
Python
Descriptors

Understanding and Using the
Descriptor Protocol
—
Second Edition
—
Jacob Zimmerman

Python Descriptors
Understanding and Using
the Descriptor Protocol

Second Edition

Jacob Zimmerman

Python Descriptors: Understanding and Using the Descriptor Protocol

ISBN-13 (pbk): 978-1-4842-3726-7		 ISBN-13 (electronic): 978-1-4842-3727-4
https://doi.org/10.1007/978-1-4842-3727-4

Library of Congress Control Number: 2018960194

Copyright © 2018 by Jacob Zimmerman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484237267. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Jacob Zimmerman
New York, USA

https://doi.org/10.1007/978-1-4842-3727-4

iii

Part I: ��About Descriptors��1

Chapter 1: �What Is a Descriptor?���3

Data Descriptors versus Non-Data Descriptors���4

The Use of Descriptors by Python��4

Summary���5

Chapter 2: �The Descriptor Protocol���7

The __get__(self, instance, owner) Method���7

The __set__(self, instance, value) Method��  8

The __delete__(self, instance) Method��9

Summary���10

Chapter 3: �What Are Descriptors Good For?��11

Pros of Python Descriptors��11

Encapsulation���11

Reuse of Read/Write Patterns��12

Writing for the Class Level��13

Table of Contents
About the Author���vii

About the Technical Reviewer��ix

Acknowledgments��xi

Introduction��xiii

iv

Cons of Python Descriptors��13

Encapsulation���13

Can Be Difficult To Write���14

Additional Objects��14

Summary���14

Chapter 4: �Descriptors in the Standard Library�����������������������������������15

The property Class���16

The classmethod Descriptor��18

The staticmethod Descriptor��19

Regular Methods��19

Summary���20

Chapter 5: �Attribute Access and Descriptors��������������������������������������21

Instance Access���22

Set and Delete Calls���27

The Reasoning Behind Data versus Non-Data Descriptors���������������������������������28

Summary���28

Part II: �Making Descriptors��29

Chapter 6: �Which Methods Are Needed?���31

When __get__() Is Called Without an instance Argument�����������������������������������32

Raise Exception or Return self���32

“Unbound” Attributes���33

Summary���37

Chapter 7: �Storing the Attributes��39

Class-Level Storage���39

Storing Data on the Descriptor���40

Storing on the Instance Dictionary���46

Table of ContentsTable of Contents

v

Asking for the Location���48

Indirectly Asking for the Location��50

Name Mangling��51

Store the Original and the Mangled��54

Summary���57

Chapter 8: �Read-Only Descriptors���59

Set-Once Descriptors���60

Secret-Set Descriptors���61

Forced-Set Descriptors��62

Class Constants���63

Summary���65

Chapter 9: �Writing__delete__()��67

Summary���68

Chapter 10: �Descriptors Are Classes Too���69

Inheritance���69

More Methods��70

Optional/Default Parameters��70

Descriptors on Descriptors��70

Passing an Instance Around���71

Descriptors Just Abstract Method Calls���72

Summary���72

Chapter 11: �Reusing the Wheel���73

Storage Solutions���73

Read-Only Solutions���76

Simple Unbound Attributes��78

Summary���80

Table of ContentsTable of Contents

vi

Chapter 12: �Instance-Level Descriptors��81

Properties in Other Languages��81

Back to Python���82

Attempt 1��82

Attempt 2��83

Attempt 3��85

Attempt 4��85

Example���87

Go Nuts��88

Chapter 13: �Other Uses of Descriptors In the World����������������������������89

SQLAlchemy���89

Jigna��90

Elk��90

Validators���91

Summary���91

�Bibliography��93

�Index��95

Table of ContentsTable of Contents

vii

About the Author

Jacob Zimmerman is a blogger, gamer (tabletop more so than video

games), and programmer who was born and raised in Wisconsin. He has a

twin brother who could also be considered to have all those traits.

Jacob has his own programming blog that focuses on Java, Kotlin,

and Python programming, called “Programming Ideas with Jake”. He also

writes for a gaming blog with his brother-in-law called the “Ramblings of

Jacob and Delos”.

His brother writes a JavaScript blog called JoeZimJS and works with

his best friend on a gaming YouTube channel called “Bork & Zim Gaming,”

which Jacob helps out with on occasion.

Programming Ideas with Jake

http://programmingideaswithjake.wordpress.com/

Ramblings of Jacob and Delos

http://www.ramblingsofjacobanddelos.com/

JoeZimJS

http://www.joezimjs.com

http://programmingideaswithjake.wordpress.com/
http://www.ramblingsofjacobanddelos.com/
http://www.joezimjs.com

ix

About the Technical Reviewer

Michael Thomas has worked in software development for more than 20

years as an individual contributor, team lead, program manager, and vice

president of engineering. Michael has more than 10 years of experience

working with mobile devices. His current focus is in the medical sector,

using mobile devices to accelerate information transfer between patients

and health care providers.

xi

Acknowledgments

In order to be sure that I got everything right—it would really suck for a

“comprehensive guide” to be missing a big chunk of functionality or to get

anything wrong—I enlisted the help of some Python experts on the first

edition. In return for their help, I let them introduce themselves to you

here. That’s not all I did in return, but it’s all you’re going to see :)

Emanuel Barry is a self-taught Python programmer who loves pushing

the language to its limits as well as exploring its darkest corners. He has to

do a lot of proofreading and editing for a local non-for-profit organization,

and decided to combine his love of Python and knowledge sharing with

his background in proofreading to help make this book even better. He can

often be found in the shadows of the mailing lists or the issue tracker, as

well as the Python IRC channel, as Vgr.

Chris Angelico has played around with Python since the late 90s, getting

more serious with the language in the mid 2000s. As a PEP Editor and active

participant in the various mailing lists, he keeps well up to date with what’s

new and upcoming in the language and also shares that knowledge with

fledgling students in the Thinkful tutoring/mentoring program. When not

coding in Python, he is often found wordsmithing for a Dungeons & Dragons

campaign, or exploring the linguistic delights of Alice in Wonderland and

similar works. If you find a subtle Alice reference in this text, blame him!

https://github.com/Rosuav

Kevin Mackay is a software engineer who has been programming in

Python since 2010 and is currently working at BBC, improving the Taster

platform. He is enthusiastic about open source software and occasionally

contributes to the 3D graphics application, Blender. He can be found on the

Python IRC channel as yakca or hiking on a mountain somewhere in Scotland.

xiii

Introduction

Python is a remarkable language with many surprisingly powerful features

baked into it. Generators, metaclasses, and decorators are some of those,

but this book is all about descriptors.

�Code Samples
All code samples are written in Python 3, since that is the most recent

version, but all the ideas and principles taught in this book apply to Python

2 as well, as long as you’re using new style classes.

�The Descriptor Tools Library
Written alongside this book was a library, called descriptor-tools, which

can be installed with pip. It contains the fruition of a lot of the ideas and

helpers to make it easier to implement them all. It’s an open source project

with a public GitHub repository.1

Note S uperscript letters like the one at the end of the previous line
are in reference to the bibliography at the back of the book, which
includes URLs to the referenced site.

xiv

�Conventions in This Book
When the text mentions “class” and “instance” in a general sense, they

refer to a class that has a descriptor attribute and to instances of such

classes, respectively. All other classes and instances will be referred to

more specifically.

�New in the 2nd Edition
The 2nd edition is an update including new features of Python as well as

new ideas to learn. One of the new things is incredibly important if this

book wants to maintain the status of “comprehensive” guide that it strives

for. This important addition is about the addition of __set_name__() to the

descriptor protocol in Python 3.6. You can read about this in Chapter 7,

“Storing the Attributes”.

Another addition is an idea that was inspired by looking into the

__set_name__() addition to the protocol, which you’ll see just after the

section on that addition. Also, I added a chapter on creating instance-level

descriptors, which were added to descriptor-tools well before this edition

really got started.

The next thing is actually a change, not an addition. Since writing

the first book, I found out about the built-in function vars(). Calling

vars(obj) is equivalent to obj.__dict__, but is more Pythonic. Kind of

like calling len(obj) instead of obj.__len__(). So the code examples

have been updated to use vars(). Any remaining references to __dict__

are purposeful.

Pretty much everything else new in this edition is just cleaning up the

language to be more legible.

IntroductionIntroduction

PART I

About Descriptors
Part I is a deep explanation of what descriptors are, how they work, and

how they’re used. It gives enough information that you should be able to

look at any descriptor and understand how it works and why it works that

way, assuming the writer of the code made the code legible enough.

Creating your own descriptors isn’t difficult once you have the

information from Part I, but little to no guidance is given to help with

it. Instead, Part II covers that with a bunch of options for creating new

descriptors, as well as tips for avoiding common mistakes.

3© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_1

CHAPTER 1

What Is a Descriptor?
Put very simply, a descriptor is a class that can be used to call a method

with simple attribute access, but there’s obviously more to it than that. It’s

difficult to explain beyond that without digging a little into how descriptors

implemented. So, here’s a high-level view of the descriptor protocol.

A descriptor implements at least one of these three methods:

__get__(), __set__(), or __delete__(). Each of those methods has a list

of parameters needed, which will be discussed a little later, and each is

called by a different sort of access of the attribute the descriptor represents.

Doing simple a.x access will call the __get__() method of x; setting the

attribute using a.x = value will call the __set__() method of x; and using

del a.x will call, as expected, the __delete__() method of x.

Note  Since version 3.6, there’s another method that descriptors
can take advantage of, called __set_name__(), but using just
that method doesn’t make it a descriptor the way any of the other
three will. This method will be mostly ignored for a while, since it
doesn’t have as big a role into how descriptors work. It will only be
mentioned where most relevant.

As stated, only one of the methods needs to be implemented in

order to be considered a descriptor, but any number of them can be

implemented. And, depending on descriptor type and on which methods

4

are implemented, not implementing certain methods can restrict certain

types of attribute access or provide interesting alternative behaviors for

them. There are two types of descriptors based on which sets of these

methods are implemented: data and non-data.

�Data Descriptors versus Non-Data
Descriptors
A data descriptor implements at least __set__() or __delete__(), but

can include both. Data descriptors also often include __get__() since it’s

rare to want to set something without also being able to get it too. You can

get the value, even if the descriptor doesn’t include __get__(), but it’s

either roundabout or the descriptor writes it to the instance. That will be

discussed more later.

A non-data descriptor only implements __get__(). If it adds a __set__()

or __delete__() method, it becomes a data descriptor.

Unfortunately, the PyPy interpreter (up to version 2.4.0) gets this a little

bit wrong. It doesn’t take __delete__() into consideration until it knows

that it’s a data descriptor, and PyPy doesn’t believe something is a data

descriptor unless __set__() is implemented. Luckily, since a huge majority

of data descriptors implement __set__(), this rarely becomes a problem.

It may seem like the distinction is pointless, but it is not. It comes into

play upon attribute lookup. This will be discussed more later, but basically,

the distinction is the types of uses it provides.

�The Use of Descriptors by Python
It is worth noting that descriptors are an inherent part of how Python

works. Python is known to be a multi-paradigm language, and as such

supports paradigms such as functional programming, imperative

Chapter 1 What Is a Descriptor?

5

programming, and object-oriented programming. This book does not

attempt to go into depth about the different paradigms; only the object-

oriented programming paradigm will be observed. Descriptors are used

implicitly in Python for the language’s object-oriented mechanisms. As will

be explained shortly, methods are implemented using descriptors. As you

may guess from reading this, it is thanks to descriptors that object-oriented

programming is possible in Python. Descriptors are very powerful and

advanced, and this book aims to teach Python programmers how to use

them fully.

�Summary
As you have seen, descriptors occupy a large part of the Python language, as

they can replace attribute access with method calls, and even restrict which

types of attribute access is allowed. Now that you have a broad idea of how

descriptors are implemented as well as their use by the language, we will

dig a little deeper yet, gaining a better understanding of how they work.

Chapter 1 What Is a Descriptor?

7© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_2

CHAPTER 2

The Descriptor
Protocol
In order to get a better idea of what descriptors are good for, let’s finish

showing the full descriptor protocol. It’s time to see the full signatures of

the protocol’s methods and what the parameters are.

�The __get__(self, instance, owner) Method
This method is clearly the method for retrieving whatever data or object the

descriptor is meant to maintain. Obviously, self is a parameter, since it’s a

method. Also, it receives instance and/or owner. We’ll start with owner.

owner is the class that the descriptor is accessed from, or else the

class of the instance it’s being accessed from. When you make the call

A.x (A being a class), and x is a descriptor object with __get__(), it’s called

with an owner with the instance set to None. So the lookup gets effectively

transformed into A.__dict__['x'].__get__(None, A). This lets the

descriptor know that __get__() is being called from a class, not an instance.

owner is also often written to have a default value of None, but that’s largely

an optimization that only built-in descriptors take advantage of.

Now, onto the last parameters. instance is the instance that the

descriptor is being accessed from, if it is being accessed from an instance.

As previously stated, if None is passed into instance, the descriptor knows

8

that it’s being called from the class level. But, if instance is not None, then it

tells the descriptor which instance it’s being called from. So an a.x call will

be effectively translated to type(a).__dict__['x'].__get__(a, type(a)).

Notice that it still receives the instance’s class. Notice also that the call still

starts with type(a), not just a, because descriptors are stored on classes.

In order to be able to apply per-instance as well as per-class functionality,

descriptors are given instance and owner (the class of the instance). How

this translation and application happens will be discussed later.

Remember—and this applies to __set__() and __delete__() as

well—self is an instance of the descriptor itself. It is not the instance that

the descriptor is being called from; the instance parameter is the instance

the descriptor is being called from. This may sound confusing at first, but

don’t worry if you don’t understand for now—everything will be explained

further.

The __get__() method is the only one that bothers to get the class

separately. That’s because it’s the only method on non-data descriptors,

which are generally made at a class level. The built-in decorator

classmethod is implemented using descriptors and the __get__()

method. In that case, it will use the owner parameter alone.

