PyTHoN FORENSICS

A Workbench for Inventing and Sharing Digital
Forensic Technology

0
®
w
o
o
Z
>
)

Chet Hosmer

=
)

Python Forensics

This page intentionally left blank

Python Forensics

A Workbench for Inventing
and Sharing Digital Forensic
Technology

Chet Hosmer

Technical Editor: Gary C. Kessler

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS ® SAN DIEGO
g

o
&
7
! : SAN FRANCISCO e SINGAPORE e SYDNEY ¢ TOKYO
= i SYNGRESS,
ELSEVIER Syngress is an Imprint of Elsevier

fm

Acquiring Editor: Steve Elliot

Editorial Project Manager: Benjamin Rearick
Project Manager: Priya Kumaraguruparan
Designer: Mark Rogers

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods or professional practices,
may become necessary. Practitioners and researchers must always rely on their own
experience and knowledge in evaluating and using any information or methods described here
in. In using such information or methods they should be mindful of their own safety and the
safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application Submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-418676-7

For information on all Syngress publications,
visit our website at store.elsevier.com/syngress

Printed and bound in the United States of America
14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

aa Working together
—4AB8 (o grow libraries in
Bookfid developing countries

www.elsevier.com e www.bookaid.org

http://www.elsevier.com/permissions

To my wife Janet, for your love, kindness, patience, and inspiration
that you give every day. I am the luckiest guy in the world.

This page intentionally left blank

Acknowledgments

My sincere thanks go to:

Dr. Gary Kessler, the technical editor for this book. Gary, your insights, fresh
perspective, deep technical understanding, and guidance added great value to the
book. Your constant encouragement and friendship made the process enjoyable.

Ben Rearick and Steve Elliot at Elsevier, for your enthusiasm for this topic and all
the guidance and support along the way. This spirit helped more than you can know.

The many teachers that I have had over the years in software development and
forensics that have helped shape the content of this book. Ron Stevens, Tom Hurbanek,
Mike Duren, Allen Guillen, Rhonda Caracappa, Russ Rogers, Jordon Jacobs, Tony
Reyes, Amber Schroader, and Greg Kipper.

Joe Giordano, who had the vision in 1998 to create the first U.S. Air Force
research contract to study forensic information warfare. This one contract was the
catalyst for many new companies, novel innovations in the field, the establishment
of the digital forensic research workshop (DFRWS), and the computer forensic
research and development center at Utica College. You are a true pioneer.

vii

This page intentionally left blank

Endorsements

“Not only does Hosmer provide an outstanding Python forensics guide for all levels
of forensics analysis, but also he insightfully illustrates the foundation of a rich
collaborative environment that significantly advances the forensic capabilities of
the individual, organization, and forensic community as a whole. For analysts,
investigators, managers, researchers, academics, and anyone else with an interest
in digital forensics: this is a must read!”

Michael Duren (CISSP), Founder of Cyber Moxie

“With today’s rapid changes in technology digital forensics tools and practices
are being forced to change quickly just to remain partially effective; and the technical
skills investigators relied on yesterday are quickly becoming obsolete. However,
with new technology comes new tools and methods, and the Python language is
in one of the best possible positions to be leveraged by investigators. Python Foren-
sics is quite simply a book that is ahead of its time, and because of this, it is the perfect
book for both the beginner and the experienced investigator. Chet Hosmer does a
great job of helping the reader refresh older skills and create new ones by offering
step-by-step instructions and intelligently framing the information for maximum
understanding and contextual awareness. The skills you will learn from Python
Forensics will help you develop a flexible and innovative toolkit that will be usable
for years to come.”

Greg Kipper, Senior Security Architect and Strategist at Verizon

“This book presents a refreshing, realistic view on the use of Python within mod-
ern, digital forensics; including valuable insight into the strengths and weaknesses of
the language that every knowledgeable forensics investigator should understand.”

Russ Rogers, President of Peak Security, Inc.

“This book is extremely useful for the forensic Python programmer also for those
with little or no programming experience, and an excellent reference cookbook
for the experienced programmer. The book considers issues relating to Daubert
including testing and validation which is vital for the accreditation of forensic
solutions.”

Zeno Geradts, Senior Forensic Scientist and R&D coordinator at the
Netherlands Forensic Institute

-
X

Endorsements

“As always, Chet Hosmer provides a comprehensive and groundbreaking eval-
uation of a contemporary platform applicable to digital forensics. Extremely well
written and user friendly, the book provides a solid foundation for all levels of
forensic Python programmers, and includes a much-needed discussion on empirical
validation. Quite simply, the book is a must have for all who maintain a digital
forensics library.”

Dr. Marjie T. Britz, Clemson University

Contents

LSt Of fIZUIES ...eeieetieieetieetee ettt st sttt XVii
ADOUL the AULNOT ...ccueiiiiiiiiiee ettt ettt XX1
About the Technical EitOrcccoeoieiiriiiiiiiiniinieie et xxiil
FOTEWOT ...ttt st s sa e XXV
PIEEACE .ottt sttt XXVii
CHAPTER 1 Why Python Forensics?.......ccceeeeiirrrrrmmeemmmnsssssssennnnns 1
INrOAUCHION.....c.uiiiiiiieiiiiicieeeeee e 1
Cybercrime Investigation Challengescc.cceceeceeverveeneenenennns 2
How can the Python Programming Environment Help Meet
these Challenges?c.ccoveeeririenienienieieieeeereeeere e e 6
Global support for pythoncoccceeeeriiinienieiiierenieeeeeeee 6
Open source and platform independence............cccceeeveeevueennennne 8
Lifecycle poSitioningcceeeeeveererrienieerieniinieneetenee et 8
Cost and barriers t0 ENIY ...cceevveereerierrieereeneeerreeseeseeesieeseeenne 8
Python and the Daubert Evidence Standardccccoeeeevieeeennens 9
Organization of the BOOKccoceriininiiiiniieeeeeeeeeee, 10
Chapter REeVIEWcc.coiiiiiiieniiiieie ettt 10
SumMmary QUESIONScccuverrerireerieriieerteesrensieeseessseesseesseesseensns 11
CHAPTER 2 Setting up a Python Forensics Environment............ 13
INtroduction.........coeviiviiiiiiiiiiiin e 14
Setting up a Python Forensics Environment............cccccevveenennee. 14
The Right ENvVIronmentccoceeveerieriierniennienneeneesieeseeeeeens 15
The python Shellccoceeiiiiiiiiiiiiie e 16
Choosing a Python Version........c..cocccecceveveniniinenncninecncenenne. 16
Installing Python on Windowsc..ccoceeeviiniinniennenneenicneee 17
Python Packages and Modules.........ccc.ceoveeviiniennienieennennienene 24
The python standard libraryccceeceveeveneniieneesieneeeeene 25
What is Included in the Standard Library?........ccccoecevvveniennnenn. 27
Built-in functionscoceevereeieneneeneieeeseeeeeee e 27
hex() and DIN() ..coveeeeeeeeeieie et 27
TATZE() -veeuvernreenmeerreenreestee st e ste e bt esbeesbeesseesbeesareesseesneesabeeeneesanes 28
Other built-in functionsccceceevevivvenenenienienieinneneseenn 30
Built-in CONSLANESccvecveiiieieiiieineniererereeeeeeee e 31
BUIIE-IN EYPES c.vveeeveeiierieeieeeieeieesieesie et seesteeseeeseeesbeesaeesaes 32
Built-in @XCEPLIONS....eivreerieeeieeieenieeereenieeseeereesseesnesseessnesnees 33
File and dir€Ctory aCCeSScevvvierierciernienienieeneeneesieeseeenees 34

Xi

Xii

Contents

CHAPTER 3

Data compression and archivingcceccevevienieniieneniceneene. 34
File fOrmMAatS......ceoieiieeieieiieeee ettt 35
CryptographiC SEIVICEScoceruerrierierienieniienienieenee et neesieeae e 35
Operating SYSteIM SEIVICESceverurerrerueriereereenieeneeseeneesseesuennens 35
Standard library SUMMArYccccccceeveerenreenenieeneneeneneeeenaens 36
Third-party Packages and Modules..........cceceevieereeneeniennieennenns 36
The Natural Language Toolkit [NLTK]ccccoceevienvieninennnenne. 36
Twisted Matrix [TWISTED]ccccoceieniniiiiiinincncnceeene 37
Integrated Development Environments..........cccoecveevieereenieeneenne 37
What are the Options?.........cccevvieevienieniieenienieeeeeee e 37
Python running on ubuntu lNUX........cccecveeveieriennieeniiennieeneenne. 42
Python on Mobile Devicescceceerviirniiinieniieenieeieenieesieeeeenes 46
1OS PYLhON QPP ceevviiiiiiiiiieeieeeeeeee et 46
Windows 8 Phomne........c.eevvieviiiiiiiiiiieieceeceeeee e 49
A Virtual Machine........ccccoceeviviriiniiicniniccncneeeceeeeeeeeen 51
Chapter REVIEWcociiiiiiiiiiiiiieitcceetete ettt 51
Summary QUESHIONS.....c..cocueruiiciiriiieenieiereeree et ennes 51
LooKing AReadcccooveiriiiiiiiienieeieerteeeeet et 52
Our First Python Forensics App.....ccceeeeeeerrrrreeennnnns 53
INtrodUCTION......c.eeiuieiiniieiiieetceeeese ettt 54
Naming Conventions and Other Considerations............c.ccceuee... 55
CONSLANES ...ttt ettt ere et sree e saeeaesaeennenaees 55
Local variable namecc.coceeeeveenerrienenneneneeieneeneeeeeee e 55
Global variable name...........ccccocevvereriienenieneneeieeeneeeeee e 55
Functions Name.........c..ccceeeevienieneneenenenecrcneereeeeee e 55
ODJECt NAME ...ttt et 55
MOAUILcoviiieiiiicieteeee e e 55
ClaSS NAMES ...veenvreenieeiierieerieenite et eeee st e e et e steesaeeseeeseeeeeas 56
Our First Application “One-Way File System Hashing” 56
Background...........coccceiiiiiiiiiinee e 56
Fundamental requirementscccceeereeieneneeniennienenceneenae 58
Design considerations..........ccceeeeereruerrenienieneeneneneeeneessensennens 59
Code Walk-Throughcccceceviiieniniininieeeeeeeeeeeeeeen 64
Examining main—code walk-throughc..cccceienninnne 64
ParseCommandLine()ccceeeeeuiieeiiiiiciieeeciee e 66
ValiditingDirectoryWritable............cccoeveveiniinininininieienns 69
WalKPath.....coooiiiiiiniieeeeeeete e e 69
HAaShFILE ..ottt e 71

CSVWIILET .ttt eeeaa e e e esaareeeeeenas 74

CHAPTER 4

CHAPTER 5

Contents

Full code listing pfish.py.....ccccecerereeniniiieneeeeeececee 75
Full code listing _pfiSh.py....ccceceevirieninieeeeeeeeeeee 76
Results Presentation..........cooueieeierieeieneneenie e 83
Chapter REeVIEWcc.coieiiiiiieniiniiieiteerceeiteeseete et 86
SUMMAry QUESTIONScccueeterueriieieriteienieetenteete st ete e see e etenaens 89
LooKing ARadcccevvieriiiiiiinieeeecieeieete et s 89
Forensic Searching and Indexing Using Python...... 91
INtrodUuCtion.........coueiiiiiiiiiiiiic s 91
Keyword Context Search........ccceevueevieniiniieinieiieeieeseeeeeeeeee 93
How can this be accomplished easily in python?.................... 94
Fundamental requirementsc.cceeceeeevveneerrenrenreenneneennennn 96
Design conSiderations.........oocueevveereerierreeneenieeneeneesieeseesees 96
Code Walk-Throughcceceiiiiiiiniiiiiiniiieeeeceeeeeeeene 100
Examining main—code walk-throughcccocconininnnne. 100
Examining _p-search functions—code walk-through............ 101
Examining parsecommandlingcocceveeeenenienencenennen. 101
Examining validatefileread(thefile)..........cccooceveniiininnnnnen. 103
Examining the searchwords function..........ccccecceeceenercenennee. 103
Results Presentation..........oocecereeieneeienenienieecesee e 107
INAEXING .ottt 109
Coding isWordProbable.............ccoceeriniriiininiiininienerieneeeeee 112
p-search Complete Code LiStingscccecveevuververiveeneensieeneennne. 114
PSCATCRLPY ettt 114
_PSCATCHLDY eveiiieiieiieeteeiie ettt ettt s 116
Chapter REVIEWcociiiiiiiieiiiiiieeeeeteete ettt 122
Summary QUESIONScecuverierireeriieriersieeseenreesreeseesseeesseessseenne 123
Forensic Evidence Extraction (JPEG and TIFF) 125
INErOdUCTION.... ettt 125
The python image libraryccoceeceveniieninieninienenceeee, 126
p-ImageEvidenceExtractor fundamental requirements.......... 137
Code Walk-Throughccccoeceiieniinininiiieeeetee e 137
Main PrOZIAMoouiiiieiieiieiienieete ettt ettt e s ee s 141
Class 10ZZINGeeveruiriiniiniiiieieseeteeete et 141
CVSHANAILT ..ot 141
Command liNe PArSer.........coceerveerieerieniierireeneeesieesieesaessseens 141
EXIF and GPS handler.........cccccocivvininininineniiiiincncneenn 141
Examining the code.......ccccvvviiriiiniiniiinieienieereeseesiesieene 141

Full code LiStINGS ..cccveevieeiiiiieeieeieenieeieeie et eesie e e sveesaeees 151

xiii

Xiv

Contents

CHAPTER 6

CHAPTER 7

CHAPTER 8

Program eXeCutionc.ccecceverienenienenieeeceeeee e 158
Chapter REVIEWccccoiiiiiiiiiiiiiiiteeeeeete et 159
SUMMAry QUESHIONSccueruterierieniieienieeteniesieerteeeesieeetesiesieeneeeae 159
Forensic Time.......cccccvvvmemnneennnsse s 165
INtrodUCHION.....c..eiiiiieieiieieeee ettt 165
Adding Time to the EqQUation.........cceccceveevcieniiinniiensienneenieeeene 167
The Time Modulecocceeviiiiiiiniiniiiieteeeeeeeeeeee e 169
The Network Time Protocol...........cocevvieniieniiiiniieniiinienieeene 173
Obtaining and Installing the NTP Library niplib 174
WOrld NTP SErversccccccevievereriienrerienineereeeeneeeesne e 177
NTP Client SEtup SCIIPt......cocvecuiriieiiiriiieniieieneeee e 179
Chapter ReVIEWccccoiiiiiniiiiiiiicccecee e 181
Summary QUESLIONScevueerueerrierrieeneerieeneeneesieeseesseeesreeseeeane 181
Using Natural Language Tools in Forensics 183
What is Natural Language Processing?ccocceveereenenenneennene 183

Dialog-based SYStEIMSccccevuerierierieieniieieeeeieneeenee e 184

COTPUS ettt ettt ettt et see et sbeesbe st aenbens 184
Installing the Natural Language Toolkit and
Associated Librariescecceveeveereriienieniienienieneeeeeseeeenie e 185
Working with @ COTPUS ...ccuvevverrieriieiierieeieene e see e 185
Experimenting with NLTKccccccooiiiiiiniiiniiiiinieeenieeee 186
Creating a Corpus from the Internetccoeceevvierverneenvennnenn. 193
NLTKQuery Application..........ceeeeerveerrieeneersieenienieeeneesieeeeens 194

NLTKQUETY.PY tevveevtenieeieeniieniesiieenieesisesseeesseesssessseesssessseenns 195

_ClassNLTKQUETY.PY .eovveevieiieiiieiiesieeieeneeeieeiee e 196

_NLTKQUETY.PY cevteriteeieeiienieeieesieesieeieesieesieeesieesreesseessees 198

NLTKQuery example eXeCUtionccceecveeeeeerueeneereennennees 199
Chapter REVIEWcociiiiiiriiiiiiiieteeeetete et 202
Summary QUESTIONS.....c..cevererieriieieieeeeie et eeenene 202
Network Forensics: Part |ccoocmmmmmriiiiiniinnnees 205
Network Investigation Basics........ccceeeeienenneniencncnncnenene 205

What are these SOCKets?cccoovieverienenieiiiieeniereeeeeeen 206

SEIVET.PY COUC ..cuviirurieieiiieeiieesieenteeteeseesteenteesseesseessessseenns 208

CLIENE.PY COAC....iiiiiiiiiiiietee ettt 209
Captain Ramius: Re-verify Our Range to Target. .. One
PINg ONLY .oeiiiiiiiiiieie ettt 211

WXPYNOM 1.ttt 212

PINZ. DY teevteeieeieeeieeneesteeteesteesteeteesstesseeseenseesseesssesnsessseenns 213

Contents

UIPING.PY COAR ..ottt 218
Ping SWeep €XECULIONcc..eoviiriiriiiiiiieieeieeeeeeeesiee e 224
POrt SCANNING.....cccveiiieiiiieiireeeseeeeeeee e 225
Examples of well-known ports..........cccceceereeeeneneenencenennenn 226
Examples of registered ports.........ceceveeeereneenieneeneneeneennen 226
Chapter REVIEWcocviviiiiieiiieieeie ettt 235
SUuMMAry QUESIONS......cecuververrreerieerieesieeneesreesreeseessseeseesssennes 235
CHAPTER 9 Network Forensics: Part Ilcccoceerninennnnnnen 237
INErOdUCTION ... ittt 237
Packet Sniffing........ccccoceeviiriiiiiiiiiiceceeeceee 238
Raw Sockets in Python........c.cccoooiiiiiniiiinnicceeeee, 240
What is promiscuous mode or monitor mode?...................... 240
Raw sockets in python under inuX.........cccceeeeeveneenenienennen. 241
Unpacking buffersccecevienenirienieeeeeeeee e 242
Python Silent Network Mapping Tool (PSNMT).........cccceueneee. 247
PSNMT Source Codeccceovveeriernieinienienieenieeieesee e 249
PSNME.PY SOUICE COAEL ...uiniiiiniiierienieeiieieeee et 249
decoder.py SOUICE COAEcccevreirieriieniieieenieeeieesieesvesaeenes 253
CcoMMANAPAISET.PY ...coveriiiiiriiieienieieetee et 256
classLogging.py SOUICE COUE......cccvrrrierriirireerienieenieenienaeenns 257
csvHandler.py source code........ccocuvrrieriercieeneeniienneeniensieenns 258
Program Execution and OUtpUL.........cccevvervieriiienierieenienieeeeen. 259
FOTensic 10Q ..c.vevuiiiiiiiiiieieieeieceeetee ettt 260
CSV file output eXample.......cccceervuerriieniieriiinnienieeieeniesseenns 261
Chapter REVIEWcocciiiiiirieiiiiiieiectcteete ettt 262
Summary Question/Challengeccoceeviervierieiniienienneeniennne 262
CHAPTER 10 Multiprocessing for Forensics.........cccccevvveveerennnn. 265
INErOdUCTION ... ettt 265
What is Multiprocessing?ccceecverveeieneneeneneeneneeieseeseennens 266
Python Multiprocessing SUPPOItc.ceceeeerereenieneerieseeneenens 266
Simplest Multiprocessing Example........cccccocevervienenienensienenne 269
Single core file search SOIULIONccveveevirieriiiieiceieeae 270
Multiprocessing file search solutioncc.cecceeceevercenennee. 270
Multiprocessing File Hash.........cccocovvieniiniinniieniiniinieeiceene 272
Single core SOIULIONeevieerieerieeeieeteeie et e e e saeeaeenes 272
Multi-core SOIUtioN Acccccueeieviiinininiinieiciceceeieene e 274
Multi-core solution Bcccccvivininininiiiiiiiinncce 277
Multiprocessing Hash Table Generation..........ccccceeeeeeveervennnen. 279

Single core password generator Code..........covvvevvuerrureriueniueenns 280

XV

Xvi Contents

Multi-core password generator............cceceereeeereereeenerseeneennens 283

Multi-core password generator Code.........ccoevereereerereeneennens 283

Chapter REVIEWc.cociiriiiiiiriiieieeieeeteeeteeee e 288

Summary Question/Challenge..........ccoecvveveerieriieniieesieeneenieenns 288

CHAPTER 11 Rainbow in the Cloudccccoviiimmeriniineneinnns 289
INtrodUCHION.....c..eiiiiieiiiieieteee e 289

Putting the Cloud to WOrKcooviiriiiiniiiiiiieieecceeeee 289

Cloud OPLIONScouveiieiieiieieieerere ettt e 290

Creating Rainbows in the Cloud.............ccccoeceviiiiniinininnenn. 292

Single core rainboWccccccuiviiiiiriiiiiiiecneeeece e 295

Multi-COTe TAINDOW ...c..eeiieeieiieieieeiieieeitee ettt 296

Password Generation Calculations...........ccecueeveerveeneenienneennee. 300

Chapter REVIEWcoceiiiiiiiriiiieeeeeeteeeteee et 302

Summary Question/Challengecccoecevereeneenenenieneeieene 303

CHAPTER 12 Looking Aheadccoerrrmmemmmenerrerrrreeeennnnssnns 305
INtroduction.........ccevuiiiiiiiiiiiiiniccc e 305

Where do We Go from Here? ..o, 307

ConClUSIONoviiiiiiiiiiiic 312

List of figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19

Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24
Figure 2.25
Figure 2.26
Figure 2.27
Figure 2.28
Figure 2.29
Figure 2.30
Figure 2.31
Figure 2.32
Figure 2.33
Figure 2.34
Figure 2.35

Narrowing the gap

The future digital crime scene

Data vs. semantics

The next-generation cyber warrior

Programming language popularity according to codeview.com
Test-then code-then validate

The Python Programming Language Official Web site
Downloading the Windows installer

Windows download confirmation

Executing the Python 2.7.5 Installer

Python Installation user selection

Python Installation directory

Python customization user manual

TCL/TK install when needed

Windows user account control

Successful installation of Python 2.7.5

Python directory snapshot

Windows taskbar with Python icon

Python startup prompt and messages

Python Hello World

Windows execution of hashPrint.py

Ubuntu Linux execution of hashPrint.py
Python Shell session using hex () and bin()
Python Shell session entering hex values

Python Shell creating lists using the range () built-in
Standard Library function

ipRange execution

Built-in True and False constants

Python is not a strongly typed language

Apply an Exclusive OR (XOR)

Example using the os module from the Standard Library
Python IDLE integrated development environment
Snapshot of WingIDE 4.1 Personal

WingIDE Python Shell display

WingIDE in action

Using WingIDE to step through code

WinglIDE examination of the completed list
WinglDE auto complete feature

Ubuntu download Web page 12.04 LTS

Ubuntu terminal window Python command
Ubuntu software center

WingIDE running on Ubuntu 12.04 LTS

NN NOobhw

28
29
31
31
33
35
38
40
40
41
42
43
43
44
45
45
46

XVii

Xviii

List of figures

Figure 2.36
Figure 2.37
Figure 2.38
Figure 2.39
Figure 2.40
Figure 2.41
Figure 2.42
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Python Shell running on iOS

iOS implementation of HashPrint

Apple App Store page regarding Python for iOS
Windows 8 Phone screenshot of PyConsole launching
Python Console “Hello World” on a Windows 8 Phone
Windows 8 Phone HashPrint application execution
Python Console Windows App Store page
Cryptographic SmartCard

Context diagram: python-file system hashing (p-fish)
p-fish internal structure

p-fish WingIDE setup

Demonstration of ParseCommandLine

pfish -h command

Test run of pfish.py

Result directory after pfish execution

Examining the Result File with Microsoft Excel
Contents of the pFishLog file

Linux Command Line Execution

Linux Execution Results pfish Result File

Linux Execution Results pFishlLog File

Snapshot of stackdata displaying the baTarget object and
the size in bytes of the baTarget bytearray

p-search context diagram

p-search internal structure

WingIDE p-search execution

p-search execution using only the -h or help option
Execution test directory for p-search

Keyword file dump

p-search sample execution

Log file contents post execution

Execution of p-search running on Ubuntu Linux 12.04 LTS
Execution of p-search running on iMac

Diagram of word weighting approach

Weighted characteristics illustration

p-search execution with indexing capability
Downloading Python Image Library for Windows
Windows installation Wizard for the Python Image Library
Installing Python Image Library on Ubuntu 12.04 LTS
Internet Photo Cat.jpg

Map of GPS coordinates extracted From Cat.jpg
p-gpsExtractor context diagram

WingIDE Project Overview

p-gpsExtractor.py execution

Mapping the coordinates extracted from photos

Map zoom into Western Europe

47
48
48
49
49
50
50
54
61
62
64
70
70
84
84
85
86
87
88
&9

95

97

98

99
102
108
108
109
109
110
111
111
112
115
127
128
129
135
138
140
140
159
160
161

Figure 5.11
Figure 5.12
Figure 5.13
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 7.1
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4

Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 10.1
Figure 11.1
Figure 11.2
Figure 11.3

Figure 11.4
Figure 11.5

Map zoom to street level in Germany

Snapshot of Results.csv file

Snapshot of the Forensic Log file

John Harrison H1 clock

A very brief history of time

Python ntplib download page

Download of ntplib-0.3.1.tar.gz

Decompressed ntplib-0.3.1

Install ntplib

Verifying the installation

dir(ntplib) results

Partial list of NIST time servers

European NTP Pool Project

NLTK.org Installation url

Simplest local area network

Isolated TocaTlhost loopback
server.py/client.py program execution

Photo of the actual USS Dallas Los Angeles-class
nuclear-powered attack submarine

Command line launch of the guiPing.py as root
GUI interface for Ping Sweep

Ping Sweep execution

Error handling for misconfigured host range
Port Scanner GUI

Port Scanner program launch

Port Scanner execution with Display All selected
Port Scanner execution with Display NOT selected
SPAN port diagram

SPAN port connections

Raw TCP/IP packet contents

Typical IPv4 packet header

Typical TCP packet header

Typical UDP packet header

WingIDE environment for the PSNMT application
psnmt TCP sample run

psnmt UDP sample run

Sample TCP output file shown in Excel

Sample UDP output file shown in Excel
Plaintext Rainbow Table output abridged
Typical cloud configuration

Cloud execution from iPad

Desktop execution of the simple and multiprocessing

Python applications executing in the cloud
Python Anywhere Home Page
Python Anywhere Plans

List of figures Xix

162
162
163
166
168
174
175
176
176
177
177
178
178
185
206
208
211

212
218
218
224
225
228
228
234
234
239
239
242
243
246
248
250
259
260
261
262
287
290
291

291
292
293

XX

List of figures

Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 12.1
Figure 12.2
Figure 12.3

PICloud Home Page

PICloud Plans

Digital Ocean Home Page

Digital Ocean Plans

Python Anywhere Single Core Execution Results
Python Anywhere Multi-Core Execution Results
Standalone Linux Single/Multi-Core Execution Results
elPassword 8-character combinations of lowercase letters
elPassword 8-character full ASCII character set

Last Bit calculation lowercase using 1 computer

Last Bit calculation lowercase using 100 computers
Last Bit calculation ASCII set using 100 computers
Last Bit calculation ASCII set using 10,000 computers
Multiprocessing in the Cloud

AMD 6300 Series 16 Core Processor

Intel Xeon E7 Series 10 Core 20 Thread Processor

293
294
294
294
299
299
299
300
301
301
302
302
302
311
311
311

About the Author

Chet Hosmer is a Founder and Chief Scientist at WetStone Technologies, Inc. Chet
has been researching and developing technology and training surrounding forensics,
digital investigation, and steganography for over two decades. He has made numer-
ous appearances to discuss emerging cyber threats including National Public Radio’s
Kojo Nnamdi show, ABC’s Primetime Thursday, NHK Japan, Crime Crime
TechTV, and ABC News Australia. He has also been a frequent contributor
to technical and news stories relating to cyber security and forensics and has been
interviewed and quoted by IEEE, The New York Times, The Washington Post,
Government Computer News, Salon.com, and Wired Magazine.

Chet also serves as a Visiting Professor at Utica College where he teaches in
the Cybersecurity Graduate program. He is also an Adjunct Faculty member at
Champlain College in the Masters of Science in Digital Forensic Science Program.
Chet delivers keynote and plenary talks on various cyber security related topics
around the world each year.

XXi

This page intentionally left blank

About the Technical Editor

Gary C. Kessler, Ph.D., CCE, CCFP, CISSP, is an Associate Professor of Homeland
Security at Embry-Riddle Aeronautical University, a member of the North Florida
Internet Crimes Against Children (ICAC) Task Force, and president and janitor of
Gary Kessler Associates, a training and consulting company specializing in com-
puter and network security and digital forensics.

Gary is also a part-time member of the Vermont ICAC. He is the coauthor of two
professional texts and over 70 articles, a frequent speaker at regional, national, and
international conferences, and past editor-in-chief of the Journal of Digital Forensics,
Security and Law. More information about Gary can be found at his Web site, http://
www.garykessler.net.

XXiii

http://www.garykessler.net
http://www.garykessler.net

This page intentionally left blank

Foreword

On June 16, 2008 a user in the home of 2-year old Caylee Anthony googled for the
term fool proof suffocation. A minute later, the same user logged onto the MySpace
website with the profile of Casey Anthony. Tragically within months, the police
found the decomposed remains of the young girl. Prosecutors charged Casey
Anthony with first-degree murder and subsequently tried her 3 years later. The trial
lasted 6 months and contained over 400 pieces of unique evidence. Sadly, the details
of the computer search never made it to trial. The prosecutor’s computer forensic
examiner employed a tool to retrieve the browser history results. In use of that tool,
the examiner only searched the Internet Explorer browser history and not that of the
Firefox browser. The moral of the story is that we are only as good as our tools and
our understanding how they work.

In contrast to the failure of the computer forensic examiner, let us consider the
most feared military force—The Spartan Army. The strength of the Spartan army
relied upon the professionalism of its soldiers. From a young age, the elite warriors
learned only one occupation—to wage war. In that profession, they relied heavily on
the quality of their weaponry and armor. Instead of weapons being issued to a war-
rior, it was the responsibility of every Spartan warrior to bring his own weapons and
armor to war. Fathers passed these tools to their sons before entering battle. In the
following pages, Chet Hosmer passes down modern tools and weapons. As a forensic
investigator, your terrain may include a hard drive’s unallocated space instead of the
pass of Thermopylae. However, just like the Spartan elders, Chet will teach you to
forge your own tools. Building your own weaponry is what separates a forensic
examiner that makes the gross mistake of missing browser artifacts versus that of
a professional examiner.

The following chapters cover a breadth of topics from hashing, keyword search-
ing, metadata, natural language processing, network analysis, and utilizing cloud
multiprocessing. Chet covers this range of exciting topics as he teaches you to build
your own weapons in the Python programming language. A visiting professor in the
Cyber Security Graduate Program at Utica College, Chet is both an educator and a
practitioner. He has served as the principal investigator on over 40+ cyber security,
digital forensic and information assurance research programs and received interna-
tional recognition and awards for his work. Like the Spartan elder, his knowledge
will hopefully translate to the growth of a new breed of professional. So please enjoy
the following pages. And as Spartan wives used to tell their husbands upon entering
battle, come back with your shield or on it.

TJ 0Connor
SANS Red&Blue Team Cyber Guardian

XXV

This page intentionally left blank

Preface

Over the past 20 years I have had the privilege to work with some of the best, bright-
est, and dedicated forensic investigators throughout the world. These men and
women work tirelessly to find the truth—usually working under less than ideal con-
ditions and under the stress of real deadlines. Whether they are tracking down child
predators, criminal organizations, terrorists, or just good old fashion criminals trying
to steal your money, these investigators are under the gun and need the best of the
best at their fingertips.

I communicate regularly with industry leaders developing the latest forensic
products, while evolving their current software baseline to meet the needs of the
broadest audience possible. I also communicate with customers trying to solve
real-world problems that require immediate answers to hard questions, while the
volume of data holding the answer gets larger by the second.

As a scientist and teacher, I see a thirst from students, law enforcement personnel,
and information technology professionals who possess a burning desire, unique
investigative skills, an understanding of the problem, and most importantly innova-
tive ideas pertaining to the problems at hand. However, in many cases they lack the
core computer science skills necessary to make a direct contribution to the cause.

The Python programming language along with the global environment that sup-
ports it offers a path for new innovation. Most importantly the language opens the
door for broad inclusion and participation of free tools and technology that can rev-
olutionize the collection, processing, analysis, and reasoning surrounding forensic
evidence. This book provides a broad set of examples that are accessible by those
with zero or little knowledge of programming, as well as those with solid developer
skills that want to explore, jump start, and participate in the expanded use of Python
in the forensic domain. I encourage you to participate, share your knowledge, apply
your enthusiasm, and help us advance this cause.

INTENDED AUDIENCE

I have written the book to be accessible by anyone who has a desire to learn how to
leverage the Python language to forensic and digital investigation problems. I always
thought of this as an on-ramp and a beginning that I hope this will inspire you to
create something great and share it with the world.

PREREQUISITES

Access to a computer, familiarity with an operating system (Windows, Linux, or
Mac) and access to the Internet, coupled with a desire to learn.

XXVii

XXViii

Preface

READING THIS BOOK

The book is organized with the first two chapters focused on introductory material
and setting up the free Python development environment. Chapters 3 through 11
focus on differing problems or challenges within digital investigation, and provide
guided solutions along with reference implementations that focus on the core issues
presented. I encourage you to use, expand, evolve, and improve the solutions pro-
vided. Finally, Chapter 12 looks back and then forward to consider the path ahead.

SUPPORTED PLATFORMS

All the examples in the book are written in Python 2.7.x in order to provide the great-
est platform compatibility. The associated web site has solutions for both Python
2.7.x and 3.x whenever possible. As more third party libraries complete support
for Python 3.x, all the examples will be available for 2.7.x and 3.x. Most of the exam-
ples have been tested on Windows, Linux, and Mac operating systems and will most
likely work correctly on other environments that fully support at least Python 2.7.x

DOWNLOAD SOFTWARE

Those purchasing the book will also have access to the source code examples in the
book (in both 2.7.x and 3.x—when possible) from the python-forensics.org web site.

COMMENTS, QUESTIONS, AND CONTRIBUTIONS

I encourage you to contribute in a positive way to this initiative. Your questions,
comments, and contributions to the source code library at python-forensics.org will
make this a resource available to all.

I challenge you all to share your ideas, knowledge, and experience.

CHAPTER

Why Python Forensics?

CHAPTER CONTENTS

INEFOAUCHION ... e e e s me e s e e e sn e e e mn e e s mn e e e s mn e ee s mmnmnennmnnnnnnan 1
Cybercrime Investigation Challengescccccceimiircccescirir et 2
How can the Python Programming Environment Help Meet these Challenges? 6
Global Support for PYThoncooeiiii e 6
Open Source and Platform Independencecocoeiiieiiiiiiiiiii i 8
LifeCyCle POSITIONING .u.iveiii e e e e e e e e e e e eaaas 8
Cost and Barriers 10 ENtry ..o 8
Python and the Daubert Evidence Standardccccccemmiiecccccmmenniec e 9
Organization of the BOOKccccovieeeriiciininccce e e e e s e e e e s mn e e e 10
Chapter REVIEWcccceieiiiierin s s 10
SUMMArY QUESLIONScovvveierrrrrserrisssmerrsssnresssssneessssnnessssnsenssssnesssssnsessssnnessssanensssnnnnns 1
Additional RESOUICESoeeicererrieserrisssssersssnresssssmrrssssnnessssnnesssssnssssssnsessssnsesssssnnesssnns 11
INTRODUCTION

The Python programming language and environment has proven to be easy to learn
and use and is adaptable to virtually any domain or challenge problem. Companies
like Google, Dropbox, Disney, Industrial Light and Magic, and YouTube just to men-
tion a handful are using Python within their operations. Additionally, organizations
like NASA’s Jet Propulsion Lab; the National Weather Service; The Swedish Mete-
orological and Hydrological Institute (SMHI); and Lawrence Livermore National
Laboratories rely on Python to build models, make predictions, run experiments,
and control critical operational systems.

Before diving straight in, I am sure you would like a little more information about
what [will be covering and how a programming environment like Python matches up
with digital investigations. Also, you might be interested to know what you will be
learning about, generally what the scope of this book is, and how you can apply the
concepts and practical examples presented.

The primary purpose and scope of the book is to show you how Python can be
used to address problems and challenges within the cybercrime and digital investi-
gation domain. I will be doing this by using real examples and providing the full
source code along with detailed explanations. Thus the book will become a set of

Python Forensics 1
© 2014 Elsevier Inc. All rights reserved.

-
2

CHAPTER 1 Why Python Forensics?

reference implementations, a cookbook of sorts, and at the end of the day, will hope-
fully get you involved in developing your own Python forensic applications.

I will be presenting the material without any preconceived notion about your pro-
gramming expertise (or lack thereof). I only expect that you have an interest in using
the examples in the book, expanding on them, or developing derivatives that will fit
your situation and challenge problems. On the other hand, this is not a how to pro-
gramming book, many of those exist for Python along with a plethora of online
resources.

So, let us get started by defining just some of the challenges we face in cyber-
crime and digital investigation. These challenges after all were the catalyst behind
the book and have come from the past two decades of working on solutions to assist
law enforcement; defense and corporate entities collect and analyze digital
evidence.

CYBERCRIME INVESTIGATION CHALLENGES

Some of the challenge problems that we face in cybercrime investigation include:

The changing nature of investigations: Much of the work over the past two
decades has focused on the postmortem acquisition, search, format, and display of
information contained on various types of media. I can clearly remember the phone
call I received almost two decades ago from Ron Stevens and Tom Hurbanek at the
New York State Police. They were investigating a case that involved a Linux com-
puter and were quite concerned about files and other data that might have been
deleted that could be impeding the investigation. At that point no technology existed
to extract deleted files or fragments that were buried away inside deleted Linux
inodes, although several solutions existed for the Windows platform at the time.
We worked together to develop algorithms that eventually became a tool named
“extractor” that we provided free to law enforcement.

The move from simply extracting data, recovering deleted files, and scouring
unallocated or slack space from computers has rapidly shifted just in the last couple
of years. Today we focus most of our attention on smart mobile devices, dynamically
changing memory, cloud applications, real-time network forensics, automotive data
analysis, and weather-based forensics, just to mention a few. In addition, new work is
addressing the association of direct digital forensic evidence with a broad range of
instantly available electronic information. Whether this information comes from text
messages, Facebook posts, tweets, Linkedin associations, metadata embedded in
digital photographs or movies, GPS data that tracks our movements or the digital
fingerprints left from every Web site we surf, all may be relevant and used in civil
or criminal cases. The question is how do we connect these dots while maintaining
forensic efficacy?

The widening gap between technology developers and investigators: Investiga-
tors, examiners, incident response personnel, auditors, compliance experts tend to
come into this field with a background in social science, whereas technology

Cybercrime Investigation Challenges 3

developers tend to have backgrounds in computer science and engineering. Clearly,
there are some excellent examples of crossovers in both directions, but the vocabu-
lary, thought process, and approach to problem solving can be quite different. Our
goal, as depicted in Figure 1.1, is to leverage Python forensic solutions to close
that gap and create a collaborative nonthreatening environment whereby computer
science and social science can come together.

The challenge is to develop a platform, vernacular environment where both social
scientists and computer scientists can comfortably communicate and equally partic-
ipate in the process of developing new forensic solutions. As you will see, the Python
environment provides a level playing field, or common ground at least, where new
innovations and thought can emerge. This has already shown to be true in other
scientific fields like Space Flight, Meteorology, Hydrology, Simulation, Internet
Technology advancement, and Experimentation. Python is already providing valu-
able contributions in these domains.

Cost and availability of new tools: With a couple of exceptions (for example,
EnCase™ App Central), most new innovations and capabilities that come through
vendor channels take time to develop and can add significant cost to the investiga-
tor’s toolkit. In the past, investigators carried with them just a handful of hardware
and software tools that they used to extract and preserve digital evidence. Today, to
address the wide range of situations they may encounter, 30-40 software products
may be necessary just to perform acquisition and rudimentary analysis of the digital
crime scene. Of course this is just the start of the investigative process and the num-
ber and variety of analytic tools continues to grow.

The true cost and cost of ownership of these technologies can be staggering,
especially when you factor in education and training. The barrier to entry into the
field can easily reach high five or even six figures. This is in a field where backlogs
continue to grow at law enforcement agencies around the world. Backlogs are also
growing within the corporate sector, which is dealing with human resource actions,
corporate espionage, insider leaks, and massive amounts of regulatory requirements.

Social
science

|| Python
forensics

Today Future

Computer
science

Computer
science

FIGURE 1.1
Narrowing the gap.

Figure 1.1

4

CHAPTER 1 Why Python Forensics?

FIGURE 1.2
The future digital crime scene.

It is obvious that we need a better onramp and new ways for individuals that have
both interest and aptitude, to participate and make entry into the digital investigative
field easier and more streamlined. As we move forward in time, the digital crime
scene will look more and more like the depiction in Figure 1.2.

Data vs. semantics: Due to constrained resources, new technologies and innova-
tion we must move from simple data analysis and search to rapid semantic under-
standing and even situational awareness. Investigators need tools that can help
them narrow in on targets or hotspots within an investigation, in order to better apply
resources and more quickly identify important leads. This is especially true for inves-
tigations that are ongoing such as active fraud cases, denial of service attacks, sophis-
ticated malicious code breaches, violent crimes such as murder, child abduction,
rape, and aggravated assaults that have a digital component.

In addition, we must capture the knowledge and process of the most seasoned
investigators before they leave the field. What is needed is a better way to capture
that knowledge and experience, as most of the investigative analysis of digital evi-
dence happens today between the ears of the investigator. To illustrate the difference,
Figure 1.3 shows what we mean by data vs. semantics or meaning. The image on the
left depicts a GPS coordinate that we typically extract from images, mobile devices,
or online transactions. The image on the right is the mapped location—in other words
the meaning or translation of the GPS location into mapped data. These GPS data
also include timestamps that allows us to place a device at a particular location at
a specific date and time.

The next-generation investigator: We must generate interest in this field of study
to attract the best and brightest to a career in cybercrime investigation. In order to do
so, this new breed needs to not only use tools and technology but also must play an
important role in researching, defining, evaluating, and even developing some of
these high demand and sophisticated next-generation capabilities (Figure 1.4).

Lack of a collaboration environment: Cybercriminals have the advantage of
untethered collaboration, along with access to resources that assist in the execution

Figure 1.2

Cybercrime Investigation Challenges 5

=
(< 2)
A v M "”‘I”' Cancun
da-Motul 9
g A Votadotia— 09 Playagél
Jrekoh = = m@
icul SanMiguel
Tekax %1}
N20 27.733 W86 59.097 Felink Carkily
Puerto
basl
28 Chetumal
Data Meaning

FIGURE 1.3

Data vs. semantics.

FIGURE 1.4
The next-generation cyber warrior.

Figure 1.4
Figure 1.3

6

CHAPTER 1 Why Python Forensics?

of distributed attacks and sophisticated cybercrime activities. Investigators and
developers of new methods and techniques need that same advantage. They require
a platform for collaboration, joint development, and access to new innovations that
could be directly applied to the situation at hand.

HOW CAN THE PYTHON PROGRAMMING ENVIRONMENT HELP
MEET THESE CHALLENGES?

Creating an environment where social and computer scientists can collaborate and
work together is challenging. Creating a platform to develop new technology-based
solutions that address the broad range of digital investigation challenges outlined
earlier in this chapter is difficult. Doing them both together is a real challenge,
and whenever you take on a challenge like this it is important to consider the under-
pinnings so that you create the best chance for success.

I personally have a few important considerations that have served me well over
the years, so I will share them with you here.

1. Does the platform you are building on have broad industry support?

2. Isthere an ample supply of technical data regarding the subject along with a large
cadre of talent or subject matter experts?

3. Is the technology platform you are considering open or closed?

4. Where does the technology exist along its lifecycle (i.e., too early, too late or
mature, and evolving)?

5. What is the cost or other barriers to entry? (especially if you are trying to attract a
broad array of participants)

6. Finally, since we are trying to bridge the gap between social and computer
science, is the environment well suited for cross-disciplinary collaboration?

Global support for Python

Python was created by Guido van Russom in the late 1980s with the fundamental
premise that Python is programming for everyone. This has created a groundswell of
support from a broad array of domain-specific researchers, the general software devel-
opment community, and programmers with varying backgrounds and abilities. The
Python language is both general purpose and produces easily readable code that can
be understood by nonprogrammers. In addition, due to Python’s intrinsic extensibility,
copious amount of third-party libraries and modules exist. Numerous web sites provide
tips, tricks, coding examples, and training for those needing a deeper dive into the lan-
guage. It may surprise you that Python was ranked as the number 1 programming lan-
guage in2013 by codeeval.com (see Figure 1.5) edging outJava for the first time. A great
place to start is at the official Python programming language web sites python.org.
Finally, sophisticated integrated software development environments exist that
allow even the novice developer to innovate new ideas and design, and then build

http://codeeval.com
http://python.org

Python Programming Environment 7

Most popular coding languages of 2013

TCL o
02% Objective C

1%

Scala
6%

Clojure

8%

Javascript |
3.9%

) U

@codeeval www.codeeval.com

FIGURE 1.5
Programming language popularity according to codeview.com.

and test their inventions and prototypes. Python is an interpreted language; however,
compilers are available as well, of course. As shown in Figure 1.6, developers have
adopted the test-then code-then validate mindset.

By utilizing the Python Shell, experienced and novice users alike can experiment
with the language, libraries, modules, and data structures before attempting to inte-
grate them into a complete program or application. This promotes experimentation
with the language, language constructs, objects, experimentation with performance
considerations, and libraries, and allows users to explore and tradeoff approaches

FIGURE 1.6
Test-then code-then validate.

Figure 1.5
http://codeview.com
Figure 1.6

-
8

CHAPTER 1 Why Python Forensics?

prior to putting them into practice. Once confident with the use, characteristics and
behaviors of the language, the integration into working programs tends to go more
smoothly. In addition, this experimentation often leads to testing considerations that
can then be applied to the working programs once they have been completed, thus
completing the cycle of test-code-validate.

Open source and platform independence

Since Python is an open source environment, developers continue to create compat-
ible versions that run across multiple platforms. Python implementations exist for
today’s most popular platforms including Windows, Linux, and Mac OS X as you
would expect. However, the support for Python is much broader. Support for mobile
device operating systems such as Android, i0S, and Windows 8§ is also available. In
addition, Python is supported on platforms that you might not expect such as AIX,
AS/400, VMS, Solaris, PalmOS, OS/2, and HP-UX, just to mention a few. What this
means for cybercrime investigators is portability of these applications for today’s
platforms, yesterday’s platforms, and future platforms.

In March 2013, NVIDIA announced support for Python developers by opening
the door to GPU-Accelerated Computing using NVIDIA CUDA, allowing for par-
allel processing capabilities, and advancing the performance of virtually any Python-
developed application. This will deliver the ability to handle and process big data,
perform advanced analytical operations, perform deductive and inductive reasoning,
and meet future computational challenges. This versatility ensures that the invest-
ment made in creating new investigative solutions will be useable and sharable with
colleagues that use different flavors of computing platforms.

Lifecycle positioning

Python today sits in the best position possible to be leveraged for investigative
applications. The language is mature, hundreds of thousands of developers are expe-
rienced, a strong support organization is in place, extensible libraries are plentiful,
applications are portable to a wide range of computing platforms, the source code
is open and free, and new innovations to the core language are keeping pace with
hardware and operating system advancements.

Cost and barriers to entry

One of the keys to Python’s success is the lack of virtually any barrier to entry. The
development environment is free, the language is platform independent, the code is
as easy to read and write as English, and support is vast and worldwide. In my opin-
ion, it should revolutionize the development of new cybercrime, forensic, and inci-
dent response-based solutions. The key is to develop outreach that will encourage,
attract, and open the doors to social scientists, computer scientists, law enforcement
organizations, forensic labs, standards bodies, incident response teams, academics,

Python and the Daubert Evidence Standard 9

students, and virtually anyone with domain expertise within the broadest definition
of cybercrime.

PYTHON AND THE DAUBERT EVIDENCE STANDARD

As many of us have encountered, the Daubert standard provides rules of evidence at
the U.S. Federal level along with about one-third of the states that deal with the
admissibility of expert testimony including scientific data. Digital data collected
and analyzed with forensic software employed by an “expert” can be challenged
by using, in laymen’s terms, a Daubert motion to suppress or challenge the efficacy
of the expert and/or the evidence produced by technology utilized.

In 2003, Brian Carrier [Carrier] published a paper that examined rules of evi-
dence standards including Daubert, and compared and contrasted the open source
and closed source forensic tools. One of his key conclusions was, “Using the guide-
lines of the Daubert tests, we have shown that open source tools may more clearly
and comprehensively meet the guideline requirements than would closed
source tools.”

The results are not automatic of course, just because the source is open. Rather,
specific steps must be followed regarding design, development, and validation.

1. Can the program or algorithm be explained? This explanation should be
explained in words, not only in code.

2. Has enough information been provided such that thorough tests can be developed
to test the program?

3. Have error rates been calculated and validated independently?

4. Has the program been studied and peer reviewed?

5. Has the program been generally accepted by the community?

The real question is how can Python-developed forensic programs meet these stan-
dards? Chapters 3—11 comprise the cookbook portion of the book and each example
attempts to address the Daubert standard by including:

Definition of the Challenge Problem
Requirements Definition

Test Set Development

Design Alternative and Decisions
Algorithm Description (English readable)
Code Development and Walk-Through
Test and Validation Process

Error Rate Calculation

Community Involvement

woeNoa LN~

This approach will provide two distinct advantages. First, the cookbook examples
provided in the text will be useable out of the box and should meet or exceed the
rules of evidence standards. Second, the process defined will assist both experienced

10

CHAPTER 1 Why Python Forensics?

and novice developers with an approach to developing digital investigation
and forensic solutions. The cookbook examples then provide a model or reference
implementations using Python that are designed as an educational and practical
example.

ORGANIZATION OF THE BOOK

In order to support the broadest audience of potential contributors to new cybercrime
investigative technologies, I have arranged the book to be accessible to those with
little or no programming experience, as well as for those that want to dive directly
into some of the more advanced cookbook solutions.

Chapter 2 will provide a walk-through for those wishing to setup a Python soft-
ware environment for the first time. This step-by-step chapter will include environ-
ments for Linux and Windows platforms and will include considerations for Python
2.x and Python 3.x. I will also cover the installation and setup of high-quality third-
party libraries that I will leverage throughout the book, along with integrated devel-
opment environments that will make it easier to master Python and manage your
projects.

Chapter 3 covers the development of a fundamental Python application that will
outline one of the most common digital investigation applications—File Hashing. A
broad set of one-way hash algorithms that are directly implemented within the core
Python distributions will be covered. I will then show how this simple application
can be transformed into a more sophisticated cyber security and investigation tool
that could be applied immediately.

Each of the Chapters 4—11 tackles a unique cybercrime investigation challenge
and delivers a Python cookbook solution that can be freely used, shared, and evolved,
and includes opportunities for you to participate in the future expansion.

Chapter 12 takes a look at future opportunities for the application of Python
within cybercrime investigation, a broader set of cyber security applications, and
examines high-performance hardware acceleration and embedded solutions.

Finally, each chapter includes a summary of topics covered, challenge problems,
and review questions making the book suitable for use in college and university aca-
demic environments.

CHAPTER REVIEW

In this chapter, we took a look at the challenges that are facing cybercrime investi-
gators, incident response personnel, and forensic examiners that are dealing with a
plethora of digital evidence from a multitude of sources. This chapter also discussed
the computer science and social science gap that exists between the users of forensic/
investigative technologies and the developers of the current solutions. We examined

Additional Resources

the key characteristics of the Python programming environment which make it well
suited to address these challenges. These characteristics include the open source
nature of the Python environment, the platform independent operational model,
the global support and available technical data, and the current lifecycle positioning.
Also, Python-developed solutions (provided they are done right) will meet or exceed
the Daubert rules of evidence requirements. Finally, the organization of the book was
discussed to give readers a better understanding of what to expect in upcoming
chapters.

SUMMARY QUESTIONS

1. What are some of the key challenges that face forensic investigators today and
what potential impacts could these challenges pose in the future?

2. From what has been presented or based on your own research or experience, what
do you believe are the key benefits that Python could bring to forensic
investigators?

3. What other organizations are using Python today for scientific endeavors and
how is the use of Python impacting their work?

4. What other software languages or platforms can you think of that are open source,
cross-platform, have global support, have a low barrier to entry, are easily
understood, and could be used to collaborate among both computer scientists and
social scientists?

5. What forensic or investigative applications can you think of that either do not
currently exist or are too expensive for you to buy into?

Additional Resources

Open Source Digital Forensic Tools—The Legal Argument. Digital-Evidence.org, http://
www.digital-evidence.org/papers/opensrc_legal.pdfhttp; 2003.

Python Programming Language—Official Website. Python.org, http://www.python.org.

Basu S. Perl vs Python: why the debate is meaningless. The ByeBaker Web site, http://bytebaker.
com/2007/01/29/perl-vs-python-why-the-debate-is-meaningless/; 2007 [29.01.07].

Raymond E. Why Python? The Linux Journal 73, http://www linuxjournal.com/article/3882;
2000 [30.04.03].

.
11

http://Evidence.org
http://www.digital-evidence.org/papers/opensrc_legal.pdfhttp
http://www.digital-evidence.org/papers/opensrc_legal.pdfhttp
http://Python.org
http://www.python.org
http://bytebaker.com/2007/01/29/perl-vs-python-why-the-debate-is-meaningless/
http://bytebaker.com/2007/01/29/perl-vs-python-why-the-debate-is-meaningless/
http://www.linuxjournal.com/article/3882

This page intentionally left blank

Setting up a Python
Forensics Environment

CHAPTER CONTENTS

INEFOAUCHION ... r e s e s s mn e e e e e e e n e e e e e mn e e nmnnnnan 14
Setting up a Python Forensics Environmentc..cooccceiiiieccccceecrese e csseeee e e s 14
The Right ENVIFONMENE ..o ccceere e e e s e e e mmnn e e e e s e 15
The PYthon Shell ..o e e 16
Choosing a Python VErsionccccceeicicmircscesisscesssssss e s sssse s s sssesesssme e sssssessssnsesenes 16
Installing Python on WiNAOWS ... ccceceer s cssee s mms e e s mmnees 17
Python Packages and Modulesccoeiriiiiiiiiiiiiiiiiisisc e e 24
The Python Standard Librarycccooieeiiiiiiiiii e 25
What is Included in the Standard Library?ccooocoimiiccimecccerrc e 27
BUIE-IN FUNCHIONS it 27
NEX () ANA DTN () riiiiii e e e e e e e e e e e e et e e aaans 27

AL o= 28
Other Built-in FUNCLIONS ...oiuiii e 30
BUilt=-in CONSTANTS ... 31
BUIE-IN Ty DS ittt ei e e e et e e e 32
BUITE-IN EXCEPLIONS it e e e e e e e 33
File @and Dir€CtOry ACCESS ..uiiiiiieiiiie e e et e e e eeeees 34
Data Compression and ArChiVingcouiiiiiiiii e 34
File FOMATS oeeieiiie ettt e e e e e e eeee 35
CryptographiC SEIVICES .uuuiiiiiiiiii e 35
Operating SYStEM SEIVICES ..uuiiiiiieiiiii et 35
Standard Library SUMMArycoeuieiiieii e e e e e e e eae s 36
Third-Party Packages and Modulesooomiiieicccierrrr e snse e 36
The Natural Language Toolkit [INLTK] ...cooiiiiiiiiieiiii e 36
Twisted Matrix [TWISTED] ..o 37
Integrated Development ENVIFONMENESccceieoiminiemrrnieisser e 37
What are the OpLionS? ... e eaen s 37
IDLE et a s 38
WINGIDE ...ttt e e 39
Python Running on Ubuntu LiNUXcooviiiiiiiiiiii e 42
Python on Mobile DEVICESccceeoerreserrrirreerssr s s s s s e s 46
(1O 3 20T g o] 42 o] o PP 46
WINAOWS 8 PRONE ...t 49

Python Forensics
© 2014 Elsevier Inc. All rights reserved.

CHAPTER

13

14

CHAPTER 2 Setting up a Python Forensics Environment

A Virtual Machingcccceiiciiiieccrr e s mn e e mn e 51
Chapter REVIBWcccceeriicciricceierscsnce s sssne s s s ss e s s sme e s s s e e s e mn e s s mn e e e s san e s e s amn e e s snnnnns 51
SUMMAry QUESHIONSccciiieeeirrce e s e s e e ne s 51
LOOKING AREAMcceeerreecrrresmrersssnnerssssnessssmnesssmnessssanenssssnsesssnnessnsnnenasssnsesssssnnensas 52
Additional RESOUICEScciceeirieieierrcemerrsssmeresssnessssme e s s ssme e s s s ssnesssssmsesssmnessssnnesassnnes 52

INTRODUCTION

A couple of decades ago, I was working for a large defense contractor and was part of a
team that was developing a secure embedded device. My initial role was to setup a
development environment for the team to use. This may seem like a pretty simple task.
However, the embedded security hardware was completed and handed off to me, but
the device itself did not include an operating system or supporting libraries—it was
basically an open slate. Thus, the first painstaking task was to develop a boot loader
that would allow me to load a program onto the device. Once that was completed, I
needed to develop the ability to interface with the board and load additional software
(the operating system, shared libraries, applications, etc.), that would bring the security
hardware contained within the device online.

This interface software needed to include a debugger that would allow us to con-
trol the operating system and application software being developed by the team while
it was running on the device. For example, the ability to start the program, stop the
program, inspect variables, registers, etc., perform single steps, and set breakpoints
in the code, all this was accomplished through a 19,200 baud RS232 interface.

You might be asking, what does this twentieth century example have to do with
Python? The answer is simple, the requirements for a stable feature-rich development
environment still exist in the twenty-first century, but now we have modern tools.
Without the proper development environment, the chance of successfully developing
high-quality, function-rich forensic or digital investigation software is quite low.

SETTING UP A PYTHON FORENSICS ENVIRONMENT

Many considerations exist before setting up an environment. I will explore some of
the key areas that I myself consider when setting up an environment like this. Here
are some important considerations:

1. What is the right environment for your situation? Are you a professional software
developer; a novice developer with solid investigative skills and ideas that
you would like to explore; do you work in a forensic lab or support an incident
response team with new tools and methods; or maybe you might work in the
IT Security group at a corporation and need better ways to collect and analyze
what is happening on your network.

2. How do you choose the right third-party libraries and modules that enhance your
program and allow you to focus on your application and not on reinventing
the wheel?

The Right Environment 15

3. What is the right integrated development environment (IDE) and what
capabilities should be included in that environment?

a. Code intelligence that provides automatic completion, built-in error
indicators source browser, code indices, and fast symbol lookup.

h. A robust graphical debugger that allows you to set breakpoints, single-step
through code, view data, and examine variables.

c. A powerful programmer’s editor that has a complete understanding of the
Python language rules, advanced search tools, bookmarking, and code
highlighting.

d. Cross-platform support such that you can choose your platform and
environment, (i.e., Windows, Linux, or Mac), and select any Python version
from 2.x to 3.x and Stackless Python.

Stackless Python is a relatively new concept, allowing Python programs to execute which are
not limited by the size of C Stack. In many environments, the size of stack memory is limited in
comparison to the amount of heap memory. Stackless Python utilizes the heap and not the
stack which provides greater distributed processing possibilities. For example, this allows
for thousands of independently running tasklets to be launched. Online multiuser gaming
platforms use this to support thousands of simultaneous users. | am sure if you are thinking
ahead you can imagine some interesting digital investigation and forensic applications for
such an environment.

e. A unit testing capability that enables you to thoroughly validate your code
within common testing frameworks such as unittest, doctest, and nose.

f. Built-in revision control for advanced projects along with direct integration
with popular revision control systems such as Mercurial, Bazaar, Git, CVS,
and Perforce. When building larger applications that contain many moving
components managing the many revisions becomes important.

This selection will ultimately determine if the tools and applications
developed will meet the standards of quality that are essential ingredients for
digital investigation and forensic applications.

It is important right up front to realize this book is about building forensic
applications that must meet the Daubert standard, thus we are not just hacking out
some code that will work most of the time, but rather code that should work all the
time or fail gracefully. And most importantly, we need to develop code that will
create admissible evidence.

THE RIGHT ENVIRONMENT

One of the initial choices you will have to make is the platform you intend to use for
the development of Python forensic applications. As discussed in Chapter 1, Python
and Python programs will execute on a variety of platforms including the latest desk-
top, mobile, and even legacy systems. However, that does not mean you need to

-
16

CHAPTER 2 Setting up a Python Forensics Environment

develop your applications on one of those platforms. Instead you will most likely be
developing your applications on a Windows, Linux, or Mac platform that supports
the latest development tools.

One great thing about Python ... If you follow the rules, develop quality pro-
grams and make sure you consider cross-platform idiosyncrasies, no matter what
platform you choose for development, the resulting Python programs you create
should easily run on a variety of operating systems that have a properly installed
Python system.

The Python Shell

The Python Shell delivers an object-oriented, high-level programming language that
includes built-in data structures and an extensive Standard Library. Python employs
a simple easy to use syntax that virtually anyone can learn, provides support for third-
party modules and packages which encourages program code reuse and sharing, and
is supported on virtually all major platforms and can be freely distributed. What that
delivers to the digital investigator or forensic specialist is the ability to quickly
develop programs that will augment or even replace current tools and then immedi-
ately share them with the community. One of the other benefits of the interpreted
environment is the ability to experiment with the Standard Library, third-party mod-
ules, commands, functions, and packages without first developing a program. This
allows you to ensure that the commands, functions, and modules you are planning to
use provide the results and performance you are looking for. Since there are many
options and sources for these functions with more arriving on the scene every day, the
interpreter allows you to easily experiment before you commit to a final approach.

CHOOSING A PYTHON VERSION

As with any programming environment, many currently supported versions of
Python are available. However, two basic standards of Python exist today in versions
2.x and 3.x. The change from Python 2.x to 3.x has caused some difficulties in por-
tability, and programs and libraries written for 2.x require modification to work
within 3.x.

Some of the core Python functions have changed mainly due to full support of
Unicode in version 3.x. This not only affects programs but also affects previous mod-
ules that have been developed and have not yet been ported and or validated for
Python 3.x. Based on this conundrum, I have decided to develop the examples sup-
plied in this book to conform to the 2.x standard, giving us access to the broadest set
of third-party modules and compatibility across more platforms. The source code in
the book will be available online as well, whenever possible I will provide both a 2.x
and 3.x version of the source.

In addition, the 2.x class of Python has been proven, validated, and deployed in a
broad set of applications. Therefore, developing forensic or digital investigation

Installing Python on Windows 17

applications using the 2.x version provides us with a solid underpinning and broadest
deployment platform. Also, once 3.x becomes broadly embraced and the third-party
libraries become available and certified, we will have all the information necessary
to port and even enhance the applications in this book.

Now that we have selected a version to begin with, I will walk you through setting
up Python on a Windows desktop.

INSTALLING PYTHON ON WINDOWS

If you Google “Python Installation” you will get a little over 7 million page hits, as of
this writing. In my opinion, the best and safest place to obtain tested standard Python
installations is at www.python.org, which is the Python Programming Language
Official Web site [PYTHON], shown in Figure 2.1. At this page, I selected Python
version 2.7.5.

Next, I navigate to the download page and select the appropriate version for my
situation. In this case I am going to select:

Python 2.7.5 Windows x86 MSI installer 2.7.5 (sig)

This will download the Windows runtime environment (as shown in Figure 2.2).
Also shown is the hash of the download file allowing you to validate the download.

@ python

ABOUT Python Programming Language — Official Website

HEWS Python is a programming language that lets you work more quickly and integrate your systems more effectively.
DOCUMENTATION You can learn to use Python and see almost immediate gains in productivity and lower maintenance costs.
DOWNLOAD

8 Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and .NET virtual machines
COMMUNITY Python is free to use, even for commercial products, because of its OSl-approved open source license.

FOUNDATION

New to Python or choosing between Python 2 and Python 37 Read Python 2 or Python 3.
CORE DEVELOPMENT
Help The Python Software Foundation holds the intellectual property rights behind Python, underwrites the PyCon conference, and
Package Index funds many other prajects in the Python community
Quick Links (2.7.5)

Read more, -or- download Python now
» Documentation

» Windows Installer » EuroPython 2014/2015 Conference Team Call for Site Proposals

» Source Distribution The EuroPython Society announced the Call for Proposals for EuroPython, to collect proposals from teams volunteering to
Quick Links (3.3.2) organize the EuroPython conference in 2014-2015

» Documentation Published: Thu, 13 June 2013, 11:43 -0400

RINGE S » Python 3.2.5 and 3.3.2 have been released

» Source Distribution Python 3.2.5 and Python 3.3.2 regression fix releases have been released.
Python Jobe Published=Set TS TEY 2073288040100
Python Merchandise TPython 2.7.5 released

Python Wiki
Python Insider Blog
Python 2 or 3?

Pythgn 2 7 5 has been released

P‘.t.‘lgz.i Wed, 15 May 2013, 11:00 -0600
» PyORTO — rthaiey s due June 1st

o PyOhio (July 27-28, 2013, Columbus, OH, USA) has released its Call for Proposals, due June 1. See http://pyohio.org/call-

for-proposals/

FIGURE 2.1
The Python Programming Language Official Web site.

http://www.python.org
Figure 2.1

18

CHAPTER 2 Setting up a Python Forensics Environment

This is a production release. Please report any bugs you encounter
We currently support these formats for download:

* XZ compressed source tar ball (2.7.5) (sig)
« Gzipped source tar ball (2.7.5) (sig)

B7ipped source tar ball (2.7.5) (sig
. Wmdcgﬁxss MS! Installer (2.7.5) (sig)

Window-/ 86 MS! program database (2 Z&7(sig)
« Windows X868 HSHsTamer (2 7 5) [1] (sig)
+ Windows X86-64 program database (2.7.5) [1] (sig)

» Mac OS X 64-bit/32-bit x86-64/i386 Installer (2.7.5) for Mac OS X 10.6 and later [2] (sig). [You may need an updated TcUTk install to run IDLE or use Tkinter, see note
2 for instructions.]
« Mac OS X 32-bit i386/PPC Installer (2.7 5) for Mac OS X 10.3 and later (2] (sig).

The source tarballs are signed with Benjamin Peterson's key (fingerprint: 12EF 3DC3 8047 DA38 2018 ASB9 99CD EA9D A413 5B38). The Windows installer was
signed by Martin von Lowis" public key, which has a key id of 7TDODC8D2. The Mac installers were signed with Ned Deily's key, which has a key id of 6F5E1540. The
public keys are located on the download page.

MDS5 checksums and sizes of the released files:

b4£0laldObalb46b05cT: df
€334b666b7££2038c761d7b27ba699c1
SeeaB462£69ab1369d32£9cdcd6272ab
€632ba7c34b922e4485667e332096999

3afhb5 20
83£5d9ba639bd2e33d104df0ead6 93l
0006d6219160ce6abe711aT1c835ebb0
ead4f83ec7B233252e2687295193644a7
248ec7d77220ec6c770a23d£3cb537be

14492759
12147710
10252148
18236482
17556546
16617472
16228352
20395084
18978778

Python-2.7.5.tgz
Python-2.7.5.tar.bz2
Python-2.7.5.tar.xz
python-2.7.5-pdb. zip
b 7.5. pdb.zip
python-2.7.5.and64.msi

python-2.7.5.ms1 o
python-2.7.5-macosx10.3.dng
python-2.7.5-macosx10. 6.dng

[1] (1, 2) The binaries for AMDE4 will also work on processors that implement the Intel 84 architecture (formerly EM84T), i.e. the architecture that Microsoft calls x84,
and AMD called x86-64 before calling it AMDG4. They will not work on Intel lanium Processors (formerly 1A-64).

[2] (1, 2) There is important information about IDLE, Tkinter, and TclTk on Mac OS X here.
FIGURE 2.2
Downloading the Windows installer.

As you would expect, selecting this link presents you with a Windows
dialog box as shown in Figure 2.3, confirming that you wish to save the installation
file. Selecting OK will download the file and save it in your default download
directory.

Examining the contents of my download directory, you can see that I have actu-
ally downloaded both the latest 2.x and 3.x releases. I am now going to select and
execute the 2.7.5 Installer (Figure 2.4).

oo L ==

‘ You have chosen to open:

i3 python-2.7.5.msi
which is a: Windows Installer Package (15.5 MB)
from: http://python.org

Would you like to save this file?

SaviFiIe Cancel I

FIGURE 2.3
Windows download confirmation.

Figure 2.2
Figure 2.3

Installing Python on Windows 19

%d & » Chet » Downloads »

File Edit View Tools Help

Organize v Include in library v Share with = Slide show Burn New folder =« [ﬁ
ko * Name Dte Type Size Tags
4 Recently Changed . Download Archive File folder
| Public = 8 python-325 WindowsInstaller... 17,900 KB
B Desktop 15! python-275 Windows Installer ... 15,843 KB
& Downloads |
. Dropbox
%] Recent Places
& SkyDrive
4 Libraries = m L4
3 items
k4

Executing the Python 2.7.5 Installer.

Upon execution, the Installer prompts you to determine whether Python should be
installed for the current user or for all users on this machine. This is your choice of
course, but if you choose to install this for every user make sure they are trusted and
know the risks. The Python environment runs at a high privilege level and has access
to operating system functions that not everyone should necessarily need (Figure 2.5).

Python allows you to select where the environment will be installed. The default
location for Python 2.7.5 is C:\Python27, although you can specify another location
(Figure 2.6). You should make a note of this so you can inspect and reference the
directories and files stored there. This will be especially helpful later when you
are looking for certain libraries, modules, tools, and documentation.

I have decided to customize my installation slightly. I want to ensure that the
Python documentation is stored on my local hard drive so I can have access anytime.
Also, I do not expect to need the TCL/TK Graphical User Interface (GUI) module, so
I have selected this to only be installed when needed; this will reduce the size of the
installation. If you have no restriction on disk storage, including this with your install
is not an issue. We will be installing other easier to use GUI packages and modules
later in the book (Figures 2.7 and 2.8).

Next, Windows will display the typical User Account Control (UAC) to help you
stay in control of your computer by informing you when a program makes a change
that requires administrator-level permission (Figure 2.9). Windows will also verify
the digital signature of Python and display the name of the organization associated
with the certificate used to sign the installer. Selecting Yes will install Python and
allow the appropriate system changes to be made, provided that the user has admin-
istrative privilege. You might notice that this screenshot was taken with my iPhone
because during UAC acknowledgment Windows locks out all other program access
until either Yes or No is selected.

Figure 2.4

Select whether to install Python 2.7.5
for all users of this computer.

@ Install for all users
© Install just for me (not available on Windows Vista)

python

for

windows

[Back [Next>] [cancel |

FIGURE 2.5

Python Installation user selection.

Select Destination Directory

Please select a directory for the Python 2.7.5 files.

£ python27 - New

ﬁ

|C:\Python27\

windows

| <pgack |[Next> | [cancel |

FIGURE 2.6

Python Installation directory.

Figure 2.6
Figure 2.5

¥4 Python 2.7.5 Setu

Customize Python 2.7.5

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features will be installed.

Register Extensions
Tc/ Tk
S [=12d | Documentation

: = Will beinstalled on local hard drive

=8 Entire feature will be installed on local hard drive

= Feature will be installed when required

ByenbI Entire feature will be unavailable

X

pgt hOﬂ This feature requires 5865KB on your hard drive.
for

windows

[D'BkUsage] [Advanced] [< Back][Next > | [Cancel]

FIGURE 2.7

Python customization user manual.

Customize Python 2.7.5

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features wil be installed.

" & Will beinstalled on local hard drive
=38 Entire feature will be installed on local hard drive

1= [Feature will be installed when required

Thinter, IDLJ X Entire feature will be unavailable

pgthon This feature requires 36KB on your hard drive.
for

windows

| Disk Usage | [Advanced | [<Back | Next> | [cancel |

FIGURE 2.8
TCL/TK install when needed.

Figure 2.7
Figure 2.8

22

CHAPTER 2 Setting up a Python Forensics Environment

[ﬂ Program name: 1d785f.msi
Verified publisher: Python Software Foundation

File origin: Hard drive on this computer
(™) Show details % —
Chan: n these notifications r

FIGURE 2.9
Windows user account control.

Finally, Python has been installed and displays the successful completion of the
installation as shown in Figure 2.10.

We can now navigate to the C:\Python27 directory (or the path name you spec-
ified for Python installation) and examine the contents. As you can see in Figure 2.11,

14 Python 2.7.5 Setup M

Complete the Python 2.7.5 Installer

Special Windows thanks to:
Mark Hammond, without whose years of freely
shared Windows expertise, Python for Windows
would still be Python for DOS.

python

for

windows

Click the Finish button to exit the Installer.

FIGURE 2.10
Successful installation of Python 2.7.5.

Figure 2.9
Figure 2.10

Installing Python on Windows 23

% : » Computer » HP(C) » Python27 »
File Edit View Tools Help
Organize v j QOpen » Print Burn New folder =~ 0 @
%/ Recently Changed “ Name : Date modified Type Size
. Public 3
B Deskt J DLLs 6/ File folder
" Doc 6/ File folder
8 Downloads 5 5 z
J include 6/ 311:02 AM File folder
. Dropbox : ') "
= J Lib : 6 31106 AM File folder
15l Recent Places £ : 7 A -
libs 6/ 311:02 AM File folder
% SkyDrive 7
i Tools 2 File folder
) 2 UCENSE ot Text Document 0k8
9 Libraries
it Text Document 352KB
hon 310:43PM Application 26 KB
) Homegroup P 2 i s i
5/15/201310:43 PM Application 27KB
= 5/15/201310:41 PM Text Document 54 KB
i o Tl wa S/15/20131043PM Appl K8
!| wixpopen /15/201310:43 PM Application 9K
£ Hp (ca < il i
S README Date modified: 5/15/201310:41 PM Date created: 5/15/201310:41 PM
@v Text Document Size: 536 KB

FIGURE 2.11
Python directory snapshot.

there are folders that contain Docs, Lib, DLL, and Tools along with key files License,
News, and a Readme. Most importantly there are two application files Python and
pythonw. These are the Python executable files.

To utilize the Python interactive interpreter you would double click on Python. If
you have an existing Python program, and you do not want to display the interpreter
window you would execute pythonw along with the associated Python file to execute
(more on this later). For our immediate use, we will be using the Python application
file. For easy access you can add this application to your Windows Taskbar and you
will see the Python icon as highlighted in Figure 2.12.

