Python Essentials

Modernize existing Python code and plan code migrations to
Python using this definitive guide

PACKT

Python Essentials

Table of Contents

Python Essentials
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Getting Started

Installation or upgrade

Installing Python on Windows

Considering some alternatives

Upgrading to Python 3.4 in Mac OS X

Adding the Tkinter package

Upgrading to Python 3.4 in Linux
Using the Read-Evaluate-Print I.oop (REPL)

Confirming that things are working
Doing simple arithmetic

Assigning results to variables
Using import to add features
Interacting with the help subsystem

Using the pydoc program
Creating simple script files
Simplified syntax rules

The Python ecosystem

The idea of extensibility via add-ons

Using the Python Package Index — PyPI
Using pip to gather modules
Using easy_install to add modules
Installing modules manually
Looking at other Python interpreters
Summary
2. Simple Data Types
Introducing the built-in operators
Making comparisons
Using integers

Using the bit-oriented operators

Using rational numbers

Using decimal numbers

Using floating-point numbers

Using complex numbers

The numeric tower

The math libraries

Using bits and Boolean values

Working with sequences

Slicing and dicing a sequence

Using string and bytes values
Writing string literals

Using raw string literals

Using byte string literals

Using the string operators

Converting between Unicode and bytes
Using string methods

Accessing the details of a string
Parsing strings into substrings

Using the tuple collection
The None object

The consequences of immutability

Using the built-in conversion functions

Summary

3. Expressions and Output

Expressions, operators, and data types
Using operators on non-numeric data

The print() function

Examining syntax rules

Splitting, partitioning, and joining strings
Using the format() method to make more readable output

Summary of the standard string libraries

Using the re module to parse strings

Using regular expressions

Creating a regular expression string

Working with Unicode, ASCII, and bytes

Using the locale module for personalization
Summary
4. Variables, Assignment and Scoping Rules

Simple assignment and variables
Multiple assignment

Using repeated assignment

Using the head, *tail assignment
Augmented assignment

The input() function

Python language concepts
Object types versus variable declarations
Avoiding confusion when naming variables

Garbage collection via reference counting
The little-used del statement

The Python namespace concept
Globals and locals
Summary
5. Logic, Comparisons, and Conditions

Boolean data and the bool() function

Comparison operators
Combining comparisons to simplify the logic
Testing float values
Comparing object IDs with the is operator
Equality and object hash values

Logic operators — and, or, not, if-else
Short-circuit (or non-strict) evaluation

The if-elif-else statement

Adding elif clauses

The pass statement as a placeholder

The assert statement

The logic of the None object

Summary
6. More Complex Data Types

The mutability and immutability distinction

Using the list collection

Using list operators

Mutating a list with subscripts

Mutating a list with method functions

Accessing a list

Using collection functions
Using the set collection
Using set operators
Mutating a set with method functions
Using augmented assignment with sets
Accessing a set with operators and method functions
Mappings
Using dictionary operators
Using dictionary mutators
Using methods for accessing items in a mapping
Using extensions from the collections module
Processing collections with the for statement
Using literal lists in a for statement
Using the range() and enumerate() functions
Iterating with the while statement
The continue and break statements
Breaking early from a loop
Using the else clause on a loop
Summary

7. Basic Function Definitions

Looking at the five kinds of callables

Defining functions with positional parameters

Defining multiple parameters

Using the return statement

Evaluating a function with positional or keyword arguments

Writing a function’s docstring

Mutable and immutable argument values

Defining optional parameters via default values

A warning about mutable default values

Using the “everything else” notations of * and **

Using sequences and dictionaries to fill in *args and *kw

Nested function definitions

Working with namespaces
Assigning a global variable
Assigning a non-local variable
Defining lambdas
Writing additional function annotations
Summary

. More Advanced Functions

Using the for statement with iterable collections
Iterators and iterable collections
Consequences and next steps
Using generator expressions and comprehensions
Limitations of generator expressions
Using multiple loops and conditions
Writing comprehensions
Defining generator functions with the yield statement
Using the higher-order functions
Writing our own higher-order functions
Using the built-in reductions — max, min, and reduce

Three ways to sort a sequence

Sorting via a key function

Sorting via wrapping and unwrapping
Functional programming design patterns
Summary

. Exceptions

The core exception concept

Examining the exception object

Using the try and except statements

Using nested try statements

Matching exception classes in an except clause

Matching more general exceptions

The empty except clause
Creating our own exceptions
Using a finally clause
Use cases for exceptions
Issuing warnings instead of exceptions
Permission versus forgiveness — a Pythonic approach
Summary

10. Files, Databases, Networks, and Contexts

The essential file concept
Opening text files
Filtering text lines
Working with raw bytes
Using file-like objects
Using a context manager via the with statement
Closing file-like objects with contextlib
Using the shelve module as a database
Using the sqlite database
Using object-relational mapping

Web services and Internet protocols

Physical format considerations

Summary

11. Class Definitions

Creating a class

Writing the suite of statements in a class

Using instance variables and methods

Pythonic object-oriented programming

Trying to do type casting

Designing for encapsulation and privacy

Using properties
Using inheritance to simplify class definitions
Using multiple inheritance and the mixin design pattern

Using class methods and attributes
Using mutable class variables
Writing static methods

Using __slots__ to save storage

The ABCs of abstract base classes

Writing a callable class
Summary
12. Scripts, Modules, Packages, Libraries, and Applications
Script file rules
Running a script by the filename
Running a script by its module name
Running a script using OS shell rules
Choosing good script names
Creating a reusable module
Creating a hybrid library/application module
Creating a package
Designing alternative implementations
Seeing the package search path
Summary
13. Metaprogramming and Decorators

Simple metaprogramming with decorators

Defining our own decorator

More complex metaprogramming with metaclasses

Summary
14. Fit and Finish — Unit Testing, Packaging, and Documentation

Writing docstrings

Writing unit tests with doctest

Using the unittest library for testing

Combining doctest and unittest

Using other add-on test libraries

Logging events and conditions

Configuring the logging system

Writing documentation with RST markup

Creating HTML documentation from an RST source

Using the Sphinx tool
Organizing Python code

Summary
15. Next Steps

Leveraging the standard library
Leveraging PyPI — the Python Package Index
Types of applications
Building CLI applications
Getting command-line arguments with argparse
Using the cmd module for interactive applications
Building GUI applications
Using more sophisticated packages
Building web applications
Using a web framework

Building a RESTful web service with Flask
Plugging into a MapReduce framework

Summary

Index

Python Essentials

Python Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015
Production reference: 1250615
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-034-1

www.packtpub.com

http://www.packtpub.com

Credits

Author

Steven F. Lott
Reviewers

Amoatey Harrison
Alessio Di Lorenzo

Dr. Philip Polstra
Commissioning Editor
Edward Gordon
Acquisition Editor
Subho Gupta

Content Development Editor
Adrian Raposo
Technical Editors
Dhiraj Chandanshive
Siddhi Rane

Copy Editors
Samantha Lyon

Kevin McGowan
Aditya Nair

Rashmi Sawant
Project Coordinator
Kinjal Bari
Proofreader

Safis Editing

Indexer

Priya Sane

Graphics

Sheetal Aute
Production Coordinator

Komal Ramchandani

Cover Work

Komal Ramchandani

About the Author

Steven F. Lott has been programming since the 70s, when computers were large,
expensive, and rare. As a contract software developer and architect, he has worked on
hundreds of projects, from very small to very large. He’s been using Python to solve
business problems for over 10 years.

He’s particularly adept at struggling with thorny data representation problems.
He has also authored Mastering Object-oriented Python by Packt Publishing.

He is currently a technomad who lives in various places on the east coast of the US. His
technology blog can be found at http://slott-softwarearchitect.blogspot.com.

http://slott-softwarearchitect.blogspot.com

About the Reviewers

Amoatey Harrison is a Python programmer with a passion for building software systems
to solve problems. When he is not programming, he plays video games, swims, or simply
hangs out with friends.

After graduating from the Kwame Nkrumah University of Science and Technology with a
degree in computer engineering, he is currently doing his national service at the GCB
Bank head office in Accra, Ghana. He also helped review a book on Python programming,
Functional Python Programming, Packt Publishing, which was published in January
2015.

He would like to think of himself as a cool nerd.

Alessio Di Lorenzo is a marine biologist and has an MSc in geographical information
systems (GIS) and remote sensing. Since 2006, he has been dealing with the analysis and
development of GIS applications dedicated to the study and spread of environmental and
epidemiological data. He is experienced in the use of the main proprietary and open source
GIS software and programming languages.

He has coauthored OpenLayers Starter and reviewed ArcPy and ArcGIS — Geospatial
Analysis with Python, both by Packt Publishing.

Dr. Philip Polstra (known as Dr. Phil to his friends) is an associate professor of digital
forensics in the Department of Math and Digital Sciences at Bloomsburg University of
Pennsylvania. He teaches forensics, information security, and penetration testing. His
research over the last few years has been on the use of microcontrollers and small
computer boards (such as the BeagleBone Black) for forensics and penetration testing.

He is an internationally recognized hardware hacker. His work has been presented at
numerous conferences across the globe, including repeat performances at Black Hat,
DEFCON, 44CON, B-sides, GrtfCON, ForenSecure, and other top conferences. He has
also provided training on forensics and security, both in person and online via
http://www.pentesteracademy.com and other training sites.

He has published a number of books, including Hacking and Penetration Testing with Low
Power Devices, Syngress, and Linux Forensics from A to Z, PAP. He has also been a
technical editor or reviewer on numerous books.

When not teaching or speaking at a conference, he is known to build electronics with his
children, fly airplanes, and also teach others how to fly and build airplanes. His latest
happenings can be found on his blog at http://philpolstra.com.

http://www.pentesteracademy.com
http://philpolstra.com

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Python programming should be expressive and elegant. In order for this to be true, the
language itself must be easy to learn and easy to use. Any practical language—and its
associated libraries—can present a daunting volume of information. In order to help
someone learn Python, we’ve identified and described those features that seem essential.

Learning a language can be a long voyage. We’ll pass numerous islands, archipelagos,
inlets, and estuaries along the route. Our objective is to point out the key features that will
be passed during the initial stages of this journey.

The concepts of data structures and algorithms are ever-present considerations in
programming. Our overall approach is to introduce the various Python data structures first.
As part of working with a given class of objects, the language statements are introduced
later. One of Python’s significant advantages over other languages is the rich collection of
built-in data types. Selecting an appropriate representation of data can lead to elegant,
high-performance applications.

An essential aspect of Python is its overall simplicity. There are very few operators and
very few different kinds of statements. Much of the code we write can be generic with
respect to the underlying data type. This allows us to easily exchange different data
structure implementations as part of making tradeoffs between storage, performance,
accuracy, and other considerations.

Some subject areas could take us well beyond the basics. Python’s object-oriented
programming features are rich enough to easily fill several large volumes. If we’re also
interested in functional programming features, we can study these in far more depth
elsewhere. We’ll touch only briefly on these subjects.

What this book covers

Chapter 1, Getting Started, addresses installing or upgrading Python. We explore Python’s
Read-Evaluate-Print Loop (REPL) as a way to interact with the language. We’ll use this
interactive Python mode as a way to explore most of the language features.

Chapter 2, Simple Data Types, introduces a few features concerning numbers and some
simple collections. We’ll look at Python’s Unicode strings as well as byte strings,
including some of the conversions between strings and numbers.

Chapter 3, Expressions and Output, provides more details on Python expression syntax
and how the various numeric types relate to each other. We’ll look at the coercion rules
and the numeric tower. We’ll look at the print () function, which is a common tool for
looking at output.

Chapter 4, Variables, Assignment and Scoping Rules, shows how we assign names to
objects. We look at a number of different assignment statements available in Python. We
also explore the input () function, which parallels the print () function.

Chapter 5, Logic, Comparisons, and Conditions, shows the logical operators and literals
that Python uses. We’ll look at the comparison operators and how we use them. We’ll look
closely at the if statement.

Chapter 6, More Complex Data Types, shows the core features of the 1list, set, and dict
built-in types. We use the for statement to work with these collections. We also use
functions such as sum(), map(), and filter().

Chapter 7, Basic Function Definitions, introduces the syntax for the def statement as well
as the return statement. Python offers a wide variety of ways to provide argument values
to functions; we show a few of the alternatives.

Chapter 8, More Advanced Functions, extends the basic function definitions to include the
yield statement. This allows us to write generator functions that will iterate over a
sequence of data values. We look at a few functional programming features available via
built-in functions as well as the modules in the Python Standard Library.

Chapter 9, Exceptions, shows how we handle and raise exceptions. This allows us to write
programs which are considerably more flexible. A simple “happy path” can handle the
bulk of the processing, and exception clauses can handle rare or unexpected alternative
paths.

Chapter 10, Files, Databases, Networks, and Contexts, will introduce a number of features
related to persistent storage. We’ll look at Python’s use of files and file-like objects. We’ll
also extend the concept of persistence to include some database features available in the
Python Standard Library. This chapter will also include a review of the with statement for
context management.

Chapter 11, Class Definitions, demonstrates the class statement and the essentials of
object-oriented programming. We look at the basics of inheritance and how to define
class-level (static) methods.

Chapter 12, Scripts, Modules, Packages, Libraries, and Applications, shows different
ways in which we can create Python code files. We’ll look at the formal structures of
script, module, and package. We’ll also look at informal concepts such as application,
library, and framework.

Chapter 13, Metaprogramming and Decorators, introduces two concepts that can help us
write Python code that manipulates Python code. Python makes metaprogramming
relatively simple; we can leverage this to simplify certain types of programming where a
common aspect doesn’t fit neatly into a class hierarchy or library of functions.

Chapter 14, Fit and Finish — Unit Testing, Packaging, and Documentation, moves beyond
the Python language into the idea of creating a complete, polished product. Any well-
written program should include test cases and documentation. We show common ways to
make sure this is done properly.

Chapter 15, Next Steps, will demonstrate four simple kinds of applications. We’ll look at
the command-line interface (CLI), graphic user interface (GUI), simple Web frameworks,
as well as MapReduce applications.

What you need for this book

We’re going to focus on Python 3, exclusively. Many computers will have Python 2
already installed, which means an upgrade is required. Some computers don’t have Python
installed at all, which means that a fresh installation of Python 3 will be necessary. The
details are the subject of Chapter 1, Getting Started.

It’s important to note that Python 2 can’t easily be used to run all of the examples. Python
2 may work for many of the examples, but it’s not our focus.

In order to install software, you’ll generally need administrative rights on the computer
you intend to use. For a home computer, this is generally true. For computers supplied
through work or school, administrative passwords may be required.

You may also want to have a proper programmer’s text editor. Default text editing
applications such as Windows Notepad or Mac OS X TextEdit can be used, but aren’t
ideal. There are numerous free text editors available: feel free to download several to
locate the one that feels most comfortable for you.

Who this book is for

This book is for programmers who want to learn Python quickly. It shows key features of
Python, assuming a background in programming. The focus is on essential features: the
approach is broad but relatively shallow. We’ll provide pointers and direction for
additional study and research, assuming that the reader is willing and able to follow those
pointers.

In many data-intensive industries, a great deal of big data analysis is done with Python and
toolsets such as Apache Hadoop. In this case, the users of Python will be statisticians, data
scientists, or analysts. Their interest isn’t in Python itself, but in using Python to process
collections of data. This book is designed to provide language fundamentals for data
scientists.

This book can be used by students who are learning Python. Since this book doesn’t cover
the computer science foundations of programming, an additional text would be helpful.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: “We’ve
built an ArgumentParser method using all of the default parameters.”

A block of code is set as follows:

def prod(sequence):
p=1
for item in sequence:
p *= item
return p

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

def prod(sequence):

p= 1

for item in sequence:
p *= item

return

Any command-line input or output is written as follows:

MacBookPro-SLott:Code slott$ python3 -m test_all

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Clicking on Continue
will step through the Read Me, License, Destination Select, and Installation Type
windows.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Getting Started

Python comes on some computers as part of the OS. On other computers, we’ll need to
add the Python program and related tools. The installation is pretty simple, but we’ll
review the details to be sure that everyone has a common foundation.

Once we have Python, we’ll need to confirm that Python is present. In some cases, we’ll
have more than one version of Python available. We need to be sure that we’re using
Python 3.4 or newer. To confirm that Python’s available, we’ll do a few interactions at
Python’s >>> prompt.

To extend our foundation for the remaining chapters, we’ll look at a few essential rules of

Python syntax. This isn’t complete, but it will help us write scripts and learn the language.
After we’ve had more chances to work with simple and compound statements, the detailed
syntax rules will make sense.

We’ll also look at the Python “ecosystem”, starting with the built-in standard library. We’ll
emphasize the standard library throughout this book for two reasons. First, it’s immense—
much of what we need is already on our computer. Second, and more important, studying
this library is the best way to learn the finer points of Python programming.

Beyond the built-in library, we’ll take a look at the Python Package Index (PyPI). If we
can’t find the right module in the standard library, the second place to look for extensions

is PyPI—https://pypi.python.org.

https://pypi.python.org

Installation or upgrade

To work with Python on Windows, we must install Python. For Mac OS X and Linux, a
version of Python is already present; we’ll often want to add a newer version to the
preinstalled Python.

There are two significantly different flavors of Python available:

e Python 2.x
e Python 3.x

This book is about Python 3.4. We won’t cover Python 2.x at all. There are several visible
differences. What’s important is that Python 2.x is a bit of a mess under the hood. Python
3 reflects some fundamental improvements. The improvements came at the cost of a few

areas where the two versions of the language had to be made incompatible.

The Python community is continuing to keep Python 2.x around. Doing this is a help to
people who are stuck with old software. For the most part, developers are moving forward
with Python 3 because it’s a clear improvement.

Before we get started, it’s important to know if Python is already installed. The general
test to see if Python is already installed is to get an OS command prompt. For Windows,
use Command Prompt; for Mac OS X or Linux, use the Terminal tool. We’ll show Mac
OS X prompts from the Mac OS X Terminal. It looks like this:

MacBookPro-SLott:~ slott$ python3

Python 3.3.4 (v3.3.4:7ff62415e426, Feb 9 2014, 00:29:34)

[6CC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

We’ve shown the OS prompt MacBookPro-SLott:~ slott$. We entered the python3
command, which is typical for Linux and Mac OS X. In Windows, we’ll often enter just
python. The response was three lines of introduction followed by the >>> prompt. Enter
exit and hit return to get some useful advice on how to leave Python. This example
showed Python 3.3, which is a little out of date. An upgrade isn’t required.

Some kind of “command not found” error from the OS means we don’t have any Python,
so we’ll need to do an install.

If we get a Python message that starts with something like “Python 2.7.6”, we’ll need to
do an upgrade.

The next section covers Windows installations. After that, we’ll look at Mac OS X and
then we will see Linux upgrades. In some cases, we may develop software on Windows
desktop computers, but the ultimate destination is a large, centralized Linux server. The
Python files can be the same between these two environments, so having Python on
multiple platforms won’t be very complex or confusing.

Installing Python on Windows

Python runs on many versions of Windows. There are some older, less-widely-used
versions of Windows without an actively supported version of Python. For example,
Windows 2000 is not supported.

The general procedure for installing Python is quite simple. We’ll download an installer
and do some preparation. Then we’ll start the installer. Once that’s finished, we’ll be up
and running.

To find the installer, start here:

https://www.python.org/downloads/

The web server should detect your OS and provide a big button with some variation of
“Download Python 3.4.x” on it. Click on this button to start the download.

To look at the choices available, the https://www.python.org/downloads/windows/ path
provides all of the actively-supported versions of Python. This will show a long list of
older versions. There are two installers available:

e The Windows x86 MSI installer
e The Windows x86-64 MSI installer

If we have a very old computer, we might need the 32-bit version. Most modern
computers will have a 64-bit CPU. When in doubt, 64-bit is the assumption to make.

Double-click the .msi file to start running the installer. This starts with a question about
installing Python for yourself or for all users. If you have appropriate privileges, the all
users option is appropriate. On a shared computer, without appropriate privileges, you’ll
have to install it for yourself only.

https://www.python.org/downloads/
https://www.python.org/downloads/windows/

1 python 3.4.3 Setup |

I Select whether to install Python 3.4.3

/ for all users of this computer.

=) Install just for me (not availzble on Windows Vista)

python

windows

Back Next > | | Cancel |

The second page will ask for an installation directory. Be careful about the path that you
choose for the installation, and avoid spaces in filenames.

Tip
Do not install Python into directories with spaces in their names. Avoid names such as

“Program Files” and “My Documents”. The space may cause problems that are difficult to
diagnose.

Install Python into a simple directory with a short, space-free name like C:\python34.

14 python 3.4.3 Setup

/

——

python

windows

Select Destination Directory

==

Please select a directory for the Python 3.4.3 files.

(3 Python34 - [up][Hew
Lib
[Scripts
{C:\Python34\
Back |f Next> 1 Cancel |

Spaces in filenames is not a general problem, but it is awkward when first starting. There
are many ways to cope with spaces in filenames. When learning a new programming
language, however, it’s important to minimize the awkward problems so that we can focus

on the important topics.

The next page will also show a menu of components that can be installed; it’s easiest to
request everything. There’s no compelling reason to turn off any of the optional
components. We’ll be looking at the IDLE development tool, which requires the Tcl/Tk
package, so it’s important to be sure that this is part of the installation.

In many cases, the final option on this list updates the system environment variables to
include Python on the PATH variable. This isn’t enabled by default, but it can be helpful if

you’re going to write BAT files in Windows.

1 Python 343 Setup
Customize Python 3.4.3

—— Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features wil be installed.

‘= - | Register Extensions
......... =-| T/ Tk

--------- ‘=~ | Documentation
......... ‘=3 | Utility Scripts

......... :-:- p|p

......... (= ~| Test suite

s AAAd midlam marm e D=l

m

Pyvthon Interpreter and Libraries

python

This feature reguires 22MB on your hard drive. It

: } has 6 of 7 subfeatures selected. The subfeatures
WlﬂdUWS require 43MB on your hard drive.
| Disk Usage | | Advancad | < Back][Next > | | Cancel |

In addition to the basic Python interpreter, the Windows help installer is very helpful. This
is a separate download and requires a quick installation. After we’ve installed this, we can
use the F1 key to bring up all of the Python documentation.

Once Python is installed, the Using the Read-Evaluate-Print Loop (REPL) section will
show how to start interacting with Python.

Considering some alternatives

We’ll focus on a particular implementation of Python called CPython. The distinction
we’re making here is that Python—the abstract language—can be processed by a variety
of concrete Python runtimes or implementations. The CPython implementation is written
in portable C and can be recompiled for many operating systems. This implementation
tends to be extremely fast.

For Windows developers, there’s an alternative implementation called Iron Python. This
is tightly integrated with the Windows .NET development environment. It has the
advantage of working with Visual Studio. It has the disadvantage of being based on the
Python 2.7 language.

Another choice Windows users have is to use Python Tools for Visual Studio (PTVS).
This will allow you to use Python 3.4 from within Visual Studio. For developers who are
used to Visual Studio, this might prove helpful.

Other Python implementations include Jython, Stackless Python, and PyPy. These
alternatives are available for all operating systems, so we’ll address these in the Looking at
other Python interpreters section later.

Upgrading to Python 3.4 in Mac OS X

Python runs on all versions of Mac OS X. It turns out that Mac OS X relies on Python.
However, it relies on Python 2.7, so we’ll need to add Python 3.4.

The general procedure for installing Python on Mac OS X is quite simple. We’ll download
a disk image (.dmg) installer and do some preparation. Then we’ll start the installer that’s
in the disk image. Once that’s finished, we’ll be up and running.

To find an installer, start here:

https://www.python.org/downloads/

The web server should detect your OS and provide a big button with some variation of
“Download Python 3.4.x” on it. Click on this and download the . dmg file.

To look at the choices available, the https://www.python.org/downloads/mac-o0sx/ path
provides all of the actively-supported versions of Python for Mac OS X. This will show
alternatives for older versions of Python.

When the . dmg device becomes available after the download, double-click on the .mpkg
installer file to start running the installer.

L)

Welcome to the Python Installer
This package will install Python 3.4.3 for Mac OS X 10.6 or later.

Introduction

Python for Mac OS X consists of the Python programming language
interpreter, plus a set of programs to allow easy access to it for Mac OS X
users including an integrated development environment IDLE.

NEW for Python 3.4.3: 3.4.3 includes network security enhancements
that may require changes to your Python applications. See the ReadMe

file and the Python documentation for more information.

IMPORTANT: IDLE and other programs using the tkinter graphical user
interface toolkit require specific versions of the Tel/Tk platform
independent windowing toolkit. Visit hitps://www.python.org/download/
mac/tcltk/ for current information on supported and recommended
versions of Tel/Tk for this version of Python and Mac OS X.

Continue

Clicking on Continue will step through the Read Me, License, Destination Select, and
Installation Type windows. There’s a Customize button that allows us to turn options on

https://www.python.org/downloads/
https://www.python.org/downloads/mac-osx/

and off. We won’t need to do this—the default installation is ideal.

We’ll need to provide the username and password of a user who’s authorized to administer
this computer. This will not remove the existing Python that Mac OS X uses. It will add
another version of Python. This means that we’ll have at least two copies of Python. We’ll
focus on using Python 3, ignoring the built-in Python, which is Python 2.

To use Python 3, we have to enter python3 at the OS prompt in the Terminal window. If
we have both Python 3.3 and Python 3.4, we can enter the even more specific python3. 4
at the command prompt to specify which version of Python 3 we’re using. Generally, the
python3 command will be the latest-and-greatest version of Python 3. The python
command—unadorned with a version number—will be the Python 2.x that Mac OS X
requires.

Adding the Tkinter package

Python relies on a library named Tkinter to provide support for writing programs with a
GUIL. This package relies on Tcl/Tk. The details can be found here:

https://www.python.org/download/mac/tcltk/

The summary of this is that we need to install version 8.5.17 or newer. See
https://www.python.org/download/mac/tcltk/#activetcl-8-5-17-0. This will provide a
graphic environment that Python will use. We must install Tcl/Tk in order for the tkinter
package to work.

After we download the . dmg file and open the . pkg file, we’ll see this window:

https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/#activetcl-8-5-17-0

@ ‘e Install ActiveState ActiveTcl 8.5.18.0.298892

m“smm Welcome to the ActiveState ActiveTcl B.5.18.0.298892 Installer

Welcome to the ActiveState ActiveTel 8.5.18.0.298892 distribution for OS X/
@ Introduction Leopard/i386-x86_64.
Heense Package Management: new
Destination Select

TEAcup, the TEApot Repository Client

Installation Type
Packages:
Installation
Summary Tel 8.5 Trofs 0.4.4
Tk BS5

ActiveTcl 8.5 is compatible with most ActiveTel 8.4 packages. More packages
can be obtained with the teacup (accessing TEApot), or by installing this
distribution into the same directory as an existing ActiveTcl 8.4 installation.

Using ActiveTcl at work?
Our ActiveTcl Enterprise business solution is a support and maintenance packape
for organizations of all sizes that depend on Tel. Safeguard your applications

with snaranteed . onalitv-azsured ActiveTel hinaries and mitieate risk with world-

Continue

We’ll be looking at the IDLE development tool, which requires tkinter. Consequently,
this additional installation is essential.

We can avoid this extra download if we avoid using tkinter. Some developers prefer to
use the Active State Komodo editor as their development tool; this does not require
Tcl/Tk. Also, there are numerous add-on GUI frameworks that don’t require tkinter.

Upgrading to Python 3.4 in Linux

For Linux, the latest Python may already be installed. When we enter python3, we may
see that we already have a useful version available. In this case, we’re ready to roll. In
some cases, the OS will only have an older Python (perhaps older than 2.7) installed. In
this case, we’ll need to upgrade.

For Linux distributions, there are two paths for upgrading Python:

¢ Installing prebuilt packages: Many distributions have appropriate packages already
available. We can use a package manager (such as yum or RPM) to locate and install
the necessary Python package. In some cases, there will be additional dependencies,
leading to a cascade of downloads and installs. Since Python 3.4 is relatively new,
there may not be very many prebuilt packages for your particular Linux distribution.
Details are available at https://docs.python.org/3/using/unix.html#on-linux.

¢ Building from source: Most Linux distributions include the GNU C compiler. We can
download the Python source, configure the build script, and use make and make
install to build Python. This may require upgrading some Linux libraries to assure
that your Linux installation has the required support for Python 3.4. The installation
steps are summarized as ./configure, make, and sudo make altinstall. Details are

available at https://docs.python.org/3/using/unix.html#building-python.

When we use altinstall, we’ll end up with two Pythons installed. We’ll have an older
Python, which we can run using the python command. The python3 command will,
generally, be linked to the latest version of Python 3. If we need to be explicit, we can use
the python3.4 command to select a specific version.

As with the Mac OS X installation, adding the Python tkinter package is important.
Sometimes, this is separate from the basic package. This may lead to upgrading Tcl/Tk,
which may lead to some more downloads and installs. At other times, the Linux
distribution has an up-to-date Tcl/Tk environment and nothing more needs to be done.

We can avoid the extra Tcl/Tk download if we avoid using tkinter. As mentioned earlier,
many developers prefer to use the Active State Komodo editor as their development tool;
this does not require tkinter. Also, there are numerous GUI frameworks that aren’t based
on tkinter.

https://docs.python.org/3/using/unix.html#on-linux
https://docs.python.org/3/using/unix.html#building-python

Using the Read-Evaluate-Print Loop
(REPL)

Once we have installed Python 3, we can do some minimal interaction with Python to
assure ourselves that things are working. In the long run, we’ll use a number of other tools
to create Python programs. To start out, we’ll interact directly on the command line.

Python’s Read-Evaluate-Print Loop (REPL) is the foundation for Python programming.
More sophisticated things—such as writing application scripts or web servers—are
essentially the same as interaction with the REPL: the Python program reads statements
from our application script file or web server script file and evaluates those statements.

This fundamental rule is one of the very appealing features of Python. We can write
sophisticated scripts, or we can interact with the language in the REPL; the language is the
same.

Confirming that things are working

To confirm that things are working, we’ll start the Python interpreter from a command-line
prompt. It might similar to like this:

MacBookPro-SLott:~ slott$ python3

Python 3.3.4 (v3.3.4:7ff62415e426, Feb 9 2014, 00:29:34)

[6CC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

The details of getting to a command prompt vary from OS to OS. We’ve shown the Mac
OS X Terminal tool in this example. We entered the python3 command to be sure we ran
our new version of Python, not the built-in Python 2.

The introductory message lists four special-purpose objects that are incorporated into the
interactive Python environment. There are two more, quit and exit, which are also
available. These are only present in the REPL interactive environment; they cannot be
used in programs.

We’ll look at how we get help later in a separate section, Interacting with the help
subsystem. The other objects, however, produce useful tidbits of information and are the
ideal way to be sure things are working. Enter copyright, credits, or license at the >>>
prompt to confirm that Python is working.

Doing simple arithmetic

The REPL loop prints the results of each statement, allowing us to work with Python
interactively. To be clear on what this means, we should define what constitutes a
statement in the language. We’ll avoid the strict formality of the Python language
definition and provide a quick, informal definition of the relevant statement type.

The Python language has 20 or so kinds of statements. An expression—by itself—is a
statement. Unless the value of the expression is None, the REPL will show the value of the
expression. We’ll often use an expression statement to evaluate functions that perform
input and output.

This simple expression statement allows us to do things such as the following at the
Python >>> prompt:

>>> 355/113
3.1415929203539825

We can enter any arithmetic expression. Python evaluates the expression, and if the result
isn’t None, we’ll see the result. We’ve shown the true division operator, /, in this example.

We’ll look at the various data types and operators in Chapter 2, Simple Data Types. For the
moment, we’ll identify a few features of Python. We have numbers in a variety of flavors,
including integers, floating point, and complex values. Most values will be properly
coerced to add precision. Have a look at these examples:

>>> 2 * 3.14 * 8]
50.24j
>>> **)

(-2524.0576+07)

The first expression computed a value that includes an integer, 2; a floating point value,
3.14; and a complex value, 8j. We used the * operator for multiplication. The result is
complex, 50.24j.

The second expression uses the _ variable. This is a handy feature that’s unique to the
REPL. The result of each expression is implicitly assigned to this variable. We can use _
in an expression to refer to the result of the previous expression. This only works in the
REPL; it’s never a part of a script.

When we computed _ **2, we squared 50.24j. This is -2524.0576. Since the source value
was a complex number, the result is also a complex value even though the imaginary
component of that complex value is zero. This is typical of Python—the data types of the
operand values generally dictate the data types of the result of the operator. When there
are different kinds of numbers, values are coerced according to the rules we’ll look at in
Chapter 2, Simple Data Types.

There’s one notable exception to the rule that the types of the operands match the type of
the result. The true division operator, /, produces floating point results from integer
operands. The floor division operator, //, on the other hand, reflects the types of the
operands. For example:

>>> 355 / 113
3.1415929203539825
>>> 355 // 113

3

We have these two division operators so that we can unambiguously specify what kind of
division we’d like to perform. It saves us from having to write extra code to explicitly
coerce results.

Assigning results to variables

The simple assignment statement produces no visible output:
>>> v = 23

This will create the variable v and assign the value of 23 to it. We can check this by using
a very small expression statement. The expression is just the variable name:

>>> v
23

When we evaluate a very simple expression, such as v, we see the value of the variable.

Python’s REPL has far-reaching consequences. Perhaps the most important consequence is
that almost all examples of Python programming are provided as if we’re entering the
code at the >>> prompt. The documentation for very complex and sophisticated packages
will be written as though we’re going to use that package interactively. In most cases,
we’ll be writing application programs; we won’t really do very much at the >>> prompt.
But the idea of cutting through the complexity to arrive at something that can be done
interactively is pervasive throughout the Python community.

Using import to add features

One significant part of Python is the presence of a vast library of additional features.
Using an external library means that the core language can be kept quite simple. We can
import any additional features we need, avoiding the clutter and complication of unused
features.

The import statement is used to incorporate additional functions, classes, and objects into
a program or the interactive environment. There are a number of variations of this
statement. For example, we might want to use some of the more sophisticated math
functions. We can search the Python documentation and discover that these are defined in
the math library. We can include and use them like this:

>>> import math

>>> math.pi
3.141592653589793

>>> math.sin(math.pi/6)
0.49999999999999994

In this example, we imported the math library. We evaluated math.pi to see one of the
. T
sin —
constants defined in this library. We evaluated 0 The result was almost (but not
exactly) 1/2.

This also shows us an important thing about floating point numbers—they’re just an
approximation. This has nothing to do with Python specifically—it’s a general feature of
digital computing. It’s very important to emphasize this fact about floating point numbers.

Tip
Floating point numbers are only an approximation. They’re not exact. They are not the

abstract mathematical ideal of an irrational number with infinite precision.

We’ll return to the topic of floating point numbers in Chapter 2, Simple Data Types. For
now, we want to focus on external libraries.

One important library module that is part of Python is named this. To see the this
module, enter import this at the >>> prompt, like so:

>>> import this

Another equally important module is antigravity.

>>> import antigravity

We’ll leave the exploration of these modules as exercises for the reader. We don’t want to
spoil the fun! More handwaving explanation isn’t as helpful as hands-on experience. See
http://xkcd.com/413/ for more on this topic.

We’ll summarize by noting that the name “Python” has much to do with Monty Python
and nothing to do with serpents.

http://xkcd.com/413/

Interacting with the help subsystem

Python’s interactive help utility provides a great deal of useful information about modules,
classes, functions, and objects. The help system is an environment that is distinct from
Python’s REPL; it provides distinct prompts to make this clear.

There are three help modes, each with its unique prompt:

e We’ll see the help> prompt from the Python help environment. When we evaluate
the help() function with no argument value, we’ll enter Python’s help environment.
We can enter different subjects and read about various Python features. When we
enter quit as a topic, we’ll return to the REPL.

e Using Windows, we’ll see the -- More -- prompt: When we evaluate something like
help(int) in a Windows environment, the output will be displayed using the MS-
DOS more command. For more information, enter ? for help on how to page through
the help() output. At the Windows command line, entering more /2 will provide
additional information on how the more command helps you page through a long
file.

e Using Mac OS X and Linux, we’ll see the : prompt. When we evaluate the help()
function with a specific argument value—for example, help(float)—in Mac OS X
or Linux, we’ll get output that’s displayed using the less program. For more
information on this, enter h for help while viewing the help() output. At the
command prompt, enter less -? for more information on how the less program
works.

There are additional ways to view the documentation available with Python modules. In
IDLE, for example, there’s a class browser and path browser that will show documentation
about modules and files. This is based on the built-in help() function, but it’s displayed in
a separate window.

Using the pydoc program

Python includes the pydoc application that we use to view documentation. This
application is something that we run from the OS command prompt. We do not use this
from the Python >>> prompt; we use it from the OS prompt. While developing, we might
want to leave a Terminal window open just to display module documentation.

The pydoc program has two operating modes:

¢ [t can show some documentation about a specific package or module. This will use
an appropriate program (more on Windows, but otherwise less) to display
documentation for the given object. Here’s how we can display documentation on the
math module:

MacBookPro-SLott:~ slott$ python3 -m pydoc math

e It can start a documentation web server. This will start a server (and also start a
browser) to look at Python module documentation. When we use it, we’ll have a
session that looks like this:

MacBookPro-SLott:~ slott$ python3 -m pydoc -b
Server ready at http://localhost:50177/
Server commands: [b]rowser, [q]uit

server> (

Server stopped

The second example will start a web server as well as a browser. The browser will show
the pydoc-produced documentation. This is derived from the module and package
structure as well as the documentation strings embedded in the Python code. When we
were done reading the documentation, we entered q to quit the web server.

When we write Python packages, modules, classes, and functions, we can (and should)
provide the content for pydoc/help() documentation. These documentation strings are
part of our programming, and are as important as having programs that work correctly.
We’ll look at this embedded documentation in Chapter 14, Fit and Finish — Unit Testing,
Packaging, and Documentation.

Creating simple script files

While we can use all of Python from the REPL, this is not a good way to produce a final
application. Most of what we do with Python will be done via script files. We’ll look at
script files in detail in Chapter 12, Scripts, Modules, Packages, Libraries, and
Applications. For now, we’ll look at a few features.

A script file has to follow a few rules:

e The content must be plain text. While ASCII encoding is preferred by some, Python
3 can easily handle UTF-8 and most OS-specific variations such as Mac OS Roman
or Windows CP-1252. A portable encoding like UTF-8 is strongly suggested.

e Python can cope with Mac OS X, Linux newline (\n), as well as Windows CR-LF
(\r\n). Only a few Windows tools, such as Notepad, insist on CR-LF line endings;
most other programming editors discern the line endings flexibly. Unless you really
must use Notepad, it’s often best to use Unix-style newline line endings.

e The filename should be a legal Python identifier. This is not a requirement, but it
gives us considerable flexibility if we follow this suggestion. The Language
Reference Manual, section 2.3, provides the details of what constitutes an identifier.
A summary of these rules is that identifiers must begin with a letter (or a Unicode
character that normalizes to a letter) or _. It continues with letters, digits, and the _
character. What’s important is that we should avoid characters that are Python
operators or delimiters in filenames. In particular, we should avoid the hyphen (-),
which can become a problem in some Python contexts. OS filenames have much
more flexible rules than Python identifiers, and the OS has ways to escape the
meaning of OS-related punctuation; we are happiest when we limit our filenames to
valid Python identifiers — letters, digits, and _.

e The filename extension should be . py. Again, this is not required, but it is very
helpful to follow this rule.

For example, we’ll try to focus on names such as test_1_2.py. We can’t as easily use a
file named test-1.2.py; the base name isn’t a valid identifier—this name looks like a
Python expression. While the second name is acceptable for a top-level script, it won’t
work as a module or package.

We’ll look at some Python syntax rules in the next section. For now, we can create a
simple script file named ex_1.py that has one line:

print("m=", 355/113)

We can also use "\u03c0\u2248" instead of "n=". The string "\N{GREEK SMALL LETTER
PI}\N{ALMOST EQUAL TO}" will also work.

Once we have this file, we can have Python execute the file as follows:

MacBookPro-SLott:Chapter_1 slott$ python3 ex_1.py
n= 3.1415929203539825

We’ve provided a filename, ex_1. py, as the positional argument to the python3 program.

Python reads the file and executes each line. The output that we see is the text printed to
the console by the print () function.

The file is found by Python using ordinary OS rules for locating files, starting with the
current working directory. This will work with any kind of filename.

If we followed the naming rules for our file—the filename is an identifier and the
extension is . py—we can also use the following command to execute a Python module:

MacBookPro-SLott:Chapter_1 slott$ python3 -m ex_1
n= 3.1415929203539825

The -m ex_1 option forces Python to search for a module named ex_1. The file associated
with this module is named ex_1.py. Python has a search path that it uses to find the
requested module. Unless special arrangements are made, Python will search the local
directory first, and then will search the library directories. This allows us to run our scripts
and Python’s built-in applications with a simple, uniform syntax. It also allows us to add
our own applications and modules by modifying the PYTHONPATH environment variable.

We’ll look at the search path in Chapter 12, Scripts, Modules, Packages, Libraries, and
Applications. The detailed documentation for the search path is part of the site package.

Simplified syntax rules

The syntax rules for Python are defined in section 2 of the Python Language Reference
manual. We’ll look at the rules in detail in Chapter 3, Expressions and Output.

Python has about 20 kinds of statements. Here’s a quick summary of the rules:

e Almost all statements begin with a Python keyword such as pass, if, and def. The
expression statement and the assignment statement are the exceptions.

e Python has two kinds of statements—one-line simple statements and multiline
compound statements.

e Simple statements must be complete within a single line. An assignment statement is
a simple statement. It begins with one or more user-provided identifiers and includes
the = assignment symbol or an augmented variant like +=. An expression statement is
also simple.

e Compound statements use indentation to show the suite of statements embedded
within the overall statement. The standard indentation is four spaces. Most
developers set their editor to replace tabs with four spaces. Inconsistent use of spaces
and tabs will lead to syntax errors that can be hard to see because tabs and spaces are
both invisible by default. Avoiding tab characters in general makes it easier to debug
problems.

e Compound statements include class and function definitions—the body of the
definition is indented. If statements and for and while loops are examples of
compound statements that contain an indented suite of statements that are executed
conditionally or repeatedly.

e The (and) characters must match. A single statement on a logical line may span
multiple physical lines until the (and) characters match.

In effect, Python programs consist of one-statement-one-line. The end of a line is the
statement terminator. We have a few techniques for extending a statement. The most
common technique is based on Python’s requirement that the (and) characters must
balance.

We can, for example, write code like this:

print(
"Hello world",
"T[:" ,
355/113

)

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

We’ve spread a single logical line to four physical lines using (and). One consequence of
this is that a simple statement that we enter at the REPL must not be indented. A leading
space will cause problems because leading spaces are used to show which statements are
inside a compound statement.

Another consequence of this is less direct. Python executes a script file one statement at a
time from start to finish. This means that complex Python programs will have a number of
definitions first, and the “main” part of the processing will generally be last.

A Python comment starts with # and ends at the end of the line. This follows the same
rules as the various Linux shells. Because of the way Python documentation strings are
processed by pydoc and help(), most documentation is actually presented in separate
string literals at the start of a package, module, class, or function definition. We’ll look at
these documentation strings in Chapter 14, Fit and Finish — Unit Testing, Packaging, and
Documentation. The # comment is used sparingly.

The Python ecosystem

The Python programming environment has two broad subject areas:

e The language itself
e The extension packages. We can further subdivide the extension packages into:

o The standard library of packages
o The Python ecosystem of yet more extension packages

When we install Python, we install the language plus several hundred extension packages
in the standard library. We’ll return to the standard library in Chapter 12, Scripts, Modules,
Packages, Libraries, and Applications. The Python ecosystem is potentially infinite. The
good news is that PyPI makes it relatively easy to locate packages.

The idea of extensibility via add-ons

Python’s design includes a small core language that can be extended by importing
additional features. The Language Reference Manual describes 20 statements; there are
only 19 operators. The idea is that we can have a great deal of confidence that a small
language is correctly implemented, complete, and consistent.

The standard library documentation contains 37 chapters, and describes hundreds of
extension packages. There are a lot of features available to help us solve our unique
problem. It’s typical to see Python programs that import numerous packages from the
standard library.

We’ll see two common variations of the import statement:

e import math
e from math import sqrt, sin

The first version imports the entire math module and creates the module as an object in the
global namespace. The various classes and function names within that module must be
properly qualified with the namespace to be used. A qualified name will look similar to
math.sqrt() or math.sin().

While the second version also imports the math module, it only introduces the given
names into the global namespace. These names do not require qualifiers. We can use
sqrt() and sin() as if they were built-in functions. The math module object, however, is
not available, since it was not introduced into the global namespace.

An import happens exactly once. Python tracks the imported modules and will not import
a module a second time. This allows us to freely import modules as needed without
worrying about the order or other obscure dependencies among modules.

For confirmation of this one-time-only rule for imports, try the following:

>>> import this
>>> import this

The behavior the second time is different because the module has already been imported
once.

Using the Python Package Index — PyPI

Many developers of Python modules will register their work with the PyPI. This is located
at http://pypi.python.org/. This is the second place to look for a module that might help
solve a particular problem.

The first place to look is always the standard library.

The PyPI web page has a handy search form as well as a browser that shows packages
organized under nine different metadata variables. In many cases, a book or blog post may
provide a direct path like this: https://pypi.python.org/pypi/Sphinx/1.3b2. This ensures that
the proper version can be downloaded and installed.

There are three common ways to download and install software from the PyPI:

e Using pip
e Using easy_install
e Manually

Generally, we’ll use tools such as pip or easy_install for almost all of our installations.
Once in a while, however, we may need to resort to a manual installation.

Some modules may involve binary extensions to Python. These are generally C-language-
sources, so they must be compiled to be useful. For Windows—where C compilers are
rare—it’s often necessary to find an .msi installer that includes prebuilt binaries. For Mac
OS X and Linux, the C source may be compiled as part of the installation process.

In the case of large, complex numeric and scientific packages—specifically, numpy and
scipy—the build process can become quite complex: generally, more complex than pip or
easy_install can handle. There are many additional high-performance libraries for these
packages; the builds include modules in FORTRAN as well as C. In this case, a prebuilt
OS-specific distribution is used; pip isn’t part of the process.

Installing additional packages will require administrator privileges. Consequently, we’ll
show the sudo command as a reminder that this is required for Mac OS X and Linux.
Windows users can simply ignore the presence of the sudo command.

Using pip to gather modules

The pip program is part of Python 3.4. It’s an add-on for Python3. To use pip to install a
package, we generally use a command such as the following:

prompt$ sudo pip3.4 install some-package

For Mac OS X or Linux, we need to use the sudo command so that we have administrator
privileges. Windows users will leave this off.

The pip program will search PyPI for the package named some-package. The installed
Python version and OS information will be used to locate the latest-and-greatest version
that’s appropriate for the platform. The files will be downloaded, and the Python setup.py
file that comes with the package will be run automatically to install it.

http://pypi.python.org/
https://pypi.python.org/pypi/Sphinx/1.3b2

For Mac OS X and Linux users, it’s helpful to note that the version of Python that is
required by the OS doesn’t usually have pip configured. A Mac OS X user with the built-
in Python 2.7 and Python 3.4 can generally use the default pip command without any
problems because there won’t be a version of pip configured for Python 2.

In the case where someone has Python 3.3 and Python 3.4, and has installed pip for
Python 3.3, they will have to choose which version they want to work with. Using the
commands pip3.3 or pip3.4 will use one of the pip commands configured for the given
version of Python. The default pip command may link to whichever version was installed
last-something we shouldn’t guess at.

The pip program has a number of additional features to uninstall packages and track
which packages have been added to the initial Python installation. The pip program can
also create installable packages of your new creation.

Using easy_install to add modules

The easy_install package is also part of Python 3.4. It’s a part of the setuptools
package. We use easy_install like this to install a package:

prompt$ sudo easy_install-3.3 some_package

For Mac OS X or Linux, we need to use the sudo command so that we have administrator
privileges. Windows users will leave this off.

The easy_install program is similar to pip—it will search PyPI for the package named
some -package. The installed Python version and OS information will be used to locate a
version that’s appropriate for the platform. The files will be downloaded. One of these
files is the setup.py script; this will be run automatically to finish the installation.

Installing modules manually

In rare cases, we may have a package that isn’t in the PyPI and can’t be located by pip or
easy_install. In this case, we generally have a two- or three-step installation process:

1. Download: We need to securely download the package. In many cases, we can use
https or ftps so that secure sockets are used. In case we can’t secure the connection,
we may have to check md5 signatures on the files to be sure that our download is
complete and unaltered.

2. Unpack: If the Python packages are compressed into a single ZIP or TAR file, we
need to unzip or untar the downloaded file into a temporary directory.

3. Set up: Many Python packages designed for manual installation include a setup.py
file that will do the final installation. We’ll need to run a command like this:

sudo python3 setup.py install

This sequence of steps, including the final command, is what is automated by pip and
easy_install. We’ve shown the Mac OS X and Linux use of the sudo command to assure
that administrator privileges are available. Windows users will simply leave this off.

The setup.py script uses Python’s distutils package to define what must be installed

into the Python library directory structure. The install option states what we want to do
with the package we downloaded. Most of the time, we’re going to install, so this is one of
the most common options.

In rare exceptions, a package may consist of a single module file. There may not be a
setup.py file. In this case, we will manually copy the file to our own site-packages
directory.

Looking at other Python interpreters

This book will focus on a particular implementation of Python called the CPython. What
this means is that Python—the abstract language—can be processed by a variety of
concrete Python runtimes or implementations. The CPython implementation is written in
portable C and can be recompiled for many operating systems.

Python can be embedded into an application. This means that a complex application can
include the entire Python language as a way to write scripts that customize the given
application. One example of this is the Ganglia monitoring system
(http://ganglia.sourceforge.net). Python is part of the system; we can customize the
behavior using Python scripts that will interact with Ganglia components. We won’t be
looking more deeply into these kinds of applications in this book; we’ll focus on
standalone implementations of Python.

There are several alternative Python implementations. In the Installing Python on
Windows section in this chapter, we noted that Iron Python (http://ironpython.net) and
PTVS (http://pytools.codeplex.com) are available. These provide tighter integration with
the .NET framework.

There are still more implementations that we might encounter:

e Jython: This is a version of the Python interpreter that is written in Java and runs on
the Java Virtual Machine (JVM). See http://www.jython.org. This project focuses on
Python 2.7.

e PyPy: This is a version of the Python interpreter written in Python. See
http://pypy.org. The circularity of “Python written in Python” is broken by the
RPython translation toolchain, which creates a very sophisticated implementation of
Python programs. This can provide significant performance improvements for a
variety of long-running applications, such as web servers.

e Stackless: This version of Python has a different threading model from CPython. See
http://www.stackless.com. This version can provide dramatic performance
improvements for multithreaded servers.

Since the Python source is readily available, it’s quite easy to look for optimization
opportunities. The language is relatively simple, allowing experimentation to see what
effect changes in implementation may have.

http://ganglia.sourceforge.net
http://ironpython.net
http://pytools.codeplex.com
http://www.jython.org
http://pypy.org
http://www.stackless.com

Summary

We’ve looked at installing or upgrading Python so that we can work with version 3.3 or
3.4, and we’ve looked briefly at the minor differences between Windows, Mac OS X, and
Linux. The principle difference among the OS variants is that Windows lacks Python,
whereas Mac OS X and Linux generally have a version of Python already installed. There
are few other differences among the operating systems.

We’ve looked at some basic interactions using the REPL. We looked at some simple
expressions and the built-in help() subsystem.

We’ve looked at some ways that the import statement extends the basic capabilities of our
Python runtime environment, and we’ve also introduced the larger Python ecosystem. We
can add to our Python library using the pip (and easy_install) tool. The PyPI is the
central repository for most of the Python extension modules.

In the next chapter, we’ll look at Python’s numeric types in detail. Python numbers form a
kind of “tower” that follows the mathematical notions of integer, rational, real, and
complex numbers. We’ll look at the mathematical operators and some of the standard
libraries for working with numbers.

We’ll also look at some of the more complex data types available, including/alongside
specific tuples, strings, and frozensets. These are relatively simple because they are
immutable. As is the case with ordinary numbers, the values of these more complex
objects don’t change either.

Chapter 2. Simple Data Types

Now we’ll look at a number of data types that are built-in as well as some that are part of
Python’s standard library. We’ll start with Python’s numeric types. These include three
built-in types: int, float, and complex, plus the standard library types Fraction and
Decimal.

We’ll also look at strings, str, and simple collections, tuple. These are more complex
than numbers because they contain multiple items. Since their behavior is less complex
than the kinds of objects we’ll see in later chapters, they serve as a good introduction to
the general concept of sequences in Python.

Note the capitalization of the names of Fraction and Decimal. The built-in type names
start with a lowercase letter. Types that we must import have a module name that starts
with a lowercase letter, but the type name starts with a capital letter. This convention is
widespread, but not universal.

All of the types we’ll look at in this chapter have the common feature of immutability.
This concept applies to the two collections we’ll look at: once built, a string or a tuple
cannot be changed. Rather than change it, we create a new object. In Chapter 6, More
Complex Data Types, we’ll look at collections which can be updated without creating a
new object.

In this chapter, we’ll look at the built-in functions for converting to and from string
representations. This will help us when displaying output or converting input from a string
to a useful Python object.

