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Preface
Python	programming	should	be	expressive	and	elegant.	In	order	for	this	to	be	true,	the
language	itself	must	be	easy	to	learn	and	easy	to	use.	Any	practical	language—and	its
associated	libraries—can	present	a	daunting	volume	of	information.	In	order	to	help
someone	learn	Python,	we’ve	identified	and	described	those	features	that	seem	essential.

Learning	a	language	can	be	a	long	voyage.	We’ll	pass	numerous	islands,	archipelagos,
inlets,	and	estuaries	along	the	route.	Our	objective	is	to	point	out	the	key	features	that	will
be	passed	during	the	initial	stages	of	this	journey.

The	concepts	of	data	structures	and	algorithms	are	ever-present	considerations	in
programming.	Our	overall	approach	is	to	introduce	the	various	Python	data	structures	first.
As	part	of	working	with	a	given	class	of	objects,	the	language	statements	are	introduced
later.	One	of	Python’s	significant	advantages	over	other	languages	is	the	rich	collection	of
built-in	data	types.	Selecting	an	appropriate	representation	of	data	can	lead	to	elegant,
high-performance	applications.

An	essential	aspect	of	Python	is	its	overall	simplicity.	There	are	very	few	operators	and
very	few	different	kinds	of	statements.	Much	of	the	code	we	write	can	be	generic	with
respect	to	the	underlying	data	type.	This	allows	us	to	easily	exchange	different	data
structure	implementations	as	part	of	making	tradeoffs	between	storage,	performance,
accuracy,	and	other	considerations.

Some	subject	areas	could	take	us	well	beyond	the	basics.	Python’s	object-oriented
programming	features	are	rich	enough	to	easily	fill	several	large	volumes.	If	we’re	also
interested	in	functional	programming	features,	we	can	study	these	in	far	more	depth
elsewhere.	We’ll	touch	only	briefly	on	these	subjects.



What	this	book	covers
Chapter	1,	Getting	Started,	addresses	installing	or	upgrading	Python.	We	explore	Python’s
Read-Evaluate-Print	Loop	(REPL)	as	a	way	to	interact	with	the	language.	We’ll	use	this
interactive	Python	mode	as	a	way	to	explore	most	of	the	language	features.

Chapter	2,	Simple	Data	Types,	introduces	a	few	features	concerning	numbers	and	some
simple	collections.	We’ll	look	at	Python’s	Unicode	strings	as	well	as	byte	strings,
including	some	of	the	conversions	between	strings	and	numbers.

Chapter	3,	Expressions	and	Output,	provides	more	details	on	Python	expression	syntax
and	how	the	various	numeric	types	relate	to	each	other.	We’ll	look	at	the	coercion	rules
and	the	numeric	tower.	We’ll	look	at	the	print()	function,	which	is	a	common	tool	for
looking	at	output.

Chapter	4,	Variables,	Assignment	and	Scoping	Rules,	shows	how	we	assign	names	to
objects.	We	look	at	a	number	of	different	assignment	statements	available	in	Python.	We
also	explore	the	input()	function,	which	parallels	the	print()	function.

Chapter	5,	Logic,	Comparisons,	and	Conditions,	shows	the	logical	operators	and	literals
that	Python	uses.	We’ll	look	at	the	comparison	operators	and	how	we	use	them.	We’ll	look
closely	at	the	if	statement.

Chapter	6,	More	Complex	Data	Types,	shows	the	core	features	of	the	list,	set,	and	dict
built-in	types.	We	use	the	for	statement	to	work	with	these	collections.	We	also	use
functions	such	as	sum(),	map(),	and	filter().

Chapter	7,	Basic	Function	Definitions,	introduces	the	syntax	for	the	def	statement	as	well
as	the	return	statement.	Python	offers	a	wide	variety	of	ways	to	provide	argument	values
to	functions;	we	show	a	few	of	the	alternatives.

Chapter	8,	More	Advanced	Functions,	extends	the	basic	function	definitions	to	include	the
yield	statement.	This	allows	us	to	write	generator	functions	that	will	iterate	over	a
sequence	of	data	values.	We	look	at	a	few	functional	programming	features	available	via
built-in	functions	as	well	as	the	modules	in	the	Python	Standard	Library.

Chapter	9,	Exceptions,	shows	how	we	handle	and	raise	exceptions.	This	allows	us	to	write
programs	which	are	considerably	more	flexible.	A	simple	“happy	path”	can	handle	the
bulk	of	the	processing,	and	exception	clauses	can	handle	rare	or	unexpected	alternative
paths.

Chapter	10,	Files,	Databases,	Networks,	and	Contexts,	will	introduce	a	number	of	features
related	to	persistent	storage.	We’ll	look	at	Python’s	use	of	files	and	file-like	objects.	We’ll
also	extend	the	concept	of	persistence	to	include	some	database	features	available	in	the
Python	Standard	Library.	This	chapter	will	also	include	a	review	of	the	with	statement	for
context	management.

Chapter	11,	Class	Definitions,	demonstrates	the	class	statement	and	the	essentials	of
object-oriented	programming.	We	look	at	the	basics	of	inheritance	and	how	to	define
class-level	(static)	methods.



Chapter	12,	Scripts,	Modules,	Packages,	Libraries,	and	Applications,	shows	different
ways	in	which	we	can	create	Python	code	files.	We’ll	look	at	the	formal	structures	of
script,	module,	and	package.	We’ll	also	look	at	informal	concepts	such	as	application,
library,	and	framework.

Chapter	13,	Metaprogramming	and	Decorators,	introduces	two	concepts	that	can	help	us
write	Python	code	that	manipulates	Python	code.	Python	makes	metaprogramming
relatively	simple;	we	can	leverage	this	to	simplify	certain	types	of	programming	where	a
common	aspect	doesn’t	fit	neatly	into	a	class	hierarchy	or	library	of	functions.

Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,	and	Documentation,	moves	beyond
the	Python	language	into	the	idea	of	creating	a	complete,	polished	product.	Any	well-
written	program	should	include	test	cases	and	documentation.	We	show	common	ways	to
make	sure	this	is	done	properly.

Chapter	15,	Next	Steps,	will	demonstrate	four	simple	kinds	of	applications.	We’ll	look	at
the	command-line	interface	(CLI),	graphic	user	interface	(GUI),	simple	Web	frameworks,
as	well	as	MapReduce	applications.





What	you	need	for	this	book
We’re	going	to	focus	on	Python	3,	exclusively.	Many	computers	will	have	Python	2
already	installed,	which	means	an	upgrade	is	required.	Some	computers	don’t	have	Python
installed	at	all,	which	means	that	a	fresh	installation	of	Python	3	will	be	necessary.	The
details	are	the	subject	of	Chapter	1,	Getting	Started.

It’s	important	to	note	that	Python	2	can’t	easily	be	used	to	run	all	of	the	examples.	Python
2	may	work	for	many	of	the	examples,	but	it’s	not	our	focus.

In	order	to	install	software,	you’ll	generally	need	administrative	rights	on	the	computer
you	intend	to	use.	For	a	home	computer,	this	is	generally	true.	For	computers	supplied
through	work	or	school,	administrative	passwords	may	be	required.

You	may	also	want	to	have	a	proper	programmer’s	text	editor.	Default	text	editing
applications	such	as	Windows	Notepad	or	Mac	OS	X	TextEdit	can	be	used,	but	aren’t
ideal.	There	are	numerous	free	text	editors	available:	feel	free	to	download	several	to
locate	the	one	that	feels	most	comfortable	for	you.





Who	this	book	is	for
This	book	is	for	programmers	who	want	to	learn	Python	quickly.	It	shows	key	features	of
Python,	assuming	a	background	in	programming.	The	focus	is	on	essential	features:	the
approach	is	broad	but	relatively	shallow.	We’ll	provide	pointers	and	direction	for
additional	study	and	research,	assuming	that	the	reader	is	willing	and	able	to	follow	those
pointers.

In	many	data-intensive	industries,	a	great	deal	of	big	data	analysis	is	done	with	Python	and
toolsets	such	as	Apache	Hadoop.	In	this	case,	the	users	of	Python	will	be	statisticians,	data
scientists,	or	analysts.	Their	interest	isn’t	in	Python	itself,	but	in	using	Python	to	process
collections	of	data.	This	book	is	designed	to	provide	language	fundamentals	for	data
scientists.

This	book	can	be	used	by	students	who	are	learning	Python.	Since	this	book	doesn’t	cover
the	computer	science	foundations	of	programming,	an	additional	text	would	be	helpful.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We’ve
built	an	ArgumentParser	method	using	all	of	the	default	parameters.”

A	block	of	code	is	set	as	follows:

def	prod(sequence):

				p=	1

				for	item	in	sequence:

								p	*=	item

				return	p

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

def	prod(sequence):

				p=	1

				for	item	in	sequence:

								p	*=	item

				return

Any	command-line	input	or	output	is	written	as	follows:

MacBookPro-SLott:Code	slott$	python3	-m	test_all

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	on	Continue
will	step	through	the	Read	Me,	License,	Destination	Select,	and	Installation	Type
windows.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Getting	Started
Python	comes	on	some	computers	as	part	of	the	OS.	On	other	computers,	we’ll	need	to
add	the	Python	program	and	related	tools.	The	installation	is	pretty	simple,	but	we’ll
review	the	details	to	be	sure	that	everyone	has	a	common	foundation.

Once	we	have	Python,	we’ll	need	to	confirm	that	Python	is	present.	In	some	cases,	we’ll
have	more	than	one	version	of	Python	available.	We	need	to	be	sure	that	we’re	using
Python	3.4	or	newer.	To	confirm	that	Python’s	available,	we’ll	do	a	few	interactions	at
Python’s	>>>	prompt.

To	extend	our	foundation	for	the	remaining	chapters,	we’ll	look	at	a	few	essential	rules	of
Python	syntax.	This	isn’t	complete,	but	it	will	help	us	write	scripts	and	learn	the	language.
After	we’ve	had	more	chances	to	work	with	simple	and	compound	statements,	the	detailed
syntax	rules	will	make	sense.

We’ll	also	look	at	the	Python	“ecosystem”,	starting	with	the	built-in	standard	library.	We’ll
emphasize	the	standard	library	throughout	this	book	for	two	reasons.	First,	it’s	immense—
much	of	what	we	need	is	already	on	our	computer.	Second,	and	more	important,	studying
this	library	is	the	best	way	to	learn	the	finer	points	of	Python	programming.

Beyond	the	built-in	library,	we’ll	take	a	look	at	the	Python	Package	Index	(PyPI).	If	we
can’t	find	the	right	module	in	the	standard	library,	the	second	place	to	look	for	extensions
is	PyPI—https://pypi.python.org.

https://pypi.python.org


Installation	or	upgrade
To	work	with	Python	on	Windows,	we	must	install	Python.	For	Mac	OS	X	and	Linux,	a
version	of	Python	is	already	present;	we’ll	often	want	to	add	a	newer	version	to	the
preinstalled	Python.

There	are	two	significantly	different	flavors	of	Python	available:

Python	2.x
Python	3.x

This	book	is	about	Python	3.4.	We	won’t	cover	Python	2.x	at	all.	There	are	several	visible
differences.	What’s	important	is	that	Python	2.x	is	a	bit	of	a	mess	under	the	hood.	Python
3	reflects	some	fundamental	improvements.	The	improvements	came	at	the	cost	of	a	few
areas	where	the	two	versions	of	the	language	had	to	be	made	incompatible.

The	Python	community	is	continuing	to	keep	Python	2.x	around.	Doing	this	is	a	help	to
people	who	are	stuck	with	old	software.	For	the	most	part,	developers	are	moving	forward
with	Python	3	because	it’s	a	clear	improvement.

Before	we	get	started,	it’s	important	to	know	if	Python	is	already	installed.	The	general
test	to	see	if	Python	is	already	installed	is	to	get	an	OS	command	prompt.	For	Windows,
use	Command	Prompt;	for	Mac	OS	X	or	Linux,	use	the	Terminal	tool.	We’ll	show	Mac
OS	X	prompts	from	the	Mac	OS	X	Terminal.	It	looks	like	this:

MacBookPro-SLott:~	slott$	python3

Python	3.3.4	(v3.3.4:7ff62415e426,	Feb		9	2014,	00:29:34)

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

We’ve	shown	the	OS	prompt	MacBookPro-SLott:~	slott$.	We	entered	the	python3
command,	which	is	typical	for	Linux	and	Mac	OS	X.	In	Windows,	we’ll	often	enter	just
python.	The	response	was	three	lines	of	introduction	followed	by	the	>>>	prompt.	Enter
exit	and	hit	return	to	get	some	useful	advice	on	how	to	leave	Python.	This	example
showed	Python	3.3,	which	is	a	little	out	of	date.	An	upgrade	isn’t	required.

Some	kind	of	“command	not	found”	error	from	the	OS	means	we	don’t	have	any	Python,
so	we’ll	need	to	do	an	install.

If	we	get	a	Python	message	that	starts	with	something	like	“Python	2.7.6”,	we’ll	need	to
do	an	upgrade.

The	next	section	covers	Windows	installations.	After	that,	we’ll	look	at	Mac	OS	X	and
then	we	will	see	Linux	upgrades.	In	some	cases,	we	may	develop	software	on	Windows
desktop	computers,	but	the	ultimate	destination	is	a	large,	centralized	Linux	server.	The
Python	files	can	be	the	same	between	these	two	environments,	so	having	Python	on
multiple	platforms	won’t	be	very	complex	or	confusing.



Installing	Python	on	Windows
Python	runs	on	many	versions	of	Windows.	There	are	some	older,	less-widely-used
versions	of	Windows	without	an	actively	supported	version	of	Python.	For	example,
Windows	2000	is	not	supported.

The	general	procedure	for	installing	Python	is	quite	simple.	We’ll	download	an	installer
and	do	some	preparation.	Then	we’ll	start	the	installer.	Once	that’s	finished,	we’ll	be	up
and	running.

To	find	the	installer,	start	here:

https://www.python.org/downloads/

The	web	server	should	detect	your	OS	and	provide	a	big	button	with	some	variation	of
“Download	Python	3.4.x”	on	it.	Click	on	this	button	to	start	the	download.

To	look	at	the	choices	available,	the	https://www.python.org/downloads/windows/	path
provides	all	of	the	actively-supported	versions	of	Python.	This	will	show	a	long	list	of
older	versions.	There	are	two	installers	available:

The	Windows	x86	MSI	installer
The	Windows	x86-64	MSI	installer

If	we	have	a	very	old	computer,	we	might	need	the	32-bit	version.	Most	modern
computers	will	have	a	64-bit	CPU.	When	in	doubt,	64-bit	is	the	assumption	to	make.

Double-click	the	.msi	file	to	start	running	the	installer.	This	starts	with	a	question	about
installing	Python	for	yourself	or	for	all	users.	If	you	have	appropriate	privileges,	the	all
users	option	is	appropriate.	On	a	shared	computer,	without	appropriate	privileges,	you’ll
have	to	install	it	for	yourself	only.

https://www.python.org/downloads/
https://www.python.org/downloads/windows/


The	second	page	will	ask	for	an	installation	directory.	Be	careful	about	the	path	that	you
choose	for	the	installation,	and	avoid	spaces	in	filenames.

Tip
Do	not	install	Python	into	directories	with	spaces	in	their	names.	Avoid	names	such	as
“Program	Files”	and	“My	Documents”.	The	space	may	cause	problems	that	are	difficult	to
diagnose.

Install	Python	into	a	simple	directory	with	a	short,	space-free	name	like	C:\python34.



Spaces	in	filenames	is	not	a	general	problem,	but	it	is	awkward	when	first	starting.	There
are	many	ways	to	cope	with	spaces	in	filenames.	When	learning	a	new	programming
language,	however,	it’s	important	to	minimize	the	awkward	problems	so	that	we	can	focus
on	the	important	topics.

The	next	page	will	also	show	a	menu	of	components	that	can	be	installed;	it’s	easiest	to
request	everything.	There’s	no	compelling	reason	to	turn	off	any	of	the	optional
components.	We’ll	be	looking	at	the	IDLE	development	tool,	which	requires	the	Tcl/Tk
package,	so	it’s	important	to	be	sure	that	this	is	part	of	the	installation.

In	many	cases,	the	final	option	on	this	list	updates	the	system	environment	variables	to
include	Python	on	the	PATH	variable.	This	isn’t	enabled	by	default,	but	it	can	be	helpful	if
you’re	going	to	write	BAT	files	in	Windows.



In	addition	to	the	basic	Python	interpreter,	the	Windows	help	installer	is	very	helpful.	This
is	a	separate	download	and	requires	a	quick	installation.	After	we’ve	installed	this,	we	can
use	the	F1	key	to	bring	up	all	of	the	Python	documentation.

Once	Python	is	installed,	the	Using	the	Read-Evaluate-Print	Loop	(REPL)	section	will
show	how	to	start	interacting	with	Python.

Considering	some	alternatives
We’ll	focus	on	a	particular	implementation	of	Python	called	CPython.	The	distinction
we’re	making	here	is	that	Python—the	abstract	language—can	be	processed	by	a	variety
of	concrete	Python	runtimes	or	implementations.	The	CPython	implementation	is	written
in	portable	C	and	can	be	recompiled	for	many	operating	systems.	This	implementation
tends	to	be	extremely	fast.

For	Windows	developers,	there’s	an	alternative	implementation	called	Iron	Python.	This
is	tightly	integrated	with	the	Windows	.NET	development	environment.	It	has	the
advantage	of	working	with	Visual	Studio.	It	has	the	disadvantage	of	being	based	on	the
Python	2.7	language.

Another	choice	Windows	users	have	is	to	use	Python	Tools	for	Visual	Studio	(PTVS).
This	will	allow	you	to	use	Python	3.4	from	within	Visual	Studio.	For	developers	who	are
used	to	Visual	Studio,	this	might	prove	helpful.

Other	Python	implementations	include	Jython,	Stackless	Python,	and	PyPy.	These
alternatives	are	available	for	all	operating	systems,	so	we’ll	address	these	in	the	Looking	at
other	Python	interpreters	section	later.



Upgrading	to	Python	3.4	in	Mac	OS	X
Python	runs	on	all	versions	of	Mac	OS	X.	It	turns	out	that	Mac	OS	X	relies	on	Python.
However,	it	relies	on	Python	2.7,	so	we’ll	need	to	add	Python	3.4.

The	general	procedure	for	installing	Python	on	Mac	OS	X	is	quite	simple.	We’ll	download
a	disk	image	(.dmg)	installer	and	do	some	preparation.	Then	we’ll	start	the	installer	that’s
in	the	disk	image.	Once	that’s	finished,	we’ll	be	up	and	running.

To	find	an	installer,	start	here:

https://www.python.org/downloads/

The	web	server	should	detect	your	OS	and	provide	a	big	button	with	some	variation	of
“Download	Python	3.4.x”	on	it.	Click	on	this	and	download	the	.dmg	file.

To	look	at	the	choices	available,	the	https://www.python.org/downloads/mac-osx/	path
provides	all	of	the	actively-supported	versions	of	Python	for	Mac	OS	X.	This	will	show
alternatives	for	older	versions	of	Python.

When	the	.dmg	device	becomes	available	after	the	download,	double-click	on	the	.mpkg
installer	file	to	start	running	the	installer.

Clicking	on	Continue	will	step	through	the	Read	Me,	License,	Destination	Select,	and
Installation	Type	windows.	There’s	a	Customize	button	that	allows	us	to	turn	options	on

https://www.python.org/downloads/
https://www.python.org/downloads/mac-osx/


and	off.	We	won’t	need	to	do	this—the	default	installation	is	ideal.

We’ll	need	to	provide	the	username	and	password	of	a	user	who’s	authorized	to	administer
this	computer.	This	will	not	remove	the	existing	Python	that	Mac	OS	X	uses.	It	will	add
another	version	of	Python.	This	means	that	we’ll	have	at	least	two	copies	of	Python.	We’ll
focus	on	using	Python	3,	ignoring	the	built-in	Python,	which	is	Python	2.

To	use	Python	3,	we	have	to	enter	python3	at	the	OS	prompt	in	the	Terminal	window.	If
we	have	both	Python	3.3	and	Python	3.4,	we	can	enter	the	even	more	specific	python3.4
at	the	command	prompt	to	specify	which	version	of	Python	3	we’re	using.	Generally,	the
python3	command	will	be	the	latest-and-greatest	version	of	Python	3.	The	python
command—unadorned	with	a	version	number—will	be	the	Python	2.x	that	Mac	OS	X
requires.

Adding	the	Tkinter	package
Python	relies	on	a	library	named	Tkinter	to	provide	support	for	writing	programs	with	a
GUI.	This	package	relies	on	Tcl/Tk.	The	details	can	be	found	here:

https://www.python.org/download/mac/tcltk/

The	summary	of	this	is	that	we	need	to	install	version	8.5.17	or	newer.	See
https://www.python.org/download/mac/tcltk/#activetcl-8-5-17-0.	This	will	provide	a
graphic	environment	that	Python	will	use.	We	must	install	Tcl/Tk	in	order	for	the	tkinter
package	to	work.

After	we	download	the	.dmg	file	and	open	the	.pkg	file,	we’ll	see	this	window:

https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/#activetcl-8-5-17-0


We’ll	be	looking	at	the	IDLE	development	tool,	which	requires	tkinter.	Consequently,
this	additional	installation	is	essential.

We	can	avoid	this	extra	download	if	we	avoid	using	tkinter.	Some	developers	prefer	to
use	the	Active	State	Komodo	editor	as	their	development	tool;	this	does	not	require
Tcl/Tk.	Also,	there	are	numerous	add-on	GUI	frameworks	that	don’t	require	tkinter.



Upgrading	to	Python	3.4	in	Linux
For	Linux,	the	latest	Python	may	already	be	installed.	When	we	enter	python3,	we	may
see	that	we	already	have	a	useful	version	available.	In	this	case,	we’re	ready	to	roll.	In
some	cases,	the	OS	will	only	have	an	older	Python	(perhaps	older	than	2.7)	installed.	In
this	case,	we’ll	need	to	upgrade.

For	Linux	distributions,	there	are	two	paths	for	upgrading	Python:

Installing	prebuilt	packages:	Many	distributions	have	appropriate	packages	already
available.	We	can	use	a	package	manager	(such	as	yum	or	RPM)	to	locate	and	install
the	necessary	Python	package.	In	some	cases,	there	will	be	additional	dependencies,
leading	to	a	cascade	of	downloads	and	installs.	Since	Python	3.4	is	relatively	new,
there	may	not	be	very	many	prebuilt	packages	for	your	particular	Linux	distribution.
Details	are	available	at	https://docs.python.org/3/using/unix.html#on-linux.
Building	from	source:	Most	Linux	distributions	include	the	GNU	C	compiler.	We	can
download	the	Python	source,	configure	the	build	script,	and	use	make	and	make
install	to	build	Python.	This	may	require	upgrading	some	Linux	libraries	to	assure
that	your	Linux	installation	has	the	required	support	for	Python	3.4.	The	installation
steps	are	summarized	as	./configure,	make,	and	sudo	make	altinstall.	Details	are
available	at	https://docs.python.org/3/using/unix.html#building-python.

When	we	use	altinstall,	we’ll	end	up	with	two	Pythons	installed.	We’ll	have	an	older
Python,	which	we	can	run	using	the	python	command.	The	python3	command	will,
generally,	be	linked	to	the	latest	version	of	Python	3.	If	we	need	to	be	explicit,	we	can	use
the	python3.4	command	to	select	a	specific	version.

As	with	the	Mac	OS	X	installation,	adding	the	Python	tkinter	package	is	important.
Sometimes,	this	is	separate	from	the	basic	package.	This	may	lead	to	upgrading	Tcl/Tk,
which	may	lead	to	some	more	downloads	and	installs.	At	other	times,	the	Linux
distribution	has	an	up-to-date	Tcl/Tk	environment	and	nothing	more	needs	to	be	done.

We	can	avoid	the	extra	Tcl/Tk	download	if	we	avoid	using	tkinter.	As	mentioned	earlier,
many	developers	prefer	to	use	the	Active	State	Komodo	editor	as	their	development	tool;
this	does	not	require	tkinter.	Also,	there	are	numerous	GUI	frameworks	that	aren’t	based
on	tkinter.

https://docs.python.org/3/using/unix.html#on-linux
https://docs.python.org/3/using/unix.html#building-python




Using	the	Read-Evaluate-Print	Loop
(REPL)
Once	we	have	installed	Python	3,	we	can	do	some	minimal	interaction	with	Python	to
assure	ourselves	that	things	are	working.	In	the	long	run,	we’ll	use	a	number	of	other	tools
to	create	Python	programs.	To	start	out,	we’ll	interact	directly	on	the	command	line.

Python’s	Read-Evaluate-Print	Loop	(REPL)	is	the	foundation	for	Python	programming.
More	sophisticated	things—such	as	writing	application	scripts	or	web	servers—are
essentially	the	same	as	interaction	with	the	REPL:	the	Python	program	reads	statements
from	our	application	script	file	or	web	server	script	file	and	evaluates	those	statements.

This	fundamental	rule	is	one	of	the	very	appealing	features	of	Python.	We	can	write
sophisticated	scripts,	or	we	can	interact	with	the	language	in	the	REPL;	the	language	is	the
same.



Confirming	that	things	are	working
To	confirm	that	things	are	working,	we’ll	start	the	Python	interpreter	from	a	command-line
prompt.	It	might	similar	to	like	this:

MacBookPro-SLott:~	slott$	python3

Python	3.3.4	(v3.3.4:7ff62415e426,	Feb		9	2014,	00:29:34)

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

The	details	of	getting	to	a	command	prompt	vary	from	OS	to	OS.	We’ve	shown	the	Mac
OS	X	Terminal	tool	in	this	example.	We	entered	the	python3	command	to	be	sure	we	ran
our	new	version	of	Python,	not	the	built-in	Python	2.

The	introductory	message	lists	four	special-purpose	objects	that	are	incorporated	into	the
interactive	Python	environment.	There	are	two	more,	quit	and	exit,	which	are	also
available.	These	are	only	present	in	the	REPL	interactive	environment;	they	cannot	be
used	in	programs.

We’ll	look	at	how	we	get	help	later	in	a	separate	section,	Interacting	with	the	help
subsystem.	The	other	objects,	however,	produce	useful	tidbits	of	information	and	are	the
ideal	way	to	be	sure	things	are	working.	Enter	copyright,	credits,	or	license	at	the	>>>
prompt	to	confirm	that	Python	is	working.



Doing	simple	arithmetic
The	REPL	loop	prints	the	results	of	each	statement,	allowing	us	to	work	with	Python
interactively.	To	be	clear	on	what	this	means,	we	should	define	what	constitutes	a
statement	in	the	language.	We’ll	avoid	the	strict	formality	of	the	Python	language
definition	and	provide	a	quick,	informal	definition	of	the	relevant	statement	type.

The	Python	language	has	20	or	so	kinds	of	statements.	An	expression—by	itself—is	a
statement.	Unless	the	value	of	the	expression	is	None,	the	REPL	will	show	the	value	of	the
expression.	We’ll	often	use	an	expression	statement	to	evaluate	functions	that	perform
input	and	output.

This	simple	expression	statement	allows	us	to	do	things	such	as	the	following	at	the
Python	>>>	prompt:

>>>	355/113

3.1415929203539825

We	can	enter	any	arithmetic	expression.	Python	evaluates	the	expression,	and	if	the	result
isn’t	None,	we’ll	see	the	result.	We’ve	shown	the	true	division	operator,	/,	in	this	example.

We’ll	look	at	the	various	data	types	and	operators	in	Chapter	2,	Simple	Data	Types.	For	the
moment,	we’ll	identify	a	few	features	of	Python.	We	have	numbers	in	a	variety	of	flavors,
including	integers,	floating	point,	and	complex	values.	Most	values	will	be	properly
coerced	to	add	precision.	Have	a	look	at	these	examples:

>>>	2	*	3.14	*	8j

50.24j

>>>	_	**2

(-2524.0576+0j)

The	first	expression	computed	a	value	that	includes	an	integer,	2;	a	floating	point	value,
3.14;	and	a	complex	value,	8j.	We	used	the	*	operator	for	multiplication.	The	result	is
complex,	50.24j.

The	second	expression	uses	the	_	variable.	This	is	a	handy	feature	that’s	unique	to	the
REPL.	The	result	of	each	expression	is	implicitly	assigned	to	this	variable.	We	can	use	_
in	an	expression	to	refer	to	the	result	of	the	previous	expression.	This	only	works	in	the
REPL;	it’s	never	a	part	of	a	script.

When	we	computed	_	**2,	we	squared	50.24j.	This	is	-2524.0576.	Since	the	source	value
was	a	complex	number,	the	result	is	also	a	complex	value	even	though	the	imaginary
component	of	that	complex	value	is	zero.	This	is	typical	of	Python—the	data	types	of	the
operand	values	generally	dictate	the	data	types	of	the	result	of	the	operator.	When	there
are	different	kinds	of	numbers,	values	are	coerced	according	to	the	rules	we’ll	look	at	in
Chapter	2,	Simple	Data	Types.

There’s	one	notable	exception	to	the	rule	that	the	types	of	the	operands	match	the	type	of
the	result.	The	true	division	operator,	/,	produces	floating	point	results	from	integer
operands.	The	floor	division	operator,	//,	on	the	other	hand,	reflects	the	types	of	the
operands.	For	example:



>>>	355	/	113

3.1415929203539825

>>>	355	//	113

3

We	have	these	two	division	operators	so	that	we	can	unambiguously	specify	what	kind	of
division	we’d	like	to	perform.	It	saves	us	from	having	to	write	extra	code	to	explicitly
coerce	results.



Assigning	results	to	variables
The	simple	assignment	statement	produces	no	visible	output:

>>>	v	=	23

This	will	create	the	variable	v	and	assign	the	value	of	23	to	it.	We	can	check	this	by	using
a	very	small	expression	statement.	The	expression	is	just	the	variable	name:

>>>	v

23

When	we	evaluate	a	very	simple	expression,	such	as	v,	we	see	the	value	of	the	variable.

Python’s	REPL	has	far-reaching	consequences.	Perhaps	the	most	important	consequence	is
that	almost	all	examples	of	Python	programming	are	provided	as	if	we’re	entering	the
code	at	the	>>>	prompt.	The	documentation	for	very	complex	and	sophisticated	packages
will	be	written	as	though	we’re	going	to	use	that	package	interactively.	In	most	cases,
we’ll	be	writing	application	programs;	we	won’t	really	do	very	much	at	the	>>>	prompt.
But	the	idea	of	cutting	through	the	complexity	to	arrive	at	something	that	can	be	done
interactively	is	pervasive	throughout	the	Python	community.



Using	import	to	add	features
One	significant	part	of	Python	is	the	presence	of	a	vast	library	of	additional	features.
Using	an	external	library	means	that	the	core	language	can	be	kept	quite	simple.	We	can
import	any	additional	features	we	need,	avoiding	the	clutter	and	complication	of	unused
features.

The	import	statement	is	used	to	incorporate	additional	functions,	classes,	and	objects	into
a	program	or	the	interactive	environment.	There	are	a	number	of	variations	of	this
statement.	For	example,	we	might	want	to	use	some	of	the	more	sophisticated	math
functions.	We	can	search	the	Python	documentation	and	discover	that	these	are	defined	in
the	math	library.	We	can	include	and	use	them	like	this:

>>>	import	math

>>>	math.pi

3.141592653589793

>>>	math.sin(	math.pi/6	)

0.49999999999999994

In	this	example,	we	imported	the	math	library.	We	evaluated	math.pi	to	see	one	of	the

constants	defined	in	this	library.	We	evaluated	 .The	result	was	almost	(but	not
exactly)	1/2.

This	also	shows	us	an	important	thing	about	floating	point	numbers—they’re	just	an
approximation.	This	has	nothing	to	do	with	Python	specifically—it’s	a	general	feature	of
digital	computing.	It’s	very	important	to	emphasize	this	fact	about	floating	point	numbers.

Tip
Floating	point	numbers	are	only	an	approximation.	They’re	not	exact.	They	are	not	the
abstract	mathematical	ideal	of	an	irrational	number	with	infinite	precision.

We’ll	return	to	the	topic	of	floating	point	numbers	in	Chapter	2,	Simple	Data	Types.	For
now,	we	want	to	focus	on	external	libraries.

One	important	library	module	that	is	part	of	Python	is	named	this.	To	see	the	this
module,	enter	import	this	at	the	>>>	prompt,	like	so:

>>>	import	this

Another	equally	important	module	is	antigravity.

>>>	import	antigravity

We’ll	leave	the	exploration	of	these	modules	as	exercises	for	the	reader.	We	don’t	want	to
spoil	the	fun!	More	handwaving	explanation	isn’t	as	helpful	as	hands-on	experience.	See
http://xkcd.com/413/	for	more	on	this	topic.

We’ll	summarize	by	noting	that	the	name	“Python”	has	much	to	do	with	Monty	Python
and	nothing	to	do	with	serpents.

http://xkcd.com/413/




Interacting	with	the	help	subsystem
Python’s	interactive	help	utility	provides	a	great	deal	of	useful	information	about	modules,
classes,	functions,	and	objects.	The	help	system	is	an	environment	that	is	distinct	from
Python’s	REPL;	it	provides	distinct	prompts	to	make	this	clear.

There	are	three	help	modes,	each	with	its	unique	prompt:

We’ll	see	the	help>	prompt	from	the	Python	help	environment.	When	we	evaluate
the	help()	function	with	no	argument	value,	we’ll	enter	Python’s	help	environment.
We	can	enter	different	subjects	and	read	about	various	Python	features.	When	we
enter	quit	as	a	topic,	we’ll	return	to	the	REPL.
Using	Windows,	we’ll	see	the	--	More	--	prompt:	When	we	evaluate	something	like
help(int)	in	a	Windows	environment,	the	output	will	be	displayed	using	the	MS-
DOS	more	command.	For	more	information,	enter	?	for	help	on	how	to	page	through
the	help()	output.	At	the	Windows	command	line,	entering	more	/?	will	provide
additional	information	on	how	the	more	command	helps	you	page	through	a	long
file.
Using	Mac	OS	X	and	Linux,	we’ll	see	the	:	prompt.	When	we	evaluate	the	help()
function	with	a	specific	argument	value—for	example,	help(float)—in	Mac	OS	X
or	Linux,	we’ll	get	output	that’s	displayed	using	the	less	program.	For	more
information	on	this,	enter	h	for	help	while	viewing	the	help()	output.	At	the
command	prompt,	enter	less	-?	for	more	information	on	how	the	less	program
works.

There	are	additional	ways	to	view	the	documentation	available	with	Python	modules.	In
IDLE,	for	example,	there’s	a	class	browser	and	path	browser	that	will	show	documentation
about	modules	and	files.	This	is	based	on	the	built-in	help()	function,	but	it’s	displayed	in
a	separate	window.



Using	the	pydoc	program
Python	includes	the	pydoc	application	that	we	use	to	view	documentation.	This
application	is	something	that	we	run	from	the	OS	command	prompt.	We	do	not	use	this
from	the	Python	>>>	prompt;	we	use	it	from	the	OS	prompt.	While	developing,	we	might
want	to	leave	a	Terminal	window	open	just	to	display	module	documentation.

The	pydoc	program	has	two	operating	modes:

It	can	show	some	documentation	about	a	specific	package	or	module.	This	will	use
an	appropriate	program	(more	on	Windows,	but	otherwise	less)	to	display
documentation	for	the	given	object.	Here’s	how	we	can	display	documentation	on	the
math	module:

MacBookPro-SLott:~	slott$	python3	-m	pydoc	math

It	can	start	a	documentation	web	server.	This	will	start	a	server	(and	also	start	a
browser)	to	look	at	Python	module	documentation.	When	we	use	it,	we’ll	have	a
session	that	looks	like	this:

MacBookPro-SLott:~	slott$	python3	-m	pydoc	-b

Server	ready	at	http://localhost:50177/

Server	commands:	[b]rowser,	[q]uit

server>	q

Server	stopped

The	second	example	will	start	a	web	server	as	well	as	a	browser.	The	browser	will	show
the	pydoc-produced	documentation.	This	is	derived	from	the	module	and	package
structure	as	well	as	the	documentation	strings	embedded	in	the	Python	code.	When	we
were	done	reading	the	documentation,	we	entered	q	to	quit	the	web	server.

When	we	write	Python	packages,	modules,	classes,	and	functions,	we	can	(and	should)
provide	the	content	for	pydoc/help()	documentation.	These	documentation	strings	are
part	of	our	programming,	and	are	as	important	as	having	programs	that	work	correctly.
We’ll	look	at	this	embedded	documentation	in	Chapter	14,	Fit	and	Finish	–	Unit	Testing,
Packaging,	and	Documentation.





Creating	simple	script	files
While	we	can	use	all	of	Python	from	the	REPL,	this	is	not	a	good	way	to	produce	a	final
application.	Most	of	what	we	do	with	Python	will	be	done	via	script	files.	We’ll	look	at
script	files	in	detail	in	Chapter	12,	Scripts,	Modules,	Packages,	Libraries,	and
Applications.	For	now,	we’ll	look	at	a	few	features.

A	script	file	has	to	follow	a	few	rules:

The	content	must	be	plain	text.	While	ASCII	encoding	is	preferred	by	some,	Python
3	can	easily	handle	UTF-8	and	most	OS-specific	variations	such	as	Mac	OS	Roman
or	Windows	CP-1252.	A	portable	encoding	like	UTF-8	is	strongly	suggested.
Python	can	cope	with	Mac	OS	X,	Linux	newline	(\n),	as	well	as	Windows	CR-LF
(\r\n).	Only	a	few	Windows	tools,	such	as	Notepad,	insist	on	CR-LF	line	endings;
most	other	programming	editors	discern	the	line	endings	flexibly.	Unless	you	really
must	use	Notepad,	it’s	often	best	to	use	Unix-style	newline	line	endings.
The	filename	should	be	a	legal	Python	identifier.	This	is	not	a	requirement,	but	it
gives	us	considerable	flexibility	if	we	follow	this	suggestion.	The	Language
Reference	Manual,	section	2.3,	provides	the	details	of	what	constitutes	an	identifier.
A	summary	of	these	rules	is	that	identifiers	must	begin	with	a	letter	(or	a	Unicode
character	that	normalizes	to	a	letter)	or	_.	It	continues	with	letters,	digits,	and	the	_
character.	What’s	important	is	that	we	should	avoid	characters	that	are	Python
operators	or	delimiters	in	filenames.	In	particular,	we	should	avoid	the	hyphen	(-),
which	can	become	a	problem	in	some	Python	contexts.	OS	filenames	have	much
more	flexible	rules	than	Python	identifiers,	and	the	OS	has	ways	to	escape	the
meaning	of	OS-related	punctuation;	we	are	happiest	when	we	limit	our	filenames	to
valid	Python	identifiers	–	letters,	digits,	and	_.
The	filename	extension	should	be	.py.	Again,	this	is	not	required,	but	it	is	very
helpful	to	follow	this	rule.

For	example,	we’ll	try	to	focus	on	names	such	as	test_1_2.py.	We	can’t	as	easily	use	a
file	named	test-1.2.py;	the	base	name	isn’t	a	valid	identifier—this	name	looks	like	a
Python	expression.	While	the	second	name	is	acceptable	for	a	top-level	script,	it	won’t
work	as	a	module	or	package.

We’ll	look	at	some	Python	syntax	rules	in	the	next	section.	For	now,	we	can	create	a
simple	script	file	named	ex_1.py	that	has	one	line:

print("π≈",	355/113)

We	can	also	use	"\u03c0\u2248"	instead	of	"π≈".	The	string	"\N{GREEK	SMALL	LETTER
PI}\N{ALMOST	EQUAL	TO}"	will	also	work.

Once	we	have	this	file,	we	can	have	Python	execute	the	file	as	follows:

MacBookPro-SLott:Chapter_1	slott$	python3	ex_1.py

π≈	3.1415929203539825

We’ve	provided	a	filename,	ex_1.py,	as	the	positional	argument	to	the	python3	program.



Python	reads	the	file	and	executes	each	line.	The	output	that	we	see	is	the	text	printed	to
the	console	by	the	print()	function.

The	file	is	found	by	Python	using	ordinary	OS	rules	for	locating	files,	starting	with	the
current	working	directory.	This	will	work	with	any	kind	of	filename.

If	we	followed	the	naming	rules	for	our	file—the	filename	is	an	identifier	and	the
extension	is	.py—we	can	also	use	the	following	command	to	execute	a	Python	module:

MacBookPro-SLott:Chapter_1	slott$	python3	-m	ex_1

π≈	3.1415929203539825

The	-m	ex_1	option	forces	Python	to	search	for	a	module	named	ex_1.	The	file	associated
with	this	module	is	named	ex_1.py.	Python	has	a	search	path	that	it	uses	to	find	the
requested	module.	Unless	special	arrangements	are	made,	Python	will	search	the	local
directory	first,	and	then	will	search	the	library	directories.	This	allows	us	to	run	our	scripts
and	Python’s	built-in	applications	with	a	simple,	uniform	syntax.	It	also	allows	us	to	add
our	own	applications	and	modules	by	modifying	the	PYTHONPATH	environment	variable.

We’ll	look	at	the	search	path	in	Chapter	12,	Scripts,	Modules,	Packages,	Libraries,	and
Applications.	The	detailed	documentation	for	the	search	path	is	part	of	the	site	package.



Simplified	syntax	rules
The	syntax	rules	for	Python	are	defined	in	section	2	of	the	Python	Language	Reference
manual.	We’ll	look	at	the	rules	in	detail	in	Chapter	3,	Expressions	and	Output.

Python	has	about	20	kinds	of	statements.	Here’s	a	quick	summary	of	the	rules:

Almost	all	statements	begin	with	a	Python	keyword	such	as	pass,	if,	and	def.	The
expression	statement	and	the	assignment	statement	are	the	exceptions.
Python	has	two	kinds	of	statements—one-line	simple	statements	and	multiline
compound	statements.
Simple	statements	must	be	complete	within	a	single	line.	An	assignment	statement	is
a	simple	statement.	It	begins	with	one	or	more	user-provided	identifiers	and	includes
the	=	assignment	symbol	or	an	augmented	variant	like	+=.	An	expression	statement	is
also	simple.
Compound	statements	use	indentation	to	show	the	suite	of	statements	embedded
within	the	overall	statement.	The	standard	indentation	is	four	spaces.	Most
developers	set	their	editor	to	replace	tabs	with	four	spaces.	Inconsistent	use	of	spaces
and	tabs	will	lead	to	syntax	errors	that	can	be	hard	to	see	because	tabs	and	spaces	are
both	invisible	by	default.	Avoiding	tab	characters	in	general	makes	it	easier	to	debug
problems.
Compound	statements	include	class	and	function	definitions—the	body	of	the
definition	is	indented.	If	statements	and	for	and	while	loops	are	examples	of
compound	statements	that	contain	an	indented	suite	of	statements	that	are	executed
conditionally	or	repeatedly.
The	(	and	)	characters	must	match.	A	single	statement	on	a	logical	line	may	span
multiple	physical	lines	until	the	(	and	)	characters	match.

In	effect,	Python	programs	consist	of	one-statement-one-line.	The	end	of	a	line	is	the
statement	terminator.	We	have	a	few	techniques	for	extending	a	statement.	The	most
common	technique	is	based	on	Python’s	requirement	that	the	(	and	)	characters	must
balance.

We	can,	for	example,	write	code	like	this:

print(

			"Hello	world",

			"π≈",

			355/113

)

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


We’ve	spread	a	single	logical	line	to	four	physical	lines	using	(	and	).	One	consequence	of
this	is	that	a	simple	statement	that	we	enter	at	the	REPL	must	not	be	indented.	A	leading
space	will	cause	problems	because	leading	spaces	are	used	to	show	which	statements	are
inside	a	compound	statement.

Another	consequence	of	this	is	less	direct.	Python	executes	a	script	file	one	statement	at	a
time	from	start	to	finish.	This	means	that	complex	Python	programs	will	have	a	number	of
definitions	first,	and	the	“main”	part	of	the	processing	will	generally	be	last.

A	Python	comment	starts	with	#	and	ends	at	the	end	of	the	line.	This	follows	the	same
rules	as	the	various	Linux	shells.	Because	of	the	way	Python	documentation	strings	are
processed	by	pydoc	and	help(),	most	documentation	is	actually	presented	in	separate
string	literals	at	the	start	of	a	package,	module,	class,	or	function	definition.	We’ll	look	at
these	documentation	strings	in	Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,	and
Documentation.	The	#	comment	is	used	sparingly.





The	Python	ecosystem
The	Python	programming	environment	has	two	broad	subject	areas:

The	language	itself
The	extension	packages.	We	can	further	subdivide	the	extension	packages	into:

The	standard	library	of	packages
The	Python	ecosystem	of	yet	more	extension	packages

When	we	install	Python,	we	install	the	language	plus	several	hundred	extension	packages
in	the	standard	library.	We’ll	return	to	the	standard	library	in	Chapter	12,	Scripts,	Modules,
Packages,	Libraries,	and	Applications.	The	Python	ecosystem	is	potentially	infinite.	The
good	news	is	that	PyPI	makes	it	relatively	easy	to	locate	packages.



The	idea	of	extensibility	via	add-ons
Python’s	design	includes	a	small	core	language	that	can	be	extended	by	importing
additional	features.	The	Language	Reference	Manual	describes	20	statements;	there	are
only	19	operators.	The	idea	is	that	we	can	have	a	great	deal	of	confidence	that	a	small
language	is	correctly	implemented,	complete,	and	consistent.

The	standard	library	documentation	contains	37	chapters,	and	describes	hundreds	of
extension	packages.	There	are	a	lot	of	features	available	to	help	us	solve	our	unique
problem.	It’s	typical	to	see	Python	programs	that	import	numerous	packages	from	the
standard	library.

We’ll	see	two	common	variations	of	the	import	statement:

import	math

from	math	import	sqrt,	sin

The	first	version	imports	the	entire	math	module	and	creates	the	module	as	an	object	in	the
global	namespace.	The	various	classes	and	function	names	within	that	module	must	be
properly	qualified	with	the	namespace	to	be	used.	A	qualified	name	will	look	similar	to
math.sqrt()	or	math.sin().

While	the	second	version	also	imports	the	math	module,	it	only	introduces	the	given
names	into	the	global	namespace.	These	names	do	not	require	qualifiers.	We	can	use
sqrt()	and	sin()	as	if	they	were	built-in	functions.	The	math	module	object,	however,	is
not	available,	since	it	was	not	introduced	into	the	global	namespace.

An	import	happens	exactly	once.	Python	tracks	the	imported	modules	and	will	not	import
a	module	a	second	time.	This	allows	us	to	freely	import	modules	as	needed	without
worrying	about	the	order	or	other	obscure	dependencies	among	modules.

For	confirmation	of	this	one-time-only	rule	for	imports,	try	the	following:

>>>	import	this

>>>	import	this

The	behavior	the	second	time	is	different	because	the	module	has	already	been	imported
once.



Using	the	Python	Package	Index	–	PyPI
Many	developers	of	Python	modules	will	register	their	work	with	the	PyPI.	This	is	located
at	http://pypi.python.org/.	This	is	the	second	place	to	look	for	a	module	that	might	help
solve	a	particular	problem.

The	first	place	to	look	is	always	the	standard	library.

The	PyPI	web	page	has	a	handy	search	form	as	well	as	a	browser	that	shows	packages
organized	under	nine	different	metadata	variables.	In	many	cases,	a	book	or	blog	post	may
provide	a	direct	path	like	this:	https://pypi.python.org/pypi/Sphinx/1.3b2.	This	ensures	that
the	proper	version	can	be	downloaded	and	installed.

There	are	three	common	ways	to	download	and	install	software	from	the	PyPI:

Using	pip
Using	easy_install
Manually

Generally,	we’ll	use	tools	such	as	pip	or	easy_install	for	almost	all	of	our	installations.
Once	in	a	while,	however,	we	may	need	to	resort	to	a	manual	installation.

Some	modules	may	involve	binary	extensions	to	Python.	These	are	generally	C-language-
sources,	so	they	must	be	compiled	to	be	useful.	For	Windows—where	C	compilers	are
rare—it’s	often	necessary	to	find	an	.msi	installer	that	includes	prebuilt	binaries.	For	Mac
OS	X	and	Linux,	the	C	source	may	be	compiled	as	part	of	the	installation	process.

In	the	case	of	large,	complex	numeric	and	scientific	packages—specifically,	numpy	and
scipy—the	build	process	can	become	quite	complex:	generally,	more	complex	than	pip	or
easy_install	can	handle.	There	are	many	additional	high-performance	libraries	for	these
packages;	the	builds	include	modules	in	FORTRAN	as	well	as	C.	In	this	case,	a	prebuilt
OS-specific	distribution	is	used;	pip	isn’t	part	of	the	process.

Installing	additional	packages	will	require	administrator	privileges.	Consequently,	we’ll
show	the	sudo	command	as	a	reminder	that	this	is	required	for	Mac	OS	X	and	Linux.
Windows	users	can	simply	ignore	the	presence	of	the	sudo	command.

Using	pip	to	gather	modules
The	pip	program	is	part	of	Python	3.4.	It’s	an	add-on	for	Python3.	To	use	pip	to	install	a
package,	we	generally	use	a	command	such	as	the	following:

prompt$	sudo	pip3.4	install	some-package

For	Mac	OS	X	or	Linux,	we	need	to	use	the	sudo	command	so	that	we	have	administrator
privileges.	Windows	users	will	leave	this	off.

The	pip	program	will	search	PyPI	for	the	package	named	some-package.	The	installed
Python	version	and	OS	information	will	be	used	to	locate	the	latest-and-greatest	version
that’s	appropriate	for	the	platform.	The	files	will	be	downloaded,	and	the	Python	setup.py
file	that	comes	with	the	package	will	be	run	automatically	to	install	it.

http://pypi.python.org/
https://pypi.python.org/pypi/Sphinx/1.3b2


For	Mac	OS	X	and	Linux	users,	it’s	helpful	to	note	that	the	version	of	Python	that	is
required	by	the	OS	doesn’t	usually	have	pip	configured.	A	Mac	OS	X	user	with	the	built-
in	Python	2.7	and	Python	3.4	can	generally	use	the	default	pip	command	without	any
problems	because	there	won’t	be	a	version	of	pip	configured	for	Python	2.

In	the	case	where	someone	has	Python	3.3	and	Python	3.4,	and	has	installed	pip	for
Python	3.3,	they	will	have	to	choose	which	version	they	want	to	work	with.	Using	the
commands	pip3.3	or	pip3.4	will	use	one	of	the	pip	commands	configured	for	the	given
version	of	Python.	The	default	pip	command	may	link	to	whichever	version	was	installed
last-something	we	shouldn’t	guess	at.

The	pip	program	has	a	number	of	additional	features	to	uninstall	packages	and	track
which	packages	have	been	added	to	the	initial	Python	installation.	The	pip	program	can
also	create	installable	packages	of	your	new	creation.

Using	easy_install	to	add	modules
The	easy_install	package	is	also	part	of	Python	3.4.	It’s	a	part	of	the	setuptools
package.	We	use	easy_install	like	this	to	install	a	package:

prompt$	sudo	easy_install-3.3	some_package

For	Mac	OS	X	or	Linux,	we	need	to	use	the	sudo	command	so	that	we	have	administrator
privileges.	Windows	users	will	leave	this	off.

The	easy_install	program	is	similar	to	pip—it	will	search	PyPI	for	the	package	named
some-package.	The	installed	Python	version	and	OS	information	will	be	used	to	locate	a
version	that’s	appropriate	for	the	platform.	The	files	will	be	downloaded.	One	of	these
files	is	the	setup.py	script;	this	will	be	run	automatically	to	finish	the	installation.

Installing	modules	manually
In	rare	cases,	we	may	have	a	package	that	isn’t	in	the	PyPI	and	can’t	be	located	by	pip	or
easy_install.	In	this	case,	we	generally	have	a	two-	or	three-step	installation	process:

1.	 Download:	We	need	to	securely	download	the	package.	In	many	cases,	we	can	use
https	or	ftps	so	that	secure	sockets	are	used.	In	case	we	can’t	secure	the	connection,
we	may	have	to	check	md5	signatures	on	the	files	to	be	sure	that	our	download	is
complete	and	unaltered.

2.	 Unpack:	If	the	Python	packages	are	compressed	into	a	single	ZIP	or	TAR	file,	we
need	to	unzip	or	untar	the	downloaded	file	into	a	temporary	directory.

3.	 Set	up:	Many	Python	packages	designed	for	manual	installation	include	a	setup.py
file	that	will	do	the	final	installation.	We’ll	need	to	run	a	command	like	this:

sudo	python3	setup.py	install

This	sequence	of	steps,	including	the	final	command,	is	what	is	automated	by	pip	and
easy_install.	We’ve	shown	the	Mac	OS	X	and	Linux	use	of	the	sudo	command	to	assure
that	administrator	privileges	are	available.	Windows	users	will	simply	leave	this	off.

The	setup.py	script	uses	Python’s	distutils	package	to	define	what	must	be	installed



into	the	Python	library	directory	structure.	The	install	option	states	what	we	want	to	do
with	the	package	we	downloaded.	Most	of	the	time,	we’re	going	to	install,	so	this	is	one	of
the	most	common	options.

In	rare	exceptions,	a	package	may	consist	of	a	single	module	file.	There	may	not	be	a
setup.py	file.	In	this	case,	we	will	manually	copy	the	file	to	our	own	site-packages
directory.





Looking	at	other	Python	interpreters
This	book	will	focus	on	a	particular	implementation	of	Python	called	the	CPython.	What
this	means	is	that	Python—the	abstract	language—can	be	processed	by	a	variety	of
concrete	Python	runtimes	or	implementations.	The	CPython	implementation	is	written	in
portable	C	and	can	be	recompiled	for	many	operating	systems.

Python	can	be	embedded	into	an	application.	This	means	that	a	complex	application	can
include	the	entire	Python	language	as	a	way	to	write	scripts	that	customize	the	given
application.	One	example	of	this	is	the	Ganglia	monitoring	system
(http://ganglia.sourceforge.net).	Python	is	part	of	the	system;	we	can	customize	the
behavior	using	Python	scripts	that	will	interact	with	Ganglia	components.	We	won’t	be
looking	more	deeply	into	these	kinds	of	applications	in	this	book;	we’ll	focus	on
standalone	implementations	of	Python.

There	are	several	alternative	Python	implementations.	In	the	Installing	Python	on
Windows	section	in	this	chapter,	we	noted	that	Iron	Python	(http://ironpython.net)	and
PTVS	(http://pytools.codeplex.com)	are	available.	These	provide	tighter	integration	with
the	.NET	framework.

There	are	still	more	implementations	that	we	might	encounter:

Jython:	This	is	a	version	of	the	Python	interpreter	that	is	written	in	Java	and	runs	on
the	Java	Virtual	Machine	(JVM).	See	http://www.jython.org.	This	project	focuses	on
Python	2.7.
PyPy:	This	is	a	version	of	the	Python	interpreter	written	in	Python.	See
http://pypy.org.	The	circularity	of	“Python	written	in	Python”	is	broken	by	the
RPython	translation	toolchain,	which	creates	a	very	sophisticated	implementation	of
Python	programs.	This	can	provide	significant	performance	improvements	for	a
variety	of	long-running	applications,	such	as	web	servers.
Stackless:	This	version	of	Python	has	a	different	threading	model	from	CPython.	See
http://www.stackless.com.	This	version	can	provide	dramatic	performance
improvements	for	multithreaded	servers.

Since	the	Python	source	is	readily	available,	it’s	quite	easy	to	look	for	optimization
opportunities.	The	language	is	relatively	simple,	allowing	experimentation	to	see	what
effect	changes	in	implementation	may	have.

http://ganglia.sourceforge.net
http://ironpython.net
http://pytools.codeplex.com
http://www.jython.org
http://pypy.org
http://www.stackless.com




Summary
We’ve	looked	at	installing	or	upgrading	Python	so	that	we	can	work	with	version	3.3	or
3.4,	and	we’ve	looked	briefly	at	the	minor	differences	between	Windows,	Mac	OS	X,	and
Linux.	The	principle	difference	among	the	OS	variants	is	that	Windows	lacks	Python,
whereas	Mac	OS	X	and	Linux	generally	have	a	version	of	Python	already	installed.	There
are	few	other	differences	among	the	operating	systems.

We’ve	looked	at	some	basic	interactions	using	the	REPL.	We	looked	at	some	simple
expressions	and	the	built-in	help()	subsystem.

We’ve	looked	at	some	ways	that	the	import	statement	extends	the	basic	capabilities	of	our
Python	runtime	environment,	and	we’ve	also	introduced	the	larger	Python	ecosystem.	We
can	add	to	our	Python	library	using	the	pip	(and	easy_install)	tool.	The	PyPI	is	the
central	repository	for	most	of	the	Python	extension	modules.

In	the	next	chapter,	we’ll	look	at	Python’s	numeric	types	in	detail.	Python	numbers	form	a
kind	of	“tower”	that	follows	the	mathematical	notions	of	integer,	rational,	real,	and
complex	numbers.	We’ll	look	at	the	mathematical	operators	and	some	of	the	standard
libraries	for	working	with	numbers.

We’ll	also	look	at	some	of	the	more	complex	data	types	available,	including/alongside
specific	tuples,	strings,	and	frozensets.	These	are	relatively	simple	because	they	are
immutable.	As	is	the	case	with	ordinary	numbers,	the	values	of	these	more	complex
objects	don’t	change	either.





Chapter	2.	Simple	Data	Types
Now	we’ll	look	at	a	number	of	data	types	that	are	built-in	as	well	as	some	that	are	part	of
Python’s	standard	library.	We’ll	start	with	Python’s	numeric	types.	These	include	three
built-in	types:	int,	float,	and	complex,	plus	the	standard	library	types	Fraction	and
Decimal.

We’ll	also	look	at	strings,	str,	and	simple	collections,	tuple.	These	are	more	complex
than	numbers	because	they	contain	multiple	items.	Since	their	behavior	is	less	complex
than	the	kinds	of	objects	we’ll	see	in	later	chapters,	they	serve	as	a	good	introduction	to
the	general	concept	of	sequences	in	Python.

Note	the	capitalization	of	the	names	of	Fraction	and	Decimal.	The	built-in	type	names
start	with	a	lowercase	letter.	Types	that	we	must	import	have	a	module	name	that	starts
with	a	lowercase	letter,	but	the	type	name	starts	with	a	capital	letter.	This	convention	is
widespread,	but	not	universal.

All	of	the	types	we’ll	look	at	in	this	chapter	have	the	common	feature	of	immutability.
This	concept	applies	to	the	two	collections	we’ll	look	at:	once	built,	a	string	or	a	tuple
cannot	be	changed.	Rather	than	change	it,	we	create	a	new	object.	In	Chapter	6,	More
Complex	Data	Types,	we’ll	look	at	collections	which	can	be	updated	without	creating	a
new	object.

In	this	chapter,	we’ll	look	at	the	built-in	functions	for	converting	to	and	from	string
representations.	This	will	help	us	when	displaying	output	or	converting	input	from	a	string
to	a	useful	Python	object.

Note	that	we’re	continuing	to	play	fast	and	loose	with	formal	Python	syntax.	We’ll	defer	a
detailed	examination	of	the	syntax	rules	until	Chapter	3,	Expressions	and	Output.	For	now,
the	kinds	of	simple	expression	statements	we’re	focusing	on	must	be	restricted	to	a	single
line.



Introducing	the	built-in	operators
Before	looking	at	the	various	kinds	of	numbers	available,	we’ll	introduce	the	Python
operators.	The	operators	fall	into	three	broad	groups:

Group Operators

Arithmetic +,	-,	*,	**,	/,	//,	%

Bit-oriented <<,	>>,	&,	|,	^,	~

Comparison <,	>,	<=,	>=,	==,	!=

The	differences	between	these	groups	are	partly	subjective.	There’s	only	a	small	technical
difference	in	the	way	the	comparison	operators	work.	Most	of	the	operators	are	binary,
only	one	(~)	is	unary,	and	a	few	(+,	-,	*,	**)	can	be	used	in	either	context.

The	+,	-,	*,	/,	and	%	operators	have	meanings	similar	to	those	used	other	programming
languages.	There	is	an	arithmetic	meaning	for	–	and	+.	Python	adds	the	**	operator	when
raising	a	number	to	a	power.	The	**	operator	takes	higher	precedence	than	the	unary	form
-;	this	means	that	-2**4	is	-16.

Bit-oriented	operators	apply	only	to	integers.	They	also	apply	to	sets.	These	are
emphatically	not	logical	operators.	The	actual	logical	operators	are	described	in	Chapter	5,
Logic,	Comparisons,	and	Conditions.



Making	comparisons
The	comparison	operators	(<,	>,	==,	!=,	<=,	>=)	have	meanings	similar	to	those	used	in
other	programming	languages.	The	coercion	rules	apply	to	comparisons	between	numbers.
If	the	objects	are	of	mixed	types,	one	of	them	will	be	coerced	“up”	the	numeric	tower
from	integer	to	float,	or	float	to	complex.	The	result	of	a	comparison	is	a	Boolean	(True	or
False)	irrespective	of	the	types	of	the	two	operands.

The	various	coercion	rules	do	not	apply	to	strings	or	other	objects.	Strings	are	not
implicitly	converted	to	numbers.	2	!=	'2'	is	true	because	the	integer	2	is	not	a	string	'2'.

Some	popular	languages	(for	example,	Java,	C++)	have	primitive	types	such	as	int	or
long	which	are	not	proper	objects—they’re	not	instances	of	a	class—and	the	rules	that
apply	to	objects	do	not	apply	to	them.	Java	allows	the	==	comparison	for	int	objects,	but
using	the	same	comparison	operator	with	string	objects	doesn’t	compare	the	characters	of
the	two	strings,	it	only	compares	the	references.	This	is	emphatically	not	the	case	with
Python.	All	Python	objects	are	proper	instances	of	a	class:	the	==	comparison	in	Python
strings	compares	the	two	strings	character	by	character.

We’ll	look	at	comparisons	in	more	detail	in	Chapter	5,	Logic,	Comparisons,	and
Conditions.



Using	integers
Python	integers	are	objects	of	the	class	int.	These	objects	have	the	largest	number	of
operators,	including	all	of	the	arithmetic,	bit-oriented,	and	comparison	operators.

Integer	values	are	limited	by	available	memory.	This	means	they	can	be	quite	large.	We
can	easily	compute	1,000!,	a	number	with	over	2,500	digits.	We’ll	save	the	details	for
Chapter	8,	More	Advanced	Functions.	A	number	of	similarly	gargantuan	size	is:

>>>	2**8530

610749…581824

This	is	a	very	large	number.	We’ve	elided	most	of	it.	It’s	easily	represented	in	Python.

Generally,	we	provide	integer	literals	in	decimal,	base	10.	We	can	also	write	literals	in
three	other	bases:	hexadecimal,	octal,	and	binary.

The	prefix	of	0x	is	the	prefix	for	base	16	values:	0x10	is	16.	We	can	use	the	letters	a-f,	as
is	typical	in	many	other	programming	languages;	0xdeadbeef	is	valid.	The	prefix	0o	(zero
and	the	letter	o)	is	used	for	base	eight;	try	to	avoid	using	the	maliciously	confusing	0O
(zero	and	capital	O)	for	octal	values,	for	example,	0o33653337357.	We	can	write	base	two
literal	values	using	the	0b	prefix:	0b10	is	2.	The	most	common	use	case	for	non-decimal
numbers	is	providing	hexadecimal	values	for	an	array	of	bytes,	and	this	is	relatively	rare.

Using	the	bit-oriented	operators
Bit-oriented	operators	are	defined	for	integers.	They’re	not	defined	for	complex	or
floating-point	objects.

The	<<	and	>>	operators	perform	bit	shifting.	1	<<	8,	for	example,	is	256.	We’ve	shifted
the	value	1	to	the	left	8	bit	positions.

The	&,	|,	and	^	operators	compute	the	bitwise	“and”,	bitwise	“or”,	and	bitwise	“xor”	of
two	integer	values.	Here	are	some	examples:

>>>	9	&	5

1

>>>	9	|	5

13

>>>	9	^	3

10

To	visualize	these	operators,	we	can	use	the	bin()	function	to	see	the	binary	values
involved.

>>>	bin(9)

'0b1001'

>>>	bin(5)

'0b101'

Using	the	bin()	function	can	clarify	how	the	bits	of	9|5	combine	to	create	the	bits	of	13.
The	~	operator	is	the	bitwise	two’s	complement	of	an	integer	value.	~14,	for	example,	is
-15.	These	are	emphatically	not	logical	operators.	Logical	operators	are	described	in



Chapter	5,	Logic,	Comparisons,	and	Conditions.

Tip
Do	not	confuse	a	&	b	with	a	and	b:

a	&	b	computes	a	bitwise	“and”	of	the	bits	in	the	integers	a	and	b.
a	and	b	computes	the	Boolean	“and”	based	on	the	truth	values	of	a	and	b.



Using	rational	numbers
Rational	numbers	are	fractions	composed	of	two	integer	values.	Python	doesn’t	have	a
built-in	rational	number	type.	We	must	import	the	Fraction	class	using	this:

>>>	from	fractions	import	Fraction

This	will	introduce	the	Fraction	class	definition	to	our	global	environment.	Once	we	have
this,	we	can	create	objects	of	the	class	Fraction	as	follows:

>>>	Fraction(355,113)

Fraction(355,	113)

Arithmetic	and	comparison	operators	apply	to	fractions.	When	doing	mixed-type
expressions,	fractions	fit	into	the	numeric	tower	above	integers	and	below	floating-point
values.	Here’s	an	example	of	an	integer	coerced	to	a	fraction:

>>>	Fraction(4,2)*3

Fraction(6,	1)

Performing	an	operation	that	involves	a	Fraction	value	and	an	int	value	requires	that	the
int	object	is	coerced	up	to	the	Fraction	class.

We	can	extract	the	numerator	and	denominator	of	a	fraction	using	their	attribute	names.
Here’s	an	example:

>>>	a=	Fraction(355,113)*5

>>>	a.numerator

1775

>>>	a.denominator

113

We’ve	created	a	Fraction	object,	a,	from	an	expression	involving	a	Fraction	object	and
an	integer.	We’ve	then	extracted	the	numerator	and	denominator	attributes	of	the	variable
a.



Using	decimal	numbers
For	currency	calculations,	we	generally	use	Decimal	numbers.	Python	doesn’t	have	a
built-in	decimal	number	type.	We	import	the	Decimal	class	using	this:

>>>	from	decimal	import	Decimal

This	will	introduce	the	Decimal	class	definition	to	our	global	environment.	We	can	now
create	Decimal	objects.	It’s	important	to	avoid	accidentally	mixing	Decimal	and	float
values,	because	float	values	are	only	an	approximation.	To	be	sure	that	Decimal	values
are	exact,	we	must	use	only	integers	or	strings.

>>>	Decimal("2.72")

Decimal('2.72')

We’ve	created	a	Decimal	value	from	a	string.	The	resulting	Decimal	object	will	represent
this	exactly,	carefully	preserving	the	appropriate	decimal	places	and	rounding	up	or	down
as	required.	For	common	financial	calculations,	Decimal	is	required.	Here’s	an	example:

>>>	(Decimal('512.97')+Decimal('5.97'))*Decimal('0.075')

Decimal('38.92050')

We’ve	added	two	prices,	$512.97	and	$5.97	and	computed	a	sales	tax	of	7.5%.	The	tax	is
$38.92050,	to	be	precise.	This	is	generally	rounded	to	$38.92.

If	we	try	this	kind	of	financial	calculation	with	floating-point	values,	we	have	a	bit	of	a
problem:

>>>	(512.97+5.97)*0.075

38.920500000000004

The	floating-point	approximations	don’t	produce	an	exact	answer.

Python	coercion	rules	work	well	with	Decimal	and	int	values.	We	can	calculate
Decimal('3.99')*3	and	get	Decimal('11.97')	as	the	answer.

The	coercion	rules	aren’t	implemented	by	the	Decimal	and	float	classes.	It	might	make
some	sense	for	Decimal	values	to	be	coerced	up	to	float	values.	On	the	other	hand,	this
might	indicate	a	profound	programming	error	when	mixing	exact	currency	values	and
floating-point	approximations.	Since	this	is	ambiguous,	and	debatable,	the	general
approach	followed	by	Python	is	summarized	by	this	line	from	Tim	Peters’	The	Zen	of
Python:

In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.

Consequently,	mixing	Decimal	and	float	leads	to	TypeError	exceptions	instead	of
following	coercion	up	the	numeric	tower	and	switching	from	exact	to	approximate	values.
We	must	explicitly	convert	Decimal	to	float	to	do	mixed-type	expressions.



Using	floating-point	numbers
Floating-point	values	are	instances	of	the	class	float.	These	objects	work	with	arithmetic
and	comparison	operators.	They	don’t	participate	in	the	bit-oriented	operators.