By launching the Python Taskbar icon (clicking it), the Python Interactive win-
dow is displayed as shown in Figure 2.13. Your window will look a bit different from
mine, as [have set mine up to be black on white to provide easier book publication.
The title bar shows the directory the application was started from C:\Python27. The
initial text lists the version of Python in this case Python 2.7.5, the date of the build
and information regarding the processor, and Windows version in this case win32.
The next line provides some helpful commands such as license, credits, help, and the
copyright message. The next line starting with >> > is the Python prompt awaiting
instructions. The tradition here would be of course to test the installation by writing
the standard programming language Hello World program, which only takes a single

FIGURE 2.12
Windows taskbar with Python icon.

Figure 2.11
Figure 2.12

24

CHAPTER 2 Setting up a Python Forensics Environment

[@c\Pphonzrppthonere T mEE|
ython 2.7.5 (default, May 15 2013, 22:43: : 3 T
ype "help", "copyright", "credits" or "license" for more information.

p>>

<]] v 4

FIGURE 2.13
Python startup prompt and messages.

@ C:\Python27\python exs [_[o]x]
[Python 2.7.5 efault, May 15 2013, 22:43:36 MSC v.1500 32 on win3Z2 -
[Type "help", "copyright", "credits" or "license" for more information.

[[>>>

[»>> print("Hello world !™)

|He11o world !

|[>>>

I[>>> print("welcome to Python Forensics ... HASP free")
lwelcome to Python Forensics ... HASP free

L1 | o
FIGURE 2.14
Python Hello World.

line in Python as shown in Figure 2.14. I added a second print statement as well, pro-
moting the idea of open and free forensic software that can be developed in Python,
without the need for a HASP.

For those unfamiliar with a HASP (Hardware Against Software Piracy) (sometimes referred to
as a Dongle) this is a device that provides copy protection for certain software programs. With-
out the HASP inserted, the software will not operate, thus only allowing licensed users to uti-
lize the software on a single machine or network.

Now that we have at least verified that the Python interpreter is running and
accepting commands let us take a look at the commands, language structure, pack-
ages, and modules that are available.

PYTHON PACKAGES AND MODULES

Adding core functionality to an existing programming language is a standard part of
software development. As new methods and innovations are made, developers sup-
ply these functional building blocks as modules or packages. Within the Python net-
work, the majority of these modules and packages are free, with many including the
full source code, allowing you to enhance the behavior of the supplied modules and
to independently validate the code. Before we jump into adding third-party modules
to Python, we need to understand what comes standard out of the box or more

Figure 2.13
Figure 2.14

Python Packages and Modules 25

specifically what is included in the Python Standard Library. 1 think you will be
pleasantly surprised at the breadth of capability delivered as part of the Standard
Library along with the built-in language itself.

The Python Standard Library

Python’s Standard Library [Standard Library] is quite extensive and offers a broad
range of built-in capabilities. These built-in functions are written primarily in the C
programming language for both speed and abstraction. Since the Standard Library
layer is compatible across systems, interfacing with platform-specific APIs (applica-
tion programming interfaces) are abstracted or normalized for the Python programmer.

One of the fundamental operations that investigators perform is the generation of
one-way cryptographic hash values.

A one-way cryptographic hash is used to create a signature of an existing string of bytes regard-
less of length (typically referred to as a message digest). One-way hashes have four basic
characteristics: (1) A function that easily calculates and generates a message digest.
(2) Possessing the message digest value alone provides no clues as to the original message
or file. (3) It is infeasible (or computational difficult) to change the contents of the message or
file without changing the associated message digest. (4) It is infeasible to find two messages
or files that differ in content, but produce the same message digest. It should be noted that
attacks against known hash methods like MD5 and SHA-1 have been successful under certain
controlled situations.

The Python Standard Library contains a built-in module named hash11b that can
perform one-way cryptographic hashing. The following simple hashing example can
be executed on virtually any Python platform (Windows, Linux, Mac, i0OS, Windows
8 Phone, Android, etc.) and will produce the same result.

1

J#f Python forensics

Simple program to generate the SHA-256

one-way cryptographic hash of a given string

it Step 1
Instruct the interpreter to import the
J## Standard 1ibrary module hashlib

import hashlib

#print a message to the user

print

print(“Simple program to generate the SHA-256 Hash of the String *Python

forensics’”)
print

26 CHAPTER 2 Setting up a Python Forensics Environment

f##define astringwith the desired text
myString = “Python forensics”

create an object named hash which is of type sha256
hash = hashlib.sha256()

#utilize the update method of the hash object to generate the
SHA 256 hash of myString

hash.update(myString)

J#obtain the generated hex values of the SHA256 Hash
from the object
by utilizing the hexdigest method

hexSHA256 = hash.hexdigest()

#print out the result and utilize the upper method
toconvert all the hex characters to upper case

print(“SHA-256 Hash: “ + hexSHA256.upper())
print

print(“Processing completed”)

This simple example demonstrates how easy it is to access and utilize the
capabilities of the Python Standard Library, and how the same code runs on differ-
ent platforms and generates the correct SHA256 hash value (see Figures 2.15
and 2.16).

In Chapter 3, we will spend considerable time and focus on the application of
the one-way cryptographic hash algorithms for use in digital investigation and
forensics.

In the next section, we will take a deeper dive into the Python Standard Library

C:\Users\0\Desktop>python hashPrint.py

simple program to generate the SHA-256 Hash of the string Python Forensics
SHA-256 Hash: 7A0BDF5725E0E032349871C8409522C0BF6971975C63F3F8041E2522148B9CF3
Processing completed

C:\Users\0\Desktop>

FIGURE 2.15

Windows execution of hashPrint.py.

Figure 2.15

What is Included in the Standard Library? 27

chet@PythonForensics: ~/Desktop/Python Samples
chet@PythonForensics:~/Desktop/Python SamplesS python hashPrint.py

Simple program to generate the SHA-256 Hash of the String Python Forensics
SHA-256 Hash: 7AGBDFS5725E0E032349871C8409522COBF6971975C63F3F8041E2522148B9CF3

Processing completed
chet@PythonForensics:~/Desktop/Python Samples$ I

FIGURE 2.16
Ubuntu Linux execution of hashPrint.py.

WHAT IS INCLUDED IN THE STANDARD LIBRARY?

The Python Standard Library is broken down into broad categories: I will give you a
brief summary description of the contents of each category with special attention on
categories that I believe are unique or have forensic or digital investigation value.
They are:

Built-in functions

Built-in functions, as the name implies, are always available to the Python program-
mer and provide fundamental capabilities that are additive to the language itself.

hex() and bin()

One of the capabilities that forensic investigators often encounter is the need to
display variables in different bases; for example, from decimal (base 10), binary
(base 2), and hexadecimal, or hex (base 16). These display capabilities are part of
the built-in functions. The simple Python Shell session depicted in Figure 2.17 dem-
onstrates their behavior. In this example, we set the variable a equal to the decimal

| & C:\Python27\eython.exe HEE
Python 2.7.5 efault, May 15 2013, 22:43:.36 MSC v.1500 32 on win32 |-
Type "help", "copyright”, "credits" or "license" for more information.
P

>>> a = 27

>>>

>>> hex(a)

'Ox1b’

>
>>> bin(a)

'0b11011"

>>> v
< | v 2

FIGURE 2.17
Python Shell session using hex () and bin().

Figure 2.16
Figure 2.17

-
28

CHAPTER 2 Setting up a Python Forensics Environment

Iﬂcumhmmwmmmue [_ 1ol %]
[Python 2.7.5 efault, May 15 2013, 22:43:36
Type "help", "copyright", "credits" or "license" for more information.

>>>
>>> bin(b)
"Ob11111111"
>>>

[>>> str(b)
'2558"

>>>

<] r] 4
FIGURE 2.18

Python Shell session entering hex values.

number 27 (the default is a decimal number). We then execute the function hex(a), it
displays the value of a in hexadecimal form; note the use of Ox prefix to denote hex.
Utilizing the binary conversion function bin(a) renders the decimal value 27 as a
binary string of 1 s and O s, or 11011; note the use of the 0b prefix to denote binary.

As shown in Figure 2.18, you can perform the reverse by specifying a variable as
a hex number and then displaying the variable in binary or decimal form. Note that
the values stored in the variable a or b shown in these examples are simply integer
values, the function hex (), bin(), and str() simply render the variables in hexadec-
imal, binary, or decimal notation. In other words the variable does not change, just
the way we view it does.

range()

Another useful built-in function is range (). We often need to create a list of items,
and this built-in function can assist us in automatically creating such a list. Lists,
Tuples, and Dictionaries are quite powerful constructs in Python, and we will be
using each of these to solve challenge problems throughout the book. For now I
am just going to show you the basics.

I have executed a few examples using the Python Shell as shown in Figure 2.19.
The first one creates a list of the first 20 integers starting at zero. The second provides

@ C:\Python27\python.exe =101x]
Python 2.7.5 (defauTt, May 15 2013, 22:43:36) [MSC v.1500 32 bit (InteT)] on win3Z [-
Type "help", "copyright", "credits" or "license" for more information.

> >

>>> myList = range(20)

>>> print myList

[0, 1,2, 3, 4, 5, 6, T, 8,9, 30, 31, 12, 13, 34, 15, 16; 1T, 18, 19]
>>>

>> myList = range(4,22)

[>>> print myList

[4; 5.76; 7; 8,9, 10, 11, 32, 3,44, d5; i6; 17; 48 19; 20 2]
o>

>> myList = range(4,22,3)

>>> print myList

[4, 7, 10, 13, 16, 19]

o>

4] | v 4

FIGURE 2.19
Python Shell creating lists using the range () built-in Standard Library function.

Figure 2.18
Figure 2.19

What is Included in the Standard Library? 29

5 C:\Windows\aystem32\emd cxe M=

C:\Users\0\Desktop>python ipRange.py
192.168.0.0

192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.
192.168.
192.168.
192.168.
192.168.
192.168.
192.168.
192.168.
192.168.

CoO00O00O0O0000000OO00
-
5]

C:\Users\0\Desktop>_

FIGURE 2.20

ipRange execution.

a list of integers starting at 4 and ending at 22 (notice this list stops at 22 and does not
include it in the list). Finally, I create a list from 4 to 22 in steps of 3.

You will see later how using the range () function and /ists can be helpful in auto-
matically generating lists of useful values. For example, the program below gener-
ates a list that contains the first 20 host IP addresses for the class C address starting
with 192.168.0. You can see the program output in Figure 2.20.

j#define avariable toholda string representing the base address
baseAddress = “192.168.0.”

#next definea list of host addresses using the range

standard 1ibrary function (this will give us values of 1-19
hostAddresses = range(20)

j#definealist thatwill hold the result ip strings

##this startsout asasimple empty Tist

ipRange =[]

Toop through the host addresses since the 1ist hostAddresses

contains the integers from 0-19 and we can create

##a loop in Python that processes each of the 1ist elements

stored in hostAddresses, where i is the Toop counter value

for i in hostAddresses:

append the combined ip strings to the ipRange Tist

because ipRange is a 1ist object, the object has a set of
#attributes and methods. We are going to invoke the append method
each time through the 1oop and concatenate the base address
#stringwith the string value of the integer

Figure 2.20

30 CHAPTER 2 Setting up a Python Forensics Environment

ipRange.append(baseAddress+str(i))

i | | | | |__valueof the host address
| | | |__ function to convert int to str
1 | | |__Thestring “192.168.0”

i | |__The append method of the 1ist ipRange

1 |__The Tistobject ipRange

Once completed we want to print out the ip range Tist
herewe use the print function and instruct it toprint out
the ipRange 1ist object, I wanted to print out each of the
resulting ip address on a separate line, so I Tooped
through the ipRange 1ist object one entry at a time.
for ipAddr in ipRange:

print ipAddr

Other built-in functions

The following is the complete list of built-in functions taken from the Python Stan-
dard Library documentation. You can get more information on each of the functions
at the URL http://docs.python.org/2/library/functions.html

Built-in functions for Python version 2.x are given in Table 2.1.

I will be using a good number of these functions in Chapters 3—11, the Cookbook
sections.

Table 2.1 Python 2.7 built-in functions

abs() divmod() input() open() staticmethod)()
all() enumerate() int() ord() str()

any() eval() isinstance() pow() sum()
basestring() execfile() issubclass() print() super()

bin() file() iter() property() tuple()
bool() filter() len() range() type()
bytearray() float() list() raw_input() unichr()
callable() format() locals() reduce() unicode()
chr() frozenset() long() reload() vars()
classmethod|() getattr() map() repr() xrange()
cmp() globals() max() reversed() zip()
compile() hasattr() memoryview() round() __import__()
complex() hash() min() set() apply()
delattr() help() next() setattr() buffer()
dict() hex() object() slice() coerce()
dir() id() oct() sorted() intern()

http://docs.python.org/2/library/functions.html

What is Included in the Standard Library? 31

Built-in constants

There are several built-in constants within Python. Constants are different from vari-
ables in that constants, as the name implies, never change—while variables can take
on ever changing values.

The two most important built-in constants within Python are True and False,
which are Boolean values. Take a look at Figure 2.21, I have used the Python Shell
to define two variables false = 0 and true =1 (notice these are lower case). When
T use the built-in Python function type () to identify the variable type, you notice that
it returns the value of int (integer) for both true and false. However, when I use
type() on True and False (the built-in constants) it returns type bool (Boolean).

By the same token you can create variables a = True and b = False (as shown in
Figure 2.22) and check the type () and you see that they are of type bool. Do not get
too dependent on this, however, as Python is NOT a strongly typed language. In a
strongly typed language, a variable has a declared type that cannot change during the

. C:\Python27\python exe P[] £
Fython 2.7.5 (defauTlt, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] on win32 |-
Type "help", "copyright", "credits" or "Ticense" for more information.

>>>
>>> false = 0

>>> true = 1

> >

>>> type(false)

<type 'int'>

>>> type(true)

<type 'int'>

>

>>> type(True)

<type 'bool's>

>>> type(False)

<type 'bool’'>

>

>>> -
<] | Y 4

FIGURE 2.21
Built-in True and False constants.

< C:\Python27\python exe s [=])5
Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] on win32 fi
Type "help", "copyright", "credits" or "license" for more information.

5>

True
False

=>> a
>>> b
5>
>>> type(a)

<type 'bool'>

[>>>

>>> type{b%

<type 'bool's>

(>

>>> a = range(100, 400, 2)
>>> type(a

<type "Tist'>

>

<] | v 2
FIGURE 2.22
Python is not a strongly typed language.

Figure 2.22
Figure 2.21

32

CHAPTER 2 Setting up a Python Forensics Environment

life of the program. Python does not have this restriction; I could just as easily in the
very next statement declare a =range (100, 400, 2) and change the type of variable a
from a bool into a 1ist. To a hard core developer in a strongly typed language such
as Ada, C#, Java, or Pascal, this lack of structure would have them run for the hills,
however, with the proper discipline in naming objects we can control most of
the chaos.

When we develop our first real application in Chapter 3, I will cover some tips on
how to develop forensically sound programs using a weakly typed language.

A strongly typed language must define the variable or object along with the specific type. This
type must not change once declared and the compiler itself must enforce the typing rules, not
the programmer. For example, if a variable is declared as an integer, it would be illegal to
assign the value 3.14 to the variable.

Built-in types

Python has many built-in types that we can take advantage of in our forensic appli-

cations. For a detailed description of each of the standard built-in types, the most up-

to-date information is available at: http://docs.python.org/2/library/stdtypes.html
The basic categories include:

Numeric Types: int, float, Tong and complex

Sequence Types: 1ist, tuple, str, unicode, bytearray and buffer
Set Types: set and frozenset

Mapping Types: dict or dictionary

File Objects: file

Memory: MemoryView Type

We have already seen a few of these in action during the simple examples. We will be
extensively leveraging some of the more advanced types throughout our example
programs including: bytearray, 1ists,dictionaries, unicode, sets, frozensets,
and the MemoryView Type. All of these have very unique forensic applications.

Some of the bitwise operations that are included in Python are vital to many
forensic and examination operations. They are quite standard, but it is worth covering
to give you a flavor of what is available. Bitwise operations are exclusive to integer
data types of virtually any size. For the examples below the values of x and y are the
integers.

x | y: bitwise or of the variables x and y

x “y: bitwise exclusive or of variables x and y
x & y: bitwise and of variables x and y

x << n: variable x is shifted n bits left

x >> n: variable x is shifted n bits right

~x: the variable x bits are inverted

In Figure 2.23, I use the bitwise exclusive or operator ~which is used in many
one-way hash and cryptography operations. We start out by setting up our variables

http://docs.python.org/2/library/stdtypes.html

What is Included in the Standard Library? 33

| @ C:\Python27\pythan.exe [-[O]x]
[Python 2.7.5 efault, May 15 2013, 22:43:36 MSC v.1500 32 I
Type "help", "copyright", "credits" or "license" for more information.
>

>>> X=152

>>

[=>> y=103

>

>>> Z=XAY

(>>>

>>> print z

255

[>>>

[>>> print hex(z)
[loxff

|[>>>

[=>> print bin(z)
Ob11111111

>>> -

< | H

FIGURE 2.23
Apply an Exclusive OR (XOR)

x and y. We set x equal to 152 and y equal to 103—both decimal numbers. We then
set z equal to the exclusive or of x and y. We can then print out the decimal, hex, and
binary representations of the result.

As you can see exclusive or (XOR) differs from a simple OR operation. XOR

requires that each bit of the two numbers be evaluated and a one is returned if
and only if, only one of the bits is set to a one. For example:

Binary 101
Binary 001
Produces:100

The least significant bit of each binary value is 1, therefore it does not meet the exclu-
sivity test and the resulting value is 0.

Other more complex built-in types such as memory view types, byte arrays,
Tist, unicode, and dict provide building blocks to tackle difficult data carving,
search, indexing, and analytical analysis of the most complex digital evidence types
available. I will be leveraging those extensively as we move into the example
chapters.

Built-in exceptions

Most modern software languages support inline exception handling and Python is no
different. Exception handling in most applications is important, but within forensic
and digital investigation applications it is vital. When developing these applications
it is important that you can demonstrate that you have handled all the possible sit-
uations. When developing an application we all tend to test our code using “happy
mode testing.” Ronda Caracappa, one of the best software quality people I have ever
known, coined the phrase “happy mode testing” many years ago. This means that we
test the normal flow of our programs with all the inputs, events, and third-party

Figure 2.23

34

CHAPTER 2 Setting up a Python Forensics Environment

modules behaving exactly as we expect them to. The problem is they rarely, if ever
do just that.

To facilitate exception handling, Python uses the try/except model. Here is an
example: We setup our program to divide two numbers—in this case integer 27
divided by 0. If this were to happen while a program was running and we did not
setup to catch such errors, the program would fault and crash. However, by using
exception handling we can avoid trouble and handle the fault. In Chapter 3, our first
real program, we will encounter several real-life conditions where exception handing
is vital. And, with the help of Python’s built-in exception handling, we can deal with
the potential pitfalls with ease and use these exceptions to log any processing
difficulties.

X =27
y=20
try:
z=x/y
except:
print(“Divide by Zero”)

Note this is a simple example of using the try/except method to catch
execution-based exceptions, in a neat and tidy manner. Other examples dealing with
operating system, file handling, and network exceptions will be demonstrated during
the cookbook chapters.

File and directory access

The Python Standard Library provides a rich set of file and directory access services.
These services not only provide the expected ability to open, read, and write files but
they also include several very unique built-in capabilities; for example, common path
name manipulations. Operating systems and platforms handle directory paths differ-
ently (i.e., Windows uses the c:\users\. .. notation while Unix environments utilize
/etc/. .. notation), and some operating environments support simple ASCII file and
directory naming conventions, while others support full Unicode naming conven-
tions. All file and directory access functions need to support these differences
uniformly otherwise cross-platform operations would not be possible. In addition,
built into the Python Standard Library file are directory compare functions, auto-
matic creation of temporary directories and high-level file input handling which
makes dealing with file systems easier for both novice and pros.

Data compression and archiving

Instead of having to use third-party libraries to perform standard compression and
archiving functions like zip and far, these functions are built-in. This includes not
only compressing and decompressing archives but also includes extracting content
information for zip files. During investigation, we often encounter encrypted zip
files, and Python handles these as well (provided you either have the password or
you can of course apply dictionary or brute force attack methods).

What is Included in the Standard Library? 35

File formats

Also built into the Standard Library are modules to handle special file formats; for
example, comma separated value (CSV) files, the Hypertext Markup Language
(HTML), the eXtensible Markup Language (XML), and even the JavaScript Object
Notation (JSON) format. We will be using these modules in later chapters to carve
data from Web pages and other Internet content, and to create standardized XML
output files for generating reports.

Cryptographic services

We will make extensive use of the hash11ib cryptographic module to solve some basic
problems that face digital investigators in Chapter 3. The hash1ib module not only
directly supports legacy one-way cryptographic hashing such as MD5 but also directly
supports modern one-way hashing algorithms such as SHA-1, SHA256, and SHA512.
The ease of integration and use of these libraries along with the optimized performance
provides direct access to functions that are vital to digital investigation.

Operating system services

The operating systems (OS) services provide access to core OS functions that work
across platforms. In Figure 2.24 I utilize the os module to list the contents of current
working directory. The steps are pretty simple:

1. Import the os module

2. We use the os modules os.getcwd () method to retrieve the current working
directory path, in other words the path we are currently on

3. We store that value in the variable myCWD

[>>> dirContents = os.listdir(myCwD)
[>>>
|»>> for names in dirContents:

print names

loics

Tibs
LICENSE.txt
[NEWS . txt
python.exe
pythonw.exe
|README . txt
|Tools
w9xpopen.exe

FIGURE 2.24
Example using the os module from the Standard Library.

Figure 2.24

36

CHAPTER 2 Setting up a Python Forensics Environment

4. We then use the os.1istdir() method to obtain the names of the files and
directories in the current working directory

5. Instead of just printing out os.1istdir(), i.e., print(os.1istdir()) I decided
to store the results into a new list named dirContents

6. Ithen use dirContents to print out each name on a separate line by processing
through the list with a simple for loop

Having the files in a list enables us to process each of the files or directories based
upon our needs.

Other operating system services such as stream-based 1o, time, 1ogging, pars-
ing, and platform modules all provide easy access to operating system services.
Once again, on a cross-platform basis this is to easily handle Windows, Linux,
Mac, and numerous legacy systems.

Standard Library summary

This has been just a quick introduction and tour of only a few of the Standard Library
capabilities built directly into Python. There are many good references and complete
books dedicated to this subject for those that want to delve further. However, there
are also online resources available directly at Python.org, where you can find a pleth-
ora of tutorials, code examples, and support for every Standard Library data type,
module, attribute, and method. My goal here was just to give you a taste of what
you can do and how easy it is to use the Standard Library.

In the next section, I will introduce you to some of the third-party libraries that we
will be using and what they bring to the party.

THIRD-PARTY PACKAGES AND MODULES

As I mentioned earlier, many third-party packages and modules are available and I
will introduce each during the cookbook Chapters 3—11. However, I wanted to men-
tion a couple here to give you an idea why third-party modules are available and the
kind of capabilities that they bring to digital investigation.

The natural language toolkit [NLTK]

Today when performing investigations, e-discovery, or incident response, it is impor-
tant to determine what was communicated via e-mail, text message, written documents,
and other correspondence. We utilize crude tools and technologies today like simple
keyword and phrase searching and grep to discover and parse these communications.

Grep, which is short for global regular expression print, allows users to search text for the
occurrence of a defined regular expression. Regular expressions are composed of meta char-
acters and usually a sequence of text characters that represent a given pattern, which allow
the computer program to perform advanced or simple pattern matching.

http://Python.org

Integrated Development Environments 37

The problem is these technologies do not consider language or semantics, thus it
is easy to miss certain communications or maybe misunderstand them. The NLTK
modules provide an infrastructure to create real Natural Language programs and
build small or even large corpus.

A corpus is a collection of material which is most often written, but can be spoken material as
well. The material is digitally organized in such a way that it lends itself to the study of lin-
guistic structures which helps to understand meaning.

This gives us the ability to search, understand, and derive meaning. We will be
using NLTK in one of our Cookbook examples to help produce specific applications
to assist digital investigators. For example, we can use linguistics to help determine if
specific documents were likely to have been written by a specific person.

Twisted matrix [TWISTED]

In a world where everything is connected, our ability to collect and examine evidence
requires both a postmortem and a live investigation mindset. This implies that we
must have a reliable network library that provides an asynchronous and event-based
environment that is open source and written in Python. This includes TCP, UDP,
Web Services, Mail Services, Authentication, Secure Shell support, and quite a
bit more.

INTEGRATED DEVELOPMENT ENVIRONMENTS

As I mentioned at the outset of this chapter, one of the keys to success would be
the establishment of an IDE that would provide value, instill confidence, and cre-
ate efficiencies during the development process. In our case, we also want to
ensure that the quality of what we create will exceed the standards of evidence.
You have several options for an IDE—some of which are completely free—and
some which have a nominal cost of entry. I will reveal my choice at the end of the
section, but you can choose your own path, as in many ways this is like choosing
between Nike® or Adidas® and is mostly defined by what you like and are
comfortable with.

What are the options?

Actually, it may require a whole book to answer that question! Here is just a short list
of the available options: IDLE, PyCharm, PyDev, WingIDE, and pDev. I will narrow
my focus to just two—IDLE and WingIDE.

38

CHAPTER 2 Setting up a Python Forensics Environment

IDLE

IDLE specifically stands for Integrated Development Environment and the name was
chosen by Guido Van Russom the creator of Python. IDLE is written in Python and
has a nice set of features that can handle basic integrated development. It includes a
Python Shell to experiment with commands; it highlights source code and provides
cross-platform support. IDLE does support a debugger allowing users to set break-
points and step through code (Figure 2.25). However, it was not developed as a pro-
fessional development environment, but it does support users that are developing
simple applications, and students that are learning the language. Best thing is that
it is completely free. Please note, I am sure that there are many Python developers

hashPrint.py - /nome/chet/Desktop/Python Samples/hashPrint.py

File Edit Format Run | Options Windows Help

and utilize tl ipper method to make all the hex character
("SHA-256 H : " + hexSHA256.upper())

okl

Ln: 1|Col:
FIGURE 2.25

Python IDLE integrated development environment.

Figure 2.25

Integrated Development Environments

out there that use Python IDLE and will disagree with my statement about not con-
sidering it as a professional development environment, as I am sure many of you have
developed quite sophisticated applications with IDLE and I accept that. But I think
for developing digital investigation applications today, there are several other alter-
natives that have more advanced capabilities.

WingIDE

WingIDE on the other hand is not free (you can obtain a free version if you are a
student or unpaid open source developer), but does have a rich feature set that will
easily support the development of sophisticated Python Applications. WingIDE
comes in three flavors based on your intended use:

1. Free for students and unpaid open source developers

2. WingIDE Personal—As the name implies, limits some features

3. WingIDE Professional—For those wanting all the features and support, for
example, this version contains unit testing, direct interface with revision control
systems, advanced debugging and breakpoint settings, and pyLint integration.

pyLint is a Python source code analyzer that helps to identify poor coding practices, points out
potential bugs, and warns you about the likelihood of failure. It will also assign an overall grade
for your code to help you to keep improving.

You can see the layout I have chosen for WingIDE in Figure 2.26. The IDE is
configurable and resizable to allow you to customize the GUI. I have placed labels
in each of the major sections in order to cover them here.

Section A: In this section, we find the current local and global variables associated
with the current running program, since [have the program momentarily stopped at a
breakpoint. As you can see, the text box at the top indicates that module ipRange.py
is currently processing line 10. In the window it displays the variable baseAddress
currently containing the string “192.168.0.”

Section B: Displays the program output so far. The initial print statement has
successfully printed the string “Generating ip Range.” At the bottom of that window
you can see several other options; the currently selected option is “Debug 1/0O.”
Another quite useful option is the “Python Shell.” If this option is selected you
can execute, learn, or experiment with any of the Python functions or even write
a sequence of statements to try before you code (see Figure 2.27).

Section C: This window contains the project information. Due to the fact this is a
very simple project only containing a single file, ipRange.py, that is all that is dis-
played in that window. As we build more complex applications this window will help
you keep track of all the components of your program.

Section D: This window contains the source code of the current program, along
with debug settings. Notice that line 10 contains a dot where the breakpoint was set
and it is highlighted because the program reached that point and the breakpoint
stopped execution.

.
39

|
40 CHAPTER 2 Setting up a Python Forensics Environment

[Ble Gt Source Broect Debug Tooks Window Hep

DeER 2&H 46 8 BE2E® D Araen aEd BHEE

<module> . pRange.py, ine 10 - Dabug VO (i, stcout, e appears bekow - Qptions | £ | Project Demenstration wpe [fies /1 dirsl = Options
-] |3
C

Generating ip Range B

L
3
I
g
3
I
i

Excepticns | Search | Search inFiles | StacicData « | Debug G | Messages | Open Fies | Pythen Shell

Desktopliphange.py | SamplelipRange.py

print("Generating ip Range™) D

4
5

6 baseAddress = "192.168.0."

i minorAddress = range(20)

3 ipRange =[]

10#~ for i in minorAddress:

11 ipRange.append(baseAddress+str(i))

13 = for ipAddr in ipRange:
14 print ipAddr

FIGURE 2.26
Snapshot of WingIDE 4.1 Personal.

Commands execute without debug. Use arrow keys for history. - Options

Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500

32 bit (Intel)]
Type "help”, "copyright”, "credits" or "license” for more

information.

>>>

>>> a=32

>>>

>>> hex(a)
'0x20'

Debug I/O ‘ Messages ‘ Open Files| Python Shell

FIGURE 2.27
WingIDE Python Shell display.

Now that you have the general idea, let us actually step through this simple pro-
gram with WingIDE and watch the changes happen. In Figure 2.28 we step over
(T'used the [F6] key to do this, you could also select the option under the debug menu)
the code below and stop before executing the ipRange initialization.

baseAddress = “192.168.0.”
minorAddress = range(20)
ipRange =[]

Figure 2.26
Figure 2.27

Integrated Development Environments

‘ File Edit Source Project Debug Tools Window Help
D@ s»&hH 9@/ @ BEE® ~3 &~ @ vy @R @

<module> () ipRenge.py, lined [] Debug 10 (stdin, stdout, stden) oppears below - Qptions

Varizble Value
= locals <dict 01 dcBd20; len=6>

doc None

file “cA\Users\\0V\Desktop\The Future\\00 - I =

Generating ip Range

name ‘_main_'
baseAddress '192.168.0.
E hostAddress <list 01349558; len=20>
0 0

1
2
3
4
5
6

de e wN e

7

Exceptions | Search | Search in Files | Stack Dats = | Debug /0 | Messages | Open Files | Python Shell -

ipRange.py
@ = ® - x

assisted by the range functions and lists
print("Generating ip Range")
® baseAddress = "192.168.0."

hostAddress = range(20)
ipRange = []

=R RV I ~SRICR

9
10 = for i in hostAddress:
11 ipRange.append(baseAddress+str(i))
12
13 = for ipAddr in ipRange:

FIGURE 2.28
WinglIDE in action.

At this point we can examine the variable section top left (in Figure 2.28) and we
see that the variable baseAddress is equal to the string “192.168.0” and the variable
hostAddress is a list with length 20 and has values 0-19 as expected. We name this
variable hostAddress because in typical Class C address, the last dotted decimal
digit typically identifies the host. We consider naming conventions for variables,
functions, methods, and attributes as we get into the Cookbook chapters, but I am
sure you can already see the pattern.

Next, I am going to step over the initialization of the ipRange (again using [F6])
and also step into the “for loop” stopping before we execute the first i pRange.append
method. As you can see in Figure 2.29, the new variables i which equals 0, and is the
first hostAddress, and ipRange, which is currently an empty list, have now appeared.

Now I am going to step through each of the for loop items, 20 iterations in this
case and stop on the first print statement of the second loop. You notice in Figure 2.30
in the variable section, I have expanded the contents of the ipRange list and you see
the completed ipRange strings that now contain the added host addresses. All that is
left is to print out the ipRange array line by line.

This should give you a good overview of the capabilities of WingIDE and how to
use it to set breakpoints, step through the code, and examine variables. [will be using
this IDE throughout the rest of the book introducing advanced features as we go.

Figure 2.28

42

CHAPTER 2 Setting up a Python Forensics Environment

file Edit Source Project Debug Iools Window Help

DeoR@E *&h « ¢ B8 B EE® 2D a8 e s RS
<module>(): ipRange.py, line 11 3 Debug /O (stdin, stdout, stderr) appears below = Dptions
Variable Value * H H
Generating ip Range

B locals <dict 01 de8d20; len=8>

—doc__ None

file ‘c\\Users\\0\\Desktop\\The Future\\00 - |

_name__ ‘_main_"

baseAddress 192168.0.

hostAddress <list 0x1343558; len=20>

i 0 -

ipRange
I globaks <dict 0xl dcBd20; len=8>

doc None

file_ ‘eA\\Users\\0\\Desktoph\The Future\\00 - |

name ‘_main_"

baseAddress 192.168.0.

B bl drare P -
Exceptions | Search | Search in Files | Stack Dats ~ | Debug /O | Messages | Open Files | Python Shell -
ipRange.py
e © - x

5

6% baseAddress = "192.168.0."
7 hostAddress = range(20)
8 ipRange =11

9
10 = for i in hostAddress:
11 ipRange.append(baseAddress+str(i))
12
13 = for ipAddr in ipRange:
14 print ipAddr
15
16 3
FIGURE 2.29

Using WinglIDE to step through code.

One final feature that I use a great deal when writing code is auto-completion. In
Figure 2.31, I want to see what other methods and attributes are associated with the
list ipRange. We have seen what the append method does, but you might be wonder-
ing what else we can do. By simply adding a line of code, ipRange, and entering a dot
(aperiod), a list box automatically appears and displays all the attributes and methods
that are available for ipRange. Note that since ipRange is a list, these are actually the
attributes and methods that can be generally applied to any list. The dropdown you
see is only a partial list of methods and attributes. As you can see, I have scrolled
down to the sort method which would allow me to sort the list. The parameters that
I pass to the sort method will determine how the list will actually be sorted.

Up to this point we have focused on developing and debugging on a Windows
platform. In the next section, we will walk through an Ubuntu Linux installation
and quick session.

Python running on Ubuntu Linux

There are many investigation and forensic advantages to Linux-based tools. You can of
course achieve greater performance, safely mount a wide range of media and image
types, avoid the cost of the operating system, and have potentially greater flexibility.
So let us setup Python running on Ubuntu. It really is easier than you might think.

Figure 2.29

Integrated Development Environments

43

Elle Edit Source Project Debug Iools Window Help

DeoE@ *&sb 9B

file
name

n

ipRange.py

@ B

Exceptions | Search | Search in Files | Stack Data

<module>0: ipRange:py, line 14 [-]
Varisble Value
£ locals <dict 0 dcBe20; len=0>

doc None

"€\\Wsers\\0\\Desktop\\The Future\100 - |

main: \

baseAddress '1921680."
@ hostAddress <list 0x1349558; len=20>
i 19
 ipRange <list 0148288 len=20>
0 19216800
1 ‘19216801
2 19216802
3 19216803

103142 0 4'

8 ipRange =[]

EE®E ~D H 1@

Debug VO (stdin, stdout, stderr) appears below

Generating ip Range

Debug 10 | Messages | Open Files | Python Sheil |

9
10 = foriin hostAddress:
11 ipRange.append(baseAddress+str(i))
12
13 = for ipAddr in ipRange:
14 print ipAddr
15
16

E]

—
=

&

& & @

W

FIGURE 2.30

WingIDE examination of the completed list.

FIGURE 2.31

ipRange.py ™ |
@ @

8 ipRange =[]

&% __contains__

e delattr__

ﬁ e-;w-- delitem

9
10 = foriin hostAddress:
11 ipRange.append(baseAddress+str(i))
12 ipRange
115 ' B
. ‘mreverse
14 = for ipAc "
150 Dprinia T
16 e add
17 @ _ class__

&

WingIDE auto complete feature.

Figure 2.30
Figure 2.31

44

CHAPTER 2 Setting up a Python Forensics Environment

u bu n tu° Desktop Phone Tablet v Server Cloud Management Download Q

Download Ubuntu Desktop

You can choose between two options when you download Ubuntu For a desktop

C. Ubuntu 13.04 g you all the latest features, while Ubuntu 12.04 LTS comes

with extended support.

For extended support,
choose Ubuntu 12.04 LTS

s @ long-term support release. It has continuous

as well as guaranteed security and

Ubuntu 12.04 LTS

FIGURE 2.32
Ubuntu download Web page 12.04 LTS.

As of this writing, I would make the following strong recommendation on Ubuntu
installation and setup. In Figure 2.32 you see a screenshot from the Ubuntu download
page (http://www.ubuntu.com/download/desktop). Version 12.x LTS of Ubuntu is
your best bet. This version is available in either 32 or 64 bit and is verified to operate
on a wide range of standard desktop PCs. I am choosing version 12.x LTS because
this is the long-term support version of the OS. Ubuntu is promising to provide sup-
port and security updates for this version through April 2017, giving you a stable
well-tested platform for digital investigation and forensics.

As far as installing and running Python on the Ubuntu operating system, version
2.7.3 is already installed as part of the OS, thus installation of the base product is
done for you. If you are not sure about your specific installation, simply launch a
terminal window (as shown in Figure 2.33), and type Python at the prompt. If it
is installed properly you will see a similar message as the one shown.

If this does not produce the desired results, you should reinstall Ubuntu 12.x LTS
and this should repair the problem. (Make sure you backup your data before attempt-
ing any reinstall.)

If you have not used Linux in a while, or this is your first time installing Ubuntu,
you will find that the days of struggling to install a Linux OS are over. As the saying
goes “it is as easy as pie.” Once you have successfully installed the OS, the process of
adding new capabilities is straightforward. For example, if you intend to install an IDE
like WingIDE or IDLE in the Ubuntu environment, you can obtain the installers from
the Ubuntu Software Center. The Ubuntu software center can be contacted by clicking
on the taskbar item show in Figure 2.34, and searching for your desired application.

http://www.ubuntu.com/download/desktop
Figure 2.32

Integrated Development Environments 45

chet@PythonForensics: ~

chet@PythonForensics:~$
chet@PythonForensics:~$ python

Python 2.7.3 (default, Aug 1 2012, 05:16:07)
[GCC 4.6.3] on linux2

Type "help"”, "copyright", "credits" or "license" for more information.
>5>

FIGURE 2.33

Ubuntu terminal window Python command.

ByRelevance =

Python Integrated

Development Environment

DSaRABNae " PPD ENe!

FIGURE 2.34
Ubuntu software center.

Figure 2.33
Figure 2.34

46

CHAPTER 2 Setting up a Python Forensics Environment

hashenntpy | Help & Project: Default Project [0 fles /0 dirs] op
& ® v |k
. - F
t ng) 2
haxdigest () E
pEARt ("SHA-256 Hash: * + hexSHAZS6.upper()) B - i B
print H
prdnt ("Frocessing corploted®)
Breakponts | Exceptions | Search | Searchin Fles Stack Data Testing| = 4 DebugiC Debug Probe | Messages | Modules | 05 Commands | Python shell | watch g symbol: None.
<modules{) hashPrinty, lne 30 g Debug Y fskdin, stdost, stderr) appears below ~ Gptions oL Tytbon cook

56 Hash of the String

les hashprint py

<sha286 HASH object @ 0x89149005
‘Ta0bdfST25e06032345671c34095 2200bF63T1 975063731

Source Assiscant indentation | Call

eskeop/Pyehon sampleshashprint oy

<shaz56 HASH obyect @ 0x8914900>
hexsHAzS6 ‘Ta0bdrST25e08032345071¢94095 22000 R0 T1 97506 3F3]
mystring ‘Python Forensics’

FIGURE 2.35
WingIDE running on Ubuntu 12.04 LTS.

As you see, I have searched for Python and the Software Center displays all the
relevant applications and services for me. You notice the first item that I have circled
for you is the actual Python environment. The Ubuntu Software Center shows that
this application is already installed (notice the checkmark in front of the icon). Also,
you see that two different versions of the IDLE IDE are also listed one supporting
version 2.7 and the other supporting version 3.2.

I went ahead and installed the WingIDE environment for Ubuntu as this is the
environment I have chosen. You can see the screenshot in Figure 2.35 where
WingIDE is running under Ubuntu 12.04 LTS, with the same feature set and oper-
ation as the Windows version that you saw earlier in this chapter.

PYTHON ON MOBILE DEVICES

Progress is currently being made to port versions of Python to smart mobile devices
(i0S, Windows 8 Phones, and of course Android). The apps that have been created
have some limited functionality, but they are worth considering for experimentation
or learning. I will take a look at a couple of these in the next section.

i0S Python app

Python for iOS is the version that I find most stable and supported for iPad. In
Figure 2.36, you can see an image of the Python 2.7 Shell running on iOS, just

Figure 2.35

Python on Mobile Devices 47

FIGURE 2.36

Python Shell running on iOS.

printing out the similar Hello World message. The Shell and editor have some great
features that allow you to experiment with the Python language syntax and modules.

The capability is actually quite a bit better than this simple example. I imported
one of the earlier examples that performs a SHA256 Hash of a string. At the top of the
short program I added a couple of new methods, one contained in the Standard
Library module sys and one in the Standard Library module platform. 1 imported
the two modules and wrote the following code.

import sys

import platform

print(“Platform: “+sys.platform)
print(“Machine: “+platform.machine())

You can see the results of these new methods and the program in Figure 2.37. You
notice that Platform is defined as Darwin and the Machine is identified as an iPad
version 1. Correct in both cases. Darwin is the platform name specified by Apple
for Mac OS X and of course the machine is my old and still faithful iPad 1.

For those interested in checking out this iOS application from the Apple App
Store, Figure 2.38 is a screenshot from the Store with more details about Python
for iOS.

Figure 2.36

i) [setscriptargs

00001

import h
import
import platform

print ("
print

+sys.platform
plattorm.machine

256 Hash hexSHA256 .upper

FIGURE 2.37

hashTest

'.\\.\‘;

iOS implementation of HashPrint.

10 PM

Jonathan Hosmer

Python 2.7 for iOS

Python 2.7 for i0OS

Developer Page >

Tell a Friend »

Gift This App >
Description
Python 2.7 for IOS is a Python 2.7.3 environment for the iOS.
& Features &
= Interactive interpreter
= Separate tab for writing and testing script files... More ¥
Category: Productivity What's New in Version 1.5.4 ed Feb 22, 2013
Updated: Feb 22, 2013
Vorsion: 1.5.4 Fixed an issue with the keyboard symbols toolbar.
Size: 38.0MB
Languages: English, French, ... 5 "
e Fixed several Issues with creating/opening/loading/saving/closing/etc files in the Script Editor.
© 2012 Jonathan Hosmer
Fixed an issue that was causing an encoding error when importing the locale module.
Rated 4+
.
Requirements: |
Compatible with iPhone 3GS,
iPhone 4, IPhone 45, iPhone 5,
iPod touch {3rd generation), |
iPod touch {4th genaration), epliizmgl
iPod touch (5th generation) and = - o

iPad.
Requires i0S 5.0 or lator.

App Support

More by Jonathan Hosmer

B O sesopap

FIGURE 2.38

Apple App Store page regarding Python for iOS.

Figure 2.37
Figure 2.38

Python on Mobile Devices 49

Windows 8 phone

Finally, we can take a look at the Microsoft Windows 8 OS on a Nokia Lumia Phone.
Yes—Python on a Phone. I tried several applications from the Microsoft store before
I found one that worked pretty well. PyConsole (short for Python Console), shown
in the launcher menu in Figure 2.39, ran the sample hashPrint.py program
unchanged.

As we progress through the book, we will come back to these devices and others
to see how well the more advanced applications work on each of them.

When the app launches it brings up a simple Python Shell as shown in
Figure 2.40. I typed in a simple Hello Mobile World message, and you can see that
I ran the script. The result appears in the display windows at the bottom of the
screen.

Turning to the simple SHA256 hashing example shown in Figure 2.41, we see the
code and execution of the program producing the same results as the other platforms.

If you are interested in the Python Console Windows 8 Phone application,
Figure 2.42 depicts a screenshot from the Windows Store.

onsole@www.srplab.com

Python on a Windows Phone
#

i Office print("Hello mobile world")

® @ OneNote
=a People
Phone

|2 [Photos

& pvinons

, ™\
pythonconsole

Settings

Hello mobile world

wewer \Weather
FIGURE 2.39 FIGURE 2.40

Windows 8 Phone screenshot of PyConsole Python Console “Hello World” on a Windows
launching 8 Phone.

Figure 2.39
Figure 2.40

pythonconsole@www.srplab.com

#

Python Forensics

Simple program to generate the SHA-25
#

tell the interpreter to import the hashlib
import hashlib

print a message to the users

print

print("Simple program to generate the SH
print

create a string with the desired text
myString = "Python Forensics"

Simple program to generate the SHA-256 Hash of the

SHA-256 Hash: 7A0BDF5725E0E032349871C8409522C!

Processing completed

FIGURE 2.41

Windows 8 Phone HashPrint application execution.

PYTHONCONSOLE

details

pythonconsole

in collection

Size: 6 MB

The application is a python console for
windows phone 8 with basic python
modules. You can input python script and e

FIGURE 2.42

Python Console Windows App Store page.

Figure 2.41
Figure 2.42

Summary Questions 51

A VIRTUAL MACHINE

Today, we have virtual machines for everything from complete server infrastructures
to specialized applications, standardized development environments, databases,
client services, desktops, and more. For those who want a really quick start, I have
created a Ubuntu Python Environment that will be available in conjunction with the
publication of this book. The environment includes a standard Ubuntu install, all
the packages, modules, and Cookbook applications from Chapters 3 to 11. I have
also included any test data so you can start experimenting with the simplest or most
advanced digital investigation or forensic applications found within. You can access
the virtual machine by going to www.python-forensics.org.

CHAPTER REVIEW

In this chapter we took a very broad, and in some cases deep, look at setting up a
Python environment in the Microsoft Windows and Linux environment. We
reviewed where to download the latest Python environment from the official source
and walked through the steps of installing a Windows Python environment. We also
made specific recommendation on the Ubuntu version of choice that include Python
version 2.x already installed as part of the OS. We looked at the key differences
between Python 2.x and 3.x. We also pulled back the covers a bit on the Python Stan-
dard Library and dialed in on some of the key built-in functions, data types, and mod-
ules. We even developed a few example applications that exercised the Standard
Library and showed how a program written in Python could run without modification
on Windows, Linux, iOS, or on a Windows 8 phone. MacOS is also supported and
Python 2.x comes with the standard install of the latest versions.

We examined two specific third-party packages that address Natural Language
and network applications, respectively. We also examined some of the capabilities
that we will need included in an IDE, and took a step-by-step look at the features of
WingIDE and briefly covered the IDLE IDE. Finally, we experimented with the
Python Shell on all the computing platforms mentioned here.

SUMMARY QUESTIONS

1. What do you think would be the best Python development environment based on
the following circumstances?
a. A student looking to experiment with Python forensics
h. A developer that plans to build and distribute Python investigative solutions
€. A laboratory that processes actual cases, but needs specialized tools and
capabilities that do not exist within standard forensic tools

http://www.python-forensics.org

-
52

CHAPTER 2 Setting up a Python Forensics Environment

oo

What are some of the key features you would be looking for in an IDE if you are
creating and utilizing Python forensic applications on actual cases or during real
investigations?

What version of Ubuntu Linux would you choose for your platform of choice
and why?

How might you utilize mobile platforms like i0OS, Android, or Windows

8 devices for investigative purposes when a fully functional Python environment
is available for them?

What are some of the key considerations for choosing Python 2.x vs. 3.x today?
What third-party modules or package would assist in Natural Language
Processing?

. What third-party modules or packages would assist in creating asynchronous

network applications?

LOOKING AHEAD

We are now going to transition into the Cookbook chapters of the book, where in
each chapter we tackle a specific forensic or digital investigation challenge. We will
define the challenge, specify requirements, design an approach, code a solution, and
finally test and validate the solution.

As we go forward, I will be slowly introducing new language constructs, pack-

ages and modules, debugging methodologies, and good coding practices in each
chapter. So, I hope by this time you have setup your Python IDE and are ready to
get started.

Additional Resources

Python Programming Language—Official Website, Python.org. http://www.python.org.
The Python Standard Library. http://docs.python.org/2/library/.

The Natural Language Toolkit. nltk.org.

Twisted Network Programming for Python. http://twistedmatrix.com.

http://Python.org
http://www.python.org
http://docs.python.org/2/library/
http://nltk.org
http://twistedmatrix.com

CHAPTER

Our First Python
Forensics App

CHAPTER CONTENTS

INEFOAUCHION ... r e s e s s mn e e e e e e e n e e e e e mn e e nmnnnnan 54
Naming Conventions and Other Considerationsccccccveciiesscenrnincccssceeee s s s cmnnens 55
CONSEANTS it 55
Local Variable NAMEciiuuiiiiiii et 55
Global Variable Namecooviiiiiii e 55
FUNCTIONS NAME oo e e e e e 55
[0 0 =T Al A= 1= SN 55
170 L = PP 55
(012 S V- T4 1= PP 56
Our First Application “One-Way File System Hashing”ccccovioomnicinicnnccnnnceneenne 56
BaCKEIOUNA e e 56
One-way Hashing algorithms’ Basic CharacteristiCSc.ccvueeiieiiiieiineennnnnnn. 56
Popular Cryptographic Hash AIGOHTRMS?ccvuiiiiieiii e 57
What are the Tradeoffs Between One-Way Hashing Algorithms? 57
What are the Best-use Cases for One-Way Hashing Algorithms in Forensics? ...57
Fundamental ReqUIremMENtSuuiiiiii e 58
Design ConsSIAerationscciuieiieiiie e e e e e e e 59
Program SHUCKUIEceeu et a s 61
Main FUNCHION ivvuiiii e a e 62
ParseCommandLinNgoueuuuee e e 62
WalKPath FUNCHOM .v.iveieieeee ettt e et e e e aanes 63
HASHFIIE FUNCHON .vv.iveiee et e e e r e 63
CSVWIEL (ClASS) ..ot 63
F0 7= PP 63
WITEING THE COTE ...vvviiiieie ettt e aaaes 63
Code Walk-TRrOUZNcooviieiiiir it s 64
Examining Main—Code Walk-Throughccooiiiiiiiiiii e, 64
ParseCommandLing()couuiiiiiii e 66
ValiditingDirectoryWritablecooiiiiiiiii e 69
WalKPath .o 69
[=TS T = PN 71
(O g =Y 74
Full Code Listing PiSh.pY .ucvveiiiici e 75
Full Code Listing _PfiSh.pY .ocovvuiii e 76
Python Forensics 53

© 2014 Elsevier Inc. All rights reserved.

-
54

CHAPTER 3 Our First Python Forensics App

Results Presentation
Chapter Reviewcccccvveuneenn.
Summary Questionscc....
Looking Aheadccceereeerrrnnnns
Additional Resources

INTRODUCTION

In 1998, I authored a paper entitled “Using SmartCards and Digital Signatures to
Preserve Electronic Evidence” (Hosmer, 1998). The purpose of the paper was to
advance the early work of Gene Kim, creator of the original Tripwire technology
(Kim, 1993) as a graduate student at Purdue. I was interested in advancing the model
of using one-way hashing technologies to protect digital evidence, and specifically I
was applying the use of digital signatures bound to a SmartCard that provided two-
factor authenticity of the signing (Figure 3.1).

Years later I added trusted timestamps to the equation adding provenance, or
proof of the exact “when” of the signing.

Two-factor authentication combines a secure physical device such as a SmartCard with a
password that unlocks the capability of the card’s. This yields “something held” and “some-
thing known.” In order to perform applications like signing, you must be in possession of the
SmartCard and you must know the pin or password that unlocks the cards function.

Thus, my interest in applying one-way hashing methods, digital signature algo-
rithms, and other cryptographic technologies to the field of forensics has been a 15-
year journey ... so far. The application of these technologies to evidence preserva-
tion, evidence identification, authentication, access control decisions and network
protocols continues today. Thus I want to make sure that you have a firm understand-
ing of the underlying technologies and the many applications for digital investiga-
tion, and of course the use of Python forensics.

SPYRUS

FIGURE 3.1
Cryptographic SmartCard.

Figure 3.1

Naming Conventions and Other Considerations

55

Before I dive right in and start writing code, as promised I want to set up some

ground rules for using the Python programming language in forensic applications.

NAMING CONVENTIONS AND OTHER CONSIDERATIONS

During the development of Python forensics applications, I will define the rules and
naming conventions that are being used throughout the cookbook chapters in the
book. Part of this is to compensate for Python’s lack of the enforcement of strongly
typed variables and true constants. More importantly it is to define a style that will
make the programs more readable, and easier to follow, understand, and modify or

enhance.
Therefore, here are the naming conventions I will be using.

Constants

Rule: Uppercase with underscore separation
Example: HIGH_TEMPERATURE

Local variable name

Rule: Lowercase with bumpy caps (underscores are optional)
Example: currentTemperature

Global variabhle name

Rule: Prefix g/ lowercase with bumpy caps (underscores are optional)
Note: Globals should be contained to a single module
Example: gl_maximumRecordedTemperature

Functions name

Rule: Uppercase with bumpy caps (underscores optional) with active voice
Example: ConvertFarenheitToCentigrade(. . .)

Object name

Rule: Prefix ob_ lowercase with bumpy caps
Example: ob_myTempRecorder

Module

Rule: An underscore followed by lowercase with bumpy caps
Example: _tempRecorder

56

CHAPTER 3 Our First Python Forensics App

Class names

Rule: Prefix class_ then bumpy caps and keep brief
Example: class_TempSystem
You will see many of these naming conventions in action during this chapter.

OUR FIRST APPLICATION “ONE-WAY FILE SYSTEM
HASHING”

The objective for our first Python Forensic Application is as follows:

1. Build a useful application and tool for forensic investigators.

2. Develop several modules along the way that are reusable throughout the book
and for future applications.

3. Develop a solid methodology for building Python forensic applications.

4. Begin to introduce more advanced features of the language.

Background

Before we can build an application that performs one-way file system hashing I need
to better define one-way hashing. Many of you reading this are probably saying, “I
already know what a one-way hashing is, let’s move on.” However, this is such an
important underpinning for computer forensics it is worthy of a good definition, pos-
sibly even a better one that you currently have.

One-way hashing algorithms’ basic characteristics

1. The one-way hashing algorithm takes a stream of binary data as input; this could
be a password, a file, an image of a hard drive, an image of a solid state drive, a
network packet, 1’s and 0’s from a digital recording, or basically any continuous
digital input.

2. The algorithm produces a message digest which is a compact representation of
the binary data that was received as input.

3. It is infeasible to determine the binary input that generated the digest with only
the digest. In other words, it is not possible to reverse the process using the digest
to recover the stream of binary data that created it.

4. Tt is infeasible to create a new binary input that will generate a given message
digest.

5. Changing a single bit of the binary input data will generate a unique message
digest.

6. Finally, it is infeasible to find two unique arbitrary streams of binary data that
produce the same digest.

Our First Application “One-Way File System Hashing” 57

Table 3.1 Popular One-Way Hashing Algorithms
Length Related
Algorithm Creator (Bits) standard
MD5 Ronald Rivest 128 RFC 1321
SHA-1 NSA and published by NIST 160 FIPS Pub 180
SHA-2 NSA and published by NIST 224 FIPS Pub 180-2
256 FIPS Pub 180-3
384 FIPS PUB 180-4
512
RIPEMD-160 Hans Dobbertin 160 Open Academic
Community
SHA-3 Guido Bertoni, Joan Daemen, 224, 256, FIPS-180-5
Michaél Peeters, and Gilles Van 384, 512
Assche

Popular cryptographic hash algorithms?
There are a number of algorithms that produce message digests. Table 3.1 provides
background on some of the most popular algorithms.

What are the tradeoffs between one-way hashing algorithms?

The MD5 algorithm is still in use today, and for many applications the speed, con-
venience, and interoperability have made it the algorithm of choice. Due to attacks on
the MD5 algorithm and the increased likelihood of collisions, many organizations
are moving to SHA-2 (256 and 512 bits are the most popular sizes). Many organi-
zations have opted to skip SHA-1 as it suffers from some of the same weaknesses
as MD5.

Considerations for moving to SHA-3 are still in the future, and it will be a couple
of years before broader adoption is in play. SHA-3 is completely different and was
designed to be easier to implement in hardware to improve performance (speed
and power consumption) for use in embedded or handheld devices. We will see
how quickly the handheld devices’ manufacturers adopt this newly established
standard.

What are the best-use cases for one-way hashing algorithms in forensics?
Evidence preservation: When digital data are collected (for example, when imaging
a mechanical or solid state drive), the entire contents—in other words every bit
collected—are combined to create a unique one-way hashing value. Once completed
the recalculation of the one-way hashing can be accomplished. If the new calculation
matches the original, this can prove that the evidence has not been modified. This

58 CHAPTER 3 Our First Python Forensics App

assumes of course that the original calculated hash value has been safeguarded
against tampering since there is no held secret and the algorithms are available. Any-
one could recalculate a hash, therefore the chain of custody of digital evidence,
including the generated hash, must be maintained.

Search: One-way hashing values have been traditionally utilized to perform
searches of known file objects. For example, if law enforcement has a collection
of confirmed child-pornography files, the hashes could be calculated for each file.
Then any suspect system could be scanned for the presence of this contraband by
calculating the hash values of each file and comparing the resulting hashes to the
known list of contraband hash values (those resulting from the child-pornography
collection). If matches are found, then the files on the suspect system matching
the hash values would be examined further.

Black Listing: Like the search example, it is possible to create a list of known bad
hash files. These could represent contraband as with CP example, they could match
known malicious code or cyber weapon files or the hashes of classified or proprietary
documents. The discovery of hashes matching any of these Black Listed items would
provide investigators with key evidence.

White Listing: By creating a list of known good or benign hashes (operating sys-
tem or application executables, vendor supplied dynamic link libraries or known
trustworthy application download files), investigators can use the lists to filter out
files that they do not have to examine, because they were previously determined
as a good file. Using this methodology you can dramatically reduce the number
of files that require examination and then focus your attention on files that are not
in the known good hash list.

Change detection: One popular defense against malicious changes to websites,
routers, firewall configuration, and even operating system installations is to hash
a “known good” installation or configuration. Then periodically you can re-scan
the installation or configuration to ensure no files have changed. In addition, you
must of course make sure no files have been added or deleted from the “known
good” set.

Fundamental requirements

Now that we have a better understanding of one-way hashing and its uses, what are
the fundamental requirements of our one-way file system hash application?

When defining requirements for any program or application I want to define them
as succinctly as possible, and with little jargon, so anyone familiar with the domain
could understand them—even if they are not software developers. Also, each
requirement should have an identifier such that could be traced from definition,
through design, development, and validation. I like to give the designers and devel-
opers room to innovate, thus I try to focus on WHAT not HOW during requirements
definition (Table 3.2).

Our First Application “One-Way File System Hashing”

59

Table 3.2 Basic Requirements

Requirement Requirement

number name Short description

000 Overview The basic capability we are looking for is a forensic
application that walks the file system at a defined
starting point (for example, c:\ or /etc) and then
generates a one-way hashing value for every file
encountered

001 Portability The application shall support Windows and Linux

operating systems. As a general guideline,
validation will be performed on Windows 7,
Windows 8, and Ubuntu 12.04 LTS environments
002 Key functions In addition to the one-way hashing generation, the
application shall collect system metadata associated
with each file that is hashed. For example, file
attributes, file name, and file path at a minimum

003 Key results The application shall provide the results in a
standard output file format that offers flexibility
004 Algorithm The application shall provide a wide diversity when
selection specifying the one-way hashing algorithm(s) to be
used
005 Error handling The application must support error handling and

logging of all operations performed. This will
include a textual description and a timestamp

Design considerations

Now that I have defined the basic requirements for the application I need to factor in
the design considerations. First, I would like to leverage or utilize as many of the
built-in functions of the Python Standard Library as possible. Taking stock of the
core capabilities, I like to map the requirements definition to Modules and Functions
that I intend to use. This will then expose any new modules either from third party
modules or new modules that need to be developed (Table 3.3).

One of the important steps as a designer or at least one of the fun parts is to name
the program. I have decided to name this first program p-fish short for Python-file
system hashing.

Next, based on this review of Standard Library functions I must define what mod-
ules will be used in our first application:

argparse for user input

os for file system manipulation

hash1ib for one-way hashing

csv for result output (other optional outputs could be added later)
1ogging for event and error logging

Along with useful miscellaneous modules like time, sys, and stat

cupwnN~

60 CHAPTER 3 Our First Python Forensics App

Requirement

Result output
(003)

Table 3.3 Standard Library Mapping

Design considerations

User input Each of these requirements For this first program | have
(000, 003, needs input from the user to decided to use the command
004) accomplish the task. For line parameters to obtain input
example, 000 requires the user to from the user. Based on this
specify the starting directory path. design decision | can leverage
003 requires that the user specify the argparse Python Standard
a suitable output format. 004 Library module
requires us to allow the user to
specify the hash algorithm.
Details of the exception handling
or default settings need to be
defined (if allowed)
Walk the file This capability requires the The 0S Module from the
system program to traverse the directory Standard Library provides key
(000, 001) structure starting at a specific methods that provide the ability
starting point. Also, this must to walk the file system, 0S also
work on both Windows and Linux provides abstraction which will
platforms provide cross platform
Meta data This requires us to collect the compatibility. Finally, this module
collection directory path, filename, owner, contains cross platform
(003) modified/access/created times, capabilities that provide access
permissions] and attributes such to metadata associated with files
as read only, hidden, system or
archive
File hashing | must provide flexibility in the The Standard Library module
(000) Hashing algorithms that the users hash1ib provides the ability to

could select. | have decided to
support the most popular
algorithms such as MD5 and
several variations of SHA

To meet this requirement | must
be able to structure the program
output to support a format that
provides flexibility

Library selection

generate one-way hashing
values. The library supports
common hash algorithms such
as “mdb,” “shal,” “sha224,”
“sha256,” “sha384,” “shab12.”
This should provide a sufficient
set of selection for the user

The Standard Library offers
multiple options that | could
leverage. For example, the csv
module provides the ability to
create comma separated value
output, whereas the json
module (Java Object Notation)
provides encoder and decoders
for JSON objects and finally the
XML module could be leveraged
to create XML output

Continued

Our First Application “One-Way File System Hashing”

61

Requirement

Logging and
error handling

Table 3.3 Standard Library Mapping—cont’d

Design considerations

I must expect that errors will occur
during our walk of the file system,
for example | might not have
access to certain files, or certain
files may be orphaned, or certain
files maybe locked by the
operating system or other
applications. | need to handle
these error conditions and log any
notable events. For example, |
should log information about the
investigator, location, date and
time, and information that
pertains to the system that are
walked

Library selection

The Python Standard Library
includes a 10gging facility
which | can leverage to report
any events or errors that occur
during processing

Program structure
Next, I need to define the structure of our program, in other words how I intend to put
the pieces together. This is critical, especially if our goal is to reuse components of
this program in future applications. One way to compose the components is with a
couple simple diagrams as shown in Figures 3.2 and 3.3.

0

Program\ Arguments

FIGURE 3.2

p-fish context diagram

p-fish
Report

Event
and
Error Log

]

Context diagram: Python-file system hashing (p-fish).

Figure 3.2

62

CHAPTER 3 Our First Python Forensics App

ReportName

Program
Arguments

Generate
Report

rootPath
hashType
reportName

P-fish
Report

hashType

resultRecords

eventValue

Event
and

logName Error Log

p-fish internal structure

FIGURE 3.3
p-fish internal structure.

The context diagram is very straightforward and simply depicts the major inputs
and outputs of the proposed program. A user specifies the program arguments, p-fish
takes those inputs and processes (hashes, extracts metadata, etc.) the file system pro-
duces a report and any notable events or errors to the “p-fish report” and the “p-fish
event and error log” files respectively.

Turning to the internal structure I have broken the program down into five major
components. The Main program, ParseCommandLine function, WalkPath function,
HashFile functions, CSVWriter class and logger (note logger is actually the Python
logger module), that is utilized by the major functions of pfish. I briefly describe the
operation of each below and during the code walk through section a more detailed
line by line explanation of how each function operates is provided.

Main function

The purpose of the Main function is to control the overall flow of this program. For
example, within Main I set up the Python logger, I display startup and completion
messages, and keep track of the time. In addition, Main invokes the command line
parser and then launches the Wa1kPath function. Once Wa1kPath completes Main will
log the completion and display termination messages to the user and the log.

ParseCommandlLine

In order to provide smooth operation of p-fish, I leverage parseCommandLine to not
only parse but also validate the user input. Once completed, information that is ger-
mane to program functions such as WalkPath, HashFile, and CSVWrite is available
from parser-generated values. For example, since the hashType is specified by the
user, this value must be available to HashFile. Likewise the CSVWriter needs the
path where the resulting pfish report will be written, and Wa1kPath requires the start-
ing or rootPath to start the walk.

Figure 3.3

Our First Application “One-Way File System Hashing” 63

WalkPath function

The Wa1kPath function must start at the root of the directory tree or path and traverse
every directory and file. For each valid file encountered it will call the HashFile
function to perform the one-way hashing operations. Once all the files have been
processed WalkPath will return control back to Main with the number of files suc-
cessfully processed.

HashFile function

The HashFi1e function will open, read, hash, and obtain metadata regarding the file
in question. For each file, a row of data will be sent to the CSVWriter to be included in
the p-fish report. Once the file has been processed, HashFi1e will return control back
to WalkPath in order to fetch the next file.

CSVWriter (class)

In order to provide an introduction to class and object usage I decided to create
CSVWriter as a class instead of a simple function. You will see more of this in
upcoming cookbook chapters but CSVWriter sets up nicely for a class/object dem-
onstration. The csv module within the Python Standard Library requires that the
“writer” be initialized. For example, I want the resulting csv file to have a header
row made up of a static set of columns. Then subsequent calls to writer will contain
data that fills in each row. Finally, once the program has processed all the files the
resulting csv report must be closed. Note that as I walk through the program code you
may wonder why I did not leverage classes and objects more for this program. I cer-
tainly could have, but felt for the first application I would create a more function-
oriented example.

Logger

The built-in Standard Library logger provides us with the ability to write messages to
a log file associated with p-fish. The program can write information messages, warn-
ing messages, and error messages. Since this is intended to be a forensic application,
logging operations of the program is vital. You can expand the program to log addi-
tional events in the code, they can be added to any of the _pfish functions.

Writing the code
I decided to create two files, mainly to show you how to create your own Python
module and also to give you some background on how to separate capabilities.
For this first simple application, I created (1) pfish.py and (2) _pfish.py. As you
may recall, all modules that are created begin with an underscore and since
_pfish.py contains all the support functions for pfish I simply named it _pfish.py.
If you would like to split out the modules to better separate the functions you could
create separate modules for the HashFi1e function, the WalkPath function, etc. This
is a decision that is typically based on how tightly or loosely coupled the functions
are, or better stated, whether you wish to reuse individual functions later that need to
standalone. If that is the case, then you should separate them out.

In Figure 3.4 you can see my IDE setup for the project pfish. You notice the pro-
ject section to the far upper right that specifies the files associated with the project. I
also have both files open—you can see the two tabs far left about half way down

64 CHAPTER 3 Our First Python Forensics App

[&5 phish py p-fshaspn Wing TDE alE| =
[e £ Sourcs Dicsser Doty Tovle Windows ol
DoE@ xBE 9 ¢ § B ®mM® eg)00 vy BEE®
<medule>0: plshgy. line 31 =] Debug 0 [stdin, s, e sppears befows - Optien: Project pfahupr 20/ 1din] = Options
e Command line processed: Successfully 3
<dict Ol edicl en=10> p
Wecome to p-fish ... version 1.0 3
\DesitopThe Futuret &
1534 H
L e c00; lan=10~ =
o
(\Desktop|| The Fusuret it
smsn
| . e
;&(zplmm Search | Search in Files | Stack Data ~ | Dabug /0 | Messages | Open Files | Pythen Shel
(etabey _stahm]).
|e ® P
24 # Record the Welcome Message
25 logging.info()
26 logging.info('Welcome to p-fish version 1.0 ... New Scan Started’)
27 logging.info(*)
28 pfish.DisplayMessage{"Wecome to p-fish ... version 1.0")
29
30 # Record some information regarding the system
3 logging.info('System: '+ sys.platform)
32 logging.info('Version: '+ sys.version)
2R}
34 # Traverse the file system directories and hash the files
35 filesProcessed = _pfish.WalkPath()
36
37 # Record the end time and calculate the duration

p-fish WingIDE setup.

where I can view the source code in each of the files. As you would expect in the
upper left quadrant, you can see the program is running and the variables are avail-
able for inspection. Finally, in the upper center portion of the screen you can see the
current display messages from the program reporting that the command line was pro-
cessed successfully and the welcome message for pfish.

CODE WALK-THROUGH

I will be inserting dialog as I discuss each code section. The code walk-through will
give you an in-depth look at all the code associated with the program. I will be first
walking through each of the key functions and then will provide you with a complete
listing of both files.

Examining main—code walk-through

The embedded commentary is represented in italics, while the code itself is repre-
sented in a fixed-sized font.

#p-fish : Python File SystemHash Program
Author: C. Hosmer

#Jduly 2013

#Versionl.0

1

Figure 3.4

Code Walk-Through

The main program code is quite straightforward. At the top as you would
expect, you see the import statements that make the Python Standard Library mod-
ules available for our use. What you have not seen before is the import statement
referencing our own module in this case _pfish. Since I will be calling functions
from Main that exist in our module, the module must import our own module
_pfish.

import logging # Python Library 1ogging functions

import time # Python Library time manipulation functions
import sys # Python Library system specific parameters

import _pfish # _pfish Support Function Module

if__name__=="'_main__":
PFISH_VERSION ='1.0"
Turn on Logging

Next, you can see my initialization of the Python logging system. In this example |
have hard-wired the log to be stored in the file aptly named pFishLog.log. I set the
logging level to DEGUG and specified that [wanted the Time and Date recorded
for each log event. By setting the level to DEBUG (which is the lowest level) this
will ensure all messages sent to the logger will be visible.

logging.basicConfig(filename='pFishLog.log',level=1o0gging.
DEBUG, format='%(asctime)s %(message)s')

Next, I pass control to process the command line arguments by calling the _pfish.
ParseCommandLine() function. I must prefix the function with _pfish, since
the function exists in the _pfish module. If the parse is successful, the function
will return here, if not, it will post a message to the user and exit the program.
I will take a deeper look at the operation of ParseCommandLine() in the next
section.

J# Process the Command Line Arguments
_pfish.ParseCommandLine()

I need to record the current starting time of the application in order to calculate
elapsed time for processing. I use the Standard Library function time.time() to
acquire the time elapsed in seconds since the epoch. Note, forensically this is the
time of the system we are running on, therefore if the time is a critical element in
your investigation you should sync your system clock accordingly.

Record the Starting Time
startTime = time.time()

Next the program posts a message to the log reporting the start of the scan and
display this on the user screen only if the verbose option was selected on the com-
mand line (more about this when I examine the ParseCommandline function).
Notice that I used a CONSTANT to hold the version number instead of just embed-
ding a magic number. Now we can just modify the CONSTANT in the future. Then
anywhere PFISH_VERSION is used it will display the proper version number. I also
logged the system platform and version in case there is a question in the future

65

66 CHAPTER 3 Our First Python Forensics App

about the system that was used to process these data. This would be a great place
to add information about the organization, investigator name, case number, and
other information that is relevant to the case.

Post the Start Scan Message to the Log
logging.info('Welcome to p-fish version1.0... New Scan Started")
_pfish.DisplayMessage('Welcome to p-fish...version1.0")

Note, since I created a constant PFISH VERSION, we could use that to make the
source code easier to maintain. That would look something like:

_pfish.DisplayMessage(‘Welcome to p-fish ... ‘+ PFISH VERSION)

Record some information regarding the system
lTogging.info('System: '+ sys.platform)
logging.info('Version: '+ sys.version)

Now the main program launches the WalkPath function within the _pfish mod-
ule that will traverse the directory structure starting at the predefined root path.
This function returns the number of files that were successfully processed by
WalkPath and HashFile. As you can see I use this value along with the ending
time to finalize the log entries. By subtracting the startTime from the endTime
I can determine the number of seconds it took to perform the file system hashing
operations. You could convert the seconds into days, hours, minutes, and seconds
of course.

Traverse the file systemdirectories and hash the files
filesProcessed = _pfish.WalkPath()

Record the end time and calculate the duration
endTime = time.time()
duration =endTime - startTime

logging.info('Files Processed: '+ str(filesProcessed))
logging.info('Elapsed Time: '+ str(duration) +'seconds")

Togging.info('Program Terminated Normally')

_pfish.DisplayMessage("ProgramEtnd)"

ParseCommandLine()

In the design section I made a couple of decisions that drove the development:

1. T decided that this first application would be a command line program.

2. Idecided to provide several options to the user to manipulate the behavior of the

program. This has driven the design and implementation of the command line
options.

Based on this I provided the following command line options to the program.

Code Walk-Through

67

specify the starting or root path for
the walk

reportPath, this allows the user to
specify the directory where the
resulting .csv file will be written

Option Description Notes
-V Verbose, if this option is specified then

any calls to the DisplayMessage()

function will be displayed to the

standard output device, otherwise the

program will run silently
--MD5 Hash type selection, the user must The selection is mutually exclusive
--SHA256 specify the one-way hashing and at least one must be selected
--SHA512 algorithm that would be utilized or the program will abort
-d rootPath, this allows the user to The directory must exist and must

be readable or the program will
abort

The directory must exist and must
be writable or the program will
abort

Even though at first some of these requirements might seem difficult, the arg-
parse Standard Library provides great flexibility in handling them. This allows us
to catch any possible user errors prior to program execution and also provides us with
a way to report problems to the user to handle the exceptions.

def ParseCommandLine():

The majority of the process of using argparse is knowing how to setup the parser.
If you set the parser up correctly it will do all the hard work for you. I start by
creating a new parser named “parser” and simply give it a description. Next, |
add a new argument in this case —v or verbose. The option is —v and the resulting
variable that is used is verbose. The help message associated with the argument
is used by the help system to inform the user on how to use pfish. The —h option is
built-in and requires no definition.

parser = argparse.ArgumentParser('Python file system hashing ..
p-fish")

parser.add_argument('-v'
be displayed', action='store_true')

The next section defines a mutually exclusive group of arguments for selecting the
specific hash type the user would like to generate. If you wanted to add in another
option, for example sha384, you would simply add another argument to the group
and follow the same format. Since I specified under the add_mutually exclusi-
ve_group the option required=True, argparse will make sure that the user
has only specified one argument and at least one.

