . KEYDOWN :
if event . key == pygame . K_r and game_over :
Reset the game
game_over = False
enemies . clear ()
bullets . clear ()
score = O
elifevent . key == pygame . K_SPACE and not game_over :
Shoot a bullet from the player's position

bullet_pos =[player_pos[0]+ player_size // 2, player_pos|[1]]
bullets . append (bullet_pos)

elif event . key == pygame . K_p and not game_over :
Toggle pause

pause = not pause
The event loop checks for user input, including quitting the game, restarting the game after it's over,

shooting bullets with the space key, and toggling pause with the 'p' key .

Python Code
keys = pygame . key. get_pressed ()
if not pause and not game_over :
if keys [pygame . K_LEFT] and player_pos[0] >0:
player_pos [0] -= player_speed
if keys [pygame . K_RIGHT | and player_pos[0] < WIDTH - player_size :
player_pos [0] += player_speed
Checks for continuous key presses (arrow keys) to move the player left or right, considering the game

is not paused and not over .

Python Code

1f not game_over and not pause :

for enemy in enemies :

enemy | 1] += enemy_speed
If the game is not over and not paused, the enemies move downward .

Python Code
bullets =[[bullet[0], bullet[1]- bullet_speed] for bullet in bullets]
bullets = [bullet for bullet in bullets if O < bullet [1] < HEIGHT |

Bullets move upward, and any bullets outside the screen are removed .

Python Code
for bullet in bullets [:]:
for enemy in enemies [:]:
if (
enemy |[0] <bullet[0] <enemy[O]+ enemy_size
andenemy|[1]<bullet[1] <enemy[1]+ enemy_size

bullets . remove (bullet)
enemies . remove (enemy)

score += 10

break

Checks for collisions between bullets and enemies . If a collision occurs, the bullet and enemy are

removed, and the score is increased .

Python Code
for enemy in enemies :
if (
player_pos[0] <enemy [O |+ enemy_size
and player_pos [0] + player_size > enemy [O]

and player_pos|[1] <enemy|[1]+ enemy_size

and player_pos|[1]+ player_size > enemy | 1]
b
game_over = True
if score > high_score:
high_score = score
break

Checks for collisions between the player and enemies . If a collision occurs, the game is set to over, and if

the score is higher than the previous high score, it is updated .

Python Code

if random . randint (0, 100) < 5:
enemy_pos = [random . randint (0, WIDTH - enemy_size), O]
enemies . append (enemy_pos)
Randomly generates enemies at the top of the screen with a probability of 5 %.
Python Code

enemies = [enemy for enemy in enemies if enemy [1] < HEIGHT]

Removes enemies that have gone beyond the bottom of the screen .

Python Code
Draw
screen . fill (WHITE)

Fills the screen with a white background .

Python Code
pygame . draw . rect (screen, player_color,
(player_pos [O |, player_pos [1 |, player_size, player_size))

Draws the player on the screen .

Python Code

for tower in towers :

pygame . draw . rect (screen, tower_color,

(tower | O], tower | 1], tower_size, tower_size))

Draws towers on the screen .

Python Code
for bullet in bullets :

pygame . draw . circle (screen, bullet_color, (int (
bullet [0]),int (bullet[1])), bullet_size)

Draws bullets on the screen .
Python Code
for enemy in enemies :
pygame . draw . rect (screen, enemy_color,

(enemy|[0],enemy|[1], enemy_size, enemy_size))

Draws enemies on the screen .

Python Code
score_text = font.render (f " Score: {score}", True, (0,0,0))
screen . blit (score_text, (10,10))

Renders and displays the current score .

Python Code
high_score_text = font.render (f " High Score : {high_score}", True, (0,0,0))
screen . blit (high_score_text, (10, 50))

Renders and displays the high score .
Python Code

if game_over :
screen . blit (restart_message, restart_message_rect)
elif pause :

screen . blit (pause_message, pause_message_rect)
Displays game over or pause messages on the screen, depending on the game state .
Python Code

pygame . display . flip ()
clock . tick (FPS)

Updates the display and controls the frame rate .

How To Play Tower Defense Game

To play the Tower Defense game described in the provided Python Code, follow these
instructions :

1. Objective :
The objective of the game is to defend your position against waves of incoming enemies .
2. Controls :

Use the left and right arrow keys to move the player left and right across the bottom of

the screen .
Press the spacebar to shoot bullets upward and destroy incoming enemies .

3. Towers:
There is a tower element in the game, but its functionality is not fully implemented in the

provided code . However, you can extend the code to include tower placement and use

for additional defense .
4. Gameplay :

Enemies will spawn randomly at the top of the screen and move downwards .

Your goal is to shoot bullets to destroy the enemies before they reach your position at the

bottom of the screen .
5.Scoring :

You earn points for each enemy you successfully eliminate with your bullets .

The score is displayed on the screen, and there is also a high score that represents your

best performance in a single game .

6. Game Over :

7. Pause :

8. Tips:

The game ends if an enemy collides with your player. In this case, the game over

message will be displayed .

You can restart the game by pressing the 'R' key after a game over. This clears the

enemies, bullets, and resets the score .

You can pause the game by pressing the 'P'key . The pause message will be displayed, and

the game will be temporarily halted .

To resume, press the 'P' key again .

Try to eliminate enemies efficiently to maximize your score .
Pay attention to the position of enemies and time your shots strategically .

Keep an eye on your high score and aim to beat it in each session .

9. Customization (Optional):

You can modify the code to include additional features, such as tower placement and

upgrades, more enemy types, and power - ups .

Remember, this game is a basic implementation, and you can enhance it by adding new
features and improving the gameplay based on your preferences. Have fun playing and

experimenting with the code !

22. Sokuban Game

? Sokoban Game — [] X

Restart Game

Hint

High Score: 130

import tkinter as tk
from tkinter import messagebox

import json

class SokobanGame:
def _ init_ (self, master):
self.master = master
self.master.title("Sokoban Game")

self.load_high_score()

self levels = [

{
'width'; 5,
'height": 5,
|p|_d};ef pos' [2: 2]1
'target_pos": (4, 4],
'‘box_pos': [3, 3],

},

'‘width'; 5,

'height": 5,

‘player_pos': [1, 1],
'target_pos': [3, 3],

'box_pos': [2, 2],
,

J

self.current_level =0
self.score =0
self.hints = 3

self.create_widgets()

def create_widgets(self):

self.canvas = tk.Canvas(self.master, width=400, height=400, bg="white")

self.canvas.grid(row=0, column=0, rowspan=>5)

self.master.bind("<Up>", lambda event: self. move(-1, 0))
self.master.bind("<Down>", lambda event: self. move(1, 0))
self master.bind("<Left>", lambda event: self. move(0, -1))

self. master.bind("<Right>", lambda event: self. move(0, 1))
self.restart button = tk.Button(
self.master, text="Restart Game", command=self.restart_game)

self.restart_button.grid(row=0, column=1, sticky="nsew")

self hint_button = tk.Button(

self.master, text="Hint", command=self.show_hint)

self. hint_button.grid(row=1, column=1, sticky="nsew")

self high_score_label = tk.Label(
self.master, text={"High Score: {self.high score}")

self.high_score_label.grid(row=2, column=1, sticky="nsew")

self.load_level()
self.draw_board()

defload_level(self):
level_info = self.levels|self.current_level]

self.width = level_info['width'|

self.height = level_info['height'|

self.player pos = level info|'player_pos'|.copy()
self.target_pos = level_info['target_pos'l.copy()

self.box_pos = level_info|'box_pos']|.copy()

def draw_board(self):

self canvas.delete("all")

for row in range(self.height):

for col in range(self.width):

x1,y1 =col* 80, row * 80
x2,y2=x1+80,y1 + 80

if [row, col] == self.player_pos:
self.canvas.create_rectangle(
x1,y1,x2, y2, fill="blue", outline="black")
elif [row, col] == self.target_pos:

self.canvas.create_rectangle(

x1,y1,x2,y2, fill="green", outline="black")

elif [row, col] == self.box_pos:
self.canvas.create_rectangle(
x1,y1,x2,y2, fill="orange", outline="black")
else:
self.canvas.create_rectangle(

x1,y1,x2,y2, fill="white", outline="black")

def move(self, dy, dx):
new_pos = [self.player_pos|0] + dy, self.player_pos|1] + dx]

if not (0 <= new_pos|0] < self.height and O <= new_pos[1] < self.width):

return

1f new_pos == self.box_pos:

new_box_pos = [self.box_pos|[0] + dy, self.box_pos[1] + dx]

if not (0 <= new_box_pos|0] < self.height and 0 <= new_box_pos|[1] < self.width):

return

self . box_pos = new_box_pos

self.score += 10 # In

self.player_pos = new_pos
self.score-=1 ¢
self.draw_board()

if self.check stuck():
essagebox.showinfo(
"Game Over", "You are stuck! Cannot push the box.")