�The __set__(self, instance, value) Method
As mentioned, __set__() does not have an owner parameter that accepts

a class. __set__() does not need it, since data descriptors are generally

designed for storing per-instance data. Even if the data is being stored on a

per-class level, it should be stored internally without needing to reference

the class.

self should be self-explanatory now; the next parameter is instance.

This is the same as it is in the __get__() method. In this case, though,

your initial call is a.x = someValue, which is then translated into

type(a).__dict__['x'].__set__(a, someValue).

Chapter 2 The Descriptor Protocol

9

The last parameter is value, which is the value the attribute is being

assigned.

One thing to note: when setting an attribute that is currently a

descriptor from the class level, it will replace the descriptor with whatever

is being set. For example, A.x = someValue does not get translated to

anything; someValue replaces the descriptor object stored in x. To act on

the class, see the following note.

�The __delete__(self, instance) Method
After having learned about the __get__() and __set__() methods,

__delete__() should be easy to figure out. self and instance are the

same as in the other methods, but this method is invoked when del a.x is

called and is translated to type(a).__dict__['x'].__delete__(a).

Do not accidentally name it __del__(), as that won’t work as intended.

__del__() would be the destructor of the descriptor instance, not of the

attribute stored within.

It must be noted that, again, that __delete__() does not work from the

class level, just like __set__(). Using del from the class level will remove

the descriptor from the class’ dictionary rather than calling the descriptor’s

__delete__() method.

Note I f you want a descriptor’s __set__() or __delete__()
methods to work from the class level, that means that the descriptor
must be created on the class’ metaclass. When doing so, everything
that refers to owner is referring to the metaclass, while a reference
to instance refers to the class. After all, classes are just instances
of metaclasses. The section on metadescriptors will explain that in
greater detail.

Chapter 2 The Descriptor Protocol

10

�Summary
That’s the sum total of the descriptor protocol. Having a basic idea of how

it works, you’ll now get a high-level view of the types of things that can be

done with descriptors.

Chapter 2 The Descriptor Protocol

11© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_3

CHAPTER 3

What Are Descriptors
Good For?
Nothing is perfect in this world, and Python’s descriptors are no exception.

Descriptors allow you to do some pretty cool things, but those cool things

come at a cost. Here, we discuss the good and the bad.

�Pros of Python Descriptors
Obviously we’re going to go over the good things about descriptors.

Would there be an entire book about them if they couldn’t be considered a

good thing?

�Encapsulation
One of the most useful aspects of descriptors is that they encapsulate

data so well. With descriptors, you can access an attribute the simple way

using attribute access notation (a.x) while having more complex actions

happen in the background. For example, a Circle class might have radius,

diameter, circumference, and area all available as if they were attributes,

but since they’re all linked, you only need to store one (we’ll use the radius

for the example) and calculate the others based on it. But from the outside,

they all look like attributes stored on the object.

12

�Reuse of Read/Write Patterns
Using specialized descriptors, you can reuse code that you used with

reading and/or writing of attributes. These can be used for repetitious

attributes within the same class or attribute types shared by other classes

as well. Some examples of reusable patterns are described in the following

sections.

�Lazy Instantiation

You can use descriptors to define a really simple syntax for lazily

instantiating an attribute. There will be code provided for a nice lazy

attribute implementation later in the book.

In the Circle example, the non-radius attributes, after having their

caches invalidated, don’t need to calculate their values right away; they

could wait until they’re needed. That’s laziness.

�Validation

Many descriptors are written simply to make sure that data being passed

in conforms to the class’ or attribute’s invariants. Such descriptors can

usually be designed as handy decorators, too.

Again with the Circle example: all of those attributes should be

positive, so all the descriptors could also make sure the value being set is

positive.

�Triggering Actions

Descriptors can be used to trigger certain actions when the attribute is

accessed. For example, the observer pattern can be implemented in a

per-attribute sense to trigger calls to the observer whenever an attribute is

changed.

Chapter 3 What Are Descriptors Good For?

13

Last Circle example: all the “attributes” are based on the radius

calculated lazily. In order to keep from having to calculate them every

time, you could cache the result. Then, whenever one of them changes,

it could trigger invalidating all the others’ caches.

�Writing for the Class Level
Because descriptors are stored at the class scope instead of the instance

scope, it allows you to do more robust things at the class level. For instance,

descriptors make classmethod and staticmethod work, which will be

explained in the next chapter.

�Cons of Python Descriptors
As great as descriptors are, they come at a cost, just like just about

everything else in programming.

�Encapsulation
Wait… encapsulation was a pro. How can it also be a con? The problem

is that you can hide incredible amounts of complexity behind something

that just looks like attribute use. With getters and setters, the user at least

sees that there’s a function being called, and plenty can happen in a single

function call. But the user won’t necessarily expect that what is seemingly

attribute access is causing something else to happen, too. Most of the time,

this isn’t a problem, but it can get in the user’s way of trying to debug any

problems, since clearly that code can’t be a problem.

Chapter 3 What Are Descriptors Good For?

14

�Can Be Difficult To Write
It can be easy for the mind to get all twisted up when it comes to thinking

about the fact that descriptors are stored at the class level, but are usually

for dealing with attributes at the instance level. Besides that, there are

a lot of considerations and common pitfalls to deal with when deciding

how to save the represented attribute, whether you decide to do it on the

descriptor or on the the object that the attribute is for. The descriptor-tools

library was created specifically because of this.

�Additional Objects
Because descriptors add another layer of indirection/abstraction to the

mix, they also add at least one additional object in memory, along with at

least one additional call stack level. In most cases, it’ll be more than one of

each. This adds bloat that could at least be partially mitigated using getters

and setters.

�Summary
Descriptors are awesome, allowing for a variety of nice features that are

good at hiding their complexity from users of your code, but you should

definitely be aware that the power comes with cost.

Chapter 3 What Are Descriptors Good For?

15© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_4

CHAPTER 4

Descriptors in the
Standard Library
There are three basic, well-known descriptors that come with Python:

property, classmethod, and staticmethod. There’s also a fourth one that

you use all the time, but are less likely to know is a descriptor.

Of all the descriptors being shown in this chapter, it’s possible that

you only knew of property as a descriptor. Plenty of people even learn

the basics of descriptors from it, but a lot of people don’t know that

classmethod and staticmethod are descriptors. They feel like super

magical constructs built into the language that no one could reproduce in

pure Python. Once someone has an understanding of descriptors, though,

their basic implementation becomes relatively obvious. In fact, example

code will be provided for all three in simplified, pure Python code.

Lastly, it will be shown that all methods are actually implemented

with descriptors. Normal methods are actually done “magically,” since the

descriptor creation is implicit, but it’s still not entirely magical because it’s

done using a language construct the anyone could create.

What I find really interesting is that the first three are all function

decorators, which are another really awesome feature of Python that

deserves its own book, even though they’re way simpler.

16

�The property Class
This book doesn’t include instructions for how to use the property class

and decorator; it is focused on understanding and creating descriptors.

The official documentation for using property can be found in Python’s

documentation2.

Of all the descriptors out there, property is likely the most versatile.

This is because it doesn’t really do anything on its own, but rather allows

the users to inject their wanted functionality into it by providing their own

getters, setters, and deleters.

To get a better idea of how it works, here is a simplified pure Python

implementation of property.

class property:

 def __init__(self, fget=None, fset=None, fdel=None):

 self.fget = fget

 self.fset = fset

 self.fdel = fdel

 def __get__(self, instance, owner):

 if instance is None:

 return self

 elif self.fget is None:

 raise AttributeError("unreadable attribute")

 else:

 return self.fget(instance)

 def __set__(self, instance, value):

 if self.fset is None:

 raise AttributeError("can't set attribute")

 else:

 self.fset(instance, value)

Chapter 4 Descriptors in the Standard Library

17

 def __delete__(self, instance):

 if self.fdel is None:

 raise AttributeError("can't delete attribute")

 else:

 self.fdel(instance)

 def getter(self, fget):

 return type(self)(fget, self.fset, self.fdel)

 def setter(self, fset):

 return type(self)(self.fget, fset, self.fdel)

 def deleter(self, fdel):

 return type(self)(self.fget, self.fset, fdel)

As you can now see, the property class has almost no real functionality

of its own; it simply delegates to the functions given to it. When a function

is not provided for a certain method to delegate to, property assumes that

it is a forbidden action and raises an AttributeError with an appropriate

message.

A nice thing about the property class is that it largely just accepts

methods. Even its constructor, which can be given all three methods at

once, is capable of being called with just one, or even none. Because of

this, the constructor and other methods can be used as decorators in a

very convenient syntax. Check out the documentation2 to learn more

about it.

Omitted from this code example is the doc functionality, where it sets

its own __doc__ property based on what is passed in through __init__()’s

doc parameter or using __doc__ from fget if nothing is given. Also omitted

is the code that sets other attributes on property, such as __name__, in

order to help it appear even more like a simple attribute. They did not

seem important enough to worry about, since the focus was more on the

main functionality.

Chapter 4 Descriptors in the Standard Library

18

�The classmethod Descriptor
classmethod is another descriptor that can be used as a decorator, but,

unlike property, there’s no good reason not to use it as one. classmethod

is an interesting concept that doesn’t exist in many other languages

(if any). Python’s type system, which uses classes as objects, makes

classmethods easy and worthwhile to make.

Here’s the Python code for classmethod.

class classmethod:

 def __init__(self, func):

 self.func = func

 def __get__(self, instance, owner):

 return functools.partial(self.func, owner)

That’s all there is to it. classmethod is a non-data descriptor, so it only

implements __get__(). This __get__() method completely ignores the

instance parameter because, as “class” in the name implies, the method

has nothing to do with an instance of the class and only deals with the

class itself. What’s really nice is the fact that this can still be called from an

instance without any issues.

Why does the __get__() method return a functools.partial object

with the owner passed in, though? To understand this, think about the

parameter list of a function marked as a classmethod. The first parameter

is the class parameter, usually named cls. This class parameter is filled in

the call to partial so that the returned function can be called with just the

arguments the user wants to explicitly provide. The true implementation

doesn’t use partial, but works similarly.

Again, the code that sets __name__, __doc__, etc. is omitted to show

only how the main functionality works.

Chapter 4 Descriptors in the Standard Library

19

�The staticmethod Descriptor
A method marked with staticmethod is strange in that it’s a method that

is really just a function, but it is “attached” to a class. Being part of the class

doesn’t do anything other than show users that it is associated with that

class and giving it a more specific namespace. Also, interestingly, because

staticmethod and classmethod are implemented using descriptors,

they’re inherited by subclasses.

The implementation of staticmethod is even simpler than that of

classmethod; it just accepts a function and then returns it when __get__()

is called.

class staticmethod:

 def __init__(self, func):

 self.func = func

 def __get__(self, instance, owner):

 return self.func

�Regular Methods
Remember that it was stated earlier that regular methods implicitly use

descriptors as well. In fact, all functions can be used as methods. This is

because functions are non-data descriptors as well as callables.

Here is a Python implementation that roughly shows how a function

looks.

class function:

 def __call__(self, *args, **kwargs):

 # do something

Chapter 4 Descriptors in the Standard Library

20

 def __get__(self, instance, owner=None):

 if instance is None:

 return self

 else:

 return functools.partial(self, instance)

This is not a very accurate representation; the return statements are a

bit off. When you access a method from an instance without calling it, the

returned object isn’t a partial object; it is a “bound method”. A “bound

method” is one that has self already “bound” to it, but has yet to be called,

passing in the other arguments if needed. When it’s called from the class, it

only returns the function itself. In Python 2, this was an “unbound method,”

which is basically the same thing. This idea of creating “unbound” versions

when instance is None comes up later, so keep it in mind.

�Summary
In this chapter, we’ve seen the most common built-in descriptors. Now

that we’ve seen some examples, let’s get a closer, better look at how they

work by digging into the real differences between data and non-data

descriptors.

Chapter 4 Descriptors in the Standard Library

21© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_5

CHAPTER 5

Attribute Access and
Descriptors
It was stated earlier that attribute access calls are transformed into

descriptor calls, but it was not stated how. The quick answer is that

__getattribute__(), __setattr__(), and __delattr__() do it. That

probably isn’t much of an answer for you, so I’ll dig into it more. These

three methods exist on all normal objects, inherited via the object class

(and classes inherit it from the type metaclass). As you might imagine,

these methods are called when an attribute on an object is retrieved, set, or

deleted, respectively, and it is these methods that decide whether to use a

descriptor, __dict__, or __slots__, and whether to return/set something

on the class or on the instance.

An explanation of this decision process is given in a little bit, but now

I have to explain something that may be nagging you: Why do the set

and and delete methods end with attr, but the get method ends with

attribute?

Part of the answer to that is the fact that there actually is a __getattr__()

method, but it’s not used quite the same as the others. __getattribute__()

handles all the normal attribute lookup logic while __getattr__() is called

by __getattribute__() in a last ditch effort if all else fails. It is recommended

by Python that you don’t make changes to __getattribute__() except under

extreme circumstances, and only if you really know what you’re doing. With

some experience, I can concur with that recommendation.

22

I don’t know why setting and deleting don’t have a similar setup, but

I can theorize. It might have to do with the idea that a typical override of

attribute lookup is as a failsafe if the usual ways don’t work, but if someone

is overriding one or both of the others, there’s a decent chance that it

may be a complete replacement or at least the first thing tried instead of

the backup thing. Plus, there’s the fact that, under normal circumstances

(doesn’t use __slots__, isn’t a named tuple, etc.), setting always works and

deleting is pretty rare. But you may want to ask one of the core developers

if you’re really that curious.

One last clarification: near the beginning of the book, I said that

attribute access gets “transformed” into calls to the descriptor methods.