#setupagroupwheretheselectionismutuallyexclusived##andrequired.

group = parser.add_mutually_exclusive_group(required=True)

group.add_argument('--md5',help ='specifies MD5 algorithm’,
action='store_true")

,'--verbose'help="'allows progress messages to

68 CHAPTER 3 Our First Python Forensics App

group.add_argument('--sha256', help ='specifies SHA256
algorithm', action='store_true')

group.add_argument('--shab12', help ='specifies SHA512
algorithm', action='store_true")

Next I need to specify the starting point of our walk, and where the report should be
created. This works the same as the previous setup, except I have added the type
option. This requires argparse to validate the type I have specified. In the case of
the —d option, I want to make sure that the rootPath exists and is readable. For
the reportPath, it must exist and be writable. Since argparse does not have built-
in functions to validate a directory, I created the functions ValidateDirectory()
and ValidateDirectoryWritable(). They are almost identical and they use
Standard Library operating system functions to validate the directories as defined.

parser.add_argument('-d', '--rootPath’, type=
ValidateDirectory, required=True, help="specify the root
path for hashing)"

parser.add_argument('-r', '--reportPath’, type=
ValidateDirectoryWritable, required=True, help="specify the
path for reports and Togs will bewritten)"

ffcreate a global object to hold the validated arguments,
f#4 thesewill be available then toall the Functions
within# the _pfish.py module

global gl_args
global gl_hashType

Now the parser can be invoked. I want to store the resulting arguments (once val-
idated) in a global variable so they can be accessible by the functions within the
_pfish module. This would be a great opportunity to create a class to handle this
which would avoid the use of the global variables. This is done in Chapter 4.

gl_args =parser.parse_args()

If the parser was successful (in other words argparse validated the command line
parameters), [want to determine which hashing algorithm the user selected. I do
that by examining each value associated with the hash types. If the user selected
sha256 for example, the g1_args.sha256 would be True and mdS and sha512
would be false. Therefore, by using a simple iflelif language routine I can deter-
mine which was selected.

ifgl_args.md5:
gl_hashType ='MD5'
elif gl_args.sha256:
gl_hashType ='SHA256'
elif gl_args.shabl?2:
gl_hashType ='SHA512'
else:
gl_hashType = "Unknown"

Code Walk-Through 69

logging.error('Unknown Hash Type Specified")

DisplayMessage("Command 1ine processed: Successfully)"
return

ValiditingDirectoryWritable

As mentioned above, I needed to create functions to validate the directories provided
by the users for both the report and starting or root path of the Walk. I accomplish this
by leveraging the Python Standard Library module os. I leverage both the os.path.
isdir and os.access methods associated with this module.

def ValidateDirectoryWritable(theDir):

I first check to see if in fact the directory string that the user provided exists. If the
test fails then I raise an error within argparse and provide the message “Direc-
tory does not exist.” This message would be provided to the user if the test fails.

#Validate the path is a directory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('‘Directory does not
exist'")
Next I validate that write privilege is authorized to the directory and once again if
the test fails I raise an exception and provide a message.

#Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raiseargparse.ArgumentTypeError('‘Directoryisnotwritable')

Now that I have completed the implementation of the ParseCommandLine func-
tion, let us examine a few examples of how the function rejects improper command
line arguments. In Figure 3.5, I created four improperly formed command lines:

(1) T mistyped the root directory as TEST_DIR instead of simply TESTDIR
(2) T mistyped the —sha512 parameter as —sha521

(3) I specified two hash types —sha512 and —md5

(4) Finally, I did not specify any hash type

As you can see in each case, ParseCommandLine rejected the command.

In order to get the user back on track they simply have to utilize the —h or help
option as shown in Figure 3.6 to obtain the proper command line argument
instructions.

WalkPath

Now let us walk through the Wa1lkPath function that will traverse the directory struc-
ture, and for each file will call the HashFi1e function. I think you will be pleasantly
surprised how simple this is.

70

CHAPTER 3 Our First Python Forensics App

(mmcaw | e
c:\p-f15h>ﬁython pfish.py --sha512 -d "c:\\p-TiSh\\TEST_DIR\\" -r "c:\\p-fish\\" -
usage: Python file system hashing .. p-fish [-h] [-v
(--md5S [--sha256 | --shaS12) -d
ROOTPATH -r REPORTPATH
Python file system hashing .. p-fish: error: argument -d/--rootPath: Directory does not exist
c:\p-fish>
C:\p-fish>python pfish.py --shas21 -d “c: \\D-f1sh\\TESTDIR\\“ -r "c:\\p-fish\\" -
usage: Python file system hashing .. p-fish [-h] v]
(--mdS | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH
\Python file system hashing .. p-fish: error: one of the arguments --md5 --sha255 --shaSlZ is required
C:\p-fish>
C:\p-fish>python pfish.py --sha5l2 --md5 -d "c:\\p-Fish\\TESTDIR\\" -r "c:\\p-fish\\" -
usage: Python file system hashing .. p-fish [-h] [-v]
(--md5 | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH
Python file system hashing .. p-fish: error: argument --md5: not allowed with argument --shas12

C:\p-fish>
C:\p-fish>python pfish.py -d "c: \\P Fish\\TESTDIR\\" -r "c:\\p-Fish\\" -
usage: Python file system hashing .. p-fish [-h] [-v]
(--md5 | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH
lpython file system hashing .. p-fish: error: one of the arguments --mds --sha256 --shasiz is requ1red

C:\p-fish>_

‘ I

FIGURE 3.5

Demonstration of ParseCommandLine.

Lﬂmmmysumz\;mm P — — — =t
c:\p—f1sh>ﬁython pfish.py -h

usage: Python file system hashing .. p-fish [-h] [-v]

(--md5 | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH

optional aqguments:

-h, --help show this help message and exit
-v, --verbose allows progress messa?es to be displayed
--md§ specifies MD5 algorithm
--shaz56 specifies SHA256 algorithm
--shaS12 specifies SHA512 algorithm
-d ROOTPATH, --rootPath ROOTPATH
specify the root path for hashing
-r REPORTPATH, --reportPath REPORTPATH
specify the path for reports and logs will be written
C:\p-fish>_
‘ m
FIGURE 3.6

pfish -h command.

def WalkPath():

1 first initialize the variable processCount in order to count the number of suc-
cessfully processed files and I post a message to the log file to document the root
path value.

processCount =0
errorCount =0

log.info('Root Path: '+ gl_args.rootPath)

Figure 3.6
Figure 3.5

Code Walk-Through

Next I initialize the CSVWriter with the reportPath provided on the command
line by the user. I also provide the hashType selected by the user so it can be
included in the Header line of the CSV file. I will cover the CSVWriter class later
in this chapter.

oCVS = _CSVWriter(gl_args.reportPath+'fileSystemReport.csv',
gl_hashType)

#Create a Toop that process all the files starting
##at the rootPath, all sub-directorieswill also be
processed

Next I create a loop using the os .walk method and the rootpath specified by the
user. This will create a list of file names that is processed in the next loop. This is
done for each directory found within the path.

for root, dirs, files inos.walk(gl_args.rootPath):

J for each file obtain the filename and call the
HashFile Function

The next loop processes each file in the list of files and calls the function HashFile
with the file name joined with the path, along with the simple file name for use by
HashFile. The call also passes HashFile with access to the CVS writer so that
the results of the hashing operations can be written to the CVS file.

for filein files:
fname = os.path.join(root, file)
result =HashFile(fname, file, oCVS)

if successful then increment ProcessCount
The process and error counts are incremented accordingly

if resultis True:

processCount +=1
#ifnot successful, the increment the ErrorCount
else:

errorCount +=1

Once all the directories and files have been processed the CVSWriter is closed
and the function returns to the main program with the number of successfully pro-
cessed files.

oCVS.writerClose()
return(processCount)

HashFile

Below is the code for the HashFi1e function, it is clearly the longest for this program,

but also quite simple and straightforward. Let us walk through the process.

def HashFile(theFile, simpleName, o_result):

71

72 CHAPTER 3 Our First Python Forensics App

For each file several items require validation before we attempt to hash the file.
(1) Does the path exist

(2) Is the path a link instead of an actual file

(3) Is the file real (making sure it is not orphaned)

For each of these tests there is a corresponding log error that is posted to the log
file if failure occurs. If the file is bypassed the program will simply return to
WalkFile and process the next file.

#Verify that the path isvalid
if os.path.exists(theFile):
#Verify that the path isnot a symbolic Tink
if not os.path.islink(theFile):
#Verify that the fileis real
if os.path.isfile(theFile):

The next part is a little tricky. Even through our best efforts to determine the existence
of the file, there may be cases where the file cannot be opened or read. This could be
caused by permission issues, the file is locked or possibly corrupted. Therefore, I uti-
lize the try methods while attempting to open and then read from the files. Note that
I'm careful to open the file as read-only the “rb” option. Once again if an error
occurs a report is generated and logged and the program moves on to the next file.

try:
J#fAttempt to open the file
f =open(theFile, 'rb")
except I0Error:
#Hi f open fails report the error
log.warning('Open Failed: '+ theFile)

return
else:
try:
Attempt to read the file
rd=f.read()

except I0Error:
#if read fails, then close the file and
report error
f.close()
log.warning('Read Failed: '+ theFile)
return

else:
ffsuccess the file is open and we can
Jfread fromit
#lets query the file stats

Once the file has been successfully opened and verified that reading from the file
is allowed, I extract the attributes associated with the file. These include owner,

group, size, MAC times, and mode. I will include these in the record that is posted
to the CSV file.

Code Walk-Through 73

theFileStats = os.stat(theFile)
(mode, ino, dev, nlink, uid, gid, size,
atime, mtime, ctime) =os.stat(theFile)

#Display progress to the user
DisplayMessage("Processing File: " + theFile)

convert the file size toa string
fileSize =str(size)

Jf convert the MAC Times to strings

modifiedTime = time.ctime(mtime)
accessTime =time.ctime(atime)
createdTime = time.ctime(ctime)

convert the owner, group and file mode

ownerID =str(uid)
groupID =str(gid)
fileMode = bin(mode)

Now that the file attributes have been collected the actual hashing of the file
occurs. I need to hash the file as specified by the user (i.e., which one-way hashing
algorithm should be utilized). I'm using the Python Standard Library module
hash1ib as we experimented with in Chapter 2.

fiprocess the file hashes

ifgl_args.mdb:

f#fCalcuation the MD5

hash =hashlib.md5()

hash.update(rd)

hexMD5 = hash.hexdigest()

hashValue = hexMD5.upper()
elifgl_args.sha2b6:

#iCalculate the SHA256

hash=hashlib.sha256()

hash.update(rd)

hexSHA256 = hash.hexdigest()

hashValue = hexSHA256.upper()
elifgl_args.shabl2:

#iCalculate the SHA512

hash=hashlib.sha512()

hash.update(rd)

hexSHA512 = hash.hexdigest()

hashValue = hexSHA512.upper()
else:

log.error('Hash not Selected")
#File processing completed
#Close the Active File

74 CHAPTER 3 Our First Python Forensics App

Now that processing of the file is complete the file must be closed. Next I use the
CSV class to write out the record to the report file and return successfully to the
caller in this case WalkPath.

f.close()
#write one row to the output file

o_result.writeCSVRow(simpleName,
theFile, fileSize, modifiedTime,
accessTime, createdTime, hashValue,
ownerlID, groupID, mode)

return True

This section posts the warning messages to the log file relating to problems
encountered processing the file.

else:
Tog.warning('['+ repr(simpleName) +', Skipped NOT a File'+']")
return False
else:
Tog.warning('['+ repr(simpleName) +', Skipped Link
NOT a File'+'1")
return False
else:
Tog.warning('[' + repr(simpleName) +', Path does NOT exist'+']")
return False

CSVWriter

The final code walk-through section I will cover in this chapter is the CSVWriter. AsI
mentioned earlier, I created this code as a class instead of a function to make this
more useful and to introduce you to the concept of classes in Python. The class only
has three methods, the constructor or init, writeCSVRow, and writerClose. Let us
examine each one.

class _CSVWriter:

The constructor or init method accomplishes three basic initializations:

(1) Opens the output csvFile

(2) Initializes the csv.writer

(3) Writes the header row with the names of each column

If any failure occurs during the initialization an exception is thrown and a log
entry is generated.

def __init__(self, fileName, hashType):
try:
fcreateawriter object andwrite the header row
self.csvFile =open(fileName, 'wb")

Code Walk-Through 75

self.writer =csv.writer(self.csvFile,
delimiter=",", quoting=csv.QUOTE_ALL)
self.writer.writerow(('File', 'Path', 'Size',
'Modified Time', 'Access Time', 'Created Time',
hashType, 'Owner', 'Group', 'Mode"))
except:
log.error('CSV File Failure")

The second method writeCSVRow receives a recordfrom HashFile upon success-
ful completion of each file hash. The method then uses the csv writer to actually
place the record in the report file.

def writeCSVRow(self, fileName, filePath, fileSize, mTime,
aTime, cTime, hashVal, own, grp, mod):

self.writer.writerow((fileName, filePath,
fileSize, mTime, aTime, cTime, hashVal, own,
grp, mod))

Finally, the writeClose method, as you expect, simply closes the csvFile.

def writerClose(self):
self.csvFile.close()

Full code listing pfish.py

#

#p-fish: PythonFile SystemHash Program
Author: C. Hosmer

#Jduly 2013

#Version1.0

1

import logging # Python Standard Library Logger

import time ## Python Standard Library time functions
import sys # Python Library system specific parameters
import _pfish # _pfish Support Function Module

if _name__=="_main__":

PFISH_VERSION ='1.0"

Turn on Logging
logging.basicConfig(filename='pFishlLog.log,level=1o0gging.DEBUG,
format='%2(asctime)s %Z(message)s")

Process the Command Line Arguments
_pfish.ParseCommandLine()

Jf Record the Starting Time

76 CHAPTER 3 Our First Python Forensics App

startTime =time.time()

Record the Welcome Message

logging.info(")
logging.info('Welcometop-fishversion+PFISH_VERSION+"...NewScan
Started")

logging.info(")

_pfish.DisplayMessage('Welcome to p-fish...version'+
PFISH_VERSION)

Record some information regarding the system
logging.info('System: +sys.platform)
logging.info('Version: '+ sys.version)

Traverse the file systemdirectories and hash the files
filesProcessed =_pfish.WalkPath()

J#f Record the end time and calculate the duration

endTime =time.time()

duration =endTime - startTime

logging.info('Files Processed: '+ str(filesProcessed))
logging.info('ETapsed Time: '+ str(duration) +'seconds')
logging.info(")

logging.info('Program Terminated Normally")
lTogging.info(")

_pfish.DisplayMessage("ProgramEnd")

Full code listing _pfish.py

it

pfish support functions, where all the real work gets done

1

#Display Message() ParseCommandLine() WalkPath()

#FHashFile() class _CVSWriter

#ValidateDirectory() ValidateDirectoryWritable()

1

import os #iPython Standard Library - Miscellaneous
operating systeminterfaces

import stat #Python Standard Library - functions for
interpreting os results

import time #Python Standard Library - Time access and
conversions functions

import hashlib J#Python Standard Library - Secure hashes and
message digests

import argparse #Python Standard Library - Parser for command-
line options, arguments

import csv #Python Standard Library - reader and writer for

csv files

Code Walk-Through 77

import logging J#Python Standard Library - Togging facility
log =1ogging.getlogger('main._pfish")

#

Name: ParseCommand() Function

1

Jf Desc: Process and Validate the command 1ine arguments

i use Python Standard Library module argparse

#

Input: none

#

J# Actions:

i Uses the standard Tibrary argparse to process the
command Tine

i establishes a global variable gl_args where any of the
functions can

i obtain argument information

1

def ParseCommandLine():

parser =argparse.ArgumentParser('Python file systemhashing ..
p-fish")

parser.add_argument('-v', —verbose', help='allows progress messages
to bedisplayed', action='store_true")

setup a group where the selection is mutually exclusive and
required.

group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--md5', help ="'specifiesMD5 algorithm',
action='store_true")

group.add_argument('--sha256', help ="specifies SHA256
algorithm', action='store_true')
group.add_argument('--shabl2', help="specifies SHAL1?
algorithm', action='store_true")

parser.add_argument('-d', '--rootPath', type=
ValidateDirectory, required=True, help="specify the root
path for hashing")

parser.add_argument('-r', '--reportPath’', type=
ValidateDirectoryWritable, required=True, help="specify the
path for reports and Togs will bewritten")

ffcreateaglobal objecttoholdthevalidatedarguments, thesewillbe
available then
#toall the Functions within the _pfish.py module

global gl_args
global gl_hashType

gl_args =parser.parse_args()

78 CHAPTER 3 Our First Python Forensics App

ifgl_args.mdb:
gl_hashType ='MD5'
elif gl_args.sha256:
gl_hashType ='SHA256"
elif gl_args.shab12:
gl_hashType ='SHA512"
else:
gl_hashType = "Unknown"
logging.error('Unknown Hash Type Specified")

DisplayMessage("Command 1ine processed: Successfully")

return

End ParseCommandLine

1

Name: WalkPath() Function

i

Desc: Walk the path specified on the command Tine

i use Python Standard Library module os and sys

i

Input: none, uses command Tine arguments

1

Actions:

it Uses the standard 1ibrary modules os and sys

i to traverse the directory structure startinga root

i path specified by the user. For each file discovered,
WalkPath

i will call the Function HashFile() to performthe file
hashing

1

def WalkPath():

processCount =0
errorCount =0

oCVS =_CSVWriter(gl_args.reportPath+fileSystemReport.csv',
gl_hashType)

Create a 1oop that process all the files starting
#at the rootPath, all sub-directorieswill also be
f#f processed

log.info('Root Path: "+ gl_args.rootPath)
for root, dirs, files inos.walk(gl_args.rootPath):

J#foreachfileobtainthe filenameandcall theHashFileFunction
for filein files:
fname = os.path.join(root, file)

Code Walk-Through 79

result =HashFile(fname, file, oCVS)

#if hashingwas successful then increment the ProcessCount
if resultis True:
processCount +=1
#if not successful, the increment the ErrorCount
else:
ErrorCount +=1

oCVS.writerClose()

return(processCount)

#fEnd WalkPath

#

Name: HashFile Function

i

Desc: Processes a single filewhich includes performing a hash of the
file

i and theextractionof metadata regarding the fileprocessed

it use Python Standard Library modules hashlib, os, and sys

1

Input: theFile =the full path of the file

it simpleName = just the filename itself

1

Actions:

1 Attempts to hash the file and extract metadata

it Call GenerateReport for successful hashed files

#

def HashFile(theFile, simpleName, o_result):

#Verify that the path isvalid
if os.path.exists(theFile):

#Verify that the path isnot a symbolic Tink
if not os.path.islink(theFile):

f#Verify that the file is real
if os.path.isfile(theFile):

try:
#fAttempt to open the file
f =open(theFile, 'rb")
except I0Error:
#if open fails report the error
log.warning('Open Failed: "+ theFile)
return
else:
try:
J# Attempt to read the file

80 CHAPTER 3 Our First Python Forensics App

rd =f.read()

except I0Error:
#1if read fails, thenclose the file and
report error
f.close()
log.warning('Read Failed: "'+ theFile)
return

ffsuccess the file is open and we can read fromit
#lets query the file stats

theFileStats =os.stat(theFile)
(mode, ino, dev, nlink, uid, gid, size, atime,
mtime, ctime) = os.stat(theFile)

#Print the simple file name
DisplayMessage("Processing File: " + theFile)

#print the size of the file in Bytes
fileSize =str(size)

#print MAC Times

modifiedTime = time.ctime(mtime)
accessTime =time.ctime(atime)
createdTime =time.ctime(ctime)

ownerID=str(uid)
groupID=str(gid)
fileMode = bin(mode)

ffprocess the file hashes

ifgl_args.md5:
#Calcuation and Print the MD5
hash =hashlib.md5()
hash.update(rd)
hexMD5 = hash.hexdigest()
hashValue = hexMD5.upper()
elifgl_args.sha2b6:
hash=hashlib.sha256()
hash.update(rd)
hexSHA256 = hash.hexdigest()
hashValue = hexSHA256.upper()
elifgl_args.shabl?:
#Calculate and Print the SHA512
hash=hashlib.sha512()
hash.update(rd)
hexSHA512 = hash.hexdigest()
hashValue = hexSHA512.upper()
else:
log.error('Hash not Selected")

Code Walk-Through 81

#File processing completed

#Close the Active File

print " "
f.close()

#write one row to the output file

o_result.writeCSVRow(simpleName, theFile,
fileSize, modifiedTime, accessTime, createdTime,
hashValue, ownerID, groupID, mode)
return True
else:

log.warning('["+ repr(simpleName) +', Skipped NOT a

File'+'1")

return False

log.warning('["+ repr(simpleName) +"', Skipped Link NOT a
File'+']")
return False
else:
lTog.warning('['+ repr(simpleName) +', Path does NOT
exist'+']")
return False

End HashFile Function

1

Name: ValidateDirectory Function

1

Desc: Function thatwill validate a directory path as

i existing and readable. Used for argument validationonly

1t

Input: adirectory path string

1

Actions:

i ifvalidwill return the Directory String

1

i# if invaliditwill raise an ArgumentTypeError within
argparse

i whichwill in turn be reported by argparse to the user

1t

def ValidateDirectory(theDir):

#Validate the path is adirectory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('Directory does not exist")

#Validate the path is readable
if os.access(theDir, os.R_0K):
return theDir
else:

82 CHAPTER 3 Our First Python Forensics App

raiseargparse.ArgumentTypeError(‘Directory is not readable")

##End ValidateDirectory

1

Name: ValidateDirectoryWritable Function

1

Desc: Function that will validate a directory path as

i existingandwritable. Used for argument validationonly

1

Input: adirectory path string

1

Actions:

i ifvalidwill return the Directory String

1

it ifinvaliditwill raise an ArgumentTypeError within
argparse

i whichwill in turn be reported by argparse to the user

1

def ValidateDirectoryWritable(theDir):

#Validate the path is a directory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('Directory does not exist')

#Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raiseargparse.ArgumentTypeError('‘Directory isnotwritable')

##fEnd ValidateDirectoryWritable

i

1

Name: DisplayMessage() Function

i

##Desc: Displays themessage if the verbose command 1ine option is present

1

Input: message type string

1

#F Actions:

i Uses the standard 1ibrary print function todisplay the
message

1

def DisplayMessage(msg):

if gl_args.verbose:
print(msg)

Results Presentation 83
return
##End DisplayMessage
#
#Class: _CSVWriter
#
Desc: Handles all methods related to comma separated value operations
1
Methods constructor: Initializes the CSV File
i writeCVSRow: Writes a single row to the csv file
i writerClose: Closes the CSV File

class _CSVWriter:

def __init__(self, fileName, hashType):

try:
J#fcreate awriter object and thenwrite the header row
self.csvFile =open(fileName, 'wb")
self.writer =csv.writer(self.csvFile, delimiter=",",
quoting=csv.QUOTE_ALL)
self.writer.writerow((‘"File', 'Path', 'Size', 'Modified Time',
'Access Time', 'Created Time', hashType, 'Owner', 'Group’, 'Mode"))

except:
log.error('CSV File Failure")

def writeCSVRow(self, fileName, filePath, fileSize, mTime, aTime,
cTime, hashVal, own, grp, mod):

self.writer.writerow((fileName, filePath, fileSize, mTime,
aTime, cTime, hashVal, own, grp, mod))

def writerClose(self):
self.csvFile.close()

RESULTS PRESENTATION

Now that the walk-through has been completed and I have gone through a deep dive
into the code, let us take a look at the results. In Figure 3.7, I executed the program
with the following options:

C\p-fish > Python pfish.py --md5 -d “c:\\p-fish\TESTDIR\\” -r “c\\p-fish\\" —v

The —v or verbose option was selected and the program displayed information
regarding every file processed was selected as expected.

In Figure 3.8, I examine the c:\p-fish directory and discover that two files were
created there, which are the two resulting files for the pfish.py.

1. fileSystemReport.csv
2. pFishLog.log

-
84

CHAPTER 3 Our First Python Forensics App

ﬁcammnmysxemsz\cmm =@ =
' -d ROOTPATH, --rootPath ROOTPATH -
specify the root path for hashing
-r REPORTPATH, ——repUrtPatl’_] REPORTPATH .) L
specify the path for reports and logs will be written 1
C:\p-fish>python pfish.py --md5 -d_"C:\\p-Tish\\TESTDIR\\" -r "c:\\p-fish\\" -v
Command 1ine processed: Successfully
Wecome to p-fish ... version 1.0
Processing File: c:\\p-fish\\TESTDIR\hpwmd121.dat
Processing File: c:\\p-fish\\TESTDIR\hpwpri103.dat
Processing File: c:\\p-fish\\TESTDIR\hpwpri104.dat
Processing File: c:\\p-fish\\TESTDIR\hpwpri1l0.dat
Processing File: c:\\p-fish\\TESTDIR\hpwprill.dat
Processing File: c:\\p-Tish\\TESTDIR\Before and After\124.]PG
Processing File: c:\\p-fish\\TESTDIR\Before and After\210.JPG
Processing File: c:\\p-fish\\TESTDIR\Before and After\291.]PG
Processing File: c:\\p-fish\\TESTDIR\Before and After\292.1PG
Processing File: c:\\p-fish\\TESTDIR\Before and After\293.1PG
‘ i '
Test run of pfish.py.
& . » Computer » HP(C:) » p-fish » ~ | 430 Search p-fish P
I
' File Edit View Tools Help
Organize v [§]Open v Print Bumn Newfolder =~ A ®
R & Name 5 Datesnodhied T s
[Recently Changed TESTDIR File folder
Public 2 _pfish Python File 13KB
B Desktop B pfish Compiled Python .. 6KB
& Downloads 0 | fileSystemReport 8/4/2013 9:45 PM Microgoft Excel C.. 18 KB
| Recent Places 2 pfish Type: Microsoft Excel Comma Separated Values File [File 2KB
& SkyDrive & pFishLog Size: 174 KB ument 1KB
$ Dropbox E Date modified: 8/4/2013 9:45 PM
4 Libraries
Y Homegroup
18 Computer
& WP (C)
ca Recovery ()
fileSystemReport Date modified: B/4/2013 9:45 PM Date created: 8/4/2013 9:45 PM
u Microcoft Excel Comma Separated Values File Size: 174 KB

Result directory after pfish execution.

By choosing to leverage the Python csv module to create the report file Windows
already recognizes it as a file that Microsoft Excel can view. Opening the file we
see the results in Figure 3.9, a nicely formatted column report that can now
manipulate with Excel (sort columns, search for specific values, arrange in date
order, and examine each of the results). You notice that the hash value is in a
column named MD)S that is labeled as such because I passed the appropriate head-
ing value during the initialization of the csv.

Figure 3.7
Figure 3.8

BHS -

BEE rove | msET PAGELAYOUT FORMULAS DATA REVIEW VIEW ADDUNS Team Chester Hosmar =

i : : - [y N
% Cut Courier New A ==E 9 Bwepet General . ["-.—I B [o= Ex l—,,T—| 3 AutoSum %‘Y F1
Pasie B CoPY - : % C dm { Formatas Cob | Waet Deete Fommat | B A8 Find &
aste 3 . AL ===lee B % 2 e onditional Formatas Cel nsert Delete Forma o in
I Pramaraine | BT U i D-A- === &35 EMerge&Center $-% > WA Foemitings Tabld~ Shles> e s . & Clear~ Eifes Bt s
Clipboard [Font & Alignment & Number 5 Styles Cells Editing ~
Cc13 b I fe 1055648 bod
A B c D E F G H [=]
1 File Fath Size Modifisd Time Access Time Craated 105 Owmer Grl
2 |hpwmd12l.dat c:\\p-£1sh\\TESTDIR\hpwmdl21 . dat 575 Wed Jul 28 17:28:00 20108un Aug 04 139 2013 Sun Aug 2013 45Z0F7F320931506CEA4FE72783F5278 [
3 hpwprlod.dac c:\\p-£1sh\\TZSTDIR\Bpwprl03 . dat 462 Tue Feb 16 20105un 2ug 04 :39 2013 Sun Aug 2013 ASLT40DDZF4FSSALBOG4T46421B2B294 o
4 |hpwpzlod.dat ©:\\p-£1sh\\TESTDIR\hpwprl04 . dat 807 Wed Jul 28 2010Sun Aug 04 :39 2013 Sun Aug 2013 40Z20D43D15121048946C5263D343RD7 [
5 hpwpzil0.das Ci\\p-£1sh\\TESTOIRA\EpwpE110 . dat 220 Tue Feb 16 2010 Sun Aug 04 39 2018 Sun Aug 2013 BCSBS7ESDE01DE342DALF49864ELBTTE o
6 hpwprill.dac ©:\\p-£1sh\\TZSTDIR\Bpwpslll dat 189 Wed Jul 28 2010 Sun Aug 04 139 2013 Sun Aug 2013 1BFDFOCO40CEAOCTLIZ771FL71DIBALZ o
7 |124.3pG6 e:\\p—-£ish\\' TDIR\Before and After\124.(€58876 Sun Apr 04 2010Sun Aug 04 3% 2013 Sun Aug 2013 924B32568E95323D04D: 2ZB370S0A27 a
8 |210.906 c:\\p-£ish\\TESTDIR\Before and After\z10.. 1360820 Wed Rug 18 2 20105un Rug 04 :39 2013 Sun Aug 2013 171114DB94DSBEF4ECB4E127B1F52622 [
9 |zs1.JpG c:\\p-fish\\TESTDIR\Before and After\251.. 1636535 Tue Oct 26 2010Sun Aug 04 :33 2013 Sun Aug 2013 DZAFBEBC1DI83EE5621ACTE4157C304% 0
10 |292. 386 c:\\p-£ish\\TZSTDIR\Before and After\29Z.. 2458849 Tue Oct 26 20105un Rug 04 :39 2013 Sun Aug 2013 F1SECFEDDFEFD2048D536A9082DIECEE [
11 |293.986 ©i\\p-£ish\\TESTDIR\Before and After\233.(1526724 Tue Ocv 26 2010 Sun Aug 04 33 2013 Sun Aug 2013 DDFSOF35COD435277Z6TCEISDACEIRTA o
12 apprissal-i.docx c:\\p-fish\\TESTDIR\Before and After\Bppri 1057774 Sun Apr 03 20118un Zug 04 238 2013 Sun Aug 2013 D4B0OFEZ1301FDIFEF17CCCASTZDARSA o
13 apprisssl.docx c:\ip-Zish\\TESTDIR\Before and Aftec\Appsi 1055842 Sum Apr 03 20115un Aug 04 133 2013 Sun Aug 2013 =S1ZZ04AAECTFO7ZBEDSBATBE4399386 o
14 |pscIoool.Jepe e:\\p-fish\\' TDIR\Before and After\DSCI(171453& Thu Nev 13 200BSun Rug 04 39 2013 Sun Aug 2013 17DEZ20S7DFASE4BZCS52275EBECZABRALR a
15 |psczo003. Jpe CI\\p-fish\\TESIDIR\Before and After\DSCI(1662235 Thu Nev 13 2008 Sun Rug 04 40 2013 Sun Aug 2013 4RR0ZE53B79D365224D6FATCITE5GEEE o
16 |psc000s. 396 ci\Ap-£ishiy and Aftar\DSCIC 1834364 Thu Nov 13 2008 Sun Rug 04 40 2013 Sun Aug 2013 1B1DSBCAOSCETB06SAR18384019275A5 o
17 DSCI0N010.JPG eI\\p-Iish\\TESTDIR\Before and After\DSCI(186614€ Thu Nov 13 Z008Sun Rug 04 140 2013 Sun Aug 2013 83E5CB51D898FDEBAEF6RA83234D1DD1E o
18 |psczooss. ape Si\\p-£ish\\TZSTDIR\Zefors and After\DSCIC 1354320 Thu Nov 13 2008 Sun Rug 04 140 2013 Sun Aug 2013 0CCE4432452B1C3B45C33CI1BCETS03D o
19 |DSCI0N040.JPG e \\p-£ish\\TESTDIR\Before and After\DSCIC 1858942 Thu Neov 13 2008Sun Aug 04 140 2013 Sun Aug 2013 04C089DBA8534CB87ACECIDDEFISFFEBB 0
20 |pscroosn. 6 S:\\p-Sismiy and Afrer\DSCIC 1643477 Thu Nov 12 2008 Sun Rug 04 40 2013 Sun Aug 2013 3A94CE25420FF9REFCTS30AITOCEROZ o
21 |DSCI0107.7%6 ei\\p-Eish\N and After\DSCI{ 1878915 Thu Nev 13 2008 Sun Aug 04 140 2013 Sun Aug 2013 F3EE547E754F458553E0E74550283CAR 0
22 |pscro113.3v¢ i \\p-£iah\Y and Afrer\DSCIC 1207935 Thu Nov 18 2008 Sun Aug 04 41 2012 Sun Aug 2013 2A028ACH9DDA43DE721R7047RFELESSE 0
23 |x_imix.png ©:\\p-£1sh\\TESTDIR\Mayan Glyphs\x_imix.pr 1295 Sat Feb 26 10:42:0& Z011Sun Aug 04 41 2013 Sun Aug 2013 BEL1C3AGAZGEIF04CEDO463EE56A37T4 [
24 Day -01 imix_m.png c:\\p-£ish\\TESTDIR\Mayan Clyphs\Days\Day 1780 Sat Feb 26 10:42:59 2011Sun Aug 04 141 2013 Sun Aug 2013 4E8591952FC728A219D98603C1B46975 [}
25 |Day -02 ik _m.png c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1679 Sat Feb 26 10:44:45 2011Sun Rug 04 41 2013 Sun Aug 2013 DDZZ7C54811EDBEETE75EBF3776EBE03 0
26 Day -02 skbal m.pn c:\\p-£ish\\TZSTDIR\Maysn Glyphs\Days\Day 1830 Sst Feb 26 10:45:45 2011Sun Bug 04 41 2012 Sun Aug 2013 SESSTSRILRTEITDZFAZCADA4SEECET93 o
27 |Day -04 kan_m.png c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1820 Sat Feb 26 10:46:01 2011Sun Rug 04 41 2013 Sun Aug 2013 2DCDS0AGAOCTTSS0DAIELEF7€92D5E80 [
28 Day -0% chicehan_m e:\\p-£ish\\TESTDIR\Mayan Clyphs\Daya\Day 1939 Sat Feb 2€ 10:46:20 2011fun Aug 04 141 2012 Sun Aug 2013 F103B23DCOFO4BOFESECEIE4B022FODE o
29 |Day -06 cimi m.pmg c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1937 Sat Feb 26 10:47:56 2011Sun Rug 04 141 2013 Sun Aug 2013 DS5642ASASCZ075721BF40SEAG0FSTSCL o
30 |Day —-07 manik_m.pn e:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1818 Sat Feb 26 10:48:13 2011Sun Aug 04 141 2012 | Sun Aug 2013 9292BDAS21CD7A20DS78285DES0EESER a
31 |pay -08 lamst_m.pn c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1302 Sat Feb 26 10:48:25 20115un Rug 04 :41 2013 Sun Aug 2013 436531118332123F3389DI4B425487EF [
32 Day -09 ml\:c_m,pn e:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1763 Sat Feb 26 10:48:40 2011Sun RAug 04 142 2013 Sun Aug 2013 4736CCSCBE5B370CA1BF03703D5316E2 0
33 |Day -10 occ_m.pag c:\\p-fish\\TESTDIR\Mayan Glyphs\Days\Day 1856 Sat Feb 26 10:43:03 2011Sun Rug 04 :42 2013 Sun Aug 2013 £183C275F39737B67CE1829B68ARASEE [
34 [Day -11 chuen_m.pn c:\\p-Sish\\TESTDIR\Maysn Glypha\Days\Day 1797 Sev Feb 26 10:50:30 20115un Aug 04 42 2013 Sun Aug 2013 F3DDEASBDA7S0E310219743217018426 o
35 Day -12 eb_m.png c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1905 Sat Feb 26 10:50:33 2011Sun Aug 04 42 2013 Sun Rug 2013 AS493586401873D929505789AZ6E9DER o
36 Day 1% ben m.png ©:\\p-Zish\\TZSTDIR\Mayan Glyphs\Days\Day 1757 Sat Feb 26 10:50:43 20115un Aug 04 4z 2013 Sun Aug 2013 064DIASCZ51BG36776F7DADESGCISTAS o
37 |Day -1¢ ix_m.png c:\\p-£ish\\TESTDIR\Mayen Glyphs\Days\Day 1787 Sat Feb 26 10:50:57 20115un Rug 04 42 2013 Sun Aug 2013 2BATBES2(£420222C12435 [
38 |pay -15 men_m.png c:\\p-fish\\TESTDIR\Mayan Glyphs\Days\Day 1957 Sat Feb 26 10:51:07 20115un Rug 04 42 2015 Sun Aug 2013 3BIZ4476FCISTOLIA4TTIEAZ0D94FEDT o
39 |Day -1 cib_m.png c:\\p-fish\\TESTDIR\Mayan Glyphs\Days\Day 1831 Sat Feb 26 10:51:17 2011Sun Bug 04 17:23:42 2013 Sun Aug 2013 3256AFDDO239AZAEZB1670AD4B6DC04E [
40 |Day -17 caban_m.pn c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1756 Sat Feb 26 10:51:29 2011Sun Aug 04 17:23:42 2018 Sun Aug 2015 S0FEDAZEE: 5 12602 o |+
fileSystemReport [©) 4] v
iii] || =————s*

FIGURE 3.9
Examining the Result File with Microsoft Excel.

uoljeIuasald Synsay

S8

Figure 3.9

86 CHAPTER 3 Our First Python Forensics App

3 pishlog - Notepad EICI]

2013-08-04 21:45:11,042 .

2013-08-04 21:45:11,042 welcome to p-fish version 1.0 ... New Scan Started
2013-08-04 21:45:11,059 X

2013-08-04 21:45:11,059 System: win32

2013-08-04 21:45:11,059 version: 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)]
2013-08-04 21:45:11,059 Root Path: c:\\p-Tish\\TESTDIR\

2013-08-04 21:45:12,042 Files Processed: 82

2013-08-04 21:45:12,042 Elapsed Time: 0.929000072479 seconds

2013-08-04 21:45:12,042 P

2013-08-04 21:45:12,042 Program Terminated Normally

2013-08-04 21:45:12,042

FIGURE 3.10
Contents of the pFishLog file.

The generated pFishLog.log file results are depicted in Figure 3.10. As expected
we find the welcome message, the details regarding the Windows environment,
the root path that was specified by the user, the number of files processed,
and the elapsed time of just under 1 s. In this example no errors were encountered
and the program terminated normally.

Moving to a Linux platform for execution only requires us to copy two Python
Files.

1. pfish.py
2. _pfish.py

Execution under Linux (Ubuntu version 12.04 LTS in this example) works without
changing any Python code and produces the following results shown in
Figures 3.11-3.13.

You notice that the pFishLog file under Linux has a number of warnings; this is
due to lack of read access to many of the files within the /etc directory at the user
privilege level I was running and due to some of the files being locked because they
were in use.

CHAPTER REVIEW

In this chapter I created our first useable Python forensics application. The pfish.py
program executes on both Windows and Linux platforms and through some ingenu-
ity I only used Python Standard Library modules to accomplish this along with our
own code. I also scratched the surface with argparse allowing us to not only parse
the command line but also validate command line parameters before they were used
by the application.

I also enabled the Python logger and reported events and errors to the logging
system to provide a forensic record of our actions. I provided the user with the capa-
bility of selecting among the most popular one-way hashing algorithms and the pro-
gram extracted key attributes of each file that was processed. I also leveraged the cvs
module to create a nicely formatted output file that can be opened and processed by
standard applications on both Windows and Linux systems. Finally, I implemented
our first class in Python with many more to come.

Figure 3.10

chet@PythonForensics: ~/Desktop

chet@PythonForensics:~/DesktopS clear

chet@rythonForensics:~/Desktop$ python pfish.py --sha2s56 -d Jetc/ -r ~/Desktop/ -v
Command line processed: Successfully

Wecome to p-fish ... version 1.0

Processing File: fetc/host.conf

Processing File: /etc/kernel-img.conf

Processing File: fetc/apg.conf

Processing File: Jetc/wgetrc

Processing File: /etc/updatedb.conf

Processing File: fetc/crontab

Processing File: /etc/ld.so.cache

Processing File: /etc/gai.conf

Processing File: Jetc/blkid.conf

Processing File: Jetc/legal

Processing File: Jetc/profile

Processing File: /[etc/insserv.conf

Processing File: Jetc/shells

Processing File: Jetc/colord.conf

Processing File: Jfetc/sysctl.conf

Processing File: /etc/netscsid.conf

Processing File: Jfetc/fstab

Processing File: /fetc/usb _modeswitch.conf

Processing File: /etc/pnm2ppa.cenf

FIGURE 3.11

Linux Command Line Execution.

MaInay Jardey)n

L8

Figure 3.11

/ "
E-sEe@FHreavEion-a - @ e
@ Liberation Sans +| |10 - A 4 A E E E Jow fd o
D3 - foo B = [FriJul1209:26:112013 (
[A [B [c E F | G |
G Pan Size Modified Time Access Time Created Time SHAZS6 owner
2 |bost.cont retcihgstcont 92 Thu Apr 19 05:1514 2012 Sun Aug 4 22.12:31 2013 Fri Jul 12 09:0853 2013 _02ABE65R457F B580EF 212BR09A2AA5E 7181947 A3E ATA2F DIREAT ABEADICI76D [i
Wl kemel-ima.cont tfetclkemel-img.conf 91 un Aug 4 22:19:13 2013 Fri Jul 12 09:26:11 2013 9DBCBS6DDCDEEABCIG0054D4AB19C2F DB 1ADS1 26F TF2A0F 8396AD2DGEB3FSGE D 0
4 |apg.conf letclapg.conf 12 Fri Jun 22 09:12:07 2007 un Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 C5273B0A131979BFA94AAG8758218B53819E3184100777B233CEBBB6033A215D 0
5 |wgetrc retchvgetie 2436 Fri Feb 10 20:25:30 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 648222A57F161ED7C51FATF 39F0BAB0S608DBE1607CEIT376B0CDFAIIFATI203 [}
6 Jupdatedb.cont atedh.cont 326 Wed Aug 17 09:155/ 2011 Sun Aug_4 22:19:13 2013 i Jul 12 U9:08:53 2013 UB12CH649EEECE52EE2/3D01BCYAY /03B93422A0180190E 60D /FBDEBDEAACTO, 0
7 lcrontab latclcrontab 722 Mon Apr 2 04:28:252012 Sun Aug 4 22:12:32 2013 Fri Jul 12 09:08:53 2013 0E5C204385821E158031C83F37212BFSAAEE 778517628 TB51BD6ADI73EBDF 54 0
8 |d.so.cache fetc/id.so.cache 61993 Fri Jul 12 10:57:54 2013 Sun Aug 4 22:12:31 2013 Fri Jul 12 10:57:54 2013 8299E13790B8E923311724F02397756773500F 17767 TEIF1349228A2629E0ABS 0
9 |gai.conf retcigal.cont 3343 Thu Apr 10 10:10:10 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 096C601054334DDFT0DCEEE1C10850BFAOEADER 206302823381 7B830DS3BBEAE 0
10_|blkid.conf retcikid.cont 321 Fii Mar 30 00.49:23 2012 Sun Aug 4 22.19:13 2013 Fii Jul 12 09.08.53 2013 B9470BATBBFF692901C43AD392DE036F91821FDSFBBE4BTDATEILIS3DAZIBECT 0
11 legal letcliegal 267 Thu Apr 19 05:15:14 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 9FA4AD4D7C2A346540C64CAC3619E 389DBAIA116F 99A0FBBCCTSASEBF2851262 0
12 |profile lfetc/profile 665 Wed Feb 13 17:07:50 2013 Sun Aug 4 22:13:47 2013 Fri Jul 12 09:08:53 2013 89748D3346F8DACBTECIBTSEAAQ204F4504AG972C6D2FCI501072FITESIABF2ZD 0
13 |insserv.conf 839 Mon Apr 9 19:21:28 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 0649D36A47AACOEOTBDOFFCDI6E TEC26596C1C6335A457A9T052ADDTEITEALBA 0
14 letcishells 72 Wed Feb 13 17:07:35 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 DDBEBDE0D260D772114734225CE0BE0EFISF3CFFABO031AE2B6AAEDATILCAES2 0
retcicolord. cont 699 Tue OCt 23 18:21:42 2012 Sun Aug 4 22:12:35 2013 Fri Jul 12 09:08:53 2013 3EDS0EF6837283D72C9EF2D610D30C0684D4BA3B67CBEAFGD204CB25E 1TSELAE 0
tetclaysctl.cont 2083 Mon Dec 506:45:352011 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:08:53 2013 39C941BBD3761EBICOAOR371CABES523670067E407536C338FA09DCT110ABFT0 0
2084 Thu Nov 2314:33.10 2006 Sun Aug 4 22.19:13 2013 Fri Jul 12 09.08:53 2013 FBB4CIL71ES92A5BCO286E24C2727DCF98E3E T DISFOSTADABLIA12BIBBE2FEED o
864 Fri Jul 12 09:08:46 2013 Sun Aug 4 22:12:35 2013 Fri Jul 12 09:08:46 2013 3FAF726B34D17308C74E05FBDADAID32AAA22TAE A5TRATIS5F 1 DBEEF 7T6CAQIRT 0
19 |usb_modeswitch.conf /etc/usb_modeswitch.cont 572 Wed Mar 711:06:182012 _ Sun Aug 4 22:18:13 2013 Fri Jul 12 09:08:-53 2013 C60303BDAS0F T BAA327731DEEC2EFG0D16D393F35EIC1 1DOE2IF AL312434D51E 0
20 _|pnm2ppa.conf letc/pnm2ppa.conf 7649 Wed Feb 13 17:10:50 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 2ECC4EBB1364896BD3D08DC49562022706788BFA40588B75736F65DFDAISFOGE 0
21 |moduics fetc/modules 198 Fri Jul 12 09:25:18 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:25:18 2013 _6CDBOSECCO1BACEABABCCESL1A200C6BE6188437140AA0D1840282812DB80858, [}
22 |uct.cont retcluct.cont 1260 Mon May 2 08:19:32 2011 Sun Aug 4 22:19:13 2013 i Jul 12 U9:08:53 2013 4B83C11BAFSUSBEEDBG1 2883 F856421409CAY26168BDF 2028 /34008915023 0
23 i cont ity-contest.conf 350 Fri Jul 12 09:25:27 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:25:27 2013 039F85604A077EEA73981548DB8BBCB2BEATO4ATAA0CT89282B 14FD1CCLAFSE 0
24 |hdparm.conf /etc/ndparm.cont 4728 Wed May 2 04:45:42 2012 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:08:53 2013 FAZBIESD4A4SFB6103069058644CE3AB49DIDBIDFDTABLSCFTFSETLICBIFCESC 0
25 |briapi.key retc/brapi ey 33 Wed Feb 13 17:10:15 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 00:08:53 2013 825B4E41E5CAATDCS602A0BADESFO25F 3423401 7F521A025360DDOCACAL7DBEA 0
26 _lenvironment retclenvironment 79 Wed Feb 13 17:07:34 2013 Sun Aug 4 22:12:34 2013 Fri Jul 12 09.08:53 2013 2C7AIDFSAS4CADIE 1285093D738C35442A80F 73ABF57BE23408E60AIBB589B 1A [
27 ificates.conf /etcicace cont 6961 Wed Feb 13 17:09:41 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 CSBE3F9144F9610121CC296A6FEFBC17CATFAI3DAI2SESSCE50BF6BC5B2699A1 0
28 [bash_comy lete/bash_completi 58753 Fri Mar 30 20:10:19 2012 Sun Aug 4 22:14:39 2013 Fri Jul 12 09:08:53 2013 1674CCBB3B11A005AB1962CBBE420A882FC666534CBAFFBSDCEFSE217TDIE2ESS 0
29 |securer retcisecuretty. 3902 Sun Apr B22:40:08 2012 Sun Aug 4 22:12:35 2013 Fri Jul 12 09:08:53 2013 763CA3DF966B08B2A2CF 1DB743A9F0DI61SD0ECATFDIEAFG34A51604B80E157C 0
30 e letcime e87 Mon Feb 13 13:33:04 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 93845C797D0S6A12AADDS395F CIAEGEB13AOFSCDASEDEEFALECTOFDA0EEEBIFY 0
31 |adduser.conf letcragduser conf 2981 Wed Feb 13 17:07:34 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 S9E9F341BAT3A2C65C2DCSE722313C32C 1 B6486DECDBB 13D535B8651BE46CT23 0
32 |iogrotate cant letc/iogrotate cont 509 Tue Oct 412119312011 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 _99R07CCE79121CFDCE2199848F FFAACORAE AJAF69206CR4DD3331DREF42523DF 0
33 |mt reteimt 268 Fri Mar 30 21:06:58 2012 Sun Aug 4 22.19:13 2013 Fri Jul 12 09.08:53 2013 _0BDDBZ2A1DFE24588 DF623D6869FID0BLTFEEGGFS17366A67AA770DBBET140D2 i
34 |nanarc letc) 8453 Fri Dec_3 14:40:16 2010 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 _697C5B76B0A012E2C582024EDCCO18267D5EB214A221A0BA060BE 466927B 764F 0
35 |hostname letcihostname 16 Fri Jul 12 09:12:55 2013 Sun Aug 4 22:12:32 2013 Fri Jul 12 09:12-55 2013 79C9B72CCA419937257E DSECGBS06CT CT 2457 EE0639DBEGAIEFAS2F2174A4FBOA 0
36 |aditime fetcladitime 10 Fri Jul 12 09:14:14 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:14:14 2013 2A733BC5398DCC0E20FF23F1163DDEFIASEBAB6F6324A0D3C0BSET08CI1 1ASS (i
37 |services letclservices 18281 Mon Feb 13 13:33:04 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 5013388830014A1E77165A4D17FB5SEB21E652AF B 70A948DB847B6B5CFCE 72854 0
38 |nosts.geny retcmosts.aeny 880 Wed Feb 13 17:09:54 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 UAG7FASEZ3UBBCBEFI00AL0C0ZAT 1208014E4600BB 12/ CASF1EIBFUFAGI4E2L 0
39 |mailcap.order retc/mailcap.order 449 Mon Nov 15 03:07:32 2010 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 852FA1BABAEVEQ6176848E0CASEIB7BB620416D4EFEABLCEABEFOBIDECC18374 [}
40 Jinputic retclipputre 1721 Tue Nov 22 10:46:41 2011 Sun Aug 4 22.14:39 2013 Fii Jul 12 09.08:53 2013 D23EBA72CDT2037B1106873C6E 7C11A101BCTBAGSCB25FIEET157B792C528F09 0
41 |trace conf letciitrace cont 15752 Sat Jul 25 11:13:02 2009 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08-53 2013 9189EF035E0A4BED357885DA0FSFC314A17R TC559CAFDE0F45082AA24AC18EAD i
42 N fetcl 4 2969 Thu Mar 15 09:21:13 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 FETETGD4162E80E0BCBC24BCH38CS6AEIZCOTABODBTOOCBFOASTEOIDIELMSFIE 0
43 |hosts fetcihosts 230 Fri Jul 12 09:12:55 2013 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:12:55 2013 | B841DB 7C5683E 3C1FFDC62550CFB439ADCSCAC16A4B4F C581DB302C0507EF 15 0
44 |pam.cont retc/pam.cont s52 Wed Feb 820:43:102012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 8AA7F3472ECBAA24A572D6FFDIT48CE 3DA223FBAIB2545008EAAAE T68B6406C4 0
45 |magic.mime lerc/magic. mime 11 Tue Nov 1 06:40:46 2011 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 58219ECABFE0GDB4640B4E86341FEB3099CB078146CIEEET3EC55152819DF 247 0
46 |manpath.config Jfetc/manpath.config 5173 Fri Dec 28 11:24:04 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 | 3050834AB200A8CFSTAE2523330F6DABTE4867FCAF3E12E6CA2787TD650A0FEBE 0
47 |sb-base-logging.sh \sb-base-logging.sh 3279 Thu Aug 11 08:59.53 2011 Sun Aug 4 22.12.31 2013 Fri Jul 12 09.08:53 2013 _80B2A941F9B10D15454CDDDEET: 8ES1 55F58320DE12A1F2AD 0
48 |hosis allow tetcihosts. allow 580 Wed Feh 13 17:09:54 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08-53 2013 _98358BANS7CART165E0621 EF18620E C59D178A1599CCRIBCF 54076E 76EORRTAA i
49 |anacrontab et 395 Sun Jun 20 04:11:02 2010 Sun Aug 4 22:12:32 2013 Fri Jul 12 09:08:53 2013 7EB994BFBOFG0295E917813701DA03BS9B8EEEE2132FA 1958CB00527BDBDEG2T 0
50 |passwd letc/passwd 1662 Fri Jul 12 09:14:19 2013 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:14:19 2013 CFE52C65F87FFBAAD265B0BDB4262485BEFCFEEGCDA3332F6AB3F2CCTEN2FBCY 0
51 |osrelease retclos telease 141 Fri Jan 25 06:31:20 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 _348ADCTICIE 1307917830 600DSBAICI2BIED1DIE5T SCALABAL4EDO o -
[T 57 S Sheet) G g m B
Sheet 1/1 Default so | B sum=0 o—e——@ 100%

FIGURE 3.12

Linux Execution Results pfish Result File.

88

ddy soIsuaio4 UoUMhd 1sii4 INQ € YALAVHI

Figure 3.12

Additional Resources 89

pFishLog.log (~/Desktop) - gedit

R P open - B sae 8 undo

pFishLog.log %
2013-08-04 22:19:13,028 Welcome to p-tish version 1.8 ... New Scan Started
2013-08-04 22:19:13,029
2013-88-04 22:19:13,629 System: linux2
2013-08-04 22:19:13,029 Version: 2.7.3 (default, Aug 1 2012, 05:16:07)
[6CC 4.6.3]
2013-08-84 22:19:13,029 Root Path: fetc/
2013-98-04 22:19:13,031 ['blkid.tab', Path does NOT exist]
2013-88-04 22:19:13,068 Open Failed: fetc/.pwd.lock
2013-88-84 22:19:13,076 Open Failed: fetc/mtab.fuselock
2013-88-84 22:19:13,088 Open Failed: Jetc/sudoers
2013-88-84 22: ,0890 ['vtrgb', skipped Link HOT a File]
2013-08-04 22:19:13,091 Open Failed: jetc/fuse.conf
2013-08-04 22:19:13,094 Open Falled: Jetc/shadow
2013-98-84 22:19:13,095 Open Falled: fetc/gshadow

2013-88-84 22:19:13,114 Open Failed: /etc/passwd-

2013-08-04 22:19:13,115 Open Failed: fetc/shadow-

2013-08-04 :119:13,122 Open Falled: jetc/group-

2013-08-04 22:19:13,122 Open Failed: /etc/gshadow

2013-88-84 22:19:13,123 ['motd’, Skipped Link NOT a File]
2013-08-84 22:19:13,124 Open Failed: Jetc/at.deny

2013-98-04 22:19:13,129 ['resolv.conf', skipped Link NOT a File]
2013-88-84 22:1 ,196 ['S70dns-clean', Skipped Link NOT a File
2013-08-04 22:19:13,196 ['K20acpi-support’', Skipped Link NOT a File]

W

PlainText * Tabwidth: 8 = Lni,cCol1 INS

FIGURE 3.13
Linux Execution Results pFishLog File.

SUMMARY QUESTIONS

1. If you wanted to add additional one-way hashing algorithms, which functions
would you need to modify? Also, by using just the Python Standard Library what
other one-way hashing algorithms are readily available.

2. If you wanted to eliminate the need of the two global variables how could you
easily accomplish this by using classes? What function would you convert to a
class and what methods would you need to create?

3. What other events or elements do you think should be logged? How would you go
about doing that?

4. What additional columns would you like to see in the report and how would you
obtain the additional information?

5. What additional information (such as Investigator name or case number) should
be included in the log. How would you obtain that information?

LOOKING AHEAD

In Chapter 4, I will be continuing with the cookbook section by tackling searching
and indexing of forensic data.

Additional Resources

Hosmer C. Using SmartCards and digital signatures to preserve electronic evidence. In: SPIE
proceedings, vol. 3576. Forensic Technologies for Crime Scene and the Laboratory 1. The
paper was initially presented at the investigation and forensic science technologies sym-
posium; 1998. Boston, MA, http://proceedings.spiedigitallibrary.org/proceeding.aspx?
articleid=974141 [01.11.1998].

Kim G. The design and implementation of tripwire: a file system integrity checker. Purdue
ePubs computer science technical reports, 1993. http://docs.lib.purdue.edu/cstech/1084/.

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://docs.lib.purdue.edu/cstech/1084/
Figure 3.13

This page intentionally left blank

CHAPTER

Forensic Searching and
Indexing Using Python

CHAPTER CONTENTS

INEFOAUCHION ... r e s e s s mn e e e e e e e n e e e e e mn e e nmnnnnan
Keyword Context Search
How can This be Accomplished Easily in Python?ccooooiiiiiiiiiiii 94
Fundamental RequIrementscoiuuiiiiiii e 96
Design CONSIAEIAtIONS ..ivvvuiieiiiieee it e e e e e e e e e e e e et e e ara e eanas 96
Main FUNCHON .o 98
ParseCommandLingooo i 98
SEArCAWOIAS FUNCHION ...ciiiiiiiiiiiiis e 98
PrintBUffer FUNCHIONSu.iiiiiiiiiie et 99
J0 = = = PP 99
WIItING ThE COUE ..o 99
Code WalK-Through ...t e e n e e e e e 100
Examining Main—Code Walk-Throughccoooiiiiiiii e, 100
Examining _p-Search Functions—Code Walk-Throughcccooviiiiiiiiinnnnns 101
Examining ParseCommandLingccovieiiiiiiiiiiiiiiiii e 101
Examining ValidateFileRead(theFile)coooviiiiiiiiiiii e 103
Examining the SearchWords Functioncccoiiiiiiiiii e, 103
Examining the PrintBuffer FUNCHONcoouuiiiiiiiii i 106
Results Presentation ... 107
INAEXING ..eeeeeeeiciiri e e e e e e e e s e s s s s e e e s sme e e e s an e e e s s sne e e e me e e e s san e e e s snneeeasaneeseessnnenansnnnnn 109
Coding iSWOrdPIODabIecoooeiieieieer e 112
p-Search Complete Code LiStingscccoeecmrmiiiiiiessmiriire e rn e cmme e mmnnes 114
O T=T 1 (o] 1) 114
=S AIC N DY ittt 116
Chapter REVIBWciccceericicereiceirsscssee s s e e s s s me e s s e e s s ssne s e s me e s e mn e e e smnn e s e mnensnnnnn 122
SUMMAry QUESHIONScoooeeieieieiir e s e s e 123
Additional RESOUICEScceiccceerrrrsmrrrsssnerrissnerssssnrrsssssnessssneessssnsesssssnesssssnsessssnnensnss 123
INTRODUCTION

Searching is certainly one of the pillars of forensic investigation and today a search is
only as good as the investigator running it. Knowing what to search for, where to
search for it (in a file, in deleted files, slack space, e-mail files, a database, or

Python Forensics 9 1
© 2014 Elsevier Inc. All rights reserved.

-
92

CHAPTER 4 Forensic Searching and Indexing Using Python

application data), and then interpreting the search results requires both experience
and knowledge of criminal behavior. Over the past several years we have seen
the emergence of indexing of evidence and we have also seen frustration with the
performance of indexing methods. The Python programming language has several
built-in language mechanisms along with Standard Library modules that will assist
in both searching and indexing.

There are many reasons for searching and indexing, and I want to make sure we
examine more than just simple keywords, names, hashes, etc. So what is the under-
lying reason or rationale why we search? Referencing fictional works or characters is
always a risk when writing a book like this, but in this case I believe it works. Most of
us have read some if not all of the works of Sir Arthur Conan Doyle’s Sherlock
Holmes novels and short stories. In these fictional accounts, Holmes uses both
deductive and inductive reasoning to create theories about the crime and profiles
of the suspects, victims, and even bystanders.

Deductive reasoning takes no risk, in other words if you have verifiable facts along with a valid
argument the conclusion must be true. For example:

1. All men are mortal
2. Socrates was a man
Therefore, Socrates was mortal.
Inductive reasoning on the other hand takes risks and uses probabilities. For example:

—_

. John always leaves for the office at 6:00 AM
. He punches in between 7:30 and 7:45 AM each day
3. John left home today promptly at 6:00 AM verified by a surveillance camera and punched
in at work at 7:42 AM.
Therefore, John could not have committed a murder at 7:05 AM that occurred over 3 miles
from the office.

N

The basis of these hypotheses whether based on deductive or inductive reasoning
is facts. Therefore, I believe the reason to search and index is to discover facts that we
then use to create theories and hypothesis. I know this may seem brutally obvious,
but then again we sometimes narrow in on a theory before we have any trustworthy
facts. This is especially true in the digital world where we can be quick to judge as the
saying goes “because I saw it on the Internet” when in fact the Internet or digital data
have been manipulated to skew the facts.

Seasoned investigators understand this and are typically very thorough in their
investigation of digital crime scenes. I have had the privilege of working with many
such investigators and they are tenacious in validation of digital evidence. I cannot
tell you how many times I have been asked “are you sure about that?”” or “can you
prove that” or even “how else could this have happened?” Finally, we need to be
conscious in our searching to discover both inculpatory and exculpatory evidence
and make sure both types of facts are recorded before we create theories or
hypothesis.

Keyword Context Search 93

Inculpatory evidence supports a defined hypothesis
Exculpatory evidence is contradictory to a defined hypothesis

The question then becomes what facts do we wish to discover? Fundamentally,
the answer is who, what, where, when, and how or to be slightly more specific, here
are small set of examples.

You might be wondering about the “Why” of the search. We tend not to think about why as in
many cases this is generated by the investigator, through experience, intuition, and deep
understanding regarding the circumstances that surround the case.

* What documents exist and what is their content or relevance? When were they
created, modified, last accessed, when and how many times were they printed?
Were the documents stored or written to a flash device or stored in the cloud?
Where did they originate?

+ What multimedia files exist and where did they originate? For example, were
they downloaded from the Internet or recorded or snapped by the suspect or
victim. If so, what camera or recording device was used?

» Who is the suspect(s) we are investigating and what do we know about them? Do
we have a photograph, phone numbers, e-mail addresses, home address, where do
they work, when and where have they traveled, do they own a vehicle(s), if so
what make, model, year, and plate number? Do they have an alias (physical world
or cyber world)?

* Who are their known associates, what do we know about them?

I think you get the idea, the questions that we might ask during a search are vast with
some being very specific and others more general. In this chapter, we certainly can-
not solve all of these issues, but we can scratch the surface and create Python pro-
grams that will assist us now and be able to be evolved in the future.

KEYWORD CONTEXT SEARCH

Keyword searching with context is the ability to perform a search of a data object
like a disk image or a memory snapshot, and discover keywords or phrases that relate
to a specific context or category. For example, I might want to perform a search of a
disk image for each occurrence of the following list of street names for the drug
cocaine:

blow, C, candy, coke, do a line, freeze, girl, happy dust, mama coca, mojo,
monster, nose, pimp, shot, smoking gun, snow, sugar, sweet stuff, white powder,
base, beat, blast, casper, chalk, devil drug, gravel, hardball, hell, kryptonite, love,
moonrocks, rock, scrabble, stones, and tornado.

94

CHAPTER 4 Forensic Searching and Indexing Using Python

How can this be accomplished easily in Python?

In order to tackle keyword searching with Python we must first address several sim-
ple issues. First, how should we store the search words or phrases? Python has several
built-in data types that are ideally suited to handle such lists each with their own
unique capabilities and rules. The basic types are sets, lists, and dictionaries. My
preference would be to create a set to hold the search words and phrases. Sets in
Python provide a nice way of dealing with this type of data mainly due to the fact
that they automatically eliminate duplicates, they are trivial to implement, and they
can easily be tested for members.

The code below demonstrates the basics. I start by initializing an empty set named
searchWords. Next, the code opens and then reads the file narc.txt that contains
narcotic-related words and phrases. I of course include exception handling for the
file operations to ensure we successfully opened and then can read each line from
the file. Next, I print out the list of search words and phrases that were loaded line
by line (notice one word or phrase per line) and then search the list for the word
“kryptonite” and either print “Found word” if the word exists in the search words
list or “not found” if the word does not exist. One fine point, I specify line.strip()
when adding the words to the set searchWords. This strips the newline characters
that exist at the end of each line.

import sys

searchWords = set()

try:
fileWords = open('narc.txt")
for Tine in fileWords:

searchWords.add(line.strip())

except:
print("file handlingerror)"
sys.exit()

print(searchWords)

if ("kryptonite'in searchWords):
print("Found word)"

else:

print("not found)"

Executing the code produces the following output:

Starting with the contents of the set:

{'shot', 'devil drug’, 'do a line', 'scrabble’, ‘casper’, 'hell’, 'kryptonite’, 'mojo’, ‘blow",
'stones tornado', 'white powder', 'smoking gun', 'happy dust', 'gravel', 'hardball',
'moonrocks', 'monster', 'beat', 'snow sugar', 'coke', 'rock', 'base', 'blast', 'pimp', 'sweet
stuff', ‘candy', 'chalk', 'nose', 'mama cocd', 'freeze girl'}

Then printing out the results of the search for kryptonite produces
Found word
This simple code then solves two fundamental challenges:

(1) Reading a list into a set from a file
(2) Searching a set to determine if an entry exits in a set.

Keyword Context Search 95

Next, we have to solve the problem of extracting words and phrases from the target of
a search. Almost always this requires that a binary file or stream be parsed. These
binary data could be a memory snapshot, a disk image or a snapshot of network data.
The key is the data would be either unformatted or formatted based on one of hun-
dreds of standards, some open and some proprietary with text and binary data inter-
twined. Therefore, if we would like to develop a simple search tool that could extract
and compare text strings without regard to the format or content, how might we
accomplish this?

The first challenge would be to define what Python data object we would use to
hold these binary data. For this I have chosen the Python object bytearray as this fits
our criteria exactly. As the name implies bytearrays are simply a series of bytes
(a byte being and unsigned 8-bit value) starting at the zero array element and extend-
ing to the end of the array. I am going to take advantage of a couple of Python spe-
cialties, for example, loading a file into a bytearray, the core code to do so is only
two lines.

The first line opens a file for reading in binary mode. Whereas the second line
reads the contents of the file into a bytearray named baTarget. You notice that I pre-
fix the object Target with “ba” this simply makes the code more readable and anyone
will immediately recognize that the object is of type bytearray. Also, note this code is
just an illustration. In the real program, we have to check the return values from the
function calls and make sure there are no errors, I will illustrate that technique when
we get to the actual program.

targetFile =open('file.bin', 'rb")
baTarget =bytearray(targetFile.read())

One of the immediate questions you might have is, “how do I know how many
bytes were loaded into the bytearray?” This is handled just like any other Python
object by using the len function.

sizeOfTarget =len(baTarget)

In Figure 4.1, we can see the object baTarget that was created and also the sizeOf-
Target that was determined of baTarget using the len function.

Variable Value
baTarget <huge bytearray 0x1f255f0>
baTargetCopy <huge bytearray 0x1f255f0>
fileWords <closed file 'c:\\pytest\\narc.txt’, mode 'r' at 001FAED30>
line ‘tornado\n’

[searchWords <set 0x1fc6120; len=27>

sizeOfTarget 77650
targetFile <closed file 'c:\\pytest\\capture.raw', mode 'rb’ at 0x01FAED88>

FIGURE 4.1

Snapshot of stackdata displaying the baTarget object and the size in bytes of the baTarget
bytearray.

Figure 4.1

96

CHAPTER 4 Forensic Searching and Indexing Using Python

Fundamental requirements

Now that [have defined the new language and data elements we intend to use for our
simple text search, I want to define the basic requirements of the program as shown in
Table 4.1.

Design considerations

Now that I have defined the basic requirements for the application, I need to factor in
the design considerations. For the search program, I will be using Python Standard
Library modules and the specialized code we developed for parsing the target file.
Table 4.2 covers the basic mapping of requirements to modules and functions that
will be utilized.

Next, I want to define the overall design of the search capability. As with the
p-fish program we developed in Chapter 3, I will be using the command line and
command line arguments to specify the inputs to the program. For the search results,
I will be directing the output to standard output using some specialized methods
developed to render the data for easy interpretation. Finally, I will be using the
built-in logging functions to complete the forensic nature of the search (Figure 4.2).

Turning to the internal structure, I have broken the program down into four main
components. The Main program, ParseCommandLine function, the actual Search-
Words function, PrintBuffer functions for outputting the results, and 1ogger (note
logger is actually the Python logger module), that is utilized by the major functions
of p-search. I briefly describe the operation of each below and during the code

Table 4.1 Basic Requirements

Requirement Requirement
number name Short description
SRCH-001 Command Line Allow the user to specify a file containing keywords
Arguments (ASCII in this example)
Allow the user to specify a file containing a binary
file to search
Allow the user to specify verbose output regarding
the progress of search
SRCH-002 Log The program must produce a forensic audit log
SRCH-003 Performance The program should perform the search efficiently
SRCH-004 Output The program should identify any of the keywords

found in the binary file and provide a Hex/ASCI
printout, the offset where the keyword was found
along with the surrounding values in order to
provide context

SRCH-005 Error Handling The application must support error handling and
logging of all operations performed. This will
include a textual description and a timestamp

Keyword Context Search

97

Table 4.2 Standard Library Mapping

Requirement

User Input (001)

Performance (003)

Output (004)

Logging and error
handling (002 and

Design considerations

User input for keyword and
target file

Selecting the right language
and library objects to
process the data is
important when designing a
search method

The search results must be
provided in a meaningful
manner. In other words,
mapping the identified
keywords to the offset in the
file along with pre- and
postdata that surround the
identified keywords

Errors may occur during the
processing of the keyword

Library selection

| will be using argparse from the
Standard Library module to obtain
input from the user

| will be using Python sets and
bytearrays to handle the data
related to searching which will
increase performance and make
the search process extensible

| will be using the Standard Library
print function to accomplish this,
but instead of writing the result to
a file directly, | am going to write
the data to standard out, the user
can then pipe the output if they
wish to a file or into other
programs or functions

The Python Standard Library
includes a 1ogging facility which |

005) and target file. Therefore, can leverage to report any events
handling these potential or errors that occur during
errors must be rigorous processing

User — | Standard
— | out
Program\ Arguments
Event
—_—— | and
error log
p-search context diagram
FIGURE 4.2

p-search context diagram.

Figure 4.2

98

CHAPTER 4 Forensic Searching and Indexing Using Python

-search internal structure
P Standard | /|

out

ParseCommandLine

Program
Arguments

HEX ASCII
printout

Keywords
target file

PrintBuffer

ASCII
heading

foundWords
Offset
buffer

SearchWords

PrintHeading

Events

logPath
events

LogRecords error log

FIGURE 4.3
p-search internal structure.

walk-through section a more detailed line by line explanation of how each function
operates is provided (Figure 4.3).

Main function

The purpose of the Main function is to control the overall flow of this program. For
example, within Main, I setup the Python logger, I display startup and completion
messages, and keep track of the time. In addition, Main invokes the command line
parser and then launches the SearchWords function. Once SearchWords completes,
Main will log the completion and display termination messages to the user and

the log.

ParseCommandlLine

In order to provide smooth operation of p-search, I leverage the ParseCommandLine
to not only parse but also validate the user input. Once completed, information that is
needed by the core search method will be available via the parser.

SearchWords function

SearchWords is the core of the p-search program. The objective is to make this func-
tion as quick and accurate as possible. In this example, we are only searching for
ASCII text strings or words. This provides a huge advantage and we can set the
search up in a way that is quick and effective. The algorithm performs the search
in two passes over the baTarget bytearray. The first pass converts any byte that is
not an alpha character to a zero. The second pass collects sequences of alpha char-
acters. If the consecutive alpha character sequence is greater than or equal to

Figure 4.3

Keyword Context Search 99

MIN_WORD and less than or equal to MAX_WORD before encountering a zero, the
characters are collected and then compared to the set of keywords. Note MIN_-
WORD and MAX_WORD will be defined as constants. In the future, they could
be command line arguments to the search.

PrintBuffer functions

The PrintBuffer function is called by SearchWords whenever a keyword match is
discovered. Then the offset within the file and Hex/ASCII display are sent to
standard out.

logger

The built-in Standard Library logger provides us with the ability to write messages to
a log file associated with p-search. The program can write information messages,
warning messages, and error messages. Since this is intended to be a forensic appli-
cation, logging operations of the program are vital. You can expand the program to
log additional events in the code; they can be added to any of the _p-search functions.

Writing the code

Once again, I broke the code into source files p-search.py and _p-search.py, where
_p-search.py provides the support and heavy lifting functions of p-search. In
Figure 4.4 you can see the WingIDE environment along with the p-search program
running. The upper left corner displays the local and global variables. In the upper

 prosarchpy: prasarhimpr Wing DF - - - . b gt
1] B EE® A~ 2r-10m B3y EEM@
Debug /O (cidin, stdout, siden) appears below ~ Qptions
0000045b 00 00 00 00 00 00 00 00 00 00 68 73 68 6d 00 Ge . hshm.n
Found: tornado At Address: 000007ad 1
Offset 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF ASCIl ¥
00000794 79 00 61 6f 6c 00 63 6f 6d 00 6e 65 65 64 00 74 ny.aol.com.need.t
00000724 6f 00 73 65 65 00 61 00 74 6f 72 6e 61 64 6f 00 to.see.a.tornado.
DONNNTRA _ON_NN_NO_DA_OR_DN_ON_ON_NN_NN_NN_E2 DN_NN_AR AR R hh
o| Sewch | Seachinfiles | SeackDats |+ | Debug L/ | Messages | Open Fies [Python Shell
Nioow it
s v x
39 startTime = time.time()
40
il 41 # Perform Keyword Search
42 _psearch.SearchWords()
43
44 # Record the Ending Time
45 endTime = time.time()

46 duration = endTime - startTime

48 logging.info(Elapsed Time: * + str{duration) + ' seconds’)
49 logging.infa(")
50 logging.info('Program Terminated Normally')
51
52
FIGURE 4.4

WingIDE p-search execution.

