Descriptors

Understanding and Using the
Descriptor Protocol

Second Edition

Jacob Zimmerman

ApPress’

Python Descriptors

Understanding and Using
the Descriptor Protocol

Second Edition

Jacob Zimmerman

Apress’

Python Descriptors: Understanding and Using the Descriptor Protocol

Jacob Zimmerman
New York, USA

ISBN-13 (pbk): 978-1-4842-3726-7 ISBN-13 (electronic): 978-1-4842-3727-4
https://doi.org/10.1007/978-1-4842-3727-4

Library of Congress Control Number: 2018960194

Copyright © 2018 by Jacob Zimmerman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484237267. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3727-4

Table of Contents

About the AUtROFcccssemmsssnnmsssnnmssssnmsssssmsssssssssnsssssnnssssnnssssnnssssnnnnss vii
About the Technical REVIEWETccuurissssssnmssnnsmmmssssssssssssssssssssssssssnnnns ix
Acknowledgments........cccccuussssssssnnmmmmsssssssssssssnsssessssssssssssnnssssssssssnnnnnns Xi
Introductioncccousssnmmnmmssssnnnnssssssnnnsssssnnnsnssssnnnnnsssnnnnnssssnnnnnnnssnnnnnss xiii
Part I: About DesScCriptorscccuummmmssssnmmssssnnnmmmmssssssssssssssssssnsnnnnns 1
Chapter 1: What Is a DeSCriptor?.......cccceurrmmmmmsssssssnnmssssssssssssssssssesssnns 3
Data Descriptors versus Non-Data DescCriptorsccccvervnvnnnneninsensensiensenienns 4
The Use of Descriptors by Python...........ccccvvninisnsnnnnnsnsesc s 4
SUMMANY..c..eitiircire s e e s p e e e e e e e e R s 5
Chapter 2: The Descriptor Protocolcccuunnmmmmmmmnnnnnsssssssssssnsnmessnnes 7
The __get__(self, instance, owner) Method............coceevvennenercsrnscsneseseenenes 7
The __set__(self, instance, value) Methodccoovvevrenmrnsesnesennesesssesenseens 8
The __delete__(self, instance) Method..........cccovvrvririnnnvninnenn s 9
1] 4= 7 10
Chapter 3: What Are Descriptors Good FOor?cccunsmmmmnssssnnnssssssnnns 11
Pros of Python DesCriplors.........cccuivinnnninnnsnsesse s ssessssessesnens 11
T2 0L 1] L1 0] 1
Reuse of Read/Write Patternsccccvvnevnicnncnncsenesess s 12
Writing for the Class LEVEL........ccvevererrerierenssserseressssessessessssessessessessssessessens 13

iii

TABLE OF CONTENTS

Cons of Python DeSCriPIOrS........ccccvvrirnsninie st sre s s s 13
ENCapSUlation ... s 13

Can Be Difficult TO WHTcovueeecrerern e 14
Additional ODJECTS......couruererererirerere s sesaenens 14
SUMIMANY....eieeeeceee e se e r e e s e s re e e e 14
Chapter 4: Descriptors in the Standard Library...........ccccunnsssnnnnnennnnnas 15
The Property Class ... s s s sss s sae s 16
The classmethod DESCHPLOLcuvcereverenerere s 18
The staticmethod DESCHIPIOL.cvevvrrirere e 19
Regular Methods...........cocvverieninirsir s s s s 19
11T 1117 O 20
Chapter 5: Attribute Access and DeSCriptorscccussesmmssssssnssssssnnnnss 21
INSEANCE ACCESS ..c.vvueerreerreeressesesrese s sesse e e sre s e s se e e s e s e e sseesessssenns 22
Set and Delete CallS........coovvererenerneserese e 27
The Reasoning Behind Data versus Non-Data Descriptors.........ccccuvvrernserenennns 28
1] 4= O 28
Part Il: Making Descriptorscccueemmmmmmmsssnsnmmmmssssssnnmsssssssnnns 29
Chapter 6: Which Methods Are Needed?c..cccmrmsssnnmnmssssnnnssssssnnnnns 31
When __get_ () Is Called Without an instance Argument.............ccceeevviniernenn. 32
Raise Exception or Return Selfcccvvivnininnnnsnsne s 32
“Unbound” ALHDULEScovecerereeereserese s 33
SUMMANY....eitierresere e e s e e r e 37
Chapter 7: Storing the Attributes...........cconsmmmmssnnmssnnmsssssmsssssssssssssnns 39
ClasS-LEVEl STOrAQgecveererrrrerrerierersssessersessesessesse e ssesessessessessssessessessessssessesees 39
Storing Data on the DESCHIPIOr......ccvevvverrerere s s e e e naerees 40
Storing on the Instance DiCtioNaryc.cvvvvvvieverenveriereres e senernens 46

iv

TABLE OF CONTENTS

Asking for the LOCAtioN...........cccvierinnininiennsnse s 48
Indirectly Asking for the LOCationc.cccovrenrencrnscnnenesese s e 50
NaME MANGINGceeeeeeereecreree e 51
Store the Original and the Mangled.............coooorrerrennierrecrr e 54
SUMMANY....ceieereresere s s se s e e s e e nre e nns 57
Chapter 8: Read-0nly DeScriptorscc.ucccmmmsssnnnnmmssssnnnssssssssssssssnnnns 59
Set-0NCe DESCHIPIOrS.....cov e 60
SeCret-Set DESCHPLOrS.....cuvevirerrerie st s se e naeenes 61
FOrced-Set DESCHIPLOrScvvevererrerierereeserrerese s sesse s se s e s e s ssesessessesaesessensesaens 62
Class CONSIANTScccorerrrenerererersese s 63
SUMIMANY.....eeeeeeeeree e e s e s e s e e re e e e e 65
Chapter 9: Writing__delete_ ()..cccuummsmmmmmmmmmmmmmmsssssssssnnsmssssssssssssssnssnnas 67
SUMMANY....ceiiieeiresere s s e p e e 68
Chapter 10: Descriptors Are Classes T00.......cuuusmsmssssssssssssssssssssssnsnans 69
INNEMTANCE ... coveecerccir e 69
More Methods.........ccoimrnn s ———— 70
Optional/Default Parameters.......ccovevvvrverierenessersesessssessesessessssessessessessssessesees 70
Descriptors 0n DESCHPLOrSccccvvierisnine e eneas 70
Passing an INStance AroUN...........ccovoereerrenerere e 71
Descriptors Just Abstract Method Calls.........ccocvvrvniennininnnnrne e 72
SUMMANY....ceivieerreserre s e e pe e nr e e 72
Chapter 11: Reusing the Wheelccouvcmmnimmnsemmssnmmsssmssssmsssssssnses 73
0] 10 L0] 0] 73
Read-0nly SOIUTIONS.......ccvvrerererrerreressesersersessesessessessessssesessessssessessessessssensesaens 76
Simple Unbound ARFDULESccvverinirrcr s 78
SUMMANY....eeieeresere e e e s e nre e 80

TABLE OF CONTENTS

Chapter 12: Instance-Level DeScriptorsccucccurrnssnnnnnssssssnssssssnnnns 81
Properties in Other LangUages.........ccoeecvrerereneresserinsesenesessesesessesesesessesessssesenns 81
Back 10 PYINON ..o 82

ALEMPL 1. ——————— 82
ALEMPL 2. ——————— 83
ALEMPL 3. ————————— 85
ALEMPL 4. —————————— 85
e 11110 OSSOSO 87
GO NUES . 88

Chapter 13: Other Uses of Descriptors In the World.............cccusveennens 89
LAY o 1 Ty O 89
B T] T R 90
EIK oottt se e s 90
L1211 U0] SRR 91
RS T 1T T o S 91

Bibliographycccccuvisssemnmmssssnnnmmssssssnmmssssssnmsssssnsnsessssnnnssssssnnnsssssnnnnnssss 93

INA@X.ciiiesiienriesssnsssas s s s 95

About the Author

Jacob Zimmerman is a blogger, gamer (tabletop more so than video
games), and programmer who was born and raised in Wisconsin. He has a
twin brother who could also be considered to have all those traits.

Jacob has his own programming blog that focuses on Java, Kotlin,
and Python programming, called “Programming Ideas with Jake” He also
writes for a gaming blog with his brother-in-law called the “Ramblings of
Jacob and Delos”.

His brother writes a JavaScript blog called JoeZim]S and works with
his best friend on a gaming YouTube channel called “Bork & Zim Gaming,”
which Jacob helps out with on occasion.

Programming Ideas with Jake

http://programmingideaswithjake.wordpress.com/

Ramblings of Jacob and Delos

http://www.ramblingsofjacobanddelos.com/

JoeZim]S

http://www.joezimjs.com

vii

http://programmingideaswithjake.wordpress.com/
http://www.ramblingsofjacobanddelos.com/
http://www.joezimjs.com

About the Technical Reviewer

Michael Thomas has worked in software development for more than 20
years as an individual contributor, team lead, program manager, and vice
president of engineering. Michael has more than 10 years of experience
working with mobile devices. His current focus is in the medical sector,
using mobile devices to accelerate information transfer between patients
and health care providers.

ix

Acknowledgments

In order to be sure that I got everything right—it would really suck for a
“comprehensive guide” to be missing a big chunk of functionality or to get
anything wrong—I enlisted the help of some Python experts on the first
edition. In return for their help, I let them introduce themselves to you
here. That’s not all I did in return, but it’s all you're going to see :)

Emanuel Barry is a self-taught Python programmer who loves pushing
the language to its limits as well as exploring its darkest corners. He has to
do alot of proofreading and editing for a local non-for-profit organization,
and decided to combine his love of Python and knowledge sharing with
his background in proofreading to help make this book even better. He can
often be found in the shadows of the mailing lists or the issue tracker, as
well as the Python IRC channel, as Vgr.

Chris Angelico has played around with Python since the late 90s, getting
more serious with the language in the mid 2000s. As a PEP Editor and active
participant in the various mailing lists, he keeps well up to date with what’s
new and upcoming in the language and also shares that knowledge with
fledgling students in the Thinkful tutoring/mentoring program. When not
coding in Python, he is often found wordsmithing for a Dungeons & Dragons
campaign, or exploring the linguistic delights of Alice in Wonderland and
similar works. If you find a subtle Alice reference in this text, blame him!

https://github.com/Rosuav

Kevin Mackay is a software engineer who has been programming in
Python since 2010 and is currently working at BBC, improving the Taster
platform. He is enthusiastic about open source software and occasionally
contributes to the 3D graphics application, Blender. He can be found on the
Python IRC channel as yakca or hiking on a mountain somewhere in Scotland.

Introduction

Python is a remarkable language with many surprisingly powerful features
baked into it. Generators, metaclasses, and decorators are some of those,
but this book is all about descriptors.

Code Samples

All code samples are written in Python 3, since that is the most recent
version, but all the ideas and principles taught in this book apply to Python
2 as well, as long as you're using new style classes.

The Descriptor Tools Library

Written alongside this book was a library, called descriptor-tools, which
can be installed with pip. It contains the fruition of a lot of the ideas and
helpers to make it easier to implement them all. It’s an open source project
with a public GitHub repository.!

Note Superscript letters like the one at the end of the previous line
are in reference to the bibliography at the back of the book, which
includes URLs to the referenced site.

xiii

INTRODUCTION

Conventions in This Book

When the text mentions “class” and “instance” in a general sense, they
refer to a class that has a descriptor attribute and to instances of such
classes, respectively. All other classes and instances will be referred to
more specifically.

New in the 2nd Edition

The 2" edition is an update including new features of Python as well as
new ideas to learn. One of the new things is incredibly important if this
book wants to maintain the status of “comprehensive” guide that it strives
for. This important addition is about the addition of _set name__ () to the
descriptor protocol in Python 3.6. You can read about this in Chapter 7,
“Storing the Attributes”.

Another addition is an idea that was inspired by looking into the
__set_name__ () addition to the protocol, which you'll see just after the
section on that addition. Also, I added a chapter on creating instance-level
descriptors, which were added to descriptor-tools well before this edition
really got started.

The next thing is actually a change, not an addition. Since writing
the first book, I found out about the built-in function vars(). Calling
vars(obj) is equivalenttoobj. dict , butis more Pythonic. Kind of
like calling len(obj) instead of obj. len (). So the code examples
have been updated to use vars (). Any remaining references to __dict
are purposeful.

Pretty much everything else new in this edition is just cleaning up the
language to be more legible.

Xiv

PART |

About Descriptors

Part I is a deep explanation of what descriptors are, how they work, and
how they’re used. It gives enough information that you should be able to
look at any descriptor and understand how it works and why it works that
way, assuming the writer of the code made the code legible enough.
Creating your own descriptors isn’t difficult once you have the
information from Part I, but little to no guidance is given to help with
it. Instead, Part II covers that with a bunch of options for creating new
descriptors, as well as tips for avoiding common mistakes.

CHAPTER 1

What Is a Descriptor?

Put very simply, a descriptor is a class that can be used to call a method
with simple attribute access, but there’s obviously more to it than that. It’s
difficult to explain beyond that without digging a little into how descriptors
implemented. So, here’s a high-level view of the descriptor protocol.

A descriptor implements at least one of these three methods:
_get (), __set_ (),or__delete ().Each of those methods has a list
of parameters needed, which will be discussed a little later, and each is
called by a different sort of access of the attribute the descriptor represents.
Doing simple a.x access will call the __get () method of x; setting the
attribute usinga.x = valuewill callthe _set () method of x; and using
del a.xwill call, as expected, the __delete () method of x.

Note Since version 3.6, there’s another method that descriptors
can take advantage of, called __set name__ (), but using just
that method doesn’t make it a descriptor the way any of the other
three will. This method will be mostly ignored for a while, since it
doesn’t have as big a role into how descriptors work. It will only be
mentioned where most relevant.

As stated, only one of the methods needs to be implemented in
order to be considered a descriptor, but any number of them can be
implemented. And, depending on descriptor type and on which methods

© Jacob Zimmerman 2018 3
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_1

CHAPTER 1 WHAT IS A DESCRIPTOR?

are implemented, not implementing certain methods can restrict certain
types of attribute access or provide interesting alternative behaviors for
them. There are two types of descriptors based on which sets of these
methods are implemented: data and non-data.

Data Descriptors versus Non-Data
Descriptors

A data descriptor implements atleast __set () or __delete (), but
can include both. Data descriptors also often include __get () sinceit’s
rare to want to set something without also being able to get it too. You can
get the value, even if the descriptor doesn’tinclude _get (), butit’s
either roundabout or the descriptor writes it to the instance. That will be
discussed more later.