Note that we’re continuing to play fast and loose with formal Python syntax. We’ll defer a
detailed examination of the syntax rules until Chapter 3, Expressions and Output. For now,
the kinds of simple expression statements we’re focusing on must be restricted to a single
line.

Introducing the built-in operators

Before looking at the various kinds of numbers available, we’ll introduce the Python
operators. The operators fall into three broad groups:

Operators |

Group |

Arithmetic ||+, -, *, **, /, //, %

Bit-oriented

<<’ >>) &) |) B - |

Comparison|<, >, <=, >=, ==, 1=

The differences between these groups are partly subjective. There’s only a small technical
difference in the way the comparison operators work. Most of the operators are binary,
only one (~) is unary, and a few (+, -, *, **) can be used in either context.

The +, -, *, /, and % operators have meanings similar to those used other programming
languages. There is an arithmetic meaning for - and +. Python adds the ** operator when
raising a number to a power. The ** operator takes higher precedence than the unary form
-; this means that -2**4 is -16.

Bit-oriented operators apply only to integers. They also apply to sets. These are
emphatically not logical operators. The actual logical operators are described in Chapter 5,
Logic, Comparisons, and Conditions.

Making comparisons

The comparison operators (<, >, ==, !=, <=, >=) have meanings similar to those used in
other programming languages. The coercion rules apply to comparisons between numbers.
If the objects are of mixed types, one of them will be coerced “up” the numeric tower
from integer to float, or float to complex. The result of a comparison is a Boolean (True or
False) irrespective of the types of the two operands.

The various coercion rules do not apply to strings or other objects. Strings are not
implicitly converted to numbers. 2 '= '2' is true because the integer 2 is not a string '2".

Some popular languages (for example, Java, C++) have primitive types such as int or
long which are not proper objects—they’re not instances of a class—and the rules that
apply to objects do not apply to them. Java allows the == comparison for int objects, but
using the same comparison operator with string objects doesn’t compare the characters of
the two strings, it only compares the references. This is emphatically not the case with
Python. All Python objects are proper instances of a class: the == comparison in Python
strings compares the two strings character by character.

We’ll look at comparisons in more detail in Chapter 5, Logic, Comparisons, and
Conditions.

Using integers

Python integers are objects of the class int. These objects have the largest number of
operators, including all of the arithmetic, bit-oriented, and comparison operators.

Integer values are limited by available memory. This means they can be quite large. We
can easily compute 1,000!, a number with over 2,500 digits. We’ll save the details for
Chapter 8, More Advanced Functions. A number of similarly gargantuan size is:

>>> 2**8530
610749..581824

This is a very large number. We’ve elided most of it. It’s easily represented in Python.

Generally, we provide integer literals in decimal, base 10. We can also write literals in
three other bases: hexadecimal, octal, and binary.

The prefix of ox is the prefix for base 16 values: 0x10 is 16. We can use the letters a-f, as
is typical in many other programming languages; 0xdeadbeef is valid. The prefix 0o (zero
and the letter o) is used for base eight; try to avoid using the maliciously confusing 60
(zero and capital O) for octal values, for example, 033653337357. We can write base two
literal values using the b prefix: 0b10 is 2. The most common use case for non-decimal
numbers is providing hexadecimal values for an array of bytes, and this is relatively rare.

Using the bit-oriented operators

Bit-oriented operators are defined for integers. They’re not defined for complex or
floating-point objects.

The << and >> operators perform bit shifting. 1 << 8, for example, is 256. We’ve shifted
the value 1 to the left 8 bit positions.

The &, |, and » operators compute the bitwise “and”, bitwise “or”, and bitwise “xor” of
two integer values. Here are some examples:

>>> 9 & 5
1
>>> 9 | 5
13
>>> 9 N 3
10

To visualize these operators, we can use the bin() function to see the binary values
involved.

>>> hin(9)
'0b1001'

>>> hin(5)

'Ob101"

Using the bin() function can clarify how the bits of 9|5 combine to create the bits of 13.
The ~ operator is the bitwise two’s complement of an integer value. ~14, for example, is
-15. These are emphatically not logical operators. Logical operators are described in

Chapter 5, Logic, Comparisons, and Conditions.
Tip
Do not confuse a & b with a and b:

® a & b computes a bitwise “and” of the bits in the integers a and b.
e a and b computes the Boolean “and” based on the truth values of a and b.

Using rational numbers

Rational numbers are fractions composed of two integer values. Python doesn’t have a
built-in rational number type. We must import the Fraction class using this:

>>> from fractions import Fraction

This will introduce the Fraction class definition to our global environment. Once we have
this, we can create objects of the class Fraction as follows:

>>> Fraction(355,113)
Fraction(355, 113)

Arithmetic and comparison operators apply to fractions. When doing mixed-type
expressions, fractions fit into the numeric tower above integers and below floating-point
values. Here’s an example of an integer coerced to a fraction:

>>> Fraction(4,2)*3

Fraction(6, 1)

Performing an operation that involves a Fraction value and an int value requires that the
int object is coerced up to the Fraction class.

We can extract the numerator and denominator of a fraction using their attribute names.
Here’s an example:

>>> a= Fraction(355,113)*5
>>> a.numerator

1775

>>> a.denominator

113

We’ve created a Fraction object, a, from an expression involving a Fraction object and
an integer. We’ve then extracted the numerator and denominator attributes of the variable
a.

Using decimal numbers

For currency calculations, we generally use Decimal numbers. Python doesn’t have a
built-in decimal number type. We import the Decimal class using this:

>>> from decimal import Decimal

This will introduce the Decimal class definition to our global environment. We can now
create Decimal objects. It’s important to avoid accidentally mixing Decimal and float
values, because float values are only an approximation. To be sure that becimal values
are exact, we must use only integers or strings.

>>> Decimal("2.72")
Decimal('2.72")

We’ve created a Decimal value from a string. The resulting Decimal object will represent
this exactly, carefully preserving the appropriate decimal places and rounding up or down
as required. For common financial calculations, Decimal is required. Here’s an example:

>>> (Decimal('512.97')+Decimal('5.97'))*Decimal('0.075")
Decimal('38.92050"')

We’ve added two prices, $512.97 and $5.97 and computed a sales tax of 7.5%. The tax is
$38.92050, to be precise. This is generally rounded to $38.92.

If we try this kind of financial calculation with floating-point values, we have a bit of a
problem:

>>> (512.97+5.97)*0.075
38.920500000000004

The floating-point approximations don’t produce an exact answer.

Python coercion rules work well with becimal and int values. We can calculate
Decimal('3.99')*3 and get Decimal('11.97") as the answer.

The coercion rules aren’t implemented by the Decimal and float classes. It might make
some sense for Decimal values to be coerced up to float values. On the other hand, this
might indicate a profound programming error when mixing exact currency values and
floating-point approximations. Since this is ambiguous, and debatable, the general
approach followed by Python is summarized by this line from Tim Peters’ The Zen of
Python:

In the face of ambiguity, refuse the temptation to guess.

Consequently, mixing Decimal and float leads to TypeError exceptions instead of
following coercion up the numeric tower and switching from exact to approximate values.
We must explicitly convert Decimal to float to do mixed-type expressions.

Using floating-point numbers

Floating-point values are instances of the class float. These objects work with arithmetic
and comparison operators. They don’t participate in the bit-oriented operators.

The details of Python floating-point implementations can vary. CPython depends on the
standard C libraries, which should provide reasonably consistent results on a wide variety
of hardware and OS platforms. C libraries generally use IEEE 754 floating-point values;
Python’s float type is the C language double. This means that a float will be a 64-bit
value with (effectively) a 53-bit fraction and an 11-bit exponent. The exponent range is

from 2 0 to 2

We can write floating-point numbers two ways: as digits with a decimal point, as well as
in “scientific” notation:

>>> 6335.437
6335.437

>>> 6.335437E3
6335.437

The E notation shows a power of 10. That means 6.335437E3 is 6.335437x10°

It’s very important to note that floating-point values are an approximation. We can’t
emphasize enough that they’re not exact and should not be used for currency calculations.
Here’s an example of what happens when working with floating-point approximations:

>>> (5**6)**(1/6)
4.999999999999999

S')E=5 _, :

This should not be surprising in any way. Mathematically, () . Since values like 1/6
don’t have exact binary representations, this kind of expression reveals the consequences
of working with approximations.

The fact that floating-point numbers use a binary representation leads to interesting
complications. A number such as 1/6 has no exact decimal representation; we can use
.1666... to indicate that the decimal positions repeat infinitely. However, a number such as
1/5 has an exact decimal representation, 0.2. Neither of these numbers has an exact binary
representation. Since we must use a finite number of bits, we’ll notice slight discrepancies
between idealized values and the finite values produced on a digital computer.

Note that exact equality comparisons between floating-point numbers, while permitted, is
generally not a good idea. In Chapter 5, Logic, Comparisons, and Conditions, we’ll
address how to use a narrow range instead of exact equality. Instead of a == b, we need to
focus on abs(a-b) < .

Using complex numbers

The top of Python’s number tower is of the complex type. It can be thought of as
expressions built from a pair of floating-point numbers: one is a real value, the other is an

N

imaginary value. The imaginary value is multiplied by L=

2+NTI_

When working with complex numbers, we often import the cmath library instead of the
math library. The math.sqrt () function is constrained to work only with float values,
and will raise an exception rather than provide an imaginary value. The cmath.sqrt()
function will provide a proper imaginary value, if required.

. We write (2+3j) to mean

This library shows us that ¢ +1=0 is essentially true:

>>> cmath.e**(cmath.pi*1j)+1
1.2246467991473532e-16j

Note that we used 1j to represent / ~ ™ ~1 1f we try to use the identifier j (without a
number in front of it) it is seen as a simple variable. The value 1j is a complex literal
because it starts with a digit and ends with j.

Since floating-point values have about 53 bits, which is about 16 decimal digits, we can

L&
expect float approximations of irrational values like m and e to be off by about 10 .

The numeric tower

We’ve seen Python’s three built-in numeric types: int, float, complex, plus two more
types—Fraction and Decimal—imported from the standard library. The numbers module
in the standard library provides four base class definitions for the numeric types. We rarely
need to use this module explicitly; it’s a convention that we need when we have to
implement our own numeric types.

The numeric types form a kind of “tower” that parallels the various kinds of numbers seen
in conventional mathematics. The foundation of the tower is integers. Rational numbers
are above integers. Floating-point values are still further up, and complex numbers are at
the top of the tower.

A common expectation is that a language will automatically coerce numeric values to
permit expressions such as 2*2.718 to work properly and produce a useful result. When
multiplying an integer by a float value, we expect integers to be coerced to a floating-point
value.

In order for this to work, there are two general rules applied to the result of a binary
arithmetic operation:

e If both operands are of the same type, the result has that type. For example, 2 **
1024 does not produce a floating-point result. It produces an immense integer.

o If the operands are mixed, one of them will be coerced “up” the numeric tower from
integer — rational — floating-point — complex.

There is one notable exception to the preceding rules. The / and // operators define two
different kinds of division. The / operator provides true division: even integer operands
will yield a floating-point result. For example:

>>> 355/113
3.1415929203539825

The // operator provides floor division: the result will be truncated as if it were an
integer-only division. The resulting type won’t be coerced, but the answer will be
truncated. For example:

>>> 355,/113.
3.1415929203539825
>>> 355,//113.

3.0

The presence of the // operator means that an expression which is designed with integers
in mind will also work correctly with floating-point values. Similarly, we may write an
expression with an informal expectation of floating-point values; by using /, it will also
work with integers.

Note that these coercion rules for numeric types do not apply to strings or other objects.
Strings are not implicitly converted to numbers. The expression '2'+2 results in a
TypeError exception. We’ll look at explicit conversions later, in the Using the built-in

conversion functions section.

The tower metaphor provides a handy way to remember the coercion rules. Given two
values from different levels, the lower-level value is coerced up the tower to the higher-

level values.

The math libraries

The Python library has six modules relevant to mathematical work. These are described in
Chapter 9, Numeric and Mathematical Modules, of the Python Standard Library
document. Beyond this, we have external libraries such as NumPy
(http://www.numpy.org) and SciPy (http://www.scipy.org). These libraries include vast
collections of sophisticated algorithms. For an even more sophisticated toolset, the
Anaconda project (https://store.continuum.io/cshop/anaconda/) combines NumPy, SciPy,
and 18 more packages.

These are the relevant built-in numeric packages:

e numbers: This module defines the essential numeric abstractions. We rarely need this
unless we’re going to invent an entirely new kind of number.

e math: This module has a large collection of functions. It includes basic sqrt(), the
various trigonometric functions (sine, cosine, and so on) and the various log-related
functions. It has functions for working with the internals of floating-point numbers. It
also has the gamma function and the error function.

e cmath: This module is the complex version of the math library. We use the cmath
library so that we can seamlessly move between float and complex values.

e decimal: Import the Decimal class from this module to work with currency values
accurately.

e fractions: Import the Fraction class to work with a precise rational fraction value.

e random: This module contains the essential random number generator. It has a
number of other functions to produce random values in various ranges or with
various constraints. For example random.gauss() produces a Gaussian, normal
distribution of floating-point values.

The three main ways of importing from these libraries are as follows:

e import random: We use this when we want to be perfectly explicit about the origin of
a name elsewhere in our code. We’ll be writing code similar to random.gauss() and
random.randint () using the module name as an explicit qualifier.

e from random import gauss, randint: This introduces two selected names from the
random module into the global namespace. We can use gauss() and randint()
without a qualifying module name.

e from random import *: This will introduce all of the available names in the random
module as globals in our application. This is helpful for exploring and experimenting
at the >>> prompt. This may not be appropriate in a larger program because it can
introduce a large number of irrelevant names.

A less-commonly used feature allows us to rename objects brought in via the import
statement. We might want to use from cmath import sqrt as csqrt to rename the
cmath.sqrt() function to csqrt (). We have to be careful to avoid ambiguity and
confusion when using this import-as renaming feature.

http://www.numpy.org
http://www.scipy.org
https://store.continuum.io/cshop/anaconda/

Using bits and Boolean values

As noted earlier, the bit-oriented operators &, |, A, and ~ have nothing to do with Python’s
actual Boolean operators and, or, not, and if-else. We’ll look at Boolean values, logic
operators, and related programming in Chapter 5, Logic, Comparisons, and Conditions.

If we misuse the bit-oriented operators & or | in place of a logical and or or, things may
appear very peculiar:

>>5>6& 3 >1

True

>>> (5 > 6) & (3 > 1)

False

The first example is clearly wrong. Why? This is because the & operator has relatively
high priority. It’s not a logical connective, it’s more like an arithmetic operator. The &
operator is performed first: 6&3 evaluates to 2. Given this, the resulting expression, 5 > 2
> 1, s True.

When we group the comparisons to perform them first, we’ll get a False for 5>6, and a
True for 3>1. When we apply the & operator the result will be False, which is what we
expected. Using bit operators inappropriately as logical connectives can work if we use
parentheses to be sure that the bit operators are performed last. It’s a very bad idea,
however.

It’s easier, clearer, and altogether better to use the proper Boolean operators shown in
Chapter 5, Logic, Comparisons, and Conditions.

Working with sequences

In this chapter, we’ll introduce Python sequence collections. We’ll look at strings and
tuples as the first two examples of this class. Python offers a number of other sequence
collections; we’ll look at them in Chapter 6, More Complex Data Types. All of these
sequences have common features.

Python sequences identify the individual elements by position. Position numbers start with
zero. Here’s a tuple collection with five elements:

>>> t=("hello", 3.14, 23, None, True)
>>> t[0]

'hello'

>>> t[4]

True

In addition to the expected ascending numbers, Python also offers reverse numbering.
Position -1 is the end of the sequence:

>>> t[-1]
True

>>> t[-2]
>>> t[-5]
"hello'

Note that position 3 (or -2) has a value of None. The REPL doesn’t display the None object,

so the value of t[-2] appears to be missing. For more visible evidence that this value is
None, use this:

>>> t[3] is None
True

The sequences use an extra comparison operator, in. We can ask if a given value occurs in
a collection:

>>> "hello" in t
True

>>> 2,718 in t
False

Slicing and dicing a sequence

We can extract a subsequence, called a slice, from a sequence using more complex
subscript expressions. Here’s a substring of a longer string:

>>> "multifaceted"[5:10]
'facet'

The [5:10] expression is a slice which starts at position 5 and extends to the position
before 10. Python generally relies on “half-open” intervals. The starting position of a slice
is included whereas the stop position is excluded.

We can omit the starting position from a slice, writing [: pos]. If the start value of a slice
is omitted, it’s 0. We can omit the ending, also, writing it as [pos:]. If the stop value of a
slice is omitted, it’s the length of the sequence, given by the 1en() function.

The way that Python uses these half-open intervals means that we can partition a string
with very tidy syntax:

>>> "multifaceted"[:5]
"'multi’

>>> "multifaceted"[5:]
'faceted'

In this example, we’ve taken the first five characters in the first slice. We’ve taken
everything after the first five characters in the second slice. Since the numbers are both
five, we can be completely sure that the entire string is accounted for.

And yes, we can omit both values from the slice: "word"[:] will create a copy of the
entire string. This is an odd but sometimes useful construct for duplicating an object.

There’s a third parameter to a slice. We generally call the positions start, stop, and step.
The step size is 1 by default. We can use a form such as "abcdefg"[::2] to provide an
explicit step, and pick characters in positions 0, 2, 4, and 6. The form "abcdefg"[1::2]
will pick the odd positions: 1, 3, and 5.

The step size can also be negative. This will enumerate the index values in reverse order.
The value of "word"[::-1] is 'drow'.

Using string and bytes values

Python string values are similar—in some respects—to simple numeric types. There are a
few arithmetic-like operators available and all of the comparisons are defined. Strings are
immutable: we cannot change a string. We can, however, easily build new strings from
existing strings, making the mutability question as irrelevant for string objects as it is for
number objects. Python has two kinds of string values:

¢ Unicode: These strings use the entire Unicode character set. These are the default
strings Python uses. The input-output libraries are all capable of a wide variety of
Unicode encoding and decoding. The name for this type is str. It’s a built-in type, so
it starts with a lowercase letter.

e Bytes: Many file formats and network protocols are defined over bytes, not Unicode
characters. Python uses ASCII encoding for bytes. Special arrangements must be
made to process bytes. The internal type name is bytes.

We can easily encode Unicode into a sequence of bytes. We can just as easily decode a
sequence of bytes to see the Unicode characters. We’ll show these two methods in the
Converting between Unicode and bytes section, after we’ve looked at literals and
operators.

Writing string literals

String literals are characters surrounded by string delimiters. Python offers a variety of
string delimiters to solve a variety of problems. The most common literals create Unicode
strings:

e Short string: Use either " or ' to surround the string. For example: "Don't Touch"
has an embedded apostrophe. 'Speak "friend" and enter' has embedded quotes.
In the rare cases where we have both, we can use \ to avoid a quote: ' "Don\ 't
touch," he said.' uses apostrophes as delimiters, and an escaped apostrophe
within the string. While a string literal must be complete on a single line, a '\n" will
expand into a proper newline character internally.

e Long string: Use either """ or ' '' to surround a multi-line string. The string can
span as many lines as necessary. A long string can include any characters except for
the terminating triple-quote or triple-apostrophe.

Python has a moderate number of \ escape sequences to allow us to enter characters that
aren’t possible from a keyboard. If we use ordinary str literals, Python replaces all the
escape sequences with proper Unicode characters. In an ordinary bytes literal, each
escape sequence becomes a one-byte ASCII character.

Many Python programs are saved as pure ASCII text, but this is not a requirement. When
saving a file in ASCII, escapes will be required for non-ASCII Unicode characters. When
saving files in Unicode, then relatively few escapes are required, since any Unicode
character available on our keyboard can be entered directly. Here are two examples of the
same string:

>>> "String with mxr2"

>>> "String with \u03c0\u00d7r\N{superscript two}"

The first string uses Unicode characters; the file must be saved in the appropriate
encoding, such as UTF-8, for this to work. The second string uses escape sequences to
describe the Unicode characters. The \u sequence is followed by a four-digit hex value.
The \N{. ..} escape allows the name of the character. A \U escape—not shown in the
example—requires an 8-digit hex value. The second example can be saved in any
encoding, including ASCII.

The most commonly-used escape sequences are \", \', \n, \t, and \\ to create a quote
inside a quoted string, an apostrophe inside an apostrophe delimited string, a newline, a
tab, and a \ character. There are a few others, but their meanings are so obscure that
numeric codes usually make more sense. For example, \v, should probably be written as
\x0b or \ueoeob; the original meaning behind \v is largely lost to history.

Note that '\ueeeb' is replaced by the actual Unicode character. We also have '\u246b'

r

which is a Unicode glyph, * ¥y ‘, that symbolizes that vertical tab character. Most of the
non-printing ASCII control characters also have these symbolic glyphs.

Using raw string literals

Sometimes, we need to provide strings in which the \ character is not an escape character.
When preparing regular expressions, for example, we prefer not be forced to write \\ to
represent a single \ character. Similarly, when working with Windows filenames, we don’t
want "C:\temp" to have an ASCII horizontal tab character (' \uoees8"') replace the '\t
sequence of characters in the middle of the string literal. We could write "C:\\temp" but it
Seems error-prone.

To avoid this escape processing, Python offers the raw string. We can prefix any of the
previous four flavors of delimiters with the letter r or R. For example, r'\b[a-zA-
Z_1\w+\b', is a raw string. The \ characters will be left intact by Python: the “\b‘
sequences are not translated to ‘\ueees‘ characters.

If we do this without using the r" character as the raw string delimiter, we’ll create a string
literal equivalent to this: '\x08[a-zA-Z_]1\\w+\x08'. This shows how a ‘\b‘ characters
are transformed to ‘\x08°‘ in a non-raw string. Omitting the leading r' leads to a string that
does not represent the regular expression we intended.

Using byte string literals

We may need to include byte strings in our programs as well as Unicode strings. In order
to do this, we use a prefix of b or B in front of the string delimiter. A byte string is limited
to ASCII characters and escape sequences that produce single-byte ASCII characters.

Generally, byte strings focus on the hexadecimal escape, \xhh, with two hex digits for
byte strings. We can also use the octal escape, \odd, with octal digits.

We can also prepare raw byte strings using any combination of r or R paired with b or B as
a prefix to the string. Here’s a regular expression in ASCII bytes:

>>> rb"\\x[0-9a-fA-F]+"
b'\\\\x[0-9a-fA-F]+'

The output is in Python’s canonical notation using lengthy escapes for the ‘* regular
expression pattern.

To be fastidious, we are also able to use a u" prefix to indicate that a given string is
explicitly Unicode. This is relatively rare because it restates the default assumption. It can
come in handy in a program where byte strings predominate; the use of u"some string"
can make the Unicode literal stand out from numerous b"bytes" literals.

Using the string operators

Two of the arithmetic operators, + and *, are defined for both classes of string objects, str
and bytes. We can use the + operator to concatenate two string objects, creating a longer
string. Interestingly, we can use the * operator to multiply a string and an integer to create
a longer string: "="*3 is '===",

Additionally, adjacent string literals are combined into a larger string during code parsing.
Here’s an example:

>>> "adjacent " 'literals'
'adjacent literals'

Since this happens at parse time, it only works for string literals. For variables or other
expressions, there must be a proper + operator.

All of the comparison operators work for strings. The comparison operators compare two
strings, character by character. We’ll look at this in detail in Chapter 5, Logic,
Comparisons, and Conditions.

We cannot use string operators with mixed types of operands. Using "hello" + b"world"
will raise a TypeError exception. We must either encode the Unicode str into bytes, or
decode the bytes into a Unicode str object.

Strings are sequence collections. We can extract characters and slices from them. Strings
also work with the in operator. We can ask if a particular character or a substring occurs in
a string like this:

>>> "i" in "bankrupted"
False

>>> "pank" in "bankrupted"
True

The first example shows the typical use for the in operator: checking to see if a given item
is in the collection. This use of in applies to many other kinds of collections. The second
example shows a feature that is unique to strings: we’re looking for a given substring in a
longer string.

Converting between Unicode and bytes

Most of the Python I/O libraries are aware of OS file encodings. When working with text
files, we rarely need to explicitly provide encoding. We’ll examine the details of Python’s
input-output capabilities in Chapter 10, Files, Databases, Networks, and Contexts.

When we need to encode Unicode characters as a string of bytes, we use the encode()
method of a string. Here’s an example:

>>> 'String with mxr2'.,encode("utf-8")

b'String with \xcf\x80\xc3\x97r\xc2\xb2'

We’ve provided a literal Unicode string, and encoded this into UTF-8 bytes. Python has
numerous encoding schemes, all defined in the codecs module.

To decode the Unicode string represented by a string of bytes, we use the decode()
method of the bytes. Here’s an example:

>>> b'very \xe2\x98\xba\xef\xb8\x8e'.decode('utf-8")

'very o

We’ve provided a byte string with eleven individually hex-encoded bytes. We decoded this
to include six Unicode characters.

Note that there are several aliases for the supported encodings. We’ve used "utf-8" and
"UTF-8". There are still more explained in the codecs chapter of the Python Standard
Library.

The ASCII codec is the most commonly used of these. In addition to ASCII, many strings
and text files are encoded in UTF-8. When downloading data from the Internet, there’s
often a header or other indicator that provides the encoding, in the rare case that it’s not
UTF-8.

In some cases, we have a document which in bytes, written in traditional ASCII. To work
with ASCII files, we convert the bytes from the ASCII encoding to Unicode characters.
Similarly, we can encode a subset of Unicode characters using the ASCII encoding instead
of UTF-8.

It’s possible that a given sequences of bytes does not properly encode Unicode characters.
This may be because the wrong encoding was used to decode the bytes. Or it could be
because the bytes are incorrect. The decode () method has additional parameters to define
what to do when the bytes cannot be decoded. The values for the errors argument are
strings:

e "strict" means that exceptions are raised. This is the default.

e "ignore" means that invalid bytes will be skipped.

e "replace" means that a default character will be inserted. This is defined in the
codecs module. The '\ufffd' character is the default replacement.

The choice of error handling is highly application-specific.

Using string methods

A string object has a large number of method functions. Most of these apply both to str
and bytes objects. These can be separated into four groups:

Transformers: which create new strings from old strings

Creators: which create a string from a non-string object(s)

Accessors: which access a string and return a fact about that string

Parsers: which examine a string and decompose the string, or create new data
objects from the string

The transformer group of method functions includes capitalize(), center(),
expandtabs(), 1just(), lower (), rjust(), swapcase(), title(), upper(), and zfill().
These methods all make general changes to the characters of a string to create a
transformed result. Methods such as lower () and upper () are used frequently to
normalize case for comparisons:

>>> "WoRd".lower ()
'word'

Using this technique allows us to write programs which are more tolerant of character
strings with minor errors.

Additional transformers include functions such as strip(), rstrip(), 1strip(), and
replace(). The functions in the strip family remove whitespace. It’s common to use
rstrip() on input lines to remove any trailing spaces and the trailing newline character
which might be present.

The replace() function replaces any substring with another substring. If we want to do
multiple independent replacements, we can do something like this.

>>> ll$12, 345 . OOII . replace(|I$I|, n ll) . replace(|l, l|’ Illl)
'12345.00'

This will create an intermediate string with the “$” removed. It will create a second
intermediate string from that with the , character removed. This kind of processing is
handy for cleaning up raw data.

Accessing the details of a string

We use accessor methods to determine facts about the string; the results may be Boolean
or integer values. For example, the count () method returns a count of the number of
places an argument substring or character was found in the object string.

Some widely-used methods include the find(), rfind(), index(), and rindex()
methods which will find the position of a substring in the object string. The find()
methods return a special value of -1 if the substring isn’t found. The index() methods
raise a ValueError exception if the substring isn’t found. The “r” versions find the right-
most occurrence of the target substring. All of these methods are available for both str
and bytes objects.

The endswith() and startswith() methods are Boolean functions; they examine the
beginning or ending of a string. Here are some examples:

>>> '"pleonastic".endswith("tic")

True

>>> "rediscount".find("disc")
2

>>> "postlaunch".find("not")
-1

The first example shows how we can check the ending of a string with the endswith()
method. The second example shows how the find() method locates the offset of a given
substring in a longer string. The third example shows show the find() method returns a
signal value of -1 if the substring can’t be found.

Additionally, there are seven Boolean pattern-matching functions. These are isalnum(),
isalpha(), isdigit(), islower(), isspace(), istitle(), and isupper (). These will
return True if the function matches a given pattern. For example, "13210".isdigit() is
True.

Parsing strings into substrings

There are a few method functions which we can use to decompose a string into substrings.
We’ll hold off on looking at split(), join(), and partition() in detail until Chapter 3,
Expressions and Output.

As a quick overview, we’ll note that split() splits a string into a sequence of strings
based on locating a possibly repeating separator substring. We might use an expression
such as '01.03.05.15"'.split('.") to create the sequence ['01', '03', '05', '15']
from the longer string, by splitting on the ‘. ‘ character. The join() method is the inverse
of split(). That means that "-".join(['01', '03', '05', '15']) will create a new
string from the individual strings and the separator; the result is '01-03-05-15". The
partition can be viewed as a single-item split to separate the head of a string from the tail.

Python’s assignment statement deals very gracefully with such a method that returns more
than one value. In Chapter 4, Variables, Assignment and Scoping Rules, we’ll look at
multiple assignment more closely.

The split () method should not be used to parse filenames, nor should the join() method
be used to build filenames. There’s a separate module, os. path, which handles this
properly by applying OS-specific rules.

Using the tuple collection

The tuple is one of the simplest collections available in Python. It is one of the many
kinds of Python sequences. A tuple has a fixed number of items. For example, we might
work with (x, y) coordinates or (r, g, b) colors. In these cases, the number of elements in
each tuple is fixed by the problem domain. We don’t want the flexibility of a collection
that can vary in length.

Generally, we’ll include () around a tuple to set it apart from the surrounding syntax.
This isn’t always required; Python creates tuple objects implicitly in some common
contexts. However, it is always a good idea. If we write an assignment statement like this:

a=2, 3

This statement will implicitly create a 2-tuple, (2, 3), and assign the object to the
variable a.

The tuple class is part of Python’s family of Sequence classes; we can extract the items of
a tuple using their positional indices. The str and byte classes are also examples of
Sequence. In addition to simple index values, we can use slice notation to pick items from
a tuple.

The value () is a zero-length tuple. To create a singleton tuple, we must use () and
include a , character: this means that (12,) is a singleton tuple. If we omit the , character
we’ve written an expression, not a singleton tuple.

A trailing comma is required for a singleton tuple. An extra comma at the end of a tuple is
quietly ignored everywhere else: (1, 1, 2) isequalto (1, 1, 2,).

The tuple class offers only two method functions: count () and index (). We can count
the number of occurrences of a given item in a tuple, and we can locate the position of an
item in a tuple.

The None object

One very simple kind of Python object is the None object. It has few methods, and there’s
only a single instance of this object available. It is a handy way to identify something as
missing or not applicable. It’s often used as a default value for optional parameters to a
function.

The None object is a singleton; there can be only one. This object is immutable: we can’t
change it in any way.

With the interactive use of Python, the REPL doesn’t print the None object. For example,
when we evaluate the print () function, the proper result of this function is always None.
The side-effect of this function is to print things on our console. Looking forward to
Chapter 3, Expressions and Output, we’ll give this quick example of a function that
returns None:

>>> g = print("hello world")
hello world
>>> a

>>> a 1S None
True

We’ve evaluated the print () function and saved the result of the print function in the a
variable. The visible side-effect of printing is to see the string value displayed on the
console. The result is the None object, which is not printed. We can, however, use the is
comparison operator to see that the value of a really is the None object.

The consequences of immutability

Python has two broad flavors of objects: mutable and immutable. A mutable object has an
internal state that can be updated by using operators or method functions. An immutable
object’s state cannot be changed.

The canonical examples of immutable objects are the numbers. The number 2 must always
have a single, immutable value midway between 1 and 3. We can’t change the state of 2 to
make it 3 without making a mockery of the idea of mathematical truth.

In Chapter 6, More Complex Data Types, we’ll look at a number of mutable data
structures. The most important three mutable collections are set, 1ist, and dict. These
objects can have items added, and removed; we can change the state of the object.

In addition to numbers being immutable, three other common structures are also
immutable: str, bytes, and tuple. Because strings and bytes are immutable, the string
manipulation methods will always create a new string object from one or more existing
string objects.

This means we cannot mutate characters or substrings within a longer string. We might
think we need to attempt something like this:

>>> word="vokalizers"
>>> word[2]= "c"

But this can’t work because a string object is immutable. We always build new strings
from the old string’s parts. We do it like this:

>>> word= word[:2]+"c"+word[3:]

This works by extracting pieces of the original string and including new characters mixed
with the old.

Using the built-in conversion functions

We have a number of conversion functions in the various types of data we’ve seen in this
chapter. Each of the built-in numeric types has a proper constructor function. As with
many Python functions, each of these has a number of different kinds of arguments it can
handle:

e int(): Creates an int from a wide variety of other objects

int(3.718) for another number

int('48879") for a string in base 10

int('beef', 16) for a string in the given base—16 in this example

The int () function can ignore the extra prefix characters on numbers written in
Python literal syntax: int('0b1010',2), int('0xbeef', 16), and
int('0o0123',8)

O O O o

e float(): Creates a float from other objects

o float(7331) for another number
o float('4.8879e5') for a decimal string

e complex(): Creates complex values from a variety of objects

o complex(23) creates (23+0j)
o complex(23, 3) creates (23+3j)
o complex('23+2j') creates (23+2j)

We can convert single numbers, pairs of numbers, and even some strings into Fraction
objects:

® Fraction(2,3): This is the most common way to create Fraction objects.

® Fraction(2.718): This creates a value Fraction(765048986699563,
281474976710656). This shows how floating-point values are actually
approximations. If we wanted a more accurate value, we should do a meaningful
conversion ourselves, using Fraction (2718, 1000), which would avoid the error bits
present in many floating-point values.

e Fraction("3/4"): This also works very nicely to create a proper Fraction object.

When we convert a float value to a Fraction, the results look unusual. However,
considering that float values are an approximation, the Fraction value reveals the nature
of the approximation.

We can also convert integers, strings, and floats to Decimal objects:

e Decimal(2): Interestingly, this produces becimal('2") as the result. This shows us
that the preferred format for becimal values is strings.

e Decimal('2.718"): This will produce the expected value. This is generally how we
create Decimal objects.

e Decimal(2.718): This will produce a value that reflects floating-point
approximations:

Decimal('2.717999999999999971578290569595992565155029296875"'). Because of
this, we generally avoid creating Decimal objects from float objects.

We have a number of additional conversions from numbers to various kinds of strings:
bin(), oct(), hex(), and str() produce strings in base 2, 8, 16, and 10 respectively. We
can also use various formatting features of numbers using "{0:b}".format (x) for binary,
"{0:0}".format (x) for octal, and "{0:x}".format (x) for hexadecimal. If we include the
“#” modifier in the format string, we have considerable flexibility in the strings produced.
For example:

>>> "{O:x}".format(12)
ICI

>>> "{0:#x}".format(12)
'oxc'

These functions show many different ways to create numbers from strings and create
formatted strings from numbers.

Summary

We’ve looked at some core data types available in Python. We’ve looked at five different
kinds of numbers, including integers, floating-point, complex, Fraction and Decimal.
Each fills a different niche. Three of these are built-in, the other two must be imported
from the standard library.

We’ve also looked at three different kinds of collections. The tuple is a simple sequence
of items with relatively few methods. str is a Unicode string, which has several methods
for creating new strings as transformations of existing strings. bytes is a byte string,
which also has a variety of methods. We can decode bytes to create Unicode strings. We
can encode Unicode strings into bytes.

We’ve touched on how the import statement is used to introduce new types and new
modules. This will add features from the standard library.

We’ve also looked at a number of functions to convert various numeric types. Many of
these functions also convert strings to numbers. We’ll make heavy use of int() and
float () to convert strings to numbers. The reverse—converting numbers to strings—can
be done with the str () function. It can be done better, however, with the formatting tools
we’ll look at in the next chapter.

In Chapter 3, Expressions and Output, we’ll build on these basic concepts. We’ll look in
more depth at Python language syntax. We’ll also look at functions for creating nicely
formatted output. This will allow us to write simple programs. In Chapter 4, Variables,
Assignment and Scoping Rules, we’ll add even more essential language features so that we
can write more sophisticated programs.

Chapter 3. Expressions and Output

Expressions are central to Python programming. As noted in Chapter 1, Getting Started,
Python has a rich collection of operators and built-in functions. In this chapter, we’ll
summarize the relationship between data types and the operators they support.

Perhaps the most fundamental program possible is one that performs a calculation and
displays output. To demonstrate this, we’ll look at the print () function in this chapter.
We’ll expand on the basics by looking at a number of ways to produce nicely-formatted
text output.

We’ll need to look in detail at the Python syntax rules. This will be essential for writing
scripts with more complex sequences of statements. It will also set the stage for looking at
compound statements in Chapter 5, Logic, Comparisons, and Conditions.

This chapter will also demonstrate some additional string processing techniques. We’ll
summarize some of the standard library modules that are focused on string processing.
We’ll look closely at the re module; we use this to build regular expressions that help
parse string input. Between the built-in methods of the str class, and the re module, we
can handle a wide variety of text input conversion.

Expressions, operators, and data types

Python expressions are built from operators and operands. In Chapter 2, Simple Data
Types, we introduced some of the basics of number and string operands, and looked at the
variety of operators. We’ll summarize the details here so that we can address some
additional operator features.

Our numeric operands form a “tower”, with types including:

i math modules and built-in functions.
Actually closer to 2™ gistinct values.

Type Cardinality Number of operators

Ideally, the most distinct values built from

a pair of irrational numbers, coxoo, . . S
complex p The fewest operators; only arithmetic, some built-in

128 lfunctions, and the cmath module.

Actually (float X float) or about 2

values.

Ideally this is a rational number union
float with irrational numbers (co+00). Arithmetic operators, comparisons. Many additional

Ideally, these are rational numbers (coxoo),

fractions.FractionfIacryally only limited by available
memory to represent two integers.

Arithmetic operators, comparisons, built-in
functions.

Ideally, rational numbers. Arithmetic operators, comparisons, built-in

decimal.Decimal
Actually only limited by memory

Ideally, natural numbers, . Arithmetic operators, comparisons, plus bit-handling

operators, libraries and built-in functions.

int
Actually limited only by memory.

|functions.

The Fraction and Decimal class definitions must be imported, the other three classes are
built-in. We typically use a statement such as from fractions import Fraction.

The idea behind the tower is that many arithmetic operators coerce operands up the tower
from integer to float to complex. Most of the time, this fits with our implicit mathematical
expectations. We would be unhappy if we had to write explicit conversions to compute
2.333*3. Python’s arithmetic rules assure us that we’ll get the expected floating-point
result.

The Decimal class doesn’t fit well with the implicit coercion rules: in the rare case of
trying to do arithmetic between float and Decimal, it’s unclear how to go about it. An
attempt to make a Decimal value from a float value will expose tiny errors because
float values are an approximation. An attempt to make a float value from a Decimal
value subverts the Decimal objective of yielding exact results. In the face of this
ambiguity, an exception will be raised. This means that we’ll need to write explicit
conversions.

String objects are not implicitly coerced into numeric values. We must explicitly convert a

string to a number. The int (), float(), complex(), Fraction(), and Decimal()
functions convert a string to a number object of the appropriate class.

We can group operators into a number of categories.

e Arithmetic: +, -, *, **, /, //, %
e Bit-oriented: <<, >>, &, |, A, ~
e Comparison: <, >, <=, >= == I=

The bit-oriented operators are supported by operands of the int class. The other number
classes don’t have useful implementations of these operators. The bit-oriented operators
are also defined for sets, something we’ll look at in Chapter 6, More Complex Data Types.

Using operators on non-numeric data

We can apply some of the arithmetic operators to strings, bytes, and tuples. The results are
focused on creating larger strings or larger tuples from smaller pieces. Here are some
examples of this:

>>> "Hello " + "world"
'"Hello world'

>>> "<4>"*Y
'<><HS<HS<HS!

>>> "<4>"* D
i

In the first example, we applied + to two strings. In the second example, we applied *
between a str and an int. Interestingly, Python produces a string result by concatenating

several copies of the original string object. Multiplying by any negative number creates a
zero-length string.

The print() function

When working with Python’s REPL, we can enter an expression and Python prints the
result. In other contexts, we must use the print () function to see results. The print ()
function implicitly writes to sys.stdout, so the results will be visible on the console
where we ran the Python script.

We can provide any number of expressions to the print () function. Each value is
converted to a string using the repr () function. The strings are combined with a default
separator of ' ' and printed with a default line ending of '\n'. We can change the
separator and line ending characters. Here are some examples of this:

>>> print("value", 355/113)

value 3.1415929203539825

>>> print("value", 355/113, sep='="')

value=3.1415929203539825

>>> print("value", 355/113, sep='=', end='!'\n'")

value=3.1415929203539825!

We’ve printed a string and the floating-point result of an expression. In the second
example, we changed the separator string from a space to '=". In the third example, we

changed the separator string to '=" and the end-of-line string to ' '\n".

Note that the sep and end parameters must be provided by name; these are called
keyword arguments. Python syntax rules require that keyword argument values are
provided after all of the positional arguments. We’ll examine the rules in detail in Chapter
7, Basic Function Definitions.

We can use , as a separator to create simple comma-separated values (CSV) files. We

can also use \t to create a kind of CSV file with a tab character as the column separator.
The csv library module does an even more complete job of CSV formatting, specifically
including proper escapes or quoting for data items which contain the separator character.

To write to the standard error file, we’ll need to import the sys module, where that object
is defined. For example:

import sys

print("Error Message", file=sys.stderr)

We’ve imported the sys module. This contains definitions of sys.stderr and sys.stdout
for the standard output files. By using the file= keyword parameter, we can direct a
specific line of output to the stderr file instead of the default of stdout.

This can work well in a script file. Using the standard error file doesn’t look very
interesting at the REPL prompt since, by default, both standard output and standard error
go to the console. Some IDE’s will color-code the standard error output. We’ll look at
many ways to open and write to other files in Chapter 10, Files, Databases, Networks, and
Contexts.

Examining syntax rules

There are nine fundamental syntax rules in section 2.1 of the Python Language Reference.
We’ll summarize those rules here:

1.

There are two species of statements: simple and compound. Simple statements must
be complete on a single logical line. A compound statement starts with a single
logical line and must contain indented statements. The initial clause of a compound
statement ends with a : character. It’s possible, using rules 5 and 6, to join a number
of physical lines together to create a single logical line.

o Here’s a typical simple statement, complete in a single logical line:
from decimal import Decimal

o Here’s a typical compound statement with a nested simple statement, spread
across two logical lines:

if a > b:
print(a, "is larger")
A physical line ends with \n. In Windows, \r\n is also accepted.
A comment starts with # and continues to the end of the physical line. It will end the
logical line.

o Here’s an example of a comment:

from fractions import Fraction # We'll use this to improve accuracy

A special comment can be used to annotate the file encoding. This is generally not
needed, since most IDE’s and text editors handle the file encoding politely. We
should generally save Python files in UTF-8 encoding. Older files may be saved in
ASCIL.

Physical lines can be joined explicitly into a logical line using the \ as an escape
character in front of the physical end-of-line character. This is rarely used and
generally discouraged.

Physical lines can be joined implicitly into a logical line using (), [], or {}; these
must pair properly for the logical line to be complete. An expression beginning with
(can span multiple physical lines until there is a matching). This is used frequently
and is strongly encouraged.

o Here’s an example of a statement that relies on () to join four physical lines into
one logical line:

print (
"big number",
2 ** 2048

)

Blank lines contain only spaces, tabs and newlines. The interactive REPL uses a
blank line to end a compound statement; the REPL is the only context in which a

blank line is meaningful.

8. Leading whitespace is required to properly group statements inside the clauses of
compound statements. Either spaces or tabs can be used to indent. Consistency is
essential. A four space indent is widely used and strongly encouraged.

9. Except at the beginning of the line,—where it determines nesting of compound
statements—whitespace can be used freely between tokens. Note that there are some
preferences regarding precisely how spaces are used within a statement; the Python
Enhancement Proposal (PEP) number 8 provides some advice. See

https://www.python.org/dev/peps/pep-0008/ for fodder for endless disputes.

Perhaps the most important two rules are rule 6 and rule 8. Rule 6 means that it is very
common to use (), [], and {} to force multiple physical lines to be joined into a single
logical line.

Rule 8 requires that our indentation is done consistently: indents and outdents must be
matched. While it’s legal to use tabs, spaces, and any haphazard—but consistent—mix of
tabs and spaces, four spaces is highly recommended. Tabs are discouraged because they’re
hard to distinguish from spaces. Most editors can be set to replace the tab key with four
spaces. A good text editor can recognize the basics of Python syntax and can handle
indents and outdents gracefully.

Tip
Use () to allow a statement to span multiple physical lines; avoid \ at end-of-line.
Use a four space indent.

Also note that Python will merge adjacent strings when parsing the source. We can have
code that looks like this:

>>> message = ('"Hello"
"world")

>>> message

'Helloworld'

This assignment statement used a gratuitous () pair to allow the logical line to span
multiple physical lines. The expression is simply two adjacent strings, "Hello" and
"world". When Python parses the source text, these two adjacent strings are merged; only
a single string is used when evaluating the statement.

Additionally, note that the REPL prompt changed from >>> to ... because the REPL
recognized the first physical line as a partial statement. This is a handy reminder that our
statement isn’t complete. When the final) was parsed, the statement was complete and the
prompt switched back to >>>.

https://www.python.org/dev/peps/pep-0008/

Splitting, partitioning, and joining strings

In Chapter 2, Simple Data Types, we looked at different processing methods for a string
object. We can transform a string into a new string, create strings from non-string data,
access a string to determine properties or locations within the string, and parse a string to
decompose it.

In many cases, we need to extract elements of a string. The split () method is used to
locate repeating list-like structures within a string. The partition() method is used to
separate the head and tail of a string.

For example, given a string of the form "numerator=355, denominator=115" we can use
these two methods to locate the various names and values. Here’s how we can decompose
this complex string into pieces:

>>> text="numerator=355, denominator=115"
>>> text.split(",")

['numerator=355"', 'denominator=115']
>>> jtems= _

>>> jtems[Q].partition("=")
('numerator', '=', '355"')

>>> jtems[1].partition("=")
('denominator', '=', '115")

We’ve used the split (", ") method to break the longer string on each , character,
creating a list object which has two substrings. The REPL automatically assigns all
expression results to a variable named _. We assigned the object to the items variable
because the value of _ gets overwritten by each expression statement.

We used the partition("=") method on each item in the items variable to break the
assignment down into name, =, and value. A more complex application would probably
perform more complex processing on the names and values.

The join() method is the inverse of the split () method. This works with a sequence of
string objects to create a single long string from many smaller strings. Here’s an example
of using a tuple of strings to create a longer string:

>>> options = ("x", "y", "z")

>>> "|", join(options)

'xlylz!

We’ve created a sequence of three strings and assigned it to a variable named options. We
then used the string " |" to join the items in the options sequence. The result is a longer
string with the items separated by the given string.

The split() and join() methods work well with singletons. If we try to split a single
item with no punctuation, we get a sequence with a single item. If we join a singleton
item, the separator will not be used.

Python’s string methods give us the tools to handle a variety of string parsing and
decomposition. For a more general solution, we’ll have to resort to even more powerful

tools. We’ll look at the regular expression module, re, later.

If we want to create complex strings, we use the format () method. We’ll look at this next.

Using the format() method to make more readable
output

Sophisticated string creation can be done with the format () method. We create a template
string and values which can be plugged into the template. Here’s an example of how this
works:

>>> =42

>>> "{0:d}°C is {1:.1f}°F".format(c, 32+9*c/5)

'42°C is 107.6°F'

We’ve created a variable, c, with a value of 42. We’ve used a template, "{0:d}°C is
{1:.1f}°F", to format two values. The argument value with an index of 0 is c, the
argument value with an index of 1 is the value of the expression 32+9*c/5.

The template string includes literal characters, plus replacement fields. Each replacement
field is surrounded by {}. The replacement field has two components with a syntax of
{index:specification}. The index component identifies which item is taken from the
positional arguments to the format () method. The specification component shows us how
to format the selected object.

The example gives two specifications. One specification is the character d, which is the
decimal integer conversion. The other is the slightly more complex .1f, which is a
floating-point conversion with one digit to the right of the decimal point.

There is considerable sophistication available in the format specifications. There are eight
fields to a format specification. The syntax gloss looks like this:

[[fill]align][sign][#][0][width][,][.precision][type]

We’ve surrounded each field with [] to group the names visually. Note that all the fields
are actually optional and have default values.

We’ll summarize the fields from right to left in order of importance.

e Type: This specifies the overall type of conversion. Depending on the kind of Python
object, there are a number of type codes available:

o For string values, the type code of s is used.

o For integer values, type codes of d, n, b, o, x, or X can be used. These provide
decimal, locale-aware numbers, binary, octal, or hexadecimal output.

o For float values, type codes are e, E, f, F, g, G, n, or %. The e formats provide
explicit exponents. The f codes show float values with no exponent. The g
values are called general and choose e or f, depending on the size of the
number. The n code is locale-aware, using the locale settings for floating-point
presentation. The % multiplies by 100 and includes the % symbol.

e Precision: The .precision value is only used for floating-point formats. It’s the
number of positions to the right of the decimal point.
e The, separator: If a , character is used, then US-style , as 1,000’s separators are

included. This isn’t locale-aware, so it can’t be overridden by the OS and the Python
locale module.

e Width: If omitted, the number is formatted as wide as necessary. If provided, the
number is filled out to this width. By default, the fill uses leading spaces, but this can
be changed by providing values for the fill and align fields.

e 0: This forces filling to the required width with leading zeroes. This is the same as a
fill and align of o-=.

e #: This is used with b, o, and x formatting to include a prefix of ob, 00, or 6x in front
of the number.

e Sign: By default, positive numbers have no sign and negative numbers have a leading
-. Providing a sign field of + means that all signs are shown explicitly. Providing a
sign field of - means that an extra space is included for positive numbers, assuring
that positive and negative numbers will align in columns when printed using a fixed-
width font.

e Fill and align: This fills up the space to the value of the width field. If we provide
align without a specific fill character, the default character is a space. We can’t
provide a fill character on its own, though. There are four codes we can use:

< or fill< will push the data to the left, and the filling will be on the right.

> or fill> will push the data to the right, the fill character will be used on the left.
A or fillr will center the data, filling both left and right.

= or fill= will put the sign first, and the fill character will be used after the sign.
This will make the signs more prominent in a column of numbers.

O O O o

Here’s an example that uses a fairly complex format specification:

>>> amount=Decimal("234.56")
>>> "Pay: ${0:*>10n} dollars".format(amount)
'Pay: $****234.56 dollars'

We’ve created an object, amount, with a Decimal value. We then used a format
specification of *>10n on this number. This used leading * characters to fill out the
number to 10 characters.

Summary of the standard string libraries

Python’s standard library offers a number of modules with additional string processing
features.

string: The string module contains constants that decompose the ASCII characters
into letters, numbers, whitespace, and so on. It contains the full definition of the
formatter that is used by the str.format () method. We’ll look at this in the next
section. It also contains the Template class which defines a string template into
which values can be interpolated.

re: The regular expression library allows us to define a pattern that can be used to
parse input strings. We’ll look at this in the next section.

difflib: The difflib module is used to compare sequences of strings, typically
from text files. There are a number of comparison algorithms available in this
module.

textwrap: We can use the textwrap module to format large blocks of text.
unicodedata: The unicodedata module provides functions for determining what
kind of Unicode character is present. Unicode Standard Annex 44 defines a collection
of properties that apply to the Unicode characters. One commonly-used function is
the general category of a character; this includes simple Latin rules like “Lu” for
uppercase letter or “Nd” for decimal number. The general category codes also include
“Sk” which is for non-letter like modifier symbols.

stringprep: This is an implementation of RFC 3454, which prepares Unicode text
strings in order to support sensible string comparisons.

Using the re module to parse strings

Regular expressions give us a simple way to specify a set of related strings by describing
the pattern they have in common. A regular expression is an element of set theory that
could (in theory) define the set of all possible related strings. The theoretical matching
process would be a quick check to see if a given string in this set of all possible strings is
generated by the expression. Since the set of all possible strings generated from a pattern
could potentially be infinite, this isn’t how things work in practice.

When we use the re module, we generally do three things. Firstly, we specify the pattern
string. Secondly, we compile the pattern into an object that efficiently determines if and
where a given string matches the pattern. Finally, we repeatedly use the pattern object to
efficiently match, search, or parse the given input strings.

As a concrete example, we need to process input which contains lines like this: Birth
Date: 3/8/1987 or Birth Date: 1/18/59. Note that the number of digits in each date
and the amount of whitespace is allowed to vary.

We may perform any of the following three common kinds of processing:

¢ A matching regular expression might be Birth Date:\s+\d+/\d+/\d+. The \s+
subexpression means one or more spaces. The \d+ subexpression of this means one
or more digits. A match pattern is usually designed to match the whole string.

¢ A searching regular expression might be \d+/\d+/\d+. This search pattern includes
one or more digits, \d+, and literal punctuation, /. This expression describes a
substring that can be found somewhere within the given string.

e A parsing pattern separates the various digit groups from the surrounding context.
This is a slight modification to one of the previous examples to include (), that
specifies what to capture. We might use (\d+)/(\d+)/(\d+) to show that the digit
groups should be extracted for further processing.