Figure 4.4

100

center panel you get a glimpse of the program output showing the match of the word
“tornado” along with the detailed Hex/ASCII representation of the output. On the far
right, the files associated with the program are listed. Finally, in the bottom portion of
the screen you can see the source code for the program. In the following section, we
will walk-through the important code elements to disclose the detailed method and

CHAPTER 4 Forensic Searching and Indexing Using Python

approach I have taken.

CODE WALK-THROUGH

I will be inserting dialog as I discuss each code section. The code walk-through will
give you an in-depth look at all the codes associated with the program. I will be first
walking through each of the key functions and then will provide you with a complete

listing of both p-search.py and _p-search.py.

Examining Main—code walk-through

if _name__=="_main

import logging
import time
import _psearch

For the main program we need to import logging to record forensic events and
time to calculate the duration of program execution both from the Python
Standard Library. We also import our _psearch module that contains the support-
ing and core functions of p-search

' [N

P-SEARCH_VERSION="'1.0"
Turn on Logging

logging.basicConfig(filename='pSearchlog.log',level=10gging.DEBUG,

format="%(asctime)s %2(message)s")

Next I invoke command line parser to obtain the program arguments passed in by
the user.

J# Process the Command Line Arguments
_psearch.ParseCommandLine()

I then setup logging to occur and send the startup events to the logger.
log=1logging.getlLogger('main._psearch")
log.info("p-search started)"

I record the start time of execution in order calculate duration when the search is
complete.

Record the Starting Time

startTime =time.time()

Code Walk-Through 101

Next, I invoke the SearchWords function. Note that this functions is contained
in the _psearch module thus I need to prefix the call with the module name
_psearch.

J# Perform Keyword Search

_psearch.SearchWords ()

I record the end time and calculate the duration and make the final entries in
the log.

Record the Ending Time

endTime =time.time()
duration =endTime - startTime

logging.info('Elapsed Time: '+ str(duration) +'seconds')
logging.info('")
logging.info('Program Terminated Normally")

Examining _p-search functions—code walk-through

The remaining functions are contained in the _p-search.py file. The file starts by
importing the needed modules. These include argparse for processing command
line arguments. The os module is for handling file I/O operations. Finally, logging
is used for forensic logging capabilities.

import argparse
import os
import logging

Examining ParseCommandLine

For the p-search program, we only require two parameters from the user—the full
path name of the file containing the keywords to search along with the full path name
of the file we wish to search. The verbose option is optional and when it is not pro-
vided the program messages will be suppressed (Table 4.3).

As you can see the ParseCommandLine prepares for three arguments verbose,
keywords and srchTarget. Keywords and search target are required parameters
and they are both validated by the function ValidateFileName().

def ParseCommandLine():
parser =argparse.ArgumentParser('Python Search")

parser.add_argument('-v', '--verbose', help="enables printing of
programmessages", action='store_true')

parser.add_argument('-k', '--keyWords', type=ValidateFileRead,
required=True, help="specify the file containing search words)"

parser.add_argument('-t', '--srchTarget', type=ValidateFileRead,
required=True, help="specify the target file to search)”

102 CHAPTER 4 Forensic Searching and Indexing Using Python

Table 4.3 p-search command line argument definition

Option Description Notes

-V Verbose, if this option is specified then
any calls to the DisplayMessage()
function will be displayed to the standard
output device, otherwise the program will

run silently

-k Keyword, this allows the user to specify The file must exist and must be
the path of the file containing the readable or else the program will
keywords abort

-t Target, this allows the user to specify The file must exist and must be
the path of the file to be searched readable or else the program will

abort

Next we establish a global variable to hold results of parse_args operations. Any
invalid entries will automatically abort processing.

global gl_args

gl_args =parser.parse_args()

DisplayMessage("Command 1ine processed: Successfully)"
return

One of the nice features of argparse is the ability to include a help message with
each entry. Then whenever the user specifies -h on the command line argparse
automatically assembles the appropriate response. This allows the developer to
provide as much information as possible to assist the user in providing the correct
response, so be verbose. Figure 4.5 depicts the operation of the -h option for
p-search.

= ™
vt SO | tviet

-

:\PYTEST>Eython p-search.py -h
usage: Python Search [-h] [-v] -k KEYWORDS -t SRCHTARGET

optional arguments:
il -h, --he show this help message and exit
-v, --verbose enables printing of additional program messages
-k KEYWORDS, --keywWords KEYWORDS
specify the file containing search words
-t SRCHTARGET, --srchTarget SRCHTARGET
specify the target file to search

\PYTEST>

FIGURE 4.5
p-search execution using only the -h or help option.

Figure 4.5

Code Walk-Through 103

Examining ValidateFileRead(theFile)

This function supports the ParseCommandLine and parser.parse_args () by validat-
ing any filenames provided by the user. The function first ensures that the file exists
and then verifies that the file is readable. Failing either of these checks will result in
the program aborting and will raise the appropriate exception.

def ValidateFileRead(theFile):
#Validate the path is avalid

if not os.path.exists(theFile):
raise argparse.ArgumentTypeError('File does not exist")

f#Vvalidate the path is readable

if os.access(theFile, 0s.R_0K):
return theFile
else:
raise argparse.ArgumentTypeError('File is not readable")

Examining the SearchWords function

The core of p-search is the SearchWords function which compares the keywords pro-
vided by the user with the contents of the target file specified. We will take a deep
dive line by line of SearchWords.

def SearchWords():
Create an empty set of search words

As I mentioned in the design considerations, I decided to use a Python set object to
hold the keywords to search. To do this I simply assign searchWords as a set
object.

searchWords = set()

Next, I need to load the keywords from the file specified by the user in the com-
mand line arguments. I do this using the ‘try, except, finally’ method to ensure we
trap or capture any failures.

f# Attempt to open and read search words
try:
fileWords = open(gl_args.keyWords)

Once we successfully open the keywords file I process each line striping the words
from the line and adding it to the searchWords set.

for line in fileWords:

searchWords.add(line.strip())
except:

Any exceptions encountered are logged and the program is aborted

104 CHAPTER 4 Forensic Searching and Indexing Using Python

log.error('Keyword File Failure: '+ gl_args.keyWords)
sys.exit()
finally:

Once all the lines have been processed successfully, the file is closed.

fileWords.close()

J# Create Log Entry Words to Search For

Next, I write entries into the forensic log to record the words that are to be
included in the search.
log.info('Search Words")

log.info('Input File: tgl_args.keyWords)
log.info(searchWords)

Attempt to open and read the target file
#and directly load the file into a bytearray

Now that I have the keywords to search for, I will read the target file provided and
store the data into a Python byte array object.

try:
targetFile =open(gl_args.srchTarget, 'rb")
baTarget = bytearray(targetFile.read())
except:

Any exceptions will be caught, logged and the program will exit.

log.error('Target File Failure: '+ gl_args.srchTarget)
sys.exit()

finally:
targetFile.close()

I record the size of the target file on success.

sizeOfTarget= len(baTarget)

#f Post to 1og

I also post this information to the forensic log file.

log.info('Target of Search: '+ gl_args.srchTarget)
log.info('File Size: +str(sizeOfTarget))

I'm going to modify baTarget by substituting zero for all not alpha characters.
In order to ensure that I can display the original contents of the target file, I make

a copy.

baTargetCopy = baTarget
Search Loop
step one, replace all non characters with zero's

Code Walk-Through

The first search step is to traverse the target and replace all non alpha characters
with zero to make the search of words much easier and faster. The loop below
starts at the beginning of the file and performs the replacement.
for i inrange(0, sizeOfTarget):
character =chr(baTargetl[i])
if not character.isalpha():
baTarget[i] =0

#Fstep# 2 extract possible words fromthe bytearray
and then inspect the searchword 1ist

Now that the bytearray baTarget only contains valid alpha characters and zeros |
can count any consecutive alpha character sequences and if the sequence meets
the size characteristics defined I can check the collected sequences of characters
against the smaller keyword list

create an empty list of not found items

To be thorough, I’ m creating a list of notFound character sequences that meet our
criteria of sequences of characters, but do not match the keywords specified by
the user.

notFound =[]

Now I begin the actual search. I simply check each byte and if it qualifies as a
character I increase the count by one. If I encounter a zero, I stop the count
and see if [have encountered enough consecutive characters to qualify as a pos-
sible word. If 1 don’t then I set the count back to zero and continue the search. If on
the other hand the count meets the criteria for the minimum and maximum number
of characters I have a possible word.

cnt=0
for i inrange(0, sizeOfTarget):
character =chr(baTarget[il)
if character.isalpha():
cnt +=1
else:
if (cnt >=MIN_WORD and cnt <= MAX_WORD) :
newWord = 7

If I have a sequence that meets the criteria I need to collect the characters that [
have now skipped. One of the tricks is to not bother collecting or building possible
strings until you meet the criteria. Once the criteria is met I backtrack and pull the
consecutive letters together and store them in the variable newWord. I use the
newWord variable to search the set of keywords.

for zinrange(i-cnt, i):
newWord = newWord + chr(baTarget(z])

To search the set of keywords stored in the set seachWords, I simply write the one
line test. This is the power of properly choosing the correct object type for storing
the keywords.

105

106 CHAPTER 4 Forensic Searching and Indexing Using Python

if (newWord in searchWords):

If I get a hit in the searchWord list, I call the PrintBuffer function with the details
of the hit which includes the word I found, the offset in the buffer, the saved unmo-
dified buffer, where to start printing the result and where to stop.

PrintBuffer(newWord, i-cnt, baTargetCopy, 1i- PREDECESSOR_
SIZE, WINDOW_SIZE)
print
else:
notFound.append(newWord)
cnt =0
else:
cnt =0

After I have processed the complete bytearray, I also print out the notFound list
created, this will give the investigator additional possible words to consider that
were not in the keyword list.

PrintNotFound(notFound)

End of SearchWords Function

Examining the PrintBuffer function

Most of us that investigate cybercrime for a living use Hex editors or viewers quite
often. The PrintBuffer function is a very simple Hex and ASCII viewer written in
Python. It is simple to ensure that it will run on almost any platform (Windows,
Linux, Mac, and even mobile devices). The trick is to not get fancy, but instead just
provide the facts. Let us take a look how this can be accomplished with just a few
lines of Python code.

def PrintBuffer(word, directOffset, buff, offset, hexSize):

The inputs to the function are as follows:
word: The alpha string that was identified
directOffset: The offset in the target file to the beginning of the alpha string
buff: The actual buffer
offset: The offset where the Hex/ ASCII Window should start
hexSize: What is the size in bytes that should be displayed
I start by printing the basic facts, the word and offset where the string was
found.

print "Found: "+ word + " At Address: ",
print "%08x " % (directOffset)

Next, I print the heading which prints the following heading.
Offset 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE O F ASCII
PrintHeading()

Next, I just need to print the Hex and ASCII values found in the buffer starting that
the specified offset. The outer loop continues in 16 value chunks since each line

Results Presentation

will hold the next 16 values. Since we are printing this out in Hex this makes the
most sense.

for i inrange(offset, offset+hexSize, 16):
for jinrange(0,17):

The inside loop then needs to print each of the next 16 bytes in hex. I start by print-
ing the offset value in hex leaving the appropriate amount of same. Note also, that
I use the syntax %08x which allows for an 8 digit Hex address zero filled. This
should be plenty for this demonstration application.

if(j==0):
print "%08x " % i,
else:
byteValue =buff[i+j]
print "%02x " % byteValue,
print " "
Next we repeat this loop but this time we print the ASCII character representation
instead of the Hex values.

for jinrange (0,16):
byteValue =buff[i+j]

To avoid any special characters we only print the ASCII printable set and then
replace the other values with a period.

if (byteValue >=0x20 and byteValue <= 0x7f):
print "%c" % byteValue,
else:
print'.',
print
End Print Buffer

107

RESULTS PRESENTATION

Now that the walk-through has been completed and I have gone through a deep dive
into the code, let us take a look at the results. Figure 4.6 is a snapshot of the directory
that contains all the requisite files. This includes the two Python program files
p-search.py and _p-search.py. It includes the narc.txt file that contains the search
words. Capture.raw is a file containing binary data that we wish to search. pSear-
chLog.log is the forensic log file output from p-search and finally results.txt is a file
containing the standard output results that were piped to a file for easy viewing.

Figure 4.7 lists the file containing the drug-related keywords that we intend to
search for.

Figure 4.8 is the direct output of the program starting with the command line
entry which specified that the results be piped to the file results.txt. Also included
is the results.txt file. You can see that we identified three hits in the target file, they
include sugar, tornado, and moonrocks. You also see the Hex/ASCII printout gen-
erated by the program along with the unidentified words at the bottom.

108 CHAPTER 4 Forensic Searching and Indexing Using Python

:\PYTEST>dir .
Volume in drive C is HP
Volume Serial Number is S5EC5-6025

| Directory of C:\PYTEST

08/27/2013 : PM <DIR>
08/27/2013 :18 PM <DIR> o
08/27/2013 H AM 77,650 capture.raw

08/26/2013 H PM 208 narc.txt
08/27/2013 : PM 1,365 p-search.py
08/27/2013 . PM 650 pSearchLog.log

:16 PM 5,383 results.txt

:04 PM 6,966 _psearch.py

6 File(s) 92,222 Egtes

2 Dir(s) 172,577,951,744 bytes free

FIGURE 4.6
Execution test directory for p-search.

:\PYTEST>more narc.txt
blow

\PYTEST>

FIGURE 4.7
Keyword file dump.

Finally in Figure 4.9, you see the contents of the log file generated by p-search
that includes the start message, the search word file, and contents. Also included is
the name and size of the target file capture.raw. Finally, you see the elapsed time for
execution in seconds and the program termination message.

To round out this example and demonstrate the portability, I have included two
additional screenshots running the unmodified p-search program on both a Linux
machine (Figure 4.10) and iMac (Figure 4.11).

Figure 4.6
Figure 4.7

Indexing 109

C:\PYTEST>python p-search.py -k narc.txt -t capture.raw > results.txt
C:\PYTEST>more results.txt
Found: sugar At Addr’ess 00000406
offset 00 02 03 04 05 06 07 08 09 0A OB OC OD OE OF ASCII
1000003eb 00 77 48 00 6a 75 6c 69 6f 00 79 61 68 6f &f 00 ..wH.julie.yahoo
1000003fb 63 6f 6d 00 00 7a 00 6f 66 00 73 75 67 61 72 00 .com..z.of.sugar
(0000040b 00 00 00 OO OO0 00 OO0 0D 00 66 69 00 00 00 00 OO0 B
10000041b 00 00 00 00 QO Q0O 00 00 00 6d 66 00 00 00 00 00 eoteda i ST ek s
[0000042b 00 00 00 OO0 OO0 00 00 6b 00 51 00 00 00 00 00 OO0 S B
{0000043b 00 00 00 00 Q0 00 00 Q0 Q0 00 00 0QQ 55 55 4e QO 46 UUN
10000044b 00 00 00 00 42 00 00 00O 00O 00 00 00 00 00 00 00 A E
100000450 00 00 00 00 00 OO0 00 00 OO0 OO0 68 73 68 6&d 00 6e shm.n
Found: tornade At Address: 000007ad
Offset 00 01 02 03 04 05 06 07 08 09 0OA OB OC OD O OF
100000794 79 00 61 &6F 6c 00 63 G6F 6d 00 Ge 65 65 64 00 74 ny.aol.com.need.t
1000007 a4 6f 00 73 65 65 00 61 00 74 6f 72 6e 61 64 6Ff 00 to.see.a.tornado.
1000007b4 00 00 00 00 OO0 OO0 00 00 0O 0O OO0 52 00 00 68 68 SER =R . hh
1000007 c4 00 4e 00 51 4b 44 00 00 00 00 00 00 00 00 0O OO0 h.N,.Q@KD. ..t 40 .
1000007 d4 00 00 66 00 00 00 00 00 OO 00 73 6b 75 00 00 48 B T | < T
1000007 e4 66 00 6f 00 76 00 00 00 00 64 59 6b 00 00 00 00 HEioives e sd¥kasns
1000007 f4 00 65 00 00 00 74 6c 00 00 00 00 00 58 6a 74 QO a0 mtme bl | ey
100000804 00 00 63 00 00 00 00 00 56 00 00 00 00 5a 00 00 By o = v 308 8
Found: moonrocks At Address: 00000el10
offset 00 01 02 03 04 05 06 07 08 09 0aA OB OC OD OE OF ASCII
100000dT9 63 6f 6d 00 68 61 76 65 00 79 6f 75 00 73 &5 65 .com.have.you.see
10000e09 6e 00 61 6e 79 00 6d 6f 6f 6e 72 6Ff 63 6b 73 00 en.any.moonrocks.
100000219 00 00 00 00 QO QO OO 00 00 OO 4f 00 00 00 4F 00 u I
10000e29 00 00 63 00 00 00 00 00 5a 00 00 00 57 00 00 OO i (U T it I e S M et
100000239 00 00 00 00 Q0 00 00 Q0 Q0 00 59 00 00 00 00 Q0 O O e
10000e49 00 00 00 00 00 00 58 00 00 00 00 00 00 53 &d 00 e mi e e e ke e | i b B
100000259 00 00 4e 00 00 00 00 00 00 00 00 Ge 00 00 00 00 seaNewva s aocafaes
100000e69 00 72 5a 00 00 00 00 45 00 00 00 00 00 00 00 0O TR o A SURRE T SRR (i
fffffff Possible Words Identified, but not found -------
JFIF, Photoshop, JFIF, File, written, Adobe, Photoshop, Adobe, Gwgw, AQaq, Gwgw, julio, yahoo, wugar
, hshm, johnny, need, ornado
., Q)dF, mail, have, seen, oonrocks
viMC, onV, kmmn, XICC, PROFILE, HLino, mntrRGB, acspMSFT, sRGB, cprt, desc, lwtpt, bkpt, rxyz, gxvz,
rTRC, gTRC, bTRC, text, Copyr"\gh[Hewlett, Packard, Company, desc, SRGB, SRGB, desc, http, http, desc,

Mpace, sRGB, desc, ReFerence. Viewing, Cnnd1tmn. Refarence, Viewing, Cond1t1nn, view, meas, curv, File, wri
jvzou, CIYX, ouno, anDq, uvxXCW, RohX, FpId, wavt, 2GdP, KMEDH, MGIB, CugN, MpvP, ywLj, yhIR, LIuaf, h
hmHg, with, GLnG, UImQO, imzd, tchs, tidz, wIKca, 1zTe, qFuwx, KhRP, REAZ, sEXx, iRwg, pGvk, fwqz, AIS
qRMP, YDxf, qyij, ixmCm, FhmIR, 2wNFX, C2Zyq, Iyck, aevG, IsrP, 3EjPI, wTkt, JIRm, cgshH, NqwD, qIm0, O©

cMfl, anG'i]. ozkgPd, Kfkla, 'IRqu, Cdux, jtvc. UVRz, ARzT, 1iSEm, BRHW, ROREN, uiEtQ, rYIq, rVPo, nViNQ,

a, ©jCj, RpfD, mkpx0, euls, yTiv, PZtp, =zi¥so, ipTLid, Suxo, FvaD, KgVT, kuBS, UPhzkm, HMAKF, IJJA, aikz

tty, Usytz, hLev, 2zvtk, zhH], "0gCm, xvFq, nKny, OdPfg, UgHSF, AQIR, 1iPA, OuLZV, YSuR, xFVc, hRdd, mjiN,

C:\PYTEST>
bl il »

FIGURE 4.8

p-search sample execution.

:\PYTEST>more pSearchLog.log
2013-08-27 21:16:30,755 p-search started
2013-08-27 21:16:30,756 Search Words

2013-08-27 2. :30,756 Input File: narc. txt ; .

2013 08 27 21:16:30,756 set([stones 2 shot scrabb]e o 'gowder', ‘casper', 'hell’ 5ugar’ " 'mo)o', "blow', 'devil’,
L mounro(ks "monster’, 'beat', 'coke', 'base’, 'b ast', "pimp’, 'candy’, *chalk nose ‘rock'])

2013-08—27 2 =30 756 Target of Search’ captur'e raw

2013-08-27 2 30,757 File Size: 77650

2013-08-27 2. 30,973 Elapsed Time: 0.218999862671 seconds

2013-08-27 2

2013-08-27 21:16:30,974 Program Terminated Normally

I\PYTEST>,

FIGURE 4.9

Log file contents post execution.

INDEXING

Indexing provides the investigator with a different look at the data and potential evi-

dence contained within a file, disk image, memory snapshot, or network trace.

Instead of determining what keywords to look for, we want p-search to provide us

Figure 4.8
Figure 4.9

-
110

CHAPTER 4 Forensic Searching and Ind

chet@PythonForensics: ~/Desktop/Python Samples/p-search

exing Using Python

ichet@PythonForensics:~/Desktop/Python Samples/p-search$ python p-search.
6

py -k narc.txt -t capture.raw

Found: sugar At Address: 0086040

offset 00 01 ©2 03 04 ©5 06 O7 68 0% OA OB OC OD OE OF ASCII

080083eh @@ 77 48 0@ 6a 75 6Cc 69 o6f @8 79 61 68 6f 6f 6@ .WH.julto.yahoo

000003fb 63 6f 6d 00 00 7a 00 6f 66 00 73 75 67 61 72 €0 com. z.of .sugar

0000640h 60 60 60 O 60 A0 06O 00 A0 66 69 00 08 60 08 08 o B i G

0000041b 00 00 60 00 €0 60 00 00 00 6d 66 0O B0 00 0O €0 B SPIRD K E

0000042b 60 00 60 00 06 60 60 6b €6 51 68 00 06 60 00 66 ksl e sees

©000643b 60 60 60 06O 60 0O 00 OO 60 OO0 OO @0 55 55 de OO0 UUN

0000044b 60 00 00 06 42 60 60 OO 00 60 OO0 60 06 60 60 606B.

8860845h 66 68 B0 6O 6@ 6O 6O 00 60 60 68 73 68 6d @@ 6 hshm.n

Found: tornade At Address: @00867ad

Offset 60 01 82 063 @4 65 06 O7 @8 069 OA @B OC 6D OF 6F ASCIT

00BO8794 79 88 61 6f 6c B8 63 6f 6d 68 6e 65 65 64 08 74

00000734 6f 00 73 65 65 00 61 00 74 6f 72 6e 61 64 6f 00

000007bd ee 06 00 00 00 60 00 00 68 00 606 52 00 60 68 68

000007c4 00 4e ©0 51 4b 44 00 00 00 OO OO0 €O ©O OO 00 €0

0R0067d4 60 ©0 66 08 60 A0 60 00 @O0 6O 73 6b 75 60 00 48

0e0087ed 66 @8 6f G 76 00 00 00 @8 64 59 6b 60 ee e8 6o

000007f4 60 65 00 00 00 74 6c 0O 00 00 0O 00 58 6a T4 00

00006804 60 60 63 068 6@ A0 OGO 00 56 06O 00 00 08 Sa 66 08

Found: moonrocks At Address: @0608e16

offset @1 62 03 e4 05 06 07 08 0% OA OB 0OC oD OE OF

0a00adf9 63 6f 6d 0@ GB 61 76 65 @0 79 6f 75 00 73 65 65

00000e09 Ge 00 61 6e 79 00 od of of ce 72 of 63 6b 73 o0

0060019 06 00 B0 068 60 006 60 08 @0 66 4f @0 68 60 4f @@

00000829 60 00 63 00 00 0O 060 00 5a 60 00 00 57 00 00 €0

08000e39 @0 00 00 00 00 00 00 00 66 00 59 00 00 60 00 00

0060849 66 @@ B0 GO 6@ @G 58 08 @0 66 6@ @0 68 53 6d @8

00000859 60 00 4e 00 00 0O 00 00 00 06O 00 6e 00 60 00 0O

0000069 @® 72 S5a 00 €0 60 00 45 6@ 06 060 00 00 60 00 00

------- Possible Words Identified, but not found -------

JFIF, Photoshop, IJFIF, File, written, Adobe, Photoshop, Adobe, GWgw, AQaq, GwWgw, julio, yahoo, ugar, hshm, john

ny, need, ornado, QJdF, gmail, have, seen, oonrocks, wlMC, 1lonV, kmmn, XICC, PROFILE, HLino, mntrRGB, acspMSFT,
SRGB, cprt, desc, lwtpt, bkpt, rXvZ, gXvZ, bXvZ, dmnd, pdmdd, vued, view, lumi, meas, tech, rTRC, gTRC, bT

€, text, copyright, Hewlett, Packard, company, desc, SRGB, SRGB, desc, http, http, desc, Default, colour, spac

, SRGB, Default, colour, space, sRGB, desc, Reference, Viewing, Condition, Reference, Viewing, Condition, view,

meas, curv, File, written, Adobe, Photoshop, Adobe, Eelj, hMyp, wvacpj, qYZOD, CIYX, ouno, anDq, uvxXCW, RQhX,

Fpld, wavt, zGdP, KMEDH, MGIB, CugN, MpVP, yWLj, yhJR, LIUQF, hOBX, PRTI, Mcfs, sSpaHE, vYZo, oRoI, XShx, gsl

1, dhmHg, with, GLnG, UImQO, imzd, tchS, tidz, wIKca, 1zTe, qFWx, KhRP, REAZ, sEXx, 1RWg, pGYk, fwqz, AIJST

FQRZqQ, XUEw, yFcqlw, UNwk, TdTd, 1RMOB, wLyn, qRMP, YOxf, qyij, 1ixmCm, FhmIR, zwNFX, CZyq, 1LlyCk, aevG, IsrP

iEJPT, wTkt, JIRm, cgshH, NgWwp, qIn0, 00Zk, rchs, sKgk, gJAJ, Ambj, zcIyn, BcKu, Wmku, CMfl, aoGil, OzKqPd,

fKkla, 1RyNq, <Cdux, 3jtvC, UVRz, ARzT, 1SEm, BRHW, ROREN, wuiEtQ, rv¥Iq, rVPo, nViNQ, ptQrm, TfEs, Fnaq, Cifs, t

aq, OLkW, zrCW, ZxwCa, o0jCj, RpfD, mkpX0, eUIG, yTiv, PZtp, ziYso, 1ipTLid, Suxo, FvaD, KqVT, kuBS, UPhzkm, Hi

AKF, 1IJJA, aikz, xWNt, zIWP, ilwd, gjUB, nKGm, hAlq, LbJR, XFwty, USytZ, hLev, 2vtk, zhHl, 0gCm, xvFg, nkny,

odPfg, UgHSF, AQIR, 1iPA, OuLZV, YSuR, xFVc, hRdd, mjiN, PCbju, eMvRs, hSHP, 1ilvq,

FIGURE 4.10
Execution of p-search running on Ubuntu Linux 12.04 LTS.

with a list of all the words that meet the minimum definition of a string, but do not
match any of the defined key words. However, the current approach is lacking two
key pieces of data. The first is simple, I need to include the offset of where each string
was found in the target file. The second problem is a bigger challenge, that being to
only print words that are likely to be legitimate words. Finally, it would be nice if the
words were provided in a sorted list.

To handle the more difficult problem of identifying strings that have a high prob-
ability of being words, I have devised an approach that works exceptionally well and
is fast. I depict the basic concept in Figure 4.12. I first process known words with an
algorithm that produces a numeric weight based on the internal characteristics of
each word.

Once a numeric weight is calculated for the word, the weights are sorted and any
duplicates are removed. The key here is to process a large list of words. For this
example, I used a dictionary containing over 600,000 words. This produces a matrix

Figure 4.10

janet-hosmers-imac:p-search janet$ python p-search.py -k narc.txt -t capture.raw -m matrix.txt
Found: sugar At Address: 8808084086

Offset B8 @1 02 B3 B+ 65 06 O7Y B6 B9 BA B6 OC B0 OE OF LE

888883eb B8 77 46 @8 6a S 6c 69 6f B8 V9 61 68 6f 6f 08 ..wH.julio.yahoo.
BeesBifb 63 6f 6d @8 88 7a B8 6f 66 B8 V3 VS 67 61 72 066 ccom..z.0f.sugar.
BeEBE+EL B8 B8 B8 BB 6@ OB GG B9 BB 66 69 BA@ B8 @@ @@ @8 0 fi.... .
8888841b B0 9@ 99 @0 60 €@ 66 B0 @@ ©6d 66 @@ 06 68 @0 66 T 1 AP
8888042b B0 60 69 08 @@ 99 00 6b @@ 51 60 60 ©9 00 @@ o sas e s e kel o
6088843b B0 60 60 @0 0@ 09 OO @8 @@ B0 B8 6@ SS 55 4e 66 P T
LS 93 @@ B6 @M 42 6@ BB 99 @@ BB A8 @A 6B BB @@ BB Bovti 8 % 5 8 % 9l
88888450 B9 B0 69 BB B0 ©9 OB BB @@ B8 68 73 68 6d @8 e v+ s aess s achshn.n
Found: tornade At Address: 008887ad

Offset 80 81 82 983 B8+ 85 06 @7 @8 B89 BA OB OC 8D @E OF ASCII

feeaaTI+ 79 @@ 61 6f 6c @@ 63 6f 6d 00 Ge 65 65 64 60 T4 ny.aol.com.need.t
008887a4 Gf 88 73 65 65 98 061 @8 T+ 6f T2 6e Ol 64 of 08 to.see.a.tornado.
08888704 80 60 00 0@ @D 0P 0O B8 @@ GG 8@ SZ 6@ @8 68 68 00 R..hh
Bee88Tct B8 4e B8 51 4b 44 00 B0 ©0@ BB @6 68 00 B8 @0 00 hea N QB 2 85 855 63
BeBBaTd4 B9 B8 66 B BB ©9 OB BB BE BE V3 6b 75 HE B@ 43 e sku..H
fe6aaTet 66 @8 6f @8 76 6@ B8 B8 @@ 6% 59 6b 66 68 60 66 Hf .o.v....d¥%k....
eeesaTit 68 65 ©86 B8 68 74 6c B0 0@ B8 B8 68 53 6a T+ 66 P T O T I I
60880584 B0 @8 63 00 0@ 99 06 @8 56 60 0@ 60 08 Sa @@ 6@ e s @ e m e a Va2
Found: moonrocks At Address: 00008el0

0ffset 88 @1 92 83 e+ €5 06 O7T 80 09 BA 66 6C @D @E OF ASCII

feesadfo 63 6f 6d @@ 68 61 76 65 @@ 79 6f 75 8@ V3 65 69

BeEBBeE9 6e B8 61 6e 79 BB 6d 6f 6f Be 72 6f 63 6b T3 68

6e688e19 60 0@ 06 60 66 6@ 66 B8 @@ 68 <4f 66 06 68 4f 66

80000:29 B0 B8 63 00 00 99 06 @6 Sa 068 6O 6@ ST 60 @@ 08

68888239 B9 60 60 00 0@ 09 00 B8 @@ B0 59 6@ 08 69 @@ 6

ABAARE40 A3 A@ BB AR AR AA S5 BAA AA BB AR AA AR 53 Ad BA

60680259 B0 B0 4 08 00 ©9 00 GB 00 B0 B0 te OO 00 08 00

8088069 B9 T2 So BB 60 09 0O 45 60 60 B0 6@ 0O 00 60 O

Index of All Hords
["adobe', 78]
["adobe', 494]
['adobe’, 180842)
['adabe’, 18866]
["aogij’, +6368)
["colour', 7624)
['colour', 7681]
['company’, 7257]
["condition', 77521
[‘condition', 7887]
['copyright', 7222]
['default’, 7612]
['default', 7669]
["gmail*, 3572]
["hewlett', 7241)

FIGURE 4.11
Execution of p-search running on iMac.

a
W
“ « Unique
~ .
v ——| sorted

——— | weights

Word
weighting
algorithm

Word weights

FIGURE 4.12
Diagram of word weighting approach.

Figure 4.11
Figure 4.12

112

CHAPTER 4 Forensic Searching and Indexing Using Python

r u n n i n g
c u n n i n g
g u n n i n g
d u n n i n g

Used in weighting calculation
FIGURE 4.13

Weighted characteristics illustration.

of weights that can be used to compare strings found in raw data (using the same
weighting algorithm used to create the original matrix) to the matrix. If the calculated
weight matches one found in the matrix, I consider this a possible word, if not the
string is discarded. Figure 4.13 provides an illustration of how this works. Each
of the core letters contained in the word (ignoring the leading character) are used
in the weighted calculation.

Since many words, at least in the English language, are derived from other words,
this eliminates the need for having an all-encompassing dictionary of every possible
word. In addition, if words are misspelled or newly created or derived, it is likely the
weighting system vs. a direct match will provide a more liberal interpretation of a
word being probable.

The importance of approximate searches and indexes can be vital. In the Casey Anthony case,
for example, investigators missed probative Internet search history data because they looked
for various search terms which *they* spelled correctly. She, however, had misspelled several
search terms; while Google corrected the spelling during the search, it did not fix the misspell-
ing in the Internet search history.

CODING isWordProbable

In order to create a method isWordProbable(word), I created a class named Matrix;
let us take our typical deep dive into this new class.

class class_Matrix:
I start out by declaring a new set object named the weighted matrix.

weightedMatrix = set()

Figure 4.13

Coding isWordProbable

When the class is instantiated, the object will load the values contained in the
matrix into the weighted matrix set. To handle this I simply added a new command
line argument -m or --theMatrix to allow the user to specify a matrix file. I take the
same precautions as you have seen before to trap any errors that might occur dur-
ing the file handling operations.

def __init__(self):
try:
fileTheMatrix = open(gl_args.theMatrix, 'rb")
for Tine in fileTheMatrix:
value =Tine.strip()

self.weightedMatrix.add(int(value,16))
except:

log.error('Matrix File Error:'+gl_args.theMatrix)
sys.exit()

finally:
fileTheMatrix.close()

return

Next I define the method isWordProbable which will calculate the weight
of the passed string and perform a lookup in the weightedMatrix to determine
if we have a match. Note I first check to see if theWord passed is of minimum size.

def isWordProbable(self, theWord):

if (Ten(theWord) < MIN_WORD):
return False

else:
BASE = 96
wordWeight =0

This is the core weight calculation and produces an unsigned long integer value
name wordWeight.

for iinrange(4,0,-1):
charValue = (ord(theWord[i]) - BASE)
shiftValue=(i-1)*8
charWeight = charValue << shiftValue
wordWeight = (wordWeight | charWeight)

Once I have calculated the word weight I just check to see if the weight exists in the
weighted matrix.

if (wordWeight in self.weightedMatrix):
return True

else:
return False

To properly incorporate this into the program the following code is all that
is needed.

113

114 CHAPTER 4 Forensic Searching and Indexing Using Python

The initialization is simple, I create an object named wordCheck (which executes
the initialization code of the Matrix to load in the weighed values. I also, create a
list named indexOfWords where I will store the probable words that we find.

wordCheck = class_Matrix()
indexOfWords =[]

Next, I embed the following code within the existing search loop to evaluate each
string as a probable word. If wordCheck returns True, then I add the word to the
indexOfWords list. Note that this list has two elements per entry: 1) the string new-
Word and 2) the offset from the beginning of the target object where it was found.

if wordCheck.isWordProbable(newWord):
indexOfWords.append([newWord, i-cnt])

Finally, I added a method to print the indexOfWords list at the end of the search
that includes both the word and offset. I also sorted the list prior to print in order
to make it alphabetical.

def PrintAl1WordsFound(wordList):

print "Index of A11 Words"
print "

wordList.sort()

forentry innflist:
print entry

print "
print

return

From an execution perspective you can see the results of the combined search and
index program in Figure 4.14.

P-SEARCH COMPLETE CODE LISTINGS

p-search.py

#

p-search : Python Word Search
Author: C. Hosmer

August 2013

#Versionl1.0

1

Simple p-search Python program
1

p-search Complete Code Listings 115

Found: moonrocks At Address: 00000e10
00 01 02 03 04 05 06

pffset 08 09 0A OB OC 0D OQE OF ASCIL

0000049 63 6f 6d 00 68 61 76 65 00 79 6f 75 00 73 65 65 .com.have.you.see
00000e09 6e 00 61 6e 79 00 6d 6f 6f 6e 72 6f 63 6b 73 00 en.any.moonrocks.
00000219 00 00 00 00 00 OO 00 00 00 QO 4f 00 00 00 4F QO 0...0
00000229 00 00 63 00 00 00 00 00 5a 00 00 0O 57 00 OO0 00 Blsaial i A)
00000e39 00 00 00 00 00 00 00 00 QO 00 59 QO 00 00 0O OO Yot i
00000249 00 00 00 00 00 OO 58 00 OO0 00 00 QO 00 53 & OO X & .2 e sm
00000259 00 00 4e 00 00 00 00 00 OO0 00 00 6e 00 00 OO0 00 ERE T O -k
00000e69 00 72 5a 00 00 00 00 45 00 00 00 00 00 00 OO0 00 - 7 e T
Index of A1l Words

"adobe’, 470]

company', 7257]
condition', 7752]
"condition’, ?SD?}
'copyright', 7222
'default’, 7612]
tdefault’, 7669]

‘colour’, 7681]

'jshnny'. 1936]
"Julie’, 1008]
"moonrocks’, 3600]
'packard"’, 7249]
‘'photoshop’, 24]
'photoshop’, 476]
'photoshop’, 10048]
'profile’, 6868]
‘gyzod', 11694]
'reference’, 7734]
'reference', 7789]
‘roren’, 51038]
'space'. 7631]
'space', 7688]
'sspahe’, 22967]
‘sugar’, 1030]
"tornado", 1965]
"viewing', 7744]
‘viewing', 7799]
'written', 459]
'written", 10031]
'yahoo', 1014]

FIGURE 4.14
p-search execution with indexing capability.

Read ina 1ist of search words

Read a binary file into a bytearray

Search the bytearray for occurrences of any specified search words

#Print a HEX/ ASCII display localizing the matching words

#Print out a 1ist of possiblewords identified that didn't match

#

Definition of aword. aword for this example is an uninterrupted
sequence of

#4 to12 alpha characters

it

import logging
import time
import _psearch

if _name__=='__main__":
PSEARCH_VERSION ="1.0"

Turn on Logging

Figure 4.14

116 CHAPTER 4 Forensic Searching and Indexing Using Python

logging.basicConfig(filename='pSearchlLog.log',level=10gging.DEBUG,
format='%2(asctime)s %Z(message)s")

J Process the Command Line Arguments
_psearch.ParseCommandLine()

log = Togging.getlogger('main._psearch')
log.info("p-search started")

Record the Starting Time
startTime =time.time()

Perform Keyword Search
_psearch.SearchWords()

Record the Ending Time
endTime = time.time()
duration =endTime - startTime

logging.info('Elapsed Time: '+ str(duration) +'seconds")
lTogging.info(")

logging.info('Program Terminated Normally")

_p-search.py

#

psearch support functions, where all the real work gets done

#

Display Message() ParseCommandLine()

#ValidateFileRead() ValidateFileWrite()

#Matrix (class)

1

import argparse # Python Standard Library -
Parser for command-1ine
options, arguments

import os J Standard Library 0S

functions

import logging # Standard Library Logging
functions

log=Tlogging.getLogger('main._psearch')

#Constants

MIN_WORD =5 #Minimumword size in bytes

MAX_WORD = 15 # Maximumword size in bytes

PREDECESSOR_SIZE = 32 #Values to print beforematch found

WINDOW_SIZE =128 #Total values todump whenmatch found

Name: ParseCommand() Function

i

Desc: Process and Validate the command 1ine arguments
i use Python Standard Library module argparse

p-search Complete Code Listings 117

#

Input: none

#

#F Actions:

1 Uses thestandard 1ibrary argparse toprocess the command
line

#

def ParseCommandLine():
parser = argparse.ArgumentParser('Python Search')

parser.add_argument('-v', "--verbose', help="enables printing of
additional programmessages", action='store_true")
parser.add_argument('-k', '--keyWords', type=ValidateFileRead,
required=True, help="specify the file containing searchwords")
parser.add_argument('-t', '--srchTarget', type=ValidateFileRead,
required=True, help="specify the target file to search")
parser.add_argument('-m', '--theMatrix', type=ValidateFileRead,
required=True, help="specify the weighted matrix file")

global gl_args

gl_args = parser.parse_args()

DisplayMessage("Command 1ine processed: Successfully")
return

End Parse Command Line

#

Name: ValidateFileRead Function

#

Desc: Function that will validate that a file exists and is readable

#

Input: A filenamewith full path

1

#F Actions:

ifvalidwill return path

#

i ifinvaliditwill raisean ArgumentTypeError within
argparse

i whichwill inturn be reported by argparse to the user

#

def ValidateFileRead(theFile):

##Validate the pathis avalid
if not os.path.exists(theFile):
raise argparse.ArgumentTypeError('File does not exist")

#Validate the path is readable
if os.access(theFile, 0s.R_0K):

118 CHAPTER 4 Forensic Searching and Indexing Using Python

return thefFile
else:
raise argparse.ArgumentTypeError(‘File is not readable')

#End ValidateFileRead

i

Name: DisplayMessage() Function

i

#Desc: Displays themessage if the verbose command 1ine optionispresent

1

Input: message type string

i

Actions:

i Uses the standard Tibrary print function todisplay the
message

1

def DisplayMessage(msg):

if gl_args.verbose:
print(msg)

return

##End DisplayMessage

1

Name SearchWords ()

1

Uses command 1ine arguments

1

Jf Searches the target file for keywords
#

def SearchWords():

Create an empty set of search words
searchWords = set()

Attempt to open and read search words

try:
fileWords = open(gl_args.keyWords)
for Tine in fileWords:
searchWords.add(line.strip())
except:
log.error('Keyword File Failure: '+ gl_args.keyWords)
sys.exit()
finally:

fileWords.close()
J##Create Log Entry Words to Search For

p-search Complete Code Listings

log.info('Search Words")
log.info('Input File: +gl_args.keyWords)
log.info(searchWords)

Attempt to open and read the target file
##and directly Toad into a bytearray

try:
targetFile =open(gl_args.srchTarget, 'rb")
baTarget =bytearray(targetfFile.read())
except:
log.error('Target File Failure: "+ gl_args.srchTarget)
sys.exit()
finally:

targetFile.close()
sizeOfTarget=len(baTarget)
Post to 1og

log.info('Target of Search: '+ gl_args.srchTarget)
log.info('File Size: +str(sizeOfTarget))

baTargetCopy =baTarget
wordCheck = class_Matrix()

Search Loop
step one, replace all non characters with zerao's

for i inrange(0, sizeOfTarget):
character =chr(baTarget[i])
if not character.isalpha():
baTarget[i] =0

f# step # 2 extract possible words from the bytearray
and then inspect the searchword 1ist
#create anempty Tist of probable not found items

indexOfWords =[]

cnt =0

for iinrange(0, sizeOfTarget):
character = chr(baTarget[i])
if character.isalpha():

cnt+=1
else:
if (cnt >=MIN_WORD and cnt <= MAX_WORD) :
newWord =""

for zinrange(i-cnt, i):
newWord = newWord + chr(baTarget[z])
newWord = newWord. Tower()

119

120 CHAPTER 4 Forensic Searching and Indexing Using Python

if (newWord in searchWords):
PrintBuffer(newWord, i-cnt, baTargetCopy,
i-PREDECESSOR_SIZE, WINDOW_SIZE)
indexOfWords.append([newWord, i-cntl)
cnt=0
print

else:
if wordCheck.isWordProbable(newWord):

indexOfWords.append([newWord, i-cnt])
cnt=0
else:
cnt =0

PrintAlTWordsFound(indexOfWords)
return
End of SearchWords Function

i

Print Hexidecimal / ASCII Page Heading
1

def PrintHeading():

print("0ffset 0001020304 0506070809 0A0BO0CODOE
0F ASCII"™)

print("

"y

return
End PrintHeading

1t

#Print Buffer

1

Prints Buffer contents for words that are discovered
parameters

#1) Word found

#2) Direct Offset to beginning of the word

3 buff The bytearray holding the target

#4) offset starting position in the buffer for printing
#5) hexSize, size of hex display windows to print

1

def PrintBuffer(word, directOffset, buff, offset, hexSize):

print "Found: "+word + " At Address: ",
print "%08x "% (directOffset)

PrintHeading()

for i inrange(offset, offset+hexSize, 16):
for jinrange(0,16):

p-search Complete Code Listings

if(j==0):
print "%08x " % i,
else:
byteValue =buff[i+]j]
print "%02x " % byteValue,
print " ",
for j inrange (0,16):
byteValue =buff[i+]]

if (byteValue >=0x20 and byteValue <= 0x7f):

print "%c" % byteValue,
else:
print'.',
print
return

End Print Buffer

#
#PrintAl1WordsFound
1

def PrintAl1WordsFound(wordList):

print "Index of A11 Words"
print "

wordList.sort()

for entry inwordList:
print entry

print "
print

return

#End PrintAl1WordsFound

#

#Class Matrix

#

#init method, 1Toads thematrix into the set
#weightedMatrix

#

isWordProbable method

f# 1) Calculates theweight of the provided word
2)Verifies theminimum length

3)Calculates theweight for the word

4) Tests theword for existence in thematrix
5)Returns trueor false

#

121

122 CHAPTER 4 Forensic Searching and Indexing Using Python

class class_Matrix:
weightedMatrix =set()

def __init__(self):

try:
fileTheMatrix =open(gl_args.theMatrix, 'rb")
for 1ine in fileTheMatrix:
value=Tline.strip()
self.weightedMatrix.add(int(value,16))
except:
log.error('Matrix File Error: "'+ gl_args.theMatrix)
sys.exit()
finally:
fileTheMatrix.close()
return

def isWordProbable(self, theWord):

if (Ten(theWord) < MIN_WORD):
return False

else:
BASE =96
wordWeight =0

foriinrange(4,0,-1):

charValue = (ord(theWord[i]) - BASE)
shiftValue = (i-1)*8

charWeight = charValue << shiftValue
wordWeight = (wordWeight | charWeight)

if (wordWeight inself.weightedMatrix):
return True
else:

return False

fHEEnd Class Matrix

CHAPTER REVIEW

In this chapter, I put to use new Python language elements including sets and bytear-
rays and I expanded the use of lists and classes. I also provided examples of how to
open and read files containing a diverse set of values such as keywords, raw binary,
and hexadecimal values and work with those directly within Python bytearrays, lists,
and sets. I demonstrated how leveraging the right language elements can lead to sim-
ple, readable code that accomplishes our objectives. As a result, p-search is a useable
application that provides investigators with the capability to search for keywords and

Additional Resources 123

generate an index of words found in documents, disk images, memory snapshots, and
even network traces.

In addition, I once again demonstrated the interoperability of Python code by run-
ning the sample unaltered code on Windows, Linux, and Mac producing the same
results.

SUMMARY QUESTIONS

1. What are the advantages and disadvantages of the built-in language types (lists,
sets, and dictionary).

2. Explain the advantages of using a set to hold a list of keywords.

3. How does Python’s ability to deal with a broad set of data (binary, text, and
integers) differ from other languages?

4. Many modern files, disk images, memory snapshots, and network traces are
going to contain Unicode data not only simple ASCII. Modify p-search to provide
the ability to search and index data that contains a mixture of simple ASCII and
Unicode.

5. Expand the matrix to include a broader set of weighted values that include foreign
language, proper names, places, and vocabulary from other domains such as
medical terminology.

Additional Resources

The Complete Sherlock Holmes: All 4 Novels and 56 Short Stories. Deluxe edition. Bantam
Classics; October 1, 1986.

Python Programming Language—Official Website, Python.org. http://www.python.org.

The Python Standard Library. http://docs.python.org/2/library/.

http://www.python.org
http://docs.python.org/2/library/

This page intentionally left blank

CHAPTER

Forensic Evidence Extraction
(JPEG and TIFF)

CHAPTER CONTENTS

INEFOAUCHION ... e e e e e e e an e e smn e e mn e e s nmnmn e nnnnnnns 125
The Python Image Library ..o e 126
Before Diving SHaight INc.coovuiiiiiiiiiie e 128
PIL TESt-BEIOre COUEuuiiiiiiiiiiiii et 131
Determining the Available EXIF TAGSc.ooiiiiiiiiiie it ee e 131
Determining the Available EXIF GPSTAGSccvuiiiiiiiiiiiii e, 133
p-ImageEvidenceExtractor Fundamental Requirementscccovvviiiiiiinnnn, 137
Design CONSIAErationsuceeeiiie et 137
Code WalK-TRIOUGHeeeeeeeeeeccecee e e s s s e e s mnn e e e s s s e e e e e e s e 137
MaIN PrOZram ooeeeii et 141
(0P 1S == {1 = PP 141
CVSHANAIEE <. e e 141
CommaNd LiNe Parsercoouue it e 141
EXIF and GPS Handlereueiiiiiiiiiii e 141
Examining the COdecoeviiiiiiiiiiiiiie e 141
gl (0= = . PP 141
EXIF and GPS PrOCESSING wuuuvuuieiieeiieeie e ee e e e e e e e e een 144
LOZEGING ClASS .ttt e 148
Command LiNg PAISEIcuuuuiiieeiiii ettt 149
Comma Separated Value (CSV) Writer Classooveiiuiiiiiiiiieiiiiieeeiiaees 150
FUll Code LISTINGS ..evieeiiiiieeeeeee et 151
Program EXECULION ...iveii e 158
L 1 1T T SN 159
SUMMAry QUESLIONScoviiieiriiiiirrisee s e s s e e an e e nnns 159
Additional RESOUICESccceeierieierrirrisserssrrseeessr e sse s s s e s s sar s san s sms s sansssmnssnnsnnns 163
INTRODUCTION

Simple and complex digital data structures offer significant opportunities to collect
and extract valuable evidence. Files have simple metadata that define modified,
access, and created times along with file ownership, file size, and other attributes that
label the file as read-only, system, or archive. This information is easy to retrieve and
examine with common desktop tools. Memory snapshots contain both structured and

Python Forensics 1 2 5
© 2014 Elsevier Inc. All rights reserved.

-
126

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

unstructured data that can be carved and reconstructed to reveal running processes
and threads, recent user activity, network data, and even user typed passwords and
cryptographic keying material.

Other complex files structures, such as the JPEG files that include EXIF data (The
Exchangeable Image File Format), contain a plethora of potentially valuable informa-
tion about the image itself. This can include the camera type used to take the photo-
graph, the time and date the photo was taken, and literally hundreds of individual data
elements associated with the photograph. With the advent of Facebook, Instagram,
Twitter, Flickr, and other social media services, the sharing of digital photographs
has been weaved into the fabric of our culture. Today, over a billion people carry smart
phones and tablets that have built-in cameras capable of taking high-quality photo-
graphs and movies that can be shared instantly across the globe using the aforemen-
tioned social network applications, text messaging, or good old-fashioned e-mail.

In addition, everyone from the Weather Channel to law enforcement investiga-
tors use digital photography to provide insight and understanding of physical events.
The Federal Communications Commission (FCC) has adopted new rules that include
mandatory improvements to the accuracy of the location information transmitted
when cell phone-based 911 calls are made. Specifically, E911 rules require wireless
service providers to deliver the latitude and longitude of the caller within 50-300 m
[FCC]. These requirements have driven smart phone manufactures to include Global
Positioning System (GPS) chips in their handsets along with high-quality cameras
that can automatically embed location and time data directly into digital photo-
graphs. Consequently these innovations have delivered potentially valuable evidence
including “what: the content of the photo,” “when: the photo was snapped,” and
“where: the photo was taken.”

Based on this, I wanted to delve deeper into the extraction of evidence from dig-
ital photographs, specifically those photos taken with smart phones that include
EXIF data. I will focus most of my attention on the EXIF data associated with JPEG
and TIFF images, mainly because the preponderance of photos generated today from
smart phones support EXIF embedding.

Many of you may have already examined the contents of digital photographs and the
EXIF information using Hex editors and other primitive tools, and as a result require an
upgraded prescription from the optometrist afterword. To help us in peeling back the
onion-like layers of digital photographs, I will be adding a new library that will do most
of the heavy lifting for us—namely the Python Image Library (PIL). The PIL provides a
great deal of capabilities to not only extract information from images but also provides
capabilities to manipulate them. I am going to focus only on the data extraction of
EXIF data using the PIL, but once you learn how to properly use the library you can
use the PIL for other image processing activities [Python Image Library].

The Python Image Library

The first step in using the PIL is to install the library. If you are running Python on Win-
dows platform, you are in luck as a simple installer is available as shown in Figure 5.1.

@ Python Imaging Library (PIL) - Mozilla Firefox = |8 = |

Python Imaging Library (PIL) x| [python imaging fibrary ubuntu install... = | +

€ @ wuw.pythonware.com/products/pilf [- Bing Ll e @
. .

Python Imaging Library (PIL)

The Python Imaging Library (PIL) adds image processing capabilities to your Python mterpreter. This kbrary supports many file formats, and provides powerful image processing and graphics capabilities.

Status

The current free version is PIL 1.1.7. This release supports Python 1.5.2 and newer, including 2.5 and 2.6. A version for 3.X will be released later.

Support

Free Support: If you don't have a support contract, please send your question to the Python Image SIG mailing list. The same applies for bug reports and patches.

1l

You can join the Image SIG via python.org's subscription page, or by sending a mail to image-sig-request@python.org. Put subscribe in the message body to automatically subscribe to the list, or kelp to get additional mformation.
You can also ask on the Python mailing list. python-list@python.org, or the newsgroup comp.lang python. Please don't send support questions to PythonWare addresses

Downloads

The following downloads are currently available:

PIL 1.1.7

« Pyvthon Imaging Library 1.1.7 Source Kit (all platforms) (November 15, 2009)
o Python Imaging Library 1.1.7 for Python 2.4 (Windows cnly)
Pvthon Imaging Library 1.1.7 for Python 2.5 (Windows only)
« Pyvthon Imaging Library 1.1.7 for Pvthon 2.6 (Windows only)

« Pyvthon Imaging Librarv 1.1.7 fo%P\'thon 2.7 (Windows only)

Additional downloads may be found here.

FIGURE 5.1

Downloading Python Image Library for Windows.

uoI}oNPOAU|

Le1

Figure 5.1

-
128

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

Setup PIL-117

PIL-1.1.7

This Wizard wil inst
1o esit the Setup Wi

Python Imaging Libiary

Author: Secret Labs AB (Pythoriware)

Authos_email info@pythonviare.com

Desciiplion: Pythen Imaging Library
me: PIL

PYTHON
rPowered

Buik Sat May 15 15.03:55 2010 with distutils-2 752

FIGURE 5.2
Windows installation Wizard for the Python Image Library.

Once you have successfully downloaded the proper version for your Python
installation (I am using PIL version 1.1.7 for Python 2.7), you simply execute the
downloaded file and accept the defaults provided by the Wizard as shown in
Figure 5.2. (This is a great example of why I choose to utilize Python 2.x for the book,
as you can see the PIL library has not yet been converted to work with Python 3.x.
Once this is done, the programs in this chapter can be easily updated to work with
Python 3.x.)

If you are working with Linux or Mac, the steps for library installation are readily
available on the Web. Here is one excellent example for Ubuntu 12.04 LTS: https://
gist.github.com/dwayne/3353083 (Figure 5.3).

Before diving straight in
Before I dive right into the PIL, I need to introduce the built-in Python Dictionary
type. Up to this point we have used the /ists and sets structures within Python in sev-
eral examples. In some cases, structures with a bit more flexibility and capability are
required. More specifically, since the PIL uses dictionaries, we need to better under-
stand their operation.

As you can see in Code Script 5.1, each entry in the dictionary has two parts, first
the key which is followed by the value. For example, the key “fast” has an associated
value of “Porsche.”

https://gist.github.com/dwayne/3353083
https://gist.github.com/dwayne/3353083
Figure 5.2

Introduction 129

installing-pil.md v @ O

Steps to install PIL

% sudo apt-get install python-imaging
$ sudo apt-get install libjpeg-dev libfreetype6 libfreetype6-dev zliblg-dev

$ sudo 1n -s /usr/lib/ uname -i"-linux-gnu/libfreetype.so /usr/lib/
$ sudo 1n -s Jusr/lib/ uname -i"-linux-gnu/libjpeg.so /fusr/lib/

$ sudo 1n -s /usr/1lib/uname -i’-linux-gnu/libz.so /usr/lib/

$ pip install PIL
References:

* http://faskubuntu.com/g

o http://www.sandersnewmedia.com/why/2012

FIGURE 5.3
Installing Python Image Library on Ubuntu 12.04 LTS.

CODE SCRIPT 5.1 CREATING A DICTIONARY

>>> dCars = ({"fast": "Porsche", "clean": "Prius", "expensive":
"Rolls"}

>>>print dCars
{'expensive': 'Rolls', 'clean': 'Prius', 'fast': 'Porsche'}

You might have noticed that when I printed the contents of the dictionary, the
order has changed. This is due to the fact that the key is converted to a hash value
when stored in order to both save space and to improve performance when searching
or indexing the dictionary. If you want the dictionary printed in a specific order you
can use the following code, which extracts the dictionary items and then sorts the
items by the key.

CODE SCRIPT 5.2 PRINTING A SORTED DICTIONARY

>>> dCarsltems =dCars.items()
>>> dCarsltems.sort()
>>>print dCarsltems

[('clean', 'Prius'), (‘expensive', 'Rolls"), (‘fast', 'Porsche')]

What if the dictionary is large and you wish to find all the keys? Or once you find
the keys you wish to extract the value of a specific key?

Figure 5.3

130 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

CODE SCRIPT 5.3 SIMPLE KEY AND VALUE EXTRACTION

>>> ff what keys are available?

>>> dCars.keys()

['expensive', 'clean', 'fast']

>>> ffwhat is the value associated with the key "clean"?
>>> dCars.get("clean)"

'Prius'

Finally, you might want to iterate over a dictionary and extract and display all the

key, value pairs.

CODE SCRIPT 5.4 ITERATING OVER A DICTIONARY

>>> for key, value indCars.items():
print key, value

expensive Rolls

clean Prius

fast Porsche

If you are not familiar with Python but have familiarity with other programming

environments, Script 5.4 may seem a bit odd for several reasons.

1.

We did not need to declare the variables’ key and value, as Python takes care of
that automatically. In this simple case both key and value are strings, but they are
not required to be.

Since we know that dCars is a dictionary, the method items automatically returns
both key and values. The keys are “clean,” “expensive,” and “fast” in this example
and the values are the string names of the cars “Porsche,” “Prius,” and “Rolls.”

Since Python will automatically handle the data typing for you, let us take a look at
something a bit more complicated.

CODE SCRIPT 5.5 A MORE COMPLEX DICTIONARY EXAMPLE
>>>dTemp = {"2013:12:31":[22.0,"F","High"],
"2013:11:28":[24.5,"C","Low"], "2013:12:27":[32.7,"F","High" 1}
>>> dTempIltems = dTemp.items()

>>> dTempltems.sort()

>>> for key, value indTempltems:

Introduction

print key, value

2013:11:28 [24.5,'C", "Low"]
2013:12:27 [32.7,'F", '"High']
2013:12:31[22.0, 'F', 'High']

As you can see in Code Script 5.5, the keys are strings that represent a date while
value is actually a Python /ist that contains the time, the time reference, the temper-
ature, and the units of the temperature.

Now that you have a good general understanding of the dictionaries, go create
some of your own and experiment with the available methods. From this example,
I hope you see the power of the Dictionary type and it has you thinking about other
ways to apply this structure.

PIL test-before code

As with other modules and libraries, the best way to become comfortable with the
library is to experiment with it. Remember our adage test-then code, this is especially
true for PIL, mainly because the PIL uses a new Python language structure, the
Dictionary data structure. In addition, the EXIF module of the PIL requires a solid
understanding before you can put it to work for you. I will use the Python Shell and
short scripts to demonstrate.

Determining the available EXIF TAGS

The PIL has two important sets of TAGS that provide keys that are used to access
dictionary elements. They are EXIFTAGS and GPSTAGS. I developed a script to
determine which EXIF TAGS are available by using the following method:

(1) Import the EXIFTAGS from the PIL library.

(2) Extract the dictionary items (the key, value pairs) from TAGS.
(3) Sort them to make it easier later to identify them.

(4) Print the sorted dictionary of key, value pairs.

CODE SCRIPT 5.6 EXTRACTING EXIF TAGS
>>> from PIL.EXIFTags import TAGS

>>> EXIFTAGS = TAGS.items ()
>>> EXIFTAGS.sort()
>>>print EXIFTags

.
131

132

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

This produces the following printed list of available tags. Note this is not the data,
just the global list of EXIF TAGS:

[(256, 'ImageWidth'), (257, 'ImageLength'), (258,'BitsPerSample'), (259,
'‘Compression'), (262, 'Photometriclnterpretation'), (270,
'ImageDescription'), (271, 'Make'), (272, 'Model"), (273, 'Strip0ffsets'), (274,
'Orientation'), (277, 'SamplesPerPixel"), (278, 'RowsPerStrip'), (279,
'StripByteConunts'), (282, 'XResolution'), (283, 'YResolution'), (284,
'PlanarConfiguration'), (296, 'ResolutionUnit'), (301, 'TransferFunction'),
(305, 'Software'), (306, 'DateTime'), (315, 'Artist'), (318, 'WhitePoint"), (319,
'PrimaryChromaticities'), (513, 'dJpeglFOffset'), (514, 'JpeglFByteCount'),
(529, 'YCbCrCoefficients'), (530, 'YCbCrSubSampling'), (531,
'YCbCrPositioning'), (532, 'ReferenceBlackWhite"'), (4096,
'RelatedImageFileFormat'), (4097, 'RelatedImageWidth'), (33421,
'CFARepeatPatternDim'), (33422, 'CFAPattern'), (33423, 'Batterylevel'),
(33432, 'Copyright'), (33434, 'ExposureTime'), (33437, 'FNumber'), (34665,
'EXIFOffset'), (34675, 'InterColorProfile'), (34850, 'ExposureProgram'),
(34852, 'SpectralSensitivity'), (34853, 'GPSInfo'), (34855,
'ISOSpeedRatings'), (34856, '0ECF"), (34857, 'Interlace'), (34858,
'TimeZoneOffset'), (34859, 'SelfTimerMode'), (36864, 'EXIFVersion'), (36867,
'DateTimeOriginal'), (36868, 'DateTimeDigitized), (37121,
'ComponentsConfiguration'), (37122, 'CompressedBitsPerPixel"), (37377,
'ShutterSpeedValue'), (37378, 'ApertureValue'), (37379, 'BrightnessValue'),
(37380, 'ExposureBiasValue'), (37381, MaxApertureValue'), (37382,
'SubjectDistance'), (37383, 'MeteringMode'), (37384, 'LightSource'), (37385,
'Flash'), (37386, 'Focallength'), (37387, 'FlashEnergy'), (37388,
'SpatialFrequencyResponse'), (37389, 'Noise'), (37393, 'ImageNumber'),
(37394, 'SecurityClassification'), (37395, 'ImageHistory'), (37396,
'SubjectlLocation'), (37397, 'Exposurelndex'), (37398, 'TIFF/EPStandardID"),
(37500, 'MakerNote'), (37510, 'UserComment'), (37520, 'SubsecTime'), (37521,
'SubsecTimeOriginal'), (37522, 'SubsecTimeDigitized'), (40960,
'FlashPixVersion'), (40961, 'ColorSpace'), (40962, 'EXIFImageWidth'), (40963,
'EXIFImageHeight'), (40964, 'RelatedSoundFile"), (40965,
'EXIFInteroperabilityOffset'), (41483, 'FlashEnergy'), (41484,
'SpatialFrequencyResponse'), (41486, 'FocalPlaneXResolution'), (41487,
'FocalPlaneYResolution'), (41488, 'FocalPlaneResolutionUnit'), (41492,
'Subjectlocation'), (41493, 'Exposurelndex'), (41495, 'SensingMethod'),
(41728, 'FileSource'), (41729, 'SceneType'), (41730, 'CFAPattern")]

Time is a concept that allows society to function in an orderly fashion where all parties are able
to easily understand the representation of time and agree on the sequence of events. Since
1972, the International standard for time is Coordinated Universal Time (UTC). UTC forms
the basis for the official time source in most nations around the globe; it is governed by a dip-
lomatic treaty adopted by the world community that designates National Metrology Institutes
(NMls) as UTC time sources. The National Institute of Standards and Technology in the
United States and the National Physical Laboratory (NPL) in England are two examples of
NMIs. There are about 50 similar metrology centers that are responsible for official time
throughout the world. In addition, time zones can play a key role when examining digital evi-
dence; they provide localization of events and actions based upon the computer’s time zone

Introduction 133

setting. For example, if the computer’s time zone is set to New York, the local time is —5 hours
from UTC (or 5 hours behind). Finally, many U.S. States and foreign countries observe day
light savings time, most modern operating systems automatically adjust for this observance
which causes additional differences and calculations between UTC or when attempting to syn-
chronize events across time zones.

Within the printed list, I have highlighted TAGS that are of immediate interest
including GPSInfo, TimeZoneOffset, and DateTimeOriginal.

It is important to note that it is not guaranteed that all of these TAGS will be available for every
image; rather this is the broad set of key value pairs that are potentially within an image. Each
manufacturer independently determines which values will be included. Thus you must pro-
cess the key value pairs for each target image to determine which TAGS are in fact available.
| will show you how this is done shortly.

As you scan the list, you may find other TAGS that are of interest in your inves-
tigative activities and you can utilize the same approach defined here to experiment
with those values.

Determining the available EXIF GPSTAGS

Next, I want to drill a bit deeper into the GPSInfo TAG, as our objective in this chap-
ter is to extract GPS-based location data of specific images. I take a similar approach
to determine what GPSTAGS are available at the next level by writing the following
lines of code.

CODE SCRIPT 5.7 EXTRACTING GPS TAGS

>>> from PIL.EXIFTags import GPSTAGS
>>> gps = GPSTAGS.items ()
>>>gps.sort()

>>>print gps

[(0, 'GPSVersionID"), (1, 'GPSLatitudeRef'), (2, 'GPSLatitude"),
(3, 'GPSLongitudeRef'), (4, 'GPSLongitude'), (5, 'GPSATtitudeRef"),
(6, 'GPSATtitude'), (7,'GPSTimeStamp'), (8, 'GPSSatellites'), (9, 'GPSStatus'),
(10, 'GPSMeasureMode'), (11, 'GPSDOP"), (12, 'GPSSpeedRef"), (13, 'GPSSpeed"),
(14, 'GPSTrackRef"), (15, 'GPSTrack"), (16, 'GPSImgDirectionRef'), (17,
'GPSImgDirection'), (18, 'GPSMapDatum'), (19, 'GPSDestLatitudeRef"), (20,
'GPSDestlatitude'), (21, 'GPSDestlLongitudeRef"), (22, 'GPSDestLongitude"),
(23, 'GPSDestBearingRef'), (24, 'GPSDestBearing'), (25,
'GPSDestDistanceRef"), (26, 'GPSDestDistance')]

I'have highlighted a few GPSTAGS that we need in order to pinpoint the location
and time of the photograph. Again pointing out that there is no guarantee that any or
all of these tags will be available within the subject image.

134

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

Longitude and latitude locations provide the ability to pinpoint a specific location on the
earth. The Global Position System and GPS receivers built into smart phones and cameras
can deliver very accurate geolocation information in the form of longitude and latitude coor-
dinates. If so configured, this geolocation information can be directly embedded in photo-
graphs, movies, and other digital objects when certain events occur. Extracting this
geolocation information from these digital objects and then entering that data into online ser-
vices such as Mapquest, Google Maps, Google earth, etc., can provide evidence of where and
when that digital object was created.

If we plan to utilize the TAGS to pinpoint the location, we need a better definition
and understanding of the TAGS of interest, their meaning, and usage.

GPSLatitudeRef: Latitude is specified by either the North or South position in
degrees from the equator. Those points that are north of the equator range from
0 to 90 degrees. Those points that are south of the equator range from 0 to —90
degrees. Thus this reference value is used to define where the latitude is in relation-
ship to the equator. Since the value latitude is specified in EXIF as a positive integer,
if the Latitude Reference is “S” or South, the integer value must be converted to a
negative value.

GPSLatitude: Indicates the latitude measured in degrees. The EXIF data specify
these as whole degrees, followed by minutes and then followed by seconds.

GPSLongitudeRef: Longitude is specified by either the east or west position in
degrees. The convention is based on the Prime Meridian which runs through the
Royal Observatory in Greenwich, England, which is defined as longitude
zero degrees. Those points that are west of the Prime Meridian range from O to
—180 degrees. Those points that are east of the Prime Meridian range from
0 to 180 degrees. Thus this reference value is used to define where the longitude
value is in relationship to Greenwich. Since the value of longitude is specified in
EXIF as a positive integer, if the Longitude Reference is west or “W,” the integer
value must be converted to a negative value.

GPSLongitude: Indicates the longitude measured in degrees. The EXIF data spec-
ify these as whole degrees, followed by minutes and then followed by seconds.

GPSTimeStamp: Specifies the time as Universal Coordinated Time that the photo
was taken.

Since the data contained within the EXIF structure are digital values, they are subject to
manipulation and forgery. Thus, securing the images or obtaining them directly from the
Smart Mobile device makes fraudulent modification less likely and much more difficult to
accomplish.

Now that we have a basic understanding of what TAGS are potentially
available within a photograph, let us examine an actual photograph. Figure 5.4
depicts an image downloaded from the Internet and will be the subject of this
experiment.

Introduction 135

FIGURE 5.4
Internet Photo Cat.jpg.

CODE SCRIPT 5.8 EXTRACT EXIF TAGS OF A SAMPLE IMAGE

>>> from PIL import Image

>>> from PIL.EXIFTags import TAGS, GPSTAGS

>>>

>>>pillmage = Image.open("c:\\pictures\\cat.jpg)"
EXIFData =pillmage._getEXIF()

S>> catEXIF = EXIFData.items()
>>> catEXIF.sort()
>>>print catEXIF

This script imports the PIL Image module that allows me to open the specific
image for processing and to create the object pillmage. I can then use the object pil-
Image to acquire the EXIF data by using the . getEXIF() method. As we did when
extracting the EXIFTAGS and GPSTAGS, in this example I am extracting the dic-
tionary items and then sorting them. Note, in this example I am extracting the actual
EXIF data (or potential evidence) not the TAG references.

The output from the Code Script 5.3 is shown here.

[(271,'Canon’), (272, 'Canon EOS 400D DIGITAL"), (282, (300, 1)), (283, (300, 1)), (296,
2), (306, '2008:08:05 23:48:04"), (315, 'unknown’), (33432, 'Eirik Solheim - www.eirikso.
com’), (33434, (1, 100)), (33437,(22, 10)), (34665, 240), (34850, 2), (34853,{0:(2, 2,0,
0), 1:'N’, 2: ((59, 1), (55, 1), (37417, 1285)), 3: 'E’, 4: ((10, 1), (41, 1), (55324, 1253)), 5: 0, 6:
(81, 1)}), (34855, 400), (36864, '0221"), (36867, '2008:08:05 20:59:32’), (36868,
'2008:08:05 20:59:32"), (37378, (2275007, 1000000)), (37381, (96875, 100000)),
(37383, 1), (37385, 16), (37386, (50, 1)), (41486, (3888000, 877)), (41487,
(2592000, 582)), (41488, 2), (41985, 0), (41986, 0), (41987, 0), (41990, 0)]

http://www.eirikso.com
http://www.eirikso.com
Figure 5.4

136

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

I'have highlighted the GPSInfo data associated with this photograph. I was able to
identify the GPSInfo TAG based on the output of the previous Code Script 5.1,
whereby the output showed that the GPSInfo TAG had a key value of 34853. There-
fore, this camera, the Canon EOS 400D DIGITAL, provides the GPS data
highlighted between the curly braces. Closer examination of the GPS data reveals
the specific key value pairs that are available. As you can see, the key value pairs
embedded in the GPSInfo data dictionary are 0, 1, 2, 3, 4, 5, and 6. These TAGS
refer to the standard GPS TAGS. In Code Script 5.2, I printed out all the possible
GPS Tags, by referring to that output we discover the following GPS TAGS that were
provided by the Cannon EOS 400D. They include:

GPSVersionID
GPSLatitudeRef
GPSLatitude
GPSLongitudeRef
GPSLongitude
GPSATtitudeRef
GPSAltitude

oY OB~ N = O

With this information I can calculate the longitude and latitude provided by the EXIF
data within the photograph using the following process. But, first, I need to extract
the latitude from the key value pair GPSTag 2:

(59, 1), (55, 1), (37417, 1285))
Each latitude and longitude value contains three sets of values. They are:

Degrees: (59, 1)
Minutes: (55, 1)
Seconds: (37,417, 1285)

You might be wondering why they are represented like this. The answer is the EXIF
data does not hold floating point numbers (only whole integers). In order to provide
more precise latitude and longitude data, each pair represents a ratio.

Next, I need to perform the ratio calculation to obtain a precise factional value,
yielding:

Degrees: 59/1 =59.0

Minutes: 55/1=55.0

Seconds: 37,417/1285=29.1182879

Or more properly stated 59 degrees, 55 minutes, 29.1182879 seconds.

Note: GPSTag 1: “N” the Latitude Reference key value pair is a north reference from
the equator and does not require us to convert this to a negative value, if it were “S”
we would have make this additional conversion.

Next, most online mapping programs (i.e., Google Maps) require data to be pro-
vided as a fractional value. This is accomplished by using the following formula.

Degrees + (minutes/60.0) 4 (seconds/3600.0)

Code Walk-Through 137

Note: the denominators of 60.0 and 3600.0 represent the number minutes (60.0) and
seconds (3600.0) in each hour, respectively.
Thus this latitude value represented as floating point number would be:

Latitude =39.0+ (55/60.0) + (29.1182879/3600.0)
Latitude =39.04-.91666667 +-.00808841 =59.9247551

Performing the same calculation on the longitude value extracted from GPSTag 4:

((10, 1), (41, 1), (55324, 1253))

With a GPSTag 3: “E”

Yields a longitude value of 10.6955981201

Giving us a latitude/longitude value of 59.924755, 10.6955981201

Using Google Maps, I can now plot the 5§9.924755, 10.6955981201 yielding a point
just north and west of Oslo, Norway as shown in Figure 5.5. Noting that Oslo,
Norway is in fact East of the Prime Meridian in Greenwich, England.

One final note, this camera did not include other GPSTAGS such as the GPSTi-
mestamp, which could have given us the time as reported by GPS.

p-lImageEvidenceExtractor fundamental requirements

Now that I have experimented with the PIL, discovered how to extract the EXIF
TAGS, the GPS tags, and the EXIF data from a target image, [want to define our
first full extraction application.