A non-data descriptor only implements __get ().Ifitaddsa _set ()
or__delete () method, it becomes a data descriptor.

Unfortunately, the PyPy interpreter (up to version 2.4.0) gets this a little
bit wrong. It doesn’t take __delete () into consideration until it knows
that it’s a data descriptor, and PyPy doesn’t believe something is a data
descriptor unless __set () is implemented. Luckily, since a huge majority
of data descriptors implement __set (), this rarely becomes a problem.

It may seem like the distinction is pointless, but it is not. It comes into
play upon attribute lookup. This will be discussed more later, but basically,
the distinction is the types of uses it provides.

The Use of Descriptors by Python

It is worth noting that descriptors are an inherent part of how Python
works. Python is known to be a multi-paradigm language, and as such
supports paradigms such as functional programming, imperative

CHAPTER 1 WHAT IS A DESCRIPTOR?

programming, and object-oriented programming. This book does not
attempt to go into depth about the different paradigms; only the object-
oriented programming paradigm will be observed. Descriptors are used
implicitly in Python for the language’s object-oriented mechanisms. As will
be explained shortly, methods are implemented using descriptors. As you
may guess from reading this, it is thanks to descriptors that object-oriented
programming is possible in Python. Descriptors are very powerful and
advanced, and this book aims to teach Python programmers how to use
them fully.

Summary

As you have seen, descriptors occupy a large part of the Python language, as
they can replace attribute access with method calls, and even restrict which
types of attribute access is allowed. Now that you have a broad idea of how
descriptors are implemented as well as their use by the language, we will
dig a little deeper yet, gaining a better understanding of how they work.

CHAPTER 2

The Descriptor
Protocol

In order to get a better idea of what descriptors are good for, let’s finish
showing the full descriptor protocol. It’s time to see the full signatures of
the protocol’s methods and what the parameters are.

The __get__(self, instance, owner) Method

This method is clearly the method for retrieving whatever data or object the
descriptor is meant to maintain. Obviously, self is a parameter, since it’s a
method. Also, it receives instance and/or owner. We'll start with owner.
owner is the class that the descriptor is accessed from, or else the
class of the instance it’s being accessed from. When you make the call
A.x (A being a class), and x is a descriptor object with __get (), it’s called
with an owner with the instance set to None. So the lookup gets effectively
transformed intoA. __dict_ ['x']. get (None, A).Thisletsthe
descriptor know that __get () is being called from a class, not an instance.
owner is also often written to have a default value of None, but that’s largely
an optimization that only built-in descriptors take advantage of.
Now, onto the last parameters. instance is the instance that the
descriptor is being accessed from, if it is being accessed from an instance.
As previously stated, if None is passed into instance, the descriptor knows

© Jacob Zimmerman 2018 7
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_2

CHAPTER 2 THE DESCRIPTOR PROTOCOL

that it’s being called from the class level. But, if instance is not None, then it
tells the descriptor which instance it’s being called from. So an a. x call will
be effectively translated to type(a). dict ['x"']. get (a, type(a)).
Notice that it still receives the instance’s class. Notice also that the call still
starts with type(a), not just a, because descriptors are stored on classes.

In order to be able to apply per-instance as well as per-class functionality,
descriptors are given instance and owner (the class of the instance). How
this translation and application happens will be discussed later.

Remember—and this appliesto __set () and _delete () as
well—self is an instance of the descriptor itself. It is not the instance that
the descriptor is being called from; the instance parameter is the instance
the descriptor is being called from. This may sound confusing at first, but
don’t worry if you don’t understand for now—everything will be explained
further.

The get () method is the only one that bothers to get the class
separately. That’s because it’s the only method on non-data descriptors,
which are generally made at a class level. The built-in decorator
classmethod is implemented using descriptors and the _get ()
method. In that case, it will use the owner parameter alone.

The __set_(self, instance, value) Method

As mentioned, _set_ () does not have an owner parameter that accepts
aclass. _set () doesnotneed it, since data descriptors are generally
designed for storing per-instance data. Even if the data is being stored on a
per-class level, it should be stored internally without needing to reference
the class.

self should be self-explanatory now; the next parameter is instance.
This is the same as itisinthe _get () method. In this case, though,
your initial call is a.x = someValue, which is then translated into
type(a). dict ['x']. set (a, someValue).

CHAPTER 2 THE DESCRIPTOR PROTOCOL

The last parameter is value, which is the value the attribute is being
assigned.

One thing to note: when setting an attribute that is currently a
descriptor from the class level, it will replace the descriptor with whatever
is being set. For example, A.x = someValue does not get translated to
anything; someValue replaces the descriptor object stored in x. To act on
the class, see the following note.

The __delete__(self, instance) Method

After having learned aboutthe _get () and _set () methods,
__delete_ () should be easy to figure out. self and instance are the
same as in the other methods, but this method is invoked when del a.xis
called and is translated to type(a). dict ['x']. delete (a).

Do not accidentally name it __del (), as that won’t work as intended.
__del () would be the destructor of the descriptor instance, not of the
attribute stored within.

It must be noted that, again, that _delete () does not work from the
class level, justlike _set (). Using del from the class level will remove
the descriptor from the class’ dictionary rather than calling the descriptor’s
__delete_ () method.

Note If you wanta descriptor's _set () or _delete ()
methods to work from the class level, that means that the descriptor
must be created on the class’ metaclass. When doing so, everything
that refers to owner is referring to the metaclass, while a reference
to instance refers to the class. After all, classes are just instances
of metaclasses. The section on metadescriptors will explain that in
greater detail.

CHAPTER 2 THE DESCRIPTOR PROTOCOL

Summary

That’s the sum total of the descriptor protocol. Having a basic idea of how
it works, you'll now get a high-level view of the types of things that can be
done with descriptors.

10

CHAPTER 3

What Are Descriptors
Good For?

Nothing is perfect in this world, and Python’s descriptors are no exception.
Descriptors allow you to do some pretty cool things, but those cool things
come at a cost. Here, we discuss the good and the bad.

Pros of Python Descriptors

Obviously we're going to go over the good things about descriptors.
Would there be an entire book about them if they couldn’t be considered a
good thing?

Encapsulation

One of the most useful aspects of descriptors is that they encapsulate

data so well. With descriptors, you can access an attribute the simple way
using attribute access notation (a.x) while having more complex actions
happen in the background. For example, a Circle class might have radius,
diameter, circumference, and area all available as if they were attributes,
but since they're all linked, you only need to store one (we'll use the radius
for the example) and calculate the others based on it. But from the outside,
they all look like attributes stored on the object.

© Jacob Zimmerman 2018 11
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_3

CHAPTER 3 WHAT ARE DESCRIPTORS GOOD FOR?

Reuse of Read/Write Patterns

Using specialized descriptors, you can reuse code that you used with
reading and/or writing of attributes. These can be used for repetitious
attributes within the same class or attribute types shared by other classes
as well. Some examples of reusable patterns are described in the following

sections.

Lazy Instantiation

You can use descriptors to define a really simple syntax for lazily
instantiating an attribute. There will be code provided for a nice lazy
attribute implementation later in the book.

In the Circle example, the non-radius attributes, after having their
caches invalidated, don’t need to calculate their values right away; they
could wait until they’re needed. That'’s laziness.

Validation

Many descriptors are written simply to make sure that data being passed
in conforms to the class’ or attribute’s invariants. Such descriptors can
usually be designed as handy decorators, too.

Again with the Circle example: all of those attributes should be
positive, so all the descriptors could also make sure the value being set is
positive.

Triggering Actions

Descriptors can be used to trigger certain actions when the attribute is
accessed. For example, the observer pattern can be implemented in a
per-attribute sense to trigger calls to the observer whenever an attribute is
changed.

12

CHAPTER 3 WHAT ARE DESCRIPTORS GOOD FOR?

Last Circle example: all the “attributes” are based on the radius
calculated lazily. In order to keep from having to calculate them every
time, you could cache the result. Then, whenever one of them changes,
it could trigger invalidating all the others’ caches.

Writing for the Class Level

Because descriptors are stored at the class scope instead of the instance
scope, it allows you to do more robust things at the class level. For instance,
descriptors make classmethod and staticmethod work, which will be
explained in the next chapter.

Cons of Python Descriptors

As great as descriptors are, they come at a cost, just like just about
everything else in programming.

Encapsulation

Wait... encapsulation was a pro. How can it also be a con? The problem

is that you can hide incredible amounts of complexity behind something
that just looks like attribute use. With getters and setters, the user at least
sees that there’s a function being called, and plenty can happen in a single
function call. But the user won’t necessarily expect that what is seemingly
attribute access is causing something else to happen, too. Most of the time,
this isn’t a problem, but it can get in the user’s way of trying to debug any
problems, since clearly that code can’t be a problem.

13

CHAPTER 3 WHAT ARE DESCRIPTORS GOOD FOR?

Can Be Difficult To Write

It can be easy for the mind to get all twisted up when it comes to thinking
about the fact that descriptors are stored at the class level, but are usually
for dealing with attributes at the instance level. Besides that, there are

a lot of considerations and common pitfalls to deal with when deciding
how to save the represented attribute, whether you decide to do it on the
descriptor or on the the object that the attribute is for. The descriptor-tools
library was created specifically because of this.

Additional Objects

Because descriptors add another layer of indirection/abstraction to the
mix, they also add at least one additional object in memory, along with at
least one additional call stack level. In most cases, it’ll be more than one of
each. This adds bloat that could at least be partially mitigated using getters
and setters.

Summary

Descriptors are awesome, allowing for a variety of nice features that are
good at hiding their complexity from users of your code, but you should
definitely be aware that the power comes with cost.

14

CHAPTER 4

Descriptors in the
Standard Library

There are three basic, well-known descriptors that come with Python:
property, classmethod, and staticmethod. There’s also a fourth one that
you use all the time, but are less likely to know is a descriptor.

Of all the descriptors being shown in this chapter, it’s possible that
you only knew of property as a descriptor. Plenty of people even learn
the basics of descriptors from it, but a lot of people don’t know that
classmethod and staticmethod are descriptors. They feel like super
magical constructs built into the language that no one could reproduce in
pure Python. Once someone has an understanding of descriptors, though,
their basic implementation becomes relatively obvious. In fact, example
code will be provided for all three in simplified, pure Python code.

Lastly, it will be shown that all methods are actually implemented
with descriptors. Normal methods are actually done “magically,” since the
descriptor creation is implicit, but it’s still not entirely magical because it’s
done using a language construct the anyone could create.

What I find really interesting is that the first three are all function
decorators, which are another really awesome feature of Python that
deserves its own book, even though they're way simpler.

© Jacob Zimmerman 2018 15
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_4

CHAPTER 4 DESCRIPTORS IN THE STANDARD LIBRARY

The property Class

This book doesn’t include instructions for how to use the property class
and decorator; it is focused on understanding and creating descriptors.
The official documentation for using property can be found in Python’s
documentation®.

Of all the descriptors out there, property is likely the most versatile.
This is because it doesn’t really do anything on its own, but rather allows
the users to inject their wanted functionality into it by providing their own
getters, setters, and deleters.

To get a better idea of how it works, here is a simplified pure Python
implementation of property.

class property:
def _init (self, fget=None, fset=None, fdel=None):

self.fget = fget
self.fset = fset
self.fdel = fdel

def get (self, instance, owner):
if instance is None:
return self
elif self.fget is None:
raise AttributeError("unreadable attribute")
else:
return self.fget(instance)

def set (self, instance, value):
if self.fset is None:
raise AttributeError("can't set attribute")
else:
self.fset(instance, value)

16

CHAPTER 4 DESCRIPTORS IN THE STANDARD LIBRARY

def _delete (self, instance):
if self.fdel is None:
raise AttributeError("can't delete attribute")
else:
self.fdel(instance)

def getter(self, fget):
return type(self)(fget, self.fset, self.fdel)

def setter(self, fset):
return type(self)(self.fget, fset, self.fdel)

def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel)

As you can now see, the property class has almost no real functionality
of its own; it simply delegates to the functions given to it. When a function
is not provided for a certain method to delegate to, property assumes that
itis a forbidden action and raises an AttributeError with an appropriate
message.

A nice thing about the property class is that it largely just accepts
methods. Even its constructor, which can be given all three methods at
once, is capable of being called with just one, or even none. Because of
this, the constructor and other methods can be used as decorators in a
very convenient syntax. Check out the documentation? to learn more
about it.

Omitted from this code example is the doc functionality, where it sets
itsown _doc__ property based on what is passed in through __init ()’s
doc parameter or using __doc__ from fget if nothing is given. Also omitted
is the code that sets other attributes on property, such as__name__, in
order to help it appear even more like a simple attribute. They did not
seem important enough to worry about, since the focus was more on the

main functionality.

17

CHAPTER 4 DESCRIPTORS IN THE STANDARD LIBRARY

The classmethod Descriptor

classmethod is another descriptor that can be used as a decorator, but,
unlike property, there’s no good reason not to use it as one. classmethod
is an interesting concept that doesn’t exist in many other languages
(if any). Python’s type system, which uses classes as objects, makes
classmethods easy and worthwhile to make.

Here's the Python code for classmethod.

class classmethod:
def init (self, func):
self.func = func

def get (self, instance, owner):
return functools.partial(self.func, owner)

That’s all there is to it. classmethod is a non-data descriptor, so it only
implements __get ().This __get () method completely ignores the
instance parameter because, as “class” in the name implies, the method
has nothing to do with an instance of the class and only deals with the
class itself. What's really nice is the fact that this can still be called from an
instance without any issues.

Why does the _get () method return a functools.partial object
with the owner passed in, though? To understand this, think about the
parameter list of a function marked as a classmethod. The first parameter
is the class parameter, usually named cls. This class parameter is filled in
the call to partial so that the returned function can be called with just the
arguments the user wants to explicitly provide. The true implementation
doesn’t use partial, but works similarly.

Again, the code thatsets __name__, doc__, etc. is omitted to show
only how the main functionality works.

18

CHAPTER 4 DESCRIPTORS IN THE STANDARD LIBRARY

The staticmethod Descriptor

A method marked with staticmethod is strange in that it's a method that
is really just a function, but it is “attached” to a class. Being part of the class
doesn’t do anything other than show users that it is associated with that
class and giving it a more specific namespace. Also, interestingly, because
staticmethod and classmethod are implemented using descriptors,
they’re inherited by subclasses.

The implementation of staticmethod is even simpler than that of
classmethod; it just accepts a function and then returns itwhen __get ()
is called.

class staticmethod:
def init (self, func):
self.func = func

def get (self, instance, owner):
return self.func

Regular Methods

Remember that it was stated earlier that regular methods implicitly use
descriptors as well. In fact, all functions can be used as methods. This is
because functions are non-data descriptors as well as callables.