We can accomplish these matching, searching, and parsing operations with the re module
in Python.

Using regular expressions

The general recipe for using regular expressions in a Python program has three essential
steps. Of course, we must use import re to include the required module. The three steps
are:

1. Define the pattern string. This will almost always be a raw string, starting with r",
because the regular expression string will be full of \ characters that we don’t want to
be treated as escapes by Python. Because \ begins a Python language escape, if we
want to write a standalone \ character, we have to double them up in a non-raw
string. It is better to use a raw string to write r"\d+/\d+/\d+" than \\d+/\\d+/\\d+.

2. Evaluate the re.compile() function to create a pattern object. The resulting object
will do the real work of matching a given target string against the regular expression
pattern object.

We can combine the pattern and the compile in one statement like this:

>>> date_pattern = re.compile(r"Birth Date:\s+(.*)")

3. Use the compiled pattern object to match or search the candidate strings. The result
of a successful match or search will be a Match object. We can then use the match
object, where necessary, to extract fields. For example:

>>> match = date_pattern.match("Should Not Match")
>>> match

>>> match = date_pattern.match("Birth Date: 3/8/87")
>>> match

<_sre.SRE_Match object at 0X82e60>

In the first example, the date_pattern.match() expression returned None because
the given string didn’t match the regular expression. In the second example, the given
string did match the regular expression pattern, and a Match object was created. If our
regular expression is used for parsing, we’ll interrogate the Match object to get the
various substrings.

When we have a Match object, it can have captured substrings that match parts of the
overall pattern. We’ll usually make use of the various group() methods to get substrings.
Here are some examples:

>>> match.group()
'Birth Date: 3/8/87'
>>> match.group(1)

'3/8/87"
>>> match.groups()
('3/8/87',)

In the first example, we saw all of the matching content. In the second example, we saw
the value of group number one, the first portion of the regular expression wrapped in ().
In the final example, we saw all ()-wrapped groups in the regular expression. Since there
was only one such group, the value of groups() is a single-item tuple with matching text.

Creating a regular expression string

There are numerous rules for creating regular expression patterns, and we’ll look at a few
of them here. The definitive list is in the Python Standard Library documentation for the
re module, in section 6.2.1. For more information on this topic, see Mastering Python
Regular Expressions from Packt Books. See https://www.packtpub.com/application-
development/mastering-python-regular-expressions.

First we’ll look at the “atomic” regular expressions. Then we’ll look at the rules for
combining regular expressions into a larger regular expression. Here are some simple,
atomic regular expressions:

e Any single character. With a few exceptions, this means just about any printable
character. The exceptions are the characters which have special meaning in the
regular expression language, including ., *, ?, (,), [,], | among others.

https://www.packtpub.com/application-development/mastering-python-regular-expressions

e A . matches any character. To match a period, the \ escape character is used: \.
matches a period.
e Some escape sequences match whole classes of characters.

o \d matches any digit. \D matches any non-digit character.

o \s matches any whitespace character. \S matches any non-space character.

o \w matches any word character. \w matches any non-word character. By default,
these follow the Unicode rules. We can override this to follow a considerably
simpler set of ASCII-only rules.

There are some suffixes that we can put after a regular expression.

e A * suffix means the previous expression can be matched zero or more times. This
has the effect of making the previous RE pattern optional as well as eligible for
repetition.

e A + suffix means the previous expression can be matched one or more times. This
means that the previous pattern is mandatory and can also be repeated.

e A 7 suffix means the previous expression is optional; it can be matched zero times or
just one time.

e To actually match a suffix character, use the \ escape. For example, * matches an
asterisk.

We can combine individual expressions into larger patterns. Here are some common
techniques for doing this:

e A sequence of regular expressions is a regular expression. We simply put the
expressions one after another inside the pattern string. When we write an expression
like Birth it’s a sequence of five atomic expressions which match each individual
character.

e A sequence of characters in [] matches any one of the given characters. This is
generally used with single-character expressions; often we’ll see constructs like [a-
zA-Z0-9_] to match any letter or digit or _. To match multiple-character strings we
use a suffix after the []. We can use r"[0-9a-fA-F]+" to match one or more
hexadecimal digits. To make - one of the alternative characters, it must be first or last
within the list of characters inside the [].

e Two regular expressions separated by | is a regular expression. Either one can match.
We might be looking at a pattern like true|false. We must match one of the two
regular expressions: either true or false. To match the pipe character, |, it must be
escaped like this \|.

e A regular expression surrounded by () ‘s is a regular expression. It’s also preserved as
a group, so that we can use the matching characters while parsing. To match
parentheses, they must be escaped, \ (matches a (. Substrings captured via () are
available via the group() method of the match object.

These rules help us examine the details of a specific pattern. Here’s a pattern we might use
to parse some input:

P (\w+)\s*[=:]\s* (. *)"

This is a regular expression which is a sequence of 5 regular expressions.

e The characters (\w+) make a regular expression, \w, with a + suffix enclosed in ().
This matches any sequence of one or more word characters.

e \s* is a regular expression. It’s a simple expression \s with a suffix of *. It matches
zero or more whitespace characters. This means that spaces are optional after the
initial word. If spaces are present, any number may be used.

e [=:] is aregular expression built from two single-character expressions, = and :. It
matches either one of the two characters.

e \s* is used a second time to permit any number of whitespace characters between the
= or : and the value.

e The final regular expression is (. *) which matches any sequence of characters.

When we use this regular expression, if a Match object is created, it will have two groups.
We can then extract the name and value matched by the patterns within this regular
expression.

Working with Unicode, ASCII, and bytes

The re module works with bytes as well as Unicode strings. We must provide proper
pattern literals depending on which kind of string we’re working with. With Unicode, we
use pattern literals with the r prefix: r"\w+". With bytes, we use the rb prefix, rb"\w+";
the rb means raw bytes instead of raw Unicode characters.

The rules for the character classes are, of course, different. A Unicode string that matches
the "\w+" pattern can have any of a wide variety of Unicode “word” characters. A bytes
object that uses the "\w+" pattern will match ASCII characters from the set a-z, A-z, -9
and _.

Tip
We must explicitly use bytes for the pattern literals when parsing, searching, or matching

with bytes.

We can use an option in the re.compile() to force a Unicode pattern to follow the
simplified ASCII rules. If we write re.compile(r"\w+", re.ASCII) we’ve replaced the
default Unicode assumption for \w with the ASCII rule for \w even though we’re doing
Unicode string matching.

Using the locale module for personalization

When looking at the str.format () method, we saw that the n format type produced a
number with formatting based on the user’s locale. This means that the formatting varies
according to the OS locale settings. Users in different countries will see that their personal
locale settings are used properly.

Here’s an example of using the locale module to get locale-specific formatting:

>>> import locale

>>>]ocale.setlocale(locale.LC_ALL,"'")

'en_US.UTF-8'

>>> "{O:n}".format(23.456)

'23.456'

>>>]locale.setlocale(locale.LC_ALL, 'sv_SE')

'sv_SE'

>>> "{O:n}".format(23.456)

'23,456'

This script used the 1locale module to set the Python locale to match the prevailing OS
locale. The locale is reported to be English as used in the US (en_us) and the preferred

Unicode encoding is shown as UTF-8.

The formatted value of 23. 456 showed up with a US English decimal point. This fits the
expectations of users in the US.

We then switched the locale to Sweden. The language was reported as sv_SE, which
means the Swedish language, as used in Sweden. The formatted value switched to 23, 456
with a decimal comma, which is appropriate for users in Sweden.

Let’s continue this example, and use the locale.currency() formatting function:

>>> locale.currency(23.54)
'23,54 kr'

The amount was formatted using , for the decimal separator and kr as the local currency
in Sweden. The locale module includes the currency names.

Note that we provided the numeric value, 23.54, in Python syntax, which does not vary by
locale. Python floating-point literals always use decimal points. Only the output string
from the currency() function uses the , character as a decimal place separator.

Summary

In this chapter, we’ve reviewed the essential numeric types and the operators available on
Python. We’ve looked at some expressions that involve a mixture of string and numeric
data.

In order to view the output from our scripts, we’ve looked at the print () function. This is
used widely to produce output. The print () function is a very handy tool for debugging
particularly complex functions or classes.

Additionally, we’ve looked at how we can use the str.format () method to produce
elaborately formatted data. This gives us a wide variety of techniques for converting
Python objects to strings that can be displayed. We’ve also looked at some ways that we
can parse strings using string method functions such as split() and partition().

Beyond the basics of string processing, we’ve looked at how we can use the re module to
match, search, and parse strings. This module is sophisticated and has a large number of
features for extracting useful information from input strings.

In Chapter 4, Variables, Assignment and Scoping Rules, we’ll expand on our script-writing
by using variables to store intermediate results. We’ll also look at how objects are created
and removed. These rules will lead to an understanding of which variables are visible in
which portions of a complex program.

Chapter 4. Variables, Assignment and
Scoping Rules

An expression creates objects; we can assign objects to variables to preserve them for
future use. Python offers a number of variations on the theme of assignment. In addition to
simply assigning a single variable, we can assign items from a tuple to multiple variables.
We can also combine an operator with assignment, which updates a mutable object.

In this chapter, we’ll also look at the input () function as a way to introduce new objects
into a running script. This is limited—it doesn’t compare with a proper graphical user
interface (GUI). It will, however, help us learn more Python programming techniques
before we introduce how to read data from files and the filesystem in Chapter 10, Files,
Databases, Networks, and Contexts.

We’ll also look at some important Python language concepts. We’ll look at the way
Python programs are always written generically, without specific bindings to data types or
classes. We’ll also look at the general concept of a namespace, and how this is applied
widely in various Python language constructs. It defines the scope in which an identifier is
visible; something that will become increasingly important as our programs become more
complex.

Simple assignment and variables

We’ve seen a few examples of the essential Python assignment statement in previous
chapters. The statement includes a variable, =, and an expression. Since a single object is
an expression, we can write:

>>> pi = 3.14

This will create the floating-point literal 3.14 and assign this object to a variable named
pi.
Variable names must follow the rules in section 2.3, Identifiers and Keywords, of the

Python Language Reference. The reference manual uses the Unicode character class
definitions provided in the unicodedata module.

Interesting background information on the problem of programming language identifiers
is available in Unicode Standard Annex 31, Unicode Identifier and Pattern Syntax. This
shows how the Python problem of how “what is an identifier?” fits into the larger context
of other programming languages and the variety of natural languages used around the
world.

In Python, identifiers have a small set of start characters; these are chosen to allow a
lexical scanner to determine what kinds of characters can follow. If identifiers began with
digits, it would be rather complex to distinguish identifiers from numbers. Consequently,
identifiers must begin with a letter or _. After the initial character, Python allows an
identifier to continue with characters that may come from a larger set of characters: letters,
digits, and _.

What do we really mean by “letter” or “digit”? In earlier versions of Python, these terms
were defined by the Latin-based ASCII alphabet. Using Unicode means that the terms
now have more inclusive definitions.

Python defines the identifier starting character as belonging to the following Unicode
categories: uppercase letters (Lu), lowercase letters (L1), title case letters (Lt), modifier
letters (Lm), other letters (Lo), and letter numbers (N1). Python also includes the small set
of characters in the other_ID_Start category. The set of characters defined by these
categories is large. Latin letters in the ranges a-z and A-z, for example, are in this set.
When writing more mathematically-oriented programs, the Greek letters a-w and A-Q can
also be used as identifier start characters. We can write this:

>>> 1 = 355/113

This assigns the result of the expression to the variable, n. Some programmers find that
their OS keyboard interface makes letters outside a single national alphabet awkward to
use; consequently, they suggest focusing on Latin letters for programming.

Identifiers can continue with any of the letters defined in the previous paragraph, the _
character, and characters from the following categories: nonspacing marks (Mn), spacing
combining marks (Mc), decimal numbers (Nd), and connector punctuations (Pc). This

allows us to include ordinary decimal digits as well as other “combining” marks that
modify the previous character. For example:

>>> ?Tﬂ:p_2+0 .5*p_1

This shows the character GREEK SMALL LETTER PI followed by the COMBINING

DIACRITICAL CIRCUMFLEX to create a “pi-hat” variable, T 1t may be awkward to
type for some developers, but it also may fit nicely with a population genomics formulae
which use this symbol combination. The Inheritance By Descent estimator, for example,

uses 7 . The expression shown earlier involves two other variables, p_2 and p_1, which
use more common Latin letters, , and digits.

Note that variable names that begin and end with __ (two underscores) are reserved by
Python for special purposes. For example, we have global variables such as __name__,
__debug__,and _ file__ which are set when our script starts running.

There’s no reason for our application to ever create new names which begin and end with
__. We’re not prohibited from creating such variables, but any name that we might adopt
could be used by some internal feature of Python.

Tip
It’s best to assume that at all names beginning and ending with __ (double underscore) are

reserved by Python and do something special. Even if the name is not used in the current
release, that doesn’t mean it won’t be used in a future release.

Multiple assignment

We looked at tuples in Chapter 2, Simple Data Types. One of the important reasons for
using a tuple is that it has a fixed number of items. Since a tuple is a kind of sequence, we
can refer to items within a tuple using numeric indices.

Consider the following RGB triple:
>>> brick_red = (203, 65, 84)
We can use brick_red[0] to get the red element of this triple.

We can also do this:

>>> r, g, b = brick_red
>>> r
203

We’ve used multiple assignment to decompose the RGB three-tuple into three individual
variables.

This works when the number of variables on the left side of the = matches the number of
items in the collection on the right side. When working with fixed-sized tuples, this is an
easy condition to guarantee.

When working with mutable collections such as 1ist, set, or dict, this kind of
assignment may not work out well. If we can’t guarantee the number of elements in a
mutable collection, we may wind up with a valueError exception because our collection
doesn’t match the number of variables.

Note that Python’s syntax flexibility means that we can also do things like this:
>>> n, d = 355, 113

It isn’t absolutely necessary to wrap a tuple in (). It’s generally a best practice to use ()
around a tuple. However, in a few cases, the statement is perfectly clear without the
additional parentheses.

Using repeated assignment

Python allows us to write statements like this: a = b = 0. This must be used carefully,
because a single object is now shared by two variables. When working with immutable
objects like numbers, strings, and tuples, multiple variables share a reference to a common
object.

When we look at mutable objects in Chapter 6, More Complex Data Types, we’ll see that
this kind of repeated assignment can become a source of confusion. While this assignment
is legal, it must be used only with immutable objects like numbers, strings, or tuples.

Using the head, *tail assignment

When working with sequences, there are some algorithms which work by separating the
head of the sequence from the rest of the sequence. We can do this with a variation on the
assignment statement. We like to call this the head, *tail = assignment statement.

Let’s say that we have an input string with a list of values, something like this:

>>> line = "255 73 108 Radical Red"

>>> line.split()

['255', '73', '108', 'Radical', 'Red']

We have split the string into space-delimited words with 1ine.split(). In this case, the
head of the list is the first three fields of the red, green, and blue elements of a color. The
tail is all the remaining fields, which is the name parsed into separate words.

We can use head, *tail = assignment to split the first three fields from the remaining
files.

It looks like this:

>>> r, g, b, *name = line.split()

>>> g

1 73 1

>>> name

['Radical', 'Red']

We’ve assigned the first three items to three separate variables, r, g, and b. The * means
that all of the remaining items will be collected into a single variable, name.

We can reconstruct the original name with the join() method, with a space as the
separator string:

>>> " " join(name)
'Radical Red'

We’ve used a space to join the elements of the sequence named name. This will reconstruct
the original color name as a single string instead of a list of words.

Augmented assignment

The augmented assignment statement combines an operator with assignment. A common
example is this:

a+=1
This is equivalent to
a=a+1

When working with immutable objects (numbers, strings, and tuples) the idea of an
augmented assignment is syntactic sugar. It allows us to write the updated variable just
once. The statement a += 1 always creates a fresh new number object, and replaces the
value of a with the new number object.

Any of the operators can be combined with assignment. The means that +=, -=, *=, /=,
//=, %=, **=,>>= <<= &=,A= and |= are all assignment operators. We can see obvious
parallels between sums using +=, and products using *=.

In the case of mutable objects, this augmented assignment can take on special
significance. When we look at 1ist objects in Chapter 6, More Complex Data Types, we’ll
see how we can append an item to a 1ist object. Here’s a forward-looking example:

>>> some_list = [1, 1, 2, 3]
This assigns a 1ist object, a variable-length sequence of items, to the variable some_1list.

We can update this 1ist object with an augmented assignment statement:

>>> some_list += [5]
>>> some_list
[1, 1, 2, 3, 5]

In this case, we’re actually mutating a single 1ist object, changing its internal state by

extending it with items from another 1ist instance. The existing object was updated; this
does not create a new object. It is equivalent to using the extend() method:

>>> some_list.extend([8])
>>> some_list
[1, 1, 2, 3, 5, 8]

We’ve mutated the 1ist object a second time, extending it with items from another single-
item list object.

This optimization of a 1ist object is something that we’ll look at in Chapter 6, More
Complex Data Types.

The input() function

For simple applications, the input () function can be used to gather input from a user. This
function writes a prompt and accepts input. The returned value is a string. We might use
this in a script file as follows:

c= float(input("Temperature, C: "))

print("f =", 32+9*c/5)

This will write a simple prompt on the console, and accept a string as input. The string
value will be converted to a floating-point number, if possible. If the string is not a valid
number, the float () function will raise an exception. This will then print a line of output.

Here’s how it looks when we run it:

MacBookPro-SLott:Code slott$ python3 Chapter_4/ex_1.py
Temperature, C: 11
f = 51.8

We’ve highlighted the command, which is entered after the OS shell prompt. The
statements in the script file, named as part of the command, are executed in order.

Our input to Python, 11, is also highlighted, to show how the input () function supports
simple interaction.

The input () function only returns a Unicode string. Our script is responsible for any
further parsing, validation, or conversion.

When working on simple console applications, there are some additional libraries which
may prove helpful. There is a getpass module which helps to get passwords by
suppressing the character echo that’s a default feature of console input. This is highly
recommended as an alternative to plain passwords in a parameter file or the passwords
provided on the command line.

We can include the readline module to provide a comprehensive history of input that
makes it easier for interactive users to recover previous inputs. Additionally, the
rlcompleter module can be used to provide auto-complete features so that users only
need to enter partial commands.

Beyond this, Python can include an implementation of the Linux curses library for
building richly interactive character user interface (CUI) applications. This is
sometimes used to provide colored output on the console, something that can make a
complex log easier to read.

Python is used in a wide variety of application contexts. When building a web server, for
example, the idea of console or command-line input is utterly out of place. Similarly, the
input () function isn’t going to be part of a GUI application.

Python language concepts

We’ll introduce a few central concepts of the Python language before looking at more
complex examples in later chapters. The first of the central concepts is that everything in
Python is an object. Several popular languages have primitive types which escape the
object-oriented nature of the language. Python doesn’t have this feature. Even simple
integers are objects, with defined methods.

Because everything is an object, we’re assured of consistent behavior with no special
cases. In some languages, the == operator works in one way for primitive types and in
another way for objects. Python lacks this divergent behavior. All built-in classes
implement the == operator consistently; unless we make specific (and pathological)
implementation choices, our own classes will also behave consistently.

This consistency is particularly pleasant when working with strings. In Python, we always
compare strings for equality using something like txt.lower() = "hours". This will
make the expected character-by-character comparison between the value of txt.lower ()
and the literal "hours".

Less commonly, we can see if two variables are references to the same underlying object
using the is comparison operator. This is generally used to compare a variable with the
None object. We use is None because the None object is a proper singleton; there can be
only one instance of None. We’ll look at this again in Chapter 5, Logic, Comparisons, and
Conditions.

Object types versus variable declarations

In Python, we specify the processing generically with respect to type. We may write a
sequence of statements with the implicit understanding that floating-point values should
be used. We can formalize this to an extent using an explicit float () conversion function.

In some languages, each variable has a statically defined type. Only objects of the named
type can be assigned to the variable.

In contrast to languages with statically defined variables, a Python variable can be
understood as a name which is attached to an object. We can attach a name to any object
of any class. We don’t statically declare a narrow range of allowed types for a variable.

Python allows us to assign multiple names to the same object by assigning the object to
several variables. For example, when we evaluate a function, the function parameter
variable names are assigned to the argument objects. (We’ll look at this in more depth in
Chapter 7, Basic Function Definitions.) This means that each object may have two
variables referring to it: one parameter variable inside the function and another variable
outside the function.

We can use the internal id() function to see if two variables refer to the same underlying
object:

>>> a = "string"

>>> b = a

>>> id(a)

4301974472

>>> id(b)

4301974472

From this, we can see that Python variables a and b have references to the underlying

object, not copies of the object.

In the rare cases that object copying is necessary, we must do it explicitly. Details vary,
based on the general kind of class. For example, sequences are trivially cloned by creating
a slice that includes the entire sequence. Some classes offer a copy () method. Objects can
also be cloned via functions in the copy library.

The lack of a fixed type declaration for a variable has several consequences:

e It’s trivial to introduce a variable to decompose a complex expression. Here’s a
complex expression:

a = some_function(some_complex_function(another_function(b)))

e We can trivially rewrite this by pulling out subexpressions and assigning them to
variables:

af = another_function(b)
scf = some_complex_function(af)
a = some_function(scf)

We’ve extracted each subexpression and assigned them to separate variables. We

never need to know what the intermediate result types are.

e All algorithms are written generically. When we run a script, we apply our generic
Python code to concrete objects. Our canonical example of this binding is based on
the numeric tower. We can apply the same expression, 32+9*c/5, to objects of the
classes complex, float, int, Decimal, and Fraction. All of these classes provide the
necessary implementations of the various operators. However, a string object won’t
implement all of the arithmetic operations required, and won’t work. Similarly, we
can execute statements like head, *tail = sequence for a wide variety of
sequence-like classes, including list, str, bytes, and tuple. However, if we assign
a numeric value to the variable named sequence, the statement won’t work.

Avoiding the declaration of variables with static types is a great simplification. We can
introduce variables as needed. We can write clear, simple, generic software and leave it to
the Python runtime processing to determine if the runtime objects have the required
implementations for operators and methods.

Avoiding confusion when naming variables

Without variable declarations, there’s a small possibility of creating programs which are
confusing if we use vague, generic variables. A variable with a vague name like
list_of_items might get used more than once in a longish sequence of statements.
Worse, of course, are variables with names like t or temp.

Tip
Name variables as specifically as possible. Avoid vague, generic names.

The other aspect of overusing variable names is the idea of a “longish” sequence of
statements. If the body of a function is so long that generically-named variables could get
reused accidentally, the size of the function has become a problem. No stretch of Python
code should be so long that the variables used within it are confusing.

Tip
Keep sequences of code short and focused. Avoid long sequences of code where variables
might get reused incorrectly.

It’s import to name variables simply and clearly. In Python, the use of Hungarian notation
to decorate a variable name with type information is considered deplorable. The original
concept of Hungarian notation was to place a few characters as a prefix on a variable to
indicate the type. In Python, we do not name a variable 1st_str_names using a prefix to
indicate that the variable refers to a list of string values.

Because Python code is written generically, a well-written function can apply to many
different data types. If we try to encode data type information in variable names, we may
actually be sowing confusion: the algorithm may work for types not explicitly stated in the
variable name.

In some situations, we need to distinguish between a collection of items and an individual
item. We might have a name_list and an individual name. Or we might have a name_iter,
when working with generator functions, and an individual name. A small, clear naming
convention like this is better than elaborately misleading Hungarian notation.

Tip
Avoid complex Hungarian notation in variable names.

In a more complex program, we might have a dictionary that maps integer keys to sets
associated with those keys; each set may have a collection of individual strings. It’s
difficult to summarize this with a Hungarian prefix or suffix. Would we want to try and
call this map_int_set_str_something?

Looking ahead to Chapter 7, Basic Function Definitions and Chapter 11, Class
Definitions, we’ll often use docstring comments in functions, classes, and modules to
capture the details of what kind of structure is appropriate for a function. We may even
include test cases in the docstring comments; test cases are perhaps the clearest and most
precise way to describe data.

Tip
Write docstring comments in every context that allows them: function, class, module,
and package.

One consequence of Python’s use of variables is that we rely on unit test cases to ensure
that results are of the expected types as well as being correct. Programmers who work in
languages with statically-typed variables are very aware that unit test cases are essential
for correctness, even when a compiler does type checking of all variable declarations. In
Python, the test cases are just as important as in languages that have static type checking.
If it is necessary to clarify the intent of a function or class, we can include type checking
in the test cases.

Tip

Write unit tests; use the unittest module, the doctest module, or both.

Garbage collection via reference counting

We’ve seen how expressions create new objects. Even something as simple as 2**2024
creates a new integer object. What happens to these objects? When will we run out of
memory?

Python uses reference counting to determine how many times an object is being used
when we do something like this:

>>> 2**2024
192624..497216

The resulting object is a very large integer; it is assigned to the variable _ automatically.
The object, shown as 192624..497216, has a single reference; this keeps it alive in memory.

When we do this, next:

>>> 2**2025
385248..994432

We get a new object, and it is assigned to the variable _. The large integer value formerly
assigned to _ has no more references. Since it’s no longer being used, it’s garbage, and the
memory it occupied can be reused.

Each time we assign an object to a variable, the reference count goes up by one. Each time
the variable’s value is reassigned, the previous object that is no longer in use has its
reference count decreased by one.

When a variable is no longer required, the variable is removed, and the objects referred to
by the variable also have their reference counts reduced by one.

Variables belong to namespaces. Most of our early examples used the global namespace.
In Chapter 7, Basic Function Definitions, we’ll see local namespaces. To summarize:
when a namespace is removed, all of the variables in that namespace are removed, and all
of the object references are decremented by one.

Tip
When the number of references to an object reaches zero, the object is no longer needed.
The memory occupied by that object can be reclaimed.

We can easily create two complex objects which refer to each other. In the presence of
these kinds of circular references, of course, the counts can never reach zero. The objects
may never get removed from memory. We can use the gc module to discover more about
this.

In the case where we must have objects with mutual references, we need to leverage the
weakref module. This module provides references among objects that do not interfere
with reference counting, allowing a large data structure of multiple objects to gracefully
vanish from memory when no longer in use.

The little-used del statement

We can remove variables manually with the del statement. Here’s an example:

>>> a = 2**2024

>>> del a

We’ve created an integer object, and assigned it to the variable a. When we remove the
variable, this will reduce the reference count on the integer object. The memory occupied
by the big integer is now eligible to be reclaimed.

This kind of thing is done very rarely. Python’s ordinary reference counting does almost
everything we need. It’s generally best not to waste brain calories tying to micro-manage
memory allocation.

The Python namespace concept

We’ve already seen two applications of the Python namespace. When we assign variables
at the >>> prompt, we’re introducing the variable into the global namespace. When we
import a module, the module creates its own namespace within the global namespace.

That’s why we can then use qualified names like math.sqrt() to refer to objects inside the
module’s namespace.

When we look at functions and class definitions, we’ll see additional use, of namespaces.
In particular, when evaluating a function or a class method, a local namespace is created,
and all variables are part of that local namespace. When the function evaluation finishes
(because of an explicit return statement or the end of the indented block,) the local
namespace is dropped, removing all local variables and reducing the reference count on all
objects assigned to those local variables.

Additionally, the types module includes the SimpleNamespace class. An instance of this
class allows us to build a complex object without a formal class definition. Here’s an
example:

>>> from types import SimpleNamespace

>>> red_violet= SimpleNamespace(red=192, green=68, blue=143)
>>> red_violet

namespace(blue=143, green=68, red=192)

>>> red_violet.blue

143

We’ve imported the SimpleNamespace class. We created an instance of that class,
assigning three local variables, red, green, and blue, that are part of the new
SimpleNamespace object. When we examine the object as a whole, we see that it has three
internal variables.

We can use syntax like red_violet.blue to see the blue variable inside the red_violet
namespace.

The argparse module is used by command-line programs to parse the command-line
arguments. This module also contains a Namespace class definition. An instance of
Namespace is used to collect the various arguments parsed from the command line. An
application can set additional variables in the Namespace object to handle particularly
complex parsing and configuration issues.

Globals and locals

When we use a variable name in an expression, Python searches two namespaces to
resolve the name and locate the object to which it refers. First, it checks the local
namespace. If the name is not found, it will check the global namespace. This two-step
search will ensure that local variables used inside a function or class method are used
before global variables with the same name.

When working from the >>> prompt using the REPL, we can only create and use global
variables. Further examples will have to wait until Chapter 7, Basic Function Definitions.

When we use the locals() and globals() functions at the >>> prompt, we can see that
they have the same results. At the >>> prompt, and at the top-level of a script file, the local
namespace is the global namespace. When evaluating a function, however, the function
works in a separate, local namespace.

Summary

We’ve looked at how we assign objects to variables. We’ve looked at the simple
assignment statement, as well as multiple assignment and augmented assignment. With
augmented assignment, we can update a variable by applying an operator and an operand.
This is a handy syntactic shortcut.

We’ve also addressed the input () function, which is a way to create new objects based on
user input. It’s very handy for simple command-line scripts. More sophisticated GUISs, of
course, will have considerably more sophisticated input mechanisms.

The concept of a namespace, and how variables are tracked via a namespace, is central to
Python. When a namespace is no longer needed, it’s discarded, removing all of the
variables. This will also reduce the reference count on all of the objects referred to by the
variables. Once an object’s reference count is reduced to zero, the object can be removed
from memory. This is a tidy and simple way to handle variables.

In Chapter 5, Logic, Comparisons, and Conditions, we’ll look at another fundamental data
type: Boolean. We’ll look at Python’s approach to Boolean values and the logical
operators of and, or, not, and if-else. We’ll also look at the various comparison
operators.

We’ll look at several kinds of Python statements, include the if-elif-else statement, the
pass statement, and the assert statement. This will allow us to write somewhat more
sophisticated scripts.

Chapter 5. Logic, Comparisons, and
Conditions

Our exploration of the Python language started with expression statements and the
assignment statement. We can view output using the print () function as a simple
statement. We can gather input using the input () function in an assignment statement. In
order to process data conditionally, we need the if statement.

In order to look at the if statement, we’ll need to look at Boolean data and Boolean
operators. The and, or, not, and if-else Boolean operators have a “short-circuit”
behavior: if the result is defined by just the left-hand operand, the right-hand side is not
evaluated. This is an important feature of these logic operators. (The if-else operator is
formally called the Boolean expression, but it behaves like the Boolean operators.)

We’ll also look at the comparison operators. A comparison is a common way to create the
Boolean values used to choose between suites of statements within an if statement.

We’ll introduce the pass statement here. This statement does nothing. It’s a place-holder
to use when an empty suite of statements is all we need.

The assert statement can be used to demonstrate that a particular logical condition is true
at some point in the program’s execution. This can clarify a potentially confusing
algorithm. It can also serve as a handy debugging tool to make a program crash when
something has gone awry.

Boolean data and the bool() function

All objects can have a mapping to the Boolean domain of values: True and False. All of
the built-in classes have this mapping defined. When we define our own classes, we need
to consider this Boolean mapping as a design feature.

The built-in classes operate on a simple principle: if there’s clearly no data, the object
should map to False. Otherwise, it should map to True. Here are some detailed examples:

e The None object maps to False.

e For all of the various kinds of numbers, a zero value maps to False. All non-zero
values are True.

e For all of the collections (including str, bytes, tuple, list, dict, set, and so on) an
empty collection is False. A non-empty collection is True.

We can use the bool() function to see this mapping between object and a Boolean:

>>> red_violet= (192, 68, 143)
>>> pool(red_violet)

True

>>> empty = ()

>>> type(empty)

<class 'tuple'>

>>> bool(empty)

False

We’ve created a simple sequence, a tuple of three values, and assigned it to the
red_violet variable. Since this is non-empty, it maps to True. On the other hand, the
empty tuple, assigned to the empty variable, maps to False.

One important consequence of this built-in mapping is that any object can be used in a
Boolean construct. Looking ahead, we’ll often see programs with constructs that echo this
idiomatic pattern:

for input from some_file:
if not input.strip(): continue

Some details of this example will have to wait for Chapter 10, Files, Databases, Networks,
and Contexts. What’s important about this example is that we can read a line from a file,
strip whitespace with the strip() method, and use a simple Boolean expression to see if
the result is an empty string. If it is an empty string, we can easily ignore it by using the
continue statement.

This construct works because strings map to Boolean values. An empty string maps to
False, allowing us to check for the absence of content with a very simple and elegant
expression.

Comparison operators

In Chapter 2, Simple Data Types, we looked at the six essential comparison operators: <, >,
==, 1=, <=, and >=. The minimum of == and != are defined by default for all classes, so that
we can always compare objects for simple equality. For the numeric types, the ordering
operators are also defined. Furthermore, Python’s type coercion rules are implemented by
the numeric types so that the expression 2 < 3.0 will have the int coerced to float.

For sequences, including str, bytes, tuple, and list, the two operands are compared
item-by-item. This tends to put strings into alphabetical order. This works well for words.
It also usually puts tuples into the expected order. However, for number-like strings, the
sorting may seem a little odd. Here’s the example:

>>> """ < "on
True

The strings "11" and "2" are not numbers. They’re only characters. It’s a common
confusion to imagine these values as numbers and hope that "11" comes after "2". If this
is the desired behavior, we’ll need to convert these number-like strings to proper numbers
using the int () function.

For set objects, the comparison operators map to the superset and subset relationships.
Python’s < operator is implemented as the proper subset relationship. The <= operator is
implemented as the subset relationship. We’ll look at this in detail in Chapter 6, More
Complex Data Types.

For other types, comparisons become less meaningful. Orderings between mappings is not
a simple concept. How do we order two mappings: do we compare keys only, values only,
or some combination of both? If we try to compare both keys and values, what are the
rules for missing keys? Since there’s no simple answer, Python doesn’t define the ordering
operators for mappings.

For types outside the numeric tower, there are no coercion rules. The equality comparisons
simply compare the object IDs to see if the two operands are references to same object.

In general, ordering operators are not implemented by default and will raise TypeError
exceptions. This is a common expectation for many classes.

If we try to compare two file objects, what attribute of the file should we be comparing?
Size? Creation date? Rather than create confusion, comparison operators are simply not
implemented for many classes.

Combining comparisons to simplify the logic

In some cases, we may need to see if a value lies within a given range. One handy syntax
simplification is to combine ordering comparisons into a simplified expression. We can
meaningfully write expressions like this:

5>a>2©0

In this kind of expression, Python interprets the combined operators to mean 5 > a and a
>= 0. We aren’t forced to repeat the middle expression, a, to decompose the ordering test
into two binary comparisons.

Testing float values

One important feature of float values is that they are only approximations. We can easily
write calculations which seem mathematically exact, but produce odd-looking results.
Specific examples vary a bit from implementation to implementation. Here’s one example:

>>> g=1

>>> b=(a/105)*3*5*7

>>> a ==

False

>>> abs(a-b)

2.220446049250313e-16

In an abstract mathematical sense, (a/105)*3*5*7, must equal the original value of the a
variable. We can see, however, that the floating-point approximation created by the true
division operator has a small error. In this case, the error value is approximately 2.22e-186,
which is 2**-52: the least significant bit of a 52-bit value is incorrect after this chain of
floating-point operations.

Because of the presence of these small error terms, we should avoid trivial == tests with
floating-point values. A simple equality test can often turn out to be false when the two
values differ by a tiny amount.

Generally, we should use abs(a-b) < ¢ instead of a == b. We can set the € value to be
small enough to detect what is equal. If, for example, we’re going to display a value with
three decimal places, there’s little reason to compute anything past the 5th decimal place.
In that case, e=10e-5 can be used to define the acceptable tolerance for floating-point
equality.

Tip

Avoid float == float comparisons; use abs(float-float) < e instead.

Comparing object IDs with the is operator

To determine if two variables are actually referencing the same object, we have a special
comparison operator: is. This is different from the somewhat more complex equality test.
The is operator is a very simple test comparing the internal identifiers for two objects.

If a is b, then a == b must also be true, as the two variables refer to the same underlying
object. However, if a == b, then a is b may not necessarily be true. Two distinct objects
can have the same value. Here’s an example using floating-point values:

>>> a
>>> p
>>> a ==
True

>>> a is b
False

This example works nicely for floating-point objects. We can see that two seemingly-
equal objects are actually distinct instances which represent the same numeric value.

An example like this doesn’t work for small integer values, however. For a narrow range
of integer values, Python tends to reuse a small pool of internal objects. This avoids the
proliferation of copies of ubiquitous values. If we try to set a=1 and b=1, we’ll see that a
is b: Python reused the same object.

With a little experimentation, we can see that the reuse of small integers is true for
numbers between -5 and 256. Implementation details will vary. What’s important is that
some immutable objects are implicitly allocated from a pool.

Object identity is revealed with the id() function. This shows the unique, internal object
identifier. For example:

>>> jd(a)
4298491200
>>> id(b)
4298491224

We can see that these are two distinct objects which happen to be equal in value.

Equality and object hash values

An important part of equality comparison in Python is the hash value comparison. A hash
is a small integer value that summarizes a larger, more complex value. A hash should not
change; mutable objects should not provide a hash value.

Any object that we’re going to collect into a set or use as a key to a mapping must provide
both a hash value and a proper equality comparison. All of the built-in immutable types
we’ve seen—numbers, tuple, str, and bytes—offer the necessary implementations of
these methods. The built-in mutable types that we’ll look at in Chapter 6, More Complex
Data Types, such as list, set, and dict, don’t provide a hash value and can’t be used as
keys in a mapping.

A hash function reduces a complex value to a small number. In Python, hash values
generally use 61 bits. For a complex object, the hash value summarizes the object as a

"}I'||
whole. It might be a sum of all the individual bytes, computed (”L) . It might be a sum
of hash values for other internal objects. Comparing hash values makes for significantly
less work than comparing each individual item in a complex object.

For immutable objects, the hash value is computed once and will be as immutable as the
object itself. For mutable objects, a hash value could be computed. However, if the hash
value changes, then the object won’t behave well as an item in a set or as a key to a
mapping. A changing hash value for a mutable object is not a very good idea.

When putting items into a set, for example, Python does a quick equality check using the
hash values. If the hash values are different, the underlying objects must be different, and
no more comparison needs to be done. If the hash values match, however, then the
detailed equality test must be used to see if the objects really are equal or only happen to
have the same hash value.

In some implementations of Python, you can use this kind of test to see if two different
numbers happen to have the same hash value:

>>> hash(12)

12

>>> hash(12*2**61)
12

Note

Implementations vary; this was Mac OS X, v3.3.4:7ff62415e426, your results may be
different.

If we tried to put these two values into a set, Python would do a hash check to see that
they are potentially equal, followed by a detailed comparison to see that they’re not equal.

Logic operators — and, or, not, if-else

Python offers us four logical operators: and, or, not, and if-else. These work with
Boolean values to create Boolean results. They’re entirely distinct from the bit-wise
operators of &, |, A, and ~, that we looked at in Chapter 2, Simple Data Types.

The and, or, and not operators are common in all programming languages. They fit the
widely-used definitions from Boolean algebra.

The if-else Boolean expression has three operands. In the middle, it uses a Boolean
condition, but the other two operands can be objects of any types. Here’s an example:

selection = "yankee" if wind < 15 else "stays'l"

The if-else operator has a Boolean condition in the middle. In this example, it’s the
comparison, wind < 15. If the condition is True, then the left-most expression is the
result, the string "yankee". If the condition is False, then the right-most expression is the
result; here, it’s "stays'1".

The logical operators implicitly apply the bool() function to their operands. This means
that we can do things like the following:

valid= line and line[0] != "#"

The and expression involves two Boolean operands. When Python implicitly evaluates
bool(line), a non-empty line will be True; a zero-length line will be False. The valid
variable will be False for empty lines; it will also be False for non-empty lines where
line[0] is not the "#" character.

This implicit use of bool() also means this is true:

>>> not 12
False

The value of not 12 is evaluated as not bool(12). The bool() value of a non-zero
numeric value is True; the final result of this expression is therefore False.

Short-circuit (or non-strict) evaluation

Consider the following:

>>> total= 0

>>> count= 0

>>> average = total !'= 0 and total/count
>>> average

False

What just happened? Or, more precisely, what didn’t happen? Why doesn’t this raise a
ZeroDivisionError exception? The first two assignment statements are unsurprising; they
assign zero to two variables, total and count. The logical expression, however, has a
number of interesting features. Firstly, Python evaluates expressions left-to-right. This
means that the total != 0 subexpression is evaluated first. The result of this comparison
is False.

Secondly, and perhaps more importantly, the and operator breaks the strict evaluation
rules. If the left side value is equivalent to False, the overall result is False. The right side
is not evaluated at all. If the left side value is equivalent to True, the result is simply the
right side value.

This is sometimes called a short-circuit evaluation rule. There’s no reason to evaluate the
right side if the result is known from the left side.

The result is not necessarily a Boolean; it’s simply one of the operands given to the and
operator. Here are some examples:

>>> 0 and 12
0
>>> () and "non-false"

0)
>>> 12 and ()

()

In the first example, 0 is equivalent to False, and that object is the entire result of the and
operator. In the second example, the empty tuple, (), is equivalent to False; it is the result
of the operator.

In the third example, the left hand side, 12, is non-zero, and therefore, equivalent to True.
This means that the right side must be evaluated. The right side is the result of the and
operator; in this case, it is an empty tuple, ().

The or operator is similar; if the left side is equivalent to True, there’s no reason to
evaluate the right side. We can use this feature to apply default values.

We can write expressions like the following.

X = parameter or 42

If the value of the parameter variable is a True value, the value of the or operator will be
that equivalent-to-true value. If the value of the parameter variable is not a True value
(for example, it might be None), then the result will be the literal value 42.

We can, of course, also use the if-else operator for this. Here’s an example:
X = 42 if parameter is None else parameter

If the value of the parameter variable is the None object, the left side operand—the literal
42—is the result. If the value of the parameter variable is not the None object, then the
right side operator—the value of the parameter variable—is the result.

The if-elif-else statement

Our central tool for conditional processing is the if statement. This is a compound
statement which is built from a number of clauses. The initial clause starts with the if
keyword. Any number of elif (short for “else if””) clauses can be used. Each of these
clauses has a conditional expression and an indented suite of statements. We can also add
a single catch-all else clause at the end; this doesn’t have a condition, but does have a
suite of statements.

The minimal if statement, with a single clause, might look like this:

if abs(a-b) < €:

print("{a} \N{ALMOST EQUAL TO} {b}".format(a=a, b=b))
The if statement contains a single expression. If the expression is True, the suite of
statements is executed. In this case, the suite is a single expression statement, using the
print() function.

The else clause can be used in simple if statements.

if count ==
print("Insufficient Data")
else:
print("Mean = {0:.2f}".format(total/count))

In this case, we have two conditions. We’ve formally stated the count == 0 condition for
one print () function. We have an unstated condition for the other print () function. It’s
relatively easy—in this simple case—to deduce the implied condition.

Adding elif clauses

In some cases, we can decompose complex situations into a list of cases. For example, we
might have some conditions like this:

if y % 400 ==
leap = True
elif y % 100 == 0:

leap = False
elif y % 4 ==

leap = True
else:

leap = False

We’ve written a rather complex chain of logic here. We’ve specified four distinct
conditions:

¢ y is a multiple of 400, in which case, the 1eap variable will be set to True. For
example, the year 2000 was a leap year.

e y is a multiple of 100 (and not a multiple of 400), in which case, the 1eap variable
will be set to False. The year 2100 will not be a leap year.

¢ y is a multiple of 4 (and neither a multiple of 100 nor of 400), which sets the leap
variable to True. The year 2016 will be a leap year.

¢ y is not a multiple of 4, 100, or 400, the 1eap variable is set to False. The year 2015
is not a leap year.

Since Python evaluates the clauses in a strict order, each elif clause has an implicit “and
not any of the previous clauses”. This means that the conditions in each elif can be
written very succinctly, but they also need the previous clauses as part of their context.

As the number of elif clauses grows, the possibility of introducing a subtle logic bug also
grows. This can create the situation where the implied condition for the else clause is
very hard to deduce correctly. Consequently, some programs include logic that looks like
this:

if y % 400 ==
leap = True

elif y % 400 !'= 0 and y % 100 ==
leap = False

elif y % 400 !'= 0 and y % 100 !'= 0 and y % 4 == 0:
leap = True

elif y % 400 !'= 0 and y % 100 '= 0 and y % 4 '= 0:
leap = False

else:
raise Exception("Logic Error'")

This example shows each implied condition written out fully. It also shows the else
clause used to raise an exception in the unlikely case that a condition was overlooked or
misstated. Some developers argue that this is simply a waste of time. Others recognize that
anything which is merely implied is a possible source of errors, and prefer to state
conditions explicitly.

For simple sets of conditions, this may be needless over-engineering. In other cases, this
long-winded variation is more reliable because it removes all assumptions and implicit
conditions.

The pass statement as a placeholder

In some algorithms, an else clause may be more important than an if clause. This
happens when an algorithm is designed to handle a certain set of conditions—the happy
path—by default. All of the other non-happy-path conditions require some exceptional
processing.

When the default condition is relatively clear and easy to write, but there’s no processing
required for the condition, we have a syntax issue in Python. The interesting processing
belongs to an else clause, but we have no real code for the initial if clause. Here’s a
typical pattern shown with invalid syntax:

if happy_path(x):
nothing special required
else:
some_special_processing(x)
Processing Continues
The happy_path() condition confirms that the default processing will work. There’s no
actual processing do be done when this is true. Since we don’t want to do anything, what

do we write in the if clause?

The preceding code is invalid Python. We can’t have an empty suite in the if clause. Since
we can’t write the code that’s shown, we have to find alternative syntax that works.

One obvious choice is to negate the logic of the happy_path() condition. We can simply
use the not operator.

if not happy_path(x):

some_special_processing(x)
This has the desired effect. However, the not operator may be hard to see. When the
happy_path() condition is a complex logic expression, the extra not can be confusing.

This is where the Python pass statement might be clearer than the not operator. It would
look like this:

if happy_path(x):

pass # nothing special required
else:

some_special_processing(x)
Processing Continues

We’ve filled the syntactic void in the if clause with a “do nothing” statement. We have
used pass to create a proper suite in the if clause. We left the comment in place because
that kind of information might be helpful.

There are a few other uses for the pass statement. We’ll look at them in Chapter 11, Class
Definitions.

The assert statement

The assert statement is a highly specialized form of if statement. This statement
confirms that a given condition is true. If the condition is not true, the assert statement
raises an exception. In the simplest case, the script stops running because the exception is
not handled in our programming.

It looks like this:

assert a > b >= 0

We have used an assert statement to provide documentation of a relationship between
variables that must be true at a given point in our Python script, function, or method. If the
condition, a > b >= 0, is false, then the AssertionError exception is raised.

We can customize the exception which is raised by providing a second argument to the
assert statement:

assert a > b >= 0, "a={0} and b={1}".format(a, b)

We’ve provided a string which includes information about the assertion. This string will
be an argument to the exception object which is created.

An exception has two interesting features. Firstly, it’s an object with arguments that we
can set when we raise it. Secondly, and more importantly, it interrupts the normal
sequential execution of statements. A try/except statement can be written to handle
exceptions: the execution stops in the try clause and begins in an except clause that
matches the exception. Without a try statement that matches the exception, raising an
exception stops the program. We’ll look at exceptions in detail in Chapter 9, Exceptions.

Note that the assert statement can be disabled. When we run Python3 with the -0,
optimize, command-line option, then the assert statements are not included in the
internal Python byte code.

The logic of the None object

In Chapter 2, Simple Data Types, we introduced the None object. It is a unique, immutable
object, often used to indicate that a parameter should have a default value or that an input
is not available. Some languages have a special null object or null pointer that have similar
semantics to the Python None object.

The None object has no arithmetic operators defined. It’s equivalent to False. The == and
I = operators are generally defined for None. However, these operators aren’t always
appropriate because other objects might exhibit similar behavior.

Generally, we’ll use the is comparison when trying to determine if a variable is set to
None. The == test can be redefined by a class that implements the __eq__ special method;
the is test cannot be overridden.

Tip
Because == can be reimplemented, always use is None instead of == None.

Since bool(None) == False, we can use a variable which may be None in an if
condition. Nevertheless, we should generally use is None or is not None to be clearer.

Here’s an example:

if not a:
print("a could be None")

This relies on the way Python implicitly evaluates bool(a) to see if the value of the a
variable is equivalent to True. It’s often better to be perfectly explicit:

if a is None:
print("a is None")

This shows that we’re matching the value of the a variable against the None object.

Summary

We’ve looked closely at Python’s Boolean data type, which only has two values (True and
False) and four operators: and, or, not, and if-else. The Boolean operators and the if
statement will both implicitly coerce values to a Boolean. This means that non-empty
strings will behave in the same as the True value.

We’ve looked at the comparison operators. These work with other objects and create
Boolean results.

In the case of numeric comparisons, the numeric coercion rules are used to allow us to
compare float against int values without having to write explicit conversions. For string
or tuple values, we’ve seen that items are compared in order.

We’ve also seen how the logical operators of or and and are not strict about evaluating
their operands. If the left-hand side of and is False, the right-hand side isn’t evaluated.
Similarly, if the left-hand side of or is True, the right-hand side isn’t evaluated.

We looked at several kinds of Python statements, including the if-elif-else statement,
the pass statement, and the assert statement. These statements allow us to write
somewhat more sophisticated scripts.

In Chapter 6, More Complex Data Types, we’ll look at the 1ist, set, and dict collections.
We’ll see how we can use the for statement to process all items in a given collection. This
will give us the ability to write scripts of considerable sophistication.

Chapter 6. More Complex Data Types

We’ll look at a number of built-in and standard library collection types. These collections
offer more features than the simple tuple collection. We’ll look at the for and while
statements which allow us to process the individual items of a collection.

We’ll look at some functions which we can use to work with collections of data; these
include the map(), filter(), and functools.reduce() functions. By using these, we
don’t need to write an explicit for statement to process a collection. We’ll also look at
more specific kinds of reductions such as max(), min(), len(), and sum().

We’ll also look at the break and continue statements; these modify a for or while loop to
allow skipping items or exiting before the loop has processed all items. This is a
fundamental change in the semantics of a collection-processing statement.

The concepts of mutability and immutability are part of understanding how an object
behaves. The built-in types in this chapter are all mutable. This is quite different from the
way that immutable objects like strings and tuples behave.

The mutability and immutability
distinction

In Chapter 2, Simple Data Types, we looked at the immutability issue. This is an important
characteristic of Python objects. We’ll need to look at some more aspects of mutability in
Chapter 7, Basic Function Definitions. We’ll look at how we can create our own mutable
classes in Chapter 11, Class Definitions.

We’ve seen that Python’s various classes include those which create mutable objects and
those which create immutable objects. The immutable classes include all of the number
classes, strings, bytes, and tuples. The tuple (247, 83, 148) object cannot be changed:
we cannot assign a new value to an item with an index of 1.

A tuple object has the structure of Sequence: we can extract items based on their position.
However, we cannot change the internal state of a tuple object.

A list is also a subclass of the Sequence class. We can, however, change the state of a
list object without creating a new list instance.

The abstract base class definitions for Sequence and MutableSequence are in the
collections.abc module. The documentation for this module shows how the various
complex types relate to each other.

While some of the features of 1ist and tuple are similar, they address different use cases.
The benefits of immutability are simplicity, reduced storage demands, and higher-
performance for some kinds of processing. The benefit mutability is that a single object
can undergo an internal state change.

Using the list collection

Python’s 1ist collection is its built-in mutable sequence. We can create list objects easily
using a literal display that simply provides expressions enclosed in []. It looks like this:

fib_list = [1, 1, 3, 5, 8]

As with tuples, the items are identified by their position in the 1ist collection. Positions
are numbered from the left starting from zero. Positions are also numbered from the right,
using negative numbers. The last value in a list is at position -1, the next-to-last value at
position -2.

Tip
Index values begin with zero. Index position 0 is the first item. Index values can be done
in reverse with negative numbers. Index position -1 is the last item.

We can also create lists using the 1ist () function. This will convert many kinds of
collections into 1ist objects. Used without arguments, 1ist () creates an empty list just
like []. Since the 1ist () function is so versatile at converting collections into list
objects, we’ll use it much more in later chapters.

We can update a 1ist collection using methods like append():
fib_list.append(fib_list[-2] + fib_list[-1])

In this example, the value of fib_list[-1] is the last element in the list, and
fib_list[-2] is the penultimate value. The expression creates a new number, which can
be appended to the fib_list object.

We can manipulate a single element in a list using a subscription, such as those shown in
the previous example. The value in the [] must be a single integer, which identifies an
item in the list. It looks like this:

>>> fib_list[2]
3

The item in position two (the third item in the list) has a value of 3.

We can extract a sublist using slicing notation. A slicing uses a multi-part value in the [].
The result of a slicing is always a list built from the original list object. There are several
ways to specify slicings, we’ll show a number of examples:

>>> fib_list[2:5]
[3, 5, 8]

>>> fib_list[2:]
[3, 5, 8, 13]
>>> fib_list[:-1]
[1, 1, 3, 5, 8]

The first slicing, [2:5], starts at the index of 2 and stops just before the index of 5. This
means that the index values of 2, 3, and 4 are sliced out of the original list. Since lists are
indexed from zero, an index of 2 is the third position in the list. It’s essential to think of a

slicing as a “half-open” interval.
Tip
Most of Python uses “half-open” intervals.