The	details	of	Python	floating-point	implementations	can	vary.	CPython	depends	on	the
standard	C	libraries,	which	should	provide	reasonably	consistent	results	on	a	wide	variety
of	hardware	and	OS	platforms.	C	libraries	generally	use	IEEE	754	floating-point	values;
Python’s	float	type	is	the	C	language	double.	This	means	that	a	float	will	be	a	64-bit
value	with	(effectively)	a	53-bit	fraction	and	an	11-bit	exponent.	The	exponent	range	is
from	 to	 .

We	can	write	floating-point	numbers	two	ways:	as	digits	with	a	decimal	point,	as	well	as
in	“scientific”	notation:

>>>	6335.437

6335.437

>>>	6.335437E3

6335.437

The	E	notation	shows	a	power	of	10.	That	means	6.335437E3	is	 .

It’s	very	important	to	note	that	floating-point	values	are	an	approximation.	We	can’t
emphasize	enough	that	they’re	not	exact	and	should	not	be	used	for	currency	calculations.
Here’s	an	example	of	what	happens	when	working	with	floating-point	approximations:

>>>	(5**6)**(1/6)

4.999999999999999

This	should	not	be	surprising	in	any	way.	Mathematically,	 .	Since	values	like	1/6
don’t	have	exact	binary	representations,	this	kind	of	expression	reveals	the	consequences
of	working	with	approximations.

The	fact	that	floating-point	numbers	use	a	binary	representation	leads	to	interesting
complications.	A	number	such	as	1/6	has	no	exact	decimal	representation;	we	can	use
.1666…	to	indicate	that	the	decimal	positions	repeat	infinitely.	However,	a	number	such	as
1/5	has	an	exact	decimal	representation,	0.2.	Neither	of	these	numbers	has	an	exact	binary
representation.	Since	we	must	use	a	finite	number	of	bits,	we’ll	notice	slight	discrepancies
between	idealized	values	and	the	finite	values	produced	on	a	digital	computer.

Note	that	exact	equality	comparisons	between	floating-point	numbers,	while	permitted,	is
generally	not	a	good	idea.	In	Chapter	5,	Logic,	Comparisons,	and	Conditions,	we’ll
address	how	to	use	a	narrow	range	instead	of	exact	equality.	Instead	of	a	==	b,	we	need	to
focus	on	abs(a-b)	<	ε.



Using	complex	numbers
The	top	of	Python’s	number	tower	is	of	the	complex	type.	It	can	be	thought	of	as
expressions	built	from	a	pair	of	floating-point	numbers:	one	is	a	real	value,	the	other	is	an

imaginary	value.	The	imaginary	value	is	multiplied	by	 .	We	write	(2+3j)	to	mean

.

When	working	with	complex	numbers,	we	often	import	the	cmath	library	instead	of	the
math	library.	The	math.sqrt()	function	is	constrained	to	work	only	with	float	values,
and	will	raise	an	exception	rather	than	provide	an	imaginary	value.	The	cmath.sqrt()
function	will	provide	a	proper	imaginary	value,	if	required.

This	library	shows	us	that	 	is	essentially	true:

>>>	cmath.e**(cmath.pi*1j)+1

1.2246467991473532e-16j

Note	that	we	used	1j	to	represent	 .	If	we	try	to	use	the	identifier	j	(without	a
number	in	front	of	it)	it	is	seen	as	a	simple	variable.	The	value	1j	is	a	complex	literal
because	it	starts	with	a	digit	and	ends	with	j.

Since	floating-point	values	have	about	53	bits,	which	is	about	16	decimal	digits,	we	can

expect	float	approximations	of	irrational	values	like	π	and	e	to	be	off	by	about	 .





The	numeric	tower
We’ve	seen	Python’s	three	built-in	numeric	types:	int,	float,	complex,	plus	two	more
types—Fraction	and	Decimal—imported	from	the	standard	library.	The	numbers	module
in	the	standard	library	provides	four	base	class	definitions	for	the	numeric	types.	We	rarely
need	to	use	this	module	explicitly;	it’s	a	convention	that	we	need	when	we	have	to
implement	our	own	numeric	types.

The	numeric	types	form	a	kind	of	“tower”	that	parallels	the	various	kinds	of	numbers	seen
in	conventional	mathematics.	The	foundation	of	the	tower	is	integers.	Rational	numbers
are	above	integers.	Floating-point	values	are	still	further	up,	and	complex	numbers	are	at
the	top	of	the	tower.

A	common	expectation	is	that	a	language	will	automatically	coerce	numeric	values	to
permit	expressions	such	as	2*2.718	to	work	properly	and	produce	a	useful	result.	When
multiplying	an	integer	by	a	float	value,	we	expect	integers	to	be	coerced	to	a	floating-point
value.

In	order	for	this	to	work,	there	are	two	general	rules	applied	to	the	result	of	a	binary
arithmetic	operation:

If	both	operands	are	of	the	same	type,	the	result	has	that	type.	For	example,	2	**
1024	does	not	produce	a	floating-point	result.	It	produces	an	immense	integer.
If	the	operands	are	mixed,	one	of	them	will	be	coerced	“up”	the	numeric	tower	from
integer	→	rational	→	floating-point	→	complex.

There	is	one	notable	exception	to	the	preceding	rules.	The	/	and	//	operators	define	two
different	kinds	of	division.	The	/	operator	provides	true	division:	even	integer	operands
will	yield	a	floating-point	result.	For	example:

>>>	355/113

3.1415929203539825

The	//	operator	provides	floor	division:	the	result	will	be	truncated	as	if	it	were	an
integer-only	division.	The	resulting	type	won’t	be	coerced,	but	the	answer	will	be
truncated.	For	example:

>>>	355./113.

3.1415929203539825

>>>	355.//113.

3.0

The	presence	of	the	//	operator	means	that	an	expression	which	is	designed	with	integers
in	mind	will	also	work	correctly	with	floating-point	values.	Similarly,	we	may	write	an
expression	with	an	informal	expectation	of	floating-point	values;	by	using	/,	it	will	also
work	with	integers.

Note	that	these	coercion	rules	for	numeric	types	do	not	apply	to	strings	or	other	objects.
Strings	are	not	implicitly	converted	to	numbers.	The	expression	'2'+2	results	in	a
TypeError	exception.	We’ll	look	at	explicit	conversions	later,	in	the	Using	the	built-in



conversion	functions	section.

The	tower	metaphor	provides	a	handy	way	to	remember	the	coercion	rules.	Given	two
values	from	different	levels,	the	lower-level	value	is	coerced	up	the	tower	to	the	higher-
level	values.





The	math	libraries
The	Python	library	has	six	modules	relevant	to	mathematical	work.	These	are	described	in
Chapter	9,	Numeric	and	Mathematical	Modules,	of	the	Python	Standard	Library
document.	Beyond	this,	we	have	external	libraries	such	as	NumPy
(http://www.numpy.org)	and	SciPy	(http://www.scipy.org).	These	libraries	include	vast
collections	of	sophisticated	algorithms.	For	an	even	more	sophisticated	toolset,	the
Anaconda	project	(https://store.continuum.io/cshop/anaconda/)	combines	NumPy,	SciPy,
and	18	more	packages.

These	are	the	relevant	built-in	numeric	packages:

numbers:	This	module	defines	the	essential	numeric	abstractions.	We	rarely	need	this
unless	we’re	going	to	invent	an	entirely	new	kind	of	number.
math:	This	module	has	a	large	collection	of	functions.	It	includes	basic	sqrt(),	the
various	trigonometric	functions	(sine,	cosine,	and	so	on)	and	the	various	log-related
functions.	It	has	functions	for	working	with	the	internals	of	floating-point	numbers.	It
also	has	the	gamma	function	and	the	error	function.
cmath:	This	module	is	the	complex	version	of	the	math	library.	We	use	the	cmath
library	so	that	we	can	seamlessly	move	between	float	and	complex	values.
decimal:	Import	the	Decimal	class	from	this	module	to	work	with	currency	values
accurately.
fractions:	Import	the	Fraction	class	to	work	with	a	precise	rational	fraction	value.
random:	This	module	contains	the	essential	random	number	generator.	It	has	a
number	of	other	functions	to	produce	random	values	in	various	ranges	or	with
various	constraints.	For	example	random.gauss()	produces	a	Gaussian,	normal
distribution	of	floating-point	values.

The	three	main	ways	of	importing	from	these	libraries	are	as	follows:

import	random:	We	use	this	when	we	want	to	be	perfectly	explicit	about	the	origin	of
a	name	elsewhere	in	our	code.	We’ll	be	writing	code	similar	to	random.gauss()	and
random.randint()	using	the	module	name	as	an	explicit	qualifier.
from	random	import	gauss,	randint:	This	introduces	two	selected	names	from	the
random	module	into	the	global	namespace.	We	can	use	gauss()	and	randint()
without	a	qualifying	module	name.
from	random	import	*:	This	will	introduce	all	of	the	available	names	in	the	random
module	as	globals	in	our	application.	This	is	helpful	for	exploring	and	experimenting
at	the	>>>	prompt.	This	may	not	be	appropriate	in	a	larger	program	because	it	can
introduce	a	large	number	of	irrelevant	names.

A	less-commonly	used	feature	allows	us	to	rename	objects	brought	in	via	the	import
statement.	We	might	want	to	use	from	cmath	import	sqrt	as	csqrt	to	rename	the
cmath.sqrt()	function	to	csqrt().	We	have	to	be	careful	to	avoid	ambiguity	and
confusion	when	using	this	import-as	renaming	feature.

http://www.numpy.org
http://www.scipy.org
https://store.continuum.io/cshop/anaconda/




Using	bits	and	Boolean	values
As	noted	earlier,	the	bit-oriented	operators	&,	|,	^,	and	~	have	nothing	to	do	with	Python’s
actual	Boolean	operators	and,	or,	not,	and	if-else.	We’ll	look	at	Boolean	values,	logic
operators,	and	related	programming	in	Chapter	5,	Logic,	Comparisons,	and	Conditions.

If	we	misuse	the	bit-oriented	operators	&	or	|	in	place	of	a	logical	and	or	or,	things	may
appear	very	peculiar:

>>>	5	>	6	&	3	>	1

True

>>>	(5	>	6)	&	(3	>	1)

False

The	first	example	is	clearly	wrong.	Why?	This	is	because	the	&	operator	has	relatively
high	priority.	It’s	not	a	logical	connective,	it’s	more	like	an	arithmetic	operator.	The	&
operator	is	performed	first:	6&3	evaluates	to	2.	Given	this,	the	resulting	expression,	5	>	2
>	1,	is	True.

When	we	group	the	comparisons	to	perform	them	first,	we’ll	get	a	False	for	5>6,	and	a
True	for	3>1.	When	we	apply	the	&	operator	the	result	will	be	False,	which	is	what	we
expected.	Using	bit	operators	inappropriately	as	logical	connectives	can	work	if	we	use
parentheses	to	be	sure	that	the	bit	operators	are	performed	last.	It’s	a	very	bad	idea,
however.

It’s	easier,	clearer,	and	altogether	better	to	use	the	proper	Boolean	operators	shown	in
Chapter	5,	Logic,	Comparisons,	and	Conditions.





Working	with	sequences
In	this	chapter,	we’ll	introduce	Python	sequence	collections.	We’ll	look	at	strings	and
tuples	as	the	first	two	examples	of	this	class.	Python	offers	a	number	of	other	sequence
collections;	we’ll	look	at	them	in	Chapter	6,	More	Complex	Data	Types.	All	of	these
sequences	have	common	features.

Python	sequences	identify	the	individual	elements	by	position.	Position	numbers	start	with
zero.	Here’s	a	tuple	collection	with	five	elements:

>>>	t=("hello",	3.14,	23,	None,	True)

>>>	t[0]

'hello'

>>>	t[4]

True

In	addition	to	the	expected	ascending	numbers,	Python	also	offers	reverse	numbering.
Position	-1	is	the	end	of	the	sequence:

>>>	t[-1]

True

>>>	t[-2]

>>>	t[-5]

'hello'

Note	that	position	3	(or	-2)	has	a	value	of	None.	The	REPL	doesn’t	display	the	None	object,
so	the	value	of	t[-2]	appears	to	be	missing.	For	more	visible	evidence	that	this	value	is
None,	use	this:

>>>	t[3]	is	None

True

The	sequences	use	an	extra	comparison	operator,	in.	We	can	ask	if	a	given	value	occurs	in
a	collection:

>>>	"hello"	in	t

True

>>>	2.718	in	t

False



Slicing	and	dicing	a	sequence
We	can	extract	a	subsequence,	called	a	slice,	from	a	sequence	using	more	complex
subscript	expressions.	Here’s	a	substring	of	a	longer	string:

>>>	"multifaceted"[5:10]

'facet'

The	[5:10]	expression	is	a	slice	which	starts	at	position	5	and	extends	to	the	position
before	10.	Python	generally	relies	on	“half-open”	intervals.	The	starting	position	of	a	slice
is	included	whereas	the	stop	position	is	excluded.

We	can	omit	the	starting	position	from	a	slice,	writing	[:pos].	If	the	start	value	of	a	slice
is	omitted,	it’s	0.	We	can	omit	the	ending,	also,	writing	it	as	[pos:].	If	the	stop	value	of	a
slice	is	omitted,	it’s	the	length	of	the	sequence,	given	by	the	len()	function.

The	way	that	Python	uses	these	half-open	intervals	means	that	we	can	partition	a	string
with	very	tidy	syntax:

>>>	"multifaceted"[:5]

'multi'

>>>	"multifaceted"[5:]

'faceted'

In	this	example,	we’ve	taken	the	first	five	characters	in	the	first	slice.	We’ve	taken
everything	after	the	first	five	characters	in	the	second	slice.	Since	the	numbers	are	both
five,	we	can	be	completely	sure	that	the	entire	string	is	accounted	for.

And	yes,	we	can	omit	both	values	from	the	slice:	"word"[:]	will	create	a	copy	of	the
entire	string.	This	is	an	odd	but	sometimes	useful	construct	for	duplicating	an	object.

There’s	a	third	parameter	to	a	slice.	We	generally	call	the	positions	start,	stop,	and	step.
The	step	size	is	1	by	default.	We	can	use	a	form	such	as	"abcdefg"[::2]	to	provide	an
explicit	step,	and	pick	characters	in	positions	0,	2,	4,	and	6.	The	form	"abcdefg"[1::2]
will	pick	the	odd	positions:	1,	3,	and	5.

The	step	size	can	also	be	negative.	This	will	enumerate	the	index	values	in	reverse	order.
The	value	of	"word"[::-1]	is	'drow'.





Using	string	and	bytes	values
Python	string	values	are	similar—in	some	respects—to	simple	numeric	types.	There	are	a
few	arithmetic-like	operators	available	and	all	of	the	comparisons	are	defined.	Strings	are
immutable:	we	cannot	change	a	string.	We	can,	however,	easily	build	new	strings	from
existing	strings,	making	the	mutability	question	as	irrelevant	for	string	objects	as	it	is	for
number	objects.	Python	has	two	kinds	of	string	values:

Unicode:	These	strings	use	the	entire	Unicode	character	set.	These	are	the	default
strings	Python	uses.	The	input-output	libraries	are	all	capable	of	a	wide	variety	of
Unicode	encoding	and	decoding.	The	name	for	this	type	is	str.	It’s	a	built-in	type,	so
it	starts	with	a	lowercase	letter.
Bytes:	Many	file	formats	and	network	protocols	are	defined	over	bytes,	not	Unicode
characters.	Python	uses	ASCII	encoding	for	bytes.	Special	arrangements	must	be
made	to	process	bytes.	The	internal	type	name	is	bytes.

We	can	easily	encode	Unicode	into	a	sequence	of	bytes.	We	can	just	as	easily	decode	a
sequence	of	bytes	to	see	the	Unicode	characters.	We’ll	show	these	two	methods	in	the
Converting	between	Unicode	and	bytes	section,	after	we’ve	looked	at	literals	and
operators.



Writing	string	literals
String	literals	are	characters	surrounded	by	string	delimiters.	Python	offers	a	variety	of
string	delimiters	to	solve	a	variety	of	problems.	The	most	common	literals	create	Unicode
strings:

Short	string:	Use	either	"	or	'	to	surround	the	string.	For	example:	"Don't	Touch"
has	an	embedded	apostrophe.	'Speak	"friend"	and	enter'	has	embedded	quotes.
In	the	rare	cases	where	we	have	both,	we	can	use	\	to	avoid	a	quote:	'"Don\'t
touch,"	he	said.'	uses	apostrophes	as	delimiters,	and	an	escaped	apostrophe
within	the	string.	While	a	string	literal	must	be	complete	on	a	single	line,	a	'\n'	will
expand	into	a	proper	newline	character	internally.
Long	string:	Use	either	"""	or	'''	to	surround	a	multi-line	string.	The	string	can
span	as	many	lines	as	necessary.	A	long	string	can	include	any	characters	except	for
the	terminating	triple-quote	or	triple-apostrophe.

Python	has	a	moderate	number	of	\	escape	sequences	to	allow	us	to	enter	characters	that
aren’t	possible	from	a	keyboard.	If	we	use	ordinary	str	literals,	Python	replaces	all	the
escape	sequences	with	proper	Unicode	characters.	In	an	ordinary	bytes	literal,	each
escape	sequence	becomes	a	one-byte	ASCII	character.

Many	Python	programs	are	saved	as	pure	ASCII	text,	but	this	is	not	a	requirement.	When
saving	a	file	in	ASCII,	escapes	will	be	required	for	non-ASCII	Unicode	characters.	When
saving	files	in	Unicode,	then	relatively	few	escapes	are	required,	since	any	Unicode
character	available	on	our	keyboard	can	be	entered	directly.	Here	are	two	examples	of	the
same	string:

>>>	"String	with	π×r²"

>>>	"String	with	\u03c0\u00d7r\N{superscript	two}"

The	first	string	uses	Unicode	characters;	the	file	must	be	saved	in	the	appropriate
encoding,	such	as	UTF-8,	for	this	to	work.	The	second	string	uses	escape	sequences	to
describe	the	Unicode	characters.	The	\u	sequence	is	followed	by	a	four-digit	hex	value.
The	\N{...}	escape	allows	the	name	of	the	character.	A	\U	escape—not	shown	in	the
example—requires	an	8-digit	hex	value.	The	second	example	can	be	saved	in	any
encoding,	including	ASCII.

The	most	commonly-used	escape	sequences	are	\",	\',	\n,	\t,	and	\\	to	create	a	quote
inside	a	quoted	string,	an	apostrophe	inside	an	apostrophe	delimited	string,	a	newline,	a
tab,	and	a	\	character.	There	are	a	few	others,	but	their	meanings	are	so	obscure	that
numeric	codes	usually	make	more	sense.	For	example,	\v,	should	probably	be	written	as
\x0b	or	\u000b;	the	original	meaning	behind	\v	is	largely	lost	to	history.

Note	that	'\u000b'	is	replaced	by	the	actual	Unicode	character.	We	also	have	'\u240b'

which	is	a	Unicode	glyph,	‘ ‘,	that	symbolizes	that	vertical	tab	character.	Most	of	the
non-printing	ASCII	control	characters	also	have	these	symbolic	glyphs.



Using	raw	string	literals
Sometimes,	we	need	to	provide	strings	in	which	the	\	character	is	not	an	escape	character.
When	preparing	regular	expressions,	for	example,	we	prefer	not	be	forced	to	write	\\	to
represent	a	single	\	character.	Similarly,	when	working	with	Windows	filenames,	we	don’t
want	"C:\temp"	to	have	an	ASCII	horizontal	tab	character	('\u0008')	replace	the	'\t'
sequence	of	characters	in	the	middle	of	the	string	literal.	We	could	write	"C:\\temp"	but	it
seems	error-prone.

To	avoid	this	escape	processing,	Python	offers	the	raw	string.	We	can	prefix	any	of	the
previous	four	flavors	of	delimiters	with	the	letter	r	or	R.	For	example,	r'\b[a-zA-
Z_]\w+\b',	is	a	raw	string.	The	\	characters	will	be	left	intact	by	Python:	the	‘\b‘
sequences	are	not	translated	to	‘\u0008‘	characters.

If	we	do	this	without	using	the	r"	character	as	the	raw	string	delimiter,	we’ll	create	a	string
literal	equivalent	to	this:	'\x08[a-zA-Z_]\\w+\x08'.	This	shows	how	a	‘\b‘	characters
are	transformed	to	‘\x08‘	in	a	non-raw	string.	Omitting	the	leading	r'	leads	to	a	string	that
does	not	represent	the	regular	expression	we	intended.



Using	byte	string	literals
We	may	need	to	include	byte	strings	in	our	programs	as	well	as	Unicode	strings.	In	order
to	do	this,	we	use	a	prefix	of	b	or	B	in	front	of	the	string	delimiter.	A	byte	string	is	limited
to	ASCII	characters	and	escape	sequences	that	produce	single-byte	ASCII	characters.

Generally,	byte	strings	focus	on	the	hexadecimal	escape,	\xhh,	with	two	hex	digits	for
byte	strings.	We	can	also	use	the	octal	escape,	\odd,	with	octal	digits.

We	can	also	prepare	raw	byte	strings	using	any	combination	of	r	or	R	paired	with	b	or	B	as
a	prefix	to	the	string.	Here’s	a	regular	expression	in	ASCII	bytes:

>>>	rb"\\x[0-9a-fA-F]+"

b'\\\\x[0-9a-fA-F]+'

The	output	is	in	Python’s	canonical	notation	using	lengthy	escapes	for	the	‘\\‘	regular
expression	pattern.

To	be	fastidious,	we	are	also	able	to	use	a	u"	prefix	to	indicate	that	a	given	string	is
explicitly	Unicode.	This	is	relatively	rare	because	it	restates	the	default	assumption.	It	can
come	in	handy	in	a	program	where	byte	strings	predominate;	the	use	of	u"some	string"
can	make	the	Unicode	literal	stand	out	from	numerous	b"bytes"	literals.



Using	the	string	operators
Two	of	the	arithmetic	operators,	+	and	*,	are	defined	for	both	classes	of	string	objects,	str
and	bytes.	We	can	use	the	+	operator	to	concatenate	two	string	objects,	creating	a	longer
string.	Interestingly,	we	can	use	the	*	operator	to	multiply	a	string	and	an	integer	to	create
a	longer	string:	"="*3	is	'==='.

Additionally,	adjacent	string	literals	are	combined	into	a	larger	string	during	code	parsing.
Here’s	an	example:

>>>	"adjacent	"	'literals'

'adjacent	literals'

Since	this	happens	at	parse	time,	it	only	works	for	string	literals.	For	variables	or	other
expressions,	there	must	be	a	proper	+	operator.

All	of	the	comparison	operators	work	for	strings.	The	comparison	operators	compare	two
strings,	character	by	character.	We’ll	look	at	this	in	detail	in	Chapter	5,	Logic,
Comparisons,	and	Conditions.

We	cannot	use	string	operators	with	mixed	types	of	operands.	Using	"hello"	+	b"world"
will	raise	a	TypeError	exception.	We	must	either	encode	the	Unicode	str	into	bytes,	or
decode	the	bytes	into	a	Unicode	str	object.

Strings	are	sequence	collections.	We	can	extract	characters	and	slices	from	them.	Strings
also	work	with	the	in	operator.	We	can	ask	if	a	particular	character	or	a	substring	occurs	in
a	string	like	this:

>>>	"i"	in	"bankrupted"

False

>>>	"bank"	in	"bankrupted"

True

The	first	example	shows	the	typical	use	for	the	in	operator:	checking	to	see	if	a	given	item
is	in	the	collection.	This	use	of	in	applies	to	many	other	kinds	of	collections.	The	second
example	shows	a	feature	that	is	unique	to	strings:	we’re	looking	for	a	given	substring	in	a
longer	string.



Converting	between	Unicode	and	bytes
Most	of	the	Python	I/O	libraries	are	aware	of	OS	file	encodings.	When	working	with	text
files,	we	rarely	need	to	explicitly	provide	encoding.	We’ll	examine	the	details	of	Python’s
input-output	capabilities	in	Chapter	10,	Files,	Databases,	Networks,	and	Contexts.

When	we	need	to	encode	Unicode	characters	as	a	string	of	bytes,	we	use	the	encode()
method	of	a	string.	Here’s	an	example:

>>>	'String	with	π×r²'.encode("utf-8")

b'String	with	\xcf\x80\xc3\x97r\xc2\xb2'

We’ve	provided	a	literal	Unicode	string,	and	encoded	this	into	UTF-8	bytes.	Python	has
numerous	encoding	schemes,	all	defined	in	the	codecs	module.

To	decode	the	Unicode	string	represented	by	a	string	of	bytes,	we	use	the	decode()
method	of	the	bytes.	Here’s	an	example:

>>>	b'very	\xe2\x98\xba\xef\xb8\x8e'.decode('utf-8')

'very	☺'

We’ve	provided	a	byte	string	with	eleven	individually	hex-encoded	bytes.	We	decoded	this
to	include	six	Unicode	characters.

Note	that	there	are	several	aliases	for	the	supported	encodings.	We’ve	used	"utf-8"	and
"UTF-8".	There	are	still	more	explained	in	the	codecs	chapter	of	the	Python	Standard
Library.

The	ASCII	codec	is	the	most	commonly	used	of	these.	In	addition	to	ASCII,	many	strings
and	text	files	are	encoded	in	UTF-8.	When	downloading	data	from	the	Internet,	there’s
often	a	header	or	other	indicator	that	provides	the	encoding,	in	the	rare	case	that	it’s	not
UTF-8.

In	some	cases,	we	have	a	document	which	in	bytes,	written	in	traditional	ASCII.	To	work
with	ASCII	files,	we	convert	the	bytes	from	the	ASCII	encoding	to	Unicode	characters.
Similarly,	we	can	encode	a	subset	of	Unicode	characters	using	the	ASCII	encoding	instead
of	UTF-8.

It’s	possible	that	a	given	sequences	of	bytes	does	not	properly	encode	Unicode	characters.
This	may	be	because	the	wrong	encoding	was	used	to	decode	the	bytes.	Or	it	could	be
because	the	bytes	are	incorrect.	The	decode()	method	has	additional	parameters	to	define
what	to	do	when	the	bytes	cannot	be	decoded.	The	values	for	the	errors	argument	are
strings:

"strict"	means	that	exceptions	are	raised.	This	is	the	default.
"ignore"	means	that	invalid	bytes	will	be	skipped.
"replace"	means	that	a	default	character	will	be	inserted.	This	is	defined	in	the
codecs	module.	The	'\ufffd'	character	is	the	default	replacement.

The	choice	of	error	handling	is	highly	application-specific.



Using	string	methods
A	string	object	has	a	large	number	of	method	functions.	Most	of	these	apply	both	to	str
and	bytes	objects.	These	can	be	separated	into	four	groups:

Transformers:	which	create	new	strings	from	old	strings
Creators:	which	create	a	string	from	a	non-string	object(s)
Accessors:	which	access	a	string	and	return	a	fact	about	that	string
Parsers:	which	examine	a	string	and	decompose	the	string,	or	create	new	data
objects	from	the	string

The	transformer	group	of	method	functions	includes	capitalize(),	center(),
expandtabs(),	ljust(),	lower(),	rjust(),	swapcase(),	title(),	upper(),	and	zfill().
These	methods	all	make	general	changes	to	the	characters	of	a	string	to	create	a
transformed	result.	Methods	such	as	lower()	and	upper()	are	used	frequently	to
normalize	case	for	comparisons:

>>>	"WoRd".lower()

'word'

Using	this	technique	allows	us	to	write	programs	which	are	more	tolerant	of	character
strings	with	minor	errors.

Additional	transformers	include	functions	such	as	strip(),	rstrip(),	lstrip(),	and
replace().	The	functions	in	the	strip	family	remove	whitespace.	It’s	common	to	use
rstrip()	on	input	lines	to	remove	any	trailing	spaces	and	the	trailing	newline	character
which	might	be	present.

The	replace()	function	replaces	any	substring	with	another	substring.	If	we	want	to	do
multiple	independent	replacements,	we	can	do	something	like	this.

>>>	"$12,345.00".replace("$","").replace(",","")

'12345.00'

This	will	create	an	intermediate	string	with	the	“$”	removed.	It	will	create	a	second
intermediate	string	from	that	with	the	,	character	removed.	This	kind	of	processing	is
handy	for	cleaning	up	raw	data.



Accessing	the	details	of	a	string
We	use	accessor	methods	to	determine	facts	about	the	string;	the	results	may	be	Boolean
or	integer	values.	For	example,	the	count()	method	returns	a	count	of	the	number	of
places	an	argument	substring	or	character	was	found	in	the	object	string.

Some	widely-used	methods	include	the	find(),	rfind(),	index(),	and	rindex()
methods	which	will	find	the	position	of	a	substring	in	the	object	string.	The	find()
methods	return	a	special	value	of	-1	if	the	substring	isn’t	found.	The	index()	methods
raise	a	ValueError	exception	if	the	substring	isn’t	found.	The	“r”	versions	find	the	right-
most	occurrence	of	the	target	substring.	All	of	these	methods	are	available	for	both	str
and	bytes	objects.

The	endswith()	and	startswith()	methods	are	Boolean	functions;	they	examine	the
beginning	or	ending	of	a	string.	Here	are	some	examples:

>>>	"pleonastic".endswith("tic")

True

>>>	"rediscount".find("disc")

2

>>>	"postlaunch".find("not")

-1

The	first	example	shows	how	we	can	check	the	ending	of	a	string	with	the	endswith()
method.	The	second	example	shows	how	the	find()	method	locates	the	offset	of	a	given
substring	in	a	longer	string.	The	third	example	shows	show	the	find()	method	returns	a
signal	value	of	-1	if	the	substring	can’t	be	found.

Additionally,	there	are	seven	Boolean	pattern-matching	functions.	These	are	isalnum(),
isalpha(),	isdigit(),	islower(),	isspace(),	istitle(),	and	isupper().	These	will
return	True	if	the	function	matches	a	given	pattern.	For	example,	"13210".isdigit()	is
True.



Parsing	strings	into	substrings
There	are	a	few	method	functions	which	we	can	use	to	decompose	a	string	into	substrings.
We’ll	hold	off	on	looking	at	split(),	join(),	and	partition()	in	detail	until	Chapter	3,
Expressions	and	Output.

As	a	quick	overview,	we’ll	note	that	split()	splits	a	string	into	a	sequence	of	strings
based	on	locating	a	possibly	repeating	separator	substring.	We	might	use	an	expression
such	as	'01.03.05.15'.split('.')	to	create	the	sequence	['01',	'03',	'05',	'15']
from	the	longer	string,	by	splitting	on	the	‘.‘	character.	The	join()	method	is	the	inverse
of	split().	That	means	that	"-".join(['01',	'03',	'05',	'15'])	will	create	a	new
string	from	the	individual	strings	and	the	separator;	the	result	is	'01-03-05-15'.	The
partition	can	be	viewed	as	a	single-item	split	to	separate	the	head	of	a	string	from	the	tail.

Python’s	assignment	statement	deals	very	gracefully	with	such	a	method	that	returns	more
than	one	value.	In	Chapter	4,	Variables,	Assignment	and	Scoping	Rules,	we’ll	look	at
multiple	assignment	more	closely.

The	split()	method	should	not	be	used	to	parse	filenames,	nor	should	the	join()	method
be	used	to	build	filenames.	There’s	a	separate	module,	os.path,	which	handles	this
properly	by	applying	OS-specific	rules.





Using	the	tuple	collection
The	tuple	is	one	of	the	simplest	collections	available	in	Python.	It	is	one	of	the	many
kinds	of	Python	sequences.	A	tuple	has	a	fixed	number	of	items.	For	example,	we	might
work	with	(x,	y)	coordinates	or	(r,	g,	b)	colors.	In	these	cases,	the	number	of	elements	in
each	tuple	is	fixed	by	the	problem	domain.	We	don’t	want	the	flexibility	of	a	collection
that	can	vary	in	length.

Generally,	we’ll	include	()	around	a	tuple	to	set	it	apart	from	the	surrounding	syntax.
This	isn’t	always	required;	Python	creates	tuple	objects	implicitly	in	some	common
contexts.	However,	it	is	always	a	good	idea.	If	we	write	an	assignment	statement	like	this:

a	=	2,	3

This	statement	will	implicitly	create	a	2-tuple,	(2,	3),	and	assign	the	object	to	the
variable	a.

The	tuple	class	is	part	of	Python’s	family	of	Sequence	classes;	we	can	extract	the	items	of
a	tuple	using	their	positional	indices.	The	str	and	byte	classes	are	also	examples	of
Sequence.	In	addition	to	simple	index	values,	we	can	use	slice	notation	to	pick	items	from
a	tuple.

The	value	()	is	a	zero-length	tuple.	To	create	a	singleton	tuple,	we	must	use	()	and
include	a	,	character:	this	means	that	(12,)	is	a	singleton	tuple.	If	we	omit	the	,	character
we’ve	written	an	expression,	not	a	singleton	tuple.

A	trailing	comma	is	required	for	a	singleton	tuple.	An	extra	comma	at	the	end	of	a	tuple	is
quietly	ignored	everywhere	else:	(1,	1,	2)	is	equal	to	(1,	1,	2,).

The	tuple	class	offers	only	two	method	functions:	count()	and	index().	We	can	count
the	number	of	occurrences	of	a	given	item	in	a	tuple,	and	we	can	locate	the	position	of	an
item	in	a	tuple.





The	None	object
One	very	simple	kind	of	Python	object	is	the	None	object.	It	has	few	methods,	and	there’s
only	a	single	instance	of	this	object	available.	It	is	a	handy	way	to	identify	something	as
missing	or	not	applicable.	It’s	often	used	as	a	default	value	for	optional	parameters	to	a
function.

The	None	object	is	a	singleton;	there	can	be	only	one.	This	object	is	immutable:	we	can’t
change	it	in	any	way.

With	the	interactive	use	of	Python,	the	REPL	doesn’t	print	the	None	object.	For	example,
when	we	evaluate	the	print()	function,	the	proper	result	of	this	function	is	always	None.
The	side-effect	of	this	function	is	to	print	things	on	our	console.	Looking	forward	to
Chapter	3,	Expressions	and	Output,	we’ll	give	this	quick	example	of	a	function	that
returns	None:

>>>	a	=	print("hello	world")

hello	world

>>>	a

>>>	a	is	None

True

We’ve	evaluated	the	print()	function	and	saved	the	result	of	the	print	function	in	the	a
variable.	The	visible	side-effect	of	printing	is	to	see	the	string	value	displayed	on	the
console.	The	result	is	the	None	object,	which	is	not	printed.	We	can,	however,	use	the	is
comparison	operator	to	see	that	the	value	of	a	really	is	the	None	object.





The	consequences	of	immutability
Python	has	two	broad	flavors	of	objects:	mutable	and	immutable.	A	mutable	object	has	an
internal	state	that	can	be	updated	by	using	operators	or	method	functions.	An	immutable
object’s	state	cannot	be	changed.

The	canonical	examples	of	immutable	objects	are	the	numbers.	The	number	2	must	always
have	a	single,	immutable	value	midway	between	1	and	3.	We	can’t	change	the	state	of	2	to
make	it	3	without	making	a	mockery	of	the	idea	of	mathematical	truth.

In	Chapter	6,	More	Complex	Data	Types,	we’ll	look	at	a	number	of	mutable	data
structures.	The	most	important	three	mutable	collections	are	set,	list,	and	dict.	These
objects	can	have	items	added,	and	removed;	we	can	change	the	state	of	the	object.

In	addition	to	numbers	being	immutable,	three	other	common	structures	are	also
immutable:	str,	bytes,	and	tuple.	Because	strings	and	bytes	are	immutable,	the	string
manipulation	methods	will	always	create	a	new	string	object	from	one	or	more	existing
string	objects.

This	means	we	cannot	mutate	characters	or	substrings	within	a	longer	string.	We	might
think	we	need	to	attempt	something	like	this:

>>>	word="vokalizers"

>>>	word[2]=	"c"

But	this	can’t	work	because	a	string	object	is	immutable.	We	always	build	new	strings
from	the	old	string’s	parts.	We	do	it	like	this:

>>>	word=	word[:2]+"c"+word[3:]

This	works	by	extracting	pieces	of	the	original	string	and	including	new	characters	mixed
with	the	old.





Using	the	built-in	conversion	functions
We	have	a	number	of	conversion	functions	in	the	various	types	of	data	we’ve	seen	in	this
chapter.	Each	of	the	built-in	numeric	types	has	a	proper	constructor	function.	As	with
many	Python	functions,	each	of	these	has	a	number	of	different	kinds	of	arguments	it	can
handle:

int():	Creates	an	int	from	a	wide	variety	of	other	objects

int(3.718)	for	another	number
int('48879')	for	a	string	in	base	10
int('beef',	16)	for	a	string	in	the	given	base—16	in	this	example
The	int()	function	can	ignore	the	extra	prefix	characters	on	numbers	written	in
Python	literal	syntax:	int('0b1010',2),	int('0xbeef',16),	and
int('0o123',8)

float():	Creates	a	float	from	other	objects

float(7331)	for	another	number
float('4.8879e5')	for	a	decimal	string

complex():	Creates	complex	values	from	a	variety	of	objects

complex(23)	creates	(23+0j)
complex(23,	3)	creates	(23+3j)
complex('23+2j')	creates	(23+2j)

We	can	convert	single	numbers,	pairs	of	numbers,	and	even	some	strings	into	Fraction
objects:

Fraction(2,3):	This	is	the	most	common	way	to	create	Fraction	objects.
Fraction(2.718):	This	creates	a	value	Fraction(765048986699563,
281474976710656).	This	shows	how	floating-point	values	are	actually
approximations.	If	we	wanted	a	more	accurate	value,	we	should	do	a	meaningful
conversion	ourselves,	using	Fraction(2718,1000),	which	would	avoid	the	error	bits
present	in	many	floating-point	values.
Fraction("3/4"):	This	also	works	very	nicely	to	create	a	proper	Fraction	object.

When	we	convert	a	float	value	to	a	Fraction,	the	results	look	unusual.	However,
considering	that	float	values	are	an	approximation,	the	Fraction	value	reveals	the	nature
of	the	approximation.

We	can	also	convert	integers,	strings,	and	floats	to	Decimal	objects:

Decimal(2):	Interestingly,	this	produces	Decimal('2')	as	the	result.	This	shows	us
that	the	preferred	format	for	Decimal	values	is	strings.
Decimal('2.718'):	This	will	produce	the	expected	value.	This	is	generally	how	we
create	Decimal	objects.
Decimal(2.718):	This	will	produce	a	value	that	reflects	floating-point
approximations:



Decimal('2.717999999999999971578290569595992565155029296875').	Because	of
this,	we	generally	avoid	creating	Decimal	objects	from	float	objects.

We	have	a	number	of	additional	conversions	from	numbers	to	various	kinds	of	strings:
bin(),	oct(),	hex(),	and	str()	produce	strings	in	base	2,	8,	16,	and	10	respectively.	We
can	also	use	various	formatting	features	of	numbers	using	"{0:b}".format(x)	for	binary,
"{0:o}".format(x)	for	octal,	and	"{0:x}".format(x)	for	hexadecimal.	If	we	include	the
“#”	modifier	in	the	format	string,	we	have	considerable	flexibility	in	the	strings	produced.
For	example:

>>>	"{0:x}".format(12)

'c'

>>>	"{0:#x}".format(12)

'0xc'

These	functions	show	many	different	ways	to	create	numbers	from	strings	and	create
formatted	strings	from	numbers.





Summary
We’ve	looked	at	some	core	data	types	available	in	Python.	We’ve	looked	at	five	different
kinds	of	numbers,	including	integers,	floating-point,	complex,	Fraction	and	Decimal.
Each	fills	a	different	niche.	Three	of	these	are	built-in,	the	other	two	must	be	imported
from	the	standard	library.

We’ve	also	looked	at	three	different	kinds	of	collections.	The	tuple	is	a	simple	sequence
of	items	with	relatively	few	methods.	str	is	a	Unicode	string,	which	has	several	methods
for	creating	new	strings	as	transformations	of	existing	strings.	bytes	is	a	byte	string,
which	also	has	a	variety	of	methods.	We	can	decode	bytes	to	create	Unicode	strings.	We
can	encode	Unicode	strings	into	bytes.

We’ve	touched	on	how	the	import	statement	is	used	to	introduce	new	types	and	new
modules.	This	will	add	features	from	the	standard	library.

We’ve	also	looked	at	a	number	of	functions	to	convert	various	numeric	types.	Many	of
these	functions	also	convert	strings	to	numbers.	We’ll	make	heavy	use	of	int()	and
float()	to	convert	strings	to	numbers.	The	reverse—converting	numbers	to	strings—can
be	done	with	the	str()	function.	It	can	be	done	better,	however,	with	the	formatting	tools
we’ll	look	at	in	the	next	chapter.

In	Chapter	3,	Expressions	and	Output,	we’ll	build	on	these	basic	concepts.	We’ll	look	in
more	depth	at	Python	language	syntax.	We’ll	also	look	at	functions	for	creating	nicely
formatted	output.	This	will	allow	us	to	write	simple	programs.	In	Chapter	4,	Variables,
Assignment	and	Scoping	Rules,	we’ll	add	even	more	essential	language	features	so	that	we
can	write	more	sophisticated	programs.





Chapter	3.	Expressions	and	Output
Expressions	are	central	to	Python	programming.	As	noted	in	Chapter	1,	Getting	Started,
Python	has	a	rich	collection	of	operators	and	built-in	functions.	In	this	chapter,	we’ll
summarize	the	relationship	between	data	types	and	the	operators	they	support.

Perhaps	the	most	fundamental	program	possible	is	one	that	performs	a	calculation	and
displays	output.	To	demonstrate	this,	we’ll	look	at	the	print()	function	in	this	chapter.
We’ll	expand	on	the	basics	by	looking	at	a	number	of	ways	to	produce	nicely-formatted
text	output.

We’ll	need	to	look	in	detail	at	the	Python	syntax	rules.	This	will	be	essential	for	writing
scripts	with	more	complex	sequences	of	statements.	It	will	also	set	the	stage	for	looking	at
compound	statements	in	Chapter	5,	Logic,	Comparisons,	and	Conditions.

This	chapter	will	also	demonstrate	some	additional	string	processing	techniques.	We’ll
summarize	some	of	the	standard	library	modules	that	are	focused	on	string	processing.
We’ll	look	closely	at	the	re	module;	we	use	this	to	build	regular	expressions	that	help
parse	string	input.	Between	the	built-in	methods	of	the	str	class,	and	the	re	module,	we
can	handle	a	wide	variety	of	text	input	conversion.



Expressions,	operators,	and	data	types
Python	expressions	are	built	from	operators	and	operands.	In	Chapter	2,	Simple	Data
Types,	we	introduced	some	of	the	basics	of	number	and	string	operands,	and	looked	at	the
variety	of	operators.	We’ll	summarize	the	details	here	so	that	we	can	address	some
additional	operator	features.

Our	numeric	operands	form	a	“tower”,	with	types	including:

Type Cardinality Number	of	operators

complex

Ideally,	the	most	distinct	values	built	from
a	pair	of	irrational	numbers,	∞×∞.

Actually	(float	×	float)	or	about	
values.

The	fewest	operators;	only	arithmetic,	some	built-in
functions,	and	the	cmath	module.

float

Ideally	this	is	a	rational	number	union
with	irrational	numbers	(∞+∞).

Actually	closer	to	 	distinct	values.

Arithmetic	operators,	comparisons.	Many	additional
math	modules	and	built-in	functions.

fractions.Fraction

Ideally,	these	are	rational	numbers	(∞×∞).

Actually	only	limited	by	available
memory	to	represent	two	integers.

Arithmetic	operators,	comparisons,	built-in
functions.

decimal.Decimal
Ideally,	rational	numbers.

Actually	only	limited	by	memory
Arithmetic	operators,	comparisons,	built-in
functions.

int
Ideally,	natural	numbers,	∞.

Actually	limited	only	by	memory.
Arithmetic	operators,	comparisons,	plus	bit-handling
operators,	libraries	and	built-in	functions.

The	Fraction	and	Decimal	class	definitions	must	be	imported,	the	other	three	classes	are
built-in.	We	typically	use	a	statement	such	as	from	fractions	import	Fraction.

The	idea	behind	the	tower	is	that	many	arithmetic	operators	coerce	operands	up	the	tower
from	integer	to	float	to	complex.	Most	of	the	time,	this	fits	with	our	implicit	mathematical
expectations.	We	would	be	unhappy	if	we	had	to	write	explicit	conversions	to	compute
2.333*3.	Python’s	arithmetic	rules	assure	us	that	we’ll	get	the	expected	floating-point
result.

The	Decimal	class	doesn’t	fit	well	with	the	implicit	coercion	rules:	in	the	rare	case	of
trying	to	do	arithmetic	between	float	and	Decimal,	it’s	unclear	how	to	go	about	it.	An
attempt	to	make	a	Decimal	value	from	a	float	value	will	expose	tiny	errors	because
float	values	are	an	approximation.	An	attempt	to	make	a	float	value	from	a	Decimal
value	subverts	the	Decimal	objective	of	yielding	exact	results.	In	the	face	of	this
ambiguity,	an	exception	will	be	raised.	This	means	that	we’ll	need	to	write	explicit
conversions.

String	objects	are	not	implicitly	coerced	into	numeric	values.	We	must	explicitly	convert	a



string	to	a	number.	The	int(),	float(),	complex(),	Fraction(),	and	Decimal()
functions	convert	a	string	to	a	number	object	of	the	appropriate	class.

We	can	group	operators	into	a	number	of	categories.

Arithmetic:	+,	-,	*,	**,	/,	//,	%
Bit-oriented:	<<,	>>,	&,	|,	^,	~
Comparison:	<,	>,	<=,	>=,	==,	!=

The	bit-oriented	operators	are	supported	by	operands	of	the	int	class.	The	other	number
classes	don’t	have	useful	implementations	of	these	operators.	The	bit-oriented	operators
are	also	defined	for	sets,	something	we’ll	look	at	in	Chapter	6,	More	Complex	Data	Types.



Using	operators	on	non-numeric	data
We	can	apply	some	of	the	arithmetic	operators	to	strings,	bytes,	and	tuples.	The	results	are
focused	on	creating	larger	strings	or	larger	tuples	from	smaller	pieces.	Here	are	some
examples	of	this:

>>>	"Hello	"	+	"world"

'Hello	world'

>>>	"<+>"*4

'<+><+><+><+>'

>>>	"<+>"*-2

''

In	the	first	example,	we	applied	+	to	two	strings.	In	the	second	example,	we	applied	*
between	a	str	and	an	int.	Interestingly,	Python	produces	a	string	result	by	concatenating
several	copies	of	the	original	string	object.	Multiplying	by	any	negative	number	creates	a
zero-length	string.





The	print()	function
When	working	with	Python’s	REPL,	we	can	enter	an	expression	and	Python	prints	the
result.	In	other	contexts,	we	must	use	the	print()	function	to	see	results.	The	print()
function	implicitly	writes	to	sys.stdout,	so	the	results	will	be	visible	on	the	console
where	we	ran	the	Python	script.

We	can	provide	any	number	of	expressions	to	the	print()	function.	Each	value	is
converted	to	a	string	using	the	repr()	function.	The	strings	are	combined	with	a	default
separator	of	'	'	and	printed	with	a	default	line	ending	of	'\n'.	We	can	change	the
separator	and	line	ending	characters.	Here	are	some	examples	of	this:

>>>	print("value",	355/113)

value	3.1415929203539825

>>>	print("value",	355/113,	sep='=')

value=3.1415929203539825

>>>	print("value",	355/113,	sep='=',	end='!\n')

value=3.1415929203539825!

We’ve	printed	a	string	and	the	floating-point	result	of	an	expression.	In	the	second
example,	we	changed	the	separator	string	from	a	space	to	'='.	In	the	third	example,	we
changed	the	separator	string	to	'='	and	the	end-of-line	string	to	'!\n'.

Note	that	the	sep	and	end	parameters	must	be	provided	by	name;	these	are	called
keyword	arguments.	Python	syntax	rules	require	that	keyword	argument	values	are
provided	after	all	of	the	positional	arguments.	We’ll	examine	the	rules	in	detail	in	Chapter
7,	Basic	Function	Definitions.

We	can	use	,	as	a	separator	to	create	simple	comma-separated	values	(CSV)	files.	We
can	also	use	\t	to	create	a	kind	of	CSV	file	with	a	tab	character	as	the	column	separator.
The	csv	library	module	does	an	even	more	complete	job	of	CSV	formatting,	specifically
including	proper	escapes	or	quoting	for	data	items	which	contain	the	separator	character.

To	write	to	the	standard	error	file,	we’ll	need	to	import	the	sys	module,	where	that	object
is	defined.	For	example:

import	sys

print("Error	Message",	file=sys.stderr)

We’ve	imported	the	sys	module.	This	contains	definitions	of	sys.stderr	and	sys.stdout
for	the	standard	output	files.	By	using	the	file=	keyword	parameter,	we	can	direct	a
specific	line	of	output	to	the	stderr	file	instead	of	the	default	of	stdout.

This	can	work	well	in	a	script	file.	Using	the	standard	error	file	doesn’t	look	very
interesting	at	the	REPL	prompt	since,	by	default,	both	standard	output	and	standard	error
go	to	the	console.	Some	IDE’s	will	color-code	the	standard	error	output.	We’ll	look	at
many	ways	to	open	and	write	to	other	files	in	Chapter	10,	Files,	Databases,	Networks,	and
Contexts.





Examining	syntax	rules
There	are	nine	fundamental	syntax	rules	in	section	2.1	of	the	Python	Language	Reference.
We’ll	summarize	those	rules	here:

1.	 There	are	two	species	of	statements:	simple	and	compound.	Simple	statements	must
be	complete	on	a	single	logical	line.	A	compound	statement	starts	with	a	single
logical	line	and	must	contain	indented	statements.	The	initial	clause	of	a	compound
statement	ends	with	a	:	character.	It’s	possible,	using	rules	5	and	6,	to	join	a	number
of	physical	lines	together	to	create	a	single	logical	line.

Here’s	a	typical	simple	statement,	complete	in	a	single	logical	line:

from	decimal	import	Decimal

Here’s	a	typical	compound	statement	with	a	nested	simple	statement,	spread
across	two	logical	lines:

if	a	>	b:

				print(a,	"is	larger")

2.	 A	physical	line	ends	with	\n.	In	Windows,	\r\n	is	also	accepted.
3.	 A	comment	starts	with	#	and	continues	to	the	end	of	the	physical	line.	It	will	end	the

logical	line.

Here’s	an	example	of	a	comment:

from	fractions	import	Fraction	#	We'll	use	this	to	improve	accuracy

4.	 A	special	comment	can	be	used	to	annotate	the	file	encoding.	This	is	generally	not
needed,	since	most	IDE’s	and	text	editors	handle	the	file	encoding	politely.	We
should	generally	save	Python	files	in	UTF-8	encoding.	Older	files	may	be	saved	in
ASCII.

5.	 Physical	lines	can	be	joined	explicitly	into	a	logical	line	using	the	\	as	an	escape
character	in	front	of	the	physical	end-of-line	character.	This	is	rarely	used	and
generally	discouraged.

6.	 Physical	lines	can	be	joined	implicitly	into	a	logical	line	using	(),	[],	or	{};	these
must	pair	properly	for	the	logical	line	to	be	complete.	An	expression	beginning	with
(	can	span	multiple	physical	lines	until	there	is	a	matching	).	This	is	used	frequently
and	is	strongly	encouraged.

Here’s	an	example	of	a	statement	that	relies	on	()	to	join	four	physical	lines	into
one	logical	line:

print	(

				"big	number",

				2	**	2048

)

7.	 Blank	lines	contain	only	spaces,	tabs	and	newlines.	The	interactive	REPL	uses	a
blank	line	to	end	a	compound	statement;	the	REPL	is	the	only	context	in	which	a



blank	line	is	meaningful.
8.	 Leading	whitespace	is	required	to	properly	group	statements	inside	the	clauses	of

compound	statements.	Either	spaces	or	tabs	can	be	used	to	indent.	Consistency	is
essential.	A	four	space	indent	is	widely	used	and	strongly	encouraged.

9.	 Except	at	the	beginning	of	the	line,—where	it	determines	nesting	of	compound
statements—whitespace	can	be	used	freely	between	tokens.	Note	that	there	are	some
preferences	regarding	precisely	how	spaces	are	used	within	a	statement;	the	Python
Enhancement	Proposal	(PEP)	number	8	provides	some	advice.	See
https://www.python.org/dev/peps/pep-0008/	for	fodder	for	endless	disputes.

Perhaps	the	most	important	two	rules	are	rule	6	and	rule	8.	Rule	6	means	that	it	is	very
common	to	use	(),	[],	and	{}	to	force	multiple	physical	lines	to	be	joined	into	a	single
logical	line.

Rule	8	requires	that	our	indentation	is	done	consistently:	indents	and	outdents	must	be
matched.	While	it’s	legal	to	use	tabs,	spaces,	and	any	haphazard—but	consistent—mix	of
tabs	and	spaces,	four	spaces	is	highly	recommended.	Tabs	are	discouraged	because	they’re
hard	to	distinguish	from	spaces.	Most	editors	can	be	set	to	replace	the	tab	key	with	four
spaces.	A	good	text	editor	can	recognize	the	basics	of	Python	syntax	and	can	handle
indents	and	outdents	gracefully.

Tip
Use	()	to	allow	a	statement	to	span	multiple	physical	lines;	avoid	\	at	end-of-line.

Use	a	four	space	indent.

Also	note	that	Python	will	merge	adjacent	strings	when	parsing	the	source.	We	can	have
code	that	looks	like	this:

>>>	message	=	("Hello"

...	"world")

>>>	message

'Helloworld'

This	assignment	statement	used	a	gratuitous	()	pair	to	allow	the	logical	line	to	span
multiple	physical	lines.	The	expression	is	simply	two	adjacent	strings,	"Hello"	and
"world".	When	Python	parses	the	source	text,	these	two	adjacent	strings	are	merged;	only
a	single	string	is	used	when	evaluating	the	statement.

Additionally,	note	that	the	REPL	prompt	changed	from	>>>	to	…	because	the	REPL
recognized	the	first	physical	line	as	a	partial	statement.	This	is	a	handy	reminder	that	our
statement	isn’t	complete.	When	the	final	)	was	parsed,	the	statement	was	complete	and	the
prompt	switched	back	to	>>>.

https://www.python.org/dev/peps/pep-0008/




Splitting,	partitioning,	and	joining	strings
In	Chapter	2,	Simple	Data	Types,	we	looked	at	different	processing	methods	for	a	string
object.	We	can	transform	a	string	into	a	new	string,	create	strings	from	non-string	data,
access	a	string	to	determine	properties	or	locations	within	the	string,	and	parse	a	string	to
decompose	it.

In	many	cases,	we	need	to	extract	elements	of	a	string.	The	split()	method	is	used	to
locate	repeating	list-like	structures	within	a	string.	The	partition()	method	is	used	to
separate	the	head	and	tail	of	a	string.

For	example,	given	a	string	of	the	form	"numerator=355,denominator=115"	we	can	use
these	two	methods	to	locate	the	various	names	and	values.	Here’s	how	we	can	decompose
this	complex	string	into	pieces:

>>>	text="numerator=355,denominator=115"

>>>	text.split(",")

['numerator=355',	'denominator=115']

>>>	items=	_

>>>	items[0].partition("=")

('numerator',	'=',	'355')

>>>	items[1].partition("=")

('denominator',	'=',	'115')

We’ve	used	the	split(",")	method	to	break	the	longer	string	on	each	,	character,
creating	a	list	object	which	has	two	substrings.	The	REPL	automatically	assigns	all
expression	results	to	a	variable	named	_.	We	assigned	the	object	to	the	items	variable
because	the	value	of	_	gets	overwritten	by	each	expression	statement.

We	used	the	partition("=")	method	on	each	item	in	the	items	variable	to	break	the
assignment	down	into	name,	=,	and	value.	A	more	complex	application	would	probably
perform	more	complex	processing	on	the	names	and	values.

The	join()	method	is	the	inverse	of	the	split()	method.	This	works	with	a	sequence	of
string	objects	to	create	a	single	long	string	from	many	smaller	strings.	Here’s	an	example
of	using	a	tuple	of	strings	to	create	a	longer	string:

>>>	options	=	("x",	"y",	"z")

>>>	"|".join(options)

'x|y|z'

We’ve	created	a	sequence	of	three	strings	and	assigned	it	to	a	variable	named	options.	We
then	used	the	string	"|"	to	join	the	items	in	the	options	sequence.	The	result	is	a	longer
string	with	the	items	separated	by	the	given	string.

The	split()	and	join()	methods	work	well	with	singletons.	If	we	try	to	split	a	single
item	with	no	punctuation,	we	get	a	sequence	with	a	single	item.	If	we	join	a	singleton
item,	the	separator	will	not	be	used.

Python’s	string	methods	give	us	the	tools	to	handle	a	variety	of	string	parsing	and
decomposition.	For	a	more	general	solution,	we’ll	have	to	resort	to	even	more	powerful



tools.	We’ll	look	at	the	regular	expression	module,	re,	later.

If	we	want	to	create	complex	strings,	we	use	the	format()	method.	We’ll	look	at	this	next.



Using	the	format()	method	to	make	more	readable
output
Sophisticated	string	creation	can	be	done	with	the	format()	method.	We	create	a	template
string	and	values	which	can	be	plugged	into	the	template.	Here’s	an	example	of	how	this
works:

>>>	c=42

>>>	"{0:d}°C	is	{1:.1f}°F".format(c,	32+9*c/5)

'42°C	is	107.6°F'

We’ve	created	a	variable,	c,	with	a	value	of	42.	We’ve	used	a	template,	"{0:d}°C	is
{1:.1f}°F",	to	format	two	values.	The	argument	value	with	an	index	of	0	is	c,	the
argument	value	with	an	index	of	1	is	the	value	of	the	expression	32+9*c/5.

The	template	string	includes	literal	characters,	plus	replacement	fields.	Each	replacement
field	is	surrounded	by	{}.	The	replacement	field	has	two	components	with	a	syntax	of
{index:specification}.	The	index	component	identifies	which	item	is	taken	from	the
positional	arguments	to	the	format()	method.	The	specification	component	shows	us	how
to	format	the	selected	object.

The	example	gives	two	specifications.	One	specification	is	the	character	d,	which	is	the
decimal	integer	conversion.	The	other	is	the	slightly	more	complex	.1f,	which	is	a
floating-point	conversion	with	one	digit	to	the	right	of	the	decimal	point.

There	is	considerable	sophistication	available	in	the	format	specifications.	There	are	eight
fields	to	a	format	specification.	The	syntax	gloss	looks	like	this:

[[fill]align][sign][#][0][width][,][.precision][type]

We’ve	surrounded	each	field	with	[]	to	group	the	names	visually.	Note	that	all	the	fields
are	actually	optional	and	have	default	values.

We’ll	summarize	the	fields	from	right	to	left	in	order	of	importance.

Type:	This	specifies	the	overall	type	of	conversion.	Depending	on	the	kind	of	Python
object,	there	are	a	number	of	type	codes	available:

For	string	values,	the	type	code	of	s	is	used.
For	integer	values,	type	codes	of	d,	n,	b,	o,	x,	or	X	can	be	used.	These	provide
decimal,	locale-aware	numbers,	binary,	octal,	or	hexadecimal	output.
For	float	values,	type	codes	are	e,	E,	f,	F,	g,	G,	n,	or	%.	The	e	formats	provide
explicit	exponents.	The	f	codes	show	float	values	with	no	exponent.	The	g
values	are	called	general	and	choose	e	or	f,	depending	on	the	size	of	the
number.	The	n	code	is	locale-aware,	using	the	locale	settings	for	floating-point
presentation.	The	%	multiplies	by	100	and	includes	the	%	symbol.

Precision:	The	.precision	value	is	only	used	for	floating-point	formats.	It’s	the
number	of	positions	to	the	right	of	the	decimal	point.
The	,	separator:	If	a	,	character	is	used,	then	US-style	,	as	1,000’s	separators	are



included.	This	isn’t	locale-aware,	so	it	can’t	be	overridden	by	the	OS	and	the	Python
locale	module.
Width:	If	omitted,	the	number	is	formatted	as	wide	as	necessary.	If	provided,	the
number	is	filled	out	to	this	width.	By	default,	the	fill	uses	leading	spaces,	but	this	can
be	changed	by	providing	values	for	the	fill	and	align	fields.
0:	This	forces	filling	to	the	required	width	with	leading	zeroes.	This	is	the	same	as	a
fill	and	align	of	0=.
#:	This	is	used	with	b,	o,	and	x	formatting	to	include	a	prefix	of	0b,	0o,	or	0x	in	front
of	the	number.
Sign:	By	default,	positive	numbers	have	no	sign	and	negative	numbers	have	a	leading
-.	Providing	a	sign	field	of	+	means	that	all	signs	are	shown	explicitly.	Providing	a
sign	field	of	-	means	that	an	extra	space	is	included	for	positive	numbers,	assuring
that	positive	and	negative	numbers	will	align	in	columns	when	printed	using	a	fixed-
width	font.
Fill	and	align:	This	fills	up	the	space	to	the	value	of	the	width	field.	If	we	provide
align	without	a	specific	fill	character,	the	default	character	is	a	space.	We	can’t
provide	a	fill	character	on	its	own,	though.	There	are	four	codes	we	can	use:

<	or	fill<	will	push	the	data	to	the	left,	and	the	filling	will	be	on	the	right.
>	or	fill>	will	push	the	data	to	the	right,	the	fill	character	will	be	used	on	the	left.
^	or	fill^	will	center	the	data,	filling	both	left	and	right.
=	or	fill=	will	put	the	sign	first,	and	the	fill	character	will	be	used	after	the	sign.
This	will	make	the	signs	more	prominent	in	a	column	of	numbers.

Here’s	an	example	that	uses	a	fairly	complex	format	specification:

>>>	amount=Decimal("234.56")

>>>	"Pay:	${0:*>10n}	dollars".format(amount)

'Pay:	$****234.56	dollars'

We’ve	created	an	object,	amount,	with	a	Decimal	value.	We	then	used	a	format
specification	of	*>10n	on	this	number.	This	used	leading	*	characters	to	fill	out	the
number	to	10	characters.





Summary	of	the	standard	string	libraries
Python’s	standard	library	offers	a	number	of	modules	with	additional	string	processing
features.

string:	The	string	module	contains	constants	that	decompose	the	ASCII	characters
into	letters,	numbers,	whitespace,	and	so	on.	It	contains	the	full	definition	of	the
formatter	that	is	used	by	the	str.format()	method.	We’ll	look	at	this	in	the	next
section.	It	also	contains	the	Template	class	which	defines	a	string	template	into
which	values	can	be	interpolated.
re:	The	regular	expression	library	allows	us	to	define	a	pattern	that	can	be	used	to
parse	input	strings.	We’ll	look	at	this	in	the	next	section.
difflib:	The	difflib	module	is	used	to	compare	sequences	of	strings,	typically
from	text	files.	There	are	a	number	of	comparison	algorithms	available	in	this
module.
textwrap:	We	can	use	the	textwrap	module	to	format	large	blocks	of	text.
unicodedata:	The	unicodedata	module	provides	functions	for	determining	what
kind	of	Unicode	character	is	present.	Unicode	Standard	Annex	44	defines	a	collection
of	properties	that	apply	to	the	Unicode	characters.	One	commonly-used	function	is
the	general	category	of	a	character;	this	includes	simple	Latin	rules	like	“Lu”	for
uppercase	letter	or	“Nd”	for	decimal	number.	The	general	category	codes	also	include
“Sk”	which	is	for	non-letter	like	modifier	symbols.
stringprep:	This	is	an	implementation	of	RFC	3454,	which	prepares	Unicode	text
strings	in	order	to	support	sensible	string	comparisons.



Using	the	re	module	to	parse	strings
Regular	expressions	give	us	a	simple	way	to	specify	a	set	of	related	strings	by	describing
the	pattern	they	have	in	common.	A	regular	expression	is	an	element	of	set	theory	that
could	(in	theory)	define	the	set	of	all	possible	related	strings.	The	theoretical	matching
process	would	be	a	quick	check	to	see	if	a	given	string	in	this	set	of	all	possible	strings	is
generated	by	the	expression.	Since	the	set	of	all	possible	strings	generated	from	a	pattern
could	potentially	be	infinite,	this	isn’t	how	things	work	in	practice.

When	we	use	the	re	module,	we	generally	do	three	things.	Firstly,	we	specify	the	pattern
string.	Secondly,	we	compile	the	pattern	into	an	object	that	efficiently	determines	if	and
where	a	given	string	matches	the	pattern.	Finally,	we	repeatedly	use	the	pattern	object	to
efficiently	match,	search,	or	parse	the	given	input	strings.

As	a	concrete	example,	we	need	to	process	input	which	contains	lines	like	this:	Birth
Date:	3/8/1987	or	Birth	Date:	1/18/59.	Note	that	the	number	of	digits	in	each	date
and	the	amount	of	whitespace	is	allowed	to	vary.

We	may	perform	any	of	the	following	three	common	kinds	of	processing:

A	matching	regular	expression	might	be	Birth	Date:\s+\d+/\d+/\d+.	The	\s+
subexpression	means	one	or	more	spaces.	The	\d+	subexpression	of	this	means	one
or	more	digits.	A	match	pattern	is	usually	designed	to	match	the	whole	string.
A	searching	regular	expression	might	be	\d+/\d+/\d+.	This	search	pattern	includes
one	or	more	digits,	\d+,	and	literal	punctuation,	/.	This	expression	describes	a
substring	that	can	be	found	somewhere	within	the	given	string.
A	parsing	pattern	separates	the	various	digit	groups	from	the	surrounding	context.
This	is	a	slight	modification	to	one	of	the	previous	examples	to	include	(),	that
specifies	what	to	capture.	We	might	use	(\d+)/(\d+)/(\d+)	to	show	that	the	digit
groups	should	be	extracted	for	further	processing.

We	can	accomplish	these	matching,	searching,	and	parsing	operations	with	the	re	module
in	Python.

Using	regular	expressions
The	general	recipe	for	using	regular	expressions	in	a	Python	program	has	three	essential
steps.	Of	course,	we	must	use	import	re	to	include	the	required	module.	The	three	steps
are:

1.	 Define	the	pattern	string.	This	will	almost	always	be	a	raw	string,	starting	with	r",
because	the	regular	expression	string	will	be	full	of	\	characters	that	we	don’t	want	to
be	treated	as	escapes	by	Python.	Because	\	begins	a	Python	language	escape,	if	we
want	to	write	a	standalone	\	character,	we	have	to	double	them	up	in	a	non-raw
string.	It	is	better	to	use	a	raw	string	to	write	r"\d+/\d+/\d+"	than	\\d+/\\d+/\\d+.

2.	 Evaluate	the	re.compile()	function	to	create	a	pattern	object.	The	resulting	object
will	do	the	real	work	of	matching	a	given	target	string	against	the	regular	expression
pattern	object.



We	can	combine	the	pattern	and	the	compile	in	one	statement	like	this:

>>>	date_pattern	=	re.compile(r"Birth	Date:\s+(.*)")

3.	 Use	the	compiled	pattern	object	to	match	or	search	the	candidate	strings.	The	result
of	a	successful	match	or	search	will	be	a	Match	object.	We	can	then	use	the	match
object,	where	necessary,	to	extract	fields.	For	example:

>>>	match	=	date_pattern.match("Should	Not	Match")

>>>	match

>>>	match	=	date_pattern.match("Birth	Date:	3/8/87")

>>>	match

<_sre.SRE_Match	object	at	0X82e60>

In	the	first	example,	the	date_pattern.match()	expression	returned	None	because
the	given	string	didn’t	match	the	regular	expression.	In	the	second	example,	the	given
string	did	match	the	regular	expression	pattern,	and	a	Match	object	was	created.	If	our
regular	expression	is	used	for	parsing,	we’ll	interrogate	the	Match	object	to	get	the
various	substrings.

When	we	have	a	Match	object,	it	can	have	captured	substrings	that	match	parts	of	the
overall	pattern.	We’ll	usually	make	use	of	the	various	group()	methods	to	get	substrings.
Here	are	some	examples:

>>>	match.group()

'Birth	Date:	3/8/87'

>>>	match.group(1)

'3/8/87'

>>>	match.groups()

('3/8/87',)

In	the	first	example,	we	saw	all	of	the	matching	content.	In	the	second	example,	we	saw
the	value	of	group	number	one,	the	first	portion	of	the	regular	expression	wrapped	in	().
In	the	final	example,	we	saw	all	()-wrapped	groups	in	the	regular	expression.	Since	there
was	only	one	such	group,	the	value	of	groups()	is	a	single-item	tuple	with	matching	text.

Creating	a	regular	expression	string
There	are	numerous	rules	for	creating	regular	expression	patterns,	and	we’ll	look	at	a	few
of	them	here.	The	definitive	list	is	in	the	Python	Standard	Library	documentation	for	the
re	module,	in	section	6.2.1.	For	more	information	on	this	topic,	see	Mastering	Python
Regular	Expressions	from	Packt	Books.	See	https://www.packtpub.com/application-
development/mastering-python-regular-expressions.