self restart_game()

if self.check win():
self.score += 50 # Bo
messagebox.showinfo("Congratulations”,
f"You win!\nYour score: {self.score}")
self.update_high_score()

self. next_level()

def check_win(self):

return self.box_pos == self.target_pos

def check_stuck(self):

corners = |
[0, 0], [0, self.width - 1], # T

[self.height - 1, 0], [self.height - 1, self.width - 1]

for corner in corners:
if self.box_pos == corner and self.box_pos != self.target_pos:

return True ¢
return False #

def is_clear(self, position):
return position == self.target_pos or position != self.player_pos and position != self.box_pos

def next_level(self):
self.current_level += 1
if self.current_level < len(self.levels):
self load_level()
self.draw_board()
else:

messagebox.showinfo(

"Game Over", {"All levels completed!\nFinal score: {self.score}")

self restart_game()

def restart_game(self):

self.current_level = 0
self.score = 0
self.load_level()
self.draw_board()

def show_hint(self):
if self.hints > O:
messagebox.showinfo(
"Hint", "Try to push the box onto the green target!")
self.hints -= 1
else:
messagebox.showinfo(

"Out of Hints", "You've used all available hints.")

defload_high_score(self):
try:
with open("high_score.json", "r") as file:
data = json.load(file)
self_high_score = data.get("high_score", 0)

except FileNotFoundError:

self.high_score=0

def update_high_score(self):
if self.score > self.high_score:
self.high_score = self.score
with open("high_score.json", "w") as file:
json.dump({"high_score": self.high_score}, file)
self.high_score_label.config(text=f"High Score: {self.high_score}")

if name_ =="_ main
root = tk.Tk()
game = SokobanGame(root)

root.mainloop()

let's go through the code line by line to understand its functionality :

Python Code
import tkinter as tk
from tkinter import messagebox

import json

The code starts by importing the necessary modules : tkinter for creating a graphical user
interface, messagebox for displaying pop - up messages, and json for handling JSON file

operations .

Python Code
class SokobanGame :

def __init__ (self, master):

self . master = master

self . master. title (" Sokoban Game ")
self . load_high_score ()

Here, a class named SokobanGame is defined . The constructor (__init_) initializes the

game, sets up the main window (master) , and loads the high score from a JSON file .

Python Code
self . levels =|
{
'width': 5,
'height': 5,

'player_pos':[2,2],
'target_pos':[4,4],

‘box_ pos':[3,3],
1,
Add more levels as needed
{
'width': 5,
'height': 5,
'‘player_pos':[1,1],
'target_pos':[3,3],
'box_pos':[2,2],
1,
... Add 8 more levels

]

A list of levels is defined . Each level is represented by a dictionary containing the width,
height, player position, target position, and box position .

Python Code
self . current_level = O
self . score = 0O
self. hints = 3

self . create_widgets ()

Game - related variables are initialized, including the current level, score, and hints. The

create_widgets method is then called to set up the graphical user interface .

Python Code
def create_widgets (self):
self . canvas = tk. Canvas (self . master, width = 400, height = 400, bg =" white ")

self . canvas . grid (row = 0, column = 0, rowspan = 5)

A canvas is created to draw the game board, and it is added to the main window using the

grid layout .

Python Code
self . master. bind (" <Up>",lambda event : self. move (- 1,0))
self . master. bind (" <Down> " ,lambda event : self. move(1,0))
self . master. bind (" <Left> ", lambda event : self. move (0, -1))

self . master. bind (" <Right> ", lambda event : self. move (0, 1))

Key bindings are set up to handle arrow key presses, connecting them to the move method

with specific direction arguments .

Python Code
self . restart_button = tk. Button (
self . master, text =" Restart Game ", command = self . restart_game)

self . restart_button . grid (row = 0, column = 1, sticky =" nsew "

A button for restarting the game is created and added to the layout . Its command is set to
the restart_game method.
Python Code

self . hint_button = tk. Button (

self . master, text =" Hint ", command = self . show_hint)
self . hint_button . grid (row = 1, column = 1, sticky =" nsew "

A button for showing hints is created and added to the layout . Its command is set to the
show_hint method .
Python Code
self . high_score_label = tk. Label (
self . master, text = f " High Score : {self. high_score} ")
self . high_score_label . grid (row = 2, column = 1, sticky =" nsew "

A label to display the high score is created and added to the layout .

Python Code
self . load_level ()
self . draw_board ()

The load_level method is called to initialize the current level, and the draw_board method
is called to display the game board .

The code continues with additional methods and functionalities for handling game logic,
level progression, and Ul interactions . If you have specific questions or if you'd like me to

continue explaining a particular part, feel free to ask!

How To Play Sokoban Game

Sokoban is a classic puzzle game where the player needs to push boxes to specific locations
(targets) in a warehouse, with the goal of solving each level . Here's a guide on how to play

the Sokoban game implemented in the provided code :
1. Objective :
The main objective is to push all the boxes onto the green target positions .
2. Controls :

Use the arrow keys (Up, Down, Left, Right) to move the blue player character around

the warehouse .
The player can only move to empty spaces in the warehouse .
3. Game Elements :

Blue Player (You): Represented by a blue rectangle . Thisis the character you control .

Orange Boxes: Represented by orange rectangles. These are the boxes you need to

move .

Green Targets : Represented by green rectangles. Boxes must be pushed onto these

targets to solve the level .
4.Rules :

The player can only push one box at a time .

Boxes can only be pushed; they cannot be pulled .

The player cannot walk through boxes or walls .

The player loses if a box gets stuck in a corner where there is no green target .
5.Scoring :

Your score is initially setto O .

You earn points for pushing boxes (+ 10 points for each push).

You lose points for each move (- 1 point for each move).

Bonus points are awarded for completing a level (+ 50 points 1

6. Buttons :

Restart Game : Resets the game to the first level, clearing the current score .

Hint : Provides a hint on how to solvethelevel . You start with three hints, and once they

are used up, no more hints are available .
7. High Score :
The high score is displayed on the GUI .
The high score is updated when you complete a level with a higher score .
8. Game Over:
The game ends when all levels are completed, and a final score is displayed .
The player can choose to restart the game after completion .
9. Level Progression :
Successfully pushing all boxes onto the green targets advances you to the next level .
Completing the last level shows a message indicating that all levels are completed .
10. Hint Usage :
- Clicking the " Hint " button provides a hint on how to solve the current level .
- You start with three hints, and the hint count decreases each time you use one .

Remember, Sokoban is a logic puzzle, so take your time to plan your moves and consider the
consequences of each action . Good luck and enjoy playing Sokoban !

23. Breakout Game
%¢ Breakout Game

Score: 10 e

pygame.init()

WIDTH, HEIGHT = 600, 400

PADDLE WIDTH, PADDLE HEIGHT =100, 10
BALL_RADIUS = 10

BRICK_WIDTH, BRICK_HEIGHT = 60, 20
PADDLE_SPEED =5

BALL_SPEED =5

WHITE = (255, 255, 255)