When we write the slice expression [a:b], position a is included while position b is not

included. This slice specifies all index values, i, such that ¢ <i<b There are »—¢ values
in the slice.

The second slicing, [2:], omits the ending, which means that it starts at an index of 2 and
includes all items to the end of the list.

The third slicing, [:-1], omits the starting position, which means that it starts at an index
of 0. The ending is given as -1, the last item in the list. Since slicings stop short of the
given final position, this slicing will omit the last item from the list.

We can use [:] as a degenerate case where the start and end are both omitted. This works
very well when making a shallow copy of an entire 1ist object.

Slicings can be extended to include a third parameter. This allows us to specify a start,
stop, and a step value. We can do things like this:

>>> fib_list[::2]

[1, 3, 8]

>>> fib_list[1::2]

[1, 5, 13]

In the first example, the start and stop are omitted, so we’ll use the entire list. The step
value is 2, so we’ll extract a new list using the even-numbered indexes: 0, 2, 4, ..., and so
on.

In the second example, we provided a start and a step value. This will begin with index 1,
and increment by 2. It will extract a list built from the odd-numbered indices: 1, 3, 5, ...,
and so on.

We can use a negative step value to visit a list in reverse order. This can be confusing, but
it works very nicely.

List objects have a few operators, including + and *. We’ll also look at the various kinds of
list assignment statements we can use that involve slicing expressions on the left side of
the assignment statement. These can mutate a list by changing some of the values.

Using list operators

We can use the + operator to concatenate two list objects: [1, 1] + [2, 3, 5] for
example. If we want to extend a list, we can use this augmented assignment statement:

>>> fib_list += [fib_list[-2] + fib_list[-1]]

Note that we had to create a singleton 1ist collection so that the + operator would
concatenate the new list to an existing list.

Since a 1list object is mutable, this += assignment will update a 1ist object; it is extended
with the new 1ist collection. Contrast this with a tuple, where a new tuple must be
created from the two original tuples, and assigned to the variable.

In Chapter 5, Logic, Comparisons, and Conditions, we noted that sequences like 1ist and
tuple are compared item-by-item. This means that [1, 1, 2] < [1, 2] will be True.

Lists and other sequences also support the in operator. We can ask if a specific value is in
a list collection. We can also confirm that a given value is not in a 1ist collection. These
are simple Boolean expressions that look like this:

>>> 13 in fib_1list
True

>>> 12 not in fib_list
True

We’ve used the in operator to confirm that the value 13 is in the fib_list variable and
the value 12 is not in that 1ist object.

Mutating a list with subscripts

We can change an item in a 1ist collection using a subscription or slicing on the left side
of an assignment statement. A subscription uses [] and a single integer value to identify
an item within a 1ist. We can replace an item like this:

fib_list[@]= 1
We will replace the item at index O (the first item) with a value of 1. If we mention an

index value which is not in the list, an IndexError will be raised.

We can replace any simple slice of a list with a different list. The replacement list does not
have to be the same size. Indeed, it can be an empty list, which will effectively remove
items from the list. Here’s an example where we mutate a long slice by providing a shorter
replacement:

fib_list[2:5]= [3]

We’ve specified a slicing which contains three items—index values of 2, 3, and 4—and
replaced these items with a list that has only a single item. The resulting list will look like
this:

[1, 1, 3, 13]

Positions 0 and 1 remain untouched. Also positions from 5 to the end of the original list
are also left untouched.

We can replace an extended slicing—one that includes a step value—but the replacement
must be the same size. If we don’t provide the proper number of replacement values, we’ll
get a ValueError exception.

Mutating a list with method functions

We can mutate a 1ist object with any of a large number of method functions. The mutator
methods of a list almost always return a value of None. With the exception of the pop()
method, mutators don’t return a meaningful value.

There are also method functions which provide information about a list; these must return
a value. We’ll look at access-only method functions.

The mutator methods of a list include append(), clear(), extend(), insert(), pop(),
remove(), reverse(), and sort(). Here are some examples:

>>> fip_list

[1, 1, 3, 5, 8, 13]

>>> fib_list.extend([21, 34])
>>> fibp_list

[1, 1, 3, 5, 8, 13, 21, 34]
>>> fib_list.insert(0, 0)

>>> fib list

[6, 1, 1, 3, 5, 8, 13, 21, 34]
>>> fib_list.remove(34)

>>> fip_list

[6, 1, 1, 3, 5, 8, 13, 21]

>>> fib_list.pop()

21

>>> fib_list.pop(0)

0]

We’ve shown our initial list with six items. We extended the list with a second list that has
two more items, [21, 34]. The result is a single list composed of the two original lists.

The insert () method has a value and a position. In this example, both were zero. When
we use help(list.insert) we see that the index position is the first argument value. The
value to be inserted before that position is provided as the second argument value.

When we remove an item from a list, we provide the item value to remove. For very large
lists, this may involve a significant amount of time searching for the required item.

The pop () method does two things. It removes an item by position, and returns that item
as the result value. The default position is the last item, -1. We can also remove items from
the beginning of a list, using index position 0.

We can also use the del statement to remove items from a list. The statement del
fib_list[0] will remove the first item from a list.

We haven’t shown the reverse() and sort () methods which change the order of the
items in the list. The sort () method can be quite a bit more sophisticated than these
methods. We’ll look into sorting in Chapter 8, More Advanced Functions.

We didn’t give an example of the clear () method. This removes all of the items from the
list.

Note that, with the exception of pop(), we must explicitly request a display of the

fib_list object to see any output from Python’s REPL. These mutator methods only
return a value of None. It’s too common a mistake to see a = a.append(x); this statement
always sets the variable a to None.

Accessing a list

As shown previously, we can access a list using a subscription as well as a slicing. A
subscription gives us a single item. A slicing, on the other hand, makes a shallow copy of
the items in the original list.

The method functions for accessing a list include count (), index(), and copy(). Here are
some examples to show how these functions work:

>>> fib_list.count(1)
2
>>> fib_list.index(5)
3

The count () method counts all the items which are equal to the given value. In this case,
there were two items equal to 1 in the list. If the given value is not found in the list, the
count will be zero.

The index () method locates the given item value, and returns the index position of that
value in the list. If the value does not exist, a ValueError exception is raised.

The copy() method of a list object does the same thing as the empty slicing. The
expressions, fib_list[:] and fib_list.copy(), are both copies of the original list.

Using collection functions

Python offers a number of functions which work with any kind of collection. These
include sorted(), max(), min(), and sum(). We also have some higher-order functions,
map (), filter(), and the entire itertools module. We’ll address additional higher-order
functions in Chapter 8, More Advanced Functions.

The sorted() function returns a sorted list from a collection. It transforms the given
collection into a 1ist collection as part of the sorting process. If the collection doesn’t
define the proper iterator methods, it can’t be easily sorted by using this function.

The max () and min() functions reduce a collection to a single value: either the largest or
the smallest value in the collection. This reduction presumes that the items can be
meaningfully compared. Consider a tuple that has mixed values in it:

((255, 73, 108), 'Radical Red')

We can’t meaningfully evaluate max() or min() on a collection of mixed values like this.
The functions will be forced to compare a tuple of numbers against a string. This will raise
a TypeError exception.

The sum() function reduces a collection of numbers to a single value. It can be used on
almost any kind of object that implements the + operator; we can amalgamate a list of lists
to create a very long list. Here’s an example of using these collection functions with a
simple set object:

>>> some_set = {7, 2, 3, 5}
>>> sorted(some_set)

[21 3/ 5/ 7]

>>> max(some_set)
7

>>> min(some_set)
2

>>> sum(some_set)
17

We’ve created a set with four integers in it. When we evaluate the sorted() function, we
get a 1ist object which contains the items sorted into ascending order. When we evaluate
max () or min() functions, we get the largest or smallest value in the collection. The sum()
function adds up the values in the set collection.

Using the set collection

All of the collections we’ve looked at previously have been sequences: str, bytes, tuple,
and list have items which can be accessed by their position within the collection. A set
collection is an unordered collection where items are present or absent.

Items in a set collection must be immutable; they must provide a proper hash value as
well as an equality test. This means that we can create sets of numbers, strings, and tuples.
We can’t easily create a set of lists or a set of sets.

The syntax of a set display is a sequence of expressions wrapped in {}.
Here’s an example set built using numbers:

>>> fib_set = {1, 1, 3, 5, 8}

>>> fib_set

{8, 1, 3, 5}

We’ve created a set object by enclosing the values in {}. This syntax looks very similar to
the syntax for creating 1ist or tuple. Note that the elements in the set collection are
displayed in a different order. There’s no guarantee what the order will be; different
implementations may show different orders.

It’s important to note that we tried to include two instances of the integer 1 in the set
collection. Since an item is either present in the set collection or absent, the item cannot
be included a second time. Duplicate items are silently ignored.

We can also create a set collection by applying the set () function to a collection of
values. We can create a set collection from a 1ist or tuple collection. We can also create
a set collection from a simple string: each individual character will become an item in the
resulting set. We can use set([1, 1, 3, 5, 8]) to apply the set() function to a literal
list object.

The syntax {}, interestingly, does not create an empty set. This actually creates an empty
dict class. To create an empty set, we must use the set () function.

We have a fairly large number of operators for set objects. In addition to the operators, we
also have a large number of method functions. These can be categorized as follows:

e Mutators: These modify a set object
e Accessors: These access a list and return a fact about that set object.

The mutator methods of a set collection almost always return a value of None. With the
exception of the pop() method, mutators don’t return a value. The accessors, which
provide information about a list, must return a value. We’ll look at the operators first.

Using set operators

Sets have a large number of operators which closely parallel mathematical operators for
sets. The mapping leverages the bit-oriented operators; it interprets them to mean set
membership instead of bits in an integer value.

We have the following operators: |, &, -, and A, which stand for union (¢'“),

intersection (¢ 7)), difference (¢ '/), and symmetric difference (¢ Ab).

Examples of these two sets are:

>>> words = set("How I wish".split())

{'How', 'I', 'wish'}

>>> more = set("I could recollect pi".split())

{'recollect', 'pi', 'I', 'could'}

Each set is built by splitting a string into individual space-separated words. The results
contain the proper elements; the order, however, may vary. Here are examples of each of
the operators:

>>> words | more

{'wish', 'could', 'pi', 'I', 'How', 'recollect'}

>>> words & more

{'T'}

>>> words - more

{'How', 'wish'}

>>> words A more

{'recollect', 'wish', 'pi', 'How', 'could'}

The union operator creates a new set with elements that are drawn from both sets. We
could say that the union of a | b creates a set of elements, {x}, where each element is
either an element of a or an element of b. There’s a tidy parallel between the concept of

the Boolean or operator and the set union.

The intersection operator, a & b, finds the items which are an element of a and an
element of b. Again, there’s a close parallel between the Boolean and operator and set
intersection.

The set difference operator will remove items from the left set which are in the right set.
We could say that the resulting elements are elements of a and not elements of b. There’s
no commonly-used Boolean operator which parallels the definition of set difference.

The symmetric difference operators are the items unique to both sets; the common items
have been removed. This corresponds to the exclusive or Boolean operation. We could
say that the result is members of a or members of b but not members of both sets.

Mutating a set with method functions

Sets have some mutators which parallel those of a 1ist collection. These methods include
add(), remove(), discard(), and clear (). Since the methods are mutators, they do not
return a useful value. The add () method parallels 1ist.append(): it adds a single item to
the set.

The remove() and discard() methods will remove an item from a set; the remove()
method will raise an exception if the item is not in the set, the discard() method always
succeeds, even if the item is not in the set. The clear () method discards all items from
the set.

We can, for example, update our fib_set variable like this:

f_n = max(fib_set)

f_nl = max(fib_set-{f_n})

fib_set.add(f_n+f_n1)

We’ve located the largest value in the set, and assigned this to the f_n variable. We used
the set difference operator to create a new set without the maximum value. When we
evaluate max () on this new set, we’ll get the next-to-largest value. Finally, we mutated the
set with the add() method to insert a value into the set.

The set difference operator, -, does not mutate the set: like all arithmetic operators, it
creates a new object from the operands. The add() method, however, does mutate the
given set.

Note that Fibonacci numbers aren’t the best use of a set collection. The first two
Fibonacci numbers are both one.

The pop () method is unique; it is a mutator which also returns a value. The value popped
from the set will be selected arbitrarily. There’s no easy way to predict which item will be
removed and returned.

Each of the operators has a method function that matches the operator. The following
operators: |, &, -, and A correspond to the update(), intersection(), difference(), and
symmetric_difference() methods. We can write a | b or we can write a.update(b).
Both have the same results.

Using augmented assignment with sets

The augmented assignment statements also work well with sets. We can use |=, &=, -=,
and /A=, to update a set based on elements from another set. For example, consider this
statement:

words |= more
The words set will be mutated to include all the items from the more set.

Each of the augmented assignment statements also has a corresponding update method.
The method names for these mutators are update(), intersection_update(),
difference_update(), and symmetric_difference_update(). These methods are
mutators which match the augmented assignment statements.

Accessing a set with operators and method
functions

There are a few operators which count as set accessors. Perhaps the most fundamental
method for accessing a set is the in operator; this will check to see if a particular element
exists in a set.

>>> 'T' in words
True

The comparison operators for sets implement basic set theory operations. When we use <,
<=, >, or >= between two sets, we’re doing subset and superset comparisons. For example:

>>> {'I'} < words

True

>>> {'How', 'I', 'wish'} <= words

True

In the first case, the set {'I'} is a proper subset of the set in the words variable. In the
second case, the improper subset comparison was True, because the two sets are actually
equal.

We also have method functions that match the various comparison operators. We can use
isdisjoint(), issubset(), and issuperset () in addition to the !=, <, and > operators.

There’s little practical difference between item in set and {item} <= set. It’s also true
that set-{item} !'= set would be true when the given item is in the set. These
mathematical equivalences are interesting, but often involve extra computation.

Mappings

Python has a number of mapping collections. A mapping is an association between a key
and a value. The built-in mapping collection is the dict class. The other mappings are
defined in the collections library, and must be imported.

Items that are keys within a mapping must be immutable; they must provide a proper hash
value as well as a matching equality test. The values within a mapping have no
restrictions; they can be mutable or immutable. The order of the keys is not maintained by
the dict class.

We can create a simple dict display using {}; each key and value are separated by the :
character.

Here’s an example of a simple mapping:
sieve = {2: True, 3: True, 4: False, 5: True, 6: None, 7: None}

We’ve created a simple mapping with keys that are all integers, and values which are a
mixture of Boolean and None values.

We can also create a dictionary using the dict () function. This function can build a
dictionary from a variety of sources. We can provide an existing dictionary as an
argument; the dict () function will make a shallow copy of that source dictionary. We can
provide a sequence of (key, value) two-tuples. It would look like this:

>>> sieve = dict(
[(2, True), (3, True), (4, False), (5, True), (6, None), (7, None)]
)

This example created a dictionary from a list of (key, value) two-tuples. The resulting
dictionary object that’s created will match the literal display shown in the preceding
example.

We can also create dictionaries with string keys using the dict() function. When we
provide keyword arguments, they become the keys.

>>> cadaeic= dict(poe=3, e=1, near=4, a=1, raven=5, midnights= 9)

>>> cadaeic

{'raven': 5, 'e': 1, 'near': 4, 'midnights': 9, 'poe': 3, 'a': 1}

It’s important to repeat the observation that the order of the keys in a built-in dict object
is not defined.

We can also build a dictionary from a set of keys, providing a single default value. We can
do this as follows:

>>> sieve = dict.fromkeys(range(2,10))
>>> gsieve
{2: None, 3: None, 4: None, 5: None, 6: None, 7: None, 8: None, 9: None}

We’ve used the range() function to iterate through a series of numbers which start with
two and end just before ten. These numbers are then used to create keys for a dictionary.

The value associated with each key is the default of None.

Using dictionary operators

All Python mappings, including the built-in dict, use a key in [] to get, set, and delete
items. The syntax looks like this:

>>> cadaeic['poe']

3

>>> cadaeic['so']= 2

>>> del cadaeic['so']

We’ve provided literal strings to show how we can get an item, set an item, and use the
del statement to delete an item.

Note that dictionary comparisons are difficult to define in a general way. It’s not perfectly
clear if an ordering comparison should compare only the keys, only the values, or a
combination of keys and values. Consequently, only == and != comparisons among
dictionaries are defined.

Using dictionary mutators

We can use dict[key] on the left side of an assignment statement to modify a dictionary.
This will insert the given key and value if the key does not exist; if the key already exists,
it will change the value associated with the key.

We also have a number of methods that we can use to mutate a dictionary object. These
methods include clear (), pop(), popitem(), setdefault(), and update() to modify a
dictionary object.

The clear() and update() methods don’t return a useful value. The clear () method will
empty the dictionary. The update () method will fold additional data into an existing
dictionary. This method will accept the same variety of arguments as the dict () function
that creates a dictionary. The first positional argument can be a dictionary object or a
sequence of (key, value) two-tuples. Additionally, we can provide any number of
keyword arguments; the keywords will become keys in the updated dictionary.

Here are two examples that show some of the different ways in which the update()
method can be used:

>>> cadaeic.update({'so':2, 'dreary':6})

>>> cadaeic.update([('tired',5), ('and',3)], weary=5)

>>> cadaeic

{'a': 1, 'weary': 5, 'near': 4, 'dreary': 6, 'e': 1,

'raven': 5, 'midnights': 9, 'and': 3, 'so': 2, 'poe': 3,

"tired': 5}

We’ve updated the cadaeic dictionary object using another dictionary with two items.
Then we applied further updates using a sequence of (key, value) two-tuples. The
second example also included an additional keyword argument, which inserted the key
'weary' into the dictionary.

The setdefault () method function is an interesting special case. This is a variation on
the get () accessor. The get () method (and the pop() method) has a provision for a
default value. The setdefault() method doesn’t merely return the default value if the key
is missing—paralleling what get () does. The setdefault() method updates the
dictionary to be sure that the default value is now in the dictionary. All subsequent
setdefault() or get () methods will find the key in the dictionary.

The sequence of operations might look something like this:

>>> counter = {}

>>> counter.setdefault('a',0)

0]

>>> counter['a'] += 1

>>> counter

{'a': 1}

We’ve created an empty dictionary and assigned it to the counter variable. When we use

counter.setdefault('a',0), we’ll get the value associated with a key of 'a', or we’ll
get the default value of zero. In addition to returning, the default value will also be used to

update the dictionary, assuring that there is a value associated with the given key.

We can then do a simple, easy-to-understand counter['a'] += 1 knowing that the key,
'a', has a value in the dictionary. Either the key already existed, and the setdefault ()
function did nothing or the key did not exist, and the setdefault() function provided that
default value.

Since setdefault() returns a value, we can optimize this into something like this:

>>> counter['b'] = counter.setdefault('b',0) + 1

This setdefault () process is so common that there are two closely-related classes in
collections. The defaultdict class simply treats all get () operations like
setdefault(). The counter class will implicitly do the count[key]+=1 process for any
iterable, building on the defaultdict class.

There are two variations on the pop () method. The typical implementation of pop () will
remove a given key and return the value associated with that key. Beyond this, the
popitem() method will remove and return one (key, value) pair from a dictionary. The
pair will be chosen arbitrarily. In both cases, the dictionary is updated to remove the value.

Using methods for accessing items in a mapping

We have a number of methods to access items in a mapping. First and foremost, we have
the dict[key] construct which locates the value associated with the given key. If the key
does not exist, the KeyError exception is raised.

The get () method will also return the value associated with a key in the dictionary. The
get () method can also provide a default value. We can use cadaeic.get("word", 4) to
locate the key ("word" in this example). If the key is not found the default, 4, is returned.

The copy() method returns a shallow copy of the dictionary. We can do a=dict(d) or a=
d.copy() to make a new dictionary, which is a copy of an original dictionary. Both are
equivalent.

There are three methods which expose important features of a mapping:

e keys() is the sequence of keys from the mapping. By default, this is used when
converting a mapping to another collection. If we use set(cadaeic) or
list(cadaiec), we’ll see just the key values in the set or list object. The value of
sorted(cadaeic) is the same as sorted(cadaeic.keys()).

e values() is the sequence of values from the mapping.

e items() is the sequence of (key, value) pairs from the mapping. This list of two-
tuples can be used to rebuild the dictionary. If we use tuple(cadaeic.items()),
we’ve created a tuple of two-tuples. This tuple is immutable, and can be used as a
key to another mapping or as an item in a set. This is a way of “freezing” a dictionary
to create an immutable copy.

Using extensions from the collections module

The Python Standard Library includes the collections module. This module offers us a
number of alternatives to the built-in collections. This module has the following additional
collections:

e We can import the namedtuple function and use this to create variations on the basic
tuple that includes named attributes in addition to attributes identified by their
positional index.

e The deque class defines a double-ended queue, like a 1ist collection that can
perform fast append() and pop() functions on either end. A subset of the features of
this class will create single-ended stack (LIFO) or queue (FIFO) structures.

¢ In some cases, we can use a ChainMap instead of merging mappings, via update().
The result is a view of multiple mappings rather than a single, updated mapping. This
can be built very quickly; a search takes longer than a single mapping.

e An OrderedDict mapping is a mapping which maintains the order in which the keys
were created.

e The defaultdict class is a subclass of the built-in dict that uses a factory function
to provide values for missing keys.

e The counter class is a dict subclass that counts objects to create frequency tables. It
is also used as a more sophisticated data structure called a multiset or bag.

We can create letter frequencies using a Counter class quite simply. A Counter will count
the occurrences of items in the sequence. Given a string, which is an iterable sequence of
characters, creating a Counter leads directly to a frequency table. Here’s an example:

>>> from collections import Counter
>>> text = """Poe, E... Near a Raven..
. Midnights so dreary, tired and weary,
. Silently pondering volumes extolling all by-now obsolete lore... During
my rather long nap - the weirdest tap!
. An ominous vibrating sound disturbing my chamber's antedoor... "This", I
whispered quietly, "I ignore"."""
>>> freq= Counter(text)
>>> freq.most_common(5)
(¢ ', 35), ('e', 23), ('n', 18), ('r', 17), ('1", 17)]

We’ve imported the Counter class from the collections module. We’ve also set a
variable, text, to a piece of a poem by Mike Keith. For more of this poem, see
http://www.cadaeic.net/naraven.htm.

We created a Counter object using the string of characters as the source. A Counter object
will iterate through each item in the sequence, counting the number of occurrences of that
item. When we use the most_common () method, we’ll see the five most common items in
the collection. If we were to simply print the value of the freq variable, we’d see all of the
character frequencies.

Each of these collections offers unique features. If the built-in dict, 1ist, or tuple
doesn’t meet our needs, one of these additional collections may be more suitable for the

http://www.cadaeic.net/naraven.htm

problem we’re tying to solve.

Processing collections with the for
statement

The for statement is an extremely versatile way to process every item in a collection. We
do this by defining a target variable, a source of items, and a suite of statements. The for
statement will iterate through the source of items, assigning each item to the target
variable, and also execute the suite of statements. All of the collections in Python provide
the necessary methods, which means that we can use anything as the source of items in a
for statement.

Here’s some sample data that we’ll work with. This is part of Mike Keith’s poem, Near a
Raven. We’ll remove the punctuation to make the text easier to work with:

>>> text = '''Poe, E... Near a Raven..
. Midnights so dreary, tired and weary.'"''
>>> text = text.replace(",","").replace(".","").lower()

This will put the original text, with uppercase and lowercase and punctuation into the text
variable. We used some method functions from Chapter 2, Simple Data Types, to remove
the common punctuation marks and return a version of the entire string entirely composed
of lowercase letters.

When we use text.split(), we get a sequence of individual words. The for loop can
iterate through this sequence of words so that we can process each one. The syntax looks
like this:

>>> cadaeic= {}
>>> for word in text.split():
cadaeic[word]= len(word)

We’ve created an empty dictionary, and assigned it to the cadaeic variable. The
expression in the for loop, text.split(), will create a sequence of substrings. Each of
these substrings will be assigned to the word variable. The for loop body—a single
assignment statement—will be executed once for each value assigned to word.

The resulting dictionary might look like this (irrespective of ordering):

{'raven': 5, 'midnights': 9, 'dreary': 6, 'e': 1,
'weary': 5, 'near': 4, 'a': 1, 'poe': 3, 'and': 3,
'so': 2, 'tired': 5}

There’s no guaranteed order for mappings or sets. Your results may differ slightly.

In addition to iterating over a sequence, we can also iterate over the keys in a dictionary.

>>> for word in sorted(cadaeic):
print(word, cadaeic[word])

When we use sorted() on a tuple or a 1list, an interim list is created with sorted items.
When we apply sorted() to a mapping, the sorting applies to the keys of the mapping,
creating a sequence of sorted keys. This loop will print a list in alphabetical order of the

various pilish words used in this poem.
Note

Pilish is a subset of English where the word lengths are important: they’re used as
mnemonic aids.

A for statement corresponds to the “for all” logical quantifier, v. At the end of a simple
for loop we can assert that all items in the source collection have been processed. In order
to build the “there exists” quantifier, =z, we can either use the while statement, or the
break statement inside the body of a for statement.

Using literal lists in a for statement

We can apply the for statement to a sequence of literal values. One of the most common
ways to present literals is as a tuple. It might look like this:

for scheme in 'http', 'https', 'ftp':

do_something(scheme)
This will assign three different values to the scheme variable. For each of those values, it
will evaluate the do_something() function.

From this, we can see that, strictly-speaking, the () are not required to delimit a tuple
object. If the sequence of values grows, however, and we need to span more than one
physical line, we’ll want to add (), making the tuple literal more explicit.

Using the range() and enumerate() functions

The range () object will provide a sequence of numbers, often used in a for loop. The
range() object is iterable, it’s not itself a sequence object. It’s a generator, which will
produce items when required. If we use range() outside a for statement, we need to use a
function like 1ist(range(x)) or tuple(range(a, b)) to consume all of the generated
values and create a new sequence object.

The range () object has three commonly-used forms:

e range(n) produces ascending numbers including 0 but not including n itself. This is
a half-open interval. We could say that range(n) produces numbers, x, such that
O<x<n_ The expression list(range(5)) returns [0, 1, 2, 3, 4]. This produces
n values including 0 and n - 1.

e range(a,b) produces ascending numbers starting from a but not including b. The
expression tuple(range(-1,3)) will return (-1, @, 1, 2). This produces b - a
values including a and b - 1.

® range(x,y,z) produces ascending numbers in the sequence

L, X+2z,x+2z (+kxz<y .
(hx+2,5+2z,....x+kxz<y) . This produces (y-x)//z values.

We can use the range() object like this:

for n in range(1, 21):
status= str(n)

if n %5 == 0: status += " fizz"
if n% 7 == 0: status += " buzz"
print(status)

In this example, we’ve used a range() object to produce values, n, such that 1sn<21,

We use the range () object to generate the index values for all items in a list:

for n in range(len(some_list)):

print(n, some_list[n])
We’ve used the range () function to generate values between 0 and the length of the
sequence object named some_list.

The for statement allows multiple target variables. The rules for multiple target variables
are the same as for a multiple variable assignment statement: a sequence object will be
decomposed and items assigned to each variable. Because of that, we can leverage the
enumerate () function to iterate through a sequence and assign the index values at the
same time. It looks like this:

for n, v in enumerate(some_list):

print(n, v)
The enumerate() function is a generator function which iterates through the items in
source sequence and yields a sequence of two-tuple pairs with the index and the item.
Since we’ve provided two variables, the two-tuple is decomposed and assigned to each
variable.

There are numerous use cases for this multiple-assignment for loop. We often have list-
of-tuples data structures that can be handled very neatly with this multiple-assignment

feature. In Chapter 8, More Advanced Functions, we’ll look at a number of these design
patterns.

Iterating with the while statement

The while statement is a more general iteration than the for statement. We’ll use a while
loop in two situations. We’ll use this in cases where we don’t have a finite collection to
impose an upper bound on the loop’s iteration; we may suggest an upper bound in the
while clause itself. We’ll also use this when writing a “search” or “there exists” kind of
loop; we aren’t processing all items in a collection.

A desktop application that accepts input from a user, for example, will often have a while
loop. The application runs until the user decides to quit; there’s no upper bound on the
number of user interactions. For this, we generally use a while True: loop. Infinite
iteration is recommended.

If we want to write a character-mode user interface, we could do it like this:

guit_received= False
while not quit_received:
command= input("prompt> ")
guit_received= process(command)
This will iterate until the quit_received variable is set to True. This will process
indefinitely; there’s no upper boundary on the number of iterations.

This process() function might use some kind of command processing. This should
include a statement like this:

if command.lower().startswith("quit"): return True

When the user enters "quit", the process() function will return True. This will be
assigned to the quit_received variable. The while expression, not quit_received, will
become False, and the loop ends.

A “there exists” loop will iterate through a collection, stopping at the first item that meets
certain criteria. This can look complex because we’re forced to make two details of loop
processing explicit.

Here’s an example of searching for the first value that meets a condition. This example
assumes that we have a function, condition(), which will eventually be True for some
number. Here’s how we can use a while statement to locate the minimum for which this
function is True:

>>> n = 1

>>> while n != 101 and not condition(n):

. n+=1

>>> assert n == 101 or condition(n)

The while statement will terminate when n == 101 or the condition(n) is True. If this
expression is False, we can advance the n variable to the next value in the sequence of
values. Since we’re iterating through the values in order from the smallest to the largest,
we know that n will be the smallest value for which the condition() function is true.

At the end of the while statement we have included a formal assertion that either nis 101

or the condition() function is True for the given value of n. Writing an assertion like this
can help in design as well as debugging because it will often summarize the loop invariant
condition.

We can also write this kind of loop using the break statement in a for loop, something
we’ll look at in the next section.

The continue and break statements

The continue statement is helpful for skipping items without writing deeply-nested if
statements. The effect of executing a continue statement is to skip the rest of the loop’s
suite. In a for loop, this means that the next item will be taken from the source iterable. In
a while loop, this must be used carefully to avoid an otherwise infinite iteration.

We might see file processing that looks like this:

for line in some_file:
clean = line.strip()
if len(clean) ==
continue
data, _, _ = clean.partition("#")
data = data.rstrip()
if len(data) == 0:
continue
process(data)

In this loop, we’re relying on the way files act like sequences of individual lines. For each
line in the file, we’ve stripped whitespace from the input line, and assigned the resulting
string to the clean variable. If the length of this string is zero, the line was entirely
whitespace, and we’ll continue the loop with the next line. The continue statement skips
the remaining statements in the body of the loop.

We’ll partition the line into three pieces: a portion in front of any "#", the "#" (if present),
and the portion after any "#". We’ve assigned the "#" character and any text after the "#"
character to the same easily-ignored variable, _, because we don’t have any use for these
two results of the partition() method. We can then strip any trailing whitespace from the
string assigned to the data variable. If the resulting string has a length of zero, then the
line is entirely filled with "#" and any trailing comment text. Since there’s no useful data,
we can continue the loop, ignoring this line of input.

If the line passes the two if conditions, we can process the resulting data. By using the
continue statement, we have avoided complex-looking, deeply-nested if statements.
We’ll examine files in detail in Chapter 10, Files, Databases, Networks, and Contexts.

It’s important to note that a continue statement must always be part of the suite inside an
if statement, inside a for or while loop. The condition on that if statement becomes a
filter condition that applies to the collection of data being processed. continue always
applies to the innermost loop.

Breaking early from a loop

The break statement is a profound change in the semantics of the loop. An ordinary for
statement can be summarized by “for all.” We can comfortably say that “for all items in a
collection, the suite of statements was processed.”

When we use a break statement, a loop is no longer summarized by “for all.” We need to
change our perspective to “there exists”. A break statement asserts that at least one item in
the collection matches the condition that leads to the execution of the break statement.

Here’s a simple example of a break statement:

for n in range(1, 100):
factors = []
for x in range(1,n):

if n % x == 0: factors.append(x)
if sum(factors) == n:
break

We’ve written a loop that is bound by =7 <100 This loop includes a break statement,
so it will not process all values of n. Instead, it will determine the smallest value of n, for
which n is equal to the sum of its factors. Since the loop doesn’t examine all values, it
shows that at least one such number exists within the given range.

We’ve used a nested loop to determine the factors of the number n. This nested loop

creates a sequence, factors, for all values of x in the range I<x<n , such that x, is a
factor of the number n. This inner loop doesn’t have a break statement, so we are sure it
examines all values in the given range.

The least value for which this is true is the number six.

It’s important to note that a break statement must always be part of the suite inside an if
statement inside a for or while loop. If the break isn’t in an if suite, the loop will always
terminate while processing the first item. The condition on that if statement becomes the
“where exists” condition that summarizes the loop as a whole. Clearly, multiple if
statements with multiple break statements mean that the overall loop can have a
potentially confusing and difficult-to-summarize post-condition.

Using the else clause on a loop

Python’s else clause can be used on a for or while statement as well as on an if
statement. The else clause executes after the loop body if there was no break statement
executed. To see this, here’s a contrived example:

>>> for item in 1,2, 3:
print(item)
if item ==
print("Found",item)
break.. else:
print("Found Nothing")

The for statement here will iterate over a short list of literal values. When a specific target
value has been found, a message is printed. Then, the break statement will end the loop,
avoiding the else clause.

When we run this, we’ll see three lines of output, like this:

1
2
Found 2

The value of three isn’t shown, nor is the “Found Nothing” message in the else clause.

If we change the target value in the if statement from two to a value that won’t be seen
(for example, zero or four), then the output will change. If the break statement is not
executed, then the else clause will be executed.

The idea here is to allow us to write contrasting break and non-break suites of statements.
An if statement suite that includes a break statement can do some processing in the suite
before the break statement ends the loop. An else clause allows some processing at the
end of the loop when none of the break-related suites statements were executed.

Summary

We’ve looked at three mutable collections: lists, sets and dictionaries. The built-in
dictionary class is only one of many mappings available in Python, the others are defined
in the collections module of the standard library. The list allows us to collect items which
are identified by their positions in the list. The set allows us to collect a set of unique
items, in which each item is simply identified by itself. A mapping allows us to identify
items by a key.

For sets, each item must be immutable. For mappings, the object used as a key must be
immutable. This means that numbers, strings, and tuples are often used as mapping keys.

We’ve looked at the for statement, which is the primary way we’ll process the individual
items in a collection. A simple for statement assures us that our processing has been done
for all items in the collection. We’ve also looked at the general purpose while loop.

In Chapter 7, Basic Function Definitions, we’ll look at how we can define our own
functions. We’ll also look at the wide variety of ways we can evaluate a function in
Python.

Chapter 7. Basic Function Definitions

Mathematically, a function is a mapping of values in a domain to values in a range.
Functions like sine or cosine map values from a domain of angles to a range of real values
between -1 and +1. The details of the mapping are summarized in the name, domain, and
range. We’ll use this function concept as a way to package our Python programming into
something that allows us to summarize the implementation details using a name.

We’ll look at how to define and evaluate Python functions. In this chapter, we’ll focus on
Python functions that simply return Python objects as the range of values. In Chapter 8,
More Advanced Functions, we’ll look at generator functions; these are iterators, which are
used with a for loop to produce sequences of values.

Python functions offer optional parameters as well as a mixture of positional and keyword
parameters. This allows us to define a single function which has a number of variant
signatures, allowing considerable flexibility in how the function is used.

Looking at the five kinds of callables

Python offers five variations on the theme of a function. Each of these is a kind of callable
object: we can call the object with argument values and it returns a result. Here’s how
we’ll organize our exploration:

Basic functions created with the def statement are the subject of this chapter.
Lambda forms are a function definition reduced to parameters and an expression; this
is also a topic within this chapter.

Generator functions and the yield statement are something we’ll look at in Chapter 8,
More Advanced Functions. These functions are iterators which can provide multiple
results.

Function wrappers for class methods are something we’ll look at in Chapter 11, Class
Definitions. These are built-in functions which leverage features of a class. A
function like 1len() is implemented by the __len__ () method of a collection.
Callable objects are also part of Chapter 11, Class Definitions. These are classes
which include the _ call__ () method so that an instance of the class behaves like a
basic function created with the def statement.

All of these are variations on a common theme. They are ways to package some
functionality so that it has a name, input parameters, and a result. This allows us to
decompose large, complex programs into smaller, easier-to-understand functions.

Defining functions with positional
parameters

The essential Python function definition is built with the def statement. We provide a
name, the names of the parameters, and an indented suite of statements that is the body of
the function. The return statement provides the range of values.

The syntax looks like this:

def prod(sequence):
p=1
for item in sequence:p *= item
return p

We’ve defined a name, prod, and provided a list of only one parameter, sequence. The
body of the function includes three statements: assignment, for, and return. The
expression in the return statement provides the resulting value.

This fits the mathematical idea of a function reasonably well. The domain of values is any
numeric sequence, the range will be a value of the a type which reflects the data types in
the sequence.

We evaluate a function by simply using the name and a specific value for the argument in
an expression:

>>> prod([1,2,3,4])

24

>>> prod(range(1,6))

120

In the first example, we provided a simple list display, [1, 2, 3, 4], as an argument.
This was assigned to the parameter of the function, sequence. The evaluation of the
function returned the product of that sequential collection of items.

In the second example, we provided a range() object as the argument to the prod()
function. This argument value is assigned to the parameter of the function. When used
with a for loop, the range object behaves like a sequence collection, and a product is
computed and returned.

Defining multiple parameters

Python offers us a variety of ways to assign values to parameters. In the simplest case, the
argument values are assigned to the parameters based on position. Here’s a function with
two positional parameters:

def main_sail area(boom, mast):
return (boom*mast)/1.8

We’ve defined a function that requires the length of the sail’s boom, usually called the “E”
dimension, and the height of the mast along which the sail is rigged, usually called the “P”
dimension. Given these two numbers, and an assumption about the curvature of the sail,
we return the approximate sail area.

We can evaluate this function providing the two positional parameters for boom length
and mast height.

>>> main_sail_area(15, 45)
375.0

We can define a function with any number of parameters. A function with a large number
of parameters will tend to push the edge of the envelope on comprehensibility. A good
function should have a tidy summary that makes it possible to understand the function’s
purpose without having to struggle with too many details.

Using the return statement

The return statement has two purposes: it ends the function’s execution, and it can
optionally provide the result value for the function. The return statement is optional. This
leads to three use cases:

e No return statement: The function finishes at the end of the suite of statements. The
return value is None.

e A return statement with no expression: The function finishes when the return
statement is executed, the result is None.

e A return statement with an expression: The function finishes when the return
statement is executed, the value of the expression is the result. A return statement
with a list of expressions creates a tuple, suitable for multiple assignment.

Here’s a function with no return statement;

def boat_summary(name, rig, sails):
print("Boat {0}, {1} rig, {2:.0f} sq. ft.".format(
name, rig, sum(sails))
)

This function consists of a single expression statement that uses the print () function.
There’s no explicit return so the default return value will be None.

It’s common to use a return statement to finish early when an exception condition has
been met, otherwise you execute the rest of the suite of statements in the function
definition. It looks like this:

def mean_diff(data_sequence):
sO, s1 =0, 0
for item in data_sequence:

sO += 1
sl += item
if s0 < 2:
return
m= s1/s0

for item in data_sequence:
print(item, abs(item-m))
This function expects a collection of data. It will compute two values from that collection:
s0 and s1. The so value will be a count of items, the s1 value will be the sum of the items.
If the count is too small, the function simply returns. If the count is large enough, then
additional processing is done: the values are printed along with the absolute difference
between the value and the average.

There’s no return statement at the end of the suite of statements, since this is not
required. Using a return statement in the middle of a function allows us to avoid deeply-
nested if statements.

Note that the variables s0, s1, and m, are created in a local namespace that only exists
while the function is being evaluated. Once the function is finished, the local namespace is
removed, the reference counts are decremented and the interim objects are cleaned up.

We’ll look at additional details in the Working with namespaces section later in this
chapter.

The built-in function divmod () returns two results. We often use multiple assignments like
this: q, r = divmod(n, 16); it will assign the two results to two variables, g and r. We
can write a function that returns multiple values by including multiple expressions on the
return statement.

In the Mutable and immutable argument values section, we’ll show a function that has
multiple return values.

Evaluating a function with positional or keyword
arguments

Python allows us to provide argument values with explicit parameter names. When we
provide a name, it’s called a keyword argument. For example, the boat_summary ()
function in the previous section can be used in a number of different ways.

We can provide the argument values positionally, like this:

>>> sails = [358.3, 192.5, 379.75, 200.0]
>>> poat_summary('"Red Ranger", "ketch", sails)

The arguments are assigned to the parameter variables of name, rig, and sails based on
their position.

We can, as an alternative, do something like this:

>>> poat_summary(sails=sails, rig="ketch", name="Red Ranger")

This example provides all three arguments with keywords. Note that the position doesn’t
matter when providing keyword arguments. The keyword arguments must be provided
dfter any positional arguments, but the order among the keyword arguments doesn’t
matter, since they are assigned to parameters by name.

We can use a mixture of positional and keyword arguments. For this to work, Python uses
two rules to map argument values to a function’s parameters:

1. Match all positional arguments to parameters from left-to-right.
2. Match all keyword parameters by name.

There are several additional rules to handle duplicates and default values—which include
optional parameters—described later, in the section called Defining optional parameters
via default values.

In order for these rules to work properly, we must provide all positional parameters first,
and then we can provide any keyword parameters after the positional parameters. We can’t
provide two values for the same parameter via position as well as keyword. Nor, for that
matter, can we provide a keyword twice.

Here’s a good example and a bad example:

>>> poat_summary('"Red Ranger", sails=sails, rig="ketch")
>>> poat_summary('"Red Ranger", sails=sails, rig="ketch", name="Red Ranger")

In the first example, the name parameter is matched positionally. The sails and rig
parameters were matched by keyword.

In the second example, there are both positional and keyword values for the name variable.
This will raise a TypeError exception.

Because of this, it’s very important to choose parameter variable names wisely. A good
choice of parameter name can make keyword argument function evaluation very clear.

Writing a function’s docstring

In order to save space, we haven’t provided many examples of functions with docstrings.
We’ll address docstrings in detail in Chapter 14, Fit and Finish — Unit Testing, Packaging,
and Documentation. For now, we need to be aware that every function should, at the very
least, have a summary. The summary is included as a triple-quoted string that must be the
very first expression in the suite of statements of the function.

A function with a docstring looks like this:

def jib(foot, height):

jib(foot, height) -> area of given jib sail.

>>> jib(12,40)
240.0

nmon

return (foot*height)/2

This particular triple-quoted string serves two purposes. First, it summarizes what the
function does. We can read this when we look at the source file. We can also see this when
we use help(jib).

The second purpose for this docstring is a way to provide a concrete example of how the
function is used. The examples always look like they are simply copied from a REPL
session and pasted into the docstring comment.

These REPL-formatted examples are located by using the doctest tool. After locating the
examples, this tool can run the code to confirm that it works as advertised. All of the
examples in this book were tested using doctest. While the details of testing are part of
Chapter 14, Fit and Finish — Unit Testing, Packaging, and Documentation, it’s important
to consider writing docstrings in every function.

Mutable and immutable argument values

In some programming languages, there are multiple function evaluation strategies,
including call-by-value and call-by-reference. In call-by-value semantics, copies of
argument values are assigned to the parameter variables in a function. In call-by-reference
semantics, a reference to a variable is used in the function. This means that an assignment
statement inside a function could replace the value of a variable outside the function.
Neither of these types of semantics apply to Python.

Python uses a mechanism named “call-by-sharing” or “call-by-object”. A function is given
a reference to the original object. If that object is mutable, the function can mutate the
object. The function cannot, however, assign to variables outside the function via the
parameter variables. The function shares the objects, not the variables to which the objects
are assigned.

One of the most important consequences is that the body of a function can assign new
values to parameter variables without having any impact on the original arguments which
are passed to a function. The parameter variables are strictly local to the function.

Here’s a function that assigns new values to the parameter variable:

def get_data(input_string):
input_string= input_string.strip()

input_string, _, _ = input_string.partition("#")
input_string= input_string.rstrip()
name, _, value = input_string.partition('=")

return name, value

This function evaluates the strip() method of the input_string variable and assigns the
resulting string to the parameter variable. It applies the partition() method to the new
value of the input_string variable and assigns one of the three resulting strings to the
parameter variable. It then returns this string object, assigning it to the parameter variable
yet again.

None of the assignment statements to the input_string parameter variable have any
effect on any variables outside the function. When a function is evaluated, a separate
namespace is used for the parameters and other local variables.

Another consequence of the way Python works is that when we provide mutable objects as
arguments, these objects can be updated by methods evaluated inside a function. The
function’s parameter variables will be references to the original mutable objects, and we
can evaluate methods like the remove () or pop() functions that change the referenced
object.

Here’s a function which updates a 1ist argument by removing selected values:

def remove_mod(some_list, modulus):
for item in some_list[:]:
if item % modulus ==
some_list.remove(item)

This function expects a mutable object like a list, named some_1list, and a value, named
modulus. The function makes a temporary copy of the argument value using
some_list[:]. For each value in this copy that is a multiple of the modulus value, we’ll
remove that copy from the original some_list object. This will mutate the original object.

When we evaluate this function, it looks like this:

>>> data= list(range(10))

>>> remove_mod(data, 5)

>>> remove_mod(data, 7)

>>> data

[11 2/ 3/ 4/ 6/ 8/ 9]

We’ve created a simple list and assigned it to the data variable. This object referred to by
the data variable was mutated by the remove_mod () function. All multiples of five and
seven were discarded from the sequence.

In this function, we need to create a temporary copy of the input 1ist object before we
can start removing values. If we try to iterate through a 1ist while simultaneously
removing items from that 1ist, we’ll get results that don’t appear correct. It helps to have
the original values separate from the mutating 1ist.

A function can create variables in the global namespace, and other non-local namespaces,
by making special arrangements. This is done with the global and nonlocal statements
shown in the Working with namespaces section.

Defining optional parameters via default
values

Python lets us provide a default value for a parameter. Parameters with default values are
optional. The standard library is full of functions with optional parameters. One example
is the int () function. We can use int("48897") to convert a string to an integer,
assuming that the string represents a number in base 10. We can use int("48897", 16) to
explicitly state that the string should be treated as a hexadecimal value. The default value
for the base parameter is 10.

Remember that we can use keyword arguments for a function. This means that we might
want to write something like this: int ("48897", base=16), to make it abundantly clear
what the second argument to the int () function is being used for.

Earlier, we listed two rules for matching argument values to parameters. When we
introduce default values, we add two more rules.

1. Match all positional arguments to parameters from left-to-right.

2. Match all keyword parameters. In case of already-assigned positional parameters,
raise a TypeError exception.

Set default values for any missing parameters.

4. In case there are parameters with no values, raise a TypeError exception.

w

Note

Note: This is not the final set of rules; there are a few more features to cover.

One important consequence of these rules is that the required parameters—those without
default values—must be defined first. Parameters with default values must be defined last.
The “required parameters first, optional parameters last” rule assures us that the positional
matching process works.

We provide the default value in the function definition. Here’s an example:

import random
def dice(n=2, sides=6):

return [random.randint(1,sides) for 1 in range(n)]
We’ve imported the random module so that we can use the random.randint () function.
Our dice() function has two parameters, both of which have default values. The n
parameter, if not provided, will have a value of 2. The sides parameter, if omitted, will
have a value of 6.

The body of this function is a list comprehension: it uses a generator expression to build a
list of individual values. We’ll look at generator expressions in detail in Chapter 8, More
Advanced Functions. For now, we can observe that it uses the random.randint (1, sides)
function to generate numbers between 1 and the value of the sides parameter. The
comprehension includes a for clause that iterates through n values.

We can use this function in a number of different ways. Here are some examples:

>>> dice()

[6, 6]

>>> dice(6)

[3, 6, 2, 2, 1, 5]
>>> dice(4, sides=4)
[3, 3, 4, 3]

The first example relies on default values to emulate the pair of dice commonly used in
casino games like Craps. The second example uses six dice, typical for games like 10,000
(sometimes called Zilch or Crap Out.). The third example uses four four-sided dice,
typical of games that use a variety of polyhedral dice.

Note

A note on testing: in order to provide repeatable unit tests for functions that involve the
random module, we’ve set a specific seed value using random.seed("test").

A warning about mutable default values

Here’s a pathological example. This shows a very bad programming practice; it’s a
mistake that many Python programmers make when they first start working with default
values.

This is a very bad idea:

def more_dice(n, collection=[]):
for i in range(n):
collection.append(random.randint(1,6))
return collection

We’ve defined a simple function with only two parameter variables, n and collection.
The collection has a default value of an empty list. (Spoiler alert: this will turn out to be a
mistake.) The function will append a number of simulated six-sided dice to the given
collection.

The function returns a value as well as mutating an argument. This means that we’ll see
the return value printed when we use this function in the REPL.

We can use this for games like Yacht, also called Generala or Poker Dice. A player has a
“hand” of dice from which we’ll remove dice and append new dice rolls.

One use case is to create a 1ist object and use this as an argument to the more_dice()
function. This 1ist object would get updated nicely. Here’s how that would work:

>>> handl= []

>>> more_dice(5, handl)

[6, 6, 3, 6, 2]

>>> handl

[6, 6, 3, 6, 2]

We’ve created an empty list and assigned it to the hand variable. We provided this
sequence object to the more_dice() function to have five values appended to the hand
object. This gave us an initial roll of three sixes, a three, and a two. We can remove the
two and three from the hand1 object; we can reuse it with more_dice(2, hand1) to put
two more dice into the hand.

We can use another empty sequence as an argument to deal a second hand. Except for the
results, it’s otherwise identical to the first example:

>>> hand2= []

>>> more_dice(5, hand2)

[5, 4, 2, 2, 5]

>>> hand2

[5, 4, 2, 2, 5]

Everything seems to work properly. This is because we’re providing an explicit argument
for the collection parameter. Each of the hand objects is a distinct, empty 1ist. Let’s try to
use the default value for the collection parameter.

In this third example, we won’t provide an argument, but rely on the default sequence

returned by the more_dice() function:

>>> handl= more_dice(5)

>>> hand1l

[6, 6, 3, 6, 2]

>>> hand2= more_dice(5)

>>> hand2

[6, 6, 6, 2, 1, 5, 4, 2, 2, 5]

Wait. What just happened? How is this possible?

As a hint, we’ll need to search through the code for an object with a hidden, shared state.
Earlier, we noted that a default 1ist object would be a problem. This hidden 1ist object
is getting reused.

What happens is this:

1. When the def statement is executed, the expressions that define the parameter
defaults are evaluated. This means that a single mutable 1ist object is created as the
default object for the collection parameter.

2. When the more_dice() function is evaluated without an argument for the
collection parameter, the one-and-only mutable 1ist object is used as the default
object. What’s important is that a single mutable object is being reused. If, at any
point, we update this object, that mutation applies to all shared uses of the object.
Since it’s returned by the function, this single 1ist could be assigned to several
variables.

3. When the more_dice() function is evaluated a second time without an argument for
the collection parameter, the mutated 1ist object is re-used as the default.

From this, we can see that a mutable object is a terrible choice of a default value.

Generally, we have to do something like this:

def more_dice_good(n, collection=None):
if collection is None:
collection = []
for 1 in range(n):
collection.append(random.randint(1,6))
return collection

This function uses an immutable and easily-recognized default value of None. If no
argument value is provided for the collection variable, it will be set to None. We can
replace the None value with a brand new 1ist object created when the function is
evaluated. We can then update this new list object, confident that we’re not corrupting
any mutable default object which is being reused.

Tip
Don’t use a mutable object as a default value for a parameter.

Avoid list, dict, set, and any other mutable type, as default parameter values. Use None
as a default; replace the None with a new, empty mutable object.

You’ve been warned.

This can lead to mistakes. It’s a consequence of the way that function definition works and
call-by-sharing semantics.

It’s possible to exploit this intentionally: we can use a mutable default value as a cache to
retain values, creating functions which have hysteresis. A callable object may be a better
way to implement functions with an internal cache or buffer. See Chapter 11, Class
Definitions, for more information.

Using the “everything else” notations of *
and **

Python offers even more flexibility in how we can define positional and keyword
parameters for a function. The examples we’ve seen are all limited to a fixed and finite
collection of argument values. Python allows us to write functions that have an essentially
unlimited number of positional as well as keyword argument values.

Python will create a tuple of all unmatched positional parameters. It will also create a
dictionary of all unmatched keyword parameters. This allows us to write functions that
can be used like this:

>>> prod2(1, 2, 3, 4)

24

This function accepts an arbitrary number of positional arguments. Compare this with the
prod() function shown previously. Our previous example required a single sequence
object, and we had to use that function as follows:

>>> prod([1, 2, 3, 4])

24

The prod2 () function will create a product of all argument values. Since the prod2()
function can work with an unlimited collection of positional arguments, this leads to
slightly simpler syntax for this function.

In order to write a function with an unlimited number of positional arguments, we must
provide one parameter which has a * prefix. It looks like this:

def prod2(*args):
p=1
for item in args:
p *= item
return p
The definition of prod2() has all positional arguments assigned to the * prefix parameter,

*args. The value of the args parameter is a tuple of the argument values.

Here’s a function which uses a mixture of positional and keyword parameters:

def boat_summary2(name, rig, **sails):

print("Boat {0}, {1} rig, {2:.0f} sq. ft.".format(
name, rig, sum(sails.values())))
This function will accept two arguments, name and rig. These can be supplied by position
or by keyword. Any additional keyword parameters—other than name and rig—are
collected into a dictionary and assigned to the sails parameter. The sails.values()
expression extracts just the values from the sails dictionary; these are added together to
write the final summary line.