This makes it sound like it’s a compile-time decision, but it’s not. Python

is a dynamically typed language, and it isn’t supposed to know at compile

time whether an attribute exists on an object and whether it needs to be

accessed like a descriptor or just a normal attribute, especially since this

can change at runtime. It can make certain guesses based on the code

around it, but it can never be 100% sure.

No, using attributes effectively gets transformed into calls to the

descriptor method within the methods mentioned previously, which

describe how the language decides what to do. This is the really dynamic

part. So let’s move on and see what this decision-making process

look like.

�Instance Access
Simply looking up attributes is the most complex of the three uses of

attributes because there are multiple places to look for attributes: on the

instance and on the class. Also, if it’s a descriptor on the class, you have

two different behaviors for data and non-data descriptors.

__getattribute__() has an order of priority that describes where to

look for attributes and how to deal with them. That priority is the main

Chapter 5 Attribute Access and Descriptors

23

difference between data descriptors and non-data descriptors. Here is that

list of priorities:

•	 Data descriptors

•	 Instance attributes

•	 Non-data descriptors and class attributes

•	 __getattr__ (might be called separately from

__getattribute__)

The first thing __getattribute__() does is look in the class dictionary

for the attribute. If it’s not found, it works its way through the method

resolution order (MRO) of classes (the superclasses in a linear order) to

continue looking for it. If it’s still not found, it’ll move to the next priority. If

it is found, it is checked to see if it is a data descriptor. If it’s not, it moves on

to the next priority. If it turns out to be a data descriptor, it’ll call __get__()

and return the result, assuming it has a __get__() method. If it doesn’t

have a __get__() method, then it moves on to the next priority.

That’s a lot of ifs, and that’s just within the first priority to determine

whether a viable data descriptor is available to work with. Luckily, the next

priority is simpler.

Next in the priority list is checking the instance dictionary (or slots,

if that’s what the object is using). If it exists there, we simply return that.

Otherwise, it moves to the next priority.

In this priority, it checks through the class dictionaries again, working

its way down the MRO list if needed. If nothing is found, it moves to the

next priority. Otherwise, it checks the found object to see if it’s a descriptor

(at this point, we only need to check if it’s a non-data descriptor because

if we’ve made it this far, it’s definitely not a data descriptor). If so, it calls

the descriptor’s __get__() method and returns the result. Otherwise, it

simply returns the object. This time, it doesn’t have a backup of returning

the descriptor object itself if it doesn’t have __get__() because it, being a

non-data descriptor, guarantees that it has __get__().

Chapter 5 Attribute Access and Descriptors

24

If all else has failed up to this point, it checks with __getattr__() for

any possible custom behavior regarding attribute access. If there’s nothing,

an AttributeError is raised.

With this complicated definition, Python users should be grateful

that a lot of work has been put into optimizing this access algorithm to

the point that it’s remarkably fast. The flowchart in Figure 5-1 show how

descriptors are accessed, with blue bands denoting each priority.

Figure 5-1.  Class access

Chapter 5 Attribute Access and Descriptors

25

In the common case where the class’ metaclass is type, or there are no

new attributes on the metaclass, class access can be viewed in a simplified

way compared to instance access; it doesn’t even have a priority list. It

still uses __getattribute__(), but it’s the one defined on its metaclass.

It simply searches through the class dictionaries, progressing through

the MRO as needed. If found, it checks to see if it’s a descriptor with the

__get__() method. If so, it makes the proper call and returns the result.

Otherwise, it just returns the object. At the class level, though, it doesn’t

care if the descriptor is data or non-data; if the descriptor has a __get__()

method, the method is used.

If nothing was found, an AttributeError is raised, as shown in

Figure 5-2.

Unfortunately, if there are new attributes on the metaclass, this

simplification is unhelpful, since they might be used in the lookup. In fact,

class access looks almost exactly like instance access (replacing “class” with

“metaclass” and “instance” with “class”) with one big difference. Instead of

checking just the current instance/class dictionary, it checks through the

MRO of it as well. It also still treats descriptors on the class as descriptors,

rather than automatically returning the descriptor object. Knowing this,

Figure 5-3 shows the full class access diagram, with all the priority levels.

Figure 5-2.  An AttributeError is raised

Chapter 5 Attribute Access and Descriptors

26

Figure 5-3.  The full class access diagram

Chapter 5 Attribute Access and Descriptors

27

�Set and Delete Calls
Setting and deleting are just a little bit different. If the required __set__()

or __delete__() method doesn’t exist, and it’s a data descriptor, an

AttributeError is raised. The other difference is the fact that setting

and deleting never get beyond the instance priority. If the attribute

doesn’t exist on the instance, setting will add it and deleting will raise an

AttributeError.

Figure 5-4 shows the last flowchart, depicting what happens for setting

and deleting.

Figure 5-4.  The setting and deleting processes

Chapter 5 Attribute Access and Descriptors

28

�The Reasoning Behind Data versus
Non-Data Descriptors
Now that the difference between data and non-data descriptors has been

explained, it should be explained why these two versions exist.

The first place to look at is the built-in use cases for each type within

the language and standard library. The prime example of a data descriptor

is property. As its name suggests, its purpose is to create properties for

classes (replace getter and setter methods with a syntax that looks like

simple attribute use). That means class-level access is not intended since

properties represent fields on an instance.

Meanwhile, the primary use-case for non-data descriptors is decorating

methods for different usages (classmethod, staticmethod, and especially the

implicit descriptor used for normal methods). While these can be called from

instances (and normal methods should be called from instances), they’re not

meant to be set or deleted from instances. Methods are assigned on the class.

A function can be assigned to an instance attribute, but it doesn’t make it a

method, since self is not automatically provided as the first argument when

called. Also, when it comes to the “magic” dunder methods (methods with

two leading and two trailing underscores) being called through the normal,

“magical” way, Python is optimized to look directly on the class, skipping

over anything that may have been assigned to the instance.

�Summary
Rarely is it useful to know the full depth of what is happening behind the

scenes of attribute calls, and even knowing the basic priority list rarely comes

into play, since descriptors generally do what is obvious, once you understand

how they’re accessed. There are times, though, when the priority list, and

possibly even the full depth, will help in understanding why a descriptor isn’t

working as hoped or how to set up a descriptor to do a more complicated task.

Chapter 5 Attribute Access and Descriptors

PART II

Making Descriptors
Finally, the fun part has arrived. Despite the simplicity of the descriptor

protocol, there are so many ways that a descriptor can be used and made

that, even though that last part was pretty long, this section is going to be

much longer.

Part I tells you enough for you to go and make your own descriptors,

but it doesn’t give any tips, patterns, or real guidance for doing so. Part II is

filled to the brim with those.

31© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_6

CHAPTER 6

Which Methods Are
Needed?
When designing a descriptor, it must be decided which methods will be

included. It can sometimes help to decide right away if the descriptor

should be a data or non-data descriptor, but sometimes it works better to

“discover” which kind of descriptor it is.

__delete__() is rarely ever needed, even if it is a data descriptor.

That doesn’t mean it shouldn’t ever be included, however. If the descriptor

is going to be released into an open domain, it wouldn’t hurt to add the

__delete__() method on a data descriptor simply for completeness for

cases when a user decides to call del on it. If you don’t, an AttributeError

will be raised when someone tries to delete it.

__get__() is almost always needed for data and non-data descriptors.

It is required for non-data descriptors, and the typical case where __get__()

isn’t required for data descriptors is if __set__() assigns the data into the

instance dictionary under the same name as the descriptor (what I call

set-it-and-forget-it descriptors). Otherwise, it is almost always wanted

for retrieving the data that is set in a data descriptor, so unless the data is

assigned to the instance to be automatically retrieved without __get__()

or the data is write-only, a __get__() method would be necessary. Keep in

mind that if a descriptor doesn’t have a __get__() method and instance

doesn’t have anything in __dict__ under the same name as the descriptor,

the actual descriptor object itself will be returned.

32

Just like __delete__(), __set__() is only used for data descriptors.

Unlike __delete__(), __set__() is not regarded as unnecessary. Seeing

that __delete__() is unused in the most common cases, __set__() is

nearly a requirement for creating data descriptors (which need either

__set__() or __delete__()). If the descriptor’s status as data or non-data

is being “discovered,” __set__() is usually the deciding factor. Even if the

data is meant to be read-only, __set__() should be included to raise an

AttributeError in order to enforce the read-only nature. Otherwise, it

may just be treated like non-data descriptor.

�When __get__() Is Called Without an
instance Argument
It is often that a descriptor’s __get__() method is the most complicated

method on it because there are two different ways it can be called: with or

without an instance argument (although “without” means that None is

given instead of an instance).

When the descriptor is a class-level descriptor (usually non-data),

implementing __get__() without using instance is trivial, since that’s the

intended use. But when a descriptor is meant for instance-level use, and

the descriptor is not being called from an instance, it can be difficult to

figure out what to do.

Here, I present a few options.

�Raise Exception or Return self
The first thing that may come to mind is to raise an exception, since

class-level access is not intended, but this should be avoided. A common

programming style in Python is called EAFP, meaning that it is easier

to ask for forgiveness than for permission. What this means is that, just

because something isn’t used as intended, it doesn’t mean that usage

Chapter 6 Which Methods Are Needed?

33

should be disallowed. If the use will hurt invariants and cause problems,

it’s fine to disallow it by raising an exception; otherwise, there are other,

better options to consider. The conventional solution is to simply return

self. If the descriptor is being accessed from the class level, it’s likely that

the user realizes that it’s a descriptor and wants to work with it. Doing so

can be a sign of inappropriate use, but Python allows freedom, and so

should its users, to a point. The property built-in will return self (the

property object) if accessed from the class, as an example. From what I’ve

seen, this is the most common approach by far.

�“Unbound” Attributes
Another solution, which is used by methods, is to have an “unbound” version

of the attribute be returned. When accessing a function from the class level,

the function’s __get__() detects that it does not have an instance, and so just

returns the function itself. In Python 2, it actually returned an “unbound”

method, which is where the name I use comes from. In Python 3, though,

they changed it to just the function, since that’s exactly what it is anyway.

This can work for non-callable attributes as well. It’s a little strange,

since it turns the attribute into a callable that must receive an instance

to return the value. This makes it into a specific attribute lookup, akin to

len() and iter(), where you just need to pass in the instance to receive

the wanted value.

Here is a stripped-down __get__() implementation that works this way.

def __get__(self, instance, owner):

 if instance is None:

 def unboundattr(inst):

 return self.__get__(inst, owner)

 return unboundattr

 else:

 ...

Chapter 6 Which Methods Are Needed?

34

When called, the inner unboundattr() function will end up using the

else branch of the __get__() method (assuming they didn’t pass in None).

Using inner functions can sometimes be confusing, and typing that whole

thing every time is a little annoying, so here’s a reusable class implementation

that can be used by any descriptor.

class UnboundAttribute:

 def __init__(self, descriptor, owner):

 self.descriptor = descriptor

 self.owner = owner

 def __call__(self, instance):

 return self.descriptor.__get__(instance, self.owner)

Using this class, a __get__() method that uses unbound attributes can

be implemented like this:

def __get__(self, instance, owner):

 if instance is None:

 return UnboundAttribute(self, owner)

 else:

 ...

The original version relies on closures around self and owner,

which remove its reusability, other than through copying and pasting.

But the class takes those two variables in with its constructor to store

on a new instance. It’s also kind of nice that if you print the unbound

attribute object, it says that it’s an unbound attribute. (This also works if

you implement your own version, especially if you take in some handy

metadata, like the name of the attribute being accessed. More on how to

do that in the next chapter.)

The really interesting (and useful) thing about this technique is that the

unbound attribute can be passed into a higher-order function that receives

Chapter 6 Which Methods Are Needed?

35

a function, such as map(). It avoids having to write up a getter method or

ugly lambda. For example, if there was a class like this:

class Class:

 attr = UnbindableDescriptor()

A map() call to a list of Class objects like this:

result = map(lambda c: c.attr, aList)

could be replaced with this:

result = map(Class.attr, aList)

Instead of passing in a lambda to do the work of accessing the

attribute of the Class instances, Class.attr is passed in, which returns

the “unbound” version of the attribute—a function that receives the

instance in order to look up the attribute on the descriptor. In essence,

the descriptor provides an implicit getter method to the reference of the

attribute.

This is a very useful technique for implementing a descriptor’s __get__()

method, but it has one major drawback: returning self is so prevalent

that not doing so is highly unexpected. Hopefully, this idea gets some

traction in the community and becomes the new standard. Also, as seen

in the upcoming chapter on read-only descriptors, there may need to be

a way to access the descriptor object. Luckily, all you need to do is get the

descriptor attribute from the returned UnboundAttribute.

Even though it’s not the expected behavior, the built-in function

descriptor already does this, so it won’t be too difficult for them to get used

to it. People expect “unbound method” functions when accessing from the

class level, so applying the convention to attributes shouldn’t be a huge

stretch for them.

Since writing the first edition of this book, I have discovered that there

is a function for creating unbound attributes in the standard library, and

Chapter 6 Which Methods Are Needed?

36

it’s more useful than UnboundAttribute in some important ways. In the

operator module, there’s a function called attrgetter() that takes in a

string name of an attribute and returns a function that takes in an instance

and (I assume) calls getattr() on the instance with the name of the

attribute. There’s also support for multiple attribute names being passed

in; the final result is a tuple of all those attributes on the instance.

There are several significant benefits to this over descriptor-based

unbound attributes (without even counting the multiple attribute

support). The first is greater support for inheritance. If a subclass overrode

the descriptor with a different one, but the superclass version is passed

around, it will actually use the superclass descriptor, which removes

the awesome dynamic nature of inheritance. For this very same reason,

unless you’re absolutely sure that the class you’re using doesn’t have any

subclasses, you should use attrgetter() for methods as well.

Descriptor-based unbound attributes can support the same level of

inheritance support, but there’s more work involved. First, you need the

name of the attribute, which isn’t always easy to get. Again, methods for

doing so are in the next chapter. After that, the changes are pretty simple.