First	we’ll	look	at	the	“atomic”	regular	expressions.	Then	we’ll	look	at	the	rules	for
combining	regular	expressions	into	a	larger	regular	expression.	Here	are	some	simple,
atomic	regular	expressions:

Any	single	character.	With	a	few	exceptions,	this	means	just	about	any	printable
character.	The	exceptions	are	the	characters	which	have	special	meaning	in	the
regular	expression	language,	including	.,	*,	?,	(,	),	[,	],	|	among	others.

https://www.packtpub.com/application-development/mastering-python-regular-expressions


A	.	matches	any	character.	To	match	a	period,	the	\	escape	character	is	used:	\.
matches	a	period.
Some	escape	sequences	match	whole	classes	of	characters.

\d	matches	any	digit.	\D	matches	any	non-digit	character.
\s	matches	any	whitespace	character.	\S	matches	any	non-space	character.
\w	matches	any	word	character.	\W	matches	any	non-word	character.	By	default,
these	follow	the	Unicode	rules.	We	can	override	this	to	follow	a	considerably
simpler	set	of	ASCII-only	rules.

There	are	some	suffixes	that	we	can	put	after	a	regular	expression.

A	*	suffix	means	the	previous	expression	can	be	matched	zero	or	more	times.	This
has	the	effect	of	making	the	previous	RE	pattern	optional	as	well	as	eligible	for
repetition.
A	+	suffix	means	the	previous	expression	can	be	matched	one	or	more	times.	This
means	that	the	previous	pattern	is	mandatory	and	can	also	be	repeated.
A	?	suffix	means	the	previous	expression	is	optional;	it	can	be	matched	zero	times	or
just	one	time.
To	actually	match	a	suffix	character,	use	the	\	escape.	For	example,	\*	matches	an
asterisk.

We	can	combine	individual	expressions	into	larger	patterns.	Here	are	some	common
techniques	for	doing	this:

A	sequence	of	regular	expressions	is	a	regular	expression.	We	simply	put	the
expressions	one	after	another	inside	the	pattern	string.	When	we	write	an	expression
like	Birth	it’s	a	sequence	of	five	atomic	expressions	which	match	each	individual
character.
A	sequence	of	characters	in	[]	matches	any	one	of	the	given	characters.	This	is
generally	used	with	single-character	expressions;	often	we’ll	see	constructs	like	[a-
zA-Z0-9_]	to	match	any	letter	or	digit	or	_.	To	match	multiple-character	strings	we
use	a	suffix	after	the	[].	We	can	use	r"[0-9a-fA-F]+"	to	match	one	or	more
hexadecimal	digits.	To	make	-	one	of	the	alternative	characters,	it	must	be	first	or	last
within	the	list	of	characters	inside	the	[].
Two	regular	expressions	separated	by	|	is	a	regular	expression.	Either	one	can	match.
We	might	be	looking	at	a	pattern	like	true|false.	We	must	match	one	of	the	two
regular	expressions:	either	true	or	false.	To	match	the	pipe	character,	|,	it	must	be
escaped	like	this	\|.
A	regular	expression	surrounded	by	()‘s	is	a	regular	expression.	It’s	also	preserved	as
a	group,	so	that	we	can	use	the	matching	characters	while	parsing.	To	match
parentheses,	they	must	be	escaped,	\(	matches	a	(.	Substrings	captured	via	()	are
available	via	the	group()	method	of	the	match	object.

These	rules	help	us	examine	the	details	of	a	specific	pattern.	Here’s	a	pattern	we	might	use
to	parse	some	input:

r"(\w+)\s*[=:]\s*(.*)"



This	is	a	regular	expression	which	is	a	sequence	of	5	regular	expressions.

The	characters	(\w+)	make	a	regular	expression,	\w,	with	a	+	suffix	enclosed	in	().
This	matches	any	sequence	of	one	or	more	word	characters.
\s*	is	a	regular	expression.	It’s	a	simple	expression	\s	with	a	suffix	of	*.	It	matches
zero	or	more	whitespace	characters.	This	means	that	spaces	are	optional	after	the
initial	word.	If	spaces	are	present,	any	number	may	be	used.
[=:]	is	a	regular	expression	built	from	two	single-character	expressions,	=	and	:.	It
matches	either	one	of	the	two	characters.
\s*	is	used	a	second	time	to	permit	any	number	of	whitespace	characters	between	the
=	or	:	and	the	value.
The	final	regular	expression	is	(.*)	which	matches	any	sequence	of	characters.

When	we	use	this	regular	expression,	if	a	Match	object	is	created,	it	will	have	two	groups.
We	can	then	extract	the	name	and	value	matched	by	the	patterns	within	this	regular
expression.

Working	with	Unicode,	ASCII,	and	bytes
The	re	module	works	with	bytes	as	well	as	Unicode	strings.	We	must	provide	proper
pattern	literals	depending	on	which	kind	of	string	we’re	working	with.	With	Unicode,	we
use	pattern	literals	with	the	r	prefix:	r"\w+".	With	bytes,	we	use	the	rb	prefix,	rb"\w+";
the	rb	means	raw	bytes	instead	of	raw	Unicode	characters.

The	rules	for	the	character	classes	are,	of	course,	different.	A	Unicode	string	that	matches
the	"\w+"	pattern	can	have	any	of	a	wide	variety	of	Unicode	“word”	characters.	A	bytes
object	that	uses	the	"\w+"	pattern	will	match	ASCII	characters	from	the	set	a-z,	A-Z,	0-9
and	_.

Tip
We	must	explicitly	use	bytes	for	the	pattern	literals	when	parsing,	searching,	or	matching
with	bytes.

We	can	use	an	option	in	the	re.compile()	to	force	a	Unicode	pattern	to	follow	the
simplified	ASCII	rules.	If	we	write	re.compile(r"\w+",	re.ASCII)	we’ve	replaced	the
default	Unicode	assumption	for	\w	with	the	ASCII	rule	for	\w	even	though	we’re	doing
Unicode	string	matching.



Using	the	locale	module	for	personalization
When	looking	at	the	str.format()	method,	we	saw	that	the	n	format	type	produced	a
number	with	formatting	based	on	the	user’s	locale.	This	means	that	the	formatting	varies
according	to	the	OS	locale	settings.	Users	in	different	countries	will	see	that	their	personal
locale	settings	are	used	properly.

Here’s	an	example	of	using	the	locale	module	to	get	locale-specific	formatting:

>>>	import	locale

>>>	locale.setlocale(locale.LC_ALL,'')

'en_US.UTF-8'

>>>	"{0:n}".format(23.456)

'23.456'

>>>	locale.setlocale(locale.LC_ALL,'sv_SE')

'sv_SE'

>>>	"{0:n}".format(23.456)

'23,456'

This	script	used	the	locale	module	to	set	the	Python	locale	to	match	the	prevailing	OS
locale.	The	locale	is	reported	to	be	English	as	used	in	the	US	(en_US)	and	the	preferred
Unicode	encoding	is	shown	as	UTF-8.

The	formatted	value	of	23.456	showed	up	with	a	US	English	decimal	point.	This	fits	the
expectations	of	users	in	the	US.

We	then	switched	the	locale	to	Sweden.	The	language	was	reported	as	sv_SE,	which
means	the	Swedish	language,	as	used	in	Sweden.	The	formatted	value	switched	to	23,456
with	a	decimal	comma,	which	is	appropriate	for	users	in	Sweden.

Let’s	continue	this	example,	and	use	the	locale.currency()	formatting	function:

>>>	locale.currency(23.54)

'23,54	kr'

The	amount	was	formatted	using	,	for	the	decimal	separator	and	kr	as	the	local	currency
in	Sweden.	The	locale	module	includes	the	currency	names.

Note	that	we	provided	the	numeric	value,	23.54,	in	Python	syntax,	which	does	not	vary	by
locale.	Python	floating-point	literals	always	use	decimal	points.	Only	the	output	string
from	the	currency()	function	uses	the	,	character	as	a	decimal	place	separator.





Summary
In	this	chapter,	we’ve	reviewed	the	essential	numeric	types	and	the	operators	available	on
Python.	We’ve	looked	at	some	expressions	that	involve	a	mixture	of	string	and	numeric
data.

In	order	to	view	the	output	from	our	scripts,	we’ve	looked	at	the	print()	function.	This	is
used	widely	to	produce	output.	The	print()	function	is	a	very	handy	tool	for	debugging
particularly	complex	functions	or	classes.

Additionally,	we’ve	looked	at	how	we	can	use	the	str.format()	method	to	produce
elaborately	formatted	data.	This	gives	us	a	wide	variety	of	techniques	for	converting
Python	objects	to	strings	that	can	be	displayed.	We’ve	also	looked	at	some	ways	that	we
can	parse	strings	using	string	method	functions	such	as	split()	and	partition().

Beyond	the	basics	of	string	processing,	we’ve	looked	at	how	we	can	use	the	re	module	to
match,	search,	and	parse	strings.	This	module	is	sophisticated	and	has	a	large	number	of
features	for	extracting	useful	information	from	input	strings.

In	Chapter	4,	Variables,	Assignment	and	Scoping	Rules,	we’ll	expand	on	our	script-writing
by	using	variables	to	store	intermediate	results.	We’ll	also	look	at	how	objects	are	created
and	removed.	These	rules	will	lead	to	an	understanding	of	which	variables	are	visible	in
which	portions	of	a	complex	program.





Chapter	4.	Variables,	Assignment	and
Scoping	Rules
An	expression	creates	objects;	we	can	assign	objects	to	variables	to	preserve	them	for
future	use.	Python	offers	a	number	of	variations	on	the	theme	of	assignment.	In	addition	to
simply	assigning	a	single	variable,	we	can	assign	items	from	a	tuple	to	multiple	variables.
We	can	also	combine	an	operator	with	assignment,	which	updates	a	mutable	object.

In	this	chapter,	we’ll	also	look	at	the	input()	function	as	a	way	to	introduce	new	objects
into	a	running	script.	This	is	limited—it	doesn’t	compare	with	a	proper	graphical	user
interface	(GUI).	It	will,	however,	help	us	learn	more	Python	programming	techniques
before	we	introduce	how	to	read	data	from	files	and	the	filesystem	in	Chapter	10,	Files,
Databases,	Networks,	and	Contexts.

We’ll	also	look	at	some	important	Python	language	concepts.	We’ll	look	at	the	way
Python	programs	are	always	written	generically,	without	specific	bindings	to	data	types	or
classes.	We’ll	also	look	at	the	general	concept	of	a	namespace,	and	how	this	is	applied
widely	in	various	Python	language	constructs.	It	defines	the	scope	in	which	an	identifier	is
visible;	something	that	will	become	increasingly	important	as	our	programs	become	more
complex.



Simple	assignment	and	variables
We’ve	seen	a	few	examples	of	the	essential	Python	assignment	statement	in	previous
chapters.	The	statement	includes	a	variable,	=,	and	an	expression.	Since	a	single	object	is
an	expression,	we	can	write:

>>>	pi	=	3.14

This	will	create	the	floating-point	literal	3.14	and	assign	this	object	to	a	variable	named
pi.

Variable	names	must	follow	the	rules	in	section	2.3,	Identifiers	and	Keywords,	of	the
Python	Language	Reference.	The	reference	manual	uses	the	Unicode	character	class
definitions	provided	in	the	unicodedata	module.

Interesting	background	information	on	the	problem	of	programming	language	identifiers
is	available	in	Unicode	Standard	Annex	31,	Unicode	Identifier	and	Pattern	Syntax.	This
shows	how	the	Python	problem	of	how	“what	is	an	identifier?”	fits	into	the	larger	context
of	other	programming	languages	and	the	variety	of	natural	languages	used	around	the
world.

In	Python,	identifiers	have	a	small	set	of	start	characters;	these	are	chosen	to	allow	a
lexical	scanner	to	determine	what	kinds	of	characters	can	follow.	If	identifiers	began	with
digits,	it	would	be	rather	complex	to	distinguish	identifiers	from	numbers.	Consequently,
identifiers	must	begin	with	a	letter	or	_.	After	the	initial	character,	Python	allows	an
identifier	to	continue	with	characters	that	may	come	from	a	larger	set	of	characters:	letters,
digits,	and	_.

What	do	we	really	mean	by	“letter”	or	“digit”?	In	earlier	versions	of	Python,	these	terms
were	defined	by	the	Latin-based	ASCII	alphabet.	Using	Unicode	means	that	the	terms
now	have	more	inclusive	definitions.

Python	defines	the	identifier	starting	character	as	belonging	to	the	following	Unicode
categories:	uppercase	letters	(Lu),	lowercase	letters	(Ll),	title	case	letters	(Lt),	modifier
letters	(Lm),	other	letters	(Lo),	and	letter	numbers	(Nl).	Python	also	includes	the	small	set
of	characters	in	the	Other_ID_Start	category.	The	set	of	characters	defined	by	these
categories	is	large.	Latin	letters	in	the	ranges	a-z	and	A-Z,	for	example,	are	in	this	set.
When	writing	more	mathematically-oriented	programs,	the	Greek	letters	α-ω	and	A-Ω	can
also	be	used	as	identifier	start	characters.	We	can	write	this:

>>>	π	=	355/113

This	assigns	the	result	of	the	expression	to	the	variable,	π.	Some	programmers	find	that
their	OS	keyboard	interface	makes	letters	outside	a	single	national	alphabet	awkward	to
use;	consequently,	they	suggest	focusing	on	Latin	letters	for	programming.

Identifiers	can	continue	with	any	of	the	letters	defined	in	the	previous	paragraph,	the	_
character,	and	characters	from	the	following	categories:	nonspacing	marks	(Mn),	spacing
combining	marks	(Mc),	decimal	numbers	(Nd),	and	connector	punctuations	(Pc).	This



allows	us	to	include	ordinary	decimal	digits	as	well	as	other	“combining”	marks	that
modify	the	previous	character.	For	example:

>>>	 =p_2+0.5*p_1

This	shows	the	character	GREEK	SMALL	LETTER	PI	followed	by	the	COMBINING
DIACRITICAL	CIRCUMFLEX	to	create	a	“pi-hat”	variable,	 .	It	may	be	awkward	to
type	for	some	developers,	but	it	also	may	fit	nicely	with	a	population	genomics	formulae
which	use	this	symbol	combination.	The	Inheritance	By	Descent	estimator,	for	example,
uses	 .	The	expression	shown	earlier	involves	two	other	variables,	p_2	and	p_1,	which
use	more	common	Latin	letters,	_,	and	digits.

Note	that	variable	names	that	begin	and	end	with	__	(two	underscores)	are	reserved	by
Python	for	special	purposes.	For	example,	we	have	global	variables	such	as	__name__,
__debug__,	and	__file__	which	are	set	when	our	script	starts	running.

There’s	no	reason	for	our	application	to	ever	create	new	names	which	begin	and	end	with
__.	We’re	not	prohibited	from	creating	such	variables,	but	any	name	that	we	might	adopt
could	be	used	by	some	internal	feature	of	Python.

Tip
It’s	best	to	assume	that	at	all	names	beginning	and	ending	with	__	(double	underscore)	are
reserved	by	Python	and	do	something	special.	Even	if	the	name	is	not	used	in	the	current
release,	that	doesn’t	mean	it	won’t	be	used	in	a	future	release.





Multiple	assignment
We	looked	at	tuples	in	Chapter	2,	Simple	Data	Types.	One	of	the	important	reasons	for
using	a	tuple	is	that	it	has	a	fixed	number	of	items.	Since	a	tuple	is	a	kind	of	sequence,	we
can	refer	to	items	within	a	tuple	using	numeric	indices.

Consider	the	following	RGB	triple:

>>>	brick_red	=	(203,	65,	84)

We	can	use	brick_red[0]	to	get	the	red	element	of	this	triple.

We	can	also	do	this:

>>>	r,	g,	b	=	brick_red

>>>	r

203

We’ve	used	multiple	assignment	to	decompose	the	RGB	three-tuple	into	three	individual
variables.

This	works	when	the	number	of	variables	on	the	left	side	of	the	=	matches	the	number	of
items	in	the	collection	on	the	right	side.	When	working	with	fixed-sized	tuples,	this	is	an
easy	condition	to	guarantee.

When	working	with	mutable	collections	such	as	list,	set,	or	dict,	this	kind	of
assignment	may	not	work	out	well.	If	we	can’t	guarantee	the	number	of	elements	in	a
mutable	collection,	we	may	wind	up	with	a	ValueError	exception	because	our	collection
doesn’t	match	the	number	of	variables.

Note	that	Python’s	syntax	flexibility	means	that	we	can	also	do	things	like	this:

>>>	n,	d	=	355,	113

It	isn’t	absolutely	necessary	to	wrap	a	tuple	in	().	It’s	generally	a	best	practice	to	use	()
around	a	tuple.	However,	in	a	few	cases,	the	statement	is	perfectly	clear	without	the
additional	parentheses.



Using	repeated	assignment
Python	allows	us	to	write	statements	like	this:	a	=	b	=	0.	This	must	be	used	carefully,
because	a	single	object	is	now	shared	by	two	variables.	When	working	with	immutable
objects	like	numbers,	strings,	and	tuples,	multiple	variables	share	a	reference	to	a	common
object.

When	we	look	at	mutable	objects	in	Chapter	6,	More	Complex	Data	Types,	we’ll	see	that
this	kind	of	repeated	assignment	can	become	a	source	of	confusion.	While	this	assignment
is	legal,	it	must	be	used	only	with	immutable	objects	like	numbers,	strings,	or	tuples.





Using	the	head,	*tail	assignment
When	working	with	sequences,	there	are	some	algorithms	which	work	by	separating	the
head	of	the	sequence	from	the	rest	of	the	sequence.	We	can	do	this	with	a	variation	on	the
assignment	statement.	We	like	to	call	this	the	head,	*tail	=	assignment	statement.

Let’s	say	that	we	have	an	input	string	with	a	list	of	values,	something	like	this:

>>>	line	=	"255		73	108	Radical	Red"

>>>	line.split()

['255',	'73',	'108',	'Radical',	'Red']

We	have	split	the	string	into	space-delimited	words	with	line.split().	In	this	case,	the
head	of	the	list	is	the	first	three	fields	of	the	red,	green,	and	blue	elements	of	a	color.	The
tail	is	all	the	remaining	fields,	which	is	the	name	parsed	into	separate	words.

We	can	use	head,	*tail	=	assignment	to	split	the	first	three	fields	from	the	remaining
files.

It	looks	like	this:

>>>	r,	g,	b,	*name	=	line.split()

>>>	g

'73'

>>>	name

['Radical',	'Red']

We’ve	assigned	the	first	three	items	to	three	separate	variables,	r,	g,	and	b.	The	*	means
that	all	of	the	remaining	items	will	be	collected	into	a	single	variable,	name.

We	can	reconstruct	the	original	name	with	the	join()	method,	with	a	space	as	the
separator	string:

>>>	"	".join(name)

'Radical	Red'

We’ve	used	a	space	to	join	the	elements	of	the	sequence	named	name.	This	will	reconstruct
the	original	color	name	as	a	single	string	instead	of	a	list	of	words.





Augmented	assignment
The	augmented	assignment	statement	combines	an	operator	with	assignment.	A	common
example	is	this:

a	+=	1

This	is	equivalent	to

a	=	a	+	1

When	working	with	immutable	objects	(numbers,	strings,	and	tuples)	the	idea	of	an
augmented	assignment	is	syntactic	sugar.	It	allows	us	to	write	the	updated	variable	just
once.	The	statement	a	+=	1	always	creates	a	fresh	new	number	object,	and	replaces	the
value	of	a	with	the	new	number	object.

Any	of	the	operators	can	be	combined	with	assignment.	The	means	that	+=,	-=,	*=,	/=,
//=,	%=,	**=,	>>=,	<<=,	&=,^=,	and	|=	are	all	assignment	operators.	We	can	see	obvious
parallels	between	sums	using	+=,	and	products	using	*=.

In	the	case	of	mutable	objects,	this	augmented	assignment	can	take	on	special
significance.	When	we	look	at	list	objects	in	Chapter	6,	More	Complex	Data	Types,	we’ll
see	how	we	can	append	an	item	to	a	list	object.	Here’s	a	forward-looking	example:

>>>	some_list	=	[1,	1,	2,	3]

This	assigns	a	list	object,	a	variable-length	sequence	of	items,	to	the	variable	some_list.

We	can	update	this	list	object	with	an	augmented	assignment	statement:

>>>	some_list	+=	[5]

>>>	some_list

[1,	1,	2,	3,	5]

In	this	case,	we’re	actually	mutating	a	single	list	object,	changing	its	internal	state	by
extending	it	with	items	from	another	list	instance.	The	existing	object	was	updated;	this
does	not	create	a	new	object.	It	is	equivalent	to	using	the	extend()	method:

>>>	some_list.extend(	[8]	)

>>>	some_list

[1,	1,	2,	3,	5,	8]

We’ve	mutated	the	list	object	a	second	time,	extending	it	with	items	from	another	single-
item	list	object.

This	optimization	of	a	list	object	is	something	that	we’ll	look	at	in	Chapter	6,	More
Complex	Data	Types.





The	input()	function
For	simple	applications,	the	input()	function	can	be	used	to	gather	input	from	a	user.	This
function	writes	a	prompt	and	accepts	input.	The	returned	value	is	a	string.	We	might	use
this	in	a	script	file	as	follows:

c=	float(input("Temperature,	C:	"))

print("f	=",	32+9*c/5)

This	will	write	a	simple	prompt	on	the	console,	and	accept	a	string	as	input.	The	string
value	will	be	converted	to	a	floating-point	number,	if	possible.	If	the	string	is	not	a	valid
number,	the	float()	function	will	raise	an	exception.	This	will	then	print	a	line	of	output.

Here’s	how	it	looks	when	we	run	it:

MacBookPro-SLott:Code	slott$	python3	Chapter_4/ex_1.py

Temperature,	C:	11

f	=	51.8

We’ve	highlighted	the	command,	which	is	entered	after	the	OS	shell	prompt.	The
statements	in	the	script	file,	named	as	part	of	the	command,	are	executed	in	order.

Our	input	to	Python,	11,	is	also	highlighted,	to	show	how	the	input()	function	supports
simple	interaction.

The	input()	function	only	returns	a	Unicode	string.	Our	script	is	responsible	for	any
further	parsing,	validation,	or	conversion.

When	working	on	simple	console	applications,	there	are	some	additional	libraries	which
may	prove	helpful.	There	is	a	getpass	module	which	helps	to	get	passwords	by
suppressing	the	character	echo	that’s	a	default	feature	of	console	input.	This	is	highly
recommended	as	an	alternative	to	plain	passwords	in	a	parameter	file	or	the	passwords
provided	on	the	command	line.

We	can	include	the	readline	module	to	provide	a	comprehensive	history	of	input	that
makes	it	easier	for	interactive	users	to	recover	previous	inputs.	Additionally,	the
rlcompleter	module	can	be	used	to	provide	auto-complete	features	so	that	users	only
need	to	enter	partial	commands.

Beyond	this,	Python	can	include	an	implementation	of	the	Linux	curses	library	for
building	richly	interactive	character	user	interface	(CUI)	applications.	This	is
sometimes	used	to	provide	colored	output	on	the	console,	something	that	can	make	a
complex	log	easier	to	read.

Python	is	used	in	a	wide	variety	of	application	contexts.	When	building	a	web	server,	for
example,	the	idea	of	console	or	command-line	input	is	utterly	out	of	place.	Similarly,	the
input()	function	isn’t	going	to	be	part	of	a	GUI	application.





Python	language	concepts
We’ll	introduce	a	few	central	concepts	of	the	Python	language	before	looking	at	more
complex	examples	in	later	chapters.	The	first	of	the	central	concepts	is	that	everything	in
Python	is	an	object.	Several	popular	languages	have	primitive	types	which	escape	the
object-oriented	nature	of	the	language.	Python	doesn’t	have	this	feature.	Even	simple
integers	are	objects,	with	defined	methods.

Because	everything	is	an	object,	we’re	assured	of	consistent	behavior	with	no	special
cases.	In	some	languages,	the	==	operator	works	in	one	way	for	primitive	types	and	in
another	way	for	objects.	Python	lacks	this	divergent	behavior.	All	built-in	classes
implement	the	==	operator	consistently;	unless	we	make	specific	(and	pathological)
implementation	choices,	our	own	classes	will	also	behave	consistently.

This	consistency	is	particularly	pleasant	when	working	with	strings.	In	Python,	we	always
compare	strings	for	equality	using	something	like	txt.lower()	=	"hours".	This	will
make	the	expected	character-by-character	comparison	between	the	value	of	txt.lower()
and	the	literal	"hours".

Less	commonly,	we	can	see	if	two	variables	are	references	to	the	same	underlying	object
using	the	is	comparison	operator.	This	is	generally	used	to	compare	a	variable	with	the
None	object.	We	use	is	None	because	the	None	object	is	a	proper	singleton;	there	can	be
only	one	instance	of	None.	We’ll	look	at	this	again	in	Chapter	5,	Logic,	Comparisons,	and
Conditions.



Object	types	versus	variable	declarations
In	Python,	we	specify	the	processing	generically	with	respect	to	type.	We	may	write	a
sequence	of	statements	with	the	implicit	understanding	that	floating-point	values	should
be	used.	We	can	formalize	this	to	an	extent	using	an	explicit	float()	conversion	function.

In	some	languages,	each	variable	has	a	statically	defined	type.	Only	objects	of	the	named
type	can	be	assigned	to	the	variable.

In	contrast	to	languages	with	statically	defined	variables,	a	Python	variable	can	be
understood	as	a	name	which	is	attached	to	an	object.	We	can	attach	a	name	to	any	object
of	any	class.	We	don’t	statically	declare	a	narrow	range	of	allowed	types	for	a	variable.

Python	allows	us	to	assign	multiple	names	to	the	same	object	by	assigning	the	object	to
several	variables.	For	example,	when	we	evaluate	a	function,	the	function	parameter
variable	names	are	assigned	to	the	argument	objects.	(We’ll	look	at	this	in	more	depth	in
Chapter	7,	Basic	Function	Definitions.)	This	means	that	each	object	may	have	two
variables	referring	to	it:	one	parameter	variable	inside	the	function	and	another	variable
outside	the	function.

We	can	use	the	internal	id()	function	to	see	if	two	variables	refer	to	the	same	underlying
object:

>>>	a	=	"string"

>>>	b	=	a

>>>	id(a)

4301974472

>>>	id(b)

4301974472

From	this,	we	can	see	that	Python	variables	a	and	b	have	references	to	the	underlying
object,	not	copies	of	the	object.

In	the	rare	cases	that	object	copying	is	necessary,	we	must	do	it	explicitly.	Details	vary,
based	on	the	general	kind	of	class.	For	example,	sequences	are	trivially	cloned	by	creating
a	slice	that	includes	the	entire	sequence.	Some	classes	offer	a	copy()	method.	Objects	can
also	be	cloned	via	functions	in	the	copy	library.

The	lack	of	a	fixed	type	declaration	for	a	variable	has	several	consequences:

It’s	trivial	to	introduce	a	variable	to	decompose	a	complex	expression.	Here’s	a
complex	expression:

a	=	some_function(	some_complex_function(	another_function(	b	)	)	)

We	can	trivially	rewrite	this	by	pulling	out	subexpressions	and	assigning	them	to
variables:

af	=	another_function(b)

scf	=	some_complex_function(af)

a	=	some_function(scf)

We’ve	extracted	each	subexpression	and	assigned	them	to	separate	variables.	We



never	need	to	know	what	the	intermediate	result	types	are.

All	algorithms	are	written	generically.	When	we	run	a	script,	we	apply	our	generic
Python	code	to	concrete	objects.	Our	canonical	example	of	this	binding	is	based	on
the	numeric	tower.	We	can	apply	the	same	expression,	32+9*c/5,	to	objects	of	the
classes	complex,	float,	int,	Decimal,	and	Fraction.	All	of	these	classes	provide	the
necessary	implementations	of	the	various	operators.	However,	a	string	object	won’t
implement	all	of	the	arithmetic	operations	required,	and	won’t	work.	Similarly,	we
can	execute	statements	like	head,	*tail	=	sequence	for	a	wide	variety	of
sequence-like	classes,	including	list,	str,	bytes,	and	tuple.	However,	if	we	assign
a	numeric	value	to	the	variable	named	sequence,	the	statement	won’t	work.

Avoiding	the	declaration	of	variables	with	static	types	is	a	great	simplification.	We	can
introduce	variables	as	needed.	We	can	write	clear,	simple,	generic	software	and	leave	it	to
the	Python	runtime	processing	to	determine	if	the	runtime	objects	have	the	required
implementations	for	operators	and	methods.



Avoiding	confusion	when	naming	variables
Without	variable	declarations,	there’s	a	small	possibility	of	creating	programs	which	are
confusing	if	we	use	vague,	generic	variables.	A	variable	with	a	vague	name	like
list_of_items	might	get	used	more	than	once	in	a	longish	sequence	of	statements.
Worse,	of	course,	are	variables	with	names	like	t	or	temp.

Tip
Name	variables	as	specifically	as	possible.	Avoid	vague,	generic	names.

The	other	aspect	of	overusing	variable	names	is	the	idea	of	a	“longish”	sequence	of
statements.	If	the	body	of	a	function	is	so	long	that	generically-named	variables	could	get
reused	accidentally,	the	size	of	the	function	has	become	a	problem.	No	stretch	of	Python
code	should	be	so	long	that	the	variables	used	within	it	are	confusing.

Tip
Keep	sequences	of	code	short	and	focused.	Avoid	long	sequences	of	code	where	variables
might	get	reused	incorrectly.

It’s	import	to	name	variables	simply	and	clearly.	In	Python,	the	use	of	Hungarian	notation
to	decorate	a	variable	name	with	type	information	is	considered	deplorable.	The	original
concept	of	Hungarian	notation	was	to	place	a	few	characters	as	a	prefix	on	a	variable	to
indicate	the	type.	In	Python,	we	do	not	name	a	variable	lst_str_names	using	a	prefix	to
indicate	that	the	variable	refers	to	a	list	of	string	values.

Because	Python	code	is	written	generically,	a	well-written	function	can	apply	to	many
different	data	types.	If	we	try	to	encode	data	type	information	in	variable	names,	we	may
actually	be	sowing	confusion:	the	algorithm	may	work	for	types	not	explicitly	stated	in	the
variable	name.

In	some	situations,	we	need	to	distinguish	between	a	collection	of	items	and	an	individual
item.	We	might	have	a	name_list	and	an	individual	name.	Or	we	might	have	a	name_iter,
when	working	with	generator	functions,	and	an	individual	name.	A	small,	clear	naming
convention	like	this	is	better	than	elaborately	misleading	Hungarian	notation.

Tip
Avoid	complex	Hungarian	notation	in	variable	names.

In	a	more	complex	program,	we	might	have	a	dictionary	that	maps	integer	keys	to	sets
associated	with	those	keys;	each	set	may	have	a	collection	of	individual	strings.	It’s
difficult	to	summarize	this	with	a	Hungarian	prefix	or	suffix.	Would	we	want	to	try	and
call	this	map_int_set_str_something?

Looking	ahead	to	Chapter	7,	Basic	Function	Definitions	and	Chapter	11,	Class
Definitions,	we’ll	often	use	docstring	comments	in	functions,	classes,	and	modules	to
capture	the	details	of	what	kind	of	structure	is	appropriate	for	a	function.	We	may	even
include	test	cases	in	the	docstring	comments;	test	cases	are	perhaps	the	clearest	and	most
precise	way	to	describe	data.



Tip
Write	docstring	comments	in	every	context	that	allows	them:	function,	class,	module,
and	package.

One	consequence	of	Python’s	use	of	variables	is	that	we	rely	on	unit	test	cases	to	ensure
that	results	are	of	the	expected	types	as	well	as	being	correct.	Programmers	who	work	in
languages	with	statically-typed	variables	are	very	aware	that	unit	test	cases	are	essential
for	correctness,	even	when	a	compiler	does	type	checking	of	all	variable	declarations.	In
Python,	the	test	cases	are	just	as	important	as	in	languages	that	have	static	type	checking.
If	it	is	necessary	to	clarify	the	intent	of	a	function	or	class,	we	can	include	type	checking
in	the	test	cases.

Tip
Write	unit	tests;	use	the	unittest	module,	the	doctest	module,	or	both.



Garbage	collection	via	reference	counting
We’ve	seen	how	expressions	create	new	objects.	Even	something	as	simple	as	2**2024
creates	a	new	integer	object.	What	happens	to	these	objects?	When	will	we	run	out	of
memory?

Python	uses	reference	counting	to	determine	how	many	times	an	object	is	being	used
when	we	do	something	like	this:

>>>	2**2024

192624…497216

The	resulting	object	is	a	very	large	integer;	it	is	assigned	to	the	variable	_	automatically.
The	object,	shown	as	192624…497216,	has	a	single	reference;	this	keeps	it	alive	in	memory.

When	we	do	this,	next:

>>>	2**2025

385248…994432

We	get	a	new	object,	and	it	is	assigned	to	the	variable	_.	The	large	integer	value	formerly
assigned	to	_	has	no	more	references.	Since	it’s	no	longer	being	used,	it’s	garbage,	and	the
memory	it	occupied	can	be	reused.

Each	time	we	assign	an	object	to	a	variable,	the	reference	count	goes	up	by	one.	Each	time
the	variable’s	value	is	reassigned,	the	previous	object	that	is	no	longer	in	use	has	its
reference	count	decreased	by	one.

When	a	variable	is	no	longer	required,	the	variable	is	removed,	and	the	objects	referred	to
by	the	variable	also	have	their	reference	counts	reduced	by	one.

Variables	belong	to	namespaces.	Most	of	our	early	examples	used	the	global	namespace.
In	Chapter	7,	Basic	Function	Definitions,	we’ll	see	local	namespaces.	To	summarize:
when	a	namespace	is	removed,	all	of	the	variables	in	that	namespace	are	removed,	and	all
of	the	object	references	are	decremented	by	one.

Tip
When	the	number	of	references	to	an	object	reaches	zero,	the	object	is	no	longer	needed.
The	memory	occupied	by	that	object	can	be	reclaimed.

We	can	easily	create	two	complex	objects	which	refer	to	each	other.	In	the	presence	of
these	kinds	of	circular	references,	of	course,	the	counts	can	never	reach	zero.	The	objects
may	never	get	removed	from	memory.	We	can	use	the	gc	module	to	discover	more	about
this.

In	the	case	where	we	must	have	objects	with	mutual	references,	we	need	to	leverage	the
weakref	module.	This	module	provides	references	among	objects	that	do	not	interfere
with	reference	counting,	allowing	a	large	data	structure	of	multiple	objects	to	gracefully
vanish	from	memory	when	no	longer	in	use.



The	little-used	del	statement
We	can	remove	variables	manually	with	the	del	statement.	Here’s	an	example:

>>>	a	=	2**2024

>>>	del	a

We’ve	created	an	integer	object,	and	assigned	it	to	the	variable	a.	When	we	remove	the
variable,	this	will	reduce	the	reference	count	on	the	integer	object.	The	memory	occupied
by	the	big	integer	is	now	eligible	to	be	reclaimed.

This	kind	of	thing	is	done	very	rarely.	Python’s	ordinary	reference	counting	does	almost
everything	we	need.	It’s	generally	best	not	to	waste	brain	calories	tying	to	micro-manage
memory	allocation.





The	Python	namespace	concept
We’ve	already	seen	two	applications	of	the	Python	namespace.	When	we	assign	variables
at	the	>>>	prompt,	we’re	introducing	the	variable	into	the	global	namespace.	When	we
import	a	module,	the	module	creates	its	own	namespace	within	the	global	namespace.

That’s	why	we	can	then	use	qualified	names	like	math.sqrt()	to	refer	to	objects	inside	the
module’s	namespace.

When	we	look	at	functions	and	class	definitions,	we’ll	see	additional	use,	of	namespaces.
In	particular,	when	evaluating	a	function	or	a	class	method,	a	local	namespace	is	created,
and	all	variables	are	part	of	that	local	namespace.	When	the	function	evaluation	finishes
(because	of	an	explicit	return	statement	or	the	end	of	the	indented	block,)	the	local
namespace	is	dropped,	removing	all	local	variables	and	reducing	the	reference	count	on	all
objects	assigned	to	those	local	variables.

Additionally,	the	types	module	includes	the	SimpleNamespace	class.	An	instance	of	this
class	allows	us	to	build	a	complex	object	without	a	formal	class	definition.	Here’s	an
example:

>>>	from	types	import	SimpleNamespace

>>>	red_violet=	SimpleNamespace(red=192,	green=68,	blue=143)

>>>	red_violet

namespace(blue=143,	green=68,	red=192)

>>>	red_violet.blue

143

We’ve	imported	the	SimpleNamespace	class.	We	created	an	instance	of	that	class,
assigning	three	local	variables,	red,	green,	and	blue,	that	are	part	of	the	new
SimpleNamespace	object.	When	we	examine	the	object	as	a	whole,	we	see	that	it	has	three
internal	variables.

We	can	use	syntax	like	red_violet.blue	to	see	the	blue	variable	inside	the	red_violet
namespace.

The	argparse	module	is	used	by	command-line	programs	to	parse	the	command-line
arguments.	This	module	also	contains	a	Namespace	class	definition.	An	instance	of
Namespace	is	used	to	collect	the	various	arguments	parsed	from	the	command	line.	An
application	can	set	additional	variables	in	the	Namespace	object	to	handle	particularly
complex	parsing	and	configuration	issues.



Globals	and	locals
When	we	use	a	variable	name	in	an	expression,	Python	searches	two	namespaces	to
resolve	the	name	and	locate	the	object	to	which	it	refers.	First,	it	checks	the	local
namespace.	If	the	name	is	not	found,	it	will	check	the	global	namespace.	This	two-step
search	will	ensure	that	local	variables	used	inside	a	function	or	class	method	are	used
before	global	variables	with	the	same	name.

When	working	from	the	>>>	prompt	using	the	REPL,	we	can	only	create	and	use	global
variables.	Further	examples	will	have	to	wait	until	Chapter	7,	Basic	Function	Definitions.

When	we	use	the	locals()	and	globals()	functions	at	the	>>>	prompt,	we	can	see	that
they	have	the	same	results.	At	the	>>>	prompt,	and	at	the	top-level	of	a	script	file,	the	local
namespace	is	the	global	namespace.	When	evaluating	a	function,	however,	the	function
works	in	a	separate,	local	namespace.





Summary
We’ve	looked	at	how	we	assign	objects	to	variables.	We’ve	looked	at	the	simple
assignment	statement,	as	well	as	multiple	assignment	and	augmented	assignment.	With
augmented	assignment,	we	can	update	a	variable	by	applying	an	operator	and	an	operand.
This	is	a	handy	syntactic	shortcut.

We’ve	also	addressed	the	input()	function,	which	is	a	way	to	create	new	objects	based	on
user	input.	It’s	very	handy	for	simple	command-line	scripts.	More	sophisticated	GUIs,	of
course,	will	have	considerably	more	sophisticated	input	mechanisms.

The	concept	of	a	namespace,	and	how	variables	are	tracked	via	a	namespace,	is	central	to
Python.	When	a	namespace	is	no	longer	needed,	it’s	discarded,	removing	all	of	the
variables.	This	will	also	reduce	the	reference	count	on	all	of	the	objects	referred	to	by	the
variables.	Once	an	object’s	reference	count	is	reduced	to	zero,	the	object	can	be	removed
from	memory.	This	is	a	tidy	and	simple	way	to	handle	variables.

In	Chapter	5,	Logic,	Comparisons,	and	Conditions,	we’ll	look	at	another	fundamental	data
type:	Boolean.	We’ll	look	at	Python’s	approach	to	Boolean	values	and	the	logical
operators	of	and,	or,	not,	and	if-else.	We’ll	also	look	at	the	various	comparison
operators.

We’ll	look	at	several	kinds	of	Python	statements,	include	the	if-elif-else	statement,	the
pass	statement,	and	the	assert	statement.	This	will	allow	us	to	write	somewhat	more
sophisticated	scripts.





Chapter	5.	Logic,	Comparisons,	and
Conditions
Our	exploration	of	the	Python	language	started	with	expression	statements	and	the
assignment	statement.	We	can	view	output	using	the	print()	function	as	a	simple
statement.	We	can	gather	input	using	the	input()	function	in	an	assignment	statement.	In
order	to	process	data	conditionally,	we	need	the	if	statement.

In	order	to	look	at	the	if	statement,	we’ll	need	to	look	at	Boolean	data	and	Boolean
operators.	The	and,	or,	not,	and	if-else	Boolean	operators	have	a	“short-circuit”
behavior:	if	the	result	is	defined	by	just	the	left-hand	operand,	the	right-hand	side	is	not
evaluated.	This	is	an	important	feature	of	these	logic	operators.	(The	if-else	operator	is
formally	called	the	Boolean	expression,	but	it	behaves	like	the	Boolean	operators.)

We’ll	also	look	at	the	comparison	operators.	A	comparison	is	a	common	way	to	create	the
Boolean	values	used	to	choose	between	suites	of	statements	within	an	if	statement.

We’ll	introduce	the	pass	statement	here.	This	statement	does	nothing.	It’s	a	place-holder
to	use	when	an	empty	suite	of	statements	is	all	we	need.

The	assert	statement	can	be	used	to	demonstrate	that	a	particular	logical	condition	is	true
at	some	point	in	the	program’s	execution.	This	can	clarify	a	potentially	confusing
algorithm.	It	can	also	serve	as	a	handy	debugging	tool	to	make	a	program	crash	when
something	has	gone	awry.



Boolean	data	and	the	bool()	function
All	objects	can	have	a	mapping	to	the	Boolean	domain	of	values:	True	and	False.	All	of
the	built-in	classes	have	this	mapping	defined.	When	we	define	our	own	classes,	we	need
to	consider	this	Boolean	mapping	as	a	design	feature.

The	built-in	classes	operate	on	a	simple	principle:	if	there’s	clearly	no	data,	the	object
should	map	to	False.	Otherwise,	it	should	map	to	True.	Here	are	some	detailed	examples:

The	None	object	maps	to	False.
For	all	of	the	various	kinds	of	numbers,	a	zero	value	maps	to	False.	All	non-zero
values	are	True.
For	all	of	the	collections	(including	str,	bytes,	tuple,	list,	dict,	set,	and	so	on)	an
empty	collection	is	False.	A	non-empty	collection	is	True.

We	can	use	the	bool()	function	to	see	this	mapping	between	object	and	a	Boolean:

>>>	red_violet=	(192,	68,	143)

>>>	bool(red_violet)

True

>>>	empty	=	()

>>>	type(empty)

<class	'tuple'>

>>>	bool(empty)

False

We’ve	created	a	simple	sequence,	a	tuple	of	three	values,	and	assigned	it	to	the
red_violet	variable.	Since	this	is	non-empty,	it	maps	to	True.	On	the	other	hand,	the
empty	tuple,	assigned	to	the	empty	variable,	maps	to	False.

One	important	consequence	of	this	built-in	mapping	is	that	any	object	can	be	used	in	a
Boolean	construct.	Looking	ahead,	we’ll	often	see	programs	with	constructs	that	echo	this
idiomatic	pattern:

for	input	from	some_file:

				if	not	input.strip():	continue

Some	details	of	this	example	will	have	to	wait	for	Chapter	10,	Files,	Databases,	Networks,
and	Contexts.	What’s	important	about	this	example	is	that	we	can	read	a	line	from	a	file,
strip	whitespace	with	the	strip()	method,	and	use	a	simple	Boolean	expression	to	see	if
the	result	is	an	empty	string.	If	it	is	an	empty	string,	we	can	easily	ignore	it	by	using	the
continue	statement.

This	construct	works	because	strings	map	to	Boolean	values.	An	empty	string	maps	to
False,	allowing	us	to	check	for	the	absence	of	content	with	a	very	simple	and	elegant
expression.





Comparison	operators
In	Chapter	2,	Simple	Data	Types,	we	looked	at	the	six	essential	comparison	operators:	<,	>,
==,	!=,	<=,	and	>=.	The	minimum	of	==	and	!=	are	defined	by	default	for	all	classes,	so	that
we	can	always	compare	objects	for	simple	equality.	For	the	numeric	types,	the	ordering
operators	are	also	defined.	Furthermore,	Python’s	type	coercion	rules	are	implemented	by
the	numeric	types	so	that	the	expression	2	<	3.0	will	have	the	int	coerced	to	float.

For	sequences,	including	str,	bytes,	tuple,	and	list,	the	two	operands	are	compared
item-by-item.	This	tends	to	put	strings	into	alphabetical	order.	This	works	well	for	words.
It	also	usually	puts	tuples	into	the	expected	order.	However,	for	number-like	strings,	the
sorting	may	seem	a	little	odd.	Here’s	the	example:

>>>	"11"	<	"2"

True

The	strings	"11"	and	"2"	are	not	numbers.	They’re	only	characters.	It’s	a	common
confusion	to	imagine	these	values	as	numbers	and	hope	that	"11"	comes	after	"2".	If	this
is	the	desired	behavior,	we’ll	need	to	convert	these	number-like	strings	to	proper	numbers
using	the	int()	function.

For	set	objects,	the	comparison	operators	map	to	the	superset	and	subset	relationships.
Python’s	<	operator	is	implemented	as	the	proper	subset	relationship.	The	<=	operator	is
implemented	as	the	subset	relationship.	We’ll	look	at	this	in	detail	in	Chapter	6,	More
Complex	Data	Types.

For	other	types,	comparisons	become	less	meaningful.	Orderings	between	mappings	is	not
a	simple	concept.	How	do	we	order	two	mappings:	do	we	compare	keys	only,	values	only,
or	some	combination	of	both?	If	we	try	to	compare	both	keys	and	values,	what	are	the
rules	for	missing	keys?	Since	there’s	no	simple	answer,	Python	doesn’t	define	the	ordering
operators	for	mappings.

For	types	outside	the	numeric	tower,	there	are	no	coercion	rules.	The	equality	comparisons
simply	compare	the	object	IDs	to	see	if	the	two	operands	are	references	to	same	object.

In	general,	ordering	operators	are	not	implemented	by	default	and	will	raise	TypeError
exceptions.	This	is	a	common	expectation	for	many	classes.

If	we	try	to	compare	two	file	objects,	what	attribute	of	the	file	should	we	be	comparing?
Size?	Creation	date?	Rather	than	create	confusion,	comparison	operators	are	simply	not
implemented	for	many	classes.



Combining	comparisons	to	simplify	the	logic
In	some	cases,	we	may	need	to	see	if	a	value	lies	within	a	given	range.	One	handy	syntax
simplification	is	to	combine	ordering	comparisons	into	a	simplified	expression.	We	can
meaningfully	write	expressions	like	this:

5	>	a	>=	0

In	this	kind	of	expression,	Python	interprets	the	combined	operators	to	mean	5	>	a	and	a
>=	0.	We	aren’t	forced	to	repeat	the	middle	expression,	a,	to	decompose	the	ordering	test
into	two	binary	comparisons.



Testing	float	values
One	important	feature	of	float	values	is	that	they	are	only	approximations.	We	can	easily
write	calculations	which	seem	mathematically	exact,	but	produce	odd-looking	results.
Specific	examples	vary	a	bit	from	implementation	to	implementation.	Here’s	one	example:

>>>	a=1

>>>	b=(a/105)*3*5*7

>>>	a	==	b

False

>>>	abs(a-b)

2.220446049250313e-16

In	an	abstract	mathematical	sense,	(a/105)*3*5*7,	must	equal	the	original	value	of	the	a
variable.	We	can	see,	however,	that	the	floating-point	approximation	created	by	the	true
division	operator	has	a	small	error.	In	this	case,	the	error	value	is	approximately	2.22e-16,
which	is	2**-52:	the	least	significant	bit	of	a	52-bit	value	is	incorrect	after	this	chain	of
floating-point	operations.

Because	of	the	presence	of	these	small	error	terms,	we	should	avoid	trivial	==	tests	with
floating-point	values.	A	simple	equality	test	can	often	turn	out	to	be	false	when	the	two
values	differ	by	a	tiny	amount.

Generally,	we	should	use	abs(a-b)	<	ε	instead	of	a	==	b.	We	can	set	the	ε	value	to	be
small	enough	to	detect	what	is	equal.	If,	for	example,	we’re	going	to	display	a	value	with
three	decimal	places,	there’s	little	reason	to	compute	anything	past	the	5th	decimal	place.
In	that	case,	ε=10e-5	can	be	used	to	define	the	acceptable	tolerance	for	floating-point
equality.

Tip
Avoid	float	==	float	comparisons;	use	abs(float-float)	<	ε	instead.



Comparing	object	IDs	with	the	is	operator
To	determine	if	two	variables	are	actually	referencing	the	same	object,	we	have	a	special
comparison	operator:	is.	This	is	different	from	the	somewhat	more	complex	equality	test.
The	is	operator	is	a	very	simple	test	comparing	the	internal	identifiers	for	two	objects.

If	a	is	b,	then	a	==	b	must	also	be	true,	as	the	two	variables	refer	to	the	same	underlying
object.	However,	if	a	==	b,	then	a	is	b	may	not	necessarily	be	true.	Two	distinct	objects
can	have	the	same	value.	Here’s	an	example	using	floating-point	values:

>>>	a	=	3.14

>>>	b	=	3.14

>>>	a	==	b

True

>>>	a	is	b

False

This	example	works	nicely	for	floating-point	objects.	We	can	see	that	two	seemingly-
equal	objects	are	actually	distinct	instances	which	represent	the	same	numeric	value.

An	example	like	this	doesn’t	work	for	small	integer	values,	however.	For	a	narrow	range
of	integer	values,	Python	tends	to	reuse	a	small	pool	of	internal	objects.	This	avoids	the
proliferation	of	copies	of	ubiquitous	values.	If	we	try	to	set	a=1	and	b=1,	we’ll	see	that	a
is	b:	Python	reused	the	same	object.

With	a	little	experimentation,	we	can	see	that	the	reuse	of	small	integers	is	true	for
numbers	between	-5	and	256.	Implementation	details	will	vary.	What’s	important	is	that
some	immutable	objects	are	implicitly	allocated	from	a	pool.

Object	identity	is	revealed	with	the	id()	function.	This	shows	the	unique,	internal	object
identifier.	For	example:

>>>	id(a)

4298491200

>>>	id(b)

4298491224

We	can	see	that	these	are	two	distinct	objects	which	happen	to	be	equal	in	value.



Equality	and	object	hash	values
An	important	part	of	equality	comparison	in	Python	is	the	hash	value	comparison.	A	hash
is	a	small	integer	value	that	summarizes	a	larger,	more	complex	value.	A	hash	should	not
change;	mutable	objects	should	not	provide	a	hash	value.

Any	object	that	we’re	going	to	collect	into	a	set	or	use	as	a	key	to	a	mapping	must	provide
both	a	hash	value	and	a	proper	equality	comparison.	All	of	the	built-in	immutable	types
we’ve	seen—numbers,	tuple,	str,	and	bytes—offer	the	necessary	implementations	of
these	methods.	The	built-in	mutable	types	that	we’ll	look	at	in	Chapter	6,	More	Complex
Data	Types,	such	as	list,	set,	and	dict,	don’t	provide	a	hash	value	and	can’t	be	used	as
keys	in	a	mapping.

A	hash	function	reduces	a	complex	value	to	a	small	number.	In	Python,	hash	values
generally	use	61	bits.	For	a	complex	object,	the	hash	value	summarizes	the	object	as	a

whole.	It	might	be	a	sum	of	all	the	individual	bytes,	computed	 .	It	might	be	a	sum
of	hash	values	for	other	internal	objects.	Comparing	hash	values	makes	for	significantly
less	work	than	comparing	each	individual	item	in	a	complex	object.

For	immutable	objects,	the	hash	value	is	computed	once	and	will	be	as	immutable	as	the
object	itself.	For	mutable	objects,	a	hash	value	could	be	computed.	However,	if	the	hash
value	changes,	then	the	object	won’t	behave	well	as	an	item	in	a	set	or	as	a	key	to	a
mapping.	A	changing	hash	value	for	a	mutable	object	is	not	a	very	good	idea.

When	putting	items	into	a	set,	for	example,	Python	does	a	quick	equality	check	using	the
hash	values.	If	the	hash	values	are	different,	the	underlying	objects	must	be	different,	and
no	more	comparison	needs	to	be	done.	If	the	hash	values	match,	however,	then	the
detailed	equality	test	must	be	used	to	see	if	the	objects	really	are	equal	or	only	happen	to
have	the	same	hash	value.

In	some	implementations	of	Python,	you	can	use	this	kind	of	test	to	see	if	two	different
numbers	happen	to	have	the	same	hash	value:

>>>	hash(12)

12

>>>	hash(12*2**61)

12

Note
Implementations	vary;	this	was	Mac	OS	X,	v3.3.4:7ff62415e426,	your	results	may	be
different.

If	we	tried	to	put	these	two	values	into	a	set,	Python	would	do	a	hash	check	to	see	that
they	are	potentially	equal,	followed	by	a	detailed	comparison	to	see	that	they’re	not	equal.





Logic	operators	–	and,	or,	not,	if-else
Python	offers	us	four	logical	operators:	and,	or,	not,	and	if-else.	These	work	with
Boolean	values	to	create	Boolean	results.	They’re	entirely	distinct	from	the	bit-wise
operators	of	&,	|,	^,	and	~,	that	we	looked	at	in	Chapter	2,	Simple	Data	Types.

The	and,	or,	and	not	operators	are	common	in	all	programming	languages.	They	fit	the
widely-used	definitions	from	Boolean	algebra.

The	if-else	Boolean	expression	has	three	operands.	In	the	middle,	it	uses	a	Boolean
condition,	but	the	other	two	operands	can	be	objects	of	any	types.	Here’s	an	example:

selection	=	"yankee"	if	wind	<	15	else	"stays'l"

The	if-else	operator	has	a	Boolean	condition	in	the	middle.	In	this	example,	it’s	the
comparison,	wind	<	15.	If	the	condition	is	True,	then	the	left-most	expression	is	the
result,	the	string	"yankee".	If	the	condition	is	False,	then	the	right-most	expression	is	the
result;	here,	it’s	"stays'l".

The	logical	operators	implicitly	apply	the	bool()	function	to	their	operands.	This	means
that	we	can	do	things	like	the	following:

valid=	line	and	line[0]	!=	"#"

The	and	expression	involves	two	Boolean	operands.	When	Python	implicitly	evaluates
bool(line),	a	non-empty	line	will	be	True;	a	zero-length	line	will	be	False.	The	valid
variable	will	be	False	for	empty	lines;	it	will	also	be	False	for	non-empty	lines	where
line[0]	is	not	the	"#"	character.

This	implicit	use	of	bool()	also	means	this	is	true:

>>>	not	12

False

The	value	of	not	12	is	evaluated	as	not	bool(12).	The	bool()	value	of	a	non-zero
numeric	value	is	True;	the	final	result	of	this	expression	is	therefore	False.



Short-circuit	(or	non-strict)	evaluation
Consider	the	following:

>>>	total=	0

>>>	count=	0

>>>	average	=	total	!=	0	and	total/count

>>>	average

False

What	just	happened?	Or,	more	precisely,	what	didn’t	happen?	Why	doesn’t	this	raise	a
ZeroDivisionError	exception?	The	first	two	assignment	statements	are	unsurprising;	they
assign	zero	to	two	variables,	total	and	count.	The	logical	expression,	however,	has	a
number	of	interesting	features.	Firstly,	Python	evaluates	expressions	left-to-right.	This
means	that	the	total	!=	0	subexpression	is	evaluated	first.	The	result	of	this	comparison
is	False.

Secondly,	and	perhaps	more	importantly,	the	and	operator	breaks	the	strict	evaluation
rules.	If	the	left	side	value	is	equivalent	to	False,	the	overall	result	is	False.	The	right	side
is	not	evaluated	at	all.	If	the	left	side	value	is	equivalent	to	True,	the	result	is	simply	the
right	side	value.

This	is	sometimes	called	a	short-circuit	evaluation	rule.	There’s	no	reason	to	evaluate	the
right	side	if	the	result	is	known	from	the	left	side.

The	result	is	not	necessarily	a	Boolean;	it’s	simply	one	of	the	operands	given	to	the	and
operator.	Here	are	some	examples:

>>>	0	and	12

0

>>>	()	and	"non-false"

()

>>>	12	and	()

()

In	the	first	example,	0	is	equivalent	to	False,	and	that	object	is	the	entire	result	of	the	and
operator.	In	the	second	example,	the	empty	tuple,	(),	is	equivalent	to	False;	it	is	the	result
of	the	operator.

In	the	third	example,	the	left	hand	side,	12,	is	non-zero,	and	therefore,	equivalent	to	True.
This	means	that	the	right	side	must	be	evaluated.	The	right	side	is	the	result	of	the	and
operator;	in	this	case,	it	is	an	empty	tuple,	().

The	or	operator	is	similar;	if	the	left	side	is	equivalent	to	True,	there’s	no	reason	to
evaluate	the	right	side.	We	can	use	this	feature	to	apply	default	values.

We	can	write	expressions	like	the	following.

x	=	parameter	or	42

If	the	value	of	the	parameter	variable	is	a	True	value,	the	value	of	the	or	operator	will	be
that	equivalent-to-true	value.	If	the	value	of	the	parameter	variable	is	not	a	True	value
(for	example,	it	might	be	None),	then	the	result	will	be	the	literal	value	42.



We	can,	of	course,	also	use	the	if-else	operator	for	this.	Here’s	an	example:

x	=	42	if	parameter	is	None	else	parameter

If	the	value	of	the	parameter	variable	is	the	None	object,	the	left	side	operand—the	literal
42—is	the	result.	If	the	value	of	the	parameter	variable	is	not	the	None	object,	then	the
right	side	operator—the	value	of	the	parameter	variable—is	the	result.





The	if-elif-else	statement
Our	central	tool	for	conditional	processing	is	the	if	statement.	This	is	a	compound
statement	which	is	built	from	a	number	of	clauses.	The	initial	clause	starts	with	the	if
keyword.	Any	number	of	elif	(short	for	“else	if”)	clauses	can	be	used.	Each	of	these
clauses	has	a	conditional	expression	and	an	indented	suite	of	statements.	We	can	also	add
a	single	catch-all	else	clause	at	the	end;	this	doesn’t	have	a	condition,	but	does	have	a
suite	of	statements.

The	minimal	if	statement,	with	a	single	clause,	might	look	like	this:

if	abs(a-b)	<	ε:

				print("{a}	\N{ALMOST	EQUAL	TO}	{b}".format(a=a,	b=b))

The	if	statement	contains	a	single	expression.	If	the	expression	is	True,	the	suite	of
statements	is	executed.	In	this	case,	the	suite	is	a	single	expression	statement,	using	the
print()	function.

The	else	clause	can	be	used	in	simple	if	statements.

if	count	==	0:

				print("Insufficient	Data")

else:

				print("Mean	=	{0:.2f}".format(total/count))

In	this	case,	we	have	two	conditions.	We’ve	formally	stated	the	count	==	0	condition	for
one	print()	function.	We	have	an	unstated	condition	for	the	other	print()	function.	It’s
relatively	easy—in	this	simple	case—to	deduce	the	implied	condition.



Adding	elif	clauses
In	some	cases,	we	can	decompose	complex	situations	into	a	list	of	cases.	For	example,	we
might	have	some	conditions	like	this:

if	y	%	400	==	0:

				leap	=	True

elif	y	%	100	==	0:

				leap	=	False

elif	y	%	4	==	0:

				leap	=	True

else:

				leap	=	False

We’ve	written	a	rather	complex	chain	of	logic	here.	We’ve	specified	four	distinct
conditions:

y	is	a	multiple	of	400,	in	which	case,	the	leap	variable	will	be	set	to	True.	For
example,	the	year	2000	was	a	leap	year.
y	is	a	multiple	of	100	(and	not	a	multiple	of	400),	in	which	case,	the	leap	variable
will	be	set	to	False.	The	year	2100	will	not	be	a	leap	year.
y	is	a	multiple	of	4	(and	neither	a	multiple	of	100	nor	of	400),	which	sets	the	leap
variable	to	True.	The	year	2016	will	be	a	leap	year.
y	is	not	a	multiple	of	4,	100,	or	400,	the	leap	variable	is	set	to	False.	The	year	2015
is	not	a	leap	year.

Since	Python	evaluates	the	clauses	in	a	strict	order,	each	elif	clause	has	an	implicit	“and
not	any	of	the	previous	clauses”.	This	means	that	the	conditions	in	each	elif	can	be
written	very	succinctly,	but	they	also	need	the	previous	clauses	as	part	of	their	context.

As	the	number	of	elif	clauses	grows,	the	possibility	of	introducing	a	subtle	logic	bug	also
grows.	This	can	create	the	situation	where	the	implied	condition	for	the	else	clause	is
very	hard	to	deduce	correctly.	Consequently,	some	programs	include	logic	that	looks	like
this:

if	y	%	400	==	0:

				leap	=	True

elif	y	%	400	!=	0	and	y	%	100	==	0:

				leap	=	False

elif	y	%	400	!=	0	and	y	%	100	!=	0	and	y	%	4	==	0:

				leap	=	True

elif	y	%	400	!=	0	and	y	%	100	!=	0	and	y	%	4	!=	0:

				leap	=	False

else:

				raise	Exception("Logic	Error")

This	example	shows	each	implied	condition	written	out	fully.	It	also	shows	the	else
clause	used	to	raise	an	exception	in	the	unlikely	case	that	a	condition	was	overlooked	or
misstated.	Some	developers	argue	that	this	is	simply	a	waste	of	time.	Others	recognize	that
anything	which	is	merely	implied	is	a	possible	source	of	errors,	and	prefer	to	state
conditions	explicitly.



For	simple	sets	of	conditions,	this	may	be	needless	over-engineering.	In	other	cases,	this
long-winded	variation	is	more	reliable	because	it	removes	all	assumptions	and	implicit
conditions.





The	pass	statement	as	a	placeholder
In	some	algorithms,	an	else	clause	may	be	more	important	than	an	if	clause.	This
happens	when	an	algorithm	is	designed	to	handle	a	certain	set	of	conditions—the	happy
path—by	default.	All	of	the	other	non-happy-path	conditions	require	some	exceptional
processing.

When	the	default	condition	is	relatively	clear	and	easy	to	write,	but	there’s	no	processing
required	for	the	condition,	we	have	a	syntax	issue	in	Python.	The	interesting	processing
belongs	to	an	else	clause,	but	we	have	no	real	code	for	the	initial	if	clause.	Here’s	a
typical	pattern	shown	with	invalid	syntax:

if	happy_path(x):

				#	nothing	special	required

else:

				some_special_processing(x)

#	Processing	Continues

The	happy_path()	condition	confirms	that	the	default	processing	will	work.	There’s	no
actual	processing	do	be	done	when	this	is	true.	Since	we	don’t	want	to	do	anything,	what
do	we	write	in	the	if	clause?

The	preceding	code	is	invalid	Python.	We	can’t	have	an	empty	suite	in	the	if	clause.	Since
we	can’t	write	the	code	that’s	shown,	we	have	to	find	alternative	syntax	that	works.

One	obvious	choice	is	to	negate	the	logic	of	the	happy_path()	condition.	We	can	simply
use	the	not	operator.

if	not	happy_path(x):

				some_special_processing(x)

This	has	the	desired	effect.	However,	the	not	operator	may	be	hard	to	see.	When	the
happy_path()	condition	is	a	complex	logic	expression,	the	extra	not	can	be	confusing.

This	is	where	the	Python	pass	statement	might	be	clearer	than	the	not	operator.	It	would
look	like	this:

if	happy_path(x):

				pass	#	nothing	special	required

else:

				some_special_processing(x)

#	Processing	Continues

We’ve	filled	the	syntactic	void	in	the	if	clause	with	a	“do	nothing”	statement.	We	have
used	pass	to	create	a	proper	suite	in	the	if	clause.	We	left	the	comment	in	place	because
that	kind	of	information	might	be	helpful.

There	are	a	few	other	uses	for	the	pass	statement.	We’ll	look	at	them	in	Chapter	11,	Class
Definitions.





The	assert	statement
The	assert	statement	is	a	highly	specialized	form	of	if	statement.	This	statement
confirms	that	a	given	condition	is	true.	If	the	condition	is	not	true,	the	assert	statement
raises	an	exception.	In	the	simplest	case,	the	script	stops	running	because	the	exception	is
not	handled	in	our	programming.

It	looks	like	this:

assert	a	>	b	>=	0

We	have	used	an	assert	statement	to	provide	documentation	of	a	relationship	between
variables	that	must	be	true	at	a	given	point	in	our	Python	script,	function,	or	method.	If	the
condition,	a	>	b	>=	0,	is	false,	then	the	AssertionError	exception	is	raised.

We	can	customize	the	exception	which	is	raised	by	providing	a	second	argument	to	the
assert	statement:

assert	a	>	b	>=	0,	"a={0}	and	b={1}".format(a,	b)

We’ve	provided	a	string	which	includes	information	about	the	assertion.	This	string	will
be	an	argument	to	the	exception	object	which	is	created.

An	exception	has	two	interesting	features.	Firstly,	it’s	an	object	with	arguments	that	we
can	set	when	we	raise	it.	Secondly,	and	more	importantly,	it	interrupts	the	normal
sequential	execution	of	statements.	A	try/except	statement	can	be	written	to	handle
exceptions:	the	execution	stops	in	the	try	clause	and	begins	in	an	except	clause	that
matches	the	exception.	Without	a	try	statement	that	matches	the	exception,	raising	an
exception	stops	the	program.	We’ll	look	at	exceptions	in	detail	in	Chapter	9,	Exceptions.

Note	that	the	assert	statement	can	be	disabled.	When	we	run	Python3	with	the	-O,
optimize,	command-line	option,	then	the	assert	statements	are	not	included	in	the
internal	Python	byte	code.





The	logic	of	the	None	object
In	Chapter	2,	Simple	Data	Types,	we	introduced	the	None	object.	It	is	a	unique,	immutable
object,	often	used	to	indicate	that	a	parameter	should	have	a	default	value	or	that	an	input
is	not	available.	Some	languages	have	a	special	null	object	or	null	pointer	that	have	similar
semantics	to	the	Python	None	object.

The	None	object	has	no	arithmetic	operators	defined.	It’s	equivalent	to	False.	The	==	and
!=	operators	are	generally	defined	for	None.	However,	these	operators	aren’t	always
appropriate	because	other	objects	might	exhibit	similar	behavior.

Generally,	we’ll	use	the	is	comparison	when	trying	to	determine	if	a	variable	is	set	to
None.	The	==	test	can	be	redefined	by	a	class	that	implements	the	__eq__	special	method;
the	is	test	cannot	be	overridden.

Tip
Because	==	can	be	reimplemented,	always	use	is	None	instead	of	==	None.

Since	bool(None)	==	False,	we	can	use	a	variable	which	may	be	None	in	an	if
condition.	Nevertheless,	we	should	generally	use	is	None	or	is	not	None	to	be	clearer.

Here’s	an	example:

if	not	a:

				print("a	could	be	None")

This	relies	on	the	way	Python	implicitly	evaluates	bool(a)	to	see	if	the	value	of	the	a
variable	is	equivalent	to	True.	It’s	often	better	to	be	perfectly	explicit:

if	a	is	None:

				print("a	is	None")

This	shows	that	we’re	matching	the	value	of	the	a	variable	against	the	None	object.





Summary
We’ve	looked	closely	at	Python’s	Boolean	data	type,	which	only	has	two	values	(True	and
False)	and	four	operators:	and,	or,	not,	and	if-else.	The	Boolean	operators	and	the	if
statement	will	both	implicitly	coerce	values	to	a	Boolean.	This	means	that	non-empty
strings	will	behave	in	the	same	as	the	True	value.

We’ve	looked	at	the	comparison	operators.	These	work	with	other	objects	and	create
Boolean	results.

In	the	case	of	numeric	comparisons,	the	numeric	coercion	rules	are	used	to	allow	us	to
compare	float	against	int	values	without	having	to	write	explicit	conversions.	For	string
or	tuple	values,	we’ve	seen	that	items	are	compared	in	order.

We’ve	also	seen	how	the	logical	operators	of	or	and	and	are	not	strict	about	evaluating
their	operands.	If	the	left-hand	side	of	and	is	False,	the	right-hand	side	isn’t	evaluated.
Similarly,	if	the	left-hand	side	of	or	is	True,	the	right-hand	side	isn’t	evaluated.

We	looked	at	several	kinds	of	Python	statements,	including	the	if-elif-else	statement,
the	pass	statement,	and	the	assert	statement.	These	statements	allow	us	to	write
somewhat	more	sophisticated	scripts.

In	Chapter	6,	More	Complex	Data	Types,	we’ll	look	at	the	list,	set,	and	dict	collections.
We’ll	see	how	we	can	use	the	for	statement	to	process	all	items	in	a	given	collection.	This
will	give	us	the	ability	to	write	scripts	of	considerable	sophistication.





Chapter	6.	More	Complex	Data	Types
We’ll	look	at	a	number	of	built-in	and	standard	library	collection	types.	These	collections
offer	more	features	than	the	simple	tuple	collection.	We’ll	look	at	the	for	and	while
statements	which	allow	us	to	process	the	individual	items	of	a	collection.