Here’s one of many ways that we can use this function:

>>> poat_summary2("Red Ranger", rig="ketch",
main=358.3, mizzen=192.5, yankee=379.75, staysl=200)

We’ve provided the first argument value by position; this will be assigned to the first
positional parameter, name. We’ve provided one of the defined parameters using a
keyword argument, rig. The remaining keyword arguments are collected into a dictionary
and assigned to the parameter named sails.

The sails dictionary will be assigned a value similar to this:
{'main': 358.3, 'mizzen': 192.5, 'yankee': 379.75, 'staysl': 200}
We can use any dictionary processing on this mapping since it’s a proper dict object.

Earlier, we provided four rules for matching argument values with parameters. Here is a
more complete set of rules for matching argument values with function parameters:

1. Match all positional arguments to parameters from left-to-right.
2. If there are more positional arguments than parameter names:

1. If there’s a parameter name with a * prefix, assign a tuple of remaining values
to the prefixed parameter.
2. If there’s no parameter with the * prefix, raise a TypeError exception.

3. Match all keyword parameters. In case of already-assigned positional parameters,
raise a TypeError exception.
4. If there are more keyword arguments than parameter names:

1. If there’s a parameter name with a ** prefix, assign dict of remaining keywords
and values to the prefixed parameter.
2. If there’s no parameter with the ** prefix, raise a TypeError exception.

5. Apply default values to missing parameters.
6. In case of parameters which still have no values, raise a TypeError exception.

A consequence of these rules is that, at most, only one parameter can have a * prefix;
similarly, at most, only one parameter can have a ** prefix. These special cases must be
given after all of the other parameters. The * prefix variable will be assigned an empty
tuple if there are no surplus positional parameters. The ** prefix variable will be assigned
an empty dictionary if there no surplus keyword parameters.

When invoking a function, we must provide positional argument values first. We can
provide keyword argument values in any order.

Using sequences and dictionaries to fill in *args
and *kw

The prod2 () function, shown earlier, expects individual values which are collected into a
single *args tuple. If we invoke the function with prod2(1, 2, 3, 4, 5), then a tuple
built from the five positional parameters is assigned to the args parameter.

What if we want to provide a list to the prod2 () function? How can we, in effect, write
prod2(some_list[0], some_list[1], some_list[2], ..)?

When we call a function using prod2(*some_sequence), then the values of the given
argument sequence are matched to positional parameters. Item zero from the argument
sequence becomes the first positional parameter. Item one from the sequence becomes the
second parameter, and so on. Each item is assigned until they’re all used up. If there are
extra argument values, and the function was defined with a parameter using a * prefix, the
extra argument values are assigned to the * prefix parameter.

Because of this, we can use prod2(*range(1, 10)) easily. This is effectively prod2(1,
2, 3, 4, 5, .., 9).Since all of the positional argument values are assigned to the *-
prefix args variable, we can use this function with individual values, like this: prod2(1,
2, 3, 4).We can provide a sequence of values, like this: prod2(*sequence).

We have a similar technique for providing a dictionary of keyword arguments to a
function. We can do this:

>>> rr_args = dict(
name="Red Ranger", rig="ketch",
. main=358.3, mizzen=192.5, yankee=379.75, staysl=200..)
>>> poat_summary2(**rr_args)
Boat Red Ranger, ketch rig, 1131 sq. ft.

We’ve created a dictionary with all of the arguments defined via their keywords. This uses
a handy feature of the dict () function where all of the keyword arguments are used to
build a dictionary object. We assigned that dictionary to the rr_args variable. When we
invoked the boat_summary2() function, we used the **rr_args parameter to force each
key and value in the rr_args dictionary to be matched against parameters to the function.
This means that the values associated with the name and rig keys in the dictionary will be
matched with the name and rig parameters. All other keys in the dictionary will be
assigned the sails parameter.

These techniques allow us to build function arguments dynamically. This gives us
tremendous flexibility in how we define and use Python functions.

Nested function definitions

We can include anything inside a function definition, even another function definition.
When we look at decorators in Chapter 13, Metaprogramming and Decorators, we’ll see
cases of a function which includes a nested function definition.

We can include import statements within a function definition. An import statement is
only really executed once. There’s a global collection of imported modules. The name,
however, would be localized to the function doing the import.

The general advice is given in the Zen of Python poem by Tim Peters:
Flat is better than nested.

We’ll generally strive to have functions defined in a relatively simple, flat sequence. We’ll
avoid nesting unless it’s truly required, as it is when creating decorators.

Working with namespaces

When a function is evaluated, Python creates a local namespace. The parameter variables
are created in this local namespace when the argument values (or default values) are
assigned. Any variables that are created in the suite of statements in the function’s body
are also created in this local namespace.

As we noted in Chapter 4, Variables, Assignment and Scoping Rules, each object has a
reference counter. An object provided as an argument to a function will have the reference
count incremented during the execution of the function’s suite of statements.

When the function finishes—either because of an explicit return statement or the implicit
return at the end of the suite—the namespace is removed. This will decrement the number
of references to the argument objects.

When we evaluate an expression like more_dice_good(2, hand), the literal integer 2 will
be assigned to the n parameter variable. Its reference count will be one during the
execution of the function. The object assigned to the hand variable will be assigned to the
collection parameter. This object will have a reference count of two during the execution
of the function.

When the function exits, the namespace is removed, which removes the two parameter
variables. The literal 2 object, assigned to the n variable, will wind up with a reference
count of zero, and that int object can be removed from memory. The object assigned to
the collection variable will have its reference count decreased from two to one; it will
not be removed from memory. This object will still be assigned to the hand variable, and
can continue to be used elsewhere.

This use of a local namespace allows us to freely assign objects to parameters without
having the objects overwritten or removed from memory. It also allows us to freely create
intermediate variables within the body of a function, secure in the knowledge that the
variable will not overwrite some other variable used elsewhere in the script.

When we reference a variable, Python looks in two places for the variable. It looks first in
the local namespace. If the variable isn’t found, Python then searches the global
namespace.

When we import a module, like random, we generally write import at the beginning of our
script so that the module is imported into the global namespace. This means that a
function which uses random. randint () will first check the local namespace for random;
failing to find that, it will check the global namespace and find the imported module.

This fallback to the global namespace allows us to reuse imported modules, function
definitions, and class definitions freely within a script file. We can also—to an extent—
share global variables. The default behavior is that we can read the values of global
variables, but we can’t easily update them.

If we write global_variable = global_variable + 1 in a function, we can fetch the
value of a global variable named global_variable. The assignment, however, will create

a new variable in the local namespace with the name global variable. The actual global
variable will remain untouched.

Assigning a global variable

What if we want to assign values to a variable which has not been provided as an
argument? We can write a function which will update global variables. This can lead to
confusing programs because several functions may share common states via the global
variable.

To create names in the global namespace instead of a local namespace, we use the global
statement. This identifies the variables which must be found in the global namespace
instead of the local namespace. Here’s a function which updates a global variable:

import random
def roll_dice_count_7():
global sevens
d= random.randint(1,6), random.randint(1,6)
if d[O0] + d[1] == 7:
sevens += 1
return d

We’ve defined a function and used the global statement to state that the variable named
sevens will be found in the global namespace. We’ve created two random numbers, and
assigned the pair to a local variable, d. This variable will be created in the local
namespace, and won’t conflict with any other variables defined in other namespaces.

Each time the pair of dice total seven, the global variable is updated. This is a side effect
that can be confusing. It must be documented explicitly, and it requires some careful unit
testing.

The two built-in functions, globals() and locals(), can help clarify the variables
available when this function is being evaluated. If we add a print() function right before
the return statement, we’ll see results (with some details elided) like this:

globals={'__cached__': None,

' _loader__': <_frozen_importlib.SourceFilelLoader object at 0x100623750>,

'sevens': 20,

'_name__': '__main__',

' file ': '.',

. etc.
'roll_dice_count_7': <function roll_dice_count_7 at 0x10216e710>,
'random': <module 'random' from '...'>}

locals={'d': (2, 1)}

The globals function includes variables like sevens, it includes the random module, and
the roll_dice_count_7 function. It includes some system variables: 1ike _ cached__,
__loader__, __name_ ,and _ file_ .

The locals function includes the local variable d and nothing more.

Assigning a non-local variable

When one function is defined inside another function, the outer function can contain
variables which are neither local to the inner function nor global. We call these non-local
variables. There are situations where we might want to set a variable which is part of an
enclosing function.

Nested function definitions are most commonly used when defining decorators. We’ll look
at this in Chapter 13, Metaprogramming and Decorators.

Here’s a contrived example of nested functions and a non-local shared variable:

def roll nl(n=2, d=6):

def dice():
nonlocal total
points= tuple(random.randint(1,d) for _ in range(n))
total = sum(points)
return points

total= 0

dice()

return total

We’ve defined a function, roll_nl(), which will simulate rolls of dice. The function’s
body includes a nested function definition, dice(). The rest of the body creates the
variable total, evaluates the internal dice() function, and returns the value of the total
variable.

How did the total variable get set to anything other than zero? It isn’t updated in the
body of the roll_n1() function.

Within the nested dice() function, there’s a nonlocal reference to a variable named total.
This variable must exist in an outer namespace, but not necessarily the global namespace.
The dice() function creates a tuple object with the values of n dice. This expression
builds a tuple from the result of a generator function. It updates the nonlocal total
variable the sum of the points tuple. The nonlocal statement assures us that the total
variable is part of the container for the dice() function. The return value of the dice()
function is the tuple of dice, a value this isn’t really used.

Defining lambdas

A lambda form is a degenerate kind of function. A lambda doesn’t even have a name: it
has only parameters and a single expression. We create a lambda by providing the
parameter names and the expression. It looks like this:

lambda x: x[0]+x[1]

This kind of thing is helpful in the context of Python’s higher-order functions. We often
use lambdas with max(), min(), sorted(), map(), filter(), or list.sort(). Here’s a
simple example:

>>> colors = [
(255,160,137),
(143, 80,157),
(255, 255, 255),
(162,173,208),
(255, 67,164),
]

>>> sorted(colors)
[(143, 80, 157), (162, 173, 208), (255, 67, 164),
(255, 160, 137), (255, 255, 255)]
>>> sorted(colors,
Cas key= lambda rgb: (rgb[@]+rgb[1]+rgb[2])/3)
[(143, 80, 157), (255, 67, 164), (162, 173, 208),
(255, 160, 137), (255, 255, 255)]
We’ve created a simple list object which has four RGB color values. If we use the
sorted() function on this list, the colors are sorted into order by the red component value.
If the red components are equal, then the green component is used. In the rare case that the

red and green components are equal the blue component is used.

If we want colors sorted by brightness, we can’t simply sort by red, green, and blue. The
perception of brightness is subtle and a number of formulae approximate the phenomena.
We’ve picked just one, which is to average the RGB values. This formula doesn’t take into
account the fact that our eyes are more sensitive to green.

The sorted() function accepts a second parameter, key, which we’ve provided as a
keyword argument in the second example. Rather than write a complete function
definition that would only really embody a single expression, we’ve packaged the
expression, (rgb[0]+rgb[1]+rgb[2])/3, as a lambda.

The syntax lambda rgb: (rgb[0]+rgb[1]+rgb[2])/3 is equivalent to the following
function definition.

def brightness(rgb):

return (rgb[@]+rgb[1]+rgb[2])/3
The lambda is more compact. If we only need this expression in one place, a reusable
function may not be appropriate. A lambda is an easy way to provide a simple expression
with minimal overhead. If we think we need to write complex lambdas—more than a
simple expression—or we need to reuse a lambda, then we should consider using a proper

function.

Writing additional function annotations

The Python Enhancement Proposal (PEP) number 3107 specifies additional annotations
which can be applied to a function definition. Additionally, PEPs 482, 483, and 484 cover
some related ideas.

This is important only because Python has some optional syntax that we may see. In
Python 3.5, there may be additional tools for the type of information provided in this
optional syntax. The annotated code can look like this:

def roller(n: int, d: int = 6) -> tuple:

return tuple(random.randint(1,d) for _ in range(n))
This function includes additional : expression annotations after each parameter. It also
includes a -> expression annotation to show the return type of the function. All of the
annotation expressions in this example are the names of built-in types.

In order to describe more complex structures, an additional typing module can offer the
tools for defining a more exact Tuple[int, ..] as the return type for this function. This is
an exciting development that may avoid certain kinds of bugs.

These annotations are legal Python3 syntax. They have no formally-defined semantics,
which means that they are optional. There are some enhancement projects that are
working on leveraging these optional annotations and creating tools that can use the
information provided there. It’s rarely used, but perfectly legal.

Summary

We’ve looked at a number of Python features for function definition. We’ve looked at how
we define the name, and the parameters to a function, providing default values to make
parameters optional. We’ve also looked at how we can provide arguments to a function:
we can provide arguments by position, or by using the parameter variable name as a
keyword. We can evaluate function(*args) to map a sequence of values to parameters
by position. We can also evaluate function(**kw) to map a dictionary of values to
parameters by name. And, of course, we can combine these two techniques.

We’ve looked at how functions return values via the return statement. We’ve also looked
at functions which don’t return a value. Technically, they return a value of None, which the
rest of the Python programming ignores.

We’ve looked at the all-important issue of attempting to use a mutable object as a default
value in a function definition. Most of the time, a mutable object as a default is going to
create problems.

In addition to the basics of function definition, we looked at how local variables are
assigned to temporary namespaces. We also looked at how we can use the global
statement to create variables in the global namespace. We also looked at how a nested
function definition can manipulate variables that are nonlocal to the nested function, but
not properly global to the container function.

In Chapter 8, More Advanced Functions, we’ll look at generator expressions and
functions. These are functions which are iterable, and work cooperatively with the for
loop to handle collections and sequences of data.

Chapter 8. More Advanced Functions

In Chapter 7, Basic Function Definitions, we looked at the core features of defining a
function which returns a single result. Even functions with an implicit return statement at
the end of the suite of statements, or a function with a return statement that has no
expression, return a result: the None object is the default return value. In this chapter, we’ll
look at functions which generate multiple results. A generator function defines an iterable:
it can be used with a for statement. This means that the generator doesn’t produce a single
object with all of the items in the result; instead it produces each item of the result
separately.

Python offers generator expressions and comprehensions which complement the idea of
generator functions. We can write simple expressions that represent a sequence of values
which is generated one item at a time. We can use generator expressions to create list,
set, or dict objects via a comprehension.

We’ll review the for statement and its relationship with iterable data. This will help us
understand how generator functions work. We’ll also look at some functions which work
as well with collection objects as with generator functions. This includes built-in reduction
functions such as max (), min(), and sum(). It also includes higher-order functions such as
map(), filter(), functools.reduce(), and the functions of the itertools module.

This chapter will skim over some concepts of functional programming. An entire book
could be written about functional programming in Python. See

https://www.packtpub.com/application-development/functional-python-programming for

more information. We’ll focus on the essentials.

https://www.packtpub.com/application-development/functional-python-programming

Using the for statement with iterable
collections

Python allows us to use the for statement with any kind of collection. We can write a
statement like for x in coll to process list, set, or the keys of a dict. This works
because all of the Python collections have common abstract base classes, defined in the
collections.abc module.

This works via a common feature of the base classes, Sequence, Set, and Mapping. The
Iterable mix in the class is part of each class definition. The implementation of this
abstraction is our guarantee that all of the built-in collections will cooperate with the for
statement.

Let’s open up the internals to see how it works. We’ll use this compound for statement as
a concrete example:

for x in coll:

print(x)
Conceptually, this compound statement starts with something very much like this
assignment: coll_i=iter(coll). This will get an iterator object for the coll collection.
This iter () function will leverage the special method __iter__ () to produce the iterator
object. We can summarize how this works with a simple rule: if the variable coll doesn’t
reference a proper collection, a TypeError exception will be raised.

Given the resulting iterator object, coll_i, the for statement can then evaluate
x=next(coll_i) to get each item from the iterator. This will leverage the special method
coll i._ next_ () to produce an item from the original collection.

If the evaluation of next(coll i) returns an item, this is assigned to x and the suite of
statements is executed with this value bound to the x variable. We’ll see the value of x
printed.

If next(coll_i) raises a StopIteration exception, the underlying collection is out of
items, and the loop will finish normally. In the case of any another exception being raised,
this simply propagates according to the standard exception rules. (We’ll look at exceptions
in Chapter 9, Exceptions.)

Iterators and iterable collections

A collection is iterable when it implements the __iter__ () special method. Almost
universally, this means that it will be a subclass of the Iterable class defined in the
collections.abc module. The presence of this special method means that evaluating
iter() on a collection object will return an iterator object.

The iterator for a collection must implement the _ next_ () and __iter__ () special
methods. Generally, an iterator object implements the __iter__ () method by returning
itself as the result. Having this tautological redundancy available means that we can not
only create an explicit iterator but also provide the iterator to a for statement without
causing an exception; the for statement’s processing can evaluate iter (object) without
the overheads of checking to see if the object is already an iterator.

What if we have a sequence of items which has a header that we’d like to ignore? This
often happens when a source data file includes a heading line that must be processed
separately. We can leverage an explicit iterator object to discard items from a sequential
collection.

We might write something like this:

source_iter= iter(source)
heading= next(source_iter)
for data in source_iter:

print(data)
In this example, we’ve created an iterator, source_iter, based on a source collection or
generator, unimaginatively named source. When we evaluated next (source_iter), we
consumed the first item from the collection, which we then assigned to the heading
variable. We can then use the iterator object in the for statement to consume the rest of the
items in that iterator.

In effect, the preceding example is nearly identical to this:

heading, *rest = source
for data in rest:

print(data)
This second example actually makes a shallow copy of the source collection and assigns
this copy to the rest variable. We’ve nearly doubled the amount of memory used. For a
small list, this doesn’t matter. For a larger collection, this can become a problem.

If the source is an open file or a generator based on an open file, materializing the data in
the rest collection could be impossible. Files too big to fit into memory are part of their
own unique problem, sometimes called “big data”. Using the iter () function explicitly
allows us to avoid the risky attempt to create a large collection that may not fit in memory.

Consequences and next steps

There are three important consequences to the way a for statement uses coll_i= iter(x)
and x=next(coll_i):

e We can write generator expressions which implicitly have the required interface to
work as an Iterable class

e Python gives us a way to write generator functions which will work as an Iterable
class

e We can create our own classes which implement the special method names required
to implement the Iterable abstract base class

We’ll start by writing generator expressions. We can use these to create list, set, and
mapping “comprehensions.” A comprehension is an expression that defines the contents
of a collection.

We’ll look at writing generator functions. The yield statement changes the semantics of a
function from being “simple” (or “ordinary™) to being a generator.

While class definitions are the subject of Chapter 11, Class Definitions, we won’t dig
deeply into how we can create our own unique collections. Python already offers so many
collections that defining our own is not really necessary.

Using generator expressions and
comprehensions

We can think of simple generator expressions as an operator with three operands. The
syntax for these three operands parallels the for statement:

(expression for target in source)

We specify an expression which is evaluated for each value assigned to a target variable
from a source. There are more complex generators, which we’ll look at later.

Generator expressions can be used freely in Python. They can be used anywhere in a
sequence or a collection that is meaningful.

It’s important to note that a generator expression is lazy, or “non-strict.” It doesn’t actually
calculate anything until some consuming operation demands values from it. To see this,
we can try to evaluate a generator expression at the REPL:

>>> (2*x+1 for x in range(5))

<generator object <genexpr> at 0x1023981e0>

Python tells us only that we’ve created a generator object. Since we didn’t write an
expression to consume the values, all we saw was the object, passively waiting to be
evaluated.

The best way to explore a generator expression is to apply a function, such as 1ist() or
tuple(), that will consume the generator’s values and build a collection object from them.
Here’s an example:

>>> tuple(2*x+1 for x in range(5))

(1I 3/ 5l 7/ 9)

In this example, the tuple() function consumed values from the generator object and
created a tuple object from those values. Rather than display the generator object, the
REPL shows us the tuple which was created from the generated values.

We can use generator expressions for a wide variety of processing. There are several
patterns in the itertools module.

Limitations of generator expressions

Generator expressions have a few limitations. The most obvious limitation is that some
language features are only available as Python statements. If we need to perform
exception handling, context management, or exiting a loop early via a break statement, we
can’t write a generator expression. We have to resort to writing a complete generator
function.

A less obvious limitation is that a generator expression behaves very much like a
sequence. But it can only do that trick once. After the generator terminates the first time, it
behaves like an empty sequence every time it’s referenced after that. Here’s a concrete
example:

>>> x= (2*x+1 for x in range(20))
>>> sum(Xx)

400

>>> sum(x)

0]

In this example, we assigned a generator expression to a variable, x. When we compute
sum(x), the sum() function consumes all of the values produced by the generator
expression: the sum is 400 in this example. Once we’ve used the generator, it is still valid,
but it no longer generates values. All subsequent evaluations of sum(x) will produce 0.

There’s no special exception to warn us that we’re reusing an iterator that has already been
exhausted. In some cases, a program may appear broken because we’re using a generator
expression instead of a 1ist or tuple sequence. The fix is almost always to convert the
generator into a tuple object so that it can be used twice. We can change to x=
tuple(2*x+1 for x in range(20)) to see the difference.

When working with a generator function or expression, iter (some_function) will return
the generator object because it is an iterator. In the case of a collection object,
iter(some_collection) will create an iterator object that has a reference to the
collection. The result will be a distinct object. A function can use iter(param) is
iter(param) to detect the difference between a generator function and a concrete
collection.

In some cases, we might include the statement assert iter(param) is not
iter(param), "Collection object required" to raise an exception if a generator
function is provided as an argument to a function which traverses a collection more than
once.

Using multiple loops and conditions

The body of a generator can include multiple for clauses. This allows us to iterate over
multiple dimensions. We can write expressions like this:

>>> deck= list((r,s) for s in 'aewve' for r in range(1,14))
>>> deck # doctest: +ELLIPSIS

[(1, "#'), (2, '#"), (3, '#"), ... (11, '&'), (12, '4'), (13, 'e&')]
>>> len(deck)
52

The generator expression has two for clauses: for s in 'aeva' and for r in
range(1,14). It’s clear from the results that the for clause on the right executes most
frequently. This follows the nesting rules we’d see if we rewrote this as nested for
statements. The for clause on the right is like an innermost for statement.

Additionally, the body of a generator can include if clauses. These can be used to filter
values created by the for clauses. Here’s an example of conditional processing in a
generator expression:

>>> list(x for x in range(36) if x%5 == 0 or x%7 == 0)

[0, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35]

In this example, the expression is just the target variable, x. The source is range(36),
numbers that include zero and 35. We’ve included an if clause that will pass only those
values which are multiples of five or seven. All other values will be rejected. In order to
see a result, we collected the values from the generator into a 1ist object.

Writing comprehensions

We can leverage a variation of the generator expression to create list, set, or dict
objects. These are called comprehensions, and represent tangible objects, built from lazy
generators.

Here are some simple examples:

[2*x+1 for x in range(5)]

{x for x in range(36) if x%5 == 0@ or x%7 == 0}

{n: 2*n**2-3*n-14 for n in range(-5,6)}

The first example uses the [] to create a 1ist comprehension. This will create a list of odd
values from one to nine. The second example uses {} to create a set comprehension. This
will be a set based on multiples of five or seven.

The third example creates a dict comprehension. The {} are used to bracket the
expression. The use of the : character to separate key and value distinguishes a dict
comprehension from a set comprehension. This dictionary provides a mapping from
values of n.

This last example could be used as an optimization for a deeply-nested expression.
Looking up a value in a mapping is faster than repeatedly recalculating. Using the
@1ru_cache decorator gives similar performance benefits.

Defining generator functions with the
yield statement

A generator function has properties similar to a generator expression. Rather than a single
expression, a generator function is a full Python function. It has all of the features of the
functions described in Chapter 7, Basic Function Definitions. It has the additional
characteristic of being an iterator, capable of generating a sequence of items.

When we use a yield statement, the semantics of the function are changed. Without a
yield, a function will return a single value. With a yield statement, a function will
behave like an iterator, providing multiple values to a consumer.

Here’s an example of a generator function that applies a range of values to a model to
compute a domain of results. We’ll apply the model to a sequence of input values to
compute the results for each input:

def model_iter(until):
for n in range(0, until):
yield n*(n+1)//2
This model_iter () function accepts a single argument, until, which is the number of
values generated by this function. The body of the function includes a for statement
which will set the n variable to values defined by the range() object.

The essential feature of this function is the yield statement. Each value created by the
yield statement will be part of the sequence of items emitted by this statement.

Here’s one way to use this function:

>>> list(model_iter(6))

[0, 1, 3, 6, 10, 15]

In this example, we’ve collected the results into a single 1ist object. Creating a 1ist
object is just one of the many things we can do. We could just as easily sum the results of
the model to compute the mean value for the given range.

>>> mean = sum(model_iter(6))/6
>>> round(mean, 4)
5.8333

In this example, we provided the results of the model_iter () generator to the sum()
function. This avoids building a large collection of results. The sum() function will
consume all of the values yielded by the generator function. We can process thousands or
millions of values with this kind of construct because a large 1ist or set is not
materialized in memory. Only the individual items are processed.

Using the higher-order functions

A function which accepts a function as an argument, or returns a function as a result, is
called a higher-order function. Python has a number of higher-order functions. The most
commonly-used of these functions are map(), filter(), and sorted(). The itertools
module contains numerous additional higher-order functions.

The map() and filter () functions are generators; their results must be consumed. Both of
them apply a function to a collection of values. In the case of map(), the results of the
function are yielded. In the case of filter(), if the result of the function is true, the
original value is yielded.

Here’s how we can apply a very simple function—so simple we coded it as a lambda—to
a sequence of values:

>>> mapping= map(lambda x: 2*x**2-2, range(5))

>>> list(mapping)

[-2, 0, 6, 16, 30]

The function is just an expression, 2*x**2-2. We’ve applied this function to values given
by the range() object. The result is a generator, and we need to consume the values.
We’ve used 1ist () to create a collection that we can print. The values are the result of
applying the given function to each value in the source collection.

Here’s how we can apply a simple logical test to a sequence of values using filter():

>>> fb= filter(lambda n: n%5==0 or n%7==0, range(16))

>>> [n for n in fb]

[0, 5, 7, 10, 14, 15]

We’ve defined a simple function as a lambda; the function, n%5==0 or n%7==0, is true for
multiples of five or seven. We’ve applied that filter to values produced by a range()
object. The result includes only the values for which the given function is True. All other
values are rejected.

We used a 1ist comprehension to gather the values into a 1ist object. This list
comprehension did no calculation and no filtering, so it’s equivalent to 1list(fb).

We can implement the simple versions of map() and filter () using generator
expressions:

e map(function, iterable) isthe same as (function(x) for x in iterable)
e filter(function, iterable) isthe same as (x for x in iterable if
function(x))

The map () function can handle additional iterables, providing more sophistication than the
generator expression.

The sorted() function is similar to map() and filter(). The sorted() function follows a
different design pattern for its parameters. The map() and filter () functions accept a
function first, followed by an item to process. The sorted() function accepts an item to

sort first, and an optional function which defines the keys on which to sort, as well as an
optional reverse Boolean value used to reverse the sense of the key comparisons. We’ll
look at sorted in detail in the Three ways to sort a sequence section later.

The itertools module contains a large number of generator functions that can be
combined to create sophisticated processing. For more information on how this module
works, the book, Functional Python Programming, Steven Lott, Packt Publishing, devotes

two chapters to the subject (https://www.packtpub.com/application-
development/functional-python-programming).

https://www.packtpub.com/application-development/functional-python-programming

Writing our own higher-order functions

Perhaps the simplest kind of higher-order function is based on a generator expression.
Since a generator expression is lazy, its behavior is more like a function than an object
which contains relevant data. A function which returns a generator relies on some other
piece of programming to actually consume the data which is yielded by the generator.

A common file input requirement is to strip trailing punctuation and ignore blank lines.
We’ll assume a language which follows the Python rule for comments.

Here’s an example of a function that returns a generator:

def text_cleaner(source):
stripped = (line.strip() for line in source)
partitioned = (line.partition("#") for line in stripped)
decommented = (data.rstrip() for data, sharp, comment in partitioned)
non_empty = (line for line in decommented if line)
return non_empty

We’ve broken down the processing into four separate generator functions. The result of
the function is the fourth of these generators, but this depends on the others to yield its
results. Since generators are lazy, no processing happens until a function or statement
consumes the data yielded by the generator. We must use the result of this function with a
for statement or a 1ist() or tuple() function to consume the data.

When a consuming process iterates over the result of this function, it will receive
individual lines of text from the non_empty generator expression. The non_empty
generator filters the lines created by the decommented generator expression. The
decommented generator in turn relies on the partitioned and stripped generator
expressions to remove comments and whitespace.

What’s important here is that the pipeline of processing is the return value from the
text_cleaner () function. This function does not process any data. This function returns a
generator expression that will process some data.

Each of these generators can be also rewritten to use map() or filter (). We’ll leave that
as an exercise for the reader.

We can use the text_cleaner () function like this:

>>> text = ''"!

. # options.. db=name # database.. task=delete # task.. '''.splitlines()
>>> for line in text_cleaner(text):
. print(line)
db=name
task=delete
We’ve created some text with comments and data. The format of the data appears to be
name=value settings. The text_cleaner () function isn’t sensitive to the format of the
data, only to the presence of comments and whitespace. We applied the splitlines()

function to make the block of text behave like a file.

The result of text_cleaner () is a function which strips away comments, leading and

trailing spaces, and leaves us with just the meaningful content of the file. In this example,
we used a for statement to consume the data yielded by the generator function.

This can be part of a more complex process that uses these name=value lines as
configuration parameters.

What’s important about generator functions is that they are completely lazy. They don’t
create giant data structures in memory. They process the minimum amount of data to
satisfy the consumer’s requests. This reduces overheads. Additionally, each generator can
be kept relatively simple, allowing an expressive composition to be built from simple
pieces.

Using the built-in reductions — max, min,
and reduce

We have two other built-in higher-order functions that can accept functions as arguments.
These can be characterized as reductions: they reduce a collection of values to a single
value. There’s a third built-in reduction, sum, but it’s not a proper higher-order function:
we can’t tailor its operation by plugging in a function.

The max () and min() reductions follow the design pattern for the sorted() function: they
accept an iterable object first, and they can be customized with an optional key function.
We’ll show the default behavior first, then we’ll show how to customize this with the key
function:

>SS data - [l|21", I|3|l, "35", |I4l|]

>>> min(data)

1 21 1

>>> min(data, key=int)

1 3 1

In the first example, the string objects were compared using string comparison. This leads
to the anomaly of seeing "21" appear to be less than "3". In fact, a string beginning with
"2" is sorted before a string beginning with "3", but this may not be what the program
needs to show as output.

In the second example, we provided the int () function for min to use when comparing
items. This means that the strings are compared as integers, not as strings. This selects "3"
as the string with the minimal integer value.

Note that we did not write min(data, key=int()). We’re not evaluating the int function.
We’re providing the int function as an object which the min() function will use.

Additionally, there’s a generic functools.reduce() function which can be used to build
new kinds of reductions. This function accepts a two-valued function, an iterable and an
initial value. It can compute a wide variety of reductions.

Three ways to sort a sequence

Python offers us three common approaches to the general problem of sorting a 1ist of
complex items.

e We can sort with the sorted() generator function. This will duplicate an object as
part of sorting.

e We can sort a list with its sort () method and a key function. This will mutate the
list into the requested order.

e We can create an intermediate sequence of objects which can be sorted easily. This is
sometimes called the wrap-sort-unwrap design pattern.

In order to look at each of these in some detail, we need a collection of complex objects
which we can sort. We’ll use a simple dataset based on a case study in the NIST
Engineering Statistics Handbook, section 7.1.6. See
http://www.itl.nist.gov/div898/handbook for more information.

We’ve got metrics data that—after a little re-organization and cleanup—Ilooks like this:

>>> data
[['2013-09-10', '289'], ['2013-09-11', '616'],

['2013-12-07', '752'], ['2013-12-08', '739']]

We have a list-of-list structure with 90 pairs. Since the date strings are formatted nicely as
yyyy-mm-dd, we can easily sort this into date order using the sorted(data) function, or
the data.sort() method. Note that sorted(data) will create a duplicate of the data
object. The data.sort () method will mutate the data object in place.

How can we put the data into order by count? We can apply a key function to the
sorted() function or sort () method. We’ll look at these first. As an alternative, we can
use the wrap-sort-unwrap design pattern.

http://www.itl.nist.gov/div898/handbook

Sorting via a key function

Putting the metrics data into order by count requires us to use a function which will
change the way items are compared. In this case, we need a more complex key function
that does two things. It must select the second item of each two item data points, and it
must convert the second item to a proper integer value.

We can sort by count using either of these examples:

>>> data.sort(key=lambda x: int(x[1]))
>>> py_count= sorted(data, key=lambda x: int(x[1]))

Both examples use a lambda that performs the integer conversion of the second item in
each two-item list. The first example updates the data object. The second example creates
a new object which is a clone of the data object, put into order.

Sorting via wrapping and unwrapping

The wrap-sort-unwrap design pattern can be done with a pair of generator expressions.
The first will create two-tuples from each original piece of data. The first item in each new
two-tuple is the proper sort key. The second generator will select the second item from
each of those two-tuples to recover the original object.

The whole sequence looks like this:

>>> wrapped = [(int(x[1]), x) for x in data]

>>> wrapped.sort()

>>> py count = [x[1] for x in wrapped]

In the first step, we turned each piece of original data into a two-tuple of (sort key,
original item). We’ve used a 1ist comprehension to create a new object that we can
sort, leaving the original object undisturbed. Once we’ve done this, the default sort
operation works correctly. Once the data is sorted, we can recover the original items
easily. In this case, we created yet another list object using a 1ist comprehension.

In both cases, we can tweak this slightly to the map () function instead of with generator
expressions. For example, we can wrap items using map (lambda item: (int(item[1]),
item), data).

Note that the map () function is a generator: it’s lazy. A 1ist comprehension consumes
data and creates a tangible object. We can’t easily switch from 1ist to generator with a
simple copy-and-paste. We’ll need to either create a 1ist object from the map generator,
or use sorted(), which creates a 1ist from a generator.

The wrap-sort-unwrap is often used when the wrap function is quite complex. We might
have a generator which performs database lookups, file merges, or extremely complex
calculations as part of the ordering. In these cases, a simple lambda might be difficult to
write.

Functional programming design patterns

The presence of higher-order functions in Python allows us to leverage a great many
functional programming design patterns. To learn more about these design patterns, a
good place to start is the itertools module. The functions in this module provide many
examples of how we can write simple functions that do sophisticated processing.

Additionally, we can use some of the features in the functools module. This contains the
general-purpose reduce () function. It also contains some functions that can help us write
decorators. A decorator, as we’ll see in Chapter 13, Metaprogramming and Decorators, is
another kind of higher-order function: it’s a function that modifies the definition of an
original function. This is another aspect of functional programming.

Most importantly, we have two ways to approach algorithms:

e We can process items in large collections of data, creating additional collections that
are copies, subsets, or transformations.

e We can process items by iterating through a large collection of data as if we’re
creating additional collections. Instead of actually creating copies, subsets, or
transformations, we can use iterators, filter functions, and mapping functions.

When we have alternatives, we can choose a variation that is succinct and expressive.

Summary

In this chapter, we’ve seen a number of the advanced features of functions. We’ve looked
at the essential generator expression and how this is used as part of a comprehension. A
list comprehension assembles a 1ist from the generated values. Similarly, a set
comprehension creates a set. A dictionary comprehension creates a dict structure from
the keys and values in a generator expression.

We’ve looked at using the yield statement to create a generator function. This allows us
to use all of the various Python statement features when creating a generator. Since a
generator is iterable, it works with a for loop so that we can write a simple loop to process
multiple values created by an iterator.

We’ve also looked at higher-order functions. These are functions which take functions as
arguments or produce functions as a result. With higher-order functions, we can refactor
our algorithms into functions that can be combined to create the desired behavior.

In Chapter 9, Exceptions, we’ll look at how Python raises exceptions, how we can capture
those exceptions, and what kind of exceptional processing we need to write.

Chapter 9. Exceptions

Python’s general approach to unexpected situations is to raise an exception. The idea is
that an operation should either work normally and completely, or raise an exception. In
some languages, complex numeric status codes are used to indicate success. In Python,
success is assumed; if there’s a problem, an exception is raised to indicate that the
operation did not succeed.

Exceptions can be raised by all aspects of Python programs. All of the built-in classes
involve exceptions for various kinds of unexpected conditions. Many library packages
define their own unique exceptions which extend the built-in hierarchy of exceptions.

We’ll look at the essential concept behind exceptions first. Python has a number of
statements that we’ll use. The raise statement creates an exception object. The try
statement allows us to deal with exceptions.

The except clause in a try statement is used to match the class of exception being raised.
With some kinds of programming, we narrowly match a specific class of exceptions. In
other cases, we use a less specific class of exceptions, or a list of exception classes, to treat
a variety of exceptions in a uniform manner.

The core exception concept

The core concept behind exceptions can be summarized as, “when in doubt, raise an
exception”. In a typical situation, each Python function or method will return a value or
have some documented side-effect. For everything that isn’t on the “happy path” that leads
to success, the Python approach is to raise an exception.

Even though most exceptions describe erroneous situations, an exception is not
necessarily an error. It’s merely an exceptional condition that a given function can’t
handle. For example, iterators raise the StopIteration exception when they can no longer
produce a result item. This is an exceptional situation that occurs just once in the life cycle
of an iterator object.

When working with numbers, as a second example, division by zero is exceptional. If we
divide by any other value, the happy path leads us to a result. While it’s possible to
contrive a Not a Number (NaN) value as the result of division by zero, it’s simpler—and
more universal—for the division operator to raise a ZerobivisionError exception.
Division by zero isn’t a normal or expected design. Almost universally, division by zero
indicates one of these things:

¢ A design problem: Zero was a possible condition, but the design didn’t deal with this
situation. The zerobivisionError exception is unexpected. The root cause of a
design problem may be a failure to understand the requirements: perhaps a hastily
groomed story, perhaps other problems in understanding the problem domain.

¢ An implementation problem: Zero is cropping up because of a bug. A
ZeroDivisionError exception is similarly unexpected. The root cause may include
inadequate unit testing.

e A misuse of the application: The user provided input that led to division by zero.
The overall application can offer a helpful error message and await different input. Or
perhaps the overall application can use a different calculation that’s more appropriate
to the input values.

An exception can be profound or shallow in its meaning.

When working with strings, for example, there are a number of situations where an
exception is raised. There are also some situations where a status code is returned instead
of raising an exception. We can compare str.find() and str.index() for two
differences in approach:

>>> "abc".index("x")

Traceback (most recent call last):
File '"<stdin>", line 1, in <module>

ValueError: substring not found

>>S> "abC".find("X")
-1.

The first example shows the index () method, which raises an exception when a substring
can’t be found. The second example shows the find() method, which returns a peculiar

number if the substring can’t be found.

Exceptions are used widely. Status codes are rarely used in Python.

Examining the exception object

When an exception is raised, it involves both a processing change and some data about the
condition. An exception is an instance of a more general class. We’ll talk generally about
an EOFError exception without emphasizing that the given exception is an instance of the
EOFError exception class.

The data associated with an exception can include a root cause exception, and a collection
of additional arguments. Sometimes the additional arguments are merely a string message.
Some exceptions may have a more complex collection of arguments.

There is also a traceback object which contains the call stack. This identifies the function
which raised the exception, the function which called that function, and so on, back to the
initial function that started things off. This traceback information is in a specially named
attribute called __traceback__.

We can create an exception in several different ways:

e We can create exception objects and later raise them to signal a problem:

obj = Exception("some message")
raise obj

e We can create and raise the exception in one smooth motion:
raise Exception('"Some Argument", "additional details")
e We can create an exception which wraps a root-cause exception:

raise MyError("problem") from some_exception

In the last case, where an exception wraps a root cause, the root cause information is in an
attribute named __cause__.

Using the try and except statements

When an exception is raised, the ordinary sequential exception of statements stops. The
next sequential statement is not executed. Instead, the exception handlers are examined to
find an except clause which matches the given exception’s class. This search proceeds
down the call stack from the current function to the function which called it. If an except
clause is found which matches the exception, then ordinary sequential execution resumes
in that except clause. When the except clause finishes, the try statement is also finished.
From there, the normal sequential statement execution continues after the try statement.

If no except clause matches the given exception, the exception and the traceback
information is printed. Processing stops, and Python exits. Generally, the exit status is
non-zero to indicate that the Python program ended abnormally.

A try statement inside a function looks like this:

def clean_number(text):
try:
value= float(text)
except ValueError:
value= None
return value

We’ve defined a function which will convert text to a number. We’re going to silence the
ValueError exception and return the None object instead of raising an exception. We
might use this when cleaning a CSV file so that cells without proper numeric values are
replaced with the None object.

We can see it in operation when we apply it to numbers, like this.

>>> row = ['heading', '23', '2.718']
>>> list(map(clean_number, row))
[None, 23.0, 2.718]

>>> clean_number("1,956")

In this example, we’re applying the clean_number () function to a row of data from the
CSV reader. The sample row of data shows both the happy path and the exception path.
On the happy path, the two numbers are converted from a string to a proper float value.
On the exception path, the improper text was converted into a None.

We’ve also included a test case that isn’t handled well. This number-like string, “1, 956”
turns into None. We might have wanted it to be turned into a proper number, in spite of the
embedded comma. We can see that a simplistic except clause isn’t really doing everything
we’d like it to do.

Note that some financially-oriented spreadsheet values should be converted to becimal
values instead of float values. We can make a higher-order function which will use either
the float () function or the Decimal() function (or any other conversion function for that
matter) to create values of a desired type.

Here’s a revised version that has two try statements:

from decimal import Decimal, 1InvalidOperation
def clean_number3(text, num_type=Decimal):
try:
value= num_type(text)
except (ValueError, InvalidOperation):
text= text.replace(",","").replace("$","")
try:
value= num_type(text)
except (ValueError, InvalidOperation):
value= None
return value

In this version of our number cleaning function, we have an additional parameter,
num_type, with a conversion function to apply. We’ve provided a default value, Decimal,
so that it is optional. The body of the function has the same happy path as the previous
version. We’ve updated the first except clause to do more sophisticated fallback
processing. This more sophisticated processing involves creating a new string without the
", " or "$" characters that commonly pollute numeric data.

If this second string is converted, we’ll return a useful numeric result. If this revised string
is not a number, we’re stumped, and forced to return a None object.

Note

As an exercise, the reader can create an algorithm to convert words to numbers as a
fallback. Convert “twenty one” to 21. The complexity of languages like English makes
this is an interesting challenge.

Using nested try statements

The clean_number3() function shows one of the two ways that we can have nested try
statements. In this case, the try statements are nested inside a single function. If an
exception is raised in the inner try statement, then the inner try statement’s except clause
is checked first for a matching exception. The outer try statement’s except clauses are
checked next. If none of these match, then the function which called this is checked.

Consider this example:

>>> from fractions import Fraction
>>> clean_number3(',2/0,"', Fraction)

This produces a traceback dump that shows how nested try blocks behave:

Traceback (most recent call last):

VaiQéError: Invalid literal for Fraction: ',62/0,'

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

ZeroDivisionError: Fraction(2, 0)

We’ve elided some details with line numbers to focus on the relevant portions of the
message. The first exception was raised by the first attempt to apply Fraction(',2/0,").
This raised a valueError exception, knocking us off the happy path. Python resumes
sequential execution in the except clause. This creates a new string with the ", "
characters removed. The second attempt at conversion does not raise a ValueError
exception, it raises a ZeroDivisionError exception.

The inner try statement has no except clause to match this exception. Python must then
search the outer try statement’s except clauses for a matching exception. Since the outer
try statement doesn’t match the exception, the script as a whole ends with an unhandled
exception.

The more common situation is to have try statements in separate functions. The nesting
occurs via the function call stack, not the structure of a single suite of statements. Here’s a
function which calls our clean_number3() function to create a row of Fraction objects.

def fraction_row(row):
try:
return [clean_number3(item,Fraction) for item in row]
except (TypeError, ZeroDivisionError):
return [None for item in row]

This function includes another try statement. When this function calls clean_number3()
the calls stack will include fraction_row() and clean_number3(). If the
clean_number3() function raises an unhandled exception, Python moves down the call
stack and searches this try statement for matching except clauses.

Matching exception classes in an except
clause

In the previous examples, we’ve shown two kinds of except clauses:

® except SomeException:
e except (OneException, AnotherException):

The first example matches a single specific exception. The second example matches any
of the exceptions in the list of specific exceptions.

In many cases, the details of the exception are not important. On the other hand, there are
some cases where we want to do some processing on the exception object’s arguments.
We can have the exception object assigned to a variable using this syntax:

except SomeException as exc:

This will assign the exception instance to the exc variable. We can then write this to a log,
or examine the arguments, or modify the traceback that gets printed.

Matching more general exceptions

The Python exceptions form a class hierarchy. Generally, we match exceptions
specifically. In a few cases, we’ll use exception superclasses instead of specific classes.
Some of the most common superclasses are the 0SError and ArithmeticError
exceptions. There are a number of subclasses of 0SError that provide more detailed
information about the exception; in many cases, we’re not too interested in the nuances of
the 0SError superclass. Similarly, the distinction between overflowError and
ZeroDivisionError may not be helpful.

We can use the superclass exception like this:

import os
def names(path="."):
try:
return [name
for name in os.listdir(path)
if not name.startswith('."')]
except OSError as exc:
print(exc.__class__.__name__, exc)
raise

We’ve used the superclass 0SError to match all of the various 0SError subclasses. While
the most likely exceptions are FileNotFoundError and NotADirectoryError, we may
also get one of the other subclasses of 0SError. In this case, we don’t care about the
specific problem, so we can use a superclass error.

This example also uses the raise statement with no argument. Within an except clause,
this will reraise the exception after doing some initial handling. The exception will now
propagate down the call stack as Python searches for a handler.

The empty except clause

Python allows an except clause with no exception named. This is the most general
exception matcher: it matches all exception classes.

Since it matches the SystemExit and KeyboardInterrupt exceptions, using this casually
can create problems. When we’re handling this exception, we may find that we can no
longer gracefully exit from our program and must resort to the SIGKILL signal to stop the
program.

The undecorated except clause should be viewed skeptically.

Creating our own exceptions

The hierarchy of exceptions has a superclass for error-related exceptions, called
Exception. All of the exceptions which reflect essentially erroneous conditions are
subclasses of the Exception class. The base class for all exceptions is the BaseException
class; some non-error-related exceptions are direct subclasses of the BaseException class.

We can summarize the hierarchy like this:
® BaseException

o SystemExit

o KeyboardInterrupt
© GeneratorExit

o Exception

= All other exceptions

The superclass of all error-related exceptions, Exception, is quite broad. We can use this
in a long-running server like this:

def server():
try:
while True:
try:
one_request()
except Exception as e:
print(e.__class__.__name__, e)
except Shutdown_Request:
print("Shutting Down")

This example depends on a function, one_request (), which handles a single request. The
while loop runs forever, evaluating the one_request () function. If any of the error-related

subclasses of Exception are raised, the error will be logged, but request handling will
continue.

When a Shutdown_Request exception is raised, the inner try statement won’t match this.
The exception will propagate out of the loop into the outer try statement. We can log the
shutdown request, do any other cleanup that’s required, and exit the server () function.

The class hierarchy assures us that two of the non-error exceptions—KeyboardInterrupt
and Systemexit—will not be erroneously handled in the inner try statement. These
exceptions are peers of the Exception class, which is why they will not be matched. This
means that a SIGINT signal (the effect of hitting Ctrl + C on the keyboard) will terminate
the server cleanly. Additionally, if some part of the request handling evaluates
sys.exit(), the server will shut down gracefully.

Using a finally clause

We can include a finally clause on a try statement. This contains a suite of statements
that will always be executed at the end of the try statement. This means that the happy
path, as well as the exception paths, will always execute the finally suite. Here’s a
summary of how this looks:

try:
Something that might fail.
except SomeException:
Fallback plan to handle failure.
finally:
Always executed.
We use this when we have cleanup or a concluding suite of statements that must always be
executed. One of the most common use cases for this is to close a file or a network

connection even if an exception was raised and handled properly.

In many cases, we can use a context manager to properly close a file or network
connection. We can use contextlib.closing() to wrap objects which have a close()
method but are not proper context managers. We’ll look at context managers in Chapter
10, Files, Databases, Networks, and Contexts.

Use cases for exceptions

The use cases for exceptions are very broad. We’ll identify a few significant areas where
exceptions are used in Python.

Some exceptions are entirely benign. The StopIteration exception is raised by an
iterable that has run out of values. The for statement consumes items from the iterable
until this exception is raised to signal that there’s no more data. Similarly, a
GeneratorExit is used when a generator is closed before producing all of its data. This is
not an error; it’s a signal that more data will not be requested.

Conditions that are entirely outside the program may be seen as exceptions. Unexpected
OS conditions or errors are signaled by exceptions which are subclasses of the 0SError
exception. Some OS conditions can be ignored; others may indicate a serious problem in
the environment or in the application. There are over a dozen subclasses of this error to
provide a more detailed description of the OS condition. Additionally, internal OS error
numbers are also provided as an argument to these exceptions to help distinguish the
details of the problem.

Some exceptions are the result of perfectly ordinary things inside a program. When we use
the str.index() method, this may raise a ValueError exception instead of returning a
numeric value. We can capture and leverage this exception information as part of a
program’s normal operation.

We’ll often detect the misuse of a program with exceptions. Bad data may be involved, or
unsupported operations may be attempted. In these cases, a program may use exceptions
to signal a problem that stems from user input problems. A common design pattern is to
have exception handling at a high enough level to capture, log, and display these problems
in a meaningful way to the user. A long-running server may merely log and then process
the next request. A web page may wrap input form validation in exception handling so that
the user’s response is the form page decorated with error messages.

Some exceptions reflect design or implementation problems. An unexpected occurrence of
a ValueError exception may indicate a design problem or an implementation problem. It
might indicate inadequate test cases. In this case, it’s best for the program as a whole to
crash so that the traceback information can be used to locate and correct the problem.

Unexpected exceptions generally indicate that the program is broken. The program will
stop; the output from the exception can provide valuable debugging information. We can
interfere with this normal behavior by writing needlessly broad exception handlers, but
concealing unexpected exceptions is generally a bad idea, since valuable debugging
information is lost.

In The Zen of Python by Tim Peters, there’s some poetic advice:

Errors should never pass silently.

Unless explicitly silenced.

The idea here is that unexpected exceptions in Python will stop the program with a big,
noisy error traceback. If we need to silence exceptions, we can use broad, general except
statements to capture and silence them.

Issuing warnings instead of exceptions

The Python warnings module handles a special subclass of exceptions. We can use the
warnings module to identify potential problems in our application. The warnings module
is used internally to track a number of internal considerations.

The warning concept fits into the middle ground between perfectly normal operations and
erroneous conditions. Our program may not be performing optimally, but it’s not
completely broken, either.

There are three notable warning classes that we might encounter when running unit tests.
Since the unit test framework displays all warnings, we may see some warnings in a test
context that we don’t see in the normal operational use of our software.

e DeprecationwWarning: This warning is raised by modules, functions, or classes that
have been deprecated. It’s a reminder that we need to fix our code to stop using this
feature.

e PendingDeprecationwarning: A function, module or class for which deprecation has
been announced may raise this warning. This is a hint that we need to stop using this
feature before it becomes deprecated.

e ImportWarning: Since some modules are optional or platform-specific, some import
statements are wrapped in a try block; this warning is raised instead of an exception.
We can expose these warnings to be sure that imports are being processed properly.

We can leverage the warnings module to expose the warnings which are normally
silenced. We can use warnings.simplefilter("always") to see all warnings.

We can raise the generic UserwWarning like this:

>>> import warnings

>>> warnings.warn('"oopsie")

__main__:1: UserWarning: oopsie

Using warnings.warn() allows us to include warning messages in an application with
very little overhead. We can use this as a debugging aid to track rare situations that are
questionable or potentially confusing.

Permission versus forgiveness — a
Pythonic approach

A common piece of Pythonic wisdom is the following advice from RADM Grace Murray
Hopper:

“It is Easier to Ask for Forgiveness than Permission”

In the Python community, this is sometimes summarized as EAFP programming. This is in
contrast to Look Before You Leap (LBYL) programming.

Python exception handling is fast. More importantly, all of the necessary precondition

checks for potential problems are already part of the language itself. We never need to

bracket processing with extraneous if statements to see whether or not the input could
possibly raise an exception.

It’s generally considered a bad practice to write LBYL code that looks like this:

if text.isdigit():
num= int(text)
else:
num= None

The bad idea shown here is an attempt to check carefully to prevent an exception from
being raised. This is ineffective for a number of reasons.

e The isdigit() test fails to properly handle negative numbers. For a float()
conversion, this kind of test misses a large number of valid syntax alternatives.

e The overhead of checking the validity of characters and syntax is already part of the
int () function. Checking validity in advance duplicates the checking already in
place.

The more Pythonic approach is to handle the built-in exceptions. For example:

try:
num= int(text)
except ValueError:
num= None

This is the same number of lines of code. It properly converts all possible Python integer
strings. It does not include any redundant validity checks.