Design considerations
Now that I have defined the basic approach, Table 5.1 and Table 5.2 define the pro-
gram requirements and design considerations for the p-ImageEvidenceExtractor.
Next, I want to define the overall design of the p-gpsExtractor as depicted in
Figure 5.6. I will again be using the command line parser to convey selections from
the user. I will be directing output to standard out, a CSV file, and the forensic log.
The user will specify a folder containing images to process. I have also created a class
to handle forensic logging operations that I can reuse or expand in the future. Finally,
I will be reusing a slightly modified version of the CVSWriter class I created in
Chapter 3 for the pFish application.

CODE WALK-THROUGH

In order to get a feel for the program take a look at Figure 5.7, which is a screenshot of
the WingIDE project. You notice on the far right this program contains five Python
source files:

@ 55.92475508,10.6955981201 - Google Maps - Moxilla Firefox

-
| £ 59.92475508,10.6955981201 - Google .. % | W Gengraphic coordinate system - Wiki... * | +
€ & nitp google.com

= | @ 2
-
P+ &

59.92475508,10.6955981201

Google

-~
(¢ ») =
AV 4 Tyfistrand

[+ Sundvollen

[+

1t

IJ‘;I Vikersund Tyrifjorden

T

-] 3]

sylling
.
Toemyr
Tranby
Lier.
Hokksund.
[£134]
Mjondalen

A : @EEn Drammen ke
5 mi
= k13 D)
x Find: ref & Net 4 Previous + Highlightall [7] Matgh case

FIGURE 5.5

Grorud

C
Holmenkollen
Grefsen
Beerums Rea 150]
Verk agene
Haslum Ullern Alna
Ramsissn | Kolsas Bekkestua Oslo (e
O G Bygdey
Sandvika
Billingstad Nordstrand
Nesoddtangen
Ga Fee)
ASKET yertre Sandre
Nordstrand
Vallen Kolbotn
0;}?_,”;0'"' Sofiemyr
Slemmestad Syartskod.
O
Neersnes Oppegard
X" Langhus
Ski
%] Ea

€6 | Ames
Gjerdrum
Ask Klgfta
Frogner
Skedsmokorset
Sorumsand
Kjeller
Lillestrom
Fetsund Aursmoen
Fierdingby.
Byeren
{22]
0
wire Helesjovann

Cnebakk

Map data B2013 Google - Edit in Google Map Maker

Traffic

Report a problem

Satellite

S

[

Map of GPS coordinates extracted From Cat.jpg.

8¢€1

(4411 pue D3dr) uoideiixg adusplAg OIsusio4 § YILdVYHI

Figure 5.5

Code Walk-Through

139

Table 5.1 Basic Requirements for GPS/EXIF Extraction

Requirement
number

GPS-001

GPS-002
GPS-003

GPS-004

Requirement
name

Command Line
Arguments

Log
Output

applications
Error Handling

timestamp

Short description

Allow the user to specify a directory that contains
sample images to attempt to extract GPS
information from

The program must produce a forensic audit log

The program should produce a list of latitude
and longitude values from the GPS information
found. The format must be simple lat, lon values in
order to be pasted into online mapping

The application must support error handling
and logging of all operations performed.
This will include a textual description and a

Table 5.2 Design Consideration and Library Mapping

Requirement

User Input (001)

Output (003)

(Additional)

(002 and 004)
Logging and
Error Handling

Design considerations

User input for keyword and target file

The extracted GPS location will be
printed out using simple built-in print
commands

Extract additional EXIF and GPS
values and record the data for each
file encountered in a CSV file

Errors may occur during the
processing of the files and EXIF data.
Therefore, handling these potential
errors must be rigorous

Library selection

| will be using argparse
from the Standard Library
module to obtain input from
the user

| will be using the Python
Image Library and the
standard Python language
to extract and format the
output in order to cut and
paste directly into the Web
page: http://www.
darrinward.com/lat-long/
Use the Python Image
Library and Python CVS
Library

The Python Standard
Library includes a 1ogging
facility which | can leverage
to report any events or
errors that occur during
processing. Note for this
application | will create a
reuseable logging class

http://www.darrinward.com/lat-long/
http://www.darrinward.com/lat-long/

140 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

user

Program\ Arguments

p-gpsExtractor

Standard
| out

Y,

—— results
— | file
Folder with Event
images —_—— and
error log
p-gpsExtractor context diagram
FIGURE 5.6
p-gpsExtractor context diagram.
[— -
| e ———
DeE@ s85h 9¢ 8 B EE®E D& r-aa
wgnoretis cscepric B B B~ opuons DHDUG 1O (SR, STOUT, STHE) SPPES BEsow vopuons | 2| Project: gps.wpr (3 Ties /1 awrs) - options
33.8754608154,-116.301619602 £

55.0072383322,11.9109333333
59.92475508,10.6955981201
47.975,7 82966666667
28.4187895083,-81.5809720861
42.501235,-83.2506633333
53.4071666667 -1.90366666667
48.1413333333,11 5766666667
25.3384,34.739666

xcepbiors | 5e0rcn | Searcn n Fies [stackoam |~ | Debug e [Messages | Open Faes | Pymmon snen |

chasslogging.py | P-SPSEatractorpy | commandParserpy | covandlerpy | modiiFpy

A _commanoParerpy
A _cnvHandiepy
& modEF py

. »
i
2 # GPS Extraction
3 # Pylhan-Forensics
4 # No HASP required
5 #
6
7 import os
import_modExIF
9 import_csvHandler

10 import _commandParser
11 from classLogging import _Forensiclog

12

13 # Process the Command Line Arguments

14 uscrArgs = _commandParser.ParseCommandLine(
I s

FIGURE 5.7

WingIDE Project Overview.

Figure 5.6
Figure 5.7

Code Walk-Through

Main Program

p-gpsExtractor.py: This is the Main Program for this application handling the overall
program flow and the processing of each potential image file contained in a folder
specified by the user via the command line. Main writes data to standard out in order
to make it easy to cut and paste that data into a Web page for map viewing. Main also
handles output to the CSV file that provides the results for each of the files processed,
as well as any forensic log entries.

Class Logging

classLogging.py: The new class logger abstracts the logging function in a Python
class for handling Forensic Logging functions. This will allow for log object passing
for future applications to any module or function eliminating any need for global
variables.

cvsHandler

csvHandler.py: This modified class for handling CSV File Creation and Writing pro-
vides a single point interface to writing output files in CVS format, once again to
abstract the functions and make interface simpler. More work will be done on this
class in the future to abstract this further.

Command line parser

commandParser.py: I separated out the commandParser.py into its own file for
greater portability for this application and for future applications. This allows com-
mand line parser to be handled, modified, or enhanced and is more loosely coupled
from the Main Program. Like the Logging functions this will eventually be turned
into a Class-based module to allow cross-module access and interface.

EXIF and GPS Handler

_modEXIF.py: This module directly interfaces with the PIL to perform the needed
operations to extract both EXIF and GPS data from image files that contain
EXIF data.

Examining the code
Main Program

GPS Extraction

Python-Forensics
No HASP required
#

.
141

142

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

import os

import _modEXIF

import _csvHandler

import _commandParser
fromclasslLogging import Forensiclog

For the main program we need to import os to handle folder processing, the com-
mand line processor, the cvsHandler and the new ForensicLog Class.

Process the Command Line Arguments
userArgs = _commandParser.ParseCommandlLine()

As I typically do, I process the command line arguments to obtain the user spec-
ified values. If command parsing is successful we create a new logging object to
handle any necessary forensic log events and write the first log event.

#fcreate a logobject
logPath =userArgs.logPath+"ForensicLog.txt"
oLog = _ForensiclLog(logPath)

oLog.writelLog("INFO", "Scan Started)"

Next I create a CSV File Object that I will use to write data to the CSV results file
that will contain the files processed and the resulting GPS data extracted

csvPath =userArgs.csvPath+"imageResults.csv"
oCSV = _csvHandler._CSVWriter(csvPath)

Needing to obtain the user specified target directory for our GPS extraction, |
attempt to open and then process each of the files in the target directory. If
any errors occur they are captured using the try except model and appropriate
errors are written to the forensic log file.

##define adirectory to scan

scanDir =userArgs.scanPath

try:
picts =o0s.listdir(scanDir)

except:
oLog.writeLog("ERROR", "Invalid Directory "+ scanDir)
exit(0)

for aFileinpicts:
targetFile = scanDir+aFile
if os.path.isfile(targetFile):

Once the preliminaries are out of the way, I can now utilize the _modEXIF module
to process each target file, with the result being a gpsDictionary object if success-
ful. This object will contain the EXIF data that is available for this file as embed-
ded in the EXIF record. Before using the data, I check to ensure that the
gpsDictionary object contains data.

Code Walk-Through 143

gpsDictionary =
_modEXIF.ExtractGPSDictionary(targetFile)

if (gpsDictionary):

0btain the Lat Lon values from the gpsDictionary
#f converted to degrees
the returnvalue is adictionary key value pairs

dCoor = _modEXIF.ExtractLatLon(gpsDictionary)

Next, I call another _modEXIF function to process further the gpsDictionary. This
function as you will see, processes the GPS coordinates, and if successful returns
the raw coordinate data. Then using the Dictionary methods you learned about
earlier in this chapter, I extract the latitude and longitude data from the dictionary
by using the get method.

lat =dCoor.get("Lat)"
latRef =dCoor.get("LatRef)"
lon =dCoor.get("Lon)"
lonRef = dCoor.get("LonRef)"

if (Tat and Ton and TatRef and TonRef):

Upon successful extraction of the latitude and longitude values I print the results
to standard out, write the data to the CSV file and update the forensic log accord-
ingly. Or if unsuccessful, I report the appropriate data to the forensic log file.

print str(lat)+,+str(lon)

#write one row to the output csv file

oCSV.writeCSVRow(targetFile, EXIFList[TS], EXIFList
[MAKE], EXIFList[MODEL],TatRef, Tat, TonRef,
Ton)

oLog.writelLog("INFO", "GPS Data Calculated for:" +
targetFile)
else:
oLog.writelLog("WARNING", "No GPS EXIF Data for"+
targetFile)
else:
oLog.writelLog("WARNING", "No GPS EXIF Data for
"+ targetFile)
else:
oLog.writelLog("WARNING", targetFile+ "notavalidfile)"

Finally before program exit I delete the forensic log and CSV objects which in turn
closes the log and the associated CSV file.

Clean up and Close Log and CSV File

del olog
del oCSV

144 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

EXIF and GPS processing
The core data extraction elements of the p-gpsExtractor are contained within the
_modEXIF.py module.

1

Data Extraction - Python-Forensics

Extract GPS Data from EXIF supported Images (jpg, tiff)
Support Module

i

I start by importing the libraries and modules needed by _modEXIF .py. Important
module of note is the Python Imaging Library and associated capabilities.

import os # Standard Library 0S functions
fromclasslLogging import _ForensiclLog # Logging Class

Fromthe PILIimportthe Image Library andthe EXIF and GPS Tags in order to index
into the dictionary structures, much like I did in the script examples 5-6 thru 5-8.

import the Python Image Library
#along with TAGS and GPS related TAGS

fromPIL import Image
fromPIL.EXIFTags import TAGS, GPSTAGS

Now let’s take a look and breakdown the individual functions. I will start with the
extraction of the GPS Dictionary. The function take the full path name of the target
file that the extraction is to occur with.

1

Extract EXIF Data

1

Input: Full Pathname of the target image

i

Return: gpsDictionary and extracted EXIFData 1ist
1

def ExtractGPSDictionary(fileName):

Using the familiar try | except module I attempt to open the filename provided and
if successful I then extract the EXIF data by using the PIL getEXIF() function.

try:
pillmage = Image.open(fileName)
EXIFData =pillmage._getEXIF()

except Exception:
If exception occurs fromPIL processing
Report the
return None, None

J# Iterate through the EXIFData
Searching for GPS Tags

Code Walk-Through 145

Next, I'm going to iterate through the EXIFData TAGS and collect some basic
EXIF data and then obtain the GPSTags if they are included within the EXIF data
of the specific image.

imageTimeStamp = "NA"
CameraModel = "NA"
CameraMake = "NA"
if EXIFData:
for tag, theValue in EXIFData.items():

J#obtain the tag
tagValue = TAGS.get(tag, tag)

J#Collect basic image data if available

As [iterate through the tags that are present within this image, I check for the
presence of the DataTimeOriginal along with the camera make and model in
order to include them in the result file.

if tagValue =="'DateTimeOriginal':
imageTimeStamp = EXIFData.get(tag)

if tagValue == "Make":
cameraMake = EXIFData.get(tag)

if tagValue == 'Model":
cameraModel = EXIFData.get(tag)

I also check for the GPSInfo TAG, and if present I iterate through GPSInfo and
extract the GPS Dictionary using the GPSTAGS . get ()functions.

Jf check the tag for GPS
if tagValue == "GPSInfo":

Found it !
Now create a Dictionary to hold the GPS Data

gpsDictionary = {}
Loop through the GPS Information

for curTag in theValue:
gpsTag = GPSTAGS.get(curTag, curTag)
gpsDictionarylgpsTag] = theValuelcurTag]

Next, I create a simple Python List to hold the EXIF Timestamp and Camera Make
and Model. Then we return gpsDictionary and the basicEXIFData that was
collected.

basicEXIFData = [imageTimeStamp, cameraMake,
cameraModel]

return gpsDictionary, basicEXIFData
else:

146 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

If the target file doesn’t contain any EXIF data I return None in order to prevent
any further processing of this file. Note None is a built in Python constant that is
used to represent empty or missing data.

return None, None
End ExtractGPSDictionary

The next support function is ExtractLatLon. As I covered in the narrative of this
chapter, need to convert the EXIF GPS data into floating point values in order to use
them with online mapping applications.

i

Extract the Latitude and Longitude Values
from the gpsDictionary

i

The ExtractLatLon function takes as input a gps Dictionary structure.
def ExtractlatLon(gps):

to performthe calculation we need at least
#1at, lon, TatRef and TonRef

Before I attempt the conversion, I need to validate the gps Dictionary contains the
proper key value pairs. This includes the latitude, longitude, latitude reference
and longitude reference.

if (gps.has_key("GPSLatitude)" and
gps.has_key("GPSLongitude)"
and gps.has_key("GPSLatitudeRef)"
and gps.has_key("GPSLatitudeRef)"):

Once we have the minimum inputs I extract the individual values.

latitude =gps["GPSLatitude"]
latitudeRef =gps["GPSLatitudeRef"]
longitude =gps["GPSLongitude"]

longitudeRef =gps["GPSLongitudeRef"]
I then call the conversion function for both latitude and longitude values.

lat = ConvertToDegrees(latitude)
lon = ConvertToDegrees(longitude)

Next I need to account for the latitude and longitude reference values and set the
proper negative values if necessary.

J# Check Latitude Reference
1f South of the Equator then lat value is negative

if TatitudeRef == "S":
lat =0 - lat

Check Longitude Reference

Code Walk-Through

#1f West of the Prime Meridian in
Greenwich then the Longitude value is negative

if TongitudeRef == "W":
lon=20 - lon

Once this has been accounted for, I create a new dictionary to hold the final values
and return that to the caller. In this case the main program.

gpsCoor = {"Lat": Tat, "LatRef":latitudeRef,
"Lon": Ton, "LonRef": longitudeRef}

return gpsCoor
else:

Once again, if the minimum values are not present, I return the built in Python
constant None to indicate and empty return.

return None

The final support function is the ConvertToDegrees function that converts the
GPS data into a floating point value. This code is very straightforward and follows
the formula presented in the narrative of this chapter. The only important aspect to
point out is the try/except model used whenever dividing two numbers, as a divide by
zero would cause a failure to occur and the program to abort. As with any data com-
ing from the wild, anything is possible and we need to account for possible zero divi-
sion. I have seen this with EXIF data, when the value for seconds is zero the ratio is
reported as 0:0. Since this is a legal value, I simply set the degrees, minutes, or sec-
onds to zero when the exception occurs.

i

Convert GPSCoordinates to Degrees

#

Input gpsCoordinates value fromin EXIF Format

#

def ConvertToDegrees(gpsCoordinate):

d0 = gpsCoordinate[0]1[0]
dl = gpsCoordinate[0][1]

try:

degrees = float(d0) / float(dl)
except:

degrees =0.0

m0 = gpsCoordinate[1][0]
ml = gpsCoordinate[1][1]
try:
minutes = float(m0) / float(ml)
except:
minutes=0.0

.
147

148 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

sO0 =gpsCoordinate[2]1[0]
sl =gpsCoordinate[2][1]
try:
seconds = float(s0) / float(sl)
except:
seconds =0.0

floatCoordinate = float (degrees + (minutes / 60.0) +
(seconds / 3600.0))
return floatCoordinate

Logging Class
For this application I have include a new class /ogging that abstracts and simplifies
the handling of forensic logging events across modules.

import logging

1

#Class: _Forensiclog

1

Desc: Handles Forensic Logging Operations

i

Methods

i constructor: Initializes the Logger

i writelog: Writes a record to the 1og

i destructor: Writes an information message
i and shuts down the lTogger

class _Forensiclog:

init is the constructor method that is called whenever a new ForensicLog object is
created. The method initializes a new Python logging object using the Python
Standard Library. The filename of the log is passed in as part of the object instan-
tiation. If an exception is encountered a message is sent to standard output and the
program is aborted.

def __init__(self, TogName):
try:
Turn on Logging
logging.basicConfig(filename=logName,
level=1logging.DEBUG, format="5(asctime) s 2(message)s')
except:
print "Forensic Log Initialization
Failure ... Aborting"
exit(0)

The next method is writeLog which takes two parameters (along with self), the first
is the type or level of the log event (INFO, ERROR or WARNING) and then a
string representing the message that will be written to the log.

Code Walk-Through 149

def writelog(self, TogType, TogMessage):
if logType == "INFO":
logging.info(logMessage)
elif TogType == "ERROR":
logging.error(logMessage)
elif TogType == "WARNING":
logging.warning(logMessage)
else:
logging.error(logMessage)
return

Finally the del method is used to shutdown logging and to close the log file. The
message Logging Shutdown is sent to the log as an information message just prior
to shutdown of the log.

def __del__ (self):
lTogging.info("Logging Shutdown)"
logging.shutdown()

Command line parser
Command line parser handles the user input, provides validation for the arguments
passed, and reports error along with help text to assist the user.

import argparse ## Python Standard Library - Parser for
command-Tine options, arguments

import os J# Standard Library 0S functions

Name: ParseCommand() Function

#

Jf Desc: Process and Validate the command 1ine arguments
it use Python Standard Library module argparse
#

Input: none

i

Actions:

i Uses the standard 1ibrary argparse

1 to process the command 1ine

#

def ParseCommandLine():

gpsExtractor requires three inputs 1) the directory path for the forensic log, 2) the
directory path to be scanned and 3) the directory path for the CSV result file. All
these directory paths must exist and be writable in order for parsing to succeed.

parser =argparse.ArgumentParser('Python gpsExtractor)

parser.add_argument('-v', '--verbose', help="enables
printing of additional program
messages", action='store_true')

150 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

parser.add_argument('-1', '--TogPath',
type=ValidateDirectory, required=True,
help="specify the directory
for forensic Tog output file")

parser.add_argument('-c', '--csvPath',
type=ValidateDirectory, required=True,
help="specify the output directory for
the csv file)”

parser.add_argument('-d', "-scanPath',
type=ValidateDirectory, required=True,
help="specify the directory to scan)"

theArgs = parser.parse_args()

return theArgs

End Parse Command Line

The ValidateDirectory function verifies that value passed is a bona fide directory
and the path is in fact writable. I use the os.path.isdir() method to verify the exis-
tence and the os.access() method to verify the writing.

def ValidateDirectory(theDir):

#Validate the path is adirectory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('‘Directory does not exist")

#Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raise argparse.ArgumentTypekrror
('Directory is not writable')

#End ValidateDirectory

Comma separated value (CSV) Writer class
The _CSVWriter class provides object-based abstraction for writing headings and
data to a standard CSV file.

import csv #Python Standard Library - for csv files

1

#Class: _CSVWriter

1

Desc: Handles a1l methods related to

i comma separated value operations
1

#F Methods

Code Walk-Through 151

i constructor: Initializes the CSV File
it writeCVSRow: Writes a single rowto thecsv file
i writerClose: Closes the CSV File

class _CSVWriter:

The constructor opens the filename provided as a csvFile and then writes the
header to the csv File.

def __init__(self, fileName):
try:
J#create awriter object and thenwrite the header row

self.csvFile =open(fileName, 'wb")

self.writer =csv.writer(self.csvFile,
delimiter=",",
quoting=csv.QUOTE_ALL)

self.writer.writerow((‘Image Path', 'TimeStamp',
'‘Camera Make',
‘Camera Model',
'Lat Ref', 'Latitude',
'Lon Ref','Longitude'))
except:
log.error('CSV File Failure")

The actual writeCSVRow method takes as input the individual columns defined
and writes them to the file. In addition, the function converts the floating point
latitude and longitude values to properly formatted strings.

def writeCSVRow(self, fileName, timeStamp, CameraMake,
CameraModel,TatRef, TatValue, lonRef,
lonValue):

latStr="%.8f"% TatValue
lonStr="%.8f"% TonValue

self.writer.writerow((fileName, timeStamp, CameraMake,
CameraModel, TatRef, TatStr,
TonRef, TonStr))

Finally the del method closes the csvFile for proper deconstruction of the object.

def __del__(self):
self.csvFile.close()

Full code listings
i
GPS Extraction
Python-Forensics
it No HASP required

152 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

#

import os

import _modEXIF

import _csvHandler

import _commandParser
fromclassLogging import _Forensiclog

0ffsets into the return EXIFData for
TimeStamp, Camera Make and Model

TS=0
MAKE =1
MODEL =2

J# Process the Command Line Arguments
userArgs = _commandParser.ParseCommandLine()

create a Tog object
logPath = userArgs.logPath+"ForensiclLog.txt"
oLog = _ForensiclLog(logPath)

oLog.writelLog("INFO", "Scan Started")

csvPath = userArgs.csvPath+"imageResults.csv"
oCSV = _csvHandler._CSVWriter(csvPath)

define a directory to scan
scanDir =userArgs.scanPath

try:
picts =o0s.listdir(scanDir)

except:
oLog.writeLog("ERROR", "InvalidDirectory "+ scanDir)
exit(0)

print "Program Start"
print

for aFileinpicts:
targetFile = scanDir+aFile
if os.path.isfile(targetFile):

gpsDictionary, EXIFList = _modEXIF.ExtractGPSDictionary
(targetFile)

if (gpsDictionary):

0btain the Lat Lon values from the gpsDictionary
Converted to degrees
The return value isadictionary key value pairs

dCoor = _modEXIF.ExtractLatLon(gpsDictionary)
lat =dCoor.get("Lat")

Code Walk-Through 153

latRef = dCoor.get("LatRef")
lon =dCoor.get("Lon")
lonRef =dCoor.get("LonRef")

if (Tat and Ton and TatRef and TonRef):
print str(lat)+,+str(lon)

#write one row to the output file
oCSV.writeCSVRow(targetFile, EXIFList[TS], EXIFList
[MAKET, EXIFList[MODEL],TatRef, Tat, TonRef, Ton)
oLog.writelog("INFO", "GPS Data Calculated for :" +
targetFile)
else:
oLog.writelLog("WARNING", "No GPS EXIF Data for "+
targetFile)
else:
oLog.writeLog("WARNING", "No GPS EXIF Data for "+
targetFile)
else:
oLog.writelLog("WARNING", targetFile+ " notavalidfile")

Clean up and Close Log and CSV File

del olLog

del oCSV

import argparse J# Python Standard Library - Parser
for command-1ine options, arguments

import os # Standard Library 0S functions

Name: ParseCommand() Function

1

Desc: Process and Validate the command 1ine arguments

i use Python Standard Library module argparse

i

Input: none

1

Actions:

1 Uses thestandard libraryargparse toprocess the command
line

1

def ParseCommandLine():
parser = argparse.ArgumentParser('Python gpsExtractor')

parser.add_argument('-v', '--verbose', help="enables printing of
additional programmessages", action='store_true")

parser.add_argument('-1', '--TogPath’, type=ValidateDirectory,
required=True, help="specify thedirectory for forensic log output
file")

parser.add_argument('-c’', '--csvPath’, type=ValidateDirectory,
required=True, help="specify the output directory for the csv
file")

154 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

End Parse Command Line ===

parser.add_argument('-d', '--scanPath’, type=ValidateDirectory,
required=True, help="specify the directory to scan")

theArgs = parser.parse_args()

return theArgs

def ValidateDirectory(theDir):

##End ValidateDirectory

#Validate the path is a directory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('Directory does not exist")

##Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raise argparse.ArgumentTypeError('‘Directory is not writable')

import logging

i

#Class: _Forensiclog

#

Desc: Handles Forensic Logging Operations

1

J## Methods constructor: Initializes the Logger

i writelog: Writes a record to the 1og

1 destructor: Writes an information message and

shuts down the Togger

class _ForensiclLog:

def __init__(self, TogName):
try:
Turn on Logging

logging.basicConfig(filename=1ogName,level=10gging.DEBUG,
format="%(asctime)s %(message)s')

except:
print "Forensic Log Initialization Failure...Aborting"
exit(0)
def writelLog(self, TogType, TogMessage):
if logType == "INFO":
logging.info(logMessage)
elif logType == "ERROR":

logging.error(logMessage)
elif logType == "WARNING":

logging.warning(logMessage)
else:

Code Walk-Through 155

logging.error(logMessage)
return

def __del_ (self):
lTogging.info("Logging Shutdown")
lTogging.shutdown()
#
J# Data Extraction - Python-Forensics
Extract GPS Data from EXIF supported Images (jpg, tiff)
Support Module
#
import os ##Standard Library 0S functions
fromclasslLogging import _Forensiclog J# Abstracted Forensic Logging
Class

import the Python Image Library
#along with TAGS and GPS related TAGS

from PIL import Image
fromPIL.EXIFTags import TAGS, GPSTAGS

#

J## Extract EXIF Data

#

Input: Full Pathname of the target image

#

Return: gps Dictionary and selected EXIFData Tist
1

def ExtractGPSDictionary(fileName):

try:
pillmage = Image.open(fileName)
EXIFData =pillmage._getEXIF()

except Exception:
J# If exceptionoccurs fromPIL processing
Report the
return None, None

J# Iterate through the EXIFData
#f Searching for GPS Tags

imageTimeStamp = "NA"
CameraModel = "NA"
CameraMake = "NA"
if EXIFData:
for tag, theValue in EXIFData.items():

J#obtain the tag
tagValue = TAGS.get(tag, tag)

156 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

J#Collect basic image data if available

if tagValue =='DateTimeOriginal':
imageTimeStamp = EXIFData.get(tag)

if tagValue == "Make":
cameraMake = EXIFData.get(tag)

if tagValue == 'Model':
cameraModel = EXIFData.get(tag)

Jf check the tag for GPS
if tagValue == "GPSInfo":

Found it !
Now create a Dictionary to hold the GPS Data

gpsDictionary = {}

Loop through the GPS Information

for curTag in theValue:
gpsTag = GPSTAGS.get(curTag, curTag)
gpsDictionary[gpsTag] = theValuel[curTag]

basicEXIFData = [imageTimeStamp, cameraMake,
cameraModel]
return gpsDictionary, basicEXIFData

else:
return None, None

End ExtractGPSDictionary

1

Extract the Latitude and Longitude Values
From the gpsDictionary

1

def ExtractlLatLon(gps):

to performthe calculation we need at least
#1at, lon, TatRef and TonRef

if (gps.has_key("GPSLatitude") and gps.has_key("GPSLongitude")
and gps.has_key("GPSLatitudeRef") and gps.has_key
("GPSLatitudeRef")):

Tatitude =gps["GPSLatitude"]
latitudeRef =gps["GPSLatitudeRef"]
longitude =gps["GPSLongitude"]

longitudeRef = gps["GPSLongitudeRef"]

lat = ConvertToDegrees(latitude)
lon = ConvertToDegrees(longitude)
J#f Check Latitude Reference

Code Walk-Through 157

1f South of the Equator then lat value is negative

if TatitudeRef == "S":
lat =0 - lat
Jf Check Longitude Reference

#1If West of the Prime Meridian in
Greenwich then the Longitude value is negative

if TongitudeRef == "W":
lon=0-1Ton

gpsCoor ={"Lat": Tat, "LatRef":1atitudeRef, "Lon": lon,
"LonRef": TongitudeRef}

return gpsCoor

else:
return None

End Extract Lat Lon =
#

Convert GPSCoordinates to Degrees

1

Input gpsCoordinates value fromin EXIF Format
it

def ConvertToDegrees(gpsCoordinate):

d0 = gpsCoordinate[0][0]
dl = gpsCoordinate[0]1[1]
try:
degrees = float(d0) / float(dl)
except:
degrees =0.0

m0 = gpsCoordinate[1][0]
ml = gpsCoordinate[1]1[1]
try:
minutes = float(m0) / float(ml)
except:
minutes=0.0

sO0 =gpsCoordinate[2][0]
sl =gpsCoordinate[2][1]
try:
seconds = float(s0) / float(sl)
except:
seconds =0.0

floatCoordinate = float (degrees + (minutes / 60.0) + (seconds /
3600.0))
return floatCoordinate

158 CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

import csv #Python Standard Library - reader and writer for csv files
1

#Class: _CSVWriter

i

Desc: Handles all methods related to comma separated value operations
1

Methods constructor: Initializes the CSV File

i writeCVSRow: Writes a single rowto thecsv file

i writerClose: Closes the CSV File

class _CSVWriter:

def __init__(self, fileName):

try:
J#createawriter object and thenwrite the header row
self.csvFile =open(fileName, 'wb")
self.writer =csv.writer(self.csvFile, delimiter=",",
quoting=csv.QUOTE_ALL)
self.writer.writerow((‘Image Path', 'Make', 'Model', 'UTC Time',

'Lat Ref', 'Latitude', 'Lon Ref','Longitude', 'ATt Ref', 'ATtitude"))

except:

log.error('CSV File Failure")

def writeCSVRow(self, fileName, cameraMake, cameraModel, utc,
latRef, lTatValue, TonRef, TonValue, altRef, altValue):
latStr="%.8f"% TatValue
lTonStr="%.8f"% TonValue
altStr="%.8f"%altValue
self.writer.writerow(fileName, cameraMake, cameraModel, utc,
latRef, TatStr, TonRef, TonStr, altRef, A1tStr)

def __del__(self):
self.csvFile.close()

Program execution

The p-gpsExtractor produces three separate results: (1) The standard output render-
ing of the latitude and longitude values extracted from the target files. (2) The CSV
file that contains the details of each EXIF and GPS extraction. (3) The forensic log
file that contains the log of program execution. Execution of the program is accom-
plished by using the following command and line options.

C:\pictures\Program>Python p-GPSExtractor.py-d c:\pictures\ -c
c:\pictures\Results\ -1 c:\pictures\Log\

Figure 5.8 depicts the results of program execution. I have selected the output
results and copied them into the paste buffer in order to plot all the points within
an online mapping program.

Figure 5.8 contains a screenshot of a Windows execution of p-gpsExtractor.

Summary Questions 159

[§ — - B
B Select CA\Windows\system3Z\cmd.exe (oo o]

s\pictures\Program>python p-GPSExtractor.py -d c:\pictures\ -c c:\pictures\Results\ -1 c:\pictures\Log\
Program Start

< m b

FIGURE 5.8
p-gpsExtractor.py execution.

In Figure 5.9, I paste the selected coordinates from the program execution into the
online Web site, http://www.darrinward.com/lat-long/ [Ward] and submit the values.
The page plots each of the points on the map as a push pin. Figures 5.10 and 5.11
illustrate the zoom into the locations in Germany.

In addition to the mapped data, I also generated a .csv result file for the scan.
Figure 5.12 shows the resulting .csv file.

Finally, I also create a Forensic Log file associated with program execution. This
file contains the forensic log results shown in Figure 5.13.

CHAPTER REVIEW

In this chapter, I put to use new Python language elements including the dictionary in
order to handle more complex data types and to interface with the PIL. I also utilized
the PIL to systematically extract EXIF data from photographs including GPS data
when available with photographs. I demonstrated not only how to extract the GPS
raw data but also how to calculate the lon and lat positions and then later integrated
the output of the program into an online mapping program to plot the locations of the
photographs. In addition, I demonstrated how to extract data from the EXIF data
structure and included some of those values in a resulting .csv file that contains infor-
mation about the file, camera, timestamp, and location information.

SUMMARY QUESTIONS

1. Based on the experimentation with the Python built-in data type dictionary, what
limitations for key and value do you see?

2. Choose five additional fields from the EXIF structure, develop the additional
code to extract them, locate several photographs that contain this additional data,
and add them to the .csv output.

http://www.darrinward.com/lat-long/
Figure 5.8

Q(_-’ @ v darrinward.com/lat-long/

7r v &|[=- aing

Ale A

Plot Lat/Loong Points on Map by Coordinates

FIGURE 5.9

Note: more than 2,000 points will be slow.

33.8754608154,-116,301619602 -
55.0073383333,11.9109333333
59.,92475508,10.6955981201

47%975,7.82266666667
28.4187895083,-81.5809720861 S
42.501235,-83.2506633333 :

_

B
72y

Mapping the coordinates extracted from photos.

091

(4411 pue D3dr) uoideiixg adusplAg OIsusio4 § YILdVYHI

Figure 5.9

(& @ s domioword comot-lene/ 77 = e | [B- oing 2l e &

Plot Lat/Long Points on Map by Coordinates

Enter Lat/Long Coordinates (one per line in format: lat.Jong [no spaces] - see example)
Note: more than 2,000 points will be slow.
33.8754608154,-116.301619602 -

§5.0073383333,11.9109333333

59.92475508,10.6955981201
47.975,7.82966666667
28.4187895083, -81.5809720861 -
42.501235,-83.2506633333

PlotMap Points

] Lublin
Wroclaw o
= Czestochowa Ki%'ce
o
o
ac OPuIe\Kat £ =
y B - Rzeszow
~ ©Krakow T

fa, - B ; Lviv
- oBielsko-Biala)

Tibiden o cAu}

x

""""é” F rance oo

imigoara R Ron
Movi Sad Y
o

Bosnia and”

1% Bel_%rade
Herzegovina 7

Craiova -
A

FIGURE 5.10

Map zoom into Western Europe.

suonseny Alewwing

191

Figure 5.10

162

CHAPTER 5 Forensic Evidence Extraction (JPEG and TIFF)

a = "
G B =
ey @
’ 5 z 3
% i 3 o
. @ e
G@ () Stej,
N3 e 'Ga
& & er.y,
& hurb,
<X 2
<
=
/a
Wreg@n
(£)
Sty
”Je.—.s
(rae
oy
o
-
-J
<
&
&
S
o
=2
& g
& =
&
@ S $
Alfred-Diblin-Platz é’ 8
&
® 5 =
a Va, 7
% Ubanaﬁee 5
& 2
% i 2z
Str, £ DR &
e -Modersohn-Platz N =
|~ L7
< 6 £
o
B, = £ o
O, Y &
%4 & E
. a [%)
Lovise-ot* 9 Z’lega.lw@g
Am S
ch
)?9,0" r'E”bergweg
g,
ey
i A1 d iTunes \
Map zoom to street level in Germany.
BHES ¢ = imageResults - Excel 7@ - 0%
HOME INSERT PAGE LAYOUT FORMULAS UW REVIEW VIEW ADD-INS Team Chester Hosmer ~
o o2 = el BB Bt - [X - A
0 bl Calibri == ¥ General } D L‘..‘ Souee - | B zY H
Pt L B ooy ===3= E- §-%> < Condtonl Fomatas Cell . Sot& Find&
- Formatting~ Table~ Styles~ L - Fitter~ Select~
Clipboard Font & Alignment o Number o Styles Editing ~
D17 - s v
A 8 ¢ D £ F G H I[=
1 Image Path Timestamp Camera Make Camera Model Lat Ref Latitude LonRef | Longitude
2 [c\pictures\Biking.jpg 2006:02:11 11:06:37 canon Canon PowerShot ABD_|N -116.3016195
3 [c\pictures\Castle PG 2012:06:09 12:42:24 PENTAX PENTAX K-5 55.00733833 1191093332
4 |c\pictures\Cat.jog 2008:08:05 20:59:32 Canon (Canon EQS 400D DIGITALN 59.92475508|E 10.69559812
5 E.\plCEures\DEul[hlaHd.JPG 2010:06:23 15:32:25 Apple iPhone 3G N 47.975|E 7.82966667
Apictures\Disney.jpg 2010:08:1811:38:37 canon Canon €05 10000 N 28.41878951|w -81.58097209
\pictures\dscn0011.jpg |2009:03:14 13:46:34 NIKON COOLPIX P6000 N 42.501235|W -83.25066333
8 [c\pictures\kinderscout.pg [2008:01:12 12:06:52 NIKON CORPORATION |NIKON D50 N 53.40716667|W -1.90366667
9 [c)\pictures\Munich.JPG___|2010:06:21 16:00:57 Apple iPhone 3G N 48.14133333[E 11.57666667]
10 [c\pictures\Turtle. jpg |2008:05:08 16:55:58 [canon Canon £0S 5D N 25.3384]E 34.739666
11
12
13
14 ~
imageResults ® 1 r

FIGURE 5.12

Snapshot of Results.csv file.

Figure 5.11
Figure 5.12

Additional Resources 163

7

B8 C:\Windows\system32\cmd.exe

3 B Aae »p == =

2013-09-23 2
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23
2013-09-23

ar \p1ctures\Lo

20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

g>m

ore Forensiclog.txt

47,144

3:47.174

C:\pictures\Log>

:47,174
:47,190
:47,190
:47,190
147,190
247,206
147,206
:47,206
:47,206
:47,206
147,206
147,206
:47,206

Scan Started

GPS Data Calculated for :C:\pictures\Biking.jpg

GPS Data Calculated for :C:\pictures\Castle.lPG

GPS Data Calculated for :C:\pictures\Cat.j ﬁ?

GPS Data Calculated for :C:\pictures\Deutchland.JPG
GPS Data Calculated for :C:\pictures\Disney.jpg

GPS Data Calculated for :C:\pictures\dscn0011.]jpg
GPS Data Calculated for :C:\pictures\kinderscout.jpg
C:\pictures\Lo? not a valid file

GPS Data Calculated for :C: \g1ctures\Mun1ch .JPG
C:\pictures\Program not a va file
C:\pictures\Results not a valid file

GPS Data Calculated for :C:\pictures\Turtle.jpg

No GPS EXIF Data for C:\pictures\zzz.jpg

Logging Shutdown

FIGURE 5.13

Snapshot of the Forensic

Log file.

3. Locate other online mapping resources (for example, ones that would allow you
to tag the photo, for example, with a filename) and then use the mapping function
to render the additional data.

4. Using the PIL, develop a program that will maliciously modify the latitude,
longitude, and/or timestamp values of an existing photograph.

5. Expand the extraction method to include altitude and then find a mapping
program that would allow you to map latitude, longitude, and altitude. Then

locate photos with varying altitudes, for example, photos taken from hot air

balloons.

Additional Resources

FCC 911 Wireless Service Guide. http://www.fcc.gov/guides/wireless-911-services.
Python Imaging Library. https://pypi.python.org/pypi/PIL.

The Python Standard Library. http://docs.python.org/2/library/.

Web Based multiple coordinate mapping website. http://www.darrinward.com/lat-long/.

http://www.fcc.gov/guides/wireless-911-services
https://pypi.python.org/pypi/PIL
http://docs.python.org/2/library/
http://www.darrinward.com/lat-long/
Figure 5.13

This page intentionally left blank

CHAPTER

Forensic Time

CHAPTER CONTENTS

oL T SN 165
Adding Time to the EQUAtiONeiiiiiiiccrrrr e rssee e e 167
The Time MOUUIE ...coeeeeeeeiee e ccceecer e e e e e s s s e e e s e e s s sssne e e e e es s s snsmn e e e e e e s s nnnnnennnans 169
The Network Time Protocolcccceececericieinnccie s e e s e ssn e e s ssne e s s me e e en 173
Obtaining and Installing the NTP Library mtplilyccceveeeereececerscceenssseeesssseeensnnes 174
WOEId NTP SEIVEIS ...ceeeeeeeeieeeieeeeeeeeeeee e e e e e e s e s s s e s e s e e e s e s e s e s e s e s s s e s e s e s e s e s e s aneneeenaesssssnssenanenn 177
NTP Client Setup SCript «.coooeeeeee e smn e e mmnne s 179
Chapter REVIEWcoiiiiiceceeii e cccecere e s s s msnr e e s s e s s s s e e e e s s smmmn e e e e e s s mmmnn e e e e s sennan 181
SUMMAry QUESHIONSccecceeieieerierresie s r s e s s e s e s e s e s sn s sne s n e s e e s nessnnannns 181
Additional RESOUICES ...c.ccceeeeeerrrireisissneerereresssssnnnrereresssssnnnreseeesasssnnnsnseeesasssnnnnnseeesns 181

INTRODUCTION

Before we can even consider time from an evidentiary point of view, we need to bet-
ter understand what time is. I will start with an excerpt from one of my favorite books
“Longitude” by Dava Sobel:

“Anyone alive in the eighteenth century would have known that the longitude prob-
lem was the thorniest scientific dilemma of the day and had been for centuries.
Lacking the ability to measure their longitude, sailors throughout the great ages
of the exploration had been literally lost at sea as soon as they lost sight of land.

The quest for a solution had occupied scientists and their patrons for the better
part of two centuries when, in 1714, England’s Parliament upped the ante by
offering a king’s ransom (£20,000, approximately $12 million in today’s cur-
rency) to anyone whose method or device proved successful. The scientific estab-
lishment throughout Europe from Galileo to Sir Isaac Newton had mapped the
heavens in the both hemispheres in its certain pursuit of a celestial answer. In
stark contrast, one man, John Harrison, dared to imagine a mechanical solution —
a clock that would keep precise time at sea, something no clock had every been
able to do on land. Mr. Harrison’s invention resulted in a solution to the greatest
scientific problem of this time.” [Sobel, 1995]

The basis of Harrison’s clock and solution still guide navigation today as the use of
time within GPS and other navigation systems remains the key underlying

Python Forensics 1 6 5

© 2014 Elsevier Inc. All rights reserved.

-
166

CHAPTER 6 Forensic Time

FIGURE 6.1
John Harrison H1 clock

component that allows us to calculate where we are. Figure 6.1 depicts the first
Harrison sea clock HI1.

Mr. Harrison’s lifetime work was the impetus for the formation of Greenwich
Mean Time or GMT. In today’s high-speed global economy and communication
infrastructure, precise, accurate, reliable, nonforgeable, and nonreputable time is
almost as elusive as it was in the eighteenth century. Of course, atomic, rubidium,
and cesium clocks are guaranteed to deliver accurate time—and without missing
a beat—for over a 1000 years. But, delivering that accuracy to digital evidence is
elusive. My favorite saying is, “anyone can tell you what time it is, proving what
time it was is the still the challenge” [Hosmer 2002].

Time is a concept that allows society to function in an orderly fashion where all
parties are able to easily understand the representation of time and agree on a
sequence of events. Since 1972, the international standard for time is Coordinated
Universal Time or UTC. UTC forms the basis for the official time source in most
nations around the globe; it is governed by a diplomatic treaty adopted by the world
community that designates National Measurement (or Metrology) Institutes (NMIs)
as UTC time sources. The National Institute of Standards and Technology (NIST) in
the United States, the Communications Research Laboratory (CRL) in Japan, and the
National Physical Laboratory (NPL) in the United Kingdom are examples of NMIs.
There are about 50 similar metrology centers that are responsible for official time
throughout the world.

Time has been a critical element in business for hundreds of years. The time—via
a mechanical record—established and provided evidence as to the “when” of

Figure 6.1

Adding Time to the Equation 167

business transactions and events. (Usually recorded on paper, these time records pro-
vided an evidentiary trail due to a number of unique attributes—the distinctiveness of
the ink embedded in the paper, the style and method of type, whether mechanical or
hand written, the paper and its characteristics, and the detectability of modifica-
tions, insertions, or deletions). In the electronic world where documents and time-
stamps are simply bits and bytes, authoritative proof of the time of an event has
been hard to nail down. Since the security of time is absolutely linked to its
origination from an official source, the reliance on easily manipulated time sources
(e.g., typical computer system clocks) is problematic.

Precision and reliability have long been the major factors driving the design of
electronic timing technology. The next technology wave adds the dimensions of
authenticity, security, and auditability to digital timestamps. These three attributes,
when applied to documents, transactions, or any other digital entity, provide the
following advantages over traditional computer clock-based timestamps:

Assurance that the time came from an official source
Assurance that time has not been manipulated
An evidentiary trail for auditing and nonrepudiation

Authentication (knowledge of the originator’s identity) and integrity (protection
against content modification) are essential elements in trusted transactions. But if
one cannot trust the time, can the transaction really be trusted? Secure timestamps
add the missing link in the trusted transaction equation: “when” did it happen?
However, for the timestamp to provide a reliable answer to that question, the time
upon which it is based must be derived from a trusted source.

ADDING TIME TO THE EQUATION

Using the best practices afforded to us, today digital signatures are able to success-
fully bind “who” (the signer) with the “what” (the digital data). However, digital
signatures have shortcomings that leave two critical questions unanswered:

1. When did the signing of the digital evidence occur?
2. How long can we prove the integrity of the digital evidence that we signed?

For both of these questions, time becomes a critical factor in proving the integrity
of digital evidence. Through the work of the Internet Engineering Task Force
(IETF) and private companies, timestamping has advanced to a realistic deploy-
ment stage.

To understand this, we must first understand a little about time itself and what is
necessary if we choose to utilize time as a digital evidence trust mechanism. From
ancient societies to the present day, time has been interpreted in many ways. Time is
essentially an agreement that allows society to function in an orderly fashion—where
all parties are easily able to understand the representation. Some examples of time
measurement are included in Figure 6.2.

168 CHAPTER 6 Forensic Time

1967 1972 2009

|
" A 1 =

1. Early calendars 2. Egyptians discover 3. Atomic clocks 4. UTC time 5. NIST and USNO
based on moon solar year utilized named official official US time
phases time sources

FIGURE 6.2

A very brief history of time.

As shown in Figure 6.2, the first calendars known to man were based upon the
moon because everyone could easily agree on this as a universal measure of time.
Moving forward, the Egyptians were the first to understand the solar year and they
were able to develop a calendar based on the rotation of the earth around the sun. In
1967, an international agreement defined the unit of time as the second, measured by
the decay of Cesium using precision instruments known as atomic clocks. And in
1972, the Treaty of the Meter (also known as the Convention of the Metre, estab-
lished in 1875) was expanded to include the current time reference known as
UTC, which replaced GMT as the world’s official time.

Today, more than 50 national laboratories operate over 300 atomic clocks in
order to provide a consistent and accurate UTC. Thus, in order to create a trusted
source of time, you must first reference an official time source. In the United States,
we have two official sources of time; the National Institute of Standards and
Technology (NIST) in Boulder, CO for commercial time and the United States Naval
Observatory (USNO) for military time.

Despite the broad accessibility of accurate time (watches, computer clocks, time
servers, etc.), the incorporation of trusted time within a system requires a secure, audit-
able digital dateltimestamp. Unless you have direct connection to the NMIs, most
trusted sources today utilize GPS as a source of time. When used properly to tune
Rubidium timeservers, the accuracy provided by GPS signals provides
the exactness and precision that are required for most transactions and record keep-
ing. This is true if and only if these requirements, standards, and processes are
followed:

Accuracy: The time presented is from an authoritative source and is accurate to
the precision required by the transaction, whether day, hour, or millisecond.
Authentication: The source of time is authenticated to a trusted source of time,
such as an NMI timing lab, GPS signal, or the NIST long-wave standard time
signal (WWVB in the United States).

Integrity: The time should be secure and not be subject to corruption during
normal “handling.” If it is corrupted, either inadvertently or deliberately, the
corruption should be apparent to a third party.

Figure 6.2

The Time Module 169

Nonrepudiation: An event or document should be bound to its time so that the
association between event or document and the time cannot be later denied.
Accountability: The process of acquiring time, adding authentication and integrity,
and binding it to the subject event should be accountable so that a third party
can determine that due process was applied, and that no corruption transpired.

Most people reading this book will quickly recognize that from a practical perspec-
tive the timestamps that we collect during digital investigations rarely meet the stan-
dards set forth above. However, the knowledge of the standards we are striving for is
vital. This should cause you to question everything—especially anything that is
related to time. To get started, let us take a deep dive into the Python Standard
Library examining the time, datetime, and calendar modules.

THE TIME MODULE

The time module has many attributes and methods that assist in processing time-
related information. To get started, I will use the proven technique of “test before
code” to experiment with the time module.

The first issue we encounter is the definition of “the epoch.” An epoch is defined
as a notable event that marks the beginning of a period in time. Modern digital com-
puters reference specific points in history, for example, most Unix-based systems
select midnight on January 1, 1970, whereas Windows uses January 1, 1601; and
Macintosh systems typically reference January 1, 1904.

The original Unix Epoch was actually defined on January 1, 1971 and was later revised to
January 1, 1970. This epoch allows for a 32-bit unsigned integer to represent approximately
136 years, if each increment since the epoch is equivalent to 1 second. Thus by specifying a
32-bit unsigned integer as the number of seconds since January 1, 1970, you can mark any
moment in time until February 7, 2106. If you are limited to signed 32-bit numbers, the max-
imum date is January 19, 2038.

As stated most system epochs start on January 1, 1970. The question is, how
would you know? The simple answer is to ask the Python fime module to tell us using
the gmtime() method, gmtime converts the number of seconds (provided as a param-
eter to the gmtime() method) into the equivalent GMT. To illustrate, let us pass
0 (zero) as the parameter and see what epoch date the method returns.

>>>import time

>>>print time.gmtime(0)

time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=0,
tm_min=0, tm_sec=0, tm_wday=3, tm_yday=1, tm_isdst=0)

Similarly, if I wish to know the maximum time value (based upon a maximum
limit of an unsigned 32-bit number), I would execute the following code.

170

CHAPTER 6 Forensic Time

>>>1import time

>>>time.gmtime(Oxffffffff)

time.struct_time(tm_year=2106, tm_mon=2, tm_mday=7, tm_hour=6,
tm_min=28, tm_sec=15, tm_wday=6, tm_yday=38, tm_isdst=0)

Additionally, you might be wondering, how many seconds have passed since the
epoch right now? To determine this, I use the time() method provided by the time
module. This method calculates the number of seconds since the epoch.

>>>time.time()
1381601236.189

As you can see, when executing this command under the Windows version of the
time() method, the time() method returns a floating point number not a simple inte-
ger, providing subsecond precision.

>>>secondsSinceEpoch=time.time()
>>>secondsSinceEpoch
1381601264.237

I can then use this time (converted to an integer first) as input to the gmtime()
method to determine the date and time in Greenwich.

>>>time.gmtime(int(secondsSincekpoch))
time.struct_time(tm_year=2013, tm_mon=10, tm_mday=12, tm_hour=18,
tm_min=7, tm_sec=44, tm_wday=5, tm_yday=285, tm_isdst=0)

The result is October 12, 2013 at 18 hours, 7 minutes, 44 seconds; the weekday is
5 (assuming that the week begins with 0=Monday, this value would indicate
Saturday); this is the 285th day of 2013; and we are not currently observing daylight
savings time. It should be further noted for complete clarity that this time represents
UTC/GMT time not local time. Also, it is important to note that the zime module is
using the computer’s system time and timezone settings to calculate the number of
seconds since the epoch, not some magical time god. Therefore, if I wish to change
what the now is I could do that by simply changing my system clock and then I rerun
the previous script.

>>>secondsSinceEpoch=time.time()

>>>secondsSinceEpoch

1381580629.793

>>>time.gmtime(int(secondsSinceEpoch))
time.struct_time(tm_year=2013, tm_mon=10, tm_mday=12, tm_hour=12,
tm_min=23, tm_sec=49, tm_wday=5, tm_yday=285, tm_isdst=0)

This results in our first successful forgery of time.
Now, if I compare GMT/UTC with local time I utilize both the gmtime() and
localtime() methods.

The Time Module 171

>>>import time
>>>now=time.time()
>>>nNow

1381670992.539
>>>time.gmtime(int(now))

time.struct_time(tm_year=2013, tm_mon=10, tm_mday=13, tm_hour=13,
tm_min=29, tm_sec=52, tm_wday=6, tm_yday=286, tm_isdst=0)

>>>time.localtime(int(now))

time.struct_time(tm_year=2013, tm_mon=10, tm_mday=13, tm_hour=9,
tm_min=29, tm_sec=52, tm_wday=6, tm_yday=286, tm_isdst=1)

As you can see this yields:

Local Time: Sunday October 13, 2013 09:29:52
GMT Time: Sunday October 13, 2013 13:29:52

Both the localtime() and gmtime() take into consideration many factors to determine
the date and time, one important consideration is the timezone that my system is cur-
rently configured to:

I can use Python to provide me with the current timezone setting of my system, by
using the following script. Note time.timezone is an attribute rather than a method
so it can be read directly.

>>>1import time
>>>time.timezone
18000

Ok, what does 18,000 mean? We tend to think of timezones being a specific area
or zone, which they are. We also tend to think each timezone is exactly 1 hour apart.
This is not always true.

For example, some locations around the globe utilize 30-minute offsets from
UTC/GMT.

Afghanistan

Australia (both Northern and Southern Territories)
India

Iran

Burma

Sri Lanka

Other locations use 15-minute offsets values related to UTC/GMT. Examples
include:

Nepal
Chatham Island in New Zealand
Parts of Western Australia

-
172

CHAPTER 6 Forensic Time

The 18,000 represents the number of seconds west of UTC and points that are east
of UTC are recorded in negative seconds. Since 18,000 represents the number of
seconds west of UTC, I can easily calculate the number of hours west of UTC by
dividing 18,000 seconds by 60 (seconds in a minute) and then again by 60 (minutes
in an hour):

18,000/60/60 = Shours

This means that my local time is 5 hours west of UTC/GMT. Going back to our com-
parison then, there should be 5 hours difference between localtime and GMT correct?

Local Time: Sunday October 13, 2013 09:29:52
GMT Time: Sunday October 13, 2013 13:29:52

Not quite! The difference between localtime() and gmtime() in this example only
depicts 4 hours difference. It turns out that Sunday October 13, 2013 falls within day-
light savings time here in the Eastern U.S. timezone as noted by tm_isdst =1 found
in the local time example, therefore the time difference on this particular date is
4 hours from GMT/UTC correctly reported by the two methods.

Next, you might be wondering how one determines the name of the current time
zone set for my system. The time module provides an additional attribute specifically
time.tzname that provides a tuple. The first value is the standard time zone designa-
tion while the second value is local daylight savings time zone designation.

Here is the example using my local time.

>>>import time
>>>time.tzname

('Eastern Standard Time', 'Eastern Daylight Time')

Note, this information is based upon the local operating system internal represen-
tation. For example, on a Mac, this returns (“EST,”, “EDT”).

Therefore, if we wish to print the current time zone designation of a local system,
the following code will provide that for you.

import time

Get the current Tocal time
now=time.localtime()

#1if weareobservingdaylight savings time
#tm_isdst is anattribute that can be examined,
##if the value is 0 the current Tocal time is in

standard time observations and if tm_isdst is 1
then daylight savings time is being observed
if now.tm_isdst:

#print the daylight savings time string

print time.tznamel[1]

The Network Time Protocol 173

else:
f# Otherwise print the standard time string
print time.tzname[0]

Eastern Daylight Time

Another very useful method within the time module is the strftime(). This
method provides great flexibility in generating custom strings from the base
time structure provided. This allows us to format output without having to extract
individual time attributes manually.

For example:

import time

print time.strftime("%a, %d %b %Y %H:%M:%S Zp" ,time.localtime())
time.sleep(5)

print time.strftime("%a, %d %b %Y %H:%M:%S %p",time.localtime())

This short script prints out the local time value using the strftime method and
uses the s1eep () method to delay (in this example 5 seconds) and then prints another
time string. The result produces the following output:

Sun, 13 0ct 2013 10:38:44 AM
Sun, 13 0ct 2013 10:38:49 AM

The strftime method has great flexibility in the available options, which are
shown in Table 6.1.

As you can see the time module has a plethora of methods and attributes and is
straightforward to use. For more information on the time module, you can check out
the Python Standard Library [PYLIB].

THE NETWORK TIME PROTOCOL

Today, the most widely accepted practice for synchronizing time is to employ the
Network Time Protocol (NTP). NTP utilizes the User Datagram Protocol (UDP) to
communicate minimalistic timing packets communicated between a server (con-
taining a highly accurate source of time) and a client wishing to synchronize with
that time source. (The default server port for the NTP protocol is 123.) The NTP
model includes not one, but many easily accessible time servers synchronized to
national laboratories. The point of NTP is to convey or distribute time from these
servers to clients via the Internet. The NTP protocol standard is governed by
the IETF and the Proposed Standard is RFC 5905, titled “Network Time Protocol
Version 4: Protocol and Algorithms Specification” [NTP RFC]. Many programs,
operating systems, and applications have been developed to utilize this protocol
to synchronize time. As you have probably guessed we are going to develop a
simple time synchronization Python program and use this to synchronize forensic
operations. Instead of implementing the protocol from scratch I am going to lever-
age a third-party Python Library ntplib to handle the heavy lifting and then compare
the results to my local system clock.

174 CHAPTER 6 Forensic Time

Table 6.1 strftime Output Specification

Parameter Definition

%a Abbreviation of weekday string

%A Complete weekday string

%b Abbreviation of month string

%B Complete month name

%C Appropriate date and time representation based on locale
%d Day of the month as a decimal number 01-31

%H Hour (24-hour clock) as a decimal number 00-24

%1 Hour (12-hour clock) as a decimal number 00-12

%3 Day of the year as a decimal number 001-356

%m Month as a decimal number 01-12

%M Minute as a decimal number 00-59

%p AM or PM representation based on locale

%S Second as a decimal number 00-59

%U Week number of the year 00-53 (assumes week begins on Sunday)
bW Weekday 0-6 Sunday is O

%W Week number of the year 00-53 (assumes week begins on Monday)
%X Date representation based on locale

%X Time representation based on locale

%y Year without century as a decimal number 00-99

%Y Year with century as a decimal number

%7 Time zone name

OBTAINING AND INSTALLING THE NTP LIBRARY ntplib

The ntplib is available for download at https://pypi.python.org/pypi/ntplib/ as shown
in Figure 6.3 and as of this writing it is currently version 0.3.1. The library provides a
simple interface to NTP servers along with methods that can translate NTP protocol
fields to text allowing easy access to other key values such as leap seconds and spe-
cial indicators.

@ python =l

» Package Index -~ niplib - 0.3.1

PacacE oSk ntplib 0.3.1

Python NTP Horary

Description

This module affers a simple interiace to query NTP servers from Pythan

1t also provid
on any platiorm with a Pytho

ity functior NTP fields values to text (mode, leap indicator.) Since it's pure Pythan, and only depends on core modules, it should work

FIGURE 6.3
Python ntplib download page.

https://pypi.python.org/pypi/ntplib/
Figure 6.3

Obtaining and Installing the NTP Library ntplib 175

Installing the current library is a manual process, but still straightforward and
because ntplib is written completely in native Python the library is compatible across
platforms (Windows, Linux, and Mac OS X).

The first installation step is to download the installation package in this case a tar.
gz file as shown in Figure 6.4.

Once download you must decompress the tar.gz into a local directory. I have
unzipped the archive into c:\Python27\Lib\ntplib-0.3.1 (Figure 6.5). Since I am uti-
lizing Python 2.75, decompressing the download in this directory organizes the
library with the other installed libs for easy access and update in the future.

The installation process for manually installed libraries like ntplib is accom-
plished by executing the included setup program setup.py that is included in the
directory. To perform the installation you simply open a command window as shown
in Figure 6.6 and enter the command:

Python setup.py install

The setup.py program performs all the necessary installation steps. Next, I always
like to verify the installation of the new library by opening a Python Shell and import-
ing the library and then by simply typing the name of the library. Python provides
basic information regarding the library confirming it is available for use (see
Figure 6.7).

As with any module you can always enter the dir(objName) built-in function to
obtain details about the properties, classes, and methods that are available for the

'd N

Opening ntplib-0.3.1.tar.gz pX!

You have chosen to open:
2 ntplib-0.3.1.tar.gz

which is: Compressed (zipped) Folder (14.6 KB)
from: https://pypi.python.org

What should Firefox do with this file?

) Openwith | WinZip (default) v

@ SaveFile

("] Do this automatically for files like this from now on.

L)
FIGURE 6.4
Download of ntplib-0.3.1.tar.gz.

Figure 6.4

176

CHAPTER 6 Forensic Time

:\Python27\Lib>cd ntplib-0.3.1
\pythonZ?\L1b\ntp11b -0.3.1xdir

volume in drive C is HP

Volume Serial Number is 5EC5-6025
Directory of C:\Python27\Lib\ntplib-0.3.1

10/16/2013 08:50 PM <DIR>
10/16/2013 08:50 PM <DIR>

07/03/2013 01:21 PM 1,399 CHANGELOG
10/18/2009 06:55 AM 18,326 COPYING
01/16/2010 06:25 AM 7,802 COPYING.LESSER
09/01/2012 09:49 AM 93 MANIFEST
07/03/2013 01:20 PM 12,818 ntplib.py
07/03/2013 02:38 PM 1,835 PKG-INFO
07/03/2013 01:21 PM 1,670 setup.py
09/01/2012 09:20 AM 3 686 test_ntp11b py
8 File(s) 629 b

2 Dir(s) 168,967, 090 176 ytes free

:\Python27\Lib\ntp1ib-0.3.1>
< i

4 [m]

FIGURE 6.5

Decompressed ntplib-0.3.1.

BN C:\Windows\system32\cmd.exe

:\Python27\Lib>cd ntplib-0.3.1

:\Python27\Lib\ntplib-0.3.1>dir
Volume in drive C is HP
Volume Serial Number is 5EC5-6025

Directory of C:\Python27\Lib\ntplib-0.

08: PM <DIR>

08: PM <DIR> .

01: PM 1,399 CHANGELOG

06: AM 18,326 COPYING

06: AM 7,802 COPYING.LESSER

09: AM 93 MANIFEST

01:20 PM 12,818 ntplib.py

02: PM 1,835 PKG-INFO

01: PM setup.py

09/01/2012 09: i test ntp1ib.py

8 F11e(s) 9 b
2 Dir(s) 168,967, OBO 1?6 ytes free

:\Python27\Lib\ntp1ib-0.3.1>python setup.py install
running install
running build
running build_py
creating build
creating build\1lib
copying ntp11b p¥ -> build\1ib
running install
copying bu11d\11b\ntp11b py -> C:\Python27\Lib\site-packages
byte- comp111n? \PythonZ?{Lib\site -packages‘\ntplib.py to ntplib.pyc
running install_egg_info
riting C: \PythonZ?\L1b\51te packages\ntplib-0.3.1-py2.7.egg-info

:\Python27\Lib\ntp1ib-0.3.1~
< m

FIGURE 6.6

Install ntplib.

Figure 6.6
Figure 6.5

World NTP Servers 177

Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC
v.1500 32 bit (Intel)]
Type "help", "copyright", "credits" or "license" for
more information.

>>> import ntplib

>>> ntplib
<module 'ntplib’ from
'C:\Python27\lib\site-packages\ntplib.pyc'>

>>>

FIGURE 6.7
Verifying the installation.

>>> dir(ntplib)
['NTP’, 'NTPClient’, 'NTPException’, 'NTPPacket’,
'NTPStats’, '_builtins__','_doc__',"_file_",
'_name_','__package_"', " to_frac',"_to_int',
'_to_time’, 'datetime’, 'leap_to_text’, 'mode_to_text’,
'ntp_to_system_time', 'ref_id_to_text’, 'socket’,
‘stratum_to_text’, 'struct’, 'system_to_ntp_time’, 'time’]

>>>

>>>

>35>

>>> | -
FIGURE 6.8
dir(ntplib) results.

object (see Figure 6.8). For even more information, you can use the help(objName)
built-in function.

WORLD NTP SERVERS

Examining the methods and properties may seem a bit confusing at first; however,
using the library module is in fact quite simple. Simply put we want to create an ntp
client capable of accessing a specified ntp server to obtain a third-party source of
time. In the United States, NIST manages a list of time servers that can be accessed
to obtain “root” time (Figure 6.9).

Updated lists can be found at: http://tf.nist.gov/tf-cgi/servers.cgi.

In Europe, you can find an active list of NTP servers at the NTP Pool Project.
Figure 6.10 shows a screenshot from their home page at http://www.pool.ntp.org/
zone/europe.

http://tf.nist.gov/tf-cgi/servers.cgi
http://www.pool.ntp.org/zone/europe
http://www.pool.ntp.org/zone/europe
Figure 6.7
Figure 6.8

CHAPTER 6 Forensic Time

Name IP Address Location
et] -ny uskiming org 640018255 New York City, NY
sist]-nj ustiming org 96.47.67.105 Bridgewater. NJ
nist] nj2 ustming org 165.193.126.229 Weehawlcen, NJ
nist]-ny?2 ustining org 21617111236 New York Ciy, NY
isl] -pr sty oy 206.246.122.250 Hatfield, PA
mlc-a.niﬁ.;cv\: 1296.15.28 NIST, Gaithersburg. Maryland
tme-b st gov 1296.15.29 NIST, Gaithersburg, Maryland
time-c nist gov 12961530 NIST, Gaithersburg, Maryland
tie-d st sov 261020:6F15:15:27 NIST, Gaithersbarg. Manand
nist] acl-va symametricon.com 64.236.96.53 Reston, Virgisia
niet].maron macon gaue 9% 175 203 200 Maeon Georgia
cist]-atl nstiming org 64250177145 Atfonta, Georgia
wolfnisttime com 207.223.123.18 Birmingham, Alsbama
sist]-chi ustiming org 216.171.120.36 Clicago, Misois

FIGURE 6.9

Partial list of NIST time servers.

©®

NTP POOL

News

How do I use
pool.ntp.org?
How do I join
pool.ntp.org?

Information for
vendors

The mailing lists

Additional links

Translations

Deutsch
English

Espatiol
Suomi

Nederlands
Portugués
PVCCKHEH
Svenska

FIGURE 6.10

g
‘& JOIN THE POOL

USE THE POOL =| MANAGE SERVERS

Europe — europe.pool.ntp.org

To use this pool zone, add the following to your ntp.conf file:

server 0.europe.pool.ntp.org
server l.europe.pool.ntp.org
server 2.europe.pool.ntp.org
server 3.europe.pool.ntp.org

IPv4 IPve
There are 2084 active servers in this zone. There are 617 active servers in this zone.

2092 (-8) active 1day ago
2089 (-5) active 7 days ago
2101 (-17) active 14 days ago
2080 (+4) active 60 days ago
1992 (+92) active 1year ago
1342 (+742) active 3 years ago
829 (+1255) active 6 years ago

619 (-2) active 1day ago

613 (+4) active 7days ago
637 (-20) active 14 days ago
606 (+11) active 60 days ago
468 (+149) activelyear ago

See all zones in Global.

Austria— at.poolntp.org (78)
tzerland — ch.poolntp.org (119)
sermany — de.poolntp.org (702)
rk —dk.poolntp.org (52)

Spain— es.poolntp.org (22)
France — fr.poolntp.org (297)

[taly — it.poolntp.org (40)
Luxembourg— lu.poolntp.org (25)
Netherlands — nlpoolntp.org (225)

European NTP Pool Project.

For those of you wishing to obtain your time from the U.S. Naval Observatory or USNO, you
might be interested to know that for many years, the USNO has provided access to NTP
servers’ aptly named tick and tock. For more information on the U.S. Naval Observatory
you can visit: http://www.usno.navy.mil/USNO.

http://www.usno.navy.mil/USNO
Figure 6.9
Figure 6.10

NTP Client Setup Script 179

NTP CLIENT SETUP SCRIPT

To setup a Python ntp client using the ntplib is a simple process:
import ntplib # import the ntplib
import time # import the Python time module

ffurl of the closest NIST certified NTP server
NIST="nistl-macon.macon.ga.us'

Create NTP client object using the ntplib
ntp=ntplib.NTPCTient()

#initiate an NTP client request for time
ntpResponse=ntp.request(NIST)

Check that we received a response

if ntpResponse:
obtain the seconds since the epoch from response
nistUTC=ntpResponse.tx_time
print 'NIST reported seconds since the Epoch : "',
print nistUTC

else:
print 'NTP Request Failed'

Program Output

NIST reported seconds since the Epoch : 1382132161.96

Now that we can obtain the seconds since the epoch, we can use the Python Stan-
dard Library time module to display the time in either local or GMT/UTC time, and
can even compare the current NTP time to our own local system clock as shown
below.

CODE LISTING 6.1

import ntplib
import time

NIST='nistl-macon.macon.ga.us'
ntp=ntplib.NTPClient()
ntpResponse=ntp.request(NIST)
if (ntpResponse):
now=time.time()

diff=now-ntpResponse.tx_time
print'Difference :'

Continued

180

CHAPTER 6 Forensic Time

print diff,
print 'seconds'

print 'Network Delay: ',
print ntpResponse.delay

print'UTC: NIST : "+time.strftime("%a, %d %b %Y ZH:%M:%S +0000",
time.gmtime(int(ntpResponse.tx_time)))

print 'UTC: SYSTEM : '+time.strftime("%a, %d %b %Y %H:%M:%S
+0000", time.gmtime(int(now)))

else:
print 'No Response from Time Service'

(1

(2)

(3

(4)

Program Output

Difference : 3.09969758987 seconds

Network Delay : 0.0309739112854

UTC NIST : Fri, 18 0ct 2013 21:48:48 +0000
UTC SYSTEM : Fri, 180ct 2013 21:48:51 +0000

Notable observations:

It is important that you obtain the local system time immediately after obtaining
the time from the time server (in my case from NIST):

ntpResponse=ntp.request(NIST)
if (ntpResponse):
now=time.time()

This ensures that our comparison with the local time maintained by our
system clock is influenced by the smallest amount of processing.
It is also important to consider the network delay reported by the NTP client. In
this example, the delay was a little over 30 milliseconds (specifically
0.0309739112854 seconds), however, in certain situations the delay can be
much longer based on the time of day, your network connection speed, and other
network latency issues.
In this example, I calculated a difference of 3.09969758987 seconds. This means
that my local system clock is running 3 + seconds faster than that of the NIST server.

diff=now-ntpResponse.tx_time

If the resulting value was negative instead of positive, I can conclude that my
system clock is running behind that reported by NIST.
Finally, the ntplib client operations are synchronous. In other words, once I make
the request:

ntpResponse=ntp.request(NIST)

the code does not continue processing until the request is fulfilled or fails
just like any method or function call.

Additional Resources 181

CHAPTER REVIEW

In this chapter, I explained the basics of time and computing. This includes a better
understanding of the epoch, the origins of modern time keeping along with a bit of
history on time. I then took a deep dive into the Standard Library module time and I
explained and demonstrated many methods and properties associated with the mod-
ule. I developed several short Python scripts to give you a feel for how to apply and
interpret the results of time processing.

I then provided an overview of the NTP that provides us with the ability to syn-
chronize time with National Measurement sources. Next, I walked you through the
installation and setup of a Python NTP Library ntplib. I then experimented with the
module to setup a NTP client that interfaces with a network-based time source. I
wrote a script that would compare and calculate the difference between my local sys-
tem clock and that of a NIST time server.

SUMMARY QUESTIONS

1. Back in Chapter 3, I developed a program that walked the files system, hashed the
files, and recorded the modified, access, and created (MAC) times of each file.
Modify that program using the time module to convert the MAC times from local
time to GMT/UTC time values.

2. Expanding on Code Listing 6.1, choose five additional time servers throughout
the world and devise a method to compare and contrast the time reported by each
in relationship to your local system clock. Also, record the network delay values
from each. Note, you should execute multiple runs and average the results.

3. What other time sources should be carefully examined and/or normalized during
a forensic investigation?

Additional Resources

Proving the integrity of digital evidence with time. Int J Digital Evid 2002;1(1) 1-7.

The Python Standard Library. http://docs.python.org/2/library/time.html?highlight=
time#time.

The Network Time Protocol Version 4: Protocol and Algorithms Specification. http://tools.
ietf.org/html/rfc5905.

Longitude. Longitude: the true story of a Lone Genius who solved the greatest scientific prob-
lem of his time. New York, NY: Walker & Co.; 1995.

http://docs.python.org/2/library/time.html?highlight=time#time
http://docs.python.org/2/library/time.html?highlight=time#time
http://tools.ietf.org/html/rfc5905
http://tools.ietf.org/html/rfc5905

This page intentionally left blank

CHAPTER

Using Natural Language
Tools In Forensics

CHAPTER CONTENTS

What is Natural Language ProCesSing?cccccccriiirrcccrmmmmirsssssssnseesssesssssnssssssessssses 183
Dialog-Based SYStEMS ... ccuuiiiiiiii e 184
(0707 11 1 PP 184

Installing the Natural Language Toolkit and Associated Librariesccccceeceervecnnens 185

Working With @ COIPUSccceereeceieisiseeesssssnesesssse s s s sse e s ssssne s essme e ssssnn e s sssmnesesssnsesasnnns 185

Experimenting With NLTKueiie e csmes e s smss e e s e smmne s 186

Creating a Corpus from the Internet ... e 193

NLTKQUEry ApPlCAtionccccoceiiiiimeriir e s s s e 194
NLTKQUEIY.PY eettttiieeett ettt sttt e e et e e e e et et e e e e e e enaae s 195
_ClaSSNLTKQUEIY.PY eieiiiiiiiii ittt 196
B\ O T 1= T o PPN 198
NLTKQuery Example EXeCUtiono..oiiiiiiiiiiii e 199

NLTK EXECULION TIACE .. e 199

Chapter REVIBWciccceeiiiicereicseieescssee s ssssee e s s smr e s s ssn e s s s ssne e s s sme e s e nme e s smne e sasmnensennn 202

SUMMAary QUESHIONSoooeeieieeieiere e e ne e 202

Additional RESOUICESceeicceererrrmrrrsssnnerissneresssseesssssnessssneessssnsesssssneesssnsessssnnensnss 203

WHAT IS NATURAL LANGUAGE PROCESSING?