BLACK = (0, 0,0)

pygame.mixer.init()
hit_sound = pygame.mixer.Sound("hit.wav")
brick_break sound = pygame.mixer.Sound("brick_break.wav")

powerup_sound = pygame.mixer.Sound("powerup.wav")

screen = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption("Breakout Game")

paddle = pygame.Rect(WIDTH // 2 - PADDLE_WIDTH // 2,
HEIGHT - 20, PADDLE_WIDTH, PADDLE_HEIGHT)

ball = pygame.Rect(WIDTH // 2 - BALL_RADIUS, HEIGHT // 2 -
BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
ball_speed = [random.choice([-1, 1]) * BALL_SPEED, -BALL_SPEED|

brick _height = 20
bricks =[]

for iin range(num_bricks_x):
for j in range(num_bricks_y):
brick = pygame.Rect(i * (brick_width + 5), 50 +
j* (brick_height + 5), brick_width, brick_height)

bricks.append(brick)

level = 1

game_over = False

powerup_active = False

powerup_rect = pygame.Rect(0, 0, 20, 20)
powerup_speed = 3

powerup_duration = 5000 #

powerup_start_time =0

PADDLE_SKINS = [pygame.Rect(0, O, 100, 10), pygame.Rect(0, 0, 150, 10)]
paddle_skin_index =0

bricks_remaining = num_bricks_x* num_bricks_y

while True:
for event in pygame.event.get():
1f event.type == pygame.QUIT:
pygame.quit()
sys.exit()

elif event.type == pygame. KEYDOWN and event.key == pygame.K_SPACE and game_over:

game_over = False
score =0
level = 1
ball = pygame.Rect(WIDTH // 2 - BALL_RADIUS, HEIGHT //
2 - BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
ball_speed = [random.choice([-1, 1]) * BALL_SPEED, -BALL_SPEED)]

bricks =[]
foriin range(num_bricks_x):
for j in range(num_bricks_y):

brick = pygame.Rect(

i*(brick_width + 5), 50 +j * (brick_height + 5), brick_width, brick_height)
bricks.append(brick)

paddle = pygame.Rect(WIDTH // 2 - PADDLE_WIDTH //
2, HEIGHT - 20, PADDLE_WIDTH, PADDLE_HEIGHT)

bricks_remaining = num_bricks x * num_bricks_y

if not game_over:
keys = pygame.key.get_pressed()
if keys|pygame.K_LEFT]| and paddle.left > O:
paddle.move_ip(-PADDLE_SPEED, 0)

if keys|pygame.K_RIGHT] and paddle.right < WIDTH:
paddle.move_ip(PADDLE_SPEED, 0)

ball.move_ip(ball_speed[0], ball_speed[1])

if ball.left <= O or ball.right >= WIDTH:
ball_speed|0]| = -ball_speed|0]

if ball.top <= 0:
ball_speed[1] = -ball_speed][1]

if ball.colliderect(paddle) and ball_speed|[1] > O:
ball_speed|1] = -ball_speed|1]
hit_sound.play()

for brick in list(bricks):
if ball.colliderect(brick):
bricks.removwve(brick)
bricks_remaining -= 1 #
ball_speed|1] = -ball_speed|1]

score += 10

brick_break_sound.play()

if random.randint(1, 10) == 1 and not powerup_active:
powerup_rect.x, powerup_rect.y = brick.x, brick.y
powerup_active = True

powerup_start_time = pygame.time.get_ticks()
print(f"Remaining bricks: {bricks_remaining}")

if ball.bottom >= HEIGHT:
game_over = True

bricks_remaining = 0 # Res

if any(bricks):

brick_break_sound.stop()

if bricks_remaining == 0 and not any(bricks):
level +=1
ball = pygame.Rect(WIDTH // 2 - BALL_RADIUS, HEIGHT //

2 - BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
ball_speed = [random.choice(|-1, 1]) * BALL_SPEED, -BALL_SPEED]
bricks =[]
for iin range(num_bricks_x):
for j in range(num_bricks_y):
brick = pygame.Rect(
i*(brick_width + 5), 50 +j * (brick_height + 5), brick_width, brick_height)

bricks.append(brick)

powerup_active = False # Rese

bricks_remaining = num_bricks_x *num_bricks_y # Resef

if not any(bricks):

brick_break_sound.stop() # Stop

level +=1
game_over = False #

paddle.x = WIDTH // 2 - PADDLE_WIDTH // 2

bricks_remaining = num_bricks x*num_bricks_y

print(f"Remaining bricks: {bricks_remaining}")

if powerup_active:

powerup_rect.y += powerup_speed

if powerup_rect.colliderect(paddle):
powerup_active = False

powerup_sound.play()

paddle.width = PADDLE_SKINS|paddle_skin_index|.width

if pygame.time.get_ticks() - powerup_start_time > powerup_duration:

powerup_active = False

paddle.width = PADDLE WIDTH

if powerup_rect.top > HEIGHT:

powerup_active = False

screen. fill(BLACK)

if powerup_active:

pygame.draw.rect(screen, (255, 0, 0), powerup_rect)
pygame.draw.rect(screen, WHITE, paddle)
pygame.draw.ellipse(screen, WHITE, ball)

for brick in bricks:

pygame.draw.rect(screen, WHITE, brick)

font = pygame.font.Font(None, 36)
score_text = font.render({"Score: {score}", True, WHITE)

level text = font.render(f"Level: {level}", True, WHITE)

pygame.draw.rect(screen, BLACK, (0, 0, WIDTH, score_text.get_height() + 5))

pygame.draw.rect(screen, BLACK, (WIDTH - level_text.get_width() -
5,0, WIDTH, level text.get _height() + 5))

screen.blit(score_text, (10, 5))

screen.blit(level _text, (WIDTH - level_text.get_width() - 10, 5))

if game_over:
game_over_text = font.render(
"Game Over! Press SPACE to restart.", True, WHITE)
screen.blit(game_over_text, (WIDTH // 2 -
game_over_text.get_width() // 2, HEIGHT // 2))

pygame.display.flip()

pygame.time.Clock().tick(60)
Let's go through the code line by line to understand its functionality :
Python Code

1mport pygame

import sys

import random

1. Import necessary libraries . pPygame for creating games, SYS for system - related functions, and

random for random number generation .

Python Code
Initialize Pygame

pygame . init ()

2. Initialize Pygame to set up the gaming environment .

Python Code
Constants
WIDTH, HEIGHT = 600, 400
PADDLE_WIDTH, PADDLE_HEIGHT = 100, 10
BALL_RADIUS = 10
BRICK_WIDTH, BRICK_HEIGHT = 60, 20
PADDLE_SPEED = 5
BALL_SPEED = 5
WHITE =(255,255,255)
BLACK =(0,0,0)
3. Define constants for various aspects of the game, such as window dimensions, paddle and ball sizes,

brick dimensions, speeds, and color codes .

Python Code

Sound effects

pygame . mixer . init ()

hit_sound = pygame . mixer. Sound (" hit . wav ")
brick_break_sound = pygame . mixer. Sound (" brick_break . wav ")

powerup_sound = pygame . mixer. Sound (" powerup . wav ")

4. Initialize Pygame's sound mixer and load sound effects for collisions and power - ups .

Python Code

Create the screen

screen = pygame . display. set_mode ((WIDTH, HEIGHT))
pygame . display . set_caption (" Breakout Game ")

5. Setup the game window with the specified dimensions and title .

Python Code

Create the paddle

paddle = pygame.Rect(WIDTH // 2 - PADDLE_WIDTH // 2, HEIGHT - 20,
PADDLE_WIDTH, PADDLE_HEIGHT)

6. Initialize the paddle's position and dimensions using the pygame . Rect class.

Python Code
Initialize paddle speed and acceleration

paddle_speed = O
7. Set the initial paddle speed .

Python Code
Create the ball
ball = pygame.Rect (WIDTH // 2 - BALL_RADIUS, HEIGHT // 2 - BALL_RADIUS,
BALL_RADIUS * 2, BALL_RADIUS * 2)
ball_speed =[random. choice([- 1,1])* BALL_SPEED, - BALL_SPEED |
8. Initialize the ball's position, dimensions, and initial speed .
Python Code
Create bricks
num_bricks_x = 8

num_bricks_y = 4
bricks =[]

foriin range (num_bricks_x):

for jin range (num_bricks_y):
brick = pygame.Rect (i * (brick_width + 5), 50 + j * (brick_height + 5),
brick_width, brick_height)
bricks . append (brick)

9. Create a grid of bricks using nested loops and store them in alist .
Python Code
Game variables
score = O
level = 1

game_over = False

10. Initialize game variables, including score, level, and game - over status .

Python Code

Power - up variables

powerup_active = False

powerup_rect = pygame . Rect (0,0, 20,20)
powerup_speed = 3

powerup_duration = 5000 #in milliseconds

powerup_start_time = O

11. Initialize power - up - related variables, including its status, position, speed, duration, and start time .
Python Code
Paddle skin options
PADDLE_SKINS = [pygame . Rect (0,0,100,10),pygame.Rect(0,0,150,10)]
paddle_skin_index = 0

12. Define different paddle skins using pygame . Rect and set the initial index .
Python Code
Initialize remaining bricks count

bricks_remaining = num_bricks_x * num_bricks_y

13. Calculate and initialize the total number of remaining bricks .

Python Code

Main game loop
while True:
for event in pygame . event . get ():
if event . type == pygame . QUIT :
pygame . quit ()
sys . exit ()
elif event . type == pygame . KEYDOWN and event . key == pygame.K_SPACE and
game_over :
Reset the game if the user presses space after the game is over
game_over = False
score = 0
level = 1
ball = pygame.Rect (WIDTH // 2 - BALL_RADIUS, HEIGHT // 2 -
BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
ball_speed =[random . choice ([- 1,1])* BALL_SPEED, - BALL_SPEED |

Reset bricks
bricks =]

foriin range (num_bricks_x):

for jin range (num_bricks_y):
brick = pygame . Rect (
i *(brick_width + 5), 50+ j *(brick_height + 5), brick_width,
brick_height)
bricks . append (brick)

paddle = pygame . Rect (WIDTH // 2- PADDLE_WIDTH // 2,HEIGHT - 20,
PADDLE_WIDTH, PADDLE_HEIGHT)
Reset remaining bricks count
bricks_remaining = num_bricks_x * num_bricks_y
14. Start the main game loop . Handle events such as quitting the game or

restarting it when the space key is pressed after the game over .