You change __call__() to use getattr() instead of descriptor.__get__().

This then eliminates the need for the descriptor and owner properties,

though you should keep descriptor so someone can look up the descriptor,

as mentioned earlier. Sadly, I don’t see any practical way of supporting

multiple attributes this way.

The second major benefit is that it works for all kinds of attributes, not

just methods or descriptor-based ones.

There are a few downsides to attrgetter() though. First, and maybe

most obvious, is the lack of code completion help. You’re passing in the

string name of an attribute, which means whatever editor you’re using is

not going to help you not screw up the spelling of the attribute’s name.

Second, it loses a little bit of context. When a class name is used, you

include the context that attribute name applies to, whereas attrgetter()

only includes the name of the attribute.

Chapter 6 Which Methods Are Needed?

37

If you do the upgrades to UnboundAttribute, I still completely support

using it. But it is certainly good to know when to use attrgetter() instead.

�Summary
We’ve looked into the decision-making process behind building general

descriptors and figuring out which methods we’ll want and possibly using

unbound attributes with __get__(). In the next chapter, we’ll dig into even

more design decisions that have to be made, at least when it comes to

storing values with descriptors.

Chapter 6 Which Methods Are Needed?

39© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_7

CHAPTER 7

Storing the Attributes
Now that all the preliminaries are out of the way, it is time to see the part of

descriptors that is useful: storing the attributes that the descriptor represents.

There are a lot of ways to store attributes with a descriptor, and this chapter

will go over every option that I’m aware of, starting with the easiest.

�Class-Level Storage
Class-level storage is easy; it’s normal storage on the descriptor. As an

example, here is a descriptor that creates a basic class-level variable:

class ClassAttr:

 def __init__(self, value):

 self.value = value

 def __get__(self, instance, owner):

 return self.value

 def __set__(self, instance, value):

 self.value = value

This descriptor saves a value on itself as a typical instance attribute,

which is simply returned in the __get__() method, ignoring whether

instance is provided or not, since it’s a class-level attribute. This attribute

can also be accessed through an instance, but making any change to it

from the instance will apply the change to every instance of the class.

40

Unfortunately, due to __set__() not being called when a descriptor is

accessed from the class level, the variable storing the descriptor will be

reassigned to the new value, rather than it being passed to __set__().

For more details about making class-level descriptors that __set__()

and __delete__() can be used on, check out the section at the end of this

chapter about metadescriptors.

Descriptors aren’t just for class-level attributes, though; they’re used

for instance-level attributes too. There are two broad strategies for storing

instance-level attributes with descriptors:

•	 On the descriptor

•	 In the instance dictionary

Each strategy has some hurdles to clear for a reusable descriptor.

When storing it on the descriptor, there are hurdles as to how to store it

without memory leaks or hashing issues. As for storing the attributes on

the instance dictionary, the difficulty comes from trying to figure out what

name to store it under in the dictionary to avoid clashing.

�Storing Data on the Descriptor
As shown before, saving a simple value on the descriptor is how a class-level

value is stored. What must be done to store a value on a per-instance basis

in one place? What is needed is some way to map an instance to its attribute

value. Well, another name for a mapping is a dictionary. Maybe a dictionary

would work. Here’s what using a dictionary for its storage might look like.

class Descriptor:

 def __init__(self):

 self.storage = {}

 def __get__(self, instance, owner):

 return self.storage[instance]

Chapter 7 Storing the Attributes

41

 def __set__(self, instance, value):

 self.storage[instance] = value

 def __delete__(self, instance):

 del self.storage[instance]

The __get__() method doesn’t deal with the if instance is None

case, and in all other examples, it will be ignored for the sake of brevity and

removing distractions while reading the code.

The dict in the code example has solved our first issue of storage per

instance. Unfortunately, there are a couple shortcomings to using a plain

old dict for the job.

The first shortcoming to address is memory leaks. A typical dict will

store the instance used as the key long after the object should have been

otherwise garbage collected from lack of use. This is fine for short-lived

programs that won’t use a lot of memory and if the instances don’t suffer

from the second shortcoming mentioned later, but if this isn’t the case, we

need a way to deal with the issue.

Let’s look at how to get around this problem. The descriptor needs a

way to stop caring about instances that are no longer in use. The weakref

module provides just that. Weak references allow variables to reference an

instance as long as there is a normal reference to it somewhere, but allow it

to be garbage collected otherwise. They also allow you to specify behavior

that will run as soon as the reference is removed.

The module also provides a few collections that are designed to

remove items from themselves as the items are garbage collected. Of

those, we want to look at a WeakKeyDictionary. A WeakKeyDictionary

keeps a weak reference to its key, and therefore once the instance that

is used as the key is no longer in use, the dictionary cleans the entire

entry out.

Chapter 7 Storing the Attributes

42

So, here’s the example again, this time using the WeakKeyDictionary.

from weakref import WeakKeyDictionary

class Descriptor:

 def __init__(self):

 self.storage = WeakKeyDictionary()

 def __get__(self, instance, owner):

 return self.storage[instance]

 def __set__(self, instance, value):

 self.storage[instance] = value

 def __delete__(self, instance):

 del self.storage[instance]

Every change between the previous example and this one has been

made bold, and this shows that there really isn’t much of a difference. The

only difference is that the special dictionary needs to be imported and a

WeakKeyDictionary needs to be created instead of the normal dict. This

is a very easy upgrade to make, and many descriptor guides stop here. It

works in most situations, so it isn’t a bad solution.

Unfortunately, it still suffers from the other shortcoming that a regular

dict does: it doesn’t support unhashable types.

To use an object as a key in a dict, it must be hashable. There are a

few built-in types that cannot be hashed, namely the mutable collections

(list, set, and dict), and maybe a few more. Any object that is mutable

(values inside can be changed) and overrides __eq__() to compare

internal values must be unhashable. If the object is changed in a way

that changes equality, suddenly the hash code changes so that it can’t be

looked up as a dictionary key. Thus, such mutable objects are generally

advised to mark themselves as unhashable using __hash__ = None.

Overriding __eq__() will do this automatically; overriding __hash__

should therefore be done only if equality is constant.

Chapter 7 Storing the Attributes

43

If it weren’t for Python providing default implementations of __eq__()

and __hash__() (equality is the same as identity—an object is equal

to itself, and nothing else), most objects wouldn’t be hashable and thus

supported for descriptors using a hashing collection. Luckily, this means

that types are hashable by default, but there are still many unhashable

types out there.

Again, the WeakKeyDictionary is not a bad solution; it just doesn’t

cover all possibilities. Much of the time, it is good enough, but it generally

advised not to use it for public libraries, at least not without good warnings

in the documentation. After all, the descriptor protocol provides ways to set

and delete attributes, so they should support instances of mutable classes.

There needs to be a solution that doesn’t suffer from this problem, and

there is. The simplest solution is to use the instance’s ID as the key instead

of the instance itself. Hooray! Now the dictionary doesn’t hold onto unused

instances anymore, and it doesn’t require the classes to be hashable.

Here’s what that solution would look like.

class Descriptor:

 def __init__(self):

 self.storage = {}

 def __get__(self, instance, owner):

 return self.storage[id(instance)]

 def __set__(self, instance, value):

 self.storage[id(instance)] = value

 def __delete__(self, instance):

 del self.storage[id(instance)]

The example switches back to a normal dict, so the changes

mentioned are based on the differences between this example and the

first one again, rather than comparing to the previous one. Every time the

storage is being accessed, it’s being accessed by id(instance) instead of

just instance.

Chapter 7 Storing the Attributes

44

This seems like a pretty good solution, since it doesn’t suffer from

either of the problems of the previous two solutions. But it’s not a good

solution. It doesn’t suffer from exactly the same problems of the previous

solutions, but it still suffers from a memory leak. Yes, the dictionary no

longer stores the instances, so those aren’t being kept, but there’s no

mechanism to clear useless IDs from the dictionary. In fact, there’s a

chance (it’s a tiny chance, but it exists) that a new instance of the class

may be created with the same ID of an older, deleted instance, so the new

instance has an attribute equal to the old one until it’s changed. That’s

assuming it can be changed; what if the descriptor is designed to be read-

only (more on that later)? Then the new instance is absolutely stuck with

the old value.

So, this still doesn’t solve the on-descriptor storage problem, but it’s

leading in the right direction. What is needed is a storage system that

works like a dictionary, with instance as the key, but uses id(instance)

instead of hash(instance) for storage. It also needs to clean itself out if an

instance is no longer in use.

Since such a thing isn’t built in; it will have to be custom-made. Here is

that custom dictionary, designed specifically for this book.

import weakref

class DescriptorStorage:

 def __init__(self, **kwargs):

 self.storage = {}

 for k, v in kwargs.items():

 self.__setitem__(k, v)

 def __getitem__(self, item):

 return self.storage[id(item)]

 def __setitem__(self, key, value):

 self.storage[id(key)] = value

Chapter 7 Storing the Attributes

45

 �weakref.finalize(key, self.storage.__delitem__,

id(key))

 def __delitem__(self, key):

 del self.storage[id(key)]

The real version obviously has more methods, such as __iter__,

__len__, etc., but the main three uses for storage with a descriptor are

implemented here. The rest of the implementation can be found in the

descriptor-tools library.

This class is surprisingly simple. The basics of it is that there is a facade

class that acts like a dictionary, delegating most functionality to an inner

dictionary, but transforming the given keys to their IDs. The only real

difference is that, in __setitem__(), this new class creates a finalize

weak reference, which takes a reference, a function, and any arguments to

send to that function when the reference is garbage collected. In this case,

it removes the item (again, stored using id()) from the internal dictionary.

The keys to how this storage class works are using an ID as the key

(which means the instances do not need to be hashable) and weak

reference callbacks (which remove unused objects from the dictionary).

In essence, this class is a WeakKeyDictionary that internally uses the ID of

the given key as the actual key.

Storing the attribute in the descriptor safely takes a lot more

consideration than most people ever actually put into it, but now there is a

nice, catch-all solution for doing that. The first two solutions are imperfect,

but not useless. If the use case for the descriptor allows for the use of

either of those solutions, it wouldn’t hurt to consider them. They are viable

enough for many cases and are likely to be slightly more performant than

the custom storage system provided here. For public libraries, though,

either the custom dictionary or a on-instance solution from the following

section should be considered.

Chapter 7 Storing the Attributes

46

�Storing on the Instance Dictionary
It’s often better to store the data on the instance instead of within the

descriptor, provided that a worthwhile strategy for deriving the key can be

found. This is because it doesn’t require an additional object for storage;

the instance’s built-in storage dictionary is used. However, some classes

will define __slots__, and, as such, will not have the storage dictionary to

mess with. This limits the usefulness of on-instance strategies a little bit,

but __slots__ is used rarely enough that it’s barely worth considering.

If you want to make a descriptor safe with __slots__ while still

defaulting to using the instance dictionary, you may want to create some

sort of alternative that uses on-descriptor storage when a Boolean flag

is set on creation. There are plenty of ways to implement that, whether

using a factory that chooses a different descriptor if the flag is set or the

class within has alternate paths based on the flag value. Another, simpler

alternative is to document the name that the descriptor stores its values

under so that users of the descriptor who want to use __slots__ can

prepare a slot for it. This requires that the descriptor does direct instance

attribute setting (either with dot notation or with getattr(), setattr(),

and delattr()) rather than getting the instance dictionary first.

Another way to go about this (which doesn’t require explicitly asking

the user) is to check if the class has the storage dictionary; if it does,

then simply use it, but if it doesn’t, you can store it on the descriptor

instance directly. Checking for the existence of __slots__ is unreliable as

subclasses may not define __slots__ (while the base class does), so they

will have both an instance dictionary and __slots__.

Storing the data on the instance using the instance dictionary is easy

(although often verbose, since referencing the attribute as vars(a)['x']

is often needed instead of a.x in order to avoid recursively calling the

descriptor), as the following example will show. It’s a simple example with

a location of where to store the data being hard-coded as "desc_store".

Chapter 7 Storing the Attributes

47

class InstanceStoringDescriptorBasic:

 name = "desc_store"

 def __get__(self, instance, owner):

 return vars(instance)[self.name]

 def __set__(self, instance, value):

 vars(instance)[self.name] = value

 def __delete__(self, instance):

 del vars(instance)[self.name]

As shown, it is pretty easy to store on the instance. Some of you may

not know about vars(), though, so I will explain. Calling vars() on an

object returns the instance dictionary. Many of you probably knew about

__dict__. The vars() function returns that same dictionary and is the

preferred (read “Pythonic”) way of accessing it, though lesser known.

It is preferred largely because of the lack of double underscores. Like

nearly every other “magic” attribute with double underscores, there is a

clean way of using it. Hopefully, now you will inform all of your Python-

using buddies about this and it can become a much more widely known

function.

But why should the values be accessed via vars() and not simple dot

notation? There are actually plenty of situations where using dot notation

would work just fine. In fact, it works in most situations. The only times

there are problems is when the data descriptor has the same name that is

being used for storage in the dictionary or if the name being used is not

a legal Python identifier. Often, this case pops up because the descriptor

is purposely storing the attribute under its own name, which is almost

guaranteed to prevent name conflicts. But it’s still possible that an outside

data descriptor has the same name as where the main descriptor is trying

to store its data. In order to avoid this, it is preferable to always directly

reference the instance’s dictionary. Another good reason is that it makes it

more explicit and obvious where the data is being stored.

Chapter 7 Storing the Attributes

48

The next thing to be figured out is how the descriptor knows the

name to store the attribute under. Hopefully it’s obvious that hard-

coding a location is a bad idea; it prevents multiple instances of that type

of descriptor from being used on the same class since they will all be

contending for the same name.

�Asking for the Location
The simplest way to get a location name is to ask for it in the constructor.