Here is a Python implementation that roughly shows how a function
looks.

class function:
def _call (self, *args, **kwargs):
do something

19

CHAPTER 4 DESCRIPTORS IN THE STANDARD LIBRARY

def get (self, instance, owner=None):
if instance is None:
return self
else:
return functools.partial(self, instance)

This is not a very accurate representation; the return statements are a
bit off. When you access a method from an instance without calling it, the
returned objectisn’t a partial object; itis a “bound method” A “bound
method” is one that has self already “bound” to it, but has yet to be called,
passing in the other arguments if needed. When it’s called from the class, it
only returns the function itself. In Python 2, this was an “unbound method,”
which is basically the same thing. This idea of creating “unbound” versions
when instance is None comes up later, so keep it in mind.

Summary

In this chapter, we've seen the most common built-in descriptors. Now
that we've seen some examples, let’s get a closer, better look at how they
work by digging into the real differences between data and non-data
descriptors.

20

CHAPTER 5

Attribute Access and
Descriptors

It was stated earlier that attribute access calls are transformed into
descriptor calls, but it was not stated how. The quick answer is that
__getattribute (), setattr (),and delattr () doit. That
probably isn’t much of an answer for you, so I'll dig into it more. These
three methods exist on all normal objects, inherited via the object class
(and classes inherit it from the type metaclass). As you might imagine,
these methods are called when an attribute on an object is retrieved, set, or
deleted, respectively, and it is these methods that decide whether to use a
descriptor, dict ,or slots , and whether to return/set something
on the class or on the instance.

An explanation of this decision process is given in a little bit, but now
I have to explain something that may be nagging you: Why do the set
and and delete methods end with attr, but the get method ends with
attribute?

Part of the answer to that is the fact that there actually isa _getattr ()
method, but it's not used quite the same as the others. _getattribute ()
handles all the normal attribute lookup logic while _getattr () is called
by getattribute () inalastditch effortif all else fails. It is recommended
by Python that you don’t make changes to __getattribute () exceptunder
extreme circumstances, and only if you really know what you're doing. With
some experience, I can concur with that recommendation.

© Jacob Zimmerman 2018 21
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_5

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

I don’t know why setting and deleting don’t have a similar setup, but
I can theorize. It might have to do with the idea that a typical override of
attribute lookup is as a failsafe if the usual ways don’t work, but if someone
is overriding one or both of the others, there’s a decent chance that it
may be a complete replacement or at least the first thing tried instead of
the backup thing. Plus, there’s the fact that, under normal circumstances
(doesn’tuse __slots ,isn’tanamed tuple, etc.), setting always works and
deleting is pretty rare. But you may want to ask one of the core developers
if you're really that curious.

One last clarification: near the beginning of the book, I said that
attribute access gets “transformed” into calls to the descriptor methods.
This makes it sound like it’s a compile-time decision, but it’s not. Python
is a dynamically typed language, and it isn’t supposed to know at compile
time whether an attribute exists on an object and whether it needs to be
accessed like a descriptor or just a normal attribute, especially since this
can change at runtime. It can make certain guesses based on the code
around it, but it can never be 100% sure.

No, using attributes effectively gets transformed into calls to the
descriptor method within the methods mentioned previously, which
describe how the language decides what to do. This is the really dynamic
part. So let’s move on and see what this decision-making process
look like.

Instance Access

Simply looking up attributes is the most complex of the three uses of
attributes because there are multiple places to look for attributes: on the
instance and on the class. Also, if it’s a descriptor on the class, you have
two different behaviors for data and non-data descriptors.
__getattribute () has an order of priority that describes where to
look for attributes and how to deal with them. That priority is the main

22

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

difference between data descriptors and non-data descriptors. Here is that
list of priorities:

o Data descriptors
o Instance attributes
e Non-data descriptors and class attributes

e getattr (mightbe called separately from
__getattribute)

The first thing _getattribute () doesislookin the class dictionary
for the attribute. If it’s not found, it works its way through the method
resolution order (MRO) of classes (the superclasses in a linear order) to
continue looking for it. If it’s still not found, it'll move to the next priority. If
it is found, it is checked to see if it is a data descriptor. If it’s not, it moves on
to the next priority. If it turns out to be a data descriptor, it'll call _get ()
and return the result, assumingithasa _get () method. If it doesn’t
havea get () method, then it moves on to the next priority.

That’s a lot of ifs, and that’s just within the first priority to determine
whether a viable data descriptor is available to work with. Luckily, the next
priority is simpler.

Next in the priority list is checking the instance dictionary (or slots,
if that’s what the object is using). If it exists there, we simply return that.
Otherwise, it moves to the next priority.

In this priority, it checks through the class dictionaries again, working
its way down the MRO list if needed. If nothing is found, it moves to the
next priority. Otherwise, it checks the found object to see if it’s a descriptor
(at this point, we only need to check if it’s a non-data descriptor because
if we've made it this far, it’s definitely not a data descriptor). If so, it calls
the descriptor’s __get () method and returns the result. Otherwise, it
simply returns the object. This time, it doesn’t have a backup of returning
the descriptor object itself if it doesn’'t have __get () because it, being a
non-data descriptor, guarantees thatithas __get ().

23

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

If all else has failed up to this point, it checks with __getattr () for

any possible custom behavior regarding attribute access. If there’s nothing,

an AttributeError is raised.

With this complicated definition, Python users should be grateful

that a lot of work has been put into optimizing this access algorithm to

the point that it’s remarkably fast. The flowchart in Figure 5-1 show how

descriptors are accessed, with blue bands denoting each priority.

Class Access

Check Class
Dictionary

Attribute in
Dictionary?

A No

ore Classe:

Move to Next Class [-s-Ye: in MRO?

Descriptor
ith __get_ ()2

Mo

Check Instance
Dictionary

Altribute in
Dictionary?

Y

Attribute in
Dictionary?

Check Class
Dictionary

A

Move 10 Next Class [-s-Ye:

No

'

Check Metaclass

Descriptor

yith _get__()2

Mo

Yes—m| Call _get_()

—»| Return Result

Priority 1:
Data Descriptor

Yes

Return Object

Priority 2:
Instance Attribute

[

Yes—| Call __get_ ()

Return Result

Priority 3:
Non-Data Descriptor
or Class Attribute

-

Return Object

{

Dictionary

Figure 5-1. Class access

24

Priority 4:
__getattr__()

Return Result

{

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

In the common case where the class’ metaclass is type, or there are no
new attributes on the metaclass, class access can be viewed in a simplified
way compared to instance access; it doesn’t even have a priority list. It
stilluses __getattribute_ (), butit’s the one defined on its metaclass.

It simply searches through the class dictionaries, progressing through

the MRO as needed. If found, it checks to see if it’s a descriptor with the
__get_ () method. If so, it makes the proper call and returns the result.
Otherwise, it just returns the object. At the class level, though, it doesn’t
care if the descriptor is data or non-data; if the descriptorhasa __get ()
method, the method is used.

If nothing was found, an AttributeError is raised, as shown in
Figure 5-2.

Check Metaclass Attribute in . Descriptor . .
Dictionary — Yesm-< gith gt ()27 765 Call__get) (| Return Result
A No :
h;o B -;/Return Object
P‘“&:?{:g;iﬂ - Yes< Metaclasses in o | AlributeError
MRO?

Figure 5-2. An AttributeError is raised

Unfortunately, if there are new attributes on the metaclass, this
simplification is unhelpful, since they might be used in the lookup. In fact,
class access looks almost exactly like instance access (replacing “class” with
“metaclass” and “instance” with “class”) with one big difference. Instead of
checking just the current instance/class dictionary, it checks through the
MRO of it as well. It also still treats descriptors on the class as descriptors,
rather than automatically returning the descriptor object. Knowing this,
Figure 5-3 shows the full class access diagram, with all the priority levels.

25

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

Class Access

Check Metaclass
Dictionary

Move to Next
Metaclass

-1

Attribute in
Dictionary?

No

Metaclasses in

Descriptor
ith _get ()2

No

]

Check Class
Dictionary

Move to Next Class

|--e

Attribute in
Dictionary?

\]

Check Metaclass
Dictionary

Move to Next
Metaclass

|--e:

Attribute in
Dictionary?

More
Metaclasses in
MRO?

No

1

Check Metaclass
Dictionary

Yes—pe| Call__get ()

Return Result

Priority 1:
Data Desc riptor

> Return Object

{

Return Result

Descriptor

ith _get_ (2 Yes—m| Call _get_ ()
No

Priority 2:
Class Attribute

Descriptor
ith _get__ ()2 Yes—m-| Call __get_ ()
Priority 3:

Non-Data Descriptor
or Metaclass Attribute

Return Object

{

Return Result

Priority 4:
__getattr__()

Figure 5-3. The full class access diagram

26

{

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

Set and Delete Calls

Setting and deleting are just a little bit different. If the required __set_ ()
or __delete () method doesn’t exist, and it’s a data descriptor, an
AttributeError is raised. The other difference is the fact that setting
and deleting never get beyond the instance priority. If the attribute
doesn’t exist on the instance, setting will add it and deleting will raise an
AttributeError.

Figure 5-4 shows the last flowchart, depicting what happens for setting
and deleting.

Set/Delete an
Attribute

Check Metaclass
Dictionary

Is Data
Descriptor?
No

A

as setter ol
e deleter?
MNo.

Priority 1:
Data Descriptor

Move to Next
Metaclass

Check Class Adtribute in

Dictionary - W Yes »-|Set/Delete At‘:ubute|

Mo

Priority 2:
Class Attribute

;{ AttributeError |

Figure 5-4. The setting and deleting processes

27

CHAPTER 5 ATTRIBUTE ACCESS AND DESCRIPTORS

The Reasoning Behind Data versus
Non-Data Descriptors

Now that the difference between data and non-data descriptors has been
explained, it should be explained why these two versions exist.

The first place to look at is the built-in use cases for each type within
the language and standard library. The prime example of a data descriptor
is property. As its name suggests, its purpose is to create properties for
classes (replace getter and setter methods with a syntax that looks like
simple attribute use). That means class-level access is not intended since
properties represent fields on an instance.

Meanwhile, the primary use-case for non-data descriptors is decorating
methods for different usages (classmethod, staticmethod, and especially the
implicit descriptor used for normal methods). While these can be called from
instances (and normal methods should be called from instances), they're not
meant to be sef or deleted from instances. Methods are assigned on the class.
A function can be assigned to an instance attribute, but it doesn’t make it a
method, since self is not automatically provided as the first argument when
called. Also, when it comes to the “magic” dunder methods (methods with
two leading and two trailing underscores) being called through the normal,
“magical” way, Python is optimized to look directly on the class, skipping
over anything that may have been assigned to the instance.

Summary

Rarely is it useful to know the full depth of what is happening behind the
scenes of attribute calls, and even knowing the basic priority list rarely comes
into play, since descriptors generally do what is obvious, once you understand
how they’re accessed. There are times, though, when the priority list, and
possibly even the full depth, will help in understanding why a descriptor isn’t
working as hoped or how to set up a descriptor to do a more complicated task.

28

PART li

Making Descriptors

Finally, the fun part has arrived. Despite the simplicity of the descriptor
protocol, there are so many ways that a descriptor can be used and made
that, even though that last part was pretty long, this section is going to be
much longer.

Part I tells you enough for you to go and make your own descriptors,
but it doesn’t give any tips, patterns, or real guidance for doing so. Part II is
filled to the brim with those.

CHAPTER 6

Which Methods Are
Needed?

When designing a descriptor, it must be decided which methods will be
included. It can sometimes help to decide right away if the descriptor
should be a data or non-data descriptor, but sometimes it works better to
“discover” which kind of descriptor it is.

__delete_ () israrely ever needed, even if it is a data descriptor.
That doesn’t mean it shouldn’t ever be included, however. If the descriptor
is going to be released into an open domain, it wouldn’t hurt to add the
__delete_ () method on a data descriptor simply for completeness for
cases when a user decides to call del on it. If you don’t, an AttributeError
will be raised when someone tries to delete it.

__get () is almost always needed for data and non-data descriptors.
It is required for non-data descriptors, and the typical case where _get ()
isn’t required for data descriptorsisif _set () assigns the data into the
instance dictionary under the same name as the descriptor (what I call
set-it-and-forget-it descriptors). Otherwise, it is almost always wanted
for retrieving the data that is set in a data descriptor, so unless the data is
assigned to the instance to be automatically retrieved without _get ()
or the data is write-only, a__get () method would be necessary. Keep in
mind that if a descriptor doesn’thavea __get () method and instance
doesn’t have anythingin dict under the same name as the descriptor,
the actual descriptor object itself will be returned.

© Jacob Zimmerman 2018 31
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_6

CHAPTER6 WHICH METHODS ARE NEEDED?

Justlike delete (), set () isonlyused for data descriptors.
Unlike delete (), set () isnotregarded as unnecessary. Seeing
that _delete () isunused in the most common cases, _set () is
nearly a requirement for creating data descriptors (which need either
__set__()or__delete ()).If the descriptor’s status as data or non-data
is being “discovered,” _set () is usually the deciding factor. Even if the
data is meant to be read-only, _set () should be included to raise an
AttributeError in order to enforce the read-only nature. Otherwise, it
may just be treated like non-data descriptor.

When __get_ () Is Called Without an
instance Argument

It is often that a descriptor’s __get () method is the most complicated
method on it because there are two different ways it can be called: with or
without an instance argument (although “without” means that None is
given instead of an instance).

When the descriptor is a class-level descriptor (usually non-data),
implementing _get () without using instance is trivial, since that’s the
intended use. But when a descriptor is meant for instance-level use, and
the descriptor is not being called from an instance, it can be difficult to
figure out what to do.

Here, I present a few options.

Raise Exception or Return self

The first thing that may come to mind is to raise an exception, since
class-level access is not intended, but this should be avoided. A common
programming style in Python is called EAFP, meaning that it is easier

to ask for forgiveness than for permission. What this means is that, just
because something isn’t used as intended, it doesn’t mean that usage

32

CHAPTER6 WHICH METHODS ARE NEEDED?

should be disallowed. If the use will hurt invariants and cause problems,
it’s fine to disallow it by raising an exception; otherwise, there are other,
better options to consider. The conventional solution is to simply return
self. If the descriptor is being accessed from the class level, it’s likely that
the user realizes that it’s a descriptor and wants to work with it. Doing so
can be a sign of inappropriate use, but Python allows freedom, and so
should its users, to a point. The property built-in will return self (the
property object) if accessed from the class, as an example. From what I've
seen, this is the most common approach by far.