15. Inside the game loop, check for user input to quit the game or restart it
after a game over .
16. If the game is restarted, reset various game variables, including the

score, level, ball, bricks, paddle, and remaining bricks count .

Python Code

if not game_over :

keys = pygame . key. get_pressed ()

if keys [pygame . K_LEFT | and paddle . left>0:
paddle . move_ip (- PADDLE_SPEED, O)

if keys [pygame . K_RIGHT] and paddle . right < WIDTH :
paddle . move_ip (PADDLE_SPEED, O)

17.If the game is not over, check for left and right arrow key presses to move the paddle accordingly .

Python Code
Update ball position
ball . move_ip (ball_speed [0], ball_speed [1])

18. Update the ball's position based on its current speed .

Python Code
Ball collisions with walls
if ball . left < = O orball.right > = WIDTH :
ball_speed [O | = - ball_speed [O]
ifball.top< = 0O:
ball_speed [1]=-ball_speed|[1]
19. Check for collisions with the walls and update the ball's speed accordingly .

Python Code

Ball collision with paddle
if ball . colliderect (paddle) and ball_speed[1] >0
ball_speed [1 | =-ball_speed| 1]
hit_sound . play ()

20. Check for collisions with the paddle and update the ball's speed while playing a sound effect .
Python Code

Ball collisions with bricks
for brick in list (bricks):
if ball . colliderect (brick):
bricks . remove (brick)
bricks_remaining -= 1 # Update remaining bricks count
ball_speed[1]=-ball_speed| 1]
score += 10

brick_break_sound . play ()

10 % chance to spawn a power - up when a brick is hit

if random . randint (1, 10) == 1 and not powerup_active :
powerup_rect . X, powerup_rect .y = brick. x, brick .y
powerup_active = True

powerup_start_time = pygame . time . get_ticks ()

Print remaining bricks count after each removal

print (f " Remaining bricks : {bricks_remaining} ")
21, Check for collisions with bricks, remove the hit bricks, update the
remaining bricks count, and play sound effects . Additionally, there's a chance

to spawn a power - up when a brick is hit .

22. If a power - up is spawned, set its position and activate it .
23. Print the remaining bricks count after each removal for debugging
purposes .

Python Code

Ball out of bounds (game over)
ifball . bottom > = HEIGHT :

game_over = True
bricks_remaining = O # Reset remaining bricks count

Check if there are remaining bricks and stop the sound
if any (bricks):
brick_break_sound . stop ()

24. Check if the ball goes out of bounds (hits the bottom) , trigger a game over, and reset the remaining

bricks count . Ifthere are remaining bricks, stop the brick breaking sound .

Python Code
Check for level completion
if bricks_remaining == 0 and not any (bricks):
level += 1
ball = pygame.Rect(WIDTH // 2 - BALL_RADIUS, HEIGHT // 2 -
BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
ball_speed =[random . choice ([-1,1])* BALL_SPEED, - BALL_SPEED]
bricks =]
foriin range (num_bricks_x):
forjin range (num_bricks_y):
brick = pygame . Rect (
i *(brick_width + 5),50+ j *(brick_height + 5), brick_width,
brick_height)
bricks . append (brick)

powerup_active = False # Reset power - up status

count

bricks_remaining = num_bricks_x * num_bricks_y # Reset remaining bricks

Ensure the sound and level increase only if there were bricks remaining
if not any (bricks):

brick_break_sound . stop () # Stop the sound ifit's playing

level += 1

game_over = False # Reset game - over state

Reset paddle position
paddle.x = WIDTH // 2- PADDLE_WIDTH // 2

Print remaining bricks count after reset
bricks_remaining = num_bricks_x * num_bricks_y
print (f " Remaining bricks : {bricks_remaining} ")
25. Checkfor level completion by verifying if there are no remaining bricks .
If so, increment the level, reset various game variables, and restart the level
with a new set of bricks .

26. Ensure that the brick breaking sound is stopped only if there were

bricks remaining .

27. Reset the game - over state, reset the paddle position, and print the

remaining bricks count after the reset for debugging .

Python Code
Update power - up position and check its effects
if powerup_active :

powerup_rect.y += powerup_speed

Check if power - up is collected by the paddle
if powerup_rect . colliderect (paddle):
powerup_active = False
powerup_sound . play ()
Implement the effect of the power - up (e. g.,increase paddle size)
paddle . width = PADDLE_SKINS [paddle_skin_index |. width

Check if power - up duration has expired
if pygame . time . get_ticks () - powerup_start_time > powerup_duration :

powerup_active = False

Reset paddle size
paddle . width = PADDLE_WIDTH

Check if power - up goes out of bounds
if powerup_rect . top > HEIGHT :

powerup_active = False

28. Update the power - up's position and check its effects, such as collision with the paddle, playing a sound
effect, and modifying the paddle's size . Check if the power - up's duration has expired and reset the
paddle size accordingly . Also, check if the power - up goes out of bounds .
Python Code
Draw everything
screen . fill (BLACK)

29. Fill the screen with a black background .

Python Code
Draw power - up
if powerup_active :

pygame . draw . rect (screen, (255,0,0), powerup_rect)

30. If a power - up is active, draw it as a red rectangle on the screen .

Python Code
Draw paddle
pygame . draw . rect (screen, WHITE, paddle)

31. Draw the paddle on the screen .

Python Code
Draw ball

pygame . draw. ellipse (screen, WHITE, ball)

32. Draw the ball on the screen as a white ellipse .

Python Code
Draw bricks
for brick in bricks :

pygame . draw . rect (screen, WHITE, brick)

33. Draw each brick on the screen as a white rectangle .

Python Code
Draw score and level
font = pygame . font . Font (None, 36)
score_text = font.render (f " Score: {score}", True, WHITE)
level_text = font.render (f " Level : {level} ", True, WHITE)

34. Create a font object and render the score and level texts in white .

Python Code
Draw background rectangles
pygame . draw . rect (screen, BLACK, (0,0, WIDTH, score_text . get_height () + 5))
pygame . draw . rect (screen, BLACK, (WIDTH - level_text . get_width ()- 5,0, WIDTH,
level_text . get_height () + 5))

35. Draw black rectangles as backgrounds for the score and level texts .

Python Code

Draw score and level messages

screen . blit (score_text, (10, 5))

screen . blit (level_text, (WIDTH - level_text. get_width ()- 10,5))

36. Blit the rendered score and level texts onto the screen .

Python Code

Draw game over screen

if game_over :

game_over_text = font.render ("Game Over! Press SPACE to restart.", True,

WHITE)

screen . blit (game_over_text, (WIDTH // 2 - game_over_text. get_width () // 2,
HEIGHT // 2))

37.1f the game is over, render and display a game - over message in the center of the screen .

Python Code
Update the display

pygame . display . flip ()

38. Update the display to reflect all the drawing changes .

Python Code
Control the game speed
pygame . time . Clock (). tick (60)

39. Control the game's speed by setting the frame rate to 60 frames per second .

This concludes the line - by - line walkthrough of the Breakout game code .

How To Play Breakout Game

To play the Breakout game, follow these instructions :

1. Launch the Game:

Run the Python script in an environment that supports Pygame .

The game window will appear with the title " Breakout Game ."
2. Game Controls :

» Use the left and right arrow keys on your keyboard to move the paddle horizontally .