Before I begin, Natural Language needs to be defined. Back in 1987, I read the book
Introduction to Natural Language Processing as part of a research project I was
working on with Dr. James Cook at the Illinois Institute of Technology Research
Institute (IITRI). My wife Janet was also working on Natural Language projects
at IITRI with Dr. Larry Jones. Her work employed Natural Language as part of a
decision engine that could diagnose and better understand the behaviors of cattle.
The book we referenced had the best definitions that I have seen for Natural Lan-
guage, therefore I will share that excerpt with you here.

“Natural Language is any language that humans learn from their environment
and use to communicate with each other. Whatever the form of the communica-
tion, Natural Languages are used to express our knowledge and emotions and to
convey our responses to other people and to our surroundings.” [Harris]

Python Forensics 1 83

© 2014 Elsevier Inc. All rights reserved.

184

CHAPTER 7 Using Natural Language Tools in Forensics

Obviously, like all good definitions they stand the test of time. Since the Internet
really did not materialize into a recognizable form until the late 1980s, the concept
of expressing emotion and knowledge digitally did not include Facebook, Twitter,
Emoticons, Blogging, Texting, Sexting, BitStrips, or even Internet-based e-mail!
However, the definition certainly provides coverage for these latest forms of Natural
Language expression. Extracting meaning (semantics) from Natural Language is
quite a bit more difficult than it looks.

Judging the effectiveness of Natural Language systems that attempt to interpret,
understand, and respond accordingly falls to the Turing Test, named after Alan
Turing based on his 1950 paper “Computing Machinery and Intelligence.” In his
paper, Turing asks the proactive question, “Can machines think?” [Turing]

Dialog-based systems

The goal of dialog-based systems is to respond to a user input naturally, meaning that
we cannot distinguish between human or machine-based responses. Some may be
familiar with systems that are moving toward this capability. For example, here is
a dialog between me and the Sync system in my car:

Me: I’'m hungry.

Sync: Ok, Where would you like to search nearby, along your route or in a city?
Me: Nearby.

Sync: How would you like to search—by name or by category?

Me: By category.

Sync: Ok, what category?

Me: Italian.

Sync: Ok, please select from the list on your screen, for example say Line 1.
Me: Line 4.

Sync: Ok, Rossi’s Restaurant. Would you like to make a call or set as destination?
Me: Make a call.

Sync: Ok: Calling Rossi’s Restaurant.

Although useful, it certainly does not meet the Turing standard because I know that I
am talking to a computer not a human. However, Sync does translate the spoken
word into text and then responds in a timely fashion and as a result the system usually
gets me where I want to go or provides me the information I am seeking.

Corpus

One of the key elements needed to perform Natural Language Processing (NLP) is a
corpus. A corpus is a large volume of linguistic samples that is relevant to a specific
genre. For example, the Guttenberg Project [Gutenberg] that is available at http://
www.gutenberg.org/ contains over 40,000 books in electronic form.

One of the challenges in creating meaningful examples in this chapter was estab-
lishing a corpus. Then I needed to demonstrate the use of the corpus to create these

http://www.gutenberg.org/
http://www.gutenberg.org/

Working with a Corpus 185

examples that will serve as a catalyst for the development of new applications of NLP
within the field of forensic science. Bear in mind, depending on the application you
intend for NLP, more than one genre may be necessary.

INSTALLING THE NATURAL LANGUAGE TOOLKIT AND
ASSOCIATED LIBRARIES

As with other third-party libraries and modules, installation is available for
Windows, Linux, and Mac. The Natural Language Toolkit (NLTK) library is free
and can be easily obtained online, from nltk.org. Installation of NLTK does require
the installation of other dependency libraries including Numpy and PyYAML.
Figure 7.1 depicts the nltk.org installation page with easy to follow instructions.
Once you have installed everything, you can verify the installation through your
favorite Python Shell by typing:

Import NLTK

WORKING WITH A CORPUS

The first step in working with a corpus is to either load an existing corpus that is
included with NLTK or create your own from local files or the Internet. Once this
is done, there are a variety of powerful operations you can perform on the corpus,

NLTK 3.0 documentation

S NEXT MODULES INDEX

Installing NLTK TABLE OF CONTENTS

NLTK requires Python versions 2.6-2.7. (A version supporting Python 3 is available at

ing NLTK

nstaling NLTK Data
Mae/Unix wWiki

APL
1. Install Setuptools: ht
2. InStall Pip: run suds e:
3. Tnstall Numpy (oprional):
4. Install PyYAML and NLTK: run
5. Test installabon: run pycnon then type trport nick

HOWTO

MNLTK Development

alck Team NUTK

SEARCH

Windows

instructions assume that you do not already have Python installed on your machine. 1f
an skip to the final step and just install NLTK.

1. Install Python: ht
versions)
2. Install Numpy (op

3. Install NLTK:
4. Tnstall Py¥AML:
5. Test installation:

Source installation (for 32-bit or 64-bit Windows)

FIGURE 7.1

nltk.org Installation url.

Figure 7.1

186 CHAPTER 7 Using Natural Language Tools in Forensics

Table 7.1 Introductory List of NLTK Operations

Method Description

raw() Extracts the raw contents of the corpus. The method returns the type:
Python “str’

word_tokenize() Removes white space and punctuation and then creates a list of the
individual tokens (basically words). The method returns the type: Python
“list”

collocations() Words often appear consecutively within a text and these provide

useful information to investigators. In addition, once detected they can
be used to find associations between word occurrences. This is
accomplished by calculating the frequencies of words and their
connections with other words. The collocations method performs all of
this in a single method

concordance() This method provides the ability to generate every occurrence of a
specific word along with the context (how the word was used in
a specific sentence, for example)

findall(search) This method can be used for simple and even regular expression
searches of the corpus text

index(word) This method provides an index to the first occurrence of the word
provided

similar(word) Note this is not synonyms, rather the method provides distribution

similarities, stated simply it identifies other words which appear in the
same “context” as the specified word

vocab() Produces a comprehensive vocabulary list of the text submitted

operations that would be both complicated and time-consuming without the aid of a
toolset like NLTK. Table 7.1 depicts some of the key operations that can be per-
formed on a corpus, I will be demonstrating these in code later in this chapter.

EXPERIMENTING WITH NLTK

In this section, I am going to invoke the methods in Table 7.1 and create a simple
program to first create a new text corpus, and then examine that corpus with these
methods. First, a little background on the corpus I am going to create.

Jack Walraven maintains the web site http://simpson.walraven.org/. At that site,
Jack has organized the transcripts of the O.J. Simpson trial. For this experiment,
I downloaded the Trial Transcripts for January 1995 (you can of course download
as many months and excerpts as you like). There are nine Trial Transcript text files
stored there for the January 1995 proceedings, and they represent transcripts for the
dates of January 11-13, 23-26, 30, and 31. I created a directory on my Windows sys-
tem, c:\simpson\, to hold each of the separate files. My goal is to use these files to
create a new text corpus that includes all of these files. The best way to illustrate how
this works is to walk you through some sample code that deals with each aspect.
I have annotated the code to make sure you understand each step of the process.

http://simpson.walraven.org/

Experimenting with NLTK 187

#NLTK Experimentation

This first section imports the modules necessary for the experiment. The most
important is the newly installed NLTK module

from__future__ import division
import nltk

Next, I'm going to import the PlaintextCorpusReader from the NLTK module.
This method will allow me to read in and ultimately create a text corpus that
I can work with.

fromnltk.corpus import PlaintextCorpusReader

The first thing I need to specify is the location of the files that will be included in
the corpus. I have placed those files in c:\simpson\. Each of the 9 files are stored
there and each is a text document.

rootOfCorpus = "c:\\simpson\\"

Now I’m going to use the PlainTextCorpusReader method to collect all the files
in the directory I specified in the variable rootOfCorpus. I specify all the files by
the second parameter ‘.*’. If you have directories that had multiple file types and
you only wanted to include the text documents you could have specified *.txt’.
The result of this call will be an NLTK Corpus Object named newCorpus.

newCorpus = PlaintextCorpusReader(rootOfCorpus, '.*")
print type(newCorpus)

The print type(newCorpus) produces the following output providing me with the
NLTK type of the newCorpus.

<class 'nltk.corpus.reader.plaintext.PlaintextCorpusReader'>

I can also print the file identification of each file that makes up the new corpus by
using the fileids() method.

print newCorpus.fileids()

['Trial-Jdanuary-11.txt', 'Trial-January-12.txt', 'Trial-January-13.txt',
'Trial-Jdanuary-23.txt', 'Trial-January-24.txt', 'Trial-January-25.txt',
‘Trial-Jdanuary-26.txt', 'Trial-Jdanuary-30.txt', 'Trial-January-31.txt']

I can also, determine the absolute paths of the individual documents contained in
the new corpus, by using the abspaths() method.

print newCorpus.abspaths()
[FileSystemPathPointer('c:\\simpson\\Trial-January-11.txt"),

FileSystemPathPointer('c:\\simpson\\Trial-Jdanuary-12.txt"),
FileSystemPathPointer('c:\\simpson\\Trial-January-13.txt"),

188

CHAPTER 7 Using Natural Language Tools in Forensics

FileSystemPathPointer('c:\\simpson\\Trial-January-23.txt"),
FileSystemPathPointer('c:\\simpson\\Trial-January-24.txt"),
FileSystemPathPointer('c:\\simpson\\Trial-January-25.txt"),
FileSystemPathPointer('c:\\simpson\\Trial-January-26.txt"),
FileSystemPathPointer('c:\\simpson\\Trial-January-30.txt"),
FileSystemPathPointer('c:\\simpson\\Trial-Jdanuary-31.txt")]

Now I can leverage the newCorpus object to extract the raw text which
represents the complete collection of files contained in the rootOfCorpus direc-
tory specified. I can then determine the length or size of the combination of the
9 trial transcript files.

rawText = newCorpus.raw()
print Ten(rawText)

This produces the output:
2008024

I can now apply the nltk.Text module methods in order to better understand and
interpret the content of the corpus. I start this process by tokenizing the rawText of
the corpus. This produces tokens (mainly words, but also includes numbers and
recognized special character sequences).

tokens =nltk.word_tokenize(rawText)

Tokenization creates a standard Python list that I can now work with using both
standard Python language operations and of course any methods associated with
list objects. For example I can use len (tokens) to determine the number of tokens
that were extracted from the text.

print Ten(tokens)
Which produces the result for this corpus of 401,032 tokens.
401032

Since this is now a simple list, I can display some or a portion of the contents. In
this example I print out the first 100 list elements representing the first 100 tokens
returned from the tokenization process.

print tokens[0:100]

['*LOS', 'ANGELES', ',", 'CALIFORNIA', ';', 'WEDNESDAY', ',","JANUARY", '11", ",", '1995",
'9:05', 'A.M.*", 'DEPARTMENT", 'NO.", '103', 'HON.", 'LANCE', 'A.", 'ITO", ',", 'JUDGE',
'APPEARANCES', ':", '(", 'APPEARANCES', 'AS', '"HERETOFORE', 'NOTED', ',", 'DEPUTY",
'DISTRICT', 'ATTORNEY', '"HANK', ';", 'ALSO", 'PRESENT', 'ON', 'BEHALF", 'OF', 'SOJOURN',
"', 'MS.', 'PAMELA', 'W.', 'WITHEY', ',", 'ATTORNEY -AT-LAW.',)", '(", 'JANET', 'M.",
'MOXHAM', ',", 'CSR", 'NO.', '4855', ',", 'OFFICIAL', 'REPORTER.", ")', '(", 'CHRISTINE',

Experimenting with NLTK 189

'M.', 'OLSON', ',", 'CSR', 'NO.", '2378'", ",", 'OFFICIAL', 'REPORTER.", ")', '(", 'THE',
'FOLLOWING', 'PROCEEDINGS', 'WERE', '"HELD', 'IN', 'OPEN", 'COURT", ',", 'OUT", 'OF', 'THE",
'PRESENCE', 'OF', 'THE', 'JURY", ":', "), "*THE', 'COURT", ':', "*', 'ALL', 'RIGHT.", 'THE',
'SIMPSON']
Next, I want to create a text that I can apply the NLTK text methods to. I do this by
creating NLTK Text Object textSimpson using the Text method to the tokens
extracted by the tokenization process.

textSimpson =nltk.Text(tokens)

print type(textSimpson)
As expected the object type is nltk.text.Text
<class 'nTtk.text.Text'>

I'would like to know the size of the vocabulary used across the corpus. I know the num-
ber of tokens, but there are of course duplicates. Therefore, I use the Python set
method to obtain the unique set of vocabulary present in the text in the trial transcript.

vocabularyUsed = set(textSimpson)
print Ten(vocabularyUsed)

12604

Which produces 12,604 unique tokens from the total of 401,032 a much more man-
ageable number. From this I would like to see all the unique tokens, and I can
accomplish that by sorting the set.

print sorted(set(textSimpson))

'ABERRANT", 'ABIDE', 'ABIDING', 'ABILITIES', 'ABILITIES.", '"ABILITY', "ABILITY.",
'ABLAZE', "ABLE', 'ABOUT", "ABOUT.", "ABOVE", '"ABRAHAM', "ABROGATE", 'ABROGATED",
'ABRUPT', "ABRUPTLY", 'ABSENCE', 'ABSENCE.", 'ABSENT', 'ABSOLUTE", 'ABSOLUTELY",
'ABSOLUTELY.", '"ABSORB', 'ABSTRACT', 'ABSTRACT.", '"ABSURD.", '"ABSURDITY", '"ABUDRAHM",
'ABUDRAHM.", "ABUNDANCE', 'ABUNDANT', 'ABUNDANTLY", 'ABUSE", 'ABUSE.", '"ABUSE/
BATTERED', 'ABUSED', 'ABUSER', 'ABUSER.", 'ABUSES", 'ABUSES.", 'ABUSING', 'ABUSIVE',
'ABUSIVE.",

... skipping about 10,000 tokens

'WRITTEN", '"WRITTEN.", 'WRONG', '"WRONG.", WRONGFULLY", 'WRONGLY", '"WROTE", X", 'X-
RAYS', "XANAX', 'XEROX", 'XEROXED", 'XEROXED.", 'XEROXING', 'XEROXING.", "Y',
'YAMAUCHI', 'YAMAUCHIL.", '"YARD", 'YARD.', '"YARDS', 'YEAGEN", 'YEAH', 'YEAH.", 'YEAR',
'YEAR.", 'YEARS', 'YEARS.', 'YELL', "YELLED', '"YELLING', "YELLING.', '"YELLOW', 'YEP.",
'YES', 'YES.', "YESTERDAY', 'YESTERDAY.", "YET', "YET.", 'YIELD', '"YORK', 'YORK.", 'YOU',

190

CHAPTER 7 Using Natural Language Tools in Forensics

"YOU'LL", "YOU'RE", "YOU'VE", 'YOU.', '"YOUNG', 'YOUNGER'", 'YOUNGSTERS', "YOUR'",
'YOURS.", 'YOURSELF', '"YOURSELF.", 'YOURSELVES', '"YOUTH', 'YUDOWITZ', 'YUDOWITZ.",
7', 'ZACK', "ZACK.", "ZEIGLER', 'ZERQ", "ZLOMSOWITCH", "ZLOMSOWITCH'S",
'/LOMSOWITCH.", 'Z00OM

Next, I can determine how many times a particular word appears in the Trial
Transcript. I accomplish using the count() method of the nitk.Text object type.

myWord = "KILL"
textSimpson.count(myWord)
84

This produces a count of the 84 times that the word KILL appeared in the Trial
Transcriptionfor the 9 days included in this corpus, during the month of January 1995.

Up to this point all of this is pretty straight-forward. Let’s take a look at a
couple of the more advanced methods included in the nitk.Text Module. I’'m going
to start with the collocations method. This will provide me with a list of words that
occur together statistically often in the text.

print textSimpson.collocations()

Building collocations 1ist

*THE COURT; *MS. CLARK; *MR. COCHRAN; MR. SIMPSON; NICOLE BROWN;
*MR.DARDEN; OPENING STATEMENT; LOS ANGELES; MR. COCHRAN; DETECTIVE FUHRMAN;
DISCUSSION HELD; WOULD LIKE; *MR. DOUGLAS; BROWN SIMPSON; THANK YOU. ;

MR. DARDEN; DEPUTY DISTRICT; FOLLOWING PROCEEDINGS; DISTRICT ATTORNEYS. ;
MISS CLARK

As you can see, the collocation list generated makes a great deal of sense. These
pairings would naturally occur more often that others during the proceedings.

Next, I want to generate a concordance from the transcript for specific words
that might be of interest. NLTK will produce each occurrence of the word along
with context (in other words the sentence surrounding the concordance word).
A second optional parameter indicates the size of the window of surrounding
words you would like to see. I will demonstrate a couple examples.

I will start with the word “KILL”, this produces 84 matches and I have
included the first 6.

myWord = "KILL"

print textSimpson.concordance(myWord)

Displaying 6 of 84 matches:

WAS IN EMINENT DANGER AND NEEDED TO KILL IN SELF-DEFENSE. BUT THE ARIS COURT

R OCCURRED. " I KNOW HE'S GOING TO KILL ME. I WISH HE WOULD HURRY UP AND GET

Experimenting with NLTK 191

FLICTED HARM WAY BEYOND NECESSARY TO KILL THE VICTIM. AND THIS IS A
QUOTE FROM

'M GOING TO HURT YOU , I'M GOING TO KILL YOU , I'M GOING TO BEAT YOU. " THO

HAVE HER AND NO ONE ELSE WILL IS TO KILL HER. THAT IS CLEAR IN THE RESEARCH.

WAS A FIXED PURPOSE , FULL INTENT TO KILL , WHERE THE DEFENDANT LITERALLY
WENT

If I use the word “GLOVE”, the code produces 92 matches; I have included the
first 6:

myWord = "GLOVE"
print textSimpson.concordance(myWord)
Displaying 6 of 92 matches:

CE DEPARTMENT PLANTED EVIDENCE , THE GLOVE AT ROCKINGHAM. NOW , THAT OF
COURSE

HAT A POLICE DETECTIVE WOULD PLANT A GLOVE , AND IT MADE HOT NEWS AND THE
DEFEN

R THIS POLICE DETECTIVE PLANTED THIS GLOVE AT ROCKINGHAM. NOW , YOUR
HONOR , BE

DETECTIVE FUHRMAN'S RECOVERY OF THE GLOVE AND AS - INSOFARAS IT RELATESTO T
HEY SAW THE LEFT-HANDED BULKY MAN'S GLOVE THERE AT THE FEET OF RONALD GOLDMAN.

E BUNDY CRIME SCENE. THEY SAW A LONE GLOVE , A SINGLE GLOVE AT THE FEET OF
RONA

NLTK also provides more sophisticated methods that can operate on text corpus.
For example the ability to identify similarities of word usage. The method iden-
tifies words that are used within similar contexts.

myWord = "intent"
print textSimpson.similar(myWord)
Building word-context index...

time cochran court evidence and house it blood defensemotive that jury other
people the this witnesses case defendant discovery

if I change the word to “victim” the results are as follows:

192

CHAPTER 7 Using Natural Language Tools in Forensics

Building word-context index...
court defendant jury defense prosecution case evidence and people record

police time relationship house question statement tape way crime glove

I can also utilize NLTK to produce a comprehensive vocabulary list and frequency
distribution that covers all the tokens in the corpus. By using this method across
documents, one can derive tendencies of the writer or creator of a document.
The vocab method returns an object based on the class nltk.probability.FreqDist
as shown here.

simpsonVocab = textSimpson.vocab()
type(simpsonVocab)

<class'nltk.probability.FregDist'>

Thus the simpsonVocab object can now be utilized to examine the frequency
distribution of any and all tokens within the text. By using just one of the methods,
for example, simpsonVocab.items(), I can obtain a sorted usage list (most used
first) of each vocabulary item.

simpsonVocab.items()

<bound method FregDist.items of <FreqDist with 12604 samples and 401032
outcomes>>

[CTHE’, 19386), (*,’, 18677), ('TO’, 11634), CTHAT’, 10777), CAND’, 8938),
2, 8369), COF’, 8198), ("*’, 7850), ('IS’, 6322), (’I’, 6244), (’A’, 5590), CIN’,
5456), CYOU’, 4879), (WE’, 4385), ('THIS’, 4264), ('IT’, 3815), "COURT’,
3763), 'WAS’, 3255), CHAVE’, 2816), (*=’, 2797), (°?’, 2738), CHE’, 2734),
(““S”, 2677), CNOT’, 2417), CON’, 2414), CTHEY’, 2287), ("*THE’, 2275),
C’BE’, 2240), CARE’, 2207), (YOUR’, 2200), CWHAT’, 2122), (CAT’, 2112),
CWITH’, 2110),

... Skipping to the bottom of the output for brevity

(CWRENCHING’, 1), CWRESTLING.’, 1), CWRISTS.’, 1), CWRITERS’, 1),
(CWRONGLY’, 1), "X-RAYS’, 1), CXANAX’, 1), CXEROXED.’, 1), CXEROX-
ING.’, 1), CYAMAUCHI., 1), CYARD.’, 1), CYARDS’, 1), CYEAGEN’, 1),
CYELL’, 1), CYELLING.’, 1), CYEP.’, 1), CYIELD’, 1), CYOUNGSTERS’, 1),
CYOURS.’, 1), CYUDOWITZ’, 1), CYUDOWITZ.’, 1), ('Z’, 1), CZEIGLER’, 1),
(ZERO’, 1), (“ZLOMSOWITCH’S”, 1)]

Note: A nice by-product of the vocab method is when different vocabulary items
have the same number of occurrences, they are sorted alphabetically.

Creating a Corpus from the Internet 193

CREATING A CORPUS FROM THE INTERNET

In many cases, the text that we wish to examine is found on the Internet. By com-
bining Python, the Python Standard Library urllib, and NLTK we can perform the
same types of analysis of online documents. I will start with a simple text document
downloaded from the Guttenberg Project to illustrate.

I start by importing the necessary modules in this case NLTK and the urlopen
module from the urllib. Note: As you can see, I can selectively bring in specific
modules from a library instead of loading the entire library.

>>> import nltk
>>> fromurllib import urlopen

Next, I specify the URL I wish to access and call the urlopen.read method.
>>>url ="http://www.gutenberg.org/files/2760/2760.txt"
>>>raw=urlopen(url).read()

As expected this returns the type ‘str’.

Note: since I’'m entering these commands from the Python Shell and interro-
gating the output directly, I’'m not using the same trylexcept care that I would
use if this example was actual program execution. You can of course add that if
you’d like.

>>> type(raw)

<type'str'>

Now that I have confirmed that the result is a string, I check the length that was
returned. In this case 3.6 MB

>>> len(raw)

3608901

To get a feel for what is contained in this online source, I simply use the standard
Python string capabilities to print out the first 200 characters, this produces the
following output.

>>> raw[:200]
’CELEBRATED CRIMES, COMPLETE\r\n\r\n\r\nThis eBook is for

the use of anyone anywhere at no cost and with almost\r\nno restrictions
whatsoever. You may copy it, give it away or re-use it\r\n’

Now I can perform any of the NLTK module capabilities, I have included a couple
here to give you a feel for the text that I downloaded.

194

CHAPTER 7 Using Natural Language Tools in Forensics

>>> tokenlList =nltk.word_tokenize(raw)
>>> type(tokenlList)
<type'list'>
>>> len(tokenlist)
707397
>>> tokenList[:40]
['CELEBRATED', 'CRIMES', ',", 'COMPLETE', 'This', 'eBook’, "is', 'for', 'the', 'use', 'of",
'anyone', 'anywhere', 'at', 'no’, 'cost’, 'and', 'with', 'almost', 'no', 'restrictions’,
'whatsoever.', 'You', 'may', 'copy', "it', ',", 'give’, "it', 'away', 'or', 're-use', "it',
'under', 'the', 'terms', 'of', 'the', 'Project’, 'Gutenberg']

Many other NLTK methods, objects, and functions exist to allow the exploration
of Natural Language. For now, you have learned the basics using the test-then code
method. Now I will create a simple application that will make it much easier to both

access NLTK capabilities using these same methods and provide a baseline for you to
extend the capability.

NLTKQuery APPLICATION

In order to make the interface with NLTK both easier and extensible, I have built the
NLTKQuery application. The application has three source files:

Source File Description

NLTKQuery.py Serves as the main program loop for interfacing with NLTK

_classNLTKQuery.py This module defines a new class that when instantiated and
used properly will allow access to NLTK methods in a controlled
manner

_NLTKQuery.py This module provides support functions for the NLTKQuery main
program loop, mainly to handle user input and menu display

The program provides a simplified user interface access to NLTK methods
without forcing the user to understand how the NLTK library works. All the user
needs to do is setup a directory that contains the file or files that they wish
to include in a corpus. The application will create the corpus based on the
directory path provided and then allow the user to interact, or better stated, query
the corpus.

NLTKQuery Application

The contents of the three source files are listed here:

NLTKQuery.py

1

NLTK QUERY FRONT END
Python-Forensics

No HASP required
#

import sys
import _NLTKQuery

print "Welcome to the NLTK Query Experimentation
print "Pleasewait Toading NLTK ... "

import _classNLTKQuery
ONLTK = _cTassNLTKQuery.classNLTKQuery ()

print

print "Input full pathnamewhereintendedcorpusfileorfilesarestored”

print "Note: youmust enter a quoted stringe.g. c:\\simpson\\ "
print
userSpecifiedPath =raw_input("Path: ")

Attempt to create a text Corpus
result = oNLTK.textCorpusInit(userSpecifiedPath)

if result == "Success":
menuSelection = -1
while menuSelection !=0:

if menuSelection !=-1:
print
s =raw_input('Press Enter to continue...")

menuSelection = _NLTKQuery.getUserSelection()

if menuSelection==1:
oNLTK.printCorpuslLength()

elif menuSelection ==
oNLTK.printTokensFound()

elif menuSelection==3:
ONLTK.printVocabSize()

elif menuSelection==4:
oNLTK.printSortedVocab()

195

196

CHAPTER 7 Using Natural Language Tools in Forensics

elif menuSelection==>5:
oNLTK.printCollocation()

elif menuSelection ==
oNLTK.searchWordOccurence()

elif menuSelection==7:
oNLTK.generateConcordance()

elif menuSelection==8:
oNLTK.generateSimiliarities()

elif menuSelection==29:
ONLTK.printWordIndex()

elif menuSelection ==10:
oNLTK.printVocabulary()

elif menuSelection==20:
print "Goodbye"
print

elif menuSelection==-1:
continue

else:

print "unexpected error condition"

menuSelection =10

print "Closing NLTK Query Experimentation”

_classNLTKQuery.py

import os
import sys
import Togging
import nltk
fromnltk.corpus import PlaintextCorpusReader

NLTK QUERY CLASS MODULE
Python-Forensics
No HASP required

#Standard Library 0S functions

J#Standard Library Logging functions
Import the Natural Language Toolkit
ffImport the PlainText

NLTKQuery Class

class classNLTKQuery:

CorpusReader Module

def textCorpusInit(self, thePath):

Validate the path is adirectory
if not os.path.isdir(thePath):

return "Path is not a Directory"

NLTKQuery Application 197

#Validate the path is readable
if not os.access(thePath, os.R_0K):

return "Directory is not Readable"
Attempt to Create a corpuswithall .txt files
found in the directory

try:
self.Corpus = PlaintextCorpus
Reader(thePath, '.*")
print "Processing Files : "
print self.Corpus.fileids()
print "Pleasewait..."
self.rawText =self.Corpus.raw()
self.tokens =nltk.word_tokenize
(self.rawText)
self.TextCorpus=nltk.Text(self.
tokens)

except:

return "Corpus Creation Failed"
self.ActiveTextCorpus = True
return "Success"

def printCorpusLength(self):
print "Corpus Text Length: "
print Ten(self.rawText)

def printTokensFound(self):
print "Tokens Found: ",
print Ten(self.tokens)

def printVocabSize(self):
print "Calculating..."
print "Vocabulary Size:
vocabularyUsed = set(self.TextCorpus)
vocabularySize = len(vocabularyUsed)
print vocabularySize

def printSortedVocab(self):
print "Compiling..."
print "Sorted Vocabulary ",
print sorted(set(self.TextCorpus))

def printCollocation(self):
print "Compiling Collocations..."
self.TextCorpus.collocations()

def searchWordOccurence(self):
myWord = raw_input("Enter Search Word : ")
if myWord:
wordCount = self.TextCorpus.count
(myWord)

198

CHAPTER 7 Using Natural Language Tools in Forensics

print myWord+" occured: ",
print wordCount,
print " times"

else:
print "Word Entry is Invalid"

def generateConcordance(self):

myWord = raw_input("Enter word to Concord : ")
if myWord:
self.TextCorpus.concordance
(myWord)
else:
print "Word Entry is Invalid"

def generateSimiliarities(self):

myWord = raw_input("Enter seed word : ")
if myWord:

self.TextCorpus.similar(myWord)
else:

print "Word Entry is Invalid"

def printWordIndex(self):

myWord = raw_input("Find first occurrence of
what Word? : ")

if myWord:
wordIndex = self.TextCorpus.index
(myWord)
print "First OQccurrence of: " +
myWord + "is at offset: ",
print wordIndex

else:

print "Word Entry is Invalid"

def printVocabulary(self):
print "Compiling Vocabulary Frequencies",
vocabFreqlist =self.TextCorpus.vocab()
print vocabFreqlist.items()

_NLTKQuery.py

it

NLTK Query Support Methods
Python-Forensics

i No HASP required

i

Function toprint the NLTK Query Option Menu
def printMenu():

NLTKQuery Application 199

print "==========NLTK Query Options ========="
print "[1] Print Length of Corpus"
print "[2] Print Number of Token Found"
print "[3] Print Vocabulary Size"
print "[4] Print Sorted Vocabulary"
print "[5] Print Collocation"

print "[6] Search for Word Occurrence"
print "[7] Generate Concordance"
print "[8] Generate Similarities"
print "[9] Print Word Index"

print "[10] Print Vocabulary"

print

print "[0] Exit NLTK Experimentation”
print

Function to obtain user input

def getUserSelection ():
printMenu ()

try:
menuSelection =int(input(‘Enter Selection (0-10) >>"))
except ValueError:
print'Invalid input. Enter a value between 0 -10 ."
return -1

if not menuSelection in range(0, 11):
print'Invalid input. Enter a value between 0 - 10."
return -1

return menuSelection

NLTKQuery example execution

Executing NLTKQuery from the command line for Windows, Linux, or MAC is the
same. Simply use the command Python NLTKQuery.py and then follow the onsc-
reen instructions and menu prompts.

NLTK execution trace

Note for brevity some of the output was edited where noted. I also left out the re-
display of the menu options.

C:\Users\app\Python NLTKQuery.py

Welcome to the NLTK Query Experimentation

Pleasewait Toading NLTK ...

Input full path name where the intended corpus fileor files are stored
Format for Windows e.g. c:\simpson\

Path: c:\simpson\

200 CHAPTER 7 Using Natural Language Tools in Forensics

Processing Files:

['Trial-January-11.txt', 'Trial-January-12.txt', 'Trial-January-13.txt',
'Trial-Jdanuary-23.txt', 'Trial-Jdanuary-24.txt', 'Trial-Jdanuary-25.txt',
'Trial-Jdanuary-26.txt', 'Trial

-January-30.txt', 'Trial-January-31.txt']

==========NLTK Query Options =====
[1] Print Length of Corpus

[2] Print Number of Token Found

[3] Print Vocabulary Size

[4] Print Sorted Vocabulary

[5] Print Collocation

[6] Search for Word Occurrence
[7] Generate Concordance
[8] Generate Similarities

[9] Print Word Index
[10] Print Vocabulary

[0] Exit NLTK Experimentation

Enter Selection (0-10) >>1
Corpus Text Length: 2008024

Enter Selection (0-10) >> 2
Tokens Found: 401032

Enter Selection (0-10) >>3
Calculating...
Vocabulary Size: 12604

Enter Selection (0-10) >> 4

Compiling...Sorted Vocabulary

'ABYSMALLY', 'ACADEMY', 'ACCENT', 'ACCEPT', 'ACCEPTABLE', 'ACCEPTED', 'ACCEPTING',
'ACCESS', 'ACCESSIBLE', 'ACCIDENT', 'ACCIDENT."', 'ACCIDENTAL', 'ACCIDENTALLY",
'ACCOMMODATE',

. Edited for brevity

'YOUNGER', 'YOUNGSTERS', 'YOUR', 'YOURS.", 'YOURSELF', 'YOURSELF.", 'YOURSELVES',
'YOUTH', 'YUDOWITZ', 'YUDOWITZ.", 'Z', 'ZACK', 'ZACK.",
"ZLOMSOWITCH'S", 'ZLOMSOWITCH.", 'ZOOM', """']

Enter Selection (0-10) >>5

Compiling Collocations...

Building collocations Tist

*THE COURT; *MS. CLARK; *MR. COCHRAN; MR. SIMPSON; NICOLE BROWN; *MR.
DARDEN; OPENING STATEMENT; LOS ANGELES; MR. COCHRAN; DETECTIVE FUHRMAN;
DISCUSSION HELD; WOULD LIKE; *MR. DOUGLAS; BROWN SIMPSON; THANK YOU. ;

NLTKQuery Application 201

MR. DARDEN; DEPUTY DISTRICT; FOLLOWING PROCEEDINGS; DISTRICT
ATTORNEYS. ; MISS CLARK

Enter Selection (0-10) >> 6
Enter Search Word: MURDER
MURDER occurred: 125 times

Enter Selection (0-10) >>7

Enter word to Concord: KILL

Building index...

Displaying 15 of 84 matches:

WAS IN EMINENT DANGER AND NEEDED TO KILL IN SELF-DEFENSE. BUT THE ARIS
COURT

R OCCURRED. "I KNOWHE 'S GOING TO KILLME. I WISH HE WOULD HURRY UP AND GET
FLICTED HARM WAY BEYOND NECESSARY TO KILL THE VICTIM. AND THIS IS

A QUOTE FROM

'M GOING TO HURT YOU , I 'M GOING TO KILL YOU , I'M GOING TO BEAT YOU. " THO
HAVE HER AND NO ONE ELSE WILL ISTO KILL HER. THAT IS CLEAR IN THE RESEARCH.
ELLED OUT TO HIM , "HE'S GOING TO KILL ME. " IT WAS CLEAR TO OFFICER EDWAR
NNING OUT SAYING , "HE'S GOING TO KILL ME , " THEN THE DEFENDANT ARRIVES I
NS OUT AND SAYS , "HE'S TRYING TO KILL ME. " SHE'S LITERALLY IN FLIGHT. S
HERDURING THEBEATING THATHEWOULD KILLHER , AND THE DEFENDANT CONTINUED TH
TATEMENT OF THE DEFENDANT , " I'LL KILL YOU , " CONSTITUTES COMPOUND HEARSA
FFICER SCREAMING , "HE'S GOING TO KILLME. "I CAN'T IMAGINE A STRONGER C
""HE 'S GOING CRAZY. HE IS GOING TO KILL ME. " THIS IS VERY SIMILAR TO THE S
NNER THAT SHE BELIEVED THAT HE WOULD KILL HER. NOW , MR. UELMEN HAS TALKED
ABO

OF ADOMESTICVIOLENCE , AMOTIVETOKILL, THEFINALACTOFCONTROL. THEREIS
CTIMTHAT THEDEFENDANTHAD TRIEDTOKILLHERPREVIOUSLY WASUSED TO SHOW THAT

Enter Selection (0-10) >> 8

Enter seed word: MURDER

Building word-context index...

court and case evidence defendant time jury crime motion relationship
statement witness issue so that trial blood defense person problem

Enter Selection (0-10) >>9
Find first occurrence of what Word? : GLOVE
First Occurrence of: GLOVE is at offset: 93811

Enter Selection (0-10) >> 10

Compiling Vocabulary Frequencies Building vocabulary index...

[('THE', 19386), (',', 18677), ('T0', 11634), ('THAT', 10777), ('AND', 8938),
(':', 8369), ('OF', 8198), ('*', 7850), ('IS', 6322), ('I', 6244), ('A", 5590),
('IN', 5456), ('YOU', 4879), ("WE', 4385), ('THIS', 4264), ('IT', 3815), ('COURT',
3763), ('"WAS', 3255), ('HAVE', 2816), ('-', 2797), ('?', 2738),

. Edited for brevity

202

CHAPTER 7 Using Natural Language Tools in Forensics

('WORLDWIDE', 1), ('WORRYING', 1), ('WORSE.', 1), ("WORTHWHILE', 1), ("WOULD-
BE', 1), ("WOULDN'T", 1), ('WOUNDS.', 1), ('WRECKED.', 1), ("WRENCHING', 1),
('WRESTLING.", 1), ('WRISTS.', 1), C'WRITERS', 1), ("WRONGLY', 1), ("X-RAYS',
1), ('XANAX', 1), ('XEROXED.', 1), ('XEROXING.', 1), ("YAMAUCHI.', 1), ('YARD.',
1), ('YARDS', 1), ('YEAGEN', 1), ('YELL', 1), ('YELLING.', 1), ('YEP.", 1),
('YIELD', 1), ("YOUNGSTERS', 1), ('YOURS.', 1), ('YUDOWITZ', 1), ('YUDOWITZ.',
1), (7', 1), ("ZEIGLER', 1), ("ZERQ', 1), ("ZLOMSOWITCH'S", 1)1]

Now that you have a working example of NLTK, I suggest that you experiment
with the application and start to add new NLTK operations to the classNLTKQuery
in order to further explore the possibilities of Natural Language experimentation.

CHAPTER REVIEW

In this chapter, I introduced the concept of NLP in order to expand your thinking
beyond simple acquire, format, and display forensic applications. I discussed some
of the history of NLP and Alan Turing’s intriguing question. I then introduced you to
the NLTK that performs much of the heavy lifting and allows us to experiment with
NLP in Python almost immediately. I also introduced you to the concept and appli-
cation of a text-based corpus and used a small sample from the transcripts of the O.J.
Simpson Trial to create a small corpus for experimentation. I walked through some of
the basic NLTK methods and operations in detail in order to not only create but also
query our corpus. Once comfortable with the basics, I created the NLTKQuery appli-
cation that abstracted the NLTK functions through a menu driven interface. The heart
of NLTKQuery is the classNLTKQuery. This class can easily be extended to perform
more complex operations and dive deeper into NLTK and I challenge you to do so.

SUMMARY QUESTIONS

1. Expand the NLTKQuery class by adding the following capabilities:

a. Create a new class method that generates a Frequency Distribution Graph for
the Simpson Trial showing how the language in the transcripts shifts
throughout the trial. (Hint: Experiment with the dispersion_plot method that
can be applied to the self.textCorpus object.)

b. Create a new method that will generate a list of unusual words. This may be
words that are unusually long or are not found in the standards dictionary.
(Hint: Download the NLTK Data found at http://nltk.org/data.html and
leverage the “word list” corpus to filter out common words.)

c. Create a new method that can identify names or places. (Hint: Leverage the
“names” corpus match names found in the Simpson Corpus.)

2. From your own reference, collect a set of text files and create your own corpus for

a domain or genre that will help the forensic field.

http://nltk.org/data.html

Additional Resources 203

Additional Resources

Project Gutenberg. http://www.gutenberg.org/.

Harris MD. Introduction to Natural Language Processing. Reston, VA: A Prentice-Hall Com-
pany: Reston Publishing Company, Inc.; 1985.

Turing A. Computing machinery and intelligence. http://www.csee.umbc.edu/courses/471/
papers/turing.pdf; October 1950.

http://www.gutenberg.org/
http://refhub.elsevier.com/B978-0-12-418676-7.00007-4/rf0010
http://refhub.elsevier.com/B978-0-12-418676-7.00007-4/rf0010
http://www.csee.umbc.edu/courses/471/papers/turing.pdf
http://www.csee.umbc.edu/courses/471/papers/turing.pdf

This page intentionally left blank

CHAPTER

Network Forensics: Part |

CHAPTER CONTENTS

Network Investigation BaSiCsccccceieciiescmiimiieiiicscciee s re s ceses s e e e s e s mmse e e e s e s mmnees 205
What are these SOCKETS? ... 206
The Simplest Network Client Server Connect Using Socketscccecc..... 208
SEIVEL.PY COUE Loiiiiiiiiii e e 208
CLIENT.PY COAB it 209
Server.py and Client.py Program EXECUIONccocuieeeiiiiiiieiiiieiieeeieeann, 210
Captain Ramius: Re-verify Our Range to Target... One Ping Onlycccecccmeennrnnnee. 211
WXPYENON e 212
o117 =0 o) SRR 213
GUIPING.PY COUR. ..ttt 218
PiNg SWEEP EXECUTIONiiiti et eeaeee 224
T AT 111 T N 225
Examples of Well-Known Portscooveiiiii e 226
Examples of Registered Portscoooiiiiiiiiiiiiiici e 226
[P T 1Tl T 235
SUMMArY QUESLIONSceevieirerrremerrsssnerrsssnrerssssnerssssneessssnnesssssneessssnnessssnnenssssneesssnnns 235
Additional RESOUICEScceiceeeerririrrrsssnnrrissnerssssmressssmesssssneessssnsesssssnsessssnsesassnnensnns 235

NETWORK INVESTIGATION BASICS

Investigating modern network environments can be fraught with difficulties. This is
true whether you are responding to a breach, investigating insider activities, perform-
ing vulnerability assessments, monitoring network traffic, or validating regulatory
compliance.

Many professional tools and technologies exist from major vendors like McAfee,
Symantec, IBM, Saint, Tenable, and many others. However, a deep understanding
of what they do, how they do it, and whether the investigative value is complete
can be somewhat of a mystery. There are also free tools like Wireshark that perform
network packet capture and analysis.

In order to uncloak some of the underpinnings of these technologies, I will exam-
ine the basics of network investigation methods. I will be leveraging the Python Stan-
dard Library, along with a couple of third-party libraries to accomplish the cookbook
examples. I will be walking through the examples in considerable detail, so if this is

Python Forensics 2 0 5

© 2014 Elsevier Inc. All rights reserved.

206

CHAPTER 8 Network Forensics: Part |

your first interaction with network programming you will have sufficient detail to
expand upon the examples.

What are these sockets?

When interacting with a network, sockets are the fundamental building block allow-
ing us to leverage the underlying operating system capabilities to interface with the
network. Sockets provide an information channel for communicating between net-
work endpoints, for example, between a client and server. You can think about
sockets as the endpoint of the connection between a client and a server. Applications
developed in languages like Python, Java, C++, and C# interface with network
sockets utilizing an application programming interface (API). The sockets API on
most systems today is based upon the Berkeley sockets. Berkeley sockets were orig-
inally provided with UNIX BSD Version 4.2 back in 1983. Later around 1990,
Berkeley released a license-free version that is the basis of today’s socket API across
most operating systems (Linux, Mac OS, and Windows). This standardization pro-
vides consistency in implementation across platforms.

Figure 8.1 depicts a sample network where multiple hosts (endpoints) are con-
nected to a network hub. Each host has a unique Internet Protocol (IP) address,
and for this simple network we see that each host has a unique IP address.

These IP addresses are the most common that you will see in local area network
setting. These specific addresses are based on the Internet Protocol Version 4 (IPv4)
standard and represent a Class C network address. The Class C address is com-
monly written in a dotted notation such as 192.168.0.1. Breaking the address down
into the component parts, the first three octets or the first 24 bits are considered the
network address (aka the Network Identifier, or NETID). The fourth and final octet
or 8 bits are considered the Local Host Address (aka the Host Identifier,
or HOSTID).

192.168.0.86

192.168.0.5
192.168.0.255

Socket Connection

FIGURE 8.1

Simplest local area network.

Figure 8.1

Network Investigation Basics

I_I_I

192 .168 .0 1

I_I_I

Network Address Local Host Address

In this example each host, network device, router, firewall, etc., on the local net-
work would have the same network address portion of the IP address (192.168.0), but
each will have a unique host address ranging from 0 to 255. This allows for 256
unique IP addresses within the local environment. Thus the range would be:
192.168.0.0-192.168.0.255. However, only 254 addresses are usable, this is because
192.168.0.0 is the network address and cannot be assigned to a local host, and
192.168.0.255 is dedicated as the broadcast address.

Based on this, I could use a few simple built-in Python language capabilities to
create a list of IP addresses that represent the complete range. These language capa-
bilities include a String, a List, the range function, and a “for loop.”

Specify the Base Network Address (the first 3 octets)
ipBase ="192.168.0."

Next Create an Empty List that will hold the completed
#List of IP Addresses

ipList =[]

Finally, Toop through the possible 1ist of local host

addresses 0-255 using the range function

Then append each complete address to the ipList

Notice that I use the str(ip) function in order

concatenate the string ipBase with 1ist of numbers 0-255

foripinrange(0,256):
ipList.append(ipBasetstr(ip))
print ipList.pop()

Program Output Abbreviated

192.168.0.0

192.168.0.1

192.168.0.2

192.168.0.3

..... skipped items

192.168.0.252

192.168.0.253

192.168.0.254

192.168.0.255

As you can see, manipulating IP addresses with standard Python language ele-
ments is straightforward. I will employ this technique in the Ping Sweep section later
in this chapter.

.
207

208

CHAPTER 8 Network Forensics: Part |

127.0.0.1
Port 5555

FIGURE 8.2
Isolated localhost loopback.

The simplest network client server connect using sockets
As a way of an introduction to the sockets API provided by Python, I will create a
simple network server and client. To do this I will use the same host (in other words
the client and server will use the same IP address executing on the same machine),
I will specifically use the special purpose and reserved localhost loopback IP address
127.0.0.1. This standard loopback IP is the same on virtually all systems and any
messages sent to 127.0.0.1 never reach the outside world, and instead are automat-
ically returned to the localhost. As you begin to experiment with network program-
ming, use 127.0.0.1 as your IP address of choice until you perfect your code and are
ready to operate on a real network (Figure 8.2).

In order to accomplish this, I will actually create two Python programs: (1) server.
py and (2) client.py. In order to make this work, the two applications must agree on a
port that will be used to support the communication channel. (We already have
decided to use the localhost loopback IP address 127.0.0.1.) Port numbers range
between 0 and 65,535 (basically, any unsigned 16-bit integer value). You should stay
away from lower numbered ports <1024 as they are assigned to standard network
services (actually the registered ports now range as high as 49,500 but none of those
are on my current system). For this application I will use port 5555 as it is easy to
remember. Now that I have defined the IP address and port number, I have all the
information that I need to make a connection.

IP Address and Port: One way to think about this in more physical terms. Think of the IP
Address as the street address of a post office and the Port as the specific post-office box within
the post office that | wish to address.

server.py code

1

Server Objective

#1) Setup a Simple Tistening Socket
#2) Wait for a connection request

Figure 8.2

Network Investigation Basics 209

3) Accept a connection on port 5555

##4) Upon a successful connection send a message to the client
1

import socket # Standard Library Socket Module

Create Socket
myServerSocket = socket.socket()

Get my 1ocal host address

localHost = socket.gethostname()
Specify a Tocal Port to accept connections on
localPort = 5555

Bind myServerSocket to TocalHost and the specified Port
Note the bind call requires one parameter, but that
parameter is a tuple (notice the parenthesis usage)

myServerSocket.bind((localHost, TocalPort))

J# Begin Listening for connections

myServerSocket.listen(1)

#Wait for a connection request

Note this is a synchronous Call

meaning the programwill halt until

##a connection is received.

Once a connection is received

#wewill accept the connection and obtain the
ipAddress of the connector

print 'Python-Forensics Waiting for Connection Request'

conn, clientInfo =myServerSocket.accept()

#Print amessage to indicate we have received a connection

print 'Connection Received From: ', clientInfo

Jf Send a message to connector using the connection object 'conn'
that was returned from the myServerSocket.accept() call
Include the client IP Address and Port used in the response

conn.send('Connection Confirmed: +'IP: '+ clientInfol[0] +'Port: "'+ str
(clientInfol[11))

client.py code

Next, the client code that will make a connection to the server

#
#Client Objective

210 CHAPTER 8 Network Forensics: Part |

#1
2
#3
i 4
#

Setup a Client Socket
Attempt a connection to the server on port 5555
Wait for a reply

)
)
)
) Print out the message received from the server

import socket J# Standard Library Socket Module
MAX_BUFFER = 1024 # Set the maximum size to receive
#f Create a Socket

myClientSocket = socket.socket()

Get my Tocal host address
localHost = socket.gethostname()

Specify a Tocal Port toattempt a connection
localPort =5555

Attempt a connection tomy TocalHost and TocalPort
myClientSocket.connect((localHost, TocalPort))
f#Wait forareply

#This is a synchronous call, meaning

that the programwill halt until a response is received
f#or the programis terminated

msg =myClientSocket.recv(MAX_BUFFER)
print msg

Close the Socket, thiswill terminate the connection

myClientSocket.close()

server.py and client.py program execution
Figure 8.3 depicts the program execution. I created two terminal windows, the top is
the execution of server.py (which I started first) and the bottom is the execution of
client.py. Notice that the client communicated from the source port 59,714, this was
chosen by the socket service and not specified in the client code. The server port 5555
in this example is the destination port.

I realize this does not provide any investigative value, however it does provide a
good foundational understanding of how network sockets function and this is a pre-
requisite to understanding some of the probative or investigative programs.

Captain Ramius: Re-verify Our Range to Target... One Ping Only 211

chet@PythonForensics:~/Desktop/Python Samples/Network Samples$ python serverSocket.py
Python-Forensics Waiting for Connection Request

Connection Received From: ('127.0.0.1', 59714)
chet@PythonForensics:~/Desktop/Python Samples/Network Samples$ D

chet@PythonForensics: ~/Desktop/Python Samples/Network Samples
chet@PythonForensics:~/Desktop/Python Samples/Network Samples$ python clientSocket.py
Connection Confirmed: IP: 127.0.0.1 Port: 59714
chet@PythonForensics:~/Desktop/Python Samples/Network Samples$ I

FIGURE 8.3
server.py/client.py program execution.

CAPTAIN RAMIUS: RE-VERIFY OUR RANGE TO TARGET. .. ONE
PING ONLY

You probably remember this famous line from the book and then the movie “The
Hunt for Red October” [CLANCY] spoken so eloquently by Sean Connery as the
character Marko Ramius. Of course they were using a sonar wave to calculate the
distance between the Red October and the USS Dallas (Figure 8.4).

Similar to submarine warfare, one of the key elements to network investigation is
the discovery of all the hosts (or more generally referred to as endpoints) on a net-
work. This is accomplished by sending a ping (using an Internet Control Message
Protocol, or ICMP for short) to each possible IP address on a network. The IP
addresses that respond provide us with two vital pieces of information: (1) if they
respond we know they are there and responsive and (2) how long it took for the
response to be returned. One special note, many modern firewalls block ICMP mes-
sages as these can be used by hackers to perform reconnaissance activities on net-
works. This is also true of modern operating systems, by default they will not
respond to ICMP. However, inside the network they provide a valuable service to
locate and detect endpoints on a network.

For this next cookbook example, I will develop a ping sweep application in
Python to scan a local network for available IP addresses. I will be using a couple
special modules for this section. First I will be using wxPython to build a simple
graphical user interface (GUI) for the ping sweep application. Second, I will be using
a third-party module, Ping.py which is completely written in Python that handles the
heavy lifting of the ICMP protocol.

I choose to develop the applications in this chapter within a GUI environment
for two reasons—first to give you exposure to a cross platform GUI environment
wxPython, and second because the execution of ping sweeps by using command
line options would be quite tedious and the GUI interface will simplify the
interaction.

Figure 8.3

212

CHAPTER 8 Network Forensics: Part |

FIGURE 8.4
Photo of the actual USS Dallas Los Angeles-class nuclear-powered attack submarine.

wxPython

As you have seen throughout this book one of the advantages of Python is the out-of-
the-box cross-platform capabilities that it provides. In the spirit of Python, wxPython
provides GUI capabilities that are also cross platform (Windows, Linux, and Mac).
This library allows us to build fully functional GUI-based applications that integrate
directly in the standard Python language and structure. The simple GUI applications
in this chapter are only a brief introduction to wxPython, as I am trying to keep the
first GUI application as simple and easy to understand as possible. As I move forward
I will be utilizing wxPython throughout the remaining chapters in the book.

To obtain more information about wxPython and to install the environment, visit
the http://www.wxPython.org/ project page. Third-party libraries like wxPython
have multiple versions that can support different versions of Python and different
operating systems (i.e., Windows, Mac, and Linux). Make sure that you choose
the installation that is compatible with your configuration.

http://www.wxPython.org/
Figure 8.4

Captain Ramius: Re-verify Our Range to Target... One Ping Only 213

ping.py
The ping.py module is available at http://www.g-loaded.eu/2009/10/30/Python-
ping/ and is an open source Python module that handles the details of ICMP oper-
ations completely written in Python. Since this is an open source module, I am
including the source here for your inspection, and including all the appropriate attri-
butions and revisions.

[PYTHON PING]

#!/usr/bin/env Python

A pure Python ping implementation using raw socket.

Note that ICMP messages canonly be sent fromprocesses runningas root.

Derived fromping.c distributed in Linux's netkit. That code is
copyright (c) 1989 by The Regents of the University of California.
That code is in turnderived from code written by Mike Muuss of the
US Army Ballistic Research Laboratory in December, 1983 and
placed in the public domain. They have my thanks.

Bugs arenaturally mine. I'd be glad to hear about them. There are
certainly word - size dependencies here.

Copyright (c) Matthew Dixon Cowles, <http://www.visi.com/~mdc/>.
Distributable under the terms of the GNU General Public License
version 2. Providedwithnowarranties of any sort.

Original Version fromMatthew Dixon Cowles:
-> ftp://ftp.visi.com/users/mdc/ping.py

Rewrite by Jens Diemer:
-> http://www.Python-forum.de/post-69122.htm14#69122

Rewrite by George Notaras:
-> http://www.g-1oaded.eu/2009/10/30/Python-ping/

Revision history

a1 e Y Y VIV NN NENENENENEN IV

Improved compatibility with GNU/Linux systems.

Fixes by:

* George Notaras -- http://www.g-loaded.eu
Reported by:

*ChrisHallman -- http://cdhallman.blogspot.com

http://www.g-loaded.eu/2009/10/30/Python-ping/
http://www.g-loaded.eu/2009/10/30/Python-ping/
http://www.visi.com/~mdc/
http://www.visi.com/~mdc/
ftp://ftp.visi.com/users/mdc/ping.py
http://www.Python-forum.de/post-69122.html#69122
http://www.g-loaded.eu/2009/10/30/Python-ping/
http://www.g-loaded.eu
http://cdhallman.blogspot.com

214 CHAPTER 8 Network Forensics: Part |

Changes in this release:

- Re-use time.time() instead of time.clock(). The 2007 implementation
worked only under Microsoft Windows. Failed on GNU/Linux.
time.clock() behaves differently under the two 0Ses[1].

[1] http://docs.Python.org/library/time.htmlftime.clock

May 30, 2007

Tittle rewrite by Jens Diemer:

- change socket asterisk import to a normal import
- replace time.time() with time.clock()

- delete "return None" (or change to "return" only)
- in checksum() rename "str" to "source_string"

November 22, 1997

Initial hack. Doesn't do much, but rather than try to guess
what features I (or others) will want in the future, I've only
put inwhat I need now.

December 16, 1997

For some reason, the checksumbytes are in the wrong order when
this is run under Solaris 2.X for SPARC but it works right under
Linux x86. Since I don't know just what's wrong, I'l1 swap the
bytes always and then do an htons().

December 4, 2000
Changed the struct.pack() calls to pack the checksumand ID as
unsigned. My thanks to Jerome Poincheval for the fix.

Last commit info:
$LastChangedDate: $
$Rev: $

$Author: $

import os, sys, socket, struct, select, time

From /usr/include/ Tinux/icmp.h; your mileage may vary.
ICMP_ECHO_REQUEST = 8 4 Seems to be the same on Solaris.

def checksum(source_string):

http://docs.Python.org/library/time.html#time.clock

Captain Ramius: Re-verify Our Range to Target... One Ping Only 215

I'mnot too confident that this is right but testing seems
to suggest that it gives the same answers as in_cksuminping.c
sum=0
countTo = (len(source_string)/2)*2
count =0
while count<countTo:
thisVal =ord(source_stringlcount +1]1)*256 +ord
(source_stringlcount])
sum=sum+ thisVal
sum = sum & OxfFFfffff 4 Necessary?
count = count +2

if countTo<len(source_string):
sum=sum+ord(source_string[len(source_string) - 1])
sum = sum & Oxffffffff 4 Necessary?

sum= (sum>>16) + (sum & Oxffff)
sum= sum+ (sum >> 16)
answer = ~sum

answer = answer & Oxffff

Swap bytes. Bugger me if I know why.
answer = answer >> 8 | (answer << 8 & 0xff00)

return answer

def receive_one_ping(my_socket, ID, timeout):

receive the ping from the socket.
timelLeft = timeout
while True:
startedSelect =time.time()
whatReady = select.select([my_socket], [1, [], timeleft)
howlLongInSelect = (time.time() - startedSelect)
if whatReady[0] == [1: # Timeout
return

timeReceived = time.time()

recPacket, addr =my_socket.recvfrom(1024)

icmpHeader = recPacket[20:28]

type, code, checksum, packetID, sequence = struct.unpack(
"bbHHh", icmpHeader

)

if packetID == 1D:
bytesInDouble = struct.calcsize("d")

216 CHAPTER 8 Network Forensics: Part |

timeSent = struct.unpack("d", recPacket[28:28 +
bytesInDoublel)[0]
return timeReceived - timeSent
timelLeft = timelLeft - howLongInSelect
if timeleft <=0:
return

def send_one_ping(my_socket, dest_addr, ID):

Send one ping to the given >dest_addr<.

dest_addr = socket.gethostbyname(dest_addr)

Header is type (8), code (8), checksum (16), id (16), sequence (16)
my_checksum =0

Make a dummy header with a 0 checksum.

header = struct.pack("bbHHh", ICMP_ECHO_REQUEST, 0, my_checksum,
10, 1)

bytesInDouble =struct.calcsize("d")

data = (192 - bytesInDouble) * "Q"

data =struct.pack("d", time.time()) + data

Jt Calculate the checksumon the data and the dummy header.
my_checksum = checksum(header + data)

Now that we have the right checksum, we put that in. It's just easier
tomake up a new header than to stuff it into the dummy.
header = struct.pack(

"bbHHh", TCMP_ECHO_REQUEST, 0, socket.htons(my_checksum), ID, 1
)
packet = header + data
my_socket.sendto(packet, (dest_addr, 1)) # Don't know about the 1

def do_one(dest_addr, timeout):

Returns either the delay (in seconds) or none on timeout.

icmp = socket.getprotobyname("icmp")

try:
my_socket = socket.socket(socket.AF_INET, socket.SOCK_RAW,
icmp)

except socket.error, (errno, msg):
iferrno==1:

Operation not permitted

msg =msg + (
" - Note that ICMP messages can only be sent from
processes”

Captain Ramius: Re-verify Our Range to Target... One Ping Only 217

running as root."

)

raise socket.error(msg)
raise# raise theoriginal error

my_ID=o0s.getpid() & OxFFFF

send_one_ping(my_socket, dest_addr, my_ID)
delay =receive_one_ping(my_socket, my_ID, timeout)

my_socket.close()
return delay
def verbose_ping(dest_addr, timeout =2, count =4):
Send >count< ping to >dest_addr<with the given >timeout< and
display theresult.
for i in xrange(count):
print "ping %s..." % dest_addr,
try:
delay = do_one(dest_addr, timeout)
except socket.gaierror, e:
print "failed. (socket error: '%s")" % el1]
break

if delay == None:
print "failed. (timeout within %ssec.)" % timeout
else:
delay =delay * 1000
print "get ping in %0.4fms" % delay
print
if _name__=="_main__":
verbose_ping("heise.de")
verbose_ping("google.com")
verbose_ping("a-test-url-taht-is-not-available.com")
verbose_ping("192.168.1.1")

I have provided detailed documentation in line with the program so you can walk
through the program reading the comments for clarity. Figures 8.5 and 8.6 depict the
launch and startup GUI of Ping Sweep. Notice in Figure 8.5 that I launched the pro-
gram from the command line with administrative privilege. This is necessary as
administrator privilege is required to perform the ping operations. Before examining
the code, take a look at the overall layout of the program. I recommend that you start
by examining the “Setup the Application Windows” section a couple pages down in
the code. Then, I would move back to the beginning of the code and examine the
pingScan event handler starting with “def pingScan(event)”:

218

CHAPTER 8 Network Forensics: Part |

chet@PythonForensics: ~/Desktop/Python Samples/Network Samples
chet@PythonForensics:~/Desktop/Python Samples/Network Samples$ sudo python guiPing.py N

FIGURE 8.5
Command line launch of the guiPing.py as root.

) simple Ping (ICMP) Sweeper 1.0

Scan Exit IPBase: | 127 = |0 =L < HostStart: |1 > HostEnd: |10

FIGURE 8.6
GUI interface for Ping Sweep.

I chose a simple GUI design with just two buttons, Scan and Exit, along with sev-
eral spin controls to specify the base IP address and Local Host Range.

guiPing.py code
i
Python Ping Sweep GUI Application
1
import wxversion # Specify the proper version of wxPython

wxversion.select("2.8")

Figure 8.6
Figure 8.5

Captain Ramius: Re-verify Our Range to Target... One Ping Only 219

Import the necessary modules

import wx # Import the GUI module wx

import sys # Import the standard 1ibrary module sys
import ping # Import the ICMP Ping Module

import socket ## Import the standard 1ibrary module socket

fromtime import gmtime, strftime # import time functions

1
Event Handler for the pingScan Button Press
This is executed each time the Scan Button is pressed on the GUI

#
def pingScan(event):

Since the user specifies a range of Hosts to Scan, I need to verify
that the startHost value is <= endHost value before scanning
#thiswould indicate avalid range

#I1fnot I needtocommunicate the errorwith the user

if hostEnd.GetValue() < hostStart.GetValue():

#This is an improper setting
Notify the user using a wx.MessageDialog Box

dlg =wx.MessageDialog(mainWin,"Invalid Local Host
Selection”,"Confirm", wx.O0K | wx.ICON_EXCLAMATION)

result =dlg.ShowModal()
dlg.Destroy()
return

1f we have a valid range update the Status Bar
mainWin.StatusBar.SetStatusText('"Executing Ping Sweep Please
Wait'

Record the Start Time and Update the results window

utcStart =gmtime()

utc =strftime("%a, %d %b %Y ZX +0000", utcStart)
results.AppendText("\n\nPing Sweep Started: "+ utc+ "\n\n")

#Similar to the example script at the beginning of the chapter
1 need to build the base IP Address String

Extract data fromthe ip Range and host name user selections
#Build a Python List of IP Addresses to Sweep

220 CHAPTER 8 Network Forensics: Part |

baselP =str(ipaRange.GetValue())+'.+str(ipbRange.GetValue())+"."
+str(ipcRange.GetValue())+'".'

ipRange =[]

for i inrange(hostStart.GetValue(), (hostEnd.GetValue()+1)):
ipRange.append(baselP+str(i))

J# For each of the IP Addresses in the ipRange List, Attempt an PING
for ipAddress in ipRange:
try:

Report the IP Address to the Window Status Bar
#Prior tothe attempt

mainWin.StatusBar.SetStatusText('Pinging IP: '+ ipAddress)

Perform the Ping
delay = ping.do_one(ipAddress, timeout=2)

Display the IP Address in the Main Window
results.AppendText(ipAddress+\t")

if delay !=None:
If Successful (i.e. notimeout) display
the result and response time

results.AppendText(' Response Success')
results.AppendText (' Response Time: +str(delay)+
Seconds')
results.AppendText("\n")

else:
If delay == None, then the request timed out
Report the Response Timeout
results.AppendText(' Response Timeout")
results.AppendText("\n")

except socket.error, e:

1f any socket Errors occur Report the offending IP
#alongwith any error information provided by the socket

results.AppendText(ipAddress)
results.AppendText('Response Failed: ")
results.AppendText(e.message)

Captain Ramius: Re-verify Our Range to Target... One Ping Only 221

results.AppendText("\n")

#0nce all ipAddresses are processed
Record and display the ending time of the sweep

utcknd = gmtime()
utc=strftime("%a, %d %b %Y %X +0000", utcEnd)
results.AppendText("\nPing Sweep Ended: "+utc+ "\n\n")

#Clear the Status Bar
mainWin.StatusBar.SetStatusText (")

return

End Scan Event Handler

#

Program Exit Event Handler

#This is executed when the user presses the exit button
The program is terminated using the sys.exit() method

#

def programExit(event):
sys.exit()

End Program Exit Event Handler

1
Setup the Application Windows
#
This section of code sets up the GUI environment

#

Instantiate a wx.App()objet
app =wx.App()

define themainwindow including the sizeand title

mainWin =wx.Frame(None, title="Simple Ping (ICMP) Sweeper 1.0", size

=(1000,600))

j#define the action panel, this is the area where the buttons and spinners

f#fare located

panelAction =wx.Panel(mainWin)

222

CHAPTER 8 Network Forensics: Part |

define action buttons

I'mcreating two buttons, one for Scan and one for Exit

Notice that each button contains the name of the function that will

handle the buttonpressevent -- pingScanand ProgramiExit respectively

scanButton =wx.Button(panelAction, Tabel='Scan")
scanButton.Bind(wx.EVT_BUTTON, pingScan)

exitButton =wx.Button(panelAction, Tabel="Exit")
exitButton.Bind(wx.EVT_BUTTON, programExit)

define a Text Area where I candisplay results

Results =wx.TextCtrl(panelAction, style =wx.TE_MULTILINE | wx.
HSCROLL)

Base Network for Class C IP Addresses have 3 components

For class C addresses, the first 3 octets (24 bits) define the network
#e.g.,127.0.0

#the Tast octet (8 bits) defines the host i.e., 0-255

Thus I setup 3 spincontrols one for each of the 3 network octets

#1alsoset thedefaultvalue to127.0.0 for convenience

ipaRange =wx.SpinCtrl(panelAction, -1,")
ipaRange.SetRange(0, 255)
ipaRange.SetValue(127)

ipbRange =wx.SpinCtrl(panelAction, -1, ™)
ipbRange.SetRange(0, 255)

ipbRange.SetValue(0)

ipcRange =wx.SpinCtrl(panelAction, -1,")
ipcRange.SetRange(0, 255)

ipcRange.SetValue(0)

Also, I'madding a 1abel for the user

ipLabel =wx.StaticText(panelAction, Tabel="IP Base: ")

Next, I want toprovide the user with the ability to set the host range
J# they wish to scan. Range is 0 - 255

hostStart =wx.SpinCtrl(panelAction, -1, ")
hostStart.SetRange(0, 255)
hostStart.SetValue(1l)

hostEnd =wx.SpinCtrl(panelAction, -1,")

Captain Ramius: Re-verify Our Range to Target... One Ping Only 223

hostEnd.SetRange(0, 255)
hostEnd.SetValue(10)

HostStartlLabel =wx.StaticText(panelAction, Tabel="Host Start: ")
HostEndLabel =wx.StaticText(panelAction, label="Host End: ")

Now I create BoxSizer to automatically align the different components
#neatly within the panel

f# First, I create a horizontal Box

I'madding the buttons, ip Range and Host Spin Controls

actionBox =wx.BoxSizer()
actionBox.Add(scanButton, proportion=1, flag=wx.LEFT, border=5)
actionBox.Add(exitButton, proportion=0, flag=wx.LEFT, border=5)

actionBox.Add(ipLabel, proportion=0, flag=wx.LEFT, border=5)

actionBox.Add(ipaRange, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(ipbRange, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(ipcRange, proportion=0, flag=wx.LEFT, border=5)

actionBox.Add(HostStartLabel, proportion=0, flag=wx.LEFT|wx.CENTER,
border=5)
actionBox.Add(hostStart, proportion=0, flag=wx.LEFT, border=5)

actionBox.Add(HostEndLabel, proportion=0, flag=wx.LEFT|wx.CENTER,
border=5)
actionBox.Add(hostEnd, proportion=0, flag=wx.LEFT, border=5)

Next I create aVertical Box that I place the Horizontal Box Inside
#AlTong with the results text area

vertBox =wx.BoxSizer(wx.VERTICAL)

vertBox.Add(actionBox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vertBox.Add(results, proportion=1, flag=wx.EXPAND | wx.LEFT | wx.
BOTTOM | wx.RIGHT, border=5)

I'madding a status bar to the main windows to display status messages

mainWin.CreateStatusBar()

#Finally, I use the SetSizer function to automatically size the windows
based on the definitions above

panelAction.SetSizer(vertBox)

224 CHAPTER 8 Network Forensics: Part |

#Display the main window
mainWin.Show()

Enter the Applications Main Loop
Awaiting User Actions

app.MainLoop()

Ping Sweep execution

Figure 8.7 provides a summary of two executions of the Ping Sweep program. In the
first run, the base IP address 127.0.0. is utilized and hosts 1-5 are selected and the
results are displayed. In the second run I chose my local network 192.168.0. base
address and I scanned hosts 1-7 and the results of each ping is recorded. For both
runs when any host responds, the time (or delay) is also reported.

In Figure 8.8, I purposely misconfigured the Host Selection to be invalid (the
starting Host is greater than the ending Host number). As expected the dialog box
with the error is reported. You can examine the code that displays this dialog box
in the pingScan event handler.

) Simple Ping (ICMP) Sweeper 1.0

Scan Exit IP Base: | 192 -/ |168 =L < HostStart: |1 > HostEnd: |7 =

Ping Sweep Started: Mon, 02 Dec 2013 03:41:04 AM +0000

127.0.01 Response Success Response Time: 0.000406980514526 Seconds
127.0.0.2 Response Success Response Time: 0.000326156616211 Seconds
127.0.0.3 Response Success Response Time: 0.000308990478516 Seconds
127.0.0.4 Response Success Response Time: 0.000303983688354 Seconds
127.0.0.5 Response Success Response Time: 0.000296115875244 Seconds

Ping Sweep Ended: Mon, 02 Dec 2013 03:41:04 AM +0000

Ping Sweep Started: Mon, 02 Dec 2013 03:41:31 AM +0000

192.168.0.1 Response Success Response Time: 0.00824904441833 Seconds
192.168.0.2 Response Timeout

192.168.0.3 Response Timeout

192.168.0.4 Response Success Response Time: 0.0729711055756 Seconds
192.168.0.5 Response Timeout

192.168.0.6 Response Timeout

192.168.0.7 Response Success Response Time: 0.0160558223724 Seconds

Ping Sweep Ended: Mon, 02 Dec 2013 03:41:39 AM +0000

FIGURE 8.7
Ping Sweep execution.

Figure 8.7

Port Scanning 225

i—i Invalid Local Host Selection

OK |

FIGURE 8.8
Error handling for misconfigured host range.

As you can see most of the work is related to setting up the GUI application, and creating the
list of IP addresses to scan. Once that is completed, the code that leverages the ping.py mod-
ule to perform the ping and retrieve the results is only one line of code. Send one and only
one ping.

J# Performthe Ping
delay =ping.do_one(ipAddress, timeout=2)

One of the things to keep in mind when performing a Ping Sweep to identify end-
points is to run the scan often as endpoints that are unavailable, are shutdown or have
failed may not be available the first time you scan. I will provide you with a challenge
problem in the summary questions to improve this application to cover this issue.

PORT SCANNING

Once I have identified endpoints within our network, the next step is to perform a port
scan. What exactly is a port scan, or more specifically a TCP/IP port scan?
Computers that support communication protocols utilize ports in order to make con-
nections to other parties. In order to support different conversations with multiple
parties, ports are used to distinguish various communications. For example, web
servers can use the Hypertext Transfer Protocol (HTTP) to provide access to a
web page which utilizes TCP port number 80 by default. The Simple Mail Transfer
Protocol or SMTP uses port 25 to send or transmit mail messages. For each unique IP
address, a protocol port number is identified by a 16-bit number, commonly known
as the port number 0-65,535. The combination of a port number and IP address pro-
vides a complete address for communication. The parties that are communicating
will each have an IP address and port number. Depending on the direction of the com-
munication both a source and destination address (IP address and port combination)
are required.
Ports are divided into three basic categories as in Table 8.1.

Figure 8.8

226 CHAPTER 8 Network Forensics: Part |

Table 8.1 Categories of Network Ports

Category Port Range Usage

Well- 0-1023 These ports are used by system processes that
known provide network services that are widely used
ports

Registered 1024-49,151 Registration is managed by the Internet Corporation
ports for Assigned Names and Numbers (ICANN). Or,

more specifically, by Internet Assigned Numbers
Authority (IANA) which is now operated by ICANN.

[ICANN]
Dynamic 49,152-65,535 The ports are typically ephemeral in nature (or short-
ports lived). The ports are allocated automatically from a

predefined range by the operating system as
needed. On servers these ports are used to continue
communication connections with clients that
originally connected to well-known ports such as the
File Transfer Protocol or FTP

Examples of well-known ports

Some well-known ports that you may be familiar with are given in Table 8.2 (note
that this is just a sample of the list).

Examples of registered ports

A short example of registered ports that you may be familiar with are in Table 8.3
(Note that this is just a sample of the list.)
To develop the simplest Port Scanner in Python, I need to know just a few things:

(1) What IP address to target?

(2) What port range should I scan?

(3) Whether I should display all the results or should I only display the
ports that were found to be open. In other words ports that I could
successfully connect to.

Figure 8.9 depicts the GUI for our simple Port Scanner. The GUI allows the user to
specify the IP address to scan along with the port range. The GUI also includes a
checkbox that allows the user to specify whether all the results or only the successful
results are displayed.

I have provided detailed documentation in line with the program so you can walk
through the program reading the comments for clarity. Figure 8.10 depicts the launch
of the startup Port Scanner GUI. As you can see in Figure 8.10, I launched the pro-
gram from the command line with administrative privilege. This is necessary as
administrator privilege is required to perform the port scan network operations.