“Unbound” Attributes

Another solution, which is used by methods, is to have an “unbound” version
of the attribute be returned. When accessing a function from the class level,
the function’s __get () detects that it does not have an instance, and so just
returns the function itself. In Python 2, it actually returned an “unbound”
method, which is where the name I use comes from. In Python 3, though,
they changed it to just the function, since that’s exactly what it is anyway.
This can work for non-callable attributes as well. It’s a little strange,
since it turns the attribute into a callable that must receive an instance
to return the value. This makes it into a specific attribute lookup, akin to
len() and iter(), where you just need to pass in the instance to receive
the wanted value.
Here is a stripped-down __get () implementation that works this way.

def get (self, instance, owner):
if instance is None:
def unboundattr(inst):
return self. get (inst, owner)
return unboundattr
else:

33

CHAPTER6 WHICH METHODS ARE NEEDED?

When called, the inner unboundattr () function will end up using the
elsebranch ofthe get () method (assuming they didn’t pass in None).
Using inner functions can sometimes be confusing, and typing that whole
thing every time is a little annoying, so here’s a reusable class implementation
that can be used by any descriptor.

class UnboundAttribute:
def init (self, descriptor, owner):
self.descriptor = descriptor
self.owner = owner

def call (self, instance):
return self.descriptor. get (instance, self.owner)

Using this class,a __get () method that uses unbound attributes can
be implemented like this:

def get (self, instance, owner):
if instance is None:
return UnboundAttribute(self, owner)
else:

The original version relies on closures around self and owner,
which remove its reusability, other than through copying and pasting.
But the class takes those two variables in with its constructor to store
on a new instance. It’s also kind of nice that if you print the unbound
attribute object, it says that it’s an unbound attribute. (This also works if
you implement your own version, especially if you take in some handy
metadata, like the name of the attribute being accessed. More on how to
do that in the next chapter.)

The really interesting (and useful) thing about this technique is that the
unbound attribute can be passed into a higher-order function that receives

34

CHAPTER6 WHICH METHODS ARE NEEDED?

a function, such as map (). It avoids having to write up a getter method or
ugly lambda. For example, if there was a class like this:

class Class:
attr = UnbindableDescriptor()

Amap() call to alist of Class objects like this:
result = map(lambda c: c.attr, alist)
could be replaced with this:
result = map(Class.attr, alist)

Instead of passing in alambda to do the work of accessing the
attribute of the Class instances, Class.attr is passed in, which returns
the “unbound” version of the attribute—a function that receives the
instance in order to look up the attribute on the descriptor. In essence,
the descriptor provides an implicit getter method to the reference of the
attribute.

This is a very useful technique for implementing a descriptor’s __get ()
method, but it has one major drawback: returning self is so prevalent
that not doing so is highly unexpected. Hopefully, this idea gets some
traction in the community and becomes the new standard. Also, as seen
in the upcoming chapter on read-only descriptors, there may need to be
a way to access the descriptor object. Luckily, all you need to do is get the
descriptor attribute from the returned UnboundAttribute.

Even though it’s not the expected behavior, the built-in function
descriptor already does this, so it won't be too difficult for them to get used
to it. People expect “unbound method” functions when accessing from the
class level, so applying the convention to attributes shouldn’t be a huge
stretch for them.

Since writing the first edition of this book, I have discovered that there
is a function for creating unbound attributes in the standard library, and

35

CHAPTER6 WHICH METHODS ARE NEEDED?

it’s more useful than UnboundAttribute in some important ways. In the
operator module, there’s a function called attrgetter() that takes in a
string name of an attribute and returns a function that takes in an instance
and (I assume) calls getattr() on the instance with the name of the
attribute. There’s also support for multiple attribute names being passed
in; the final result is a tuple of all those attributes on the instance.

There are several significant benefits to this over descriptor-based
unbound attributes (without even counting the multiple attribute
support). The first is greater support for inheritance. If a subclass overrode
the descriptor with a different one, but the superclass version is passed
around, it will actually use the superclass descriptor, which removes
the awesome dynamic nature of inheritance. For this very same reason,
unless you're absolutely sure that the class you're using doesn’t have any
subclasses, you should use attrgetter() for methods as well.

Descriptor-based unbound attributes can support the same level of
inheritance support, but there’s more work involved. First, you need the
name of the attribute, which isn’t always easy to get. Again, methods for
doing so are in the next chapter. After that, the changes are pretty simple.
Youchange call () tousegetattr() instead of descriptor. get ().
This then eliminates the need for the descriptor and owner properties,
though you should keep descriptor so someone can look up the descriptor,
as mentioned earlier. Sadly, I don't see any practical way of supporting
multiple attributes this way.

The second major benefit is that it works for all kinds of attributes, not
just methods or descriptor-based ones.

There are a few downsides to attrgetter() though. First, and maybe
most obvious, is the lack of code completion help. You're passing in the
string name of an attribute, which means whatever editor you're using is
not going to help you not screw up the spelling of the attribute’s name.
Second, it loses a little bit of context. When a class name is used, you
include the context that attribute name applies to, whereas attrgetter()
only includes the name of the attribute.

36

CHAPTER6 WHICH METHODS ARE NEEDED?

If you do the upgrades to UnboundAttribute, I still completely support
using it. But it is certainly good to know when to use attrgetter() instead.

Summary

We've looked into the decision-making process behind building general
descriptors and figuring out which methods we’ll want and possibly using
unbound attributes with __get (). In the next chapter, we'll dig into even
more design decisions that have to be made, at least when it comes to
storing values with descriptors.

37

CHAPTER 7

Storing the Attributes

Now that all the preliminaries are out of the way, it is time to see the part of
descriptors that is useful: storing the attributes that the descriptor represents.
There are a lot of ways to store attributes with a descriptor, and this chapter
will go over every option that 'm aware of, starting with the easiest.

Class-Level Storage

Class-level storage is easy; it's normal storage on the descriptor. As an
example, here is a descriptor that creates a basic class-level variable:

class ClassAttr:
def init (self, value):
self.value = value

def get (self, instance, owner):
return self.value

def set (self, instance, value):
self.value = value

This descriptor saves a value on itself as a typical instance attribute,
which is simply returned in the __get () method, ignoring whether
instance is provided or not, since it’s a class-level attribute. This attribute
can also be accessed through an instance, but making any change to it
from the instance will apply the change to every instance of the class.

© Jacob Zimmerman 2018 39
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_7

CHAPTER 7 STORING THE ATTRIBUTES

Unfortunately, due to __set () not being called when a descriptor is
accessed from the class level, the variable storing the descriptor will be
reassigned to the new value, rather than it being passed to __set_ ().

For more details about making class-level descriptors that __set ()
and _delete () can be used on, check out the section at the end of this
chapter about metadescriptors.

Descriptors aren'’t just for class-level attributes, though; they're used
for instance-level attributes too. There are two broad strategies for storing
instance-level attributes with descriptors:

e On the descriptor
o Intheinstance dictionary

Each strategy has some hurdles to clear for a reusable descriptor.
When storing it on the descriptor, there are hurdles as to how to store it
without memory leaks or hashing issues. As for storing the attributes on
the instance dictionary, the difficulty comes from trying to figure out what
name to store it under in the dictionary to avoid clashing.

Storing Data on the Descriptor

As shown before, saving a simple value on the descriptor is how a class-level
value is stored. What must be done to store a value on a per-instance basis
in one place? What is needed is some way to map an instance to its attribute
value. Well, another name for a mapping is a dictionary. Maybe a dictionary
would work. Here’s what using a dictionary for its storage might look like.

class Descriptor:
def _init (self):
self.storage = {}

def get (self, instance, owner):
return self.storage[instance]

40

CHAPTER 7 STORING THE ATTRIBUTES

def _set (self, instance, value):
self.storage[instance] = value

def delete (self, instance):
del self.storage[instance]

The get () method doesn’t deal with the if instance is None
case, and in all other examples, it will be ignored for the sake of brevity and
removing distractions while reading the code.

The dict in the code example has solved our first issue of storage per
instance. Unfortunately, there are a couple shortcomings to using a plain
old dict for the job.

The first shortcoming to address is memory leaks. A typical dict will
store the instance used as the key long after the object should have been
otherwise garbage collected from lack of use. This is fine for short-lived
programs that won'’t use a lot of memory and if the instances don’t suffer
from the second shortcoming mentioned later, but if this isn’t the case, we
need a way to deal with the issue.

Let’s look at how to get around this problem. The descriptor needs a
way to stop caring about instances that are no longer in use. The weakref
module provides just that. Weak references allow variables to reference an
instance as long as there is a normal reference to it somewhere, but allow it
to be garbage collected otherwise. They also allow you to specify behavior
that will run as soon as the reference is removed.

The module also provides a few collections that are designed to
remove items from themselves as the items are garbage collected. Of
those, we want to look at a WeakKeyDictionary. A WeakKeyDictionary
keeps a weak reference to its key, and therefore once the instance that
is used as the key is no longer in use, the dictionary cleans the entire
entry out.

41

CHAPTER 7 STORING THE ATTRIBUTES
So, here’s the example again, this time using the WeakKeyDictionary.

from weakref import WeakKeyDictionary
class Descriptor:
def init (self):
self.storage = WeakKeyDictionary()

def get (self, instance, owner):
return self.storage[instance]

def set (self, instance, value):
self.storage[instance] = value

def delete (self, instance):
del self.storage[instance]

Every change between the previous example and this one has been
made bold, and this shows that there really isn’t much of a difference. The
only difference is that the special dictionary needs to be imported and a
WeakKeyDictionary needs to be created instead of the normal dict. This
is a very easy upgrade to make, and many descriptor guides stop here. It
works in most situations, so it isn’t a bad solution.

Unfortunately, it still suffers from the other shortcoming that a regular
dict does: it doesn’t support unhashable types.

To use an object as a key in a dict, it must be hashable. There are a
few built-in types that cannot be hashed, namely the mutable collections
(list, set, and dict), and maybe a few more. Any object that is mutable
(values inside can be changed) and overrides __eq__ () to compare
internal values must be unhashable. If the object is changed in a way
that changes equality, suddenly the hash code changes so that it can’t be
looked up as a dictionary key. Thus, such mutable objects are generally
advised to mark themselves as unhashable using __hash = None.
Overriding __eq__ () will do this automatically; overriding __hash
should therefore be done only if equality is constant.

42

CHAPTER 7 STORING THE ATTRIBUTES

If it weren’t for Python providing default implementations of _eq_ ()
and __hash__ () (equality is the same as identity—an object is equal
to itself, and nothing else), most objects wouldn’t be hashable and thus
supported for descriptors using a hashing collection. Luckily, this means
that types are hashable by default, but there are still many unhashable
types out there.

Again, the WeakKeyDictionary is not a bad solution; it just doesn’t
cover all possibilities. Much of the time, it is good enough, but it generally
advised not to use it for public libraries, at least not without good warnings
in the documentation. After all, the descriptor protocol provides ways to set
and delete attributes, so they should support instances of mutable classes.

There needs to be a solution that doesn’t suffer from this problem, and
there is. The simplest solution is to use the instance’s ID as the key instead
of the instance itself. Hooray! Now the dictionary doesn’t hold onto unused
instances anymore, and it doesn’t require the classes to be hashable.

Here’s what that solution would look like.

class Descriptor:
def _init (self):
self.storage = {}

def _get (self, instance, owner):
return self.storage[id(instance)]

def set (self, instance, value):
self.storage[id(instance)] = value

def _delete (self, instance):
del self.storage[id(instance)]

The example switches back to a normal dict, so the changes
mentioned are based on the differences between this example and the
first one again, rather than comparing to the previous one. Every time the
storage is being accessed, it’s being accessed by id(instance) instead of
just instance.

43

CHAPTER 7 STORING THE ATTRIBUTES

This seems like a pretty good solution, since it doesn’t suffer from
either of the problems of the previous two solutions. But it’s not a good
solution. It doesn’t suffer from exactly the same problems of the previous
solutions, but it still suffers from a memory leak. Yes, the dictionary no
longer stores the instances, so those aren’t being kept, but there’s no
mechanism to clear useless IDs from the dictionary. In fact, there’s a
chance (it’s a tiny chance, but it exists) that a new instance of the class
may be created with the same ID of an older, deleted instance, so the new
instance has an attribute equal to the old one until it’s changed. That’s
assuming it can be changed; what if the descriptor is designed to be read-
only (more on that later)? Then the new instance is absolutely stuck with
the old value.

So, this still doesn’t solve the on-descriptor storage problem, but it’s
leading in the right direction. What is needed is a storage system that
works like a dictionary, with instance as the key, but uses id(instance)
instead of hash(instance) for storage. It also needs to clean itself out if an
instance is no longer in use.

Since such a thing isn’t built in; it will have to be custom-made. Here is
that custom dictionary, designed specifically for this book.

import weakref

class DescriptorStorage:
def _init_ (self, **kwargs):
self.storage = {}
for k, v in kwargs.items():
self. setitem (k, v)

def getitem (self, item):
return self.storage[id(item)]

def _ setitem_ (self, key, value):
self.storage[id(key)] = value

44

CHAPTER 7 STORING THE ATTRIBUTES

weakref.finalize(key, self.storage. delitem ,
id(key))

def _ delitem_ (self, key):
del self.storage[id(key)]

The real version obviously has more methods, suchas __iter |,
__len__, etc.,, but the main three uses for storage with a descriptor are
implemented here. The rest of the implementation can be found in the
descriptor-tools library.

This class is surprisingly simple. The basics of it is that there is a facade
class that acts like a dictionary, delegating most functionality to an inner
dictionary, but transforming the given keys to their IDs. The only real
difference is that, in __setitem (), this new class creates a finalize
weak reference, which takes a reference, a function, and any arguments to
send to that function when the reference is garbage collected. In this case,
it removes the item (again, stored using id()) from the internal dictionary.

The keys to how this storage class works are using an ID as the key
(which means the instances do not need to be hashable) and weak
reference callbacks (which remove unused objects from the dictionary).

In essence, this class is a WeakKeyDictionary that internally uses the ID of
the given key as the actual key.

Storing the attribute in the descriptor safely takes a lot more
consideration than most people ever actually put into it, but now there is a
nice, catch-all solution for doing that. The first two solutions are imperfect,
but not useless. If the use case for the descriptor allows for the use of
either of those solutions, it wouldn’t hurt to consider them. They are viable
enough for many cases and are likely to be slightly more performant than
the custom storage system provided here. For public libraries, though,
either the custom dictionary or a on-instance solution from the following
section should be considered.