We’ll	look	at	some	functions	which	we	can	use	to	work	with	collections	of	data;	these
include	the	map(),	filter(),	and	functools.reduce()	functions.	By	using	these,	we
don’t	need	to	write	an	explicit	for	statement	to	process	a	collection.	We’ll	also	look	at
more	specific	kinds	of	reductions	such	as	max(),	min(),	len(),	and	sum().

We’ll	also	look	at	the	break	and	continue	statements;	these	modify	a	for	or	while	loop	to
allow	skipping	items	or	exiting	before	the	loop	has	processed	all	items.	This	is	a
fundamental	change	in	the	semantics	of	a	collection-processing	statement.

The	concepts	of	mutability	and	immutability	are	part	of	understanding	how	an	object
behaves.	The	built-in	types	in	this	chapter	are	all	mutable.	This	is	quite	different	from	the
way	that	immutable	objects	like	strings	and	tuples	behave.



The	mutability	and	immutability
distinction
In	Chapter	2,	Simple	Data	Types,	we	looked	at	the	immutability	issue.	This	is	an	important
characteristic	of	Python	objects.	We’ll	need	to	look	at	some	more	aspects	of	mutability	in
Chapter	7,	Basic	Function	Definitions.	We’ll	look	at	how	we	can	create	our	own	mutable
classes	in	Chapter	11,	Class	Definitions.

We’ve	seen	that	Python’s	various	classes	include	those	which	create	mutable	objects	and
those	which	create	immutable	objects.	The	immutable	classes	include	all	of	the	number
classes,	strings,	bytes,	and	tuples.	The	tuple	(247,	83,	148)	object	cannot	be	changed:
we	cannot	assign	a	new	value	to	an	item	with	an	index	of	1.

A	tuple	object	has	the	structure	of	Sequence:	we	can	extract	items	based	on	their	position.
However,	we	cannot	change	the	internal	state	of	a	tuple	object.

A	list	is	also	a	subclass	of	the	Sequence	class.	We	can,	however,	change	the	state	of	a
list	object	without	creating	a	new	list	instance.

The	abstract	base	class	definitions	for	Sequence	and	MutableSequence	are	in	the
collections.abc	module.	The	documentation	for	this	module	shows	how	the	various
complex	types	relate	to	each	other.

While	some	of	the	features	of	list	and	tuple	are	similar,	they	address	different	use	cases.
The	benefits	of	immutability	are	simplicity,	reduced	storage	demands,	and	higher-
performance	for	some	kinds	of	processing.	The	benefit	mutability	is	that	a	single	object
can	undergo	an	internal	state	change.





Using	the	list	collection
Python’s	list	collection	is	its	built-in	mutable	sequence.	We	can	create	list	objects	easily
using	a	literal	display	that	simply	provides	expressions	enclosed	in	[].	It	looks	like	this:

fib_list	=	[1,	1,	3,	5,	8]

As	with	tuples,	the	items	are	identified	by	their	position	in	the	list	collection.	Positions
are	numbered	from	the	left	starting	from	zero.	Positions	are	also	numbered	from	the	right,
using	negative	numbers.	The	last	value	in	a	list	is	at	position	-1,	the	next-to-last	value	at
position	-2.

Tip
Index	values	begin	with	zero.	Index	position	0	is	the	first	item.	Index	values	can	be	done
in	reverse	with	negative	numbers.	Index	position	-1	is	the	last	item.

We	can	also	create	lists	using	the	list()	function.	This	will	convert	many	kinds	of
collections	into	list	objects.	Used	without	arguments,	list()	creates	an	empty	list	just
like	[].	Since	the	list()	function	is	so	versatile	at	converting	collections	into	list
objects,	we’ll	use	it	much	more	in	later	chapters.

We	can	update	a	list	collection	using	methods	like	append():

fib_list.append(fib_list[-2]	+	fib_list[-1])

In	this	example,	the	value	of	fib_list[-1]	is	the	last	element	in	the	list,	and
fib_list[-2]	is	the	penultimate	value.	The	expression	creates	a	new	number,	which	can
be	appended	to	the	fib_list	object.

We	can	manipulate	a	single	element	in	a	list	using	a	subscription,	such	as	those	shown	in
the	previous	example.	The	value	in	the	[]	must	be	a	single	integer,	which	identifies	an
item	in	the	list.	It	looks	like	this:

>>>	fib_list[2]

3

The	item	in	position	two	(the	third	item	in	the	list)	has	a	value	of	3.

We	can	extract	a	sublist	using	slicing	notation.	A	slicing	uses	a	multi-part	value	in	the	[].
The	result	of	a	slicing	is	always	a	list	built	from	the	original	list	object.	There	are	several
ways	to	specify	slicings,	we’ll	show	a	number	of	examples:

>>>	fib_list[2:5]

[3,	5,	8]

>>>	fib_list[2:]

[3,	5,	8,	13]

>>>	fib_list[:-1]

[1,	1,	3,	5,	8]

The	first	slicing,	[2:5],	starts	at	the	index	of	2	and	stops	just	before	the	index	of	5.	This
means	that	the	index	values	of	2,	3,	and	4	are	sliced	out	of	the	original	list.	Since	lists	are
indexed	from	zero,	an	index	of	2	is	the	third	position	in	the	list.	It’s	essential	to	think	of	a



slicing	as	a	“half-open”	interval.

Tip
Most	of	Python	uses	“half-open”	intervals.

When	we	write	the	slice	expression	[a:b],	position	a	is	included	while	position	b	is	not
included.	This	slice	specifies	all	index	values,	i,	such	that	 .	There	are	 	values
in	the	slice.

The	second	slicing,	[2:],	omits	the	ending,	which	means	that	it	starts	at	an	index	of	2	and
includes	all	items	to	the	end	of	the	list.

The	third	slicing,	[:-1],	omits	the	starting	position,	which	means	that	it	starts	at	an	index
of	0.	The	ending	is	given	as	-1,	the	last	item	in	the	list.	Since	slicings	stop	short	of	the
given	final	position,	this	slicing	will	omit	the	last	item	from	the	list.

We	can	use	[:]	as	a	degenerate	case	where	the	start	and	end	are	both	omitted.	This	works
very	well	when	making	a	shallow	copy	of	an	entire	list	object.

Slicings	can	be	extended	to	include	a	third	parameter.	This	allows	us	to	specify	a	start,
stop,	and	a	step	value.	We	can	do	things	like	this:

>>>	fib_list[::2]

[1,	3,	8]

>>>	fib_list[1::2]

[1,	5,	13]

In	the	first	example,	the	start	and	stop	are	omitted,	so	we’ll	use	the	entire	list.	The	step
value	is	2,	so	we’ll	extract	a	new	list	using	the	even-numbered	indexes:	0,	2,	4,	…,	and	so
on.

In	the	second	example,	we	provided	a	start	and	a	step	value.	This	will	begin	with	index	1,
and	increment	by	2.	It	will	extract	a	list	built	from	the	odd-numbered	indices:	1,	3,	5,	…,
and	so	on.

We	can	use	a	negative	step	value	to	visit	a	list	in	reverse	order.	This	can	be	confusing,	but
it	works	very	nicely.

List	objects	have	a	few	operators,	including	+	and	*.	We’ll	also	look	at	the	various	kinds	of
list	assignment	statements	we	can	use	that	involve	slicing	expressions	on	the	left	side	of
the	assignment	statement.	These	can	mutate	a	list	by	changing	some	of	the	values.



Using	list	operators
We	can	use	the	+	operator	to	concatenate	two	list	objects:	[1,	1]	+	[2,	3,	5]	for
example.	If	we	want	to	extend	a	list,	we	can	use	this	augmented	assignment	statement:

>>>	fib_list	+=	[	fib_list[-2]	+	fib_list[-1]	]

Note	that	we	had	to	create	a	singleton	list	collection	so	that	the	+	operator	would
concatenate	the	new	list	to	an	existing	list.

Since	a	list	object	is	mutable,	this	+=	assignment	will	update	a	list	object;	it	is	extended
with	the	new	list	collection.	Contrast	this	with	a	tuple,	where	a	new	tuple	must	be
created	from	the	two	original	tuples,	and	assigned	to	the	variable.

In	Chapter	5,	Logic,	Comparisons,	and	Conditions,	we	noted	that	sequences	like	list	and
tuple	are	compared	item-by-item.	This	means	that	[1,	1,	2]	<	[1,	2]	will	be	True.

Lists	and	other	sequences	also	support	the	in	operator.	We	can	ask	if	a	specific	value	is	in
a	list	collection.	We	can	also	confirm	that	a	given	value	is	not	in	a	list	collection.	These
are	simple	Boolean	expressions	that	look	like	this:

>>>	13	in	fib_list

True

>>>	12	not	in	fib_list

True

We’ve	used	the	in	operator	to	confirm	that	the	value	13	is	in	the	fib_list	variable	and
the	value	12	is	not	in	that	list	object.



Mutating	a	list	with	subscripts
We	can	change	an	item	in	a	list	collection	using	a	subscription	or	slicing	on	the	left	side
of	an	assignment	statement.	A	subscription	uses	[]	and	a	single	integer	value	to	identify
an	item	within	a	list.	We	can	replace	an	item	like	this:

fib_list[0]=	1

We	will	replace	the	item	at	index	0	(the	first	item)	with	a	value	of	1.	If	we	mention	an
index	value	which	is	not	in	the	list,	an	IndexError	will	be	raised.

We	can	replace	any	simple	slice	of	a	list	with	a	different	list.	The	replacement	list	does	not
have	to	be	the	same	size.	Indeed,	it	can	be	an	empty	list,	which	will	effectively	remove
items	from	the	list.	Here’s	an	example	where	we	mutate	a	long	slice	by	providing	a	shorter
replacement:

fib_list[2:5]=	[3]

We’ve	specified	a	slicing	which	contains	three	items—index	values	of	2,	3,	and	4—and
replaced	these	items	with	a	list	that	has	only	a	single	item.	The	resulting	list	will	look	like
this:

[1,	1,	3,	13]

Positions	0	and	1	remain	untouched.	Also	positions	from	5	to	the	end	of	the	original	list
are	also	left	untouched.

We	can	replace	an	extended	slicing—one	that	includes	a	step	value—but	the	replacement
must	be	the	same	size.	If	we	don’t	provide	the	proper	number	of	replacement	values,	we’ll
get	a	ValueError	exception.



Mutating	a	list	with	method	functions
We	can	mutate	a	list	object	with	any	of	a	large	number	of	method	functions.	The	mutator
methods	of	a	list	almost	always	return	a	value	of	None.	With	the	exception	of	the	pop()
method,	mutators	don’t	return	a	meaningful	value.

There	are	also	method	functions	which	provide	information	about	a	list;	these	must	return
a	value.	We’ll	look	at	access-only	method	functions.

The	mutator	methods	of	a	list	include	append(),	clear(),	extend(),	insert(),	pop(),
remove(),	reverse(),	and	sort().	Here	are	some	examples:

>>>	fib_list

[1,	1,	3,	5,	8,	13]

>>>	fib_list.extend(	[21,	34]	)

>>>	fib_list

[1,	1,	3,	5,	8,	13,	21,	34]

>>>	fib_list.insert(0,	0)

>>>	fib_list

[0,	1,	1,	3,	5,	8,	13,	21,	34]

>>>	fib_list.remove(34)

>>>	fib_list

[0,	1,	1,	3,	5,	8,	13,	21]

>>>	fib_list.pop()

21

>>>	fib_list.pop(0)

0

We’ve	shown	our	initial	list	with	six	items.	We	extended	the	list	with	a	second	list	that	has
two	more	items,	[21,	34].	The	result	is	a	single	list	composed	of	the	two	original	lists.

The	insert()	method	has	a	value	and	a	position.	In	this	example,	both	were	zero.	When
we	use	help(list.insert)	we	see	that	the	index	position	is	the	first	argument	value.	The
value	to	be	inserted	before	that	position	is	provided	as	the	second	argument	value.

When	we	remove	an	item	from	a	list,	we	provide	the	item	value	to	remove.	For	very	large
lists,	this	may	involve	a	significant	amount	of	time	searching	for	the	required	item.

The	pop()	method	does	two	things.	It	removes	an	item	by	position,	and	returns	that	item
as	the	result	value.	The	default	position	is	the	last	item,	-1.	We	can	also	remove	items	from
the	beginning	of	a	list,	using	index	position	0.

We	can	also	use	the	del	statement	to	remove	items	from	a	list.	The	statement	del
fib_list[0]	will	remove	the	first	item	from	a	list.

We	haven’t	shown	the	reverse()	and	sort()	methods	which	change	the	order	of	the
items	in	the	list.	The	sort()	method	can	be	quite	a	bit	more	sophisticated	than	these
methods.	We’ll	look	into	sorting	in	Chapter	8,	More	Advanced	Functions.

We	didn’t	give	an	example	of	the	clear()	method.	This	removes	all	of	the	items	from	the
list.

Note	that,	with	the	exception	of	pop(),	we	must	explicitly	request	a	display	of	the



fib_list	object	to	see	any	output	from	Python’s	REPL.	These	mutator	methods	only
return	a	value	of	None.	It’s	too	common	a	mistake	to	see	a	=	a.append(x);	this	statement
always	sets	the	variable	a	to	None.



Accessing	a	list
As	shown	previously,	we	can	access	a	list	using	a	subscription	as	well	as	a	slicing.	A
subscription	gives	us	a	single	item.	A	slicing,	on	the	other	hand,	makes	a	shallow	copy	of
the	items	in	the	original	list.

The	method	functions	for	accessing	a	list	include	count(),	index(),	and	copy().	Here	are
some	examples	to	show	how	these	functions	work:

>>>	fib_list.count(1)

2

>>>	fib_list.index(5)

3

The	count()	method	counts	all	the	items	which	are	equal	to	the	given	value.	In	this	case,
there	were	two	items	equal	to	1	in	the	list.	If	the	given	value	is	not	found	in	the	list,	the
count	will	be	zero.

The	index()	method	locates	the	given	item	value,	and	returns	the	index	position	of	that
value	in	the	list.	If	the	value	does	not	exist,	a	ValueError	exception	is	raised.

The	copy()	method	of	a	list	object	does	the	same	thing	as	the	empty	slicing.	The
expressions,	fib_list[:]	and	fib_list.copy(),	are	both	copies	of	the	original	list.





Using	collection	functions
Python	offers	a	number	of	functions	which	work	with	any	kind	of	collection.	These
include	sorted(),	max(),	min(),	and	sum().	We	also	have	some	higher-order	functions,
map(),	filter(),	and	the	entire	itertools	module.	We’ll	address	additional	higher-order
functions	in	Chapter	8,	More	Advanced	Functions.

The	sorted()	function	returns	a	sorted	list	from	a	collection.	It	transforms	the	given
collection	into	a	list	collection	as	part	of	the	sorting	process.	If	the	collection	doesn’t
define	the	proper	iterator	methods,	it	can’t	be	easily	sorted	by	using	this	function.

The	max()	and	min()	functions	reduce	a	collection	to	a	single	value:	either	the	largest	or
the	smallest	value	in	the	collection.	This	reduction	presumes	that	the	items	can	be
meaningfully	compared.	Consider	a	tuple	that	has	mixed	values	in	it:

((255,	73,	108),	'Radical	Red')

We	can’t	meaningfully	evaluate	max()	or	min()	on	a	collection	of	mixed	values	like	this.
The	functions	will	be	forced	to	compare	a	tuple	of	numbers	against	a	string.	This	will	raise
a	TypeError	exception.

The	sum()	function	reduces	a	collection	of	numbers	to	a	single	value.	It	can	be	used	on
almost	any	kind	of	object	that	implements	the	+	operator;	we	can	amalgamate	a	list	of	lists
to	create	a	very	long	list.	Here’s	an	example	of	using	these	collection	functions	with	a
simple	set	object:

>>>	some_set	=	{7,	2,	3,	5}

>>>	sorted(some_set)

[2,	3,	5,	7]

>>>	max(some_set)

7

>>>	min(some_set)

2

>>>	sum(some_set)

17

We’ve	created	a	set	with	four	integers	in	it.	When	we	evaluate	the	sorted()	function,	we
get	a	list	object	which	contains	the	items	sorted	into	ascending	order.	When	we	evaluate
max()	or	min()	functions,	we	get	the	largest	or	smallest	value	in	the	collection.	The	sum()
function	adds	up	the	values	in	the	set	collection.





Using	the	set	collection
All	of	the	collections	we’ve	looked	at	previously	have	been	sequences:	str,	bytes,	tuple,
and	list	have	items	which	can	be	accessed	by	their	position	within	the	collection.	A	set
collection	is	an	unordered	collection	where	items	are	present	or	absent.

Items	in	a	set	collection	must	be	immutable;	they	must	provide	a	proper	hash	value	as
well	as	an	equality	test.	This	means	that	we	can	create	sets	of	numbers,	strings,	and	tuples.
We	can’t	easily	create	a	set	of	lists	or	a	set	of	sets.

The	syntax	of	a	set	display	is	a	sequence	of	expressions	wrapped	in	{}.

Here’s	an	example	set	built	using	numbers:

>>>	fib_set	=	{1,	1,	3,	5,	8}

>>>	fib_set

{8,	1,	3,	5}

We’ve	created	a	set	object	by	enclosing	the	values	in	{}.	This	syntax	looks	very	similar	to
the	syntax	for	creating	list	or	tuple.	Note	that	the	elements	in	the	set	collection	are
displayed	in	a	different	order.	There’s	no	guarantee	what	the	order	will	be;	different
implementations	may	show	different	orders.

It’s	important	to	note	that	we	tried	to	include	two	instances	of	the	integer	1	in	the	set
collection.	Since	an	item	is	either	present	in	the	set	collection	or	absent,	the	item	cannot
be	included	a	second	time.	Duplicate	items	are	silently	ignored.

We	can	also	create	a	set	collection	by	applying	the	set()	function	to	a	collection	of
values.	We	can	create	a	set	collection	from	a	list	or	tuple	collection.	We	can	also	create
a	set	collection	from	a	simple	string:	each	individual	character	will	become	an	item	in	the
resulting	set.	We	can	use	set([1,	1,	3,	5,	8])	to	apply	the	set()	function	to	a	literal
list	object.

The	syntax	{},	interestingly,	does	not	create	an	empty	set.	This	actually	creates	an	empty
dict	class.	To	create	an	empty	set,	we	must	use	the	set()	function.

We	have	a	fairly	large	number	of	operators	for	set	objects.	In	addition	to	the	operators,	we
also	have	a	large	number	of	method	functions.	These	can	be	categorized	as	follows:

Mutators:	These	modify	a	set	object
Accessors:	These	access	a	list	and	return	a	fact	about	that	set	object.

The	mutator	methods	of	a	set	collection	almost	always	return	a	value	of	None.	With	the
exception	of	the	pop()	method,	mutators	don’t	return	a	value.	The	accessors,	which
provide	information	about	a	list,	must	return	a	value.	We’ll	look	at	the	operators	first.



Using	set	operators
Sets	have	a	large	number	of	operators	which	closely	parallel	mathematical	operators	for
sets.	The	mapping	leverages	the	bit-oriented	operators;	it	interprets	them	to	mean	set
membership	instead	of	bits	in	an	integer	value.

We	have	the	following	operators:	|,	&,	-,	and	^,	which	stand	for	union	( ),

intersection	( ),	difference	( ),	and	symmetric	difference	( ).

Examples	of	these	two	sets	are:

>>>	words	=	set("How	I	wish".split())

{'How',	'I',	'wish'}

>>>	more	=	set("I	could	recollect	pi".split())

{'recollect',	'pi',	'I',	'could'}

Each	set	is	built	by	splitting	a	string	into	individual	space-separated	words.	The	results
contain	the	proper	elements;	the	order,	however,	may	vary.	Here	are	examples	of	each	of
the	operators:

>>>	words	|	more

{'wish',	'could',	'pi',	'I',	'How',	'recollect'}

>>>	words	&	more

{'I'}

>>>	words	-	more

{'How',	'wish'}

>>>	words	^	more

{'recollect',	'wish',	'pi',	'How',	'could'}

The	union	operator	creates	a	new	set	with	elements	that	are	drawn	from	both	sets.	We
could	say	that	the	union	of	a	|	b	creates	a	set	of	elements,	{x},	where	each	element	is
either	an	element	of	a	or	an	element	of	b.	There’s	a	tidy	parallel	between	the	concept	of
the	Boolean	or	operator	and	the	set	union.

The	intersection	operator,	a	&	b,	finds	the	items	which	are	an	element	of	a	and	an
element	of	b.	Again,	there’s	a	close	parallel	between	the	Boolean	and	operator	and	set
intersection.

The	set	difference	operator	will	remove	items	from	the	left	set	which	are	in	the	right	set.
We	could	say	that	the	resulting	elements	are	elements	of	a	and	not	elements	of	b.	There’s
no	commonly-used	Boolean	operator	which	parallels	the	definition	of	set	difference.

The	symmetric	difference	operators	are	the	items	unique	to	both	sets;	the	common	items
have	been	removed.	This	corresponds	to	the	exclusive	or	Boolean	operation.	We	could
say	that	the	result	is	members	of	a	or	members	of	b	but	not	members	of	both	sets.



Mutating	a	set	with	method	functions
Sets	have	some	mutators	which	parallel	those	of	a	list	collection.	These	methods	include
add(),	remove(),	discard(),	and	clear().	Since	the	methods	are	mutators,	they	do	not
return	a	useful	value.	The	add()	method	parallels	list.append():	it	adds	a	single	item	to
the	set.

The	remove()	and	discard()	methods	will	remove	an	item	from	a	set;	the	remove()
method	will	raise	an	exception	if	the	item	is	not	in	the	set,	the	discard()	method	always
succeeds,	even	if	the	item	is	not	in	the	set.	The	clear()	method	discards	all	items	from
the	set.

We	can,	for	example,	update	our	fib_set	variable	like	this:

f_n	=	max(fib_set)

f_n1	=	max(fib_set-{f_n})

fib_set.add(f_n+f_n1)

We’ve	located	the	largest	value	in	the	set,	and	assigned	this	to	the	f_n	variable.	We	used
the	set	difference	operator	to	create	a	new	set	without	the	maximum	value.	When	we
evaluate	max()	on	this	new	set,	we’ll	get	the	next-to-largest	value.	Finally,	we	mutated	the
set	with	the	add()	method	to	insert	a	value	into	the	set.

The	set	difference	operator,	-,	does	not	mutate	the	set:	like	all	arithmetic	operators,	it
creates	a	new	object	from	the	operands.	The	add()	method,	however,	does	mutate	the
given	set.

Note	that	Fibonacci	numbers	aren’t	the	best	use	of	a	set	collection.	The	first	two
Fibonacci	numbers	are	both	one.

The	pop()	method	is	unique;	it	is	a	mutator	which	also	returns	a	value.	The	value	popped
from	the	set	will	be	selected	arbitrarily.	There’s	no	easy	way	to	predict	which	item	will	be
removed	and	returned.

Each	of	the	operators	has	a	method	function	that	matches	the	operator.	The	following
operators:	|,	&,	-,	and	^	correspond	to	the	update(),	intersection(),	difference(),	and
symmetric_difference()	methods.	We	can	write	a	|	b	or	we	can	write	a.update(b).
Both	have	the	same	results.



Using	augmented	assignment	with	sets
The	augmented	assignment	statements	also	work	well	with	sets.	We	can	use	|=,	&=,	-=,
and	^=,	to	update	a	set	based	on	elements	from	another	set.	For	example,	consider	this
statement:

words	|=	more

The	words	set	will	be	mutated	to	include	all	the	items	from	the	more	set.

Each	of	the	augmented	assignment	statements	also	has	a	corresponding	update	method.
The	method	names	for	these	mutators	are	update(),	intersection_update(),
difference_update(),	and	symmetric_difference_update().	These	methods	are
mutators	which	match	the	augmented	assignment	statements.



Accessing	a	set	with	operators	and	method
functions
There	are	a	few	operators	which	count	as	set	accessors.	Perhaps	the	most	fundamental
method	for	accessing	a	set	is	the	in	operator;	this	will	check	to	see	if	a	particular	element
exists	in	a	set.

>>>	'I'	in	words

True

The	comparison	operators	for	sets	implement	basic	set	theory	operations.	When	we	use	<,
<=,	>,	or	>=	between	two	sets,	we’re	doing	subset	and	superset	comparisons.	For	example:

>>>	{'I'}	<	words

True

>>>	{'How',	'I',	'wish'}	<=	words

True

In	the	first	case,	the	set	{'I'}	is	a	proper	subset	of	the	set	in	the	words	variable.	In	the
second	case,	the	improper	subset	comparison	was	True,	because	the	two	sets	are	actually
equal.

We	also	have	method	functions	that	match	the	various	comparison	operators.	We	can	use
isdisjoint(),	issubset(),	and	issuperset()	in	addition	to	the	!=,	<,	and	>	operators.

There’s	little	practical	difference	between	item	in	set	and	{item}	<=	set.	It’s	also	true
that	set–{item}	!=	set	would	be	true	when	the	given	item	is	in	the	set.	These
mathematical	equivalences	are	interesting,	but	often	involve	extra	computation.





Mappings
Python	has	a	number	of	mapping	collections.	A	mapping	is	an	association	between	a	key
and	a	value.	The	built-in	mapping	collection	is	the	dict	class.	The	other	mappings	are
defined	in	the	collections	library,	and	must	be	imported.

Items	that	are	keys	within	a	mapping	must	be	immutable;	they	must	provide	a	proper	hash
value	as	well	as	a	matching	equality	test.	The	values	within	a	mapping	have	no
restrictions;	they	can	be	mutable	or	immutable.	The	order	of	the	keys	is	not	maintained	by
the	dict	class.

We	can	create	a	simple	dict	display	using	{};	each	key	and	value	are	separated	by	the	:
character.

Here’s	an	example	of	a	simple	mapping:

sieve	=	{2:	True,	3:	True,	4:	False,	5:	True,	6:	None,	7:	None}

We’ve	created	a	simple	mapping	with	keys	that	are	all	integers,	and	values	which	are	a
mixture	of	Boolean	and	None	values.

We	can	also	create	a	dictionary	using	the	dict()	function.	This	function	can	build	a
dictionary	from	a	variety	of	sources.	We	can	provide	an	existing	dictionary	as	an
argument;	the	dict()	function	will	make	a	shallow	copy	of	that	source	dictionary.	We	can
provide	a	sequence	of	(key,	value)	two-tuples.	It	would	look	like	this:

>>>	sieve	=	dict(

...	[(2,	True),	(3,	True),	(4,	False),	(5,	True),	(6,	None),	(7,	None)]

...	)

This	example	created	a	dictionary	from	a	list	of	(key,	value)	two-tuples.	The	resulting
dictionary	object	that’s	created	will	match	the	literal	display	shown	in	the	preceding
example.

We	can	also	create	dictionaries	with	string	keys	using	the	dict()	function.	When	we
provide	keyword	arguments,	they	become	the	keys.

>>>	cadaeic=	dict(	poe=3,	e=1,	near=4,	a=1,	raven=5,	midnights=	9	)

>>>	cadaeic

{'raven':	5,	'e':	1,	'near':	4,	'midnights':	9,	'poe':	3,	'a':	1}

It’s	important	to	repeat	the	observation	that	the	order	of	the	keys	in	a	built-in	dict	object
is	not	defined.

We	can	also	build	a	dictionary	from	a	set	of	keys,	providing	a	single	default	value.	We	can
do	this	as	follows:

>>>	sieve	=	dict.fromkeys(	range(2,10)	)

>>>	sieve

{2:	None,	3:	None,	4:	None,	5:	None,	6:	None,	7:	None,	8:	None,	9:	None}

We’ve	used	the	range()	function	to	iterate	through	a	series	of	numbers	which	start	with
two	and	end	just	before	ten.	These	numbers	are	then	used	to	create	keys	for	a	dictionary.



The	value	associated	with	each	key	is	the	default	of	None.



Using	dictionary	operators
All	Python	mappings,	including	the	built-in	dict,	use	a	key	in	[]	to	get,	set,	and	delete
items.	The	syntax	looks	like	this:

>>>	cadaeic['poe']

3

>>>	cadaeic['so']=	2

>>>	del	cadaeic['so']

We’ve	provided	literal	strings	to	show	how	we	can	get	an	item,	set	an	item,	and	use	the
del	statement	to	delete	an	item.

Note	that	dictionary	comparisons	are	difficult	to	define	in	a	general	way.	It’s	not	perfectly
clear	if	an	ordering	comparison	should	compare	only	the	keys,	only	the	values,	or	a
combination	of	keys	and	values.	Consequently,	only	==	and	!=	comparisons	among
dictionaries	are	defined.



Using	dictionary	mutators
We	can	use	dict[key]	on	the	left	side	of	an	assignment	statement	to	modify	a	dictionary.
This	will	insert	the	given	key	and	value	if	the	key	does	not	exist;	if	the	key	already	exists,
it	will	change	the	value	associated	with	the	key.

We	also	have	a	number	of	methods	that	we	can	use	to	mutate	a	dictionary	object.	These
methods	include	clear(),	pop(),	popitem(),	setdefault(),	and	update()	to	modify	a
dictionary	object.

The	clear()	and	update()	methods	don’t	return	a	useful	value.	The	clear()	method	will
empty	the	dictionary.	The	update()	method	will	fold	additional	data	into	an	existing
dictionary.	This	method	will	accept	the	same	variety	of	arguments	as	the	dict()	function
that	creates	a	dictionary.	The	first	positional	argument	can	be	a	dictionary	object	or	a
sequence	of	(key,	value)	two-tuples.	Additionally,	we	can	provide	any	number	of
keyword	arguments;	the	keywords	will	become	keys	in	the	updated	dictionary.

Here	are	two	examples	that	show	some	of	the	different	ways	in	which	the	update()
method	can	be	used:

>>>	cadaeic.update(	{'so':2,	'dreary':6}	)

>>>	cadaeic.update(	[('tired',5),	('and',3)],	weary=5	)

>>>	cadaeic

{'a':	1,	'weary':	5,	'near':	4,	'dreary':	6,	'e':	1,

'raven':	5,	'midnights':	9,	'and':	3,	'so':	2,	'poe':	3,

'tired':	5}

We’ve	updated	the	cadaeic	dictionary	object	using	another	dictionary	with	two	items.
Then	we	applied	further	updates	using	a	sequence	of	(key,	value)	two-tuples.	The
second	example	also	included	an	additional	keyword	argument,	which	inserted	the	key
'weary'	into	the	dictionary.

The	setdefault()	method	function	is	an	interesting	special	case.	This	is	a	variation	on
the	get()	accessor.	The	get()	method	(and	the	pop()	method)	has	a	provision	for	a
default	value.	The	setdefault()	method	doesn’t	merely	return	the	default	value	if	the	key
is	missing—paralleling	what	get()	does.	The	setdefault()	method	updates	the
dictionary	to	be	sure	that	the	default	value	is	now	in	the	dictionary.	All	subsequent
setdefault()	or	get()	methods	will	find	the	key	in	the	dictionary.

The	sequence	of	operations	might	look	something	like	this:

>>>	counter	=	{}

>>>	counter.setdefault('a',0)

0

>>>	counter['a']	+=	1

>>>	counter

{'a':	1}

We’ve	created	an	empty	dictionary	and	assigned	it	to	the	counter	variable.	When	we	use
counter.setdefault('a',0),	we’ll	get	the	value	associated	with	a	key	of	'a',	or	we’ll
get	the	default	value	of	zero.	In	addition	to	returning,	the	default	value	will	also	be	used	to



update	the	dictionary,	assuring	that	there	is	a	value	associated	with	the	given	key.

We	can	then	do	a	simple,	easy-to-understand	counter['a']	+=	1	knowing	that	the	key,
'a',	has	a	value	in	the	dictionary.	Either	the	key	already	existed,	and	the	setdefault()
function	did	nothing	or	the	key	did	not	exist,	and	the	setdefault()	function	provided	that
default	value.

Since	setdefault()	returns	a	value,	we	can	optimize	this	into	something	like	this:

>>>	counter['b']	=	counter.setdefault('b',0)	+	1

This	setdefault()	process	is	so	common	that	there	are	two	closely-related	classes	in
collections.	The	defaultdict	class	simply	treats	all	get()	operations	like
setdefault().	The	Counter	class	will	implicitly	do	the	count[key]+=1	process	for	any
iterable,	building	on	the	defaultdict	class.

There	are	two	variations	on	the	pop()	method.	The	typical	implementation	of	pop()	will
remove	a	given	key	and	return	the	value	associated	with	that	key.	Beyond	this,	the
popitem()	method	will	remove	and	return	one	(key,	value)	pair	from	a	dictionary.	The
pair	will	be	chosen	arbitrarily.	In	both	cases,	the	dictionary	is	updated	to	remove	the	value.



Using	methods	for	accessing	items	in	a	mapping
We	have	a	number	of	methods	to	access	items	in	a	mapping.	First	and	foremost,	we	have
the	dict[key]	construct	which	locates	the	value	associated	with	the	given	key.	If	the	key
does	not	exist,	the	KeyError	exception	is	raised.

The	get()	method	will	also	return	the	value	associated	with	a	key	in	the	dictionary.	The
get()	method	can	also	provide	a	default	value.	We	can	use	cadaeic.get("word",4)	to
locate	the	key	("word"	in	this	example).	If	the	key	is	not	found	the	default,	4,	is	returned.

The	copy()	method	returns	a	shallow	copy	of	the	dictionary.	We	can	do	a=dict(d)	or	a=
d.copy()	to	make	a	new	dictionary,	which	is	a	copy	of	an	original	dictionary.	Both	are
equivalent.

There	are	three	methods	which	expose	important	features	of	a	mapping:

keys()	is	the	sequence	of	keys	from	the	mapping.	By	default,	this	is	used	when
converting	a	mapping	to	another	collection.	If	we	use	set(cadaeic)	or
list(cadaiec),	we’ll	see	just	the	key	values	in	the	set	or	list	object.	The	value	of
sorted(cadaeic)	is	the	same	as	sorted(cadaeic.keys()).
values()	is	the	sequence	of	values	from	the	mapping.
items()	is	the	sequence	of	(key,	value)	pairs	from	the	mapping.	This	list	of	two-
tuples	can	be	used	to	rebuild	the	dictionary.	If	we	use	tuple(cadaeic.items()),
we’ve	created	a	tuple	of	two-tuples.	This	tuple	is	immutable,	and	can	be	used	as	a
key	to	another	mapping	or	as	an	item	in	a	set.	This	is	a	way	of	“freezing”	a	dictionary
to	create	an	immutable	copy.



Using	extensions	from	the	collections	module
The	Python	Standard	Library	includes	the	collections	module.	This	module	offers	us	a
number	of	alternatives	to	the	built-in	collections.	This	module	has	the	following	additional
collections:

We	can	import	the	namedtuple	function	and	use	this	to	create	variations	on	the	basic
tuple	that	includes	named	attributes	in	addition	to	attributes	identified	by	their
positional	index.
The	deque	class	defines	a	double-ended	queue,	like	a	list	collection	that	can
perform	fast	append()	and	pop()	functions	on	either	end.	A	subset	of	the	features	of
this	class	will	create	single-ended	stack	(LIFO)	or	queue	(FIFO)	structures.
In	some	cases,	we	can	use	a	ChainMap	instead	of	merging	mappings,	via	update().
The	result	is	a	view	of	multiple	mappings	rather	than	a	single,	updated	mapping.	This
can	be	built	very	quickly;	a	search	takes	longer	than	a	single	mapping.
An	OrderedDict	mapping	is	a	mapping	which	maintains	the	order	in	which	the	keys
were	created.
The	defaultdict	class	is	a	subclass	of	the	built-in	dict	that	uses	a	factory	function
to	provide	values	for	missing	keys.
The	Counter	class	is	a	dict	subclass	that	counts	objects	to	create	frequency	tables.	It
is	also	used	as	a	more	sophisticated	data	structure	called	a	multiset	or	bag.

We	can	create	letter	frequencies	using	a	Counter	class	quite	simply.	A	Counter	will	count
the	occurrences	of	items	in	the	sequence.	Given	a	string,	which	is	an	iterable	sequence	of
characters,	creating	a	Counter	leads	directly	to	a	frequency	table.	Here’s	an	example:

>>>	from	collections	import	Counter

>>>	text	=	"""Poe,	E….	Near	a	Raven…

...	Midnights	so	dreary,	tired	and	weary,

...	Silently	pondering	volumes	extolling	all	by-now	obsolete	lore….	During	

my	rather	long	nap	-	the	weirdest	tap!

...	An	ominous	vibrating	sound	disturbing	my	chamber's	antedoor….	"This",	I	

whispered	quietly,	"I	ignore"."""

>>>	freq=	Counter(text)

>>>	freq.most_common(5)

[('	',	35),	('e',	23),	('n',	18),	('r',	17),	('i',	17)]

We’ve	imported	the	Counter	class	from	the	collections	module.	We’ve	also	set	a
variable,	text,	to	a	piece	of	a	poem	by	Mike	Keith.	For	more	of	this	poem,	see
http://www.cadaeic.net/naraven.htm.

We	created	a	Counter	object	using	the	string	of	characters	as	the	source.	A	Counter	object
will	iterate	through	each	item	in	the	sequence,	counting	the	number	of	occurrences	of	that
item.	When	we	use	the	most_common()	method,	we’ll	see	the	five	most	common	items	in
the	collection.	If	we	were	to	simply	print	the	value	of	the	freq	variable,	we’d	see	all	of	the
character	frequencies.

Each	of	these	collections	offers	unique	features.	If	the	built-in	dict,	list,	or	tuple
doesn’t	meet	our	needs,	one	of	these	additional	collections	may	be	more	suitable	for	the

http://www.cadaeic.net/naraven.htm


problem	we’re	tying	to	solve.





Processing	collections	with	the	for
statement
The	for	statement	is	an	extremely	versatile	way	to	process	every	item	in	a	collection.	We
do	this	by	defining	a	target	variable,	a	source	of	items,	and	a	suite	of	statements.	The	for
statement	will	iterate	through	the	source	of	items,	assigning	each	item	to	the	target
variable,	and	also	execute	the	suite	of	statements.	All	of	the	collections	in	Python	provide
the	necessary	methods,	which	means	that	we	can	use	anything	as	the	source	of	items	in	a
for	statement.

Here’s	some	sample	data	that	we’ll	work	with.	This	is	part	of	Mike	Keith’s	poem,	Near	a
Raven.	We’ll	remove	the	punctuation	to	make	the	text	easier	to	work	with:

>>>	text	=	'''Poe,	E….						Near	a	Raven…

...	Midnights	so	dreary,	tired	and	weary.'''

>>>	text	=	text.replace(",","").replace(".","").lower()

This	will	put	the	original	text,	with	uppercase	and	lowercase	and	punctuation	into	the	text
variable.	We	used	some	method	functions	from	Chapter	2,	Simple	Data	Types,	to	remove
the	common	punctuation	marks	and	return	a	version	of	the	entire	string	entirely	composed
of	lowercase	letters.

When	we	use	text.split(),	we	get	a	sequence	of	individual	words.	The	for	loop	can
iterate	through	this	sequence	of	words	so	that	we	can	process	each	one.	The	syntax	looks
like	this:

>>>	cadaeic=	{}

>>>	for	word	in	text.split():

...					cadaeic[word]=	len(word)

We’ve	created	an	empty	dictionary,	and	assigned	it	to	the	cadaeic	variable.	The
expression	in	the	for	loop,	text.split(),	will	create	a	sequence	of	substrings.	Each	of
these	substrings	will	be	assigned	to	the	word	variable.	The	for	loop	body—a	single
assignment	statement—will	be	executed	once	for	each	value	assigned	to	word.

The	resulting	dictionary	might	look	like	this	(irrespective	of	ordering):

{'raven':	5,	'midnights':	9,	'dreary':	6,	'e':	1,

'weary':	5,	'near':	4,	'a':	1,	'poe':	3,	'and':	3,

'so':	2,	'tired':	5}

There’s	no	guaranteed	order	for	mappings	or	sets.	Your	results	may	differ	slightly.

In	addition	to	iterating	over	a	sequence,	we	can	also	iterate	over	the	keys	in	a	dictionary.

>>>	for	word	in	sorted(cadaeic):

...				print(word,		cadaeic[word])

When	we	use	sorted()	on	a	tuple	or	a	list,	an	interim	list	is	created	with	sorted	items.
When	we	apply	sorted()	to	a	mapping,	the	sorting	applies	to	the	keys	of	the	mapping,
creating	a	sequence	of	sorted	keys.	This	loop	will	print	a	list	in	alphabetical	order	of	the



various	pilish	words	used	in	this	poem.

Note
Pilish	is	a	subset	of	English	where	the	word	lengths	are	important:	they’re	used	as
mnemonic	aids.

A	for	statement	corresponds	to	the	“for	all”	logical	quantifier,	 .	At	the	end	of	a	simple
for	loop	we	can	assert	that	all	items	in	the	source	collection	have	been	processed.	In	order
to	build	the	“there	exists”	quantifier,	 ,	we	can	either	use	the	while	statement,	or	the
break	statement	inside	the	body	of	a	for	statement.



Using	literal	lists	in	a	for	statement
We	can	apply	the	for	statement	to	a	sequence	of	literal	values.	One	of	the	most	common
ways	to	present	literals	is	as	a	tuple.	It	might	look	like	this:

for	scheme	in	'http',	'https',	'ftp':

				do_something(scheme)

This	will	assign	three	different	values	to	the	scheme	variable.	For	each	of	those	values,	it
will	evaluate	the	do_something()	function.

From	this,	we	can	see	that,	strictly-speaking,	the	()	are	not	required	to	delimit	a	tuple
object.	If	the	sequence	of	values	grows,	however,	and	we	need	to	span	more	than	one
physical	line,	we’ll	want	to	add	(),	making	the	tuple	literal	more	explicit.



Using	the	range()	and	enumerate()	functions
The	range()	object	will	provide	a	sequence	of	numbers,	often	used	in	a	for	loop.	The
range()	object	is	iterable,	it’s	not	itself	a	sequence	object.	It’s	a	generator,	which	will
produce	items	when	required.	If	we	use	range()	outside	a	for	statement,	we	need	to	use	a
function	like	list(range(x))	or	tuple(range(a,b))	to	consume	all	of	the	generated
values	and	create	a	new	sequence	object.

The	range()	object	has	three	commonly-used	forms:

range(n)	produces	ascending	numbers	including	0	but	not	including	n	itself.	This	is
a	half-open	interval.	We	could	say	that	range(n)	produces	numbers,	x,	such	that	

.	The	expression	list(range(5))	returns	[0,	1,	2,	3,	4].	This	produces
n	values	including	0	and	n	-	1.
range(a,b)	produces	ascending	numbers	starting	from	a	but	not	including	b.	The
expression	tuple(range(-1,3))	will	return	(-1,	0,	1,	2).	This	produces	b	-	a
values	including	a	and	b	-	1.
range(x,y,z)	produces	ascending	numbers	in	the	sequence	

.	This	produces	(y-x)//z	values.

We	can	use	the	range()	object	like	this:

for	n	in	range(1,	21):

				status=	str(n)

				if	n	%	5	==	0:	status	+=	"	fizz"

				if	n	%	7	==	0:	status	+=	"	buzz"

				print(status)

In	this	example,	we’ve	used	a	range()	object	to	produce	values,	n,	such	that	 .

We	use	the	range()	object	to	generate	the	index	values	for	all	items	in	a	list:

for	n	in	range(len(some_list)):

				print(n,	some_list[n])

We’ve	used	the	range()	function	to	generate	values	between	0	and	the	length	of	the
sequence	object	named	some_list.

The	for	statement	allows	multiple	target	variables.	The	rules	for	multiple	target	variables
are	the	same	as	for	a	multiple	variable	assignment	statement:	a	sequence	object	will	be
decomposed	and	items	assigned	to	each	variable.	Because	of	that,	we	can	leverage	the
enumerate()	function	to	iterate	through	a	sequence	and	assign	the	index	values	at	the
same	time.	It	looks	like	this:

for	n,	v	in	enumerate(some_list):

					print(n,	v)

The	enumerate()	function	is	a	generator	function	which	iterates	through	the	items	in
source	sequence	and	yields	a	sequence	of	two-tuple	pairs	with	the	index	and	the	item.
Since	we’ve	provided	two	variables,	the	two-tuple	is	decomposed	and	assigned	to	each
variable.



There	are	numerous	use	cases	for	this	multiple-assignment	for	loop.	We	often	have	list-
of-tuples	data	structures	that	can	be	handled	very	neatly	with	this	multiple-assignment
feature.	In	Chapter	8,	More	Advanced	Functions,	we’ll	look	at	a	number	of	these	design
patterns.





Iterating	with	the	while	statement
The	while	statement	is	a	more	general	iteration	than	the	for	statement.	We’ll	use	a	while
loop	in	two	situations.	We’ll	use	this	in	cases	where	we	don’t	have	a	finite	collection	to
impose	an	upper	bound	on	the	loop’s	iteration;	we	may	suggest	an	upper	bound	in	the
while	clause	itself.	We’ll	also	use	this	when	writing	a	“search”	or	“there	exists”	kind	of
loop;	we	aren’t	processing	all	items	in	a	collection.

A	desktop	application	that	accepts	input	from	a	user,	for	example,	will	often	have	a	while
loop.	The	application	runs	until	the	user	decides	to	quit;	there’s	no	upper	bound	on	the
number	of	user	interactions.	For	this,	we	generally	use	a	while	True:	loop.	Infinite
iteration	is	recommended.

If	we	want	to	write	a	character-mode	user	interface,	we	could	do	it	like	this:

quit_received=	False

while	not	quit_received:

				command=	input("prompt>	")

				quit_received=	process(command)

This	will	iterate	until	the	quit_received	variable	is	set	to	True.	This	will	process
indefinitely;	there’s	no	upper	boundary	on	the	number	of	iterations.

This	process()	function	might	use	some	kind	of	command	processing.	This	should
include	a	statement	like	this:

if	command.lower().startswith("quit"):	return	True

When	the	user	enters	"quit",	the	process()	function	will	return	True.	This	will	be
assigned	to	the	quit_received	variable.	The	while	expression,	not	quit_received,	will
become	False,	and	the	loop	ends.

A	“there	exists”	loop	will	iterate	through	a	collection,	stopping	at	the	first	item	that	meets
certain	criteria.	This	can	look	complex	because	we’re	forced	to	make	two	details	of	loop
processing	explicit.

Here’s	an	example	of	searching	for	the	first	value	that	meets	a	condition.	This	example
assumes	that	we	have	a	function,	condition(),	which	will	eventually	be	True	for	some
number.	Here’s	how	we	can	use	a	while	statement	to	locate	the	minimum	for	which	this
function	is	True:

>>>	n	=	1

>>>	while	n	!=	101	and	not	condition(n):

...					n	+=	1

>>>	assert	n	==	101	or	condition(n)

The	while	statement	will	terminate	when	n	==	101	or	the	condition(n)	is	True.	If	this
expression	is	False,	we	can	advance	the	n	variable	to	the	next	value	in	the	sequence	of
values.	Since	we’re	iterating	through	the	values	in	order	from	the	smallest	to	the	largest,
we	know	that	n	will	be	the	smallest	value	for	which	the	condition()	function	is	true.

At	the	end	of	the	while	statement	we	have	included	a	formal	assertion	that	either	n	is	101



or	the	condition()	function	is	True	for	the	given	value	of	n.	Writing	an	assertion	like	this
can	help	in	design	as	well	as	debugging	because	it	will	often	summarize	the	loop	invariant
condition.

We	can	also	write	this	kind	of	loop	using	the	break	statement	in	a	for	loop,	something
we’ll	look	at	in	the	next	section.





The	continue	and	break	statements
The	continue	statement	is	helpful	for	skipping	items	without	writing	deeply-nested	if
statements.	The	effect	of	executing	a	continue	statement	is	to	skip	the	rest	of	the	loop’s
suite.	In	a	for	loop,	this	means	that	the	next	item	will	be	taken	from	the	source	iterable.	In
a	while	loop,	this	must	be	used	carefully	to	avoid	an	otherwise	infinite	iteration.

We	might	see	file	processing	that	looks	like	this:

for	line	in	some_file:

				clean	=	line.strip()

				if	len(clean)	==	0:

								continue

				data,	_,	_	=	clean.partition("#")

				data	=	data.rstrip()

				if	len(data)	==	0:

								continue

				process(data)

In	this	loop,	we’re	relying	on	the	way	files	act	like	sequences	of	individual	lines.	For	each
line	in	the	file,	we’ve	stripped	whitespace	from	the	input	line,	and	assigned	the	resulting
string	to	the	clean	variable.	If	the	length	of	this	string	is	zero,	the	line	was	entirely
whitespace,	and	we’ll	continue	the	loop	with	the	next	line.	The	continue	statement	skips
the	remaining	statements	in	the	body	of	the	loop.

We’ll	partition	the	line	into	three	pieces:	a	portion	in	front	of	any	"#",	the	"#"	(if	present),
and	the	portion	after	any	"#".	We’ve	assigned	the	"#"	character	and	any	text	after	the	"#"
character	to	the	same	easily-ignored	variable,	_,	because	we	don’t	have	any	use	for	these
two	results	of	the	partition()	method.	We	can	then	strip	any	trailing	whitespace	from	the
string	assigned	to	the	data	variable.	If	the	resulting	string	has	a	length	of	zero,	then	the
line	is	entirely	filled	with	"#"	and	any	trailing	comment	text.	Since	there’s	no	useful	data,
we	can	continue	the	loop,	ignoring	this	line	of	input.

If	the	line	passes	the	two	if	conditions,	we	can	process	the	resulting	data.	By	using	the
continue	statement,	we	have	avoided	complex-looking,	deeply-nested	if	statements.
We’ll	examine	files	in	detail	in	Chapter	10,	Files,	Databases,	Networks,	and	Contexts.

It’s	important	to	note	that	a	continue	statement	must	always	be	part	of	the	suite	inside	an
if	statement,	inside	a	for	or	while	loop.	The	condition	on	that	if	statement	becomes	a
filter	condition	that	applies	to	the	collection	of	data	being	processed.	continue	always
applies	to	the	innermost	loop.



Breaking	early	from	a	loop
The	break	statement	is	a	profound	change	in	the	semantics	of	the	loop.	An	ordinary	for
statement	can	be	summarized	by	“for	all.”	We	can	comfortably	say	that	“for	all	items	in	a
collection,	the	suite	of	statements	was	processed.”

When	we	use	a	break	statement,	a	loop	is	no	longer	summarized	by	“for	all.”	We	need	to
change	our	perspective	to	“there	exists”.	A	break	statement	asserts	that	at	least	one	item	in
the	collection	matches	the	condition	that	leads	to	the	execution	of	the	break	statement.

Here’s	a	simple	example	of	a	break	statement:

for	n	in	range(1,	100):

				factors	=	[]

				for	x	in	range(1,n):

								if	n	%	x	==	0:	factors.append(x)

				if	sum(factors)	==	n:

								break

We’ve	written	a	loop	that	is	bound	by	 .	This	loop	includes	a	break	statement,
so	it	will	not	process	all	values	of	n.	Instead,	it	will	determine	the	smallest	value	of	n,	for
which	n	is	equal	to	the	sum	of	its	factors.	Since	the	loop	doesn’t	examine	all	values,	it
shows	that	at	least	one	such	number	exists	within	the	given	range.

We’ve	used	a	nested	loop	to	determine	the	factors	of	the	number	n.	This	nested	loop
creates	a	sequence,	factors,	for	all	values	of	x	in	the	range	 ,	such	that	x,	is	a
factor	of	the	number	n.	This	inner	loop	doesn’t	have	a	break	statement,	so	we	are	sure	it
examines	all	values	in	the	given	range.

The	least	value	for	which	this	is	true	is	the	number	six.

It’s	important	to	note	that	a	break	statement	must	always	be	part	of	the	suite	inside	an	if
statement	inside	a	for	or	while	loop.	If	the	break	isn’t	in	an	if	suite,	the	loop	will	always
terminate	while	processing	the	first	item.	The	condition	on	that	if	statement	becomes	the
“where	exists”	condition	that	summarizes	the	loop	as	a	whole.	Clearly,	multiple	if
statements	with	multiple	break	statements	mean	that	the	overall	loop	can	have	a
potentially	confusing	and	difficult-to-summarize	post-condition.





Using	the	else	clause	on	a	loop
Python’s	else	clause	can	be	used	on	a	for	or	while	statement	as	well	as	on	an	if
statement.	The	else	clause	executes	after	the	loop	body	if	there	was	no	break	statement
executed.	To	see	this,	here’s	a	contrived	example:

>>>	for	item	in	1,2,3:

...					print(item)

...					if	item	==	2:

...									print("Found",item)

...									break…	else:

...					print("Found	Nothing")

The	for	statement	here	will	iterate	over	a	short	list	of	literal	values.	When	a	specific	target
value	has	been	found,	a	message	is	printed.	Then,	the	break	statement	will	end	the	loop,
avoiding	the	else	clause.

When	we	run	this,	we’ll	see	three	lines	of	output,	like	this:

1

2

Found	2

The	value	of	three	isn’t	shown,	nor	is	the	“Found	Nothing”	message	in	the	else	clause.

If	we	change	the	target	value	in	the	if	statement	from	two	to	a	value	that	won’t	be	seen
(for	example,	zero	or	four),	then	the	output	will	change.	If	the	break	statement	is	not
executed,	then	the	else	clause	will	be	executed.

The	idea	here	is	to	allow	us	to	write	contrasting	break	and	non-break	suites	of	statements.
An	if	statement	suite	that	includes	a	break	statement	can	do	some	processing	in	the	suite
before	the	break	statement	ends	the	loop.	An	else	clause	allows	some	processing	at	the
end	of	the	loop	when	none	of	the	break-related	suites	statements	were	executed.





Summary
We’ve	looked	at	three	mutable	collections:	lists,	sets	and	dictionaries.	The	built-in
dictionary	class	is	only	one	of	many	mappings	available	in	Python,	the	others	are	defined
in	the	collections	module	of	the	standard	library.	The	list	allows	us	to	collect	items	which
are	identified	by	their	positions	in	the	list.	The	set	allows	us	to	collect	a	set	of	unique
items,	in	which	each	item	is	simply	identified	by	itself.	A	mapping	allows	us	to	identify
items	by	a	key.

For	sets,	each	item	must	be	immutable.	For	mappings,	the	object	used	as	a	key	must	be
immutable.	This	means	that	numbers,	strings,	and	tuples	are	often	used	as	mapping	keys.

We’ve	looked	at	the	for	statement,	which	is	the	primary	way	we’ll	process	the	individual
items	in	a	collection.	A	simple	for	statement	assures	us	that	our	processing	has	been	done
for	all	items	in	the	collection.	We’ve	also	looked	at	the	general	purpose	while	loop.

In	Chapter	7,	Basic	Function	Definitions,	we’ll	look	at	how	we	can	define	our	own
functions.	We’ll	also	look	at	the	wide	variety	of	ways	we	can	evaluate	a	function	in
Python.





Chapter	7.	Basic	Function	Definitions
Mathematically,	a	function	is	a	mapping	of	values	in	a	domain	to	values	in	a	range.
Functions	like	sine	or	cosine	map	values	from	a	domain	of	angles	to	a	range	of	real	values
between	-1	and	+1.	The	details	of	the	mapping	are	summarized	in	the	name,	domain,	and
range.	We’ll	use	this	function	concept	as	a	way	to	package	our	Python	programming	into
something	that	allows	us	to	summarize	the	implementation	details	using	a	name.

We’ll	look	at	how	to	define	and	evaluate	Python	functions.	In	this	chapter,	we’ll	focus	on
Python	functions	that	simply	return	Python	objects	as	the	range	of	values.	In	Chapter	8,
More	Advanced	Functions,	we’ll	look	at	generator	functions;	these	are	iterators,	which	are
used	with	a	for	loop	to	produce	sequences	of	values.

Python	functions	offer	optional	parameters	as	well	as	a	mixture	of	positional	and	keyword
parameters.	This	allows	us	to	define	a	single	function	which	has	a	number	of	variant
signatures,	allowing	considerable	flexibility	in	how	the	function	is	used.



Looking	at	the	five	kinds	of	callables
Python	offers	five	variations	on	the	theme	of	a	function.	Each	of	these	is	a	kind	of	callable
object:	we	can	call	the	object	with	argument	values	and	it	returns	a	result.	Here’s	how
we’ll	organize	our	exploration:

Basic	functions	created	with	the	def	statement	are	the	subject	of	this	chapter.
Lambda	forms	are	a	function	definition	reduced	to	parameters	and	an	expression;	this
is	also	a	topic	within	this	chapter.
Generator	functions	and	the	yield	statement	are	something	we’ll	look	at	in	Chapter	8,
More	Advanced	Functions.	These	functions	are	iterators	which	can	provide	multiple
results.
Function	wrappers	for	class	methods	are	something	we’ll	look	at	in	Chapter	11,	Class
Definitions.	These	are	built-in	functions	which	leverage	features	of	a	class.	A
function	like	len()	is	implemented	by	the	__len__()	method	of	a	collection.
Callable	objects	are	also	part	of	Chapter	11,	Class	Definitions.	These	are	classes
which	include	the	__call__()	method	so	that	an	instance	of	the	class	behaves	like	a
basic	function	created	with	the	def	statement.

All	of	these	are	variations	on	a	common	theme.	They	are	ways	to	package	some
functionality	so	that	it	has	a	name,	input	parameters,	and	a	result.	This	allows	us	to
decompose	large,	complex	programs	into	smaller,	easier-to-understand	functions.





Defining	functions	with	positional
parameters
The	essential	Python	function	definition	is	built	with	the	def	statement.	We	provide	a
name,	the	names	of	the	parameters,	and	an	indented	suite	of	statements	that	is	the	body	of
the	function.	The	return	statement	provides	the	range	of	values.

The	syntax	looks	like	this:

def	prod(sequence):

				p=	1

				for	item	in	sequence:p	*=	item

				return	p

We’ve	defined	a	name,	prod,	and	provided	a	list	of	only	one	parameter,	sequence.	The
body	of	the	function	includes	three	statements:	assignment,	for,	and	return.	The
expression	in	the	return	statement	provides	the	resulting	value.

This	fits	the	mathematical	idea	of	a	function	reasonably	well.	The	domain	of	values	is	any
numeric	sequence,	the	range	will	be	a	value	of	the	a	type	which	reflects	the	data	types	in
the	sequence.

We	evaluate	a	function	by	simply	using	the	name	and	a	specific	value	for	the	argument	in
an	expression:

>>>	prod([1,2,3,4])

24

>>>	prod(range(1,6))

120

In	the	first	example,	we	provided	a	simple	list	display,	[1,	2,	3,	4],	as	an	argument.
This	was	assigned	to	the	parameter	of	the	function,	sequence.	The	evaluation	of	the
function	returned	the	product	of	that	sequential	collection	of	items.

In	the	second	example,	we	provided	a	range()	object	as	the	argument	to	the	prod()
function.	This	argument	value	is	assigned	to	the	parameter	of	the	function.	When	used
with	a	for	loop,	the	range	object	behaves	like	a	sequence	collection,	and	a	product	is
computed	and	returned.



Defining	multiple	parameters
Python	offers	us	a	variety	of	ways	to	assign	values	to	parameters.	In	the	simplest	case,	the
argument	values	are	assigned	to	the	parameters	based	on	position.	Here’s	a	function	with
two	positional	parameters:

def	main_sail_area(boom,	mast):

				return	(boom*mast)/1.8

We’ve	defined	a	function	that	requires	the	length	of	the	sail’s	boom,	usually	called	the	“E”
dimension,	and	the	height	of	the	mast	along	which	the	sail	is	rigged,	usually	called	the	“P”
dimension.	Given	these	two	numbers,	and	an	assumption	about	the	curvature	of	the	sail,
we	return	the	approximate	sail	area.

We	can	evaluate	this	function	providing	the	two	positional	parameters	for	boom	length
and	mast	height.

>>>	main_sail_area(15,	45)

375.0

We	can	define	a	function	with	any	number	of	parameters.	A	function	with	a	large	number
of	parameters	will	tend	to	push	the	edge	of	the	envelope	on	comprehensibility.	A	good
function	should	have	a	tidy	summary	that	makes	it	possible	to	understand	the	function’s
purpose	without	having	to	struggle	with	too	many	details.



Using	the	return	statement
The	return	statement	has	two	purposes:	it	ends	the	function’s	execution,	and	it	can
optionally	provide	the	result	value	for	the	function.	The	return	statement	is	optional.	This
leads	to	three	use	cases:

No	return	statement:	The	function	finishes	at	the	end	of	the	suite	of	statements.	The
return	value	is	None.
A	return	statement	with	no	expression:	The	function	finishes	when	the	return
statement	is	executed,	the	result	is	None.
A	return	statement	with	an	expression:	The	function	finishes	when	the	return
statement	is	executed,	the	value	of	the	expression	is	the	result.	A	return	statement
with	a	list	of	expressions	creates	a	tuple,	suitable	for	multiple	assignment.

Here’s	a	function	with	no	return	statement:

def	boat_summary(name,	rig,	sails):

				print(	"Boat	{0},	{1}	rig,	{2:.0f}	sq.	ft.".format(

								name,	rig,	sum(sails))

				)

This	function	consists	of	a	single	expression	statement	that	uses	the	print()	function.
There’s	no	explicit	return	so	the	default	return	value	will	be	None.

It’s	common	to	use	a	return	statement	to	finish	early	when	an	exception	condition	has
been	met,	otherwise	you	execute	the	rest	of	the	suite	of	statements	in	the	function
definition.	It	looks	like	this:

def	mean_diff(data_sequence):

				s0,	s1	=	0,	0

				for	item	in	data_sequence:

								s0	+=	1

								s1	+=	item

				if	s0	<	2:

								return

				m=	s1/s0

				for	item	in	data_sequence:

							print(item,	abs(item-m))

This	function	expects	a	collection	of	data.	It	will	compute	two	values	from	that	collection:
s0	and	s1.	The	s0	value	will	be	a	count	of	items,	the	s1	value	will	be	the	sum	of	the	items.
If	the	count	is	too	small,	the	function	simply	returns.	If	the	count	is	large	enough,	then
additional	processing	is	done:	the	values	are	printed	along	with	the	absolute	difference
between	the	value	and	the	average.

There’s	no	return	statement	at	the	end	of	the	suite	of	statements,	since	this	is	not
required.	Using	a	return	statement	in	the	middle	of	a	function	allows	us	to	avoid	deeply-
nested	if	statements.

Note	that	the	variables	s0,	s1,	and	m,	are	created	in	a	local	namespace	that	only	exists
while	the	function	is	being	evaluated.	Once	the	function	is	finished,	the	local	namespace	is
removed,	the	reference	counts	are	decremented	and	the	interim	objects	are	cleaned	up.



We’ll	look	at	additional	details	in	the	Working	with	namespaces	section	later	in	this
chapter.

The	built-in	function	divmod()	returns	two	results.	We	often	use	multiple	assignments	like
this:	q,	r	=	divmod(n,	16);	it	will	assign	the	two	results	to	two	variables,	q	and	r.	We
can	write	a	function	that	returns	multiple	values	by	including	multiple	expressions	on	the
return	statement.

In	the	Mutable	and	immutable	argument	values	section,	we’ll	show	a	function	that	has
multiple	return	values.



Evaluating	a	function	with	positional	or	keyword
arguments
Python	allows	us	to	provide	argument	values	with	explicit	parameter	names.	When	we
provide	a	name,	it’s	called	a	keyword	argument.	For	example,	the	boat_summary()
function	in	the	previous	section	can	be	used	in	a	number	of	different	ways.

We	can	provide	the	argument	values	positionally,	like	this:

>>>	sails	=		[358.3,	192.5,	379.75,	200.0]

>>>	boat_summary("Red	Ranger",	"ketch",	sails)

The	arguments	are	assigned	to	the	parameter	variables	of	name,	rig,	and	sails	based	on
their	position.

We	can,	as	an	alternative,	do	something	like	this:

>>>	boat_summary(sails=sails,	rig="ketch",	name="Red	Ranger"	)

This	example	provides	all	three	arguments	with	keywords.	Note	that	the	position	doesn’t
matter	when	providing	keyword	arguments.	The	keyword	arguments	must	be	provided
after	any	positional	arguments,	but	the	order	among	the	keyword	arguments	doesn’t
matter,	since	they	are	assigned	to	parameters	by	name.

We	can	use	a	mixture	of	positional	and	keyword	arguments.	For	this	to	work,	Python	uses
two	rules	to	map	argument	values	to	a	function’s	parameters:

1.	 Match	all	positional	arguments	to	parameters	from	left-to-right.
2.	 Match	all	keyword	parameters	by	name.

There	are	several	additional	rules	to	handle	duplicates	and	default	values—which	include
optional	parameters—described	later,	in	the	section	called	Defining	optional	parameters
via	default	values.

In	order	for	these	rules	to	work	properly,	we	must	provide	all	positional	parameters	first,
and	then	we	can	provide	any	keyword	parameters	after	the	positional	parameters.	We	can’t
provide	two	values	for	the	same	parameter	via	position	as	well	as	keyword.	Nor,	for	that
matter,	can	we	provide	a	keyword	twice.

Here’s	a	good	example	and	a	bad	example:

>>>	boat_summary("Red	Ranger",	sails=sails,	rig="ketch")

>>>	boat_summary("Red	Ranger",	sails=sails,	rig="ketch",	name="Red	Ranger")

In	the	first	example,	the	name	parameter	is	matched	positionally.	The	sails	and	rig
parameters	were	matched	by	keyword.

In	the	second	example,	there	are	both	positional	and	keyword	values	for	the	name	variable.
This	will	raise	a	TypeError	exception.

Because	of	this,	it’s	very	important	to	choose	parameter	variable	names	wisely.	A	good
choice	of	parameter	name	can	make	keyword	argument	function	evaluation	very	clear.



Writing	a	function’s	docstring
In	order	to	save	space,	we	haven’t	provided	many	examples	of	functions	with	docstrings.
We’ll	address	docstrings	in	detail	in	Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,
and	Documentation.	For	now,	we	need	to	be	aware	that	every	function	should,	at	the	very
least,	have	a	summary.	The	summary	is	included	as	a	triple-quoted	string	that	must	be	the
very	first	expression	in	the	suite	of	statements	of	the	function.

A	function	with	a	docstring	looks	like	this:

def	jib(foot,	height):

				"""

				jib(foot,height)	->	area	of	given	jib	sail.

				>>>	jib(12,40)

				240.0

				"""

				return	(foot*height)/2

This	particular	triple-quoted	string	serves	two	purposes.	First,	it	summarizes	what	the
function	does.	We	can	read	this	when	we	look	at	the	source	file.	We	can	also	see	this	when
we	use	help(jib).

The	second	purpose	for	this	docstring	is	a	way	to	provide	a	concrete	example	of	how	the
function	is	used.	The	examples	always	look	like	they	are	simply	copied	from	a	REPL
session	and	pasted	into	the	docstring	comment.

These	REPL-formatted	examples	are	located	by	using	the	doctest	tool.	After	locating	the
examples,	this	tool	can	run	the	code	to	confirm	that	it	works	as	advertised.	All	of	the
examples	in	this	book	were	tested	using	doctest.	While	the	details	of	testing	are	part	of
Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,	and	Documentation,	it’s	important
to	consider	writing	docstrings	in	every	function.





Mutable	and	immutable	argument	values
In	some	programming	languages,	there	are	multiple	function	evaluation	strategies,
including	call-by-value	and	call-by-reference.	In	call-by-value	semantics,	copies	of
argument	values	are	assigned	to	the	parameter	variables	in	a	function.	In	call-by-reference
semantics,	a	reference	to	a	variable	is	used	in	the	function.	This	means	that	an	assignment
statement	inside	a	function	could	replace	the	value	of	a	variable	outside	the	function.
Neither	of	these	types	of	semantics	apply	to	Python.

Python	uses	a	mechanism	named	“call-by-sharing”	or	“call-by-object”.	A	function	is	given
a	reference	to	the	original	object.	If	that	object	is	mutable,	the	function	can	mutate	the
object.	The	function	cannot,	however,	assign	to	variables	outside	the	function	via	the
parameter	variables.	The	function	shares	the	objects,	not	the	variables	to	which	the	objects
are	assigned.

One	of	the	most	important	consequences	is	that	the	body	of	a	function	can	assign	new
values	to	parameter	variables	without	having	any	impact	on	the	original	arguments	which
are	passed	to	a	function.	The	parameter	variables	are	strictly	local	to	the	function.

Here’s	a	function	that	assigns	new	values	to	the	parameter	variable:

def	get_data(input_string):

				input_string=	input_string.strip()

				input_string,	_,	_	=	input_string.partition("#")

				input_string=	input_string.rstrip()

				name,	_,	value	=	input_string.partition('=')

				return	name,	value

This	function	evaluates	the	strip()	method	of	the	input_string	variable	and	assigns	the
resulting	string	to	the	parameter	variable.	It	applies	the	partition()	method	to	the	new
value	of	the	input_string	variable	and	assigns	one	of	the	three	resulting	strings	to	the
parameter	variable.	It	then	returns	this	string	object,	assigning	it	to	the	parameter	variable
yet	again.