Port Scanning 227

Table 8.2 Examples of Well-known Ports

Port Transport

Service Name Number Protocol Description

echo 7 tcp Echo

echo 7 udp Echo

ftp 21 tcp File Transfer [Control]

ftp 21 udp File Transfer [Control]

ssh 22 tcp The Secure Shell (SSH)
Protocol

ssh 22 udp The Secure Shell (SSH)
Protocol

telnet 23 tcp Telnet

telnet 23 udp Telnet

smtp 25 tcp Simple Mail Transfer

smtp 25 udp Simple Mail Transfer

nameserver 42 tcp Host Name Server

nameserver 42 udp Host Name Server

http 80 tcp World Wide Web HTTP

http 80 udp World Wide Web HTTP

nntp 119 tcp Network News Transfer
Protocol

nntp 119 udp Network News Transfer
Protocol

ntp 123 tcp Network Time Protocol

ntp 123 udp Network Time Protocol

netbios-ns 137 tcp NETBIOS Name Service

netbios-ns 137 udp NETBIOS Name Service

snmp 161 tcp SNMP

snmp 161 udp SNMP

Table 8.3 Examples of Registered Ports

Service Port Transport

Name Number Protocol Description

nlogin 758 tcp nlogin service

nlogin 758 udp nlogin service

telnets 992 tcp telnet protocol over TLS/SSL

telnets 992 udp telnet protocol over TLS/SSL

pop3s 995 tcp pop3 protocol over TLS/SSL (was

spop3)
pop3s 995 udp pop3 protocol over TLS/SSL (was

spop3)

228 CHAPTER 8 Network Forensics: Part |

simple Port Scanner

& DisplayAll | Scan Exit | 1P Address: [127 = zlo @l *| Port start: |1 : port End: (1025

FIGURE 8.9
Port Scanner GUI.

chet@PythonForensics: ~/Desktop/Python Samples/Network Samples

lchet@PythonForensics:~/Desktop/Python Samples/Network Sampless sudo python portscanner.py
[sudo] password for chet:

FIGURE 8.10
Port Scanner program launch.

Before diving into the code take a look at the overall layout of the program. I rec-
ommend that you start by examining the “Setup the Application Windows” section a
couple pages down in the code. Then, I would move back to the beginning of the code
and examine the portScan event handler starting with “def portScan(event)”:

As you can see most of the work is related to setting up the GUI application and setting up the
list of host ports to scan. Once that is done, the code that actually scans each port and checks
the result is only a few lines as shown here.

open a socket
reqSocket = socket (AF_INET, SOCK_STREAM)

Try Connecting to the specified IP, Port

response = reqSocket.connect_ex((baselP, port))

Figure 8.9
Figure 8.10

Port Scanning 229

#
Python Port Scanner

#

import wxversion
wxversion.select("2.8")

import wx # Import the GUI module wx
import sys # Import the standard 1ibrary module sys
import ping # Import the ICMP Ping Module

fromsocket import * # Import the standard 1ibrary module socket
fromtime import gmtime, strftime # import time functions
#
Event Handler for the portScan Button Press
1
def portScan(event):
#First, Ineedtocheckthat thestartingportis<=endingportvalue

if portEnd.GetValue() < portStart.GetValue():

#This is an improper setting
Notify the user and return

dlg =wx.MessageDialog(mainWin,"Invalid Host Port Selection",
"Confirm", wx.0K | wx.ICON_EXCLAMATION)

result =dlg.ShowModal()
dlg.Destroy()
return

Update the Status Bar

mainWin.StatusBar.SetStatusText ('Executing Port Scan Please
Wait")

Record the Start Time
utcStart =gmtime()

utc=strftime("%a, %d %b %Y %ZX +0000", utcStart)
results.AppendText("\n\nPort Scan Started: "+ utc+ "\n\n")

#Build the base IP Address String
Extract data from the ip Range and host name user selections
#Build a Python List of IP Addresses to Sweep

230 CHAPTER 8 Network Forensics: Part |

baseIP =str(ipaRange.GetValue())+
".“+str(ipbRange.GetValue())+
"."+str(ipcRange.GetValue())+
"."+str(ipdRange.GetValue())

J# For the IP Addresses Specified, Scan the Ports Specified
for port in range(portStart.GetValue(), portEnd.GetValue()+1):
try:

Report the IP Address to the Window Status Bar
mainWin.StatusBar.SetStatusText('Scanning: '+ baselP+'
Port: +str(port))

open a socket
reqSocket = socket (AF_INET, SOCK_STREAM)

Try Connecting to the specified IP, Port

response = reqSocket.connect_ex((baselP, port))

#if we receive a proper response fromthe port
then display the results received

if(response==0) :
#Display the ipAddress and Port
results.AppendText(baselP+\t'+tstr(port)+\t')
results.AppendText('‘Open")
results.AppendText("\n")

else:

#if the result failed, only display the result

#when the user has selected the "Display A11" check box

if displayAll.GetValue() == True:
results.AppendText(baselP+\t+str(port)+\t")
results.AppendText('Closed")
results.AppendText("\n")

#Close the socket
reqSocket.close()

except socket.error, e:
for socket Errors Report the offending IP
results.AppendText(baselP+\t+str(port)+\t")
results.AppendText(‘Failed: ")
results.AppendText(e.message)
results.AppendText("\n")

Port Scanning 231

Record and display the ending time of the sweep
utcknd = gmtime()

utc=strftime("%a, %d %b %Y %X +0000", utcEnd)
results.AppendText("\nPort Scan Ended: "+utc+ "\n\n)"

Clear the Status Bar
mainWin.StatusBar.SetStatusText (")

End Scan Event Handler

1
Program Exit Event Handler
1

def programExit(event):
sys.exit()

End Program Exit Event Handler

#
Setup the Application Windows
#

app =wx.App()

define window
mainWin =wx.Frame(None, title="Simple Port Scanner", size
=(1200,600))

jtdefine the action panel

panelAction =wx.Panel(mainWin)

ffdefine action buttons

I'mcreating two buttons, one for Scan and one for Exit

Notice that each button contains the name of the function that will

handle the button press event. Port Scan and ProgramExit respectively

displayAll =wx.CheckBox(panelAction, -1, 'Display A11", (10, 10))
displayAll.SetValue(True)

scanButton =wx.Button(panelAction, Tabel='Scan")
scanButton.Bind(wx.EVT_BUTTON, portScan)

exitButton =wx.Button(panelAction, Tabel="Exit")
exitButton.Bind(wx.EVT_BUTTON, programExit)

232 CHAPTER 8 Network Forensics: Part |

define a Text Area where I candisplay results

results =wx.TextCtrl(panelAction, style =wx.TE_MULTILINE | wx.
HSCROLL)

Base Network for Class C IP Addresses has 3 components
#For class Caddresses, the first 3octets define thenetworki.e127.0.0
#the Tast 8 bits define the host i.e. 0-255

Thus I setup 3 spincontrols one for each of the 4 network octets
#1also, set thedefaultvalueto 127.0.0.0 for convenience

ipaRange =wx.SpinCtrl(panelAction, -1,")
ipaRange.SetRange(0, 255)
ipaRange.SetValue(127)

ipbRange =wx.SpinCtrl(panelAction, -1,")
ipbRange.SetRange(0, 255)
ipbRange.SetValue(0)

ipcRange =wx.SpinCtrl(panelAction, -1,")
ipcRange.SetRange(0, 255)
ipcRange.SetValue(0)

ipdRange =wx.SpinCtrl(panelAction, -1,")
ipdRange.SetRange(0, 255)
ipdRange.SetValue(1l)

Add a 1abel for clarity
iplLabel =wx.StaticText(panelAction, Tabel="IP Address: ")

Next, I want toprovide the user with the ability to set the port range
they wish to scan. Maximumis 20 - 1025

portStart =wx.SpinCtri(panelAction, -1,")
portStart.SetRange(l, 1025)
portStart.SetValue(l)

portEnd =wx.SpinCtrl(panelAction, -1, ")
portkEnd.SetRange(1, 1025)
portEnd.SetValue(5)

PortStartlLabel =wx.StaticText(panelAction, Tabel="Port Start: ")
PortEndLabel =wx.StaticText(panelAction, Tabel="Port End: ")

Now I create BoxSizer to automatically align the different components
neatly

Port Scanning 233

f#First, I create a horizontal Box
I'madding the buttons, ip Range and Host Spin Controls

actionBox =wx.BoxSizer()

actionBox.Add(displayAll, proportion=0, flag=wx.LEFT|wx.CENTER,
border=5)

actionBox.Add(scanButton, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(exitButton, proportion=0, flag=wx.LEFT, border=5)

actionBox.Add(ipLabel, proportion=0, flag=wx.LEFT|wx.CENTER,
border=5)

actionBox.Add(ipaRange, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(ipbRange, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(ipcRange, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(ipdRange, proportion=0, flag=wx.LEFT, border=5)

actionBox.Add(PortStartlLabel, proportion=0, flag=wx.LEFT|wx.CENTER,
border=5)

actionBox.Add(portStart, proportion=0, flag=wx.LEFT, border=5)
actionBox.Add(PortEndLabel, proportion=0, flag=wx.LEFT|wx.CENTER,
border=5)

actionBox.Add(portEnd, proportion=0, flag=wx.LEFT, border=5)

Next I create a Vertical Box that I place the Horizontal Box components
#insidealongwith the results text area

vertBox =wx.BoxSizer(wx.VERTICAL)

vertBox.Add(actionBox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vertBox.Add(results, proportion=1, flag=wx.EXPAND | wx.LEFT | wx.
BOTTOM | wx.RIGHT, border=5)

I'madding a menu and status bar to the main window

mainWin.CreateStatusBar()

Finally, T use the SetSizer function to automatically size the windows
based on the definitions above

panelAction.SetSizer(vertBox)
#Display themain window

mainWin.Show()

234 CHAPTER 8 Network Forensics: Part |

Enter the Applications Main Loop
Awaiting User Actions

app.MainLoop

Now that you have reviewed the code, Figures 8.11 and 8.12 depict program exe-
cution. The only difference between the two figures is the setting of the Display All
checkbox.

simple Port Scanner

& DisplayAll | Scan Exit | 1P Address: 127 z/lo o =210 2| portstart: [1 *| Part End: 1025 H

Port Scan Started: Sun, 01 Dec 2013 04:16:21 PM +0000

127.0.0.1 1 Closed
127.00.1 2 Closed
127001 3 Closed
127.0.0.1 4 Closed
127.00.1 5 Closed
127.00.1 6 Closed
127001 7 Closed
127.00.1 8 Closed

127.0.0.1 § Closed
127.0.0.1 10 Closed
127.0.0.1 11 Closed
127.0.0.1 12 Closed
127.0.0.1 13 Closed
127.0.0.1 14 Closed
127.00.1 15 Closed
127.00.1 16 Closed
127.0.0.1 17 Closed
127.0.0.1 18 Closed
127.0.0.1 19 Closed
127.0.0.1 20 Closed
127.0.0.1 21 Closed
127.00.1 22 Closed
127001 23 Closed
127.0.0.1 24 Closed
127.0.0.1 25 Closed
127.0.0.1 26 Closed
127.0.0.1 27 closed

FIGURE 8.11
Port Scanner execution with Display All selected.

simple Port Scanner

DisplayAll | Scan Fxit | IPAddress: [127 t[o 310 30 : Portstart: |1 *| Port End: [1025 3

Port Scan Started: Sun, 01 Dec 2013 04:18:52 PM +0000

127.0.0.1 53 Open
127.0.0.1 631 Open

Port Scan Ended: Sun, 01 Dec 2013 04:18:54 PM +0000

FIGURE 8.12
Port Scanner execution with Display NOT selected.

Figure 8.11
Figure 8.12

Additional Resources 235

CHAPTER REVIEW

In this chapter, I first introduced the concept of digital investigation of a network.
Then I walked through the fundamentals required to perform basic synchronous net-
work socket operations within Python. I created three programs: (1) Server and (2)
Client in order to demonstrate how connections are made. Next, I discussed the con-
cept of a ping sweep and the value it can bring to network-based investigations. I then
created a basic ping sweeper application. This application employed two third-party
modules: wxPython and ping.py. wxPython was used to create a simple GUI appli-
cation to control ping sweep operations. Finally, I developed a port scanning appli-
cation again using a GUI, and created the application entirely in Python.

In Chapter 9 “Network Investigation Part II,” I will expand the Port Scan appli-
cation to provide examples of OS fingerprinting and provide an example of passive
monitoring to identify host and port usage.

SUMMARY QUESTIONS

1. What are the investigative benefits that can be obtained when performing a
ping sweep?
2. What are the investigative benefits that can be obtained when performing a
port scan?
3. Modify the ping sweep application to save the results of the sweep in a
Python list.
4. Modify the ping sweep application and add additional scanning options. For
example:
a. Program the scan to automatically and repeatedly run at predefined intervals
to identify a broader range of endpoints. Keep track of the IPs identified
in the list (or you might choose a set for this operation, why would a Python set
be beneficial?).
b. Create a stealth mode that randomly pings the hosts within the specified
address range over a multiday time period.
5. Modify the port scan application to expand the range of allowed ports.
6. Integrate the port scan and ping sweep applications in such a way that port scans
will be executed automatically against hosts responding to a ping and ignore
nonresponding hosts.

Additional Resources

Internet Corporation for Assigned Numbers and Names, http://www.icann.org/.

The Hunt for Red October, http://www.tomclancy.com/book_display.php?isbnl3=
9780425240335.

Python Ping Module, https://pypi.Python.org/pypi/ping.

wxPython GUI environment, www.wxPython.org.

http://www.icann.org/
http://www.tomclancy.com/book_display.php?isbn13=9780425240335
http://www.tomclancy.com/book_display.php?isbn13=9780425240335
https://pypi.Python.org/pypi/ping
http://www.wxPython.org

This page intentionally left blank

CHAPTER

Network Forensics: Part |

CHAPTER CONTENTS

INEFOAUCHION ... e e e e e e e an e e smn e e mn e e s nmnmn e nnnnnnns 237
o 1o L(= Y (111 N 238
Raw Sockets in PYthON ... mne e mnne s 240
What is Promiscuous Mode or Monitor Mode?ccouueiiiiiiiiiiiiiinneeeeciiiinnn 240
Setting Promiscuous Mode Ubuntu 12.04 LTS Examplecccccveeevnnann. 240
Raw Sockets in Python Under LiNUXoovviiiiiiiicieece e 241
Unpacking BUTfersoou i 242
Python Silent Network Mapping Toolcccceiimiiiiirccire e e 247
PSNMT SOUICE COUEccerrirreeerriismnrissmn s i ssns s s s smn s an s s ann e e mnn s 249
PSNME.PY SOUICE COUE .vvuiieiiiiiiiiiie ettt e 249
decoder.py SOUICE COAR ..vvuuniiiiii et e e e aanes 253
COMMEANAPAISEI.PY iiiiiitiei et e e e e e e e e e e e e et e e et e aaneeannas 256
classLogging.py Source Codeocvvniiiniiiiiiii e e 257
csvHandler.py SoUrCe COOEiiiiuiiiiiiieiiiie e e e 258
Program Execution and QUEPULccoieomiiimiesi e 259
FOrENSIC LO ittt e eaa e 260
TCP Capture EXAmPIEeeeeei it e e 260
UDP Capture EXAmPIEceuuiiieiiiiiiie et 261
CSV File OUtpUt EXAMPIE oivieiiiii e 261
Chapter REVIBWciccceeiiiiceieccseer s ssce s ssee s s s e e s s snse s s ssme s s sme e s e mne s s smne e e e mn e e sennnn 262
Summary Question/Challengeccoocceieiirrrnrnir e 262
Additional RESOUICEScooiceeeieieiirrrseeerissneersssmreesssne s sssme e s s s sms e e s s sanessssnnnesssmnesanen 263
INTRODUCTION

As we discovered in Chapter 8, Python has a rich set of Standard Library capabilities
to perform network interface, discovery, and analysis. The Ping Sweep and Port Scan
applications are quite straightforward once you become familiar with the underlying
libraries and modules. However, interactive scanning and probing has several impor-
tant limitations:

Python Forensics 2 3 7

© 2014 Elsevier Inc. All rights reserved.

238

CHAPTER 9 Network Forensics: Part Il

1. In order for the sweeps and scans to be effective, the targets (hosts, routers,
switches printers, servers) need to be powered on and functional in order to
interact with them.

2. The environment that you are working in must be tolerant to these types of
“noisy” scanning activity. Actually, most intrusion prevention systems (IPS) are
precisely looking for this type of activity and will categorize them as attacks and
respond accordingly, unless they are configured to ignore them. This is more
difficult to accomplish than you might think, and most cyber-security folks are
not inclined to make configuration changes to their IPS.

3. Port scans are only effective when services owning these ports respond to the
probes, as we would expect. Malicious services that we may be searching for do
not necessarily play nice and would not respond to these novice inquiries.

4. Many of the malicious services utilize the User Datagram Protocol (UDP) when
communicating with their handlers and can operate silently when being probed
by vulnerability assessment technologies.

5. Finally, the operators of critical infrastructure environments are unlikely to allow
active scanning and probing of those networks, because in many cases the
probing activity may disrupt operations and crash systems. If this were to happen
in a supervisory control and data acquisition environment, these disruptions or
system crashes could shut the lights off for thousands of customers or worse.

PACKET SNIFFING

Network (or packet) sniffing is another method that can be used, and when used prop-
erly can provide insight. Network sniffing, again if done well, can provide three critical
benefits over port scanning:

1. The sniffer is completely silent and will not place a single packet on the
network ensuring zero impact on network operations.

2. The sniffer is an observer that can run for hours, days, weeks, months, or even
continuously collecting information that will more completely describe activities
of local hosts, servers, network devices, or even rogue devices that were
previously undetected.

3. Finally, it can capture activities that are stealthy and only occur periodically
or sporadically.

In the primitive form, a packet sniffer (also referred to a network sniffer) captures all of
the packets of data that pass through a given network interface. In order to capture these
packets, your network interface must be in Promiscuous Mode and the interface needs
to be connected to a port that has visibility to all of the packets. For example, if you are
interested in a specific subnet, you would connect the sniffer to a switch or hub on that
subnet. Most modern switches today support port mirroring via a Switched Port ANa-
lyzer (SPAN) or Remote Switched Port ANalyzer as shown in Figures 9.1 and 9.2.
These ports are typically connected to IPS, network monitoring devices or perfor-
mance measurement devices that can detect network loading.

Packet Sniffing 239

Monitoring PC

FIGURE 9.1
SPAN port diagram.

Protocol Analyzer Network IDS

| NETWORK

g 2 = z £ = E g

E - 2 g B = -]

- E & E e =z -
& &] b = ®

FIGURE 9.2
SPAN port connections.

Figure 9.1
Figure 9.2

240 CHAPTER 9 Network Forensics: Part I

SPAN ports are most commonly attributed to Cisco (where they were originally referred to as
port mirroring). Modern switches can be configured to mirror specific network ports to
a common interface used for network monitoring and interface with a variety of security
appliances.

RAW SOCKETS IN PYTHON

In order to perform packet sniffing in Python, we need the following:

1. We must be using a network interface card (NIC) that has the ability to operate in
Promiscuous Mode.

2. On most modern operating systems—i.e., Windows, Linux, and Mac OS X—you
must also have administrator privilege.

3. Once we have accomplished 142, we can create a raw socket.

What is Promiscuous Mode or Monitor Mode?

When a capable NIC is placed in Promiscuous Mode, it allows the NIC to intercept
and read each arriving network packet in its entirety. If the NIC is not in Promiscuous
Mode, it will only receive packets that are specifically addressed to the NIC. Promis-
cuous Mode must be supported by the NIC and by the operating system and any asso-
ciated driver. Not all NICs support Promiscuous Mode, however it is pretty easy to
determine if you have a NIC and OS capable of Promiscuous Mode.

Setting Promiscuous Mode Ubuntu 12.04 LTS Example
On Linux you can place your NIC into Promiscuous Mode by using ifconfig com-
mand. (Note administrative rights are required.)

Command to enable Promiscuous Mode:

chet@PythonForensics:~$ sudo ifconfig ethO promisc

Next I validate the result:

(Notice the message UP BROADCAST RUNNING PROMISC MULTICAST
message.)

chet@PythonForensics:~$ sudo ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:8c:b7:6d:64

inet addr:192.168.0.25Bcast:192.168.0.255Mask:255.255.255.0
inet6 addr: fe80::21e:8cff:feb7:6d64/64 Scope:Link
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:43284 errors:0 dropped:0 overruns:0 frame:0
TX packets:11338 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:17659022 (17.6MB) TX bytes:1824060 (1.8 MB)

Raw Sockets in Python 241

Next I have turned off Promiscuous Mode and validate the result: You notice that
the message now states: UP BROADCAST RUNNING MULTICAST without the
PROMISC

chet@PythonForensics:~$ sudo ifconfig ethO -promisc
chet@PythonForensics:~$% sudo ifconfigethO
eth0 Link encap:Ethernet HWaddr 00:1e:8c:b7:6d:64

inet addr:192.168.0.25Bcast:192.168.0.255Mask:255.255.255.0
inet6 addr: fe80::21e:8cff:feb7:6d64/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:43381 errors:0 dropped:0 overruns:0 frame:0
TX packets:11350 errors:0dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:17668285 (17.6MB) TX bytes:1827000 (1.8 MB)

Once you have determined that you have a NIC capable of entering Promiscuous
Mode, we are ready to work with raw sockets in Python.

Raw sockets in Python under Linux

Special Note: I will be using a Linux environment throughout the rest of this chap-
ter. Since the code for handling raw sockets differs between operating systems, the
code that interfaces with the raw socket will need to be modified to support
Windows.

Creating a raw socket is quite straightforward in Python, as the script below dem-
onstrates. The script accomplishes the following:

(1) Enable Promiscuous Mode on the NIC

(2) Create a raw socket

(3) Capture the next TCP packet passing by the NIC
(4) Print the contents of the packet

(5) Disable Promiscuous Mode on the NIC

(6) Close the raw socket

Note: Script must be runwith adminprivledge
##import the socket and os Tibraries
import socket

import os

issue the command to place the adapter in promiscious mode
ret=os.system("ifconfigeth0 promisc)"

#1if the command was successful continue

242 CHAPTER 9 Network Forensics: Part I

ifret==0:

Create a Raw Socket in Linux

AF_INET specifies ipv4 packets

SOCK_RAW specifies a raw protocol at the network layer
J# TPPROTO_TCP specifies the protocol to capture

mySocket =socket.socket(socket.AF_INET, socket.SOCK_RAW,
socket.IPPROTO_TCP)

Receive the next packet up to 255 bytes
##Note this is a synchronous call andwill wait until
a packet is received

recvBuffer, addr=mySocket.recvfrom(255)
Print out the contents of the buffer

print recvBuffer
ret=os.system("ifconfig ethO -promisc)"

else:
#if the system command fails print out a message
print 'Promiscious Mode not Set'

The script will create output as shown in Figure 9.3. As you can see the output of
the packet contents appears quite cryptic.

Unpacking buffers

Extracting information from a buffer like this one may seem quite tedious, as
we must parse the pertinent information from the buffer. In order to deal with buff-
ered data like this one with a defined structured, Python provides the function unpack
(). Many examples and applications of unpack are available on the web that parse
various well-known data structures, however the explanation of how the functions
work are typically left to the reader’s imagination, or at least requires further
research.

For illustration, you will find examples on the web like this one to extract infor-
mation from an IPv4 header.

ipHeader =packet[0:20]
buffer=unpack('!BBHHHBBH4 s4 s', ipHeader)

E\000\0004 y@\0ooeE¥B2A \000\0ooMMN \000\000FNNRscr:EN2En,. A0 (T EMEEN\ 000k (\ 000\ 00 o FRNERHER
\000[&6\000[&€

FIGURE 9.3
Raw TCP/IP packet contents.

Figure 9.3

Raw Sockets in Python

As with all chapters in this book, I want to make sure that you deeply understand
how functions work, so that you can apply them to the challenge at hand, as well as to
other problems in the future. The unpack () function takes two parameters, the first is
a string that defines the format of the data held in the buffer and second is the buffer
that needs to be parsed. The function returns a tuple which can be processed just like
alist.

In order to figure this out, we must first study the structure of an IPv4
packet header as shown in Figure 9.4 and compare that with the format string
“IBBHHHBBH4 s4 s.”

Each of the characters of the format string have a specific meaning which governs
the processing of the unpack() function. If you get the format string wrong, then you
will get garbage back, or if the buffer you pass as the second variable does not con-
form to the exact format you specify, the results will be incorrect.

Let us examine the meaning of each of the characters in the format string
“IBBHHHBBH4 s4 s.” Note: other format specifications exist and are documented
within the Standard Library documentation [UNPACK]:

Format Python Type Bytes
! Big Endian

B Integer 1

H Integer

S String

IPv4 Header Format
Offsets Bytes 0 1 2 3
1111|111 {1{1{1{1f(2|2]|2|2{2]|2|2|2|2]|2|3|3
ot it OL 12134518 T 18|° | o|1|2|3|4|s|6|7]8|elo|1]|2]|3]|4]5]|6|7|8|o]0]n
E
0 0 Version IHL DSCP (&3 Total Length
N
4 32 Identification Flags Fragment Offset
8 64 Time To Live Protocol Header Checksum
12 96 Source IP Address
16 128 Destination IP Address
20 160
Options (if IHL > 5)
FIGURE 9.4

Typical IPv4 packet header.

243

Figure 9.4

-
244

CHAPTER 9 Network Forensics: Part Il

The first character in the format string represents the byte order of the data, for net-
work packets this is in big endian format. This is represented as the exclamation point
that is the first character in the format specification. You could also use the “>”
greater than sign which also means big endian, but the explanation point is there
for those of us who can never remember the typical byte order of network data. Actu-
ally, it is good to use the exclamation point because this immediately identifies the
format string as relating to a network packet.

The table below provides a mapping of each of the format characters related to the
IPv4 header.

" IBBHHHBBH4 s4 s"

Size Mapping to
Format (Bytes) IPv4 Definition
B 1 Version and 4-bit version field (this will be 4, for IPv4)
IHL 4-bit Internet Header Length representing the
number of 32 bit words contained in the
header
B 1 DSCP and 7-bit Differentiated Services Code Point
ECN 1-bit Congestion Notification
H 2 Total length 16 bits defines the entire packet size
H 2 |dentification 16 bits identifier for a group of IP fragments
H 2 Flags and 3-bit fragmentation flag
fragment 13-bit fragment offset value
offset
B 1 Time to live 8-bit TTL value to prevent packet looping
(TTL)
B 1 Protocol 8-bit value identifying the protocol used in the
data portion of the packet
H 2 Header 16-bit checksum value for error detection
Checksum
value
4s 4 Source IP 4-byte source IP address
address
4s 4 Destination IP 4-byte destination IP address
address

Now that you understand the meaning of the format string and the basic unpack()
function. The following code will unpack an IPv4 header and then extract each of
the fields into variables for processing. I also included the code here to convert
the source and destination IP addresses into the human readable forms using the
built-in socket method.

#Funpack an IPv4 packet

#note the packet variable is a buffer returned from

Raw Sockets in Python 245

J#a socket.recvfrom() method that was illustrated in Figure 9.3.
ipHeaderTuple=unpack('!BBHHHBBH4s4s', packet)

Field Contents

verLen =ipHeaderTuplel[0] #Field 0: Version and Length
dscpECN =ipHeaderTuple[1] ## Field 1: DSCP and ECN
packetlLength=1pHeaderTuple[2] ## Field 2: Packet Length
packetlID =1ipHeaderTuple[3] # Field 3: Identification
flagFrag = ipHeaderTuplel4] #Field4: Flags/Frag Offset
timeTolLive =ipHeaderTuple[5] #Field5: Time to Live (TTL)
protocol =1ipHeaderTuple[6] # Field 6: Protocol Number
checkSum = 1ipHeaderTuplel[7] # Field 7: Header Checksum
sourcelP =ipHeaderTuple[8] # Field 8: Source IP

destIP =ipHeaderTuple[9] #Field9: Destination IP

Convert the sourcelP and destIP into a
standard dotted-quad string representation
#f for example '192.168.0.5"

sourceAddress=socket.inet_ntoa(sourcelP);
destAddress =socket.inet_ntoa(destIP);

Extract the version and header size, thiswill give
##us the offset to the data portion of the packet

version =verlen >>4 { get upper nibble version
length =verlLen & 0xOF #f get Tower nibble header length
ipHdrLength =1length* 44 calculate the hdr size inbytes
frag0ffset =flagFrag & OX1FFF #f get Tower 13 bits...
fragment =frag0ffset * 84 calculate start of fragment

Next, we would use the same process to extract fields from the data portion of the
packet, which in this case is the TCP header. You can determine the type of the data
portion of the packet by examining the protocol field. Figure 9.5 depicts a typical
TCP header and the format string “!HHLLBBHHH along with the unpack () function,
this can be used to extract the individual fields of the TCP header.

By using the results of the IPv4 header unpacking, we can
#strip the TCP Header from the original packet

Note the ipHdrlLength is the offset from the beginning of
the buffer. The standard Tength of a TCP packet is 20

bytes. For our purposes these 20 bytes contain the

the pertinent information we are Tooking for

stripTCPHeader =packet[ipHdrlLength:ipHdrlLength+20]

246

CHAPTER 9 Network Forensics: Part Il

TCP Header
Offset (Bytes| 0 1 2 3
Octet |BITS 0‘1‘2‘3‘4‘5‘6‘7 8‘9‘10‘11‘12‘13‘14‘15 16‘17‘18‘19‘20‘21‘22‘23 24‘25‘26‘27‘28‘29‘30‘31
0 0 Source port Destination port ‘
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
Reserved | N CIE|UIAIPIRIS]F
12 96 Data offset 000 s W|C|R|C[S|S|Y]|I Window Size
RIE|[G|K|H|T|[N[N
16 128 Checksum Urgent pointer (if URG set)
20 160 Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)

Typical TCP packet header.

unpack returns a tuple, for illustration I will extract

##each individual

values using the unpack() function

tcpHeaderBuffer=unpack(''HHLLBBHHH' , stripTCPHeader)

sourcePort =tcpHeaderBuffer[0]
destinationPort =tcpHeaderBuffer[1]
sequenceNumber =tcpHeaderBuffer[2]
acknowledgement =tcpHeaderBuffer[3]
dataOffsetandReserve =tcpHeaderBuffer[4]
tcpHeaderlength = (dataOffsetandReserve >>4) * 4
flags =tcpHeaderBuffer[5]
FIN =flags & 0x01

SYN = (flags >>1) & 0x01
RST = (flags >>2) & 0x01
PSH = (flags >>3) & 0x01
ACK = (flags >>4) & 0x01
URG = (flags >>5) & 0x01
ECE = (flags >>6) & 0x01
CWR = (flags >>7) & 0x01
windowSize =tcpHeaderBuffer[6]
tcpChecksum —=tcpHeaderBuffer[7]
urgentPointer =tcpHeaderBuffer[8]

Now that we have the basics under our belt, let us look at:

1. How to place our NIC into Promiscuous Mode
2. How to create a raw socket in Linux

3. How to unpack the packet to obtain the individual fields

Figure 9.5

Python Silent Network Mapping Tool 247

We are ready to build an application that can capture network packets and extract the
information that will allow us to monitor traffic.

PYTHON SILENT NETWORK MAPPING TOOL (PSNMT)

Now that we have the basics for sniffing a network packet, I need to parse the data
and extract the information I need. For this example, I am not interested in collecting
packets and simply printing the results, rather I want to achieve the following
objectives:

(1) Collect IP addresses that are active on the network I am monitoring. (I plan to
leave the monitor in place for a long period of time to capture network devices
that only turn on periodically or sporadically.)

(2) Collect IP addresses of remote computers that are interacting with my local
network. These could be web, mail, or a plethora of Cloud services.

(3) Collect service ports being used by local and/or remote computers. Specifically,
I am interested in “Well Defined Ports™: 0-1023 or “Registered Ports”:
1024-49151.

(4) Next I wish to report only unique entries. In other words, if the local host
192.168.0.5 is discovered and is found to be using host port 80, I only want to see
that unique entry once, not each time it is discovered.

(5) Finally, to limit the scope of the program, I want to collect only TCP or UDP
packets within an IPv4 environment. The program can be easily expanded to
handle other protocols and IPv6 in the future.

In order to meet the requirements stated above I only need to extract the following
fields from the headers:

(1) Protocol

(2) Source IP address

(3) Destination IP address
(4) Source port

(5) Destination port

Examining Figures 9.4 and 9.5, the Protocol field, along with the Source and
Destination IP addresses exist in the IPv4 header, while the Source and Destination
ports are in the TCP header. This means I will have to parse out both headers to obtain
the needed information. I have also included Figure 9.6 which depicts the UDP
header, which I also use to handle UDP packet extraction.

There are several technical issues that need to be addressed along with the high
level requirements:

(1) What type of data element should I use to store the information collected?
a. Tam going to use a simple list to hold the data collected from the packets and
append data to the lists for each packet received.

ipObservations=1[]

248

CHAPTER 9 Network Forensics: Part Il

UDP Header
Offsets| Bytes 0 1 2 3
Octet |[BITS| O 1| 2| 3| 4|5|6|7|8|9|10[11|12[13|14(15|16(17|18[19(20|21|22|23|24|25|26(27 (28|29 30|31
0 0 Source port Destination port
4 32 Length Checksum

FIGURE 9.6

Typical UDP packet header.

(2) Since the socket.recvfrom() method is synchronous, how will I signal when to
stop collection, and how will I limit the time of the collection activities?

a. I am going to use the Python Standard Library signal module and integrate
this into the collection loop. I set this up by first creating a class myTimeout
that will be raised by a handler when a specified time has expired. I then
integrate the myTimeout exception handler into the try/except handler of
the receive packet loop.

classmyTimeout(Exception):
pass

def handler(signum, frame):
print 'timeout received', signum
raisemyTimeout()

Set the signal handler
signal.signal(signal.SIGALRM, handler)

#F set the signal to expire inn seconds
signal.alarm(n)

try:
while True:
recvBuffer, addr=mySocket.recvfrom(65535)
src,dst=decoder.PacketExtractor(recvBuffer,\ False)
sourcelPObservations.append(src)

destinationIPObservations.append(dst)

except myTimeout:
pass

Figure 9.6

PSNMT Source Code 249

(3) How will I create only unique entries?

a. The code above will record every pair of source IP/Port and destination IP/
Port, with a result being an unsorted list and will contain duplicate entries. To
solve this problem, once the collection is complete, I will use a little
knowledge of Python data types to help here. Once collection is completed
(for the entire time frame), I first convert the 1ist into a set, this will
immediately collapse any duplicates (as this is a fundamental property of
sets). Then I will convert the set back to a list and then sort the list.

uniqueSrc=set(map(tuple, ipObservations))
finallist= 1ist(uniqueSrc)
finallist.sort()

(4) How should I output the results?
a. In order to provide a workable list, the program will generate a comma-
separated value (CSV) file that can then be further processed or examined in
a worksheet.

PSNMT SOURCE CODE

The source code is broken into the following five source files. Each of the files con-
tains detailed comments describing all aspects of the program. Figure 9.7 depicts the
WingIDE environment for this application.

Source Purpose

psnmt.py Main program setup and loop
decoder.py Decoder for raw packets
_commandparser.py Parser for the user command line
_csvHandler.py Handler for creating/writing csv file output
_classlLogging.py Class for handling forensic logging

psnmt.py source code

#

Python Passive Network Monitor and Mapping Tool

i

Import Standard Library Modules

import socket #network interface 1ibrary used for raw sockets
import signal # generation of interrupt signals i.e. timeout
import os #f operating system functions i.e. file I/o

import sys #systemlevel functions i.e. exit()

250

CHAPTER 9 Network Forensics: Part Il

File Edit Source Project Debug Tools Window Help

EoES XAOQ S ¢ |in asearch|E» Ee B0 [[F[R) » 21 m & 0

psnmt.py | _classLogging.py | _commandParserpy | _csvHandlerpy | _decoder.py |
< » [tbottom) fvx

1 =

2 ¢ Python Passive Network Monitor and Mapping Tool

o 4

4

5 4 Import Standard Library Modules

6 import socket # network interface library used for raw sockets

g import signal # generation of interrupt signals i.e. timeout

8 import os f operating cystem functions i.e. file I/o

9 import sys # system level functions i.e. exit()

10

11 & Import application specific Modules

12 import _decoder ¢ module to decode tcp and udp packets

13 import _commandParser # parse out command line args

14 import _csvHandler f output generation

15 from classlogging import _Foremsiclog # Logging operations

16

17 ¢ Process the Command Line Arguments

18 userArgs = _commandParser.ParseCommandLine()

13 2
| Search | Stack Data Exceptions | |+ Debug /0 | pythonshell | Messages | -
T lanore this excepl] @ @ @ Options | pebyg 10 (stdin, stdout, stderr) appears below Options

1P HEADER E|
Version: 4

Packet Length: 60 bytes
Header Length: 20 bytes

TTL: 43

Protocol: 6

Checksum: Oxc1d0

Source IP: 74.125.196.147

Destination TP: 192.168.0.25

" s o1

g Proj

| Indentation | Call Stack | Source Assistant | Pro

Y0 (EEEEEE

ject: PS-NMT.wpr [5 files /1 dirs]
-/Desktop/Chapter 9
 psnmt.py
_classLogging.py
_commandParser.py
_csvHandler.py
= decoder.py

Options

% Line 136 Col 17 -

FIGURE 9.7

WinglIDE environment for the PSNMT application.

Import application specific Modules

import decoder # module to decode tcp and udp packets
import _commandParser # parse out command 1ine args

import _csvHandler #output generation

from_classLogging import _ForensiclLog # Logging operations

Process the Command Line Arguments
userArgs=_commandParser.ParseCommandLine()

create a Tog object

logPath=o0s.path.join(userArgs.outPath,"Forensiclog.txt")

oLog=_ForensiclLog(logPath)

oLog.writelLog("INFO", "PS-NMT Started")

csvPath=os.path.join(userArgs.outPath,"ps-nmtResults.csv")

oCSV=_csvHandler._CSVWriter(csvPath)
Setup the protocol to capture

if userArgs.TCP:
PROTOCOL=socket.IPPROTO_TCP

elif userArgs.UDP:
PROTOCOL=socket.IPPROTO_UDP

Figure 9.7

PSNMT Source Code

else:
print 'Capture protocol not selected'
sys.exit()
Setup whether output should be verbose
if userArgs.verbose:
VERBOSE=True
else:

VERBOSE=False

#Calculate capture duration
captureDuration=userArgs.minutes * 60

Create timeout class to handle capture duration

class myTimeout(Exception):
pass

Create a signal handler that raises a timeout event
when the capture duration is reached

def handler(signum, frame):
print 'timeout received', signum
raisemyTimeout()
Enable Promiscious Mode on the NIC
ret=os.system("ifconfigethO promisc")

ifret==0:

oLog.writelLog("INFO", 'Promiscious Mode Enabled")
##create an INET, raw socket

AF_INET specifies ipvéd

SOCK_RAW specifies a rawprotocol at the network Tayer

IPPROTO_TCP or UDP Specifies the protocol to capture

try:
mySocket =socket.socket(socket.AF_INET, socket.SOCK_RAW,
PROTOCOL)
oLog.writelLog("INFO", 'Raw Socket Open")

except:

J#1if socket open fails
oLog.writelLog("ERROR", 'Raw Socket Open Failed")
del olLog
if VERBOSE:
print 'Error Opening Raw Socket'
sys.exit()

251

252 CHAPTER 9 Network Forensics: Part I

Set the signal handler to the duraton specified by the user

signal.signal(signal.SIGALRM, handler)
signal.alarm(captureDuration)

##createa list tohold the results from the packet capture
#I'monly interested in Protocol Source IP, Source Port, Destination
IP, Destination Port

ipObservations =[]

Begin receiving packets until duration is received
the inner while Toop will execute until the timeout

try:
while True:

J#Fattempt recieve (thiscallwillwait)
recvBuffer, addr=mySocket.recvfrom(255)

decode the received packet
content =decoder.PacketExtractor(recvBuffer, VERBOSE)

append the results to our Tist
ipObservations.append(content)

#writedetails to the forensic log file
oLog.writelLog('INFOQ', \
"RECV: "4-content[0]4+\
"SRC :'"4content[1]4+\
'DST :'4content[3])

except myTimeout:
pass

Once time has expired disable Promiscous Mode
ret=os.system("ifconfigethO -promisc")
oLog.writelLog("INFO", 'Promiscious Mode Diabled")

Close the Raw Socket
mySocket.close()
oLog.writeLog("INFO", 'Raw Socket Closed")

Create unique sorted Tist

uniqueSrc=set(map(tuple, ipObservations))
finallList=1ist(uniqueSrc)
finallist.sort()

PSNMT Source Code 253

#Write eachunique sorted packet to the csv file
for packet in finallist:
oCSV.writeCSVRow(packet)

oLog.writelLog('INFO', 'Program End")

#Close the Log and CSV objects
del olLog
del oCSV

else:
print 'Promiscious Mode not Set'

decoder.py source code

J# Packet Extractor / Decoder Module
#

import socket, sys
fromstruct import *

Constants
PROTOCOL_TCP=6
PROTOCOL_UDP=17

PacketExtractor

#

Purpose: Extracts fields from the IP, TCP and UDP Header

i

Input: packet: buffer fromsocket.recvfrom() method

i displaySwitch: True: Display the details, False omits
Output: result 1ist containing

it protocol, srcIP, srcPort, dstIP, dstPort
#

def PacketExtractor(packet, displaySwitch):

#Strip off the first 20 characters for the ip header
stripPacket =packet[0:20]

#now unpack them
ipHeaderTuple=unpack('!BBHHHBBH4s4s', stripPacket)

#funpack returns a tuple, for illustration I will extract
f# each individual values
#f Field Contents
verLen =ipHeaderTuple[0] #Field0: VersionandLength
dscpECN =ipHeaderTuple[1] # Field 1: DSCP and ECN

254

CHAPTER 9 Network Forensics: Part Il

packetlLength =ipHeaderTuple[2]
packetID =ipHeaderTuple[3]
flagFrag =1ipHeaderTuple[4]

timeTolive =1ipHeaderTuple[5]

protocol =1ipHeaderTuple[6]
checkSum =1ipHeaderTuplel[7]
sourcelP = ipHeaderTuple[8]
destIP =1ipHeaderTuple[9]

#Field 2: Packet Length
#Field 3: Identification
#Field4: FlagsandFragment
Offset

#Field5: Time to Live (TTL)
Field 6: Protocol Number
J# Field 7: Header Checksum
#Field 8: Source IP

#Field 9: Destination IP

f#Calculate / Convert extracted values

version =verlLen >>14

length =verlLen & OxO0F

ipHdrLength =1length*4

Upper Nibble is the version
Number

Lower Nibble represents the
size
##Calculate the header Tength in
bytes

covert the source and destination address to typical dotted

notation strings

sourceAddress =socket.inet_ntoa(sourcelP);
destinationAddress=socket.inet_ntoa(destIP);

if displaySwitch:

print’

print 'IP HEADER'
print’

print 'Version:

+str(version)

print 'Packet Length:"' 4 str(packetlLength) +"'bytes'
print 'Header Length:"' +str(ipHdrLength) -+'bytes'

print TTL:"'
print'Protocol:’

+str(timeTolLive)
+str(protocol)

print'Checksum: ' +hex(checkSum)

print 'Source IP:"'

+str(sourceAddress)

print 'Destination IP: '+ str(destinationAddress)

#

if protocol == PROTOCOL_TCP:

stripTCPHeader =packet[ipHdrLength:ipHdrLength+20]

#unpack returns a tuple, for illustration I will extract
#each individual values using the unpack() function

tcpHeaderBuffer =unpack("'HHLLBBHHH', stripTCPHeader)

PSNMT Source Code 255

sourcePort =tcpHeaderBuffer[0]
destinationPort =tcpHeaderBuffer[1]
sequenceNumber =tcpHeaderBuffer[2]
acknowledgement =tcpHeaderBuffer[3]
dataOffsetandReserve=tcpHeaderBuffer[4]
tcpHeaderlength = (dataOffsetandReserve >>4) * 4
tcpChecksum =tcpHeaderBuffer[7]

if displaySwitch:
print
print 'TCP Header'
print’

print 'Source Port: '+str(sourcePort)

print 'Destination Port : '+str(destinationPort)

print 'Sequence Number : '4str(sequenceNumber)

print'Acknowledgement : '+4str(acknowledgement)

print 'TCP Header Length: '+ str(tcpHeaderLength) +
'bytes

print 'TCP Checksum: '"4++hex(tcpChecksum)

print

return(['TCP', sourceAddress, sourcePort, destinationAddress,
destinationPort])

elif protocol == PROTOCOL_UDP:
stripUDPHeader =packet[ipHdrlLength:ipHdrLength+8]

#unpack returns a tuple, for illustration I will extract
J#each individual values using the unpack() function

udpHeaderBuffer=unpack('!HHHH' , stripUDPHeader)

sourcePort =udpHeaderBuffer[0]
destinationPort=udpHeaderBuffer[1]
udplLength =udpHeaderBuffer[2]
udpChecksum =udpHeaderBuffer[3]

if displaySwitch:
print
print 'UDP Header'
print'___

print 'Source Port: '+str(sourcePort)
print 'Destination Port : "+ str(destinationPort)
print 'UDP Length: '+ str(udplLength) +'bytes'

256 CHAPTER 9 Network Forensics: Part I

print 'UDP Checksum: '+ hex(udpChecksum)
print

return(['UDP', sourceAddress, sourcePort, destinationAddress,
destinationPort])

else:
For expansion protocol support

if displaySwitch:
print 'Found Protocol : "4 str(protocol)

return(['Unsupported',sourceAddress,0, \ destinationAddress,0])

commandParser.py
#
PSNMT Argument Parser
1
import argparse #PythonStandardLibrary - Parser for command-1ine
options, arguments
import os J# Standard Library 0S functions

Name: ParseCommand() Function

1

J# Desc: Process and Validate the command 1ine arguments

use Python Standard Library module argparse

1

Input: none

i

Actions:

i Uses the Standard Library argparse toprocess the command Tine
i

def ParseCommandLine():
parser=argparse.ArgumentParser('PS-NMT")

parser.add_argument('-v', '--verbose', help="Display packet
details", action='store_true')

setup a group where the selection is mutually exclusive and

required.
group=nparser.add_mutually_exclusive_group(required=True)
group.add_argument('--TCP', help="TCP Packet Capture',

action='store_true")

PSNMT Source Code 257

group.add_argument('--UDP', help="UDP Packet Capture',
action='store_true")
parser.add_argument('-m', '--minutes', help='CaptureDurationinmin-
utes',type=int)

parser.add_argument('-p', '--outPath', type=ValidateDirectory,

required=True, help="0utput Directory")
theArgs=parser.parse_args()

return theArgs

End Parse Command Line

def ValidateDirectory(theDir):

#Validate the path is adirectory
ifnot os.path.isdir(theDir):
raise argparse.ArgumentTypeError('Directory does not exist")

f#Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raise argparse.ArgumentTypeError('Directory is not writable')
#End ValidateDirectory

classLogging.py source code
import logging

#

#Class: _Forensiclog

#

Desc: Handles Forensic Logging Operations

it

Methods constructor: Initializes the Logger

i writelog: Writes a record to the Tog

i destructor: Writesmessage and shutsdown the Togger

class _ForensiclLog:

def __init__(self, TogName):

try:
J# Turn on Logging
logging.basicConfig(filename=1ogName,level =1o0gging.
DEBUG, format='%(asctime)s %(message)s")

except:
print "Forensic Log Initialization Failure...Aborting"
exit(0)

258 CHAPTER 9 Network Forensics: Part I

def writeLog(self, TogType, TogMessage):

if TogType =="INFO":
logging.info(logMessage)
elif TogType == "ERROR":

logging.error(logMessage)
elif logType == "WARNING":

logging.warning(logMessage)
else:

logging.error(logMessage)
return

def __del__(self):
logging.info("Logging Shutdown")
logging.shutdown()

csvHandler.py source code
import csv #Python Standard Library - for csv files

1

#Class: _CSVWriter

1

Desc: Handles all methods related to comma separated value operations
1

Methods constructor: Initializes the CSV File

i writeCVSRow: Writes a single row to thecsv file

i writerClose: Closes the CSV File

class _CSVWriter:

def __init__(self, fileName):

try:
J#createawriter object and thenwrite the header row
self.csvFile=open(fileName, 'wb")
self.writer=csv.writer(self.csvFile, delimiter=",",
quoting=csv.QUOTE_ALL)
self.writer.writerow((‘Protocol','Source IP', 'Source Port',
'Destination IP', 'Destination Port'))

except:
log.error('CSV File Failure")

def writeCSVRow(self, row):

self.writer.writerow((row[0], row[1], str(row[2]), row
[3]1, str(row[4]1)))

def __del__(self):
self.csvFile.close()

Program Execution and Output 259

PROGRAM EXECUTION AND OUTPUT

As you can see, the psnmt Python application is constructed as a command line
application. This makes sense for this type of application because it is likely to be
executed as a cron job (scheduled to run at certain times for example).

The command line has the following parameters:

Parameter Purpose and Usage

-V Verbose: Writes intermediate results to standard output when specified
-m Minutes: Duration in minutes to perform collection activities

-TCP | -UDP Protocol: Defines the application protocol to capture

-p Produces: Defines the output directory for the forensic log and csv file

Example command line:
sudo Python psnmt -v -TCP -m 60 -p /home/chet/Desktop

Note: sudo (is used to force the execution of the command with administrative
rights, which is required). This command will capture TCP packets for 60 min, pro-
duce verbose output and create a log and csv file on the user’s desktop.

Figures 9.8 and 9.9 show sample executions for both TCP and UDP captures.

These runs created both csv and forensic log files and entries.

chet@PythonForensics: ~/Desktop/Chapter 9
chet@PythonForensics:~/Desktop/Chapter 9% sudo python ps-nmt.py -v -m 2 --TCP -p fhome/chet/Desktop/Chapter) 9

IP HEADER

Version: 4

Packet Length: 60 bytes
Header Length: 20 bytes

TTL: 43

Protocol: 6

Checksum: 0x5227

Source IP: 74.125.196.147

Destination IP: 192.168.0.25

TCP Header

source Port: 443
Destination Port : 56652
Sequence Number : 621577023
Acknowledgement : 2310411757
TCP Header Length: 40 bytes
TCP Checksum: 0x6d8c

IP HEADER

Version: 4

Packet Length: 68 bytes
Header Length: 20 bytes

TTL: 43

Protocol: 6

Checksum: oxfof3

Source IP: 74.125.196.147

Destination IP: 192.168.0.25

TCP Header

Source Port: 443
Destination Port : 56653
Sequence Number : 1824497575
Acknowledgement : 1049873182
TCP Header Length: 40 bytes
TCP Checksum: 0x6d67

FIGURE 9.8
psnmt TCP sample run.

Figure 9.8

260 CHAPTER 9 Network Forensics: Part I

chet@PythonForensics: ~/Desktop/Chapter 9

chet@PythonForensics:-/Desktop/Chapter 95 sudo python psnmt.py -v -m 2 --UDP -p '/home/chet/Desktop/Chapter 9'
IP HEADER
Version: L]

Packet Length: 61 bytes
Header Length: 20 bytes

TTL: 64
Protocol: g
Checksum: ox98fe
Source IP: 127.0.0.1

Destination IP: 127.0.0.1

UDP Header

Source Port: 52309
Destination Port : 53

upbP Length: 41 bytes
UDP Checksum: oxfedc
IP HEADER

Version: 4

Packet Length: 121 bytes
Header Length: 20 bytes
58

TTL:

Protocol: 17

Checksum: 0x86T7

Source IP: 66.153.128.98

Destination IP: 192.168.0.25

UDP Header

Source Port: 53
Destination Port : 23992
UDP Length: 101 bytes
UDP Checksum: 0x474f

IP HEADER

psnmt UDP sample run.

Forensic log
TCP capture example

2014-01-1911:29:51,050 PS-NMT Started
2014-01-1911:29:51,057 Promiscious Mode Enabled
2014-01-1911:29:51,057 Raw Socket Open

2014-01-1911:29:55,525 RECV: TCP SRC : 173.194.45.79DST : 192.168.0.25
2014-01-1911:29:55,526 RECV: TCP SRC : 173.194.45.79DST : 192.168.0.25
2014-01-1911:29:56,236 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:29:56,270RECV: TCPSRC : 74.125.196.147DST :192.168.0.25
2014-01-1911:29:56,270RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:29:56,271 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:29:56,527 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:29:56,543 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:29:56,544 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:29:56,546 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:30:37,437 RECV: TCPSRC : 66.153.250.240DST : 192.168.0.25
2014-01-1911:30:37,449 RECV: TCPSRC : 66.153.250.240DST :192.168.0.25
2014-01-1911:30:54,546 RECV: TCP SRC : 173.194.45.79DST : 192.168.0.25
2014-01-1911:30:55,454 RECV: TCPSRC : 74.125.196.147DST : 192.168.0.25
2014-01-1911:31:35,487 RECV: TCPSRC : 66.153.250.240DST :192.168.0.25

2014-01-1911:31:51,063 Promiscious Mode Diabled

Figure 9.9

Program Execution and Output

2014-01-1911:31:51,064 Raw Socket Closed
2014-01-1911:31:51,064 Program End
2014-01-1911:31:51,064 Logging Shutdown

27
27
27
27
36:
36:
36:
36:
37
37:
37:
37:

UDP capture example

2014-01-1913:
2014-01-19 13:
2014-01-1913:
2014-01-1913:
2014-01-19 13:
2014-01-1913:
2014-01-1913:
2014-01-19 13:
2014-01-1913:
2014-01-1913:
2014-01-19 13:
2014-01-1913:

:09,366 PS-NMT Started

:09,371 Promiscious Mode Enabled
:09,372 Raw Socket Open

009,528 Logging Shutdown

33,472 PS-NMT Started

33,477 Promiscious Mode Enabled
33,477 Raw Socket Open

45,234 Logging Shutdown

:51,748 PS-NMT Started

51,754 Promiscious Mode Enabled
51,754 Raw Socket Open
59,534 RECV:

UDP SRC : 127.0.0.1 DST : 127.0.0.1

2014-01-1913:37:
2014-01-19 13:37:
2014-01-1913:37:

2014-01-1913:38:
2014-01-1913:38:
2014-01-1913:38:

2014-01-1913:39:
2014-01-19 13:39:
2014-01-1913:39:

59,546 RECV:
59,546 RECV:
59,549 RECV:
2014-01-1913:38:09,724 RECV:
2014-01-1913:38:09,879 RECV:
2014-01-1913:38:09,880 RECV:
10,387 RECV:
10,551 RECV:
10,551 RECV:
2014-01-1913:38:45,114 RECV:
2014-01-1913:38:46,112 RECV:
2014-01-1913:39:45,410 RECV:
51,760 Promiscious Mode Diabled
51,761 Raw Socket Closed

51,761 Program End

UDP SRC :

UDP SRC :

UDP SRC :

UDP SRC :

UDP SRC :

UDP SRC :
UDP SRC :

UDP SRC :

UDP SRC :

UDP SRC :
UDP SRC :
UDP SRC :

66.153.128.98DST : 192.168.

127.0.0.1DST : 127.0.0.1

66.153.162.98DST : 192.168.

127.0.0.1DST : 127.0.0.1

66.153.128.98 DST : 192.168.

127.0.0.1DST : 127.0.0.1
127.0.0.1DST : 127.0.0.1

66.153.128.98 DST : 192.168.

127.0.0.1DST : 127.0.0.1

66.153.128.98DST : 192.168.
66.153.128.98 DST : 192.168.
66.153.128.98DST : 192.168.

2014-01-1913:39:51,761 Logging Shutdown

CSV file output example

.25

.25

.25

.25

.25
.25
.25

Figures 9.10 and 9.11 depict a sample output of the CSV file created by PSNMT.

A B D E
1 Protocol SourcelP Source Port Destination IP Destination Port
2 |TCP 127.0.0.1 36480 127.0.0.1 54792
3 |TCP 127.0.0.1 54792 127.0.0.1 36480
4 |TCP 66.153.25(443 192.168.0.25 35027
5 |TCP 74.125.191 443 192.168.0.25 56580
6 |TCP 74.125.191 443 192.168.0.25 56581
FIGURE 9.10

261

Sample TCP output file shown in Excel.

Figure 9.10

262

CHAPTER 9 Network Forensics: Part Il

A B C D E

1 |Protocol Source P Source Port Destination IP Destination Port

2 |UDP 127.0.0.1 53 127.0.0.1 35633
3 upp 127.0.0.1 53 127.0.0.1 51420
4 |UDP 127.0.0.1 53|127.0.0.1 52309
5 |uDP 127.0.0.1 35633 127.0.0.1 53
6 'UDP 127.0.0.1 51420 127.0.0.1 53
7 'UDP 127.0.0.1 52309 127.0.0.1 53
8 |UDP 66.153.12¢ 53 192.168.0.25 11303
9 |UDP 66.153.12¢ 53 192.168.0.25 23992
10 |UDP 66.153.12¢ 53 192.168.0.25 35021
11 |UDP 66.153.12¢ 53 192.168.0.25 43421
12 |UDP 66.153.12¢ 53 192.168.0.25 56857
13 |UDP 66.153.12¢ 53 192.168.0.25 58487
14 |UDP 66.153.16: 53 192.168.0.25 23992

FIGURE 9.11

Sample UDP output file shown in Excel.

CHAPTER REVIEW

In this chapter, I introduced the raw sockets and how they can be utilized to capture
network packets. In order to do so, I explained the Promiscuous Mode of modern
network adapters and demonstrated how to configure a NIC for this operation. I also
discussed the importance of network sniffing in order to more thoroughly map and
monitor network activities. I used the unpack () function to extract each field from
the IPv4, TCP and UDP packets and described in detail, how to apply this to buffered
data. Finally, I created an application that collects and records either TCP or UDP
traffic isolating unique Source IP, Source Port, Destination IP, and Destination Port
combinations. This Python application can be controlled through command line
arguments in order to easily integrate with cron jobs or other scheduling mecha-
nisms. As part of the command line, I used a signaling mechanism to stop packet
collection after a specified time period has expired.

SUMMARY QUESTION/CHALLENGE

I decided to pose only one question in this chapter, more of a challenge problem actu-
ally that will take the PSNMT application to the next level:

1. In order to make this current application more useful, the translation of port
numbers into well-known services is necessary in order to determine the likely
use or uses of each IP address that we extracted from the captured packets. Using
the reserved and well-known port usage maps provided and defined by the
Internet Engineering Task Force [IETF], (or by reading /etc/services) expand the

Figure 9.11

Additional Resources 263

PSNMT application to isolate each local IP address and list the services that they
are likely running on each. When possible, attempt to broadly classify the
operating system behind each IP address through the examination of port usage
(at least classify each IP as Windows, Linux, or other).

Additional Resources

http://docs.Python.org/2/library/struct.html?highlight = unpack#struct.unpack.
http://www.ietf.org/assignments/service-names-port-numbers/service-names-port-numbers.
txt.

http://docs.Python.org/2/library/struct.html?highlight
http://www.ietf.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.ietf.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

This page intentionally left blank

CHAPTER

Multiprocessing for
Forensics

CHAPTER CONTENTS

INEFOAUCHION ... e e e e e e e an e e smn e e mn e e s nmnmn e nnnnnnns 265
What is MUltiproCesSing? ... cccoeceiiiiiiicccrccir i s e cre e e s e s ssss s e e e e e s smmmn e e e e e s s nnn 266
Python Multiprocessing SUPPOIcocccceeiiiiie et men e e e s mnnees 266
Simplest Multiprocessing EXamplecccccreeeicminccenncccer e sscssee s ssee e s sme e essnnes 269
Single Core File Search SolUtionc.coiiiiiiiiiiiii e 270
Multiprocessing File Search Solutionccociiiiiiiii e 270
Multiprocessing File Hash ...t cseee e mne e e mnne s 272
Single Core SOIULION ..iiiiui e 272
MUILI-COre SOIULION A oeeeiii e e e 274
MUIti-COre SOIUTION B ..ooviiiiiiiii e e e 277
Multiprocessing Hash Table GENerationccccceecerressersssseessssserssssnesssssnesssssneens 279
Single Core Password Generator Codeooviiiiiiiiiiiiiiiieii e e 280
Multi-core Password GENEratorcoceiieiiiiiiiiii i e e e 283
Multi-core Password Generator Codeccoiiiiiiiiiiiiiiieiiiiieeiiin e e 283
Chapter REVIEWcoceiiiiiiccie s s s s s s e e 288
Summary Question/ChallENEEccecerreicmerrrssrrrsssseersssreresssme e ssssnne s ssssnesssssmsensssnns 288
Additional RESOUICEScoeieveerrrrsrrrsssnnrrissnerssssmressssnessssneessssnsesssssnessssnssssssnnesanss 288

INTRODUCTION

As the footprint of digital evidence and digital crime widens, our ability to perform
examinations in a timely fashion is clearly strained. According to DFI News “The
backlog of caseloads from law enforcement agencies has grown from weeks to
months worldwide. Digital forensic specialists cannot be trained fast enough and
the number of specialists required to analyze the mountains of digital evidence in
common crimes is simply beyond budget constraints” (DFI, 2013). Many digital
investigation tools today are single threaded, meaning that the software can only exe-
cute one command at a time. These tools were invariably originally developed before
multi-core processors were commonplace. In this chapter, I introduce the multi-
processing capabilities of Python that relate to some common forensic challenges.
In Chapter 11, I will transfer these applications to the cloud and demonstrate how
to increase performance by expanding access to additional cores and allowing
forensic operations to be performed on a cloud platform.

Python Forensics 2 6 5

© 2014 Elsevier Inc. All rights reserved.

266 CHAPTER 10 Multiprocessing for Forensics

WHAT IS MULTIPROCESSING?

Simply stated multiprocessing is the simultaneous execution of a program on two
or more central processing units (CPUs) or cores. In order to provide significant
performance improvements, the developer of forensic applications must define areas
of the code that have the following characteristics:

(1) The code is processor-intensive.

(2) It is possible to break the code apart into separate processing threads that can
execute in parallel.

(3) The processing between threads can be load-balanced. In other words, the goal is
to distribute processing such that each of the threads complete at approximately
the same time.

As you may already surmise, the problem with general purpose forensic tools is this:
if they were not engineered to meet the objectives above from the start, adapting
them to modern multi-core architectures may prove to be difficult. In addition,
licensing of such technologies to run simultaneously on multi-cores or in the cloud
may be cost-prohibitive. Finally, many of the most commonly used forensic tools
operate within the Windows environment which is not ideally suited to run simulta-
neously on thousands of cores.

PYTHON MULTIPROCESSING SUPPORT

The Python Standard Library includes the package “multiprocessing” (Python mul-
tiprocessing module). Using the Python Standard Library for multiprocessing is a
great place to begin multiprocessing and will ensure compatibility across a wide
range of computing platforms, including the cloud. We utilize the multiprocessing
package in typical fashion starting by importing the package multiprocessing.
After import of the package, I execute the help(multiprocessing) function to
reveal the details. I have eliminated some of the extraneous data produced by help,
and I have highlighted the functions and classes that I will be utilizing to develop a
couple of multiprocessing examples.

import multiprocessing
help(multiprocessing)

NOTE this isonly a partial excerpt fromthe output
of the Help command

Help on packagemultiprocessing:

NAME
multiprocessing

Python Multiprocessing Support 267

PACKAGE CONTENTS
connection
dummy (package)
forking
heap
managers
pool
process
queues
reduction
sharedctypes
synchronize
util

CLASSES
class Process(__builtin__.object)
| Processobjects representactivity that is runina separate
process

\

| Theclass isanalagous to'threading.Thread'
\
| Methods defined here:
\
\

__init__(self, group=None, target=None, name=None, args=(),
kwargs={})

__repr__(self)

is_alive(self)
Return whether process is alive

join(self, timeout=None)
Wait until child process terminates

run(self)
Method to be run in sub-process; can be overridden in
sub-class

start(self)
Start child process

terminate(self)
Terminate process; sends SIGTERM signal or uses
TerminateProcess()

FUNCTIONS
Array(typecode_or_type, size_or_initializer, **kwds)
Returns a synchronized shared array

268 CHAPTER 10 Multiprocessing for Forensics

BoundedSemaphore(value=1)
Returns a bounded semaphore object

Condition(lock=None)
Returns a condition object

Event()
Returns an event object

JoinableQueue(maxsize=0)
Returns a queue object

Lock()
Returns a non-recursive lock object

Manager()
Returns a manager associated with a running server process

The managers methods such as 'Lock()', 'Condition()' and 'Queue()
can be used to create shared objects.

Pipe(duplex=True)
Returns two connection object connected by a pipe

Pool(processes=None, initializer=None, initargs=(),
maxtasksperchild=None) Returns a process pool object

Queue(maxsize=0)
Returns a queue object

RLock ()
Returns a recursive Tock object

RawArray(typecode_or_type, size_or_initializer)
Returns a shared array

RawValue(typecode_or_type, *args)
Returns a shared object

Semaphore(value=1)
Returns a semaphore object

Value(typecode_or_type, *args, **kwds)
Returns a synchronized shared object

active_children()
Return Tist of process objects corresponding to 1ive child
processes

Simplest Multiprocessing Example 269

allow_connection_pickling()
Install support for sending connections and sockets between
processes

cpu_count()
Returns the number of CPUs in the system

current_process()
Return process object representing the current process

freeze_support()
Check whether this is a fake forked process ina frozen
executable. If so then run code specified by commandline
and exit.

VERSION
0.70al
AUTHOR
R. Oudkerk (r.m.oudkerk@gmail.com)

One of the first functions within the multiprocessing package you will be inter-
ested in is cpu_count(). Before you can distribute processing among multiple cores,
you need to know how many cores you have access to.

import multiprocessing
multiprocessing.cpu_count()

4

As you can see on my Windows laptop, I have four CPU cores to work with; it
would be a shame if my Python code only ran on one of those cores. Without apply-
ing the multiprocessing package and designing multi-core processing methods into
my algorithm, my Python code would run on exactly one core.

Let us move on to our first example of applying multiprocessing within a Python
program that has some forensic implication and relevance.

SIMPLEST MULTIPROCESSING EXAMPLE

In this first example I chose to develop the simplest multiprocessing example I could
think of that would maximize the use of the four cores I have on my laptop. The pro-
gram has a single function named SearchFile(), the function takes two parameters:
(1) a filename and (2) the string that I wish to search for in that file. I am using a
simple text file as my search target that contains a dictionary of words. The file is
170 MB in size which even on modern systems should create some I/O latency. I
provide two examples, first a program that does not employ multiprocessing and

270

CHAPTER 10 Multiprocessing for Forensics

simply makes four successive calls to the SearchFile function. The second example
creates four processes and distributes the processing evenly between the four cores.

Single core file search solution
Simple Files Search Single Core Processing

import time

def SearchFile(theFile, theString):

try:
fp =open(theFile,'r")
buffer = fp.read()
fp.close()
if theStringinbuffer:
print'File: "', theFile, 'String: ', \
theString, '\t', ' Found'
else:
print'File: ', theFile, 'String: "', \
theString, "\t', 'Not Found'
except:

print 'File processingerror'
startTime=time.time()

SearchFile('c:\\TESTDIR\\Dictionary.txt', 'thought")
SearchFile('c:\\TESTDIR\\Dictionary.txt', 'exile")

SearchFile('c:\\TESTDIR\\Dictionary.txt', 'xavier")
SearchFile('c:\\TESTDIR\\Dictionary.txt', '$S111b!")

elapsedTime =time.time() - startTime
print 'Duration: ', elapsedTime

#f Program Output

File: c:\TESTDIR\Dictionary.txt String: thought Found
File: c:\TESTDIR\Dictionary.txt String: exile Found
File: c:\TESTDIR\Dictionary.txt String: xavier Found
File: c:\TESTDIR\Dictionary.txt String: $S111b! Not Found
Duration: 4.3140001297 Seconds

Multiprocessing file search solution

The multiprocessing solution is depicted below and as you can see the performance is
substantially better even considering the file I/O aspects of opening, reading, and
closing the associated file each time.

Simplest Multiprocessing Example 271

#Simple Files SearchMultiProcessing

frommultiprocessing import Process
import time

def SearchFile(theFile, theString):

try:
fp =open(theFile,'r")
buffer = fp.read()
fp.close()
if theString in buffer:
print'File: ', theFile, 'String: "', theString,
\t', ' Found'
else:
print 'File: ', theFile, "String: ', theString,
\t', "Not Found
except:
print'File processingerror
#
Create Main Function
1
if _name__=="_main__":

startTime =time.time()

pl =Process(target=SearchFile,
\args=("c:\\TESTDIR\\Dictionary.txt', 'thought"))
pl.start()

p2 = Process(target=SearchFile, \
args=("c:\\TESTDIR\\Dictionary.txt', 'exile'))
p2.start()

p3 =Process(target=SearchFile, \
args=("c:\\TESTDIR\\Dictionary.txt', 'xavier'))
p3.start()

p4 =Process(target=SearchFile, \
args=('c:\\TESTDIR\\Dictionary.txt', '$S111b"))
p4.start()

Next we use the jointowait for all processes to complete

pl.join()
p2.join()

272 CHAPTER 10 Multiprocessing for Forensics

p3.
p4.

elapsedTime =time.time() - startTime
print'Duration:

join()
join()

, elapsedTime

Program Qutput

File:
File:
File:
File:

C
C
C
C

\TESTDIR\Dictionary.txt String:
:\TESTDIR\Dictionary.txt String:
:\TESTDIR\Dictionary.txt String:
:\TESTDIR\Dictionary.txt String:

Duration: 1.80399990082

thought
exile
xavier
$ST111b

Found
Found
Found
Not Found

MULTIPROCESSING FILE HASH

Certainly one of the most frequently used forensic tools is the one-way cryptographic
hash. As you already know Python includes a hashing library as part of the Standard
Library. As an experiment, I am going to perform a SHA512 Hash of four separate
instances of the same file using a nonmultiprocessing method. I will set up a timer as

well to calculate the elapsed time to perform the single-threaded approach.

Single core solution
#Single Threaded File Hasher

import hashlib
import os
import sys
import time

Create a constant for the Tocal directory

HASHDIR ="c:\\HASHTEST\\

#Create anempty Tist tohold the resulting hash results

results =1[1]

try:

0btain the 1ist of files in the HASHDIR

Mark the starting time of the main loop

1istOfFiles =o0s.1istdir(HASHDIR)

startTime =time.time()

for eachFile in 1istOfFiles:

Attempt File Open
fp = open(HASHDIR+eachFile, 'rb")

Multiprocessing File Hash

Then Read the contents into a buffer
fileContents = fp.read()

#Close the File
fp.close()

#Create a hasher object of type sha256
hasher = hashlib.sha256()

Hash the contents of the buffer
hasher.update(fileContents)

J# Store the results in the results 1ist
results.append([eachFile, hasher.hexdigest()])

J# delete the hasher object
del hasher

#0nceall the files have been hashed calculate
the elapsed time

elapsedTime =time.time() - startTime
except:
1f any exceptions occur notify the user and exit

print("File Processing Error')
sys.exit(0)

#Print out the results
Elapsed Time in Seconds and the Filename / Hash Results

print("fElapsed Time: ', elapsedTime)
for eachIteminresults:
print eachltem

Program Output
Note: Each File Processed is identical
#Witha Size: 249 MB

Elapsed Time: 27.8510000705719 Seconds

["image0.raw',
'41ad70ff71407eae7466eef403cb20100771ca’7499cbf1504f8ed67e6d869eb5b']
["imagel.raw',
'41ad70ff71407eae7466eef403chb20100771ca7499chbf1504f8ed67e6d869ebb']
["imageZ.raw',
'41ad70ff71407eae7466eef403chb20100771ca7499chbf1504f8ed67e6d869ebb']
["image3.raw',
'41ad70ff71407eae7466eef403cb20100771ca’7499cbf1504f8ed67e6d869ebb']

273

274

CHAPTER 10 Multiprocessing for Forensics

Multi-core solution A

Much of the art associated with multiprocessing is decomposing a problem into slices
that can run simultaneously across multiple cores. Once each of the individual slices
have completed, the results from each slice are merged into a final result. The biggest
mistake that is typically made is the lack of careful consideration of these two points.
Purchasing systems with multi-cores and then just running any solution on that multi-
core system does not necessarily buy you much over a single core solution.

Using our single solution as a baseline, I will create a multi-core solution that
leverages the four cores available on my laptop. For this first example, I will instan-
tiate the object Process, one for each core. When creating each Process object, I only
need to provide two parameters: (1) the target =which in this case is the name of the
function that will be called when the object.start() method is called. (2) the
args =which is the argument tuple to be passed to the function. In this example, only
one argument is passed, namely, the name of the file to hash. Once I have instantiated
an object, I execute the object.start() method to kick off each process. Finally, I
utilize the object. join() method for each object; this causes execution to be halted
in the main () process until the processes have completed. You can include a param-
eter with object.join() which is a timeout value for the process. For example
object.join(20) would allow the process 20 s to complete.

Multiprocessing File Hasher A

import hashlib

import os

import sys

import time

import multiprocessing

Create a constant for the Tocal directory
HASHDIR ="c:\\HASHTEST\\'

#

hashFile Function, designed for multiprocessing

i
Input: Full Pathname of the file to hash

#
#

def hashFile(fileName):
try:
fp =open(fileName, 'rb")

Then Read the contents into a buffer
fileContents = fp.read()

Multiprocessing File Hash

#Close the File
fp.close()

#Create a hasher object of type sha256
hasher = hashlib.sha256¢()

Hash the contents of the buffer
hasher.update(fileContents)

print(fileName, hasher.hexdigest())

Jf delete the hasher object
del hasher

except:

If any exceptions occur notify the user and exit
print('File Processing Error')
sys.exit(0)

return True

#

Create Main Function

#
if__name__=="'_main__":

#0btain the 1ist of files in the HASHDIR
1istOfFiles =o0s.1istdir(HASHDIR)

Mark the starting time of the main Toop
startTime =time.time()

create 4 sub-processes to do the work
one of each core in this test

Each Process contains:

#
#
#
#
#
#

Target function hashFile() it this example
Filename: picked fromthe Tist generated
by os.listdir()
once againan instance of the
249MB file is used

Next we start each of the processes

coreOne =multiprocessing.Process(target=hashFile,

args=(HASHDIR+1istOfFiles[0],))

275

276

CHAPTER 10 Multiprocessing for Forensics

coreOne.start()

coreTwo =multiprocessing.Process(target=hashFile,
args=(HASHDIR+1istOfFiles[1],))
coreTwo.start()

coreThree =multiprocessing.Process(target=hashFile,
args=(HASHDIR+1istOfFiles[2],))
coreThree.start()

coreFour =multiprocessing.Process(target=hashFile,
args=(HASHDIR+1istOfFiles[3],))
corefFour.start()

In this example, I was leveraging the knowledge of the hardware I was running
the application on in order to maximize the distribution of processing. The Python
multiprocessing library will automatically handle the distribution of the processes as
cores become available. Also, since I could determine the number of cores available
by using (multiprocessing.cpu_count()). I could have used that information to
manually distribute the processing as well.