The objective is to bounce the ball off the paddle to hit and break the bricks .
3. Breaking Bricks :

The screen initially contains a grid of bricks at the top .

Each brick has a certain number of hits required to break it .

When the ball collides with a brick, the brick disappears, and you earn points .
4. Power - Ups:

Occasionally, hitting a brick may release a power - up .

If a power - up is released, it will move down the screen .

Move the paddle to catch the power - up, and it will activate a special ability (e. g.,

increasing paddle size).
5. Level Completion :

Your goal is to break all the bricks in the current level .

When all bricks are broken, you advance to the next level with a new set of bricks .
The game keeps track of your score and level .
6. Game Over :
If the ball falls below the paddle and touches the bottom of the screen, the game is over .
You can restart the game by pressing the " SPACE" key after a game over .
The game will reset, and you can continue playing from the first level .
7.Score and Level :
The score is displayed at the top left corner of the screen .
The level is displayed at the top right corner of the screen .
8. Paddle Skins :
The game offers different paddle skins that change the appearance of the paddle ..

To switch between paddle skins, you can modify the paddle_skin_index variablein

the code .
9. Game Over Message :
If the gameisover,a " Game Over ' message will be displayed in the center of the screen .

Pressthe " SPACE" key to restart the game .

10. Enjoy the Game:

- Have fun playing the Breakout game and try to achieve the highest score !

24. Sim City Clone Game

/

Start SimCity

Reset Game

T __name_ ==
raoot = t
Eul = 5imlL1
root.mainloo

1m por C pvgame

import sys

import tkinter as tk

from tkinter import messagebox

from threading import Thread

SCREEN_WIDTH = 800

SCREEN_HEIGHT = 600

TILE_SIZE = 32

GRID_WIDTH = SCREEN_WIDTH // TILE_SIZE
GRID_HEIGHT = SCREEN_HEIGHT // TILE_SIZE

WHITE = (255,255, 255)
GREEN = (0, 255, 0)
RESIDENTIAL_COLOR = (0,0, 255)

NO_SERVICE =0
SCHOOL =1
HOSPITAL = 2

POLICE_STATION = 3
PARK = 4

class SimCity:
def __init_ (self, master):
self. master = master

self. master title("SimCity Clone")

pygame.init() # Initiali

pygame.font.init() # Initializ

self.screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
pygame.display.set_caption("SimCity Clone")
self.grid = [[EMPTY for _in range(GRID_WIDTH)]
for _in range(GRID_HEIGHT)]
self.population =0
self. money = 10000
self.clock = pygame.time.Clock()

self.running = False

def reset_game_state(self):

self.grid = [[EMPTY for _in range(GRID_WIDTH)]
for _inrange(GRID_HEIGHT)]

self.population = 0

self. employment = 0

self. money = 10000

self.services = [[NO_SERVICE for _ in range(
GRID_WIDTH)] for _in range(GRID_HEIGHT)]

self.pollution = [[0 for _ in range(GRID_WIDTH)]

for _in range(GRID_HEIGHT)]
self.crime = [[0 for _in range(GRID_WIDTH)]
for _inrange(GRID_HEIGHT)]
self.happiness = 100

def run(self):
self.running = True

while self.running;

for event in pygame.event.get():

if event.type == pygame.QUIT:
self. running = False
self. master.destroy()
sys.exit()
elif event.type == pygame.MOUSEBUTTONDOWN:

self.handle_mouse_click(event.pos)

self.update()
self.draw()

pygame.display.flip()
self.clock.tick(60)

def handle_mouse_click(self, pos):
col = pos|0] // TILE_SIZE
row = pos|1]| // TILE_SIZE

if self.grid|row][col| == EMPTY:
if self.money >= 1000: ¢ ne a new :
self_grid[row][col] = RESIDENTIAL_COLOR

self. money -= 1000

def on_close(self):
self.running = False
self. master.destroy()
def update(self):

pass

def draw(self):

self.screen.fill(WHITE)
for row in range(GRID_HEIGHT):
for col in range(GRID_WIDTH):
x = col * TILE_SIZE
y =row * TILE_SIZE
zone_color = WHITE if self.grid|row][col] == EMPTY else GREEN
pygame.draw.rect(self.screen, zone_color,
(x,y, TILE_SIZE, TILE_SIZE), 0)

font = pygame.font.Font(pygame.font.get_default_font(), 36)

text = font.render(
f"Population: {self.population} Money: ${self. money}", True, GREEN)
self screen.blit(text, (10, 10))

class SimCityGUI:
def _init_ (self, master):
self.master = master

self. master.title("SimCity GUI")

self start_button = tk.Button(
master, text="Start SimCity", command=self.start_simcity)

self.start_button.pack()

self reset_button = tk.Button(
master, text="Reset Game", command=self.reset_game)

self.reset_button.pack()

self.game = None

def start_simcity(self):
if self.game is None:
self.game = SimCity(self.master)

Thread(target=self.game.run).start()

def reset_game(self):

if self.game is not None:
result = messagebox.askquestion(
"Reset Game", "Are you sure you want to reset the game?")
if result == "yes"
self_ game.reset_game_state() #

messagebox.showinfo("Game Reset", "SimCity has been reset.")

' _main_ "™
root = tk.Tk()
gui = SimCityGUI(root)

root.mainloop()

let's go through the code line by line :

1. import pygame : Imports the Pygame library, which is used for creating games

and multimedia applications in Python .

2.import sys : Imports the sys module, which provides access to some variables
used or maintained by the Python interpreter and to functions that interact
strongly with the interpreter .

3. import tkinter as tk : Imports the tkinter module and renamesitas tk. Tkinter

is a standard GUI (Graphical User Interface) library for Python.

4. from tkinter import messagebox : Imports the messagebox class from the

tkinter module, which is used to display various types of message boxes .

5. from threading import Thread : Imports the Thread class from the threading
module, which is used to run the SimCity game in a separate thread to avoid
blocking the GUI.

6. Constants :
SCREEN_WIDTH = 800 : Setsthe width of the game screen .
SCREEN_HEIGHT = 600 : Setsthe height of the game screen .

TILE_SIZE = 32 : Setsthe size of each grid tile .

GRID_WIDTH = SCREEN_WIDTH // TILE_SIZE : Calculates the number

of grid columns based on screen width and tile size .

GRID_HEIGHT = SCREEN_HEIGHT // TILE_SIZE: CcCalculates the

number of grid rows based on screen height and tile size .
7.Colors :

WHITE , GREEN, RESIDENTIAL_COLOR : RGB tuples representing colors .
8. Zone types:

EMPTY = O: Constant representing an empty zone on the grid .
9. Services:

NO_SERVICE = 0, SCHOOL = 1, HOSPITAL = 2, POLICE_STATION

= 3, PARK = 4 : Constants representing different services that can be provided in

the city .
10. Class SimCity :
__Init__ : Initializes the SimCity game instance with various attributes .
reset_game_state : Resetsthe game - related variables to their initial values .

rumn : The main game loop that handles events, updates the game state, and draws the screen .

handle_mouse_click : Handles mouse clicks to toggle zone types on the grid .
on_close : Handles closing the game window .
update and draw : Placeholder methods for game logic update and screen drawing .
11.Class SImCityGUI :
__Init__: Initializes the SimCity GUI with buttons for starting and resetting the game .
start_simcity : Creates a new SimCity instance and starts it in a separate thread .
reset_game : Asks for confirmation before resetting the game state .
12. Main Block :
Creates a tkinter root window (root).
Initializesa SIMCityGUI instance (gui).
Enters the tkinter main event loop (root . mainloop ()).

This code sets up a basic structure for a SimCity - like game with a GUI using Pygame and
tkinter . The game allows zoning different areas on a grid and includes basic functionality
for starting, resetting, and interacting with the game. The game logic and additional
features can be implemented in the update method and other relevant parts of the code .

How To Play Sim City Clone Game

The SimCity clone game provided in the code is a basic simulation where you can zone

residential areas on a grid . Below are the steps on how to play the game :

1. Start the Game :

Run the provided Python script .

A tkinter GUI window will appear with " Start SimCity " and " Reset Game " buttons .
2. Start SimCity :

Click the " Start SimCity " button .

This will create a new Pygame window where you can interact with the game .
3.Zoning :

In the Pygame window, you'll see an empty grid . Each cell represents a tile .