45

CHAPTER 7 STORING THE ATTRIBUTES

Storing on the Instance Dictionary

It’s often better to store the data on the instance instead of within the
descriptor, provided that a worthwhile strategy for deriving the key can be
found. This is because it doesn’t require an additional object for storage;
the instance’s built-in storage dictionary is used. However, some classes
will define __slots__, and, as such, will not have the storage dictionary to
mess with. This limits the usefulness of on-instance strategies a little bit,
but slots isused rarely enough thatit’s barely worth considering.

If you want to make a descriptor safe with __slots _ while still
defaulting to using the instance dictionary, you may want to create some
sort of alternative that uses on-descriptor storage when a Boolean flag
is set on creation. There are plenty of ways to implement that, whether
using a factory that chooses a different descriptor if the flag is set or the
class within has alternate paths based on the flag value. Another, simpler
alternative is to document the name that the descriptor stores its values
under so that users of the descriptor who wanttouse __slots__can
prepare a slot for it. This requires that the descriptor does direct instance
attribute setting (either with dot notation or with getattr(), setattr(),
and delattr()) rather than getting the instance dictionary first.

Another way to go about this (which doesn’t require explicitly asking
the user) is to check if the class has the storage dictionary; if it does,
then simply use it, but if it doesn’t, you can store it on the descriptor
instance directly. Checking for the existence of __slots__is unreliable as
subclasses may not define __slots__ (while the base class does), so they
will have both an instance dictionaryand __slots .

Storing the data on the instance using the instance dictionary is easy
(although often verbose, since referencing the attribute as vars(a)['x"]
is often needed instead of a.x in order to avoid recursively calling the
descriptor), as the following example will show. It’s a simple example with
a location of where to store the data being hard-coded as "desc_store".

46

CHAPTER 7 STORING THE ATTRIBUTES

class InstanceStoringDescriptorBasic:
name = "desc_store"

def _get (self, instance, owner):
return vars(instance)[self.name]

def set (self, instance, value):
vars(instance)[self.name] = value

def _delete (self, instance):
del vars(instance)[self.name]

As shown, it is pretty easy to store on the instance. Some of you may
not know about vars (), though, so I will explain. Calling vars() on an
object returns the instance dictionary. Many of you probably knew about
__dict__.Thevars() function returns that same dictionary and is the
preferred (read “Pythonic”) way of accessing it, though lesser known.

It is preferred largely because of the lack of double underscores. Like
nearly every other “magic” attribute with double underscores, there is a
clean way of using it. Hopefully, now you will inform all of your Python-
using buddies about this and it can become a much more widely known
function.

But why should the values be accessed via vars () and not simple dot
notation? There are actually plenty of situations where using dot notation
would work just fine. In fact, it works in most situations. The only times
there are problems is when the data descriptor has the same name that is
being used for storage in the dictionary or if the name being used is not
a legal Python identifier. Often, this case pops up because the descriptor
is purposely storing the attribute under its own name, which is almost
guaranteed to prevent name conflicts. But it’s still possible that an outside
data descriptor has the same name as where the main descriptor is trying
to store its data. In order to avoid this, it is preferable to always directly
reference the instance’s dictionary. Another good reason is that it makes it
more explicit and obvious where the data is being stored.

47

CHAPTER 7 STORING THE ATTRIBUTES

The next thing to be figured out is how the descriptor knows the
name to store the attribute under. Hopefully it’s obvious that hard-
coding a location is a bad idea; it prevents multiple instances of that type
of descriptor from being used on the same class since they will all be
contending for the same name.

Asking for the Location

The simplest way to get a location name is to ask for it in the constructor.
A descriptor like that would look something like this:

class GivenNameInstanceStoringDescriptor:
def _init (self, name):
self.name = name

def _get (self, instance, owner):
return instance. dict [self.name]

def set (self, instance, value):
instance. dict [self.name] = value

def _delete (self, instance):
del instance. dict [self.name]

The only real difference between this one and the previous one is that
ithasan _init () method that receives the preferred location name
from the user instead of hard-coding it. In fact, the rest of the code is
exactly the same.

Asking for the location to store the attribute value is easy when it
comes to creating the descriptor, but is tedious for the user and can even
be dangerous in the event that the location is required to have the same
name as the descriptor, since the user can mess that up. Such is the case
with set-it-and-forget-it descriptors, such as the following descriptor,
which is a descriptor used for validating data using the function provided.

48

CHAPTER 7 STORING THE ATTRIBUTES

class Validated:
def init (self, name, validator):
self.name = name
self.validator = validator

def _set (self, instance, value):
if self.validator(value):
instance. dict [self.name] = value
else:
raise ValueError("not a valid value for" +
self.name)

In this Validated descriptor, _init () asks for the location to store
the real data. Since this is a set-it-and-forget-it descriptor that lets the
instance handle retrieval instead of providinga _get (), the location
that the user provides must be the same as the descriptor’s name on the
class in order for the descriptor to work as intended. For example, if a class
was accidentally written like this:

class A:
validatedAttr = Validated('validatedAttribute',
validatorFunc)

validatedAttr is all screwed up. To set it, the user writes
a.validatedAttr = someValue, but retrieving it requires the user to write
a.validatedAttribute. This may not seem all that bad since it can be
fixed easily, but these are the types of bugs that can often be very difficult
to figure out and can take a long time to notice. Also, why should the user
be required to write in the location when it can be derived somehow?

Set-It-and-Forget-It Descriptors

Now set-it-and-forget-it descriptors can finally be explained. Of the three
methods in the descriptor protocol, these descriptors generally only

49

CHAPTER 7 STORING THE ATTRIBUTES

implement _set (), as seen in the example. That’s not always the case,
though. For example the following lazy initialization descriptor only
uses _get ().

class lazy:
def _init (self, func):
self.func = func

def _get (self, instance, owner):
value = self.func(instance)
instance. dict [func. name_] = value
return value

This lazy descriptor can also be used as a decorator over a function,
which it replaces and uses to do the lazy initialization. In this case, and in
the case of other set-it-and-forget-it descriptors, the descriptor sets the
value directly onto the instance, using the same name the descriptor is
referenced by. This allows the descriptor to either be a non-data descriptor
that is never used more than once—as in the case of lazy—or to be a data
descriptor that has no need to implement __get (), which is the case
with most set-it-and-forget-it descriptors. In many cases, set-it-and-forget-
it descriptors can increase lookup speeds by just looking in the instance or
even provide other optimizations, like the lazy descriptor.

Indirectly Asking for the Location

Something else can be noted about the lazy descriptor from the set-it-
and-forget-it section, and that’s how it was able to determine where to
store the attribute; it pulled it from the function that it decorated.

This is a great way to indirectly ask for the name of the descriptor. Since
the descriptor, initialized as a decorator, is provided with a function that
the descriptor is replacing, it can use that function’s name to look up that
name for a place to store the information on instance.

50

CHAPTER 7 STORING THE ATTRIBUTES

Name Mangling

Using the name directly like that, though, can be dangerous for most non-
data descriptors, since setting it directly to that location would override
its own access (which lazy actually intended to have happen). When
building a non-data descriptor that doesn’t want to write over itself—
although the chances are probably pretty slim for that situation to come
up—it is best to do some “name mangling” when storing the data. To do
so, just add an underscore or two to the beginning of the name. Using

at least two leading underscores and at most one trailing underscore
causes Python to add its own mangling to the name; using one leading
underscore simply signals that the attribute is “private” to those using the
object. There’s an incredibly low chance that the name is already taken on
the instance.

Next, what can be done if asking the user for the name is a bad idea
and the descriptor isn’t also a decorator? How does a descriptor determine
its name then? There are several options, and the first one that will be
discussed is how a descriptor can try to dig up its own name.

Fetching the Name

It would seem so simple to just look up what a descriptor’s name is, but,
like any object, a descriptor could be assigned to multiple variables with
different names. No, a more roundabout way of discovering one’s own

name is required.

Note Inspiration for this technique is attributed to “The Zipline
Show” on YouTube, specifically their video about descriptors?®. This
technique shows up around 22 minutes in. They may have gotten the
technique from the book they mention at the beginning of the video,
but | took the idea from them, not the book.

51

CHAPTER 7 STORING THE ATTRIBUTES

The original version of this technique that I adapted a little used the
following code.

def name of(self, instance):
for attr in type(instance). dict :
if attr.startswith('_"): continue
obj = type(instance). dict [attr]
if obj is self:
self.name = self.mangle(attr)
break

This method is meant to be added to any descriptor in order to look
up its name. If the descriptor’s name attribute isn’t set, the descriptor just
runs this method to set it. On the second to last line, it sends the name to
a name mangler—which just makes sure it starts with two underscores—
instead of using the name as it is. As mentioned in the name mangling
section, this may be necessary, but not always.

There’s a problem with this method, though: it doesn’t handle
subclasses. If a class with this descriptor is subclassed and an instance of that
subclass tries to use the descriptor before an instance of the original class
does, it will fail to look up its name. This is because the descriptor is on the
original class, not the subclass, but the name_of () method looks in the class’
dictionary for itself. The subclass will not have the descriptor in its dictionary.

Not to worry, though. The version in the library solves this problem by
using dir() to get all the names of attributes, including from superclasses,
and then it delegates those to a function that digs into the __dict of
each class on the MRO until it finds what it’s looking for. I also removed
the name mangling function, allowing you to use that only as necessary.
Lastly, it doesn’t bother with ignoring attributes that start with a double
underscore. Such a check may actually be slower than accessing the
attribute and comparing identity, but even if it’s not, it largely just clutters
the code. Plus, you never know; your descriptor may be used in place of a
special method.

52

CHAPTER 7 STORING THE ATTRIBUTES
The final result looks like this:

def name of(descriptor, owner):
return first(attr for attr in dir(owner)
if (get_descriptor(owner, attr) is
descriptor))

def first(iter):
return next(iter, None)

def get descriptor(cls, descname):
selected class = first(clss for clss in cls. mro
if descname in clss. dict)
return selected class. dict [descname]

Python 3.2 also added a new function in the inspect module called
getattr_static(), which works just like getattr () except that it doesn’t
activate a descriptor’s __get () method upon lookup. You could replace
the call to get_descriptor() with getattr_static() and it would work
the same.

__set_name_ ()

In Python 3.6, something else was added that makes fetching the name
even easier! Python gained an additional optional method in its protocol:
__set_name__ (). This new method is called during the creation of a class
that contains a descriptor object. Its parameters are self, owner, and name.
The first one, self, is super obvious; it’s the same first parameter that all
methods have. You should recognize the second one, owner, as the class
that the descriptor is on. And the last one, name, should also be evident

as the name that we're looking for; the name of the variable that the
descriptor object is stored on.

53

CHAPTER 7 STORING THE ATTRIBUTES

Store the Original and the Mangled

When storing the name used for the descriptor, it’s often best to store both
the original name and the mangled name. Keeping the mangled name is
obvious, but why in the world would you want to also store the original
name? For error messages. If something goes wrong when trying to use
your descriptor, you want to at least provide the name of the attribute to
the user to get a better idea of where it all went wrong.

Keying on the ID

Another thing that can be done for relatively safe places to store on the
instance is to use the id() of the descriptor to generate a location on the
instance, somehow. It seems strange, but a non-string can be used as the
key in an instance dictionary.

Unfortunately, it can only be accessed directly via vars(instance)
[id(desc)] and not via dot notation or get/set/hasattr (). This may
actually seem like a plus, since it prevents unwanted access to the
attribute, but it also messes up dir(instance), which raises an exception
when it finds a non-string key.

On the plus side, it’s impossible for this location to clash with user-
defined attributes, since those must be strings, and this is an integer. But
causing dir () to fail is undesirable, so a different solution must be found.
Defininga _dir () method would be overkill and inappropriate in most
cases. However, the aggressive programmer could call object. dir ()
and remove the id() from the list before returning it. As stated, however,
this is overkill.

A simple solution is to change the ID into a string, i.e. str(id(desc))
instead of just id(desc). This fixes the dir() problem and also opens up
the use of get/set/hasattr () while still preventing dot notation access,
since it’s an invalid Python identifier. The likelihood of name clashes is still
extremely low, so this is still an acceptable solution.

54

CHAPTER 7 STORING THE ATTRIBUTES

Note An interesting little twist of str(id(desc)) is to use the
hexadecimal value, as hex(id(desc)) instead of the straight string
version of the number, preferably removing '0x ' at the beginning,
such as hex(id(desc))[2:]. The benefit of this is that the hex
string will generally be shorter, which shortens the time needed to
calculate the hash value (which is done on lookup and assignment in
__dict_)byatiny bit. Yes, the amount of time needed to calculate
the hex value is greater than that of calculating the plain string value,
but that only needs to be done once (you can save the hex string to
be used later), whereas attribute lookup is likely to happen many
times. It’s a tiny optimization and may not even be worth noting.

There’s no good reason to add acceptable characters to the front of
the key in order to support dot notation, since dot notation requires the
user to know what the name is going to be ahead of time, which they can’t
know since the name changes every time the program is run when using
id() to derive it. There are other restrictions that a consistently-changing
key imposes, one of which is that it makes serialization and deserialization
(pickling and unpickling, respectively, done with the pickle module, are
one of those ways, among others) a little more difficult.

If it’s desirable to be able to derive some sort of information from
the save location, additional information can be added to the key. For
example, the descriptor’s class name could be added to the front of the
key, for example type(self). name + str(id(self)). This gives users
who use dir() to look through the names on the instance some clue as to
what that name refers to, especially if there are multiple descriptors that
base their name on id() on the instance.

55

CHAPTER 7 STORING THE ATTRIBUTES

Letting the User Take Care Of It

The title of this section may sound like it’s about asking the user for the
name in the descriptor’s constructor, but that’s not it at all. Instead, this is
referring to the approach property uses.

One could say that property “cheats” by simply assigning functions
that you give it to its different methods. It acts as the ultimate descriptor
by being almost infinitely customizable, and that’s largely what it is. The
biggest descriptor-y thing it can’t do is become a non-data descriptor
(since it defines all three methods of the descriptor protocol), which is
fine, since that doesn’t work with the intent anyway. Also, the functions
fed to the descriptor don’t have easy access to the descriptor’s internals, so
there’s a limit to what can be done there.

Interestingly, a large percentage of descriptors could be written using
property—and actually work better, since there would be no difficulties
in figuring out where to save the data—but it certainly has major setbacks.
The biggest of those is the lack of DRYness when it comes to reusing the
same descriptor idea. (Don’t Repeat Yourself; DRYness is the lack of
unnecessarily repeated code.) If the same code has to largely be rewritten
many times for the same effect with property, it should be turned into a
custom descriptor that encapsulates the repeated part. Sadly, it isn’t likely
to be a really easy copy-over because of the fact of storing a value. If the
descriptor doesn’t need to figure that out, though, which is sometimes the
case, then the conversion is much easier.