None	of	the	assignment	statements	to	the	input_string	parameter	variable	have	any
effect	on	any	variables	outside	the	function.	When	a	function	is	evaluated,	a	separate
namespace	is	used	for	the	parameters	and	other	local	variables.

Another	consequence	of	the	way	Python	works	is	that	when	we	provide	mutable	objects	as
arguments,	these	objects	can	be	updated	by	methods	evaluated	inside	a	function.	The
function’s	parameter	variables	will	be	references	to	the	original	mutable	objects,	and	we
can	evaluate	methods	like	the	remove()	or	pop()	functions	that	change	the	referenced
object.

Here’s	a	function	which	updates	a	list	argument	by	removing	selected	values:

def	remove_mod(some_list,	modulus):

				for	item	in	some_list[:]:

								if	item	%	modulus	==	0:

												some_list.remove(item)



This	function	expects	a	mutable	object	like	a	list,	named	some_list,	and	a	value,	named
modulus.	The	function	makes	a	temporary	copy	of	the	argument	value	using
some_list[:].	For	each	value	in	this	copy	that	is	a	multiple	of	the	modulus	value,	we’ll
remove	that	copy	from	the	original	some_list	object.	This	will	mutate	the	original	object.

When	we	evaluate	this	function,	it	looks	like	this:

>>>	data=	list(range(10))

>>>	remove_mod(data,	5)

>>>	remove_mod(data,	7)

>>>	data

[1,	2,	3,	4,	6,	8,	9]

We’ve	created	a	simple	list	and	assigned	it	to	the	data	variable.	This	object	referred	to	by
the	data	variable	was	mutated	by	the	remove_mod()	function.	All	multiples	of	five	and
seven	were	discarded	from	the	sequence.

In	this	function,	we	need	to	create	a	temporary	copy	of	the	input	list	object	before	we
can	start	removing	values.	If	we	try	to	iterate	through	a	list	while	simultaneously
removing	items	from	that	list,	we’ll	get	results	that	don’t	appear	correct.	It	helps	to	have
the	original	values	separate	from	the	mutating	list.

A	function	can	create	variables	in	the	global	namespace,	and	other	non-local	namespaces,
by	making	special	arrangements.	This	is	done	with	the	global	and	nonlocal	statements
shown	in	the	Working	with	namespaces	section.





Defining	optional	parameters	via	default
values
Python	lets	us	provide	a	default	value	for	a	parameter.	Parameters	with	default	values	are
optional.	The	standard	library	is	full	of	functions	with	optional	parameters.	One	example
is	the	int()	function.	We	can	use	int("48897")	to	convert	a	string	to	an	integer,
assuming	that	the	string	represents	a	number	in	base	10.	We	can	use	int("48897",	16)	to
explicitly	state	that	the	string	should	be	treated	as	a	hexadecimal	value.	The	default	value
for	the	base	parameter	is	10.

Remember	that	we	can	use	keyword	arguments	for	a	function.	This	means	that	we	might
want	to	write	something	like	this:	int("48897",	base=16),	to	make	it	abundantly	clear
what	the	second	argument	to	the	int()	function	is	being	used	for.

Earlier,	we	listed	two	rules	for	matching	argument	values	to	parameters.	When	we
introduce	default	values,	we	add	two	more	rules.

1.	 Match	all	positional	arguments	to	parameters	from	left-to-right.
2.	 Match	all	keyword	parameters.	In	case	of	already-assigned	positional	parameters,

raise	a	TypeError	exception.
3.	 Set	default	values	for	any	missing	parameters.
4.	 In	case	there	are	parameters	with	no	values,	raise	a	TypeError	exception.

Note
Note:	This	is	not	the	final	set	of	rules;	there	are	a	few	more	features	to	cover.

One	important	consequence	of	these	rules	is	that	the	required	parameters—those	without
default	values—must	be	defined	first.	Parameters	with	default	values	must	be	defined	last.
The	“required	parameters	first,	optional	parameters	last”	rule	assures	us	that	the	positional
matching	process	works.

We	provide	the	default	value	in	the	function	definition.	Here’s	an	example:

import	random

def	dice(n=2,	sides=6):

				return	[random.randint(1,sides)	for	i	in	range(n)]

We’ve	imported	the	random	module	so	that	we	can	use	the	random.randint()	function.
Our	dice()	function	has	two	parameters,	both	of	which	have	default	values.	The	n
parameter,	if	not	provided,	will	have	a	value	of	2.	The	sides	parameter,	if	omitted,	will
have	a	value	of	6.

The	body	of	this	function	is	a	list	comprehension:	it	uses	a	generator	expression	to	build	a
list	of	individual	values.	We’ll	look	at	generator	expressions	in	detail	in	Chapter	8,	More
Advanced	Functions.	For	now,	we	can	observe	that	it	uses	the	random.randint(1,sides)
function	to	generate	numbers	between	1	and	the	value	of	the	sides	parameter.	The
comprehension	includes	a	for	clause	that	iterates	through	n	values.



We	can	use	this	function	in	a	number	of	different	ways.	Here	are	some	examples:

>>>	dice()

[6,	6]

>>>	dice(6)

[3,	6,	2,	2,	1,	5]

>>>	dice(4,	sides=4)

[3,	3,	4,	3]

The	first	example	relies	on	default	values	to	emulate	the	pair	of	dice	commonly	used	in
casino	games	like	Craps.	The	second	example	uses	six	dice,	typical	for	games	like	10,000
(sometimes	called	Zilch	or	Crap	Out.).	The	third	example	uses	four	four-sided	dice,
typical	of	games	that	use	a	variety	of	polyhedral	dice.

Note
A	note	on	testing:	in	order	to	provide	repeatable	unit	tests	for	functions	that	involve	the
random	module,	we’ve	set	a	specific	seed	value	using	random.seed("test").



A	warning	about	mutable	default	values
Here’s	a	pathological	example.	This	shows	a	very	bad	programming	practice;	it’s	a
mistake	that	many	Python	programmers	make	when	they	first	start	working	with	default
values.

This	is	a	very	bad	idea:

def	more_dice(n,	collection=[]):

				for	i	in	range(n):

								collection.append(random.randint(1,6))

				return	collection

We’ve	defined	a	simple	function	with	only	two	parameter	variables,	n	and	collection.
The	collection	has	a	default	value	of	an	empty	list.	(Spoiler	alert:	this	will	turn	out	to	be	a
mistake.)	The	function	will	append	a	number	of	simulated	six-sided	dice	to	the	given
collection.

The	function	returns	a	value	as	well	as	mutating	an	argument.	This	means	that	we’ll	see
the	return	value	printed	when	we	use	this	function	in	the	REPL.

We	can	use	this	for	games	like	Yacht,	also	called	Generala	or	Poker	Dice.	A	player	has	a
“hand”	of	dice	from	which	we’ll	remove	dice	and	append	new	dice	rolls.

One	use	case	is	to	create	a	list	object	and	use	this	as	an	argument	to	the	more_dice()
function.	This	list	object	would	get	updated	nicely.	Here’s	how	that	would	work:

>>>	hand1=	[]

>>>	more_dice(5,	hand1)

[6,	6,	3,	6,	2]

>>>	hand1

[6,	6,	3,	6,	2]

We’ve	created	an	empty	list	and	assigned	it	to	the	hand	variable.	We	provided	this
sequence	object	to	the	more_dice()	function	to	have	five	values	appended	to	the	hand
object.	This	gave	us	an	initial	roll	of	three	sixes,	a	three,	and	a	two.	We	can	remove	the
two	and	three	from	the	hand1	object;	we	can	reuse	it	with	more_dice(2,	hand1)	to	put
two	more	dice	into	the	hand.

We	can	use	another	empty	sequence	as	an	argument	to	deal	a	second	hand.	Except	for	the
results,	it’s	otherwise	identical	to	the	first	example:

>>>	hand2=	[]

>>>	more_dice(5,	hand2)

[5,	4,	2,	2,	5]

>>>	hand2

[5,	4,	2,	2,	5]

Everything	seems	to	work	properly.	This	is	because	we’re	providing	an	explicit	argument
for	the	collection	parameter.	Each	of	the	hand	objects	is	a	distinct,	empty	list.	Let’s	try	to
use	the	default	value	for	the	collection	parameter.

In	this	third	example,	we	won’t	provide	an	argument,	but	rely	on	the	default	sequence



returned	by	the	more_dice()	function:

>>>	hand1=	more_dice(5)

>>>	hand1

[6,	6,	3,	6,	2]

>>>	hand2=	more_dice(5)

>>>	hand2

[6,	6,	6,	2,	1,	5,	4,	2,	2,	5]

Wait.	What	just	happened?	How	is	this	possible?

As	a	hint,	we’ll	need	to	search	through	the	code	for	an	object	with	a	hidden,	shared	state.
Earlier,	we	noted	that	a	default	list	object	would	be	a	problem.	This	hidden	list	object
is	getting	reused.

What	happens	is	this:

1.	 When	the	def	statement	is	executed,	the	expressions	that	define	the	parameter
defaults	are	evaluated.	This	means	that	a	single	mutable	list	object	is	created	as	the
default	object	for	the	collection	parameter.

2.	 When	the	more_dice()	function	is	evaluated	without	an	argument	for	the
collection	parameter,	the	one-and-only	mutable	list	object	is	used	as	the	default
object.	What’s	important	is	that	a	single	mutable	object	is	being	reused.	If,	at	any
point,	we	update	this	object,	that	mutation	applies	to	all	shared	uses	of	the	object.
Since	it’s	returned	by	the	function,	this	single	list	could	be	assigned	to	several
variables.

3.	 When	the	more_dice()	function	is	evaluated	a	second	time	without	an	argument	for
the	collection	parameter,	the	mutated	list	object	is	re-used	as	the	default.

From	this,	we	can	see	that	a	mutable	object	is	a	terrible	choice	of	a	default	value.

Generally,	we	have	to	do	something	like	this:

def	more_dice_good(n,	collection=None):

				if	collection	is	None:

								collection	=	[]

				for	i	in	range(n):

								collection.append(random.randint(1,6))

				return	collection

This	function	uses	an	immutable	and	easily-recognized	default	value	of	None.	If	no
argument	value	is	provided	for	the	collection	variable,	it	will	be	set	to	None.	We	can
replace	the	None	value	with	a	brand	new	list	object	created	when	the	function	is
evaluated.	We	can	then	update	this	new	list	object,	confident	that	we’re	not	corrupting
any	mutable	default	object	which	is	being	reused.

Tip
Don’t	use	a	mutable	object	as	a	default	value	for	a	parameter.

Avoid	list,	dict,	set,	and	any	other	mutable	type,	as	default	parameter	values.	Use	None
as	a	default;	replace	the	None	with	a	new,	empty	mutable	object.



You’ve	been	warned.

This	can	lead	to	mistakes.	It’s	a	consequence	of	the	way	that	function	definition	works	and
call-by-sharing	semantics.

It’s	possible	to	exploit	this	intentionally:	we	can	use	a	mutable	default	value	as	a	cache	to
retain	values,	creating	functions	which	have	hysteresis.	A	callable	object	may	be	a	better
way	to	implement	functions	with	an	internal	cache	or	buffer.	See	Chapter	11,	Class
Definitions,	for	more	information.





Using	the	“everything	else”	notations	of	*
and	**
Python	offers	even	more	flexibility	in	how	we	can	define	positional	and	keyword
parameters	for	a	function.	The	examples	we’ve	seen	are	all	limited	to	a	fixed	and	finite
collection	of	argument	values.	Python	allows	us	to	write	functions	that	have	an	essentially
unlimited	number	of	positional	as	well	as	keyword	argument	values.

Python	will	create	a	tuple	of	all	unmatched	positional	parameters.	It	will	also	create	a
dictionary	of	all	unmatched	keyword	parameters.	This	allows	us	to	write	functions	that
can	be	used	like	this:

>>>	prod2(1,	2,	3,	4)

24

This	function	accepts	an	arbitrary	number	of	positional	arguments.	Compare	this	with	the
prod()	function	shown	previously.	Our	previous	example	required	a	single	sequence
object,	and	we	had	to	use	that	function	as	follows:

>>>	prod([1,	2,	3,	4])

24

The	prod2()	function	will	create	a	product	of	all	argument	values.	Since	the	prod2()
function	can	work	with	an	unlimited	collection	of	positional	arguments,	this	leads	to
slightly	simpler	syntax	for	this	function.

In	order	to	write	a	function	with	an	unlimited	number	of	positional	arguments,	we	must
provide	one	parameter	which	has	a	*	prefix.	It	looks	like	this:

def	prod2(*args):

				p=	1

				for	item	in	args:

								p	*=	item

				return	p

The	definition	of	prod2()	has	all	positional	arguments	assigned	to	the	*	prefix	parameter,
*args.	The	value	of	the	args	parameter	is	a	tuple	of	the	argument	values.

Here’s	a	function	which	uses	a	mixture	of	positional	and	keyword	parameters:

def	boat_summary2(name,	rig,	**sails):

				print("Boat	{0},	{1}	rig,	{2:.0f}	sq.	ft.".format(

name,	rig,	sum(sails.values())))

This	function	will	accept	two	arguments,	name	and	rig.	These	can	be	supplied	by	position
or	by	keyword.	Any	additional	keyword	parameters—other	than	name	and	rig—are
collected	into	a	dictionary	and	assigned	to	the	sails	parameter.	The	sails.values()
expression	extracts	just	the	values	from	the	sails	dictionary;	these	are	added	together	to
write	the	final	summary	line.

Here’s	one	of	many	ways	that	we	can	use	this	function:



>>>	boat_summary2("Red	Ranger",	rig="ketch",

...					main=358.3,	mizzen=192.5,	yankee=379.75,	staysl=200	)

We’ve	provided	the	first	argument	value	by	position;	this	will	be	assigned	to	the	first
positional	parameter,	name.	We’ve	provided	one	of	the	defined	parameters	using	a
keyword	argument,	rig.	The	remaining	keyword	arguments	are	collected	into	a	dictionary
and	assigned	to	the	parameter	named	sails.

The	sails	dictionary	will	be	assigned	a	value	similar	to	this:

{'main':	358.3,	'mizzen':	192.5,	'yankee':	379.75,	'staysl':	200}

We	can	use	any	dictionary	processing	on	this	mapping	since	it’s	a	proper	dict	object.

Earlier,	we	provided	four	rules	for	matching	argument	values	with	parameters.	Here	is	a
more	complete	set	of	rules	for	matching	argument	values	with	function	parameters:

1.	 Match	all	positional	arguments	to	parameters	from	left-to-right.
2.	 If	there	are	more	positional	arguments	than	parameter	names:

1.	 If	there’s	a	parameter	name	with	a	*	prefix,	assign	a	tuple	of	remaining	values
to	the	prefixed	parameter.

2.	 If	there’s	no	parameter	with	the	*	prefix,	raise	a	TypeError	exception.

3.	 Match	all	keyword	parameters.	In	case	of	already-assigned	positional	parameters,
raise	a	TypeError	exception.

4.	 If	there	are	more	keyword	arguments	than	parameter	names:

1.	 If	there’s	a	parameter	name	with	a	**	prefix,	assign	dict	of	remaining	keywords
and	values	to	the	prefixed	parameter.

2.	 If	there’s	no	parameter	with	the	**	prefix,	raise	a	TypeError	exception.

5.	 Apply	default	values	to	missing	parameters.
6.	 In	case	of	parameters	which	still	have	no	values,	raise	a	TypeError	exception.

A	consequence	of	these	rules	is	that,	at	most,	only	one	parameter	can	have	a	*	prefix;
similarly,	at	most,	only	one	parameter	can	have	a	**	prefix.	These	special	cases	must	be
given	after	all	of	the	other	parameters.	The	*	prefix	variable	will	be	assigned	an	empty
tuple	if	there	are	no	surplus	positional	parameters.	The	**	prefix	variable	will	be	assigned
an	empty	dictionary	if	there	no	surplus	keyword	parameters.

When	invoking	a	function,	we	must	provide	positional	argument	values	first.	We	can
provide	keyword	argument	values	in	any	order.



Using	sequences	and	dictionaries	to	fill	in	*args
and	*kw
The	prod2()	function,	shown	earlier,	expects	individual	values	which	are	collected	into	a
single	*args	tuple.	If	we	invoke	the	function	with	prod2(1,	2,	3,	4,	5),	then	a	tuple
built	from	the	five	positional	parameters	is	assigned	to	the	args	parameter.

What	if	we	want	to	provide	a	list	to	the	prod2()	function?	How	can	we,	in	effect,	write
prod2(some_list[0],	some_list[1],	some_list[2],	…	)?

When	we	call	a	function	using	prod2(*some_sequence),	then	the	values	of	the	given
argument	sequence	are	matched	to	positional	parameters.	Item	zero	from	the	argument
sequence	becomes	the	first	positional	parameter.	Item	one	from	the	sequence	becomes	the
second	parameter,	and	so	on.	Each	item	is	assigned	until	they’re	all	used	up.	If	there	are
extra	argument	values,	and	the	function	was	defined	with	a	parameter	using	a	*	prefix,	the
extra	argument	values	are	assigned	to	the	*	prefix	parameter.

Because	of	this,	we	can	use	prod2(*range(1,	10))	easily.	This	is	effectively	prod2(1,
2,	3,	4,	5,	…,	9).	Since	all	of	the	positional	argument	values	are	assigned	to	the	*-
prefix	args	variable,	we	can	use	this	function	with	individual	values,	like	this:	prod2(1,
2,	3,	4).	We	can	provide	a	sequence	of	values,	like	this:	prod2(*sequence).

We	have	a	similar	technique	for	providing	a	dictionary	of	keyword	arguments	to	a
function.	We	can	do	this:

>>>	rr_args	=	dict(

...				name="Red	Ranger",	rig="ketch",

...				main=358.3,	mizzen=192.5,	yankee=379.75,	staysl=200…	)

>>>	boat_summary2(**rr_args)

Boat	Red	Ranger,	ketch	rig,	1131	sq.	ft.

We’ve	created	a	dictionary	with	all	of	the	arguments	defined	via	their	keywords.	This	uses
a	handy	feature	of	the	dict()	function	where	all	of	the	keyword	arguments	are	used	to
build	a	dictionary	object.	We	assigned	that	dictionary	to	the	rr_args	variable.	When	we
invoked	the	boat_summary2()	function,	we	used	the	**rr_args	parameter	to	force	each
key	and	value	in	the	rr_args	dictionary	to	be	matched	against	parameters	to	the	function.
This	means	that	the	values	associated	with	the	name	and	rig	keys	in	the	dictionary	will	be
matched	with	the	name	and	rig	parameters.	All	other	keys	in	the	dictionary	will	be
assigned	the	sails	parameter.

These	techniques	allow	us	to	build	function	arguments	dynamically.	This	gives	us
tremendous	flexibility	in	how	we	define	and	use	Python	functions.





Nested	function	definitions
We	can	include	anything	inside	a	function	definition,	even	another	function	definition.
When	we	look	at	decorators	in	Chapter	13,	Metaprogramming	and	Decorators,	we’ll	see
cases	of	a	function	which	includes	a	nested	function	definition.

We	can	include	import	statements	within	a	function	definition.	An	import	statement	is
only	really	executed	once.	There’s	a	global	collection	of	imported	modules.	The	name,
however,	would	be	localized	to	the	function	doing	the	import.

The	general	advice	is	given	in	the	Zen	of	Python	poem	by	Tim	Peters:

Flat	is	better	than	nested.

We’ll	generally	strive	to	have	functions	defined	in	a	relatively	simple,	flat	sequence.	We’ll
avoid	nesting	unless	it’s	truly	required,	as	it	is	when	creating	decorators.





Working	with	namespaces
When	a	function	is	evaluated,	Python	creates	a	local	namespace.	The	parameter	variables
are	created	in	this	local	namespace	when	the	argument	values	(or	default	values)	are
assigned.	Any	variables	that	are	created	in	the	suite	of	statements	in	the	function’s	body
are	also	created	in	this	local	namespace.

As	we	noted	in	Chapter	4,	Variables,	Assignment	and	Scoping	Rules,	each	object	has	a
reference	counter.	An	object	provided	as	an	argument	to	a	function	will	have	the	reference
count	incremented	during	the	execution	of	the	function’s	suite	of	statements.

When	the	function	finishes—either	because	of	an	explicit	return	statement	or	the	implicit
return	at	the	end	of	the	suite—the	namespace	is	removed.	This	will	decrement	the	number
of	references	to	the	argument	objects.

When	we	evaluate	an	expression	like	more_dice_good(2,	hand),	the	literal	integer	2	will
be	assigned	to	the	n	parameter	variable.	Its	reference	count	will	be	one	during	the
execution	of	the	function.	The	object	assigned	to	the	hand	variable	will	be	assigned	to	the
collection	parameter.	This	object	will	have	a	reference	count	of	two	during	the	execution
of	the	function.

When	the	function	exits,	the	namespace	is	removed,	which	removes	the	two	parameter
variables.	The	literal	2	object,	assigned	to	the	n	variable,	will	wind	up	with	a	reference
count	of	zero,	and	that	int	object	can	be	removed	from	memory.	The	object	assigned	to
the	collection	variable	will	have	its	reference	count	decreased	from	two	to	one;	it	will
not	be	removed	from	memory.	This	object	will	still	be	assigned	to	the	hand	variable,	and
can	continue	to	be	used	elsewhere.

This	use	of	a	local	namespace	allows	us	to	freely	assign	objects	to	parameters	without
having	the	objects	overwritten	or	removed	from	memory.	It	also	allows	us	to	freely	create
intermediate	variables	within	the	body	of	a	function,	secure	in	the	knowledge	that	the
variable	will	not	overwrite	some	other	variable	used	elsewhere	in	the	script.

When	we	reference	a	variable,	Python	looks	in	two	places	for	the	variable.	It	looks	first	in
the	local	namespace.	If	the	variable	isn’t	found,	Python	then	searches	the	global
namespace.

When	we	import	a	module,	like	random,	we	generally	write	import	at	the	beginning	of	our
script	so	that	the	module	is	imported	into	the	global	namespace.	This	means	that	a
function	which	uses	random.randint()	will	first	check	the	local	namespace	for	random;
failing	to	find	that,	it	will	check	the	global	namespace	and	find	the	imported	module.

This	fallback	to	the	global	namespace	allows	us	to	reuse	imported	modules,	function
definitions,	and	class	definitions	freely	within	a	script	file.	We	can	also—to	an	extent—
share	global	variables.	The	default	behavior	is	that	we	can	read	the	values	of	global
variables,	but	we	can’t	easily	update	them.

If	we	write	global_variable	=	global_variable	+	1	in	a	function,	we	can	fetch	the
value	of	a	global	variable	named	global_variable.	The	assignment,	however,	will	create



a	new	variable	in	the	local	namespace	with	the	name	global_variable.	The	actual	global
variable	will	remain	untouched.



Assigning	a	global	variable
What	if	we	want	to	assign	values	to	a	variable	which	has	not	been	provided	as	an
argument?	We	can	write	a	function	which	will	update	global	variables.	This	can	lead	to
confusing	programs	because	several	functions	may	share	common	states	via	the	global
variable.

To	create	names	in	the	global	namespace	instead	of	a	local	namespace,	we	use	the	global
statement.	This	identifies	the	variables	which	must	be	found	in	the	global	namespace
instead	of	the	local	namespace.	Here’s	a	function	which	updates	a	global	variable:

import	random

def	roll_dice_count_7():

				global	sevens

				d=	random.randint(1,6),	random.randint(1,6)

				if	d[0]	+	d[1]	==	7:

								sevens	+=	1

				return	d

We’ve	defined	a	function	and	used	the	global	statement	to	state	that	the	variable	named
sevens	will	be	found	in	the	global	namespace.	We’ve	created	two	random	numbers,	and
assigned	the	pair	to	a	local	variable,	d.	This	variable	will	be	created	in	the	local
namespace,	and	won’t	conflict	with	any	other	variables	defined	in	other	namespaces.

Each	time	the	pair	of	dice	total	seven,	the	global	variable	is	updated.	This	is	a	side	effect
that	can	be	confusing.	It	must	be	documented	explicitly,	and	it	requires	some	careful	unit
testing.

The	two	built-in	functions,	globals()	and	locals(),	can	help	clarify	the	variables
available	when	this	function	is	being	evaluated.	If	we	add	a	print()	function	right	before
the	return	statement,	we’ll	see	results	(with	some	details	elided)	like	this:

globals={'__cached__':	None,

'__loader__':	<_frozen_importlib.SourceFileLoader	object	at	0x100623750>,

'sevens':	20,

'__name__':	'__main__',

'__file__':	'…',

…	etc.

				'roll_dice_count_7':	<function	roll_dice_count_7	at	0x10216e710>,

				'random':	<module	'random'	from	'...'>}

locals={'d':	(2,	1)}

The	globals	function	includes	variables	like	sevens,	it	includes	the	random	module,	and
the	roll_dice_count_7	function.	It	includes	some	system	variables:	like	__cached__,
__loader__,	__name__,	and	__file__.

The	locals	function	includes	the	local	variable	d	and	nothing	more.



Assigning	a	non-local	variable
When	one	function	is	defined	inside	another	function,	the	outer	function	can	contain
variables	which	are	neither	local	to	the	inner	function	nor	global.	We	call	these	non-local
variables.	There	are	situations	where	we	might	want	to	set	a	variable	which	is	part	of	an
enclosing	function.

Nested	function	definitions	are	most	commonly	used	when	defining	decorators.	We’ll	look
at	this	in	Chapter	13,	Metaprogramming	and	Decorators.

Here’s	a	contrived	example	of	nested	functions	and	a	non-local	shared	variable:

def	roll_nl(n=2,	d=6):

				def	dice():

								nonlocal	total

								points=	tuple(random.randint(1,d)	for	_	in	range(n))

								total	=	sum(points)

								return	points

				total=	0

				dice()

				return	total

We’ve	defined	a	function,	roll_nl(),	which	will	simulate	rolls	of	dice.	The	function’s
body	includes	a	nested	function	definition,	dice().	The	rest	of	the	body	creates	the
variable	total,	evaluates	the	internal	dice()	function,	and	returns	the	value	of	the	total
variable.

How	did	the	total	variable	get	set	to	anything	other	than	zero?	It	isn’t	updated	in	the
body	of	the	roll_nl()	function.

Within	the	nested	dice()	function,	there’s	a	nonlocal	reference	to	a	variable	named	total.
This	variable	must	exist	in	an	outer	namespace,	but	not	necessarily	the	global	namespace.
The	dice()	function	creates	a	tuple	object	with	the	values	of	n	dice.	This	expression
builds	a	tuple	from	the	result	of	a	generator	function.	It	updates	the	nonlocal	total
variable	the	sum	of	the	points	tuple.	The	nonlocal	statement	assures	us	that	the	total
variable	is	part	of	the	container	for	the	dice()	function.	The	return	value	of	the	dice()
function	is	the	tuple	of	dice,	a	value	this	isn’t	really	used.





Defining	lambdas
A	lambda	form	is	a	degenerate	kind	of	function.	A	lambda	doesn’t	even	have	a	name:	it
has	only	parameters	and	a	single	expression.	We	create	a	lambda	by	providing	the
parameter	names	and	the	expression.	It	looks	like	this:

lambda	x:	x[0]+x[1]

This	kind	of	thing	is	helpful	in	the	context	of	Python’s	higher-order	functions.	We	often
use	lambdas	with	max(),	min(),	sorted(),	map(),	filter(),	or	list.sort().	Here’s	a
simple	example:

>>>	colors	=	[

...	(255,160,137),

...	(143,	80,157),

...	(255,255,255),

...	(162,173,208),

...	(255,	67,164),

...	]

>>>	sorted(colors)

[(143,	80,	157),	(162,	173,	208),	(255,	67,	164),

		(255,	160,	137),	(255,	255,	255)]

>>>	sorted(colors,

...					key=	lambda	rgb:	(rgb[0]+rgb[1]+rgb[2])/3)

[(143,	80,	157),	(255,	67,	164),	(162,	173,	208),

		(255,	160,	137),	(255,	255,	255)]

We’ve	created	a	simple	list	object	which	has	four	RGB	color	values.	If	we	use	the
sorted()	function	on	this	list,	the	colors	are	sorted	into	order	by	the	red	component	value.
If	the	red	components	are	equal,	then	the	green	component	is	used.	In	the	rare	case	that	the
red	and	green	components	are	equal	the	blue	component	is	used.

If	we	want	colors	sorted	by	brightness,	we	can’t	simply	sort	by	red,	green,	and	blue.	The
perception	of	brightness	is	subtle	and	a	number	of	formulae	approximate	the	phenomena.
We’ve	picked	just	one,	which	is	to	average	the	RGB	values.	This	formula	doesn’t	take	into
account	the	fact	that	our	eyes	are	more	sensitive	to	green.

The	sorted()	function	accepts	a	second	parameter,	key,	which	we’ve	provided	as	a
keyword	argument	in	the	second	example.	Rather	than	write	a	complete	function
definition	that	would	only	really	embody	a	single	expression,	we’ve	packaged	the
expression,	(rgb[0]+rgb[1]+rgb[2])/3,	as	a	lambda.

The	syntax	lambda	rgb:	(rgb[0]+rgb[1]+rgb[2])/3	is	equivalent	to	the	following
function	definition.

def	brightness(rgb):

				return	(rgb[0]+rgb[1]+rgb[2])/3

The	lambda	is	more	compact.	If	we	only	need	this	expression	in	one	place,	a	reusable
function	may	not	be	appropriate.	A	lambda	is	an	easy	way	to	provide	a	simple	expression
with	minimal	overhead.	If	we	think	we	need	to	write	complex	lambdas—more	than	a
simple	expression—or	we	need	to	reuse	a	lambda,	then	we	should	consider	using	a	proper



function.





Writing	additional	function	annotations
The	Python	Enhancement	Proposal	(PEP)	number	3107	specifies	additional	annotations
which	can	be	applied	to	a	function	definition.	Additionally,	PEPs	482,	483,	and	484	cover
some	related	ideas.

This	is	important	only	because	Python	has	some	optional	syntax	that	we	may	see.	In
Python	3.5,	there	may	be	additional	tools	for	the	type	of	information	provided	in	this
optional	syntax.	The	annotated	code	can	look	like	this:

def	roller(	n:	int,	d:	int	=	6	)	->	tuple:

				return	tuple(random.randint(1,d)	for	_	in	range(n))

This	function	includes	additional	:	expression	annotations	after	each	parameter.	It	also
includes	a	->	expression	annotation	to	show	the	return	type	of	the	function.	All	of	the
annotation	expressions	in	this	example	are	the	names	of	built-in	types.

In	order	to	describe	more	complex	structures,	an	additional	typing	module	can	offer	the
tools	for	defining	a	more	exact	Tuple[int,	…]	as	the	return	type	for	this	function.	This	is
an	exciting	development	that	may	avoid	certain	kinds	of	bugs.

These	annotations	are	legal	Python3	syntax.	They	have	no	formally-defined	semantics,
which	means	that	they	are	optional.	There	are	some	enhancement	projects	that	are
working	on	leveraging	these	optional	annotations	and	creating	tools	that	can	use	the
information	provided	there.	It’s	rarely	used,	but	perfectly	legal.





Summary
We’ve	looked	at	a	number	of	Python	features	for	function	definition.	We’ve	looked	at	how
we	define	the	name,	and	the	parameters	to	a	function,	providing	default	values	to	make
parameters	optional.	We’ve	also	looked	at	how	we	can	provide	arguments	to	a	function:
we	can	provide	arguments	by	position,	or	by	using	the	parameter	variable	name	as	a
keyword.	We	can	evaluate	function(*args)	to	map	a	sequence	of	values	to	parameters
by	position.	We	can	also	evaluate	function(**kw)	to	map	a	dictionary	of	values	to
parameters	by	name.	And,	of	course,	we	can	combine	these	two	techniques.

We’ve	looked	at	how	functions	return	values	via	the	return	statement.	We’ve	also	looked
at	functions	which	don’t	return	a	value.	Technically,	they	return	a	value	of	None,	which	the
rest	of	the	Python	programming	ignores.

We’ve	looked	at	the	all-important	issue	of	attempting	to	use	a	mutable	object	as	a	default
value	in	a	function	definition.	Most	of	the	time,	a	mutable	object	as	a	default	is	going	to
create	problems.

In	addition	to	the	basics	of	function	definition,	we	looked	at	how	local	variables	are
assigned	to	temporary	namespaces.	We	also	looked	at	how	we	can	use	the	global
statement	to	create	variables	in	the	global	namespace.	We	also	looked	at	how	a	nested
function	definition	can	manipulate	variables	that	are	nonlocal	to	the	nested	function,	but
not	properly	global	to	the	container	function.

In	Chapter	8,	More	Advanced	Functions,	we’ll	look	at	generator	expressions	and
functions.	These	are	functions	which	are	iterable,	and	work	cooperatively	with	the	for
loop	to	handle	collections	and	sequences	of	data.





Chapter	8.	More	Advanced	Functions
In	Chapter	7,	Basic	Function	Definitions,	we	looked	at	the	core	features	of	defining	a
function	which	returns	a	single	result.	Even	functions	with	an	implicit	return	statement	at
the	end	of	the	suite	of	statements,	or	a	function	with	a	return	statement	that	has	no
expression,	return	a	result:	the	None	object	is	the	default	return	value.	In	this	chapter,	we’ll
look	at	functions	which	generate	multiple	results.	A	generator	function	defines	an	iterable:
it	can	be	used	with	a	for	statement.	This	means	that	the	generator	doesn’t	produce	a	single
object	with	all	of	the	items	in	the	result;	instead	it	produces	each	item	of	the	result
separately.

Python	offers	generator	expressions	and	comprehensions	which	complement	the	idea	of
generator	functions.	We	can	write	simple	expressions	that	represent	a	sequence	of	values
which	is	generated	one	item	at	a	time.	We	can	use	generator	expressions	to	create	list,
set,	or	dict	objects	via	a	comprehension.

We’ll	review	the	for	statement	and	its	relationship	with	iterable	data.	This	will	help	us
understand	how	generator	functions	work.	We’ll	also	look	at	some	functions	which	work
as	well	with	collection	objects	as	with	generator	functions.	This	includes	built-in	reduction
functions	such	as	max(),	min(),	and	sum().	It	also	includes	higher-order	functions	such	as
map(),	filter(),	functools.reduce(),	and	the	functions	of	the	itertools	module.

This	chapter	will	skim	over	some	concepts	of	functional	programming.	An	entire	book
could	be	written	about	functional	programming	in	Python.	See
https://www.packtpub.com/application-development/functional-python-programming	for
more	information.	We’ll	focus	on	the	essentials.

https://www.packtpub.com/application-development/functional-python-programming


Using	the	for	statement	with	iterable
collections
Python	allows	us	to	use	the	for	statement	with	any	kind	of	collection.	We	can	write	a
statement	like	for	x	in	coll	to	process	list,	set,	or	the	keys	of	a	dict.	This	works
because	all	of	the	Python	collections	have	common	abstract	base	classes,	defined	in	the
collections.abc	module.

This	works	via	a	common	feature	of	the	base	classes,	Sequence,	Set,	and	Mapping.	The
Iterable	mix	in	the	class	is	part	of	each	class	definition.	The	implementation	of	this
abstraction	is	our	guarantee	that	all	of	the	built-in	collections	will	cooperate	with	the	for
statement.

Let’s	open	up	the	internals	to	see	how	it	works.	We’ll	use	this	compound	for	statement	as
a	concrete	example:

for	x	in	coll:

				print(x)

Conceptually,	this	compound	statement	starts	with	something	very	much	like	this
assignment:	coll_i=iter(coll).	This	will	get	an	iterator	object	for	the	coll	collection.
This	iter()	function	will	leverage	the	special	method	__iter__()	to	produce	the	iterator
object.	We	can	summarize	how	this	works	with	a	simple	rule:	if	the	variable	coll	doesn’t
reference	a	proper	collection,	a	TypeError	exception	will	be	raised.

Given	the	resulting	iterator	object,	coll_i,	the	for	statement	can	then	evaluate
x=next(coll_i)	to	get	each	item	from	the	iterator.	This	will	leverage	the	special	method
coll_i.__next__()	to	produce	an	item	from	the	original	collection.

If	the	evaluation	of	next(coll_i)	returns	an	item,	this	is	assigned	to	x	and	the	suite	of
statements	is	executed	with	this	value	bound	to	the	x	variable.	We’ll	see	the	value	of	x
printed.

If	next(coll_i)	raises	a	StopIteration	exception,	the	underlying	collection	is	out	of
items,	and	the	loop	will	finish	normally.	In	the	case	of	any	another	exception	being	raised,
this	simply	propagates	according	to	the	standard	exception	rules.	(We’ll	look	at	exceptions
in	Chapter	9,	Exceptions.)



Iterators	and	iterable	collections
A	collection	is	iterable	when	it	implements	the	__iter__()	special	method.	Almost
universally,	this	means	that	it	will	be	a	subclass	of	the	Iterable	class	defined	in	the
collections.abc	module.	The	presence	of	this	special	method	means	that	evaluating
iter()	on	a	collection	object	will	return	an	iterator	object.

The	iterator	for	a	collection	must	implement	the	__next__()	and	__iter__()	special
methods.	Generally,	an	iterator	object	implements	the	__iter__()	method	by	returning
itself	as	the	result.	Having	this	tautological	redundancy	available	means	that	we	can	not
only	create	an	explicit	iterator	but	also	provide	the	iterator	to	a	for	statement	without
causing	an	exception;	the	for	statement’s	processing	can	evaluate	iter(object)	without
the	overheads	of	checking	to	see	if	the	object	is	already	an	iterator.

What	if	we	have	a	sequence	of	items	which	has	a	header	that	we’d	like	to	ignore?	This
often	happens	when	a	source	data	file	includes	a	heading	line	that	must	be	processed
separately.	We	can	leverage	an	explicit	iterator	object	to	discard	items	from	a	sequential
collection.

We	might	write	something	like	this:

source_iter=	iter(source)

heading=	next(source_iter)

for	data	in	source_iter:

				print(data)

In	this	example,	we’ve	created	an	iterator,	source_iter,	based	on	a	source	collection	or
generator,	unimaginatively	named	source.	When	we	evaluated	next(source_iter),	we
consumed	the	first	item	from	the	collection,	which	we	then	assigned	to	the	heading
variable.	We	can	then	use	the	iterator	object	in	the	for	statement	to	consume	the	rest	of	the
items	in	that	iterator.

In	effect,	the	preceding	example	is	nearly	identical	to	this:

heading,	*rest	=	source

for	data	in	rest:

				print(data)

This	second	example	actually	makes	a	shallow	copy	of	the	source	collection	and	assigns
this	copy	to	the	rest	variable.	We’ve	nearly	doubled	the	amount	of	memory	used.	For	a
small	list,	this	doesn’t	matter.	For	a	larger	collection,	this	can	become	a	problem.

If	the	source	is	an	open	file	or	a	generator	based	on	an	open	file,	materializing	the	data	in
the	rest	collection	could	be	impossible.	Files	too	big	to	fit	into	memory	are	part	of	their
own	unique	problem,	sometimes	called	“big	data”.	Using	the	iter()	function	explicitly
allows	us	to	avoid	the	risky	attempt	to	create	a	large	collection	that	may	not	fit	in	memory.





Consequences	and	next	steps
There	are	three	important	consequences	to	the	way	a	for	statement	uses	coll_i=	iter(x)
and	x=next(coll_i):

We	can	write	generator	expressions	which	implicitly	have	the	required	interface	to
work	as	an	Iterable	class
Python	gives	us	a	way	to	write	generator	functions	which	will	work	as	an	Iterable
class
We	can	create	our	own	classes	which	implement	the	special	method	names	required
to	implement	the	Iterable	abstract	base	class

We’ll	start	by	writing	generator	expressions.	We	can	use	these	to	create	list,	set,	and
mapping	“comprehensions.”	A	comprehension	is	an	expression	that	defines	the	contents
of	a	collection.

We’ll	look	at	writing	generator	functions.	The	yield	statement	changes	the	semantics	of	a
function	from	being	“simple”	(or	“ordinary”)	to	being	a	generator.

While	class	definitions	are	the	subject	of	Chapter	11,	Class	Definitions,	we	won’t	dig
deeply	into	how	we	can	create	our	own	unique	collections.	Python	already	offers	so	many
collections	that	defining	our	own	is	not	really	necessary.





Using	generator	expressions	and
comprehensions
We	can	think	of	simple	generator	expressions	as	an	operator	with	three	operands.	The
syntax	for	these	three	operands	parallels	the	for	statement:

(expression	for	target	in	source)

We	specify	an	expression	which	is	evaluated	for	each	value	assigned	to	a	target	variable
from	a	source.	There	are	more	complex	generators,	which	we’ll	look	at	later.

Generator	expressions	can	be	used	freely	in	Python.	They	can	be	used	anywhere	in	a
sequence	or	a	collection	that	is	meaningful.

It’s	important	to	note	that	a	generator	expression	is	lazy,	or	“non-strict.”	It	doesn’t	actually
calculate	anything	until	some	consuming	operation	demands	values	from	it.	To	see	this,
we	can	try	to	evaluate	a	generator	expression	at	the	REPL:

>>>	(2*x+1	for	x	in	range(5))

<generator	object	<genexpr>	at	0x1023981e0>

Python	tells	us	only	that	we’ve	created	a	generator	object.	Since	we	didn’t	write	an
expression	to	consume	the	values,	all	we	saw	was	the	object,	passively	waiting	to	be
evaluated.

The	best	way	to	explore	a	generator	expression	is	to	apply	a	function,	such	as	list()	or
tuple(),	that	will	consume	the	generator’s	values	and	build	a	collection	object	from	them.
Here’s	an	example:

>>>	tuple(2*x+1	for	x	in	range(5))

(1,	3,	5,	7,	9)

In	this	example,	the	tuple()	function	consumed	values	from	the	generator	object	and
created	a	tuple	object	from	those	values.	Rather	than	display	the	generator	object,	the
REPL	shows	us	the	tuple	which	was	created	from	the	generated	values.

We	can	use	generator	expressions	for	a	wide	variety	of	processing.	There	are	several
patterns	in	the	itertools	module.



Limitations	of	generator	expressions
Generator	expressions	have	a	few	limitations.	The	most	obvious	limitation	is	that	some
language	features	are	only	available	as	Python	statements.	If	we	need	to	perform
exception	handling,	context	management,	or	exiting	a	loop	early	via	a	break	statement,	we
can’t	write	a	generator	expression.	We	have	to	resort	to	writing	a	complete	generator
function.

A	less	obvious	limitation	is	that	a	generator	expression	behaves	very	much	like	a
sequence.	But	it	can	only	do	that	trick	once.	After	the	generator	terminates	the	first	time,	it
behaves	like	an	empty	sequence	every	time	it’s	referenced	after	that.	Here’s	a	concrete
example:

>>>	x=	(2*x+1	for	x	in	range(20))

>>>	sum(x)

400

>>>	sum(x)

0

In	this	example,	we	assigned	a	generator	expression	to	a	variable,	x.	When	we	compute
sum(x),	the	sum()	function	consumes	all	of	the	values	produced	by	the	generator
expression:	the	sum	is	400	in	this	example.	Once	we’ve	used	the	generator,	it	is	still	valid,
but	it	no	longer	generates	values.	All	subsequent	evaluations	of	sum(x)	will	produce	0.

There’s	no	special	exception	to	warn	us	that	we’re	reusing	an	iterator	that	has	already	been
exhausted.	In	some	cases,	a	program	may	appear	broken	because	we’re	using	a	generator
expression	instead	of	a	list	or	tuple	sequence.	The	fix	is	almost	always	to	convert	the
generator	into	a	tuple	object	so	that	it	can	be	used	twice.	We	can	change	to	x=
tuple(2*x+1	for	x	in	range(20))	to	see	the	difference.

When	working	with	a	generator	function	or	expression,	iter(some_function)	will	return
the	generator	object	because	it	is	an	iterator.	In	the	case	of	a	collection	object,
iter(some_collection)	will	create	an	iterator	object	that	has	a	reference	to	the
collection.	The	result	will	be	a	distinct	object.	A	function	can	use	iter(param)	is
iter(param)	to	detect	the	difference	between	a	generator	function	and	a	concrete
collection.

In	some	cases,	we	might	include	the	statement	assert	iter(param)	is	not
iter(param),	"Collection	object	required"	to	raise	an	exception	if	a	generator
function	is	provided	as	an	argument	to	a	function	which	traverses	a	collection	more	than
once.



Using	multiple	loops	and	conditions
The	body	of	a	generator	can	include	multiple	for	clauses.	This	allows	us	to	iterate	over
multiple	dimensions.	We	can	write	expressions	like	this:

>>>	deck=	list((r,s)	for	s	in	'♣♦♥♠'	for	r	in	range(1,14))

>>>	deck	#	doctest:	+ELLIPSIS

[(1,	'♣'),	(2,	'♣'),	(3,	'♣'),	...	(11,	'♠'),	(12,	'♠'),	(13,	'♠')]

>>>	len(deck)

52

The	generator	expression	has	two	for	clauses:	for	s	in	'♣♦♥♠'	and	for	r	in
range(1,14).	It’s	clear	from	the	results	that	the	for	clause	on	the	right	executes	most
frequently.	This	follows	the	nesting	rules	we’d	see	if	we	rewrote	this	as	nested	for
statements.	The	for	clause	on	the	right	is	like	an	innermost	for	statement.

Additionally,	the	body	of	a	generator	can	include	if	clauses.	These	can	be	used	to	filter
values	created	by	the	for	clauses.	Here’s	an	example	of	conditional	processing	in	a
generator	expression:

>>>	list(x	for	x	in	range(36)	if	x%5	==	0	or	x%7	==	0)

[0,	5,	7,	10,	14,	15,	20,	21,	25,	28,	30,	35]

In	this	example,	the	expression	is	just	the	target	variable,	x.	The	source	is	range(36),
numbers	that	include	zero	and	35.	We’ve	included	an	if	clause	that	will	pass	only	those
values	which	are	multiples	of	five	or	seven.	All	other	values	will	be	rejected.	In	order	to
see	a	result,	we	collected	the	values	from	the	generator	into	a	list	object.



Writing	comprehensions
We	can	leverage	a	variation	of	the	generator	expression	to	create	list,	set,	or	dict
objects.	These	are	called	comprehensions,	and	represent	tangible	objects,	built	from	lazy
generators.

Here	are	some	simple	examples:

[2*x+1	for	x	in	range(5)]

{x	for	x	in	range(36)	if	x%5	==	0	or	x%7	==	0}

{n:	2*n**2-3*n-14	for	n	in	range(-5,6)}

The	first	example	uses	the	[]	to	create	a	list	comprehension.	This	will	create	a	list	of	odd
values	from	one	to	nine.	The	second	example	uses	{}	to	create	a	set	comprehension.	This
will	be	a	set	based	on	multiples	of	five	or	seven.

The	third	example	creates	a	dict	comprehension.	The	{}	are	used	to	bracket	the
expression.	The	use	of	the	:	character	to	separate	key	and	value	distinguishes	a	dict
comprehension	from	a	set	comprehension.	This	dictionary	provides	a	mapping	from
values	of	n.

This	last	example	could	be	used	as	an	optimization	for	a	deeply-nested	expression.
Looking	up	a	value	in	a	mapping	is	faster	than	repeatedly	recalculating.	Using	the
@lru_cache	decorator	gives	similar	performance	benefits.





Defining	generator	functions	with	the
yield	statement
A	generator	function	has	properties	similar	to	a	generator	expression.	Rather	than	a	single
expression,	a	generator	function	is	a	full	Python	function.	It	has	all	of	the	features	of	the
functions	described	in	Chapter	7,	Basic	Function	Definitions.	It	has	the	additional
characteristic	of	being	an	iterator,	capable	of	generating	a	sequence	of	items.

When	we	use	a	yield	statement,	the	semantics	of	the	function	are	changed.	Without	a
yield,	a	function	will	return	a	single	value.	With	a	yield	statement,	a	function	will
behave	like	an	iterator,	providing	multiple	values	to	a	consumer.

Here’s	an	example	of	a	generator	function	that	applies	a	range	of	values	to	a	model	to
compute	a	domain	of	results.	We’ll	apply	the	model	to	a	sequence	of	input	values	to
compute	the	results	for	each	input:

def	model_iter(until):

				for	n	in	range(0,	until):

								yield	n*(n+1)//2

This	model_iter()	function	accepts	a	single	argument,	until,	which	is	the	number	of
values	generated	by	this	function.	The	body	of	the	function	includes	a	for	statement
which	will	set	the	n	variable	to	values	defined	by	the	range()	object.

The	essential	feature	of	this	function	is	the	yield	statement.	Each	value	created	by	the
yield	statement	will	be	part	of	the	sequence	of	items	emitted	by	this	statement.

Here’s	one	way	to	use	this	function:

>>>	list(model_iter(6))

[0,	1,	3,	6,	10,	15]

In	this	example,	we’ve	collected	the	results	into	a	single	list	object.	Creating	a	list
object	is	just	one	of	the	many	things	we	can	do.	We	could	just	as	easily	sum	the	results	of
the	model	to	compute	the	mean	value	for	the	given	range.

>>>	mean	=	sum(model_iter(6))/6

>>>	round(mean,	4)

5.8333

In	this	example,	we	provided	the	results	of	the	model_iter()	generator	to	the	sum()
function.	This	avoids	building	a	large	collection	of	results.	The	sum()	function	will
consume	all	of	the	values	yielded	by	the	generator	function.	We	can	process	thousands	or
millions	of	values	with	this	kind	of	construct	because	a	large	list	or	set	is	not
materialized	in	memory.	Only	the	individual	items	are	processed.





Using	the	higher-order	functions
A	function	which	accepts	a	function	as	an	argument,	or	returns	a	function	as	a	result,	is
called	a	higher-order	function.	Python	has	a	number	of	higher-order	functions.	The	most
commonly-used	of	these	functions	are	map(),	filter(),	and	sorted().	The	itertools
module	contains	numerous	additional	higher-order	functions.

The	map()	and	filter()	functions	are	generators;	their	results	must	be	consumed.	Both	of
them	apply	a	function	to	a	collection	of	values.	In	the	case	of	map(),	the	results	of	the
function	are	yielded.	In	the	case	of	filter(),	if	the	result	of	the	function	is	true,	the
original	value	is	yielded.

Here’s	how	we	can	apply	a	very	simple	function—so	simple	we	coded	it	as	a	lambda—to
a	sequence	of	values:

>>>	mapping=	map(	lambda	x:	2*x**2-2,	range(5)	)

>>>	list(mapping)

[-2,	0,	6,	16,	30]

The	function	is	just	an	expression,	2*x**2-2.	We’ve	applied	this	function	to	values	given
by	the	range()	object.	The	result	is	a	generator,	and	we	need	to	consume	the	values.
We’ve	used	list()	to	create	a	collection	that	we	can	print.	The	values	are	the	result	of
applying	the	given	function	to	each	value	in	the	source	collection.

Here’s	how	we	can	apply	a	simple	logical	test	to	a	sequence	of	values	using	filter():

>>>	fb=	filter(	lambda	n:	n%5==0	or	n%7==0,	range(16)	)

>>>	[n	for	n	in	fb]

[0,	5,	7,	10,	14,	15]

We’ve	defined	a	simple	function	as	a	lambda;	the	function,	n%5==0	or	n%7==0,	is	true	for
multiples	of	five	or	seven.	We’ve	applied	that	filter	to	values	produced	by	a	range()
object.	The	result	includes	only	the	values	for	which	the	given	function	is	True.	All	other
values	are	rejected.

We	used	a	list	comprehension	to	gather	the	values	into	a	list	object.	This	list
comprehension	did	no	calculation	and	no	filtering,	so	it’s	equivalent	to	list(fb).

We	can	implement	the	simple	versions	of	map()	and	filter()	using	generator
expressions:

map(function,	iterable)	is	the	same	as	(function(x)	for	x	in	iterable)
filter(function,	iterable)	is	the	same	as	(x	for	x	in	iterable	if
function(x))

The	map()	function	can	handle	additional	iterables,	providing	more	sophistication	than	the
generator	expression.

The	sorted()	function	is	similar	to	map()	and	filter().	The	sorted()	function	follows	a
different	design	pattern	for	its	parameters.	The	map()	and	filter()	functions	accept	a
function	first,	followed	by	an	item	to	process.	The	sorted()	function	accepts	an	item	to



sort	first,	and	an	optional	function	which	defines	the	keys	on	which	to	sort,	as	well	as	an
optional	reverse	Boolean	value	used	to	reverse	the	sense	of	the	key	comparisons.	We’ll
look	at	sorted	in	detail	in	the	Three	ways	to	sort	a	sequence	section	later.

The	itertools	module	contains	a	large	number	of	generator	functions	that	can	be
combined	to	create	sophisticated	processing.	For	more	information	on	how	this	module
works,	the	book,	Functional	Python	Programming,	Steven	Lott,	Packt	Publishing,	devotes
two	chapters	to	the	subject	(https://www.packtpub.com/application-
development/functional-python-programming).

https://www.packtpub.com/application-development/functional-python-programming


Writing	our	own	higher-order	functions
Perhaps	the	simplest	kind	of	higher-order	function	is	based	on	a	generator	expression.
Since	a	generator	expression	is	lazy,	its	behavior	is	more	like	a	function	than	an	object
which	contains	relevant	data.	A	function	which	returns	a	generator	relies	on	some	other
piece	of	programming	to	actually	consume	the	data	which	is	yielded	by	the	generator.

A	common	file	input	requirement	is	to	strip	trailing	punctuation	and	ignore	blank	lines.
We’ll	assume	a	language	which	follows	the	Python	rule	for	comments.

Here’s	an	example	of	a	function	that	returns	a	generator:

def	text_cleaner(	source	):

				stripped	=	(line.strip()	for	line	in	source)

				partitioned	=	(line.partition("#")	for	line	in	stripped)

				decommented	=	(data.rstrip()	for	data,	sharp,	comment	in	partitioned)

				non_empty	=	(line	for	line	in	decommented	if	line)

				return	non_empty

We’ve	broken	down	the	processing	into	four	separate	generator	functions.	The	result	of
the	function	is	the	fourth	of	these	generators,	but	this	depends	on	the	others	to	yield	its
results.	Since	generators	are	lazy,	no	processing	happens	until	a	function	or	statement
consumes	the	data	yielded	by	the	generator.	We	must	use	the	result	of	this	function	with	a
for	statement	or	a	list()	or	tuple()	function	to	consume	the	data.

When	a	consuming	process	iterates	over	the	result	of	this	function,	it	will	receive
individual	lines	of	text	from	the	non_empty	generator	expression.	The	non_empty
generator	filters	the	lines	created	by	the	decommented	generator	expression.	The
decommented	generator	in	turn	relies	on	the	partitioned	and	stripped	generator
expressions	to	remove	comments	and	whitespace.

What’s	important	here	is	that	the	pipeline	of	processing	is	the	return	value	from	the
text_cleaner()	function.	This	function	does	not	process	any	data.	This	function	returns	a
generator	expression	that	will	process	some	data.

Each	of	these	generators	can	be	also	rewritten	to	use	map()	or	filter().	We’ll	leave	that
as	an	exercise	for	the	reader.

We	can	use	the	text_cleaner()	function	like	this:

>>>	text	=	'''

...	#	options…	db=name	#	database…		task=delete	#	task…	'''.splitlines()

>>>	for	line	in	text_cleaner(text):

...				print(line)

db=name

task=delete

We’ve	created	some	text	with	comments	and	data.	The	format	of	the	data	appears	to	be
name=value	settings.	The	text_cleaner()	function	isn’t	sensitive	to	the	format	of	the
data,	only	to	the	presence	of	comments	and	whitespace.	We	applied	the	splitlines()
function	to	make	the	block	of	text	behave	like	a	file.

The	result	of	text_cleaner()	is	a	function	which	strips	away	comments,	leading	and



trailing	spaces,	and	leaves	us	with	just	the	meaningful	content	of	the	file.	In	this	example,
we	used	a	for	statement	to	consume	the	data	yielded	by	the	generator	function.

This	can	be	part	of	a	more	complex	process	that	uses	these	name=value	lines	as
configuration	parameters.

What’s	important	about	generator	functions	is	that	they	are	completely	lazy.	They	don’t
create	giant	data	structures	in	memory.	They	process	the	minimum	amount	of	data	to
satisfy	the	consumer’s	requests.	This	reduces	overheads.	Additionally,	each	generator	can
be	kept	relatively	simple,	allowing	an	expressive	composition	to	be	built	from	simple
pieces.





Using	the	built-in	reductions	–	max,	min,
and	reduce
We	have	two	other	built-in	higher-order	functions	that	can	accept	functions	as	arguments.
These	can	be	characterized	as	reductions:	they	reduce	a	collection	of	values	to	a	single
value.	There’s	a	third	built-in	reduction,	sum,	but	it’s	not	a	proper	higher-order	function:
we	can’t	tailor	its	operation	by	plugging	in	a	function.

The	max()	and	min()	reductions	follow	the	design	pattern	for	the	sorted()	function:	they
accept	an	iterable	object	first,	and	they	can	be	customized	with	an	optional	key	function.
We’ll	show	the	default	behavior	first,	then	we’ll	show	how	to	customize	this	with	the	key
function:

>>>	data	=	["21",	"3",	"35",	"4"]

>>>	min(data)

'21'

>>>	min(data,	key=int)

'3'

In	the	first	example,	the	string	objects	were	compared	using	string	comparison.	This	leads
to	the	anomaly	of	seeing	"21"	appear	to	be	less	than	"3".	In	fact,	a	string	beginning	with
"2"	is	sorted	before	a	string	beginning	with	"3",	but	this	may	not	be	what	the	program
needs	to	show	as	output.

In	the	second	example,	we	provided	the	int()	function	for	min	to	use	when	comparing
items.	This	means	that	the	strings	are	compared	as	integers,	not	as	strings.	This	selects	"3"
as	the	string	with	the	minimal	integer	value.

Note	that	we	did	not	write	min(data,	key=int()).	We’re	not	evaluating	the	int	function.
We’re	providing	the	int	function	as	an	object	which	the	min()	function	will	use.

Additionally,	there’s	a	generic	functools.reduce()	function	which	can	be	used	to	build
new	kinds	of	reductions.	This	function	accepts	a	two-valued	function,	an	iterable	and	an
initial	value.	It	can	compute	a	wide	variety	of	reductions.





Three	ways	to	sort	a	sequence
Python	offers	us	three	common	approaches	to	the	general	problem	of	sorting	a	list	of
complex	items.

We	can	sort	with	the	sorted()	generator	function.	This	will	duplicate	an	object	as
part	of	sorting.
We	can	sort	a	list	with	its	sort()	method	and	a	key	function.	This	will	mutate	the
list	into	the	requested	order.
We	can	create	an	intermediate	sequence	of	objects	which	can	be	sorted	easily.	This	is
sometimes	called	the	wrap-sort-unwrap	design	pattern.

In	order	to	look	at	each	of	these	in	some	detail,	we	need	a	collection	of	complex	objects
which	we	can	sort.	We’ll	use	a	simple	dataset	based	on	a	case	study	in	the	NIST
Engineering	Statistics	Handbook,	section	7.1.6.	See
http://www.itl.nist.gov/div898/handbook	for	more	information.

We’ve	got	metrics	data	that—after	a	little	re-organization	and	cleanup—looks	like	this:

>>>	data

[['2013-09-10',	'289'],	['2013-09-11',	'616'],

.	.	.	,

['2013-12-07',	'752'],	['2013-12-08',	'739']]

We	have	a	list-of-list	structure	with	90	pairs.	Since	the	date	strings	are	formatted	nicely	as
yyyy-mm-dd,	we	can	easily	sort	this	into	date	order	using	the	sorted(data)	function,	or
the	data.sort()	method.	Note	that	sorted(data)	will	create	a	duplicate	of	the	data
object.	The	data.sort()	method	will	mutate	the	data	object	in	place.

How	can	we	put	the	data	into	order	by	count?	We	can	apply	a	key	function	to	the
sorted()	function	or	sort()	method.	We’ll	look	at	these	first.	As	an	alternative,	we	can
use	the	wrap-sort-unwrap	design	pattern.

http://www.itl.nist.gov/div898/handbook


Sorting	via	a	key	function
Putting	the	metrics	data	into	order	by	count	requires	us	to	use	a	function	which	will
change	the	way	items	are	compared.	In	this	case,	we	need	a	more	complex	key	function
that	does	two	things.	It	must	select	the	second	item	of	each	two	item	data	points,	and	it
must	convert	the	second	item	to	a	proper	integer	value.

We	can	sort	by	count	using	either	of	these	examples:

>>>	data.sort(key=lambda	x:	int(x[1]))

>>>	by_count=	sorted(data,	key=lambda	x:	int(x[1]))

Both	examples	use	a	lambda	that	performs	the	integer	conversion	of	the	second	item	in
each	two-item	list.	The	first	example	updates	the	data	object.	The	second	example	creates
a	new	object	which	is	a	clone	of	the	data	object,	put	into	order.



Sorting	via	wrapping	and	unwrapping
The	wrap-sort-unwrap	design	pattern	can	be	done	with	a	pair	of	generator	expressions.
The	first	will	create	two-tuples	from	each	original	piece	of	data.	The	first	item	in	each	new
two-tuple	is	the	proper	sort	key.	The	second	generator	will	select	the	second	item	from
each	of	those	two-tuples	to	recover	the	original	object.

The	whole	sequence	looks	like	this:

>>>	wrapped	=	[(int(x[1]),	x)	for	x	in	data]

>>>	wrapped.sort()

>>>	by_count	=	[x[1]	for	x	in	wrapped]

In	the	first	step,	we	turned	each	piece	of	original	data	into	a	two-tuple	of	(sort	key,
original	item).	We’ve	used	a	list	comprehension	to	create	a	new	object	that	we	can
sort,	leaving	the	original	object	undisturbed.	Once	we’ve	done	this,	the	default	sort
operation	works	correctly.	Once	the	data	is	sorted,	we	can	recover	the	original	items
easily.	In	this	case,	we	created	yet	another	list	object	using	a	list	comprehension.

In	both	cases,	we	can	tweak	this	slightly	to	the	map()	function	instead	of	with	generator
expressions.	For	example,	we	can	wrap	items	using	map(lambda	item:	(int(item[1]),
item),	data).

Note	that	the	map()	function	is	a	generator:	it’s	lazy.	A	list	comprehension	consumes
data	and	creates	a	tangible	object.	We	can’t	easily	switch	from	list	to	generator	with	a
simple	copy-and-paste.	We’ll	need	to	either	create	a	list	object	from	the	map	generator,
or	use	sorted(),	which	creates	a	list	from	a	generator.

The	wrap-sort-unwrap	is	often	used	when	the	wrap	function	is	quite	complex.	We	might
have	a	generator	which	performs	database	lookups,	file	merges,	or	extremely	complex
calculations	as	part	of	the	ordering.	In	these	cases,	a	simple	lambda	might	be	difficult	to
write.





Functional	programming	design	patterns
The	presence	of	higher-order	functions	in	Python	allows	us	to	leverage	a	great	many
functional	programming	design	patterns.	To	learn	more	about	these	design	patterns,	a
good	place	to	start	is	the	itertools	module.	The	functions	in	this	module	provide	many
examples	of	how	we	can	write	simple	functions	that	do	sophisticated	processing.

Additionally,	we	can	use	some	of	the	features	in	the	functools	module.	This	contains	the
general-purpose	reduce()	function.	It	also	contains	some	functions	that	can	help	us	write
decorators.	A	decorator,	as	we’ll	see	in	Chapter	13,	Metaprogramming	and	Decorators,	is
another	kind	of	higher-order	function:	it’s	a	function	that	modifies	the	definition	of	an
original	function.	This	is	another	aspect	of	functional	programming.

Most	importantly,	we	have	two	ways	to	approach	algorithms:

We	can	process	items	in	large	collections	of	data,	creating	additional	collections	that
are	copies,	subsets,	or	transformations.
We	can	process	items	by	iterating	through	a	large	collection	of	data	as	if	we’re
creating	additional	collections.	Instead	of	actually	creating	copies,	subsets,	or
transformations,	we	can	use	iterators,	filter	functions,	and	mapping	functions.

When	we	have	alternatives,	we	can	choose	a	variation	that	is	succinct	and	expressive.





Summary
In	this	chapter,	we’ve	seen	a	number	of	the	advanced	features	of	functions.	We’ve	looked
at	the	essential	generator	expression	and	how	this	is	used	as	part	of	a	comprehension.	A
list	comprehension	assembles	a	list	from	the	generated	values.	Similarly,	a	set
comprehension	creates	a	set.	A	dictionary	comprehension	creates	a	dict	structure	from
the	keys	and	values	in	a	generator	expression.

We’ve	looked	at	using	the	yield	statement	to	create	a	generator	function.	This	allows	us
to	use	all	of	the	various	Python	statement	features	when	creating	a	generator.	Since	a
generator	is	iterable,	it	works	with	a	for	loop	so	that	we	can	write	a	simple	loop	to	process
multiple	values	created	by	an	iterator.

We’ve	also	looked	at	higher-order	functions.	These	are	functions	which	take	functions	as
arguments	or	produce	functions	as	a	result.	With	higher-order	functions,	we	can	refactor
our	algorithms	into	functions	that	can	be	combined	to	create	the	desired	behavior.

In	Chapter	9,	Exceptions,	we’ll	look	at	how	Python	raises	exceptions,	how	we	can	capture
those	exceptions,	and	what	kind	of	exceptional	processing	we	need	to	write.





Chapter	9.	Exceptions
Python’s	general	approach	to	unexpected	situations	is	to	raise	an	exception.	The	idea	is
that	an	operation	should	either	work	normally	and	completely,	or	raise	an	exception.	In
some	languages,	complex	numeric	status	codes	are	used	to	indicate	success.	In	Python,
success	is	assumed;	if	there’s	a	problem,	an	exception	is	raised	to	indicate	that	the
operation	did	not	succeed.

Exceptions	can	be	raised	by	all	aspects	of	Python	programs.	All	of	the	built-in	classes
involve	exceptions	for	various	kinds	of	unexpected	conditions.	Many	library	packages
define	their	own	unique	exceptions	which	extend	the	built-in	hierarchy	of	exceptions.

We’ll	look	at	the	essential	concept	behind	exceptions	first.	Python	has	a	number	of
statements	that	we’ll	use.	The	raise	statement	creates	an	exception	object.	The	try
statement	allows	us	to	deal	with	exceptions.

The	except	clause	in	a	try	statement	is	used	to	match	the	class	of	exception	being	raised.
With	some	kinds	of	programming,	we	narrowly	match	a	specific	class	of	exceptions.	In
other	cases,	we	use	a	less	specific	class	of	exceptions,	or	a	list	of	exception	classes,	to	treat
a	variety	of	exceptions	in	a	uniform	manner.



The	core	exception	concept
The	core	concept	behind	exceptions	can	be	summarized	as,	“when	in	doubt,	raise	an
exception”.	In	a	typical	situation,	each	Python	function	or	method	will	return	a	value	or
have	some	documented	side-effect.	For	everything	that	isn’t	on	the	“happy	path”	that	leads
to	success,	the	Python	approach	is	to	raise	an	exception.

Even	though	most	exceptions	describe	erroneous	situations,	an	exception	is	not
necessarily	an	error.	It’s	merely	an	exceptional	condition	that	a	given	function	can’t
handle.	For	example,	iterators	raise	the	StopIteration	exception	when	they	can	no	longer
produce	a	result	item.	This	is	an	exceptional	situation	that	occurs	just	once	in	the	life	cycle
of	an	iterator	object.

When	working	with	numbers,	as	a	second	example,	division	by	zero	is	exceptional.	If	we
divide	by	any	other	value,	the	happy	path	leads	us	to	a	result.	While	it’s	possible	to
contrive	a	Not	a	Number	(NaN)	value	as	the	result	of	division	by	zero,	it’s	simpler—and
more	universal—for	the	division	operator	to	raise	a	ZeroDivisionError	exception.
Division	by	zero	isn’t	a	normal	or	expected	design.	Almost	universally,	division	by	zero
indicates	one	of	these	things:

A	design	problem:	Zero	was	a	possible	condition,	but	the	design	didn’t	deal	with	this
situation.	The	ZeroDivisionError	exception	is	unexpected.	The	root	cause	of	a
design	problem	may	be	a	failure	to	understand	the	requirements:	perhaps	a	hastily
groomed	story,	perhaps	other	problems	in	understanding	the	problem	domain.
An	implementation	problem:	Zero	is	cropping	up	because	of	a	bug.	A
ZeroDivisionError	exception	is	similarly	unexpected.	The	root	cause	may	include
inadequate	unit	testing.
A	misuse	of	the	application:	The	user	provided	input	that	led	to	division	by	zero.
The	overall	application	can	offer	a	helpful	error	message	and	await	different	input.	Or
perhaps	the	overall	application	can	use	a	different	calculation	that’s	more	appropriate
to	the	input	values.

An	exception	can	be	profound	or	shallow	in	its	meaning.