Summary

In this chapter, we’ve seen how we can use Python exceptions to write programs which
properly handle unexpected conditions. The various kinds of exceptions reflect external
conditions as well as internal conditions that may alter how our program behaves. We can
use exception clauses to implement fallback processing so that our program handles these
exceptional conditions gracefully.

We’ve also seen some things which are discouraged. The empty except clause—which
matches too many kinds of exception classes—is something which is legal but should not
be used.

The idea of Look Before You Leap (LBYL) programming is also generally discouraged.
The Pythonic approach is summarized as Easier to Ask Forgiveness than to ask
Permission (EAFP). The general approach is to wrap operations in a try statement and
write appropriate exception handlers for the meaningful exceptions.

Some exceptions, such as RuntimeError or SyntaxError, should not be handled by
ordinary application programming. These exceptions usually indicate problems so serious
that the program really should crash.

Other exceptions, such as IndexError or KeyError, may be an expected part of the design.
When these exceptions are unexpected, we’ve uncovered a design problem. This may also
indicate that we have inadequate unit tests.

In Chapter 10, Files, Databases, Networks, and Contexts, we’ll look at a number of ways
in which Python can be used to work with persistent data files and network data
transmission. This kind of processing will often require exception handling.

Chapter 10. Files, Databases, Networks,
and Contexts

Files and the filesystem are central to the way modern OSs work. Many OS resources are
visible as part of the filesystem. For example, the Linux /dev/mem is a view into the
processor’s memory, implemented as a device visible in the filesystem. Python provides
file objects that map to these OS features.

At a fundamental level, OS files are simply collections of bytes. In practice, we often
work with files that are collections of Unicode characters. Python offers both views of
files. With some file formats, we need to process the bytes. With text files, we expect
Python to properly decode Unicode characters from the bytes.

A Python file object will generally be entangled with an OS resource. In order to be sure
that an application doesn’t leak OS resources, we often use a context manager. This allows
us to be sure that OS resources are released when Python files are closed. The with
statement provides a tidy way to work with a context manager to allocate and de-allocate
resources.

In addition to ordinary files, we’ll look at TCP/IP sockets. The ur11ib module allows us
to open a socket to a remote host. The socket is used like a file to read the data from the
remote host.

A file has a physical format; all but the simplest formats require a 1ibrary module to read
and write the content properly. Additionally, within the constraints of a physical format,
there may be variations in the logical layout of the data. A comma-separated values
(CSV) file, for example, may use field names in the first line of the file to describe the
logical layout of the columns.

A SQLite database or a shelve database relies on one (or more) file to make the data
persistent. We’ll look briefly at higher-level constructs which rely on files.

The essential file concept

Modern OSs rely on files and device drivers for a variety of services and features. Bytes
on a disk drive are only one type of file.

Note

Since many storage devices use or include Solid State Drives (SSD) the term “disk™ is
technically a misnomer; we’ll use the outdated term.

A network adapter is another kind of file; one in which bytes are available continuously,
instead of appearing at rest. In addition to disk and network files, the Linux filesystem
includes the /dev directory, which describes all of the devices on a given computer. These
devices include serial ports, references to memory, and even a device which accumulates
an entropy pool to provide random bytes.

The Python file object wraps an OS file. The open() function binds a Python file object to
an OS file. In addition to a name, the function expects a mode string for access. The mode
string combines two features:

e Characters versus bytes: By default, a file is opened in text mode; we can make this
explicit by using t. When reading, the OS bytes are decoded to create Unicode
characters. When writing, the Unicode characters are encoded into bytes. To use
bytes instead of text, we include b in the mode; no encoding or decoding will be
done.

¢ Allowed operations: By default, a file is opened in r mode which allows reading
only. We can open a file in w mode which will remove any previous content and allow
writing only. We can open a file in a mode which will search to the end of the
previous content so that new content can be appended. The + modifier allows both
reading and writing; this means that w+ removes any previous content and allows
reading and writing; r+ leaves the previous content in place and allows reading and
writing.

When we open a text file, we provide explicit encoding. In some cases, explicit encoding
is required because the encoding expected by the OS isn’t in the file.

In some cases, we may also need to specify how newline characters should be handled. On
input, we rarely need to specify line endings: Python handles them gracefully by
translating Windows \r\n to \n. On output, however, we might need to explicitly provide
the line ending. If we set newline="", then no translation is performed; we’ll need this so
that we can create CSV files with \r\n line endings. If we set newline=None when
opening a file, then \n from our program’s output translates the platform-specific value in
the os. linesep variable. This is the default behavior. Any other values for newline
replace the \n characters in our output.

We can specify buffering. We can also specify how Unicode decoding errors are handled.
There are seven choices for Unicode errors, including strict, ignore, replace,
xmlcharrefreplace, backslashreplace, and surrogateescape. The strict error

handling raises an exception. The ignore error handling quietly drops the illegal character.
The other choices offer different kinds of replacement strategies.

Opening text files
For processing text files, here’s how to create the file object using the open() function:

>>> my_file = open("Chapter_10/10letterwords.txt")

>>> text= my_file.read().splitlines()

>>> text[:5]

['consultive', 'syncopated', 'forestland',6 'postmarked', 'configures']
We’ve opened a file using all of the default settings. The mode will be read-only. The file
must use the system’s default encoding (Mac-Roman, for example). We’ll rely on the
default buffering and the default Unicode error handling, which is strict.

In this example, we read the entire file into a giant string and then split that single string
into a sequence of individual lines. We assigned the list of strings to the text variable. We
only displayed the first five items from this list. By default, the string split() method
does not preserve the split character.

Filtering text lines

We’ll look at two key concepts in the following examples. We’ll start by opening a file
that’s encoded using "utf-8":

>>> code_file = open("Chapter_1/ch01_ex1.py", "rt", encoding="utf-8",
errors="replace")

>>> code_lines = list(code_file)

>>> code_lines[:5]

['#!/usr/bin/env python3\n', '"""Python Essentials\n', '\n',

"Chapter 1, Example Set 1\n', '\n']

We’ve opened a file with the mode "rt", which means read-only and text. This is the
default, so it could have been omitted. We’ve explicitly provided "utf-8" encoding,
which is not the OS default.

We used the 1ist () function to convert the file object into a sequence of lines. When we
use a file object as if it is an iterable, we’ll see that the file iterates over lines. If we don’t
change the newline setting for the file, then the “universal newlines” rules are used: \n, \r,
or \r\n will end a line; they’re normalized to \n. When we process a file as lines, the line
ending characters are preserved.

We often want to remove newline characters from the end of each line. This is a kind of
mapping from raw lines to lines with trailing whitespace stripped. We can use a generator
expression or the map () function and the str.rstrip() method.

In some cases, an empty line has no meaning and can be removed. This, too, can be done
with a generator expression that has an if clause to reject empty lines. We can also do it
with a filter () function. It’s easier if we write these map and filter operations in two
lines, like this:

>>> txt_stripped = (line.rstrip() for line in code_file)
>>> txt_non_empty= (line for line in txt_stripped if line)
>>> code_lines= list(txt_non_empty)

We’ve broken down the input cleanup into two generator expressions. The first generator
expression, txt_stripped, maps raw lines to lines with trailing whitespace stripped. The
second generator expression, txt_non_empty, is a filter which rejects lines that are empty.
We could easily add other filter conditions to the if clause. Since generator expressions
are lazy, nothing is really done until the final 1ist () function consumes all of the lines
from the generators.

In this way, we can design fairly sophisticated file parsing as a collection of generator
expressions. We can apply a number of mapping and filtering operations so that the main
suite of statements has only clean data.

Working with raw bytes
Here’s how we open a file and see the raw bytes:

>>> raw_bytes = open("Chapter_10/favicon.ico", "rb")

>>> data = raw_bytes.read()

>>> len(data)

894

>>> datal:22]
b'\X00\Xx00\X01\Xx00\X01\X00\X10\X10\XO0\XO0\X00\X00\Xx18\x00h\Xx03\Xx00\Xx00\Xx16
\X00\Xx00\x00'

We’ve opened this file in binary mode. The input we get will be bytes instead of str.
Since a bytes object has many similar features to a str object, we can do a great deal of
string-like processing on these bytes. We’ve dumped the first 22 bytes from the file. Bytes
are shown as a mixture of hex values and ASCII characters.

We’ll need to look at the description of the ICO file format to see what the bytes mean.

Here’s some background at http://en.wikipedia.org/wiki/ICO_(file_format).

The easiest way to decode this block of bytes is by using the struct module. We can do
the following to pick apart the header on the file and the header on the first image of the
file.

>>> import struct

>>> struct.unpack("<hhhbbbbhhii", data[:22])

(6, 1, 1, 16, 16, 0, 0, 0, 24, 872, 22)

The unpack() function requires a format that specifies different kinds of conversions to
perform on the stream of bytes. In this case, the format contains three codes for groups of
bytes: h means two-byte half worlds, b means single bytes, and i means four-byte
integers. The bytes are assembled into numeric values and the resulting structure is a tuple
of proper Python int values. The leading < in the format specifies that the conversion to
integers uses little-endian byte ordering.

http://en.wikipedia.org/wiki/ICO_(file_format)

Using file-like objects

Because of the way objects work in Python, any object that offers an interface similar to
the file class can be used in place of a file. This leads to the term “file-like object”. We
can use a file object, or any other object which is designed to behave like a file. For
example, the io module has the StringIo class, which allows us to work with a string as
if it were the contents of a file.

We often use this for creating test data. Note that an io.StringI0 object is a lot like an
open file. When we think about designing for testability—the subject of Chapter 14, Fit
and Finish — Unit Testing, Packaging, and Documentation—we need to design functions
to work with file objects, not filenames.

Here’s a function that applies simple pattern matching to lines of a file to yield numeric
values extracted from complex lines of text. For more information on regular expressions,
see Chapter 3, Expressions and Output.

This function uses a pattern to filter the lines of a file or file-like object:

import re
def tests_run(log_file):
data_pat = re.compile(r"\s*([\w]+):\s+(\d+\.?2\d*)\s*")
for line in log_file:
match= data_pat.findall(line)
if match:
yield match

We’ve defined a generator function, which will reduce a log file to the few lines that
match the given pattern. We’ve used the re module to define a pattern, data_pat, that
looks for a string of words ([\w]+), a : character, and a number that could be an integer
or floating-point (\d+\.?\d*). The data_pat.findall(line) expression will locate all of
these words: number pairs in a given line. A resulting list of match results is produced for
each matching line.

The matches are strings. We’ll need to apply additional functions to the results to convert
the numeric group from a string to a proper number.

It is important when defining our function to use a filename; the function doesn’t open the
file. A function that opens a file is slightly more difficult to test. Instead, we defined our
tests_run() function to use any file-like object. This allows us to write unit tests like the
following:

>>> import io
>>> data = 10.StringIO(

. Tests run: 1, Failures: 2, Errors: 0, Skipped: 1, Time elapsed: 0.547
sec.. Other data.. Tests run: 1, Failures: 0O, Errors: 0, Skipped: 0, Time
elapsed: 0.018 sec.. ''")
>>>]ist(tests_run(data))

[[('Tests run', '1'), ('Failures', '2'), ('Errors', '0'), ('Skipped',K '1'),
('Time elapsed', '0.547')],
[('Tests run', '1'), ('Failures', '0'), ('Errors', '0@'), ('Skipped', '0'"),

('Time elapsed', '0.018')]]

We’ve imported the io module so that we can create an io.StringI0 object that contains
simulated input. We can provide this file-like object to the tests_run() function. Since
StringIo behaves like a file, we can use it in place of an actual file to test our function to
be sure that it properly locates the Tests run lines and ignores other lines. We’ll look at
unit testing in Chapter 14, Fit and Finish — Unit Testing, Packaging, and Documentation.

Using a context manager via the with
statement

A Python file object is generally entangled with OS resources. When we’re done using the
file, we need to be sure that the file is properly closed so that the OS resources can be
released. For small command-line applications, this consideration is not that important:
when we exit from Python, and the reference counts for all objects are decreased to zero,
the files will be closed during object delete processing.

For a large, long-running server, however, files that are not properly closed will
accumulate OS resources. Since pools of OS resources are finite, a file handle leak will,
eventually, cause problems.

As a general practice, we can use a context manager to be sure that files are closed when
we’re done using them. The idea is to constrain an open file to the suite of statements
within the context manager. Once that suite of statements is finished, the context manager
will ensure that the file is closed.

We specify the context using the with statement. A file object is a context manager; the
with statement uses the file as a manager. At the end of the with statement, the context
manager will exit and the file will be closed. Some more complex file structures are also
context managers. For example, a ZipFile object, defined in the zipfile module, is a
proper context manager; when used in a with statement, the file will be neatly closed.

It should be considered a best practice to wrap all file input-output processing in a with
statement to be absolutely sure that the file is properly closed. Here’s an example of how
we can use the tests_run() function (shown earlier) using a context manager:

file_in= "Chapter_10/log_example.txt"
file_out= "Chapter_10/summary.txt"
with open(file_in) as source, open(file_out, "w'") as target:

for stats in tests_run(source):

print(stats, file=target)

We’ve opened two files to serve as context managers. The file which is opened for
reading, "Chapter_10/log_example.txt", is assigned to the source variable. The file
opened for writing, "Chapter_10/summary.txt", is assigned to the target variable. We
can then process these files knowing that they will close properly.

If an exception is raised, the files will be closed. This is very important. Each of these
context managers is notified if an exception occurs in the suite of statements inside the
with statement. In this case, both of the managers are file objects. Each will see the
exception and close the file—releasing all OS resources—and allow the exception
handling to continue. Our application will crash with an exception, but the files will also
close properly.

Tip

Always wrap file processing in a with statement.

Closing file-like objects with contextlib

In some cases, we want to be sure that our application closes a file-like object that does
not implement the context manager methods. Modules such as http.client will create an
HTTPConnection object that may be entangled with network resources. We’d like to ensure
that any network resources are released when we’re done using the connection object.
However, since this object is not a proper context manager, it won’t be closed
automatically when used in a with statement.

Indeed, trying to use an HTTPConnection object as context manager in a with statement
will raise an AttributeError exception. This error will show that the HTTPConnection
object does not implement the correct methods to behave as a context manager.

We can leverage a generic context manager in the contextlib module. The
contextlib.closing() function will wrap any object that has a close() method with the
required special methods to make the wrapped object into a context manager.

A RESTful web services request might look like this:

import contextlib
import http.client
with contextlib.closing(
http.client.HTTPConnection("www.example.com")) as host:
host.request("GET", '"/path/to/resources/12345/")
response= host.getresponse()
print(response.read())

We’re interested in making a GET request to a web service. The
http.client.HTTPConnection object isn’t a context manager; there’s no guarantee that it
will be closed if an exception occurs. By wrapping it with the contextlib.closing()
function, we’ve made it into a proper context manager. We can make requests and process
responses, in the knowledge that the HTTPConnection object will have its close() method
called properly.

Using the shelve module as a database

Files offer us persistent storage. The simple use of files is limited by the fact that the data
must be accessed sequentially. How can we access items in an arbitrary order?

We’ll use the term “database” for a file (a set of files) on which we’re going to perform
Create, Retrieve, Update, and Delete (CRUD) operations on data elements in an
arbitrary order. If we create objects of a consistent size, we can open an ordinary text file
in r+ mode and use the seek () method to position at the start of any particular record.
This is rather complex, however, and we can do better.

The core database concept of readable and writable storage can be extended with a
seemingly endless list of ancillary features. We’ll ignore locking, logging, auditing,
journaling, distributed transaction management, and many other features, for now to focus
on the core feature of persistence.

The shelve module provides us with a very flexible database. A shelf object behaves like
an ordinary Python mapping with the bonus feature that the content is persistent. One
additional constraint is that keys used for a shelf must be strings.

Generally, we use multi-part strings as shelf keys so that we can include some class
information along with a unique identifier for the instance of the class. We can use a
simple class:id format to include both the class name and an object’s identifier value as
the composite key for the shelf.

Here’s an example of creating a shelf that maps a key to a list of values. In this example,
the input file has a sequence of words, plus some blank lines and a trailer line that we want
to ignore. The shelf has keys which are the initial letters of words. The value associated
with each key is a list of words that share that common first letter.

Here’s the entire function:

import contextlib
import shelve
def populate():
with contextlib.closing(
shelve.open("Chapter_10/shelf","n")) as shelf:
with open("Chapter_10/10letterwords.txt") as source:
txt_stripped= (l.strip() for 1 in source)
txt_non_empty= (1 for 1 in txt_stripped
if 1 and not l.startswith("Tool"))
for word in txt_non_empty:
key = "word_list:{0}".format(word[0O])
try:
word_list= shelf[key]
except KeyError:
word_list= []
word_list.append(word)
shelf[key]= word_list

We’ve opened the shelf object using shelve.open(). The "n" mode creates a new, empty
shelf file each time the application runs. Since a shelf is not a proper context manager, we

need to wrap it with the contextlib.closing() function.

The shelve module relies on a platform-specific database module. This may necessitate
one or more underlying files to support the shelf. We’ve provided a base filename of
"Chapter_10/shelf". We may see a .dat or .db file get created, depending on the OS
we’re using.

The for loop traverses the input sequence of words generated by the txt_non_empty
expression. The suite starts by building a two-part key. The first part is the string
word_list; this is clearly not the Python data class, but it serves as a summary of what the
data means. After the colon, we’ve put the first character of the word.

We fetch the current list of words associated with this key. If there is no such key in the
shelf, we handle the KeyError exception by creating a fresh, empty list. Once we have a
list—either new or fetched from the shelf—we can update the list by appending our new
word. We then save the word list in the shelf.

To query words with a certain first letter, we can use shelf["word_list:"+letter]. We
need to create a complete key string that includes a classifier so that we have a shelf with
multiple collections.

To retrieve and summarize the data, we use a simple loop based on this generator
expression:

sorted(k for k in shelf.keys() if k.startswith("word_list:"))

This will select only the keys from our word_1list collection in the shelf database. In a
more sophisticated database, there may be other collections with other key prefixes.

Using the sqlite database

The sqlite module provides us with a SQL-based database. An application that leverages
SQL is—in principle—portable. We should be able to use MySQL or PostgreSQL as our
database instead of SQLite without making dramatic changes to our Python application.

While there are several applicable standards for SQL, each implementation seems to suffer
from its own particular problems. SQL-based applications are therefore rarely perfectly
portable between database platforms.

SQL databases require a formal schema definition. This means that SQL applications must
always include some provision for creating or confirming the schema. As in the previous
example, we’ll work with a database that has a single table with two columns: a non-
unique key which is the initial letter of a word, and the word which has that initial letter.

Here’s the table definition in SQL.:

CREATE TABLE IF NOT EXISTS word(
letter VARCHAR(1),
word VARCHAR(10),
PRIMARY KEY (letter))

This defines a table that has two columns, letter and word. To find all of the words which
have a common first letter, we’ll need to retrieve multiple rows from this table. This is a
common type of SQL design. It doesn’t fit neatly with Python’s object-oriented design, a
common limitation when using SQL.

We need to execute the SQL CREATE TABLE statement to create (or confirm the existence
of) the table in a SQLite database. Here’s a function that will establish (or confirm) the
schema:

def schema():
with SQL.connect("Chapter_10/sqlite.sdb") as db:
db.execute("""CREATE TABLE IF NOT EXISTS word(
letter VARCHAR(1),
word VARCHAR(10),
PRIMARY KEY (letter))

nmn ll)

The essential statement is the execute () method of the SQLite connection object. We’ve
provided the SQL with a triple-quoted string. If there’s a problem, an exception will be
raised.

Here’s a function that will load this table with data from a text file:

def populate():
with SQL.connect("Chapter_10/sqlite.sdb") as db:

db.execute("""DELETE FROM word""")

with open("Chapter_10/10letterwords.txt") as source:
txt_stripped= (l.strip() for 1 in source)
txt_non_empty= (1 for 1 in txt_stripped

if 1 and not l.startswith("Tool"))

for word in txt_non_empty:

db.execute("""INSERT INTO WORD(letter, word)
VALUES (:1, :2)""", (word[®], word))

Note that we begin by deleting all the rows from the word table. This parallels the way that
our previous example worked by creating a fresh, empty shelve database. There may be
high overheads in creating an empty SQL database; this example expects an established
database with a table already defined, and deletes rows from the defined table.

As with the previous example, we’ve used two generator expressions to filter out these
lines of junk from the input file. The loop traverses the words generated by the
no_summary expression. The suite executes a SQL INSERT statement binding two values
for the letter and word columns of the table. This statement creates a new row in the
word table in our database.

To see counts of words which begin with a given letter, we can use SQL aggregation. We
would execute the following SELECT statement.

SELECT letter, COUNT(*) FROM word GROUP BY letter

When we execute this, we get a SQL iterator (called a “cursor”) that yields a sequence of
two-tuples based on the SELECT clause. Each tuple will have the letter and the number of
words that share that letter. We can use this to display a summary of counts of words with
a given initial letter.

Using object-relational mapping

Many popular SQL databases offer Python drivers. Some have better levels of support
than others. When working with SQL databases, it’s sometimes difficult to locate SQL
syntax that is effective and portable. A feature on one database may be a problem on
another.

More importantly, however, there’s a mismatch between the completely flat column-and-
row structure of a SQL table and the requirements of more complex class definitions in an
object-oriented language like Python. This impedance mismatch is often addressed with
an object-relational mapping (ORM) package. Two popular packages are SQLAlchemy
or SQLObject.

These packages help with the mapping of complex objects to simple SQL tables. It also
helps by divorcing the application programming for the details of a particular SQL
database.

Databases which don’t use SQL, such as shelve, MongoDB, CouchDB, and other NoSQL
databases, don’t have the same object-relational impedance mismatch problem that SQL
databases have. We have many choices for persistence technology; Python can be used
with a wide variety of databases.

Web services and Internet protocols

As we noted earlier, many TCP/IP protocols, like HTTP, depend on the socket abstraction.
Sockets are designed to be file-like: we can use ordinary file operations to read or write a
socket. At a very low level, we can use the Python socket module. We can create, read,
and write sockets to connect client and server programs.

Rather than work directly with sockets, however, we’ll make use of higher-level modules,
such as urllib and http.client. These give us the client-side operations of the HTTP
protocol, allowing us to connect to a web server, make requests, and get replies. We
looked briefly at the http.client module in the previous Closing file-like objects with
contextlib section.

To implement a server, we can use http.server. In practice, though, we’ll often leverage
a frontend application, such as Apache HTTPD or NGINX, to provide the static content of
a website. For the dynamic content, we’ll often use a WSGI gateway to pass web requests
from the frontend to a Python framework. There are several Python web server
frameworks, each with a variety of features, strengths, and weaknesses.

Physical format considerations

The Python library offers us a number of modules to help process common physical file
formats. Chapter 13, File Formats, of the Python Standard Library describes file
compression and archiving; this includes modules to handle files compressed using zip or
BZip2. Chapter 14, Cryptographic Services describes modules which handle file formats
such as CSV, configuration files, and PLIST files. Chapter 19, Structured Markup
Processing Tools describes Internet data handling, which includes the JSON file format.
Chapter 20, Internet Protocols and Support describes modules to handle markup
languages such as HTML and XML. For modules that are not part of the standard library,
the Python Package Index (PyPI) may have a package that handles the file format. See

http://pypi.python.org.

We’ll look quickly at the CSV module because it is often used when working on “big
data” problems. For example, the Apache Hadoop software library—a framework that
allows for the distributed processing of large datasets—Ileverages simple programming
models. We can use Python with Hadoop streaming.

“l”

A Hadoop file is often a CSV-formatted file. In some instances, it will have instead of
a comma, and quoting or escapes won’t be used. In other cases, an \x01 (ASCII SOH)
character could be used as a separator. This is relatively simple to handle with the Python
CSV module.

When we create a CSV file from a spreadsheet, the first row may have header information.
This can be very helpful. The csv.DictReader () class uses the first line of a CSV file as
the header. Each remaining line is transformed into a dict. The keys in this dict will be
the column names from the first line.

When working with other CSV files, a header line may not be present. This means that
we’ll need a separate schema definition to determine the meaning of each column. In most
cases, we can simply represent the schema as a list or tuple of column names.

We might have a line like this to provide the missing column names:

TEST_LOG_SUMMARY = (
"module", "datetime", "tests_run", "failures",
"errors", "skipped", "time_elapsed",

)

This gives us pleasant Python-friendly column names in a simple tuple. We’ve included a
gratuitous comma at the end of the items in the tuple to make it easier to add new columns
without getting a syntax error. In general, we can simply put this into a file and import this
schema definition.

Let’s assume that we have a function named log_parser () that can parse a complex log
file to extract the fields shown earlier. This function will use regular expressions to locate
lines with the test results, the module name, and the time stamp in the log. The data from a
log will be used to build a simple dictionary with the keys defined by the
TEST_LOG_SUMMARY global variable. The parser will return a sequence of dict objects

http://pypi.python.org

which looks like this:

{'module': 'com.mycompany.app.AppTest', 'errors': 'Q', 'time_elapsed': '0',
'failures': 'Q', 'datetime': 'Thu Oct 06 08:12:17 MDT 2005', 'tests_run':

1 1 1 }

We can use this log_parser () function to write a CSV summary file from a log. We’ll
call this function mapper () because it maps a sequence of filenames to file to a sequence
of data rows, preserving the relevant details:

def mapper(name_iter, result):
writer= csv.DictWriter(result, fieldnames=TEST_LOG_SUMMARY,
delimiter="]")
for name in name_iter:
with open(name) as source:
writer.writerow(log_parser(source))

This function expects two parameters: an iterator which yields log file names, and an open
file into which the results are written. This function will create a CSV Dictwriter object
using the output file, the set of field names that will be part of each dictionary to be
written, and finally, a delimiter.

For each name, the log is opened and parsed. The results of the parse, dict, are written to
the CSV file to summarize the processing. We might use this function in a script that looks
like this:

mapper (glob.glob("Chapter_10/log_*.txt"), sys.stdout)

We’ve written the output to the OS standard out. This allows us to pipe these results into a
separate program which computes statistics on the log summaries. We might call the
statistical summary a reducer, since it reduces a large number of values to single results.
The reducer would share the TEST_LOG_SUMMARY variable to assure that both programs
agree on the content of the file that passes between them.

Summary

In this chapter, we’ve seen how we can use Python exceptions to write programs which
work with files of various kinds. We’ve focused on text files, since they are easy to work
with. We’ve also looked at parsing binary files, which often require support from the
struct module.

A file is also a context manager. The best practice is to use files in a with statement so that
the file is closed properly and all OS resources are released. In a command-line program,
this may not be that important; in long-running servers, it’s absolutely essential to be sure
that resources don’t leak from improperly closed files.

We’ve also looked at more complex persistence mechanisms, including the shelve
module and the SQLite database. These provide us with ways to perform CRUD
operations on data objects in a file. The SQLite database requires us to use the SQL
language to describe data access: this can make our programs more portable to other
databases. It can also be confusing to leverage SQL in addition to Python. We can
overcome that small problem by using a library such as SQLAlchemy so that we can work
entirely in Python, and leave it to SQLAIchemy to create the SQL appropriate for our
database.

The standard library has numerous packages to handle different physical file formats. One
of these can help to create and retrieve data in the CSV format. The role of the comma
delimiter can be any sequence of characters, extending the concept so that many kinds of
delimited files can be read or written by this module.

In Chapter 11, Class Definitions, we’ll look at how we can define our own customized
classes in Python. Class definitions are the heart of object-oriented programming. We’ll
touch on several of the class design patterns that are common in Python programming.

Chapter 11. Class Definitions

A Python object is an instance of a class. A class defines the behavior of an object via the
method functions. In this chapter, we’ll look at creating our own classes and our own
objects. We’ll start by looking at the basics of creating classes and objects. Once we’ve
seen the essential tools, we can summarize some of the ways that we can class definitions
to create objects, and how objects should interact to create the behavior we intend.

We’ll look at some elements of more sophisticated class definition. Advanced topics will
include the concepts of class methods and static methods. An entire book can be written

on advanced object-oriented programming in Python, so we’ll take a broad, but shallow,

approach to looking at class definitions.

We’ll also look at the built-in abstract base classes. We can use these to simplify our own
class definitions. In many cases, we have container-like classes that can leverage a base
class, saving us some programming and assuring a seamless fit with other Python features.

Creating a class

The core of the object-oriented program is the class definition. The class statement creates
an object that is used to create instances of the class. When we create a new class,
SomeClass, we can then use that SomeClass() function to create objects that share the
common definitions of the class. This is the way the built-in classes all work; for example,
the int () function creates an instance of the int class.

In Python, a class statement includes the method functions that describe the behavior of
each instance. In addition to ordinary methods, there are several varieties of “special”
methods which are intimately bound to the way Python operates.

We aren’t obligated—in any formal way—to provide specific attributes (also called
instance variables) for a class. The instance variables of an object are flexible, and are not
defined in advance.

The initial clause of a class statement provides the class name. It can also name any
superclasses, from which features are inherited. The bulk of the class body contains
method definitions, created with the indented def statements.

In some cases, we don’t need to provide a suite of statements. We often create customized
exception classes like this

class MyAppError(Exception):
pass

In this example, we’ve provided a new class name, MyAppError, and specified that it
inherits the features of the Exception class. We don’t need to make any changes to that
base definition; since we must provide an indented suite of statements, we use the pass
statement to complete the syntax of the class statement.

Since this class works like any other exception, we can use statements like raise
MyAppError("Some Message") to raise an instance of this new class of exceptions.

Writing the suite of statements in a class

The suite of statements inside a class statement is generally a collection of method
definitions. Each method is a function that’s bound to the class. The suite of statements
can also include assignment statements; these will create variables that are part of the class
definition as a whole.

Here’s a simple class for an (x, y) coordinate pair:

class Point:

Point on a plane.

def __init_ (self, x, y):
self.x= x
self.y= vy
def __repr__(self):
return "{cls}({x:.0f}, {y:.0f})".format(
cls=self.__class_ .__name__, x=self.x, y=self.y)

We’ve provided a class name, Point. We haven’t explicitly provided a superclass; by
default our new class will be a subclass of object. By convention, the names of most
built-in classes, like object, begin with lowercase letters. All of the other classes that we
will define should begin with uppercase letters; hence, our name of Point. We’ve also
provided a minimal docstring for this class. In Chapter 14, Fit and Finish — Unit Testing,
Packaging, and Documentation, we’ll look at expanding this docstring.

We’ve defined two methods in the class. The first has a special name of __init_ (). The
first parameter to any method defined within a class must include the instance variable.
This variable, usually self, will be the reference to the relevant object. When we assign a
value to the variable self.x, this will set the x attribute of a specific instance of the Point
class. The instance variable is provided implicitly when the method is called.

Instead of any formal definition of the allowed instance variables, Python relies on the
__init_ () special method to initialize appropriate instance variables. By default, an
object can have additional attributes added at any time.

The second method has a special name of __repr__ (). To be a proper method, the first
parameter must be the instance variable, self. This method must return a string that
represents our coordinate pair. If we don’t override this special method, we’ll get a default
string representation that looks like this: <__main__.Point object at 0x100623e10>.
Our implementation uses self.__class__.__name__ to leverage the class of an object so
that any subclass will have the proper class name inserted into the resulting output.

Special method names are ubiquitous in Python. Using them allows a seamless integration
between our classes and built-in Python features. There are a large number of special
method names—too many to review in this book. All such names begin and end with __
(two underscores). It’s easy to avoid conflicts with this naming convention. There is no
good reason to use __ names that are part of our application programming; any name in
this form that we choose may turn out to be a hidden feature of Python.

Note that we did not include placeholder docstrings on the two method functions. We’ve
omitted them to keep the example short, and focused on class definitions. In general, every
method of a class will have a docstring to provide a pithy, helpful summary of that
method.

In Chapter 4, Variables, Assignment and Scoping Rules, we introduced the concept of a
namespace as a container for variables. The self variable is the object, which is a
namespace into which we can insert attribute variables.

We can create an instance of a class like this:

>>> p_1
>>> p_1.
22

>>> p_1.y
.

Point (22, 7)

X

We’ve used the class name, Point, like a function. An empty object is created first. Then
the argument values are provided to the __init_ () special method to initialize that
empty object. Note that we did not explicitly provide a value for the instance variable,
self.

To execute the __repr__ () special method, we can do this:

>>> p_1

Point (22, 7)

When an object is printed, the built-in repr () function is applied to get a string
representation of the object. This built-in function relies on the _ repr__ () special
method of an object to provide a string representation for the object. The object, p_1, was
implicitly assigned to the instance variable, self, when evaluating the __repr__ ()
method.

Our implementation of the __repr__ () special method produced a string with the x and y
coordinate values. We used .0of as the format specification, providing zero places to the
right of the decimal point for the x and y attributes of the self instance variable.

Using instance variables and methods

The Point class definition in the previous section included only two special methods.
We’ll now add a third method that’s not special. Here’s the third method for this class:

def dist(self, point):
return math.hypot(self.x-point.x, self.y-point.y)

This method function accepts a single parameter, named point. The body of this method
function uses math.hypot () to compute the direct distance between two points on the
same plane.

Here’s how we can use this function:

>>> p_1 Point (22, 7)

>>> p_2 Point (20, 5)

>>> round(p_1.dist(p_2),4)
2.8284

We’ve created two Point objects. When the p_1.dist(p_2) expression is evaluated, the
object that was assigned to the p_1 variable will be assigned to the self variable. This is
the instance of Point that’s doing the relevant processing. The argument to the dist ()
method, assigned to the p_2 variable, will be assigned to the point parameter variable.

Tip
When we evaluate obj.method(), the obj object will be the self instance variable.

By default, the objects we create are mutable. Here’s another method of the Point object
—this changes the internal state:

def offset(self, d_x, d_y):
self.x += d_x
self.y += d_y

This method requires two values which are used to offset the coordinates of the Point
object. The method assigns new values to the x and y attributes of the object.

Here’s what happens when we use this method:

>>> p_1.offset(-3, 3)
>>> p_1.x

19

>>> p_1.y

10

We’ve evaluated the offset method associated with object p_1. As noted earlier, the self
instance variable will be the same object referred to by p_1. When we assign a value to
self.x, that will mutate the object referred to by p_1, setting p_1.x.

Pythonic object-oriented programming

We’ve seen a few important features of Python’s approach to object-orientation. Perhaps
the most important is that Python lacks a static binding between variable name and type;
any type of object can be assigned to any variable. Names are not resolved statically by a
compiler. Python’s dynamic name resolution means that we can think of our programs as
being entirely generic with respect to class.

When we evaluate obj.attribute or obj.method(), there are two steps. First the name,
attribute or method, must be resolved. Second the referenced attribute or method is
evaluated.

For the name resolution step, there are several namespaces that are searched to determine
what the name means.

e The local namespace of the obj instance is searched to resolve the name. The object’s
namespace is available as obj.__dict__. Attribute names (and values) are generally
found in the object’s own namespace. Methods, on the other hand, are not generally
part of an object instance.

o If the name isn’t local to the object, the local namespace of the object’s class is
searched. The class namespace is available as obj._class_ . dict_ . Method
names are generally found in the class’s namespace. An attribute of the class may
also be found here.

o If the name isn’t in the class, the superclasses are searched for the name. The entire
lattice of superclasses is assembled into the obj.__class__.__mro__ value. This
defines the Method Resolution Order (MRO); each of the classes in this sequence
is searched for the name.

Once the name has been found, Python must determine the value. For names that do not
refer to callable methods, that is, attributes—the object referred to by the name is the value
of the attribute. A name that refers to a callable method will have argument values bound
and it will be evaluated as a function. The result of that function is the value.

The “search” described previously relies on the built-in dict class. This uses hashing to
make an extremely fast determination of the presence or absence of a name. There’s
remarkably little performance cost from the sophisticated and flexible class behavior
available in Python.

If an object of an inappropriate type is provided at run-time, a method name or attribute
name won’t be found in the object, and an AttributeError exception is raised. In our
preceding example, we can try to evaluate p_1.copy(). The copy name is not defined in
our class nor any of the superclasses, so an AttributeError exception is raised.

Trying to do type casting

While Python variables are merely names attached to objects, the underlying objects are
very strongly typed. There’s no way to assign a new value to the __class__ name that
defines the class of an object.

Type casts are required by some statically-compiled languages to make it possible to
create generic data structures. In those languages, we can cast a reference from one type to
another type. Because of the dynamic nature of method resolution, there’s no need for this
kind of type casting in Python.

All Python collections can contain objects of mixed types. We can easily evaluate this:
>>> map(lambda x:x+1, [1, 2.3, (4+5j)])

The lambda expression, x+1, can be applied to an int, a float, or a complex type without
resorting to any kind of type cast operation. This works because each class provides
appropriate special method functions to implement the addition of an integer.

Designing for encapsulation and privacy

A common question about Python class definitions is how we can achieve encapsulation
if all attribute and member names are public. Some programmers worry about this:

>>> p_2 = Point(20, 5)
>>> p_2.y = 6

>>> p_2

(20, 6)

We’ve created an object, p_2. Then we modified an attribute value of the object without
using any of the object’s method functions. This is not a failure to use the encapsulation
design principle: the class has a properly encapsulated design. The class doesn’t have an
implementation that can be checked statically by a compiler.

The Pythonic principle is summarized with the following observation:
We’re all adults here.

There’s no compelling reason to create the complexity of private, public, and protected
methods and attributes of an object, because Python code is distributed as source and
anyone can inspect the source to see what the consequences of bending or breaking
encapsulation might be. The preferred approach is to write clear docstrings for classes and
methods, and to provide unit tests to demonstrate that attributes and methods are being
used properly.

We can prefix a name with a single _ to indicate that the method or attribute is not part of
the public interface to a class. Python documentation tools will politely ignore these
names so that these implementation details can be changed freely. Names that begin with _
are considered to be subject to change without notice; depending on these names may lead
to a program breaking in unexpected ways.

In some languages, “getter and setter” methods are required to expose the attributes of a
class. In Python, we can use the object’s __dict__ directly, simplifying introspection. We
can also use the built-in functions getattr (), setattr(), and delattr()to work with
attribute names as strings. For example:

>>> p_2._ _dict___.keys()
dict_keys(['y', 'x'])
>>> getattr(p_2, "x")
20

This shows how we can get an attribute’s names and values dynamically. In the first
example, we looked at the object’s internal namespace, __dict__, to get the attributes. In
the second example, we used the built-in getattr () function to get the value of an
attribute.

Using properties

Python allows us to create methods that can be used as if they were attributes. This gives
us very pleasant syntax for getting a derived value from an object. A method that appears
to be an attribute is called a property. We’ll extend our Point class with two more
methods:

@property
def r(self):
return math.sqrt(self.x**2 + self.y**2)

@property
def O(self):
return math.atan2(self.y, self.x)

We’ve defined two functions using the @property decorator. This decorator can be used
with a function that has only the instance variable, self, as a parameter.

Here’s how we can use these properties:

>>> p = Point(12, 5)

>>> round(p.r, 1)

13.0

>>> round(math.degrees(p.8), 1)
22.6

We’ve accessed these methods as if they were simple attributes of the object, p. Using p.r
and p.0 can be more pleasant than having to write p.r () and p.0() in a complex formula.

The preceding properties are explicitly read-only. We get an exception if we try to assign a
valueto p.r or p.6.

We’ll return to the topic of the @property decorator in Chapter 13, Metaprogramming and
Decorators.

Using inheritance to simplify class
definitions

We can use inheritance—reuse of code from a superclass in subclasses—which can
simplify a subclass definition. In an earlier example, we created the MyAppError class as a
subclass of Exception. This means that all of the features of Exception will be available
to MyAppError. This works because of the three-step search for a name: if a method name
is not found in an object’s class, then the superclasses are all searched for the name.

Here’s an example of a subclass which overrides just one method of the parent class:

class Manhattan_Point(Point):
def dist(self, point):
return abs(self.x-point.x)+abs(self.y-point.y)

We’ve defined a subclass of Point named Manhattan_Point. This class has all of the

features of a Point. It makes a single change to the parent class. It provides a definition
for the dist () method that will override the definition in the Point superclass.

Here’s an example that shows how method resolution works:

>>> p_1 = Point(22, 7)

>>> p_2 = Manhattan_Point (20, 5)
>>> round(p_1.dist(p_2),4)
2.8284

>>> round(p_2.dist(p_1),4)

4

We’ve created two objects: p_1 is an instance of Point, and p_2 is an instance of
Manhattan_Point. We didn’t write the __init__ () method of Manhattan_Point; it was
inherited from Point. When we evaluate p_1.dist (), we’re using the dist () method
that’s part of p_1°‘s class, Point. When we evaluate p_2.dist (), on the other hand, we’re
using the dist () method that’s part of p_2, which is the method of Manhattan_Point.

Reuse through inheritance is a way to guarantee that several classes have identical
behavior. This is an import object-oriented design principle, sometimes called the Liskov
Substitution Principle (LSP). An instance of Manhattan_Point can be used anywhere an
instance of Point is used.

Using multiple inheritance and the mixin design
pattern

Inheritance is sometimes visualized as a simple hierarchy of related classes. If each
subclass has at most one parent class, there’s a chain of relationships between any given
subclass and the object superclass. This single inheritance model isn’t always
appropriate. In some cases, a class will include a number of disparate features that don’t fit
the linear ancestry idea.

The collections abstract base class module, collections.abc, contains a number of
examples of multiple inheritance. The overall design pattern here is to have a central class
hierarchy that defines the essential features of the List, Set, or Mapping collections. Other
features are included via reusable mixin classes.

For example, the Set class is a subclass of Container. Mixed into this definition are
features from the Sized and Iterable class definitions. The Sized mixin incorporates the
__len__ () special method. The Iterable mixin incorporates the __iter__ () special
method.

This leads to the final class being an assembly of reusable superclasses. We can leverage
this to create our own classes which contain different mixtures of features.

Python manages multiple inheritance by relying on the order in which classes are named
in the class statement. This builds the __mro__ value used to search for names in the
inheritance lattice. Here’s an example:

>>> from collections.abc import Mapping

>>> Mapping.__mro__

(<class 'collections.abc.Mapping'>, <class 'collections.abc.Sized'>,
<class 'collections.abc.Iterable'>, <class 'collections.abc.Container'>,
<class 'object'>)

We’ve imported one of the abstract base classes. When we look at the MRO, we see that

Python will search for a name in Mapping, Sized, Iterable, Container, and object, in
that order.

When designing with mixin classes like this, we generally divide responsibility among the
various classes so that we avoid any name collisions between the various superclasses that
are used to assemble the final class definition.

Using class methods and attributes

Generally, we expect objects to be stateful and classes to be stateless. While typical, a
stateless class is not a requirement. We can create class objects which have attributes as
well as methods. A class can also have mutable attributes, in the rare cases that this is
necessary.

One use for class variables is to create parameters that apply to all instances of the class.
When a name is not resolved by the object instance, the class is searched next. Here is a
small hierarchy of classes that rely on a class-level attribute:

class Units(float):
units= None
def __repr__(self):
text = super().__repr__()
return "{0} {1}".format(text, self.units)

class Height(Units):
units= "inches"

The units class definition extends the float class. It introduces a class-level attribute
named units. It overrides the _ repr__ () special method of float. This method uses the
superclass __repr__() method to get the essential text representation of a value. It then
includes the value of the units attribute.

When we evaluate self.units, there will be a three-step search for this name. An
instance of Height will not provide the units attribute. The Height class, however, will
provide the units attribute; the value will be inches.

When we create an instance of a Height object, we’ll see the units:

>>> Height(61.5)
61.5 inches

When we print an instance of Height, the print () function will use the built-in repr()
function to get a string representation. The repr () function uses the __repr__ () special
method of an object. We’ve overridden the __repr__ () special method to include the text
from the units attribute.

Since all attributes are publicly available, we can write something like Height.units=
"furlongs", which will cause all further uses of objects of the Height class to display
different units. Changing the class level attributes is generally a bad idea, but it is not
prohibited in any formal way.

Recall the policy: We’re all adults here.

Using mutable class variables

Some applications may call for a properly mutable variable that’s part of an overall class.
A class-level attribute name is found during the three-step search for a name: first the
object, then the class, then the superclasses. This means that we can successfully evaluate
self.class_level_name, even if the name is not in the object instance, but is defined in
the class or one of the parent superclasses.

If we try to assign a class-level variable, however, using a name like
self.class_level name, we’ll be creating a new attribute in the instance. The class-level
name will no longer be visible because the instance name will now be found first.

If we want to update a class-level variable, we must explicitly use the class name,
avoiding the self instance variable. Here’s a class which assigns a sequence number to
each instance that is created:

class Sample:
counter= 0
def __init_ (self, measure):
Sample.counter += 1
self.sequence = Sample.counter
self.measure = measure

We have created a class-level variable, counter, which is initialized to zero when the class
is created. The __init__ () method will increment the class-level counter attribute. In
order to avoid creating a variable in the instance, the class name, Sample, is used instead
of self. In addition to updating Sample.counter, this method also sets two attributes of
the instance: the current value of Sample.counter is assigned to the sequence attribute,
and the given value for the measure is also saved.

It’s essential to note that, inside a method function, we can use self.counter and
Sample.counter to access the same object. This will be true when there’s no instance
variable named counter. In order to assign a variable in the class, however, we can only
use Sample.counter.

Writing static methods

In some cases, we’ll include a method in a class that does not actually depend on any
instance variables. In many languages, this kind of method is called static. Using the word
static to refer to class-level features comes from C++ and Java; it has also been adopted
for Python.

We don’t have any syntax complications for class-level attributes. As we’ve seen in
previous examples, any attribute that’s not part of the instance will be searched for in the
class; the distinction between instance variables and class variables doesn’t require any
additional syntax.

A class-level method, however, cannot have an instance variable as the first defined
parameter. This is an important syntactic change. We use the @staticmethod decorator to
annotate methods that do not have an instance variable.

We’ll expand the sample class shown earlier to include a validity check. Checking for
validity isn’t a proper instance method: we should not create an instance with invalid
values. We’ll add this method to the class:

@staticmethod
def validate(measure):
m= float(measure)
if 0 <= m < 12:
pass
else:
raise ValueError("Out of range")

We’ve marked this method with the @staticmethod decorator. The method does not have
a self variable, since it doesn’t apply to an instance of the class. This method can only be
invoked via Sample.validate(some_value). The method will confirm that the value of
the measure parameter is valid, or it will raise an exception which details the reason why
the value is invalid.

We might use this method to create and use an instance of the Sample object:

try:

Sample.validate(some_data)

s= Sample(some_data)

. etc. ..
except Exception as ex:

print(ex)
We’ll start the try statement by simply evaluating the Sample.validate() method. If this
method does not raise an exception, the given value is valid. If this method does raise an
exception, we’ll write an error message and continue processing. Often, we’ll have this
kind of processing in a file input loop: we’ll process good data and write messages about
bad data to the log.

Python also offers a @classmethod decorator. This is a more specialized tool. It provides
the class as an argument instead of the instance. It allows us to write a method that can
work with a variety of classes. This might be used in a metaclass.

We’ll return to the topic of decorators in Chapter 13, Metaprogramming and Decorators.

Using __slots__ to save storage

The default behavior of the object superclass is to create a dict for an object’s attributes.
This provides fast resolution of names. It means that an object can have attributes added
and changed very freely. Because a hash is used to locate the attribute by name, the
internal dict object can consume quite a bit of memory.

We can modify the behavior of the object superclass by providing a list of specific
attribute names when we create a class. When we assign these names to the specially
named _ slots__ variable, these will be the only available attributes. A dict is not
created, and memory use is reduced considerably.

If we’re working with very large datasets, we might need to use a class that looks like this:

class SmallSample:
counter= 0
__slots__ = ["sequence", "measure"]
def __init_ (self, measure):
SmallSample.counter += 1
self.sequence = SmallSample.counter
self.measure = measure

This class uses the __slots__ attribute to define the only two attributes that can be used
for an instance. This avoids using a dict to represent the attributes of instances of this
class.

The ABCs of abstract base classes

In Chapter 6, More Complex Data Types, we looked at the collections module, which
offers a number of variations on the mapping theme. These different kinds of collections
are built on a foundation of abstract base classes, defined in the collections.abc module.
Looking at this module exposes the common features, and the differences, among the
collections.

We can see how Sequence is the basis for the built-in tuple class, and MutableSequence
is the basis for the built-in 1ist. The Set abstract base class is the basis for the frozenset
built-in class, and MutableSet is the basis for the set class. There’s no concrete
implementation of the Mapping class, but the dict class is the built-in implementation of
the MutableMapping class.

If we need to implement a unique kind of collection, one not already provided by the
collection module, we’re encouraged to use the collections.abc module as a starting
point. If we leverage these common base classes, we’re assured that our new collection
will fit seamlessly with other Python features.

Writing a callable class

The abstract base class callable is defined in the collections.abc module. This class
doesn’t seem to have much to do with collections. It’s a useful abstraction, nonetheless.

A class that derives from callable must define the _ call () special method. The
objects created from this class are callable, and can be used as if they were functions. This
allows us to create fairly complex functions based on a class definition.

Here’s a function to compute the nth Fibonacci number. There are three relevant rules for
computing this value:

F =0
F =1
R T o

I

The first two Fibonacci numbers are defined as zero and one. Other Fibonacci numbers are
the sum of the two preceding numbers. If we use a naive algorithm, it’s quite expensive to
compute a large Fibonacci number. We can, however, define a Callable that uses an
internal cache to reduce the workload to a manageable level. This technique is called
memoization.

The class definition for a callable looks like this:

from collections.abc import Callable
class Fibonacci(Callable):
def __init__ (self):
self.cache= {0: 0, 1: 1}
def __call_(self, n):
if n not in self.cache:
self.cache[n]= self.__call (n-1) + self.__call_(n-2)
return self.cache[n]

We’ve defined a class, Fibonacci, which extends the callable abstract base class. The
__init__ () method initializes a cache with two defined values for Fibonacci numbers.
The __call () method only computes a Fibonacci number, n, if the number is not
already in the cache. It does this by recursive calls to compute Fibonacci numbers n-1 and
n-2. Once the result is in the cache, it can be returned.

When we create an instance of this class, we have created a callable function. Given that
function, we can compute Fibonacci numbers. Here’s an example:

>>> fib= Fibonacci()

>>> fib(7)

13

We’ve created an instance of the Fibonacci class, and assigned this to the variable fib.
The fib object is callable; when we evaluate it with an argument value of six, we get the
seventh Fibonacci number.

Summary

In this chapter, we’ve seen the basics of defining a class and using objects of that class.
We’ve looked at how we create the methods that define the behavior of a class. The
internal state of the class is the result of the various methods: in Python we don’t formally
declare instance variables. We generally rely in the __init__ () method to provide the
initial or default values for the object’s state.

We’ve looked at the way Python resolves attribute and method names by searching the
object, the class, and then the superclasses. The method resolution order is based on the
order the classes are presented in the initial class statement.

The @properties decorator can be used to create methods that have the same syntax as an
attribute. This can help clarify otherwise complex algorithms. We’ve also looked at the
@staticmethod decorator, which is used to create methods that belong to the class as a
whole and are independent of any specific instance of the class.

In order to save some memory, we can use the __slots__ variable. This will construct an
object that isn’t based on a dict for storing attributes. The object is quite a bit smaller, but
also suffers from some limitations.

We also looked at how we can create a callable object. This is an object that can be used
like a function, but has all of the powerful features of an object.

In Chapter 12, Scripts, Modules, Packages, Libraries, and Applications, we’ll look at how
we can package our functions and classes into modules. We’ll see how modules are
grouped into packages. The Python Standard Library is a collection of packages that we
install with Python. We’ll look at the tiny distinctions between modules and script files,
and how we can create more complete Python applications.

Chapter 12. Scripts, Modules, Packages,
Libraries, and Applications

While it’s easy to work with Python at the Read-Evaluate-Print Loop (REPL) >>>
prompt, our real goal is to create Python application files. A Python file may be a script,
which means it should be able to do some useful work when it’s executed by the Python
program. A file may be a module, which means that it is designed to be imported to
provide useful definitions. A directory of Python modules is a package. These are formal
definitions, implemented by the language.

More generic terms like library, application, or framework aren’t formalized by the
language. We have ways to implement these common concepts in Python. We can think of
a collection of modules or packages as a library. The Python Standard Library, for
example, is a large collection of modules and packages. An “application” will be at least a
script. A more complex application may involve a script plus several additional modules
and packages. A framework will be a Python application into which we’ll inject our
customized modules or packages. Many frameworks will also include non-Python files: a
web framework may include a great deal of HTML and CSS; a GUI framework may
include image files and fonts.

We’ll look at creating and running script files. We’ll also look at creating modules and
packages of modules. Finally, we’ll look at a very clever Python feature that allows us to
write a script that can also be used as a module. This design pattern allows us to build
composite applications that are based on other applications.

Script file rules

A Python script file must adhere to only one simple rule: it must be pure text. In some
cases, a poorly-chosen filename can lead to problems, so we’ll add two recommendations
that are often helpful:

e The content must be pure text; ideally encoded in UTF-8, although ASCII is also
popular.

e The filename should follow the Python identifier rules. It should start with a letter
and use only letters, digits, and the _ character. Filenames that begin and end with __
(two underscores) are reserved and have special meanings for Python.

e The extension should be . py.

The two additional recommendations are essential for writing modules and packages, but
are not required to write a simple script.

A script is simply a sequence of statements; it’s identical to what we might do at the REPL
prompt with only one difference: a script has no implicit printed output. We must use the
print () function in a script to see any results. In larger applications, we often use the
logging module to produce more sophisticated output. In some cases, we’ll carefully
replace all the print () functions we put into an early technology spike with
logging.debug() functions as our application matures.