Click on a tile to zone it as a residential area (indicated by a green color)

Zoning a new area costs $1000 (as defined in the handle_mouse_click method).
4. Population and Money :

The top left of the Pygame window displays the current population and available money .

Population increases when you zone residential areas .
Money decreases when you zone a new residential area .
5.Reset Game :
If you want to start over, go back to the tkinter GUI window .
Clickthe " Reset Game " button .
A confirmation dialog will appear . Click " Yes" to reset the game .
6. Close the Game:
You can close the game window or the tkinter GUI window at any time .
Closing the game window will stop the simulation .

7. Game Logic (Update and Draw):
The game logic, including population growth, zoning costs, and other features, can be

implemented in the Update method of the SIMCity class .
Drawing and displaying information are handled in the draw method .

8. Extend the Game:

To make the game more interesting, you can extend the functionality :

®m Add commercial and industrial zones with different costs and effects .

® Implement services such as schools, hospitals, and police stations .

®m Introduce pollution and crime factors affecting happiness and population

growth .
®= Implement a win or lose condition .

Remember that this is a basic starting point, and you can enhance and customize the game
according to your preferences by modifying the code in the SimCity class.

25. Simon Says Game

¢ Simon Says Game == L] X

Start Game ‘

Score: 0

Level: 2

import tkinter as tk
import random
import time

import winsound

s SimonSaysGame:
def __init__ (self, master):

self.master = master

self.master.title("Simon Says Game")

self.colors = ["red", "blue", "green", "yellow"|
self.sequence =]

self.user_sequence = ||

self.round = 1

self.speed = 1000 # I

self. game_running = False

self.create_widgets()

self.new_game()

def create_widgets(self):

self.start_button = tk.Button(
self.master, text="Start Game", command=self.start_game)

self.start_button.pack(pady=10)

self.score_label = tk.Label(self.master, text="Score: 0")

self.score_label.pack()

self.level label = tk.Label(self.master, text="Level: 1")
self.level _label.pack()

for color in self.colors:

button = tk.Button(self.master, bg=color, width=10, height=5,

command=lambda c=color: self.check_sequence(c))
button.pack(side=tk.LEFT, padx=>5)

def new_game(self):
self.round = 1
self.speed = 1000
self. game_running = False
self.sequence = []
self.user_sequence = ||
self.start_button.configure(state=tk. NORMAL)
self.update_score_label()
self.update_level_label()

def start_game(self):
self.new_game()

self.play_sequence()

def play_sequence(self):

self.game_running = True
self.start_button.configure(state=tk.DISABLED)

for _in range(self.round):
new_color = random.choice(self.colors)

self.sequence.append(new_color)

self_highlight color(new_color)
time.sleep(self.speed / 1000)

self.reset_colors()

self.prompt_user()

def highlight_color(self, color):
self. master.configure(bg=color)
self.master.update()
self.play_sound(color)
time.sleep(self.speed / 2000)

self.master.update()

def reset_colors(self):
self.master.configure(bg="white")

self.master.update()

def prompt_user(self):

self.user_sequence = []

def check_sequence(self, color):

if self.game_running:
self.user_sequence.append(color)

self.highlight color(color)

self. master.after(500, self.reset_colors)
if self.user_sequence == self.sequence:
if len(self.user_sequence) == len(self.sequence):

self.master.after(500, self.display_correct_feedback)
self.round +=1
self.speed -= 20 # Increase speed for th
self.update_score_label()
self.update_level_label()
self.master.after(1000, self.play_sequence)

else:

self.end game()

def display_correct_feedback(self):
self.master.configure(bg="green")

self.master.after(500, self.reset_colors)

def end_game(self):
self. master.configure(bg="red")
self.start_button.configure(state=tk. NORMAL)
self.game_running = False

self.play_sound("wrong")

def update_score_label(self):

self.score_label.config(text=f"Score: {max(0, len(self.sequence) - 1)}")

defupdate_level_label(self):

self.level _label.config(text={"Level: {self.round}")

def play_sound(self, color):

if color =="red":

winsound.PlaySound("'SystemExclamation", winsound.SND_ASYNC)
elif color == "blue":

winsound.PlaySound("SystemAsterisk", winsound.SND_ASYNC)
elif color == "green":

winsound.PlaySound("SystemQuestion", winsound.SND_ASYNC)
elif color == "yellow":

winsound.PlaySound("SystemHand", winsound.SND_ASYNC)
elif color == "wrong":

winsound.PlaySound("'SystemExit", winsound.SND_ASYNC)

main__";
root = tk.Tk()
game = SimonSaysGame(root)

root.mainloop()

let's go through the code line by line :

Python Code

import tkinter as tk

import random

import time

import winsound # For playing sound effects (Windows only)
This block imports the necessary modules : tkinter for GUI, random for generating random
colors, tlme for introducing delays, and winsound for playing sound effects (note that

winsound is specific to Windows).

Python Code
class SimonSaysGame :

def __init__ (self, master):

self . master = master

self . master . title (" Simon Says Game ")

self . colors =["red", "blue", "green", " yellow "]
self . sequence =[]

self . user_sequence =]

self . round = 1

self . speed = 1000 # Initial speed in milliseconds

self . game_running = False

self . create_widgets ()

self . new_game ()
This defines a class SimonSaysGame , which is the main class for the Simon Says game .

The _ init method initializes the game by setting up the main window (master),
defining color options, initializing various game - related wvariables, and calling two methods :

create_widgets and new_game.

Python Code
def create_widgets (self):
self . start_button = tk. Button (
self . master, text =" Start Game ", command = self . start_game)
self . start_button . pack (pady = 10)

self . score_label = tk. Label (self . master, text =" Score: 0")

self . score_label . pack ()

self . level_label = tk. Label (self . master, text =" Level : 1")
self . level label . pack ()

for color in self . colors :
button = tk.Button (self. master, bg = color, width = 10, height = 5,
command = lambda ¢ = color : self. check_sequence (c))
button . pack (side =tk . LEFT, padx = 5)

The create_widgets method sets up the GUI elements, including a " Start Game " button, score
label, level label, and colored buttons for the game . Each colored button has a command associated with

the check_sequence method, which is passed the color of the button .

Python Code

def new_game (self):
self . round = 1
self . speed = 1000
self . game_running = False
self . sequence =[]
self . user_sequence =[]
self . start_button . configure (state = tk . NORMAL)
self . update_score_label ()
self . update_level_label ()

The new_game method resets various game - related variables, configures the " Start Game "

button, and updates the score and level labels .

Python Code
def start_game (self):
self . new_game ()
self . play_sequence ()

The start_game method initializes a new game and starts playing the sequence .

Python Code
def play_sequence (self):
self . game_running = True
self . start_button . configure (state = tk . DISABLED)

for _in range (self . round):
new_color = random . choice (self. colors)
self . sequence . append (new_color)
self . highlight_color (new_color)
time . sleep (self. speed / 1000)

self . reset_colors ()

self . prompt_user ()

The play_sequence method generates and displays a sequence of colors, one color at a time . It

disables the " Start Game " button during this process .

Python Code
def highlight_color (self, color):
self . master . configure (bg = color)
self . master . update ()
self . play_sound (color)
time . sleep (self . speed / 2000)
self . master . update ()

The highlight_color method changes the background color of the main window, plays a sound
associated with the color, introduces a delay, and then resets the background color .
Python Code
def reset_colors (self):
self . master . configure (bg =" white ")

self . master . update ()

The reset_colors method resets the background color to white .

Python Code
def prompt_user (self):

self . user_sequence =]

The prompt_user method resets the user's sequence .
Python Code
def check_sequence (self, color):
if self . game_running :

self . user_sequence . append (color)

self . highlight_color (color)

self . master. after (500, self . reset_colors)

if self . user_sequence == self. sequence:

if len (self . user_sequence) == len (self. sequence):

self . master . after (500, self . display_correct_feedback)
self . round += 1
self . speed -= 20 # Increase speed for the next round
self . update_score_label ()
self . update_level_label ()
self . master . after (1000, self . play_sequence)

else:
self . end_game ()

The check_sequence method is called when a colored button is pressed . It adds the color to the

user's sequence, highlights the color, resets the color, and checks if the user's sequence matches the
generated sequence . If it matches, it updates the score, level, and continues to the next round . Ifit
doesn't match, the game ends .
Python Code
def display_correct_feedback (self):
self . master . configure (bg =" green ")

self . master . after (500, self . reset_colors)

The disPIay_correct_feedback method briefly changes the background color to green to provide

feedback when the user correctly matches the sequence .