In summary, property is a highly versatile descriptor, and it even
makes some things extremely easy (namely the difficult thing this entire
chapter was about), but it’s not easily reusable. Custom descriptors are the
best solution for that, which is why this book exists!

There aren’t many use cases out there for recreating “storage” the way
that property does it, but there are enough use cases for extending what
property does in little ways to make it worthwhile to look into.

56

CHAPTER 7 STORING THE ATTRIBUTES

Metadescriptors

The restrictions of descriptors and their use with classes can be quite the
pain, limiting some of the possibilities that could be wanted from descriptors,
such as class constants. It turns out that there is a way around it, and that
solution will be affectionately called metadescriptors in this book (hopefully
the idea and name spreads throughout the advanced Python community).

The reason they are called metadescriptors is because the descriptors,
instead of being stored on the classes, are stored on metaclasses. This causes
metaclasses to take the place of owner while classes take the place of instance.
Technically, that’s all there really is to metadescriptors. It’s not even required
for a descriptor to be specially designed in order for it to be a metadescriptor.

While the idea of metadescriptors is actually pretty simple, the
restrictions around metaclasses can make using metadescriptors more
difficult. The biggest restriction that must be noted is the fact that no
class can be derived from more than one metaclass, whether that is
specified directly on the class or having multiple subclasses have different
metaclasses. Don’t forget that, even if there is no metaclass specified, a
class is still being derived from the type metaclass.

Because of this, choosing to use metadescriptors must be done with
caution. Luckily, if the codebase is following the guideline of preferring
composition to inheritance, this is less likely to be a problem.

For a good example of a metadescriptor, check out the ClassConstant
metadescriptor near the end of the next chapter.

Summary

In this chapter, we looked at a bunch of examples of techniques for storing
values in descriptors, including options for storing on the descriptor

as well as on the instances themselves. Now that we know the basics

that apply to a majority of descriptors, we'll start looking at some other
relatively common functionality and how it can be implemented.

57

CHAPTER 8

Read-Only
Descriptors

There are many good uses for read-only—or immutable—property
descriptors. In fact, there is a lot to back up the idea of having everything
be effectively immutable. Unfortunately, due to Python’s inherent lack of
being able to make anything actually immutable, interpreter optimization
isn’t one of those possible benefits with Python. (PyPy may be able to
make JIT optimizations because of it, but don’t take my word for it.)

There are plenty of other benefits to immutability, but those are
beyond the scope of this book. The point of this chapter is to show how a
descriptor can make instance-level properties be effectively immutable.

A first stab at making a read-only descriptor might be to not give it a
__set_ () method, but that works only if there’sa _delete ()
method. If there’sno __delete () method either, it becomes a non-data
descriptor. If it’s a non-data descriptor and someone assigns to it, then
it just creates an instance attribute that overrides the descriptor. This is
clearly not what we want.

No, to truly keep users from assigning new values, _set () is
required, but it obviously can’t work as normal. So, what can it do? It can
raise an exception. AttributeError is probably the best option of the
built-in exceptions, but the functionality is almost unique enough to make
a custom exception. It’s up to you, but the examples use AttributeError.

© Jacob Zimmerman 2018 59
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_8

CHAPTER 8 READ-ONLY DESCRIPTORS

Now that the attribute can’t be changed, how does one supply it with
its original value? Trying to send it through the descriptor’s constructor
would simply end up with the same value for every instance, since the
constructor is only called at class creation time. There needs to be some
sort of back door. Three different techniques will be discussed: set-once,
secret-set, and forced-set.

Set-Once Descriptors

A set-once descriptor is the most restrictive of the three read-only
properties in that it most strongly restricts the number of assignments to
once per instance under it.

Set-once descriptors work simply by checking whether a value is
already set and acting accordingly. If it’s already assigned, it raises an
exception; if it’s not, then it sets it.

For example, this is what the basic __set () method would look like
if the descriptor was using on-descriptor storage in the instance attribute,
storage.

def _set (self, instance, value):
if instance in self.storage:
raise AttributeError("Cannot set new value on read-only
property")
self.storage[instance] = value

First, it checks to see if there’s already a value set for the instance. If
there is, it raises an AttributeError. Otherwise, it sets the value. Simple.

Of the three read-only descriptors, it’s also the simplest to use, since it’s
set the same way descriptors are normally set: using simple assignment.
The others each have a roundabout way of getting the value set. Also,
because of it having a typical use for setting the value, it’s also the easiest to
make versatile.

60

CHAPTER 8 READ-ONLY DESCRIPTORS

Secret-Set Descriptors

Secret-set descriptors use a “secret” method on the descriptor to initialize
the value. The method uses the same parameters as __set () and sets
the value exactly the way __set () would do with a normal descriptor.
But with this technique, the __set () method just raises an error.

To have access to the secret method, access to the actual descriptor
object is needed. With the current general standard of returning self
inthe get () method when no instance is provided, getting the
descriptor from the instance is as easy as type(a) .x (you could change it
to directly use the class name, but that ignores inheritance and makes a
little more if you ever refactor the name). Even with returning unbound
attributes, this is possible, although it requires an extra step. You may
recall that UnboundAttribute has a descriptor attribute of its own. So, the
lookup becomes just a little longer. Instead of just type(a).x, it becomes
type(a).x.descriptor. Once you have access to the descriptor object, all
that needs to be done is call the “secret” set method. Here’s an example
of a class using a secret-set descriptor called ROValue in the _init ()
method.

class A:
val = ROValue()

def _init_ (self, value):
type(self).val.set(self, value)

The descriptor is accessed, then set()—the descriptor’s “secret” set
method—is called to initialize the value for the instance. This is more
verbose than self.val = value, but it works.

In the library, there are some helper functions (some of which are
standardized within the library) that can be used. The one that is most
guaranteed to work in every case (including instance attributes) is
setattribute(instance, attr name, value).There are also some

61

CHAPTER 8 READ-ONLY DESCRIPTORS

optional parameters with default values that can be set for specifying the
specific behavior, but the defaults will try everything (including techniques
not shown here yet) until something works.

Forced-Set Descriptors

The way that forced-set descriptors work is, instead of using an entirely
new method as a back door, it stilluses __set (), but with a twist. Instead
of just the typical three parameters (self, instance, and value), ithas a
fourth with a default value. This parameter is something like forced=False.
This makes it so that the built-in way of calling __set () will not cause the
value to be set. Rather, the descriptor object needs to be accessed and have
__set_ () called explicitly with the additional forced=True argument. So,
if ROValue was a forced-set descriptor instead the previous secret-set one,
the basic__set () method would look like this:

def set (self, instance, value, forced=False):
if not forced:
raise AttributeError("Cannot set new value on read-only
property")
setter implementation here

Nowthe _set () method checks whether the forced parameter
is set to True. If it’s not, then the method fails like any other read-only
descriptor should. If it is True, though, then the method knows to let it pass
and actually set the value.

If a descriptor is truly only meant to be written to during object
creation, using the set-once descriptor is the best choice. It's harder for
users of the descriptor to thwart the read-only nature of the set-once
descriptor than it is for the other two options. Choosing between either
of the other two is a matter of preference. Some may find that altering the
signature of a “magic” method doesn'’t sit well with them, although some

62

CHAPTER 8 READ-ONLY DESCRIPTORS

may enjoy the lack of a need for another method. Some may actually prefer
the additional method, since they may already be using it, as shown in
some examples in Chapter 11. For the most part, choosing between the
secret-set and forced-set descriptor designs is just about preference.

Class Constants

Class constants are very much like read-only descriptors except that, when
done properly, they don’t need to be set-once; instead, they’re set upon
creation. This requires a little bit of tweaking, though.

First, you must realize that a descriptor for a class constant must be
implemented as a metadescriptor (in case you forgot, that’s a descriptor
on the metaclass) instead of a normal one. Second, each class that has
constants will likely have its own set of constants, which means each of
those classes will need a custom metaclass just for itself.

To begin, here’s the actual descriptor that will be used.

class Constant:
def init (self, value):
self.value = value

def _get (self, instance, owner):
return self.value

def set (self, instance, value):
raise AttributeError("Cannot change a constant")

def delete (self, instance):
raise AttributeError("Cannot delete a constant")

It's an extremely simple descriptor, receiving a value in its constructor,
returning itwitha __get () call, and raising an AttributeError if
someone attempts to change or delete the value.

63

CHAPTER 8 READ-ONLY DESCRIPTORS

To use this descriptor, though, it must be placed in a metaclass,
which must then have a class to derive from it. For an example, here is an
instance of a metaclass and class holding several mathematical constants.

class MathMeta(type):
PI = Constant(3.14159)
e = Constant(2.71828)
GOLDEN_RATIO = Constant(1.61803)

class Math(metaclass=MathMeta):
pass

Now PI, e, and the GOLDEN_RATIO are constants of the Math class.
The only way to mess with them is through the metaclass. A downside to
using a metadescriptor for this is the fact the constants can no longer be
accessed through instances of classes with the constant. This isn’t really a
problem though, since many other languages never permitted that kind of
access to begin with. There are also multiclassing issues that can pop up
with classes that have different metaclasses, but that’s a pretty rare issue.

So, now that there’s a Constant metadescriptor and it’s understood
how to use it, I will now channel my inner Raymond Hettinger by saying,

'"

“There must be a better way!” Nobody wants to make a metaclass just so
they can make a normal class have constants.

There is a better way. Python allows for dynamically defining classes
and metaclasses, and if they’'re created within a function, that definition

can be reused dynamically over and over again. Here’s how.

def withConstants(**kwargs):
class MetaForConstants(type):
pass
for k, v in kwargs.items():
MetaForConstants. dict [k] = Constant(v)
return MetaForConstants

64

CHAPTER 8 READ-ONLY DESCRIPTORS

This function creates a metaclass using each given keyword argument
as a new Constant and returns the metaclass. Here’s what the new Math
class definition would look like with this function instead of the fully

written metaclass.

class Math(metaclass=withConstants(PI=3.14159, e=2.71828,
GOLDEN_RATIO=1.61803)):
pass

There! Now, just by setting the resulting metaclass as Math’s metaclass,
it has the constants provided by the keyword arguments given to
withConstants(). There is one huge drawback to using this over the other
way: autocompletion. You'd be hard pressed to find an editor that can
autocomplete on something created completely dynamically like this.

Summary

This chapter has examined several different techniques to make
descriptors for read-only attributes (or, at least, read-only-ish attributes).
One thing to note in all of this is that none of the techniques actually make
itimpossible to change the values; they only make it difficult to do so,
requiring extra steps in order to signify to the user that doing so is not what
was intended. Such is the way of Python; after all, we’re all consenting
adults here.

65

CHAPTER 9

Writing__delete_ ()

This is going to be a short chapter, since there isn’t really all that much to
say, but it didn’t really fit in any of the other chapters. Also, _get () and
__set_ () sort of got their own chapters.

Most descriptor tutorials don’t even mention what to do with
__delete_ (), and they often don’t even have the method on their
example descriptors.

If a descriptor is being used only internally (as opposed to being in a
public library) and del is never called in the internal code, then there is
no point in implementinga __delete () method. But in a public library,
there is no way to know whether or not users are going to use del on
the descriptor attributes. Because of that, it is generally safest to include
working delete () methods on data descriptors in a library. How
those methods look depends on how the attributes are stored.

For internal storage, delete the entry from the dict:

del self.storage[instance]
For external storage, delete from the instance dictionary:
del vars(instance)[name]

If the descriptor doesn’t represent a stored value, do nothing. There’s
truly very little variation in what __delete () methods look like, other
than the additional functionality a descriptor may have.

© Jacob Zimmerman 2018 67
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_9

CHAPTER9 WRITING__DELETE_ ()

Summary

We've seen that __delete_ () is a pretty simple method to implement, but
deciding whether to actually implement it can be a difficult decision. In the
end, though, it will be used so little that implementing it can probably be
put off until it’s needed. The default behavior of raising an exception due to
lack of implementation should get you by until then.

68

CHAPTER 10

Descriptors Are
Classes Too

It’s time for some more advanced stuff with descriptors. Actually, it’s not
really advanced, since it’s stuff that pertains to all classes. There won’t be a
very in-depth look at much in this chapter; it’s just a reminder that features
normally available to classes are available to descriptors as well.

Inheritance

Descriptors can inherit and be inherited from other classes (which will
generally be other descriptors or descriptor utilities/helpers). Using
inheritance, descriptors can be built using pre-built mixins and template
classes that already implement the base functionality wanted for storing
the attribute. In fact, a suite of these are discussed in the next chapter and
fully provided in the library. Just as an example, a base class can be created
that takes care of the minor details of using on-descriptor storage that the
derived specialization can delegate to. Again, there’s more about this idea
in the next chapter, with full code examples in the library.

© Jacob Zimmerman 2018 69
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_10

CHAPTER 10 DESCRIPTORS ARE CLASSES T0OO

More Methods

A descriptor can have more methods than just that of the descriptor
protocol, _set name_ (),and __init_ (). This was shown with secret-
set descriptors that have a back door method, like set().

Externally-used methods like that should be limited, since access to
these methods should be limited too, but using internally-used “private”
methods that are used only within the class are definitely fair game. Also,
implementing _str () and _repr () isagood idea too. It's rarely
useful or necessary to implement __eq__ () or__hash__ (), as descriptors
themselves aren’t likely compared or stored in a hashed collection as a key.

Optional/Default Parameters

Just like in the forced-set descriptors, optional/default parameters can
be added to the protocol methods. Since users providing alternative
arguments still requires them to get the descriptor object and call the
protocol methods directly, this should be limited, just like additional
externally-used methods.

Additionally, it should be limited for the sake of composition and
inheritance. If the class providing the optional parameter gets wrapped or
subclassed, the new class either has to know about the optional parameter
or provide a **kwargs parameter and pass it down the line, as will be seen
in much of the provided code in the library.

Descriptors on Descriptors

Since descriptors are classes, descriptors can have descriptors on them
too! There have been several times that I almost did so, but the setter was
more complicated than what descriptors provide, so I had to settle. I've
also considered using descriptors to make the attributes read-only, but I've
never fully settled on it.

70

CHAPTER 10 DESCRIPTORS ARE CLASSES T0OO

Passing an Instance Around

No one ever said that a descriptor had to create a new instance for each
and every class it was put on. An instance of a descriptor can be created
outside of a class definition, then assigned to a class attribute of multiple
classes.