To run a script, we need to provide it as input to the Python program. We’ll look at three
common ways to do this.

Running a script by the filename

The most common way to run a script is to provide the filename to the Python command.
Let’s assume we have a file with the unpleasant name of ch12_scripti.py in a directory
named Chapter_12.

In Linux and Mac OS X, the full name will be Chapter_12/ch12_scripti.py. In
Windows, the full filename will be Chapter_12\ch12_scripti.py. We’ll stick with the
Linux standard filenames for the remaining examples.

Here’s how we can run a script by giving the filename:

MacBookPro-SLott:Code slott$ python3 Chapter_12/ch12_scriptil.py

Temperature °C: 8

C=8°, F=46°

This output shows the OS prompt. The python3 command that we entered is highlighted.
The prompts and the outputs from the script are also shown. This example is typical for an
OS that uses Python 2 internally; we have to distinguish our new Python 3 from the OS’s
internal python command.

The application prompted us, and we entered a temperature of 8. The output shows that
8°C is about 46°F. We’ll need to wear a coat.

The script file, ch12_scripti.py, looks like this:

c= float(input("Temperature °C: "))

f = 32+9*c/5

print("C={c:.0f}°, F={f:.0f}°".format(c=c,f=f))

The script uses the input () function to prompt an interactive user at the console. The
output is displayed with the simple print() function.

We’ve kept the script small to emphasize ways that scripts can be run. There are numerous
user experience (UX) issues with this, but that is not the focus of this section.

Running a script by its module name

In most cases, our scripts can either be installed in the site-packages directory inside the
Python library, or we can extend the Python path using the PYTHONPATH environment
variable to include the location of our scripts. Either of these approaches makes a script
file visible on Python’s search path.

To install a script in site-packages, we can rely on Python’s distutils package. We’ll
create a setup.py file, which describes the module we’d like to install. We can then run
python3 setup.py install to have our module placed into the site-packages directory.
Installers like pip and easy-install require use of distutils following this standard
pattern.

We can also locate the site-packages directory and manually copy our module into that
directory. This location varies from OS to OS. This directory is the last item in the
sys.path variable.

Setting the PYTHONPATH environment variable is another alternative. We can use the Linux
export command to make a change to environment variables. We often put this in our

~/ .bash_profile file. For Windows, we have to make a change to the advanced system
settings where the environment variables are set. We can easily create private libraries
with many modules, made visible via the PYTHONPATH variable.

Once our module is visible on Python’s search path, we can execute the module like this:

MacBookPro-SLott:Code slott$ python3 -m Chapter_12.chl2_scripti
Temperature °C: 8

C=8°, F=46°

When we provide the -m option, we’re naming a module to be executed. In this example,
we’ve used a qualified name: Chapter_12 is a package and ch12_script1 is the module
within that package. We’ll look at packages in the later sections; packages are essentially
the directories in which module files can be found.

Running a script using OS shell rules

The third way that we can run a script is by making the script file executable and including
an OS association between the script file and the Python3 program.

In Linux and Mac OS X, the file association is set by the first line of the file. We’ll often
use something like this as the first line in a file, to associate a given . py file and the
Python3 program:

#!/usr/bin/env python3

This will use the OS env program to locate and start the python3 environment. The shell
will provide the entire file as input to the program named on a #! line. This means that the
env program will be started with the script file as input. The env program will prepare the
environment and then hand the file to the Python3 program.

To mark a file as executable in Linux and Mac OS X, we use the chmod +x command. We
can do this to mark our script as executable:

MacBookPro-SLott:Code slott$ chmod +x Chapter_12/chl12_scriptil.py

This command will add the execute, x, option to the file’s mode. When we do an 1s -1,
we’ll see this as part of the file’s details.

In Windows, all files are considered executable. The association between file extension
and program is done through the Windows Control Panel. The setting was put in place
when you installed Python.

Once the file is marked as executable, we can run it simply by providing the name:

MacBookPro-SLott:Code slott$ Chapter_12/chl2_scriptl.py

Under Windows, the file extension of . py is bound to the Python program, and Windows
will launch Python providing this filename as input. The binding of filename to script is
outside the application.

Under Linux and Mac OS X, the processing is based on the magical first line of the file.
The Linux shell checks the file’s mode to see that it’s executable. It then reads the first few
bytes of the file. In this case, the first few bytes are #!, which marks the file as a script.
The first full line of a script includes the command that must be used to process this script.
In this case, the command is /usr/bin/env python3. The shell launches this program
with the given file as input.

Choosing good script names

Script names should be kept short and meaningful. As with filenames, it’s generally best
practice to avoid complex prefixes and suffixes. The Linux or Windows DOS commands
provide some guidance on what makes a good (and bad) name for a script. One of the best
examples is the git command, which has numerous subcommands. Rather than invent
dozens of complex-looking names, git uses a simple command name as a prefix.

The argparse module, used for parsing command-line arguments, supports this nicely. We
can define a few common arguments that apply to all subcommands. We can also define
arguments that are unique to each subcommand.

In order to keep the code for this book organized by the publishing pipeline, the script
names are long. The redundancy in these names (Chapter_12/ch12_..) is not the best

practice, and should be avoided where possible. As with variable names and function

names, script names should be kept reasonably short and meaningful.

Creating a reusable module

In Python, the module is the unit of software reuse. When we have a feature that must
appear in more than one script, we’ll put this feature into a module and import that module
into each script that shares the feature.

It’s important to note two slightly different senses of the word “reuse” as follows:

e We can define a class hierarchy to achieve localized reuse within an application.
Inheritance is an elegant way to share code among related objects. Often we’ll define
all of these related classes in a single module file.

e We can define a module to achieve a less local reuse across applications.

To create a module that can be imported, we merely have to be sure that a Python file is
visible in a directory that’s part of the Python search path. Since the local directory is
always visible, we can create a module simply by creating a file in the current working
directory.

A module designed for import should consist mostly of import, class, and def
statements. We can also use assignment statements to create module global variables, but
we need to be cautious of how much processing is done. Any name that’s created (via
assignment, class, def, or import) will be in that module’s namespace.

A module is only imported once. The import implementation checks a global cache of
loaded modules, visible as sys.modules, to see if the module is known. Because of this, a
module that actually does some kind of processing will only do it once. After that, the
import is ignored. This behavior makes it easy to create a global Singleton object inside
an imported module.

Examples of modules that do significant processing on import are this and antigravity.
When we execute import this or import antigravity, these modules will immediately
do some interesting processing. After having been imported once, they won’t do this
again. While handy in some specialized situations, it’s not a general pattern to follow.

Tip

We generally expect an import statement to provide definitions of classes, functions, and
module global variables.

We don’t generally expect an import statement to do useful processing.

A module may define a unique exception. We might want to create a generic exception
class named Error in a module. It would look like this:

class Error(Exception): pass

Because this name will be qualified by the module name when the module is imported, we
are able to reference this exception via some_module.Error. It might look like this:

import some_module
try:
some_module.some_function()

except some_module.Error as e:

logger.exception("some_function broke: {0}".format(e))
The module name, some_module, acts as a nice qualifier to show the origin of the Error
class definition. We don’t need to give the Error class a more complex, globally unique
name.

Creating a hybrid library/application
module

A script may import modules, perhaps define some functions or classes, but it will always
do the relevant processing. Our first example script had just three lines of relevant
processing: two assignment statements, and a function statement that printed a result. This
shows the Pythonic ideal of having programs without any boilerplate; we try to avoid
syntax that’s just overhead.

A possible downside of a perfectly clean approach to scripting is that it’s difficult to create
unit tests. Each unit test would have to invoke the script as a subprocess; something that
can involve quite a bit of OS overhead. The goal of unit testing is to isolate each unit—
each function, class, module, package, or script—so that it can be tested separately.
Having the OS launch the script file doesn’t seem to be properly isolated.

Also, as an application matures, a good script may become a component in a larger, and
more comprehensive, application. It can become difficult to create a composite application
from a script file. It’s far easier to create composite processes from functions or classes.

This leads to the following suggested structure for a script:

def c_to_f():

c= float(input("Temperature °C: "))

f = 32+9*c/5

print("C={c:.0f}°, F={f:.0f}°".format(c=c,f=f))
if __name__ == "__main__":

c_to_f()

We’ve taken our script and wrapped it with a def statement to make a function. We’ve
then written an if statement that distinguishes between a main script and an imported
module by examining the __name__ variable. The if statement makes the following
conditions:

e When a module is imported, Python sets the global variable __name__ to the actual
module name
e When run as a main script, Python sets the global variable __name__ to __main__

This pattern can be used to write library modules which run their own unit tests. We can
include the following in a library module that is never used as a main script:

if __name__ == "__main__":
import doctest
doctest.testmod(verbose=1)

This will run all of the unit tests that are embedded in docstrings. We’ll look more closely
at testing in Chapter 14, Fit and Finish — Unit Testing, Packaging, and Documentation.

Creating a package

A package is a directory that contains module files plus one additional file. Each package
must have an __init__.py file. This file must be present and is often empty.

The poem, Zen of Python, by Tim Peters, offers the following advice:
Flat is better than nested.

The idea is to organize Python applications into a flat collection of modules to the greatest
extent possible. A deeply-nested, complex hierarchy of packages isn’t considered helpful.

We can use a package in two ways. We can import a module that’s part of a package. The
standard library, for example, has an XML package with several XML parser modules. We
can use import xml.etree to import the etree module from the XML package. In this
case, the __init__.py file has a comment and a list of sub-packages.

In other cases, we can import the package, as a whole, as if the package were a module.
When we write import collections, for example, we’re really importing the module
collections/__init__.py.

The __init__ .py file is a top-level module for the package as a whole. It can be empty, in
which case we can only pick specific modules from within the package. Or the
__init__.py file may have content, allowing us to import the package as a single complex
structure.

Designing alternative implementations

We can easily offer alternative implementations of a given feature. If we want more speed,
more accuracy, or less memory use, we should be able to import an alternative definition
of a given library.

We can compare the math and cmath modules for a concrete example of this principle.
Here’s an example of how they differ:

>>> import math
>>> import cmath
>>> math.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: math domain error
>>> cmath.sqrt(-1)
1j
The math module includes a square root function, which we used as math.sqrt (). This
produces only real-valued results, and must raise an exception when confronted with an

expression that’s not real-valued.

The cmath module also includes a square root function. The cmath.sqrt() function can
return complex values instead of raising an exception. Since the packages are so similar,
we can substitute one for the other in a variety of ways.

Both of these modules offer a similar set of function definitions. The components within
the module have the same names. The modules, which are namespaces, have different
names to distinguish the origin of a definition.

This technique is often used to support different platforms. We can create a package with
platform-specific modules within the package. The package’s top-level __init__.py can
choose which module to import and provide the platform-specific definitions. We can also
use this to write enterprise software that must run in different environments: development,
quality assurance, and final production. A single package can include different
configuration modules. The standard library os package demonstrates this concept.

Seeing the package search path

The Python search path can be seen by importing the sys package to see sys.path:

>>> import sys

>>> gys.path

['', '"/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3/site-
packages/setuptools-2.0.2-py3.3.egqg"',

.., etc.
'"/Library/Frameworks/Python.framework/Versions/3.3/1ib/python33.zip’,
'"/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3",
'"/Library/Frameworks/Python. framework/Versions/3.3/1ib/python3.3/plat-
darwin',

'"/Library/Frameworks/Python. framework/Versions/3.3/1ib/python3.3/1ib-
dynload',

'"/Library/Frameworks/Python. framework/Versions/3.3/1ib/python3.3/site-
packages']

We’ve elided a number of lines from this output to show the essentials of how the standard
library fits into the way we develop Python code. This list of places to search for modules

is built by the sites package when Python starts running.

The zero-length directory name, ' ', is first. This means that the current working directory
is the preferred place to locate modules. This allows us to import our own modules from
the local directory. After our local directory, a number of locations are searched, ending
with the . ../site-packages directory.

The next group of names, starting with setuptools-2.0.2-py3.3.egg, is a list of all
external packages added to this installation in the form of downloaded .egg files. The
exact list will vary from installation to installation. These names are created by the pip
and easy_install programs.

When we set the PYTHONPATH environment variable, those names are spliced into the path
dafter the various installed packages. The final group of names, starting with
python33.zip, is a common list of modules that come with Python. The last entry lists the
generic site-packages portion of the library. If you download a package and run the
package’s setup. py script, it is copied into this directory where it will be found by
Python.

The sys.path object is a proper mutable list. We can dynamically change the path in our
script files. This can make it difficult to determine all the modules that a script depends on.
It’s almost always clearer to explicitly depend on the modules being properly installed or
the PYTHONPATH environment variable being set.

Summary

In this chapter, we’ve looked at the higher-level ways to organize software. A function
contains many statements, a class contains many method functions, and a module can
contain many classes and functions. A package can contain many modules.

We’ve looked at a number of ways of executing a Python script. We have a great deal of
flexibility because there are many contexts in which we need to execute software.
Generally, we’ll focus on executing Python programs by module name rather than by
filename. The distinction is tiny. Since a module must be on the search path, we can create
a directory that contains the script and any supporting modules and libraries, and ensure
that this directory is named on the PYTHONPATH.

We’ve looked at how we can create library modules that contain definitions and will be
imported into other scripts. This is our primary method of reuse. We’ve also looked at how
we can create a script, that is reusable as a library module. This supports unit testing as
well as maturation of our software.

In Chapter 13, Metaprogramming and Decorators, we’ll look at some more advanced
programming techniques. These will allow us to create more sophisticated class and
function definitions. We can use these design patterns to write more flexible and more
reusable software.

Chapter 13. Metaprogramming and
Decorators

The bulk of what we’ve covered has been programming—writing Python statements to
process data. We can also use Python to process Python instead of processing data. We’ll
call this metaprogramming. We’ll look at two aspects: decorators and metaclasses.

A decorator is a function that accepts a function as an argument and returns a function. We
can use this to add features to a function without repeating the feature in several different
function definitions. A decorator prevents copy-and-paste programming. We often use this
for logging, audit, or security purposes; these are things that will cut across a number of
class or function definitions.

A metaclass definition will extend the essential object creation that happens when we
make an instance of a class. Implicitly, the special method name of _ new__ () is used to
create a bare object that is subsequently initialized by the __init__ () method of the class.
A metaclass allows us to change some of the fundamental features of object creation.

Simple metaprogramming with decorators

Python has a few built-in decorators that will modify a function or a method of a class. For
example, in Chapter 11, Class Definitions, we saw @staticmethod and @property, which
are used to alter the behavior of a method in a class. The @staticmethod decorator
changes a function to work on the class instead of an instance of the class. The @property
decorator makes evaluating a no-argument method available via the same syntax as an
attribute.

A function decorator that’s available in the functools module is @1ru_cache. This
modifies a function to add memoization. Having cached results can be a significant speed-
up. It looks like this:

from functools import lru_cache
from glob import glob
import os

@lru_cache(100)
def find_source(directory):
return glob(os.path.join(directory,"*.py"))

In this example, we’ve imported the @1ru_cache decorator. We’ve also imported the
glob.glob() function and the os module so that we can use os.path.join() to create
filenames irrespective of OS-specific punctuation.

We’ve provided a size parameter to the @1ru_cache () decorator. The parameterized
decorator modifies the find_source() function by adding a cache that will hold 100
previous results. This can speed up a program that does a lot of work with the local file
system. The last recently used (LRU) algorithm assures that recent requests are preserved
and older requests are quietly forgotten to limit the cache to the requested size.

The @1ru_cache decorator embodies a reusable optimization that can be applied to a
variety of functions. We have separated the memoization aspect from other aspects of a
function’s implementation.

The Python Standard Library defines a few decorators. For more examples of decorator
metaprogramming, see the Python Decorator Library page,
https://wiki.python.org/moin/PythonDecoratorLibrary.

https://wiki.python.org/moin/PythonDecoratorLibrary

Defining our own decorator

In some cases, we can extract a common aspect from a number of functions. Concerns like
security, audit, or logging are common examples of something we might want to
implement consistently across many functions or classes.

Let’s look at a way to support enhanced debugging. Our goal is to have a simple
annotation that we can use to provide consistent, detailed output from several unrelated
functions. We’d like to create a module with definitions like this:

@debug_log

def some_function(ksloc):
return 2.4*ksloc**1.05

@debug_log

def another_function(ksloc, a=3.6, b=1.20):
return a*ksloc**b

We’ve defined two simple functions that will be wrapped by a decorator to provide
consistent debugging output.

A decorator is a function that accepts a function as an argument and returns a function as a
result. What we’ve shown in the preceding piece of code is evaluated as follows:

>>> def some_function(ksloc):
return 2.4*ksloc**1.05
>>> some_function = debug_log(debug_log)

When we apply a decorator to a function, we’re implicitly evaluating the decorator
function with an original function as the argument. This will create the decorated function
as a result. Using a decorator creates a result with the same name as the original function
—the decorated version replaces the original.

For this to work, we’ll need to write a decorator that creates the debugging log entries.
This must be generic so that it will work for any function. As we noted in Chapter 7, Basic
Function Definitions, we can use the * and ** modifiers to collect “all other” positional
arguments and all other keyword arguments into a single sequence or a single dictionary.
This allows us to write completely generic decorators.

Here’s the @debug_log decorator function:

import logging
from functools import wraps
def debug_log(func):
log= logging.getLogger(func.__name__)
@wraps(func)
def decorated(*args, **kw):
log.debug(">>> call(*{0}, **{1})".format(args, kw))
try:
result= func(*args, **kw)
log.debug("<<< return {}".format(result))
return result
except Exception as ex:
log.exception("*** {}".format(ex))

raise
return decorated

The body of the decorator definition does three things. First, it creates a logger based on
the original function’s name, func.__name__. Second, it defines an entirely new function,
named decorated(), which is based on the original function. Finally, it returns that new
function.

Note that we used a decorator from the functools library, @wraps, to show that the new
decorator function wraps the original function. This will assure that the name and
docstring are properly copied from the original function to the decorated function. The
decorated version will be indistinguishable from the original.

We can use these functions normally:

>>> round(some_function(25), 3)
70.477

The decoration has no impact on the value of the function. It has a small performance
impact.

If we have logging enabled, and we set the logging level to DEBUG, we’ll see additional
output in the log. The preceding example would lead to the following in the logger’s
output:

DEBUG:some_function:>>> call(*(25,), **{})
DEBUG:some_function:<<< return 70.47713658528114

This shows the debugging detail produced by this decorator. The log shows the argument
values and the result value. If there’s an exception, we’ll see the argument values as well
as the exception message, which can be more useful than the default behavior of just
showing the exception message.

An easy way to enable the logger is to include the following in the application:

import sys

logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)

This will direct the log output to the standard error stream. It will also include all
messages that have a severity level above the debug level. We can change this level setting
to a value like logging. INFO to silence the debugging messages, leaving informational
messages intact.

A decorator that also accepts parameters values—in a manner similar to the @1ru_cache
decorator—is more complex. The argument values are first applied to create a decorator.
The decorator that results from this initial binding is then used to build the decorated
function from the original function.

More complex metaprogramming with
metaclasses

In some cases, the default features built into a class aren’t appropriate for our particular
application. We can see a few common situations where we might want to extend the
default behavior of object construction.

e We can use a metaclass to preserve some of the original source code that defined a
class. By default, each class object uses dict to store the various methods and class-
level attributes. We might want to use an ordered dictionary to retain the original
source code ordering for class-level attributes. An example of this is shown in the
Python Standard Library, section 3.3.3.5.

e The abstract base classes (ABC) rely on a metaclass _ new__ () method to confirm
that the concrete subclass is complete when we attempt to create an instance of the
class. If we fail to provide all of the required methods in a subclass of an ABC, we
can’t create an instance of that subclass.

e Metaclasses can be used to simplify object serialization. A metaclass can incorporate
information required for XML or JSON representation of an instance.

e We can use a metaclass to inject additional attributes into an object. Because a
metaclass provides the implementation of the __new__ () method used to create an
empty object, it is able to inject attributes before the __init__ () method is
evaluated. For some immutable classes, such as tuples, there isno __init_ ()
method, and a subclass of the tuple must use the __new__ () method to set the value.

The default metaclass is type. This is used by application classes to create the new, bare
object prior to the __init__ () method being invoked. The built-in type.__new_ ()
method requires four argument values—the metaclass, the application class name, the base
classes for the application class, and a namespace of system-defined initial values.

When we create a metaclass, we’ll override the __new__ () method. We’ll still use the
type.__new__ () method to create the bare object. We can then extend or modify this bare
object before returning the object.

Here’s a metaclass that inserts a logger prior to __init_ ():

import logging
class Logged(type):
def __new__(cls, name, bases, namespace, **kwds):
result = type._ _new__(cls, name, bases, dict(namespace))
result.logger= logging.getLogger (name)
return result

We’ve defined a class that extends the built-in type class. We’ve defined an overriding
special method, _ new__ (). The special method uses the superclass type.__new__ ()
method to create the bare object, which is assigned to the result variable.

Once we have the bare object, we can create a logger and inject this logger into the bare
object. This self.logger attribute will be available from the very first line of the

__init_ () method in each class that’s created using this metaclass.
We can create application classes that leverage this metaclass, like this:

class Machine(metaclass=Logged):
def __init__ (self, machine_id, base, cost_each):
self.logger.info("creating {0} at {1}+{2}".format(
machine_id, base, cost_each))
self.machine_id= machine_id
self.base= base
self.cost_each= cost_each
def application(self, units):
total= self.base + self.cost_each*units
self.logger.debug("Applied {units} ==> {total}".format(
total=total, units=units, **self.__dict__))
return total

We’ve defined a class that explicitly depends on the Logged metaclass. If we don’t include
the metaclass keyword parameter, the default metaclass of type will be used. In this
class, the logger attribute was created before the __init_ () method was invoked. This
allows us to use the logger in the __init__ () method without any further overhead.

Summary

In this chapter, we’ve looked at two common metaprogramming techniques. The first is
writing decorator functions—these can be used to transform an original function to add
new features. The second is using a metaclass to extend the default behavior of class
definitions.

We can use these techniques to develop application features that cut across many functions
and classes. Writing a feature once and applying it to a number of classes assures us of
consistency and can help during debugging, as well as upgrades or refactoring.

In Chapter 14, Fit and Finish — Unit Testing, Packaging, and Documentation, we’ll look at
a number of features that characterize a complete Python project. Rather than address
technical language features, we’ll look at ways we can use Python features to create
polished, complete solutions.

Chapter 14. Fit and Finish — Unit Testing,
Packaging, and Documentation

Beyond the Python language and its libraries, there are several other aspects to Python
programming. We’ll start by looking closely at the docstrings, which should be viewed as
an essential ingredient in every package, module, class, and function definition. These
have several purposes, one of which is to clarify what the object does.

In this chapter, we’ll also look at the different approaches to unit testing. The doctest and
unittest modules provide a comprehensive suite of tools. External tools like Nose are
also widely used.

We’ll also look at how we can leverage the 1ogging module as part of a complete
application. The Python logger is quite sophisticated as well, so we’ll focus on a few of
the essential features.

We’ll examine some tools that are used to build Python documentation from the embedded
docstring comments. Using tools to extract documentation allows us to focus on writing
proper code and deriving the reference documents from the code. In order to create
complete documentation—more than just an API reference—many developers use the
Sphinx tool.

We’ll also address the organization of files in a large Python project. Because Python is
used in so many different contexts and has so many different frameworks, the layout for a
web application built with Flask will look nothing like a web application built with
Django. However, there are a few essential principles that we can follow for keeping
Python programs neat and well organized.

Writing docstrings

In Chapter 7, Basic Function Definitions, we noted that all functions should have a
docstring that describes the function. In Chapter 11, Class Definitions, and Chapter 12,
Scripts, Modules, Packages, Libraries, and Applications, we offered similar advice,
without providing many details.

The def statement and the class statement should, universally, be followed by a triple-
quoted string that describes the function, method, or class. It’s not required by the
language—it’s required by all of the people who will try to read, understand, extend,
improve, or repair our code.

We’ll revisit an example from Chapter 11, Class Definitions, to show the kinds of
docstrings that were omitted. Here’s how we might create a more complete class
definition:

class Point:

nmon

Point on a plane.

Distances are calculated using hypotenuse.
This is the "as a crow flies" straight line distance.

Point on a plane.

Distances are calculated using hypotenuse.
This is the "as a crow flies" straight line distance.

>>> p_1

>>> p_1.

22

>>> p_1.y

7

>>> p_1

Point (22, 7)

def __init__ (self, x, y):
"""Create a new point

Point (22, 7)

x

:param x: X coOrdinate

rparam y: Y colOrdinate

self.x= X

self.y=vy
def __repr__(self):

"""Returns string representation of this Point."""

return "{cls}({x:.0f}, {y:.0f})".format(

cls=self.__class__.__name__, x=self.x, y=self.y)

def dist(self, point):

"""Distance to another point measured on a plane.

>>> p_1
>>> p_2

Point (22, 7)
Point (20, 5)

>>> round(p_1.dist(p_2),4)
2.8284

:param point: Another instance of Point.
:returns: float distance.

return math.hypot(self.x-point.x, self.y-point.y)

In this class definition, we’ve provided four separate docstrings. For the class as a whole,
we provided an overview of what the class does, plus an example of how the class
behaves. This is shown as a copy and paste from the Python REPL, showing the input
prefixed with >>> prompts.

For each method function, we’ve provided a docstring that shows what the method
function does. In the case of the dist () method, we’ve included another example
interaction in the docstring to show an example of the expected behavior of the method.

The documentation of parameters and return values uses the ReStructuredText (RST)
markup language. This is widely used because of tools like docutils and Sphinx, which
can format RST into nice-looking HTML or LaTeX. We’ll look at RST in the section
Writing documentation with RST markup later in this chapter.

For now, we can focus on :param name: and :returns: as markup syntax that helps tools
understand the semantics of these constructs. The tool can then give them special
formatting to reflect their meaning.

Writing unit tests with doctest

It is a widely adopted practice to provide concrete examples of classes and functions in
docstrings. As shown in the preceding example, we can provide the following kind of
example text in a docstring:

>>> p_1 = Point(22, 7)

>>> p_2 = Point(20, 5)

>>> round(p_1.dist(p_2),4)
2.8284

A concrete example has many benefits. The goal of Python code is to be beautiful and
readable. If the code sample is obscure or confusing, this is a design problem that really
should be resolved. Writing more words in comments to try to explain bad code is a
symptom of a deeper problem. A concrete example should be as clear and expressive as
the code itself.

An additional benefit of concrete examples is that they are test cases. The doctest module
can scan each docstring to locate these examples, build, and execute test cases. This will
confirm that the output in the example matches the actual output.

One common approach to using doctest is to include the following in a 1ibrary module:

if __name__ == "__main__":
import doctest
doctest.testmod(verbose=1)

If the module is executed as the main script instead of being imported, then it will import
doctest, scan the module for docstrings, and execute all the tests in those docstrings.
We’ve set the verbose level to one, which produces output that shows the tests in some
detail. If we leave the verbose level to it’s default value of zero, success is silent; not even
an ok is displayed.

We can also run doctest as a command-line application. Here’s an example:

MacBookPro-SLott:Code slott$ python3 -m doctest Chapter_1/chol_ex1.py -v
Trying:
355/113
Expecting:
3.1415929203539825
ok

1 items had no tests:

cho1l_ex1
9 items passed all tests:
tests in _ _main__.__ test__.assignment
tests in _ main__ ._ test__ .cmath
tests in _ main__ ._ test__ .division
tests in _ _main__.__test__ .expression
tests in _ _main__.__ _test__ .import 1
tests in _ _main__.__test__ .import 2
tests in _ _main__.__test__ .import 3
tests in _ main__ . _test__ .mixed_math

NNPERPWERDNMNRADN

2 tests in _ main__._test__ .print
19 tests in 10 items.
19 passed and 0 failed.
Test passed.

We’ve run the doctest module as an application, providing it with the name of a file that
should be examined to locate test examples inside docstrings. The output starts with the
first example found. The example is this:

>>> 355/113
3.1415929203539825

The verbose output shows the expression and the expected results. The output of ok
indicates that the test was passed.

What about the one item that had no tests? That’s the docstring for the module itself. This
shows us that our test case coverage is incomplete. We should consider adding a test in the
module docstring.

The summary showed that 9 items had 19 tests. The items are identified with strings such
as ch@l_ex1._ test__ .assignment. The special name _ test__ is neither a function nor
a class; it’s a global variable. If there’s a variable named __test__, it must be a dictionary.
The keys in the __test__ dictionary are documentation, and the values are strings that
must include doctest examples.

The _ test__ variable might look like this:

_test___ = {
'expression':
>>> 355/113
3.1415929203539825

nmmnn
4

mmn

etc.

}

Each key identifies the test. Each value is a triple-quoted string that includes a snippet of
REPL interaction showing the expected results.

As a practical matter, this particular test suffers from one of the potential limitations of
doctest examples.

As we noted in Chapter 5, Logic, Comparisons, and Conditions, we should not use exact
equality tests between floating point values. The proper way to write a test like this is to
use round(355/113, 6) to truncate the trailing digits; the final digits might differ slightly
depending on the hardware or underlying floating point libraries. It’s better to write tests
that are independent of implementation nuances.

There are a number of potential limitations with doctest examples. Dictionary keys have
no defined order. Therefore, a doctest can fail when the keys are displayed in an order
that differs from the expected output in the test. Similarly, set items have no defined order.
Additionally, an error traceback message may not match precisely because it will have a
line like File "<stdin>", line 1, in <module> that may vary depending on the
context in which the test runs.

For some of these potential limitations, doctest offers directives that can be used to
annotate the tests. The directives appear as special comments like this: # doctest:
+ELLIPSIS. This will enable flexible pattern matching to cope with the variations in
displayed output. For other limitations, we need to construct our test cases properly. We
can use sorted(some_dict.values()) to transform a dictionary result into a sorted list of
tuples where the order is guaranteed.

Docstrings are an essential feature of good Python programming. Examples are an
essential feature of well-written documentation. Given a tool that can verify the
correctness of the examples, this kind of testing should be considered mandatory.

Using the unittest library for testing

For more complex testing, the doctest examples may not provide enough depth or
flexibility. A docstring with a large number of cases would become too long to be effective
as documentation. A docstring with complex test setup, teardown, or mock objects may
not be useful as documentation either.

For these cases, we’ll use the unittest module to define test cases and test suites. When
using unittest, we’ll generally create separate modules. These test modules will contain
TestCase classes that contain test methods.

Here’s a quick overview of a typical test case class definition:

import unittest
from Chapter_7.ch07_ex1 import FtoC

class Test_FtoC(unittest.TestCase):

def setUp(self):
self.temps= [50, 60, 72]

def test_single(self):
self.assertAlmostEqual (0.0, FtoC(32))
self.assertAlmostEqual(100.0, FtoC(212))

def test_map(self):
temps_c = list(map(FtoC, self.temps))
self.assertEqual(3, len(temps_c))
rounded = [round(t,3) for t in temps_c]
self.assertEqual([10.0, 15.556, 22.222], rounded)

We’ve shown a setUp () method and two test methods. The default runTest () method
will search for all methods with a name that begins with test; it will then run the setup()
method that is executed prior to each individual test.. method.

We can use the Python assert statement to compare actual and expected results. Because
there are so many common comparisons, the TestCase class offers handy methods for
comparing different kinds of expected results with actual results. We’ve shown
assertEqual() and assertAlmostEqual(). Each of these methods parallels the assert
statement—they succeed silently. If there’s a problem, they raise an AssertionError
exception.

Using the unittest module allows us to write voluminous test cases. A doctest string is
most useful when it expresses a few helpful concrete examples. A unit test is a better way
to include many edge and corner cases.

The unittest module is also handy for test examples that involve interaction with the
filesystem. We might have a .csv format file that has a number of examples. We can write
a runTest () method that reads this file and treats each row as a test case.

When pursuing acceptance test-driven development (ATDD), the test cases themselves
can become quite complex. The test case setup may involve seeding a database with
sample data prior to executing a big application feature, and then examining the resulting

database contents. The essential structure of ATDD testing fits the unit testing design
patterns offered by the unittest module. The “unit” under test is not an isolated class;
instead, we’re testing a complete web API or command-line application.

Combining doctest and unittest

We can incorporate doctest test cases into the unittest suite of tests. This assures us that
the doctest examples are not overlooked when using unittest cases. We’ll do this by
using the TestSuite class, which can contain other TestCase classes as well as TestSuite
classes.

A doctest.DocTestSuite object will create a proper unittest.TestSuite method from
the doctest strings embedded in a given module. We can use a function like the following
to locate all test cases in a large collection of packages and modules:

def doctest_suite():

files = glob.glob("Chapter*/ch*_ex*.py")

by_chxx= lambda name: name.partition(".")[2].partition("_")[0]

modules = sorted(
(".".join(f.replace(".py","").split(os.sep)) for f in files),
key=by_chxx)

suites= [doctest.DocTestSuite(m) for m in modules]

return unittest.TestSuite(suites)

This function will return a TestSuite object built from other TestSuite objects. This
function has five steps:

1. It uses glob.glob() to get a list of all matching module names in the packages. This
particular pattern will locate all of the example code for this book. We might have to
change this to pass or reject other kinds of names that might be available.

2. It defines a lambda object that extracts the chapter number from the module, ignoring
the package. The expression uses name.partition(".") to split the complete module
name into the package, the dot character, and the module name. Item number 2 from
this sequence is the module name. This is partitioned on the "_" into chapter prefix,
underscore, and example suffix. We use item number 0, the chapter prefix, as the sort
order for the modules.

3. The input to the sorted() function is a sequence of filenames restructured into
module names. This transformation involves replacing the ".py" filename suffix and
then splitting the filename on the OS path separator (“/” on most OSes, but on
Windows it is “") into separate substrings. When we join the substrings using “.” we
get a module name, which we can use for sorting and test case discovery.

4. We build a list comprehension of the test suites that can be built from the doctest
examples in each module. This includes over 100 individual tests culled from the
examples throughout this book.

5. We assemble a single test suite from the list of test suites. This can then be executed
to confirm that all of the examples produce the expected results.

We can merge this doctest TestSuite object with a TestSuite object built from tests
based on the unittest.TestCase definitions. This complete suite can then be executed to
show that the code works as expected.

We often use something like the following:

if __name__ == "__main__":
runner= unittest.TextTestRunner(verbosity=1)
all tests = unittest.TestSuite(suite())
runner.run(all_tests)

This will create a test runner that produces a summary of tests and test failures. The
suite() function—not shown—returns a TestSuite() method built from the
doctest_suite() function and a function that scans files for unittest.TestCase classes.

The output summarizes the tests run and the failures. When we build a comprehensive test
suite like this, we include both unittest and doctest cases. This allows us to freely mix
complex suites with simple docstring examples.

Using other add-on test libraries

The doctest and unittest modules allow us to write a number unit tests conveniently. In
many cases, we want even more sophistication. One of the more popular additional
features is test discovery. The nose package gives us a way to painlessly examine modules
and packages for tests. See http://nose.readthedocs.org/en/latest/ for more information.

There are several benefits of using nose as an extension to unittest. The nose module
can collect tests from unittest.TestCase subclasses, as well as simple test functions, and
also from test classes that are not subclasses of unittest.TestCase. We can use nose for
writing timing tests too—something that can be a little awkward in unittest.

Because nose is particularly good at collecting tests automatically, there’s no need to
manually collect test cases into test suites; we don’t need some of the examples shown
earlier. Furthermore, nose supports test fixtures at the package, module, and class level, so
expensive initialization can be done as infrequently as possible. This allows us to populate
a test database for multiple modules of related testing—something that unittest can’t do
as easily.

http://nose.readthedocs.org/en/latest/

Logging events and conditions

A well-behaved application can produce a variety of processing summaries. For
command-line applications, the summary might be a simple “everything went okay”
message. For GUI applications, this summary is inverted—silence means things are
working well, and a dialog box with an error message indicates things didn’t work

properly.

In some command-line processing contexts, the summary might include some additional
details on the number of objects that were processed. In financial applications, some
counts and the total values of various objects must balance properly to show that all
objects that were received as input became proper outputs.

When we need additional details, beyond a simple “works or breaks” summary, we can
leverage the print () function. The output can be redirected to the sys.stderr file to
produce a handy log. While this is effective in small programs, it has a number of
desirable features offered by the 1ogging module.

The first step in using the 1ogging module is to create logger objects and use the loggers
to produce useful output. Each logger has a name that fits into a tree using names
delimited with the . character. The logger names parallel the standards for module names;
we can use the following:

import logging

logger = logging.getLogger(__name__)

This will create a module-wide 1ogger object with a name that matches the module name.
The root logger has the name ""; that is, an empty string.

We can also create class-wide loggers as well as object-specific loggers. We can, for
example, create a logger during the __init__ () method part of object creation. We might
use the __qualname__ attribute of an object’s class to provide a qualified class name for
the logger. To create a logger for a specific instance of a class, we can suffix the class
name with the . character and some unique identifier for the instance.

We use the logger to create messages with a severity level from DEBUGGING (the least
severe) to FATAL or CRITICAL (synonyms for the most severe level.) We do this with a
method name that reflects the severity level. Messages are created with methods like
these:

logger.debug("Finished with {0} using {2}".format(message, details))
logger.error("Error due to {0}".format(data))

The 1logging module has a default configuration that does nothing. This means that we
can include logging requests in an application without any further consideration. As long
as we properly create a Logger instance and use methods of the logger instance, we don’t
need to do anything else.

To see output, we’ll need to create a handler that will write the messages to a particular
stream or file. This is usually done as part of the overall configuration of the logging

system.

Configuring the logging system

We have several ways to configure the logging system. For small applications, we might
provide the logging setup using the logging.basicConfig() function. We’ve shown this
in Chapter 13, Metaprogramming and Decorators. A simple initialization will send the
output to the standard error stream and explicitly set a level that filters the messages being
displayed. This uses the stream and level keyword arguments.

A slightly more complex configuration might look like this:
logging.basicConfig(filename="app.log', filemode='a', level=logging.INFO)

We’ve opened a named file, assigned a mode of a to append, and set the level to show
messages with a severity that’s equal to or greater than INFO.

Since each individual logger is named, we can adjust the level of detail for a specific
logger. We can include a line like the following to enable debugging on a specific logger:

logging.getLogger('Demonstration').setLevel(logging.DEBUG)

This allows us to see details for a specific class or module. This is often a great help when
debugging.

The logging.handlers module offers a large number of handlers for routing, printing, or
saving the sequence of logging messages. The preceding example shows the file handler.
The stream handler is used to write to the standard error stream. In some cases, we need to
have multiple handlers. We can apply filters to each handler, so that the handlers will
reflect different kinds of details.

Logging configurations often get too complex for the basicConfig() function. The
logging.config module offers several functions that can be used to configure the logging
for an application. One general approach is to use the logging.config.dictConfig()
function. We can create a Python dict object directly in Python, or read some serialized
version of the dict object. The standard library documentation uses examples written in
the YAML markup language because it’s simple and flexible.

We might do something like this to create a configuration object:

config = {
'version': 1,
"handlers': {
'console': {
'class' : 'logging.StreamHandler',
'stream': 'ext://sys.stderr',
¥
3
'root': {

'level': 'DEBUG',
"handler': ['console'],

i
}

This object has the required version attribute to specify the structure of the configuration.

A single handler is defined; it’s named console and uses logging.StreamHandler is used
to write to the standard error stream. The root logger is configured to use the console
handler. The severity level is defined to include any message at or above the DEBUG level.

Only in configuration files is the root logger named 'root'. In application code, the root
logger is named with an empty string.

Larger and more sophisticated applications will rely on logging configurations in external
configuration files. This permits flexible and sophisticated logging configurations.

Writing documentation with RST markup

While Python code should be beautiful and informative, it doesn’t easily provide
background or context to show why a particular algorithm or data structure was chosen.
We often need to provide these additional details to help people maintain, extend, and
make effective use of our software. While we can include a lot of information in a module
docstring, it seems best to keep docstrings focused on implementation details, and provide
the additional material separately.

We can write additional documentation in a variety of formats. We can use a sophisticated
editor with complex file formats, or we can use simple text editors and plain text format.
We can even write our documentation entirely in HTML. Python also offers a hybrid
approach—we can write using a text editor with simplified ReStructuredText (RST)
markup, and use the docutils tools to create nice-looking HTML pages or LaTeX files
suitable for publication from that markup.

The RST markup language is widely used for creating Python documentation. This
markup allows us to write plain text, while adhering to a few formatting rules. In the next
section, we’ll look at using the docutils tools to parse the RST and create an output
document.

The rules of RST markup are simple. There is paragraph-level markup that applies to big
blocks of text. Paragraphs must be separated by blank lines. When a line is “underlined”
with a sequence of characters, it is taken as a heading. When a paragraph starts with an
isolated punctuation mark, it’s a bullet. When a paragraph starts with a letter or digit, and a
punctuation mark, this indicates numbers instead of bullets. The docutils rst2html.py
tool transforms each paragraph of the input to the proper kind of HTML structure.

There are many paragraph-level “directives” that can be used to insert an image, a table,
an equation, or a large block of code. These directives are prefixed with .. and end with
: :. We might use the directive .. contents:: to add the table of contents to our
document.

We can write inline markup inside the body of a paragraph. Inline markup includes a few
simple constructs. If we surround a word with the * character, like *this*, we’ll see the
word in an italic-style font in the final document; we can use **bold** for bold
characters. If we want to write a * character without confusing the tool, we can escape it
with the \ character. In many cases, however, we’ll need to use a more complex semantic
markup that looks like this: :code: “code sample’. This includes the text role, :code:, as
a prefix that shows how to classify the marked characters; the content is surrounded by the
" character. The text roles of :code: and :math: are widely used.

When we write a docstring, we’ll often use additional RST markup. We’ll use : param
name: when defining the parameter to a function or class method. We use :returns: to
annotate the return values from a function. When we provide this additional markup,
we’re assured that various formatting tools will produce elegant documentation from our
docstrings.

Here’s an example of what an RST file might contain:

Writing RST Documentation

For more information, see
http://docutils.sourceforge.net/docs/user/rst/quickref.html

1. Separate paragraphs with blank lines.
2. Underline headings.

#. Prefix with one character for an unordered list. Otherwise it may be
interpreted as an ordered list.

#. Indent freely to show structure.
#. Inline markup.
- Use " “*word* " for *italics*, and ~ **word** " for **bold**.

- Use " “:code:\"word\ "~ for more complex semantic markup.

We’ve shown a heading, underlined with a sequence of = characters. We’ve provided a
URL,; in the final HTML output, this will become a proper link using the <a> tag. We’ve
shown numbered paragraphs. When we omit the leading number and use #, the docutils
tools will assign increasing numbers. We’ve also shown indented bullet point within the
last numbered paragraph.

While this example shows numbering and simple hyphen bullets, we can use lettering or
Roman numerals as well. The docutils tools are generally able to parse a wide variety of
formatting conventions.

Creating HTML documentation from an RST
source

To create HTML or LaTeX (or any of the other supported formats), we’ll use one of the
docutils frontend tools. There are many individual conversion tools that are part of the
docutils package.

The docutils tools are not part of Python. See http://docutils.sourceforge.net for the
download.

All of the tools have a similar command-line interface. We might use the following
command to create an HTML page from some RST input:

MacBookPro-SLott:Chapter_14 slott$ rst2html.py chl4_doc.rst
ch14_doc.rst.html

We’ve provided the rst2html.py command. We’ve named the input file and the output
file. This will use default values for the style sheet, and other optional features for the
resulting document. We can configure the output through the command line or by
providing a configuration file that assures a common look for all of our generated HTML
files.

To create LaTeX, we can use the rst2latex.py or rst2xetex.py tool, and then a LaTeX
formatter. TeX Live distribution works nicely for creating a PDF file from LaTeX. See

https://www.tug.org/texlive/.

For large and complex documents, creating a single RST file isn’t ideal. While we can use
the .. include:: directive to insert material from separate files, the document must be
built as a whole, which requires a large amount of memory; rebuilding a document after a
small change might require a disproportionate amount of processing.

For a multipage website, we have to use a tool like Make, Ant, or SCons to rebuild the
relevant HTML pages when a source RST file has been updated. This is the kind of
overhead that calls out for a tool to automate and simplify production of large or complex
documents.

http://docutils.sourceforge.net
https://www.tug.org/texlive/

Using the Sphinx tool

The Sphinx tool allows us to easily build multipage websites or complex documents. For
more information, see http://sphinx-doc.org. When we install Sphinx using pip or
easy_install, the installer will also include docutils for us.

To create sophisticated documentation, we’ll start with the sphinx-quickstart script.
This application will build the template file structure, the configuration files, and a
Makefile that we can use to rebuild our documents efficiently.

Sphinx adds a large number of directives and text roles to the basics of RST. These
additional roles and directives make it easier to write about code with properly formatted
references to modules, classes, and functions. Sphinx simplifies inter-document references
—we can have multiple documents with consistent references to a target location; we can
move the target and the references will all be updated.

The sphinx-build command is used to construct the target files from the RST source.
Sphinx can build over a dozen different kinds of target documents, making it a versatile
tool.

The Python documentation is built with Sphinx. This means that our projects can include
documentation that looks as polished and elegant as Python’s documentation.

http://sphinx-doc.org

Organizing Python code

Python programs should be beautiful. To that end, the language has few syntactic
overheads; we should be able to write short scripts without unpleasant boilerplate. The
principle is sometimes articulated as Simple things should be simple. The “Hello World”
script really is a single line of code that uses the print () function.

A more complex file will generally have a few major sections:

e A 1# line, often #!/usr/bin/env python3.

¢ A docstring comment explaining what the module does.

e The function or class definitions. We often group multiple functions and classes into
a single module. The module is the proper unit of reuse in Python.

e If the module can be run as a main script, we’ll include an if _ name__ ==
"_main__": section that defines the file’s behavior when run as the main script.

Many applications are too complex for a single file. When designing larger applications,
the Pythonic ideal is to keep the resulting structure as flat as possible. While the language
supports nested packages, deep nesting is not seen as desirable. In Chapter 12, Scripts,
Modules, Packages, Libraries, and Applications, we looked at the details of defining
modules and packages.

Summary

In this chapter, we’ve looked at several features of polished and complete Python projects.
The most important feature of working code is a suite of unit tests that demonstrate that
the code works. Code without test cases simply cannot be trusted. In order to make use of
any software, we must have tests that show us that the software is trustworthy.

We’ve looked at including tests in docstrings. The doctest tool can locate these tests and
execute them. We’ve looked at creating unittest.TestCase classes. We can combine the
two into a script that will locate all doctest and unittest test cases into a single master
test suite.

One other feature of good software is some explanation of how to install and use the
software. This may be as short as a README file that provides basic information. Often,
however, we need a more sophisticated document that provides a variety of additional
information. We might want to provide context, design background, or examples that are
too big to be packaged into module or class docstrings. We’ll often write documentation
using tools above and beyond the basic components that come with Python.

In Chapter 15, Next Steps, we’ll look at the next steps in our exploration of Python. Once
we’ve mastered the essentials, we need to add depth to the areas that are relevant to the
problems we need to solve. We might want to study big data applications, web
applications, or game development. Each of these more specialized areas will involve
additional Python concepts, tools, and frameworks.

Chapter 15. Next Steps

After studying the Python basics, what’s next? Each developer’s journey will vary, based
on the general architecture of the application that they’re going to build. In this chapter,
we’ll look at four kinds of Python applications. We’ll look at command-line interface
(CLI) applications in some depth. We’ll look briefly at graphical user interface (GUI)
applications. There are a number of graphics libraries and a number of frameworks that we
might use for this; it’s difficult to address all of the alternatives.

Web server applications often involve a sophisticated web framework that handles the
standardized overheads. Our Python code will plug into this framework. As with GUI
applications, there are several commonly used frameworks. We’ll look quickly at a few
common features of web frameworks. We’ll also look at the big data context as
epitomized by the Hadoop server’s streaming interface.

This isn’t intended to be complete or even representative. Python is used in many different
ways.

Leveraging the standard library

When implementing Python solutions, it’s helpful to scan the standard library for relevant
modules. The library is large, making it somewhat intimidating at first. We can, however,
focus our search.

We can break the Python Standard Library document into three portions. The first five
chapters are general reference material that all Python programmers need to understand.
The next 20 chapters, plus chapters 28 and 32, describe modules that we might incorporate
into a wide variety of applications. The remaining chapters are less useful; they’re more
focused on Python internals and ways in which to extend the language itself.

The name and the summary of a module in the library table of contents may not provide
enough information to see all of the ways in which a module might be used. The bisect
module, for example, can be extended to create a fast dictionary that retains its keys in a
defined order. This isn’t obvious without careful reading of the description of the module.

Some of the library modules have relatively small, easy-to-understand implementations.
For larger modules and packages, there are often pieces that can be lifted out of context
and reused widely. As an example, consider an application that uses http.client to make
REST web services requests. We often need functions from the ur1lib.parse module to
encode a query string or properly quote parts of the URL. It’s common to see a long list of
imports at the front of Python applications.

Leveraging PyPI — the Python Package
Index

After scanning the library, the next place to look for additional Python packages is the
Python Package Index (PyPI) at https://pypi.python.org/pypi. There are thousands of
packages listed here, with varying degrees of support and quality.

As we noted in Chapter 1, Getting Started, Python 3.4 also installs two scripts to help us
add packages, pip and easy_install. These search PyPI for the requested package. Most
packages can be found by using their name; the tools locate the appropriate release for the
platform and Python version.

We’ve mentioned a few external libraries in other chapters:

¢ nose for writing tests, see https://pypi.python.org/pypi/nose/1.3.6
e docutils for writing documentation, see https://pypi.python.org/pypi/docutils/0.12
e Sphinx for writing complex documentation, see

https://pypi.python.org/pypi/Sphinx/1.3.1

Additionally, there are bundles of packages available: we might install Anaconda, NumPy,
or SciPy, each of which includes a number of other packages in one tidy distribution. See

http://continuum.io/downloads, http://www.numpy.org, or http://www.scipy.org.

In some cases, we may have Python configurations that are incompatible with each other.
For example, we may have to work in two environments, one using the older Beautiful
Soup 3 with the other using the newer version 4. Refer to
https://pypi.python.org/pypi/beautifulsoup4/4.3.2. To simplify this switch, we can use the
virtualenv tool to create isolated Python environments with their own complex trees of
interdependent modules. See https://virtualenv.pypa.io/en/latest/.

The Python ecosystem is large and sophisticated. There’s no good reason to invent a
solution in a vacuum. It’s often best to locate the appropriate components or partial
solutions, then download and extend them.

https://pypi.python.org/pypi
https://pypi.python.org/pypi/nose/1.3.6
https://pypi.python.org/pypi/docutils/0.12
https://pypi.python.org/pypi/Sphinx/1.3.1
http://continuum.io/downloads
http://www.numpy.org
http://www.scipy.org
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
https://virtualenv.pypa.io/en/latest/

Types of applications

We’ll look at four types of Python applications. These are neither the most common nor
the most popular kinds of Python applications; they were selected more or less randomly
based on the author’s narrow experience. Python is used widely, and any attempt to
summarize all of the various places where Python is used runs the risk of misleading
rather than informing.

We’ll look at CLI applications for two reasons. Firstly, they can be relatively simple,
relying on fewer additional packages or frameworks than other kinds of applications.
Secondly, more complex applications will often be launched from a CLI main script. For
these reasons, the CLI features seem to be fundamental to most uses of Python.

We’ll look at GUI applications because they are popular on the desktop. The difficulty
here is that there are many GUI frameworks available for Python software development.
Here’s one list: https://wiki.python.org/moin/GuiProgramming. We’ll focus on the turtle
package because it’s simple and built-in.

We’ll look at web applications because Python is used with frameworks such as Django or
Flask (among many others) to build high-volume websites. Here’s a list of Python web
frameworks: https://wiki.python.org/moin/WebFrameworks. We’ll focus on Flask because
it’s relatively simple.

We’ll also look at how Python can be used with Hadoop streaming to perform data
analytics. Rather than download and install Apache Hadoop, we’ll touch on how we build
and test pipelined map-reduce processing on our desktop.

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/WebFrameworks

Building CLI applications

Our focus from the initial script example in Chapter 1, Getting Started, was on using CLI
scripting to learn Python basics. CLI applications have a number of common features:

e They often read from the standard input file, write to a standard output file, and
produce logs or errors in the standard error file. The OS assures us that these files are
always available. Python provides them as sys.stdin, sys.stdout, and sys.stderr.
Furthermore, functions such as input () and print () use these files by default.

e They often use environment variables for configuration. These values are available
through os.environ.

e They may also rely on shell features, like expanding ~ into a user’s home directory,
something done by os.path.expanduser().

e They often parse command-line arguments. While the variable sys.argv has the
argument strings, these are awkward to work with directly. We’ll use the argparse
module to define the argument patterns, parse the strings, and create an object with
the relevant argument values.

These basic features cover many programming alternatives. A web server, for example,
can be thought of as a CLI program that runs forever, servicing requests that come from a
specific port number. A GUI application might start from the command line, but then open
windows to permit user interaction.

Getting command-line arguments with argparse

We’ll create a parser to use the command-line arguments, using the argparse module.
Once configured, we can use that parser to create a small namespace object which has all
of the argument values that were provided on the command line, or has default values. Our
application can use this object to control its behavior.