A descriptor like that would look something like this:

class GivenNameInstanceStoringDescriptor:

 def __init__(self, name):

 self.name = name

 def __get__(self, instance, owner):

 return instance.__dict__[self.name]

 def __set__(self, instance, value):

 instance.__dict__[self.name] = value

 def __delete__(self, instance):

 del instance.__dict__[self.name]

The only real difference between this one and the previous one is that

it has an __init__() method that receives the preferred location name

from the user instead of hard-coding it. In fact, the rest of the code is

exactly the same.

Asking for the location to store the attribute value is easy when it

comes to creating the descriptor, but is tedious for the user and can even

be dangerous in the event that the location is required to have the same

name as the descriptor, since the user can mess that up. Such is the case

with set-it-and-forget-it descriptors, such as the following descriptor,

which is a descriptor used for validating data using the function provided.

Chapter 7 Storing the Attributes

49

class Validated:

 def __init__(self, name, validator):

 self.name = name

 self.validator = validator

 def __set__(self, instance, value):

 if self.validator(value):

 instance.__dict__[self.name] = value

 else:

 �raise ValueError("not a valid value for" +

self.name)

In this Validated descriptor, __init__() asks for the location to store

the real data. Since this is a set-it-and-forget-it descriptor that lets the

instance handle retrieval instead of providing a __get__(), the location

that the user provides must be the same as the descriptor’s name on the

class in order for the descriptor to work as intended. For example, if a class

was accidentally written like this:

class A:

 �validatedAttr = Validated('validatedAttribute',

validatorFunc)

validatedAttr is all screwed up. To set it, the user writes

a.validatedAttr = someValue, but retrieving it requires the user to write

a.validatedAttribute. This may not seem all that bad since it can be

fixed easily, but these are the types of bugs that can often be very difficult

to figure out and can take a long time to notice. Also, why should the user

be required to write in the location when it can be derived somehow?

�Set-It-and-Forget-It Descriptors

Now set-it-and-forget-it descriptors can finally be explained. Of the three

methods in the descriptor protocol, these descriptors generally only

Chapter 7 Storing the Attributes

50

implement __set__(), as seen in the example. That’s not always the case,

though. For example the following lazy initialization descriptor only

uses __get__().

class lazy:

 def __init__(self, func):

 self.func = func

 def __get__(self, instance, owner):

 value = self.func(instance)

 instance.__dict__[func.__name__] = value

 return value

This lazy descriptor can also be used as a decorator over a function,

which it replaces and uses to do the lazy initialization. In this case, and in

the case of other set-it-and-forget-it descriptors, the descriptor sets the

value directly onto the instance, using the same name the descriptor is

referenced by. This allows the descriptor to either be a non-data descriptor

that is never used more than once—as in the case of lazy—or to be a data

descriptor that has no need to implement __get__(), which is the case

with most set-it-and-forget-it descriptors. In many cases, set-it-and-forget-

it descriptors can increase lookup speeds by just looking in the instance or

even provide other optimizations, like the lazy descriptor.

�Indirectly Asking for the Location
Something else can be noted about the lazy descriptor from the set-it-

and-forget-it section, and that’s how it was able to determine where to

store the attribute; it pulled it from the function that it decorated.

This is a great way to indirectly ask for the name of the descriptor. Since

the descriptor, initialized as a decorator, is provided with a function that

the descriptor is replacing, it can use that function’s name to look up that

name for a place to store the information on instance.

Chapter 7 Storing the Attributes

51

�Name Mangling
Using the name directly like that, though, can be dangerous for most non-

data descriptors, since setting it directly to that location would override

its own access (which lazy actually intended to have happen). When

building a non-data descriptor that doesn’t want to write over itself—

although the chances are probably pretty slim for that situation to come

up—it is best to do some “name mangling” when storing the data. To do

so, just add an underscore or two to the beginning of the name. Using

at least two leading underscores and at most one trailing underscore

causes Python to add its own mangling to the name; using one leading

underscore simply signals that the attribute is “private” to those using the

object. There’s an incredibly low chance that the name is already taken on

the instance.

Next, what can be done if asking the user for the name is a bad idea

and the descriptor isn’t also a decorator? How does a descriptor determine

its name then? There are several options, and the first one that will be

discussed is how a descriptor can try to dig up its own name.

�Fetching the Name

It would seem so simple to just look up what a descriptor’s name is, but,

like any object, a descriptor could be assigned to multiple variables with

different names. No, a more roundabout way of discovering one’s own

name is required.

Note I nspiration for this technique is attributed to “The Zipline
Show” on YouTube, specifically their video about descriptors3. This
technique shows up around 22 minutes in. They may have gotten the
technique from the book they mention at the beginning of the video,
but I took the idea from them, not the book.

Chapter 7 Storing the Attributes

52

The original version of this technique that I adapted a little used the

following code.

def name_of(self, instance):

 for attr in type(instance).__dict__:

 if attr.startswith('__'): continue

 obj = type(instance).__dict__[attr]

 if obj is self:

 self.name = self.mangle(attr)

 break

This method is meant to be added to any descriptor in order to look

up its name. If the descriptor’s name attribute isn’t set, the descriptor just

runs this method to set it. On the second to last line, it sends the name to

a name mangler—which just makes sure it starts with two underscores—

instead of using the name as it is. As mentioned in the name mangling

section, this may be necessary, but not always.

There’s a problem with this method, though: it doesn’t handle

subclasses. If a class with this descriptor is subclassed and an instance of that

subclass tries to use the descriptor before an instance of the original class

does, it will fail to look up its name. This is because the descriptor is on the

original class, not the subclass, but the name_of() method looks in the class’

dictionary for itself. The subclass will not have the descriptor in its dictionary.

Not to worry, though. The version in the library solves this problem by

using dir() to get all the names of attributes, including from superclasses,

and then it delegates those to a function that digs into the __dict__ of

each class on the MRO until it finds what it’s looking for. I also removed

the name mangling function, allowing you to use that only as necessary.

Lastly, it doesn’t bother with ignoring attributes that start with a double

underscore. Such a check may actually be slower than accessing the

attribute and comparing identity, but even if it’s not, it largely just clutters

the code. Plus, you never know; your descriptor may be used in place of a

special method.

Chapter 7 Storing the Attributes

53

The final result looks like this:

def name_of(descriptor, owner):

 return first(attr for attr in dir(owner)

 �if (get_descriptor(owner, attr) is

descriptor))

def first(iter):

 return next(iter, None)

def get_descriptor(cls, descname):

 selected_class = first(clss for clss in cls.__mro__

 if descname in clss.__dict__)

 return selected_class.__dict__[descname]

Python 3.2 also added a new function in the inspect module called

getattr_static(), which works just like getattr() except that it doesn’t

activate a descriptor’s __get__() method upon lookup. You could replace

the call to get_descriptor() with getattr_static() and it would work

the same.

__set_name__()

In Python 3.6, something else was added that makes fetching the name

even easier! Python gained an additional optional method in its protocol:

__set_name__(). This new method is called during the creation of a class

that contains a descriptor object. Its parameters are self, owner, and name.

The first one, self, is super obvious; it’s the same first parameter that all

methods have. You should recognize the second one, owner, as the class

that the descriptor is on. And the last one, name, should also be evident

as the name that we’re looking for; the name of the variable that the

descriptor object is stored on.

Chapter 7 Storing the Attributes

54

�Store the Original and the Mangled
When storing the name used for the descriptor, it’s often best to store both

the original name and the mangled name. Keeping the mangled name is

obvious, but why in the world would you want to also store the original

name? For error messages. If something goes wrong when trying to use

your descriptor, you want to at least provide the name of the attribute to

the user to get a better idea of where it all went wrong.

�Keying on the ID

Another thing that can be done for relatively safe places to store on the

instance is to use the id() of the descriptor to generate a location on the

instance, somehow. It seems strange, but a non-string can be used as the

key in an instance dictionary.

Unfortunately, it can only be accessed directly via vars(instance)

[id(desc)] and not via dot notation or get/set/hasattr(). This may

actually seem like a plus, since it prevents unwanted access to the

attribute, but it also messes up dir(instance), which raises an exception

when it finds a non-string key.

On the plus side, it’s impossible for this location to clash with user-

defined attributes, since those must be strings, and this is an integer. But

causing dir() to fail is undesirable, so a different solution must be found.

Defining a __dir__() method would be overkill and inappropriate in most

cases. However, the aggressive programmer could call object.__dir__()

and remove the id() from the list before returning it. As stated, however,

this is overkill.

A simple solution is to change the ID into a string, i.e. str(id(desc))

instead of just id(desc). This fixes the dir() problem and also opens up

the use of get/set/hasattr() while still preventing dot notation access,

since it’s an invalid Python identifier. The likelihood of name clashes is still

extremely low, so this is still an acceptable solution.

Chapter 7 Storing the Attributes

55

Note A n interesting little twist of str(id(desc)) is to use the
hexadecimal value, as hex(id(desc)) instead of the straight string
version of the number, preferably removing '0x' at the beginning,
such as hex(id(desc))[2:]. The benefit of this is that the hex
string will generally be shorter, which shortens the time needed to
calculate the hash value (which is done on lookup and assignment in
__dict__) by a tiny bit. Yes, the amount of time needed to calculate
the hex value is greater than that of calculating the plain string value,
but that only needs to be done once (you can save the hex string to
be used later), whereas attribute lookup is likely to happen many
times. It’s a tiny optimization and may not even be worth noting.

There’s no good reason to add acceptable characters to the front of

the key in order to support dot notation, since dot notation requires the

user to know what the name is going to be ahead of time, which they can’t

know since the name changes every time the program is run when using

id() to derive it. There are other restrictions that a consistently-changing

key imposes, one of which is that it makes serialization and deserialization

(pickling and unpickling, respectively, done with the pickle module, are

one of those ways, among others) a little more difficult.

If it’s desirable to be able to derive some sort of information from

the save location, additional information can be added to the key. For

example, the descriptor’s class name could be added to the front of the

key, for example type(self).__name__ + str(id(self)). This gives users

who use dir() to look through the names on the instance some clue as to

what that name refers to, especially if there are multiple descriptors that

base their name on id() on the instance.

Chapter 7 Storing the Attributes

56

�Letting the User Take Care Of It

The title of this section may sound like it’s about asking the user for the

name in the descriptor’s constructor, but that’s not it at all. Instead, this is

referring to the approach property uses.

One could say that property “cheats” by simply assigning functions

that you give it to its different methods. It acts as the ultimate descriptor

by being almost infinitely customizable, and that’s largely what it is. The

biggest descriptor-y thing it can’t do is become a non-data descriptor

(since it defines all three methods of the descriptor protocol), which is

fine, since that doesn’t work with the intent anyway. Also, the functions

fed to the descriptor don’t have easy access to the descriptor’s internals, so

there’s a limit to what can be done there.

Interestingly, a large percentage of descriptors could be written using

property—and actually work better, since there would be no difficulties

in figuring out where to save the data—but it certainly has major setbacks.

The biggest of those is the lack of DRYness when it comes to reusing the

same descriptor idea. (Don’t Repeat Yourself; DRYness is the lack of

unnecessarily repeated code.) If the same code has to largely be rewritten

many times for the same effect with property, it should be turned into a

custom descriptor that encapsulates the repeated part. Sadly, it isn’t likely

to be a really easy copy-over because of the fact of storing a value. If the

descriptor doesn’t need to figure that out, though, which is sometimes the

case, then the conversion is much easier.

In summary, property is a highly versatile descriptor, and it even

makes some things extremely easy (namely the difficult thing this entire

chapter was about), but it’s not easily reusable. Custom descriptors are the

best solution for that, which is why this book exists!

There aren’t many use cases out there for recreating “storage” the way

that property does it, but there are enough use cases for extending what

property does in little ways to make it worthwhile to look into.

Chapter 7 Storing the Attributes

57

�Metadescriptors

The restrictions of descriptors and their use with classes can be quite the

pain, limiting some of the possibilities that could be wanted from descriptors,

such as class constants. It turns out that there is a way around it, and that

solution will be affectionately called metadescriptors in this book (hopefully

the idea and name spreads throughout the advanced Python community).

The reason they are called metadescriptors is because the descriptors,

instead of being stored on the classes, are stored on metaclasses. This causes

metaclasses to take the place of owner while classes take the place of instance.

Technically, that’s all there really is to metadescriptors. It’s not even required

for a descriptor to be specially designed in order for it to be a metadescriptor.

While the idea of metadescriptors is actually pretty simple, the

restrictions around metaclasses can make using metadescriptors more

difficult. The biggest restriction that must be noted is the fact that no

class can be derived from more than one metaclass, whether that is

specified directly on the class or having multiple subclasses have different

metaclasses. Don’t forget that, even if there is no metaclass specified, a

class is still being derived from the type metaclass.

Because of this, choosing to use metadescriptors must be done with

caution. Luckily, if the codebase is following the guideline of preferring

composition to inheritance, this is less likely to be a problem.

For a good example of a metadescriptor, check out the ClassConstant

metadescriptor near the end of the next chapter.

�Summary
In this chapter, we looked at a bunch of examples of techniques for storing

values in descriptors, including options for storing on the descriptor

as well as on the instances themselves. Now that we know the basics

that apply to a majority of descriptors, we’ll start looking at some other

relatively common functionality and how it can be implemented.

Chapter 7 Storing the Attributes

59© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_8

CHAPTER 8

Read-Only
Descriptors
There are many good uses for read-only—or immutable—property

descriptors. In fact, there is a lot to back up the idea of having everything

be effectively immutable. Unfortunately, due to Python’s inherent lack of

being able to make anything actually immutable, interpreter optimization

isn’t one of those possible benefits with Python. (PyPy may be able to

make JIT optimizations because of it, but don’t take my word for it.)

There are plenty of other benefits to immutability, but those are

beyond the scope of this book. The point of this chapter is to show how a

descriptor can make instance-level properties be effectively immutable.

A first stab at making a read-only descriptor might be to not give it a

__set__() method, but that works only if there’s a __delete__()

method. If there’s no __delete__() method either, it becomes a non-data

descriptor. If it’s a non-data descriptor and someone assigns to it, then

it just creates an instance attribute that overrides the descriptor. This is

clearly not what we want.