This can save a little bit of space when storing on the descriptor, since
it will only have the overhead of a single dictionary instead of one per class.
In fact, if you're storing the values on the descriptor, it’s much less of a
problem than saving on the instance. The issue with descriptors storing the
values on the instance is that you need the name to store it on, and if that
name is supposed to the same as or derived from the name the descriptor
has on the class, you have to deal with the possibility that the descriptor
has multiple names. Interestingly, set name__ () is called each time you
assign the descriptor to a class in the class definition. If you don’t need
the name (you should, for error messages), you can still get away with a
single descriptor used on multiple classes. The best use case is when the
descriptor is really specific and used with the same name on every class.
This eliminates all of the problems.

But if you want to use a single instance of a descriptor across multiple
classes that can potentially use a different name for it, you'll need to create
a specialized storage for those names that is keyed by classes, but can also
take inheritance into account. I would actually enjoy the challenge and
have considered creating one to put into descriptor-tools, but I don’t want
to encourage the idea too much.

Whatever you do, do not reuse the same descriptor for multiple
attributes on the same class. It simply won’t work. All the attributes will
have the same value.

71

CHAPTER 10 DESCRIPTORS ARE CLASSES T0OO

Descriptors Just Abstract Method Calls

Basically, a descriptor is just a simpler way to do certain method calls.
Those method calls don’t have to work in a property-ish way, getting and/
or setting a certain value.

The get () descriptor method can essentially replace any method
on a class that takes no parameters and returns an object. What’s more, it
doesn’t even need to return anything, since not returning anything means
itreturns None. The _set () descriptor method can be a replacement for
any method that has a single parameter and doesn’t return anything. The
__delete_ () method replaces methods with no parameters and doesn’t
return anything.

While a descriptor can be used in these ways, doing so is very likely
to be unintuitive to users of the descriptor, largely due to the fact that the
syntax seems strange for many of those cases, especially in the case of
__delete_ ().

Summary

Anything that can be done with any other class can be done with a
descriptor, including things not brought up here. Although much of it can
be done without any real downsides, there is rarely a need for many of the
features, but it doesn’t hurt to keep all of this in mind when writing your
descriptors.

72

CHAPTER 11

Reusing the Wheel

Whenever possible and sensible, one should try to avoid reinventing the
wheel. This chapter goes over a set of classes to use as superclasses and
strategies to help build new descriptors a little faster. Only barebones code
is presented here; the full code examples are in the library.

Storage Solutions

The first code examples cover storage “strategies” (which I'm calling
“solutions”) that a descriptor can use for its storage. These strategies can
be hard-coded into new descriptors or be passed into the descriptor’s
initializer to be chosen on a case-by-case basis. Only two basic strategies
will be shown here; the rest can be found in the library.

class OnDescriptorStorageSolution:
def init (self):
self.storage = DescriptorStorage()

def get(self, instance):
return self.storage[instance]

def set(self, instance, value):
self.storage[instance] = value

def delete(self, instance):
del self.storage[instance]

© Jacob Zimmerman 2018 73
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_11

CHAPTER 11 REUSING THE WHEEL

class NameGetter:
def _init_(self, name_lookup strategy):
self.lookup strategy = name_lookup strategy
self.name = None

def _call (self, instance, descriptor):
if self.name is None:
self.name = self.lookup strategy(instance,
descriptor)
return self.name

def set(self, name):
self.name = name

class OnInstanceStorageSolution:
def _init (self, name_lookup_strategy):
self.name = NameGetter(name_ lookup strategy)

def get(self, instance):
return instance. dict [self.name(instance, self)]

def set(self, instance, value):
instance. dict [self.name(instance, self)] = value

def delete(self, instance):
del instance. dict [self.name(instance, self)]

def set name(self, name):
self.name.set(name)

Clearly, these storage solutions are designed for per-instance storage.
This is due to two reasons: per-class storage is trivial and therefore doesn’t
need pre-built solutions; and per-instance storage is much more common.

The NameGetter class and its use might be just a little confusing. As
stated in the chapter about storage, the most difficult thing about storing on
the instances is figuring out how to find the name of where to store, so the

74

CHAPTER 11 REUSING THE WHEEL

OnInstanceStorageSolution class takes in a name_lookup strategy. This
strategy is just a function that accepts instance and the descriptor and returns
the name to store at. The strategy accepts those two parameters because those
are the only pieces of information guaranteed that can be used for the lookup,
and they're also required for doing lookup via name_of (), as mentioned
earlier in the book. If the name is already decided, the lookup strategy can
simply be None, and you call set (). The set() method is also useful for being
called from __set _name__ (), which is why OnInstanceStorageSolution also
has a set_name() method to be called from the descriptor.

NameGetter isn’t technically required to do the work necessary, but is
used to cache the name after the name has been calculated. That way, the
lookup method doesn’t need to be called more than once; it’s called once,
then stored for quick returns on subsequent lookups.

Now that storage solutions have been shown, here are some example
descriptors using or prepared to be supplied with a storage solution object
(delete methods are omitted for simplicity’s sake).

class ExampleWithHardCodedStrategy:
def _init (self):
self.storage = OnDescriptorStorageSolution()

def _get (self, instance, owner):
any pre-fetch logic
value = self.storage.get(instance)
any post-fetch logic
return value

def set (self, instance, value):
any pre-set logic
self.storage.set(instance, value)

class ExampleWithOpenStrategy:
def init (self, storage solution):
self.storage = storage solution

75

CHAPTER 11 REUSING THE WHEEL

def get (self, instance, owner):
any pre-fetch logic
value = self.storage.get(instance)
any post-fetch logic
return value

def set (self, instance, value):
any pre-set logic
self.storage.set(instance, value)

These strategies could also be subclassed, making the strategy
methods more like template-called methods. For example:

class ExampleWithSuperclassStrategy(OnDescriptorStorageSolution):
def get (self, instance, owner):
any pre-fetch logic
value = self.get(instance) # calls the solution method
on itself
any post-fetch logic
return value

def set (self, instance, value):
any pre-set logic
self.set(instance, value) # same here

Using the storage solutions like this is a cleaner way of hard-coding the
solution.

Read-Only Solutions

Another utility class that can be built is a wrapper that can turn any other
descriptor into a read-only descriptor. Here’s an example using the set-
once style.

76

CHAPTER 11 REUSING THE WHEEL

class ReadOnly:
def init (self, wrapped):
self.wrapped = wrapped
self.setInstances = set()

def _set (self, instance, value):
if instance in self.setInstances:
raise AttributeError("Cannot set new value on read-
only property")
else:
self.setInstances.add(instance)
self.wrapped. set (instance, value)

def getattr (self, item):
redirects any calls other than _ set to the wrapped
descriptor
return getattr(self.wrapped, item)

def readOnly(deco): # a decorator for wrapping other decorator
descriptors
def wrapper(func):
return ReadOnly(deco(func))
return wrapper

It even includes a decorator decorator for decorating descriptors
being used as decorators. (Yo dawg; I heard you like decorators, so I
put decorators in your decorators.) This isn’t meant for wrapping just
any decorators; it’s only meant for wrapping decorators that produce
descriptors. It’s not likely to be used often, since most descriptors that are
created from decorators are non-data descriptors, making the ReadOnly
wrapping not very useful. But it doesn’t hurt to have it anyway, just in case;
especially after claiming it can wrap any other descriptor.

77

CHAPTER 11 REUSING THE WHEEL

It can be noted that ReadOnly only implements the _set () method
of the descriptor protocol. This is because it’s the only one that it covers.
Ituses getattr () in order to redirect calls to potential _get ()
and __delete_ () methods because it doesn’t know which ones might
be implemented. Unfortunately, this doesn’t work. When calling “magic”
methods implicitly, Python doesn’t look up the methods normally. For the
sake of speed, it directly checks just the dictionary on the classes and no
further.

This unfortunately makes using the object-oriented decorator pattern
extremely difficult to do correctly. Essentially, you need to implement
the methods in such a way as to mimic _getattribute () itself. In
descriptor tools.decorators.DescriptorDecoratorBase, you can see
what I mean. It checks what methods the wrapped descriptor has and
decides whether to delegate to the wrapped descriptor, to the instance, or
to raise errors you'd otherwise get.

An alternative is to design your descriptors to take strategies at
creation, but this only works with your own descriptors and doesn’t allow
you to extend descriptors that are out of your control.

Simple Unbound Attributes

Reusable code can be created for making the get () method return
unbound attributes when instance isn’t provided rather than returning
the descriptor, too. It can be done via a wrapper class (assuming it’s
designed to handle the correct methods), via inheritance, or even a
method decorator:

def binding(get):
@wraps(get)
def wrapper(self, instance, owner):
if instance is None:
return UnboundAttribute(self, owner)

78

CHAPTER 11 REUSING THE WHEEL

else:
return get(self, instance, owner)
return wrapper

This simple decorator can be used inside a descriptor easily:

class Descriptor:
other implementation details
@binding
def get (self, instance, owner):
implementation that assumes instance is not None

By simply adding the call to the decorator, you can simplify the code
you have to write, ignoring writing anything that has to deal with the
possibility of instance being None, other than the decorator.

There’s also an object decorator (i.e., a Gang of Four decorator) version
in the library so that any existing descriptor can be transformed to return
unbound attributes. For example, if users want to use attribute binding
with an existing descriptor that doesn’t provide them, they could do
something like this:

class MyClass:
@Binding
@property
def myProp(self):
gets the actual property

Binding is a class that wraps an entire descriptor. Now property can
be used with unbound attributes. (With some caveats: if you continue and
define a setter for myProp, myProp will be replaced with a new property

79

CHAPTER 11 REUSING THE WHEEL

object; only add the @Binding call to the last method decorated with the
property.) With descriptors that aren’t being used as decorators, it would
look like this:

class MyClass:
myProp = Binding(SomeDescriptor(...))

There is no version that works with inheritance since calling either
of the decorators is easier than trying to create a superclass for the new
descriptor to inherit from.

Summary

This is all the categories of helpful code provided in the library (other than
what the entire next chapter is about), but it is by no means the only pieces
of code there. There are a ton of helpful pieces there to help you build your
own descriptors, to mix and match certain pieces into a cohesive whole
descriptor where you need to do minimal work to add your core logic
among the rest of it.

In this chapter, we've seen how reusable pieces can be made that can
make implementing descriptors a little quicker and easier, as well as a little
bit more standardized. As mentioned, all of these tools (and more) will be
available in the library as well as on GitHub. Hopefully, they will help make
your lives easier when you try to create your own descriptors.

80

CHAPTER 12

Instance-Level
Descriptors

What's the most confusing part about a property-like data descriptor?
Wrapping your head around the fact that it is being used to control
instance-distinct attributes from its class.

What's the hardest decision you have to make? Whether to store on the
descriptor or on the instance (and then how you plan to accomplish that).

With instance properties, these issues are delegated to a nano
framework so that you can concentrate on the important parts of your
descriptor, creating a property that works the way you'd expect. Let’s get a
little history to understand what I'm talking about.

Properties in Other Languages

When you see properties in other languages, such as C#, those properties
work a lot like methods in that they're defined on the class, but you get
to focus on the instance while you're working. In fact, they're defined
very much like methods and probably have the same or a similar
implementation in the back.
Python’s property descriptor allows you to do something very similar,
albeit in a slightly more verbose and unintuitive way, but you can still do it.
Next, we'll look at Kotlin, which allows you to define properties in
much the same way as C#, but they also have a secondary system called

© Jacob Zimmerman 2018 81
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_12

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

delegated properties. This is where you provide the property definition
with an object that has get() and set() methods. Does this sound
familiar? Sounds a lot like descriptors, right? There’s one big difference,
though: there’s one delegated property object per instance. This makes
it so that the delegated property only has to worry about what it’s doing
with each instance. It also means that, since a new property is created
with each instance, it can take a starting value in its constructor and
never implement a set () method if it wants to be read-only; it doesn’t
need set() to give it its first value. This is so much nicer than Python'’s
descriptors in most cases.

Back to Python

Now, don’t get me wrong; Python’s descriptors are an amazing feature,
and the fact that they reside at the class level opens up a whole new world
of possibilities. But the problem is that, arguably, most use cases for
descriptors don’t need that. In fact, would venture that most of the time,
people just want a reusable property.

So, what can we do about this? We can make our own delegated
properties, of course!

Accomplishing this went through at least four different iterations
for me, starting off with using a completely different kind of Python
metaprogramming. You can see the first two attempts on my blog,
“Programming Ideas with Jake,” under my articles about descriptors.

Attempt 1

The first thing I tried was a more direct manipulation of how Python
classes work to look and act more like it does in Kotlin. When you first set
the attribute on an instance that you wanted with a delegated property,
you assigned it an instance of that delegated property object. Then you

82

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

would tweak _getattribute ()and setattr () sothatif the
attribute held a delegated property, it would call the appropriate method
on it instead. Reusing the tweaked version of the _ getattribute ()
and _setattr_ () could be done fairly easily with inheritance or a class
decorator that does monkey patching.

As well as this works, it doesn’t sit well with me because I hate messing
with those attribute access hooks. It seems too magical to me.

Attempt 2

I believe I was lying in bed about to fall asleep, when this idea came to me,
causing me to stay up a little longer while I wrote it down. The idea was
half-baked at first, but the basics of it run the rest of the attempts. Then,

as I started to write it in code, I started to see certain issues and came up
with a situation that will probably make you think of some jokes about Java
frameworks.

The basics of the idea is that, instead of tweaking the attribute access
methods, we move those changes out into a descriptor. That descriptor
is called with any and all uses of its attribute, where it delegates to a
delegated property object. It’s a pretty simple base of an idea.

From there, the problem came down to one question: how do we
instantiate the delegated property instances? You may or may not already
have a good guess, and the part that made my life so difficult was the idea
that I thought the framework had to work in a way such that everything
about the property had to be defined in that initial line on the class, and
the constructor pretty much just needed to provide the starting value.

83

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

So the descriptor needed to be constructed with a factory function for
creating the delegated property. But I also wanted to make it so that the
delegated property could:

e Becreated without a value initially. For example, a
lazy attribute where the lazy initialization function is
provided with the factory. Or a property that can’t be
None but might not have a value initially.

e Could skip implementing the setter method to be
read-only.

e Could potentially take in some metadata, such as its
name as well as what instance it’s for.

To do this, the first time the attribute was accessed, the descriptor
created a blank version of the delegated property object and passed
it and the metadata in an “InstancePropertylnitializer,” which had an
initialize() method that you had to call in your normal constructor. This
initializer method delegated to the initialize() method on the delegated
property, sending in the metadata and whatever else the developer wanted
to send into the property. The existence and flexibility of that initializer is
what allowed delegated properties to accomplish this list of possibilities. If
you don’t want an initial value, then just don’t give one to the initializer. If
you want to skip having the setter method for a read-only property (but the
framework can’t provide the initial value in the constructor), the initializer
acts like a special backdoor setter. It’s also the vehicle for supplying the
metadata.