Python Code
def end_game (self):
self . master . configure (bg =" red ")
self . start_button . configure (state = tk . NORMAL)
self . game_running = False

self . play_sound (" wrong ")

The end _game method changes the background color to red, enables the " Start Game " button, sets

the game status to not running, and playsa " wrong" sound .

Python Code
def update_score_label (self):

self . score_label . config (text = f " Score : {max (0, len (self. sequence)- 1)}")
The update_s core_label method updates the score label based on the length of the sequence .

Python Code
def update_level_label (self):
self . level_label . config (text = f " Level : {self. round} ")

The update_level_label method updates the level label based on the current round .

Python Code
def play_sound (self, color):

Play sound effects based on the color (Windows only)
if color =="red "
winsound . PlaySound (" SystemExclamation ", winsound . SND_ASYNC)
elif color =="blue ":
winsound . PlaySound (" SystemAsterisk ", winsound . SND_ASYNC)
elif color ==" green ":

winsound . PlaySound (" SystemQuestion ", winsound . SND_ASYNC)

elif color ==" yellow ":
winsound . PlaySound (" SystemHand ", winsound . SND_ASYNC)
elif color ==" wrong ":

winsound . PlaySound (" SystemExit ", winsound . SND_ASYNC)

The play_s ound method plays sound effects based on the color using the winsound module.
Python Code
if _name_ =="__main__ "
root = tk. Tk ()
game = SimonSaysGame (root)

root . mainloop ()

Finally, this block creates an instance of the SimonSaysGame class and starts the main loop using

root . mainloop () .

How To Play Simon Says Game

To play the Simon Says game, follow these steps :
1. Run the Code:

Execute the provided Python Code in an environment that supports GUI applications and

the tkinter library.

Ensure that you are running the code on a Windows system, as it uses the winsound

module for sound effects, which is specific to Windows .

2. Game Interface :

After running the code, a window titled " Simon Says Game " will appear .
3. Start the Game:

Clickthe " Start Game " button to initiate the game .

4. Observe the Sequence :
The game will generate a sequence of colored buttons, and each button will be

highlighted one at a time .

Pay close attention to the sequence, as you will need to replicate it .

5. Repeat the Sequence:
After the sequence is displayed, the background color of the window changes to white .
Click on the colored buttons in the same order as they were highlighted in the sequence .
The program will provide visual and auditory feedback for each correct button press .

6. Advance to the Next Level :
If you successfully repeat the sequence, the game will proceed to the next level .
The level and score will be updated accordingly .

7. Speed Increase :
As you progress through levels, the speed of the sequence display will increase, making

the game more challenging .

8. End of Game :
If you make a mistake and press a button out of sequence, the game will end .
The background color will turn red, and a " wrong" sound effect will be played .

9. Restart the Game:

You can restart the game by clicking the " Start Game " button again .

10. Enjoy and Improve :
- The goal is to reach the highest level possible by accurately repeating the growing

sequences .
- Challenge yourself to improve your memory and reaction time .
Please note that the code assumes you are using a Windows system for sound effects. If
you are on a different operating system, you may need to modify the play_sound function

to use a cross - platform sound library .

26. Ludo Game

import tkinter as tk
import random

import time

class LudoGame:
def _init_ (self, root):
self.root = root
self.root.title("Ludo Game")

self.root.attributes('-fullscreen', True)

button_frame = tk.Frame(root, bg="lightgray")

button_frame.pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True)

self.canvas = tk.Canvas(root, width=600, height=600, bg="white")
self.canvas.pack(side=tk.LEFT, padx=10)

self.create_board()

self.create_players()

self.roll _button = tk.Button(
button_frame, text="Roll Dice", command=self.play_turn)
self.roll_button.pack(side=tk.LEFT, padx=10, pady=10)

self.close_button = tk.Button(
button_frame, text="Close", command=root.destroy)
self.close_button.pack(side=tk.RIGHT, padx=10, pady=10)

self reset_button = tk.Button(
button_frame, text="Reset Game", command=self.reset_game)
self.reset_button.pack(side=tk.RIGHT, padx=10, pady=10)

self.player_info_label = tk.Label(
root, text="", font=("Helvetica", 16))

self.player_info_label.pack(side=tk.TOP, pady=10)

self.current_player_index = 0

self.highlight_current_player()

def create_board(self):

foriinrange(1, 6):
forjin range(1, 6):
x1,y1=1*100,j*100
x2,y2=x1+100,y1 + 100
self.canvas.create_rectangle(

x1,y1,x2, y2, outline="black", fill="lightgreen")

def create_players(self):
self.players = |
{"color": "red", "piece": {"position": (300, 300)}},
{"color": "green", "piece": {"position": (400, 400)}},
{"color": "blue", "piece"; {"position": (400, 300)}},
{"color": "yellow", "piece": {"position": (300, 400)}}

for player in self.players:

self.draw_piece(player["piece"]["position"], player["color"])

def draw_piece(self, position, color):
X,V = position
self.canvas.create_oval(

x-20,y-20,x+ 20,y + 20, outline="black", fill=color, tags="piece")

def roll dice(self):

for _inrange(10):

value = random.randint(1, 6)
self.roll button.config(text=value)
self.root.update()

time.sleep(0.1)

final value = random.randint(1, 6)
self.roll_button.config(text=final_value)

return final value

def move_piece(self, steps):
player = self.players|self.current _player index]|

current_position = player|'"piece"|["position"|
new_position = self.calculate_new_position(current_position, steps)

1f self.is_valid_position(new_position):
self.clear_position(current_position)
player|"piece"||"position"] = new_position

self.draw_piece(new_position, player|"color"])

e el

if self.check_win_condition():
winner = player|'color'|

self.player_info_label.config(text={"{winner} player wins!")

self highlight_current_player()

def calculate_new_position(self, current_position, steps):
X,y = current_position
X +=steps * 20

refurn x, y

defis_valid_position(self, position):
X, ¥ = position
return 0 < x < 600 and 0 <y < 600

def clear_position(self, position):
X,V = position
overlapping_items = self.canvas.find_overlapping(
x-20,y-20,x+ 20,y + 20)
for item in overlapping_items:

tags = self.canvas.gettags(item)

if "piece" in tags:

self.canvas.delete(item)

def play_turn(self):
steps = self.roll_dice()

player = self.players|self.current_player_index]|
self.player_info_label.config(

text=1"{player|'color']} player's turn - Dice Roll: {steps}")

self. move_piece(steps)

self.current_player index +=1
if self.current_player_index >= len(self.players):

self.current_player_index = 0

def highlight_current_player(self):

for player in self.players:
self.roll_button.config(

bg="SystemButtonFace") # Re

current_player = self_.players|self.current_player_index]
color = current_player|"color"]
self.roll_button.config(bg=color)
def reset_game(self):
self.canvas.delete("piece")
for player in self.players:
player|"piece"]["position"] = self.get_start_position(

player|"color"})

self.draw_piece(player|"piece"|["position"], player|"color"])
self.player_info_label.config(text="Game Reset")

self.current_player_index = 0

self.highlight current_player()

def get_start_position(self, color):

if color == "red":
return (300, 300)
elif color == "green":
return (400, 400)
elif color == "blue":
return (400, 300)
elif color == "yellow":

return (300, 400)

def check_win_condition(self):

center_position = (300, 300)

for player in self.players:
if player|'piece'||'position'| == center_position:
return True

return False

root = tk.Tk()
ludo_game = LudoGame(root)

root.mainloop()

let's go through the code line by line to understand its functionality :

Python Code

import tkinter as tk

import random

import time

This part of the code imports the necessary modules for creating a graphical user interface
(GUI) using the Tkinter library . The random module is used for simulating dice rolls,

and time is used for adding a delay in the dice animation .

Python Code
class LudoGame :
def __init_ (self, root):
Here, a class LudoGame is defined, which will represent the Ludo game. The __init__

method is a special method called when an object of the class is created . It initializes the
game with the given root (Tkinter root window).

Python Code
self . root = root
self . root . title (" Ludo Game ")

self . root . attributes (' - fullscreen', True)

These lines store the root window, set its title to " Ludo Game, " and make it fullscreen .