No, to truly keep users from assigning new values, __set__() is

required, but it obviously can’t work as normal. So, what can it do? It can

raise an exception. AttributeError is probably the best option of the

built-in exceptions, but the functionality is almost unique enough to make

a custom exception. It’s up to you, but the examples use AttributeError.

60

Now that the attribute can’t be changed, how does one supply it with

its original value? Trying to send it through the descriptor’s constructor

would simply end up with the same value for every instance, since the

constructor is only called at class creation time. There needs to be some

sort of back door. Three different techniques will be discussed: set-once,

secret-set, and forced-set.

�Set-Once Descriptors
A set-once descriptor is the most restrictive of the three read-only

properties in that it most strongly restricts the number of assignments to

once per instance under it.

Set-once descriptors work simply by checking whether a value is

already set and acting accordingly. If it’s already assigned, it raises an

exception; if it’s not, then it sets it.

For example, this is what the basic __set__() method would look like

if the descriptor was using on-descriptor storage in the instance attribute,

storage.

def __set__(self, instance, value):

 if instance in self.storage:

 �raise AttributeError("Cannot set new value on read-only

property")

 self.storage[instance] = value

First, it checks to see if there’s already a value set for the instance. If

there is, it raises an AttributeError. Otherwise, it sets the value. Simple.

Of the three read-only descriptors, it’s also the simplest to use, since it’s

set the same way descriptors are normally set: using simple assignment.

The others each have a roundabout way of getting the value set. Also,

because of it having a typical use for setting the value, it’s also the easiest to

make versatile.

Chapter 8 Read-Only Descriptors

61

�Secret-Set Descriptors
Secret-set descriptors use a “secret” method on the descriptor to initialize

the value. The method uses the same parameters as __set__() and sets

the value exactly the way __set__() would do with a normal descriptor.

But with this technique, the __set__() method just raises an error.

To have access to the secret method, access to the actual descriptor

object is needed. With the current general standard of returning self

in the __get__() method when no instance is provided, getting the

descriptor from the instance is as easy as type(a).x (you could change it

to directly use the class name, but that ignores inheritance and makes a

little more if you ever refactor the name). Even with returning unbound

attributes, this is possible, although it requires an extra step. You may

recall that UnboundAttribute has a descriptor attribute of its own. So, the

lookup becomes just a little longer. Instead of just type(a).x, it becomes

type(a).x.descriptor. Once you have access to the descriptor object, all

that needs to be done is call the “secret” set method. Here’s an example

of a class using a secret-set descriptor called ROValue in the __init__()

method.

class A:

 val = ROValue()

 def __init__(self, value):

 type(self).val.set(self, value)

The descriptor is accessed, then set()—the descriptor’s “secret” set

method—is called to initialize the value for the instance. This is more

verbose than self.val = value, but it works.

In the library, there are some helper functions (some of which are

standardized within the library) that can be used. The one that is most

guaranteed to work in every case (including instance attributes) is

setattribute(instance, attr_name, value). There are also some

Chapter 8 Read-Only Descriptors

62

optional parameters with default values that can be set for specifying the

specific behavior, but the defaults will try everything (including techniques

not shown here yet) until something works.

�Forced-Set Descriptors
The way that forced-set descriptors work is, instead of using an entirely

new method as a back door, it still uses __set__(), but with a twist. Instead

of just the typical three parameters (self, instance, and value), it has a

fourth with a default value. This parameter is something like forced=False.

This makes it so that the built-in way of calling __set__() will not cause the

value to be set. Rather, the descriptor object needs to be accessed and have

__set__() called explicitly with the additional forced=True argument. So,

if ROValue was a forced-set descriptor instead the previous secret-set one,

the basic __set__() method would look like this:

def __set__(self, instance, value, forced=False):

 if not forced:

 �raise AttributeError("Cannot set new value on read-only

property")

 # setter implementation here

Now the __set__() method checks whether the forced parameter

is set to True. If it’s not, then the method fails like any other read-only

descriptor should. If it is True, though, then the method knows to let it pass

and actually set the value.

If a descriptor is truly only meant to be written to during object

creation, using the set-once descriptor is the best choice. It’s harder for

users of the descriptor to thwart the read-only nature of the set-once

descriptor than it is for the other two options. Choosing between either

of the other two is a matter of preference. Some may find that altering the

signature of a “magic” method doesn’t sit well with them, although some

Chapter 8 Read-Only Descriptors

63

may enjoy the lack of a need for another method. Some may actually prefer

the additional method, since they may already be using it, as shown in

some examples in Chapter 11. For the most part, choosing between the

secret-set and forced-set descriptor designs is just about preference.

�Class Constants
Class constants are very much like read-only descriptors except that, when

done properly, they don’t need to be set-once; instead, they’re set upon

creation. This requires a little bit of tweaking, though.

First, you must realize that a descriptor for a class constant must be

implemented as a metadescriptor (in case you forgot, that’s a descriptor

on the metaclass) instead of a normal one. Second, each class that has

constants will likely have its own set of constants, which means each of

those classes will need a custom metaclass just for itself.

To begin, here’s the actual descriptor that will be used.

class Constant:

 def __init__(self, value):

 self.value = value

 def __get__(self, instance, owner):

 return self.value

 def __set__(self, instance, value):

 raise AttributeError("Cannot change a constant")

 def __delete__(self, instance):

 raise AttributeError("Cannot delete a constant")

It’s an extremely simple descriptor, receiving a value in its constructor,

returning it with a __get__() call, and raising an AttributeError if

someone attempts to change or delete the value.

Chapter 8 Read-Only Descriptors

64

To use this descriptor, though, it must be placed in a metaclass,

which must then have a class to derive from it. For an example, here is an

instance of a metaclass and class holding several mathematical constants.

class MathMeta(type):

 PI = Constant(3.14159)

 e = Constant(2.71828)

 GOLDEN_RATIO = Constant(1.61803)

class Math(metaclass=MathMeta):

 pass

Now PI, e, and the GOLDEN_RATIO are constants of the Math class.

The only way to mess with them is through the metaclass. A downside to

using a metadescriptor for this is the fact the constants can no longer be

accessed through instances of classes with the constant. This isn’t really a

problem though, since many other languages never permitted that kind of

access to begin with. There are also multiclassing issues that can pop up

with classes that have different metaclasses, but that’s a pretty rare issue.

So, now that there’s a Constant metadescriptor and it’s understood

how to use it, I will now channel my inner Raymond Hettinger by saying,

“There must be a better way!” Nobody wants to make a metaclass just so

they can make a normal class have constants.

There is a better way. Python allows for dynamically defining classes

and metaclasses, and if they’re created within a function, that definition

can be reused dynamically over and over again. Here’s how.

def withConstants(**kwargs):

 class MetaForConstants(type):

 pass

 for k, v in kwargs.items():

 MetaForConstants.__dict__[k] = Constant(v)

 return MetaForConstants

Chapter 8 Read-Only Descriptors

65

This function creates a metaclass using each given keyword argument

as a new Constant and returns the metaclass. Here’s what the new Math

class definition would look like with this function instead of the fully

written metaclass.

class Math(metaclass=withConstants(PI=3.14159, e=2.71828,

GOLDEN_RATIO=1.61803)):

 pass

There! Now, just by setting the resulting metaclass as Math’s metaclass,

it has the constants provided by the keyword arguments given to

withConstants(). There is one huge drawback to using this over the other

way: autocompletion. You’d be hard pressed to find an editor that can

autocomplete on something created completely dynamically like this.

�Summary
This chapter has examined several different techniques to make

descriptors for read-only attributes (or, at least, read-only-ish attributes).

One thing to note in all of this is that none of the techniques actually make

it impossible to change the values; they only make it difficult to do so,

requiring extra steps in order to signify to the user that doing so is not what

was intended. Such is the way of Python; after all, we’re all consenting

adults here.

Chapter 8 Read-Only Descriptors

67© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_9

CHAPTER 9

Writing__delete__()
This is going to be a short chapter, since there isn’t really all that much to

say, but it didn’t really fit in any of the other chapters. Also, __get__() and

__set__() sort of got their own chapters.

Most descriptor tutorials don’t even mention what to do with

__delete__(), and they often don’t even have the method on their

example descriptors.

If a descriptor is being used only internally (as opposed to being in a

public library) and del is never called in the internal code, then there is

no point in implementing a __delete__() method. But in a public library,

there is no way to know whether or not users are going to use del on

the descriptor attributes. Because of that, it is generally safest to include

working __delete__() methods on data descriptors in a library. How

those methods look depends on how the attributes are stored.

For internal storage, delete the entry from the dict:

del self.storage[instance]

For external storage, delete from the instance dictionary:

del vars(instance)[name]

If the descriptor doesn’t represent a stored value, do nothing. There’s

truly very little variation in what __delete__() methods look like, other

than the additional functionality a descriptor may have.

68

�Summary
We’ve seen that __delete__() is a pretty simple method to implement, but

deciding whether to actually implement it can be a difficult decision. In the

end, though, it will be used so little that implementing it can probably be

put off until it’s needed. The default behavior of raising an exception due to

lack of implementation should get you by until then.

Chapter 9 Writing__delete__()

69© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_10

CHAPTER 10

Descriptors Are
Classes Too
It’s time for some more advanced stuff with descriptors. Actually, it’s not

really advanced, since it’s stuff that pertains to all classes. There won’t be a

very in-depth look at much in this chapter; it’s just a reminder that features

normally available to classes are available to descriptors as well.

�Inheritance
Descriptors can inherit and be inherited from other classes (which will

generally be other descriptors or descriptor utilities/helpers). Using

inheritance, descriptors can be built using pre-built mixins and template

classes that already implement the base functionality wanted for storing

the attribute. In fact, a suite of these are discussed in the next chapter and

fully provided in the library. Just as an example, a base class can be created

that takes care of the minor details of using on-descriptor storage that the

derived specialization can delegate to. Again, there’s more about this idea

in the next chapter, with full code examples in the library.

70

�More Methods
A descriptor can have more methods than just that of the descriptor

protocol, __set_name__(), and __init__(). This was shown with secret-

set descriptors that have a back door method, like set().

Externally-used methods like that should be limited, since access to

these methods should be limited too, but using internally-used “private”

methods that are used only within the class are definitely fair game. Also,

implementing __str__() and __repr__() is a good idea too. It’s rarely

useful or necessary to implement __eq__() or __hash__(), as descriptors

themselves aren’t likely compared or stored in a hashed collection as a key.

�Optional/Default Parameters
Just like in the forced-set descriptors, optional/default parameters can

be added to the protocol methods. Since users providing alternative

arguments still requires them to get the descriptor object and call the

protocol methods directly, this should be limited, just like additional

externally-used methods.

Additionally, it should be limited for the sake of composition and

inheritance. If the class providing the optional parameter gets wrapped or

subclassed, the new class either has to know about the optional parameter

or provide a **kwargs parameter and pass it down the line, as will be seen

in much of the provided code in the library.

�Descriptors on Descriptors
Since descriptors are classes, descriptors can have descriptors on them

too! There have been several times that I almost did so, but the setter was

more complicated than what descriptors provide, so I had to settle. I’ve

also considered using descriptors to make the attributes read-only, but I’ve

never fully settled on it.

Chapter 10 Descriptors Are Classes Too

71

�Passing an Instance Around
No one ever said that a descriptor had to create a new instance for each

and every class it was put on. An instance of a descriptor can be created

outside of a class definition, then assigned to a class attribute of multiple

classes.

This can save a little bit of space when storing on the descriptor, since

it will only have the overhead of a single dictionary instead of one per class.

In fact, if you’re storing the values on the descriptor, it’s much less of a

problem than saving on the instance. The issue with descriptors storing the

values on the instance is that you need the name to store it on, and if that

name is supposed to the same as or derived from the name the descriptor

has on the class, you have to deal with the possibility that the descriptor

has multiple names. Interestingly, __set_name__() is called each time you

assign the descriptor to a class in the class definition. If you don’t need

the name (you should, for error messages), you can still get away with a

single descriptor used on multiple classes. The best use case is when the

descriptor is really specific and used with the same name on every class.

This eliminates all of the problems.

But if you want to use a single instance of a descriptor across multiple

classes that can potentially use a different name for it, you’ll need to create

a specialized storage for those names that is keyed by classes, but can also

take inheritance into account. I would actually enjoy the challenge and

have considered creating one to put into descriptor-tools, but I don’t want

to encourage the idea too much.

Whatever you do, do not reuse the same descriptor for multiple

attributes on the same class. It simply won’t work. All the attributes will

have the same value.

Chapter 10 Descriptors Are Classes Too

72

�Descriptors Just Abstract Method Calls
Basically, a descriptor is just a simpler way to do certain method calls.

Those method calls don’t have to work in a property-ish way, getting and/

or setting a certain value.

The __get__() descriptor method can essentially replace any method

on a class that takes no parameters and returns an object. What’s more, it

doesn’t even need to return anything, since not returning anything means

it returns None. The __set__() descriptor method can be a replacement for

any method that has a single parameter and doesn’t return anything. The

__delete__() method replaces methods with no parameters and doesn’t

return anything.

While a descriptor can be used in these ways, doing so is very likely

to be unintuitive to users of the descriptor, largely due to the fact that the

syntax seems strange for many of those cases, especially in the case of

__delete__().

�Summary
Anything that can be done with any other class can be done with a

descriptor, including things not brought up here. Although much of it can

be done without any real downsides, there is rarely a need for many of the

features, but it doesn’t hurt to keep all of this in mind when writing your

descriptors.

Chapter 10 Descriptors Are Classes Too

73© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_11

CHAPTER 11

Reusing the Wheel
Whenever possible and sensible, one should try to avoid reinventing the

wheel. This chapter goes over a set of classes to use as superclasses and

strategies to help build new descriptors a little faster. Only barebones code

is presented here; the full code examples are in the library.