When	working	with	strings,	for	example,	there	are	a	number	of	situations	where	an
exception	is	raised.	There	are	also	some	situations	where	a	status	code	is	returned	instead
of	raising	an	exception.	We	can	compare	str.find()	and	str.index()	for	two
differences	in	approach:

>>>	"abc".index("x")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	substring	not	found

>>>	"abc".find("x")

-1.

The	first	example	shows	the	index()	method,	which	raises	an	exception	when	a	substring
can’t	be	found.	The	second	example	shows	the	find()	method,	which	returns	a	peculiar



number	if	the	substring	can’t	be	found.

Exceptions	are	used	widely.	Status	codes	are	rarely	used	in	Python.



Examining	the	exception	object
When	an	exception	is	raised,	it	involves	both	a	processing	change	and	some	data	about	the
condition.	An	exception	is	an	instance	of	a	more	general	class.	We’ll	talk	generally	about
an	EOFError	exception	without	emphasizing	that	the	given	exception	is	an	instance	of	the
EOFError	exception	class.

The	data	associated	with	an	exception	can	include	a	root	cause	exception,	and	a	collection
of	additional	arguments.	Sometimes	the	additional	arguments	are	merely	a	string	message.
Some	exceptions	may	have	a	more	complex	collection	of	arguments.

There	is	also	a	traceback	object	which	contains	the	call	stack.	This	identifies	the	function
which	raised	the	exception,	the	function	which	called	that	function,	and	so	on,	back	to	the
initial	function	that	started	things	off.	This	traceback	information	is	in	a	specially	named
attribute	called	__traceback__.

We	can	create	an	exception	in	several	different	ways:

We	can	create	exception	objects	and	later	raise	them	to	signal	a	problem:

obj	=	Exception("some	message")

raise	obj

We	can	create	and	raise	the	exception	in	one	smooth	motion:

raise	Exception("Some	Argument",	"additional	details")

We	can	create	an	exception	which	wraps	a	root-cause	exception:

raise	MyError("problem")	from	some_exception

In	the	last	case,	where	an	exception	wraps	a	root	cause,	the	root	cause	information	is	in	an
attribute	named	__cause__.





Using	the	try	and	except	statements
When	an	exception	is	raised,	the	ordinary	sequential	exception	of	statements	stops.	The
next	sequential	statement	is	not	executed.	Instead,	the	exception	handlers	are	examined	to
find	an	except	clause	which	matches	the	given	exception’s	class.	This	search	proceeds
down	the	call	stack	from	the	current	function	to	the	function	which	called	it.	If	an	except
clause	is	found	which	matches	the	exception,	then	ordinary	sequential	execution	resumes
in	that	except	clause.	When	the	except	clause	finishes,	the	try	statement	is	also	finished.
From	there,	the	normal	sequential	statement	execution	continues	after	the	try	statement.

If	no	except	clause	matches	the	given	exception,	the	exception	and	the	traceback
information	is	printed.	Processing	stops,	and	Python	exits.	Generally,	the	exit	status	is
non-zero	to	indicate	that	the	Python	program	ended	abnormally.

A	try	statement	inside	a	function	looks	like	this:

def	clean_number(text):

				try:

								value=	float(text)

				except	ValueError:

								value=	None

				return	value

We’ve	defined	a	function	which	will	convert	text	to	a	number.	We’re	going	to	silence	the
ValueError	exception	and	return	the	None	object	instead	of	raising	an	exception.	We
might	use	this	when	cleaning	a	CSV	file	so	that	cells	without	proper	numeric	values	are
replaced	with	the	None	object.

We	can	see	it	in	operation	when	we	apply	it	to	numbers,	like	this.

				>>>	row	=	['heading',	'23',	'2.718']

				>>>	list(map(clean_number,	row))

				[None,	23.0,	2.718]

				>>>	clean_number("1,956")

In	this	example,	we’re	applying	the	clean_number()	function	to	a	row	of	data	from	the
CSV	reader.	The	sample	row	of	data	shows	both	the	happy	path	and	the	exception	path.
On	the	happy	path,	the	two	numbers	are	converted	from	a	string	to	a	proper	float	value.
On	the	exception	path,	the	improper	text	was	converted	into	a	None.

We’ve	also	included	a	test	case	that	isn’t	handled	well.	This	number-like	string,	“1,956”
turns	into	None.	We	might	have	wanted	it	to	be	turned	into	a	proper	number,	in	spite	of	the
embedded	comma.	We	can	see	that	a	simplistic	except	clause	isn’t	really	doing	everything
we’d	like	it	to	do.

Note	that	some	financially-oriented	spreadsheet	values	should	be	converted	to	Decimal
values	instead	of	float	values.	We	can	make	a	higher-order	function	which	will	use	either
the	float()	function	or	the	Decimal()	function	(or	any	other	conversion	function	for	that
matter)	to	create	values	of	a	desired	type.

Here’s	a	revised	version	that	has	two	try	statements:



from	decimal	import	Decimal,		InvalidOperation

def	clean_number3(text,	num_type=Decimal):

				try:

								value=	num_type(text)

				except	(ValueError,	InvalidOperation):

								text=	text.replace(",","").replace("$","")

								try:

												value=	num_type(text)

								except	(ValueError,	InvalidOperation):

												value=	None

				return	value

In	this	version	of	our	number	cleaning	function,	we	have	an	additional	parameter,
num_type,	with	a	conversion	function	to	apply.	We’ve	provided	a	default	value,	Decimal,
so	that	it	is	optional.	The	body	of	the	function	has	the	same	happy	path	as	the	previous
version.	We’ve	updated	the	first	except	clause	to	do	more	sophisticated	fallback
processing.	This	more	sophisticated	processing	involves	creating	a	new	string	without	the
","	or	"$"	characters	that	commonly	pollute	numeric	data.

If	this	second	string	is	converted,	we’ll	return	a	useful	numeric	result.	If	this	revised	string
is	not	a	number,	we’re	stumped,	and	forced	to	return	a	None	object.

Note
As	an	exercise,	the	reader	can	create	an	algorithm	to	convert	words	to	numbers	as	a
fallback.	Convert	“twenty	one”	to	21.	The	complexity	of	languages	like	English	makes
this	is	an	interesting	challenge.



Using	nested	try	statements
The	clean_number3()	function	shows	one	of	the	two	ways	that	we	can	have	nested	try
statements.	In	this	case,	the	try	statements	are	nested	inside	a	single	function.	If	an
exception	is	raised	in	the	inner	try	statement,	then	the	inner	try	statement’s	except	clause
is	checked	first	for	a	matching	exception.	The	outer	try	statement’s	except	clauses	are
checked	next.	If	none	of	these	match,	then	the	function	which	called	this	is	checked.

Consider	this	example:

>>>	from	fractions	import	Fraction

>>>	clean_number3(',2/0,',	Fraction)

This	produces	a	traceback	dump	that	shows	how	nested	try	blocks	behave:

Traceback	(most	recent	call	last):

		...

ValueError:	Invalid	literal	for	Fraction:	',2/0,'

During	handling	of	the	above	exception,	another	exception	occurred:

Traceback	(most	recent	call	last):

		...

ZeroDivisionError:	Fraction(2,	0)

We’ve	elided	some	details	with	line	numbers	to	focus	on	the	relevant	portions	of	the
message.	The	first	exception	was	raised	by	the	first	attempt	to	apply	Fraction(',2/0,').
This	raised	a	ValueError	exception,	knocking	us	off	the	happy	path.	Python	resumes
sequential	execution	in	the	except	clause.	This	creates	a	new	string	with	the	","
characters	removed.	The	second	attempt	at	conversion	does	not	raise	a	ValueError
exception,	it	raises	a	ZeroDivisionError	exception.

The	inner	try	statement	has	no	except	clause	to	match	this	exception.	Python	must	then
search	the	outer	try	statement’s	except	clauses	for	a	matching	exception.	Since	the	outer
try	statement	doesn’t	match	the	exception,	the	script	as	a	whole	ends	with	an	unhandled
exception.

The	more	common	situation	is	to	have	try	statements	in	separate	functions.	The	nesting
occurs	via	the	function	call	stack,	not	the	structure	of	a	single	suite	of	statements.	Here’s	a
function	which	calls	our	clean_number3()	function	to	create	a	row	of	Fraction	objects.

def	fraction_row(row):

				try:

								return	[clean_number3(item,Fraction)	for	item	in	row]

				except	(TypeError,	ZeroDivisionError):

								return	[None	for	item	in	row]

This	function	includes	another	try	statement.	When	this	function	calls	clean_number3()
the	calls	stack	will	include	fraction_row()	and	clean_number3().	If	the
clean_number3()	function	raises	an	unhandled	exception,	Python	moves	down	the	call
stack	and	searches	this	try	statement	for	matching	except	clauses.





Matching	exception	classes	in	an	except
clause
In	the	previous	examples,	we’ve	shown	two	kinds	of	except	clauses:

except	SomeException:

except	(OneException,	AnotherException):

The	first	example	matches	a	single	specific	exception.	The	second	example	matches	any
of	the	exceptions	in	the	list	of	specific	exceptions.

In	many	cases,	the	details	of	the	exception	are	not	important.	On	the	other	hand,	there	are
some	cases	where	we	want	to	do	some	processing	on	the	exception	object’s	arguments.
We	can	have	the	exception	object	assigned	to	a	variable	using	this	syntax:

except	SomeException	as	exc:

This	will	assign	the	exception	instance	to	the	exc	variable.	We	can	then	write	this	to	a	log,
or	examine	the	arguments,	or	modify	the	traceback	that	gets	printed.



Matching	more	general	exceptions
The	Python	exceptions	form	a	class	hierarchy.	Generally,	we	match	exceptions
specifically.	In	a	few	cases,	we’ll	use	exception	superclasses	instead	of	specific	classes.
Some	of	the	most	common	superclasses	are	the	OSError	and	ArithmeticError
exceptions.	There	are	a	number	of	subclasses	of	OSError	that	provide	more	detailed
information	about	the	exception;	in	many	cases,	we’re	not	too	interested	in	the	nuances	of
the	OSError	superclass.	Similarly,	the	distinction	between	OverflowError	and
ZeroDivisionError	may	not	be	helpful.

We	can	use	the	superclass	exception	like	this:

import	os

def	names(path="."):

				try:

								return	[name

												for	name	in	os.listdir(path)

												if	not	name.startswith('.')]

				except	OSError	as	exc:

								print(	exc.__class__.__name__,	exc	)

								raise

We’ve	used	the	superclass	OSError	to	match	all	of	the	various	OSError	subclasses.	While
the	most	likely	exceptions	are	FileNotFoundError	and	NotADirectoryError,	we	may
also	get	one	of	the	other	subclasses	of	OSError.	In	this	case,	we	don’t	care	about	the
specific	problem,	so	we	can	use	a	superclass	error.

This	example	also	uses	the	raise	statement	with	no	argument.	Within	an	except	clause,
this	will	reraise	the	exception	after	doing	some	initial	handling.	The	exception	will	now
propagate	down	the	call	stack	as	Python	searches	for	a	handler.



The	empty	except	clause
Python	allows	an	except	clause	with	no	exception	named.	This	is	the	most	general
exception	matcher:	it	matches	all	exception	classes.

Since	it	matches	the	SystemExit	and	KeyboardInterrupt	exceptions,	using	this	casually
can	create	problems.	When	we’re	handling	this	exception,	we	may	find	that	we	can	no
longer	gracefully	exit	from	our	program	and	must	resort	to	the	SIGKILL	signal	to	stop	the
program.

The	undecorated	except	clause	should	be	viewed	skeptically.





Creating	our	own	exceptions
The	hierarchy	of	exceptions	has	a	superclass	for	error-related	exceptions,	called
Exception.	All	of	the	exceptions	which	reflect	essentially	erroneous	conditions	are
subclasses	of	the	Exception	class.	The	base	class	for	all	exceptions	is	the	BaseException
class;	some	non-error-related	exceptions	are	direct	subclasses	of	the	BaseException	class.

We	can	summarize	the	hierarchy	like	this:

BaseException

SystemExit

KeyboardInterrupt

GeneratorExit

Exception

All	other	exceptions

The	superclass	of	all	error-related	exceptions,	Exception,	is	quite	broad.	We	can	use	this
in	a	long-running	server	like	this:

def	server():

								try:

								while	True:

												try:

																one_request()

												except	Exception	as	e:

																print(e.__class__.__name__,	e)

				except	Shutdown_Request:

								print("Shutting	Down")

This	example	depends	on	a	function,	one_request(),	which	handles	a	single	request.	The
while	loop	runs	forever,	evaluating	the	one_request()	function.	If	any	of	the	error-related
subclasses	of	Exception	are	raised,	the	error	will	be	logged,	but	request	handling	will
continue.

When	a	Shutdown_Request	exception	is	raised,	the	inner	try	statement	won’t	match	this.
The	exception	will	propagate	out	of	the	loop	into	the	outer	try	statement.	We	can	log	the
shutdown	request,	do	any	other	cleanup	that’s	required,	and	exit	the	server()	function.

The	class	hierarchy	assures	us	that	two	of	the	non-error	exceptions—KeyboardInterrupt

and	SystemExit—will	not	be	erroneously	handled	in	the	inner	try	statement.	These
exceptions	are	peers	of	the	Exception	class,	which	is	why	they	will	not	be	matched.	This
means	that	a	SIGINT	signal	(the	effect	of	hitting	Ctrl	+	C	on	the	keyboard)	will	terminate
the	server	cleanly.	Additionally,	if	some	part	of	the	request	handling	evaluates
sys.exit(),	the	server	will	shut	down	gracefully.





Using	a	finally	clause
We	can	include	a	finally	clause	on	a	try	statement.	This	contains	a	suite	of	statements
that	will	always	be	executed	at	the	end	of	the	try	statement.	This	means	that	the	happy
path,	as	well	as	the	exception	paths,	will	always	execute	the	finally	suite.	Here’s	a
summary	of	how	this	looks:

try:

				#	Something	that	might	fail.

except	SomeException:

				#	Fallback	plan	to	handle	failure.

finally:

				#	Always	executed.

We	use	this	when	we	have	cleanup	or	a	concluding	suite	of	statements	that	must	always	be
executed.	One	of	the	most	common	use	cases	for	this	is	to	close	a	file	or	a	network
connection	even	if	an	exception	was	raised	and	handled	properly.

In	many	cases,	we	can	use	a	context	manager	to	properly	close	a	file	or	network
connection.	We	can	use	contextlib.closing()	to	wrap	objects	which	have	a	close()
method	but	are	not	proper	context	managers.	We’ll	look	at	context	managers	in	Chapter
10,	Files,	Databases,	Networks,	and	Contexts.





Use	cases	for	exceptions
The	use	cases	for	exceptions	are	very	broad.	We’ll	identify	a	few	significant	areas	where
exceptions	are	used	in	Python.

Some	exceptions	are	entirely	benign.	The	StopIteration	exception	is	raised	by	an
iterable	that	has	run	out	of	values.	The	for	statement	consumes	items	from	the	iterable
until	this	exception	is	raised	to	signal	that	there’s	no	more	data.	Similarly,	a
GeneratorExit	is	used	when	a	generator	is	closed	before	producing	all	of	its	data.	This	is
not	an	error;	it’s	a	signal	that	more	data	will	not	be	requested.

Conditions	that	are	entirely	outside	the	program	may	be	seen	as	exceptions.	Unexpected
OS	conditions	or	errors	are	signaled	by	exceptions	which	are	subclasses	of	the	OSError
exception.	Some	OS	conditions	can	be	ignored;	others	may	indicate	a	serious	problem	in
the	environment	or	in	the	application.	There	are	over	a	dozen	subclasses	of	this	error	to
provide	a	more	detailed	description	of	the	OS	condition.	Additionally,	internal	OS	error
numbers	are	also	provided	as	an	argument	to	these	exceptions	to	help	distinguish	the
details	of	the	problem.

Some	exceptions	are	the	result	of	perfectly	ordinary	things	inside	a	program.	When	we	use
the	str.index()	method,	this	may	raise	a	ValueError	exception	instead	of	returning	a
numeric	value.	We	can	capture	and	leverage	this	exception	information	as	part	of	a
program’s	normal	operation.

We’ll	often	detect	the	misuse	of	a	program	with	exceptions.	Bad	data	may	be	involved,	or
unsupported	operations	may	be	attempted.	In	these	cases,	a	program	may	use	exceptions
to	signal	a	problem	that	stems	from	user	input	problems.	A	common	design	pattern	is	to
have	exception	handling	at	a	high	enough	level	to	capture,	log,	and	display	these	problems
in	a	meaningful	way	to	the	user.	A	long-running	server	may	merely	log	and	then	process
the	next	request.	A	web	page	may	wrap	input	form	validation	in	exception	handling	so	that
the	user’s	response	is	the	form	page	decorated	with	error	messages.

Some	exceptions	reflect	design	or	implementation	problems.	An	unexpected	occurrence	of
a	ValueError	exception	may	indicate	a	design	problem	or	an	implementation	problem.	It
might	indicate	inadequate	test	cases.	In	this	case,	it’s	best	for	the	program	as	a	whole	to
crash	so	that	the	traceback	information	can	be	used	to	locate	and	correct	the	problem.

Unexpected	exceptions	generally	indicate	that	the	program	is	broken.	The	program	will
stop;	the	output	from	the	exception	can	provide	valuable	debugging	information.	We	can
interfere	with	this	normal	behavior	by	writing	needlessly	broad	exception	handlers,	but
concealing	unexpected	exceptions	is	generally	a	bad	idea,	since	valuable	debugging
information	is	lost.

In	The	Zen	of	Python	by	Tim	Peters,	there’s	some	poetic	advice:

Errors	should	never	pass	silently.

Unless	explicitly	silenced.



The	idea	here	is	that	unexpected	exceptions	in	Python	will	stop	the	program	with	a	big,
noisy	error	traceback.	If	we	need	to	silence	exceptions,	we	can	use	broad,	general	except
statements	to	capture	and	silence	them.





Issuing	warnings	instead	of	exceptions
The	Python	warnings	module	handles	a	special	subclass	of	exceptions.	We	can	use	the
warnings	module	to	identify	potential	problems	in	our	application.	The	warnings	module
is	used	internally	to	track	a	number	of	internal	considerations.

The	warning	concept	fits	into	the	middle	ground	between	perfectly	normal	operations	and
erroneous	conditions.	Our	program	may	not	be	performing	optimally,	but	it’s	not
completely	broken,	either.

There	are	three	notable	warning	classes	that	we	might	encounter	when	running	unit	tests.
Since	the	unit	test	framework	displays	all	warnings,	we	may	see	some	warnings	in	a	test
context	that	we	don’t	see	in	the	normal	operational	use	of	our	software.

DeprecationWarning:	This	warning	is	raised	by	modules,	functions,	or	classes	that
have	been	deprecated.	It’s	a	reminder	that	we	need	to	fix	our	code	to	stop	using	this
feature.
PendingDeprecationWarning:	A	function,	module	or	class	for	which	deprecation	has
been	announced	may	raise	this	warning.	This	is	a	hint	that	we	need	to	stop	using	this
feature	before	it	becomes	deprecated.
ImportWarning:	Since	some	modules	are	optional	or	platform-specific,	some	import
statements	are	wrapped	in	a	try	block;	this	warning	is	raised	instead	of	an	exception.
We	can	expose	these	warnings	to	be	sure	that	imports	are	being	processed	properly.

We	can	leverage	the	warnings	module	to	expose	the	warnings	which	are	normally
silenced.	We	can	use	warnings.simplefilter("always")	to	see	all	warnings.

We	can	raise	the	generic	UserWarning	like	this:

>>>	import	warnings

>>>	warnings.warn("oopsie")

__main__:1:	UserWarning:	oopsie

Using	warnings.warn()	allows	us	to	include	warning	messages	in	an	application	with
very	little	overhead.	We	can	use	this	as	a	debugging	aid	to	track	rare	situations	that	are
questionable	or	potentially	confusing.





Permission	versus	forgiveness	–	a
Pythonic	approach
A	common	piece	of	Pythonic	wisdom	is	the	following	advice	from	RADM	Grace	Murray
Hopper:

“It	is	Easier	to	Ask	for	Forgiveness	than	Permission”

In	the	Python	community,	this	is	sometimes	summarized	as	EAFP	programming.	This	is	in
contrast	to	Look	Before	You	Leap	(LBYL)	programming.

Python	exception	handling	is	fast.	More	importantly,	all	of	the	necessary	precondition
checks	for	potential	problems	are	already	part	of	the	language	itself.	We	never	need	to
bracket	processing	with	extraneous	if	statements	to	see	whether	or	not	the	input	could
possibly	raise	an	exception.

It’s	generally	considered	a	bad	practice	to	write	LBYL	code	that	looks	like	this:

if	text.isdigit():

				num=	int(text)

else:

				num=	None

The	bad	idea	shown	here	is	an	attempt	to	check	carefully	to	prevent	an	exception	from
being	raised.	This	is	ineffective	for	a	number	of	reasons.

The	isdigit()	test	fails	to	properly	handle	negative	numbers.	For	a	float()
conversion,	this	kind	of	test	misses	a	large	number	of	valid	syntax	alternatives.
The	overhead	of	checking	the	validity	of	characters	and	syntax	is	already	part	of	the
int()	function.	Checking	validity	in	advance	duplicates	the	checking	already	in
place.

The	more	Pythonic	approach	is	to	handle	the	built-in	exceptions.	For	example:

try:

				num=	int(text)

except	ValueError:

				num=	None

This	is	the	same	number	of	lines	of	code.	It	properly	converts	all	possible	Python	integer
strings.	It	does	not	include	any	redundant	validity	checks.





Summary
In	this	chapter,	we’ve	seen	how	we	can	use	Python	exceptions	to	write	programs	which
properly	handle	unexpected	conditions.	The	various	kinds	of	exceptions	reflect	external
conditions	as	well	as	internal	conditions	that	may	alter	how	our	program	behaves.	We	can
use	exception	clauses	to	implement	fallback	processing	so	that	our	program	handles	these
exceptional	conditions	gracefully.

We’ve	also	seen	some	things	which	are	discouraged.	The	empty	except	clause—which
matches	too	many	kinds	of	exception	classes—is	something	which	is	legal	but	should	not
be	used.

The	idea	of	Look	Before	You	Leap	(LBYL)	programming	is	also	generally	discouraged.
The	Pythonic	approach	is	summarized	as	Easier	to	Ask	Forgiveness	than	to	ask
Permission	(EAFP).	The	general	approach	is	to	wrap	operations	in	a	try	statement	and
write	appropriate	exception	handlers	for	the	meaningful	exceptions.

Some	exceptions,	such	as	RuntimeError	or	SyntaxError,	should	not	be	handled	by
ordinary	application	programming.	These	exceptions	usually	indicate	problems	so	serious
that	the	program	really	should	crash.

Other	exceptions,	such	as	IndexError	or	KeyError,	may	be	an	expected	part	of	the	design.
When	these	exceptions	are	unexpected,	we’ve	uncovered	a	design	problem.	This	may	also
indicate	that	we	have	inadequate	unit	tests.

In	Chapter	10,	Files,	Databases,	Networks,	and	Contexts,	we’ll	look	at	a	number	of	ways
in	which	Python	can	be	used	to	work	with	persistent	data	files	and	network	data
transmission.	This	kind	of	processing	will	often	require	exception	handling.





Chapter	10.	Files,	Databases,	Networks,
and	Contexts
Files	and	the	filesystem	are	central	to	the	way	modern	OSs	work.	Many	OS	resources	are
visible	as	part	of	the	filesystem.	For	example,	the	Linux	/dev/mem	is	a	view	into	the
processor’s	memory,	implemented	as	a	device	visible	in	the	filesystem.	Python	provides
file	objects	that	map	to	these	OS	features.

At	a	fundamental	level,	OS	files	are	simply	collections	of	bytes.	In	practice,	we	often
work	with	files	that	are	collections	of	Unicode	characters.	Python	offers	both	views	of
files.	With	some	file	formats,	we	need	to	process	the	bytes.	With	text	files,	we	expect
Python	to	properly	decode	Unicode	characters	from	the	bytes.

A	Python	file	object	will	generally	be	entangled	with	an	OS	resource.	In	order	to	be	sure
that	an	application	doesn’t	leak	OS	resources,	we	often	use	a	context	manager.	This	allows
us	to	be	sure	that	OS	resources	are	released	when	Python	files	are	closed.	The	with
statement	provides	a	tidy	way	to	work	with	a	context	manager	to	allocate	and	de-allocate
resources.

In	addition	to	ordinary	files,	we’ll	look	at	TCP/IP	sockets.	The	urllib	module	allows	us
to	open	a	socket	to	a	remote	host.	The	socket	is	used	like	a	file	to	read	the	data	from	the
remote	host.

A	file	has	a	physical	format;	all	but	the	simplest	formats	require	a	library	module	to	read
and	write	the	content	properly.	Additionally,	within	the	constraints	of	a	physical	format,
there	may	be	variations	in	the	logical	layout	of	the	data.	A	comma-separated	values
(CSV)	file,	for	example,	may	use	field	names	in	the	first	line	of	the	file	to	describe	the
logical	layout	of	the	columns.

A	SQLite	database	or	a	shelve	database	relies	on	one	(or	more)	file	to	make	the	data
persistent.	We’ll	look	briefly	at	higher-level	constructs	which	rely	on	files.



The	essential	file	concept
Modern	OSs	rely	on	files	and	device	drivers	for	a	variety	of	services	and	features.	Bytes
on	a	disk	drive	are	only	one	type	of	file.

Note
Since	many	storage	devices	use	or	include	Solid	State	Drives	(SSD)	the	term	“disk”	is
technically	a	misnomer;	we’ll	use	the	outdated	term.

A	network	adapter	is	another	kind	of	file;	one	in	which	bytes	are	available	continuously,
instead	of	appearing	at	rest.	In	addition	to	disk	and	network	files,	the	Linux	filesystem
includes	the	/dev	directory,	which	describes	all	of	the	devices	on	a	given	computer.	These
devices	include	serial	ports,	references	to	memory,	and	even	a	device	which	accumulates
an	entropy	pool	to	provide	random	bytes.

The	Python	file	object	wraps	an	OS	file.	The	open()	function	binds	a	Python	file	object	to
an	OS	file.	In	addition	to	a	name,	the	function	expects	a	mode	string	for	access.	The	mode
string	combines	two	features:

Characters	versus	bytes:	By	default,	a	file	is	opened	in	text	mode;	we	can	make	this
explicit	by	using	t.	When	reading,	the	OS	bytes	are	decoded	to	create	Unicode
characters.	When	writing,	the	Unicode	characters	are	encoded	into	bytes.	To	use
bytes	instead	of	text,	we	include	b	in	the	mode;	no	encoding	or	decoding	will	be
done.
Allowed	operations:	By	default,	a	file	is	opened	in	r	mode	which	allows	reading
only.	We	can	open	a	file	in	w	mode	which	will	remove	any	previous	content	and	allow
writing	only.	We	can	open	a	file	in	a	mode	which	will	search	to	the	end	of	the
previous	content	so	that	new	content	can	be	appended.	The	+	modifier	allows	both
reading	and	writing;	this	means	that	w+	removes	any	previous	content	and	allows
reading	and	writing;	r+	leaves	the	previous	content	in	place	and	allows	reading	and
writing.

When	we	open	a	text	file,	we	provide	explicit	encoding.	In	some	cases,	explicit	encoding
is	required	because	the	encoding	expected	by	the	OS	isn’t	in	the	file.

In	some	cases,	we	may	also	need	to	specify	how	newline	characters	should	be	handled.	On
input,	we	rarely	need	to	specify	line	endings:	Python	handles	them	gracefully	by
translating	Windows	\r\n	to	\n.	On	output,	however,	we	might	need	to	explicitly	provide
the	line	ending.	If	we	set	newline="",	then	no	translation	is	performed;	we’ll	need	this	so
that	we	can	create	CSV	files	with	\r\n	line	endings.	If	we	set	newline=None	when
opening	a	file,	then	\n	from	our	program’s	output	translates	the	platform-specific	value	in
the	os.linesep	variable.	This	is	the	default	behavior.	Any	other	values	for	newline
replace	the	\n	characters	in	our	output.

We	can	specify	buffering.	We	can	also	specify	how	Unicode	decoding	errors	are	handled.
There	are	seven	choices	for	Unicode	errors,	including	strict,	ignore,	replace,
xmlcharrefreplace,	backslashreplace,	and	surrogateescape.	The	strict	error



handling	raises	an	exception.	The	ignore	error	handling	quietly	drops	the	illegal	character.
The	other	choices	offer	different	kinds	of	replacement	strategies.



Opening	text	files
For	processing	text	files,	here’s	how	to	create	the	file	object	using	the	open()	function:

>>>	my_file	=	open("Chapter_10/10letterwords.txt")

>>>	text=	my_file.read().splitlines()

>>>	text[:5]

['consultive',	'syncopated',	'forestland',	'postmarked',	'configures']

We’ve	opened	a	file	using	all	of	the	default	settings.	The	mode	will	be	read-only.	The	file
must	use	the	system’s	default	encoding	(Mac-Roman,	for	example).	We’ll	rely	on	the
default	buffering	and	the	default	Unicode	error	handling,	which	is	strict.

In	this	example,	we	read	the	entire	file	into	a	giant	string	and	then	split	that	single	string
into	a	sequence	of	individual	lines.	We	assigned	the	list	of	strings	to	the	text	variable.	We
only	displayed	the	first	five	items	from	this	list.	By	default,	the	string	split()	method
does	not	preserve	the	split	character.



Filtering	text	lines
We’ll	look	at	two	key	concepts	in	the	following	examples.	We’ll	start	by	opening	a	file
that’s	encoded	using	"utf-8":

>>>	code_file	=	open("Chapter_1/ch01_ex1.py",	"rt",	encoding="utf-8",	

errors="replace")

>>>	code_lines	=	list(code_file)

>>>	code_lines[:5]

['#!/usr/bin/env	python3\n',	'"""Python	Essentials\n',	'\n',

'Chapter	1,	Example	Set	1\n',	'\n']

We’ve	opened	a	file	with	the	mode	"rt",	which	means	read-only	and	text.	This	is	the
default,	so	it	could	have	been	omitted.	We’ve	explicitly	provided	"utf-8"	encoding,
which	is	not	the	OS	default.

We	used	the	list()	function	to	convert	the	file	object	into	a	sequence	of	lines.	When	we
use	a	file	object	as	if	it	is	an	iterable,	we’ll	see	that	the	file	iterates	over	lines.	If	we	don’t
change	the	newline	setting	for	the	file,	then	the	“universal	newlines”	rules	are	used:	\n,	\r,
or	\r\n	will	end	a	line;	they’re	normalized	to	\n.	When	we	process	a	file	as	lines,	the	line
ending	characters	are	preserved.

We	often	want	to	remove	newline	characters	from	the	end	of	each	line.	This	is	a	kind	of
mapping	from	raw	lines	to	lines	with	trailing	whitespace	stripped.	We	can	use	a	generator
expression	or	the	map()	function	and	the	str.rstrip()	method.

In	some	cases,	an	empty	line	has	no	meaning	and	can	be	removed.	This,	too,	can	be	done
with	a	generator	expression	that	has	an	if	clause	to	reject	empty	lines.	We	can	also	do	it
with	a	filter()	function.	It’s	easier	if	we	write	these	map	and	filter	operations	in	two
lines,	like	this:

>>>	txt_stripped	=	(line.rstrip()	for	line	in	code_file)

>>>	txt_non_empty=	(line	for	line	in	txt_stripped	if	line)

>>>	code_lines=	list(txt_non_empty)

We’ve	broken	down	the	input	cleanup	into	two	generator	expressions.	The	first	generator
expression,	txt_stripped,	maps	raw	lines	to	lines	with	trailing	whitespace	stripped.	The
second	generator	expression,	txt_non_empty,	is	a	filter	which	rejects	lines	that	are	empty.
We	could	easily	add	other	filter	conditions	to	the	if	clause.	Since	generator	expressions
are	lazy,	nothing	is	really	done	until	the	final	list()	function	consumes	all	of	the	lines
from	the	generators.

In	this	way,	we	can	design	fairly	sophisticated	file	parsing	as	a	collection	of	generator
expressions.	We	can	apply	a	number	of	mapping	and	filtering	operations	so	that	the	main
suite	of	statements	has	only	clean	data.



Working	with	raw	bytes
Here’s	how	we	open	a	file	and	see	the	raw	bytes:

>>>	raw_bytes	=	open("Chapter_10/favicon.ico",	"rb"	)

>>>	data	=	raw_bytes.read()

>>>	len(data)

894

>>>	data[:22]

b'\x00\x00\x01\x00\x01\x00\x10\x10\x00\x00\x00\x00\x18\x00h\x03\x00\x00\x16

\x00\x00\x00'

We’ve	opened	this	file	in	binary	mode.	The	input	we	get	will	be	bytes	instead	of	str.
Since	a	bytes	object	has	many	similar	features	to	a	str	object,	we	can	do	a	great	deal	of
string-like	processing	on	these	bytes.	We’ve	dumped	the	first	22	bytes	from	the	file.	Bytes
are	shown	as	a	mixture	of	hex	values	and	ASCII	characters.

We’ll	need	to	look	at	the	description	of	the	ICO	file	format	to	see	what	the	bytes	mean.
Here’s	some	background	at	http://en.wikipedia.org/wiki/ICO_(file_format).

The	easiest	way	to	decode	this	block	of	bytes	is	by	using	the	struct	module.	We	can	do
the	following	to	pick	apart	the	header	on	the	file	and	the	header	on	the	first	image	of	the
file.

>>>	import	struct

>>>	struct.unpack(	"<hhhbbbbhhii",	data[:22]	)

(0,	1,	1,	16,	16,	0,	0,	0,	24,	872,	22)

The	unpack()	function	requires	a	format	that	specifies	different	kinds	of	conversions	to
perform	on	the	stream	of	bytes.	In	this	case,	the	format	contains	three	codes	for	groups	of
bytes:	h	means	two-byte	half	worlds,	b	means	single	bytes,	and	i	means	four-byte
integers.	The	bytes	are	assembled	into	numeric	values	and	the	resulting	structure	is	a	tuple
of	proper	Python	int	values.	The	leading	<	in	the	format	specifies	that	the	conversion	to
integers	uses	little-endian	byte	ordering.

http://en.wikipedia.org/wiki/ICO_(file_format)


Using	file-like	objects
Because	of	the	way	objects	work	in	Python,	any	object	that	offers	an	interface	similar	to
the	file	class	can	be	used	in	place	of	a	file.	This	leads	to	the	term	“file-like	object”.	We
can	use	a	file	object,	or	any	other	object	which	is	designed	to	behave	like	a	file.	For
example,	the	io	module	has	the	StringIO	class,	which	allows	us	to	work	with	a	string	as
if	it	were	the	contents	of	a	file.

We	often	use	this	for	creating	test	data.	Note	that	an	io.StringIO	object	is	a	lot	like	an
open	file.	When	we	think	about	designing	for	testability—the	subject	of	Chapter	14,	Fit
and	Finish	–	Unit	Testing,	Packaging,	and	Documentation—we	need	to	design	functions
to	work	with	file	objects,	not	filenames.

Here’s	a	function	that	applies	simple	pattern	matching	to	lines	of	a	file	to	yield	numeric
values	extracted	from	complex	lines	of	text.	For	more	information	on	regular	expressions,
see	Chapter	3,	Expressions	and	Output.

This	function	uses	a	pattern	to	filter	the	lines	of	a	file	or	file-like	object:

import	re

def	tests_run(log_file):

				data_pat	=	re.compile(r"\s*([\w	]+):\s+(\d+\.?\d*)\s*")

				for	line	in	log_file:

								match=	data_pat.findall(line)

								if	match:

												yield	match

We’ve	defined	a	generator	function,	which	will	reduce	a	log	file	to	the	few	lines	that
match	the	given	pattern.	We’ve	used	the	re	module	to	define	a	pattern,	data_pat,	that
looks	for	a	string	of	words	([\w	]+),	a	:	character,	and	a	number	that	could	be	an	integer
or	floating-point	(\d+\.?\d*).	The	data_pat.findall(line)	expression	will	locate	all	of
these	words:	number	pairs	in	a	given	line.	A	resulting	list	of	match	results	is	produced	for
each	matching	line.

The	matches	are	strings.	We’ll	need	to	apply	additional	functions	to	the	results	to	convert
the	numeric	group	from	a	string	to	a	proper	number.

It	is	important	when	defining	our	function	to	use	a	filename;	the	function	doesn’t	open	the
file.	A	function	that	opens	a	file	is	slightly	more	difficult	to	test.	Instead,	we	defined	our
tests_run()	function	to	use	any	file-like	object.	This	allows	us	to	write	unit	tests	like	the
following:

>>>	import	io

>>>	data	=	io.StringIO(

...	'''

...	Tests	run:	1,	Failures:	2,	Errors:	0,	Skipped:	1,	Time	elapsed:	0.547	

sec…	Other	data…	Tests	run:	1,	Failures:	0,	Errors:	0,	Skipped:	0,	Time	

elapsed:	0.018	sec…	''')

>>>	list(	tests_run(data)	)

[[('Tests	run',	'1'),	('Failures',	'2'),	('Errors',	'0'),	('Skipped',	'1'),	

('Time	elapsed',	'0.547')],

[('Tests	run',	'1'),	('Failures',	'0'),	('Errors',	'0'),	('Skipped',	'0'),	



('Time	elapsed',	'0.018')]]

We’ve	imported	the	io	module	so	that	we	can	create	an	io.StringIO	object	that	contains
simulated	input.	We	can	provide	this	file-like	object	to	the	tests_run()	function.	Since
StringIO	behaves	like	a	file,	we	can	use	it	in	place	of	an	actual	file	to	test	our	function	to
be	sure	that	it	properly	locates	the	Tests	run	lines	and	ignores	other	lines.	We’ll	look	at
unit	testing	in	Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,	and	Documentation.





Using	a	context	manager	via	the	with
statement
A	Python	file	object	is	generally	entangled	with	OS	resources.	When	we’re	done	using	the
file,	we	need	to	be	sure	that	the	file	is	properly	closed	so	that	the	OS	resources	can	be
released.	For	small	command-line	applications,	this	consideration	is	not	that	important:
when	we	exit	from	Python,	and	the	reference	counts	for	all	objects	are	decreased	to	zero,
the	files	will	be	closed	during	object	delete	processing.

For	a	large,	long-running	server,	however,	files	that	are	not	properly	closed	will
accumulate	OS	resources.	Since	pools	of	OS	resources	are	finite,	a	file	handle	leak	will,
eventually,	cause	problems.

As	a	general	practice,	we	can	use	a	context	manager	to	be	sure	that	files	are	closed	when
we’re	done	using	them.	The	idea	is	to	constrain	an	open	file	to	the	suite	of	statements
within	the	context	manager.	Once	that	suite	of	statements	is	finished,	the	context	manager
will	ensure	that	the	file	is	closed.

We	specify	the	context	using	the	with	statement.	A	file	object	is	a	context	manager;	the
with	statement	uses	the	file	as	a	manager.	At	the	end	of	the	with	statement,	the	context
manager	will	exit	and	the	file	will	be	closed.	Some	more	complex	file	structures	are	also
context	managers.	For	example,	a	ZipFile	object,	defined	in	the	zipfile	module,	is	a
proper	context	manager;	when	used	in	a	with	statement,	the	file	will	be	neatly	closed.

It	should	be	considered	a	best	practice	to	wrap	all	file	input-output	processing	in	a	with
statement	to	be	absolutely	sure	that	the	file	is	properly	closed.	Here’s	an	example	of	how
we	can	use	the	tests_run()	function	(shown	earlier)	using	a	context	manager:

file_in=	"Chapter_10/log_example.txt"

file_out=	"Chapter_10/summary.txt"

with	open(file_in)	as	source,	open(file_out,	"w")	as	target:

				for	stats	in	tests_run(source):

								print(stats,	file=target)

We’ve	opened	two	files	to	serve	as	context	managers.	The	file	which	is	opened	for
reading,	"Chapter_10/log_example.txt",	is	assigned	to	the	source	variable.	The	file
opened	for	writing,	"Chapter_10/summary.txt",	is	assigned	to	the	target	variable.	We
can	then	process	these	files	knowing	that	they	will	close	properly.

If	an	exception	is	raised,	the	files	will	be	closed.	This	is	very	important.	Each	of	these
context	managers	is	notified	if	an	exception	occurs	in	the	suite	of	statements	inside	the
with	statement.	In	this	case,	both	of	the	managers	are	file	objects.	Each	will	see	the
exception	and	close	the	file—releasing	all	OS	resources—and	allow	the	exception
handling	to	continue.	Our	application	will	crash	with	an	exception,	but	the	files	will	also
close	properly.

Tip
Always	wrap	file	processing	in	a	with	statement.



Closing	file-like	objects	with	contextlib
In	some	cases,	we	want	to	be	sure	that	our	application	closes	a	file-like	object	that	does
not	implement	the	context	manager	methods.	Modules	such	as	http.client	will	create	an
HTTPConnection	object	that	may	be	entangled	with	network	resources.	We’d	like	to	ensure
that	any	network	resources	are	released	when	we’re	done	using	the	connection	object.
However,	since	this	object	is	not	a	proper	context	manager,	it	won’t	be	closed
automatically	when	used	in	a	with	statement.

Indeed,	trying	to	use	an	HTTPConnection	object	as	context	manager	in	a	with	statement
will	raise	an	AttributeError	exception.	This	error	will	show	that	the	HTTPConnection
object	does	not	implement	the	correct	methods	to	behave	as	a	context	manager.

We	can	leverage	a	generic	context	manager	in	the	contextlib	module.	The
contextlib.closing()	function	will	wrap	any	object	that	has	a	close()	method	with	the
required	special	methods	to	make	the	wrapped	object	into	a	context	manager.

A	RESTful	web	services	request	might	look	like	this:

import	contextlib

import	http.client

with	contextlib.closing(

		http.client.HTTPConnection("www.example.com"))	as	host:

				host.request("GET",	"/path/to/resources/12345/")

				response=	host.getresponse()

				print(response.read())

We’re	interested	in	making	a	GET	request	to	a	web	service.	The
http.client.HTTPConnection	object	isn’t	a	context	manager;	there’s	no	guarantee	that	it
will	be	closed	if	an	exception	occurs.	By	wrapping	it	with	the	contextlib.closing()
function,	we’ve	made	it	into	a	proper	context	manager.	We	can	make	requests	and	process
responses,	in	the	knowledge	that	the	HTTPConnection	object	will	have	its	close()	method
called	properly.





Using	the	shelve	module	as	a	database
Files	offer	us	persistent	storage.	The	simple	use	of	files	is	limited	by	the	fact	that	the	data
must	be	accessed	sequentially.	How	can	we	access	items	in	an	arbitrary	order?

We’ll	use	the	term	“database”	for	a	file	(a	set	of	files)	on	which	we’re	going	to	perform
Create,	Retrieve,	Update,	and	Delete	(CRUD)	operations	on	data	elements	in	an
arbitrary	order.	If	we	create	objects	of	a	consistent	size,	we	can	open	an	ordinary	text	file
in	r+	mode	and	use	the	seek()	method	to	position	at	the	start	of	any	particular	record.
This	is	rather	complex,	however,	and	we	can	do	better.

The	core	database	concept	of	readable	and	writable	storage	can	be	extended	with	a
seemingly	endless	list	of	ancillary	features.	We’ll	ignore	locking,	logging,	auditing,
journaling,	distributed	transaction	management,	and	many	other	features,	for	now	to	focus
on	the	core	feature	of	persistence.

The	shelve	module	provides	us	with	a	very	flexible	database.	A	shelf	object	behaves	like
an	ordinary	Python	mapping	with	the	bonus	feature	that	the	content	is	persistent.	One
additional	constraint	is	that	keys	used	for	a	shelf	must	be	strings.

Generally,	we	use	multi-part	strings	as	shelf	keys	so	that	we	can	include	some	class
information	along	with	a	unique	identifier	for	the	instance	of	the	class.	We	can	use	a
simple	class:id	format	to	include	both	the	class	name	and	an	object’s	identifier	value	as
the	composite	key	for	the	shelf.

Here’s	an	example	of	creating	a	shelf	that	maps	a	key	to	a	list	of	values.	In	this	example,
the	input	file	has	a	sequence	of	words,	plus	some	blank	lines	and	a	trailer	line	that	we	want
to	ignore.	The	shelf	has	keys	which	are	the	initial	letters	of	words.	The	value	associated
with	each	key	is	a	list	of	words	that	share	that	common	first	letter.

Here’s	the	entire	function:

import	contextlib

import	shelve

def	populate():

				with	contextlib.closing(

						shelve.open("Chapter_10/shelf","n"))	as	shelf:

								with	open("Chapter_10/10letterwords.txt")	as	source:

												txt_stripped=	(l.strip()	for	l	in	source)

												txt_non_empty=	(l	for	l	in	txt_stripped

																												if	l	and	not	l.startswith("Tool")	)

												for	word	in	txt_non_empty:

																key	=	"word_list:{0}".format(word[0])

																try:

																				word_list=	shelf[key]

																except	KeyError:

																				word_list=	[]

																word_list.append(word)

																shelf[key]=	word_list

We’ve	opened	the	shelf	object	using	shelve.open().	The	"n"	mode	creates	a	new,	empty
shelf	file	each	time	the	application	runs.	Since	a	shelf	is	not	a	proper	context	manager,	we



need	to	wrap	it	with	the	contextlib.closing()	function.

The	shelve	module	relies	on	a	platform-specific	database	module.	This	may	necessitate
one	or	more	underlying	files	to	support	the	shelf.	We’ve	provided	a	base	filename	of
"Chapter_10/shelf".	We	may	see	a	.dat	or	.db	file	get	created,	depending	on	the	OS
we’re	using.

The	for	loop	traverses	the	input	sequence	of	words	generated	by	the	txt_non_empty
expression.	The	suite	starts	by	building	a	two-part	key.	The	first	part	is	the	string
word_list;	this	is	clearly	not	the	Python	data	class,	but	it	serves	as	a	summary	of	what	the
data	means.	After	the	colon,	we’ve	put	the	first	character	of	the	word.

We	fetch	the	current	list	of	words	associated	with	this	key.	If	there	is	no	such	key	in	the
shelf,	we	handle	the	KeyError	exception	by	creating	a	fresh,	empty	list.	Once	we	have	a
list—either	new	or	fetched	from	the	shelf—we	can	update	the	list	by	appending	our	new
word.	We	then	save	the	word	list	in	the	shelf.

To	query	words	with	a	certain	first	letter,	we	can	use	shelf["word_list:"+letter].	We
need	to	create	a	complete	key	string	that	includes	a	classifier	so	that	we	have	a	shelf	with
multiple	collections.

To	retrieve	and	summarize	the	data,	we	use	a	simple	loop	based	on	this	generator
expression:

sorted(k	for	k	in	shelf.keys()	if	k.startswith("word_list:"))

This	will	select	only	the	keys	from	our	word_list	collection	in	the	shelf	database.	In	a
more	sophisticated	database,	there	may	be	other	collections	with	other	key	prefixes.



Using	the	sqlite	database
The	sqlite	module	provides	us	with	a	SQL-based	database.	An	application	that	leverages
SQL	is—in	principle—portable.	We	should	be	able	to	use	MySQL	or	PostgreSQL	as	our
database	instead	of	SQLite	without	making	dramatic	changes	to	our	Python	application.

While	there	are	several	applicable	standards	for	SQL,	each	implementation	seems	to	suffer
from	its	own	particular	problems.	SQL-based	applications	are	therefore	rarely	perfectly
portable	between	database	platforms.

SQL	databases	require	a	formal	schema	definition.	This	means	that	SQL	applications	must
always	include	some	provision	for	creating	or	confirming	the	schema.	As	in	the	previous
example,	we’ll	work	with	a	database	that	has	a	single	table	with	two	columns:	a	non-
unique	key	which	is	the	initial	letter	of	a	word,	and	the	word	which	has	that	initial	letter.

Here’s	the	table	definition	in	SQL:

CREATE	TABLE	IF	NOT	EXISTS	word(

				letter	VARCHAR(1),

				word	VARCHAR(10),

				PRIMARY	KEY	(letter))

This	defines	a	table	that	has	two	columns,	letter	and	word.	To	find	all	of	the	words	which
have	a	common	first	letter,	we’ll	need	to	retrieve	multiple	rows	from	this	table.	This	is	a
common	type	of	SQL	design.	It	doesn’t	fit	neatly	with	Python’s	object-oriented	design,	a
common	limitation	when	using	SQL.

We	need	to	execute	the	SQL	CREATE	TABLE	statement	to	create	(or	confirm	the	existence
of)	the	table	in	a	SQLite	database.	Here’s	a	function	that	will	establish	(or	confirm)	the
schema:

def	schema():

				with	SQL.connect("Chapter_10/sqlite.sdb")	as	db:

								db.execute(	"""CREATE	TABLE	IF	NOT	EXISTS	word(

																			letter	VARCHAR(1),

																			word	VARCHAR(10),

																			PRIMARY	KEY	(letter))

																			""")

The	essential	statement	is	the	execute()	method	of	the	SQLite	connection	object.	We’ve
provided	the	SQL	with	a	triple-quoted	string.	If	there’s	a	problem,	an	exception	will	be
raised.

Here’s	a	function	that	will	load	this	table	with	data	from	a	text	file:

def	populate():

				with	SQL.connect("Chapter_10/sqlite.sdb")	as	db:

								db.execute(	"""DELETE	FROM	word"""	)

								with	open("Chapter_10/10letterwords.txt")	as	source:

												txt_stripped=	(l.strip()	for	l	in	source)

												txt_non_empty=	(l	for	l	in	txt_stripped

																												if	l	and	not	l.startswith("Tool")	)

												for	word	in	txt_non_empty:



																db.execute(	"""INSERT	INTO	WORD(letter,	word)

																											VALUES	(:1,	:2)""",	(word[0],	word)	)

Note	that	we	begin	by	deleting	all	the	rows	from	the	word	table.	This	parallels	the	way	that
our	previous	example	worked	by	creating	a	fresh,	empty	shelve	database.	There	may	be
high	overheads	in	creating	an	empty	SQL	database;	this	example	expects	an	established
database	with	a	table	already	defined,	and	deletes	rows	from	the	defined	table.

As	with	the	previous	example,	we’ve	used	two	generator	expressions	to	filter	out	these
lines	of	junk	from	the	input	file.	The	loop	traverses	the	words	generated	by	the
no_summary	expression.	The	suite	executes	a	SQL	INSERT	statement	binding	two	values
for	the	letter	and	word	columns	of	the	table.	This	statement	creates	a	new	row	in	the
word	table	in	our	database.

To	see	counts	of	words	which	begin	with	a	given	letter,	we	can	use	SQL	aggregation.	We
would	execute	the	following	SELECT	statement.

SELECT	letter,	COUNT(*)	FROM	word	GROUP	BY	letter

When	we	execute	this,	we	get	a	SQL	iterator	(called	a	“cursor”)	that	yields	a	sequence	of
two-tuples	based	on	the	SELECT	clause.	Each	tuple	will	have	the	letter	and	the	number	of
words	that	share	that	letter.	We	can	use	this	to	display	a	summary	of	counts	of	words	with
a	given	initial	letter.



Using	object-relational	mapping
Many	popular	SQL	databases	offer	Python	drivers.	Some	have	better	levels	of	support
than	others.	When	working	with	SQL	databases,	it’s	sometimes	difficult	to	locate	SQL
syntax	that	is	effective	and	portable.	A	feature	on	one	database	may	be	a	problem	on
another.

More	importantly,	however,	there’s	a	mismatch	between	the	completely	flat	column-and-
row	structure	of	a	SQL	table	and	the	requirements	of	more	complex	class	definitions	in	an
object-oriented	language	like	Python.	This	impedance	mismatch	is	often	addressed	with
an	object-relational	mapping	(ORM)	package.	Two	popular	packages	are	SQLAlchemy
or	SQLObject.

These	packages	help	with	the	mapping	of	complex	objects	to	simple	SQL	tables.	It	also
helps	by	divorcing	the	application	programming	for	the	details	of	a	particular	SQL
database.

Databases	which	don’t	use	SQL,	such	as	shelve,	MongoDB,	CouchDB,	and	other	NoSQL
databases,	don’t	have	the	same	object-relational	impedance	mismatch	problem	that	SQL
databases	have.	We	have	many	choices	for	persistence	technology;	Python	can	be	used
with	a	wide	variety	of	databases.





Web	services	and	Internet	protocols
As	we	noted	earlier,	many	TCP/IP	protocols,	like	HTTP,	depend	on	the	socket	abstraction.
Sockets	are	designed	to	be	file-like:	we	can	use	ordinary	file	operations	to	read	or	write	a
socket.	At	a	very	low	level,	we	can	use	the	Python	socket	module.	We	can	create,	read,
and	write	sockets	to	connect	client	and	server	programs.

Rather	than	work	directly	with	sockets,	however,	we’ll	make	use	of	higher-level	modules,
such	as	urllib	and	http.client.	These	give	us	the	client-side	operations	of	the	HTTP
protocol,	allowing	us	to	connect	to	a	web	server,	make	requests,	and	get	replies.	We
looked	briefly	at	the	http.client	module	in	the	previous	Closing	file-like	objects	with
contextlib	section.

To	implement	a	server,	we	can	use	http.server.	In	practice,	though,	we’ll	often	leverage
a	frontend	application,	such	as	Apache	HTTPD	or	NGINX,	to	provide	the	static	content	of
a	website.	For	the	dynamic	content,	we’ll	often	use	a	WSGI	gateway	to	pass	web	requests
from	the	frontend	to	a	Python	framework.	There	are	several	Python	web	server
frameworks,	each	with	a	variety	of	features,	strengths,	and	weaknesses.





Physical	format	considerations
The	Python	library	offers	us	a	number	of	modules	to	help	process	common	physical	file
formats.	Chapter	13,	File	Formats,	of	the	Python	Standard	Library	describes	file
compression	and	archiving;	this	includes	modules	to	handle	files	compressed	using	zip	or
BZip2.	Chapter	14,	Cryptographic	Services	describes	modules	which	handle	file	formats
such	as	CSV,	configuration	files,	and	PLIST	files.	Chapter	19,	Structured	Markup
Processing	Tools	describes	Internet	data	handling,	which	includes	the	JSON	file	format.
Chapter	20,	Internet	Protocols	and	Support	describes	modules	to	handle	markup
languages	such	as	HTML	and	XML.	For	modules	that	are	not	part	of	the	standard	library,
the	Python	Package	Index	(PyPI)	may	have	a	package	that	handles	the	file	format.	See
http://pypi.python.org.

We’ll	look	quickly	at	the	CSV	module	because	it	is	often	used	when	working	on	“big
data”	problems.	For	example,	the	Apache	Hadoop	software	library—a	framework	that
allows	for	the	distributed	processing	of	large	datasets—leverages	simple	programming
models.	We	can	use	Python	with	Hadoop	streaming.

A	Hadoop	file	is	often	a	CSV-formatted	file.	In	some	instances,	it	will	have	“|”	instead	of
a	comma,	and	quoting	or	escapes	won’t	be	used.	In	other	cases,	an	\x01	(ASCII	SOH)
character	could	be	used	as	a	separator.	This	is	relatively	simple	to	handle	with	the	Python
CSV	module.

When	we	create	a	CSV	file	from	a	spreadsheet,	the	first	row	may	have	header	information.
This	can	be	very	helpful.	The	csv.DictReader()	class	uses	the	first	line	of	a	CSV	file	as
the	header.	Each	remaining	line	is	transformed	into	a	dict.	The	keys	in	this	dict	will	be
the	column	names	from	the	first	line.

When	working	with	other	CSV	files,	a	header	line	may	not	be	present.	This	means	that
we’ll	need	a	separate	schema	definition	to	determine	the	meaning	of	each	column.	In	most
cases,	we	can	simply	represent	the	schema	as	a	list	or	tuple	of	column	names.

We	might	have	a	line	like	this	to	provide	the	missing	column	names:

TEST_LOG_SUMMARY	=	(

				"module",	"datetime",	"tests_run",	"failures",

				"errors",	"skipped",	"time_elapsed",

)

This	gives	us	pleasant	Python-friendly	column	names	in	a	simple	tuple.	We’ve	included	a
gratuitous	comma	at	the	end	of	the	items	in	the	tuple	to	make	it	easier	to	add	new	columns
without	getting	a	syntax	error.	In	general,	we	can	simply	put	this	into	a	file	and	import	this
schema	definition.

Let’s	assume	that	we	have	a	function	named	log_parser()	that	can	parse	a	complex	log
file	to	extract	the	fields	shown	earlier.	This	function	will	use	regular	expressions	to	locate
lines	with	the	test	results,	the	module	name,	and	the	time	stamp	in	the	log.	The	data	from	a
log	will	be	used	to	build	a	simple	dictionary	with	the	keys	defined	by	the
TEST_LOG_SUMMARY	global	variable.	The	parser	will	return	a	sequence	of	dict	objects

http://pypi.python.org


which	looks	like	this:

{'module':	'com.mycompany.app.AppTest',	'errors':	'0',	'time_elapsed':	'0',	

'failures':	'0',	'datetime':	'Thu	Oct	06	08:12:17	MDT	2005',	'tests_run':	

'1'}

We	can	use	this	log_parser()	function	to	write	a	CSV	summary	file	from	a	log.	We’ll
call	this	function	mapper()	because	it	maps	a	sequence	of	filenames	to	file	to	a	sequence
of	data	rows,	preserving	the	relevant	details:

def	mapper(name_iter,	result):

				writer=	csv.DictWriter(result,	fieldnames=TEST_LOG_SUMMARY,	

delimiter='|')

				for	name	in	name_iter:

								with	open(name)	as	source:

												writer.writerow(	log_parser(source)	)

This	function	expects	two	parameters:	an	iterator	which	yields	log	file	names,	and	an	open
file	into	which	the	results	are	written.	This	function	will	create	a	CSV	DictWriter	object
using	the	output	file,	the	set	of	field	names	that	will	be	part	of	each	dictionary	to	be
written,	and	finally,	a	delimiter.

For	each	name,	the	log	is	opened	and	parsed.	The	results	of	the	parse,	dict,	are	written	to
the	CSV	file	to	summarize	the	processing.	We	might	use	this	function	in	a	script	that	looks
like	this:

mapper(glob.glob("Chapter_10/log_*.txt"),	sys.stdout)

We’ve	written	the	output	to	the	OS	standard	out.	This	allows	us	to	pipe	these	results	into	a
separate	program	which	computes	statistics	on	the	log	summaries.	We	might	call	the
statistical	summary	a	reducer,	since	it	reduces	a	large	number	of	values	to	single	results.
The	reducer	would	share	the	TEST_LOG_SUMMARY	variable	to	assure	that	both	programs
agree	on	the	content	of	the	file	that	passes	between	them.





Summary
In	this	chapter,	we’ve	seen	how	we	can	use	Python	exceptions	to	write	programs	which
work	with	files	of	various	kinds.	We’ve	focused	on	text	files,	since	they	are	easy	to	work
with.	We’ve	also	looked	at	parsing	binary	files,	which	often	require	support	from	the
struct	module.

A	file	is	also	a	context	manager.	The	best	practice	is	to	use	files	in	a	with	statement	so	that
the	file	is	closed	properly	and	all	OS	resources	are	released.	In	a	command-line	program,
this	may	not	be	that	important;	in	long-running	servers,	it’s	absolutely	essential	to	be	sure
that	resources	don’t	leak	from	improperly	closed	files.

We’ve	also	looked	at	more	complex	persistence	mechanisms,	including	the	shelve
module	and	the	SQLite	database.	These	provide	us	with	ways	to	perform	CRUD
operations	on	data	objects	in	a	file.	The	SQLite	database	requires	us	to	use	the	SQL
language	to	describe	data	access:	this	can	make	our	programs	more	portable	to	other
databases.	It	can	also	be	confusing	to	leverage	SQL	in	addition	to	Python.	We	can
overcome	that	small	problem	by	using	a	library	such	as	SQLAlchemy	so	that	we	can	work
entirely	in	Python,	and	leave	it	to	SQLAlchemy	to	create	the	SQL	appropriate	for	our
database.

The	standard	library	has	numerous	packages	to	handle	different	physical	file	formats.	One
of	these	can	help	to	create	and	retrieve	data	in	the	CSV	format.	The	role	of	the	comma
delimiter	can	be	any	sequence	of	characters,	extending	the	concept	so	that	many	kinds	of
delimited	files	can	be	read	or	written	by	this	module.

In	Chapter	11,	Class	Definitions,	we’ll	look	at	how	we	can	define	our	own	customized
classes	in	Python.	Class	definitions	are	the	heart	of	object-oriented	programming.	We’ll
touch	on	several	of	the	class	design	patterns	that	are	common	in	Python	programming.





Chapter	11.	Class	Definitions
A	Python	object	is	an	instance	of	a	class.	A	class	defines	the	behavior	of	an	object	via	the
method	functions.	In	this	chapter,	we’ll	look	at	creating	our	own	classes	and	our	own
objects.	We’ll	start	by	looking	at	the	basics	of	creating	classes	and	objects.	Once	we’ve
seen	the	essential	tools,	we	can	summarize	some	of	the	ways	that	we	can	class	definitions
to	create	objects,	and	how	objects	should	interact	to	create	the	behavior	we	intend.

We’ll	look	at	some	elements	of	more	sophisticated	class	definition.	Advanced	topics	will
include	the	concepts	of	class	methods	and	static	methods.	An	entire	book	can	be	written
on	advanced	object-oriented	programming	in	Python,	so	we’ll	take	a	broad,	but	shallow,
approach	to	looking	at	class	definitions.

We’ll	also	look	at	the	built-in	abstract	base	classes.	We	can	use	these	to	simplify	our	own
class	definitions.	In	many	cases,	we	have	container-like	classes	that	can	leverage	a	base
class,	saving	us	some	programming	and	assuring	a	seamless	fit	with	other	Python	features.



Creating	a	class
The	core	of	the	object-oriented	program	is	the	class	definition.	The	class	statement	creates
an	object	that	is	used	to	create	instances	of	the	class.	When	we	create	a	new	class,
SomeClass,	we	can	then	use	that	SomeClass()	function	to	create	objects	that	share	the
common	definitions	of	the	class.	This	is	the	way	the	built-in	classes	all	work;	for	example,
the	int()	function	creates	an	instance	of	the	int	class.

In	Python,	a	class	statement	includes	the	method	functions	that	describe	the	behavior	of
each	instance.	In	addition	to	ordinary	methods,	there	are	several	varieties	of	“special”
methods	which	are	intimately	bound	to	the	way	Python	operates.

We	aren’t	obligated—in	any	formal	way—to	provide	specific	attributes	(also	called
instance	variables)	for	a	class.	The	instance	variables	of	an	object	are	flexible,	and	are	not
defined	in	advance.

The	initial	clause	of	a	class	statement	provides	the	class	name.	It	can	also	name	any
superclasses,	from	which	features	are	inherited.	The	bulk	of	the	class	body	contains
method	definitions,	created	with	the	indented	def	statements.

In	some	cases,	we	don’t	need	to	provide	a	suite	of	statements.	We	often	create	customized
exception	classes	like	this

class	MyAppError(Exception):

				pass

In	this	example,	we’ve	provided	a	new	class	name,	MyAppError,	and	specified	that	it
inherits	the	features	of	the	Exception	class.	We	don’t	need	to	make	any	changes	to	that
base	definition;	since	we	must	provide	an	indented	suite	of	statements,	we	use	the	pass
statement	to	complete	the	syntax	of	the	class	statement.

Since	this	class	works	like	any	other	exception,	we	can	use	statements	like	raise
MyAppError("Some	Message")	to	raise	an	instance	of	this	new	class	of	exceptions.





Writing	the	suite	of	statements	in	a	class
The	suite	of	statements	inside	a	class	statement	is	generally	a	collection	of	method
definitions.	Each	method	is	a	function	that’s	bound	to	the	class.	The	suite	of	statements
can	also	include	assignment	statements;	these	will	create	variables	that	are	part	of	the	class
definition	as	a	whole.

Here’s	a	simple	class	for	an	(x,	y)	coordinate	pair:

class	Point:

				"""

				Point	on	a	plane.

				"""

				def	__init__(self,	x,	y):

								self.x=	x

								self.y=	y

				def	__repr__(self):

								return	"{cls}({x:.0f},	{y:.0f})".format(

												cls=self.__class__.__name__,	x=self.x,	y=self.y)

We’ve	provided	a	class	name,	Point.	We	haven’t	explicitly	provided	a	superclass;	by
default	our	new	class	will	be	a	subclass	of	object.	By	convention,	the	names	of	most
built-in	classes,	like	object,	begin	with	lowercase	letters.	All	of	the	other	classes	that	we
will	define	should	begin	with	uppercase	letters;	hence,	our	name	of	Point.	We’ve	also
provided	a	minimal	docstring	for	this	class.	In	Chapter	14,	Fit	and	Finish	–	Unit	Testing,
Packaging,	and	Documentation,	we’ll	look	at	expanding	this	docstring.

We’ve	defined	two	methods	in	the	class.	The	first	has	a	special	name	of	__init__().	The
first	parameter	to	any	method	defined	within	a	class	must	include	the	instance	variable.
This	variable,	usually	self,	will	be	the	reference	to	the	relevant	object.	When	we	assign	a
value	to	the	variable	self.x,	this	will	set	the	x	attribute	of	a	specific	instance	of	the	Point
class.	The	instance	variable	is	provided	implicitly	when	the	method	is	called.

Instead	of	any	formal	definition	of	the	allowed	instance	variables,	Python	relies	on	the
__init__()	special	method	to	initialize	appropriate	instance	variables.	By	default,	an
object	can	have	additional	attributes	added	at	any	time.

The	second	method	has	a	special	name	of	__repr__().	To	be	a	proper	method,	the	first
parameter	must	be	the	instance	variable,	self.	This	method	must	return	a	string	that
represents	our	coordinate	pair.	If	we	don’t	override	this	special	method,	we’ll	get	a	default
string	representation	that	looks	like	this:	<__main__.Point	object	at	0x100623e10>.
Our	implementation	uses	self.__class__.__name__	to	leverage	the	class	of	an	object	so
that	any	subclass	will	have	the	proper	class	name	inserted	into	the	resulting	output.

Special	method	names	are	ubiquitous	in	Python.	Using	them	allows	a	seamless	integration
between	our	classes	and	built-in	Python	features.	There	are	a	large	number	of	special
method	names—too	many	to	review	in	this	book.	All	such	names	begin	and	end	with	__
(two	underscores).	It’s	easy	to	avoid	conflicts	with	this	naming	convention.	There	is	no
good	reason	to	use	__	names	that	are	part	of	our	application	programming;	any	name	in
this	form	that	we	choose	may	turn	out	to	be	a	hidden	feature	of	Python.



Note	that	we	did	not	include	placeholder	docstrings	on	the	two	method	functions.	We’ve
omitted	them	to	keep	the	example	short,	and	focused	on	class	definitions.	In	general,	every
method	of	a	class	will	have	a	docstring	to	provide	a	pithy,	helpful	summary	of	that
method.

In	Chapter	4,	Variables,	Assignment	and	Scoping	Rules,	we	introduced	the	concept	of	a
namespace	as	a	container	for	variables.	The	self	variable	is	the	object,	which	is	a
namespace	into	which	we	can	insert	attribute	variables.

We	can	create	an	instance	of	a	class	like	this:

>>>	p_1	=	Point(22,	7)

>>>	p_1.x

22

>>>	p_1.y

7

We’ve	used	the	class	name,	Point,	like	a	function.	An	empty	object	is	created	first.	Then
the	argument	values	are	provided	to	the	__init__()	special	method	to	initialize	that
empty	object.	Note	that	we	did	not	explicitly	provide	a	value	for	the	instance	variable,
self.

To	execute	the	__repr__()	special	method,	we	can	do	this:

>>>	p_1

Point(22,	7)

When	an	object	is	printed,	the	built-in	repr()	function	is	applied	to	get	a	string
representation	of	the	object.	This	built-in	function	relies	on	the	__repr__()	special
method	of	an	object	to	provide	a	string	representation	for	the	object.	The	object,	p_1,	was
implicitly	assigned	to	the	instance	variable,	self,	when	evaluating	the	__repr__()
method.

Our	implementation	of	the	__repr__()	special	method	produced	a	string	with	the	x	and	y
coordinate	values.	We	used	.0f	as	the	format	specification,	providing	zero	places	to	the
right	of	the	decimal	point	for	the	x	and	y	attributes	of	the	self	instance	variable.





Using	instance	variables	and	methods
The	Point	class	definition	in	the	previous	section	included	only	two	special	methods.
We’ll	now	add	a	third	method	that’s	not	special.	Here’s	the	third	method	for	this	class:

				def	dist(self,	point):

								return	math.hypot(self.x-point.x,	self.y-point.y)

This	method	function	accepts	a	single	parameter,	named	point.	The	body	of	this	method
function	uses	math.hypot()	to	compute	the	direct	distance	between	two	points	on	the
same	plane.