Python Code
button_frame = tk.Frame (root, bg =" lightgray ")
button_frame . pack (side = tk . BOTTOM, fill = tk . BOTH, expand = True)

This creates a frame (button_frame) at the bottom of the root window with a light gray

background . The frame is set to expand in both horizontal and vertical directions .

Python Code
self . canvas = tk. Canvas (root, width = 600, height = 600, bg =" white ")
self . canvas . pack (side = tk. LEFT, padx = 10)

This creates a canvas within the root window with a white background, representing the
game board . The canvasis set to a fixed size of 600x600 and is packed to the left of the root

window with some padding .
Python Code
self . create_board ()
self . create_players ()
These lines call methods to create the Ludo board (create_board) and initialize player
positions (create_players).
Python Code
self . roll_button = tk. Button (

button_frame, text =" Roll Dice ", command = self . play_turn)
self . roll_button . pack (side = tk . LEFT, padx = 10, pady = 10)

This creates a button labeled " Roll Dice " inside the button_frame . Clicking this button
triggers the play_turn method.
Python Code
self . close_button = tk. Button (
button_frame, text =" Close ", command = root . destroy)
self . close_button . pack (side = tk . RIGHT, padx = 10, pady = 10)

This creates a " Close" button within the button_frame that, when clicked, closes the

Tkinter window .
Python Code
self . reset_button = tk. Button (

button_frame, text =" Reset Game " , command = self . reset_game)
self . reset_button . pack (side = tk . RIGHT, padx = 10, pady = 10)

This creates a " Reset Game " button within the button_frame that, when clicked, triggers

the reset_game method .

Python Code
self . player_info_label = tk. Label (

root, text ="" , font =(" Helvetica", 16))
self . player_info_label . pack (side = tk. TOP, pady = 10)
This creates a label at the top of the root window to display player information . The initial

text is empty, and the font is set to " Helvetica " with a size of 16 .

Python Code
self . current_player_index = 0
self . highlight_current_player ()

These lines initialize the variable for the current player index and call a method to highlight

the current player's turn .

Python Code
def create_board (self):
foriinrange (1, 6):
forjinrange (1,6):

x1,yl =1i* 100,j * 100

x2,y2 = x1 + 100,y1 + 100

self . canvas . create_rectangle (

x1,y1,x2,y2,outline =" black ", fill =" lightgreen ")

The create_board method draws the Ludo board on the canvas using nested loops. It

creates a 5x5 grid of rectangles with black outlines and light green fill .

Python Code
def create_players (self):

self . players =|
{"color":"red", "piece": {" position": (300, 300) }},
{"color":"green", "piece": {" position":(400,400)}},
{"color":"blue", "piece": {"position":(400,300)}},
{"color":"yellow ", "piece": {" position": (300, 400) }}

]

for player in self . players :
self . draw_piece (player [" piece "][" position "], player [" color "])
The create_players method initializes a list of players, each represented by a dictionary
with a color and initial piece position . It then calls the draw_piece method to draw each
player's piece on the canvas .
Python Code
def draw_piece (self, position, color):

X,y = position

self . canvas . create_oval (
x - 20,y - 20,x + 20,y + 20, outline =" black ", fill = color, tags =" piece ")
The draw_piece method is responsible for drawing a player's piece on the canvas . It uses

the oval shape to represent the piece, given its position and color. The tags parameter is

used to tag the created object asa " piece ."

Python Code
def roll_dice (self):
for _inrange (10):
value = random .randint(1,6)
self . roll_button . config (text = value)
self . root . update ()
time . sleep (0. 1)

final_value = random .randint(1,6)
self . roll_button . config (text = final_value)

return final value

The roll_dice method simulates a dice animation by updating the text on the " Roll Dice "
button with random values . It usesthe random . randint function and introduces a slight

delay between updates to create the rolling effect .

Python Code
def move_piece (self, steps):
player = self. players [self . current_player_index]

current_position = player [" piece "][" position "]
new_position = self. calculate_new_position (current_position, steps)

if self . is_valid_position (new_position):
self . clear_position (current_position)
player [" piece "][" position "] = new_position

self . draw_piece (new_position, player [" color "])

if self . check_win_condition ():
winner = player ['color']

self . player_info_label . config (text = f " {winner} player wins !")

self . highlight_current_player ()

The move_piece method handles moving the player's piece based on the steps rolled . It
calculates the new position, checks its validity, clears the previous position, updates the
player's position, redraws the piece, checks for a win condition, and highlights the next
player's turn .

Python Code
def calculate_new_position (self, current_position, steps):
X,y = current_position
x += steps * 20
return x, y
The calculate_new_position method computes the new position based on the current

position and the number of steps rolled .

Python Code
def is_valid_position (self, position):
X,y = position
return0 <x<600and 0 <y < 600

The is_valid_position method checks if a given position is within the boundaries of the

canvas.

Python Code
def clear_position (self, position):
X,y = position
overlapping_items = self. canvas. find_overlapping (
x - 20,y - 20,x + 20,y + 20)

for item in overlapping_items :
tags = self. canvas. gettags (item)
if " piece "in tags:
self . canvas . delete (item)

The clear_position method deletes any items (pieces) present at a given position on the

canvas.

Python Code
def play_turn (self):
steps = self . roll_dice ()

player = self. players [self. current_player_index |
self . player_info_label . config (
text = £ " {player ['color'] } player's turn - Dice Roll : {steps}")

self . move_piece (steps)

self . current_player_index += 1
if self . current_player_index > = len (self. players):

self . current_player_index = 0

The play_turn method initiates a player's turn by rolling the dice, updating the player

information label, moving the piece, and advancing to the next player .

Python Code
def highlight_current_player (self):
for player in self . players :
self . roll_button . config (
bg =" SystemButtonFace ") # Reset button color

current_player = self. players [self . current_player_index |
color = current_player [" color "]

self . roll_button . config (bg = color)

The highlight_current_player method resets the background color of all players' buttons
and highlights the background of the current player's button .

Python Code
def reset_game (self):

self . canvas . delete (" piece ")

for player in self . players :
player [" piece "][" position "] = self. get_start_position (
player [" color "])
self . draw_piece (player [" piece "][" position "], player [" color "])

self . player_info_label . config (text =" Game Reset ")

self . current_player_index = 0

self . highlight_current_player ()

The reset_game method clears all pieces from the canvas, resets player positions, updates
the player information label, resets the current player index, and highlights the first player's
turn.
Python Code
def get_start_position (self, color):
if color =="red "
return (300, 300)
elif color ==" green "
return (400, 400)
elif color =="blue "
return (400, 300)
elif color =="yellow ":

return (300, 400)

The get_start_position method returns the starting position for a given player color .

Python Code
def check_win_condition (self):
center_position =(300, 300)
for player in self . players :

if player ['piece']['position' | == center_position :
return True
return False
The check_win_condition method checks if any player has reached the center position,
indicating a win condition .
Python Code
root = tk. Tk ()

ludo_game = LudoGame (root)

root . mainloop ()

Finally, the main program creates a Tkinter root window, instantiates the LudoGame class
with the root window, and starts the Tkinter event loop with root . mainloop (). This loop

keeps the GUI application running until the user closes the window .

How To Play Ludo Game

To play the Ludo game created with the provided code, you can follow these instructions :
1. Run the Code :

Copy the entire provided code into a Pythonfile (e. g., ludo_game - PV)

Run the script using a Python interpreter .

2. Game Interface:
After running the script, a graphical window will appear with the Ludo board and game

controls .
3. Roll the Dice :

Click the " Roll Dice" button to simulate rolling a dice. The button will display the

rolled number .
4. Player Turn:

The player with the current turn is highlighted, and their color is displayed on the " Roll

Dice" button.
5. Move Your Piece:

The player's piece will move on the board based on the rolled number .

The game automatically updates the player information label with the current player's

turn and the dice roll result .
6. Winning the Game :
The goal is to move your piece to the center of the board (300, 300).

If a player's piece reaches the center, the game declares that player as the winner .

7. Reset Game :

You can click the " Reset Game " button to start a new game . This will reset the pieces

and the player order .
8. Close the Game:

Clickthe " Close " button to exit the game and close the window .

9. Repeat Turns:
The game follows a turn - based system, and players take turns rolling the dice and
moving their pieces .
10. Enjoy the Game :
Have fun playing Ludo with your friends or against computer - controlled players .

Remember that this code provides a basic framework for a Ludo game, and you can
customize and extend it according to your preferences . You can add more features, such as

player names, sound effects, or additional game logic, to enhance the gaming experience .