Next we use join towait for all processes to complete

corelne.join()
coreTwo.join()
coreThree.join()
coreFour.join()

0nce all the processes have completed and files have been
hashed and results printed
#1calculate the elapsed time

elapsedTime =time.time() - startTime
print('Elapsed Time: ', elapsedTime)

ff Program Output
Note: Each File Processed is identical
#Witha Size: 249 MB

Cc:\\HASHTEST\\image2.raw 41ad70ff71407eae7466eef403ch20100771ca-
7499chf1504f8ed67e6d869e5b

c:\\HASHTEST\\imagel.raw 41ad70ff71407eae7466eef403ch20100771ca-
7499chf1504f8ed67e6d869e5b

c:\\HASHTEST\\image3.raw 41ad70ff71407eae7466eef403ch20100771ca-
7499chbf1504f8ed67e6d869e5b

c:\\HASHTEST\\imageO.raw 41ad70ff71407eae7466eef403¢ch20100771ca-
7499chf1504f8ed67e6d869e5b

Elapsed Time: 8.40999984741211 Seconds

Multiprocessing File Hash 277

As you can see by distributing the processing across the four cores produced the
desired results by significantly improving the performance of the hashing operations.

Multi-core solution B

Here is another option for distributing processing among multiple cores that yields a
small performance improvement over the multi-core solution A, and additionally
provides a much cleaner implementation when you are calling the same functions
with different parameters. This is a likely scenario if you consider that in your design
for forensic applications. Additionally, this solution only requires the use of a single
class: pool that can handle the entire multi-core processing operations in a single line
of code. I have highlighted the simplified implementation below.

Multiprocessing File Hasher B

import hashlib

import os

import sys

import time

import multiprocessing

Create a constant for the Tocal directory
HASHDIR ="c: \\HASHTEST\\'

#

hashFile Function, designed formultiprocessing

i
Input: Full Pathname of the file to hash

#
#

def hashFile(fileName):
try:
fp =open(fileName, 'rb")

Then Read the contents into a buffer
fileContents = fp.read()

#Close the File
fp.close()

J#Create a hasher object of type sha256
hasher = hashlib.sha256()

Hash the contents of the buffer
hasher.update(fileContents)

278 CHAPTER 10 Multiprocessing for Forensics

print(fileName, hasher.hexdigest())

J# delete the hasher object
del hasher

except:
1f any exceptions occur notify the user and exit
print('File Processing Error")
sys.exit(0)

return True

1

Create Main Function

1

if __name__=="'_main__":

0btainthe 1ist of files in the HASHDIR
1istOfFiles =o0s.1istdir(HASHDIR)

Mark the starting time of the main lToop
startTime =time.time()

#Create a process Pool with 4 processes mapping to
the 4 cores onmy laptop

corePool =multiprocessing.Pool(processes=4)

Map the corePool to the hashFile function

results = corePool.map(hashFile, (HASHDIR+T1istOfFiles[0],\
HASHDIR+1istOfFiles[1],\

HASHDIR+1istOfFiles[2],\
HASHDIR+1istOfFiles[3],))

#0nceall the files have been hashed and results printed
#1calculate the elapsed time
elapsedTime =time.time() - startTime
print('Elapsed Time: ', elapsedTime, 'Seconds')
Program Output
Note: Each File Processed is identical

#Witha Size: 249 MB

Elapsed Time: , 8.138000085830688, Seconds

Multiprocessing Hash Table Generation 279

c:\\HASHTEST\\imageO.raw, 41ad70ff71407eae7466eef403cb20100771ca-
7499chf1504f8ed67e6d869e5b
c:\\HASHTEST\\image2.raw, 41ad70ff71407eae7466eef403ch20100771ca-
7499chf1504f8ed67e6d869e5b
c:\\HASHTEST\\imagel.raw, 41ad70ff71407eae7466eef403ch20100771ca-
7499chf1504f8ed67e6d869e5b
c:\\HASHTEST\\image3.raw, 41ad70ff71407eae7466eef403cb20100771ca-
7499chbf1504f8ed67e6d869e5b

Reviewing the results of the three implementations we find the following:

Processing

Implementation time MB (s) Notes

Single core solution 27.851 35.76 Typical implementation today
processing each file in sequence

Multi-core solution A 8.409 118.44 Use of Process Class along
with start and join methods

Multi-core solution B 8.138 122.39 Use of Pool Class simplifying
implementation for common
function processing yielding
slightly better performance

MULTIPROCESSING HASH TABLE GENERATION

Rainbow Tables have been around for quite some time, providing a way to convert
known hash values into possible password equivalents. In other words, they provide a
way to lookup a hash value and associate that hash with a string that would generate
that hash. Since hash algorithms are one-way, for all practical purposes two strings of
characters will not generate the same hash value. They are highly collision-resistant.
Rainbow Tables are utilized to crack passwords to operating systems, protected doc-
uments, and network user logins.

In recent years, the process of salting hashes has made Rainbow Tables less effec-
tive as new tables would have to be generated as salt values are modified. These
tables work because each password is hashed using the same process. In other words,
two identical passwords would have the exact same hash value.

Today, this is prevented by randomizing hashed passwords, such that if two users
use the same password, the hash values would be different. This is typically accom-
plished by appending a random string called a salt to a password prior to hashing.

Password =“letMeIn”

Salt=‘&*6542Jk’

Combined Data to be Hashed: “&*6542JkletMeln”

The salt does not need to be kept confidential as the purpose is to thwart the appli-
cation of a rainbow or lookup table.

280

CHAPTER 10 Multiprocessing for Forensics

This means we need a fast way to generate more dynamic lookup tables. This is
where multiprocessing can assist. Python actually has unique language mechanisms
that support the generation of permutations and combinations built directly into the
language that assists the developer. I will be using the itertools Standard Library
(Python intertools module) to create the set of brute force passwords that I am look-
ing for. The itertools module implements a number of iteration-like building blocks
using a high-performance yet memory-optimized toolkit. Instead of having to
develop permutation, combinations or product-based algebras, the library provides

this for you.

First, I will create a simple Rainbow Table generator using a single core solution.

Single core password generator code

#Single Core Password Table Generator

import standard 1ibraries

import hashlib J# Hashing the results

import time #Timing the operation

import itertools # Creating controled combinations
i

Createa 1ist of lTower case, upper case, numbers
and special characters to include in the password table

#

lowerCase =["a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
upperCase = ['G', 'H", 'I", 'J', K", "L']
numbers = ['0', '1', '2', '3']

special =['I",'@, '#,'$']

combine to createa final 1ist

allCharacters =[]

allCharacters = lowerCase + upperCase + numbers + special
Define Directory Path for the password file

DIR="C:\\PW\\'

Define a hypothetical SALT value
SALT ="&45Bvx9"

Define the allowable range of password length
PW_LOW =2
PW_HIGH =6

Mark the start time
startTime =time.time()

Multiprocessing Hash Table Generation 281

#Create an empty 1ist tohold the final passwords
pwList =[]

#createaloop toinclude all passwords
#within the allowable range

for rinrange(PW_LOW, PW_HIGH):
#Apply the standard Tibrary interator
#The product interator will generate the cartesian product
for allCharacters repeating for the range of
PW_LOW to PW_HIGH
for sinitertools.product(allCharacters, repeat=r):
append each generated password to the
final 1ist
pwList.append(".join(s))

For each password in the 1ist generate
J#f generate a file containing the

hash, password pairs

one per line

try:
Open the output file
fp=open(DIR+all", 'w")

process each generated password

for pwinpwlList:
Performhashing of the password
md5Hash = hashlib.md5()
md5Hash.update (SALT+pw)
md5Digest = md5Hash.hexdigest()
Write the hash, password pair to the file
fp.write(md5Digest +'"+pw+"\n")
del md5Hash

except:
print'File Processing Error'
fp.close()

J#F Now create adictionary to hold the
Hash, password pairs for easy Tookup

pwDict = {}

try:
Open each of the output file
fp=open(DIR+all', 'r")
Process each 1ine in the file which

282 CHAPTER 10 Multiprocessing for Forensics

contains key, value pairs

for Tinein fp:
#F extract the key value pairs
and update the dictionary
pairs=Tine.split()
pwDict.update({pairs[0] : pairs[(11})

fp.close()

except:
print'File Handling Error
fp.close()

When complete calculate the elapsed time

elapsedTime =time.time() - startTime
print 'Elapsed Time: ', elapsedTime

print 'Passwords Generated: ', Ten(pwDict)
print

#printout a fewof thedictionary entries
##as an example

cnt =0
for key,value in (pwDict.items()):
print key, value
cnt+=1
if cnt > 10:
break;

print

Demonstrate the use of the Dictionary to Lookup a password using a
known hash
Lookup a Hash Value

pw =pwDict.get('c6f1d6bld33bcc787c2385¢c19c29c208")
print 'Hash Value Tested = c6f1d6b1d33bcc787c2385¢c19c29c208'
print'Associated Password="+ pw

ff Program OQutput

Elapsed Time: 89.117000103
Passwords Generated: 5399020

3e47ac3fbldaffdbedbab671c76b44fb K231H
a5a3614f49dal8486c900bd04675d7bc $@fL1
372da5744b1ab1f99376f8d726cd2b7¢c hGfdd
aa0865a47331df5de01296bbaaf4996a 21ILG

Multiprocessing Hash Table Generation

c6f1d6b1d33bcc787¢2385¢19¢c29¢208 #I14#$$
c3c4246114ee80e9c454603645c9a416 #$bsg
6ca0e4d8f183c6c8b0a032b09861c95a L1H21
fd86ec?2191f415cdb6c305dabe59eb7a HJIg@h
335ef773e663807eb21d100e06b8c53e a$HbH
dlbae7cd5ae09903886d413884e22628 ba2lH
a2ab3248ed641bbd22af9bf36b422321 GHcda

Hash Value Tested = 2bca9b23ebh8419728fdecal3345b344fc
Associated Password= #I#$$

As you can see the code is quite succinct and straightforward, it leverages the
itertools and hashing library to generate a brute force list. The result is a
reference-able list of over 5.3 million salted passwords in under 90 seconds.

Multi-core password generator

Now that I have created a successful model for generating password combinations
and created a dictionary with the resulting key/value pairs, I want to once again apply
multiprocessing in order to generate a scalable solution. As you can see from the sin-
gle core solution, it required just under 90 seconds to generate a little more than 5.3
million pairs. As we expand the number of characters to include in our generation and
expand the size of allowable passwords beyond 5, the number of combinations grows
exponentially. As I mentioned earlier, setting up an approach that lends itself to mul-
tiprocessing is the key. Now let us examine how well this actually scales by review-
ing the multi-core solution.

Multi-core password generator code

#Multi-Core Password Table Generator

import standard 1ibraries

import hashlib J## Hashing the results

import time # Timing the operation

import itertools #Creating controled combinations
import multiprocessing #Multiprocessing Library

#

#Createa list of Tower case, upper case, numbers
and special characters to include in the password table

#

lowerCase =["a", 'b', 'c', 'd", 'e', 'f', 'g", 'n']
upperCase = ['G', 'H', 'I", 'J', 'K', 'L']
numbers = ['0', '1', '2', '3']

special =['l", @, '#,'$"]

.
283

284 CHAPTER 10 Multiprocessing for Forensics

combine to createa final 1ist
allCharacters =[]
allCharacters = lowerCase + upperCase + numbers + special

Define Directory Path for the password files
DIR ="C:\\PW\\'

Define a hypothetical SALT value
SALT ="&45Bvx9"

Define the allowable range of password length

PW_LOW =2
PW_HIGH =6

def pwGenerator(size):
pwList =[]

create a Toop to include all passwords
##with a Tength of 3-5 characters

for r inrange(size, size+l):
#Apply the standard Tibrary interator
for s initertools.product(allCharacters, repeat=r):
append each generated password to the
#final 1ist
pwlList.append(".join(s))

J# For each password in the 1ist generate
#an associated md5 hash and utilize the
hash as the key

try:
Open the output file
fp =open(DIR+str(size), 'w")

#f process each generated password

for pw inpwlList:
Perform hashing of the password
md5Hash = hashlib.md5()
md5Hash.update (SALT+pw)
md5D0igest = md5Hash.hexdigest()
#Write the hash, password pair to the file
fp.write(md5Digest +"'"+ pw+"\n")
del md5Hash

Multiprocessing Hash Table Generation 285

except:
print'File Processing Error'

finally:
fp.close()
#
Create Main Function
1
if __name__=="'_main__":

Mark the starting time of the main lToop
startTime =time.time()

jicreate a process Pool with 4 processes
corePool =multiprocessing.Pool(processes=4)

f#fmap corePool to the Pool processes
results = corePool.map(pwGenerator, (2, 3,4, 5))

#Create a dictionary for easy Tookups
pwDict = {}

For each file

for i inrange(PW_LOW, PW_HIGH):
try:
Open each of the output files
fp=open(DIR+str(i), 'r")
Process each 1ine in the file which
contains key, value pairs
for linein fp:
extract the key value pairs
and update the dictionary
pairs=1ine.split()
pwDict.update({pairs[0] : pairs[1]})
fp.close()
except:
print'File Handling Error
fp.close()

#0nceall the files have been hashed
#1calculate the elapsed time

elapsedTime =time.time() - startTime
print'Elapsed Time: ', elapsedTime, 'Seconds'

286 CHAPTER 10 Multiprocessing for Forensics

#printout a fewof thedictionary entries
as an example
print 'Passwords Generated: ', Ten(pwDict)
print
cnt =0
for key,value in (pwDict.items()):

print key, value

cnt+=1

if cnt > 10:

break;

print

Demonstrate the use of the Dictionary to Lookup
a password using a known hash value

pw = pwDict.get('c6f1ld6bld33bcc787c2385¢c19c29c208")
print 'Hash Value Tested =\ 2bca9b23eb8419728fdeca3345b344fc'

print'Associated Password="+ pw
Program Qutput

Elapsed Time: 50.504999876 Seconds
Passwords Generated: 5399020

3e47ac3f5ldaffdbed6ab671c76b44fhb K231H
a5a36141f49dal8486c900bd04675d7bc $@fL1
372da5744b1ab1f99376f8d726cd2b7c hGfdd
aa0865a47331df5de01296bbaaf4996a 211LG
c6f1d6b1d33bcc787¢2385¢19¢29¢208 #I14#$$
c3c4246114ee80e9c454603645c9a416 #$bsg
6caled4d8f183c6c8b0a032b09861c95a L1H21
fd86ec2191f415cdb6c305dabe59eb7a HIg@h
335ef773e663807eb21d100e06b8c53e a$HbH
dlbae7cd5ae09903886d413884e22628 ba2lH
a2ab3248ed641bbd22af9bf36b422321 GHcda

Hash Value Tested = 2bca9b23ebh8419728fdecal3345b344fc
Associated Password=#I#$$

As expected, the multi-core approach improves the performance and the solution
is still straightforward and easily readable.

Reviewing the results of the single and multi-core implementations of the Rain-
bow Tables we find the following.

Multiprocessing Hash Table Generation 287

Implementation

Rainbow Processing Passwords
generator time (s) per second
Single core 89.11 ~B0K
solution

Multi-core solution 50.50 ~106 K

Notes

Typical implementation today
processing using a single core
Use of Pool Class simplifying
implementation

In addition to the performance results, the output of the generated key value pairs
(MDS5 hash and associated password are written to a file) and can be used later as
part of a larger repository. Since the outputs are simple text files as shown in

Figure 10.1 they are easily readable.

SALTED Password MD5 HASH

17ae80e34251ad4e2a61bc81d28b5a09
9e6e21b8664£1590323ecaae3447ebae
e708b3b343cfbcob0104c60597£££773
dceal2b90e71b523db8929cfo6d86e39d
70a3c3c78c79437dfc626f£f12605ccb3
41afc8d925b0b94996035b4ef25346ec
14b45c3a22caf6c2d5ed2e3daaelb2ee
3c4493267090a86303¢c1d30784b8£33b
5cbba376bbbl10688ece346cbfadb8c28
ffad7a79a%b2c646ef£440d1447el8ebe

ebaB8905561738d699d47bd6f62e3341c
13605b276258b214fdafccac0835fco67
0e3ad4e8aded5858c94997d9f593c4fa3
abab3dalcOcc7dc22d2ad4cfe6290alf?2
8f005cf0eadb2bf064da85e1b2405c00
60c797433e1£1££9175a93373cflaocff
e847612d8cab3184caaddl20c2l2afec
75ccl13015bd40e2a6dad609458bfbell

FIGURE 10.1

Associated Password
aa
ab
ac
ad
ae
af
ag
ah
aG
aH

eeg?2
eeg3
eeqg!
eeg
eegt
eeg$
eeha
eehb

Plaintext Rainbow Table output abridged.

Figure 10.1

288

CHAPTER 10 Multiprocessing for Forensics

CHAPTER REVIEW

In this chapter, I began the process of addressing multi-core processing using Python
by leveraging the cores already available on your laptop or desktop system. I intro-
duce a couple of different approaches to multiprocessing and provide an overview of
the Python Standard Library multiprocessing. I also examined two common dig-
ital investigation mainstay functions that can benefit from multiprocessing: (1) File
Hashing and (2) Rainbow Table generation.

In Chapter 11, I will demonstrate how you can take this approach into the cloud
and leverage cloud services that could offer 10, 50, 100, or even a 1000 cores to
expand the horizon of multiprocessing from the desktop to the cloud.

SUMMARY QUESTION/CHALLENGE

1. What other digital investigation or forensic applications do you believe could

benefit from multiprocessing?

What are some of the key elements when designing multiprocessing solutions?

3. What is the best defense today against Rainbow Table-based password attacks?

4. The Rainbow Table example is limited by resources and will fail when the
program runs out of memory. How would you modify the program such that it
could continue to generate password/hash combinations in the face of memory
limitations?

o

Additional Resources

http://www.net-security.org/article.php?id=1932&p=1.
http://docs.python.org/2/library/itertools.html#module-itertools.
http://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing.

http://www.net-security.org/article.php?id=1932&p=1
http://www.net-security.org/article.php?id=1932&p=1
http://www.net-security.org/article.php?id=1932&p=1
http://docs.python.org/2/library/itertools.html#module-itertools
http://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing

CHAPTER

Rainbow in the Cloud

CHAPTER CONTENTS

INEFOAUCHION ... e e e e e e e an e e smn e e mn e e s nmnmn e nnnnnnns 289
Putting the Cloud t0 WOIKecmiiiiccicccir i err e smss e e e mmse e e e e mmnnes 289
Cloud OPIONScoeeieiicceee e e s nr e e e e e s ssm s e e e e e e s s mmm e e e e e e s e s nnmnn e e e e e eeanan 290
Creating Rainbows in the Cloudcccooiiviriecciir e e 292

Single Core RAINDOWuuiiiiiiiiiiis e e 295

Multi-Core RaiNDOWceuiiiiiiii e e e 296
Password Generation CalCulationscccoccecimiresmernnssne s sen e 300
Chapter REVIEWcoiiiiiceccieie i ccceccre e s s mssr e e s s e s smmm s e e e e e s s smmm e e e e e e s s mmmnn e e e e s sennnn 302
Summary QUestion/Challengeccceecerrimrrsmrssrrrsrrsser e s ses s sne s smrssnnsnnns 303
Additional RESOUICESccceeeeeeririresirneererrresssssnnnrereeesssssnnnreseeesssssnnnnnseeesssssnnnnnseeesns 303
INTRODUCTION

One of the significant advantages of building applications in Python is the ability to deploy
applications on virtually any platform, including of course the cloud (see Figure 11.1).
This not only means that you can execute Python on cloud servers, but you can launch
them from any device you have handy, desktop, laptop, tablet, or smartphone.

PUTTING THE CLOUD TO WORK

In Chapter 10, I created a simple application that searches a dictionary for certain
words. I created a single core application and then one that leverages multiple cores.

As you can see in Figure 11.2, [have executed the two programs that perform the
simple dictionary search program. I executed them from my iPad with the application
running in the cloud. This code is unchanged from the version created in Chapter 10:

Sp.py is the single processing version
mp.py is the multiprocessing version

In Figure 11.3, I execute both the Simple Single Core and Multi-Core application from
my desktop browser. As you can see the Multi-Core runs a bit faster even though I am
only running the multiprocessing application on two-core cloud computers at Python
Anywhere.

Python Forensics 2 8 9

© 2014 Elsevier Inc. All rights reserved.

290 CHAPTER 11 Rainbow in the Cloud

mobile
8| smartphone

/I

notebook

database

FIGURE 11.1
Typical cloud configuration.

Note that in these examples I have not changed a line of code to execute the Python
code in the cloud. Since the code is executed by a standard Python interpreter and I
have used Python Standard Libraries the code just runs. If you utilize third-party librar-
ies then you will have to get those added to the cloud-based Python installations (this is
not impossible to do), but it is much easier if we stick with the Standard Library. I am
using the cloud service Python Anywhere or www.pythonanwhere.com as shown in
Figure 11.4. Python Anywhere is a terrific place to start experimenting with Python
applications in the cloud. Signup is free for a minimal account, giving you access
to a couple of cores and storage for your programs. I have a $12/month plan and this
gives me 500 GB of storage and 20,000 CPU seconds allowed per day. The seconds are
seconds of CPU time—so any time that any processor spends working on your code,
internally it is measured in nanoseconds. Most online cloud services reference
the Amazon definition of the CPU second which is: “the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon 64 bit processors.”

CLOUD OPTIONS

Many cloud options exist that allow access to as few as 2 and as many as 1000 cores
on which to execute. Table 11.1 provides an overview of just a few that you could
investigate further (note, some are ready to run Python code, others require you to set
up your own Python environment). In addition, some have a custom application
interface or application interface (API) that you must use for multiprocessing, while
others use a native approach.

http://www.pythonanwhere.com
Figure 11.1

ythonanywhere.com/user/sandwedge/con
Google Calendar Facebook LIBFB Lifein Balance Meetup Amazon Sandhills TSFL Square »
X Bash console 401805 : sandwedge : PythonAnywhere e |+
SO g
ey
5 anywhere \d feedback :
Bash console 401805 & Share with others
16:28 -

Found

Found
Not
mp.py
ht Found

Not Found

Found

Q w E R T Y u I OHP a

return

FIGURE 11.2

Cloud execution from iPad.

L Share with others

Found

hitps:/ o

upythonarywhere.com

FIGURE 11.3

Desktop execution of the simple and multiprocessing Python applications executing in
the cloud.

Figure 11.2
Figure 11.3

292 CHAPTER 11 Rainbow in the Cloud

e
s anywhere Send feedback Forums Help Blog Dashboard Account Log out

Consoles Files Web Schedule Databases

Start a new console:

Pyth 27128/ |Pythan 27126/ PyPy: 2 _1% used (286.49s of your 20,000 second CPU allowance)
¥thon: 33 (1.0.0): 33 L Allewance resets in 1 hour, 53 minutes

Other: Bash | MySQL

Your consoles:

Bash console 401843 - kill

FIGURE 11.4
Python Anywhere Home Page.

Table 11.1 A Few Python Cloud Options

Cloud Service URL Notes

[PythonAnywhere] pythonanywhere.com Runs native Python code for version
2.6,2.7,3.3
Figure 11.5

[PiCloud] picloud.com Runs native Python code, but

requires the import of their cloud

module for multiprocessing.

See Figures 11.6 and 11.7
[Digital Ocean] digitalocean.com Requires you to install a Python

package for the environment and

your application. See Figures 11.8

and 11.9
Others Amazon, Google, ATT, As you expand your applications
IBM, Rackspace just to these services offer a variety of
mention a few solutions

CREATING RAINBOWS IN THE CLOUD

There are considerable trade-offs and options available for creating high perfor-
mance Python-based investigation platforms. One of the interesting applications that
is suited nicely for cloud execution is the generation of Rainbow Tables discussed
and experimented with in Chapter 10. Moving both the single and multiprocessing
versions of this application to the cloud requires some considerations. First, I have
decided to use Python Anywhere to demonstrate this capability. As I mentioned ear-
lier, it is a great way to get started in the cloud, because the environment executes
native Python applications for version 2.6, 2.7, and 3.3. Since I have made sure to
only use Standard Library modules and core language elements, portability to the

Figure 11.4

n
ng) honanywhere
UpgraseDowngrace Account | L

Plans and pricing
Beginner

You can creae

Creating Rainbows in the Cloud

SEnG B Fon

Hacker $5/month Web dev $12/month

Dasigned for runaing your Pthon coas In the toud from
‘one wab app and the console

A Python IDE in your browser with uniimited
Python/bash consoles

5,000 CPU-5e00ns per 637 £5003A 10 1Y 3 10,000 hitiday
wabsits.

(more 1)

Acsout Log out

s <o, restricted Intemet 3coess from jour apps. kow CPUDINNIGn

Coungrade 1o 2 Beginner acoout

17 you want to host small Pytnon-baced websites for you of
Tor your clents.
A Python IDE in your browser with uniimited
Python/bash

20,000 CPU-6600n05 per G- €70ugh 10 1 3 150,000 hitiiey
websits

(mare)

Startup $99/month

‘Start 8 businass and don't worry about having to scals to
hands trafric spikes.
A Python IDE in your browser with unimited
Python/bash

200,000 CPU-6200005 per G3y- £900GN D N 3 700,000 hitidsy
wensits

(more)
S00MD ciek cpace G0 ok epece 0G0 ok space
Onewedapp &t Up 0 5 'WeD 3ppé 0N CUSIom Comans. 20 weD 3006 0N CUSI0M COMANs.
your-username. pythansmpinare_con W 88 SSLI o #ra cnarge 1or SSL o #ra crarge 1or SSL
Dosngrace 1 3 Hadker co0ul RS AH Ui R R

prewrey
b — L oA
The eate aaei sty 8 pay

A 0f QUF Pald PIaNS COMS WIth & NO-QUIDDIS 30-18) MONsY-DACK Guarantss — o
rom your Pmon

Jou anyume
. $5+ 00 Dropoa 300888 10 jour 30006, 3nd nlimBed priate GR regoshories

ez g Wi omer

FIGURE 11.5
Python Anywhere Plans.

E>PiClou

CLOUD COMPUTING SIMPLIFIID

Platform Pricing Solutions

- A supercomputer at your
fingertips.

Use one core or thousands without
managing a single server.

The PiCloud Platform gives you the freedom to develop your
algorithms and software without sinking time into all of the
plumbing that comes with provisioning, managing, and
maintaining servers.

i

Compute Customize

Monitor
10, 0 Langl

Track Everything

FIGURE 11.6
PICloud Home Page.

Figure 11.5
Figure 11.6

@Plcloud Platform Pricing Solutions
Funum ausuTIG SHPIIID

Pricing

Public Cloud

Signing up gives you instant access to our public cloud solution. Your workloads run on our
cloud, which means you get on-demand acoess to 85 many cores as you need. If you're looking
to use PiCloud with private infrastructure, see our private doud offering.

Computation

You pay only for what you use. There is no minimum fee. We charge you for the number of
core hours your functions consume. Each of your functions can be run on sny of the cores we
offer. Please nofe, that while our pricing is expressed in hours for clarity, your actual charge
will be prorated by the millisecond.

Core Type ﬁxﬁ"?” Memory Disk :::mm 2 PricefHour
o1 (datfaul) 1 00 M8 1568 1 50.05
2 25 800 B nes 3 50.13
[55w HT | 3768 100 68 18 .22
m 325 558 140 GB H 50.30
s1? 05te2 300 M8 468 1 $0.04

1A compute unit as defined by Amazon provides “the equivalent CPU capacity of a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor™ All of our cores have 84-bit architectures

FIGURE 11.7

PICloud Plans.

FIGURE 11.8

Digital Ocean Home Page.

Monthly Hourty Memory CPU Storage Transfer GetStarted

$160 $0.238 16GB 8Cores 160GBSSD 6TB
$320 $0.476 32GB 12Cores 320GBSSD 7TB
$480 $0.705 48GB 16 Cores 480GBSSD 8TB
$640 $0.941 64GB 20Cores 640GBSSD 9TB
$960 $1.411 96GB 24 Cores 960GBSSD 10TB

EEEEa

FIGURE 11.9

Digital Ocean Plans.

Figure 11.7
Figure 11.8
Figure 11.9

Creating Rainbows in the Cloud 295

Python Anywhere cloud is pretty simple. However, I am going to make a couple of
significant changes to the experimental code that I developed in Chapter 10:

(1) Minimize the memory usage within the programs by eliminating the use of the
lists and dictionaries.

(2) Simplify the characters used to keep the resulting password generation
reasonable

(3) Expand the generated password lengths to 4- to 8-character passwords

The resulting code listings for both the single and multiprocessing versions are
shown here:

Single Core Rainbow

##Single Core Password Table Generator

import standard libraries

import hashlib J## Hashing the results

import time # Timing the operation

import sys

import os

import itertools # Creating controled combinations
it

Create a list of characters to include in the
password generation

i

chars = ["a', 'b',
Define a hypothetical SALT value
SALT="&45Bvx9"

Define the allowable range of password length

PW_LOW=4
PW_HIGH=8

print 'Processing Single Core'
print os.getcwd()
print 'Password Character Set: ', chars

print 'Password Lenghts: "', str(PW_LOW), '-", str(PW_HIGH)

#Mark the start time
startTime=time.time()

0pena File forwriting the results

try:

296 CHAPTER 11 Rainbow in the Cloud

Open the output file

fp=open('PW-ALL", 'w'")
except:

print'File Processing Error'

sys.exit(0)

create a loop to include all passwords
withinthe allowable range

pwCount=0
for rinrange(PW_LOW, PW_HIGH+1):

#fApply the standard Tibrary interator
for s initertools.product(chars, repeat=r):

Hash each new password as they are
Jf generated

pw="".join(s)

try:
md5Hash=hash1ib.md5()
md5Hash.update(SALT+pw)
md5Digest=mdbHash.hexdigest()

#Write the hash, password pair to the file
fp.write(md5Digest+""+pw+'\n")
pwCount+=1
del md5Hash

except:
print'File Processing Error

Close the output file when complete
fp.close()

When complete calculate the elapsed time
elapsedTime=time.time() - startTime
print'Single Core Rainbow Complete

print 'Elapsed Time: ', elapsedTime

print 'Passwords Generated: ', pwCount
print

Multi-Core Rainbow
#Multi-Core Password Table Generator
#import standard 1ibraries

import hashlib ##Hashing the results

Creating Rainbows in the Cloud

import time # Timing the operation

import os

import itertools # Creating controled combinations
import multiprocessing #Multiprocessing Library

#

#Createa list of characters to include in the
password generation

#

Char‘S:['a', |bl’ ‘C', ldl’ |el’ lf!, lg" |hlj
Define a hypothetical SALT value
SALT="&45Bvx9"

Define the allowable range of password length

PW_LOW=4
PW_HIGH=8

def pwGenerator(size):

pwCount=0
create a loop to include all passwords
#within range specified

try:

#0pena File forwriting the results
fp=open('PW-"+str(size), 'w")

for r inrange(size, size+1):
#fApply the standard 1ibrary interator

for s initertools.product(chars, repeat=r):
Process each password as they are
generated
pw=".join(s)

Performhashing of the password
md5Hash=hashlib.md5()
md5Hash.update (SALT+pw)
mdbDigest=md5Hash.hexdigest()

#Write the hash, password pair to the file
fp.write(md5Digest+""+pw+'\n")
pwCount+=1

297

298 CHAPTER 11 Rainbow in the Cloud

del md5Hash

except:
print 'File/Hash Processing Error
finally:
fp.close()
print str(size),'Passwords Processed=", pwCount
i
Create Main Function
i
if _name__=="'_main__":

print 'Processing Multi-Core'

print os.getcwd()

print'Password string: ', chars

print 'Password Lengths: ', str(PW_LOW), " -", str(PW_HIGH)

Mark the starting time of the main lToop
startTime=time.time()

ficreate a process Pool with 5 processes
corePool=multiprocessing.Pool(processes=5)

J#fmap corePool to the Pool processes
results=corePool.map(pwGenerator, (4,5,6,7,8))

elapsedTime=time.time() - startTime
When complete calculate the elapsed time

elapsedTime=time.time() - startTime
print 'Multi-Core Rainbow Complete'
print'Elapsed Time: "', elapsedTime
print 'Passwords Generated: ', pwCount
print

You can see the results of executing both the single core and multi-core solutions
on the Python Anywhere Cloud, respectively, in Figures 11.10 and 11.11. I have also
included the execution from my Linux box in Figure 11.12. The actual performance
will vary of course based on many factors. Since my Linux box is dedicated and is
running a quad-core processor at 3.0 GHz it outperforms the cloud service. The sin-
gle core and multi-core results demonstrate a proportional result with the multi-core
solution outperforming the single core solution as expected (see Table 11.2).

SNk
P
bS8 anywhere

Bash consocle 401738 & Share with others

FIGURE 11.10

Python Anywhere Single Core Execution Results.

sedback Forums Help Dlog Dashboard Account Logout

L Share with others

FIGURE 11.11

Python Anywhere Multi-Core Execution Results.

@S @ chet@PythonForensics: ~/Desktop/Rainbow Test

chet@PythonForensics:~/Desktop/Rainbow Test$ python SingleCoreRainbow.py
Processing Single Core

/home /chet/Desktop/Rainbow Test

Password string: ['a', 'b', 'c

Password Lenghts: 4 - 8

Single Core Rainbow Complete

Elapsed Time: 80.9314088821

Passwords Generated: 19173376

chet@PythonForensics:~/Desktop/Rainbow TestS python MultiCore\ Rainbow.py
Processing Multi Core
/home /chet/Desktop/Rainbow Test
Password steing: .['a', *b', “cb,. dY, te¥, 'F', ‘g, "h']
Password Lenghts: 4 - 8
Passwords Processed= 4096
Passwords Processed= 32768
Passwords Processed= 262144
Passwords Processed= 2097152
Passwords Processed= 16777216
Multi Core Rainbow Complete
Elapsed Time: 63.3727021217

chet@PythonForensics:~/Desktop/Rainbow Tests [l

FIGURE 11.12

Standalone Linux Single/Multi-Core Execution Results.

Figure 11.10
Figure 11.11
Figure 11.12

300

CHAPTER 11 Rainbow in the Cloud

Table 11.2 Summary of Execution Results

Execution Passwords generated Time to Passwords
configuration and processed process(s) per second

Standalone Quad

Core Linux
Single Core 19,173,376 80.93 236,913
Multi-Core 19,173,376 63.37 302,562
Python Anywhere
Single Core 19,173,376 210.99 90,873
Multi-Core 19,173,376 142.93 134,145

PASSWORD GENERATION CALCULATIONS

One question you might be asking at this point is how many unique combinations of
passwords are there? In order to be reasonable, let us start with the number of pos-
sible 8-character passwords by just using lowercase letters. The answer is shown in
Figure 11.13 calculated by elPassword [elPassword]. In Figure 11.14, elPassword
calculates the number of unique 8-character passwords using upper and lowercase
letters, numbers, and special characters.

elPassword

Combinations and Password

208,827,064,576

obcfzypg U

8 No. of characters

With numbers ,/ With letters

+ Special characters Upper and lower case

FIGURE 11.13
elPassword 8-character combinations of lowercase letters.

Figure 11.13

Password Generation Calculations 301

elPassword

Combinations and Pass

22 oS = (= S (3152
5

4Bh@W! U

No. of characters

With numbers v With letters

+ Special characters v Upper and lower case

FIGURE 11.14
elPassword 8-character full ASCII character set.

Using the online resource from LastBit, [LastBit] along with our best performance of
302,000 passwords per second, we can calculate the length of time required for a brute
force attack. In Figure 11.15-11.18, I performed four separate runs. The first two using
all lowercase characters with 1 and 100 computers, and the last two using the full
ASCII set with 100 and 10,000 computers, respectively. Try them out for yourself.

Password length: 8

Speed: 302000 passwords per second
Number of computers: 1
chars in lower case [] common punctuation
[] chars in upper case] full ASCII
[] digits

Calculate!

Brute Force Attack will take up to 9 days

FIGURE 11.15
Last Bit calculation lowercase using 1 computer.

Figure 11.14
Figure 11.15

|
302 CHAPTER 11 Rainbow in the Cloud

Password length: 8
Speed: 302000 passwords per second

Number of computers: 100

[¥] chars in lower case [] common punctuation
[] chars in upper case [] full ASCII

[] digits
Calculate!
Brute Force Attack will take up to 116 minutes

FIGURE 11.16
Last Bit calculation lowercase using 100 computers.

Password length: 8

Speed: 302000 passwords per second
Number of computers: 100
[] charsin lower case [l common punctuation
[] charsin upper case full ASCII
[] digits

Calculate!

Brute Force Attack will take up to 8 years

FIGURE 11.17
Last Bit calculation ASCII set using 100 computers.

Password length:|8
Speed: 302000 passwords per second

Number of computers: 10000

[] chars in lower case [] common punctuation
[] chars in upper case full ASCII

[] digits
| Calculate!
Brute Force Attack will take up to 28 days

FIGURE 11.18
Last Bit calculation ASCII set using 10,000 computers.

CHAPTER REVIEW

In this chapter I introduced Python Anywhere, a cloud service that runs native Python
code in the cloud. I demonstrated how simple it is to run native Python code in the
cloud from multiple platforms. I then modified the Rainbow Table password gener-
ator to minimize memory usage, reduced the characters, and expanded the generation

Figure 11.16
Figure 11.17
Figure 11.18

Additional Resources 303

to include password lengths of 4- to §-character solutions. I then examined the per-
formance of each result to determine how long it would take both on a higher per-
formance Linux platform and in the cloud. I took those results and extrapolated them
in order to determine the time and computers needed to reasonably crack 8-character
passwords.

SUMMARY QUESTION/CHALLENGE

1. What other applications would be useful to execute within cloud environments
that would benefit the forensic and investigation community?

2. As of this writing, Intel and AMD are experimenting with single processor core
counts of 16, 32, 64, and 96 cores. If we extrapolate just a few years in the future it
would not be unreasonable to expect the achievement of 1000-core CPUs. How
will this change our ability to generate and hash passwords, crack encryption, or
search data?

3. Develop and test your own multi-core solution on your desktop environment.
Design them such that they can be easily deployed to a cloud platform like Python
Anywhere. Establish a free account on Python Anywhere and experiment with
your single and multi-core solutions.

Additional Resources

http://www.pythonanywhere.com.
http://www.picloud.com.
http://www.digitalocean.com.
http://projects.lambry.com/elpassword/.
http://lastbit.com/pswcalc.asp.

http://www.pythonanywhere.com
http://www.picloud.com
http://www.digitalocean.com
http://projects.lambry.com/elpassword/
http://lastbit.com/pswcalc.asp

This page intentionally left blank

CHAPTER

Looking Ahead

CHAPTER CONTENTS

oL T SN 305
Where Do We G0 From Here?oooooiiiiiiiiiiiesssssessss e s eneees 307
[T 1] o PSSP 312
Additional RESOUICEScoricieeereiiieirreceerissee e e s e e s s sse e s s ssne e s s sme e e s s snne e s smnn e esssmnennnen 312

INTRODUCTION

The world of digital investigation and computer forensics is approaching 25 years in
age. I had the privilege of working with Ron Stevens from the New York State Police
who was one of the early pioneers and one of the first troopers in the country to suc-
cessfully collect evidence from computers and use that evidence to convict those
involved in criminal activity. “As one of the first law enforcement agencies to
respond to the threats posed by the techno-criminal, the New York State Police
launched the Computer Crime Unit in 1992” (Stevens, 2001).

I also had the privilege of serving as the primary investigator on the first digital
forensic research effort sponsored by the Air Force Research Laboratory in 1998.
The effort was conceived by two pioneers in the field working at the U.S. Air Force
Research Lab, Joe Giordano and John Feldman. The effort was entitled: Forensic
Information Warfare Requirements and resulted in a comprehensive report that out-
lined a set of requirements for the field moving forward. (FIW Report, 1999)

However, it would be a mistake to think of digital investigation, cybercrime
investigation, or computer forensics as a mature science or discipline today. The fol-
lowing is an excerpt from a presentation I gave at the First Digital Forensic Research
Workshop in 2001 (DFRWS, 2001).

Digital Evidence Fundamentals

— Digital evidence is vast, complicated, and can be easily manipulated, concealed,
destroyed, or never found

— Connecting the dots can be an arduous process, fraught with uncertainty and in
many cases is inconclusive

— The distributive nature of cyber-crime and cyber-terrorism makes tracing the
perpetrators, the victims, and the technology used to execute the attack or crime
difficult

Python Forensics 3 0 5

© 2014 Elsevier Inc. All rights reserved.

306 CHAPTER 12 Looking Ahead

— Our results will likely be challenged, thrown out, ignored, misunderstood, and
constantly questioned

Cyber-forensic technologies must be:

— Reliable
Accurate

— Nonreputable
Easy to use
Foolproof
Secure
Flexible

— Heterogeneous
Distributed
Automatic

— Free, or at least cheap

Fundamental questions—Cyber-forensic technologies

Who collected the digital evidence?
With what tool or technology?
— By what standard or practice is this based?
— Who audits and validates the practices?
— How are the identities of the digital detectives bound to the digital evidence?
— How was the evidence handled once identified?
— How is the evidence validated, and by whom?
— For how long is it valid?
— How is it stored and secured?
— How is the integrity of digital evidence assured?
— What technology was used to assure it?
— Why do I trust the tool or technology?
— Who developed it?
— Where and under what conditions was it developed?
— What underlying software and hardware does the technology rely on?
— Who validated or accredited the technology and the process?
— Which version(s) are accredited?
— Who trained and accredited the users
— Is the evidence distinctive?
— Is the evidence privileged?
— Is the evidence corroborated?
— When was the file created, modified, or destroyed?
— When was the transaction executed?
— When was a message transmitted or received?
— When was the virus or worm launched?
— When was the cyber-attack initiated?
— How long after the reconnaissance stage was completed did the attack commence?
— In what time-zone?

Where Do We Go From Here?

— At what point was the system log still valid?
— Did the suspect have the opportunity to commit the crime?

Fundamental questions

— Where is the suspect in cyber-space?
— How can I trace his or her steps?
— Technically
— Legally
— Where are they likely to strike next?
— Are they working with accomplices or insiders?
— What capabilities do they posses?
Bandwidth
Computing power
— Savvy
— Resources
— Have we seen them before?
— Are they more sophisticated now vs. a year ago?
Who are their accomplices?

Summary

— We must focus our attention on identifying and addressing the key fundamental
elements of digital forensics and digital evidence

— We must work together to build technologies that address the issues surrounding
these fundamental elements

— We need to perform research where the goal is to use the science of forensics to
help answer the harder questions surrounding cyber-criminals and terrorists
— Their location, sophistication, likely next targets
— What do we need to do to stop them?
— How do we improve our defenses against them?

The scary part about this short trip down memory lane is that I could give this pre-
sentation today, and it would still be for the most part relevant. The big question is
where we go from here and how will Python Forensics play a role?

WHERE DO WE GO FROM HERE?

This book has identified key areas where research and development of new solutions
are possible when combining core challenge problems with the Python language. It
could certainly be argued that other languages could produce viable solutions to
these challenges. However, the questions are:

— Would these alternative solutions be open source and free?
— Would they be cross platform ready (Windows, Mac, Linux, Mobile, and in
the Cloud)?

.
307

-
308

CHAPTER 12 Looking Ahead

— Would they be accessible and readable by anyone?

— Would they have the global worldwide support?

— Do they support a collaborative environment that would provide an on-ramp for
computer scientists, social scientists, law enforcement professionals, or students
new to the field?

The next big steps from my view are as follows:

(1) Creation of a true collaborative environment where people can share information
(challenge problems, ideas, and solutions).

(2) Obtain nonintimidating support as technology is advanced in support of new
investigative challenges.

(3) Development of a repository of programs and scripts that could be downloaded,
applied to real word problems, expanded, and improved.

(4) Integration with on-demand training courses to dive deeply into core areas of
Python and forensics.

(5) A validation/certification process that would allow third-party organizations
(such as NIST) to validate Python supplied solutions for use by law
enforcement. Once validated they could be safely utilized on real cases.
Once the process has been created much of the validation work could be
automated through the use of standardized forensic test images to accelerate the
validation process.

(6) Vendors could supply application interfaces that open the possibility to integrate
new Python-based solutions into existing forensic technologies. This would
actually improve the capabilities of vendor solutions, allow them to address new
issues in a more timely fashion, and make their products more valuable in the
marketplace.

(7) The creation of a cloud-based experimental platform that has thousands
(or even hundreds of thousands) of processor cores, petabytes of storage,
and terabytes of memory that could be applied and harnessed to solve
computationally difficult problems. In addition, this environment would be
open to academia and students in order to rapidly advance classroom problems.
Collaboration across universities, colleges, practitioners, vendors, and
researchers to solve truly hard problems. The environment could provide a
competition surface for new innovations, and teams could compete on the
national and international stage. Benchmarks for specific solution types could
be created in order to understand the performance characteristics of various
solutions.

(8) Key challenge problems for consideration:

Throughout this book, I provided Python-based examples for several key
areas. These examples provide the basics, however, much more work is needed.
I have identified some of the key challenges that require additional work
and focus.

a. Advanced searching and indexing: search and indexing are certainly core
elements during any investigation. However, improving the speed, accuracy,

Where Do We Go From Here? 309

and relevance of search and index results is necessary. Investigators need
solutions that can provide the following in a timely fashion:

i. Search and index results that deliver information that is relevant to their
case. This rich search/index capability must uncover information that is
not obvious or is missed by present-day technologies. For example,
search results that include time and spatial connections into clear view.

ii. Search and index results that connect information from multiple cases
together, identifying connections between accomplices, Internet,
phone, time, location, and behavioral analysis that were previously
unconnected.

b. Metadata extraction: Images and multimedia content contain a plethora of
metadata, including but not limited to time, date, the device they were created
on, location information, subject content, and much more. The extraction,
connection, and reasoning about this information is today left to the
investigator. New innovations bring the promise of rapidly extracting and
connecting this information to provide a broader more comprehensive view
of the crime scene.

€. Event synchronization: According to Statistic Brain (2014) in 2013 there
were an average of 58 million tweets per day from over 645 million
registered Twitter users. In addition, (Statistic Brain, 2014) 5.9 Billion
Google searches per day and over 2 trillion searches for the year 2013 were
recorded. This is only a fraction of the total Internet events that occur each
day and each year. Our ability to synchronize and reason about events
whether from the Internet, a corporate network or even an individual desktop
may seem beyond comprehension. We need to develop new innovations
that can make sense, isolate, and provide conclusive proof about such actions
and events.

d. Natural language: The Internet has certainly broken down boundaries and
provided interaction and communication instantly across the globe. As I just
scratched the surface of Natural Language Processing (NLP) in Chapter 7,
you can see the potential power of being able to process language. The
application for NLP for the extraction of meaning, determining authorship,
deciphering intent are all within our grasp. Expanding these technologies to
process a wide range of languages, improving deductive reasoning,
extracting persons, places and things, and assessing likely past, present or
future actions are possible.

e. Advancement in Python. The printed examples and source code provided in
this book were developed for Python 2.7.x in order to ensure the broadest
compatibility across computing platforms. However, all the examples will
also be available online for download with solutions for 2.7.x and 3.3.x.

Python and third-party Python libraries continue to expand at the speed of
the Internet. Some even claim Python will be the last programming language
you will ever have to learn. I think this is a bit overstated however, some of
the attributes of the language will be fundamental to future languages. At the

310 CHAPTER 12 Looking Ahead

time of this writing February 9, 2014 to be exact, Python Version 3.4 was
released. According to the Python Programming Language Official Web
(www.python.org), the major language improvements included:

10.

. a “pathlib” module providing object-oriented file system paths

a standardized “enum” module

a build enhancement that will help generate introspection information
for built-ins

improved semantics for object finalization

adding single-dispatch generic functions to the standard library

a new C API for implementing custom memory allocators

changing file descriptors to not be inherited by default in subprocesses
a new “statistics” module

standardizing module metadata for Python’s module import system

. a bundled installer for the pip package manager

. anew “tracemalloc” module for tracing Python memory allocations
. a new hash algorithm for Python strings and binary data

. anew and improved protocol for pickled objects

. anew “asyncio” module, a new framework for asynchronous I/O

As you can see the language evolution continues at a brisk pace along
with the development of new and improved third-party Python libraries
that help accelerate forensic and digital investigation tools. There are so
many third-party libraries and tools, I decided to list just my top 10.

. Pillow. A new library that builds off of the more traditional Python

Image Library for those that process and examine digital images.
wxPython. For those of you that need to build cross platform graphical
user interfaces this is my preferred toolkit.

Requests. One of the best http interface libraries.

Scrapy. If your forensics investigations require you to perform web
scraping, this library will help you build new and innovative approaches.

. Twisted. For those needing to develop asynchronous network

applications.
Scapy. For those who perform packet sniffing and analysis, scapy
provides a host of features that can speed your development.

. NLTK. Natural Language Toolkit—This toolkit is vast and for those

investigating text and language constructs, it is a must.

. IPython. When experimenting with new language elements, libraries,

or modules this advanced Python Shell will assist you in every aspect of
your work or struggles.

. WingIDE. This is not a library, but this Integrated Development

Environment gets my vote for the best IDE. The Professional version
provides even the most savvy researcher with the tools they need.
Googlemaps. Many forensic applications collect geographically tagged
information, this package allows you to easily integrate with the
Google mapping system.

http://www.python.org

Where Do We Go From Here? 311

f. Multiprocessing: In order to effectively attack any of these areas, our ability
to access the power of the latest processors and cloud-based solutions is
essential (Figurel2.1). “The International Technology Roadmap for
Semiconductors 2011,” a roadmap forecasting semiconductor development
drawn up by experts from semiconductor companies worldwide, forecasts
that by 2015 there will be an electronics product with nearly 450 processing
cores, rising to nearly 1500 cores by 2020 (Heath).

What is available today from the two major processor manufactures,
Intel” and AMD® are depicted in Figures 12.2 and 12.3. For under $1000
you can own these processors and for under $3000 you can build a system
with two processors yielding 20-32 cores, 64 GB of memory and a couple
of terabytes of storage. This is certainly a step toward multicore and
multiprocessing solutions, and when coupled with well-designed multicore

FIGURE 12.1
Multiprocessing in the Cloud.

‘ intell inside”

Xeon'

FIGURE 12.2 FIGURE 12.3
AMD 6300 Series 16 Core Processor. Intel Xeon E7 Series 10 Core 20 Thread Processor.

Figure 12.1
Figure 12.2
Figure 12.3

312

CHAPTER 12 Looking Ahead

Python applications could take a giant step toward advancing the state-of-the-
art. Once we see these production solutions produce 64, 128, 256, and 1024
cores on a single processor, the world will change once again.

CONCLUSION

Applying the Python language to digital investigation and forensic applications has
great promise. What is needed is a collaborative community that includes: practi-
tioners, researchers, developers, professors, students, investigators, examiners,
detectives, attorneys, prosecutors, judges, vendors, governments, and research insti-
tutes. In addition, a cloud-based computing platform with thousands of cores, peta-
bytes of storage, and terabytes of memory is necessary.

I challenge you to participate. If everyone reading this book would submit one
idea, challenge problem or solution that would be a tremendous start. Visit
Python-Forensics.Org to get started. . .. I would love to hear from you!

Additional Resources

Fighting Cyber Crime hearing before the subcommittee on Crime of the Committee on the
Judiciary, http://commdocs.house.gov/committees/judiciary/hju72616.000/hju72616_0f.
htm; 2001.

Forensic Information Warfare Requirements Study F30602-98-C-0243. Final technical report,
February 2, 1999, Prepared by WetStone Technologies, Inc.

A road map for digital forensic research, Utica, New York, http://www.dfrws.org/2001/dfrws-
rm-final.pdf; August 7-8, 2001.

January 1, 2014, http://www.statisticbrain.com/twitter-statistics/.

Cracking the 1,000-core processor power challenge. Nick Heath, http://www.zdnet.com/
cracking-the-1000-core-processor-power-challenge-7000015554/.

http://commdocs.house.gov/committees/judiciary/hju72616.000/hju72616_0f.htm
http://commdocs.house.gov/committees/judiciary/hju72616.000/hju72616_0f.htm
http://www.dfrws.org/2001/dfrws-rm-final.pdf
http://www.dfrws.org/2001/dfrws-rm-final.pdf
http://www.statisticbrain.com/twitter-statistics/
http://www.zdnet.com/cracking-the-1000-core-processor-power-challenge-7000015554/
http://www.zdnet.com/cracking-the-1000-core-processor-power-challenge-7000015554/

Index

Note: Page numbers followed by b indicate boxes, f indicate figures and ¢ indicate tables.

A

Advanced searching and indexing, 308
Advancement in Python, 309

AMD 6300 Series 16 Core Processor, 311-312, 311f

Built-in constants
Boolean values, 31
hard core developer, 31-32
strongly typed language, 31-32, 31f
variables, 31
Built-in exceptions, 33-34
Built-in functions
hex() and bin(), 27-28, 27f
Python 2.7, 30, 30z
range(), 28-30, 28f
Built-in types
bitwise operations, 32
categories, 32

c

Class Logging, 141
Cloud-based experimental platform, 308
Cloud-based Python environments
cloud execution, iPad, 289, 291f
desktop execution, Python applications,
289, 291f
Digital Ocean Home Page, 294f
Digital Ocean Plans, 294f
elPassword 8-character combinations of
lowercase letters, 300, 300f
elPassword 8-character full ASCII character set,
300, 301f
execution results table, 300-301
Last Bit calculation ASCII set, 301, 302f
Last Bit calculation lowercase, 301,
301f, 3021
Multicore Rainbow, 291f, 296-299
PICloud, 293f, 294f
Python Anywhere (see Python Anywhere)
Python Standard Libraries, 290
Rainbow Table generator (see Rainbow
Table generation)

simple single core, 289, 291f
Single Core Rainbow, 295-296
Standalone Linux Single/Multi Core Execution,
298, 299f
Standard Library modules, 292-295
typical cloud configuration, 289, 290f
Code examination
Command line parser, 149—150
Comma separated value (CSV) Writer class,
150-151
EXIF and GPS processing, 144-148
Logging Class, 148-149
Code walk-through, Python forensics
ParseCommandLine, 101-102
PrintBuffer function, 106—107
p-search functions, 101
SearchWords function, 100-101, 103—-107
standard library, 100
ValidateFileRead(theFile), 103
Command line parser, 141, 149-150
Corpus
challenges, 184—185
the Internet, 193—-194
NLP, 184
working with, 185-186
Cybercrime investigation
cost and availability, tools, 3, 4f
data vs. semantics, 4, 5/
Linux computer, 2
next-generation investigator, 4, 5/
smart mobile devices, 2
technology developers and investigators,
2.3, 3
Cyber-forensic technologies, 306-307

Data vs. semantics
description, 4
knowledge and process, 4
targets/hotspots, 4
The Daubert standard, 9-10
Digital evidence fundamentals, 305-306
Digital Ocean
Home Page, 294f

313

Index

E
Event synchronization, 309
The Exchangeable Image File Format (EXIF)
GPSTAGS, 133-137
TAGS, 131-133
Exclusive OR (XOR)
application, 32-33, 33f
evaluation, 33

F
FCC. See Federal Communications Commission
(FCO)
Federal Communications Commission (FCC), 126
File hashing
forensic tools, 272
multicore solution A, 274-277
multicore solution B, 277-279
single core solution, 272-273
Forensic evidence extraction
Class Logging, 141
code examination, 141151
Command line parser, 141
cvsHandler, 141
desktop tools, 125-126
dictionary creation, 129
digital data structures, 125-126
digital photographs, 126
EXIF and GPS Handler, 141
FCC, 126
Full code listings, 151-158
hash value, 129
iteration, dictionary, 130
library mapping, 137, 139¢
Lists and Sets structures, 128
p-gpsExtractor context diagram., 137, 140f
PIL Test-Before Code, 131
p-ImageEvidenceExtractor Fundamental
Requirement, 137
“Porsche”, 128-129
printing, sorted dictionary, 129
program execution, 158-159
simple key and value extraction, 130
social network applications, 126
WingIDE project, 137, 140f
Forensic log
CSV file output, 261, 261f, 262f
TCP capture, 260-261
UDP capture, 261
Forensic Log file, 159, 163f
Forensic time
atomic clocks, 168
documents and timestamps, 166—167

GMT, 166

GPS signals, 168-169

Harrison H1 clock, 165-166, 166f
history, 168, 168f

1IETF, 167

module, 169173

NTP, 173

precision and reliability, 167
UTC, 166

G
Global positioning system (GPS)

EXIF GPSTAGS, 133-137

geolocation information, 134

Python language elements, 159
GMT. See Greenwich Mean Time (GMT)
GPS. See Global positioning system (GPS)
Greenwich Mean Time (GMT)

and UTC, 171

world’s official time, 168

H

HashFile, 71-74

IDE. See Integrated development environments (IDE)
IDLE, 38-39, 38f
IETF. See Internet Engineering Task Force (IETF)
Integrated development environments (IDE)
description, 37
IDLE, 38-39
Ubuntu Linux, 42-46
WingIDE, 39-42
Intel Xeon E7 Series 10 Core 20 Thread Processor,
311-312, 311f
Internet Engineering Task Force (IETF), 167
10S python app
Apple App Store page, 47, 48f
SHA256 Hash, 47
Shell, 46-47

M

Metadata extraction, 309
Mobile devices
iOS python app, 4648
Windows 8 phone, 49-50
Multi Core Execution, 298, 299f
Multicore Rainbow, 296-299
Multiprocessing, forensics
central processing units (CPUs), 266
digital investigation mainstay functions, 288
File Hash, 272-279

File Search Solution, 270-272

Hash Table Generation, 279287

law enforcement agencies, 265

modern multicore architectures, 266

multicore processing methods, 269

Python code, 269

Python Multiprocessing Support, 266269

Python Standard Library, 266

SearchFile function, 269

Single Core File Search Solution, 270

Windows environment, 266
Multiprocessing in the Cloud, 311-312, 311f

Natural Language Processing (NLP)
“Computing Machinery and Intelligence”, 184
corpus (see Corpus)
definitions, 183—184
dialog-based systems, 184
forensic applications, 202
IITRI, 183-184
NLTK (see NLTK library)

Natural Language Toolkit (NLTK), 36-37

Network forensics
interactive scanning and probing, 237-238
investigation, 205
network investigation methods, 205-206
packet sniffing, 238-240
ping sweep (see Ping sweep)
port scan (see Port scan)
professional tools and technologies, 205
program execution and output, 259-261
programs, 235
PSNMT, 247-249
raw sockets, Python, 240-247
sockets (see Sockets)
third-party modules, 235

Network time protocol (NTP)
description, 173
library, 174-177

Next-generation cyber warrior, 4, 5f

NLTK. See Natural Language Toolkit (NLTK)

NLTK library
description, 185
experimentation

from __future__ import division, 187
print len(rawText), 188

print len(tokens), 188

print len(vocabularyUsed), 189

print newCorpus.abspaths(), 187
print newCorpus.fileids(), 187

print sorted(set(textSimpson)), 189

Index 315

print textSimpson.collocations(), 190
print textSimpson.concordance(myWord),
190, 191
print textSimpson.similar(myWord), 191
print tokens[0:100], 188
print type(newCorpus), 187
print type(textSimpson), 189
simpsonVocab.items(), 192
simpsonVocab = textSimpson.vocab(), 192
NLTKQuery application (see NLTKQuery
application)
operations, 186¢
NLTK.org Installation url., 185f
NLTKQuery application
capabilities, 202
_classNLTKQuery.py, 196-198
execution trace, 199-202
NLTKQuery.py, 195-196
_NLTKQuery.py, 198-199
source files, 194
NTP. See Network time protocol (NTP)
ntplib
decompressed ntplib-0.3.1, 176f
European NTP pool project, 177-179, 178f
installation, 175, 176f
NIST time servers, 177, 178f
ntplib-0.3.1.tar.gz., 175/
Python download page, 174f
third-party source, 177
verification, installation, 175, 177f

0

One-way file system hashing
best-use cases, 57-58
characteristics, 56
cryptographic hash algorithms, 57, 57¢
tradeoffs, 57
Operating systems (OS), 35-36
OS. See Operating systems (OS)

P

Packet sniffing

port scanning, 238

SPAN port connections, 238-240, 239/
ParseCommandLine()

argparse, 102, 102f

command line options, 6667

global variables, 68

program execution, 67

p-search command line argument, 101, 102¢

sha384, 67

ValidateFileName(), 101

Index

p-gpsExtractor
coordinates, program execution, 159, 160f
Forensic Log file, 159, 163f
Map zoom into Western Europe, 159, 161f
Map zoom to street level in Germany,
159, 162f
online mapping program, 158
Results.csv file snapshot, 159, 162f
Windows execution screenshot, 158, 159f
PICloud
Home Page, 293f
PIL. See Python Image Library (PIL)
Ping sweep
application, 211
execution, 224-225
GUI environment, 211
guiPing.py code, 218-224
ICMP, 211
ping.py, 213-218
USS Dallas Los Angeles-class nuclear-powered
attack submarine, 211, 212f
wxPython, 212
Port scan
basic categories, 225, 226¢
“def portScan(event)”, 228-229, 228h
execution with display all selected,
234, 234f
execution with display NOT selected,
234, 234f
GUI, 226, 228f
HTTP, 225
program launch, 226, 228f
registered ports, 226, 227¢
“Setup the Application Windows”,
228-229
TCP/IP, 225
well-known ports, 226, 227¢
PrintBuffer function
alpha string, 106
Hex and ASCII, 106
PSNMT. See Python silent network mapping tool
(PSNMT)
Python Anywhere
Home Page, 290, 292f
Multi Core Execution Results, 298, 299f
Single Core Execution Results, 298, 299f
Python-based solutions, 308
Python forensics
baTarget, 95, 951
binary file/stream, 95
bytearrays, 95
capture.raw, 108
chLog.log, 107

code walk-through (see Code walk-through,
Python forensics)

cost and barriers, 89

cybercrime investigation challenges, 2—6

Daubert evidence, 9—10

Daubert standard, 15

deductive/inductive reasoning, 92

digital crime scenes, 92-93

digital investigations, 1

disk image, 93-94

domain-specific researchers, 6

environment set up, 14-15

Execution test directory, p-search, 107, 108f

forensic/digital investigation, 16—17

Hex/ASCII representation, 99-100

hypothesis, 93

IDE, 37-46

iMac, 108, 111f

indexing methods, 91-92

indexOfWords, 114

initialization code, Matrix, 113-114

installation, 17-24

interface software, 14

kryptonite, 94

len function, 95

library modules, 96

lifecycle positioning, 8

logger, 99

main function, 98

matrix file, 112—-113

mobile devices, 4650

narc.txt, 94

open source and platform independence, 8

operating system/supporting libraries, 14

organization, 10

ParseCommandLine, 98

PrintBuffer functions, 99

programming language popularity, 6, 7f

p-search, 96-98, 97f, 98f

Python 2.x to 3.x versions, 16

requirements, program, 96, 96¢

SearchWords function, 98-99

Shell, 7-8, 16

source code, 1-2

Standard Library, 25-26, 27-36

standard library mapping, 96, 97¢

strings, 110

technology-based solutions, 6

test-then code-then validate, 6, 7f

third-party packages and modules, 36-37

Ubuntu Linux, 108, 1101

unicode, 16

virtual machine, 51

weighting approach, 110, 111f
Windows installation, 17-24
WingIDE environment, 99-100, 99f
‘WordProbable(word), 112
Python forensics application
class names, 56
constants, 55
Cryptographic SmartCard, 54, 54f
CSVWriter (class), 63, 74-75
design considerations, 59-64, 60t
directory after pfish execution,
83-84, 84f
fixed-sized font, 64
Full code listing pfish.py, 75-76
Full code listing _pfish.py, 76-83
functions name, 55
fundamental requirements, 58
global variable name, 55
HashFile, 71-74
local variable name, 55
logger, 63
main function, 62
module, 55
object name, 55
“one-way file system hashing”, 56-64
parsecommandline, 62
ParseCommandLine(), 6669
pFishLog file., 86, 86f
program structure, 61-62
Standard Library Mapping, 59, 60t
test run of pfish.py., 83, 84f
ValiditingDirectory Writable, 69
WalkPath, 69-71
walkpath function, 63
writing the code, 63-64
Python Image Library (PIL)
download, Windows, 126, 127f
EXIF GPSTAGS, 133-137
EXIF TAGS, 131-133
Ubuntu 12.04 LTS, 128, 129/
Windows installation Wizard, 128, 128f
Python installation
customization user manual, 19, 21f
directory snapshot, 22-23, 23f
download confirmation, 18, 18f
Graphical User Interface (GUI) module, 19
Hello World, 23-24, 24f
installation, Python 2.7.5., 22, 22f
programming language official web site,
17-24, 17f
Python 2.7.5 installer, 18, 19f
TCL/TK install, 19, 21f
user selection, 19, 20f

Windows downloading, 17, 17f

Windows taskbar, 23, 23f
Python language, 307-308
Python shell

built-in data structures, 16

definition, 31

hex values, 28f

i08S, 46-47, 47f

session, hex() and bin(), 27f

Index 317

Python silent network mapping tool (PSNMT)

classLogging.py source code, 257-258
commandParser.py, 256-257
comma-separated value (CSV) file, 249
csvHandler.py source code, 258
data types, 249
decoder.py source code, 253-256
psnmt.py source code, 249-253
Standard Library signal module, 248
UDP packet header, 247, 248f
Wing-IDE environment, 249, 250f
The Python Standard Library
built-in constants, 31-32
built-in exceptions, 33-34
built-in functions, 27
built-in types, 32-33
cryptographic services, 35
data compression and archiving, 34
file and directory access, 34
file formats, 35
hash values, 25
OS services, 35-36
platform-specific APIs, 25
SHA256 hash value, 26, 26f
Ubuntu Linux execution, 26, 27f
Python Standard Libraries, 290
Python version 2.x, 30, 30¢

R

Rainbow Table generation
Multicore password generator, 283-287

Plaintext Rainbow Table output, 287, 287f
Single core password generator code, 280283

Raw sockets, Python
built socket method, 244
human readable forms, 244
IPv4 packet header, 243, 243f
Linux, 241-242
promiscuous/monitor mode, 240-241
Standard Library documentation, 243
TCP/IP packet contents, 242, 242f
TCP packet header, 245, 246f
unpacking buffers, 242-247

Remote Switched Port ANalyzer, 237-238

Index

S

SearchWords function

baTarget, 104

bytearray, 106

command line arguments, 103

forensic log file, 104

newWord variable, 105

PrintBuffer function, 106

p-search code, 103

size characteristics, 105
Single Core Rainbow, 295-296
Sockets

API, 206

client.py code, 209-210

description, 206

IP addresses, 206, 207

localhost loopback, 208, 208f

Python language capabilities, 207

Python programs, 208

server.py code, 208-209

simplest local area network, 206, 206f
SPAN. See Switched Port ANalyzer (SPAN)
Standalone Linux Single, 298, 299f
Standard Library modules, 292-295
Strftime Output Specification, 174¢

Switched Port ANalyzer (SPAN), 237-238, 239f

T

Time module
attributes and methods, 169
epoch date, 169
strftime method, 173
UTC/GMT time, 170, 171
zone designation, 172
Twisted matrix (TWISTED), 37

U

Ubuntu Linux
download Web page 12.04 LTS,
44, 44f
Linux-based tools, 42
software center, 44, 45/
terminal window, 44, 45f
Universal Time (UTC)
calculation, hours, 172
diplomatic treaty, 166
and GMT (see Greenwich Mean Time (GMT))
User Datagram Protocol (UDP)
forensic log, 261
output file, Excel, 261, 262f
packet header, 247, 248f
UTC. See Universal Time (UTC)

vV

Validation/certification process, 308
ValiditingDirectory Writable, 69

w
WalkPath, 69-71
Windows installation Wizard, 128, 128/
Windows 8 phone, 49-50
WingIDE
in action, 41, 41f
auto complete feature, 42, 43f
code, 41, 42f
completed list, 41, 43f
flavors, 39
project, 137, 140f
Python Shell display, 39, 40f
WingIDE 4.1 Personal, 39, 40f

	Front Cover
	Python Forensics: A Workbench for Inventing and Sharing Digital Forensic Technology
	Copyright
	Dedication
	Acknowledgments
	Endorsements
	Contents
	List of figures
	About the Author
	About the Technical Editor
	Foreword
	Preface
	Intended Audience
	Prerequisites
	Reading this Book
	Supported Platforms
	Download Software
	Comments, Questions, and Contributions

	Chapter 1: Why Python Forensics?
	Introduction
	Cybercrime investigation challenges
	How can the Python programming environment help meet these challenges?
	Global support for Python
	Open source and platform independence
	Lifecycle positioning
	Cost and barriers to entry

	Python and the Daubert evidence standard
	Organization of the book
	Chapter review
	Summary questions
	Additional Resources

	Chapter 2: Setting up a Python Forensics Environment
	Introduction
	Setting up a python forensics environment
	The right environment
	The Python Shell

	Choosing a python version
	Installing python on windows
	Python packages and modules
	The Python Standard Library

	What is included in the standard library?
	Built-in functions
	hex() and bin()
	range()
	Other built-in functions
	Built-in constants
	Built-in types
	Built-in exceptions
	File and directory access
	Data compression and archiving
	File formats
	Cryptographic services
	Operating system services
	Standard Library summary

	Third-party packages and modules
	The natural language toolkit [NLTK]
	Twisted matrix [TWISTED]

	Integrated development environments
	What are the options?
	IDLE
	WingIDE

	Python running on Ubuntu Linux

	Python on mobile devices
	iOS Python app
	Windows 8 phone

	A virtual machine
	Chapter review
	Summary questions
	Looking ahead
	Additional Resources

	Chapter 3: Our First Python Forensics App
	Introduction
	Naming conventions and other considerations
	Constants
	Local variable name
	Global variable name
	Functions name
	Object name
	Module
	Class names

	Our first application ``one-way file system hashing´´
	Background
	One-way hashing algorithms basic characteristics
	Popular cryptographic hash algorithms?
	What are the tradeoffs between one-way hashing algorithms?
	What are the best-use cases for one-way hashing algorithms in forensics?

	Fundamental requirements
	Design considerations
	Program structure
	Main function
	ParseCommandLine
	WalkPath function
	HashFile function
	CSVWriter (class)
	Logger
	Writing the code

	Code walk-through
	Examining main-code walk—through
	ParseCommandLine()
	ValiditingDirectoryWritable
	WalkPath
	HashFile
	CSVWriter
	Full code listing pfish.py
	Full code listing _pfish.py

	Results presentation
	Chapter review
	Summary questions
	Looking ahead
	Additional Resources

	Chapter 4: Forensic Searching and Indexing Using Python
	Introduction
	Keyword context search
	How can this be accomplished easily in Python?
	Fundamental requirements
	Design considerations
	Main function
	ParseCommandLine
	SearchWords function
	PrintBuffer functions
	logger
	Writing the code

	Code walk-through
	Examining Main-code walk—through
	Examining _p-search functions—code walk-through
	Examining ParseCommandLine
	Examining ValidateFileRead(theFile)
	Examining the SearchWords function
	Examining the PrintBuffer function

	Results presentation
	Indexing
	Coding isWordProbable
	P-search complete code listings
	p-search.py
	_p-search.py

	Chapter review
	Summary questions
	Additional Resources

	Chapter 5: Forensic Evidence Extraction (JPEG and TIFF)
	Introduction
	The Python Image Library
	Before diving straight in
	PIL test-before code
	Determining the available EXIF TAGS
	Determining the available EXIF GPSTAGS

	p-ImageEvidenceExtractor fundamental requirements
	Design considerations

	Code Walk-Through
	Main Program
	Class Logging
	cvsHandler
	Command line parser
	EXIF and GPS Handler
	Examining the code
	Main Program
	EXIF and GPS processing
	Logging Class
	Command line parser
	Comma separated value (CSV) Writer class

	Full code listings
	Program execution

	Chapter review
	Summary questions
	Additional Resources

	Chapter 6: Forensic Time
	Introduction
	Adding time to the equation
	The time module
	The Network Time Protocol
	Obtaining and installing the NTP Library ntplib
	World NTP Servers
	NTP Client Setup Script
	Chapter review
	Summary questions
	Additional Resources

	Chapter 7: Using Natural Language Tools in Forensics
	What is Natural Language Processing?
	Dialog-based systems
	Corpus

	Installing the Natural Language Toolkit and associated libraries
	Working with a corpus
	Experimenting with NLTK
	Creating a corpus from the Internet
	NLTKQuery application
	NLTKQuery.py
	_classNLTKQuery.py
	_NLTKQuery.py
	NLTKQuery example execution
	NLTK execution trace

	Chapter review
	Summary questions
	Additional Resources

	Chapter 8: Network Forensics: Part I
	Network investigation basics
	What are these sockets?
	The simplest network client server connect using sockets

	server.py code
	client.py code
	server.py and client.py program execution

	Captain Ramius: re-verify our range to target... one ping only
	wxPython
	ping.py
	guiPing.py code
	Ping Sweep execution

	Port scanning
	Examples of well-known ports
	Examples of registered ports

	Chapter review
	Summary questions
	Additional Resources

	Chapter 9: Network Forensics: Part II
	Introduction
	Packet sniffing
	Raw sockets in Python
	What is Promiscuous Mode or Monitor Mode?
	Setting Promiscuous Mode Ubuntu 12.04 LTS Example

	Raw sockets in Python under Linux
	Unpacking buffers

	Python Silent Network Mapping Tool (PSNMT)
	PSNMT source code
	psnmt.py source code
	decoder.py source code
	commandParser.py
	classLogging.py source code
	csvHandler.py source code

	Program execution and output
	Forensic log
	TCP capture example
	UDP capture example

	CSV file output example

	Chapter review
	Summary question/challenge
	Additional Resources

	Chapter 10: Multiprocessing for Forensics
	Introduction
	What is multiprocessing?
	Python multiprocessing support
	Simplest multiprocessing example
	Single core file search solution
	Multiprocessing file search solution

	Multiprocessing File Hash
	Single core solution
	Multi-core solution A
	Multi-core solution B

	Multiprocessing Hash Table generation
	Single core password generator code
	Multi-core password generator
	Multi-core password generator code

	Chapter review
	Summary question/challenge
	Additional Resources

	Chapter 11: Rainbow in the Cloud
	Introduction
	Putting the cloud to work
	Cloud options
	Creating rainbows in the cloud
	Single Core Rainbow
	Multi-Core Rainbow

	Password Generation Calculations
	Chapter review
	Summary question/challenge
	Additional Resources

	Chapter 12: Looking Ahead
	Introduction
	Where do we go from here?
	Conclusion
	Additional Resources

	Index