Here’s	how	we	can	use	this	function:

>>>	p_1	=	Point(22,	7)

>>>	p_2	=	Point(20,	5)

>>>	round(p_1.dist(p_2),4)

2.8284

We’ve	created	two	Point	objects.	When	the	p_1.dist(p_2)	expression	is	evaluated,	the
object	that	was	assigned	to	the	p_1	variable	will	be	assigned	to	the	self	variable.	This	is
the	instance	of	Point	that’s	doing	the	relevant	processing.	The	argument	to	the	dist()
method,	assigned	to	the	p_2	variable,	will	be	assigned	to	the	point	parameter	variable.

Tip
When	we	evaluate	obj.method(),	the	obj	object	will	be	the	self	instance	variable.

By	default,	the	objects	we	create	are	mutable.	Here’s	another	method	of	the	Point	object
—this	changes	the	internal	state:

				def	offset(self,	d_x,	d_y):

								self.x	+=	d_x

								self.y	+=	d_y

This	method	requires	two	values	which	are	used	to	offset	the	coordinates	of	the	Point
object.	The	method	assigns	new	values	to	the	x	and	y	attributes	of	the	object.

Here’s	what	happens	when	we	use	this	method:

>>>	p_1.offset(-3,	3)

>>>	p_1.x

19

>>>	p_1.y

10

We’ve	evaluated	the	offset	method	associated	with	object	p_1.	As	noted	earlier,	the	self
instance	variable	will	be	the	same	object	referred	to	by	p_1.	When	we	assign	a	value	to
self.x,	that	will	mutate	the	object	referred	to	by	p_1,	setting	p_1.x.





Pythonic	object-oriented	programming
We’ve	seen	a	few	important	features	of	Python’s	approach	to	object-orientation.	Perhaps
the	most	important	is	that	Python	lacks	a	static	binding	between	variable	name	and	type;
any	type	of	object	can	be	assigned	to	any	variable.	Names	are	not	resolved	statically	by	a
compiler.	Python’s	dynamic	name	resolution	means	that	we	can	think	of	our	programs	as
being	entirely	generic	with	respect	to	class.

When	we	evaluate	obj.attribute	or	obj.method(),	there	are	two	steps.	First	the	name,
attribute	or	method,	must	be	resolved.	Second	the	referenced	attribute	or	method	is
evaluated.

For	the	name	resolution	step,	there	are	several	namespaces	that	are	searched	to	determine
what	the	name	means.

The	local	namespace	of	the	obj	instance	is	searched	to	resolve	the	name.	The	object’s
namespace	is	available	as	obj.__dict__.	Attribute	names	(and	values)	are	generally
found	in	the	object’s	own	namespace.	Methods,	on	the	other	hand,	are	not	generally
part	of	an	object	instance.
If	the	name	isn’t	local	to	the	object,	the	local	namespace	of	the	object’s	class	is
searched.	The	class	namespace	is	available	as	obj.__class__.__dict__.	Method
names	are	generally	found	in	the	class’s	namespace.	An	attribute	of	the	class	may
also	be	found	here.
If	the	name	isn’t	in	the	class,	the	superclasses	are	searched	for	the	name.	The	entire
lattice	of	superclasses	is	assembled	into	the	obj.__class__.__mro__	value.	This
defines	the	Method	Resolution	Order	(MRO);	each	of	the	classes	in	this	sequence
is	searched	for	the	name.

Once	the	name	has	been	found,	Python	must	determine	the	value.	For	names	that	do	not
refer	to	callable	methods,	that	is,	attributes—the	object	referred	to	by	the	name	is	the	value
of	the	attribute.	A	name	that	refers	to	a	callable	method	will	have	argument	values	bound
and	it	will	be	evaluated	as	a	function.	The	result	of	that	function	is	the	value.

The	“search”	described	previously	relies	on	the	built-in	dict	class.	This	uses	hashing	to
make	an	extremely	fast	determination	of	the	presence	or	absence	of	a	name.	There’s
remarkably	little	performance	cost	from	the	sophisticated	and	flexible	class	behavior
available	in	Python.

If	an	object	of	an	inappropriate	type	is	provided	at	run-time,	a	method	name	or	attribute
name	won’t	be	found	in	the	object,	and	an	AttributeError	exception	is	raised.	In	our
preceding	example,	we	can	try	to	evaluate	p_1.copy().	The	copy	name	is	not	defined	in
our	class	nor	any	of	the	superclasses,	so	an	AttributeError	exception	is	raised.



Trying	to	do	type	casting
While	Python	variables	are	merely	names	attached	to	objects,	the	underlying	objects	are
very	strongly	typed.	There’s	no	way	to	assign	a	new	value	to	the	__class__	name	that
defines	the	class	of	an	object.

Type	casts	are	required	by	some	statically-compiled	languages	to	make	it	possible	to
create	generic	data	structures.	In	those	languages,	we	can	cast	a	reference	from	one	type	to
another	type.	Because	of	the	dynamic	nature	of	method	resolution,	there’s	no	need	for	this
kind	of	type	casting	in	Python.

All	Python	collections	can	contain	objects	of	mixed	types.	We	can	easily	evaluate	this:

>>>	map(lambda	x:x+1,	[1,	2.3,	(4+5j)])

The	lambda	expression,	x+1,	can	be	applied	to	an	int,	a	float,	or	a	complex	type	without
resorting	to	any	kind	of	type	cast	operation.	This	works	because	each	class	provides
appropriate	special	method	functions	to	implement	the	addition	of	an	integer.



Designing	for	encapsulation	and	privacy
A	common	question	about	Python	class	definitions	is	how	we	can	achieve	encapsulation
if	all	attribute	and	member	names	are	public.	Some	programmers	worry	about	this:

>>>	p_2	=	Point(20,	5)

>>>	p_2.y	=	6

>>>	p_2

(20,	6)

We’ve	created	an	object,	p_2.	Then	we	modified	an	attribute	value	of	the	object	without
using	any	of	the	object’s	method	functions.	This	is	not	a	failure	to	use	the	encapsulation
design	principle:	the	class	has	a	properly	encapsulated	design.	The	class	doesn’t	have	an
implementation	that	can	be	checked	statically	by	a	compiler.

The	Pythonic	principle	is	summarized	with	the	following	observation:

We’re	all	adults	here.

There’s	no	compelling	reason	to	create	the	complexity	of	private,	public,	and	protected
methods	and	attributes	of	an	object,	because	Python	code	is	distributed	as	source	and
anyone	can	inspect	the	source	to	see	what	the	consequences	of	bending	or	breaking
encapsulation	might	be.	The	preferred	approach	is	to	write	clear	docstrings	for	classes	and
methods,	and	to	provide	unit	tests	to	demonstrate	that	attributes	and	methods	are	being
used	properly.

We	can	prefix	a	name	with	a	single	_	to	indicate	that	the	method	or	attribute	is	not	part	of
the	public	interface	to	a	class.	Python	documentation	tools	will	politely	ignore	these
names	so	that	these	implementation	details	can	be	changed	freely.	Names	that	begin	with	_
are	considered	to	be	subject	to	change	without	notice;	depending	on	these	names	may	lead
to	a	program	breaking	in	unexpected	ways.

In	some	languages,	“getter	and	setter”	methods	are	required	to	expose	the	attributes	of	a
class.	In	Python,	we	can	use	the	object’s	__dict__	directly,	simplifying	introspection.	We
can	also	use	the	built-in	functions	getattr(),	setattr(),	and	delattr()to	work	with
attribute	names	as	strings.	For	example:

>>>	p_2.__dict__.keys()

dict_keys(['y',	'x'])

>>>	getattr(p_2,	"x")

20

This	shows	how	we	can	get	an	attribute’s	names	and	values	dynamically.	In	the	first
example,	we	looked	at	the	object’s	internal	namespace,	__dict__,	to	get	the	attributes.	In
the	second	example,	we	used	the	built-in	getattr()	function	to	get	the	value	of	an
attribute.





Using	properties
Python	allows	us	to	create	methods	that	can	be	used	as	if	they	were	attributes.	This	gives
us	very	pleasant	syntax	for	getting	a	derived	value	from	an	object.	A	method	that	appears
to	be	an	attribute	is	called	a	property.	We’ll	extend	our	Point	class	with	two	more
methods:

				@property

				def	r(self):

								return	math.sqrt(self.x**2	+	self.y**2)

				@property

				def	θ(self):

								return	math.atan2(self.y,	self.x)

We’ve	defined	two	functions	using	the	@property	decorator.	This	decorator	can	be	used
with	a	function	that	has	only	the	instance	variable,	self,	as	a	parameter.

Here’s	how	we	can	use	these	properties:

>>>	p	=	Point(12,	5)

>>>	round(p.r,	1)

13.0

>>>	round(math.degrees(p.θ),	1)

22.6

We’ve	accessed	these	methods	as	if	they	were	simple	attributes	of	the	object,	p.	Using	p.r
and	p.θ	can	be	more	pleasant	than	having	to	write	p.r()	and	p.θ()	in	a	complex	formula.
The	preceding	properties	are	explicitly	read-only.	We	get	an	exception	if	we	try	to	assign	a
value	to	p.r	or	p.θ.

We’ll	return	to	the	topic	of	the	@property	decorator	in	Chapter	13,	Metaprogramming	and
Decorators.





Using	inheritance	to	simplify	class
definitions
We	can	use	inheritance—reuse	of	code	from	a	superclass	in	subclasses—which	can
simplify	a	subclass	definition.	In	an	earlier	example,	we	created	the	MyAppError	class	as	a
subclass	of	Exception.	This	means	that	all	of	the	features	of	Exception	will	be	available
to	MyAppError.	This	works	because	of	the	three-step	search	for	a	name:	if	a	method	name
is	not	found	in	an	object’s	class,	then	the	superclasses	are	all	searched	for	the	name.

Here’s	an	example	of	a	subclass	which	overrides	just	one	method	of	the	parent	class:

class	Manhattan_Point(Point):

				def	dist(self,	point):

								return	abs(self.x-point.x)+abs(self.y-point.y)

We’ve	defined	a	subclass	of	Point	named	Manhattan_Point.	This	class	has	all	of	the
features	of	a	Point.	It	makes	a	single	change	to	the	parent	class.	It	provides	a	definition
for	the	dist()	method	that	will	override	the	definition	in	the	Point	superclass.

Here’s	an	example	that	shows	how	method	resolution	works:

>>>	p_1	=	Point(22,	7)

>>>	p_2	=	Manhattan_Point(20,	5)

>>>	round(p_1.dist(p_2),4)

2.8284

>>>	round(p_2.dist(p_1),4)

4

We’ve	created	two	objects:	p_1	is	an	instance	of	Point,	and	p_2	is	an	instance	of
Manhattan_Point.	We	didn’t	write	the	__init__()	method	of	Manhattan_Point;	it	was
inherited	from	Point.	When	we	evaluate	p_1.dist(),	we’re	using	the	dist()	method
that’s	part	of	p_1‘s	class,	Point.	When	we	evaluate	p_2.dist(),	on	the	other	hand,	we’re
using	the	dist()	method	that’s	part	of	p_2,	which	is	the	method	of	Manhattan_Point.

Reuse	through	inheritance	is	a	way	to	guarantee	that	several	classes	have	identical
behavior.	This	is	an	import	object-oriented	design	principle,	sometimes	called	the	Liskov
Substitution	Principle	(LSP).	An	instance	of	Manhattan_Point	can	be	used	anywhere	an
instance	of	Point	is	used.



Using	multiple	inheritance	and	the	mixin	design
pattern
Inheritance	is	sometimes	visualized	as	a	simple	hierarchy	of	related	classes.	If	each
subclass	has	at	most	one	parent	class,	there’s	a	chain	of	relationships	between	any	given
subclass	and	the	object	superclass.	This	single	inheritance	model	isn’t	always
appropriate.	In	some	cases,	a	class	will	include	a	number	of	disparate	features	that	don’t	fit
the	linear	ancestry	idea.

The	collections	abstract	base	class	module,	collections.abc,	contains	a	number	of
examples	of	multiple	inheritance.	The	overall	design	pattern	here	is	to	have	a	central	class
hierarchy	that	defines	the	essential	features	of	the	List,	Set,	or	Mapping	collections.	Other
features	are	included	via	reusable	mixin	classes.

For	example,	the	Set	class	is	a	subclass	of	Container.	Mixed	into	this	definition	are
features	from	the	Sized	and	Iterable	class	definitions.	The	Sized	mixin	incorporates	the
__len__()	special	method.	The	Iterable	mixin	incorporates	the	__iter__()	special
method.

This	leads	to	the	final	class	being	an	assembly	of	reusable	superclasses.	We	can	leverage
this	to	create	our	own	classes	which	contain	different	mixtures	of	features.

Python	manages	multiple	inheritance	by	relying	on	the	order	in	which	classes	are	named
in	the	class	statement.	This	builds	the	__mro__	value	used	to	search	for	names	in	the
inheritance	lattice.	Here’s	an	example:

>>>	from	collections.abc	import	Mapping

>>>	Mapping.__mro__

(<class	'collections.abc.Mapping'>,	<class	'collections.abc.Sized'>,

<class	'collections.abc.Iterable'>,	<class	'collections.abc.Container'>,

<class	'object'>)

We’ve	imported	one	of	the	abstract	base	classes.	When	we	look	at	the	MRO,	we	see	that
Python	will	search	for	a	name	in	Mapping,	Sized,	Iterable,	Container,	and	object,	in
that	order.

When	designing	with	mixin	classes	like	this,	we	generally	divide	responsibility	among	the
various	classes	so	that	we	avoid	any	name	collisions	between	the	various	superclasses	that
are	used	to	assemble	the	final	class	definition.





Using	class	methods	and	attributes
Generally,	we	expect	objects	to	be	stateful	and	classes	to	be	stateless.	While	typical,	a
stateless	class	is	not	a	requirement.	We	can	create	class	objects	which	have	attributes	as
well	as	methods.	A	class	can	also	have	mutable	attributes,	in	the	rare	cases	that	this	is
necessary.

One	use	for	class	variables	is	to	create	parameters	that	apply	to	all	instances	of	the	class.
When	a	name	is	not	resolved	by	the	object	instance,	the	class	is	searched	next.	Here	is	a
small	hierarchy	of	classes	that	rely	on	a	class-level	attribute:

class	Units(float):

				units=	None

				def	__repr__(self):

								text	=	super().__repr__()

								return	"{0}	{1}".format(text,	self.units)

class	Height(Units):

				units=	"inches"

The	Units	class	definition	extends	the	float	class.	It	introduces	a	class-level	attribute
named	units.	It	overrides	the	__repr__()	special	method	of	float.	This	method	uses	the
superclass	__repr__()	method	to	get	the	essential	text	representation	of	a	value.	It	then
includes	the	value	of	the	units	attribute.

When	we	evaluate	self.units,	there	will	be	a	three-step	search	for	this	name.	An
instance	of	Height	will	not	provide	the	units	attribute.	The	Height	class,	however,	will
provide	the	units	attribute;	the	value	will	be	inches.

When	we	create	an	instance	of	a	Height	object,	we’ll	see	the	units:

>>>	Height(61.5)

61.5	inches

When	we	print	an	instance	of	Height,	the	print()	function	will	use	the	built-in	repr()
function	to	get	a	string	representation.	The	repr()	function	uses	the	__repr__()	special
method	of	an	object.	We’ve	overridden	the	__repr__()	special	method	to	include	the	text
from	the	units	attribute.

Since	all	attributes	are	publicly	available,	we	can	write	something	like	Height.units=
"furlongs",	which	will	cause	all	further	uses	of	objects	of	the	Height	class	to	display
different	units.	Changing	the	class	level	attributes	is	generally	a	bad	idea,	but	it	is	not
prohibited	in	any	formal	way.

Recall	the	policy:	We’re	all	adults	here.



Using	mutable	class	variables
Some	applications	may	call	for	a	properly	mutable	variable	that’s	part	of	an	overall	class.
A	class-level	attribute	name	is	found	during	the	three-step	search	for	a	name:	first	the
object,	then	the	class,	then	the	superclasses.	This	means	that	we	can	successfully	evaluate
self.class_level_name,	even	if	the	name	is	not	in	the	object	instance,	but	is	defined	in
the	class	or	one	of	the	parent	superclasses.

If	we	try	to	assign	a	class-level	variable,	however,	using	a	name	like
self.class_level_name,	we’ll	be	creating	a	new	attribute	in	the	instance.	The	class-level
name	will	no	longer	be	visible	because	the	instance	name	will	now	be	found	first.

If	we	want	to	update	a	class-level	variable,	we	must	explicitly	use	the	class	name,
avoiding	the	self	instance	variable.	Here’s	a	class	which	assigns	a	sequence	number	to
each	instance	that	is	created:

class	Sample:

				counter=	0

				def	__init__(self,	measure):

								Sample.counter	+=	1

								self.sequence	=	Sample.counter

								self.measure	=	measure

We	have	created	a	class-level	variable,	counter,	which	is	initialized	to	zero	when	the	class
is	created.	The	__init__()	method	will	increment	the	class-level	counter	attribute.	In
order	to	avoid	creating	a	variable	in	the	instance,	the	class	name,	Sample,	is	used	instead
of	self.	In	addition	to	updating	Sample.counter,	this	method	also	sets	two	attributes	of
the	instance:	the	current	value	of	Sample.counter	is	assigned	to	the	sequence	attribute,
and	the	given	value	for	the	measure	is	also	saved.

It’s	essential	to	note	that,	inside	a	method	function,	we	can	use	self.counter	and
Sample.counter	to	access	the	same	object.	This	will	be	true	when	there’s	no	instance
variable	named	counter.	In	order	to	assign	a	variable	in	the	class,	however,	we	can	only
use	Sample.counter.



Writing	static	methods
In	some	cases,	we’ll	include	a	method	in	a	class	that	does	not	actually	depend	on	any
instance	variables.	In	many	languages,	this	kind	of	method	is	called	static.	Using	the	word
static	to	refer	to	class-level	features	comes	from	C++	and	Java;	it	has	also	been	adopted
for	Python.

We	don’t	have	any	syntax	complications	for	class-level	attributes.	As	we’ve	seen	in
previous	examples,	any	attribute	that’s	not	part	of	the	instance	will	be	searched	for	in	the
class;	the	distinction	between	instance	variables	and	class	variables	doesn’t	require	any
additional	syntax.

A	class-level	method,	however,	cannot	have	an	instance	variable	as	the	first	defined
parameter.	This	is	an	important	syntactic	change.	We	use	the	@staticmethod	decorator	to
annotate	methods	that	do	not	have	an	instance	variable.

We’ll	expand	the	Sample	class	shown	earlier	to	include	a	validity	check.	Checking	for
validity	isn’t	a	proper	instance	method:	we	should	not	create	an	instance	with	invalid
values.	We’ll	add	this	method	to	the	class:

				@staticmethod

				def	validate(measure):

								m=	float(measure)

								if	0	<=	m	<	12:

												pass

								else:

												raise	ValueError("Out	of	range")

We’ve	marked	this	method	with	the	@staticmethod	decorator.	The	method	does	not	have
a	self	variable,	since	it	doesn’t	apply	to	an	instance	of	the	class.	This	method	can	only	be
invoked	via	Sample.validate(some_value).	The	method	will	confirm	that	the	value	of
the	measure	parameter	is	valid,	or	it	will	raise	an	exception	which	details	the	reason	why
the	value	is	invalid.

We	might	use	this	method	to	create	and	use	an	instance	of	the	Sample	object:

try:

				Sample.validate(some_data)

				s=	Sample(some_data)

				…	etc.	…

except	Exception	as	ex:

				print(ex)

We’ll	start	the	try	statement	by	simply	evaluating	the	Sample.validate()	method.	If	this
method	does	not	raise	an	exception,	the	given	value	is	valid.	If	this	method	does	raise	an
exception,	we’ll	write	an	error	message	and	continue	processing.	Often,	we’ll	have	this
kind	of	processing	in	a	file	input	loop:	we’ll	process	good	data	and	write	messages	about
bad	data	to	the	log.

Python	also	offers	a	@classmethod	decorator.	This	is	a	more	specialized	tool.	It	provides
the	class	as	an	argument	instead	of	the	instance.	It	allows	us	to	write	a	method	that	can
work	with	a	variety	of	classes.	This	might	be	used	in	a	metaclass.



We’ll	return	to	the	topic	of	decorators	in	Chapter	13,	Metaprogramming	and	Decorators.





Using	__slots__	to	save	storage
The	default	behavior	of	the	object	superclass	is	to	create	a	dict	for	an	object’s	attributes.
This	provides	fast	resolution	of	names.	It	means	that	an	object	can	have	attributes	added
and	changed	very	freely.	Because	a	hash	is	used	to	locate	the	attribute	by	name,	the
internal	dict	object	can	consume	quite	a	bit	of	memory.

We	can	modify	the	behavior	of	the	object	superclass	by	providing	a	list	of	specific
attribute	names	when	we	create	a	class.	When	we	assign	these	names	to	the	specially
named	__slots__	variable,	these	will	be	the	only	available	attributes.	A	dict	is	not
created,	and	memory	use	is	reduced	considerably.

If	we’re	working	with	very	large	datasets,	we	might	need	to	use	a	class	that	looks	like	this:

class	SmallSample:

				counter=	0

				__slots__	=	["sequence",	"measure"]

				def	__init__(self,	measure):

								SmallSample.counter	+=	1

								self.sequence	=	SmallSample.counter

								self.measure	=	measure

This	class	uses	the	__slots__	attribute	to	define	the	only	two	attributes	that	can	be	used
for	an	instance.	This	avoids	using	a	dict	to	represent	the	attributes	of	instances	of	this
class.





The	ABCs	of	abstract	base	classes
In	Chapter	6,	More	Complex	Data	Types,	we	looked	at	the	collections	module,	which
offers	a	number	of	variations	on	the	mapping	theme.	These	different	kinds	of	collections
are	built	on	a	foundation	of	abstract	base	classes,	defined	in	the	collections.abc	module.
Looking	at	this	module	exposes	the	common	features,	and	the	differences,	among	the
collections.

We	can	see	how	Sequence	is	the	basis	for	the	built-in	tuple	class,	and	MutableSequence
is	the	basis	for	the	built-in	list.	The	Set	abstract	base	class	is	the	basis	for	the	frozenset
built-in	class,	and	MutableSet	is	the	basis	for	the	set	class.	There’s	no	concrete
implementation	of	the	Mapping	class,	but	the	dict	class	is	the	built-in	implementation	of
the	MutableMapping	class.

If	we	need	to	implement	a	unique	kind	of	collection,	one	not	already	provided	by	the
collection	module,	we’re	encouraged	to	use	the	collections.abc	module	as	a	starting
point.	If	we	leverage	these	common	base	classes,	we’re	assured	that	our	new	collection
will	fit	seamlessly	with	other	Python	features.



Writing	a	callable	class
The	abstract	base	class	Callable	is	defined	in	the	collections.abc	module.	This	class
doesn’t	seem	to	have	much	to	do	with	collections.	It’s	a	useful	abstraction,	nonetheless.

A	class	that	derives	from	Callable	must	define	the	__call__()	special	method.	The
objects	created	from	this	class	are	callable,	and	can	be	used	as	if	they	were	functions.	This
allows	us	to	create	fairly	complex	functions	based	on	a	class	definition.

Here’s	a	function	to	compute	the	nth	Fibonacci	number.	There	are	three	relevant	rules	for
computing	this	value:

The	first	two	Fibonacci	numbers	are	defined	as	zero	and	one.	Other	Fibonacci	numbers	are
the	sum	of	the	two	preceding	numbers.	If	we	use	a	naïve	algorithm,	it’s	quite	expensive	to
compute	a	large	Fibonacci	number.	We	can,	however,	define	a	Callable	that	uses	an
internal	cache	to	reduce	the	workload	to	a	manageable	level.	This	technique	is	called
memoization.

The	class	definition	for	a	Callable	looks	like	this:

from	collections.abc	import	Callable

class	Fibonacci(Callable):

				def	__init__(self):

								self.cache=	{0:	0,	1:	1}

				def	__call__(self,	n):

								if	n	not	in	self.cache:

												self.cache[n]=	self.__call__(n-1)	+	self.__call__(n-2)

								return	self.cache[n]

We’ve	defined	a	class,	Fibonacci,	which	extends	the	Callable	abstract	base	class.	The
__init__()	method	initializes	a	cache	with	two	defined	values	for	Fibonacci	numbers.
The	__call__()	method	only	computes	a	Fibonacci	number,	n,	if	the	number	is	not
already	in	the	cache.	It	does	this	by	recursive	calls	to	compute	Fibonacci	numbers	n-1	and
n-2.	Once	the	result	is	in	the	cache,	it	can	be	returned.

When	we	create	an	instance	of	this	class,	we	have	created	a	callable	function.	Given	that
function,	we	can	compute	Fibonacci	numbers.	Here’s	an	example:

>>>	fib=	Fibonacci()

>>>	fib(7)

13

We’ve	created	an	instance	of	the	Fibonacci	class,	and	assigned	this	to	the	variable	fib.
The	fib	object	is	callable;	when	we	evaluate	it	with	an	argument	value	of	six,	we	get	the
seventh	Fibonacci	number.







Summary
In	this	chapter,	we’ve	seen	the	basics	of	defining	a	class	and	using	objects	of	that	class.
We’ve	looked	at	how	we	create	the	methods	that	define	the	behavior	of	a	class.	The
internal	state	of	the	class	is	the	result	of	the	various	methods:	in	Python	we	don’t	formally
declare	instance	variables.	We	generally	rely	in	the	__init__()	method	to	provide	the
initial	or	default	values	for	the	object’s	state.

We’ve	looked	at	the	way	Python	resolves	attribute	and	method	names	by	searching	the
object,	the	class,	and	then	the	superclasses.	The	method	resolution	order	is	based	on	the
order	the	classes	are	presented	in	the	initial	class	statement.

The	@properties	decorator	can	be	used	to	create	methods	that	have	the	same	syntax	as	an
attribute.	This	can	help	clarify	otherwise	complex	algorithms.	We’ve	also	looked	at	the
@staticmethod	decorator,	which	is	used	to	create	methods	that	belong	to	the	class	as	a
whole	and	are	independent	of	any	specific	instance	of	the	class.

In	order	to	save	some	memory,	we	can	use	the	__slots__	variable.	This	will	construct	an
object	that	isn’t	based	on	a	dict	for	storing	attributes.	The	object	is	quite	a	bit	smaller,	but
also	suffers	from	some	limitations.

We	also	looked	at	how	we	can	create	a	callable	object.	This	is	an	object	that	can	be	used
like	a	function,	but	has	all	of	the	powerful	features	of	an	object.

In	Chapter	12,	Scripts,	Modules,	Packages,	Libraries,	and	Applications,	we’ll	look	at	how
we	can	package	our	functions	and	classes	into	modules.	We’ll	see	how	modules	are
grouped	into	packages.	The	Python	Standard	Library	is	a	collection	of	packages	that	we
install	with	Python.	We’ll	look	at	the	tiny	distinctions	between	modules	and	script	files,
and	how	we	can	create	more	complete	Python	applications.





Chapter	12.	Scripts,	Modules,	Packages,
Libraries,	and	Applications
While	it’s	easy	to	work	with	Python	at	the	Read-Evaluate-Print	Loop	(REPL)	>>>
prompt,	our	real	goal	is	to	create	Python	application	files.	A	Python	file	may	be	a	script,
which	means	it	should	be	able	to	do	some	useful	work	when	it’s	executed	by	the	Python
program.	A	file	may	be	a	module,	which	means	that	it	is	designed	to	be	imported	to
provide	useful	definitions.	A	directory	of	Python	modules	is	a	package.	These	are	formal
definitions,	implemented	by	the	language.

More	generic	terms	like	library,	application,	or	framework	aren’t	formalized	by	the
language.	We	have	ways	to	implement	these	common	concepts	in	Python.	We	can	think	of
a	collection	of	modules	or	packages	as	a	library.	The	Python	Standard	Library,	for
example,	is	a	large	collection	of	modules	and	packages.	An	“application”	will	be	at	least	a
script.	A	more	complex	application	may	involve	a	script	plus	several	additional	modules
and	packages.	A	framework	will	be	a	Python	application	into	which	we’ll	inject	our
customized	modules	or	packages.	Many	frameworks	will	also	include	non-Python	files:	a
web	framework	may	include	a	great	deal	of	HTML	and	CSS;	a	GUI	framework	may
include	image	files	and	fonts.

We’ll	look	at	creating	and	running	script	files.	We’ll	also	look	at	creating	modules	and
packages	of	modules.	Finally,	we’ll	look	at	a	very	clever	Python	feature	that	allows	us	to
write	a	script	that	can	also	be	used	as	a	module.	This	design	pattern	allows	us	to	build
composite	applications	that	are	based	on	other	applications.



Script	file	rules
A	Python	script	file	must	adhere	to	only	one	simple	rule:	it	must	be	pure	text.	In	some
cases,	a	poorly-chosen	filename	can	lead	to	problems,	so	we’ll	add	two	recommendations
that	are	often	helpful:

The	content	must	be	pure	text;	ideally	encoded	in	UTF-8,	although	ASCII	is	also
popular.
The	filename	should	follow	the	Python	identifier	rules.	It	should	start	with	a	letter
and	use	only	letters,	digits,	and	the	_	character.	Filenames	that	begin	and	end	with	__
(two	underscores)	are	reserved	and	have	special	meanings	for	Python.
The	extension	should	be	.py.

The	two	additional	recommendations	are	essential	for	writing	modules	and	packages,	but
are	not	required	to	write	a	simple	script.

A	script	is	simply	a	sequence	of	statements;	it’s	identical	to	what	we	might	do	at	the	REPL
prompt	with	only	one	difference:	a	script	has	no	implicit	printed	output.	We	must	use	the
print()	function	in	a	script	to	see	any	results.	In	larger	applications,	we	often	use	the
logging	module	to	produce	more	sophisticated	output.	In	some	cases,	we’ll	carefully
replace	all	the	print()	functions	we	put	into	an	early	technology	spike	with
logging.debug()	functions	as	our	application	matures.

To	run	a	script,	we	need	to	provide	it	as	input	to	the	Python	program.	We’ll	look	at	three
common	ways	to	do	this.





Running	a	script	by	the	filename
The	most	common	way	to	run	a	script	is	to	provide	the	filename	to	the	Python	command.
Let’s	assume	we	have	a	file	with	the	unpleasant	name	of	ch12_script1.py	in	a	directory
named	Chapter_12.

In	Linux	and	Mac	OS	X,	the	full	name	will	be	Chapter_12/ch12_script1.py.	In
Windows,	the	full	filename	will	be	Chapter_12\ch12_script1.py.	We’ll	stick	with	the
Linux	standard	filenames	for	the	remaining	examples.

Here’s	how	we	can	run	a	script	by	giving	the	filename:

MacBookPro-SLott:Code	slott$	python3	Chapter_12/ch12_script1.py

Temperature	°C:	8

C=8°,	F=46°

This	output	shows	the	OS	prompt.	The	python3	command	that	we	entered	is	highlighted.
The	prompts	and	the	outputs	from	the	script	are	also	shown.	This	example	is	typical	for	an
OS	that	uses	Python	2	internally;	we	have	to	distinguish	our	new	Python	3	from	the	OS’s
internal	python	command.

The	application	prompted	us,	and	we	entered	a	temperature	of	8.	The	output	shows	that
8°C	is	about	46°F.	We’ll	need	to	wear	a	coat.

The	script	file,	ch12_script1.py,	looks	like	this:

c=	float(input("Temperature	°C:	"))

f	=	32+9*c/5

print("C={c:.0f}°,	F={f:.0f}°".format(c=c,f=f))

The	script	uses	the	input()	function	to	prompt	an	interactive	user	at	the	console.	The
output	is	displayed	with	the	simple	print()	function.

We’ve	kept	the	script	small	to	emphasize	ways	that	scripts	can	be	run.	There	are	numerous
user	experience	(UX)	issues	with	this,	but	that	is	not	the	focus	of	this	section.



Running	a	script	by	its	module	name
In	most	cases,	our	scripts	can	either	be	installed	in	the	site-packages	directory	inside	the
Python	library,	or	we	can	extend	the	Python	path	using	the	PYTHONPATH	environment
variable	to	include	the	location	of	our	scripts.	Either	of	these	approaches	makes	a	script
file	visible	on	Python’s	search	path.

To	install	a	script	in	site-packages,	we	can	rely	on	Python’s	distutils	package.	We’ll
create	a	setup.py	file,	which	describes	the	module	we’d	like	to	install.	We	can	then	run
python3	setup.py	install	to	have	our	module	placed	into	the	site-packages	directory.
Installers	like	pip	and	easy-install	require	use	of	distutils	following	this	standard
pattern.

We	can	also	locate	the	site-packages	directory	and	manually	copy	our	module	into	that
directory.	This	location	varies	from	OS	to	OS.	This	directory	is	the	last	item	in	the
sys.path	variable.

Setting	the	PYTHONPATH	environment	variable	is	another	alternative.	We	can	use	the	Linux
export	command	to	make	a	change	to	environment	variables.	We	often	put	this	in	our
~/.bash_profile	file.	For	Windows,	we	have	to	make	a	change	to	the	advanced	system
settings	where	the	environment	variables	are	set.	We	can	easily	create	private	libraries
with	many	modules,	made	visible	via	the	PYTHONPATH	variable.

Once	our	module	is	visible	on	Python’s	search	path,	we	can	execute	the	module	like	this:

MacBookPro-SLott:Code	slott$	python3	-m	Chapter_12.ch12_script1

Temperature	°C:	8

C=8°,	F=46°

When	we	provide	the	-m	option,	we’re	naming	a	module	to	be	executed.	In	this	example,
we’ve	used	a	qualified	name:	Chapter_12	is	a	package	and	ch12_script1	is	the	module
within	that	package.	We’ll	look	at	packages	in	the	later	sections;	packages	are	essentially
the	directories	in	which	module	files	can	be	found.



Running	a	script	using	OS	shell	rules
The	third	way	that	we	can	run	a	script	is	by	making	the	script	file	executable	and	including
an	OS	association	between	the	script	file	and	the	Python3	program.

In	Linux	and	Mac	OS	X,	the	file	association	is	set	by	the	first	line	of	the	file.	We’ll	often
use	something	like	this	as	the	first	line	in	a	file,	to	associate	a	given	.py	file	and	the
Python3	program:

#!/usr/bin/env	python3

This	will	use	the	OS	env	program	to	locate	and	start	the	python3	environment.	The	shell
will	provide	the	entire	file	as	input	to	the	program	named	on	a	#!	line.	This	means	that	the
env	program	will	be	started	with	the	script	file	as	input.	The	env	program	will	prepare	the
environment	and	then	hand	the	file	to	the	Python3	program.

To	mark	a	file	as	executable	in	Linux	and	Mac	OS	X,	we	use	the	chmod	+x	command.	We
can	do	this	to	mark	our	script	as	executable:

MacBookPro-SLott:Code	slott$	chmod	+x	Chapter_12/ch12_script1.py

This	command	will	add	the	execute,	x,	option	to	the	file’s	mode.	When	we	do	an	ls	-l,
we’ll	see	this	as	part	of	the	file’s	details.

In	Windows,	all	files	are	considered	executable.	The	association	between	file	extension
and	program	is	done	through	the	Windows	Control	Panel.	The	setting	was	put	in	place
when	you	installed	Python.

Once	the	file	is	marked	as	executable,	we	can	run	it	simply	by	providing	the	name:

MacBookPro-SLott:Code	slott$	Chapter_12/ch12_script1.py

Under	Windows,	the	file	extension	of	.py	is	bound	to	the	Python	program,	and	Windows
will	launch	Python	providing	this	filename	as	input.	The	binding	of	filename	to	script	is
outside	the	application.

Under	Linux	and	Mac	OS	X,	the	processing	is	based	on	the	magical	first	line	of	the	file.
The	Linux	shell	checks	the	file’s	mode	to	see	that	it’s	executable.	It	then	reads	the	first	few
bytes	of	the	file.	In	this	case,	the	first	few	bytes	are	#!,	which	marks	the	file	as	a	script.
The	first	full	line	of	a	script	includes	the	command	that	must	be	used	to	process	this	script.
In	this	case,	the	command	is	/usr/bin/env	python3.	The	shell	launches	this	program
with	the	given	file	as	input.



Choosing	good	script	names
Script	names	should	be	kept	short	and	meaningful.	As	with	filenames,	it’s	generally	best
practice	to	avoid	complex	prefixes	and	suffixes.	The	Linux	or	Windows	DOS	commands
provide	some	guidance	on	what	makes	a	good	(and	bad)	name	for	a	script.	One	of	the	best
examples	is	the	git	command,	which	has	numerous	subcommands.	Rather	than	invent
dozens	of	complex-looking	names,	git	uses	a	simple	command	name	as	a	prefix.

The	argparse	module,	used	for	parsing	command-line	arguments,	supports	this	nicely.	We
can	define	a	few	common	arguments	that	apply	to	all	subcommands.	We	can	also	define
arguments	that	are	unique	to	each	subcommand.

In	order	to	keep	the	code	for	this	book	organized	by	the	publishing	pipeline,	the	script
names	are	long.	The	redundancy	in	these	names	(Chapter_12/ch12_…)	is	not	the	best
practice,	and	should	be	avoided	where	possible.	As	with	variable	names	and	function
names,	script	names	should	be	kept	reasonably	short	and	meaningful.





Creating	a	reusable	module
In	Python,	the	module	is	the	unit	of	software	reuse.	When	we	have	a	feature	that	must
appear	in	more	than	one	script,	we’ll	put	this	feature	into	a	module	and	import	that	module
into	each	script	that	shares	the	feature.

It’s	important	to	note	two	slightly	different	senses	of	the	word	“reuse”	as	follows:

We	can	define	a	class	hierarchy	to	achieve	localized	reuse	within	an	application.
Inheritance	is	an	elegant	way	to	share	code	among	related	objects.	Often	we’ll	define
all	of	these	related	classes	in	a	single	module	file.
We	can	define	a	module	to	achieve	a	less	local	reuse	across	applications.

To	create	a	module	that	can	be	imported,	we	merely	have	to	be	sure	that	a	Python	file	is
visible	in	a	directory	that’s	part	of	the	Python	search	path.	Since	the	local	directory	is
always	visible,	we	can	create	a	module	simply	by	creating	a	file	in	the	current	working
directory.

A	module	designed	for	import	should	consist	mostly	of	import,	class,	and	def
statements.	We	can	also	use	assignment	statements	to	create	module	global	variables,	but
we	need	to	be	cautious	of	how	much	processing	is	done.	Any	name	that’s	created	(via
assignment,	class,	def,	or	import)	will	be	in	that	module’s	namespace.

A	module	is	only	imported	once.	The	import	implementation	checks	a	global	cache	of
loaded	modules,	visible	as	sys.modules,	to	see	if	the	module	is	known.	Because	of	this,	a
module	that	actually	does	some	kind	of	processing	will	only	do	it	once.	After	that,	the
import	is	ignored.	This	behavior	makes	it	easy	to	create	a	global	Singleton	object	inside
an	imported	module.

Examples	of	modules	that	do	significant	processing	on	import	are	this	and	antigravity.
When	we	execute	import	this	or	import	antigravity,	these	modules	will	immediately
do	some	interesting	processing.	After	having	been	imported	once,	they	won’t	do	this
again.	While	handy	in	some	specialized	situations,	it’s	not	a	general	pattern	to	follow.

Tip
We	generally	expect	an	import	statement	to	provide	definitions	of	classes,	functions,	and
module	global	variables.

We	don’t	generally	expect	an	import	statement	to	do	useful	processing.

A	module	may	define	a	unique	exception.	We	might	want	to	create	a	generic	exception
class	named	Error	in	a	module.	It	would	look	like	this:

class	Error(Exception):	pass

Because	this	name	will	be	qualified	by	the	module	name	when	the	module	is	imported,	we
are	able	to	reference	this	exception	via	some_module.Error.	It	might	look	like	this:

import	some_module

try:

				some_module.some_function()



except	some_module.Error	as	e:

				logger.exception("some_function	broke:	{0}".format(e))

The	module	name,	some_module,	acts	as	a	nice	qualifier	to	show	the	origin	of	the	Error
class	definition.	We	don’t	need	to	give	the	Error	class	a	more	complex,	globally	unique
name.





Creating	a	hybrid	library/application
module
A	script	may	import	modules,	perhaps	define	some	functions	or	classes,	but	it	will	always
do	the	relevant	processing.	Our	first	example	script	had	just	three	lines	of	relevant
processing:	two	assignment	statements,	and	a	function	statement	that	printed	a	result.	This
shows	the	Pythonic	ideal	of	having	programs	without	any	boilerplate;	we	try	to	avoid
syntax	that’s	just	overhead.

A	possible	downside	of	a	perfectly	clean	approach	to	scripting	is	that	it’s	difficult	to	create
unit	tests.	Each	unit	test	would	have	to	invoke	the	script	as	a	subprocess;	something	that
can	involve	quite	a	bit	of	OS	overhead.	The	goal	of	unit	testing	is	to	isolate	each	unit—
each	function,	class,	module,	package,	or	script—so	that	it	can	be	tested	separately.
Having	the	OS	launch	the	script	file	doesn’t	seem	to	be	properly	isolated.

Also,	as	an	application	matures,	a	good	script	may	become	a	component	in	a	larger,	and
more	comprehensive,	application.	It	can	become	difficult	to	create	a	composite	application
from	a	script	file.	It’s	far	easier	to	create	composite	processes	from	functions	or	classes.

This	leads	to	the	following	suggested	structure	for	a	script:

def	c_to_f():

				c=	float(input("Temperature	°C:	"))

				f	=	32+9*c/5

				print("C={c:.0f}°,	F={f:.0f}°".format(c=c,f=f))

if	__name__	==	"__main__":

				c_to_f()

We’ve	taken	our	script	and	wrapped	it	with	a	def	statement	to	make	a	function.	We’ve
then	written	an	if	statement	that	distinguishes	between	a	main	script	and	an	imported
module	by	examining	the	__name__	variable.	The	if	statement	makes	the	following
conditions:

When	a	module	is	imported,	Python	sets	the	global	variable	__name__	to	the	actual
module	name
When	run	as	a	main	script,	Python	sets	the	global	variable	__name__	to	__main__

This	pattern	can	be	used	to	write	library	modules	which	run	their	own	unit	tests.	We	can
include	the	following	in	a	library	module	that	is	never	used	as	a	main	script:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod(	verbose=1	)

This	will	run	all	of	the	unit	tests	that	are	embedded	in	docstrings.	We’ll	look	more	closely
at	testing	in	Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,	and	Documentation.





Creating	a	package
A	package	is	a	directory	that	contains	module	files	plus	one	additional	file.	Each	package
must	have	an	__init__.py	file.	This	file	must	be	present	and	is	often	empty.

The	poem,	Zen	of	Python,	by	Tim	Peters,	offers	the	following	advice:

Flat	is	better	than	nested.

The	idea	is	to	organize	Python	applications	into	a	flat	collection	of	modules	to	the	greatest
extent	possible.	A	deeply-nested,	complex	hierarchy	of	packages	isn’t	considered	helpful.

We	can	use	a	package	in	two	ways.	We	can	import	a	module	that’s	part	of	a	package.	The
standard	library,	for	example,	has	an	XML	package	with	several	XML	parser	modules.	We
can	use	import	xml.etree	to	import	the	etree	module	from	the	XML	package.	In	this
case,	the	__init__.py	file	has	a	comment	and	a	list	of	sub-packages.

In	other	cases,	we	can	import	the	package,	as	a	whole,	as	if	the	package	were	a	module.
When	we	write	import	collections,	for	example,	we’re	really	importing	the	module
collections/__init__.py.

The	__init__.py	file	is	a	top-level	module	for	the	package	as	a	whole.	It	can	be	empty,	in
which	case	we	can	only	pick	specific	modules	from	within	the	package.	Or	the
__init__.py	file	may	have	content,	allowing	us	to	import	the	package	as	a	single	complex
structure.





Designing	alternative	implementations
We	can	easily	offer	alternative	implementations	of	a	given	feature.	If	we	want	more	speed,
more	accuracy,	or	less	memory	use,	we	should	be	able	to	import	an	alternative	definition
of	a	given	library.

We	can	compare	the	math	and	cmath	modules	for	a	concrete	example	of	this	principle.
Here’s	an	example	of	how	they	differ:

>>>	import	math

>>>	import	cmath

>>>	math.sqrt(-1)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	math	domain	error

>>>	cmath.sqrt(-1)

1j

The	math	module	includes	a	square	root	function,	which	we	used	as	math.sqrt().	This
produces	only	real-valued	results,	and	must	raise	an	exception	when	confronted	with	an
expression	that’s	not	real-valued.

The	cmath	module	also	includes	a	square	root	function.	The	cmath.sqrt()	function	can
return	complex	values	instead	of	raising	an	exception.	Since	the	packages	are	so	similar,
we	can	substitute	one	for	the	other	in	a	variety	of	ways.

Both	of	these	modules	offer	a	similar	set	of	function	definitions.	The	components	within
the	module	have	the	same	names.	The	modules,	which	are	namespaces,	have	different
names	to	distinguish	the	origin	of	a	definition.

This	technique	is	often	used	to	support	different	platforms.	We	can	create	a	package	with
platform-specific	modules	within	the	package.	The	package’s	top-level	__init__.py	can
choose	which	module	to	import	and	provide	the	platform-specific	definitions.	We	can	also
use	this	to	write	enterprise	software	that	must	run	in	different	environments:	development,
quality	assurance,	and	final	production.	A	single	package	can	include	different
configuration	modules.	The	standard	library	os	package	demonstrates	this	concept.





Seeing	the	package	search	path
The	Python	search	path	can	be	seen	by	importing	the	sys	package	to	see	sys.path:

>>>	import	sys

>>>	sys.path

['',	'/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-

packages/setuptools-2.0.2-py3.3.egg',

…,	etc.

'/Library/Frameworks/Python.framework/Versions/3.3/lib/python33.zip',

'/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3',

'/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/plat-

darwin',

'/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/lib-

dynload',

'/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-

packages']

We’ve	elided	a	number	of	lines	from	this	output	to	show	the	essentials	of	how	the	standard
library	fits	into	the	way	we	develop	Python	code.	This	list	of	places	to	search	for	modules
is	built	by	the	sites	package	when	Python	starts	running.

The	zero-length	directory	name,	'',	is	first.	This	means	that	the	current	working	directory
is	the	preferred	place	to	locate	modules.	This	allows	us	to	import	our	own	modules	from
the	local	directory.	After	our	local	directory,	a	number	of	locations	are	searched,	ending
with	the	.../site-packages	directory.

The	next	group	of	names,	starting	with	setuptools-2.0.2-py3.3.egg,	is	a	list	of	all
external	packages	added	to	this	installation	in	the	form	of	downloaded	.egg	files.	The
exact	list	will	vary	from	installation	to	installation.	These	names	are	created	by	the	pip
and	easy_install	programs.

When	we	set	the	PYTHONPATH	environment	variable,	those	names	are	spliced	into	the	path
after	the	various	installed	packages.	The	final	group	of	names,	starting	with
python33.zip,	is	a	common	list	of	modules	that	come	with	Python.	The	last	entry	lists	the
generic	site-packages	portion	of	the	library.	If	you	download	a	package	and	run	the
package’s	setup.py	script,	it	is	copied	into	this	directory	where	it	will	be	found	by
Python.

The	sys.path	object	is	a	proper	mutable	list.	We	can	dynamically	change	the	path	in	our
script	files.	This	can	make	it	difficult	to	determine	all	the	modules	that	a	script	depends	on.
It’s	almost	always	clearer	to	explicitly	depend	on	the	modules	being	properly	installed	or
the	PYTHONPATH	environment	variable	being	set.





Summary
In	this	chapter,	we’ve	looked	at	the	higher-level	ways	to	organize	software.	A	function
contains	many	statements,	a	class	contains	many	method	functions,	and	a	module	can
contain	many	classes	and	functions.	A	package	can	contain	many	modules.

We’ve	looked	at	a	number	of	ways	of	executing	a	Python	script.	We	have	a	great	deal	of
flexibility	because	there	are	many	contexts	in	which	we	need	to	execute	software.
Generally,	we’ll	focus	on	executing	Python	programs	by	module	name	rather	than	by
filename.	The	distinction	is	tiny.	Since	a	module	must	be	on	the	search	path,	we	can	create
a	directory	that	contains	the	script	and	any	supporting	modules	and	libraries,	and	ensure
that	this	directory	is	named	on	the	PYTHONPATH.

We’ve	looked	at	how	we	can	create	library	modules	that	contain	definitions	and	will	be
imported	into	other	scripts.	This	is	our	primary	method	of	reuse.	We’ve	also	looked	at	how
we	can	create	a	script,	that	is	reusable	as	a	library	module.	This	supports	unit	testing	as
well	as	maturation	of	our	software.

In	Chapter	13,	Metaprogramming	and	Decorators,	we’ll	look	at	some	more	advanced
programming	techniques.	These	will	allow	us	to	create	more	sophisticated	class	and
function	definitions.	We	can	use	these	design	patterns	to	write	more	flexible	and	more
reusable	software.





Chapter	13.	Metaprogramming	and
Decorators
The	bulk	of	what	we’ve	covered	has	been	programming—writing	Python	statements	to
process	data.	We	can	also	use	Python	to	process	Python	instead	of	processing	data.	We’ll
call	this	metaprogramming.	We’ll	look	at	two	aspects:	decorators	and	metaclasses.

A	decorator	is	a	function	that	accepts	a	function	as	an	argument	and	returns	a	function.	We
can	use	this	to	add	features	to	a	function	without	repeating	the	feature	in	several	different
function	definitions.	A	decorator	prevents	copy-and-paste	programming.	We	often	use	this
for	logging,	audit,	or	security	purposes;	these	are	things	that	will	cut	across	a	number	of
class	or	function	definitions.

A	metaclass	definition	will	extend	the	essential	object	creation	that	happens	when	we
make	an	instance	of	a	class.	Implicitly,	the	special	method	name	of	__new__()	is	used	to
create	a	bare	object	that	is	subsequently	initialized	by	the	__init__()	method	of	the	class.
A	metaclass	allows	us	to	change	some	of	the	fundamental	features	of	object	creation.



Simple	metaprogramming	with	decorators
Python	has	a	few	built-in	decorators	that	will	modify	a	function	or	a	method	of	a	class.	For
example,	in	Chapter	11,	Class	Definitions,	we	saw	@staticmethod	and	@property,	which
are	used	to	alter	the	behavior	of	a	method	in	a	class.	The	@staticmethod	decorator
changes	a	function	to	work	on	the	class	instead	of	an	instance	of	the	class.	The	@property
decorator	makes	evaluating	a	no-argument	method	available	via	the	same	syntax	as	an
attribute.

A	function	decorator	that’s	available	in	the	functools	module	is	@lru_cache.	This
modifies	a	function	to	add	memoization.	Having	cached	results	can	be	a	significant	speed-
up.	It	looks	like	this:

from	functools	import	lru_cache

from	glob	import	glob

import	os

@lru_cache(100)

def	find_source(directory):

				return	glob(os.path.join(directory,"*.py"))

In	this	example,	we’ve	imported	the	@lru_cache	decorator.	We’ve	also	imported	the
glob.glob()	function	and	the	os	module	so	that	we	can	use	os.path.join()	to	create
filenames	irrespective	of	OS-specific	punctuation.

We’ve	provided	a	size	parameter	to	the	@lru_cache()	decorator.	The	parameterized
decorator	modifies	the	find_source()	function	by	adding	a	cache	that	will	hold	100
previous	results.	This	can	speed	up	a	program	that	does	a	lot	of	work	with	the	local	file
system.	The	last	recently	used	(LRU)	algorithm	assures	that	recent	requests	are	preserved
and	older	requests	are	quietly	forgotten	to	limit	the	cache	to	the	requested	size.

The	@lru_cache	decorator	embodies	a	reusable	optimization	that	can	be	applied	to	a
variety	of	functions.	We	have	separated	the	memoization	aspect	from	other	aspects	of	a
function’s	implementation.

The	Python	Standard	Library	defines	a	few	decorators.	For	more	examples	of	decorator
metaprogramming,	see	the	Python	Decorator	Library	page,
https://wiki.python.org/moin/PythonDecoratorLibrary.

https://wiki.python.org/moin/PythonDecoratorLibrary




Defining	our	own	decorator
In	some	cases,	we	can	extract	a	common	aspect	from	a	number	of	functions.	Concerns	like
security,	audit,	or	logging	are	common	examples	of	something	we	might	want	to
implement	consistently	across	many	functions	or	classes.

Let’s	look	at	a	way	to	support	enhanced	debugging.	Our	goal	is	to	have	a	simple
annotation	that	we	can	use	to	provide	consistent,	detailed	output	from	several	unrelated
functions.	We’d	like	to	create	a	module	with	definitions	like	this:

@debug_log

def	some_function(ksloc):

				return	2.4*ksloc**1.05

@debug_log

def	another_function(ksloc,	a=3.6,	b=1.20):

				return	a*ksloc**b

We’ve	defined	two	simple	functions	that	will	be	wrapped	by	a	decorator	to	provide
consistent	debugging	output.

A	decorator	is	a	function	that	accepts	a	function	as	an	argument	and	returns	a	function	as	a
result.	What	we’ve	shown	in	the	preceding	piece	of	code	is	evaluated	as	follows:

>>>	def	some_function(ksloc):

...				return	2.4*ksloc**1.05

>>>		some_function	=	debug_log(debug_log)

When	we	apply	a	decorator	to	a	function,	we’re	implicitly	evaluating	the	decorator
function	with	an	original	function	as	the	argument.	This	will	create	the	decorated	function
as	a	result.	Using	a	decorator	creates	a	result	with	the	same	name	as	the	original	function
—the	decorated	version	replaces	the	original.

For	this	to	work,	we’ll	need	to	write	a	decorator	that	creates	the	debugging	log	entries.
This	must	be	generic	so	that	it	will	work	for	any	function.	As	we	noted	in	Chapter	7,	Basic
Function	Definitions,	we	can	use	the	*	and	**	modifiers	to	collect	“all	other”	positional
arguments	and	all	other	keyword	arguments	into	a	single	sequence	or	a	single	dictionary.
This	allows	us	to	write	completely	generic	decorators.

Here’s	the	@debug_log	decorator	function:

import	logging

from	functools	import	wraps

def	debug_log(func):

				log=	logging.getLogger(func.__name__)

				@wraps(func)

				def	decorated(*args,	**kw):

								log.debug(">>>	call(*{0},	**{1})".format(args,	kw))

								try:

												result=	func(*args,	**kw)

												log.debug("<<<	return	{}".format(result))

												return	result

								except	Exception	as	ex:

												log.exception(	"***	{}".format(ex)	)



												raise

				return	decorated

The	body	of	the	decorator	definition	does	three	things.	First,	it	creates	a	logger	based	on
the	original	function’s	name,	func.__name__.	Second,	it	defines	an	entirely	new	function,
named	decorated(),	which	is	based	on	the	original	function.	Finally,	it	returns	that	new
function.

Note	that	we	used	a	decorator	from	the	functools	library,	@wraps,	to	show	that	the	new
decorator	function	wraps	the	original	function.	This	will	assure	that	the	name	and
docstring	are	properly	copied	from	the	original	function	to	the	decorated	function.	The
decorated	version	will	be	indistinguishable	from	the	original.

We	can	use	these	functions	normally:

>>>	round(some_function(25),3)

70.477

The	decoration	has	no	impact	on	the	value	of	the	function.	It	has	a	small	performance
impact.

If	we	have	logging	enabled,	and	we	set	the	logging	level	to	DEBUG,	we’ll	see	additional
output	in	the	log.	The	preceding	example	would	lead	to	the	following	in	the	logger’s
output:

DEBUG:some_function:>>>	call(*(25,),	**{})

DEBUG:some_function:<<<	return	70.47713658528114

This	shows	the	debugging	detail	produced	by	this	decorator.	The	log	shows	the	argument
values	and	the	result	value.	If	there’s	an	exception,	we’ll	see	the	argument	values	as	well
as	the	exception	message,	which	can	be	more	useful	than	the	default	behavior	of	just
showing	the	exception	message.

An	easy	way	to	enable	the	logger	is	to	include	the	following	in	the	application:

import	sys

logging.basicConfig(stream=sys.stderr,	level=logging.DEBUG)

This	will	direct	the	log	output	to	the	standard	error	stream.	It	will	also	include	all
messages	that	have	a	severity	level	above	the	debug	level.	We	can	change	this	level	setting
to	a	value	like	logging.INFO	to	silence	the	debugging	messages,	leaving	informational
messages	intact.

A	decorator	that	also	accepts	parameters	values—in	a	manner	similar	to	the	@lru_cache
decorator—is	more	complex.	The	argument	values	are	first	applied	to	create	a	decorator.
The	decorator	that	results	from	this	initial	binding	is	then	used	to	build	the	decorated
function	from	the	original	function.





More	complex	metaprogramming	with
metaclasses
In	some	cases,	the	default	features	built	into	a	class	aren’t	appropriate	for	our	particular
application.	We	can	see	a	few	common	situations	where	we	might	want	to	extend	the
default	behavior	of	object	construction.

We	can	use	a	metaclass	to	preserve	some	of	the	original	source	code	that	defined	a
class.	By	default,	each	class	object	uses	dict	to	store	the	various	methods	and	class-
level	attributes.	We	might	want	to	use	an	ordered	dictionary	to	retain	the	original
source	code	ordering	for	class-level	attributes.	An	example	of	this	is	shown	in	the
Python	Standard	Library,	section	3.3.3.5.
The	abstract	base	classes	(ABC)	rely	on	a	metaclass	__new__()	method	to	confirm
that	the	concrete	subclass	is	complete	when	we	attempt	to	create	an	instance	of	the
class.	If	we	fail	to	provide	all	of	the	required	methods	in	a	subclass	of	an	ABC,	we
can’t	create	an	instance	of	that	subclass.
Metaclasses	can	be	used	to	simplify	object	serialization.	A	metaclass	can	incorporate
information	required	for	XML	or	JSON	representation	of	an	instance.
We	can	use	a	metaclass	to	inject	additional	attributes	into	an	object.	Because	a
metaclass	provides	the	implementation	of	the	__new__()	method	used	to	create	an
empty	object,	it	is	able	to	inject	attributes	before	the	__init__()	method	is
evaluated.	For	some	immutable	classes,	such	as	tuples,	there	is	no	__init__()
method,	and	a	subclass	of	the	tuple	must	use	the	__new__()	method	to	set	the	value.

The	default	metaclass	is	type.	This	is	used	by	application	classes	to	create	the	new,	bare
object	prior	to	the	__init__()	method	being	invoked.	The	built-in	type.__new__()
method	requires	four	argument	values—the	metaclass,	the	application	class	name,	the	base
classes	for	the	application	class,	and	a	namespace	of	system-defined	initial	values.

When	we	create	a	metaclass,	we’ll	override	the	__new__()	method.	We’ll	still	use	the
type.__new__()	method	to	create	the	bare	object.	We	can	then	extend	or	modify	this	bare
object	before	returning	the	object.

Here’s	a	metaclass	that	inserts	a	logger	prior	to	__init__():

import	logging

class	Logged(type):

				def	__new__(cls,	name,	bases,	namespace,	**kwds):

								result	=	type.__new__(cls,	name,	bases,	dict(namespace))

								result.logger=	logging.getLogger(name)

								return	result

We’ve	defined	a	class	that	extends	the	built-in	type	class.	We’ve	defined	an	overriding
special	method,	__new__().	The	special	method	uses	the	superclass	type.__new__()
method	to	create	the	bare	object,	which	is	assigned	to	the	result	variable.

Once	we	have	the	bare	object,	we	can	create	a	logger	and	inject	this	logger	into	the	bare
object.	This	self.logger	attribute	will	be	available	from	the	very	first	line	of	the



__init__()	method	in	each	class	that’s	created	using	this	metaclass.

We	can	create	application	classes	that	leverage	this	metaclass,	like	this:

class	Machine(metaclass=Logged):

				def	__init__(self,	machine_id,	base,	cost_each):

								self.logger.info("creating	{0}	at	{1}+{2}".format(

												machine_id,	base,	cost_each))

								self.machine_id=	machine_id

								self.base=	base

								self.cost_each=	cost_each

				def	application(self,	units):

								total=	self.base	+	self.cost_each*units

								self.logger.debug("Applied	{units}	==>	{total}".format(

												total=total,	units=units,	**self.__dict__))

								return	total

We’ve	defined	a	class	that	explicitly	depends	on	the	Logged	metaclass.	If	we	don’t	include
the	metaclass	keyword	parameter,	the	default	metaclass	of	type	will	be	used.	In	this
class,	the	logger	attribute	was	created	before	the	__init__()	method	was	invoked.	This
allows	us	to	use	the	logger	in	the	__init__()	method	without	any	further	overhead.





Summary
In	this	chapter,	we’ve	looked	at	two	common	metaprogramming	techniques.	The	first	is
writing	decorator	functions—these	can	be	used	to	transform	an	original	function	to	add
new	features.	The	second	is	using	a	metaclass	to	extend	the	default	behavior	of	class
definitions.

We	can	use	these	techniques	to	develop	application	features	that	cut	across	many	functions
and	classes.	Writing	a	feature	once	and	applying	it	to	a	number	of	classes	assures	us	of
consistency	and	can	help	during	debugging,	as	well	as	upgrades	or	refactoring.

In	Chapter	14,	Fit	and	Finish	–	Unit	Testing,	Packaging,	and	Documentation,	we’ll	look	at
a	number	of	features	that	characterize	a	complete	Python	project.	Rather	than	address
technical	language	features,	we’ll	look	at	ways	we	can	use	Python	features	to	create
polished,	complete	solutions.





Chapter	14.	Fit	and	Finish	–	Unit	Testing,
Packaging,	and	Documentation
Beyond	the	Python	language	and	its	libraries,	there	are	several	other	aspects	to	Python
programming.	We’ll	start	by	looking	closely	at	the	docstrings,	which	should	be	viewed	as
an	essential	ingredient	in	every	package,	module,	class,	and	function	definition.	These
have	several	purposes,	one	of	which	is	to	clarify	what	the	object	does.

In	this	chapter,	we’ll	also	look	at	the	different	approaches	to	unit	testing.	The	doctest	and
unittest	modules	provide	a	comprehensive	suite	of	tools.	External	tools	like	Nose	are
also	widely	used.

We’ll	also	look	at	how	we	can	leverage	the	logging	module	as	part	of	a	complete
application.	The	Python	logger	is	quite	sophisticated	as	well,	so	we’ll	focus	on	a	few	of
the	essential	features.

We’ll	examine	some	tools	that	are	used	to	build	Python	documentation	from	the	embedded
docstring	comments.	Using	tools	to	extract	documentation	allows	us	to	focus	on	writing
proper	code	and	deriving	the	reference	documents	from	the	code.	In	order	to	create
complete	documentation—more	than	just	an	API	reference—many	developers	use	the
Sphinx	tool.

We’ll	also	address	the	organization	of	files	in	a	large	Python	project.	Because	Python	is
used	in	so	many	different	contexts	and	has	so	many	different	frameworks,	the	layout	for	a
web	application	built	with	Flask	will	look	nothing	like	a	web	application	built	with
Django.	However,	there	are	a	few	essential	principles	that	we	can	follow	for	keeping
Python	programs	neat	and	well	organized.



Writing	docstrings
In	Chapter	7,	Basic	Function	Definitions,	we	noted	that	all	functions	should	have	a
docstring	that	describes	the	function.	In	Chapter	11,	Class	Definitions,	and	Chapter	12,
Scripts,	Modules,	Packages,	Libraries,	and	Applications,	we	offered	similar	advice,
without	providing	many	details.

The	def	statement	and	the	class	statement	should,	universally,	be	followed	by	a	triple-
quoted	string	that	describes	the	function,	method,	or	class.	It’s	not	required	by	the
language—it’s	required	by	all	of	the	people	who	will	try	to	read,	understand,	extend,
improve,	or	repair	our	code.

We’ll	revisit	an	example	from	Chapter	11,	Class	Definitions,	to	show	the	kinds	of
docstrings	that	were	omitted.	Here’s	how	we	might	create	a	more	complete	class
definition:

class	Point:

				"""

				Point	on	a	plane.

				Distances	are	calculated	using	hypotenuse.

				This	is	the	"as	a	crow	flies"	straight	line	distance.

				Point	on	a	plane.

				Distances	are	calculated	using	hypotenuse.

				This	is	the	"as	a	crow	flies"	straight	line	distance.

				>>>	p_1	=	Point(22,	7)

				>>>	p_1.x

				22

				>>>	p_1.y

				7

				>>>	p_1

				Point(22,	7)

				"""

				def	__init__(self,	x,	y):

								"""Create	a	new	point

								:param	x:	X	coördinate

								:param	y:	Y	coördinate

								"""

								self.x=	x

								self.y=	y

				def	__repr__(self):

								"""Returns	string	representation	of	this	Point."""

								return	"{cls}({x:.0f},	{y:.0f})".format(

												cls=self.__class__.__name__,	x=self.x,	y=self.y)

				def	dist(self,	point):

								"""Distance	to	another	point	measured	on	a	plane.

								>>>	p_1	=	Point(22,	7)

								>>>	p_2	=	Point(20,	5)



								>>>	round(p_1.dist(p_2),4)

								2.8284

								:param	point:	Another	instance	of	Point.

								:returns:	float	distance.

								"""

								return	math.hypot(self.x-point.x,	self.y-point.y)

In	this	class	definition,	we’ve	provided	four	separate	docstrings.	For	the	class	as	a	whole,
we	provided	an	overview	of	what	the	class	does,	plus	an	example	of	how	the	class
behaves.	This	is	shown	as	a	copy	and	paste	from	the	Python	REPL,	showing	the	input
prefixed	with	>>>	prompts.

For	each	method	function,	we’ve	provided	a	docstring	that	shows	what	the	method
function	does.	In	the	case	of	the	dist()	method,	we’ve	included	another	example
interaction	in	the	docstring	to	show	an	example	of	the	expected	behavior	of	the	method.

The	documentation	of	parameters	and	return	values	uses	the	ReStructuredText	(RST)
markup	language.	This	is	widely	used	because	of	tools	like	docutils	and	Sphinx,	which
can	format	RST	into	nice-looking	HTML	or	LaTeX.	We’ll	look	at	RST	in	the	section
Writing	documentation	with	RST	markup	later	in	this	chapter.

For	now,	we	can	focus	on	:param	name:	and	:returns:	as	markup	syntax	that	helps	tools
understand	the	semantics	of	these	constructs.	The	tool	can	then	give	them	special
formatting	to	reflect	their	meaning.





Writing	unit	tests	with	doctest
It	is	a	widely	adopted	practice	to	provide	concrete	examples	of	classes	and	functions	in
docstrings.	As	shown	in	the	preceding	example,	we	can	provide	the	following	kind	of
example	text	in	a	docstring:

>>>	p_1	=	Point(22,	7)

>>>	p_2	=	Point(20,	5)

>>>	round(p_1.dist(p_2),4)

2.8284

A	concrete	example	has	many	benefits.	The	goal	of	Python	code	is	to	be	beautiful	and
readable.	If	the	code	sample	is	obscure	or	confusing,	this	is	a	design	problem	that	really
should	be	resolved.	Writing	more	words	in	comments	to	try	to	explain	bad	code	is	a
symptom	of	a	deeper	problem.	A	concrete	example	should	be	as	clear	and	expressive	as
the	code	itself.

An	additional	benefit	of	concrete	examples	is	that	they	are	test	cases.	The	doctest	module
can	scan	each	docstring	to	locate	these	examples,	build,	and	execute	test	cases.	This	will
confirm	that	the	output	in	the	example	matches	the	actual	output.

One	common	approach	to	using	doctest	is	to	include	the	following	in	a	library	module:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod(verbose=1)

If	the	module	is	executed	as	the	main	script	instead	of	being	imported,	then	it	will	import
doctest,	scan	the	module	for	docstrings,	and	execute	all	the	tests	in	those	docstrings.
We’ve	set	the	verbose	level	to	one,	which	produces	output	that	shows	the	tests	in	some
detail.	If	we	leave	the	verbose	level	to	it’s	default	value	of	zero,	success	is	silent;	not	even
an	Ok	is	displayed.

We	can	also	run	doctest	as	a	command-line	application.	Here’s	an	example:

MacBookPro-SLott:Code	slott$	python3	-m	doctest	Chapter_1/ch01_ex1.py	-v

Trying:

				355/113

Expecting:

				3.1415929203539825

ok

...

1	items	had	no	tests:

				ch01_ex1

9	items	passed	all	tests:

			2	tests	in	__main__.__test__.assignment

			4	tests	in	__main__.__test__.cmath

			2	tests	in	__main__.__test__.division

			1	tests	in	__main__.__test__.expression

			3	tests	in	__main__.__test__.import	1

			1	tests	in	__main__.__test__.import	2

			2	tests	in	__main__.__test__.import	3

			2	tests	in	__main__.__test__.mixed_math



			2	tests	in	__main__.__test__.print

19	tests	in	10	items.

19	passed	and	0	failed.

Test	passed.

We’ve	run	the	doctest	module	as	an	application,	providing	it	with	the	name	of	a	file	that
should	be	examined	to	locate	test	examples	inside	docstrings.	The	output	starts	with	the
first	example	found.	The	example	is	this:

>>>	355/113

3.1415929203539825

The	verbose	output	shows	the	expression	and	the	expected	results.	The	output	of	ok
indicates	that	the	test	was	passed.