The idea seemed pretty elegant to me at the time, but it dawned
on me how cumbersome it was. First, the delegated property needed
to provide an initializer method, plus it needed to provide a factory
method. Also, initializing the attribute was weird, looking like
self.attr.initialize(value) instead of just self.attr = value.

84

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

Attempt 3

Then, while I was on a camping trip and starting to work on my edits for
this new edition, a better idea came to me. It followed mostly the same
idea, but it made it nicer for properties that were given a starting value in
the constructor.

To do this, the factory was changed to take in the metadata as well
as an initial value. Now the delegated property could take in all of
those things in the constructor. So, the first time that the attribute is
set, the descriptor creates the property with all of that. This allowed the
constructor code to go back to the self.attr = value format.

But what about ones that don’t want an initial value? Those classes
have to take an extra step. Their factories had to have a default() method
that on took in the metadata. This would be called if the delegated
property still hadn’t been created for an instance but the descriptor’s
__get () method was being called. From there, the descriptor could start
delegating to the property.

The reason that we have a default factory that is different than the
normal factory is because most properties that would use a default factory
also still allow the value to be initialized first.

Attempt 4

Before I was even done with that camping trip, I realized how dumb I had
been all along and started work on this fourth, and hopefully final, attempt.
We don’t need factories. Instead, at the class level, all you do is create

the base InstanceProperty descriptor (shown below). The descriptor is
just there to activate that attribute to use delegated properties. It simply
assumes that the first assignment to the attribute is assigning the property
itself instead of just a value. The descriptor doesn’t need to know what
kind of property it will be storing or how to create it.

85

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

Instead, you create the delegate property instance in the class’
constructor. This has the added benefit of making sure that, if the
descriptor stores the delegated property on the instance, the property is
assigned in the constructor, which is recommended in Python 3.3+ due
to key-sharing dictionaries. Sure, it’s no longer self.attr = value. Now
it's self.attr = PropertyType(value), which is more cumbersome
but doesn’t feel nearly as weird, and it allows the design of the delegated
property types to be notably easier.

There is still one awkward thing that needs to be dealt with on the
property class. It needs a method for providing the metadata. It’s either
do that or cause the attribute initialization line to look like self.attr =
PropertyType(value, self, "attr", type(self).attr), assuming the
property wants all three pieces of metadata (the instance, the attribute
name, and the descriptor the property is controlled by).

So what does this descriptor look like? Here’s a simplified version:

class InstanceProperty:
def init (self):
self. storage = DescDict()

def _ set name_ (self, owner, name):
self. name = name

def get (self, instance, owner):
if instance is None:
return self
else:
return self. storage[instance].get()

def set (self, instance, value):
if instance not in self. storage:
value.set_meta(instance, self. name, self)
self. storage[instance] = value

86

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

else:
self. storage[instance].set(value)

def delete (self, instance):
del self. storage[instance]

The real one that’s included in the descriptor-tools library in version
1.1 (still unreleased at the time of writing) has more to it, allowing for
the name to be set in versions that don’t support __set _name__ (). The
real one also makes the properties not deletable by default (a Deletable
wrapper allows it) and allows you to use a simple wrapper for the
descriptor that makes it read-only so that you don’t have create a mutable
and read-only version of the delegated properties.

Example

I'm betting you want to see all of this in action, don’t you? We'll create a
delegated property that doesn’t allow the attribute to be None:

class NotNone:
def init (self, value):
self.value = value

def set meta(self, instance, name, descriptor):
self.instance = instance
self.name = name
self.descriptor = descriptor
if value is None:
raise AttributeError(self.name + "cannot be None")

def get(self):
return self.value

87

CHAPTER 12 INSTANCE-LEVEL DESCRIPTORS

def set(self, value):
if value is None:
raise AttributeError(self.name + "cannot be None")
else:
self.value = value

This example also shows a small inconvenience with the framework:
if you want a property that does some kind of validation and wants to
use any of the metadata in the error message, you need to wait until
set_meta() to do the initial validation. From the user’s perspective, this
is effectively at the exact same point in time, but it’s awkward from the
perspective of the person who has to write the property.

But you know what else this example shows? It shows how simple and
intuitive the rest of creating a delegated property can be.

So what does it look like to use all of this?

class Foo:
bar = InstanceAttribute()

def _init (self, baz):
self.bar = NotNone(baz)

Just a little bit of extra work for a clean and easy way to have special
attributes.

Go Nuts

While there is a default option for an instance attribute descriptor coming
to descriptor-tools, that was designed to be as general as I knew how to
make it. If you don’t care at all about the metadata, you can create your
own instance attribute descriptor and strip that whole bit out. You're nearly
done with this book; you've got this!

88

CHAPTER 13

Other Uses
of Descriptors
In the World

Much of the usefulness of descriptors covered in this book was just

using them as specialized properties. While this is one of the primary
purposes of descriptors, it’s not all that they can do, though even the more
innovative uses still largely serve that purpose.

SQLAIchemy*

This is probably the best-known library that uses descriptors for some of its
stronger powers. (Probably; I did some digging and couldn’t find any hint
of using descriptors, though the inheritance hierarchy is deep, so I gave
up. If it doesn’t use descriptors, then I have absolutely no clue how it does
what it does.) When using the declarative mapping style for data classes,
the use of the Column descriptor allows users to specify all sorts of database
metadata about the column that the attribute represents, including the
data type, column name, whether it’s a primary key, etc.

That Column class also has a ton of other methods that are used when
creating queries around the data, such as the ordering methods, 1t (),
__ gt (), etc. and what table it’s in.

© Jacob Zimmerman 2018 89
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_13

CHAPTER 13 OTHER USES OF DESCRIPTORS IN THE WORLD

Jigha

Jigna is a library that provides a kind of bridge between Python and
JavaScript, allowing you to write Python code that creates web pages,
including single-page applications. Using Trait descriptors, it can create
two-way data bindings, generating AngularJS code that works with HTML
pages.

The use is extremely innovative and powerful and it’s all thanks to
descriptors that it can be as easy to use as it is.

For more information, visit its GitHub repository® or check out the
presentation the creator gave at EuroPython 2014°.

Elk

Elkis a Python library that is almost all descriptors, allowing for classes to
be defined in a stricter fashion. Every attribute for instances is meant to be
defined in the class with an E1kAttribute descriptor. Some examples of
what can be done with E1kAttributes are:

e Setting an attribute as required

o Making lazy attributes

e Delegating to the methods on the attribute
e Making an attribute read-only

o Creating constructors automatically

There are other features in the library attempting to make the
tedious parts of class definition a little easier, and they can be seen in its

documentation’.

90

CHAPTER 13 OTHER USES OF DESCRIPTORS IN THE WORLD

Validators

This isn’t a specific instance of what'’s out there, but rather a well-known
use for descriptors. For example, if an attribute needs to be a string
that follows a certain pattern, a descriptor can be created that takes the
validator, and every time a value is set into the descriptor, it validates that
the new value fits the validation.

There are a bunch of different validation descriptors that can be
written that allow a class to maintain its invariants.

Summary

Now you've seen some really cool uses for descriptors. Also, this is the
end of the book, so I suggest you go out there and make your own really
awesome descriptors. Go and make the Python community an even more
awesome place.

91

Bibliography

1. GitHub repo of descriptor tools https://github.com/
sad2project/descriptor-tools

2. Python documentation on property
http://tinyurl.com/1jsmxck

3. “The Zipline Show” about descriptors
https://www.youtube.com/watch?v=xYBVjVEJtEg

4. SQLAlchemy site http://www.sqlalchemy.org/

5. Jigna GitHub repo https://github.com/
enthought/jigna

6. Jigna presentation at EuroPython 2014
https://www.youtube.com/watch?v=KHSXq5jfv_4

7. Elkdocumentation http://frasertweedale.
github.io/elk/

© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4

https://doi.org/10.1007/978-1-4842-3727-4
https://github.com/sad2project/descriptor-tools
https://github.com/sad2project/descriptor-tools
http://tinyurl.com/ljsmxck
https://www.youtube.com/watch?v=xYBVjVEJtEg
http://www.sqlalchemy.org/
https://github.com/enthought/jigna
https://github.com/enthought/jigna
https://www.youtube.com/watch?v=KHSXq5jfv_4
http://frasertweedale.github.io/elk/
http://frasertweedale.github.io/elk/

Index

A, B
Attribute access
instance access

class, 26

__getattribute__() method,
22-23,25

__get_ () method, 23, 25

MRO, 23

set and delete calls, 27
AttributeError, 25, 27, 31-32,
59-60, 63
Attributes storage
class-level, 39-40
descriptor, data (see Descriptor,
data)
location, indirect, 50
name mangling (see Name
mangling)
original and mangled name
storage (see Original and
mangled name storage)

C

Class constants
autocompletion, 65
metaclass, 64
metadescriptor, 63
multiclassing issues, 64

© Jacob Zimmerman 2018

D

Descriptor, data
descriptor protocol, 43
facade class, 45
hashable types, 43
instance dictionary
Boolean flag, 46
name conflicts, 47
__slots__, 46
vars() function, 47
instance’s ID, 43
key ID, 45
location name
__init_ () method, 48
set-it-and-forget-it
descriptors, 48-50
validatedAttribute, 49
memory leaks, 41, 44
mutable collections, 42
vs. non-data, 4, 28
overriding, 42
_ setitem__() class, 45
WeakKeyDictionary, 41-42
Descriptor methods, 3, 70
__delete__() method, 31-32
EAFP, 32
__get_ () method, 32
_ set__ () method, 32

J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4

https://doi.org/10.1007/978-1-4842-3727-4

INDEX

Descriptor methods (cont.)

unbound attributes, 33

attrgetter() function, 36
map() function, 35

self returning, 35
unboundattr() function, 34

Descriptor protocol

__delete__(self, instance)
method, 9

__get__(self, instance, owner)
method, 7-8

__set__(self, instance, value)
method, 8-9

Descriptors

96

abstract method, 72
cons of Python
additional objects, 14
__delete__() method, 3,9, 67, 72
descriptor-tools library, 14
encapsulation, 13
__get_ ()method, 3,7, 8, 72
inheritance, 69
instance, passing, 71
methods (see Descriptor
methods)
optional/default parameters, 70
pros of Python
class level, 13
encapsulation, 11
read/write patterns, 12-13
Python, use, 4
_ set__ () method, 3, 8,9, 72

standard library
bound method, 20
classmethod descriptor, 18
property class, 16-17
staticmethod descriptor, 19
uses
Elk, 90
Jigna, 90
SQLAlchemy, 89
validators, 91

E, F

Easier to ask for forgiveness than
for permission (EAFP), 32

Elk, 90

G H

GitHub, 93

Instance-level descriptors, Python,
see Python

J

Jigna, 90

K, L

Kotlin, 81

Metadescriptors, 57
Method resolution order (MRO), 23
Multi-paradigm language, 4

N

Name mangling

name fetching, 51
dir() method, 52
getattr_static() function, 53
name_of() method, 52
__set_name__() method, 53

non-data descriptor, 51

Python, 51

O

Original and mangled name
storage
DRYness, 56
ID keying
dir () method, 54
pickle module, 55
metadescriptors, 57

PQ

Python
default() method, 85
__getattribute__() method, 83
__get_ () method, 85
initialize() method, 84

INDEX

InstanceProperty descriptor, 81,
85, 87

_ setattr__() method, 83

set_meta() method, 88

R

Read-only descriptors
forced-set descriptor, 62-63
secret-set descriptor, 61
set-once descriptor, 60

Read/write patterns, 12-13

S, TU,V

SQLAIchemy, 89

W XYZ
Wheel, reusing
read-only solutions
decorator, 77
__getattribute__() method,
78
storage solutions, 73
NameGetter class, 74
OnlInstanceStorageSolution
class, 75
per-instance, 74
set() method, 75
template-called methods, 76
unbound attributes, 78
object decorator, 79

97

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: About Descriptors
	Chapter 1: What Is a Descriptor?
	Data Descriptors versus Non-Data Descriptors
	The Use of Descriptors by Python
	Summary

	Chapter 2: The Descriptor Protocol
	The __get__(self, instance, owner) Method
	The __set__(self, instance, value) Method
	The __delete__(self, instance) Method
	Summary

	Chapter 3: What Are Descriptors Good For?
	Pros of Python Descriptors
	Encapsulation
	Reuse of Read/Write Patterns
	Lazy Instantiation
	Validation
	Triggering Actions

	Writing for the Class Level

	Cons of Python Descriptors
	Encapsulation
	Can Be Difficult To Write
	Additional Objects

	Summary

	Chapter 4: Descriptors in the Standard Library
	The property Class
	The classmethod Descriptor
	The staticmethod Descriptor
	Regular Methods
	Summary

	Chapter 5: Attribute Access and Descriptors
	Instance Access
	Set and Delete Calls
	The Reasoning Behind Data versus Non-Data Descriptors
	Summary

	Part II: Making Descriptors
	Chapter 6: Which Methods Are Needed?
	When __get__() Is Called Without an instance Argument
	Raise Exception or Return self
	“Unbound” Attributes

	Summary

	Chapter 7: Storing the Attributes
	Class-Level Storage
	Storing Data on the Descriptor
	Storing on the Instance Dictionary
	Asking for the Location
	Set-It-and-Forget-It Descriptors

	Indirectly Asking for the Location
	Name Mangling
	Fetching the Name
	__set_name__()

	Store the Original and the Mangled
	Keying on the ID
	Letting the User Take Care Of It
	Metadescriptors

	Summary

	Chapter 8: Read-Only Descriptors
	Set-Once Descriptors
	Secret-Set Descriptors
	Forced-Set Descriptors
	Class Constants
	Summary

	Chapter 9: Writing__delete__()
	Summary

	Chapter 10: Descriptors Are Classes Too
	Inheritance
	More Methods
	Optional/Default Parameters
	Descriptors on Descriptors
	Passing an Instance Around
	Descriptors Just Abstract Method Calls
	Summary

	Chapter 11: Reusing the Wheel
	Storage Solutions
	Read-Only Solutions
	Simple Unbound Attributes
	Summary

	Chapter 12: Instance-Level Descriptors
	Properties in Other Languages
	Back to Python
	Attempt 1
	Attempt 2
	Attempt 3
	Attempt 4

	Example
	Go Nuts

	Chapter 13: Other Uses of Descriptors In the World
	SQLAlchemy4
	Jigna
	Elk
	Validators
	Summary

	Bibliography
	Index