�Storage Solutions
The first code examples cover storage “strategies” (which I’m calling

“solutions”) that a descriptor can use for its storage. These strategies can

be hard-coded into new descriptors or be passed into the descriptor’s

initializer to be chosen on a case-by-case basis. Only two basic strategies

will be shown here; the rest can be found in the library.

class OnDescriptorStorageSolution:

 def __init__(self):

 self.storage = DescriptorStorage()

 def get(self, instance):

 return self.storage[instance]

 def set(self, instance, value):

 self.storage[instance] = value

 def delete(self, instance):

 del self.storage[instance]

74

class NameGetter:

 def __init__(self, name_lookup_strategy):

 self.lookup_strategy = name_lookup_strategy

 self.name = None

 def __call__(self, instance, descriptor):

 if self.name is None:

 �self.name = self.lookup_strategy(instance,

descriptor)

 return self.name

 def set(self, name):

 self.name = name

class OnInstanceStorageSolution:

 def __init__(self, name_lookup_strategy):

 self.name = NameGetter(name_lookup_strategy)

 def get(self, instance):

 return instance.__dict__[self.name(instance, self)]

 def set(self, instance, value):

 instance.__dict__[self.name(instance, self)] = value

 def delete(self, instance):

 del instance.__dict__[self.name(instance, self)]

 def set_name(self, name):

 self.name.set(name)

Clearly, these storage solutions are designed for per-instance storage.

This is due to two reasons: per-class storage is trivial and therefore doesn’t

need pre-built solutions; and per-instance storage is much more common.

The NameGetter class and its use might be just a little confusing. As

stated in the chapter about storage, the most difficult thing about storing on

the instances is figuring out how to find the name of where to store, so the

Chapter 11 Reusing the Wheel

75

OnInstanceStorageSolution class takes in a name_lookup_strategy. This

strategy is just a function that accepts instance and the descriptor and returns

the name to store at. The strategy accepts those two parameters because those

are the only pieces of information guaranteed that can be used for the lookup,

and they’re also required for doing lookup via name_of(), as mentioned

earlier in the book. If the name is already decided, the lookup strategy can

simply be None, and you call set(). The set() method is also useful for being

called from __set_name__(), which is why OnInstanceStorageSolution also

has a set_name() method to be called from the descriptor.

NameGetter isn’t technically required to do the work necessary, but is

used to cache the name after the name has been calculated. That way, the

lookup method doesn’t need to be called more than once; it’s called once,

then stored for quick returns on subsequent lookups.

Now that storage solutions have been shown, here are some example

descriptors using or prepared to be supplied with a storage solution object

(delete methods are omitted for simplicity’s sake).

class ExampleWithHardCodedStrategy:

 def __init__(self):

 self.storage = OnDescriptorStorageSolution()

 def __get__(self, instance, owner):

 # any pre-fetch logic

 value = self.storage.get(instance)

 # any post-fetch logic

 return value

 def __set__(self, instance, value):

 # any pre-set logic

 self.storage.set(instance, value)

class ExampleWithOpenStrategy:

 def __init__(self, storage_solution):

 self.storage = storage_solution

Chapter 11 Reusing the Wheel

76

 def __get__(self, instance, owner):

 # any pre-fetch logic

 value = self.storage.get(instance)

 # any post-fetch logic

 return value

 def __set__(self, instance, value):

 # any pre-set logic

 self.storage.set(instance, value)

These strategies could also be subclassed, making the strategy

methods more like template-called methods. For example:

class ExampleWithSuperclassStrategy(OnDescriptorStorageSolution):

 def __get__(self, instance, owner):

 # any pre-fetch logic

 �value = self.get(instance) # calls the solution method

on itself

 # any post-fetch logic

 return value

 def __set__(self, instance, value):

 # any pre-set logic

 self.set(instance, value) # same here

Using the storage solutions like this is a cleaner way of hard-coding the

solution.

�Read-Only Solutions
Another utility class that can be built is a wrapper that can turn any other

descriptor into a read-only descriptor. Here’s an example using the set-

once style.

Chapter 11 Reusing the Wheel

77

class ReadOnly:

 def __init__(self, wrapped):

 self.wrapped = wrapped

 self.setInstances = set()

 def __set__(self, instance, value):

 if instance in self.setInstances:

 �raise AttributeError("Cannot set new value on read-

only property")

 else:

 self.setInstances.add(instance)

 self.wrapped.__set__(instance, value)

 def __getattr__(self, item):

 �# redirects any calls other than __set__ to the wrapped

descriptor

 return getattr(self.wrapped, item)

def readOnly(deco): # a decorator for wrapping other decorator

descriptors

 def wrapper(func):

 return ReadOnly(deco(func))

 return wrapper

It even includes a decorator decorator for decorating descriptors

being used as decorators. (Yo dawg; I heard you like decorators, so I

put decorators in your decorators.) This isn’t meant for wrapping just

any decorators; it’s only meant for wrapping decorators that produce

descriptors. It’s not likely to be used often, since most descriptors that are

created from decorators are non-data descriptors, making the ReadOnly

wrapping not very useful. But it doesn’t hurt to have it anyway, just in case;

especially after claiming it can wrap any other descriptor.

Chapter 11 Reusing the Wheel

78

It can be noted that ReadOnly only implements the __set__() method

of the descriptor protocol. This is because it’s the only one that it covers.

It uses __getattr__() in order to redirect calls to potential __get__()

and __delete__() methods because it doesn’t know which ones might

be implemented. Unfortunately, this doesn’t work. When calling “magic”

methods implicitly, Python doesn’t look up the methods normally. For the

sake of speed, it directly checks just the dictionary on the classes and no

further.

This unfortunately makes using the object-oriented decorator pattern

extremely difficult to do correctly. Essentially, you need to implement

the methods in such a way as to mimic __getattribute__() itself. In

descriptor_tools.decorators.DescriptorDecoratorBase, you can see

what I mean. It checks what methods the wrapped descriptor has and

decides whether to delegate to the wrapped descriptor, to the instance, or

to raise errors you’d otherwise get.

An alternative is to design your descriptors to take strategies at

creation, but this only works with your own descriptors and doesn’t allow

you to extend descriptors that are out of your control.

�Simple Unbound Attributes
Reusable code can be created for making the __get__() method return

unbound attributes when instance isn’t provided rather than returning

the descriptor, too. It can be done via a wrapper class (assuming it’s

designed to handle the correct methods), via inheritance, or even a

method decorator:

def binding(get):

 @wraps(get)

 def wrapper(self, instance, owner):

 if instance is None:

 return UnboundAttribute(self, owner)

Chapter 11 Reusing the Wheel

79

 else:

 return get(self, instance, owner)

 return wrapper

This simple decorator can be used inside a descriptor easily:

class Descriptor:

 # other implementation details

 @binding

 def __get__(self, instance, owner):

 # implementation that assumes instance is not None

By simply adding the call to the decorator, you can simplify the code

you have to write, ignoring writing anything that has to deal with the

possibility of instance being None, other than the decorator.

There’s also an object decorator (i.e., a Gang of Four decorator) version

in the library so that any existing descriptor can be transformed to return

unbound attributes. For example, if users want to use attribute binding

with an existing descriptor that doesn’t provide them, they could do

something like this:

class MyClass:

 @Binding

 @property

 def myProp(self):

 # gets the actual property

Binding is a class that wraps an entire descriptor. Now property can

be used with unbound attributes. (With some caveats: if you continue and

define a setter for myProp, myProp will be replaced with a new property

Chapter 11 Reusing the Wheel

80

object; only add the @Binding call to the last method decorated with the

property.) With descriptors that aren’t being used as decorators, it would

look like this:

class MyClass:

 myProp = Binding(SomeDescriptor(...))

There is no version that works with inheritance since calling either

of the decorators is easier than trying to create a superclass for the new

descriptor to inherit from.

�Summary
This is all the categories of helpful code provided in the library (other than

what the entire next chapter is about), but it is by no means the only pieces

of code there. There are a ton of helpful pieces there to help you build your

own descriptors, to mix and match certain pieces into a cohesive whole

descriptor where you need to do minimal work to add your core logic

among the rest of it.

In this chapter, we’ve seen how reusable pieces can be made that can

make implementing descriptors a little quicker and easier, as well as a little

bit more standardized. As mentioned, all of these tools (and more) will be

available in the library as well as on GitHub. Hopefully, they will help make

your lives easier when you try to create your own descriptors.

Chapter 11 Reusing the Wheel

81© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_12

CHAPTER 12

Instance-Level
Descriptors
What’s the most confusing part about a property-like data descriptor?

Wrapping your head around the fact that it is being used to control

instance-distinct attributes from its class.

What’s the hardest decision you have to make? Whether to store on the

descriptor or on the instance (and then how you plan to accomplish that).

With instance properties, these issues are delegated to a nano

framework so that you can concentrate on the important parts of your

descriptor, creating a property that works the way you’d expect. Let’s get a

little history to understand what I’m talking about.

�Properties in Other Languages
When you see properties in other languages, such as C#, those properties

work a lot like methods in that they’re defined on the class, but you get

to focus on the instance while you’re working. In fact, they’re defined

very much like methods and probably have the same or a similar

implementation in the back.

Python’s property descriptor allows you to do something very similar,

albeit in a slightly more verbose and unintuitive way, but you can still do it.

Next, we’ll look at Kotlin, which allows you to define properties in

much the same way as C#, but they also have a secondary system called

82

delegated properties. This is where you provide the property definition

with an object that has get() and set() methods. Does this sound

familiar? Sounds a lot like descriptors, right? There’s one big difference,

though: there’s one delegated property object per instance. This makes

it so that the delegated property only has to worry about what it’s doing

with each instance. It also means that, since a new property is created

with each instance, it can take a starting value in its constructor and

never implement a set() method if it wants to be read-only; it doesn’t

need set() to give it its first value. This is so much nicer than Python’s

descriptors in most cases.

�Back to Python
Now, don’t get me wrong; Python’s descriptors are an amazing feature,

and the fact that they reside at the class level opens up a whole new world

of possibilities. But the problem is that, arguably, most use cases for

descriptors don’t need that. In fact, I would venture that most of the time,

people just want a reusable property.

So, what can we do about this? We can make our own delegated

properties, of course!

Accomplishing this went through at least four different iterations

for me, starting off with using a completely different kind of Python

metaprogramming. You can see the first two attempts on my blog,

“Programming Ideas with Jake,” under my articles about descriptors.

�Attempt 1
The first thing I tried was a more direct manipulation of how Python

classes work to look and act more like it does in Kotlin. When you first set

the attribute on an instance that you wanted with a delegated property,

you assigned it an instance of that delegated property object. Then you

Chapter 12 Instance-Level Descriptors

83

would tweak __getattribute__() and __setattr__() so that if the

attribute held a delegated property, it would call the appropriate method

on it instead. Reusing the tweaked version of the __getattribute__()

and __setattr__() could be done fairly easily with inheritance or a class

decorator that does monkey patching.

As well as this works, it doesn’t sit well with me because I hate messing

with those attribute access hooks. It seems too magical to me.

�Attempt 2
I believe I was lying in bed about to fall asleep, when this idea came to me,

causing me to stay up a little longer while I wrote it down. The idea was

half-baked at first, but the basics of it run the rest of the attempts. Then,

as I started to write it in code, I started to see certain issues and came up

with a situation that will probably make you think of some jokes about Java

frameworks.

The basics of the idea is that, instead of tweaking the attribute access

methods, we move those changes out into a descriptor. That descriptor

is called with any and all uses of its attribute, where it delegates to a

delegated property object. It’s a pretty simple base of an idea.

From there, the problem came down to one question: how do we

instantiate the delegated property instances? You may or may not already

have a good guess, and the part that made my life so difficult was the idea

that I thought the framework had to work in a way such that everything

about the property had to be defined in that initial line on the class, and

the constructor pretty much just needed to provide the starting value.

Chapter 12 Instance-Level Descriptors

84

So the descriptor needed to be constructed with a factory function for

creating the delegated property. But I also wanted to make it so that the

delegated property could:

•	 Be created without a value initially. For example, a

lazy attribute where the lazy initialization function is

provided with the factory. Or a property that can’t be

None but might not have a value initially.

•	 Could skip implementing the setter method to be

read-only.

•	 Could potentially take in some metadata, such as its

name as well as what instance it’s for.

To do this, the first time the attribute was accessed, the descriptor

created a blank version of the delegated property object and passed

it and the metadata in an “InstancePropertyInitializer,” which had an

initialize() method that you had to call in your normal constructor. This

initializer method delegated to the initialize() method on the delegated

property, sending in the metadata and whatever else the developer wanted

to send into the property. The existence and flexibility of that initializer is

what allowed delegated properties to accomplish this list of possibilities. If

you don’t want an initial value, then just don’t give one to the initializer. If

you want to skip having the setter method for a read-only property (but the

framework can’t provide the initial value in the constructor), the initializer

acts like a special backdoor setter. It’s also the vehicle for supplying the

metadata.

The idea seemed pretty elegant to me at the time, but it dawned

on me how cumbersome it was. First, the delegated property needed

to provide an initializer method, plus it needed to provide a factory

method. Also, initializing the attribute was weird, looking like

self.attr.initialize(value) instead of just self.attr = value.

Chapter 12 Instance-Level Descriptors

85

�Attempt 3
Then, while I was on a camping trip and starting to work on my edits for

this new edition, a better idea came to me. It followed mostly the same

idea, but it made it nicer for properties that were given a starting value in

the constructor.

To do this, the factory was changed to take in the metadata as well

as an initial value. Now the delegated property could take in all of

those things in the constructor. So, the first time that the attribute is

set, the descriptor creates the property with all of that. This allowed the

constructor code to go back to the self.attr = value format.

But what about ones that don’t want an initial value? Those classes

have to take an extra step. Their factories had to have a default() method

that on took in the metadata. This would be called if the delegated

property still hadn’t been created for an instance but the descriptor’s

__get__() method was being called. From there, the descriptor could start

delegating to the property.