What	about	the	one	item	that	had	no	tests?	That’s	the	docstring	for	the	module	itself.	This
shows	us	that	our	test	case	coverage	is	incomplete.	We	should	consider	adding	a	test	in	the
module	docstring.

The	summary	showed	that	9	items	had	19	tests.	The	items	are	identified	with	strings	such
as	ch01_ex1.__test__.assignment.	The	special	name	__test__	is	neither	a	function	nor
a	class;	it’s	a	global	variable.	If	there’s	a	variable	named	__test__,	it	must	be	a	dictionary.
The	keys	in	the	__test__	dictionary	are	documentation,	and	the	values	are	strings	that
must	include	doctest	examples.

The	__test__	variable	might	look	like	this:

__test__	=	{

				'expression':	"""

								>>>	355/113

								3.1415929203539825

				""",

etc.

}

Each	key	identifies	the	test.	Each	value	is	a	triple-quoted	string	that	includes	a	snippet	of
REPL	interaction	showing	the	expected	results.

As	a	practical	matter,	this	particular	test	suffers	from	one	of	the	potential	limitations	of
doctest	examples.

As	we	noted	in	Chapter	5,	Logic,	Comparisons,	and	Conditions,	we	should	not	use	exact
equality	tests	between	floating	point	values.	The	proper	way	to	write	a	test	like	this	is	to
use	round(355/113,	6)	to	truncate	the	trailing	digits;	the	final	digits	might	differ	slightly
depending	on	the	hardware	or	underlying	floating	point	libraries.	It’s	better	to	write	tests
that	are	independent	of	implementation	nuances.

There	are	a	number	of	potential	limitations	with	doctest	examples.	Dictionary	keys	have
no	defined	order.	Therefore,	a	doctest	can	fail	when	the	keys	are	displayed	in	an	order
that	differs	from	the	expected	output	in	the	test.	Similarly,	set	items	have	no	defined	order.
Additionally,	an	error	traceback	message	may	not	match	precisely	because	it	will	have	a
line	like	File	"<stdin>",	line	1,	in	<module>	that	may	vary	depending	on	the
context	in	which	the	test	runs.



For	some	of	these	potential	limitations,	doctest	offers	directives	that	can	be	used	to
annotate	the	tests.	The	directives	appear	as	special	comments	like	this:	#	doctest:
+ELLIPSIS.	This	will	enable	flexible	pattern	matching	to	cope	with	the	variations	in
displayed	output.	For	other	limitations,	we	need	to	construct	our	test	cases	properly.	We
can	use	sorted(some_dict.values())	to	transform	a	dictionary	result	into	a	sorted	list	of
tuples	where	the	order	is	guaranteed.

Docstrings	are	an	essential	feature	of	good	Python	programming.	Examples	are	an
essential	feature	of	well-written	documentation.	Given	a	tool	that	can	verify	the
correctness	of	the	examples,	this	kind	of	testing	should	be	considered	mandatory.





Using	the	unittest	library	for	testing
For	more	complex	testing,	the	doctest	examples	may	not	provide	enough	depth	or
flexibility.	A	docstring	with	a	large	number	of	cases	would	become	too	long	to	be	effective
as	documentation.	A	docstring	with	complex	test	setup,	teardown,	or	mock	objects	may
not	be	useful	as	documentation	either.

For	these	cases,	we’ll	use	the	unittest	module	to	define	test	cases	and	test	suites.	When
using	unittest,	we’ll	generally	create	separate	modules.	These	test	modules	will	contain
TestCase	classes	that	contain	test	methods.

Here’s	a	quick	overview	of	a	typical	test	case	class	definition:

import	unittest

from	Chapter_7.ch07_ex1	import	FtoC

class	Test_FtoC(unittest.TestCase):

				def	setUp(self):

								self.temps=	[50,	60,	72]

				def	test_single(self):

								self.assertAlmostEqual(0.0,	FtoC(32))

								self.assertAlmostEqual(100.0,	FtoC(212))

				def	test_map(self):

								temps_c	=	list(map(FtoC,	self.temps))

								self.assertEqual(3,	len(temps_c))

								rounded	=	[round(t,3)	for	t	in	temps_c]

								self.assertEqual([10.0,	15.556,	22.222],	rounded)

We’ve	shown	a	setUp()	method	and	two	test	methods.	The	default	runTest()	method
will	search	for	all	methods	with	a	name	that	begins	with	test;	it	will	then	run	the	setUp()
method	that	is	executed	prior	to	each	individual	test…	method.

We	can	use	the	Python	assert	statement	to	compare	actual	and	expected	results.	Because
there	are	so	many	common	comparisons,	the	TestCase	class	offers	handy	methods	for
comparing	different	kinds	of	expected	results	with	actual	results.	We’ve	shown
assertEqual()	and	assertAlmostEqual().	Each	of	these	methods	parallels	the	assert
statement—they	succeed	silently.	If	there’s	a	problem,	they	raise	an	AssertionError
exception.

Using	the	unittest	module	allows	us	to	write	voluminous	test	cases.	A	doctest	string	is
most	useful	when	it	expresses	a	few	helpful	concrete	examples.	A	unit	test	is	a	better	way
to	include	many	edge	and	corner	cases.

The	unittest	module	is	also	handy	for	test	examples	that	involve	interaction	with	the
filesystem.	We	might	have	a	.csv	format	file	that	has	a	number	of	examples.	We	can	write
a	runTest()	method	that	reads	this	file	and	treats	each	row	as	a	test	case.

When	pursuing	acceptance	test-driven	development	(ATDD),	the	test	cases	themselves
can	become	quite	complex.	The	test	case	setup	may	involve	seeding	a	database	with
sample	data	prior	to	executing	a	big	application	feature,	and	then	examining	the	resulting



database	contents.	The	essential	structure	of	ATDD	testing	fits	the	unit	testing	design
patterns	offered	by	the	unittest	module.	The	“unit”	under	test	is	not	an	isolated	class;
instead,	we’re	testing	a	complete	web	API	or	command-line	application.



Combining	doctest	and	unittest
We	can	incorporate	doctest	test	cases	into	the	unittest	suite	of	tests.	This	assures	us	that
the	doctest	examples	are	not	overlooked	when	using	unittest	cases.	We’ll	do	this	by
using	the	TestSuite	class,	which	can	contain	other	TestCase	classes	as	well	as	TestSuite
classes.

A	doctest.DocTestSuite	object	will	create	a	proper	unittest.TestSuite	method	from
the	doctest	strings	embedded	in	a	given	module.	We	can	use	a	function	like	the	following
to	locate	all	test	cases	in	a	large	collection	of	packages	and	modules:

def	doctest_suite():

				files	=	glob.glob("Chapter*/ch*_ex*.py")

				by_chxx=	lambda	name:	name.partition(".")[2].partition("_")[0]

				modules	=	sorted(

								(".".join(f.replace(".py","").split(os.sep))	for	f	in	files),

								key=by_chxx)

				suites=	[doctest.DocTestSuite(m)	for	m	in	modules]

				return	unittest.TestSuite(suites)

This	function	will	return	a	TestSuite	object	built	from	other	TestSuite	objects.	This
function	has	five	steps:

1.	 It	uses	glob.glob()	to	get	a	list	of	all	matching	module	names	in	the	packages.	This
particular	pattern	will	locate	all	of	the	example	code	for	this	book.	We	might	have	to
change	this	to	pass	or	reject	other	kinds	of	names	that	might	be	available.

2.	 It	defines	a	lambda	object	that	extracts	the	chapter	number	from	the	module,	ignoring
the	package.	The	expression	uses	name.partition(".")	to	split	the	complete	module
name	into	the	package,	the	dot	character,	and	the	module	name.	Item	number	2	from
this	sequence	is	the	module	name.	This	is	partitioned	on	the	"_"	into	chapter	prefix,
underscore,	and	example	suffix.	We	use	item	number	0,	the	chapter	prefix,	as	the	sort
order	for	the	modules.

3.	 The	input	to	the	sorted()	function	is	a	sequence	of	filenames	restructured	into
module	names.	This	transformation	involves	replacing	the	".py"	filename	suffix	and
then	splitting	the	filename	on	the	OS	path	separator	(“/”	on	most	OSes,	but	on
Windows	it	is	“")	into	separate	substrings.	When	we	join	the	substrings	using	“.”	we
get	a	module	name,	which	we	can	use	for	sorting	and	test	case	discovery.

4.	 We	build	a	list	comprehension	of	the	test	suites	that	can	be	built	from	the	doctest
examples	in	each	module.	This	includes	over	100	individual	tests	culled	from	the
examples	throughout	this	book.

5.	 We	assemble	a	single	test	suite	from	the	list	of	test	suites.	This	can	then	be	executed
to	confirm	that	all	of	the	examples	produce	the	expected	results.

We	can	merge	this	doctest	TestSuite	object	with	a	TestSuite	object	built	from	tests
based	on	the	unittest.TestCase	definitions.	This	complete	suite	can	then	be	executed	to
show	that	the	code	works	as	expected.

We	often	use	something	like	the	following:



if	__name__	==	"__main__":

				runner=	unittest.TextTestRunner(	verbosity=1	)

				all_tests	=	unittest.TestSuite(	suite()	)

				runner.run(	all_tests	)

This	will	create	a	test	runner	that	produces	a	summary	of	tests	and	test	failures.	The
suite()	function—not	shown—returns	a	TestSuite()	method	built	from	the
doctest_suite()	function	and	a	function	that	scans	files	for	unittest.TestCase	classes.

The	output	summarizes	the	tests	run	and	the	failures.	When	we	build	a	comprehensive	test
suite	like	this,	we	include	both	unittest	and	doctest	cases.	This	allows	us	to	freely	mix
complex	suites	with	simple	docstring	examples.





Using	other	add-on	test	libraries
The	doctest	and	unittest	modules	allow	us	to	write	a	number	unit	tests	conveniently.	In
many	cases,	we	want	even	more	sophistication.	One	of	the	more	popular	additional
features	is	test	discovery.	The	nose	package	gives	us	a	way	to	painlessly	examine	modules
and	packages	for	tests.	See	http://nose.readthedocs.org/en/latest/	for	more	information.

There	are	several	benefits	of	using	nose	as	an	extension	to	unittest.	The	nose	module
can	collect	tests	from	unittest.TestCase	subclasses,	as	well	as	simple	test	functions,	and
also	from	test	classes	that	are	not	subclasses	of	unittest.TestCase.	We	can	use	nose	for
writing	timing	tests	too—something	that	can	be	a	little	awkward	in	unittest.

Because	nose	is	particularly	good	at	collecting	tests	automatically,	there’s	no	need	to
manually	collect	test	cases	into	test	suites;	we	don’t	need	some	of	the	examples	shown
earlier.	Furthermore,	nose	supports	test	fixtures	at	the	package,	module,	and	class	level,	so
expensive	initialization	can	be	done	as	infrequently	as	possible.	This	allows	us	to	populate
a	test	database	for	multiple	modules	of	related	testing—something	that	unittest	can’t	do
as	easily.

http://nose.readthedocs.org/en/latest/




Logging	events	and	conditions
A	well-behaved	application	can	produce	a	variety	of	processing	summaries.	For
command-line	applications,	the	summary	might	be	a	simple	“everything	went	okay”
message.	For	GUI	applications,	this	summary	is	inverted—silence	means	things	are
working	well,	and	a	dialog	box	with	an	error	message	indicates	things	didn’t	work
properly.

In	some	command-line	processing	contexts,	the	summary	might	include	some	additional
details	on	the	number	of	objects	that	were	processed.	In	financial	applications,	some
counts	and	the	total	values	of	various	objects	must	balance	properly	to	show	that	all
objects	that	were	received	as	input	became	proper	outputs.

When	we	need	additional	details,	beyond	a	simple	“works	or	breaks”	summary,	we	can
leverage	the	print()	function.	The	output	can	be	redirected	to	the	sys.stderr	file	to
produce	a	handy	log.	While	this	is	effective	in	small	programs,	it	has	a	number	of
desirable	features	offered	by	the	logging	module.

The	first	step	in	using	the	logging	module	is	to	create	logger	objects	and	use	the	loggers
to	produce	useful	output.	Each	logger	has	a	name	that	fits	into	a	tree	using	names
delimited	with	the	.	character.	The	logger	names	parallel	the	standards	for	module	names;
we	can	use	the	following:

import	logging

logger	=	logging.getLogger(__name__)

This	will	create	a	module-wide	logger	object	with	a	name	that	matches	the	module	name.
The	root	logger	has	the	name	"";	that	is,	an	empty	string.

We	can	also	create	class-wide	loggers	as	well	as	object-specific	loggers.	We	can,	for
example,	create	a	logger	during	the	__init__()	method	part	of	object	creation.	We	might
use	the	__qualname__	attribute	of	an	object’s	class	to	provide	a	qualified	class	name	for
the	logger.	To	create	a	logger	for	a	specific	instance	of	a	class,	we	can	suffix	the	class
name	with	the	.	character	and	some	unique	identifier	for	the	instance.

We	use	the	logger	to	create	messages	with	a	severity	level	from	DEBUGGING	(the	least
severe)	to	FATAL	or	CRITICAL	(synonyms	for	the	most	severe	level.)	We	do	this	with	a
method	name	that	reflects	the	severity	level.	Messages	are	created	with	methods	like
these:

logger.debug("Finished	with	{0}	using	{2}".format(message,	details))

logger.error("Error	due	to	{0}".format(data))

The	logging	module	has	a	default	configuration	that	does	nothing.	This	means	that	we
can	include	logging	requests	in	an	application	without	any	further	consideration.	As	long
as	we	properly	create	a	Logger	instance	and	use	methods	of	the	logger	instance,	we	don’t
need	to	do	anything	else.

To	see	output,	we’ll	need	to	create	a	handler	that	will	write	the	messages	to	a	particular
stream	or	file.	This	is	usually	done	as	part	of	the	overall	configuration	of	the	logging



system.



Configuring	the	logging	system
We	have	several	ways	to	configure	the	logging	system.	For	small	applications,	we	might
provide	the	logging	setup	using	the	logging.basicConfig()	function.	We’ve	shown	this
in	Chapter	13,	Metaprogramming	and	Decorators.	A	simple	initialization	will	send	the
output	to	the	standard	error	stream	and	explicitly	set	a	level	that	filters	the	messages	being
displayed.	This	uses	the	stream	and	level	keyword	arguments.

A	slightly	more	complex	configuration	might	look	like	this:

logging.basicConfig(filename='app.log',	filemode='a',	level=logging.INFO)

We’ve	opened	a	named	file,	assigned	a	mode	of	a	to	append,	and	set	the	level	to	show
messages	with	a	severity	that’s	equal	to	or	greater	than	INFO.

Since	each	individual	logger	is	named,	we	can	adjust	the	level	of	detail	for	a	specific
logger.	We	can	include	a	line	like	the	following	to	enable	debugging	on	a	specific	logger:

logging.getLogger('Demonstration').setLevel(logging.DEBUG)

This	allows	us	to	see	details	for	a	specific	class	or	module.	This	is	often	a	great	help	when
debugging.

The	logging.handlers	module	offers	a	large	number	of	handlers	for	routing,	printing,	or
saving	the	sequence	of	logging	messages.	The	preceding	example	shows	the	file	handler.
The	stream	handler	is	used	to	write	to	the	standard	error	stream.	In	some	cases,	we	need	to
have	multiple	handlers.	We	can	apply	filters	to	each	handler,	so	that	the	handlers	will
reflect	different	kinds	of	details.

Logging	configurations	often	get	too	complex	for	the	basicConfig()	function.	The
logging.config	module	offers	several	functions	that	can	be	used	to	configure	the	logging
for	an	application.	One	general	approach	is	to	use	the	logging.config.dictConfig()
function.	We	can	create	a	Python	dict	object	directly	in	Python,	or	read	some	serialized
version	of	the	dict	object.	The	standard	library	documentation	uses	examples	written	in
the	YAML	markup	language	because	it’s	simple	and	flexible.

We	might	do	something	like	this	to	create	a	configuration	object:

config	=	{

				'version':	1,

				'handlers':	{

								'console':	{

												'class'	:	'logging.StreamHandler',

												'stream':	'ext://sys.stderr',

								}

				},

				'root':	{

								'level':	'DEBUG',

								'handler':	['console'],

				},

}

This	object	has	the	required	version	attribute	to	specify	the	structure	of	the	configuration.



A	single	handler	is	defined;	it’s	named	console	and	uses	logging.StreamHandler	is	used
to	write	to	the	standard	error	stream.	The	root	logger	is	configured	to	use	the	console
handler.	The	severity	level	is	defined	to	include	any	message	at	or	above	the	DEBUG	level.

Only	in	configuration	files	is	the	root	logger	named	'root'.	In	application	code,	the	root
logger	is	named	with	an	empty	string.

Larger	and	more	sophisticated	applications	will	rely	on	logging	configurations	in	external
configuration	files.	This	permits	flexible	and	sophisticated	logging	configurations.





Writing	documentation	with	RST	markup
While	Python	code	should	be	beautiful	and	informative,	it	doesn’t	easily	provide
background	or	context	to	show	why	a	particular	algorithm	or	data	structure	was	chosen.
We	often	need	to	provide	these	additional	details	to	help	people	maintain,	extend,	and
make	effective	use	of	our	software.	While	we	can	include	a	lot	of	information	in	a	module
docstring,	it	seems	best	to	keep	docstrings	focused	on	implementation	details,	and	provide
the	additional	material	separately.

We	can	write	additional	documentation	in	a	variety	of	formats.	We	can	use	a	sophisticated
editor	with	complex	file	formats,	or	we	can	use	simple	text	editors	and	plain	text	format.
We	can	even	write	our	documentation	entirely	in	HTML.	Python	also	offers	a	hybrid
approach—we	can	write	using	a	text	editor	with	simplified	ReStructuredText	(RST)
markup,	and	use	the	docutils	tools	to	create	nice-looking	HTML	pages	or	LaTeX	files
suitable	for	publication	from	that	markup.

The	RST	markup	language	is	widely	used	for	creating	Python	documentation.	This
markup	allows	us	to	write	plain	text,	while	adhering	to	a	few	formatting	rules.	In	the	next
section,	we’ll	look	at	using	the	docutils	tools	to	parse	the	RST	and	create	an	output
document.

The	rules	of	RST	markup	are	simple.	There	is	paragraph-level	markup	that	applies	to	big
blocks	of	text.	Paragraphs	must	be	separated	by	blank	lines.	When	a	line	is	“underlined”
with	a	sequence	of	characters,	it	is	taken	as	a	heading.	When	a	paragraph	starts	with	an
isolated	punctuation	mark,	it’s	a	bullet.	When	a	paragraph	starts	with	a	letter	or	digit,	and	a
punctuation	mark,	this	indicates	numbers	instead	of	bullets.	The	docutils	rst2html.py
tool	transforms	each	paragraph	of	the	input	to	the	proper	kind	of	HTML	structure.

There	are	many	paragraph-level	“directives”	that	can	be	used	to	insert	an	image,	a	table,
an	equation,	or	a	large	block	of	code.	These	directives	are	prefixed	with	..	and	end	with
::.	We	might	use	the	directive	..	contents::	to	add	the	table	of	contents	to	our
document.

We	can	write	inline	markup	inside	the	body	of	a	paragraph.	Inline	markup	includes	a	few
simple	constructs.	If	we	surround	a	word	with	the	*	character,	like	*this*,	we’ll	see	the
word	in	an	italic-style	font	in	the	final	document;	we	can	use	**bold**	for	bold
characters.	If	we	want	to	write	a	*	character	without	confusing	the	tool,	we	can	escape	it
with	the	\	character.	In	many	cases,	however,	we’ll	need	to	use	a	more	complex	semantic
markup	that	looks	like	this:	:code:`code	sample`.	This	includes	the	text	role,	:code:,	as
a	prefix	that	shows	how	to	classify	the	marked	characters;	the	content	is	surrounded	by	the
`	character.	The	text	roles	of	:code:	and	:math:	are	widely	used.

When	we	write	a	docstring,	we’ll	often	use	additional	RST	markup.	We’ll	use	:param
name:	when	defining	the	parameter	to	a	function	or	class	method.	We	use	:returns:	to
annotate	the	return	values	from	a	function.	When	we	provide	this	additional	markup,
we’re	assured	that	various	formatting	tools	will	produce	elegant	documentation	from	our
docstrings.



Here’s	an	example	of	what	an	RST	file	might	contain:

Writing	RST	Documentation

==========================

For	more	information,	see	

http://docutils.sourceforge.net/docs/user/rst/quickref.html

1.		Separate	paragraphs	with	blank	lines.

2.		Underline	headings.

#.		Prefix	with	one	character	for	an	unordered	list.	Otherwise	it	may	be

				interpreted	as	an	ordered	list.

#.		Indent	freely	to	show	structure.

#.		Inline	markup.

				-			Use	``*word*``	for	*italics*,	and	``**word**``	for	**bold**.

				-			Use	``:code:\`word\```	for	more	complex	semantic	markup.

We’ve	shown	a	heading,	underlined	with	a	sequence	of	=	characters.	We’ve	provided	a
URL;	in	the	final	HTML	output,	this	will	become	a	proper	link	using	the	<a>	tag.	We’ve
shown	numbered	paragraphs.	When	we	omit	the	leading	number	and	use	#,	the	docutils
tools	will	assign	increasing	numbers.	We’ve	also	shown	indented	bullet	point	within	the
last	numbered	paragraph.

While	this	example	shows	numbering	and	simple	hyphen	bullets,	we	can	use	lettering	or
Roman	numerals	as	well.	The	docutils	tools	are	generally	able	to	parse	a	wide	variety	of
formatting	conventions.



Creating	HTML	documentation	from	an	RST
source
To	create	HTML	or	LaTeX	(or	any	of	the	other	supported	formats),	we’ll	use	one	of	the
docutils	frontend	tools.	There	are	many	individual	conversion	tools	that	are	part	of	the
docutils	package.

The	docutils	tools	are	not	part	of	Python.	See	http://docutils.sourceforge.net	for	the
download.

All	of	the	tools	have	a	similar	command-line	interface.	We	might	use	the	following
command	to	create	an	HTML	page	from	some	RST	input:

MacBookPro-SLott:Chapter_14	slott$	rst2html.py	ch14_doc.rst	

ch14_doc.rst.html

We’ve	provided	the	rst2html.py	command.	We’ve	named	the	input	file	and	the	output
file.	This	will	use	default	values	for	the	style	sheet,	and	other	optional	features	for	the
resulting	document.	We	can	configure	the	output	through	the	command	line	or	by
providing	a	configuration	file	that	assures	a	common	look	for	all	of	our	generated	HTML
files.

To	create	LaTeX,	we	can	use	the	rst2latex.py	or	rst2xetex.py	tool,	and	then	a	LaTeX
formatter.	TeX	Live	distribution	works	nicely	for	creating	a	PDF	file	from	LaTeX.	See
https://www.tug.org/texlive/.

For	large	and	complex	documents,	creating	a	single	RST	file	isn’t	ideal.	While	we	can	use
the	..	include::	directive	to	insert	material	from	separate	files,	the	document	must	be
built	as	a	whole,	which	requires	a	large	amount	of	memory;	rebuilding	a	document	after	a
small	change	might	require	a	disproportionate	amount	of	processing.

For	a	multipage	website,	we	have	to	use	a	tool	like	Make,	Ant,	or	SCons	to	rebuild	the
relevant	HTML	pages	when	a	source	RST	file	has	been	updated.	This	is	the	kind	of
overhead	that	calls	out	for	a	tool	to	automate	and	simplify	production	of	large	or	complex
documents.

http://docutils.sourceforge.net
https://www.tug.org/texlive/


Using	the	Sphinx	tool
The	Sphinx	tool	allows	us	to	easily	build	multipage	websites	or	complex	documents.	For
more	information,	see	http://sphinx-doc.org.	When	we	install	Sphinx	using	pip	or
easy_install,	the	installer	will	also	include	docutils	for	us.

To	create	sophisticated	documentation,	we’ll	start	with	the	sphinx-quickstart	script.
This	application	will	build	the	template	file	structure,	the	configuration	files,	and	a
Makefile	that	we	can	use	to	rebuild	our	documents	efficiently.

Sphinx	adds	a	large	number	of	directives	and	text	roles	to	the	basics	of	RST.	These
additional	roles	and	directives	make	it	easier	to	write	about	code	with	properly	formatted
references	to	modules,	classes,	and	functions.	Sphinx	simplifies	inter-document	references
—we	can	have	multiple	documents	with	consistent	references	to	a	target	location;	we	can
move	the	target	and	the	references	will	all	be	updated.

The	sphinx-build	command	is	used	to	construct	the	target	files	from	the	RST	source.
Sphinx	can	build	over	a	dozen	different	kinds	of	target	documents,	making	it	a	versatile
tool.

The	Python	documentation	is	built	with	Sphinx.	This	means	that	our	projects	can	include
documentation	that	looks	as	polished	and	elegant	as	Python’s	documentation.

http://sphinx-doc.org




Organizing	Python	code
Python	programs	should	be	beautiful.	To	that	end,	the	language	has	few	syntactic
overheads;	we	should	be	able	to	write	short	scripts	without	unpleasant	boilerplate.	The
principle	is	sometimes	articulated	as	Simple	things	should	be	simple.	The	“Hello	World”
script	really	is	a	single	line	of	code	that	uses	the	print()	function.

A	more	complex	file	will	generally	have	a	few	major	sections:

A	!#	line,	often	#!/usr/bin/env	python3.
A	docstring	comment	explaining	what	the	module	does.
The	function	or	class	definitions.	We	often	group	multiple	functions	and	classes	into
a	single	module.	The	module	is	the	proper	unit	of	reuse	in	Python.
If	the	module	can	be	run	as	a	main	script,	we’ll	include	an	if	__name__	==
"__main__":	section	that	defines	the	file’s	behavior	when	run	as	the	main	script.

Many	applications	are	too	complex	for	a	single	file.	When	designing	larger	applications,
the	Pythonic	ideal	is	to	keep	the	resulting	structure	as	flat	as	possible.	While	the	language
supports	nested	packages,	deep	nesting	is	not	seen	as	desirable.	In	Chapter	12,	Scripts,
Modules,	Packages,	Libraries,	and	Applications,	we	looked	at	the	details	of	defining
modules	and	packages.





Summary
In	this	chapter,	we’ve	looked	at	several	features	of	polished	and	complete	Python	projects.
The	most	important	feature	of	working	code	is	a	suite	of	unit	tests	that	demonstrate	that
the	code	works.	Code	without	test	cases	simply	cannot	be	trusted.	In	order	to	make	use	of
any	software,	we	must	have	tests	that	show	us	that	the	software	is	trustworthy.

We’ve	looked	at	including	tests	in	docstrings.	The	doctest	tool	can	locate	these	tests	and
execute	them.	We’ve	looked	at	creating	unittest.TestCase	classes.	We	can	combine	the
two	into	a	script	that	will	locate	all	doctest	and	unittest	test	cases	into	a	single	master
test	suite.

One	other	feature	of	good	software	is	some	explanation	of	how	to	install	and	use	the
software.	This	may	be	as	short	as	a	README	file	that	provides	basic	information.	Often,
however,	we	need	a	more	sophisticated	document	that	provides	a	variety	of	additional
information.	We	might	want	to	provide	context,	design	background,	or	examples	that	are
too	big	to	be	packaged	into	module	or	class	docstrings.	We’ll	often	write	documentation
using	tools	above	and	beyond	the	basic	components	that	come	with	Python.

In	Chapter	15,	Next	Steps,	we’ll	look	at	the	next	steps	in	our	exploration	of	Python.	Once
we’ve	mastered	the	essentials,	we	need	to	add	depth	to	the	areas	that	are	relevant	to	the
problems	we	need	to	solve.	We	might	want	to	study	big	data	applications,	web
applications,	or	game	development.	Each	of	these	more	specialized	areas	will	involve
additional	Python	concepts,	tools,	and	frameworks.





Chapter	15.	Next	Steps
After	studying	the	Python	basics,	what’s	next?	Each	developer’s	journey	will	vary,	based
on	the	general	architecture	of	the	application	that	they’re	going	to	build.	In	this	chapter,
we’ll	look	at	four	kinds	of	Python	applications.	We’ll	look	at	command-line	interface
(CLI)	applications	in	some	depth.	We’ll	look	briefly	at	graphical	user	interface	(GUI)
applications.	There	are	a	number	of	graphics	libraries	and	a	number	of	frameworks	that	we
might	use	for	this;	it’s	difficult	to	address	all	of	the	alternatives.

Web	server	applications	often	involve	a	sophisticated	web	framework	that	handles	the
standardized	overheads.	Our	Python	code	will	plug	into	this	framework.	As	with	GUI
applications,	there	are	several	commonly	used	frameworks.	We’ll	look	quickly	at	a	few
common	features	of	web	frameworks.	We’ll	also	look	at	the	big	data	context	as
epitomized	by	the	Hadoop	server’s	streaming	interface.

This	isn’t	intended	to	be	complete	or	even	representative.	Python	is	used	in	many	different
ways.



Leveraging	the	standard	library
When	implementing	Python	solutions,	it’s	helpful	to	scan	the	standard	library	for	relevant
modules.	The	library	is	large,	making	it	somewhat	intimidating	at	first.	We	can,	however,
focus	our	search.

We	can	break	the	Python	Standard	Library	document	into	three	portions.	The	first	five
chapters	are	general	reference	material	that	all	Python	programmers	need	to	understand.
The	next	20	chapters,	plus	chapters	28	and	32,	describe	modules	that	we	might	incorporate
into	a	wide	variety	of	applications.	The	remaining	chapters	are	less	useful;	they’re	more
focused	on	Python	internals	and	ways	in	which	to	extend	the	language	itself.

The	name	and	the	summary	of	a	module	in	the	library	table	of	contents	may	not	provide
enough	information	to	see	all	of	the	ways	in	which	a	module	might	be	used.	The	bisect
module,	for	example,	can	be	extended	to	create	a	fast	dictionary	that	retains	its	keys	in	a
defined	order.	This	isn’t	obvious	without	careful	reading	of	the	description	of	the	module.

Some	of	the	library	modules	have	relatively	small,	easy-to-understand	implementations.
For	larger	modules	and	packages,	there	are	often	pieces	that	can	be	lifted	out	of	context
and	reused	widely.	As	an	example,	consider	an	application	that	uses	http.client	to	make
REST	web	services	requests.	We	often	need	functions	from	the	urllib.parse	module	to
encode	a	query	string	or	properly	quote	parts	of	the	URL.	It’s	common	to	see	a	long	list	of
imports	at	the	front	of	Python	applications.





Leveraging	PyPI	–	the	Python	Package
Index
After	scanning	the	library,	the	next	place	to	look	for	additional	Python	packages	is	the
Python	Package	Index	(PyPI)	at	https://pypi.python.org/pypi.	There	are	thousands	of
packages	listed	here,	with	varying	degrees	of	support	and	quality.

As	we	noted	in	Chapter	1,	Getting	Started,	Python	3.4	also	installs	two	scripts	to	help	us
add	packages,	pip	and	easy_install.	These	search	PyPI	for	the	requested	package.	Most
packages	can	be	found	by	using	their	name;	the	tools	locate	the	appropriate	release	for	the
platform	and	Python	version.

We’ve	mentioned	a	few	external	libraries	in	other	chapters:

nose	for	writing	tests,	see	https://pypi.python.org/pypi/nose/1.3.6
docutils	for	writing	documentation,	see	https://pypi.python.org/pypi/docutils/0.12
Sphinx	for	writing	complex	documentation,	see
https://pypi.python.org/pypi/Sphinx/1.3.1

Additionally,	there	are	bundles	of	packages	available:	we	might	install	Anaconda,	NumPy,
or	SciPy,	each	of	which	includes	a	number	of	other	packages	in	one	tidy	distribution.	See
http://continuum.io/downloads,	http://www.numpy.org,	or	http://www.scipy.org.

In	some	cases,	we	may	have	Python	configurations	that	are	incompatible	with	each	other.
For	example,	we	may	have	to	work	in	two	environments,	one	using	the	older	Beautiful
Soup	3	with	the	other	using	the	newer	version	4.	Refer	to
https://pypi.python.org/pypi/beautifulsoup4/4.3.2.	To	simplify	this	switch,	we	can	use	the
virtualenv	tool	to	create	isolated	Python	environments	with	their	own	complex	trees	of
interdependent	modules.	See	https://virtualenv.pypa.io/en/latest/.

The	Python	ecosystem	is	large	and	sophisticated.	There’s	no	good	reason	to	invent	a
solution	in	a	vacuum.	It’s	often	best	to	locate	the	appropriate	components	or	partial
solutions,	then	download	and	extend	them.

https://pypi.python.org/pypi
https://pypi.python.org/pypi/nose/1.3.6
https://pypi.python.org/pypi/docutils/0.12
https://pypi.python.org/pypi/Sphinx/1.3.1
http://continuum.io/downloads
http://www.numpy.org
http://www.scipy.org
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
https://virtualenv.pypa.io/en/latest/




Types	of	applications
We’ll	look	at	four	types	of	Python	applications.	These	are	neither	the	most	common	nor
the	most	popular	kinds	of	Python	applications;	they	were	selected	more	or	less	randomly
based	on	the	author’s	narrow	experience.	Python	is	used	widely,	and	any	attempt	to
summarize	all	of	the	various	places	where	Python	is	used	runs	the	risk	of	misleading
rather	than	informing.

We’ll	look	at	CLI	applications	for	two	reasons.	Firstly,	they	can	be	relatively	simple,
relying	on	fewer	additional	packages	or	frameworks	than	other	kinds	of	applications.
Secondly,	more	complex	applications	will	often	be	launched	from	a	CLI	main	script.	For
these	reasons,	the	CLI	features	seem	to	be	fundamental	to	most	uses	of	Python.

We’ll	look	at	GUI	applications	because	they	are	popular	on	the	desktop.	The	difficulty
here	is	that	there	are	many	GUI	frameworks	available	for	Python	software	development.
Here’s	one	list:	https://wiki.python.org/moin/GuiProgramming.	We’ll	focus	on	the	turtle
package	because	it’s	simple	and	built-in.

We’ll	look	at	web	applications	because	Python	is	used	with	frameworks	such	as	Django	or
Flask	(among	many	others)	to	build	high-volume	websites.	Here’s	a	list	of	Python	web
frameworks:	https://wiki.python.org/moin/WebFrameworks.	We’ll	focus	on	Flask	because
it’s	relatively	simple.

We’ll	also	look	at	how	Python	can	be	used	with	Hadoop	streaming	to	perform	data
analytics.	Rather	than	download	and	install	Apache	Hadoop,	we’ll	touch	on	how	we	build
and	test	pipelined	map-reduce	processing	on	our	desktop.

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/WebFrameworks




Building	CLI	applications
Our	focus	from	the	initial	script	example	in	Chapter	1,	Getting	Started,	was	on	using	CLI
scripting	to	learn	Python	basics.	CLI	applications	have	a	number	of	common	features:

They	often	read	from	the	standard	input	file,	write	to	a	standard	output	file,	and
produce	logs	or	errors	in	the	standard	error	file.	The	OS	assures	us	that	these	files	are
always	available.	Python	provides	them	as	sys.stdin,	sys.stdout,	and	sys.stderr.
Furthermore,	functions	such	as	input()	and	print()	use	these	files	by	default.
They	often	use	environment	variables	for	configuration.	These	values	are	available
through	os.environ.
They	may	also	rely	on	shell	features,	like	expanding	~	into	a	user’s	home	directory,
something	done	by	os.path.expanduser().
They	often	parse	command-line	arguments.	While	the	variable	sys.argv	has	the
argument	strings,	these	are	awkward	to	work	with	directly.	We’ll	use	the	argparse
module	to	define	the	argument	patterns,	parse	the	strings,	and	create	an	object	with
the	relevant	argument	values.

These	basic	features	cover	many	programming	alternatives.	A	web	server,	for	example,
can	be	thought	of	as	a	CLI	program	that	runs	forever,	servicing	requests	that	come	from	a
specific	port	number.	A	GUI	application	might	start	from	the	command	line,	but	then	open
windows	to	permit	user	interaction.



Getting	command-line	arguments	with	argparse
We’ll	create	a	parser	to	use	the	command-line	arguments,	using	the	argparse	module.
Once	configured,	we	can	use	that	parser	to	create	a	small	namespace	object	which	has	all
of	the	argument	values	that	were	provided	on	the	command	line,	or	has	default	values.	Our
application	can	use	this	object	to	control	its	behavior.

Generally,	we	want	to	isolate	command-line	handling	from	the	rest	of	our	application.
Here’s	a	function	that	handles	parsing,	and	then	uses	the	parsed	options	to	invoke	another
function	to	do	the	real	work:

logger=	logging.getLogger(__name__)

def	main():

				parser=	argparse.ArgumentParser()

				parser.add_argument("-v",	"--verbose",

								action="store_const",	const=logging.DEBUG,	default=logging.INFO)

				parser.add_argument("c",	type=float)

				options=	parser.parse_args()

				logging.getLogger().setLevel(options.verbose)

				logger.debug("Converting	'{0!r}'".format(options.c))

				convert(options.c)

We’ve	built	an	ArgumentParser	method	using	all	of	the	default	parameters.	We	could
have	identified	the	program	name,	provided	a	summary	of	usage,	or	have	had	anything
else	displayed	when	someone	uses	the	-h	option	to	get	help.	We	omitted	these	extra	bits	of
documentation	to	keep	the	example	small.

We’ve	defined	two	arguments	for	this	application:	an	optional	argument	and	a	positional
argument.	The	optional	argument,	-v	or	--verbose,	stores	a	constant	value	in	the	resulting
collection	of	options.	The	name	of	this	attribute	is	the	long	name	of	the	argument,
verbose.	The	constant	provided	is	logging.DEBUG;	the	default	value	if	the	option	isn’t
present	is	logging.INFO.

The	positional	argument,	c,	accepts	one	command-line	argument	after	all	of	the	options
have	been	parsed.	The	value	for	nargs	can	be	omitted;	it	can	be	'*'	to	collect	all
arguments.	We’ve	provided	a	requirement	that	the	input	value	is	converted	by	the	float()
function,	which	means	that	non-numeric	values	will	be	rejected	with	an	error	during
argument	parsing.	This	will	be	set	as	the	c	attribute	of	the	resulting	object.

When	we	evaluate	the	parse_args()	method,	the	defined	arguments	are	used	to	parse	the
command-line	values	in	sys.argv.	The	options	object	will	have	the	resulting	values	or
defaults.

In	the	second	part	of	main(),	we’ve	used	the	options	object	to	set	the	logging	level	for
the	root	logger	using	the	verbose	argument	value.	We’ve	then	used	a	global	logger	object
to	dump	the	single	positional	argument	value	that	will	be	assigned	to	the	c	attribute	of	the
options	object.

Finally,	we’ve	evaluated	our	application	function	with	the	input	argument	value;	the	parser
assigned	this	to	the	options.c	variable.	The	function	which	does	the	real	work	is	designed



to	be	entirely	separate	from	the	command-line	interface	that	is	used	to	invoke	it.	The
function	accepts	a	floating-point	value	and	prints	a	result	to	a	standard	output.	It	can
leverage	the	module	global	logger	object.

Our	goal	in	designing	a	CLI	application	is	to	completely	separate	the	useful	work	from	all
interface	considerations.	This	allows	us	to	import	the	function	which	does	the	real	work,
and	build	larger	or	more	complex	applications	from	individual	pieces.	It	generally	means
that	the	command-line	arguments	are	transformed	into	ordinary	function	arguments	or
class	constructor	arguments.



Using	the	cmd	module	for	interactive	applications
Some	CLI	applications	require	user	interaction.	The	sftp	command,	for	example,	can	be
used	from	the	command	line	to	exchange	files	with	a	server.	We	can	create	similar
interactive	applications	using	Python’s	cmd	module.

To	build	a	more	complex	interactive	application,	we	can	create	a	class	which	extends	the
cmd.Cmd	class.	Each	method	in	this	class	that	has	a	name	starting	with	do_	defines	an
interactive	command.	For	example,	if	we	define	a	method	do_get(),	this	means	that	our
application	now	has	an	interactive	get	command.

Any	subsequent	text	after	the	user’s	input	of	get	will	be	provided	as	an	argument	to	the
do_get()	method.	The	do_get()	function	is	then	responsible	for	any	further	parsing	and
processing	of	the	text	after	the	command.

We	can	create	an	instance	of	this	class,	and	call	that	inherited	cmdloop()	method	to	have	a
working	interactive	application.	This	allows	us	to	deploy	a	working,	interactive
application	very	quickly	and	simply.	While	we’re	limited	to	a	character-mode,	command-
line	interface,	we	can	easily	add	features	without	much	extra	work.





Building	GUI	applications
We	can	differentiate	between	applications	which	merely	work	with	graphics	and
applications	which	are	deeply	interactive.	In	the	first	case,	we	might	have	a	command-line
application	which	creates	or	modifies	image	files.	In	the	second	case,	we’ll	define	an
application	which	responds	to	input	events.	These	interactive	applications	create	an	event
loop	which	accepts	mouse	clicks,	screen	gestures,	keyboard	characters,	and	other	events,
and	responds	to	those	events.	In	some	respects,	the	only	unique	feature	of	a	GUI	program
is	the	wide	variety	of	events	it	responds	to.

The	tkinter	module	is	an	interface	between	Python	and	the	Tk	user	interface	widget
toolkit.	This	module	helps	us	build	richly	interactive	applications.	When	we	use	Python’s
built-in	IDLE	editor,	we’re	using	an	application	that	was	built	with	tkinter.	The	tkinter
module	documentation	includes	background	information	on	the	Tk	widgets.

The	turtle	module	also	depends	on	the	underlying	Tk	graphics.	This	module	also	allows
us	to	build	simple	interactive	applications.	The	turtle	idea	comes	from	the	Logo
programming	language,	in	which	graphic	commands	are	used	to	animate	a	“turtle”	which
traverses	the	drawing	space.	The	turtle	model	provides	a	very	handy	specification	for
certain	types	of	graphics.	For	example,	drawing	a	rotated	rectangle	can	involve	a	rather
complex	calculation	involving	sine	and	cosine	to	determine	the	final	locations	of	the	four
corners.	Alternatively,	we	can	direct	the	turtle	to	use	commands	such	as	forward(w),
forward(l),	and	right(90)	to	draw	a	rectangle	of	the	size	w	×	l	from	any	starting
position	and	any	initial	rotation.

In	order	to	make	it	easy	to	learn	Python,	the	turtle	module	provides	some	essential
classes	that	implement	a	Screen	and	a	Turtle.	The	module	also	includes	a	rich	collection
of	functions	that	implicitly	work	with	a	singleton	Turtle	and	Screen	object,	eliminating
any	need	to	set	up	the	graphics	environment.	For	beginners,	this	function-only
environment	is	a	language	of	simple	verbs	that	can	be	used	to	learn	the	foundations	of
programming.

Simple	programs	look	like	this:

from	turtle	import	*

def	on_screen():

				x,	y	=	pos()

				w,	h	=	screensize()

				return	-w	<=	x	<	w	and	-h	<=	y	<	h

def	spiral(angle,	incr,	size=10):

				while	on_screen():

								right(angle)

								forward(size)

								size	*=	incr

We’ve	used	from	turtle	import	*	to	introduce	all	of	the	individual	functions.	This	is	the
common	setup	for	beginners.



We’ve	defined	a	function,	on_screen(),	which	compares	the	turtle’s	position,	given	by	the
pos()	function,	with	the	overall	size	of	the	screen,	given	by	the	screensize()	function.
Our	function	uses	a	simple	logical	expression	to	determine	if	the	current	turtle	position	is
still	within	the	display	boundaries.

For	people	learning	to	program,	the	implementation	details	of	the	pos()	and
screensize()	functions	may	not	be	that	helpful.	More	advanced	programmers	may	want
to	know	that	the	pos()	function	uses	the	Turtle.pos()	method	of	a	singleton,	global
Turtle	instance.	Similarly,	the	screensize()	function	uses	the	Screen.screensize()
method	of	a	singleton,	global	Screen	instance.

The	function	spiral()	will	draw	a	spiral-like	shape	using	three	parameters	that	define	the
line	segments	that	comprise	the	spiral.	This	function	relies	on	the	right()	and	forward()
functions	from	the	turtle	package	to	set	the	turtle’s	orientation	and	then	draw	a	line
segment.	While	the	calculation	of	the	end	point	of	the	segment	drawn	by	forward()	may
involve	a	bit	of	trigonometry,	a	new	programmer	is	able	to	learn	the	basics	of	iteration
without	struggling	with	sine	or	cosine.

Here’s	how	we	can	use	this	function:

if	__name__	==	"__main__":

				speed(10)

				spiral(size=10,	incr=1.05,	angle	=	67)

				done()

As	part	of	the	initialization,	we’ve	set	the	turtle	speed	to	10,	which	is	fast.	For	people
struggling	with	loops	or	conditions,	a	slower	speed	can	help	them	follow	their	code	as
they	watch	the	turtle.	We’ve	evaluated	the	spiral()	function	with	a	set	of	argument
values.

The	done()	function	will	start	a	GUI	event	processing	loop	that	will	wait	for	user
interaction.	We’ve	started	the	loop	after	the	interesting	part	of	the	drawing	because	the
only	expected	event	is	the	closing	of	the	graphics	window.	When	the	window	is	closed	by
the	user,	the	done()	function	will	also	finish.	Our	script	can	then	end	normally.

If	we’re	going	to	build	more	complex	interactive	applications,	there’s	a	proper
mainloop()	function	which	we	can	use.	This	captures	events	so	that	our	programs	can
respond	to	those	events.

The	Logo	language—and	the	related	turtle	package—allow	a	novice	programmer	to
learn	the	essentials	of	programming	without	having	to	master	too	many	details	at	one	time.
The	turtle	package	isn’t	designed	to	produce	the	same	kinds	of	sophisticated	technical
graphics	as	a	package	such	as	matplotlib	or	Pillow.



Using	more	sophisticated	packages
We	can	create	complex	image-processing	applications	using	the	Pillow	library.	This
package	allows	us	to	create	thumbnails	of	large	images,	convert	image	formats,	and	verify
that	a	file	actually	contains	encoded	image	data.	We	can	also	use	this	package	to	create
simple	scientific	graphics	showing	two-dimensional	plots	of	data	points.	This	package
isn’t	designed	to	build	a	complete	GUI	since	it	doesn’t	handle	input	events	for	us.	For
more	information,	see	https://pypi.python.org/pypi/Pillow/2.8.1.

For	mathematical,	scientific,	and	statistical	work,	the	matplotlib	package	is	widely	used.
This	includes	very	sophisticated	tools	for	creating	essential	data	plots	in	two	and	three
dimensions.	This	package	is	bundled	with	SciPy	and	Anaconda.	For	more	information,	see
http://matplotlib.org.

There	are	several	more	generalized	graphical	frameworks.	One	that’s	often	used	to	learn
more	about	Python	is	the	Pygame	framework.	This	has	a	large	number	of	components
which	include	tools	for	graphics	as	well	as	sound	and	image	processing.	The	Pygame
package	includes	a	number	of	graphics	drivers	and	is	capable	of	smooth	animation	with	a
large	number	of	moving	objects.	See	http://www.pygame.org/news.html.

https://pypi.python.org/pypi/Pillow/2.8.1
http://matplotlib.org
http://www.pygame.org/news.html




Building	web	applications
Web	applications	involve	a	great	deal	of	processing,	which	is	best	described	as	boilerplate.
The	essential	handling	of	the	HTTP	protocol,	for	example,	is	often	standardized,	with
libraries	that	handle	it	gracefully.	The	details	of	parsing	request	headers	and	mapping	a
URL	path	to	a	specific	resource	don’t	need	to	be	reinvented.

There	is,	however,	a	profound	distinction	between	simply	handling	the	HTTP	protocol	and
mapping	a	URL	to	an	application-specific	resource.	These	two	layers	drive	the	definition
of	the	Web	Services	Gateway	Interface	(WSGI)	design	and	the	wsgi	module	is	in	the
standard	library.	For	more	information,	see	Python	Enhancement	Proposal	(PEP)	3333,
https://www.python.org/dev/peps/pep-3333/.

The	idea	behind	WSGI	is	that	all	web	services	should	adhere	to	a	single,	minimum
standard	for	handling	the	details	of	HTTP	requests	and	responses.	This	standard	allows	a
complex	web	server	to	include	a	variety	of	Python	tools	and	frameworks	that	are	fitted
together	using	WSGI	to	ensure	that	components	interconnect	properly.	The	mapping	of
URLs	to	resources	must	be	handled	in	the	context	of	this	standard.

A	mod_wsgi	module	can	be	plugged	into	an	Apache	HTTPD	server.	This	module	will	pass
requests	and	responses	between	the	Apache	frontend	and	backend	Python	instances.	With
a	little	bit	of	planning,	we	can	be	sure	that	static	content—graphics,	style	sheets,
JavaScript	libraries,	and	so	on—are	handled	by	the	frontend	web	server.	The	dynamic
content—HTML	pages,	XML,	or	JSON	documents—are	handled	by	our	Python
application.

For	more	information	on	mod_wsgi,	see	http://www.modwsgi.org/.

https://www.python.org/dev/peps/pep-3333/
http://www.modwsgi.org/


Using	a	web	framework
Web	applications	in	this	context	are	generally	built	using	a	framework	that	parses	URLs
and	invokes	a	Python	function	to	return	the	resource	located	by	the	URL.	While	this	is
clearly	the	minimum	required	to	create	a	web	server,	there	are	often	a	large	number	of
additional	features	that	we’d	like	to	have.

Authentication	and	authorization,	for	example,	are	features	we	often	need	and	would
prefer	not	to	have	to	implement.	It’s	much	nicer	to	work	with	a	framework	that	allows	us
to	add	OAuth	client	code.	A	website	that	uses	cookies	will	also	benefit	from	having
session	management	features	that	integrate	seamlessly.

Many	websites	offer	RESTful	web	services.	Sometimes	these	services	are	thin	wrappers
around	database	access.	When	the	database	is	relational,	we	often	want	an	Object
Relational	Mapper	(ORM)	layer	that	allows	us	to	expose	more	complete	objects	through
the	RESTful	service.	This,	too,	is	a	good	option	for	a	web	server	framework.

There	are	two	broad	approaches	to	providing	web	services	in	Python:	kits	and	parts.	The
kits	approach	is	epitomized	by	packages	such	as	Django	which	offer	just	about	everything
that	could	possibly	be	required	in	a	unified	collection	of	modules	and	packages.	See
https://www.djangoproject.com.

The	parts	approach	can	be	seen	in	projects	such	as	Flask.	This	is	called	a
microframework	because	it	does	relatively	little.	A	Flask	server	focuses	on	URL	routing,
making	it	ideal	for	building	RESTful	services.	It	may	include	session	management,
allowing	it	to	be	used	for	HTML	sites.	It	cooperates	well	with	other	projects	such	as
Jinja2,	WTForms,	SQLAlchemy,	OAuth	authentication	modules,	and	many	other
modules.	For	more	information,	see	http://flask.pocoo.org/docs/0.10/.

https://www.djangoproject.com
http://flask.pocoo.org/docs/0.10/


Building	a	RESTful	web	service	with	Flask
We’ll	demonstrate	a	very	simple	web	service.	We’ll	use	the	algorithm	shown	earlier	in	the
turtle	example,	with	some	minor	modifications,	to	create	a	dynamic	graphic	download.	To
make	it	easier	to	create	a	downloadable	file,	we’ll	discard	the	simplistic	turtle	graphics
package	and	use	the	Pillow	package	to	create	the	image	file.	Many	websites	use	Pillow	to
validate	uploaded	images	and	create	thumbnails.	It’s	an	essential	part	of	any	site	that	uses
images.

For	more	information	on	Pillow,	see	https://pypi.python.org/pypi/Pillow/2.8.1.

A	web	service	must	provide	a	resource	in	response	to	an	HTTP	request.	A	simple	Flask-
powered	site	will	have	an	overall	application	object	and	a	number	of	routes	which	map
URLs	(and	possibly	method	names)	to	functions.

Here’s	a	simple	example:

from	flask	import	Flask,	request

from	PIL	import	Image,	ImageDraw,	ImageColor

import	tempfile

spiral_app	=	Flask(__name__)

@spiral_app.route('/image/<spec>',	methods=('GET',))

def	image(spec):

				spec_uq=	urllib.parse.unquote_plus(spec)

				spec_dict	=	urllib.parse.parse_qs(spec_uq)

				spiral_app.logger.info(	'image	spec	{0!r}'.format(spec_dict)	)

				try:

								angle=	float(spec_dict['angle'][0])

								incr=	float(spec_dict['incr'][0])

								size=	int(spec_dict['size'][0])

				except	Exception	as	e:

								return	make_response('URL	{0}	is	invalid'.format(spec),	403)

				#	Working	dir	should	be	under	Apache	Home.

				_,	temp_name	=	tempfile.mkstemp('.png')

				im	=	Image.new('RGB',	(400,	300),	color=ImageColor.getrgb('white'))

				pen=	Pen(im)

				spiral(pen,	angle=angle,	incr=incr,	size=size)

				im.save(temp_name,	format='png')

				#	Should	redirect	so	that	Apache	serves	the	image.

				spiral_app.logger.debug(	'image	file	{0!r}'.format(temp_name)	)

				with	open(temp_name,	'rb'	)	as	image_file:

								data	=	image_file.read()

				return	(data,	200,	{'Content-Type':'image/png'})

This	example	shows	three	central	features	of	Flask	applications.	This	script	defines	a
Flask	instance.	We’ve	based	the	instance	on	the	filename,	which	will	be	"__main__"	for	a
main	script,	but	will	have	the	module	name	for	an	imported	script.	We’ve	assigned	that
Flask	container	to	a	variable,	spiral_app,	for	use	throughout	the	module	file.

https://pypi.python.org/pypi/Pillow/2.8.1


A	more	complex	Flask	application	may	have	a	number	of	individual	view	functions	in	a
package	of	submodules.	Each	of	these	will	depend	on	the	global	Flask	application.

Our	image	resource	is	created	by	the	image()	function.	We	provided	a	route	decorator	for
this	function	that	shows	the	URL	path	and	the	methods	that	work	with	this	resource.	There
are	a	large	number	of	methods	defined	for	the	HTTP	protocol.	Many	RESTful	web
services	focus	on	POST,	GET,	PUT,	and	DELETE	because	these	match	the	idea	of	the
Create,	Retrieve,	Update,	and	Delete	(CRUD)	rules	commonly	used	to	summarize
database	operations.

We’ve	broken	down	the	image()	function	into	four	separate	pieces.	First,	we	need	to	parse
the	URL.	The	route	includes	a	placeholder,	<spec>,	which	Flask	parses	and	provides	as	a
parameter	to	the	function.	This	will	be	the	URL-encoded	parameter	to	describe	the	spiral.
It	might	look	like	this:

http://127.0.0.1:5000/image/size=10&angle=65.0&incr=1.05

Once	we’ve	decoded	the	specification,	we’ll	have	a	special	multi-valued	dictionary.	This
looks	as	if	the	input	came	from	an	HTML	form.	The	structure	will	be	a	mapping	from
form	field	names	to	a	list	of	values	for	each	field.	The	object	looks	like	this:

{'size':	['10'],	'angle':	['65.0'],	'incr':	['1.05']}

The	image()	function	only	uses	one	value	from	each	item;	each	input	must	be	converted
to	numeric	values.	We’ve	collected	all	of	the	potential	exceptions	into	a	single	except
clause,	obscuring	the	details	of	any	incorrect	input.	We	use	the	Flask	make_response()
function	to	build	a	response	with	an	error	message	and	a	status	code	of	403	(“Forbidden”).
A	more	sophisticated	function	would	use	the	Accept	header	to	formulate	a	response	as
JSON	or	XML,	depending	on	the	client’s	stated	preference.	We’ve	left	it	as	the	default
MIME	type	of	text/plain.

The	image	is	saved	into	a	temporary	file,	created	with	the	tempfile.mkstemp()	function.
In	this	case,	we’re	going	to	save	that	temporary	file	from	the	Flask	application.	For	a	low-
volume	website,	this	is	acceptable.	For	a	higher-volume	website,	a	Python	application
should	never	handle	downloads.	The	file	should	be	created	in	a	directory	where	the
Apache	HTTPD	server	can	download	the	image	instead	of	a	Python	application.

The	image	construction	uses	a	few	Pillow-defined	objects	to	define	the	drawing	space.	A
customized	class	defines	a	Pen	instance	which	parallels	the	turtle.Turtle	class.	Once	the
image	has	been	constructed,	it’s	saved	with	the	given	filename.	Note	that	the	Pillow
package	can	save	files	in	a	wide	variety	of	formats;	we’ve	used	.png	in	this	example.

The	final	section	downloads	the	file.	The	comment	notes	that	a	high-volume	website
would	redirect	to	a	URL	from	which	Apache	would	download	the	image	file.	This	frees	up
the	Flask	server	to	handle	another	request.

Note	that	the	local	namespace	in	this	function	will	have	two	copies	of	the	image.	The	im
variable	will	hold	the	entire,	detailed	image.	The	data	variable	will	hold	the	compressed
filesystem	version	of	the	image	document.	We	could	use	del	im	to	remove	the	image
object;	however,	it	is	generally	better	to	decompose	this	into	two	functions	so	that



namespaces	handle	object	removal	for	us.

We	can	run	a	demonstration	version	of	this	service	with	the	following	script:

if	__name__	==	'__main__':

				spiral_app.run(debug=True)

This	allows	us	to	work	with	a	running	web	server	on	our	desktop.	We	can	then	experiment
with	different	implementation	alternatives.

What’s	important	about	this	example	is	that	we	can—very	quickly—have	a	service
running	in	our	desktop	environment.	We	can	then	explore	and	experiment	with	the	user
experience	very	easily.	For	example,	since	the	image	will	be	embedded	in	an	HTML	page,
we	want	to	design	and	debug	the	HTML,	CSS,	and	JavaScript	for	that	page.	This	whole
development	process	is	made	easier	when	we	have	a	simple,	easily-tweaked	web	server.





Plugging	into	a	MapReduce	framework
For	background	on	the	Apache	Hadoop	server,	see	https://hadoop.apache.org.	Here’s	the
summary:

The	Apache	Hadoop	software	library	is	a	framework	that	allows	for	the	distributed
processing	of	large	datasets	across	clusters	of	computers	using	simple	programming
models.	It	is	designed	to	scale	up	from	single	servers	to	thousands	of	machines,	each
offering	local	computation	and	storage.

One	part	of	the	Hadoop	distributed	processing	is	the	MapReduce	module.	This	module
allows	us	to	decompose	analysis	of	data	into	two	complementary	operations:	map	and
reduce.	These	operations	are	distributed	around	the	Hadoop	cluster	to	be	run	concurrently.
A	map	operation	processes	all	of	the	rows	of	datasets	that	are	scattered	around	the	cluster.
The	outputs	from	map	operations	are	then	fed	to	reduce	operations	to	be	summarized.

The	Hadoop	streaming	interface	can	be	used	by	Python	programmers.	This	involves	a
Hadoop	“wrapper”	that	will	present	the	data	to	a	Python	mapper	program	as	the	standard
input	file.	The	standard	output	from	a	mapper	must	be	tab-delimited	key-value	pairs.
These	are	sent	to	the	reduce	programs,	again	as	standard	input.	For	more	information	on
packages	that	help	Python	programmers	use	Hadoop,	see
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/.

One	common	example	of	MapReduce	operations	is	creating	a	concordance	of	words
found	in	books.	The	mapping	operation	will	transform	a	giant	text	file	into	sequences	of
words	found	in	the	text	file.	The	reduce	operation	will	count	the	occurrences	of	each	word,
resulting	in	a	final	summary	of	words	and	their	popularity.	(For	more	information	on	how
important	this	can	be,	visit	the	NLTK	website:	http://www.nltk.org.)

Practical	problems	may	involve	multiple	mappings	and	multiple	reductions.	In	many
cases,	the	mappings	will	often	seem	trivial:	they’ll	extract	a	key	and	a	value	from	each
row	of	source	data.	Rather	than	study	Hadoop	too	much,	we’ll	show	how	we	can	write	and
test	mappers	and	reducers	on	our	desktop.

Our	goal	is	to	have	two	programs,	map.py	and	reduce.py,	that	can	be	combined	into	a
stream	like	this:

cat	some_file.dat	|	python3	map.py	|	sort	|	python3	reduce.py

This	approach	will	simulate	Hadoop	streaming	by	supplying	data	to	our	map.py	program
and	our	reduce.py	program.	This	will	serve	as	a	simple	integration	test	for	our	map	and
reduce	processing.	For	Windows,	we	would	use	the	type	command	instead	of	the	Linux
cat	program.

Let’s	look	at	some	raw	climate	data	from	the	US	National	Ocean	and	Atmospheric
Administration’s	National	Climatic	Data	Center.	Refer	to	http://www.ncdc.noaa.gov/cdo-
web/	for	climate	data	online.	We	can	request	files	with	details	such	as	snowfall	for	a	given
time	period.

https://hadoop.apache.org
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
http://www.nltk.org
http://www.ncdc.noaa.gov/cdo-web/


Our	question	is	“Which	months	have	snowfall	at	the	Richmond,	VA,	airport?”	The
snowfall	data	attribute	is	named	TSNW.	It’s	in	units	of	one-tenth	of	an	inch,	so	our	mapper
needs	to	convert	it	to	Decimal	inches	to	be	more	useful.

We	can	write	a	map	script	that	looks	like	this:

import	csv

import	sys

import	datetime

from	decimal	import	Decimal

if	__name__	==	"__main__":

				rdr	=	csv.DictReader(sys.stdin)

				wtr	=	csv.writer(sys.stdout,	delimiter='\t',	lineterminator='\n')

				for	row	in	rdr:

								date	=	datetime.datetime.strptime(row['DATE'],	"%Y%m%d").date()

								if	row['TSNW']	in	('0',	'-9999',	'9999'):

												continue	#	Zero	or	equipment	error:	reject

								wtr.writerow(	[date.month,	Decimal(row['TSNW'])/10]	)

Because	our	input	is	in	more	or	less	standard	CSV	notation—with	a	heading—we	can	use
a	csv.DictReader	object	to	parse	the	input.	Each	row	of	data	is	a	dict	object	with	keys
defined	by	the	first	line	of	the	CSV	file.	The	output	is	more	specialized:	with	Hadoop	it
must	be	a	tab-delimited	key	and	value,	terminated	with	a	newline	character.

For	each	input	dictionary	object,	we’ll	convert	the	date	from	text	to	a	proper	Python	date
so	that	we	can	reliably	extract	the	month.	We	could	do	this	by	using	row['DATE'][4:6],
but	that	seems	opaque.	The	mapper	includes	a	filter	to	reject	months	that	have	no	snow,	or
have	a	domain-specific	null	value	(9999	or	-9999)	instead	of	a	measurement.

The	output	is	a	key	and	a	value.	Our	key	is	the	reported	month;	the	value	is	the	snowfall
converted	from	one-tenth	inch	to	inch	measurements.	We’ve	used	the	Decimal	class	to
avoid	introducing	floating-point	approximations.

The	reduce	operation	uses	a	Counter	object	to	summarize	the	results	produced	by	the
mapper.	For	this	example,	the	reduce	looks	like	this:

import	csv

import	sys

from	collections	import	Counter

from	decimal	import	Decimal

if	__name__	==	"__main__":

				rdr=	csv.DictReader(

								sys.stdin,	fieldnames=("month","snowfall"),

								delimiter='\t',	lineterminator='\n')

				counts	=	Counter()

				for	line	in	rdr:

								counts[line['month']]	+=	Decimal(line['snowfall'])

				print(	counts	)

The	reduce	reader	matches	the	mapper’s	writer:	they	both	use	a	delimiter	of	a	tab	and	a
line	terminator	of	the	newline	character.	This	follows	Hadoop’s	requirements	for	the	data
that	flows	from	mappers	to	reducers.	We’ve	also	created	a	Counter	object	to	store	our
snowfall	data.



For	each	line	of	input,	we	extract	the	inches	of	snowfall	and	accumulate	those	in	the
Counter	object	with	a	key	of	the	month	number.	The	final	result	will	show	the	inches	of
snow	for	each	month	in	the	greater	Richmond	metropolitan	area.

We	can	easily	test	and	experiment	with	this	on	our	desktop.	We	can	execute	a	pipeline	of
mapper,	sort,	and	reducer	using	either	a	shell	script	or	perhaps	a	little	wrapper	program
like	this:

import	subprocess

dataset	=	"526212.csv"

command	=	"""cat	{dataset}	|	python3	-m	Chapter_15.map	|	sort	|

				python3	-m	Chapter_15.reduce"""

command	=	command.format_map(locals())

result=	subprocess.check_output(command,	shell=True)

for	line	in	result.splitlines():

						print(	line.decode("ASCII")	)

We’ve	created	a	command	that	will	work	on	Mac	OS	X	or	Linux,	and	substituted	a
filename	into	that	command.	For	Windows	we	can	use	type	instead	of	cat;	the	Python
program	might	be	named	python	instead	of	python3.	Otherwise,	the	shell	pipeline	should
work	fine	in	Windows.

We’ve	used	the	subprocess.check_output()	function	to	run	this	shell	command	and
collect	the	output.	This	is	a	quick	way	to	experiment	with	our	Hadoop	programs	while
avoiding	the	delays	associated	with	using	a	busy	Hadoop	cluster.

This	approach	works	well	as	long	as	we	stick	to	elements	of	the	libraries	that	are	properly
installed	in	the	Hadoop	environment.	In	some	cases,	our	cluster	might	have	Anaconda
installed,	giving	us	access	to	a	wide	variety	of	packages.	When	we	want	to	use	our	own
package—one	that’s	not	installed	throughout	the	cluster—we’ll	need	to	provide	the
additional	module	to	the	Hadoop	streaming	command	to	be	sure	that	our	additional
modules	are	downloaded	to	each	node	in	the	cluster,	along	with	our	mapper	and	reducer.





Summary
In	this	chapter,	we’ve	looked	at	several	kinds	of	Python	applications.	While	Python	is	used
widely,	we’ve	picked	a	few	areas	of	focus.	We’ve	looked	at	CLI	applications	capable	of
processing	large	volumes	of	data.	The	command-line	interface	is	also	present	in	other
kinds	of	applications,	making	this	a	fundamental	part	of	any	program.

We’ve	looked	at	GUI	programs,	using	only	the	built-in	turtle	module.	The	GUI
frameworks	that	are	widely	used	involve	downloads,	installation,	and	more	sophisticated
programming	that	we	could	not	illustrate	in	a	single	chapter.	There	are	several	popular
choices;	there’s	no	consensus	on	a	“best”	package	for	GUI	applications.	Making	a	choice
is	difficult.

We’ve	also	looked	at	web	applications,	using	the	Flask	module.	This	is	also	a	separate
download.	In	many	cases,	there	are	a	number	of	related	downloads	that	will	become	part
of	a	web	application.	We	might	include	Jinja2,	WTForms,	OAuth,	SQLAlchemy,	and
Pillow,	to	expand	the	web	server’s	libraries.

We’ve	also	looked	at	how	we	might	leverage	desktop	Python	to	develop	Hadoop
applications.	Rather	than	download	and	install	Hadoop,	we	can	create	a	processing
pipeline	that	follows	the	Hadoop	approach.	We	can	write	mappers	and	reducers	using	only
desktop	tools,	allowing	us	to	create	reliable	unit	tests.	This	gives	us	the	confidence	that
we’ll	get	the	expected	results	when	running	our	applications	on	the	Hadoop	cluster	with	a
complete	set	of	data.

This	isn’t	all,	of	course.	Python	can	be	used	inside	another	application	as	the	language	for
automating	that	application.	A	program	can	embed	a	Python	interpreter	which	interacts
with	the	overall	application.	For	more	information,	see
https://docs.python.org/2/extending/embedding.html.

We	can	imagine	the	universe	of	Python	applications	as	a	large	body	of	water	filled	with
islands,	archipelagos,	inlets,	and	estuaries.	Chesapeake	Bay	on	the	US	East	Coast	is	an
example.	We’ve	tried	to	show	the	principal	features	of	this	bay:	the	headlands,	points,
shallows,	and	coastlines.	We’ve	avoided	the	effects	of	currents,	weather,	and	tides,	so	that
we	can	focus	on	the	essential	features	of	the	bay.	Pragmatic	navigation	along	a	specific
route	requires	more	study	of	the	area	of	interest:	detailed	navigation	charts,	pilot	guides,
and	local	knowledge	from	other	mariners.

It’s	important	to	consider	the	extent	of	the	Python	universe.	The	distance	to	a	destination
can	appear	daunting.	Our	objective	has	been	to	show	some	principal	waypoints	that	can
help	break	a	long	voyage	into	shorter	legs.	If	we	isolate	the	legs	of	a	long	journey,	we	can
solve	each	of	them	separately	and	build	a	larger	solution	from	the	pieces.

https://docs.python.org/2/extending/embedding.html
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