Generally, we want to isolate command-line handling from the rest of our application.
Here’s a function that handles parsing, and then uses the parsed options to invoke another
function to do the real work:

logger= logging.getLogger(__name__)

def main():
parser= argparse.ArgumentParser()
parser.add_argument("-v", "--verbose",

action="store_const", const=logging.DEBUG, default=logging.INFO)
parser.add_argument("c", type=float)
options= parser.parse_args()

logging.getLogger().setLevel(options.verbose)
logger.debug("Converting '{O0!r}'".format(options.c))
convert(options.c)

We’ve built an ArgumentParser method using all of the default parameters. We could
have identified the program name, provided a summary of usage, or have had anything
else displayed when someone uses the -h option to get help. We omitted these extra bits of
documentation to keep the example small.

We’ve defined two arguments for this application: an optional argument and a positional
argument. The optional argument, -v or - -verbose, stores a constant value in the resulting
collection of options. The name of this attribute is the long name of the argument,
verbose. The constant provided is 1ogging.DEBUG; the default value if the option isn’t
present is logging. INFO.

The positional argument, c, accepts one command-line argument after all of the options
have been parsed. The value for nargs can be omitted; it can be ' *' to collect all
arguments. We’ve provided a requirement that the input value is converted by the float ()
function, which means that non-numeric values will be rejected with an error during
argument parsing. This will be set as the c attribute of the resulting object.

When we evaluate the parse_args() method, the defined arguments are used to parse the
command-line values in sys.argv. The options object will have the resulting values or
defaults.

In the second part of main(), we’ve used the options object to set the logging level for
the root logger using the verbose argument value. We’ve then used a global 1ogger object
to dump the single positional argument value that will be assigned to the c attribute of the
options object.

Finally, we’ve evaluated our application function with the input argument value; the parser
assigned this to the options.c variable. The function which does the real work is designed

to be entirely separate from the command-line interface that is used to invoke it. The
function accepts a floating-point value and prints a result to a standard output. It can
leverage the module global logger object.

Our goal in designing a CLI application is to completely separate the useful work from all
interface considerations. This allows us to import the function which does the real work,
and build larger or more complex applications from individual pieces. It generally means
that the command-line arguments are transformed into ordinary function arguments or
class constructor arguments.

Using the cmd module for interactive applications

Some CLI applications require user interaction. The sftp command, for example, can be
used from the command line to exchange files with a server. We can create similar
interactive applications using Python’s cmd module.

To build a more complex interactive application, we can create a class which extends the
cmd . cmd class. Each method in this class that has a name starting with do_ defines an
interactive command. For example, if we define a method do_get (), this means that our
application now has an interactive get command.

Any subsequent text after the user’s input of get will be provided as an argument to the
do_get () method. The do_get () function is then responsible for any further parsing and
processing of the text after the command.

We can create an instance of this class, and call that inherited cmdloop() method to have a
working interactive application. This allows us to deploy a working, interactive
application very quickly and simply. While we’re limited to a character-mode, command-
line interface, we can easily add features without much extra work.

Building GUI applications

We can differentiate between applications which merely work with graphics and
applications which are deeply interactive. In the first case, we might have a command-line
application which creates or modifies image files. In the second case, we’ll define an
application which responds to input events. These interactive applications create an event
loop which accepts mouse clicks, screen gestures, keyboard characters, and other events,
and responds to those events. In some respects, the only unique feature of a GUI program
is the wide variety of events it responds to.

The tkinter module is an interface between Python and the Tk user interface widget
toolkit. This module helps us build richly interactive applications. When we use Python’s
built-in IDLE editor, we’re using an application that was built with tkinter. The tkinter
module documentation includes background information on the Tk widgets.

The turtle module also depends on the underlying Tk graphics. This module also allows
us to build simple interactive applications. The turtle idea comes from the Logo
programming language, in which graphic commands are used to animate a “turtle” which
traverses the drawing space. The turtle model provides a very handy specification for
certain types of graphics. For example, drawing a rotated rectangle can involve a rather
complex calculation involving sine and cosine to determine the final locations of the four
corners. Alternatively, we can direct the turtle to use commands such as forward(w),
forward(1l), and right(90) to draw a rectangle of the size w x [from any starting
position and any initial rotation.

In order to make it easy to learn Python, the turtle module provides some essential
classes that implement a Screen and a Turtle. The module also includes a rich collection
of functions that implicitly work with a singleton Turtle and Screen object, eliminating
any need to set up the graphics environment. For beginners, this function-only
environment is a language of simple verbs that can be used to learn the foundations of
programming.

Simple programs look like this:

from turtle import *

def on_screen():
X, y = pos()
w, h = screensize()
return -w <= x < w and -h <=y < h

def spiral(angle, incr, size=10):
while on_screen():
right(angle)
forward(size)
size *= 1incr

We’ve used from turtle import * to introduce all of the individual functions. This is the
common setup for beginners.

We’ve defined a function, on_screen(), which compares the turtle’s position, given by the
pos () function, with the overall size of the screen, given by the screensize() function.
Our function uses a simple logical expression to determine if the current turtle position is
still within the display boundaries.

For people learning to program, the implementation details of the pos() and
screensize() functions may not be that helpful. More advanced programmers may want
to know that the pos() function uses the Turtle.pos() method of a singleton, global
Turtle instance. Similarly, the screensize() function uses the Screen.screensize()
method of a singleton, global screen instance.

The function spiral() will draw a spiral-like shape using three parameters that define the
line segments that comprise the spiral. This function relies on the right () and forward()
functions from the turtle package to set the turtle’s orientation and then draw a line
segment. While the calculation of the end point of the segment drawn by forward() may
involve a bit of trigonometry, a new programmer is able to learn the basics of iteration
without struggling with sine or cosine.

Here’s how we can use this function:

if __name__ == "__main__":
speed(10)
spiral(size=10, incr=1.05, angle = 67)
done()

As part of the initialization, we’ve set the turtle speed to 10, which is fast. For people
struggling with loops or conditions, a slower speed can help them follow their code as
they watch the turtle. We’ve evaluated the spiral() function with a set of argument
values.

The done () function will start a GUI event processing loop that will wait for user
interaction. We’ve started the loop after the interesting part of the drawing because the
only expected event is the closing of the graphics window. When the window is closed by
the user, the done () function will also finish. Our script can then end normally.

If we’re going to build more complex interactive applications, there’s a proper
mainloop() function which we can use. This captures events so that our programs can
respond to those events.

The Logo language—and the related turtle package—allow a novice programmer to
learn the essentials of programming without having to master too many details at one time.
The turtle package isn’t designed to produce the same kinds of sophisticated technical
graphics as a package such as matplotlib or Pillow.

Using more sophisticated packages

We can create complex image-processing applications using the Pillow library. This
package allows us to create thumbnails of large images, convert image formats, and verify
that a file actually contains encoded image data. We can also use this package to create
simple scientific graphics showing two-dimensional plots of data points. This package
isn’t designed to build a complete GUI since it doesn’t handle input events for us. For

more information, see https://pypi.python.org/pypi/Pillow/2.8.1.

For mathematical, scientific, and statistical work, the matplotlib package is widely used.
This includes very sophisticated tools for creating essential data plots in two and three
dimensions. This package is bundled with SciPy and Anaconda. For more information, see

http://matplotlib.org.

There are several more generalized graphical frameworks. One that’s often used to learn
more about Python is the Pygame framework. This has a large number of components
which include tools for graphics as well as sound and image processing. The Pygame
package includes a number of graphics drivers and is capable of smooth animation with a
large number of moving objects. See http://www.pygame.org/news.html.

https://pypi.python.org/pypi/Pillow/2.8.1
http://matplotlib.org
http://www.pygame.org/news.html

Building web applications

Web applications involve a great deal of processing, which is best described as boilerplate.
The essential handling of the HTTP protocol, for example, is often standardized, with
libraries that handle it gracefully. The details of parsing request headers and mapping a
URL path to a specific resource don’t need to be reinvented.

There is, however, a profound distinction between simply handling the HTTP protocol and
mapping a URL to an application-specific resource. These two layers drive the definition
of the Web Services Gateway Interface (WSGI) design and the wsgi module is in the
standard library. For more information, see Python Enhancement Proposal (PEP) 3333,

https://www.python.org/dev/peps/pep-3333/.

The idea behind WSGI is that all web services should adhere to a single, minimum
standard for handling the details of HTTP requests and responses. This standard allows a
complex web server to include a variety of Python tools and frameworks that are fitted
together using WSGI to ensure that components interconnect properly. The mapping of
URLs to resources must be handled in the context of this standard.

A mod_wsgi module can be plugged into an Apache HTTPD server. This module will pass
requests and responses between the Apache frontend and backend Python instances. With
a little bit of planning, we can be sure that static content—graphics, style sheets,
JavaScript libraries, and so on—are handled by the frontend web server. The dynamic
content—HTML pages, XML, or JSON documents—are handled by our Python
application.

For more information on mod_wsgi, see http://www.modwsgi.org/.

https://www.python.org/dev/peps/pep-3333/
http://www.modwsgi.org/

Using a web framework

Web applications in this context are generally built using a framework that parses URLs
and invokes a Python function to return the resource located by the URL. While this is
clearly the minimum required to create a web server, there are often a large number of
additional features that we’d like to have.

Authentication and authorization, for example, are features we often need and would
prefer not to have to implement. It’s much nicer to work with a framework that allows us
to add OAuth client code. A website that uses cookies will also benefit from having
session management features that integrate seamlessly.

Many websites offer RESTful web services. Sometimes these services are thin wrappers
around database access. When the database is relational, we often want an Object
Relational Mapper (ORM) layer that allows us to expose more complete objects through
the RESTful service. This, too, is a good option for a web server framework.

There are two broad approaches to providing web services in Python: kits and parts. The
kits approach is epitomized by packages such as Django which offer just about everything
that could possibly be required in a unified collection of modules and packages. See

https://www.djangoproject.com.

The parts approach can be seen in projects such as Flask. This is called a
microframework because it does relatively little. A Flask server focuses on URL routing,
making it ideal for building RESTful services. It may include session management,
allowing it to be used for HTML sites. It cooperates well with other projects such as
Jinja2, WTForms, SQLAlchemy, OAuth authentication modules, and many other
modules. For more information, see http://flask.pocoo.org/docs/0.10/.

https://www.djangoproject.com
http://flask.pocoo.org/docs/0.10/

Building a RESTful web service with Flask

We’ll demonstrate a very simple web service. We’ll use the algorithm shown earlier in the
turtle example, with some minor modifications, to create a dynamic graphic download. To
make it easier to create a downloadable file, we’ll discard the simplistic turtle graphics
package and use the Pillow package to create the image file. Many websites use Pillow to
validate uploaded images and create thumbnails. It’s an essential part of any site that uses
images.

For more information on Pillow, see https://pypi.python.org/pypi/Pillow/2.8.1.

A web service must provide a resource in response to an HT'TP request. A simple Flask-
powered site will have an overall application object and a number of routes which map
URLSs (and possibly method names) to functions.

Here’s a simple example:

from flask import Flask, request
from PIL import Image, ImageDraw, ImageColor
import tempfile

spiral_app = Flask(__name__)

@spiral_app.route('/image/<spec>', methods=('GET',))
def image(spec):
spec_uqg= urllib.parse.unquote_plus(spec)
spec_dict = urllib.parse.parse_qgs(spec_uq)
spiral_app.logger.info('image spec {O!r}'.format(spec_dict))
try:
angle= float(spec_dict['angle'][0])
incr= float(spec_dict['incr'][0])
size= int(spec_dict['size'][0])
except Exception as e:
return make_response('URL {0} is invalid'.format(spec), 403)

Working dir should be under Apache Home.
_, temp_name = tempfile.mkstemp('.png')

im = Image.new('RGB', (400, 300), color=ImageColor.getrgb('white'))
pen= Pen(im)

spiral(pen, angle=angle, incr=incr, size=size)

im.save(temp_name, format='png')

Should redirect so that Apache serves the image.
spiral_app.logger.debug('image file {O!r}'.format(temp_name))
with open(temp_name, 'rb') as image_file:

data = image_file.read()
return (data, 200, {'Content-Type':'image/png'})

This example shows three central features of Flask applications. This script defines a
Flask instance. We’ve based the instance on the filename, which will be "__main__" for a

main script, but will have the module name for an imported script. We’ve assigned that
Flask container to a variable, spiral_app, for use throughout the module file.

https://pypi.python.org/pypi/Pillow/2.8.1

A more complex Flask application may have a number of individual view functions in a
package of submodules. Each of these will depend on the global Flask application.

Our image resource is created by the image () function. We provided a route decorator for
this function that shows the URL path and the methods that work with this resource. There
are a large number of methods defined for the HTTP protocol. Many RESTful web
services focus on POST, GET, PUT, and DELETE because these match the idea of the
Create, Retrieve, Update, and Delete (CRUD) rules commonly used to summarize
database operations.

We’ve broken down the image() function into four separate pieces. First, we need to parse
the URL. The route includes a placeholder, <spec>, which Flask parses and provides as a
parameter to the function. This will be the URL-encoded parameter to describe the spiral.
It might look like this:

http://127.0.0.1:5000/image/size=10&angle=65.0&incr=1.05

Once we’ve decoded the specification, we’ll have a special multi-valued dictionary. This
looks as if the input came from an HTML form. The structure will be a mapping from
form field names to a list of values for each field. The object looks like this:

{'size': ['10'], 'angle': ['65.0"'], 'incr': ['1.05']}

The image () function only uses one value from each item; each input must be converted
to numeric values. We’ve collected all of the potential exceptions into a single except
clause, obscuring the details of any incorrect input. We use the Flask make_response()
function to build a response with an error message and a status code of 403 (“Forbidden™).
A more sophisticated function would use the Accept header to formulate a response as
JSON or XML, depending on the client’s stated preference. We’ve left it as the default
MIME type of text/plain.

The image is saved into a temporary file, created with the tempfile.mkstemp() function.
In this case, we’re going to save that temporary file from the Flask application. For a low-
volume website, this is acceptable. For a higher-volume website, a Python application
should never handle downloads. The file should be created in a directory where the
Apache HTTPD server can download the image instead of a Python application.

The image construction uses a few Pillow-defined objects to define the drawing space. A
customized class defines a Pen instance which parallels the turtle.Turtle class. Once the
image has been constructed, it’s saved with the given filename. Note that the Pillow
package can save files in a wide variety of formats; we’ve used . png in this example.

The final section downloads the file. The comment notes that a high-volume website
would redirect to a URL from which Apache would download the image file. This frees up
the Flask server to handle another request.

Note that the local namespace in this function will have two copies of the image. The im
variable will hold the entire, detailed image. The data variable will hold the compressed
filesystem version of the image document. We could use del im to remove the image
object; however, it is generally better to decompose this into two functions so that

namespaces handle object removal for us.
We can run a demonstration version of this service with the following script:

if name_ == '"_main__ ':

spiral_app.run(debug=True)
This allows us to work with a running web server on our desktop. We can then experiment
with different implementation alternatives.

What’s important about this example is that we can—very quickly—have a service
running in our desktop environment. We can then explore and experiment with the user
experience very easily. For example, since the image will be embedded in an HTML page,
we want to design and debug the HTML, CSS, and JavaScript for that page. This whole
development process is made easier when we have a simple, easily-tweaked web server.

Plugging into a MapReduce framework

For background on the Apache Hadoop server, see https://hadoop.apache.org. Here’s the
summary:

The Apache Hadoop software library is a framework that allows for the distributed
processing of large datasets across clusters of computers using simple programming
models. It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage.

One part of the Hadoop distributed processing is the MapReduce module. This module
allows us to decompose analysis of data into two complementary operations: map and
reduce. These operations are distributed around the Hadoop cluster to be run concurrently.
A map operation processes all of the rows of datasets that are scattered around the cluster.
The outputs from map operations are then fed to reduce operations to be summarized.

The Hadoop streaming interface can be used by Python programmers. This involves a
Hadoop “wrapper” that will present the data to a Python mapper program as the standard
input file. The standard output from a mapper must be tab-delimited key-value pairs.
These are sent to the reduce programs, again as standard input. For more information on
packages that help Python programmers use Hadoop, see

http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/.

One common example of MapReduce operations is creating a concordance of words
found in books. The mapping operation will transform a giant text file into sequences of
words found in the text file. The reduce operation will count the occurrences of each word,
resulting in a final summary of words and their popularity. (For more information on how
important this can be, visit the NLTK website: http://www.nltk.org.)

Practical problems may involve multiple mappings and multiple reductions. In many
cases, the mappings will often seem trivial: they’ll extract a key and a value from each
row of source data. Rather than study Hadoop too much, we’ll show how we can write and
test mappers and reducers on our desktop.

Our goal is to have two programs, map.py and reduce . py, that can be combined into a
stream like this:

cat some_file.dat | python3 map.py | sort | python3 reduce.py

This approach will simulate Hadoop streaming by supplying data to our map.py program
and our reduce. py program. This will serve as a simple integration test for our map and
reduce processing. For Windows, we would use the type command instead of the Linux
cat program.

Let’s look at some raw climate data from the US National Ocean and Atmospheric
Administration’s National Climatic Data Center. Refer to http://www.ncdc.noaa.gov/cdo-
web/ for climate data online. We can request files with details such as snowfall for a given
time period.

https://hadoop.apache.org
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
http://www.nltk.org
http://www.ncdc.noaa.gov/cdo-web/

Our question is “Which months have snowfall at the Richmond, VA, airport?” The
snowfall data attribute is named TSNw. It’s in units of one-tenth of an inch, so our mapper
needs to convert it to Decimal inches to be more useful.

We can write a map script that looks like this:

import csv
import sys
import datetime
from decimal import Decimal
if __name__ == "__main__":
rdr = csv.DictReader(sys.stdin)
wtr = csv.writer(sys.stdout, delimiter='\t', lineterminator='\n'")
for row in rdr:
date = datetime.datetime.strptime(row['DATE'], "%Y%m%d'").date()
if row['TSNW'] in ('@', '-9999', '9999'):
continue # Zero or equipment error: reject
wtr.writerow([date.month, Decimal(row['TSNW'])/10])

Because our input is in more or less standard CSV notation—with a heading—we can use
a csv.DictReader object to parse the input. Each row of data is a dict object with keys
defined by the first line of the CSV file. The output is more specialized: with Hadoop it
must be a tab-delimited key and value, terminated with a newline character.

For each input dictionary object, we’ll convert the date from text to a proper Python date
so that we can reliably extract the month. We could do this by using row['DATE'][4:6],
but that seems opaque. The mapper includes a filter to reject months that have no snow, or
have a domain-specific null value (9999 or -9999) instead of a measurement.

The output is a key and a value. Our key is the reported month; the value is the snowfall
converted from one-tenth inch to inch measurements. We’ve used the Decimal class to
avoid introducing floating-point approximations.

The reduce operation uses a Counter object to summarize the results produced by the
mapper. For this example, the reduce looks like this:

import csv
import sys
from collections import Counter
from decimal import Decimal
if __name__ == "__main__":
rdr= csv.DictReader (
sys.stdin, fieldnames=("month", "snowfall"),
delimiter="'\t', lineterminator='\n"')
counts = Counter()
for line in rdr:
counts[line['month']] += Decimal(line['snowfall'])
print(counts)

The reduce reader matches the mapper’s writer: they both use a delimiter of a tab and a
line terminator of the newline character. This follows Hadoop’s requirements for the data
that flows from mappers to reducers. We’ve also created a Counter object to store our
snowfall data.

For each line of input, we extract the inches of snowfall and accumulate those in the
Counter object with a key of the month number. The final result will show the inches of
snow for each month in the greater Richmond metropolitan area.

We can easily test and experiment with this on our desktop. We can execute a pipeline of
mapper, sort, and reducer using either a shell script or perhaps a little wrapper program
like this:

import subprocess
dataset = "526212.csv"
command = """cat {dataset} | python3 -m Chapter_15.map | sort |
python3 -m Chapter_15.reduce"""
command = command.format_map(locals())
result= subprocess.check_output(command, shell=True)
for line in result.splitlines():
print(line.decode("ASCII"))

We’ve created a command that will work on Mac OS X or Linux, and substituted a
filename into that command. For Windows we can use type instead of cat; the Python
program might be named python instead of python3. Otherwise, the shell pipeline should
work fine in Windows.

We’ve used the subprocess.check_output () function to run this shell command and
collect the output. This is a quick way to experiment with our Hadoop programs while
avoiding the delays associated with using a busy Hadoop cluster.

This approach works well as long as we stick to elements of the libraries that are properly
installed in the Hadoop environment. In some cases, our cluster might have Anaconda
installed, giving us access to a wide variety of packages. When we want to use our own
package—one that’s not installed throughout the cluster—we’ll need to provide the
additional module to the Hadoop streaming command to be sure that our additional
modules are downloaded to each node in the cluster, along with our mapper and reducer.

Summary

In this chapter, we’ve looked at several kinds of Python applications. While Python is used
widely, we’ve picked a few areas of focus. We’ve looked at CLI applications capable of
processing large volumes of data. The command-line interface is also present in other
kinds of applications, making this a fundamental part of any program.

We’ve looked at GUI programs, using only the built-in turtle module. The GUI
frameworks that are widely used involve downloads, installation, and more sophisticated
programming that we could not illustrate in a single chapter. There are several popular
choices; there’s no consensus on a “best” package for GUI applications. Making a choice
is difficult.

We’ve also looked at web applications, using the Flask module. This is also a separate
download. In many cases, there are a number of related downloads that will become part
of a web application. We might include Jinja2, WTForms, OAuth, SQLAIchemy, and
Pillow, to expand the web server’s libraries.

We’ve also looked at how we might leverage desktop Python to develop Hadoop
applications. Rather than download and install Hadoop, we can create a processing
pipeline that follows the Hadoop approach. We can write mappers and reducers using only
desktop tools, allowing us to create reliable unit tests. This gives us the confidence that
we’ll get the expected results when running our applications on the Hadoop cluster with a
complete set of data.

This isn’t all, of course. Python can be used inside another application as the language for
automating that application. A program can embed a Python interpreter which interacts
with the overall application. For more information, see
https://docs.python.org/2/extending/embedding.html.

We can imagine the universe of Python applications as a large body of water filled with
islands, archipelagos, inlets, and estuaries. Chesapeake Bay on the US East Coast is an
example. We’ve tried to show the principal features of this bay: the headlands, points,
shallows, and coastlines. We’ve avoided the effects of currents, weather, and tides, so that
we can focus on the essential features of the bay. Pragmatic navigation along a specific
route requires more study of the area of interest: detailed navigation charts, pilot guides,
and local knowledge from other mariners.

It’s important to consider the extent of the Python universe. The distance to a destination
can appear daunting. Our objective has been to show some principal waypoints that can
help break a long voyage into shorter legs. If we isolate the legs of a long journey, we can
solve each of them separately and build a larger solution from the pieces.

https://docs.python.org/2/extending/embedding.html

Index
A

e abstract base classes
o about / The ABCs of abstract base classes
o callable class, writing / Writing a callable class
e abstract base classes (ABC)
o about / More complex metaprogramming with metaclasses
e Acceptance Test Driven Design (ATDD) / Using the unittest library for testing
e Accept header / Building a RESTful web service with Flask
e add-on test libraries

o using / Using other add-on test libraries
¢ additional function annotations

o writing / Writing additional function annotations
e algorithms

o approaching, ways / Functional programming design patterns
e alternative implementations

o designing / Designing alternative implementations
e Anaconda project

o URL / The math libraries
¢ and operator

o about / Using set operators

e argparse module / Choosing good script names
e ASCII

o working with / Working with Unicode, ASCII, and bytes
e assert statement
o defining / The assert statement
e assignment statement
o about / Simple assignment and variables
e attributes
o using / Using class methods and attributes
e augmented assignment statement
o about / Augmented assignment

¢ bit-oriented operators

e}

e bits

e}

using / Using the bit-oriented operators

using / Using bits and Boolean values

¢ bool() function

e}

about / Boolean data and the bool() function

e Boolean data

e}

about / Boolean data and the bool() function

e Boolean values

e}

using / Using bits and Boolean values

e break statement

e}

e}

defining / The continue and break statements
executing / Breaking early from a loop

e built-in conversion functions

e}

(e]

(e]

(e]

using / Using the built-in conversion functions
int() / Using the built-in conversion functions
float() / Using the built-in conversion functions
complex() / Using the built-in conversion functions

e built-in numeric packages

e}

O O O o

e}

numbers / The math libraries
math / The math libraries
cmath / The math libraries
decimal / The math libraries
fractions / The math libraries
random / The math libraries

e built-in operators

e}

O O O O O o o

e}

about / Introducing the built-in operators

arithmetic / Introducing the built-in operators

bit-oriented / Introducing the built-in operators

comparison operators / Introducing the built-in operators, Making comparisons
integers, using / Using integers

rational numbers, using / Using rational numbers

decimal numbers, using / Using decimal numbers

floating-point numbers, using / Using floating-point numbers

complex numbers, using / Using complex numbers

e built-in reductions

e}

using / Using the built-in reductions — max, min, and reduce

e bytes

e}

e}

e}

and Unicode, converting between / Converting between Unicode and bytes
working with / Working with Unicode, ASCII, and bytes
versus characters / The essential file concept

e byte string literals

o using / Using byte string literals
e byte value

o using / Using string and bytes values

callable class

o writing / Writing a callable class
callables

o defining / Looking at the five kinds of callables
characters

o versus bytes / The essential file concept
character user interface (CUI)

o about / The input() function
class

o creating / Creating a class
o suite of statements, writing / Writing the suite of statements in a class
class methods

o using / Using class methods and attributes
CLI applications
o building / Building CLI applications
o features / Building CLI applications
o command-line arguments, obtaining with argparse / Getting command-line

arguments with argparse
o cmd module, using for interactive applications / Using the cmd module for

interactive applications
collection functions

o using / Using collection functions
COMBINING DIACRITICAL CIRCUMFLEX

o about/ Simple assignment and variables
Comma-Separated Value (CSV) / The print() function
comment / Examining syntax rules
comparison operators

o about / Making comparisons, Comparison operators

o combining / Combining comparisons to simplify the logic

o float values, testing / Testing float values

o object IDs, comparing with is operator / Comparing object IDs with the is

operator

o equality comparison / Equality and object hash values

o object hash values / Equality and object hash values
complex numbers

o using / Using complex numbers
compound statement

o about / Simplified syntax rules
comprehension

o about / Consequences and next steps
comprehensions

o using / Using generator expressions and comprehensions

o writing / Writing comprehensions

conditions
o using / Using multiple loops and conditions
contextlib

o file-like objects, closing with / Closing file-like objects with contextlib
context manager

o using, via with statement / Using a context manager via the with statement
continue statement

o defining / The continue and break statements
copy() method

o about / Accessing a list
count() method

o about / Accessing a list
CPython

o about / Considering some alternatives
Create, Retrieve, Update, and Delete (CRUD) / Using the shelve module as a
database
Create, Retrieve, Update and Delete (CRUD) / Building a RESTful web service with
Flask

database
o shelve module, using as / Using the shelve module as a database
data types

o about / Expressions, operators, and data types
decimal numbers

o using / Using decimal numbers
Decimal objects

o defining / Using the built-in conversion functions

decorator
o defining / Defining our own decorator
dictionaries
o used, for filling in *kw / Using sequences and dictionaries to fill in *args and
*kw
o used, for filling in *args / Using sequences and dictionaries to fill in *args and
*kw
difflib module

o about / Summary of the standard string libraries
docstring, function

o writing / Writing a function’s docstring
docstrings

o writing / Writing docstrings
documentation

o writing, with RST markup / Writing documentation with RST markup
docutils tools

o URL / Creating HTML documentation from an RST source

EAFP programming

o about / Permission versus forgiveness — a Pythonic approach
else clause

o using, on loop / Using the else clause on a loop
empty except clause

o defining / The empty except clause
encapsulation

o about / Designing for encapsulation and privacy
except clause

o exception classes, matching / Matching exception classes in an except clause
exception

o defining / The core exception concept

o creating / Examining the exception object
exception classes

o matching, in except clause / Matching exception classes in an except clause
exception object

o examining / Examining the exception object
exceptions

o creating / Creating our own exceptions
except statement

o using / Using the try and except statements
exclusive or Boolean operation

o about / Using set operators
expressions
o about / Expressions, operators, and data types
external libraries
o nose / Leveraging PyPI — the Python Package Index
o docutils / Leveraging PyPI — the Python Package Index
o Sphinx / Leveraging PyPI — the Python Package Index

file, concept
o about / The essential file concept
o text files, opening / Opening text files
o text lines, filtering / Filtering text lines
o raw bytes / Working with raw bytes
o file-like objects, using / Using file-like objects
file-like objects
o using / Using file-like objects
o closing, with contextlib / Closing file-like objects with contextlib
finally clause
o using / Using a finally clause
Flask
o used, for building RESTful web service / Building a RESTful web service with
Flask
floating-point numbers

o using / Using floating-point numbers
float values

o testing / Testing float values
format() method
o using, for making readable output / Using the format() method to make more
readable output
o field values / Using the format() method to make more readable output
for statement
o defining / Processing collections with the for statement
collections, processing with / Processing collections with the for statement
literal lists, using / Using literal lists in a for statement
range() function, using / Using the range() and enumerate() functions
enumerate() function, using / Using the range() and enumerate() functions
using, with iterable collections / Using the for statement with iterable collections
o consequences / Consequences and next steps
Fraction objects
o defining / Using the built-in conversion functions
function
o evaluating, with positional argument / Evaluating a function with positional or

keyword arguments
o evaluating, with keyword argument / Evaluating a function with positional or

keyword arguments
functional programming
o design patterns / Functional programming design patterns
functions
o defining, with positional parameters / Defining functions with positional

parameters

O O O O O

¢ functions, with positional parameters

o multiple parameters, defining / Defining multiple parameters
o return statement, using / Using the return statement

Ganglia monitoring system

o URL / Looking at other Python interpreters
general exceptions

o matching / Matching more general exceptions
generator expressions
o using / Using generator expressions and comprehensions
o limitations / Limitations of generator expressions
generator functions

o defining, with yield statement / Defining generator functions with the yield
statement
git / Choosing good script names
global Singleton object / Creating a reusable module
GREEK SMALL LETTER PI

o about / Simple assignment and variables
GUI applications
o building / Building GUI applications
o sophisticated packages, using / Using more sophisticated packages

head

o using / Using the head, *tail assignment
help subsystem
o interacting with / Interacting with the help subsystem
o pydoc program, using / Using the pydoc program
higher-order function

o about / Using the higher-order functions
higher-order functions

o using / Using the higher-order functions

o writing / Writing our own higher-order functions
HTML documentation

o creating, from RST source / Creating HTML documentation from an RST source
hybrid library/application modules

o creating / Creating a hybrid library/application module

ICO file format

o URL, for wiki / Working with raw bytes
if-elif-else statement

o defining / The if-elif-else statement

o elif clauses, adding / Adding elif clauses
immutability

o about / The mutability and immutability distinction

o benefits / The mutability and immutability distinction
immutable argument value

o defining / Mutable and immutable argument values
immutable object, Python

o consequences / The consequences of immutability
import, from libraries
o import random / The math libraries
o from random import gauss, randint / The math libraries
o from random import * / The math libraries
import statement
o using / Using import to add features
o about / The idea of extensibility via add-ons
index() method

o about / Accessing a list
inheritance

o about / Using inheritance to simplify class definitions

o using, to simplify class definitions / Using inheritance to simplify class

definitions
o using / Using inheritance to simplify class definitions

o multiple inheritance, using / Using multiple inheritance and the mixin design

pattern

o mixin design pattern, using / Using multiple inheritance and the mixin design

pattern
input() function

o about / The input() function
insert() method

o about / Mutating a list with method functions
instance variables

o using / Using instance variables and methods
integers

o using / Using integers

o bit-oriented operators, using / Using the bit-oriented operators

Internet protocols / Web services and Internet protocols
Iron Python
o about / Considering some alternatives

o URL / Looking at other Python interpreters
is operator

o object IDs, comparing with / Comparing object IDs with the is operator
iterable collections

o about / Iterators and iterable collections
iterators

o about / Iterators and iterable collections
itertools module

o URL / Using the higher-order functions

J

e Jython

o about / Looking at other Python interpreters
o URL / Looking at other Python interpreters

K

e keyword arguments / The print() function

@Iru_cache decorator

o about / Simple metaprogramming with decorators
lambdas

o defining / Defining lambdas
last recently used (LRU)

o about / Simple metaprogramming with decorators
less program / Interacting with the help subsystem
Linux

o Python 3.4, upgrading in / Upgrading to Python 3.4 in Linux
Linux distributions

o prebuilt packages, installing / Upgrading to Python 3.4 in Linux

o URL / Upgrading to Python 3.4 in Linux

o building, from source / Upgrading to Python 3.4 in Linux
Liskov Substitution Principle (LSP)

o about / Using inheritance to simplify class definitions
list

o about / The mutability and immutability distinction
list collection

o using / Using the list collection

o list operators, using / Using list operators
o list, mutating with subscripts / Mutating a list with subscripts

o list, mutating with method functions / Mutating a list with method functions
o list, accessing / Accessing a list
little-endian byte ordering
o about / Working with raw bytes
locale module
o used, for personalization / Using the locale module for personalization
logging events
o about / Logging events and conditions
o conditions / Logging events and conditions
logging system
o configuring / Configuring the logging system
logical operators
o defining / Logic operators — and, or, not, if-else
and / Logic operators — and, or, not, if-else
or / Logic operators — and, or, not, if-else
not / Logic operators — and, or, not, if-else
if-else / Logic operators — and, or, not, if-else
o short-circuit evaluation / Short-circuit (or non-strict) evaluation
Look Before You Leap (LBYL)
o about / Permission versus forgiveness — a Pythonic approach

O O O O

M

e Mac OS X
o Python 3.4, upgrading to / Upgrading to Python 3.4 in Mac OS X
e map() function
o about / Using the higher-order functions
e mappings
o about / Mappings
o dictionary operators, using / Using dictionary operators
o dictionary mutators, using / Using dictionary mutators
o methods used, for accessing items / Using methods for accessing items in a
mappin
o extensions, using from collections module / Using extensions from the
collections module
e MapReduce framework
o plugging into / Plugging into a MapReduce framework
e math libraries
o about / The math libraries
e matplotlib / Building GUI applications
e max() function
o about / Using collection functions
e memoization / Writing a callable class
e metaprogramming, with decorators
o about / Simple metaprogramming with decorators

o URL / Simple metaprogramming with decorators
e metaprogramming, with metaclasses

o defining / More complex metaprogramming with metaclasses
e Method Resolution Order (MRO) / Pythonic object-oriented programming
e methods
o using / Using instance variables and methods
e methods, mapping
o keys() / Using methods for accessing items in a mapping
o values() / Using methods for accessing items in a mapping
o items() / Using methods for accessing items in a mapping
e microframework
o about / Using a web framework
e min() function
o about / Using collection functions
e mixin / Using multiple inheritance and the mixin design pattern
e mode string
o characters, versus bytes / The essential file concept
o allowed operations / The essential file concept
e mod_wsgi
o about / Building web applications

o URL / Building web applications
more command / Interacting with the help subsystem
multiple assignment

o about / Multiple assignment

o repeated assignment, using / Using repeated assignment
multiple loops

o using / Using multiple loops and conditions
mutability

o about / The mutability and immutability distinction

o benefits / The mutability and immutability distinction
mutable argument value

o defining / Mutable and immutable argument values
mutable class variables

o using / Using mutable class variables
mutable default values

o working with / A warning about mutable default values
mutable object

o about / The consequences of immutability

** potation

o using / Using the “everything else” notations of * and **

* notation

o using / Using the “everything else” notations of * and **
namespaces

o working with / Working with namespaces

o global variable, assigning / Assigning a global variable

o non-local variable, assigning / Assigning a non-local variable
nested function definitions

o about / Nested function definitions
nested try statements

o using / Using nested try statements
network adapter

o about / The essential file concept
NLTK

o URL / Plugging into a MapReduce framework
None object

o about / The None object

o defining / The logic of the None object
Not a Number (NaN)

o about / The core exception concept
numeric operands
complex / Expressions, operators, and data types

float / Expressions, operators, and data types
fractions.Fraction / Expressions, operators, and data types

decimal.Decimal / Expressions, operators, and data types
int / Expressions, operators, and data types
numeric tower
o about / The numeric tower
NumPy
o URL / The math libraries

O O O O O

Object-Relational Mapper (ORM) layer

o about / Using a web framework
object-relational mapping (ORM)

o using / Using object-relational mapping
open() function / The essential file concept
operators

o about / Expressions, operators, and data types

o arithmetic / Expressions, operators, and data types

o bit-oriented / Expressions, operators, and data types

o comparison / Expressions, operators, and data types

o using, on non-numeric data / Using operators on non-numeric data
operators, for set objects

o mutators / Using the set collection

o accessors / Using the set collection
optional parameters

o defining, via default values / Defining optional parameters via default values

@property decorator

o about / Simple metaprogramming with decorators
package

o about / Creating a package

o creating / Creating a package
package search path

o viewing / Seeing the package search path
partitioning

o about / Splitting, partitioning, and joining strings
pass statement

o defining / The pass statement as a placeholder
physical format

o considerations / Physical format considerations
physical line / Examining syntax rules
Pillow / Building GUI applications

o URL / Building a RESTful web service with Flask

pop() method
o about / Mutating a list with method functions, Mutating a set with method
functions

primitive types
o about / Python language concepts
print() function
o about / The print() function
prompt, help modes
o help> prompt / Interacting with the help subsystem
o — More — prompt / Interacting with the help subsystem
o Mac OS X and Linux $ prompt / Interacting with the help subsystem
properties
o about / Using properties

o using / Using properties
PTVS

o URL / Looking at other Python interpreters
pydoc program

o using / Using the pydoc program

o modes / Using the pydoc program
Pygame framework

o about / Using more sophisticated packages
o URL / Using more sophisticated packages
PyPI
o using / Using the Python Package Index — PyPI
o URL / Using the Python Package Index — PyPI, Leveraging PyPI — the Python
Package Index

O O O

(¢]

pip used, for gathering modules / Using pip to gather modules
easy_install used, for adding modules / Using easy_install to add modules

modules, installing manually / Installing modules manually
leveraging / Leveraging PyPI — the Python Package Index

e PyPy

e}

e}

about / Looking at other Python interpreters
URL / Looking at other Python interpreters

e Python

e}

O O O O O

(¢]

e}

installing / Installation or upgrade

upgrading / Installation or upgrade

installing, on Windows / Installing Python on Windows

alternatives, for implementation / Considering some alternatives
defining / Python language concepts

object types, versus variable declarations / Object types versus variable
declarations

variables, naming / Avoiding confusion when naming variables
garbage collection, via reference counting / Garbage collection via reference

counting
little-used del statement / The little-used del statement

e Python 3.4

e}

e}

e}

upgrading, in Mac OS X / Upgrading to Python 3.4 in Mac OS X
Tkinter package, adding / Adding the Tkinter package
upgrading, in Linux / Upgrading to Python 3.4 in Linux

e Python applications

e}

e}

e}

types / Types of applications
CLI applications, building / Building CLI applications

GUI applications, building / Building GUI applications

e Python code

e}

organizing / Organizing Python code

e Python ecosystem

e}

e}

e}

about / The Python ecosystem
extensibility, via add-ons / The idea of extensibility via add-ons
PyPI, using / Using the Python Package Index — PyPI

e Python Enhancement Proposal (PEP)

e}

about / Writing additional function annotations

e Python Enhancement Proposal (PEP) 3333

e}

URL / Building web applications

e Python Enhancement Proposal (PEP) number 8

e}

URL / Examining syntax rules

e Pythonic object-oriented programming

(¢]

about / Pythonic object-oriented programming

type casts / Trying to do type casting

encapsulation, designing for / Designing for encapsulation and privacy
privacy, designing for / Designing for encapsulation and privacy

Python installer

o URL / Installing Python on Windows, Upgrading to Python 3.4 in Mac OS X
Python interpreters

o defining / Looking at other Python interpreters
Python namespace

o about / The Python namespace concept

o globals / Globals and locals

o locals / Globals and locals
Python Package Index

o PyPI/ Leveraging PyPI — the Python Package Index
Python Package Index (PyPI)

o about / Physical format considerations

o URL / Physical format considerations
Python Tools for Visual Studio (PTVS)

o about / Considering some alternatives
Python web frameworks

o URL / Types of applications

range() object
o forms / Using the range() and enumerate() functions
rational numbers
o using / Using rational numbers
raw bytes
o working with / Working with raw bytes
raw string

o about / Using raw string literals
raw string literals

o using / Using raw string literals

regular expressions
o matching regular expression / Using the re module to parse strings
o searching regular expression / Using the re module to parse strings
o parsing pattern / Using the re module to parse strings
o using / Using regular expressions

regular expression string

o creating / Creating a regular expression string
re module

o about / Summary of the standard string libraries

o used, for parsing strings / Using the re module to parse strings
repeated assignment

o using / Using repeated assignment
REPL

using / Using the Read-Evaluate-Print L.oop (REPL)
Python interpreter, starting / Confirming that things are working

arithmetic, performing / Doing simple arithmetic
results, assigning to variables / Assigning results to variables
import statement, using / Using import to add features
replace() function
o about / Using string methods
RESTful web service
o building, with Flask / Building a RESTful web service with Flask
reusable module
o creating / Creating a reusable module
RST markup
o about / Writing docstrings
o used, for writing documentation / Writing documentation with RST markup
RST source
o HTML documentation, creating from / Creating HTML documentation from an
RST source

O O O O O

e (@staticmethod decorator
o about / Simple metaprogramming with decorators
e SciPy
o URL / The math libraries
e script
o about / Script file rules
running / Script file rules
running, by filename / Running a script by the filename
running, by module name / Running a script by its module name
running, OS shell rules used / Running a script using OS shell rules
o names, selecting / Choosing good script names
e script file rules

o about / Script file rules
e script files
o creating / Creating simple script files

o rules / Creating simple script files
o syntax rules, defining / Simplified syntax rules

¢ sequence

o sorting / Three ways to sort a sequence
o sorting, via key function / Sorting via a key function
o sorting, via wrapping and unwrapping / Sorting via wrapping and unwrapping
e sequences
o working with / Working with sequences
o slicing / Slicing and dicing a sequence
o dicing / Slicing and dicing a sequence
o used, for filling in *args / Using sequences and dictionaries to fill in *args and
*kw
o used, for filling in *kw / Using sequences and dictionaries to fill in *args and
*kw
e set collection
using / Using the set collection
set operators, using / Using set operators
set, mutating with method functions / Mutating a set with method functions
augmented assignment, using with sets / Using augmented assignment with sets
set, accessing with operators / Accessing a set with operators and method
functions
o set, accessing with method functions / Accessing a set with operators and
method functions
¢ shelve module
o using, as database / Using the shelve module as a database
e short-circuit evaluation / Short-circuit (or non-strict) evaluation
e short-circuit evaluation rule

O O O O

O O O O O

o about / Short-circuit (or non-strict) evaluation
simple statement

o about / Simplified syntax rules
slice

o about / Slicing and dicing a sequence
Solid State Drives (SSD)
o about / The essential file concept

sort() method

o about / Mutating a list with method functions
sorted() function

o about / Using collection functions, Using the higher-order functions
Sphinx tool

o using / Using the Sphinx tool

o URL / Using the Sphinx tool

o about / Using the Sphinx tool
splitting

o about / Splitting, partitioning, and joining strings
SQLAIlchemy / Using object-relational mapping
sglite database

o using / Using the sqlite database
SQLObject / Using object-relational mapping
Stackless

o about / Looking at other Python interpreters

o URL / Looking at other Python interpreters
standard library

o leveraging / Leveraging the standard library
standard string libraries

o features / Summary of the standard string libraries
string / Summary of the standard string libraries
re / Summary of the standard string libraries
difflib / Summary of the standard string libraries
textwrap / Summary of the standard string libraries
unicodedata / Summary of the standard string libraries

o stringprep / Summary of the standard string libraries
statement

o about / Doing simple arithmetic
static

o about / Writing static methods
static methods

o writing / Writing static methods
string details

o accessing / Accessing the details of a string
string literals

o writing / Writing string literals

O O O O O

o short string / Writing string literals

o long string / Writing string literals
string methods

o using / Using string methods

o Transformers / Using string methods
Creators / Using string methods
Accessors / Using string methods
Parsers / Using string methods
string module

o about / Summary of the standard string libraries
string operators

o using / Using the string operators
stringprep module

o about / Summary of the standard string libraries
strings
o parsing, into substrings / Parsing strings into substrings
o joining / Splitting, partitioning, and joining strings
string value
o using / Using string and bytes values
string values, Python
o unicode / Using string and bytes values
o bytes / Using string and bytes values
sum() function

o about / Using collection functions
syntax rules

o defining / Simplified syntax rules
o examining / Examining syntax rules

(¢]

(¢]

(¢]

*tail assignment
o using / Using the head, *tail assignment

Tcl/Tk
o URL / Adding the Tkinter package
TeX Live

o URL / Creating HTML documentation from an RST source
text files

o opening / Opening text files
text lines

o filtering / Filtering text lines
textwrap module
o about / Summary of the standard string libraries
Tk graphics / Building GUI applications
tkinter module / Building GUT applications
Tk user interface widget toolkit / Building GUI applications

Tk widgets / Building GUI applications
try statement

o using / Using the try and except statements
tuple

o using / Using the tuple collection
turtle module / Building GUI applications
type casts

o about / Trying to do type casting

Unicode
o and bytes, converting between / Converting between Unicode and bytes
o working with / Working with Unicode, ASCII, and bytes

unicodedata module

o about / Summary of the standard string libraries
unittest library

o using, for testing / Using the unittest library for testing

o doctest, combining with / Combining doctest and unittest
unit tests

o writing, with doctest / Writing unit tests with doctest
unpack() function

o about / Working with raw bytes
use cases, for exceptions

o about / Use cases for exceptions
user experience (UX) issues / Running a script by the filename

\Y

e variables
o about/ Simple assignment and variables

warning classes

o DeprecationWarning / Issuing warnings instead of exceptions
o PendingDeprecationWarning / Issuing warnings instead of exceptions
o ImportWarning / Issuing warnings instead of exceptions

warnings module

o defining / Issuing warnings instead of exceptions
web applications
o about / Building web applications

o building / Building web applications
o building, web framework used / Using a web framework

Web Services Gateway Interface (WSGI) design / Building web applications
web services protocols / Web services and Internet protocols
while statement

o iterating with / Iterating with the while statement
Windows

o Python, installing on / Installing Python on Windows
with statement

o context manager, using via / Using a context manager via the with statement
wrap-sort-unwrap design pattern

o about / Three ways to sort a sequence

Y

e yield statement

o generator functions, defining with / Defining generator functions with the yield
statement

Z

e ZeroDivisionError exception
o considerations / The core exception concept

	Python Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started
	Installation or upgrade
	Installing Python on Windows
	Considering some alternatives
	Upgrading to Python 3.4 in Mac OS X
	Adding the Tkinter package
	Upgrading to Python 3.4 in Linux
	Using the Read-Evaluate-Print Loop (REPL)
	Confirming that things are working
	Doing simple arithmetic
	Assigning results to variables
	Using import to add features
	Interacting with the help subsystem
	Using the pydoc program
	Creating simple script files
	Simplified syntax rules
	The Python ecosystem
	The idea of extensibility via add-ons
	Using the Python Package Index – PyPI
	Using pip to gather modules
	Using easy_install to add modules
	Installing modules manually
	Looking at other Python interpreters
	Summary
	2. Simple Data Types
	Introducing the built-in operators
	Making comparisons
	Using integers
	Using the bit-oriented operators
	Using rational numbers
	Using decimal numbers
	Using floating-point numbers
	Using complex numbers
	The numeric tower
	The math libraries
	Using bits and Boolean values
	Working with sequences
	Slicing and dicing a sequence
	Using string and bytes values
	Writing string literals
	Using raw string literals
	Using byte string literals
	Using the string operators
	Converting between Unicode and bytes
	Using string methods
	Accessing the details of a string
	Parsing strings into substrings
	Using the tuple collection
	The None object
	The consequences of immutability
	Using the built-in conversion functions
	Summary
	3. Expressions and Output
	Expressions, operators, and data types
	Using operators on non-numeric data
	The print() function
	Examining syntax rules
	Splitting, partitioning, and joining strings
	Using the format() method to make more readable output
	Summary of the standard string libraries
	Using the re module to parse strings
	Using regular expressions
	Creating a regular expression string
	Working with Unicode, ASCII, and bytes
	Using the locale module for personalization
	Summary
	4. Variables, Assignment and Scoping Rules
	Simple assignment and variables
	Multiple assignment
	Using repeated assignment
	Using the head, *tail assignment
	Augmented assignment
	The input() function
	Python language concepts
	Object types versus variable declarations
	Avoiding confusion when naming variables
	Garbage collection via reference counting
	The little-used del statement
	The Python namespace concept
	Globals and locals
	Summary
	5. Logic, Comparisons, and Conditions
	Boolean data and the bool() function
	Comparison operators
	Combining comparisons to simplify the logic
	Testing float values
	Comparing object IDs with the is operator
	Equality and object hash values
	Logic operators – and, or, not, if-else
	Short-circuit (or non-strict) evaluation
	The if-elif-else statement
	Adding elif clauses
	The pass statement as a placeholder
	The assert statement
	The logic of the None object
	Summary
	6. More Complex Data Types
	The mutability and immutability distinction
	Using the list collection
	Using list operators
	Mutating a list with subscripts
	Mutating a list with method functions
	Accessing a list
	Using collection functions
	Using the set collection
	Using set operators
	Mutating a set with method functions
	Using augmented assignment with sets
	Accessing a set with operators and method functions
	Mappings
	Using dictionary operators
	Using dictionary mutators
	Using methods for accessing items in a mapping
	Using extensions from the collections module
	Processing collections with the for statement
	Using literal lists in a for statement
	Using the range() and enumerate() functions
	Iterating with the while statement
	The continue and break statements
	Breaking early from a loop
	Using the else clause on a loop
	Summary
	7. Basic Function Definitions
	Looking at the five kinds of callables
	Defining functions with positional parameters
	Defining multiple parameters
	Using the return statement
	Evaluating a function with positional or keyword arguments
	Writing a function's docstring
	Mutable and immutable argument values
	Defining optional parameters via default values
	A warning about mutable default values
	Using the "everything else" notations of * and **
	Using sequences and dictionaries to fill in *args and *kw
	Nested function definitions
	Working with namespaces
	Assigning a global variable
	Assigning a non-local variable
	Defining lambdas
	Writing additional function annotations
	Summary
	8. More Advanced Functions
	Using the for statement with iterable collections
	Iterators and iterable collections
	Consequences and next steps
	Using generator expressions and comprehensions
	Limitations of generator expressions
	Using multiple loops and conditions
	Writing comprehensions
	Defining generator functions with the yield statement
	Using the higher-order functions
	Writing our own higher-order functions
	Using the built-in reductions – max, min, and reduce
	Three ways to sort a sequence
	Sorting via a key function
	Sorting via wrapping and unwrapping
	Functional programming design patterns
	Summary
	9. Exceptions
	The core exception concept
	Examining the exception object
	Using the try and except statements
	Using nested try statements
	Matching exception classes in an except clause
	Matching more general exceptions
	The empty except clause
	Creating our own exceptions
	Using a finally clause
	Use cases for exceptions
	Issuing warnings instead of exceptions
	Permission versus forgiveness – a Pythonic approach
	Summary
	10. Files, Databases, Networks, and Contexts
	The essential file concept
	Opening text files
	Filtering text lines
	Working with raw bytes
	Using file-like objects
	Using a context manager via the with statement
	Closing file-like objects with contextlib
	Using the shelve module as a database
	Using the sqlite database
	Using object-relational mapping
	Web services and Internet protocols
	Physical format considerations
	Summary
	11. Class Definitions
	Creating a class
	Writing the suite of statements in a class
	Using instance variables and methods
	Pythonic object-oriented programming
	Trying to do type casting
	Designing for encapsulation and privacy
	Using properties
	Using inheritance to simplify class definitions
	Using multiple inheritance and the mixin design pattern
	Using class methods and attributes
	Using mutable class variables
	Writing static methods
	Using __slots__ to save storage
	The ABCs of abstract base classes
	Writing a callable class
	Summary
	12. Scripts, Modules, Packages, Libraries, and Applications
	Script file rules
	Running a script by the filename
	Running a script by its module name
	Running a script using OS shell rules
	Choosing good script names
	Creating a reusable module
	Creating a hybrid library/application module
	Creating a package
	Designing alternative implementations
	Seeing the package search path
	Summary
	13. Metaprogramming and Decorators
	Simple metaprogramming with decorators
	Defining our own decorator
	More complex metaprogramming with metaclasses
	Summary
	14. Fit and Finish – Unit Testing, Packaging, and Documentation
	Writing docstrings
	Writing unit tests with doctest
	Using the unittest library for testing
	Combining doctest and unittest
	Using other add-on test libraries
	Logging events and conditions
	Configuring the logging system
	Writing documentation with RST markup
	Creating HTML documentation from an RST source
	Using the Sphinx tool
	Organizing Python code
	Summary
	15. Next Steps
	Leveraging the standard library
	Leveraging PyPI – the Python Package Index
	Types of applications
	Building CLI applications
	Getting command-line arguments with argparse
	Using the cmd module for interactive applications
	Building GUI applications
	Using more sophisticated packages
	Building web applications
	Using a web framework
	Building a RESTful web service with Flask
	Plugging into a MapReduce framework
	Summary
	Index