The reason that we have a default factory that is different than the

normal factory is because most properties that would use a default factory

also still allow the value to be initialized first.

�Attempt 4
Before I was even done with that camping trip, I realized how dumb I had

been all along and started work on this fourth, and hopefully final, attempt.

We don’t need factories. Instead, at the class level, all you do is create

the base InstanceProperty descriptor (shown below). The descriptor is

just there to activate that attribute to use delegated properties. It simply

assumes that the first assignment to the attribute is assigning the property

itself instead of just a value. The descriptor doesn’t need to know what

kind of property it will be storing or how to create it.

Chapter 12 Instance-Level Descriptors

86

Instead, you create the delegate property instance in the class’

constructor. This has the added benefit of making sure that, if the

descriptor stores the delegated property on the instance, the property is

assigned in the constructor, which is recommended in Python 3.3+ due

to key-sharing dictionaries. Sure, it’s no longer self.attr = value. Now

it’s self.attr = PropertyType(value), which is more cumbersome

but doesn’t feel nearly as weird, and it allows the design of the delegated

property types to be notably easier.

There is still one awkward thing that needs to be dealt with on the

property class. It needs a method for providing the metadata. It’s either

do that or cause the attribute initialization line to look like self.attr =

PropertyType(value, self, "attr", type(self).attr), assuming the

property wants all three pieces of metadata (the instance, the attribute

name, and the descriptor the property is controlled by).

So what does this descriptor look like? Here’s a simplified version:

class InstanceProperty:

 def __init__(self):

 self._storage = DescDict()

 def __set_name__(self, owner, name):

 self._name = name

 def __get__(self, instance, owner):

 if instance is None:

 return self

 else:

 return self._storage[instance].get()

 def __set__(self, instance, value):

 if instance not in self._storage:

 value.set_meta(instance, self._name, self)

 self._storage[instance] = value

Chapter 12 Instance-Level Descriptors

87

 else:

 self._storage[instance].set(value)

 def __delete__(self, instance):

 del self._storage[instance]

The real one that’s included in the descriptor-tools library in version

1.1 (still unreleased at the time of writing) has more to it, allowing for

the name to be set in versions that don’t support __set_name__(). The

real one also makes the properties not deletable by default (a Deletable

wrapper allows it) and allows you to use a simple wrapper for the

descriptor that makes it read-only so that you don’t have create a mutable

and read-only version of the delegated properties.

�Example
I’m betting you want to see all of this in action, don’t you? We’ll create a

delegated property that doesn’t allow the attribute to be None:

class NotNone:

 def __init__(self, value):

 self.value = value

 def set_meta(self, instance, name, descriptor):

 self.instance = instance

 self.name = name

 self.descriptor = descriptor

 if value is None:

 �raise AttributeError(self.name + "cannot be None")

 def get(self):

 return self.value

Chapter 12 Instance-Level Descriptors

88

 def set(self, value):

 if value is None:

 raise AttributeError(self.name + "cannot be None")

 else:

 self.value = value

This example also shows a small inconvenience with the framework:

if you want a property that does some kind of validation and wants to

use any of the metadata in the error message, you need to wait until

set_meta() to do the initial validation. From the user’s perspective, this

is effectively at the exact same point in time, but it’s awkward from the

perspective of the person who has to write the property.

But you know what else this example shows? It shows how simple and

intuitive the rest of creating a delegated property can be.

So what does it look like to use all of this?

class Foo:

 bar = InstanceAttribute()

 def __init__(self, baz):

 self.bar = NotNone(baz)

 ...

Just a little bit of extra work for a clean and easy way to have special

attributes.

�Go Nuts
While there is a default option for an instance attribute descriptor coming

to descriptor-tools, that was designed to be as general as I knew how to

make it. If you don’t care at all about the metadata, you can create your

own instance attribute descriptor and strip that whole bit out. You’re nearly

done with this book; you’ve got this!

Chapter 12 Instance-Level Descriptors

89© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4_13

CHAPTER 13

Other Uses
of Descriptors
In the World
Much of the usefulness of descriptors covered in this book was just

using them as specialized properties. While this is one of the primary

purposes of descriptors, it’s not all that they can do, though even the more

innovative uses still largely serve that purpose.

�SQLAlchemy4

This is probably the best-known library that uses descriptors for some of its

stronger powers. (Probably; I did some digging and couldn’t find any hint

of using descriptors, though the inheritance hierarchy is deep, so I gave

up. If it doesn’t use descriptors, then I have absolutely no clue how it does

what it does.) When using the declarative mapping style for data classes,

the use of the Column descriptor allows users to specify all sorts of database

metadata about the column that the attribute represents, including the

data type, column name, whether it’s a primary key, etc.

That Column class also has a ton of other methods that are used when

creating queries around the data, such as the ordering methods, __lt__(),

__gt__(), etc. and what table it’s in.

90

�Jigna
Jigna is a library that provides a kind of bridge between Python and

JavaScript, allowing you to write Python code that creates web pages,

including single-page applications. Using Trait descriptors, it can create

two-way data bindings, generating AngularJS code that works with HTML

pages.

The use is extremely innovative and powerful and it’s all thanks to

descriptors that it can be as easy to use as it is.

For more information, visit its GitHub repository5 or check out the

presentation the creator gave at EuroPython 20146.

�Elk
Elk is a Python library that is almost all descriptors, allowing for classes to

be defined in a stricter fashion. Every attribute for instances is meant to be

defined in the class with an ElkAttribute descriptor. Some examples of

what can be done with ElkAttributes are:

•	 Setting an attribute as required

•	 Making lazy attributes

•	 Delegating to the methods on the attribute

•	 Making an attribute read-only

•	 Creating constructors automatically

There are other features in the library attempting to make the

tedious parts of class definition a little easier, and they can be seen in its

documentation7.

Chapter 13 Other Uses of Descriptors In the World

91

�Validators
This isn’t a specific instance of what’s out there, but rather a well-known

use for descriptors. For example, if an attribute needs to be a string

that follows a certain pattern, a descriptor can be created that takes the

validator, and every time a value is set into the descriptor, it validates that

the new value fits the validation.

There are a bunch of different validation descriptors that can be

written that allow a class to maintain its invariants.

�Summary
Now you’ve seen some really cool uses for descriptors. Also, this is the

end of the book, so I suggest you go out there and make your own really

awesome descriptors. Go and make the Python community an even more

awesome place.

Chapter 13 Other Uses of Descriptors In the World

93© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4

�Bibliography

	 1.	 GitHub repo of descriptor tools https://github.com/

sad2project/descriptor-tools

	 2.	 Python documentation on property

http://tinyurl.com/ljsmxck

	 3.	 “The Zipline Show” about descriptors

https://www.youtube.com/watch?v=xYBVjVEJtEg

	 4.	 SQLAlchemy site http://www.sqlalchemy.org/

	 5.	 Jigna GitHub repo https://github.com/

enthought/jigna

	 6.	 Jigna presentation at EuroPython 2014

https://www.youtube.com/watch?v=KHSXq5jfv_4

	 7.	 Elk documentation http://frasertweedale.

github.io/elk/

https://doi.org/10.1007/978-1-4842-3727-4
https://github.com/sad2project/descriptor-tools
https://github.com/sad2project/descriptor-tools
http://tinyurl.com/ljsmxck
https://www.youtube.com/watch?v=xYBVjVEJtEg
http://www.sqlalchemy.org/
https://github.com/enthought/jigna
https://github.com/enthought/jigna
https://www.youtube.com/watch?v=KHSXq5jfv_4
http://frasertweedale.github.io/elk/
http://frasertweedale.github.io/elk/

95© Jacob Zimmerman 2018
J. Zimmerman, Python Descriptors, https://doi.org/10.1007/978-1-4842-3727-4

Index

A, B
Attribute access

instance access
class, 26
__getattribute__() method,

22–23, 25
__get__() method, 23, 25
MRO, 23

set and delete calls, 27
AttributeError, 25, 27, 31–32,

59–60, 63
Attributes storage

class-level, 39–40
descriptor, data (see Descriptor,

data)
location, indirect, 50

name mangling (see Name
mangling)

original and mangled name
storage (see Original and
mangled name storage)

C
Class constants

autocompletion, 65
metaclass, 64
metadescriptor, 63
multiclassing issues, 64

D
Descriptor, data

descriptor protocol, 43
facade class, 45
hashable types, 43
instance dictionary

Boolean flag, 46
name conflicts, 47
__slots__, 46
vars() function, 47

instance’s ID, 43
key ID, 45
location name

__init__() method, 48
set-it-and-forget-it

descriptors, 48–50
validatedAttribute, 49

memory leaks, 41, 44
mutable collections, 42
vs. non-data, 4, 28
overriding, 42
__setitem__() class, 45
WeakKeyDictionary, 41–42

Descriptor methods, 3, 70
__delete__() method, 31–32
EAFP, 32
__get__() method, 32
__set__() method, 32

https://doi.org/10.1007/978-1-4842-3727-4

96

unbound attributes, 33
attrgetter() function, 36
map() function, 35
self returning, 35
unboundattr() function, 34

Descriptor protocol
__delete__(self, instance)

method, 9
__get__(self, instance, owner)

method, 7–8
__set__(self, instance, value)

method, 8–9
Descriptors

abstract method, 72
cons of Python

additional objects, 14
__delete__() method, 3, 9, 67, 72

descriptor-tools library, 14
encapsulation, 13

__get__() method, 3, 7, 8, 72
inheritance, 69
instance, passing, 71
methods (see Descriptor

methods)
optional/default parameters, 70
pros of Python

class level, 13
encapsulation, 11
read/write patterns, 12–13

Python, use, 4
__set__() method, 3, 8, 9, 72

standard library
bound method, 20
classmethod descriptor, 18
property class, 16–17
staticmethod descriptor, 19

uses
Elk, 90
Jigna, 90
SQLAlchemy, 89
validators, 91

E, F
Easier to ask for forgiveness than

for permission (EAFP), 32
Elk, 90

G, H
GitHub, 93

I
Instance-level descriptors, Python,

see Python

J
Jigna, 90

K, L
Kotlin, 81

Descriptor methods (cont.)

Index

97

M
Metadescriptors, 57
Method resolution order (MRO), 23
Multi-paradigm language, 4

N
Name mangling

name fetching, 51
dir() method, 52
getattr_static() function, 53
name_of() method, 52
__set_name__() method, 53

non-data descriptor, 51
Python, 51

O
Original and mangled name

storage
DRYness, 56
ID keying

__dir__() method, 54
pickle module, 55

metadescriptors, 57

P, Q
Python

default() method, 85
__getattribute__() method, 83
__get__() method, 85
initialize() method, 84

InstanceProperty descriptor, 81,
85, 87

__setattr__() method, 83
set_meta() method, 88

R
Read-only descriptors

forced-set descriptor, 62–63
secret-set descriptor, 61
set-once descriptor, 60

Read/write patterns, 12–13

S, T, U, V
SQLAlchemy, 89

W, X, Y, Z
Wheel, reusing

read-only solutions
decorator, 77
__getattribute__() method,

78
storage solutions, 73

NameGetter class, 74
OnInstanceStorageSolution

class, 75
per-instance, 74
set() method, 75
template-called methods, 76

unbound attributes, 78
object decorator, 79

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: About Descriptors
	Chapter 1: What Is a Descriptor?
	Data Descriptors versus Non-Data Descriptors
	The Use of Descriptors by Python
	Summary

	Chapter 2: The Descriptor Protocol
	The __get__(self, instance, owner) Method
	The __set__(self, instance, value) Method
	The __delete__(self, instance) Method
	Summary

	Chapter 3: What Are Descriptors Good For?
	Pros of Python Descriptors
	Encapsulation
	Reuse of Read/Write Patterns
	Lazy Instantiation
	Validation
	Triggering Actions

	Writing for the Class Level

	Cons of Python Descriptors
	Encapsulation
	Can Be Difficult To Write
	Additional Objects

	Summary

	Chapter 4: Descriptors in the Standard Library
	The property Class
	The classmethod Descriptor
	The staticmethod Descriptor
	Regular Methods
	Summary

	Chapter 5: Attribute Access and Descriptors
	Instance Access
	Set and Delete Calls
	The Reasoning Behind Data versus Non-Data Descriptors
	Summary

	Part II: Making Descriptors
	Chapter 6: Which Methods Are Needed?
	When __get__() Is Called Without an instance Argument
	Raise Exception or Return self
	“Unbound” Attributes

	Summary

	Chapter 7: Storing the Attributes
	Class-Level Storage
	Storing Data on the Descriptor
	Storing on the Instance Dictionary
	Asking for the Location
	Set-It-and-Forget-It Descriptors

	Indirectly Asking for the Location
	Name Mangling
	Fetching the Name
	__set_name__()

	Store the Original and the Mangled
	Keying on the ID
	Letting the User Take Care Of It
	Metadescriptors

	Summary

	Chapter 8: Read-Only Descriptors
	Set-Once Descriptors
	Secret-Set Descriptors
	Forced-Set Descriptors
	Class Constants
	Summary

	Chapter 9: Writing__delete__()
	Summary

	Chapter 10: Descriptors Are Classes Too
	Inheritance
	More Methods
	Optional/Default Parameters
	Descriptors on Descriptors
	Passing an Instance Around
	Descriptors Just Abstract Method Calls
	Summary

	Chapter 11: Reusing the Wheel
	Storage Solutions
	Read-Only Solutions
	Simple Unbound Attributes
	Summary

	Chapter 12: Instance-Level Descriptors
	Properties in Other Languages
	Back to Python
	Attempt 1
	Attempt 2
	Attempt 3
	Attempt 4

	Example
	Go Nuts

	Chapter 13: Other Uses of Descriptors In the World
	SQLAlchemy4
	Jigna
	Elk
	Validators
	Summary

	Bibliography
	Index

